diff options
author | dos-reis <gdr@axiomatics.org> | 2008-03-24 11:47:01 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2008-03-24 11:47:01 +0000 |
commit | 55893dcd3118428f046d5f539d80e9aa5345b885 (patch) | |
tree | 05992761c4ad4d3421b7063de3357d1ced007c8a /src/share | |
parent | 97f54bf68c5aefffc94a4935e08fd6449ec501c9 (diff) | |
download | open-axiom-55893dcd3118428f046d5f539d80e9aa5345b885.tar.gz |
Add support for SBCL and CLisp
Diffstat (limited to 'src/share')
-rw-r--r-- | src/share/algebra/browse.daase | 3428 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 5504 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1320 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 9777 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 33511 |
5 files changed, 26783 insertions, 26757 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 60de9c5b..70334282 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2234201 . 3410359537) +(2235836 . 3415311729) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4239 . T) (-4238 . T) (-2088 . T)) +((-4245 . T) (-4244 . T) (-3656 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}."))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,23 +46,23 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4235 . T) (-4233 . T) (-4232 . T) ((-4240 "*") . T) (-4231 . T) (-4236 . T) (-4230 . T) (-2088 . T)) +((-4241 . T) (-4239 . T) (-4238 . T) ((-4246 "*") . T) (-4237 . T) (-4242 . T) (-4236 . T) (-3656 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) NIL NIL -(-31 R -4102) +(-31 R -2315) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522))))) +((|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (-32 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4238))) +((|HasAttribute| |#1| (QUOTE -4244))) (-33) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) -((-2088 . T)) +((-3656 . T)) NIL (-34) ((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}."))) @@ -70,7 +70,7 @@ NIL NIL (-35 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4238 . T) (-4239 . T) (-2088 . T)) +((-4244 . T) (-4245 . T) (-3656 . T)) NIL (-36 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) @@ -78,20 +78,20 @@ NIL NIL (-37 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) -((-4232 . T) (-4233 . T) (-4235 . T)) +((-4238 . T) (-4239 . T) (-4241 . T)) NIL (-38 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-39 -4102 UP UPUP -1246) +(-39 -2315 UP UPUP -3507) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4231 |has| (-382 |#2|) (-338)) (-4236 |has| (-382 |#2|) (-338)) (-4230 |has| (-382 |#2|) (-338)) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| (-382 |#2|) (QUOTE (-133))) (|HasCategory| (-382 |#2|) (QUOTE (-135))) (|HasCategory| (-382 |#2|) (QUOTE (-324))) (|HasCategory| (-382 |#2|) (QUOTE (-338))) (-3844 (|HasCategory| (-382 |#2|) (QUOTE (-338))) (|HasCategory| (-382 |#2|) (QUOTE (-324)))) (|HasCategory| (-382 |#2|) (QUOTE (-343))) (|HasCategory| (-382 |#2|) (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| (-382 |#2|) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-382 |#2|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-343))) (-3844 (|HasCategory| (-382 |#2|) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-382 |#2|) (QUOTE (-338)))) (-12 (|HasCategory| (-382 |#2|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-382 |#2|) (QUOTE (-338)))) (-3844 (-12 (|HasCategory| (-382 |#2|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-382 |#2|) (QUOTE (-338)))) (-12 (|HasCategory| (-382 |#2|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-382 |#2|) (QUOTE (-324))))) (-12 (|HasCategory| (-382 |#2|) (QUOTE (-210))) (|HasCategory| (-382 |#2|) (QUOTE (-338)))) (-3844 (-12 (|HasCategory| (-382 |#2|) (QUOTE (-210))) (|HasCategory| (-382 |#2|) (QUOTE (-338)))) (|HasCategory| (-382 |#2|) (QUOTE (-324))))) -(-40 R -4102) +((-4237 |has| (-383 |#2|) (-339)) (-4242 |has| (-383 |#2|) (-339)) (-4236 |has| (-383 |#2|) (-339)) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| (-383 |#2|) (QUOTE (-134))) (|HasCategory| (-383 |#2|) (QUOTE (-136))) (|HasCategory| (-383 |#2|) (QUOTE (-325))) (-3262 (|HasCategory| (-383 |#2|) (QUOTE (-339))) (|HasCategory| (-383 |#2|) (QUOTE (-325)))) (|HasCategory| (-383 |#2|) (QUOTE (-339))) (|HasCategory| (-383 |#2|) (QUOTE (-344))) (-3262 (-12 (|HasCategory| (-383 |#2|) (QUOTE (-211))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (|HasCategory| (-383 |#2|) (QUOTE (-325)))) (-3262 (-12 (|HasCategory| (-383 |#2|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (-12 (|HasCategory| (-383 |#2|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-383 |#2|) (QUOTE (-325))))) (|HasCategory| (-383 |#2|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| (-383 |#2|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-383 |#2|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-344))) (-3262 (|HasCategory| (-383 |#2|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (-12 (|HasCategory| (-383 |#2|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (-12 (|HasCategory| (-383 |#2|) (QUOTE (-211))) (|HasCategory| (-383 |#2|) (QUOTE (-339))))) +(-40 R -2315) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -405) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -406) (|devaluate| |#1|))))) (-41 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -99,34 +99,34 @@ NIL (-42 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,{}A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,{}a) = 0} and \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}x,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}b,{}x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,{}a,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,{}a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-283)))) +((|HasCategory| |#1| (QUOTE (-284)))) (-43 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4235 |has| |#1| (-514)) (-4233 . T) (-4232 . T)) -((|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) +((-4241 |has| |#1| (-515)) (-4239 . T) (-4238 . T)) +((|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-44 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4238 . T) (-4239 . T)) -((|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-1014))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-784))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (-12 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2644) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3149) (|devaluate| |#2|)))))) (-3844 (-12 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-784))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2644) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3149) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2644) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3149) (|devaluate| |#2|))))))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-784))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))))) +((-4244 . T) (-4245 . T)) +((-3262 (-12 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-786))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#2|))))))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-786))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-786))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (-12 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) (-45 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-338)))) +((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339)))) (-46 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4232 . T) (-4233 . T) (-4235 . T)) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4238 . T) (-4239 . T) (-4241 . T)) NIL (-47) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| $ (QUOTE (-971))) (|HasCategory| $ (LIST (QUOTE -962) (QUOTE (-522))))) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| $ (QUOTE (-973))) (|HasCategory| $ (LIST (QUOTE -964) (QUOTE (-523))))) (-48) -((|constructor| (NIL "This domain implements anonymous functions"))) +((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-49 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4235 . T)) +((-4241 . T)) NIL (-50 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -140,7 +140,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-53 |Base| R -4102) +(-53 |Base| R -2315) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -150,7 +150,7 @@ NIL NIL (-55 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4238 . T) (-4239 . T) (-2088 . T)) +((-4244 . T) (-4245 . T) (-3656 . T)) NIL (-56 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) @@ -158,65 +158,65 @@ NIL NIL (-57 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4239 . T) (-4238 . T)) -((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3844 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) +((-4245 . T) (-4244 . T)) +((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-58 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4238 . T) (-4239 . T)) -((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-59 -3015) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-59 -4038) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-60 -3015) +(-60 -4038) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-61 -3015) +(-61 -4038) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -3015) +(-62 -4038) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-63 -3015) +(-63 -4038) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -3015) +(-64 -4038) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -3015) +(-65 -4038) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -3015) +(-66 -4038) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-67 -3015) +(-67 -4038) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-68 -3015) +(-68 -4038) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-69 -3015) +(-69 -4038) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-70 -3015) +(-70 -4038) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-71 -3015) +(-71 -4038) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-72 -3015) +(-72 -4038) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -228,66 +228,66 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-75 -3015) +(-75 -4038) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-76 -3015) +(-76 -4038) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-77 -3015) +(-77 -4038) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-78 -3015) +(-78 -4038) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-79 -3015) +(-79 -4038) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -3015) +(-80 -4038) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -3015) +(-81 -4038) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-82 -3015) +(-82 -4038) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -3015) +(-83 -4038) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -3015) +(-84 -4038) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -3015) +(-85 -4038) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -3015) +(-86 -4038) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-87 -3015) +(-87 -4038) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-88 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op,{} m)} returns \\spad{[w,{} eq,{} lw,{} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,{}...,{}A_n]} such that if \\spad{y = [y_1,{}...,{}y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',{}y_j'',{}...,{}y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op,{} m)} returns \\spad{[M,{}w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-338)))) +((|HasCategory| |#1| (QUOTE (-339)))) (-89 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4238 . T) (-4239 . T)) -((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-90 S) ((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}."))) NIL @@ -298,15 +298,15 @@ NIL NIL (-92) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4238 . T)) +((-4244 . T)) NIL (-93) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4238 . T) ((-4240 "*") . T) (-4239 . T) (-4235 . T) (-4233 . T) (-4232 . T) (-4231 . T) (-4236 . T) (-4230 . T) (-4229 . T) (-4228 . T) (-4227 . T) (-4226 . T) (-4234 . T) (-4237 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4225 . T)) +((-4244 . T) ((-4246 "*") . T) (-4245 . T) (-4241 . T) (-4239 . T) (-4238 . T) (-4237 . T) (-4242 . T) (-4236 . T) (-4235 . T) (-4234 . T) (-4233 . T) (-4232 . T) (-4240 . T) (-4243 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4231 . T)) NIL (-94 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4235 . T)) +((-4241 . T)) NIL (-95 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}."))) @@ -322,15 +322,15 @@ NIL NIL (-98 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4238 . T) (-4239 . T)) -((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-99 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4240 "*")))) +((|HasAttribute| |#1| (QUOTE (-4246 "*")))) (-100) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4238 . T)) +((-4244 . T)) NIL (-101 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -338,12 +338,12 @@ NIL NIL (-102 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4239 . T) (-2088 . T)) +((-4245 . T) (-3656 . T)) NIL (-103) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| (-522) (QUOTE (-838))) (|HasCategory| (-522) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| (-522) (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-135))) (|HasCategory| (-522) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-522) (QUOTE (-947))) (|HasCategory| (-522) (QUOTE (-757))) (|HasCategory| (-522) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| (-522) (QUOTE (-1061))) (|HasCategory| (-522) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| (-522) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| (-522) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| (-522) (QUOTE (-210))) (|HasCategory| (-522) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-522) (LIST (QUOTE -483) (QUOTE (-1085)) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -285) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -262) (QUOTE (-522)) (QUOTE (-522)))) (|HasCategory| (-522) (QUOTE (-283))) (|HasCategory| (-522) (QUOTE (-507))) (|HasCategory| (-522) (QUOTE (-784))) (-3844 (|HasCategory| (-522) (QUOTE (-757))) (|HasCategory| (-522) (QUOTE (-784)))) (|HasCategory| (-522) (LIST (QUOTE -584) (QUOTE (-522)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-838)))) (|HasCategory| (-522) (QUOTE (-133))))) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| (-523) (QUOTE (-840))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| (-523) (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-136))) (|HasCategory| (-523) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-523) (QUOTE (-949))) (|HasCategory| (-523) (QUOTE (-759))) (-3262 (|HasCategory| (-523) (QUOTE (-759))) (|HasCategory| (-523) (QUOTE (-786)))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-1063))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-523) (QUOTE (-211))) (|HasCategory| (-523) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-523) (LIST (QUOTE -484) (QUOTE (-1087)) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -286) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -263) (QUOTE (-523)) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-284))) (|HasCategory| (-523) (QUOTE (-508))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-523) (LIST (QUOTE -585) (QUOTE (-523)))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (|HasCategory| (-523) (QUOTE (-134))))) (-104) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL @@ -354,11 +354,11 @@ NIL NIL (-106) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4239 . T) (-4238 . T)) -((|HasCategory| (-108) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-108) (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| (-108) (QUOTE (-1014))) (-12 (|HasCategory| (-108) (QUOTE (-1014))) (|HasCategory| (-108) (LIST (QUOTE -285) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -562) (QUOTE (-792))))) +((-4245 . T) (-4244 . T)) +((-12 (|HasCategory| (-108) (QUOTE (-1016))) (|HasCategory| (-108) (LIST (QUOTE -286) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-108) (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-108) (QUOTE (-1016))) (|HasCategory| (-108) (LIST (QUOTE -563) (QUOTE (-794))))) (-107 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4233 . T) (-4232 . T)) +((-4239 . T) (-4238 . T)) NIL (-108) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (((|Boolean|) $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (^ (($ $) "\\spad{^ n} returns the negation of \\spad{n}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) @@ -367,30 +367,30 @@ NIL (-109 A) ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) NIL -((|HasCategory| |#1| (QUOTE (-784)))) +((|HasCategory| |#1| (QUOTE (-786)))) (-110) ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) NIL NIL -(-111 -4102 UP) +(-111 -2315 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-112 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL (-113 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| (-112 |#1|) (QUOTE (-838))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| (-112 |#1|) (QUOTE (-133))) (|HasCategory| (-112 |#1|) (QUOTE (-135))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-112 |#1|) (QUOTE (-947))) (|HasCategory| (-112 |#1|) (QUOTE (-757))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| (-112 |#1|) (QUOTE (-1061))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| (-112 |#1|) (QUOTE (-210))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -483) (QUOTE (-1085)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -262) (LIST (QUOTE -112) (|devaluate| |#1|)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (QUOTE (-283))) (|HasCategory| (-112 |#1|) (QUOTE (-507))) (|HasCategory| (-112 |#1|) (QUOTE (-784))) (-3844 (|HasCategory| (-112 |#1|) (QUOTE (-757))) (|HasCategory| (-112 |#1|) (QUOTE (-784)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-112 |#1|) (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-112 |#1|) (QUOTE (-838)))) (|HasCategory| (-112 |#1|) (QUOTE (-133))))) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| (-112 |#1|) (QUOTE (-840))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| (-112 |#1|) (QUOTE (-134))) (|HasCategory| (-112 |#1|) (QUOTE (-136))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-112 |#1|) (QUOTE (-949))) (|HasCategory| (-112 |#1|) (QUOTE (-759))) (-3262 (|HasCategory| (-112 |#1|) (QUOTE (-759))) (|HasCategory| (-112 |#1|) (QUOTE (-786)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-112 |#1|) (QUOTE (-1063))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| (-112 |#1|) (QUOTE (-211))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -484) (QUOTE (-1087)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -263) (LIST (QUOTE -112) (|devaluate| |#1|)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (QUOTE (-284))) (|HasCategory| (-112 |#1|) (QUOTE (-508))) (|HasCategory| (-112 |#1|) (QUOTE (-786))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-112 |#1|) (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-112 |#1|) (QUOTE (-840)))) (|HasCategory| (-112 |#1|) (QUOTE (-134))))) (-114 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4239))) +((|HasAttribute| |#1| (QUOTE -4245))) (-115 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) -((-2088 . T)) +((-3656 . T)) NIL (-116 UP) ((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) @@ -398,15 +398,15 @@ NIL NIL (-117 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4238 . T) (-4239 . T)) -((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-118 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL (-119) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4239 . T) (-4238 . T) (-2088 . T)) +((-4245 . T) (-4244 . T) (-3656 . T)) NIL (-120 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -414,16 +414,16 @@ NIL NIL (-121 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4238 . T) (-4239 . T) (-2088 . T)) +((-4244 . T) (-4245 . T) (-3656 . T)) NIL (-122 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4238 . T) (-4239 . T)) -((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-123 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4238 . T) (-4239 . T)) -((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (-124) ((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) NIL @@ -434,4275 +434,4279 @@ NIL NIL (-126) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) -(((-4240 "*") . T)) +(((-4246 "*") . T)) NIL -(-127 |minix| -2787 S T$) +(-127 |minix| -1346 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-128 |minix| -2787 R) +(-128 |minix| -1346 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\^= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL (-129) +((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: February 16,{} 2008. Date Last Updated: February 16,{} 2008. Basic Operations: coerce Related Constructors: Also See: Type"))) +NIL +NIL +(-130) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4238 . T) (-4228 . T) (-4239 . T)) -((|HasCategory| (-132) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-132) (QUOTE (-343))) (|HasCategory| (-132) (QUOTE (-784))) (|HasCategory| (-132) (QUOTE (-1014))) (-12 (|HasCategory| (-132) (QUOTE (-1014))) (|HasCategory| (-132) (LIST (QUOTE -285) (QUOTE (-132))))) (-3844 (-12 (|HasCategory| (-132) (QUOTE (-343))) (|HasCategory| (-132) (LIST (QUOTE -285) (QUOTE (-132))))) (-12 (|HasCategory| (-132) (QUOTE (-1014))) (|HasCategory| (-132) (LIST (QUOTE -285) (QUOTE (-132)))))) (|HasCategory| (-132) (LIST (QUOTE -562) (QUOTE (-792))))) -(-130 R Q A) +((-4244 . T) (-4234 . T) (-4245 . T)) +((-3262 (-12 (|HasCategory| (-133) (QUOTE (-344))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133))))) (-12 (|HasCategory| (-133) (QUOTE (-1016))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133)))))) (|HasCategory| (-133) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-133) (QUOTE (-344))) (|HasCategory| (-133) (QUOTE (-786))) (|HasCategory| (-133) (QUOTE (-1016))) (-12 (|HasCategory| (-133) (QUOTE (-1016))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133))))) (|HasCategory| (-133) (LIST (QUOTE -563) (QUOTE (-794))))) +(-131 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-131) +(-132) ((|constructor| (NIL "Category for the usual combinatorial functions.")) (|permutation| (($ $ $) "\\spad{permutation(n,{} m)} returns the number of permutations of \\spad{n} objects taken \\spad{m} at a time. Note: \\spad{permutation(n,{}m) = n!/(n-m)!}.")) (|factorial| (($ $) "\\spad{factorial(n)} computes the factorial of \\spad{n} (denoted in the literature by \\spad{n!}) Note: \\spad{n! = n (n-1)! when n > 0}; also,{} \\spad{0! = 1}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}r)} returns the \\spad{(n,{}r)} binomial coefficient (often denoted in the literature by \\spad{C(n,{}r)}). Note: \\spad{C(n,{}r) = n!/(r!(n-r)!)} where \\spad{n >= r >= 0}."))) NIL NIL -(-132) -((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape()} provides the escape character,{} \\spad{_},{} which is used to allow quotes and other characters {\\em within} strings.")) (|quote| (($) "\\spad{quote()} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space()} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|Integer|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|Integer|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}."))) +(-133) +((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape()} provides the escape character,{} \\spad{_},{} which is used to allow quotes and other characters {\\em within} strings.")) (|quote| (($) "\\spad{quote()} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space()} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|NonNegativeInteger|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|NonNegativeInteger|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}."))) NIL NIL -(-133) +(-134) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4235 . T)) +((-4241 . T)) NIL -(-134 R) +(-135 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) NIL NIL -(-135) +(-136) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4235 . T)) +((-4241 . T)) NIL -(-136 -4102 UP UPUP) +(-137 -2315 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL -(-137 R CR) +(-138 R CR) ((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod \\spad{fj} (\\spad{j} \\spad{\\=} \\spad{i}) or equivalently g/prod \\spad{fj} = sum (ai/fi) or returns \"failed\" if no such list exists"))) NIL NIL -(-138 A S) +(-139 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasAttribute| |#1| (QUOTE -4238))) -(-139 S) +((|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasAttribute| |#1| (QUOTE -4244))) +(-140 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) -((-2088 . T)) +((-3656 . T)) NIL -(-140 |n| K Q) +(-141 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4233 . T) (-4232 . T) (-4235 . T)) +((-4239 . T) (-4238 . T) (-4241 . T)) NIL -(-141) +(-142) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) NIL NIL -(-142 UP |Par|) +(-143 UP |Par|) ((|complexZeros| (((|List| (|Complex| |#2|)) |#1| |#2|) "\\spad{complexZeros(poly,{} eps)} finds the complex zeros of the univariate polynomial \\spad{poly} to precision eps with solutions returned as complex floats or rationals depending on the type of eps."))) NIL NIL -(-143) +(-144) ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-144 R -4102) +(-145 R -2315) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL -(-145 I) +(-146 I) ((|stirling2| ((|#1| |#1| |#1|) "\\spad{stirling2(n,{}m)} returns the Stirling number of the second kind denoted \\spad{SS[n,{}m]}.")) (|stirling1| ((|#1| |#1| |#1|) "\\spad{stirling1(n,{}m)} returns the Stirling number of the first kind denoted \\spad{S[n,{}m]}.")) (|permutation| ((|#1| |#1| |#1|) "\\spad{permutation(n)} returns \\spad{!P(n,{}r) = n!/(n-r)!}. This is the number of permutations of \\spad{n} objects taken \\spad{r} at a time.")) (|partition| ((|#1| |#1|) "\\spad{partition(n)} returns the number of partitions of the integer \\spad{n}. This is the number of distinct ways that \\spad{n} can be written as a sum of positive integers.")) (|multinomial| ((|#1| |#1| (|List| |#1|)) "\\spad{multinomial(n,{}[m1,{}m2,{}...,{}mk])} returns the multinomial coefficient \\spad{n!/(m1! m2! ... mk!)}.")) (|factorial| ((|#1| |#1|) "\\spad{factorial(n)} returns \\spad{n!}. this is the product of all integers between 1 and \\spad{n} (inclusive). Note: \\spad{0!} is defined to be 1.")) (|binomial| ((|#1| |#1| |#1|) "\\spad{binomial(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r) = n!/(r! (n-r)!)},{} where \\spad{n >= r >= 0}. This is the number of combinations of \\spad{n} objects taken \\spad{r} at a time."))) NIL NIL -(-146) +(-147) ((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials."))) NIL NIL -(-147) +(-148) ((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) NIL NIL -(-148) +(-149) ((|constructor| (NIL "This package exports the elementary operators,{} with some semantics already attached to them. The semantics that is attached here is not dependent on the set in which the operators will be applied.")) (|operator| (((|BasicOperator|) (|Symbol|)) "\\spad{operator(s)} returns an operator with name \\spad{s},{} with the appropriate semantics if \\spad{s} is known. If \\spad{s} is not known,{} the result has no semantics."))) NIL NIL -(-149 R UP UPUP) +(-150 R UP UPUP) ((|constructor| (NIL "A package for swapping the order of two variables in a tower of two UnivariatePolynomialCategory extensions.")) (|swap| ((|#3| |#3|) "\\spad{swap(p(x,{}y))} returns \\spad{p}(\\spad{y},{}\\spad{x})."))) NIL NIL -(-150 S R) +(-151 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (QUOTE (-507))) (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-980))) (|HasCategory| |#2| (QUOTE (-947))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasAttribute| |#2| (QUOTE -4234)) (|HasAttribute| |#2| (QUOTE -4237)) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-784)))) -(-151 R) +((|HasCategory| |#2| (QUOTE (-840))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-930))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-982))) (|HasCategory| |#2| (QUOTE (-949))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-339))) (|HasAttribute| |#2| (QUOTE -4240)) (|HasAttribute| |#2| (QUOTE -4243)) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-786)))) +(-152 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4231 -3844 (|has| |#1| (-514)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4234 |has| |#1| (-6 -4234)) (-4237 |has| |#1| (-6 -4237)) (-4005 . T) (-2088 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4237 -3262 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4240 |has| |#1| (-6 -4240)) (-4243 |has| |#1| (-6 -4243)) (-2571 . T) (-3656 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-152 RR PR) +(-153 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) NIL NIL -(-153 R S) +(-154 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL NIL -(-154 R) +(-155 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4231 -3844 (|has| |#1| (-514)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4234 |has| |#1| (-6 -4234)) (-4237 |has| |#1| (-6 -4237)) (-4005 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-338))) (-3844 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-324)))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (-3844 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-1106))) (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-947))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -262) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-765))) (|HasCategory| |#1| (QUOTE (-980))) (-12 (|HasCategory| |#1| (QUOTE (-980))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-507))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-283))) (-3844 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-514)))) (-3844 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-324)))) (|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-210))) (-3844 (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (QUOTE (-324)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-324)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-324)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-324)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-324)))) (-12 (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-324)))) (|HasCategory| |#1| (QUOTE (-210))) (-12 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-324)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-324)))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (LIST (QUOTE -262) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-765)))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-947)))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-1106)))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498))))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-338))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-838))))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-838))))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-338)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasAttribute| |#1| (QUOTE -4234)) (|HasAttribute| |#1| (QUOTE -4237)) (-12 (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085))))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-324))))) -(-155 R S CS) +((-4237 -3262 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4240 |has| |#1| (-6 -4240)) (-4243 |has| |#1| (-6 -4243)) (-2571 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-325))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-325)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-344))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (QUOTE (-325)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-325)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-325)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-325)))) (-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-325)))) (-12 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-325)))) (|HasCategory| |#1| (QUOTE (-211))) (-12 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-325)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-325)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -263) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-767)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-786)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-949)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-1108)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-339))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-840))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-840))))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-325)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -263) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#1| (QUOTE (-982))) (-12 (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-508))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-339)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-211))) (-12 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasAttribute| |#1| (QUOTE -4240)) (|HasAttribute| |#1| (QUOTE -4243)) (-12 (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087))))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-325))))) +(-156 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL NIL -(-156) +(-157) ((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} \\undocumented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,{}b)} \\undocumented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,{}b)} \\undocumented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} \\undocumented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented"))) NIL NIL -(-157) +(-158) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +(((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-158 R) +(-159 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4240 "*") . T) (-4231 . T) (-4236 . T) (-4230 . T) (-4232 . T) (-4233 . T) (-4235 . T)) +(((-4246 "*") . T) (-4237 . T) (-4242 . T) (-4236 . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-159) +(-160) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) NIL NIL -(-160 R) +(-161 R) ((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,{}b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,{}b)} is a function which will map the point \\spad{(lambda,{}mu,{}nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}."))) NIL NIL -(-161 R |PolR| E) +(-162 R |PolR| E) ((|constructor| (NIL "This package implements characteristicPolynomials for monogenic algebras using resultants")) (|characteristicPolynomial| ((|#2| |#3|) "\\spad{characteristicPolynomial(e)} returns the characteristic polynomial of \\spad{e} using resultants"))) NIL NIL -(-162 R S CS) +(-163 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-881 |#2|) (LIST (QUOTE -815) (|devaluate| |#1|)))) -(-163 R) +((|HasCategory| (-883 |#2|) (LIST (QUOTE -817) (|devaluate| |#1|)))) +(-164 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}"))) NIL NIL -(-164 R UP) +(-165 R UP) ((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken\\spad{'s} idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user\\spad{'s} responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage\\spad{'s} variant of Graeffe\\spad{'s} method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,{}errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly,{} eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,{}eps,{}info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p,{} eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p,{} eps,{} info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p,{} eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}."))) NIL NIL -(-165 S ST) +(-166 S ST) ((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,{}cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic"))) NIL NIL -(-166) +(-167) ((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor"))) NIL NIL -(-167 R -4102) +(-168 R -2315) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-168 R) +(-169 R) ((|constructor| (NIL "CoerceVectorMatrixPackage: an unexposed,{} technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Fraction Polynomial R}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Polynomial R}"))) NIL NIL -(-169) +(-170) ((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,{}li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|))) "\\spad{SFunction(\\spad{li})} is the \\spad{S}-function of the partition \\spad{\\spad{li}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,{}s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}"))) NIL NIL -(-170) +(-171) ((|constructor| (NIL "This package \\undocumented{}")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}"))) NIL NIL -(-171) +(-172) ((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,{}t,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to \\axiom{\\spad{t}}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{x}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{x}}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points."))) NIL NIL -(-172) +(-173) ((|constructor| (NIL "\\axiomType{d01ajfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AJF,{} a general numerical integration routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AJF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-173) +(-174) ((|constructor| (NIL "\\axiomType{d01akfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AKF,{} a numerical integration routine which is is suitable for oscillating,{} non-singular functions. The function \\axiomFun{measure} measures the usefulness of the routine D01AKF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-174) +(-175) ((|constructor| (NIL "\\axiomType{d01alfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ALF,{} a general numerical integration routine which can handle a list of singularities. The function \\axiomFun{measure} measures the usefulness of the routine D01ALF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-175) +(-176) ((|constructor| (NIL "\\axiomType{d01amfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AMF,{} a general numerical integration routine which can handle infinite or semi-infinite range of the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AMF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-176) +(-177) ((|constructor| (NIL "\\axiomType{d01anfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ANF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}). The function \\axiomFun{measure} measures the usefulness of the routine D01ANF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-177) +(-178) ((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF,{} a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form \\spad{w}(\\spad{x}) = (\\spad{x}-a)\\spad{^c} * (\\spad{b}-\\spad{x})\\spad{^d}. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-178) +(-179) ((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF,{} a general numerical integration routine which can solve an integral of the form \\newline \\centerline{\\inputbitmap{/home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.\\spad{xbm}}} The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-179) +(-180) ((|constructor| (NIL "\\axiomType{d01asfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ASF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}) on an semi-infinite range. The function \\axiomFun{measure} measures the usefulness of the routine D01ASF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-180) +(-181) ((|constructor| (NIL "\\axiomType{d01fcfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01FCF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-181) +(-182) ((|constructor| (NIL "\\axiomType{d01gbfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01GBF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-182) +(-183) NIL NIL NIL -(-183) +(-184) ((|constructor| (NIL "\\axiom{d01WeightsPackage} is a package for functions used to investigate whether a function can be divided into a simpler function and a weight function. The types of weights investigated are those giving rise to end-point singularities of the algebraico-logarithmic type,{} and trigonometric weights.")) (|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasLogarithmicWeights} looks for logarithmic weights giving rise to singularities of the function at the end-points.")) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasAlgebraicWeight} looks for algebraic weights giving rise to singularities of the function at the end-points.")) (|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasWeightCosWXorSinWX} looks for trigonometric weights in an expression of the form \\axiom{cos \\omega \\spad{x}} or \\axiom{sin \\omega \\spad{x}},{} returning the value of \\omega (\\notequal 1) and the operator."))) NIL NIL -(-184) +(-185) ((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,{}symbols,{}values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,{}w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,{}L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,{}C2)} is for interacting attributes"))) NIL NIL -(-185) +(-186) ((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-186) +(-187) ((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-187) +(-188) ((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF,{} a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-188) +(-189) ((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF,{} a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-189) +(-190) ((|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,{}g,{}l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,{}n)} \\undocumented{}"))) NIL NIL -(-190) +(-191) ((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF."))) NIL NIL -(-191) +(-192) ((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF."))) NIL NIL -(-192 S) +(-193 S) ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-193 -4102 UP UPUP R) +(-194 -2315 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-194 -4102 FP) +(-195 -2315 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL -(-195) +(-196) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| (-522) (QUOTE (-838))) (|HasCategory| (-522) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| (-522) (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-135))) (|HasCategory| (-522) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-522) (QUOTE (-947))) (|HasCategory| (-522) (QUOTE (-757))) (|HasCategory| (-522) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| (-522) (QUOTE (-1061))) (|HasCategory| (-522) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| (-522) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| (-522) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| (-522) (QUOTE (-210))) (|HasCategory| (-522) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-522) (LIST (QUOTE -483) (QUOTE (-1085)) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -285) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -262) (QUOTE (-522)) (QUOTE (-522)))) (|HasCategory| (-522) (QUOTE (-283))) (|HasCategory| (-522) (QUOTE (-507))) (|HasCategory| (-522) (QUOTE (-784))) (-3844 (|HasCategory| (-522) (QUOTE (-757))) (|HasCategory| (-522) (QUOTE (-784)))) (|HasCategory| (-522) (LIST (QUOTE -584) (QUOTE (-522)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-838)))) (|HasCategory| (-522) (QUOTE (-133))))) -(-196 R -4102) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| (-523) (QUOTE (-840))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| (-523) (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-136))) (|HasCategory| (-523) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-523) (QUOTE (-949))) (|HasCategory| (-523) (QUOTE (-759))) (-3262 (|HasCategory| (-523) (QUOTE (-759))) (|HasCategory| (-523) (QUOTE (-786)))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-1063))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-523) (QUOTE (-211))) (|HasCategory| (-523) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-523) (LIST (QUOTE -484) (QUOTE (-1087)) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -286) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -263) (QUOTE (-523)) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-284))) (|HasCategory| (-523) (QUOTE (-508))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-523) (LIST (QUOTE -585) (QUOTE (-523)))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (|HasCategory| (-523) (QUOTE (-134))))) +(-197 R -2315) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-197 R) +(-198 R) ((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-198 R1 R2) +(-199 R1 R2) ((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,{}n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) NIL NIL -(-199 S) +(-200 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4238 . T) (-4239 . T)) -((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-200 |CoefRing| |listIndVar|) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-201 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4235 . T)) +((-4241 . T)) NIL -(-201 R -4102) +(-202 R -2315) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL -(-202) +(-203) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3996 . T) (-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-2562 . T) (-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-203) +(-204) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) NIL NIL -(-204 R) +(-205 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4238 . T) (-4239 . T)) -((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-514))) (|HasAttribute| |#1| (QUOTE (-4240 "*"))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-205 A S) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-515))) (|HasAttribute| |#1| (QUOTE (-4246 "*"))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-206 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL -(-206 S) +(-207 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4239 . T) (-2088 . T)) +((-4245 . T) (-3656 . T)) NIL -(-207 S R) +(-208 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-210)))) -(-208 R) +((|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-211)))) +(-209 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4235 . T)) +((-4241 . T)) NIL -(-209 S) +(-210 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) NIL NIL -(-210) +(-211) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4235 . T)) +((-4241 . T)) NIL -(-211 A S) +(-212 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4238))) -(-212 S) +((|HasAttribute| |#1| (QUOTE -4244))) +(-213 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4239 . T) (-2088 . T)) +((-4245 . T) (-3656 . T)) NIL -(-213) +(-214) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-214 S -2787 R) +(-215 S -1346 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-730))) (|HasCategory| |#3| (QUOTE (-782))) (|HasAttribute| |#3| (QUOTE -4235)) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (QUOTE (-1014)))) -(-215 -2787 R) +((|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (QUOTE (-784))) (|HasAttribute| |#3| (QUOTE -4241)) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-666))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (QUOTE (-1016)))) +(-216 -1346 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4232 |has| |#2| (-971)) (-4233 |has| |#2| (-971)) (-4235 |has| |#2| (-6 -4235)) ((-4240 "*") |has| |#2| (-157)) (-4238 . T) (-2088 . T)) +((-4238 |has| |#2| (-973)) (-4239 |has| |#2| (-973)) (-4241 |has| |#2| (-6 -4241)) ((-4246 "*") |has| |#2| (-158)) (-4244 . T) (-3656 . T)) NIL -(-216 -2787 A B) +(-217 -1346 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-217 -2787 R) +(-218 -1346 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4232 |has| |#2| (-971)) (-4233 |has| |#2| (-971)) (-4235 |has| |#2| (-6 -4235)) ((-4240 "*") |has| |#2| (-157)) (-4238 . T)) -((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-782))) (-3844 (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-782)))) (|HasCategory| |#2| (QUOTE (-157))) (-3844 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (-3844 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-338)))) (-3844 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-971)))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-210))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-971)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-522) (QUOTE (-784))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-971)))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085))))) (|HasCategory| |#2| (QUOTE (-664))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-3844 (|HasCategory| |#2| (QUOTE (-971))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -4235)) (|HasCategory| |#2| (QUOTE (-124))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (|HasCategory| |#2| (QUOTE (-25))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-1014)))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (-3844 (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-157)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-210)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-343)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-730)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-782)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-971)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-1014))))) (-3844 (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-3844 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-971)))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-218) +((-4238 |has| |#2| (-973)) (-4239 |has| |#2| (-973)) (-4241 |has| |#2| (-6 -4241)) ((-4246 "*") |has| |#2| (-158)) (-4244 . T)) +((-3262 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))))) (-3262 (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (QUOTE (-339))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339)))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-732))) (-3262 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-784)))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-158))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-973)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-158)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-211)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016))))) (-3262 (-12 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| (-523) (QUOTE (-786))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (|HasCategory| |#2| (QUOTE (-666))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-3262 (|HasCategory| |#2| (QUOTE (-973))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasAttribute| |#2| (QUOTE -4241)) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) +(-219) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-219 S) +(-220 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-220) +(-221) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4231 . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4237 . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-221 S) +(-222 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) -((-2088 . T)) +((-3656 . T)) NIL -(-222 S) +(-223 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}"))) -((-4239 . T) (-4238 . T)) -((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3844 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-223 M) +((-4245 . T) (-4244 . T)) +((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-224 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-224 |vl| R) +(-225 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4240 "*") |has| |#2| (-157)) (-4231 |has| |#2| (-514)) (-4236 |has| |#2| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T)) -((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-157))) (-3844 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-514)))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-338))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#2| (QUOTE -4236)) (|HasCategory| |#2| (QUOTE (-426))) (-3844 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-838)))) (-3844 (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-838)))) (-3844 (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-133))))) -(-225) +(((-4246 "*") |has| |#2| (-158)) (-4237 |has| |#2| (-515)) (-4242 |has| |#2| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) +((|HasCategory| |#2| (QUOTE (-840))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-515)))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#2| (QUOTE -4242)) (|HasCategory| |#2| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-134))))) +(-226) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}."))) NIL NIL -(-226 |n| R M S) +(-227 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4235 -3844 (-4079 (|has| |#4| (-971)) (|has| |#4| (-210))) (-4079 (|has| |#4| (-971)) (|has| |#4| (-829 (-1085)))) (|has| |#4| (-6 -4235)) (-4079 (|has| |#4| (-971)) (|has| |#4| (-584 (-522))))) (-4232 |has| |#4| (-971)) (-4233 |has| |#4| (-971)) ((-4240 "*") |has| |#4| (-157)) (-4238 . T)) -((|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (QUOTE (-971))) (|HasCategory| |#4| (QUOTE (-730))) (|HasCategory| |#4| (QUOTE (-782))) (-3844 (|HasCategory| |#4| (QUOTE (-730))) (|HasCategory| |#4| (QUOTE (-782)))) (|HasCategory| |#4| (QUOTE (-157))) (-3844 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (QUOTE (-971)))) (-3844 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-338)))) (-3844 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-971)))) (|HasCategory| |#4| (QUOTE (-343))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#4| (QUOTE (-210))) (-3844 (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-210))) (|HasCategory| |#4| (QUOTE (-971)))) (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#4| (QUOTE (-664))) (-12 (|HasCategory| |#4| (QUOTE (-971))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (QUOTE (-971))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#4| (QUOTE (-210))) (|HasCategory| |#4| (QUOTE (-971)))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522))))) (-3844 (-12 (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (QUOTE (-210))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (QUOTE (-343))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (QUOTE (-730))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (QUOTE (-782))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (QUOTE (-971))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522)))))) (-3844 (|HasCategory| |#4| (QUOTE (-971))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (QUOTE (-1014)))) (-3844 (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (QUOTE (-157)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (QUOTE (-210)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (QUOTE (-338)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (QUOTE (-343)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (QUOTE (-730)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (QUOTE (-782)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (QUOTE (-971)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (QUOTE (-1014))))) (-3844 (|HasAttribute| |#4| (QUOTE -4235)) (-12 (|HasCategory| |#4| (QUOTE (-210))) (|HasCategory| |#4| (QUOTE (-971)))) (-12 (|HasCategory| |#4| (QUOTE (-971))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (QUOTE (-971))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-1085)))))) (|HasCategory| |#4| (QUOTE (-124))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (-3844 (-12 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-210))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-343))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-730))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-782))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-971))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-1085)))))) (|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-792))))) -(-227 |n| R S) +((-4241 -3262 (-4099 (|has| |#4| (-973)) (|has| |#4| (-211))) (-4099 (|has| |#4| (-973)) (|has| |#4| (-831 (-1087)))) (|has| |#4| (-6 -4241)) (-4099 (|has| |#4| (-973)) (|has| |#4| (-585 (-523))))) (-4238 |has| |#4| (-973)) (-4239 |has| |#4| (-973)) ((-4246 "*") |has| |#4| (-158)) (-4244 . T)) +((-3262 (-12 (|HasCategory| |#4| (QUOTE (-158))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-211))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-339))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-973))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -831) (QUOTE (-1087)))))) (|HasCategory| |#4| (QUOTE (-339))) (-3262 (|HasCategory| |#4| (QUOTE (-158))) (|HasCategory| |#4| (QUOTE (-339))) (|HasCategory| |#4| (QUOTE (-973)))) (-3262 (|HasCategory| |#4| (QUOTE (-158))) (|HasCategory| |#4| (QUOTE (-339)))) (|HasCategory| |#4| (QUOTE (-973))) (|HasCategory| |#4| (QUOTE (-732))) (-3262 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (QUOTE (-784)))) (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (QUOTE (-158))) (-3262 (|HasCategory| |#4| (QUOTE (-158))) (|HasCategory| |#4| (QUOTE (-973)))) (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#4| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3262 (|HasCategory| |#4| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#4| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#4| (QUOTE (-158))) (|HasCategory| |#4| (QUOTE (-211))) (|HasCategory| |#4| (QUOTE (-973)))) (|HasCategory| |#4| (QUOTE (-211))) (|HasCategory| |#4| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-158)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-211)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-339)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-344)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-732)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-784)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-973)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-1016))))) (-3262 (-12 (|HasCategory| |#4| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-158))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-211))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-339))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-973))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#4| (QUOTE (-666))) (-12 (|HasCategory| |#4| (QUOTE (-973))) (|HasCategory| |#4| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-973))) (|HasCategory| |#4| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#4| (QUOTE (-211))) (|HasCategory| |#4| (QUOTE (-973)))) (-3262 (|HasCategory| |#4| (QUOTE (-973))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523)))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (QUOTE (-1016)))) (-3262 (|HasAttribute| |#4| (QUOTE -4241)) (-12 (|HasCategory| |#4| (QUOTE (-211))) (|HasCategory| |#4| (QUOTE (-973)))) (-12 (|HasCategory| |#4| (QUOTE (-973))) (|HasCategory| |#4| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#4| (QUOTE (-973))) (|HasCategory| |#4| (LIST (QUOTE -831) (QUOTE (-1087)))))) (|HasCategory| |#4| (QUOTE (-124))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-794))))) +(-228 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4235 -3844 (-4079 (|has| |#3| (-971)) (|has| |#3| (-210))) (-4079 (|has| |#3| (-971)) (|has| |#3| (-829 (-1085)))) (|has| |#3| (-6 -4235)) (-4079 (|has| |#3| (-971)) (|has| |#3| (-584 (-522))))) (-4232 |has| |#3| (-971)) (-4233 |has| |#3| (-971)) ((-4240 "*") |has| |#3| (-157)) (-4238 . T)) -((|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (QUOTE (-730))) (|HasCategory| |#3| (QUOTE (-782))) (-3844 (|HasCategory| |#3| (QUOTE (-730))) (|HasCategory| |#3| (QUOTE (-782)))) (|HasCategory| |#3| (QUOTE (-157))) (-3844 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-971)))) (-3844 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-338)))) (-3844 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-971)))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#3| (QUOTE (-210))) (-3844 (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-971)))) (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-664))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-971)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-3844 (-12 (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-730))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-782))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522)))))) (-3844 (|HasCategory| |#3| (QUOTE (-971))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-1014)))) (-3844 (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-157)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-210)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-343)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-730)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-782)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-971)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-1014))))) (-3844 (|HasAttribute| |#3| (QUOTE -4235)) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-971)))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-3844 (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-730))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-782))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))))) (|HasCategory| |#3| (LIST (QUOTE -562) (QUOTE (-792))))) -(-228 A R S V E) +((-4241 -3262 (-4099 (|has| |#3| (-973)) (|has| |#3| (-211))) (-4099 (|has| |#3| (-973)) (|has| |#3| (-831 (-1087)))) (|has| |#3| (-6 -4241)) (-4099 (|has| |#3| (-973)) (|has| |#3| (-585 (-523))))) (-4238 |has| |#3| (-973)) (-4239 |has| |#3| (-973)) ((-4246 "*") |has| |#3| (-158)) (-4244 . T)) +((-3262 (-12 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))))) (|HasCategory| |#3| (QUOTE (-339))) (-3262 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-973)))) (-3262 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-339)))) (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (QUOTE (-732))) (-3262 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (QUOTE (-784)))) (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-158))) (-3262 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-973)))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3262 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-973)))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-158)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-211)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-339)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-344)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-732)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-784)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-973)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-1016))))) (-3262 (-12 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#3| (QUOTE (-666))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-973)))) (-3262 (|HasCategory| |#3| (QUOTE (-973))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523)))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-1016)))) (-3262 (|HasAttribute| |#3| (QUOTE -4241)) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-973)))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -563) (QUOTE (-794))))) +(-229 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-210)))) -(-229 R S V E) +((|HasCategory| |#2| (QUOTE (-211)))) +(-230 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T)) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) NIL -(-230 S) +(-231 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4238 . T) (-4239 . T) (-2088 . T)) +((-4244 . T) (-4245 . T) (-3656 . T)) NIL -(-231) +(-232) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-232 R |Ex|) +(-233 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-233) +(-234) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-234 R) +(-235 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-235 |Ex|) +(-236 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-236) +(-237) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-237) +(-238) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-238 S) +(-239 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-239) +(-240) ((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-240 R S V) +(-241 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#3| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#3| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#3| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#3| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-338))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#1| (QUOTE -4236)) (|HasCategory| |#1| (QUOTE (-426))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133))))) -(-241 A S) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-840))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#3| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#3| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#3| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#3| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4242)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) +(-242 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-242 S) +(-243 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-243) +(-244) ((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,{}n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,{}n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,{}b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL NIL -(-244) +(-245) ((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-245) +(-246) ((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-246) +(-247) ((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-247) +(-248) ((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-248) +(-249) ((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-249) +(-250) ((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-250) +(-251) ((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-251) +(-252) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-252 R -4102) +(-253 R -2315) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-253 R -4102) +(-254 R -2315) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-254 |Coef| UTS ULS) +(-255 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-338)))) -(-255 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-339)))) +(-256 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-338)))) -(-256) -((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the of operands in `e'e,{} assuming it is a call form.")) (|getOperator| (((|Union| (|Symbol|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getVariable| (((|Union| (|Symbol|) "failed") $) "\\spad{getVariable(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|ConstructorCall|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) +((|HasCategory| |#1| (QUOTE (-339)))) +(-257) +((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Symbol|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Symbol|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|ConstructorCall|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL NIL -(-257 A S) +(-258 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-1014)))) -(-258 S) +((|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-1016)))) +(-259 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4239 . T) (-2088 . T)) +((-4245 . T) (-3656 . T)) NIL -(-259 S) +(-260 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-260) +(-261) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-261 |Coef| UTS) +(-262 |Coef| UTS) ((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,{}c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,{}k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,{}k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,{}k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL -(-262 S |Index|) +(-263 S |Index|) ((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}."))) NIL NIL -(-263 S |Dom| |Im|) +(-264 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4239))) -(-264 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -4245))) +(-265 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-265 S R |Mod| -3004 -3164 |exactQuo|) +(-266 S R |Mod| -2227 -2178 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-266) +(-267) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4231 . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4237 . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-267) +(-268) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-268 R) +(-269 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-269 S R) +(-270 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-270 S) +(-271 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4235 -3844 (|has| |#1| (-971)) (|has| |#1| (-447))) (-4232 |has| |#1| (-971)) (-4233 |has| |#1| (-971))) -((|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-971)))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-278))) (-3844 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-447)))) (-3844 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-971)))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-971)))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-664))) (-3844 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-664)))) (|HasCategory| |#1| (QUOTE (-1026))) (-3844 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-1026)))) (|HasCategory| |#1| (QUOTE (-21))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-971)))) (-3844 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664)))) (|HasCategory| |#1| (QUOTE (-25))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-971)))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-1014))))) -(-271 |Key| |Entry|) +((-4241 -3262 (|has| |#1| (-973)) (|has| |#1| (-448))) (-4238 |has| |#1| (-973)) (-4239 |has| |#1| (-973))) +((|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-973)))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-973)))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-973)))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-973)))) (-3262 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (QUOTE (-666)))) (|HasCategory| |#1| (QUOTE (-448))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-1016)))) (-3262 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#1| (QUOTE (-1028)))) (|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-279))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-448)))) (-3262 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-666)))) (-3262 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (QUOTE (-973)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) +(-272 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4238 . T) (-4239 . T)) -((|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2644) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3149) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-1014))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-272) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#2|)))))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-1016))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) +(-273) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-273 -4102 S) +(-274 -2315 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-274 E -4102) +(-275 E -2315) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL -(-275 A B) +(-276 A B) ((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL NIL -(-276) +(-277) ((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-277 S) +(-278 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-971)))) -(-278) +((|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-973)))) +(-279) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-279 R1) +(-280 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-280 R1 R2) +(-281 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-281) +(-282) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-282 S) +(-283 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-283) +(-284) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-284 S R) +(-285 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-285 R) +(-286 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-286 -4102) +(-287 -2315) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-287) +(-288) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-288 R FE |var| |cen|) +(-289 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-838))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-133))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-135))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-947))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-757))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-1061))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-210))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -483) (QUOTE (-1085)) (LIST (QUOTE -1152) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -285) (LIST (QUOTE -1152) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -262) (LIST (QUOTE -1152) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1152) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-283))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-507))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-784))) (-3844 (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-757))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-784)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-838))) (|HasCategory| $ (QUOTE (-133)))) (-3844 (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-133))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-838))) (|HasCategory| $ (QUOTE (-133)))))) -(-289 R S) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-840))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-949))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-759))) (-3262 (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-759))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-786)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-1063))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-211))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -484) (QUOTE (-1087)) (LIST (QUOTE -1154) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -286) (LIST (QUOTE -1154) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (LIST (QUOTE -263) (LIST (QUOTE -1154) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1154) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-284))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-508))) (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-786))) (-12 (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-840))) (|HasCategory| $ (QUOTE (-134)))) (-3262 (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-134))) (-12 (|HasCategory| (-1154 |#1| |#2| |#3| |#4|) (QUOTE (-840))) (|HasCategory| $ (QUOTE (-134)))))) +(-290 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-290 R FE) +(-291 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-291 R) +(-292 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4235 -3844 (-4079 (|has| |#1| (-971)) (|has| |#1| (-584 (-522)))) (-12 (|has| |#1| (-514)) (-3844 (-4079 (|has| |#1| (-971)) (|has| |#1| (-584 (-522)))) (|has| |#1| (-971)) (|has| |#1| (-447)))) (|has| |#1| (-971)) (|has| |#1| (-447))) (-4233 |has| |#1| (-157)) (-4232 |has| |#1| (-157)) ((-4240 "*") |has| |#1| (-514)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-514)) (-4230 |has| |#1| (-514))) -((|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-971))) (-3844 (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-971)))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522))))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-971)))) (-12 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514)))) (-3844 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522))))) (-3844 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522))))) (-3844 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-971)))) (|HasCategory| |#1| (QUOTE (-21))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-971)))) (-3844 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))))) (|HasCategory| |#1| (QUOTE (-25))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-971)))) (-3844 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))))) (|HasCategory| |#1| (QUOTE (-1026))) (-3844 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-1026)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-1026)))) (-3844 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-1026)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514)))) (-3844 (-12 (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))))) (|HasCategory| $ (QUOTE (-971))) (|HasCategory| $ (LIST (QUOTE -962) (QUOTE (-522))))) -(-292 R -4102) +((-4241 -3262 (-4099 (|has| |#1| (-973)) (|has| |#1| (-585 (-523)))) (-12 (|has| |#1| (-515)) (-3262 (-4099 (|has| |#1| (-973)) (|has| |#1| (-585 (-523)))) (|has| |#1| (-973)) (|has| |#1| (-448)))) (|has| |#1| (-973)) (|has| |#1| (-448))) (-4239 |has| |#1| (-158)) (-4238 |has| |#1| (-158)) ((-4246 "*") |has| |#1| (-515)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-515)) (-4236 |has| |#1| (-515))) +((-3262 (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| |#1| (QUOTE (-515))) (-3262 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-973)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (-3262 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (QUOTE (-1028)))) (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-973)))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-973)))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-973)))) (-12 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523))))) (-3262 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-1028)))) (-3262 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))))) (-3262 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-1028)))) (-3262 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))))) (-3262 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#1| (QUOTE (-973)))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| $ (QUOTE (-973))) (|HasCategory| $ (LIST (QUOTE -964) (QUOTE (-523))))) +(-293 R -2315) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL -(-293) +(-294) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-294 FE |var| |cen|) +(-295 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522))) (|devaluate| |#1|))))) (|HasCategory| (-382 (-522)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-338))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-3844 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1085)))))) (-3844 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -2611) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1085))))) (|HasSignature| |#1| (LIST (QUOTE -3533) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#1|))))))) -(-295 M) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|)))) (|HasCategory| (-383 (-523)) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|))))))) +(-296 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-296 E OV R P) +(-297 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,{}i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly,{} lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly,{} lvar,{} lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-297 S) +(-298 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4233 . T) (-4232 . T)) -((|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-729)))) -(-298 S E) +((-4239 . T) (-4238 . T)) +((|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-731)))) +(-299 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-299 S) +(-300 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-708) (QUOTE (-729)))) -(-300 S R E) +((|HasCategory| (-710) (QUOTE (-731)))) +(-301 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-157)))) -(-301 R E) +((|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158)))) +(-302 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4232 . T) (-4233 . T) (-4235 . T)) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-302 S) +(-303 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4239 . T) (-4238 . T)) -((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3844 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-303 S -4102) +((-4245 . T) (-4244 . T)) +((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-304 S -2315) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-343)))) -(-304 -4102) +((|HasCategory| |#2| (QUOTE (-344)))) +(-305 -2315) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-305) +(-306) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm."))) NIL NIL -(-306 E) +(-307 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-307) +(-308) ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}"))) NIL NIL -(-308 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-309 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-309 S -4102 UP UPUP R) +(-310 S -2315 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-310 -4102 UP UPUP R) +(-311 -2315 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-311 -4102 UP UPUP R) +(-312 -2315 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL -(-312 S R) +(-313 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -262) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-313 R) +((|HasCategory| |#2| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -263) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-314 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-314 |basicSymbols| |subscriptedSymbols| R) +(-315 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-354)))) (|HasCategory| $ (QUOTE (-971))) (|HasCategory| $ (LIST (QUOTE -962) (QUOTE (-522))))) -(-315 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-355)))) (|HasCategory| $ (QUOTE (-973))) (|HasCategory| $ (LIST (QUOTE -964) (QUOTE (-523))))) +(-316 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-316 S -4102 UP UPUP) +(-317 S -2315 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-338)))) -(-317 -4102 UP UPUP) +((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-339)))) +(-318 -2315 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4231 |has| (-382 |#2|) (-338)) (-4236 |has| (-382 |#2|) (-338)) (-4230 |has| (-382 |#2|) (-338)) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4237 |has| (-383 |#2|) (-339)) (-4242 |has| (-383 |#2|) (-339)) (-4236 |has| (-383 |#2|) (-339)) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-318 |p| |extdeg|) +(-319 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| (-839 |#1|) (QUOTE (-135))) (|HasCategory| (-839 |#1|) (QUOTE (-343))) (|HasCategory| (-839 |#1|) (QUOTE (-133))) (-3844 (|HasCategory| (-839 |#1|) (QUOTE (-133))) (|HasCategory| (-839 |#1|) (QUOTE (-343))))) -(-319 GF |defpol|) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-3262 (|HasCategory| (-841 |#1|) (QUOTE (-134))) (|HasCategory| (-841 |#1|) (QUOTE (-344)))) (|HasCategory| (-841 |#1|) (QUOTE (-136))) (|HasCategory| (-841 |#1|) (QUOTE (-344))) (|HasCategory| (-841 |#1|) (QUOTE (-134)))) +(-320 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-133))) (-3844 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-343))))) -(-320 GF |extdeg|) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-3262 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-134)))) +(-321 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-133))) (-3844 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-343))))) -(-321 GF) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-3262 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-134)))) +(-322 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-322 F1 GF F2) +(-323 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-323 S) +(-324 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-324) +(-325) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-325 R UP -4102) +(-326 R UP -2315) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-326 |p| |extdeg|) +(-327 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| (-839 |#1|) (QUOTE (-135))) (|HasCategory| (-839 |#1|) (QUOTE (-343))) (|HasCategory| (-839 |#1|) (QUOTE (-133))) (-3844 (|HasCategory| (-839 |#1|) (QUOTE (-133))) (|HasCategory| (-839 |#1|) (QUOTE (-343))))) -(-327 GF |uni|) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-3262 (|HasCategory| (-841 |#1|) (QUOTE (-134))) (|HasCategory| (-841 |#1|) (QUOTE (-344)))) (|HasCategory| (-841 |#1|) (QUOTE (-136))) (|HasCategory| (-841 |#1|) (QUOTE (-344))) (|HasCategory| (-841 |#1|) (QUOTE (-134)))) +(-328 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-133))) (-3844 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-343))))) -(-328 GF |extdeg|) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-3262 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-134)))) +(-329 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-133))) (-3844 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-343))))) -(-329 |p| |n|) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-3262 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-134)))) +(-330 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| (-839 |#1|) (QUOTE (-135))) (|HasCategory| (-839 |#1|) (QUOTE (-343))) (|HasCategory| (-839 |#1|) (QUOTE (-133))) (-3844 (|HasCategory| (-839 |#1|) (QUOTE (-133))) (|HasCategory| (-839 |#1|) (QUOTE (-343))))) -(-330 GF |defpol|) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-3262 (|HasCategory| (-841 |#1|) (QUOTE (-134))) (|HasCategory| (-841 |#1|) (QUOTE (-344)))) (|HasCategory| (-841 |#1|) (QUOTE (-136))) (|HasCategory| (-841 |#1|) (QUOTE (-344))) (|HasCategory| (-841 |#1|) (QUOTE (-134)))) +(-331 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-133))) (-3844 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-343))))) -(-331 -4102 GF) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-3262 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-134)))) +(-332 -2315 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-332 GF) +(-333 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-333 -4102 FP FPP) +(-334 -2315 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-334 GF |n|) +(-335 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-133))) (-3844 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-343))))) -(-335 R |ls|) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-3262 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-134)))) +(-336 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL -(-336 S) +(-337 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4235 . T)) +((-4241 . T)) NIL -(-337 S) +(-338 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-338) +(-339) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-339 |Name| S) +(-340 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-340 S) +(-341 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-341 S R) +(-342 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-514)))) -(-342 R) +((|HasCategory| |#2| (QUOTE (-515)))) +(-343 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4235 |has| |#1| (-514)) (-4233 . T) (-4232 . T)) +((-4241 |has| |#1| (-515)) (-4239 . T) (-4238 . T)) NIL -(-343) +(-344) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-344 S R UP) +(-345 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-338)))) -(-345 R UP) +((|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-339)))) +(-346 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4232 . T) (-4233 . T) (-4235 . T)) +((-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-346 S A R B) +(-347 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-347 A S) +(-348 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4239)) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-1014)))) -(-348 S) +((|HasAttribute| |#1| (QUOTE -4245)) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-1016)))) +(-349 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4238 . T) (-2088 . T)) +((-4244 . T) (-3656 . T)) NIL -(-349 |VarSet| R) +(-350 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4233 . T) (-4232 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4239 . T) (-4238 . T)) NIL -(-350 S V) +(-351 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-351 S R) +(-352 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) -(-352 R) +((|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) +(-353 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4235 . T)) +((-4241 . T)) NIL -(-353 |Par|) +(-354 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-354) +(-355) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\^= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4221 . T) (-4229 . T) (-3996 . T) (-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4227 . T) (-4235 . T) (-2562 . T) (-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-355 |Par|) +(-356 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-356 R S) +(-357 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4233 . T) (-4232 . T)) -((|HasCategory| |#1| (QUOTE (-157)))) -(-357 R |Basis|) +((-4239 . T) (-4238 . T)) +((|HasCategory| |#1| (QUOTE (-158)))) +(-358 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4233 . T) (-4232 . T)) +((-4239 . T) (-4238 . T)) NIL -(-358) +(-359) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-2088 . T)) +((-3656 . T)) NIL -(-359) +(-360) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2088 . T)) +((-3656 . T)) NIL -(-360 R S) +(-361 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4233 . T) (-4232 . T)) -((|HasCategory| |#1| (QUOTE (-157)))) -(-361 S) +((-4239 . T) (-4238 . T)) +((|HasCategory| |#1| (QUOTE (-158)))) +(-362 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL -((|HasCategory| |#1| (QUOTE (-784)))) -(-362) +((|HasCategory| |#1| (QUOTE (-786)))) +(-363) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-363) +(-364) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-364) +(-365) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,{}pref,{}e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,{}n,{}e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")) (|coerce| (((|String|) $) "\\spad{coerce(fn)} produces a string for a file name according to operating system-dependent conventions.") (($ (|String|)) "\\spad{coerce(s)} converts a string to a file name according to operating system-dependent conventions."))) NIL NIL -(-365 |n| |class| R) +(-366 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4233 . T) (-4232 . T)) +((-4239 . T) (-4238 . T)) NIL -(-366) +(-367) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-367 -4102 UP UPUP R) +(-368 -2315 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-368 S) +(-369 S) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL -(-369) +(-370) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format."))) NIL NIL -(-370) +(-371) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) -((-2088 . T)) +((-3656 . T)) NIL -(-371) +(-372) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2088 . T)) +((-3656 . T)) NIL -(-372) +(-373) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL NIL -(-373 -3015 |returnType| -2174 |symbols|) +(-374 -4038 |returnType| -2455 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-374 -4102 UP) +(-375 -2315 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-375 R) +(-376 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) -((-2088 . T)) +((-3656 . T)) NIL -(-376 S) +(-377 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-377) +(-378) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-378 S) +(-379 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4221)) (|HasAttribute| |#1| (QUOTE -4229))) -(-379) +((|HasAttribute| |#1| (QUOTE -4227)) (|HasAttribute| |#1| (QUOTE -4235))) +(-380) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-3996 . T) (-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-2562 . T) (-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-380 R S) +(-381 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-381 A B) +(-382 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-382 S) +(-383 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4225 -12 (|has| |#1| (-6 -4236)) (|has| |#1| (-426)) (|has| |#1| (-6 -4225))) (-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-947))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -262) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-507))) (-12 (|HasCategory| |#1| (QUOTE (-507))) (|HasCategory| |#1| (QUOTE (-765)))) (-12 (|HasAttribute| |#1| (QUOTE -4236)) (|HasAttribute| |#1| (QUOTE -4225)) (|HasCategory| |#1| (QUOTE (-426)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-507))) (|HasCategory| |#1| (QUOTE (-765)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#1| (QUOTE (-784))) (-3844 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-784)))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-507))) (|HasCategory| |#1| (QUOTE (-765)))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-507))) (|HasCategory| |#1| (QUOTE (-765)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (QUOTE (-507))) (|HasCategory| |#1| (QUOTE (-765))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (-12 (|HasCategory| |#1| (QUOTE (-507))) (|HasCategory| |#1| (QUOTE (-765))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133))))) -(-383 S R UP) +((-4231 -12 (|has| |#1| (-6 -4242)) (|has| |#1| (-427)) (|has| |#1| (-6 -4231))) (-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-767)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-759))) (-3262 (|HasCategory| |#1| (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-786)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-767)))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-1063))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-767)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-767))))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-767))))) (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -263) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-767)))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-508))) (-12 (|HasAttribute| |#1| (QUOTE -4242)) (|HasAttribute| |#1| (QUOTE -4231)) (|HasCategory| |#1| (QUOTE (-427)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) +(-384 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-384 R UP) +(-385 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4232 . T) (-4233 . T) (-4235 . T)) +((-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-385 A S) +(-386 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) -(-386 S) +((|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) +(-387 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-387 R1 F1 U1 A1 R2 F2 U2 A2) +(-388 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-388 R -4102 UP A) +(-389 R -2315 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) -((-4235 . T)) +((-4241 . T)) NIL -(-389 R -4102 UP A |ibasis|) +(-390 R -2315 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -962) (|devaluate| |#2|)))) -(-390 AR R AS S) +((|HasCategory| |#4| (LIST (QUOTE -964) (|devaluate| |#2|)))) +(-391 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-391 S R) +(-392 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-338)))) -(-392 R) +((|HasCategory| |#2| (QUOTE (-339)))) +(-393 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4235 |has| |#1| (-514)) (-4233 . T) (-4232 . T)) +((-4241 |has| |#1| (-515)) (-4239 . T) (-4238 . T)) NIL -(-393 R) -((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (LIST (QUOTE -483) (QUOTE (-1085)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -285) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -262) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-947))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -262) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-507))) (|HasCategory| |#1| (QUOTE (-426))) (-3844 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-1124))))) (-394 R) +((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) +((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -286) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -263) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-1126))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-1126)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -263) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-427)))) +(-395 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL NIL -(-395 R FE |x| |cen|) +(-396 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-396 R A S B) +(-397 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-397 R FE |Expon| UPS TRAN |x|) +(-398 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'"))) NIL NIL -(-398 S A R B) +(-399 S A R B) ((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-399 A S) +(-400 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-343)))) -(-400 S) +((|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-344)))) +(-401 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4238 . T) (-4228 . T) (-4239 . T) (-2088 . T)) +((-4244 . T) (-4234 . T) (-4245 . T) (-3656 . T)) NIL -(-401 R -4102) +(-402 R -2315) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-402 R E) +(-403 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4225 -12 (|has| |#1| (-6 -4225)) (|has| |#2| (-6 -4225))) (-4232 . T) (-4233 . T) (-4235 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4225)) (|HasAttribute| |#2| (QUOTE -4225)))) -(-403 R -4102) +((-4231 -12 (|has| |#1| (-6 -4231)) (|has| |#2| (-6 -4231))) (-4238 . T) (-4239 . T) (-4241 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4231)) (|HasAttribute| |#2| (QUOTE -4231)))) +(-404 R -2315) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-404 S R) +(-405 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-1026))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498))))) -(-405 R) +((|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-448))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) +(-406 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4235 -3844 (|has| |#1| (-971)) (|has| |#1| (-447))) (-4233 |has| |#1| (-157)) (-4232 |has| |#1| (-157)) ((-4240 "*") |has| |#1| (-514)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-514)) (-4230 |has| |#1| (-514)) (-2088 . T)) +((-4241 -3262 (|has| |#1| (-973)) (|has| |#1| (-448))) (-4239 |has| |#1| (-158)) (-4238 |has| |#1| (-158)) ((-4246 "*") |has| |#1| (-515)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-515)) (-4236 |has| |#1| (-515)) (-3656 . T)) NIL -(-406 R -4102) +(-407 R -2315) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-407 R -4102) +(-408 R -2315) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-408 R -4102) +(-409 R -2315) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-409) +(-410) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-410 R -4102 UP) +(-411 R -2315 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-47))))) -(-411) +((|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-47))))) +(-412) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-412) +(-413) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}"))) NIL NIL -(-413 |f|) +(-414 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-414) +(-415) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-2088 . T)) +((-3656 . T)) NIL -(-415) +(-416) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2088 . T)) +((-3656 . T)) NIL -(-416 UP) +(-417 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-417 R UP -4102) +(-418 R UP -2315) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-418 R UP) +(-419 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,{}f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,{}f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,{}c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,{}c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-419 R) +(-420 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-379)))) -(-420) +((|HasCategory| |#1| (QUOTE (-380)))) +(-421) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(\\spad{zi})} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(\\spad{zi})} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-421 |Dom| |Expon| |VarSet| |Dpol|) +(-422 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-422 |Dom| |Expon| |VarSet| |Dpol|) +(-423 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-423 |Dom| |Expon| |VarSet| |Dpol|) +(-424 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-424 |Dom| |Expon| |VarSet| |Dpol|) +(-425 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL -((|HasCategory| |#1| (QUOTE (-338)))) -(-425 S) +((|HasCategory| |#1| (QUOTE (-339)))) +(-426 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-426) +(-427) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-427 R |n| |ls| |gamma|) +(-428 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4235 |has| (-382 (-881 |#1|)) (-514)) (-4233 . T) (-4232 . T)) -((|HasCategory| (-382 (-881 |#1|)) (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| (-382 (-881 |#1|)) (QUOTE (-514)))) -(-428 |vl| R E) +((-4241 |has| (-383 (-883 |#1|)) (-515)) (-4239 . T) (-4238 . T)) +((|HasCategory| (-383 (-883 |#1|)) (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| (-383 (-883 |#1|)) (QUOTE (-515)))) +(-429 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4240 "*") |has| |#2| (-157)) (-4231 |has| |#2| (-514)) (-4236 |has| |#2| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T)) -((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-157))) (-3844 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-514)))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-338))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#2| (QUOTE -4236)) (|HasCategory| |#2| (QUOTE (-426))) (-3844 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-838)))) (-3844 (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-838)))) (-3844 (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-133))))) -(-429 R BP) +(((-4246 "*") |has| |#2| (-158)) (-4237 |has| |#2| (-515)) (-4242 |has| |#2| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) +((|HasCategory| |#2| (QUOTE (-840))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-515)))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#2| (QUOTE -4242)) (|HasCategory| |#2| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-134))))) +(-430 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL NIL -(-430 OV E S R P) +(-431 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-431 E OV R P) +(-432 E OV R P) ((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL -(-432 R) +(-433 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-433 R FE) +(-434 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),{}n,{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(a(n),{}n,{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n=n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}."))) NIL NIL -(-434 RP TP) +(-435 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,{}pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,{}lfact,{}prime,{}bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,{}lfacts,{}prime,{}bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-435 |vl| R IS E |ff| P) +(-436 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4233 . T) (-4232 . T)) +((-4239 . T) (-4238 . T)) NIL -(-436 E V R P Q) +(-437 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-437 R E |VarSet| P) +(-438 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4239 . T) (-4238 . T)) -((|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-792))))) -(-438 S R E) +((-4245 . T) (-4244 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-794))))) +(-439 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-439 R E) +(-440 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-440) +(-441) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-441) +(-442) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-442) +(-443) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-443 S R E) +(-444 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-444 R E) +(-445 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-445 |lv| -4102 R) +(-446 |lv| -2315 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-446 S) +(-447 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-447) +(-448) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4235 . T)) +((-4241 . T)) NIL -(-448 |Coef| |var| |cen|) +(-449 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522))) (|devaluate| |#1|))))) (|HasCategory| (-382 (-522)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-338))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-3844 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1085)))))) (-3844 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -2611) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1085))))) (|HasSignature| |#1| (LIST (QUOTE -3533) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#1|))))))) -(-449 |Key| |Entry| |Tbl| |dent|) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|)))) (|HasCategory| (-383 (-523)) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|))))))) +(-450 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4239 . T)) -((|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1014))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2644) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3149) (|devaluate| |#2|)))))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-450 R E V P) +((-4245 . T)) +((-12 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#2|)))))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-786))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) +(-451 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4239 . T) (-4238 . T)) -((|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-792))))) -(-451) +((-4245 . T) (-4244 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-794))))) +(-452) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-452 |Key| |Entry| |hashfn|) +(-453 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4238 . T) (-4239 . T)) -((|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2644) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3149) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-1014))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-453) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#2|)))))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-1016))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) +(-454) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-454 |vl| R) +(-455 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4240 "*") |has| |#2| (-157)) (-4231 |has| |#2| (-514)) (-4236 |has| |#2| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T)) -((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-157))) (-3844 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-514)))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-338))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#2| (QUOTE -4236)) (|HasCategory| |#2| (QUOTE (-426))) (-3844 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-838)))) (-3844 (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-838)))) (-3844 (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-133))))) -(-455 -2787 S) +(((-4246 "*") |has| |#2| (-158)) (-4237 |has| |#2| (-515)) (-4242 |has| |#2| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) +((|HasCategory| |#2| (QUOTE (-840))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-515)))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#2| (QUOTE -4242)) (|HasCategory| |#2| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-134))))) +(-456 -1346 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4232 |has| |#2| (-971)) (-4233 |has| |#2| (-971)) (-4235 |has| |#2| (-6 -4235)) ((-4240 "*") |has| |#2| (-157)) (-4238 . T)) -((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-782))) (-3844 (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-782)))) (|HasCategory| |#2| (QUOTE (-157))) (-3844 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (-3844 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-338)))) (-3844 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-971)))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-210))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-971)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-522) (QUOTE (-784))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-971)))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085))))) (|HasCategory| |#2| (QUOTE (-664))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-3844 (|HasCategory| |#2| (QUOTE (-971))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -4235)) (|HasCategory| |#2| (QUOTE (-124))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (|HasCategory| |#2| (QUOTE (-25))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-1014)))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (-3844 (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-157)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-210)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-343)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-730)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-782)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-971)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-1014))))) (-3844 (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-3844 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-971)))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-456 S) +((-4238 |has| |#2| (-973)) (-4239 |has| |#2| (-973)) (-4241 |has| |#2| (-6 -4241)) ((-4246 "*") |has| |#2| (-158)) (-4244 . T)) +((-3262 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))))) (-3262 (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (QUOTE (-339))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339)))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-732))) (-3262 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-784)))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-158))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-973)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-158)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-211)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016))))) (-3262 (-12 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| (-523) (QUOTE (-786))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (|HasCategory| |#2| (QUOTE (-666))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-3262 (|HasCategory| |#2| (QUOTE (-973))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasAttribute| |#2| (QUOTE -4241)) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) +(-457 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4238 . T) (-4239 . T)) -((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-457 -4102 UP UPUP R) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-458 -2315 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-458 BP) +(-459 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,{}..,{}ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,{}..,{}fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,{}..,{}fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,{}..,{}fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) NIL NIL -(-459) +(-460) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| (-522) (QUOTE (-838))) (|HasCategory| (-522) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| (-522) (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-135))) (|HasCategory| (-522) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-522) (QUOTE (-947))) (|HasCategory| (-522) (QUOTE (-757))) (|HasCategory| (-522) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| (-522) (QUOTE (-1061))) (|HasCategory| (-522) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| (-522) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| (-522) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| (-522) (QUOTE (-210))) (|HasCategory| (-522) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-522) (LIST (QUOTE -483) (QUOTE (-1085)) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -285) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -262) (QUOTE (-522)) (QUOTE (-522)))) (|HasCategory| (-522) (QUOTE (-283))) (|HasCategory| (-522) (QUOTE (-507))) (|HasCategory| (-522) (QUOTE (-784))) (-3844 (|HasCategory| (-522) (QUOTE (-757))) (|HasCategory| (-522) (QUOTE (-784)))) (|HasCategory| (-522) (LIST (QUOTE -584) (QUOTE (-522)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-838)))) (|HasCategory| (-522) (QUOTE (-133))))) -(-460 A S) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| (-523) (QUOTE (-840))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| (-523) (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-136))) (|HasCategory| (-523) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-523) (QUOTE (-949))) (|HasCategory| (-523) (QUOTE (-759))) (-3262 (|HasCategory| (-523) (QUOTE (-759))) (|HasCategory| (-523) (QUOTE (-786)))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-1063))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-523) (QUOTE (-211))) (|HasCategory| (-523) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-523) (LIST (QUOTE -484) (QUOTE (-1087)) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -286) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -263) (QUOTE (-523)) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-284))) (|HasCategory| (-523) (QUOTE (-508))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-523) (LIST (QUOTE -585) (QUOTE (-523)))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (|HasCategory| (-523) (QUOTE (-134))))) +(-461 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4238)) (|HasAttribute| |#1| (QUOTE -4239)) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))) -(-461 S) +((|HasAttribute| |#1| (QUOTE -4244)) (|HasAttribute| |#1| (QUOTE -4245)) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) +(-462 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) -((-2088 . T)) +((-3656 . T)) NIL -(-462 S) +(-463 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-463) +(-464) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-464 -4102 UP |AlExt| |AlPol|) +(-465 -2315 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-465) +(-466) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| $ (QUOTE (-971))) (|HasCategory| $ (LIST (QUOTE -962) (QUOTE (-522))))) -(-466 S |mn|) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| $ (QUOTE (-973))) (|HasCategory| $ (LIST (QUOTE -964) (QUOTE (-523))))) +(-467 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4239 . T) (-4238 . T)) -((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3844 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-467 R |mnRow| |mnCol|) +((-4245 . T) (-4244 . T)) +((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-468 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4238 . T) (-4239 . T)) -((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-468 K R UP) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-469 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-469 R UP -4102) +(-470 R UP -2315) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-470 |mn|) +(-471 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4239 . T) (-4238 . T)) -((|HasCategory| (-108) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-108) (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| (-108) (QUOTE (-1014))) (-12 (|HasCategory| (-108) (QUOTE (-1014))) (|HasCategory| (-108) (LIST (QUOTE -285) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -562) (QUOTE (-792))))) -(-471 K R UP L) +((-4245 . T) (-4244 . T)) +((-12 (|HasCategory| (-108) (QUOTE (-1016))) (|HasCategory| (-108) (LIST (QUOTE -286) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-108) (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-108) (QUOTE (-1016))) (|HasCategory| (-108) (LIST (QUOTE -563) (QUOTE (-794))))) +(-472 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-472) +(-473) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,{}s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-473 R Q A B) +(-474 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-474 -4102 |Expon| |VarSet| |DPoly|) +(-475 -2315 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -563) (QUOTE (-1085))))) -(-475 |vl| |nv|) +((|HasCategory| |#3| (LIST (QUOTE -564) (QUOTE (-1087))))) +(-476 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-476 A S) +(-477 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-477 A S) +(-478 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL NIL -(-478 A S) +(-479 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-479 A S) +(-480 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-480 A S) +(-481 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-481 A S) +(-482 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL NIL -(-482 S A B) +(-483 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-483 A B) +(-484 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-484 S E |un|) +(-485 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-729)))) -(-485 S |mn|) +((|HasCategory| |#2| (QUOTE (-731)))) +(-486 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4239 . T) (-4238 . T)) -((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3844 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-486 |p| |n|) +((-4245 . T) (-4244 . T)) +((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-487 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| (-535 |#1|) (QUOTE (-135))) (|HasCategory| (-535 |#1|) (QUOTE (-343))) (|HasCategory| (-535 |#1|) (QUOTE (-133))) (-3844 (|HasCategory| (-535 |#1|) (QUOTE (-133))) (|HasCategory| (-535 |#1|) (QUOTE (-343))))) -(-487 R |mnRow| |mnCol| |Row| |Col|) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((-3262 (|HasCategory| (-536 |#1|) (QUOTE (-134))) (|HasCategory| (-536 |#1|) (QUOTE (-344)))) (|HasCategory| (-536 |#1|) (QUOTE (-136))) (|HasCategory| (-536 |#1|) (QUOTE (-344))) (|HasCategory| (-536 |#1|) (QUOTE (-134)))) +(-488 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4238 . T) (-4239 . T)) -((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-488 S |mn|) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-489 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4239 . T) (-4238 . T)) -((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3844 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-489 R |Row| |Col| M) +((-4245 . T) (-4244 . T)) +((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-490 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4239))) -(-490 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4245))) +(-491 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4239))) -(-491 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4245))) +(-492 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4238 . T) (-4239 . T)) -((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-514))) (|HasAttribute| |#1| (QUOTE (-4240 "*"))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-492 GF) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-515))) (|HasAttribute| |#1| (QUOTE (-4246 "*"))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-493 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-493 R) +(-494 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-494 |Varset|) +(-495 |Varset|) ((|constructor| (NIL "converts entire exponents to OutputForm"))) NIL NIL -(-495 K -4102 |Par|) +(-496 K -2315 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-496) +(-497) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-497 R) +(-498 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-498) +(-499) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-499 |Coef| UTS) +(-500 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-500 K -4102 |Par|) +(-501 K -2315 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-501 R BP |pMod| |nextMod|) +(-502 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-502 OV E R P) +(-503 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-503 K UP |Coef| UTS) +(-504 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-504 |Coef| UTS) +(-505 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-505 R UP) +(-506 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented"))) NIL NIL -(-506 S) +(-507 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-507) +(-508) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4236 . T) (-4237 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4242 . T) (-4243 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-508 |Key| |Entry| |addDom|) +(-509 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4238 . T) (-4239 . T)) -((|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2644) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3149) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-1014))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-509 R -4102) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#2|)))))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-1016))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) +(-510 R -2315) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-510 R0 -4102 UP UPUP R) +(-511 R0 -2315 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-511) +(-512) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-512 R) +(-513 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-3996 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-2562 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-513 S) +(-514 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-514) +(-515) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-515 R -4102) +(-516 R -2315) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-516 I) +(-517 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-517) +(-518) ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-518 R -4102 L) +(-519 R -2315 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -598) (|devaluate| |#2|)))) -(-519) +((|HasCategory| |#3| (LIST (QUOTE -599) (|devaluate| |#2|)))) +(-520) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ^= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-520 -4102 UP UPUP R) +(-521 -2315 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-521 -4102 UP) +(-522 -2315 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-522) +(-523) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) -((-4220 . T) (-4226 . T) (-4230 . T) (-4225 . T) (-4236 . T) (-4237 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4226 . T) (-4232 . T) (-4236 . T) (-4231 . T) (-4242 . T) (-4243 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-523) +(-524) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-524 R -4102 L) +(-525 R -2315 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -598) (|devaluate| |#2|)))) -(-525 R -4102) +((|HasCategory| |#3| (LIST (QUOTE -599) (|devaluate| |#2|)))) +(-526 R -2315) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-574))))) -(-526 -4102 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-575))))) +(-527 -2315 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-527 S) +(-528 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-528 -4102) +(-529 -2315) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-529 R) +(-530 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-3996 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-2562 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-530) +(-531) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-531 R -4102) +(-532 R -2315) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-260))) (|HasCategory| |#2| (QUOTE (-574))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-1085))))) (-12 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-260)))) (|HasCategory| |#1| (QUOTE (-514)))) -(-532 -4102 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-261))) (|HasCategory| |#2| (QUOTE (-575))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087))))) (-12 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-261)))) (|HasCategory| |#1| (QUOTE (-515)))) +(-533 -2315 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-533 R -4102) +(-534 R -2315) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-534 |p| |unBalanced?|) +(-535 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-535 |p|) +(-536 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| $ (QUOTE (-135))) (|HasCategory| $ (QUOTE (-133))) (|HasCategory| $ (QUOTE (-343)))) -(-536) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| $ (QUOTE (-136))) (|HasCategory| $ (QUOTE (-134))) (|HasCategory| $ (QUOTE (-344)))) +(-537) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-537 R -4102) +(-538 R -2315) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-538 E -4102) +(-539 E -2315) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-539 -4102) +(-540 -2315) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4233 . T) (-4232 . T)) -((|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-1085))))) -(-540 I) +((-4239 . T) (-4238 . T)) +((|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-1087))))) +(-541 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-541 GF) +(-542 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-542 R) +(-543 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL -((|HasCategory| |#1| (QUOTE (-135)))) -(-543) +((|HasCategory| |#1| (QUOTE (-136)))) +(-544) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-544 R E V P TS) +(-545 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-545 |mn|) +(-546 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) -((-4239 . T) (-4238 . T)) -((|HasCategory| (-132) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-132) (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| (-132) (QUOTE (-1014))) (-3844 (|HasCategory| (-132) (QUOTE (-784))) (|HasCategory| (-132) (QUOTE (-1014)))) (-12 (|HasCategory| (-132) (QUOTE (-1014))) (|HasCategory| (-132) (LIST (QUOTE -285) (QUOTE (-132))))) (-3844 (-12 (|HasCategory| (-132) (QUOTE (-784))) (|HasCategory| (-132) (LIST (QUOTE -285) (QUOTE (-132))))) (-12 (|HasCategory| (-132) (QUOTE (-1014))) (|HasCategory| (-132) (LIST (QUOTE -285) (QUOTE (-132)))))) (|HasCategory| (-132) (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (|HasCategory| (-132) (LIST (QUOTE -562) (QUOTE (-792)))) (-12 (|HasCategory| (-132) (QUOTE (-1014))) (|HasCategory| (-132) (LIST (QUOTE -285) (QUOTE (-132))))))) -(-546 E V R P) +((-4245 . T) (-4244 . T)) +((-3262 (-12 (|HasCategory| (-133) (QUOTE (-786))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133))))) (-12 (|HasCategory| (-133) (QUOTE (-1016))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133)))))) (-3262 (|HasCategory| (-133) (LIST (QUOTE -563) (QUOTE (-794)))) (-12 (|HasCategory| (-133) (QUOTE (-1016))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133)))))) (|HasCategory| (-133) (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| (-133) (QUOTE (-786))) (|HasCategory| (-133) (QUOTE (-1016)))) (|HasCategory| (-133) (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-133) (QUOTE (-1016))) (-12 (|HasCategory| (-133) (QUOTE (-1016))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133))))) (|HasCategory| (-133) (LIST (QUOTE -563) (QUOTE (-794))))) +(-547 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-547 |Coef|) -((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-522)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-522)) (|devaluate| |#1|))))) (|HasCategory| (-522) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-338))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-522))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1085))))))) (-548 |Coef|) +((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|)))) (|HasCategory| (-523) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-339))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523)))))) +(-549 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -((-4233 |has| |#1| (-514)) (-4232 |has| |#1| (-514)) ((-4240 "*") |has| |#1| (-514)) (-4231 |has| |#1| (-514)) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-514)))) -(-549 A B) +((-4239 |has| |#1| (-515)) (-4238 |has| |#1| (-515)) ((-4246 "*") |has| |#1| (-515)) (-4237 |has| |#1| (-515)) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-515)))) +(-550 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-550 A B C) +(-551 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-551 R -4102 FG) +(-552 R -2315 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-552 S) +(-553 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-553 R |mn|) +(-554 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4239 . T) (-4238 . T)) -((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3844 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-971))) (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-971)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-554 S |Index| |Entry|) +((-4245 . T) (-4244 . T)) +((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#1| (QUOTE (-973))) (-12 (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-973)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-555 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4239)) (|HasCategory| |#2| (QUOTE (-784))) (|HasAttribute| |#1| (QUOTE -4238)) (|HasCategory| |#3| (QUOTE (-1014)))) -(-555 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4245)) (|HasCategory| |#2| (QUOTE (-786))) (|HasAttribute| |#1| (QUOTE -4244)) (|HasCategory| |#3| (QUOTE (-1016)))) +(-556 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) -((-2088 . T)) +((-3656 . T)) NIL -(-556 R A) +(-557 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4235 -3844 (-4079 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))) (-4233 . T) (-4232 . T)) -((|HasCategory| |#2| (LIST (QUOTE -392) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -392) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -342) (|devaluate| |#1|))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -342) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -392) (|devaluate| |#1|)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#2| (LIST (QUOTE -342) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#2| (LIST (QUOTE -392) (|devaluate| |#1|)))))) -(-557 |Entry|) +((-4241 -3262 (-4099 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))) (-4239 . T) (-4238 . T)) +((-3262 (|HasCategory| |#2| (LIST (QUOTE -343) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#2| (LIST (QUOTE -343) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -343) (|devaluate| |#1|)))) +(-558 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4238 . T) (-4239 . T)) -((|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| (-1068) (QUOTE (-784))) (|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2644) (QUOTE (-1068))) (LIST (QUOTE |:|) (QUOTE -3149) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (LIST (QUOTE -562) (QUOTE (-792))))) -(-558 S |Key| |Entry|) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (QUOTE (-1070))) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| (-1070) (QUOTE (-786))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (LIST (QUOTE -563) (QUOTE (-794))))) +(-559 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-559 |Key| |Entry|) +(-560 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4239 . T) (-2088 . T)) +((-4245 . T) (-3656 . T)) NIL -(-560 R S) +(-561 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-561 S) +(-562 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) -(-562 S) +((|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) +(-563 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-563 S) +(-564 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-564 -4102 UP) +(-565 -2315 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-565 S R) +(-566 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-566 R) +(-567 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4235 . T)) +((-4241 . T)) NIL -(-567 A R S) +(-568 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-782)))) -(-568 R -4102) +((-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-784)))) +(-569 R -2315) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL -(-569 R UP) +(-570 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4233 . T) (-4232 . T) ((-4240 "*") . T) (-4231 . T) (-4235 . T)) -((|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522))))) -(-570 R E V P TS ST) +((-4239 . T) (-4238 . T) ((-4246 "*") . T) (-4237 . T) (-4241 . T)) +((|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) +(-571 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-571 OV E Z P) +(-572 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-572 |VarSet| R |Order|) +(-573 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4235 . T)) +((-4241 . T)) NIL -(-573 R |ls|) +(-574 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-574) +(-575) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-575 R -4102) +(-576 R -2315) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-576 |lv| -4102) +(-577 |lv| -2315) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-577) +(-578) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4239 . T)) -((|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-1068) (QUOTE (-784))) (|HasCategory| (-51) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-51) (QUOTE (-1014))) (-12 (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-51) (LIST (QUOTE -285) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2644) (QUOTE (-1068))) (LIST (QUOTE |:|) (QUOTE -3149) (QUOTE (-51))))))) (-3844 (|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (QUOTE (-1014))) (|HasCategory| (-51) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-51) (LIST (QUOTE -562) (QUOTE (-792))))) (-3844 (|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-51) (LIST (QUOTE -562) (QUOTE (-792)))))) -(-578 S R) +((-4245 . T)) +((-12 (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (QUOTE (-1070))) (LIST (QUOTE |:|) (QUOTE -2433) (QUOTE (-51))))))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-51) (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-51) (QUOTE (-1016))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| (-51) (QUOTE (-1016))) (|HasCategory| (-51) (LIST (QUOTE -286) (QUOTE (-51))))) (|HasCategory| (-1070) (QUOTE (-786))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-51) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (LIST (QUOTE -563) (QUOTE (-794))))) +(-579 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-338)))) -(-579 R) +((|HasCategory| |#2| (QUOTE (-339)))) +(-580 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4233 . T) (-4232 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4239 . T) (-4238 . T)) NIL -(-580 R A) +(-581 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4235 -3844 (-4079 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))) (-4233 . T) (-4232 . T)) -((|HasCategory| |#2| (LIST (QUOTE -392) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -392) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -342) (|devaluate| |#1|))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -342) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -392) (|devaluate| |#1|)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#2| (LIST (QUOTE -342) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#2| (LIST (QUOTE -392) (|devaluate| |#1|)))))) -(-581 R FE) +((-4241 -3262 (-4099 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))) (-4239 . T) (-4238 . T)) +((-3262 (|HasCategory| |#2| (LIST (QUOTE -343) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#2| (LIST (QUOTE -343) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#2| (LIST (QUOTE -393) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -343) (|devaluate| |#1|)))) +(-582 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL NIL -(-582 R) +(-583 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-583 S R) +(-584 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((|HasCategory| |#1| (QUOTE (-338))) (-2473 (|HasCategory| |#1| (QUOTE (-338))))) -(-584 R) +((-3900 (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-339)))) +(-585 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4235 . T)) +((-4241 . T)) NIL -(-585 A B) +(-586 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-586 A B) +(-587 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) NIL NIL -(-587 A B C) +(-588 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-588 S) -((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) -((-4239 . T) (-4238 . T)) -((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-765))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3844 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) (-589 S) +((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) +((-4245 . T) (-4244 . T)) +((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-590 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4238 . T) (-4239 . T)) -((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-590 R) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-591 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-591 S E |un|) +(-592 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-592 A S) +(-593 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4239))) -(-593 S) +((|HasAttribute| |#1| (QUOTE -4245))) +(-594 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) -((-2088 . T)) +((-3656 . T)) NIL -(-594 R -4102 L) +(-595 R -2315 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-595 A) +(-596 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-338)))) -(-596 A M) +((-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-339)))) +(-597 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-338)))) -(-597 S A) +((-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-339)))) +(-598 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-338)))) -(-598 A) +((|HasCategory| |#2| (QUOTE (-339)))) +(-599 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4232 . T) (-4233 . T) (-4235 . T)) +((-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-599 -4102 UP) +(-600 -2315 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-600 A -3596) +(-601 A -4168) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-338)))) -(-601 A L) +((-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-339)))) +(-602 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-602 S) +(-603 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-603) +(-604) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-604 M R S) +(-605 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4233 . T) (-4232 . T)) -((|HasCategory| |#1| (QUOTE (-728)))) -(-605 R) +((-4239 . T) (-4238 . T)) +((|HasCategory| |#1| (QUOTE (-730)))) +(-606 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-606 |VarSet| R) +(-607 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4233 . T) (-4232 . T)) -((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-157)))) -(-607 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4239 . T) (-4238 . T)) +((|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-158)))) +(-608 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-608 S) +(-609 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4239 . T) (-4238 . T) (-2088 . T)) +((-4245 . T) (-4244 . T) (-3656 . T)) NIL -(-609 -4102) +(-610 -2315) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-610 -4102 |Row| |Col| M) +(-611 -2315 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-611 R E OV P) +(-612 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-612 |n| R) +(-613 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4235 . T) (-4238 . T) (-4232 . T) (-4233 . T)) -((|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-210))) (|HasAttribute| |#2| (QUOTE (-4240 "*"))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-514))) (-3844 (|HasAttribute| |#2| (QUOTE (-4240 "*"))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-210)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-3844 (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-157)))) -(-613 |VarSet|) +((-4241 . T) (-4244 . T) (-4238 . T) (-4239 . T)) +((|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-211))) (|HasAttribute| |#2| (QUOTE (-4246 "*"))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (-3262 (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-515))) (-3262 (|HasAttribute| |#2| (QUOTE (-4246 "*"))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-211)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-158)))) +(-614 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-614 A S) +(-615 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) NIL NIL -(-615 S) +(-616 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) -((-2088 . T)) +((-3656 . T)) NIL -(-616 R) +(-617 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-971))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-617 |VarSet|) +((-3262 (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (QUOTE (-973))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-618 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-618 A) +(-619 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-619 A C) +(-620 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument."))) NIL NIL -(-620 A B C) +(-621 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}."))) NIL NIL -(-621 A) +(-622 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-622 A C) +(-623 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-623 A B C) +(-624 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}"))) NIL NIL -(-624 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-625 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-625 S R |Row| |Col|) +(-626 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4240 "*"))) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-514)))) -(-626 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4246 "*"))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-515)))) +(-627 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4238 . T) (-4239 . T) (-2088 . T)) +((-4244 . T) (-4245 . T) (-3656 . T)) NIL -(-627 R |Row| |Col| M) +(-628 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-514)))) -(-628 R) -((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4238 . T) (-4239 . T)) -((|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-514))) (|HasAttribute| |#1| (QUOTE (-4240 "*"))) (|HasCategory| |#1| (QUOTE (-338))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) +((|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-515)))) (-629 R) +((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) +((-4244 . T) (-4245 . T)) +((-3262 (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-515))) (|HasAttribute| |#1| (QUOTE (-4246 "*"))) (|HasCategory| |#1| (QUOTE (-339))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-630 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-630 S -4102 FLAF FLAS) +(-631 S -2315 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-631 R Q) +(-632 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-632) +(-633) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4231 . T) (-4236 |has| (-637) (-338)) (-4230 |has| (-637) (-338)) (-4005 . T) (-4237 |has| (-637) (-6 -4237)) (-4234 |has| (-637) (-6 -4234)) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| (-637) (QUOTE (-135))) (|HasCategory| (-637) (QUOTE (-133))) (|HasCategory| (-637) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-637) (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| (-637) (QUOTE (-343))) (|HasCategory| (-637) (QUOTE (-338))) (|HasCategory| (-637) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-637) (QUOTE (-210))) (|HasCategory| (-637) (QUOTE (-324))) (-3844 (|HasCategory| (-637) (QUOTE (-338))) (|HasCategory| (-637) (QUOTE (-324)))) (|HasCategory| (-637) (LIST (QUOTE -262) (QUOTE (-637)) (QUOTE (-637)))) (|HasCategory| (-637) (LIST (QUOTE -285) (QUOTE (-637)))) (|HasCategory| (-637) (LIST (QUOTE -483) (QUOTE (-1085)) (QUOTE (-637)))) (|HasCategory| (-637) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| (-637) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| (-637) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| (-637) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| (-637) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-637) (QUOTE (-947))) (|HasCategory| (-637) (QUOTE (-1106))) (-12 (|HasCategory| (-637) (QUOTE (-928))) (|HasCategory| (-637) (QUOTE (-1106)))) (|HasCategory| (-637) (QUOTE (-507))) (|HasCategory| (-637) (QUOTE (-980))) (-12 (|HasCategory| (-637) (QUOTE (-980))) (|HasCategory| (-637) (QUOTE (-1106)))) (-3844 (|HasCategory| (-637) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-637) (QUOTE (-338)))) (|HasCategory| (-637) (QUOTE (-283))) (-3844 (|HasCategory| (-637) (QUOTE (-283))) (|HasCategory| (-637) (QUOTE (-338))) (|HasCategory| (-637) (QUOTE (-324)))) (|HasCategory| (-637) (QUOTE (-838))) (-12 (|HasCategory| (-637) (QUOTE (-210))) (|HasCategory| (-637) (QUOTE (-338)))) (-12 (|HasCategory| (-637) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-637) (QUOTE (-338)))) (|HasCategory| (-637) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| (-637) (QUOTE (-784))) (|HasCategory| (-637) (QUOTE (-514))) (|HasAttribute| (-637) (QUOTE -4237)) (|HasAttribute| (-637) (QUOTE -4234)) (-12 (|HasCategory| (-637) (QUOTE (-283))) (|HasCategory| (-637) (QUOTE (-838)))) (-3844 (-12 (|HasCategory| (-637) (QUOTE (-283))) (|HasCategory| (-637) (QUOTE (-838)))) (|HasCategory| (-637) (QUOTE (-338))) (-12 (|HasCategory| (-637) (QUOTE (-324))) (|HasCategory| (-637) (QUOTE (-838))))) (-3844 (-12 (|HasCategory| (-637) (QUOTE (-283))) (|HasCategory| (-637) (QUOTE (-838)))) (-12 (|HasCategory| (-637) (QUOTE (-338))) (|HasCategory| (-637) (QUOTE (-838)))) (-12 (|HasCategory| (-637) (QUOTE (-324))) (|HasCategory| (-637) (QUOTE (-838))))) (-3844 (-12 (|HasCategory| (-637) (QUOTE (-283))) (|HasCategory| (-637) (QUOTE (-838)))) (|HasCategory| (-637) (QUOTE (-338)))) (-3844 (-12 (|HasCategory| (-637) (QUOTE (-283))) (|HasCategory| (-637) (QUOTE (-838)))) (|HasCategory| (-637) (QUOTE (-514)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-637) (QUOTE (-283))) (|HasCategory| (-637) (QUOTE (-838)))) (|HasCategory| (-637) (QUOTE (-133)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-637) (QUOTE (-283))) (|HasCategory| (-637) (QUOTE (-838)))) (|HasCategory| (-637) (QUOTE (-324))))) -(-633 S) +((-4237 . T) (-4242 |has| (-638) (-339)) (-4236 |has| (-638) (-339)) (-2571 . T) (-4243 |has| (-638) (-6 -4243)) (-4240 |has| (-638) (-6 -4240)) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| (-638) (QUOTE (-136))) (|HasCategory| (-638) (QUOTE (-134))) (|HasCategory| (-638) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-638) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| (-638) (QUOTE (-344))) (|HasCategory| (-638) (QUOTE (-339))) (|HasCategory| (-638) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-638) (QUOTE (-211))) (-3262 (|HasCategory| (-638) (QUOTE (-339))) (|HasCategory| (-638) (QUOTE (-325)))) (|HasCategory| (-638) (QUOTE (-325))) (|HasCategory| (-638) (LIST (QUOTE -263) (QUOTE (-638)) (QUOTE (-638)))) (|HasCategory| (-638) (LIST (QUOTE -286) (QUOTE (-638)))) (|HasCategory| (-638) (LIST (QUOTE -484) (QUOTE (-1087)) (QUOTE (-638)))) (|HasCategory| (-638) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-638) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-638) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-638) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (-3262 (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-339))) (|HasCategory| (-638) (QUOTE (-325)))) (|HasCategory| (-638) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-638) (QUOTE (-949))) (|HasCategory| (-638) (QUOTE (-1108))) (-12 (|HasCategory| (-638) (QUOTE (-930))) (|HasCategory| (-638) (QUOTE (-1108)))) (-3262 (-12 (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840)))) (|HasCategory| (-638) (QUOTE (-339))) (-12 (|HasCategory| (-638) (QUOTE (-325))) (|HasCategory| (-638) (QUOTE (-840))))) (-3262 (-12 (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840)))) (-12 (|HasCategory| (-638) (QUOTE (-339))) (|HasCategory| (-638) (QUOTE (-840)))) (-12 (|HasCategory| (-638) (QUOTE (-325))) (|HasCategory| (-638) (QUOTE (-840))))) (|HasCategory| (-638) (QUOTE (-508))) (-12 (|HasCategory| (-638) (QUOTE (-982))) (|HasCategory| (-638) (QUOTE (-1108)))) (|HasCategory| (-638) (QUOTE (-982))) (-3262 (|HasCategory| (-638) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-638) (QUOTE (-339)))) (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840))) (-3262 (-12 (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840)))) (|HasCategory| (-638) (QUOTE (-339)))) (-3262 (-12 (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840)))) (|HasCategory| (-638) (QUOTE (-515)))) (-12 (|HasCategory| (-638) (QUOTE (-211))) (|HasCategory| (-638) (QUOTE (-339)))) (-12 (|HasCategory| (-638) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-638) (QUOTE (-339)))) (|HasCategory| (-638) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-638) (QUOTE (-786))) (|HasCategory| (-638) (QUOTE (-515))) (|HasAttribute| (-638) (QUOTE -4243)) (|HasAttribute| (-638) (QUOTE -4240)) (-12 (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840)))) (|HasCategory| (-638) (QUOTE (-134)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-638) (QUOTE (-284))) (|HasCategory| (-638) (QUOTE (-840)))) (|HasCategory| (-638) (QUOTE (-325))))) +(-634 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4239 . T) (-2088 . T)) +((-4245 . T) (-3656 . T)) NIL -(-634 U) +(-635 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-635) +(-636) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-636 OV E -4102 PG) +(-637 OV E -2315 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-637) +(-638) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-3996 . T) (-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-2562 . T) (-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-638 R) +(-639 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-639) +(-640) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4237 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4243 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-640 S D1 D2 I) +(-641 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-641 S) +(-642 S) ((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s} viewed as an element of \\%."))) NIL NIL -(-642 S) +(-643 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-643 S) +(-644 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-644 S T$) +(-645 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-645 S -2252 I) +(-646 S -2862 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-646 E OV R P) +(-647 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented"))) NIL NIL -(-647 R) +(-648 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\^= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4232 . T) (-4233 . T) (-4235 . T)) +((-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-648 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-649 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-649 R |Mod| -3004 -3164 |exactQuo|) +(-650) +((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) +NIL +NIL +(-651 R |Mod| -2227 -2178 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-650 R |Rep|) +(-652 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4234 |has| |#1| (-338)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| (-999) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-324))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasAttribute| |#1| (QUOTE -4236)) (|HasCategory| |#1| (QUOTE (-426))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133))))) -(-651 IS E |ff|) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4240 |has| |#1| (-339)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-325))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasCategory| |#1| (QUOTE (-211))) (|HasAttribute| |#1| (QUOTE -4242)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) +(-653 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-652 R M) +(-654 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4233 |has| |#1| (-157)) (-4232 |has| |#1| (-157)) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135)))) -(-653 R |Mod| -3004 -3164 |exactQuo|) +((-4239 |has| |#1| (-158)) (-4238 |has| |#1| (-158)) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136)))) +(-655 R |Mod| -2227 -2178 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4235 . T)) +((-4241 . T)) NIL -(-654 S R) +(-656 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-655 R) +(-657 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4233 . T) (-4232 . T)) +((-4239 . T) (-4238 . T)) NIL -(-656 -4102) +(-658 -2315) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) -((-4235 . T)) +((-4241 . T)) NIL -(-657 S) +(-659 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-658) +(-660) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-659 S) +(-661 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-660) +(-662) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-661 S R UP) +(-663 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-324))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-343)))) -(-662 R UP) +((|HasCategory| |#2| (QUOTE (-325))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-344)))) +(-664 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4231 |has| |#1| (-338)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4237 |has| |#1| (-339)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-663 S) +(-665 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-664) +(-666) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-665 -4102 UP) +(-667 -2315 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-666 |VarSet| E1 E2 R S PR PS) +(-668 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-667 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-669 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-668 E OV R PPR) +(-670 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-669 |vl| R) +(-671 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4240 "*") |has| |#2| (-157)) (-4231 |has| |#2| (-514)) (-4236 |has| |#2| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T)) -((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-157))) (-3844 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-514)))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-338))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#2| (QUOTE -4236)) (|HasCategory| |#2| (QUOTE (-426))) (-3844 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-838)))) (-3844 (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-838)))) (-3844 (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-133))))) -(-670 E OV R PRF) +(((-4246 "*") |has| |#2| (-158)) (-4237 |has| |#2| (-515)) (-4242 |has| |#2| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) +((|HasCategory| |#2| (QUOTE (-840))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-515)))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-796 |#1|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#2| (QUOTE -4242)) (|HasCategory| |#2| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-134))))) +(-672 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-671 E OV R P) +(-673 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-672 R S M) +(-674 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-673 R M) +(-675 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4233 |has| |#1| (-157)) (-4232 |has| |#1| (-157)) (-4235 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-784)))) -(-674 S) +((-4239 |has| |#1| (-158)) (-4238 |has| |#1| (-158)) (-4241 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-786)))) +(-676 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4228 . T) (-4239 . T) (-2088 . T)) +((-4234 . T) (-4245 . T) (-3656 . T)) NIL -(-675 S) +(-677 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4238 . T) (-4228 . T) (-4239 . T)) -((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))) -(-676) +((-4244 . T) (-4234 . T) (-4245 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-678) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-677 S) +(-679 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-678 |Coef| |Var|) +(-680 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4233 . T) (-4232 . T) (-4235 . T)) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4239 . T) (-4238 . T) (-4241 . T)) NIL -(-679 OV E R P) +(-681 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-680 E OV R P) +(-682 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-681 S R) +(-683 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-682 R) +(-684 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4233 . T) (-4232 . T)) +((-4239 . T) (-4238 . T)) NIL -(-683) +(-685) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-684) +(-686) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-685) +(-687) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-686) +(-688) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-687) +(-689) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-688) +(-690) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-689) +(-691) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-690) +(-692) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-691) +(-693) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-692) +(-694) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-693) +(-695) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-694) +(-696) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-695) +(-697) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-696) +(-698) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-697) +(-699) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-698 S) +(-700 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-699) +(-701) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-700 S) +(-702 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-701) +(-703) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-702 |Par|) +(-704 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-703 -4102) +(-705 -2315) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-704 P -4102) +(-706 P -2315) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-705 UP -4102) +(-707 UP -2315) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-706) +(-708) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-707 R) +(-709 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-708) +(-710) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4240 "*") . T)) +(((-4246 "*") . T)) NIL -(-709 R -4102) +(-711 R -2315) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-710 S) +(-712 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-711) +(-713) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-712 R |PolR| E |PolE|) +(-714 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-713 R E V P TS) +(-715 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-714 -4102 |ExtF| |SUEx| |ExtP| |n|) +(-716 -2315 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-715 BP E OV R P) +(-717 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-716 |Par|) +(-718 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-717 R |VarSet|) +(-719 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-1085)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-1085))))) (|HasCategory| |#1| (QUOTE (-338))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-1085))))) (-3844 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-1085)))) (-2473 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-1085)))))) (-3844 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-1085)))) (-2473 (|HasCategory| |#1| (QUOTE (-507)))) (-2473 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-1085)))) (-2473 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-522))))) (-2473 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-1085)))) (-2473 (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-522))))))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#1| (QUOTE -4236)) (|HasCategory| |#1| (QUOTE (-426))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133))))) -(-718 R S) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-840))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087))))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087)))) (-3900 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087)))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087)))) (-3900 (|HasCategory| |#1| (QUOTE (-508)))) (-3900 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087)))) (-3900 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-523))))) (-3900 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-1087)))) (-3900 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-523))))))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4242)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) +(-720 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-719 R) +(-721 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4234 |has| |#1| (-338)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| (-999) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasAttribute| |#1| (QUOTE -4236)) (|HasCategory| |#1| (QUOTE (-426))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133))))) -(-720 R) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4240 |has| |#1| (-339)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasCategory| |#1| (QUOTE (-211))) (|HasAttribute| |#1| (QUOTE -4242)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) +(-722 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) -(-721 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) +(-723 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4239 . T) (-4238 . T) (-2088 . T)) +((-4245 . T) (-4244 . T) (-3656 . T)) NIL -(-722 S) +(-724 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-514))) (-12 (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-784)))) (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-157)))) -(-723) +((-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-786)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-158)))) +(-725) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-724) +(-726) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-725) +(-727) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-726) +(-728) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-727 |Curve|) +(-729 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-728) +(-730) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-729) +(-731) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-730) +(-732) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-731) +(-733) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-732) +(-734) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-733 S R) +(-735 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-507))) (|HasCategory| |#2| (QUOTE (-980))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-343)))) -(-734 R) +((|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-982))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-344)))) +(-736 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4232 . T) (-4233 . T) (-4235 . T)) +((-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-735 -3844 R OS S) +(-737 -3262 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-736 R) +(-738 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -262) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-980))) (|HasCategory| |#1| (QUOTE (-507))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| (-925 |#1|) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-925 |#1|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (-3844 (|HasCategory| (-925 |#1|) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (-3844 (|HasCategory| (-925 |#1|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))))) -(-737) +((-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -263) (|devaluate| |#1|) (|devaluate| |#1|))) (-3262 (|HasCategory| (-927 |#1|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3262 (|HasCategory| (-927 |#1|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| (-927 |#1|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-927 |#1|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) +(-739) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-738 R -4102 L) +(-740 R -2315 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-739 R -4102) +(-741 R -2315) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-740) +(-742) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-741 R -4102) +(-743 R -2315) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-742) +(-744) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-743 -4102 UP UPUP R) +(-745 -2315 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-744 -4102 UP L LQ) +(-746 -2315 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-745) +(-747) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-746 -4102 UP L LQ) +(-748 -2315 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-747 -4102 UP) +(-749 -2315 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-748 -4102 L UP A LO) +(-750 -2315 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-749 -4102 UP) +(-751 -2315 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-750 -4102 LO) +(-752 -2315 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-751 -4102 LODO) +(-753 -2315 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-752 -2787 S |f|) +(-754 -1346 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4232 |has| |#2| (-971)) (-4233 |has| |#2| (-971)) (-4235 |has| |#2| (-6 -4235)) ((-4240 "*") |has| |#2| (-157)) (-4238 . T)) -((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-782))) (-3844 (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-782)))) (|HasCategory| |#2| (QUOTE (-157))) (-3844 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (-3844 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-338)))) (-3844 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-971)))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-210))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-971)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-522) (QUOTE (-784))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-971)))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085))))) (|HasCategory| |#2| (QUOTE (-664))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-3844 (|HasCategory| |#2| (QUOTE (-971))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -4235)) (|HasCategory| |#2| (QUOTE (-124))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (|HasCategory| |#2| (QUOTE (-25))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-1014)))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (-3844 (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-157)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-210)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-343)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-730)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-782)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-971)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-1014))))) (-3844 (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-3844 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-971)))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-753 R) +((-4238 |has| |#2| (-973)) (-4239 |has| |#2| (-973)) (-4241 |has| |#2| (-6 -4241)) ((-4246 "*") |has| |#2| (-158)) (-4244 . T)) +((-3262 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))))) (-3262 (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (QUOTE (-339))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339)))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-732))) (-3262 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-784)))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-158))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-973)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-973)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-158)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-211)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016))))) (-3262 (-12 (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| (-523) (QUOTE (-786))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087))))) (|HasCategory| |#2| (QUOTE (-666))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-3262 (|HasCategory| |#2| (QUOTE (-973))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasAttribute| |#2| (QUOTE -4241)) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) +(-755 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| (-755 (-1085)) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-755 (-1085)) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-755 (-1085)) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-755 (-1085)) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-755 (-1085)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-338))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#1| (QUOTE -4236)) (|HasCategory| |#1| (QUOTE (-426))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133))))) -(-754 |Kernels| R |var|) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-840))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-757 (-1087)) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-757 (-1087)) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-757 (-1087)) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-757 (-1087)) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-757 (-1087)) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4242)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) +(-756 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring."))) -(((-4240 "*") |has| |#2| (-338)) (-4231 |has| |#2| (-338)) (-4236 |has| |#2| (-338)) (-4230 |has| |#2| (-338)) (-4235 . T) (-4233 . T) (-4232 . T)) -((|HasCategory| |#2| (QUOTE (-338)))) -(-755 S) +(((-4246 "*") |has| |#2| (-339)) (-4237 |has| |#2| (-339)) (-4242 |has| |#2| (-339)) (-4236 |has| |#2| (-339)) (-4241 . T) (-4239 . T) (-4238 . T)) +((|HasCategory| |#2| (QUOTE (-339)))) +(-757 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-756 S) +(-758 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-757) +(-759) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-758) +(-760) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-759) +(-761) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-760) +(-762) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-761) +(-763) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-762) +(-764) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-763 R) +(-765 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-764 P R) +(-766 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-210)))) -(-765) +((-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-211)))) +(-767) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-766) +(-768) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-767 S) +(-769 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4238 . T) (-4228 . T) (-4239 . T) (-2088 . T)) +((-4244 . T) (-4234 . T) (-4245 . T) (-3656 . T)) NIL -(-768) +(-770) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-769 R S) +(-771 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-770 R) +(-772 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4235 |has| |#1| (-782))) -((|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-507))) (-3844 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-21))) (-3844 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-782))))) -(-771 R) +((-4241 |has| |#1| (-784))) +((|HasCategory| |#1| (QUOTE (-784))) (-3262 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-784)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-508))) (-3262 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-21)))) +(-773 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4233 |has| |#1| (-157)) (-4232 |has| |#1| (-157)) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135)))) -(-772) +((-4239 |has| |#1| (-158)) (-4238 |has| |#1| (-158)) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136)))) +(-774) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-773) +(-775) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-774) +(-776) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-775) +(-777) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-776 R S) +(-778 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-777 R) +(-779 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4235 |has| |#1| (-782))) -((|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-507))) (-3844 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-21))) (-3844 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-782))))) -(-778) +((-4241 |has| |#1| (-784))) +((|HasCategory| |#1| (QUOTE (-784))) (-3262 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-784)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-508))) (-3262 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-21)))) +(-780) ((|constructor| (NIL "Ordered finite sets."))) NIL NIL -(-779 -2787 S) +(-781 -1346 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-780) +(-782) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-781 S) +(-783 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-782) +(-784) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4235 . T)) +((-4241 . T)) NIL -(-783 S) +(-785 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-784) +(-786) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-785 S R) +(-787 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-157)))) -(-786 R) +((|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158)))) +(-788 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4232 . T) (-4233 . T) (-4235 . T)) +((-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-787 R C) +(-789 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) -(-788 R |sigma| -2764) +((|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) +(-790 R |sigma| -2594) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-338)))) -(-789 |x| R |sigma| -2764) +((-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-339)))) +(-791 |x| R |sigma| -2594) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial."))) -((-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-338)))) -(-790 R) +((-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-339)))) +(-792 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) -(-791) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) +(-793) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-792) +(-794) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (^= (($ $ $) "\\spad{f ^= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-793) +(-795) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-794 |VariableList|) +(-796 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-795 R |vl| |wl| |wtlevel|) +(-797 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights"))) -((-4233 |has| |#1| (-157)) (-4232 |has| |#1| (-157)) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338)))) -(-796 R PS UP) +((-4239 |has| |#1| (-158)) (-4238 |has| |#1| (-158)) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339)))) +(-798 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-797 R |x| |pt|) +(-799 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-798 |p|) +(-800 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-799 |p|) +(-801 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-800 |p|) +(-802 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| (-799 |#1|) (QUOTE (-838))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| (-799 |#1|) (QUOTE (-133))) (|HasCategory| (-799 |#1|) (QUOTE (-135))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-799 |#1|) (QUOTE (-947))) (|HasCategory| (-799 |#1|) (QUOTE (-757))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| (-799 |#1|) (QUOTE (-1061))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| (-799 |#1|) (QUOTE (-210))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -483) (QUOTE (-1085)) (LIST (QUOTE -799) (|devaluate| |#1|)))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -799) (|devaluate| |#1|)))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -262) (LIST (QUOTE -799) (|devaluate| |#1|)) (LIST (QUOTE -799) (|devaluate| |#1|)))) (|HasCategory| (-799 |#1|) (QUOTE (-283))) (|HasCategory| (-799 |#1|) (QUOTE (-507))) (|HasCategory| (-799 |#1|) (QUOTE (-784))) (-3844 (|HasCategory| (-799 |#1|) (QUOTE (-757))) (|HasCategory| (-799 |#1|) (QUOTE (-784)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-799 |#1|) (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-799 |#1|) (QUOTE (-838)))) (|HasCategory| (-799 |#1|) (QUOTE (-133))))) -(-801 |p| PADIC) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| (-801 |#1|) (QUOTE (-840))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| (-801 |#1|) (QUOTE (-134))) (|HasCategory| (-801 |#1|) (QUOTE (-136))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-801 |#1|) (QUOTE (-949))) (|HasCategory| (-801 |#1|) (QUOTE (-759))) (-3262 (|HasCategory| (-801 |#1|) (QUOTE (-759))) (|HasCategory| (-801 |#1|) (QUOTE (-786)))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-801 |#1|) (QUOTE (-1063))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| (-801 |#1|) (QUOTE (-211))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -484) (QUOTE (-1087)) (LIST (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| (-801 |#1|) (LIST (QUOTE -263) (LIST (QUOTE -801) (|devaluate| |#1|)) (LIST (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| (-801 |#1|) (QUOTE (-284))) (|HasCategory| (-801 |#1|) (QUOTE (-508))) (|HasCategory| (-801 |#1|) (QUOTE (-786))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-801 |#1|) (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-801 |#1|) (QUOTE (-840)))) (|HasCategory| (-801 |#1|) (QUOTE (-134))))) +(-803 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (QUOTE (-947))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -262) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (QUOTE (-507))) (|HasCategory| |#2| (QUOTE (-784))) (-3844 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-133))))) -(-802 S T$) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#2| (QUOTE (-840))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-949))) (|HasCategory| |#2| (QUOTE (-759))) (-3262 (|HasCategory| |#2| (QUOTE (-759))) (|HasCategory| |#2| (QUOTE (-786)))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -263) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-786))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-134))))) +(-804 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))))) -(-803) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))))) +(-805) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-804) +(-806) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-805 CF1 CF2) +(-807 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-806 |ComponentFunction|) +(-808 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-807 CF1 CF2) +(-809 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-808 |ComponentFunction|) +(-810 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-809) +(-811) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-810 CF1 CF2) +(-812 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-811 |ComponentFunction|) +(-813 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-812) +(-814) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-813 R) +(-815 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-814 R S L) +(-816 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-815 S) +(-817 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-816 |Base| |Subject| |Pat|) +(-818 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-1085)))) (-12 (-2473 (|HasCategory| |#2| (QUOTE (-971)))) (-2473 (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-1085)))))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (-2473 (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-1085))))))) -(-817 R A B) +((-12 (-3900 (|HasCategory| |#2| (QUOTE (-973)))) (-3900 (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087)))))) (-12 (|HasCategory| |#2| (QUOTE (-973))) (-3900 (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087)))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087))))) +(-819 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-818 R S) +(-820 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-819 R -2252) +(-821 R -2862) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-820 R S) +(-822 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-821 R) +(-823 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-822 |VarSet|) +(-824 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-823 UP R) +(-825 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented"))) NIL NIL -(-824) +(-826) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-825 UP -4102) +(-827 UP -2315) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-826) +(-828) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-827) +(-829) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-828 A S) +(-830 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-829 S) +(-831 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4235 . T)) +((-4241 . T)) NIL -(-830 S) +(-832 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-831 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-833 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ^= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-832 S) +(-834 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4235 . T)) +((-4241 . T)) NIL -(-833 S) +(-835 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-834 S) +(-836 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4235 . T)) -((|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-784))) (-3844 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-784))))) -(-835 R E |VarSet| S) +((-4241 . T)) +((-3262 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-786)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-786)))) +(-837 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-836 R S) +(-838 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-837 S) +(-839 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL -((|HasCategory| |#1| (QUOTE (-133)))) -(-838) +((|HasCategory| |#1| (QUOTE (-134)))) +(-840) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-839 |p|) +(-841 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| $ (QUOTE (-135))) (|HasCategory| $ (QUOTE (-133))) (|HasCategory| $ (QUOTE (-343)))) -(-840 R0 -4102 UP UPUP R) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| $ (QUOTE (-136))) (|HasCategory| $ (QUOTE (-134))) (|HasCategory| $ (QUOTE (-344)))) +(-842 R0 -2315 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-841 UP UPUP R) +(-843 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-842 UP UPUP) +(-844 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-843 R) +(-845 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-844 R) +(-846 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-845 E OV R P) +(-847 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-846) +(-848) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-847 -4102) +(-849 -2315) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-848 R) +(-850 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-849) +(-851) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-850) +(-852) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4240 "*") . T)) +(((-4246 "*") . T)) NIL -(-851 -4102 P) +(-853 -2315 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-852 |xx| -4102) +(-854 |xx| -2315) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL -(-853 R |Var| |Expon| GR) +(-855 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{^=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-854 S) +(-856 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-855) +(-857) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-856) +(-858) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) NIL NIL -(-857) +(-859) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-858 R -4102) +(-860 R -2315) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-859) +(-861) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-860 S A B) +(-862 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-861 S R -4102) +(-863 S R -2315) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-862 I) +(-864 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-863 S E) +(-865 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-864 S R L) +(-866 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-865 S E V R P) +(-867 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -815) (|devaluate| |#1|)))) -(-866 R -4102 -2252) +((|HasCategory| |#3| (LIST (QUOTE -817) (|devaluate| |#1|)))) +(-868 R -2315 -2862) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-867 -2252) +(-869 -2862) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-868 S R Q) +(-870 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-869 S) +(-871 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-870 S R P) +(-872 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-871) +(-873) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}."))) NIL NIL -(-872 R) +(-874 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4239 . T) (-4238 . T)) -((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3844 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-971))) (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-971)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-873 |lv| R) +((-4245 . T) (-4244 . T)) +((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#1| (QUOTE (-973))) (-12 (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-973)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-875 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-874 |TheField| |ThePols|) +(-876 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-782)))) -(-875 R S) +((|HasCategory| |#1| (QUOTE (-784)))) +(-877 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-876 |x| R) +(-878 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-877 S R E |VarSet|) +(-879 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-838))) (|HasAttribute| |#2| (QUOTE -4236)) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#4| (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#4| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#4| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#4| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (QUOTE (-784)))) -(-878 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-840))) (|HasAttribute| |#2| (QUOTE -4242)) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#4| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#4| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#4| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#4| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#4| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-786)))) +(-880 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T)) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) NIL -(-879 E V R P -4102) +(-881 E V R P -2315) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-880 E |Vars| R P S) +(-882 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-881 R) +(-883 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| (-1085) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-1085) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-1085) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-1085) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-1085) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#1| (QUOTE -4236)) (|HasCategory| |#1| (QUOTE (-426))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133))))) -(-882 E V R P -4102) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-840))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-1087) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-1087) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-1087) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-1087) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-1087) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4242)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) +(-884 E V R P -2315) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-426)))) -(-883) +((|HasCategory| |#3| (QUOTE (-427)))) +(-885) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-884 R L) +(-886 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}."))) NIL NIL -(-885 A B) +(-887 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-886 S) +(-888 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4239 . T) (-4238 . T)) -((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3844 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-887) +((-4245 . T) (-4244 . T)) +((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-889) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-888 -4102) +(-890 -2315) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-889 I) +(-891 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-890) +(-892) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-891 R E) +(-893 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (-12 (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-124)))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#1| (QUOTE -4236))) -(-892 A B) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-124)))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4242))) +(-894 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) -((-4235 -12 (|has| |#2| (-447)) (|has| |#1| (-447)))) -((-12 (|HasCategory| |#1| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-730)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-447)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-447)))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664))))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-730))))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-730))))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-447)))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664)))) (-12 (|HasCategory| |#1| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-730))))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-730)))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784)))))) -(-893) +((-4241 -12 (|has| |#2| (-448)) (|has| |#1| (-448)))) +((-3262 (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-786))))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732))))) (-12 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#2| (QUOTE (-448)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#2| (QUOTE (-448)))) (-12 (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#2| (QUOTE (-666))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-344)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-448))) (|HasCategory| |#2| (QUOTE (-448)))) (-12 (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#2| (QUOTE (-666)))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732))))) (-12 (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#2| (QUOTE (-666)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-786))))) +(-895) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-894 T$) +(-896 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the varible name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))) -(-895) +((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-897) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}."))) NIL NIL -(-896 S) +(-898 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4238 . T) (-4239 . T) (-2088 . T)) +((-4244 . T) (-4245 . T) (-3656 . T)) NIL -(-897 R |polR|) +(-899 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-426)))) -(-898) +((|HasCategory| |#1| (QUOTE (-427)))) +(-900) ((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-899 S |Coef| |Expon| |Var|) +(-901 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) NIL NIL -(-900 |Coef| |Expon| |Var|) +(-902 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4232 . T) (-4233 . T) (-4235 . T)) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-901) +(-903) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-902 S R E |VarSet| P) +(-904 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-514)))) -(-903 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-515)))) +(-905 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4238 . T) (-2088 . T)) +((-4244 . T) (-3656 . T)) NIL -(-904 R E V P) +(-906 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-283)))) (|HasCategory| |#1| (QUOTE (-426)))) -(-905 K) +((-12 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-284)))) (|HasCategory| |#1| (QUOTE (-427)))) +(-907 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-906 |VarSet| E RC P) +(-908 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-907 R) +(-909 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4239 . T) (-4238 . T) (-2088 . T)) +((-4245 . T) (-4244 . T) (-3656 . T)) NIL -(-908 R1 R2) +(-910 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-909 R) +(-911 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-910 K) +(-912 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-911 R E OV PPR) +(-913 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-912 K R UP -4102) +(-914 K R UP -2315) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-913 |vl| |nv|) +(-915 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-914 R |Var| |Expon| |Dpoly|) +(-916 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{^=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-283))))) -(-915 R E V P TS) +((-12 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-284))))) +(-917 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-916) +(-918) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation."))) NIL NIL -(-917 A B R S) +(-919 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-918 A S) +(-920 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (QUOTE (-507))) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (QUOTE (-947))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-1061)))) -(-919 S) +((|HasCategory| |#2| (QUOTE (-840))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-949))) (|HasCategory| |#2| (QUOTE (-759))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-1063)))) +(-921 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-2088 . T) (-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-3656 . T) (-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-920 |n| K) +(-922 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-921 S) +(-923 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4238 . T) (-4239 . T) (-2088 . T)) +((-4244 . T) (-4245 . T) (-3656 . T)) NIL -(-922 S R) +(-924 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-507))) (|HasCategory| |#2| (QUOTE (-980))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-266)))) -(-923 R) +((|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-982))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-267)))) +(-925 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4231 |has| |#1| (-266)) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4237 |has| |#1| (-267)) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-924 QR R QS S) +(-926 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-925 R) +(-927 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4231 |has| |#1| (-266)) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-266))) (-3844 (|HasCategory| |#1| (QUOTE (-266))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -262) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-980))) (|HasCategory| |#1| (QUOTE (-507))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338))))) -(-926 S) +((-4237 |has| |#1| (-267)) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (QUOTE (-267))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-267))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -263) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-508))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339))))) +(-928 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4238 . T) (-4239 . T)) -((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-927 S) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-929 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-928) +(-930) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-929 -4102 UP UPUP |radicnd| |n|) +(-931 -2315 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4231 |has| (-382 |#2|) (-338)) (-4236 |has| (-382 |#2|) (-338)) (-4230 |has| (-382 |#2|) (-338)) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| (-382 |#2|) (QUOTE (-133))) (|HasCategory| (-382 |#2|) (QUOTE (-135))) (|HasCategory| (-382 |#2|) (QUOTE (-324))) (|HasCategory| (-382 |#2|) (QUOTE (-338))) (-3844 (|HasCategory| (-382 |#2|) (QUOTE (-338))) (|HasCategory| (-382 |#2|) (QUOTE (-324)))) (|HasCategory| (-382 |#2|) (QUOTE (-343))) (|HasCategory| (-382 |#2|) (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| (-382 |#2|) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-382 |#2|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-343))) (-3844 (|HasCategory| (-382 |#2|) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-382 |#2|) (QUOTE (-338)))) (-12 (|HasCategory| (-382 |#2|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-382 |#2|) (QUOTE (-338)))) (-3844 (-12 (|HasCategory| (-382 |#2|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-382 |#2|) (QUOTE (-338)))) (-12 (|HasCategory| (-382 |#2|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-382 |#2|) (QUOTE (-324))))) (-12 (|HasCategory| (-382 |#2|) (QUOTE (-210))) (|HasCategory| (-382 |#2|) (QUOTE (-338)))) (-3844 (-12 (|HasCategory| (-382 |#2|) (QUOTE (-210))) (|HasCategory| (-382 |#2|) (QUOTE (-338)))) (|HasCategory| (-382 |#2|) (QUOTE (-324))))) -(-930 |bb|) +((-4237 |has| (-383 |#2|) (-339)) (-4242 |has| (-383 |#2|) (-339)) (-4236 |has| (-383 |#2|) (-339)) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| (-383 |#2|) (QUOTE (-134))) (|HasCategory| (-383 |#2|) (QUOTE (-136))) (|HasCategory| (-383 |#2|) (QUOTE (-325))) (-3262 (|HasCategory| (-383 |#2|) (QUOTE (-339))) (|HasCategory| (-383 |#2|) (QUOTE (-325)))) (|HasCategory| (-383 |#2|) (QUOTE (-339))) (|HasCategory| (-383 |#2|) (QUOTE (-344))) (-3262 (-12 (|HasCategory| (-383 |#2|) (QUOTE (-211))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (|HasCategory| (-383 |#2|) (QUOTE (-325)))) (-3262 (-12 (|HasCategory| (-383 |#2|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (-12 (|HasCategory| (-383 |#2|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-383 |#2|) (QUOTE (-325))))) (|HasCategory| (-383 |#2|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| (-383 |#2|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-383 |#2|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-344))) (-3262 (|HasCategory| (-383 |#2|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (-12 (|HasCategory| (-383 |#2|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-383 |#2|) (QUOTE (-339)))) (-12 (|HasCategory| (-383 |#2|) (QUOTE (-211))) (|HasCategory| (-383 |#2|) (QUOTE (-339))))) +(-932 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| (-522) (QUOTE (-838))) (|HasCategory| (-522) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| (-522) (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-135))) (|HasCategory| (-522) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-522) (QUOTE (-947))) (|HasCategory| (-522) (QUOTE (-757))) (|HasCategory| (-522) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| (-522) (QUOTE (-1061))) (|HasCategory| (-522) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| (-522) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| (-522) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| (-522) (QUOTE (-210))) (|HasCategory| (-522) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-522) (LIST (QUOTE -483) (QUOTE (-1085)) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -285) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -262) (QUOTE (-522)) (QUOTE (-522)))) (|HasCategory| (-522) (QUOTE (-283))) (|HasCategory| (-522) (QUOTE (-507))) (|HasCategory| (-522) (QUOTE (-784))) (-3844 (|HasCategory| (-522) (QUOTE (-757))) (|HasCategory| (-522) (QUOTE (-784)))) (|HasCategory| (-522) (LIST (QUOTE -584) (QUOTE (-522)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-838)))) (|HasCategory| (-522) (QUOTE (-133))))) -(-931) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| (-523) (QUOTE (-840))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| (-523) (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-136))) (|HasCategory| (-523) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-523) (QUOTE (-949))) (|HasCategory| (-523) (QUOTE (-759))) (-3262 (|HasCategory| (-523) (QUOTE (-759))) (|HasCategory| (-523) (QUOTE (-786)))) (|HasCategory| (-523) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-1063))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| (-523) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| (-523) (QUOTE (-211))) (|HasCategory| (-523) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| (-523) (LIST (QUOTE -484) (QUOTE (-1087)) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -286) (QUOTE (-523)))) (|HasCategory| (-523) (LIST (QUOTE -263) (QUOTE (-523)) (QUOTE (-523)))) (|HasCategory| (-523) (QUOTE (-284))) (|HasCategory| (-523) (QUOTE (-508))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-523) (LIST (QUOTE -585) (QUOTE (-523)))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-523) (QUOTE (-840)))) (|HasCategory| (-523) (QUOTE (-134))))) +(-933) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-932) +(-934) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-933 RP) +(-935 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-934 S) +(-936 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-935 A S) +(-937 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4239)) (|HasCategory| |#2| (QUOTE (-1014)))) -(-936 S) +((|HasAttribute| |#1| (QUOTE -4245)) (|HasCategory| |#2| (QUOTE (-1016)))) +(-938 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) -((-2088 . T)) +((-3656 . T)) NIL -(-937 S) +(-939 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-938) +(-940) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4231 . T) (-4236 . T) (-4230 . T) (-4233 . T) (-4232 . T) ((-4240 "*") . T) (-4235 . T)) +((-4237 . T) (-4242 . T) (-4236 . T) (-4239 . T) (-4238 . T) ((-4246 "*") . T) (-4241 . T)) NIL -(-939 R -4102) +(-941 R -2315) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-940 R -4102) +(-942 R -2315) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-941 -4102 UP) +(-943 -2315 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-942 -4102 UP) +(-944 -2315 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-943 S) +(-945 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-944 F1 UP UPUP R F2) +(-946 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented"))) NIL NIL -(-945 |Pol|) +(-947 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-946 |Pol|) +(-948 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-947) +(-949) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-948) +(-950) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-949 |TheField|) +(-951 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4231 . T) (-4236 . T) (-4230 . T) (-4233 . T) (-4232 . T) ((-4240 "*") . T) (-4235 . T)) -((|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| (-382 (-522)) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-382 (-522)) (LIST (QUOTE -962) (QUOTE (-522)))) (-3844 (|HasCategory| (-382 (-522)) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))))) -(-950 -4102 L) +((-4237 . T) (-4242 . T) (-4236 . T) (-4239 . T) (-4238 . T) ((-4246 "*") . T) (-4241 . T)) +((-3262 (|HasCategory| (-383 (-523)) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-383 (-523)) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-383 (-523)) (LIST (QUOTE -964) (QUOTE (-523))))) +(-952 -2315 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-951 S) +(-953 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1014)))) -(-952 R E V P) +((|HasCategory| |#1| (QUOTE (-1016)))) +(-954 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4239 . T) (-4238 . T)) -((|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-792))))) -(-953 R) +((-4245 . T) (-4244 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-794))))) +(-955 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4240 "*")))) -(-954 R) +((|HasAttribute| |#1| (QUOTE (-4246 "*")))) +(-956 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((|HasCategory| |#1| (QUOTE (-338))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-283)))) -(-955 S) +((-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-284)))) +(-957 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-956) +(-958) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-957 S) +(-959 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-958 S) +(-960 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-959 -4102 |Expon| |VarSet| |FPol| |LFPol|) +(-961 -2315 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +(((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-960) +(-962) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4238 . T) (-4239 . T)) -((|HasCategory| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2644) (QUOTE (-1085))) (LIST (QUOTE |:|) (QUOTE -3149) (QUOTE (-51))))))) (|HasCategory| (-1085) (QUOTE (-784))) (|HasCategory| (-51) (QUOTE (-1014))) (-3844 (|HasCategory| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (QUOTE (-1014))) (|HasCategory| (-51) (QUOTE (-1014)))) (-12 (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-51) (LIST (QUOTE -285) (QUOTE (-51))))) (|HasCategory| (-51) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (|HasCategory| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-51) (LIST (QUOTE -562) (QUOTE (-792))))) (-3844 (|HasCategory| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-51) (LIST (QUOTE -562) (QUOTE (-792)))))) -(-961 A S) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (QUOTE (-1087))) (LIST (QUOTE |:|) (QUOTE -2433) (QUOTE (-51))))))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-51) (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-51) (QUOTE (-1016))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| (-51) (QUOTE (-1016))) (|HasCategory| (-51) (LIST (QUOTE -286) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-1087) (QUOTE (-786))) (|HasCategory| (-51) (QUOTE (-1016))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (LIST (QUOTE -563) (QUOTE (-794))))) +(-963 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-962 S) +(-964 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-963 Q R) +(-965 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-964) +(-966) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-965 UP) +(-967 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-966 R) +(-968 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-967 R) +(-969 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-968 R |ls|) +(-970 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4239 . T) (-4238 . T)) -((|HasCategory| (-717 |#1| (-794 |#2|)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-717 |#1| (-794 |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| (-717 |#1| (-794 |#2|)) (QUOTE (-1014))) (|HasCategory| (-717 |#1| (-794 |#2|)) (LIST (QUOTE -285) (LIST (QUOTE -717) (|devaluate| |#1|) (LIST (QUOTE -794) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| (-794 |#2|) (QUOTE (-343))) (|HasCategory| (-717 |#1| (-794 |#2|)) (LIST (QUOTE -562) (QUOTE (-792))))) -(-969) +((-4245 . T) (-4244 . T)) +((-12 (|HasCategory| (-719 |#1| (-796 |#2|)) (QUOTE (-1016))) (|HasCategory| (-719 |#1| (-796 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -719) (|devaluate| |#1|) (LIST (QUOTE -796) (|devaluate| |#2|)))))) (|HasCategory| (-719 |#1| (-796 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-719 |#1| (-796 |#2|)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| (-796 |#2|) (QUOTE (-344))) (|HasCategory| (-719 |#1| (-796 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) +(-971) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-970 S) +(-972 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-971) +(-973) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4235 . T)) +((-4241 . T)) NIL -(-972 |xx| -4102) +(-974 |xx| -2315) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-973 S |m| |n| R |Row| |Col|) +(-975 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-283))) (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (QUOTE (-514))) (|HasCategory| |#4| (QUOTE (-157)))) -(-974 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-284))) (|HasCategory| |#4| (QUOTE (-339))) (|HasCategory| |#4| (QUOTE (-515))) (|HasCategory| |#4| (QUOTE (-158)))) +(-976 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4238 . T) (-2088 . T) (-4233 . T) (-4232 . T)) +((-4244 . T) (-3656 . T) (-4239 . T) (-4238 . T)) NIL -(-975 |m| |n| R) +(-977 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4238 . T) (-4233 . T) (-4232 . T)) -((|HasCategory| |#3| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (QUOTE (-283))) (|HasCategory| |#3| (QUOTE (-514))) (|HasCategory| |#3| (QUOTE (-157))) (-3844 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-338)))) (|HasCategory| |#3| (LIST (QUOTE -562) (QUOTE (-792)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-3844 (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))))) -(-976 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4244 . T) (-4239 . T) (-4238 . T)) +((-3262 (-12 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-339)))) (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (QUOTE (-284))) (|HasCategory| |#3| (QUOTE (-515))) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (LIST (QUOTE -563) (QUOTE (-794)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|))))) +(-978 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-977 R) +(-979 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-978) +(-980) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-979 S) +(-981 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-980) +(-982) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-981 |TheField| |ThePolDom|) +(-983 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-982) +(-984) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4226 . T) (-4230 . T) (-4225 . T) (-4236 . T) (-4237 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4232 . T) (-4236 . T) (-4231 . T) (-4242 . T) (-4243 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-983) +(-985) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4238 . T) (-4239 . T)) -((|HasCategory| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2644) (QUOTE (-1085))) (LIST (QUOTE |:|) (QUOTE -3149) (QUOTE (-51))))))) (|HasCategory| (-1085) (QUOTE (-784))) (|HasCategory| (-51) (QUOTE (-1014))) (-3844 (|HasCategory| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (QUOTE (-1014))) (|HasCategory| (-51) (QUOTE (-1014)))) (-12 (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-51) (LIST (QUOTE -285) (QUOTE (-51))))) (|HasCategory| (-51) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (|HasCategory| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-51) (LIST (QUOTE -562) (QUOTE (-792))))) (-3844 (|HasCategory| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-51) (LIST (QUOTE -562) (QUOTE (-792)))))) -(-984 S R E V) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (QUOTE (-1087))) (LIST (QUOTE |:|) (QUOTE -2433) (QUOTE (-51))))))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-51) (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-51) (QUOTE (-1016))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| (-51) (QUOTE (-1016))) (|HasCategory| (-51) (LIST (QUOTE -286) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (QUOTE (-1016))) (|HasCategory| (-1087) (QUOTE (-786))) (|HasCategory| (-51) (QUOTE (-1016))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-51) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (LIST (QUOTE -563) (QUOTE (-794))))) +(-986 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-507))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-1085))))) -(-985 R E V) +((|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#4| (LIST (QUOTE -564) (QUOTE (-1087))))) +(-987 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T)) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) NIL -(-986 S |TheField| |ThePols|) +(-988 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-987 |TheField| |ThePols|) +(-989 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-988 R E V P TS) +(-990 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-989 S R E V P) +(-991 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-990 R E V P) +(-992 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4239 . T) (-4238 . T) (-2088 . T)) +((-4245 . T) (-4244 . T) (-3656 . T)) NIL -(-991 R E V P TS) +(-993 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-992 |f|) +(-994 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-993 |Base| R -4102) +(-995 |Base| R -2315) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-994 |Base| R -4102) +(-996 |Base| R -2315) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL -(-995 R |ls|) +(-997 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-996 UP SAE UPA) +(-998 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-997 R UP M) +(-999 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4231 |has| |#1| (-338)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-338))) (-3844 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-324)))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085))))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-338)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-324))))) -(-998 UP SAE UPA) +((-4237 |has| |#1| (-339)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-325))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-325)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-344))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-325)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#1| (QUOTE (-325))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087))))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (QUOTE (-339))))) +(-1000 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-999) +(-1001) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1000 S) +(-1002 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1001) +(-1003) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1002 R) +(-1004 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1003 R) +(-1005 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| (-1004 (-1085)) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-1004 (-1085)) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-1004 (-1085)) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-1004 (-1085)) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-1004 (-1085)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-338))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#1| (QUOTE -4236)) (|HasCategory| |#1| (QUOTE (-426))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133))))) -(-1004 S) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-840))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-1006 (-1087)) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-1006 (-1087)) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-1006 (-1087)) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-1006 (-1087)) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-1006 (-1087)) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-211))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4242)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) +(-1006 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1005 R S) +(-1007 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-782)))) -(-1006 R S) +((|HasCategory| |#1| (QUOTE (-784)))) +(-1008 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1007 S) +(-1009 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1014)))) -(-1008 S) +((|HasCategory| |#1| (QUOTE (-1016)))) +(-1010 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) -((-2088 . T)) +((-3656 . T)) NIL -(-1009 S) +(-1011 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1014)))) -(-1010 S L) +((|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1016)))) +(-1012 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) -((-2088 . T)) +((-3656 . T)) NIL -(-1011 A S) +(-1013 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1012 S) +(-1014 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4228 . T) (-2088 . T)) +((-4234 . T) (-3656 . T)) NIL -(-1013 S) +(-1015 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1014) +(-1016) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1015 |m| |n|) +(-1017 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1016 S) +(-1018 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) -((-4238 . T) (-4228 . T) (-4239 . T)) -((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-784))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))) -(-1017 |Str| |Sym| |Int| |Flt| |Expr|) +((-4244 . T) (-4234 . T) (-4245 . T)) +((-3262 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-786))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-1019 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1018) +(-1020) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1019 |Str| |Sym| |Int| |Flt| |Expr|) +(-1021 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1020 R FS) +(-1022 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1021 R E V P TS) +(-1023 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1022 R E V P TS) +(-1024 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1023 R E V P) +(-1025 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4239 . T) (-4238 . T) (-2088 . T)) +((-4245 . T) (-4244 . T) (-3656 . T)) NIL -(-1024) +(-1026) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1025 S) +(-1027 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1026) +(-1028) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1027 |dimtot| |dim1| S) +(-1029 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4232 |has| |#3| (-971)) (-4233 |has| |#3| (-971)) (-4235 |has| |#3| (-6 -4235)) ((-4240 "*") |has| |#3| (-157)) (-4238 . T)) -((|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (QUOTE (-730))) (|HasCategory| |#3| (QUOTE (-782))) (-3844 (|HasCategory| |#3| (QUOTE (-730))) (|HasCategory| |#3| (QUOTE (-782)))) (|HasCategory| |#3| (QUOTE (-157))) (-3844 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-971)))) (-3844 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-338)))) (-3844 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-971)))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#3| (QUOTE (-210))) (-3844 (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-971)))) (-3844 (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-971)))) (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| (-522) (QUOTE (-784))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-971)))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085))))) (|HasCategory| |#3| (QUOTE (-664))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-3844 (|HasCategory| |#3| (QUOTE (-971))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasAttribute| |#3| (QUOTE -4235)) (|HasCategory| |#3| (QUOTE (-124))) (-3844 (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-971)))) (|HasCategory| |#3| (QUOTE (-25))) (-3844 (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (QUOTE (-730))) (|HasCategory| |#3| (QUOTE (-782))) (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (QUOTE (-1014)))) (-3844 (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-971)))) (-3844 (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-124)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-157)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-210)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-343)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-730)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-782)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-971)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-1014))))) (-3844 (-12 (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-730))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-782))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-3844 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-730))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-782))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))))) (|HasCategory| |#3| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-971)))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (|HasCategory| |#3| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-1028 R |x|) +((-4238 |has| |#3| (-973)) (-4239 |has| |#3| (-973)) (-4241 |has| |#3| (-6 -4241)) ((-4246 "*") |has| |#3| (-158)) (-4244 . T)) +((-3262 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))))) (-3262 (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-973)))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (|HasCategory| |#3| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#3| (QUOTE (-339))) (-3262 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-973)))) (-3262 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-339)))) (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (QUOTE (-732))) (-3262 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (QUOTE (-784)))) (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-158))) (-3262 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-973)))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3262 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (QUOTE (-1016)))) (-3262 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-973)))) (-3262 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-973)))) (-3262 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (QUOTE (-973)))) (-3262 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-973)))) (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-124)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-158)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-211)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-339)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-344)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-732)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-784)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-973)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-1016))))) (-3262 (-12 (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-158))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-339))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523)))))) (|HasCategory| (-523) (QUOTE (-786))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#3| (QUOTE (-211))) (|HasCategory| |#3| (QUOTE (-973)))) (-12 (|HasCategory| |#3| (QUOTE (-973))) (|HasCategory| |#3| (LIST (QUOTE -831) (QUOTE (-1087))))) (|HasCategory| |#3| (QUOTE (-666))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523))))) (-3262 (|HasCategory| |#3| (QUOTE (-973))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -964) (QUOTE (-523)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasAttribute| |#3| (QUOTE -4241)) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -286) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -563) (QUOTE (-794))))) +(-1030 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-426)))) -(-1029 R -4102) +((|HasCategory| |#1| (QUOTE (-427)))) +(-1031 R -2315) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1030 R) +(-1032 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1031) +(-1033) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1032) +(-1034) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4226 . T) (-4230 . T) (-4225 . T) (-4236 . T) (-4237 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4232 . T) (-4236 . T) (-4231 . T) (-4242 . T) (-4243 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-1033 S) +(-1035 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4238 . T) (-4239 . T) (-2088 . T)) +((-4244 . T) (-4245 . T) (-3656 . T)) NIL -(-1034 S |ndim| R |Row| |Col|) +(-1036 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-338))) (|HasAttribute| |#3| (QUOTE (-4240 "*"))) (|HasCategory| |#3| (QUOTE (-157)))) -(-1035 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-339))) (|HasAttribute| |#3| (QUOTE (-4246 "*"))) (|HasCategory| |#3| (QUOTE (-158)))) +(-1037 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-2088 . T) (-4238 . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-3656 . T) (-4244 . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-1036 R |Row| |Col| M) +(-1038 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1037 R |VarSet|) +(-1039 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#1| (QUOTE -4236)) (|HasCategory| |#1| (QUOTE (-426))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133))))) -(-1038 |Coef| |Var| SMP) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-840))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4242)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) +(-1040 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4233 . T) (-4232 . T) (-4235 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-514))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-338)))) -(-1039 R E V P) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4239 . T) (-4238 . T) (-4241 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-339)))) +(-1041 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4239 . T) (-4238 . T) (-2088 . T)) +((-4245 . T) (-4244 . T) (-3656 . T)) NIL -(-1040 UP -4102) +(-1042 UP -2315) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1041 R) +(-1043 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1042 R) +(-1044 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1043 R) +(-1045 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1044 S A) +(-1046 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-784)))) -(-1045 R) +((|HasCategory| |#1| (QUOTE (-786)))) +(-1047 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1046 R) +(-1048 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1047) +(-1049) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1048) +(-1050) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1049) +(-1051) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1050 V C) +(-1052 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1051 V C) +(-1053 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4238 . T) (-4239 . T)) -((|HasCategory| (-1050 |#1| |#2|) (QUOTE (-1014))) (-12 (|HasCategory| (-1050 |#1| |#2|) (LIST (QUOTE -285) (LIST (QUOTE -1050) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1050 |#1| |#2|) (QUOTE (-1014)))) (|HasCategory| (-1050 |#1| |#2|) (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (|HasCategory| (-1050 |#1| |#2|) (LIST (QUOTE -562) (QUOTE (-792)))) (-12 (|HasCategory| (-1050 |#1| |#2|) (LIST (QUOTE -285) (LIST (QUOTE -1050) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1050 |#1| |#2|) (QUOTE (-1014)))))) -(-1052 |ndim| R) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| (-1052 |#1| |#2|) (LIST (QUOTE -286) (LIST (QUOTE -1052) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-1016)))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-1016))) (-3262 (|HasCategory| (-1052 |#1| |#2|) (LIST (QUOTE -563) (QUOTE (-794)))) (-12 (|HasCategory| (-1052 |#1| |#2|) (LIST (QUOTE -286) (LIST (QUOTE -1052) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-1016))))) (|HasCategory| (-1052 |#1| |#2|) (LIST (QUOTE -563) (QUOTE (-794))))) +(-1054 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}."))) -((-4235 . T) (-4227 |has| |#2| (-6 (-4240 "*"))) (-4238 . T) (-4232 . T) (-4233 . T)) -((|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-210))) (|HasAttribute| |#2| (QUOTE (-4240 "*"))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-338))) (-3844 (|HasAttribute| |#2| (QUOTE (-4240 "*"))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-210)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-3844 (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-157)))) -(-1053 S) +((-4241 . T) (-4233 |has| |#2| (-6 (-4246 "*"))) (-4244 . T) (-4238 . T) (-4239 . T)) +((|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-211))) (|HasAttribute| |#2| (QUOTE (-4246 "*"))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (-3262 (-12 (|HasCategory| |#2| (QUOTE (-211))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-339))) (-3262 (|HasAttribute| |#2| (QUOTE (-4246 "*"))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#2| (QUOTE (-211)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-158)))) +(-1055 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1054) +(-1056) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4239 . T) (-4238 . T) (-2088 . T)) +((-4245 . T) (-4244 . T) (-3656 . T)) NIL -(-1055 R E V P TS) +(-1057 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1056 R E V P) +(-1058 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4239 . T) (-4238 . T)) -((|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-792))))) -(-1057 S) +((-4245 . T) (-4244 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-794))))) +(-1059 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4238 . T) (-4239 . T)) -((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-1058 A S) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-1060 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1059 S) +(-1061 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) -((-2088 . T)) +((-3656 . T)) NIL -(-1060 |Key| |Ent| |dent|) +(-1062 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4239 . T)) -((|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1014))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2644) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3149) (|devaluate| |#2|)))))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-1061) +((-4245 . T)) +((-12 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#2|)))))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-786))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) +(-1063) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1062 |Coef|) +(-1064 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1063 S) +(-1065 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}."))) NIL NIL -(-1064 A B) +(-1066 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-1065 A B C) +(-1067 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}."))) NIL NIL -(-1066 S) +(-1068 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4239 . T)) -((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-1067) +((-4245 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-1069) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4239 . T) (-4238 . T) (-2088 . T)) +((-4245 . T) (-4244 . T) (-3656 . T)) NIL -(-1068) +(-1070) NIL -((-4239 . T) (-4238 . T)) -((|HasCategory| (-132) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-132) (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| (-132) (QUOTE (-1014))) (-12 (|HasCategory| (-132) (QUOTE (-1014))) (|HasCategory| (-132) (LIST (QUOTE -285) (QUOTE (-132))))) (-3844 (-12 (|HasCategory| (-132) (QUOTE (-784))) (|HasCategory| (-132) (LIST (QUOTE -285) (QUOTE (-132))))) (-12 (|HasCategory| (-132) (QUOTE (-1014))) (|HasCategory| (-132) (LIST (QUOTE -285) (QUOTE (-132)))))) (|HasCategory| (-132) (LIST (QUOTE -562) (QUOTE (-792))))) -(-1069 |Entry|) +((-4245 . T) (-4244 . T)) +((-3262 (-12 (|HasCategory| (-133) (QUOTE (-786))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133))))) (-12 (|HasCategory| (-133) (QUOTE (-1016))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133)))))) (|HasCategory| (-133) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| (-133) (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| (-133) (QUOTE (-1016))) (-12 (|HasCategory| (-133) (QUOTE (-1016))) (|HasCategory| (-133) (LIST (QUOTE -286) (QUOTE (-133))))) (|HasCategory| (-133) (LIST (QUOTE -563) (QUOTE (-794))))) +(-1071 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4238 . T) (-4239 . T)) -((|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2644) (QUOTE (-1068))) (LIST (QUOTE |:|) (QUOTE -3149) (|devaluate| |#1|)))))) (|HasCategory| (-1068) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3844 (|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))) (-3844 (|HasCategory| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-1070 A) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (QUOTE (-1070))) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#1|)))))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (QUOTE (-1016))) (|HasCategory| (-1070) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (LIST (QUOTE -563) (QUOTE (-794))))) +(-1072 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) -(-1071 |Coef|) +((|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) +(-1073 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1072 |Coef|) +(-1074 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1073 R UP) +(-1075 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-283)))) -(-1074 |n| R) +((|HasCategory| |#1| (QUOTE (-284)))) +(-1076 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1075 S1 S2) +(-1077 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}"))) NIL NIL -(-1076 |Coef| |var| |cen|) +(-1078 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4240 "*") -3844 (-4079 (|has| |#1| (-338)) (|has| (-1083 |#1| |#2| |#3|) (-757))) (|has| |#1| (-157)) (-4079 (|has| |#1| (-338)) (|has| (-1083 |#1| |#2| |#3|) (-838)))) (-4231 -3844 (-4079 (|has| |#1| (-338)) (|has| (-1083 |#1| |#2| |#3|) (-757))) (|has| |#1| (-514)) (-4079 (|has| |#1| (-338)) (|has| (-1083 |#1| |#2| |#3|) (-838)))) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| (-522) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-338))) (-3844 (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-135)))) (-3844 (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-522)) (|devaluate| |#1|)))))) (-3844 (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-522)) (|devaluate| |#1|))))) (-3844 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-947))) (|HasCategory| |#1| (QUOTE (-338)))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-1061))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -262) (LIST (QUOTE -1083) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1083) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1083) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -483) (QUOTE (-1085)) (LIST (QUOTE -1083) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-522))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1085)))))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-507))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-838))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-133))) (-3844 (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-133)))) (-3844 (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-514)))) (-3844 (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-157)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-338)))) (-3844 (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-338))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (-3844 (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-947))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-1061))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -262) (LIST (QUOTE -1083) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1083) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1083) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -483) (QUOTE (-1085)) (LIST (QUOTE -1083) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-3844 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -2611) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1085))))) (|HasSignature| |#1| (LIST (QUOTE -3533) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#1|)))))) (-3844 (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-133))))) -(-1077 R -4102) +(((-4246 "*") -3262 (-4099 (|has| |#1| (-339)) (|has| (-1085 |#1| |#2| |#3|) (-759))) (|has| |#1| (-158)) (-4099 (|has| |#1| (-339)) (|has| (-1085 |#1| |#2| |#3|) (-840)))) (-4237 -3262 (-4099 (|has| |#1| (-339)) (|has| (-1085 |#1| |#2| |#3|) (-759))) (|has| |#1| (-515)) (-4099 (|has| |#1| (-339)) (|has| (-1085 |#1| |#2| |#3|) (-840)))) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) +((-3262 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -263) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -484) (QUOTE (-1087)) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3262 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3262 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|)))))) (-3262 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-211))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|))))) (|HasCategory| (-523) (QUOTE (-1028))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-339))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-339)))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-3262 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-339))))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -263) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -484) (QUOTE (-1087)) (LIST (QUOTE -1085) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-134))) (-3262 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3262 (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-158)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1085 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-134))))) +(-1079 R -2315) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1078 R) +(-1080 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1079 R S) +(-1081 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1080 E OV R P) +(-1082 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1081 R) +(-1083 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4234 |has| |#1| (-338)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| (-999) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasAttribute| |#1| (QUOTE -4236)) (|HasCategory| |#1| (QUOTE (-426))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133))))) -(-1082 |Coef| |var| |cen|) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4240 |has| |#1| (-339)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasCategory| |#1| (QUOTE (-211))) (|HasAttribute| |#1| (QUOTE -4242)) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))))) +(-1084 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522))) (|devaluate| |#1|))))) (|HasCategory| (-382 (-522)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-338))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-3844 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1085)))))) (-3844 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -2611) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1085))))) (|HasSignature| |#1| (LIST (QUOTE -3533) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#1|))))))) -(-1083 |Coef| |var| |cen|) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|)))) (|HasCategory| (-383 (-523)) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|))))))) +(-1085 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-708)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-708)) (|devaluate| |#1|))))) (|HasCategory| (-708) (QUOTE (-1026))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-708))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-708))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1085)))))) (|HasCategory| |#1| (QUOTE (-338))) (-3844 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -2611) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1085))))) (|HasSignature| |#1| (LIST (QUOTE -3533) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#1|))))))) -(-1084) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-710)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-710)) (|devaluate| |#1|)))) (|HasCategory| (-710) (QUOTE (-1028))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-710))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-710))))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|))))))) +(-1086) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1085) +(-1087) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1086 R) +(-1088 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}."))) NIL NIL -(-1087 R) +(-1089 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (-12 (|HasCategory| (-898) (QUOTE (-124))) (|HasCategory| |#1| (QUOTE (-514)))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#1| (QUOTE -4236))) -(-1088) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-6 -4242)) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-427))) (-12 (|HasCategory| (-900) (QUOTE (-124))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasAttribute| |#1| (QUOTE -4242))) +(-1090) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1089) +(-1091) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1090) -((|constructor| (NIL "\\indented{1}{This domain provides a simple,{} general,{} and arguably} complete representation of Spad programs as objects of a term algebra built from ground terms of type boolean,{} integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity from a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} symbol,{} String,{} SExpression. See Also: SExpression,{} SetCategory The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} is \\spad{x} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} is \\spad{x} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} is \\spad{x} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} is \\spad{x} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The return value is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (($ (|String|)) "\\spad{coerce(s)} injects the string value \\spad{`s'} into the syntax domain") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (($ (|Symbol|)) "\\spad{coerce(s)} injects the symbol \\spad{`s'} into the Syntax domain.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (($ (|DoubleFloat|)) "\\spad{coerce(f)} injects the float value \\spad{`f'} into the Syntax domain") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}") (($ (|Integer|)) "\\spad{coerce(i)} injects the integer value `i' into the Syntax domain")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cell ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) +(-1092) +((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} building complete representation of Spad programs as objects of a term algebra built from ground terms of type integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity in a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} Symbol,{} String,{} SExpression. See Also: SExpression,{} SetCategory. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} if \\spad{`x'} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (($ (|String|)) "\\spad{coerce(s)} injects the string value \\spad{`s'} into the syntax domain") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (($ (|Symbol|)) "\\spad{coerce(s)} injects the symbol \\spad{`s'} into the Syntax domain.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (($ (|DoubleFloat|)) "\\spad{coerce(f)} injects the float value \\spad{`f'} into the Syntax domain") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}") (($ (|Integer|)) "\\spad{coerce(i)} injects the integer value `i' into the Syntax domain.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1091 R) +(-1093 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1092 S) +(-1094 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1093 S) +(-1095 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1094 |Key| |Entry|) +(-1096 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4238 . T) (-4239 . T)) -((|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2644) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3149) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-1014))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))) (-3844 (|HasCategory| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-1095 R) +((-4244 . T) (-4245 . T)) +((-12 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -286) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1853) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2433) (|devaluate| |#2|)))))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1016)))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -564) (QUOTE (-499)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-1016))) (-3262 (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-794)))) (|HasCategory| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (LIST (QUOTE -563) (QUOTE (-794))))) +(-1097 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) NIL NIL -(-1096 S |Key| |Entry|) +(-1098 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1097 |Key| |Entry|) +(-1099 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4239 . T) (-2088 . T)) +((-4245 . T) (-3656 . T)) NIL -(-1098 |Key| |Entry|) +(-1100 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1099) +(-1101) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1100 S) +(-1102 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1101) +(-1103) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format."))) NIL NIL -(-1102) +(-1104) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1103 R) +(-1105 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1104) +(-1106) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1105 S) +(-1107 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1106) +(-1108) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1107 S) +(-1109 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4239 . T) (-4238 . T)) -((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-1108 S) +((-4245 . T) (-4244 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-1110 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1109) +(-1111) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1110 R -4102) +(-1112 R -2315) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1111 R |Row| |Col| M) +(-1113 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1112 R -4102) +(-1114 R -2315) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -815) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -815) (|devaluate| |#1|))))) -(-1113 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -564) (LIST (QUOTE -823) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -817) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -817) (|devaluate| |#1|))))) +(-1115 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-343)))) -(-1114 R E V P) +((|HasCategory| |#4| (QUOTE (-344)))) +(-1116 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4239 . T) (-4238 . T) (-2088 . T)) +((-4245 . T) (-4244 . T) (-3656 . T)) NIL -(-1115 |Coef|) +(-1117 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4233 . T) (-4232 . T) (-4235 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-514))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-338)))) -(-1116 |Curve|) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4239 . T) (-4238 . T) (-4241 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-134))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-339)))) +(-1118 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1117) +(-1119) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1118 S) +(-1120 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a"))) NIL -((|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))) -(-1119 -4102) +((|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-1121 -2315) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1120) +(-1122) ((|constructor| (NIL "The fundamental Type."))) -((-2088 . T)) +((-3656 . T)) NIL -(-1121 S) +(-1123 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-784)))) -(-1122) +((|HasCategory| |#1| (QUOTE (-786)))) +(-1124) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1123 S) +(-1125 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1124) +(-1126) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-1125 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1127 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1126 |Coef|) +(-1128 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T)) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-1127 S |Coef| UTS) +(-1129 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-338)))) -(-1128 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-339)))) +(-1130 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-2088 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T)) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-3656 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-1129 |Coef| UTS) +(-1131 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| (-522) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-338))) (-3844 (|HasCategory| |#1| (QUOTE (-135))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-135))))) (-3844 (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-522)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-210)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-522)) (|devaluate| |#1|))))) (-3844 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-1085))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-947)))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-757)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -262) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-354))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-522))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1085)))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-784)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-757)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-784))))) (|HasCategory| |#2| (QUOTE (-838))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-838)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-507)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-283)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133))) (-3844 (|HasCategory| |#1| (QUOTE (-133))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-133))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (-3844 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -262) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-757)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-838)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-947)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-1085)))))) (-3844 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -2611) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1085))))) (|HasSignature| |#1| (LIST (QUOTE -3533) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#1|)))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-133)))))) -(-1130 |Coef| |var| |cen|) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) +((-3262 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -263) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-759)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-786)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-949)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087)))))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (|HasCategory| |#1| (QUOTE (-134))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-134))))) (-3262 (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-136))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-211)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|))))) (|HasCategory| (-523) (QUOTE (-1028))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-339))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-1087))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-949)))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-759)))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-759)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-786))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -263) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -484) (QUOTE (-1087)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-786)))) (|HasCategory| |#2| (QUOTE (-840))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-508)))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-284)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-134))) (-12 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-134)))))) +(-1132 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4240 "*") -3844 (-4079 (|has| |#1| (-338)) (|has| (-1158 |#1| |#2| |#3|) (-757))) (|has| |#1| (-157)) (-4079 (|has| |#1| (-338)) (|has| (-1158 |#1| |#2| |#3|) (-838)))) (-4231 -3844 (-4079 (|has| |#1| (-338)) (|has| (-1158 |#1| |#2| |#3|) (-757))) (|has| |#1| (-514)) (-4079 (|has| |#1| (-338)) (|has| (-1158 |#1| |#2| |#3|) (-838)))) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| (-522) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-338))) (-3844 (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-135)))) (-3844 (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-522)) (|devaluate| |#1|)))))) (-3844 (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-522)) (|devaluate| |#1|))))) (-3844 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-947))) (|HasCategory| |#1| (QUOTE (-338)))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-1061))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -262) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -483) (QUOTE (-1085)) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-522))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1085)))))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-507))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-838))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-133))) (-3844 (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-133)))) (-3844 (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-514)))) (-3844 (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-157)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-338)))) (-3844 (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-338))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (-3844 (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-947))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-1061))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -262) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -483) (QUOTE (-1085)) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-3844 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -2611) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1085))))) (|HasSignature| |#1| (LIST (QUOTE -3533) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#1|)))))) (-3844 (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-133))))) -(-1131 ZP) +(((-4246 "*") -3262 (-4099 (|has| |#1| (-339)) (|has| (-1160 |#1| |#2| |#3|) (-759))) (|has| |#1| (-158)) (-4099 (|has| |#1| (-339)) (|has| (-1160 |#1| |#2| |#3|) (-840)))) (-4237 -3262 (-4099 (|has| |#1| (-339)) (|has| (-1160 |#1| |#2| |#3|) (-759))) (|has| |#1| (-515)) (-4099 (|has| |#1| (-339)) (|has| (-1160 |#1| |#2| |#3|) (-840)))) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) +((-3262 (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -263) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -484) (QUOTE (-1087)) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3262 (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3262 (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|)))))) (-3262 (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-211))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-523)) (|devaluate| |#1|))))) (|HasCategory| (-523) (QUOTE (-1028))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-339))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-339)))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-3262 (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-339))))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -263) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -484) (QUOTE (-1087)) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-523))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-134))) (-3262 (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3262 (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-759))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-158)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-339)))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-339)))) (|HasCategory| |#1| (QUOTE (-134))))) +(-1133 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1132 R S) +(-1134 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-782)))) -(-1133 S) +((|HasCategory| |#1| (QUOTE (-784)))) +(-1135 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1014)))) -(-1134 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1016)))) +(-1136 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1135 R Q UP) +(-1137 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1136 R UP) +(-1138 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1137 R UP) +(-1139 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1138 R U) +(-1140 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1139 |x| R) +(-1141 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) -(((-4240 "*") |has| |#2| (-157)) (-4231 |has| |#2| (-514)) (-4234 |has| |#2| (-338)) (-4236 |has| |#2| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T)) -((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-157))) (-3844 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-514)))) (-12 (|HasCategory| (-999) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (-3844 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasCategory| |#2| (QUOTE (-210))) (|HasAttribute| |#2| (QUOTE -4236)) (|HasCategory| |#2| (QUOTE (-426))) (-3844 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-838)))) (-3844 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-838)))) (-3844 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (-3844 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-133))))) -(-1140 R PR S PS) +(((-4246 "*") |has| |#2| (-158)) (-4237 |has| |#2| (-515)) (-4240 |has| |#2| (-339)) (-4242 |has| |#2| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) +((|HasCategory| |#2| (QUOTE (-840))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-515)))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-355)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-355))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -817) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -817) (QUOTE (-523))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-355)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -564) (LIST (QUOTE -823) (QUOTE (-523)))))) (-12 (|HasCategory| (-1001) (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#2| (LIST (QUOTE -564) (QUOTE (-499))))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -585) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (-3262 (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (-3262 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasCategory| |#2| (QUOTE (-211))) (|HasAttribute| |#2| (QUOTE -4242)) (|HasCategory| |#2| (QUOTE (-427))) (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (-3262 (-12 (|HasCategory| $ (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-134))))) +(-1142 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1141 S R) +(-1143 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-1061)))) -(-1142 R) +((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339))) (|HasCategory| |#2| (QUOTE (-427))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (QUOTE (-1063)))) +(-1144 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4234 |has| |#1| (-338)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T)) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4240 |has| |#1| (-339)) (-4242 |has| |#1| (-6 -4242)) (-4239 . T) (-4238 . T) (-4241 . T)) NIL -(-1143 S |Coef| |Expon|) +(-1145 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1026))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2217) (LIST (|devaluate| |#2|) (QUOTE (-1085)))))) -(-1144 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1028))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -1458) (LIST (|devaluate| |#2|) (QUOTE (-1087)))))) +(-1146 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4232 . T) (-4233 . T) (-4235 . T)) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-1145 RC P) +(-1147 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1146 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1148 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1147 |Coef|) +(-1149 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T)) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-1148 S |Coef| ULS) +(-1150 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1149 |Coef| ULS) +(-1151 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T)) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-1150 |Coef| ULS) +(-1152 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522))) (|devaluate| |#1|))))) (|HasCategory| (-382 (-522)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-338))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-3844 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1085)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (-3844 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -2611) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1085))))) (|HasSignature| |#1| (LIST (QUOTE -3533) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#1|))))))) -(-1151 |Coef| |var| |cen|) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|)))) (|HasCategory| (-383 (-523)) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) +(-1153 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522))) (|devaluate| |#1|))))) (|HasCategory| (-382 (-522)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-338))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-3844 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1085)))))) (-3844 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -2611) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1085))))) (|HasSignature| |#1| (LIST (QUOTE -3533) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#1|))))))) -(-1152 R FE |var| |cen|) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4242 |has| |#1| (-339)) (-4236 |has| |#1| (-339)) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-158))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523))) (|devaluate| |#1|)))) (|HasCategory| (-383 (-523)) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-3262 (|HasCategory| |#1| (QUOTE (-339))) (|HasCategory| |#1| (QUOTE (-515)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -383) (QUOTE (-523)))))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|))))))) +(-1154 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) -(((-4240 "*") |has| (-1151 |#2| |#3| |#4|) (-157)) (-4231 |has| (-1151 |#2| |#3| |#4|) (-514)) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| (-1151 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-133))) (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-135))) (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-157))) (|HasCategory| (-1151 |#2| |#3| |#4|) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-1151 |#2| |#3| |#4|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-338))) (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-426))) (-3844 (|HasCategory| (-1151 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-1151 |#2| |#3| |#4|) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-514)))) -(-1153 A S) +(((-4246 "*") |has| (-1153 |#2| |#3| |#4|) (-158)) (-4237 |has| (-1153 |#2| |#3| |#4|) (-515)) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| (-1153 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-1153 |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1153 |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1153 |#2| |#3| |#4|) (QUOTE (-158))) (|HasCategory| (-1153 |#2| |#3| |#4|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-1153 |#2| |#3| |#4|) (LIST (QUOTE -964) (QUOTE (-523)))) (|HasCategory| (-1153 |#2| |#3| |#4|) (QUOTE (-339))) (|HasCategory| (-1153 |#2| |#3| |#4|) (QUOTE (-427))) (-3262 (|HasCategory| (-1153 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| (-1153 |#2| |#3| |#4|) (LIST (QUOTE -964) (LIST (QUOTE -383) (QUOTE (-523)))))) (|HasCategory| (-1153 |#2| |#3| |#4|) (QUOTE (-515)))) +(-1155 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4239))) -(-1154 S) +((|HasAttribute| |#1| (QUOTE -4245))) +(-1156 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) -((-2088 . T)) +((-3656 . T)) NIL -(-1155 |Coef1| |Coef2| UTS1 UTS2) +(-1157 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1156 S |Coef|) +(-1158 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-887))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasSignature| |#2| (LIST (QUOTE -3533) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2611) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1085))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-338)))) -(-1157 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-889))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasSignature| |#2| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3417) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1087))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-339)))) +(-1159 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4232 . T) (-4233 . T) (-4235 . T)) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-1158 |Coef| |var| |cen|) +(-1160 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4232 . T) (-4233 . T) (-4235 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3844 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-708)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-708)) (|devaluate| |#1|))))) (|HasCategory| (-708) (QUOTE (-1026))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-708))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-708))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1085)))))) (|HasCategory| |#1| (QUOTE (-338))) (-3844 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -2611) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1085))))) (|HasSignature| |#1| (LIST (QUOTE -3533) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#1|))))))) -(-1159 |Coef| UTS) +(((-4246 "*") |has| |#1| (-158)) (-4237 |has| |#1| (-515)) (-4238 . T) (-4239 . T) (-4241 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-515))) (-3262 (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (LIST (QUOTE -831) (QUOTE (-1087)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-710)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-710)) (|devaluate| |#1|)))) (|HasCategory| (-710) (QUOTE (-1028))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-710))))) (|HasSignature| |#1| (LIST (QUOTE -1458) (LIST (|devaluate| |#1|) (QUOTE (-1087)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-710))))) (|HasCategory| |#1| (QUOTE (-339))) (-3262 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-889))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1087))))) (|HasSignature| |#1| (LIST (QUOTE -1957) (LIST (LIST (QUOTE -589) (QUOTE (-1087))) (|devaluate| |#1|))))))) +(-1161 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1160 -4102 UP L UTS) +(-1162 -2315 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-514)))) -(-1161) +((|HasCategory| |#1| (QUOTE (-515)))) +(-1163) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) -((-2088 . T)) +((-3656 . T)) NIL -(-1162 |sym|) +(-1164 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1163 S R) +(-1165 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1164 R) +((|HasCategory| |#2| (QUOTE (-930))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-666))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1166 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4239 . T) (-4238 . T) (-2088 . T)) +((-4245 . T) (-4244 . T) (-3656 . T)) NIL -(-1165 A B) +(-1167 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1166 R) +(-1168 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4239 . T) (-4238 . T)) -((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3844 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-971))) (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-971)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3844 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))) -(-1167) +((-4245 . T) (-4244 . T)) +((-3262 (-12 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|))))) (-3262 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) (|HasCategory| |#1| (LIST (QUOTE -564) (QUOTE (-499)))) (-3262 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| (-523) (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-666))) (|HasCategory| |#1| (QUOTE (-973))) (-12 (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-973)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-794))))) +(-1169) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1168) +(-1170) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1169) +(-1171) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1170) +(-1172) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1171) +(-1173) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1172 A S) +(-1174 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1173 S) +(-1175 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4233 . T) (-4232 . T)) +((-4239 . T) (-4238 . T)) NIL -(-1174 R) +(-1176 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1175 K R UP -4102) +(-1177 K R UP -2315) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-1176 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1178 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights"))) -((-4233 |has| |#1| (-157)) (-4232 |has| |#1| (-157)) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338)))) -(-1177 R E V P) +((-4239 |has| |#1| (-158)) (-4238 |has| |#1| (-158)) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339)))) +(-1179 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4239 . T) (-4238 . T)) -((|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-792))))) -(-1178 R) +((-4245 . T) (-4244 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -286) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -564) (QUOTE (-499)))) (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-794))))) +(-1180 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}."))) -((-4232 . T) (-4233 . T) (-4235 . T)) +((-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-1179 |vl| R) +(-1181 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4235 . T) (-4231 |has| |#2| (-6 -4231)) (-4233 . T) (-4232 . T)) -((|HasCategory| |#2| (QUOTE (-157))) (|HasAttribute| |#2| (QUOTE -4231))) -(-1180 R |VarSet| XPOLY) +((-4241 . T) (-4237 |has| |#2| (-6 -4237)) (-4239 . T) (-4238 . T)) +((|HasCategory| |#2| (QUOTE (-158))) (|HasAttribute| |#2| (QUOTE -4237))) +(-1182 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1181 |vl| R) +(-1183 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4231 |has| |#2| (-6 -4231)) (-4233 . T) (-4232 . T) (-4235 . T)) +((-4237 |has| |#2| (-6 -4237)) (-4239 . T) (-4238 . T) (-4241 . T)) NIL -(-1182 S -4102) +(-1184 S -2315) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135)))) -(-1183 -4102) +((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-136)))) +(-1185 -2315) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) +((-4236 . T) (-4242 . T) (-4237 . T) ((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL -(-1184 |VarSet| R) +(-1186 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4231 |has| |#2| (-6 -4231)) (-4233 . T) (-4232 . T) (-4235 . T)) -((|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -655) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasAttribute| |#2| (QUOTE -4231))) -(-1185 |vl| R) +((-4237 |has| |#2| (-6 -4237)) (-4239 . T) (-4238 . T) (-4241 . T)) +((|HasCategory| |#2| (QUOTE (-158))) (|HasCategory| |#2| (LIST (QUOTE -657) (LIST (QUOTE -383) (QUOTE (-523))))) (|HasAttribute| |#2| (QUOTE -4237))) +(-1187 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4231 |has| |#2| (-6 -4231)) (-4233 . T) (-4232 . T) (-4235 . T)) +((-4237 |has| |#2| (-6 -4237)) (-4239 . T) (-4238 . T) (-4241 . T)) NIL -(-1186 R) +(-1188 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4231 |has| |#1| (-6 -4231)) (-4233 . T) (-4232 . T) (-4235 . T)) -((|HasCategory| |#1| (QUOTE (-157))) (|HasAttribute| |#1| (QUOTE -4231))) -(-1187 R E) +((-4237 |has| |#1| (-6 -4237)) (-4239 . T) (-4238 . T) (-4241 . T)) +((|HasCategory| |#1| (QUOTE (-158))) (|HasAttribute| |#1| (QUOTE -4237))) +(-1189 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4235 . T) (-4236 |has| |#1| (-6 -4236)) (-4231 |has| |#1| (-6 -4231)) (-4233 . T) (-4232 . T)) -((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasAttribute| |#1| (QUOTE -4235)) (|HasAttribute| |#1| (QUOTE -4236)) (|HasAttribute| |#1| (QUOTE -4231))) -(-1188 |VarSet| R) +((-4241 . T) (-4242 |has| |#1| (-6 -4242)) (-4237 |has| |#1| (-6 -4237)) (-4239 . T) (-4238 . T)) +((|HasCategory| |#1| (QUOTE (-158))) (|HasCategory| |#1| (QUOTE (-339))) (|HasAttribute| |#1| (QUOTE -4241)) (|HasAttribute| |#1| (QUOTE -4242)) (|HasAttribute| |#1| (QUOTE -4237))) +(-1190 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4231 |has| |#2| (-6 -4231)) (-4233 . T) (-4232 . T) (-4235 . T)) -((|HasCategory| |#2| (QUOTE (-157))) (|HasAttribute| |#2| (QUOTE -4231))) -(-1189 A) +((-4237 |has| |#2| (-6 -4237)) (-4239 . T) (-4238 . T) (-4241 . T)) +((|HasCategory| |#2| (QUOTE (-158))) (|HasAttribute| |#2| (QUOTE -4237))) +(-1191 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1190 R |ls| |ls2|) +(-1192 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1191 R) +(-1193 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1192 |p|) +(-1194 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T)) -NIL -NIL -NIL -NIL +(((-4246 "*") . T) (-4238 . T) (-4239 . T) (-4241 . T)) NIL NIL NIL @@ -4720,4 +4724,4 @@ NIL NIL NIL NIL -((-1197 NIL 2234181 2234186 2234191 2234196) (-3 NIL 2234161 2234166 2234171 2234176) (-2 NIL 2234141 2234146 2234151 2234156) (-1 NIL 2234121 2234126 2234131 2234136) (0 NIL 2234101 2234106 2234111 2234116) (-1192 "ZMOD.spad" 2233910 2233923 2234039 2234096) (-1191 "ZLINDEP.spad" 2232954 2232965 2233900 2233905) (-1190 "ZDSOLVE.spad" 2222803 2222825 2232944 2232949) (-1189 "YSTREAM.spad" 2222296 2222307 2222793 2222798) (-1188 "XRPOLY.spad" 2221516 2221536 2222152 2222221) (-1187 "XPR.spad" 2219245 2219258 2221234 2221333) (-1186 "XPOLY.spad" 2218800 2218811 2219101 2219170) (-1185 "XPOLYC.spad" 2218117 2218133 2218726 2218795) (-1184 "XPBWPOLY.spad" 2216554 2216574 2217897 2217966) (-1183 "XF.spad" 2215015 2215030 2216456 2216549) (-1182 "XF.spad" 2213456 2213473 2214899 2214904) (-1181 "XFALG.spad" 2210480 2210496 2213382 2213451) (-1180 "XEXPPKG.spad" 2209731 2209757 2210470 2210475) (-1179 "XDPOLY.spad" 2209345 2209361 2209587 2209656) (-1178 "XALG.spad" 2208943 2208954 2209301 2209340) (-1177 "WUTSET.spad" 2204782 2204799 2208589 2208616) (-1176 "WP.spad" 2203796 2203840 2204640 2204707) (-1175 "WFFINTBS.spad" 2201359 2201381 2203786 2203791) (-1174 "WEIER.spad" 2199573 2199584 2201349 2201354) (-1173 "VSPACE.spad" 2199246 2199257 2199541 2199568) (-1172 "VSPACE.spad" 2198939 2198952 2199236 2199241) (-1171 "VOID.spad" 2198529 2198538 2198929 2198934) (-1170 "VIEW.spad" 2196151 2196160 2198519 2198524) (-1169 "VIEWDEF.spad" 2191348 2191357 2196141 2196146) (-1168 "VIEW3D.spad" 2175183 2175192 2191338 2191343) (-1167 "VIEW2D.spad" 2162920 2162929 2175173 2175178) (-1166 "VECTOR.spad" 2161597 2161608 2161848 2161875) (-1165 "VECTOR2.spad" 2160224 2160237 2161587 2161592) (-1164 "VECTCAT.spad" 2158112 2158123 2160180 2160219) (-1163 "VECTCAT.spad" 2155821 2155834 2157891 2157896) (-1162 "VARIABLE.spad" 2155601 2155616 2155811 2155816) (-1161 "UTYPE.spad" 2155235 2155244 2155581 2155596) (-1160 "UTSODETL.spad" 2154528 2154552 2155191 2155196) (-1159 "UTSODE.spad" 2152716 2152736 2154518 2154523) (-1158 "UTS.spad" 2147505 2147533 2151183 2151280) (-1157 "UTSCAT.spad" 2144956 2144972 2147403 2147500) (-1156 "UTSCAT.spad" 2142051 2142069 2144500 2144505) (-1155 "UTS2.spad" 2141644 2141679 2142041 2142046) (-1154 "URAGG.spad" 2136266 2136277 2141624 2141639) (-1153 "URAGG.spad" 2130862 2130875 2136222 2136227) (-1152 "UPXSSING.spad" 2128508 2128534 2129946 2130079) (-1151 "UPXS.spad" 2125535 2125563 2126640 2126789) (-1150 "UPXSCONS.spad" 2123292 2123312 2123667 2123816) (-1149 "UPXSCCA.spad" 2121750 2121770 2123138 2123287) (-1148 "UPXSCCA.spad" 2120350 2120372 2121740 2121745) (-1147 "UPXSCAT.spad" 2118931 2118947 2120196 2120345) (-1146 "UPXS2.spad" 2118472 2118525 2118921 2118926) (-1145 "UPSQFREE.spad" 2116884 2116898 2118462 2118467) (-1144 "UPSCAT.spad" 2114477 2114501 2116782 2116879) (-1143 "UPSCAT.spad" 2111776 2111802 2114083 2114088) (-1142 "UPOLYC.spad" 2106754 2106765 2111618 2111771) (-1141 "UPOLYC.spad" 2101624 2101637 2106490 2106495) (-1140 "UPOLYC2.spad" 2101093 2101112 2101614 2101619) (-1139 "UP.spad" 2098143 2098158 2098651 2098804) (-1138 "UPMP.spad" 2097033 2097046 2098133 2098138) (-1137 "UPDIVP.spad" 2096596 2096610 2097023 2097028) (-1136 "UPDECOMP.spad" 2094833 2094847 2096586 2096591) (-1135 "UPCDEN.spad" 2094040 2094056 2094823 2094828) (-1134 "UP2.spad" 2093402 2093423 2094030 2094035) (-1133 "UNISEG.spad" 2092755 2092766 2093321 2093326) (-1132 "UNISEG2.spad" 2092248 2092261 2092711 2092716) (-1131 "UNIFACT.spad" 2091349 2091361 2092238 2092243) (-1130 "ULS.spad" 2081908 2081936 2083001 2083430) (-1129 "ULSCONS.spad" 2075951 2075971 2076323 2076472) (-1128 "ULSCCAT.spad" 2073548 2073568 2075771 2075946) (-1127 "ULSCCAT.spad" 2071279 2071301 2073504 2073509) (-1126 "ULSCAT.spad" 2069495 2069511 2071125 2071274) (-1125 "ULS2.spad" 2069007 2069060 2069485 2069490) (-1124 "UFD.spad" 2068072 2068081 2068933 2069002) (-1123 "UFD.spad" 2067199 2067210 2068062 2068067) (-1122 "UDVO.spad" 2066046 2066055 2067189 2067194) (-1121 "UDPO.spad" 2063473 2063484 2066002 2066007) (-1120 "TYPE.spad" 2063395 2063404 2063453 2063468) (-1119 "TWOFACT.spad" 2062045 2062060 2063385 2063390) (-1118 "TUPLE.spad" 2061431 2061442 2061944 2061949) (-1117 "TUBETOOL.spad" 2058268 2058277 2061421 2061426) (-1116 "TUBE.spad" 2056909 2056926 2058258 2058263) (-1115 "TS.spad" 2055498 2055514 2056474 2056571) (-1114 "TSETCAT.spad" 2042613 2042630 2055454 2055493) (-1113 "TSETCAT.spad" 2029726 2029745 2042569 2042574) (-1112 "TRMANIP.spad" 2024092 2024109 2029432 2029437) (-1111 "TRIMAT.spad" 2023051 2023076 2024082 2024087) (-1110 "TRIGMNIP.spad" 2021568 2021585 2023041 2023046) (-1109 "TRIGCAT.spad" 2021080 2021089 2021558 2021563) (-1108 "TRIGCAT.spad" 2020590 2020601 2021070 2021075) (-1107 "TREE.spad" 2019161 2019172 2020197 2020224) (-1106 "TRANFUN.spad" 2018992 2019001 2019151 2019156) (-1105 "TRANFUN.spad" 2018821 2018832 2018982 2018987) (-1104 "TOPSP.spad" 2018495 2018504 2018811 2018816) (-1103 "TOOLSIGN.spad" 2018158 2018169 2018485 2018490) (-1102 "TEXTFILE.spad" 2016715 2016724 2018148 2018153) (-1101 "TEX.spad" 2013732 2013741 2016705 2016710) (-1100 "TEX1.spad" 2013288 2013299 2013722 2013727) (-1099 "TEMUTL.spad" 2012843 2012852 2013278 2013283) (-1098 "TBCMPPK.spad" 2010936 2010959 2012833 2012838) (-1097 "TBAGG.spad" 2009960 2009983 2010904 2010931) (-1096 "TBAGG.spad" 2009004 2009029 2009950 2009955) (-1095 "TANEXP.spad" 2008380 2008391 2008994 2008999) (-1094 "TABLE.spad" 2006791 2006814 2007061 2007088) (-1093 "TABLEAU.spad" 2006272 2006283 2006781 2006786) (-1092 "TABLBUMP.spad" 2003055 2003066 2006262 2006267) (-1091 "SYSSOLP.spad" 2000528 2000539 2003045 2003050) (-1090 "SYNTAX.spad" 1996746 1996755 2000518 2000523) (-1089 "SYMTAB.spad" 1994802 1994811 1996736 1996741) (-1088 "SYMS.spad" 1990787 1990796 1994792 1994797) (-1087 "SYMPOLY.spad" 1989797 1989808 1989879 1990006) (-1086 "SYMFUNC.spad" 1989272 1989283 1989787 1989792) (-1085 "SYMBOL.spad" 1986608 1986617 1989262 1989267) (-1084 "SWITCH.spad" 1983365 1983374 1986598 1986603) (-1083 "SUTS.spad" 1980264 1980292 1981832 1981929) (-1082 "SUPXS.spad" 1977278 1977306 1978396 1978545) (-1081 "SUP.spad" 1974055 1974066 1974836 1974989) (-1080 "SUPFRACF.spad" 1973160 1973178 1974045 1974050) (-1079 "SUP2.spad" 1972550 1972563 1973150 1973155) (-1078 "SUMRF.spad" 1971516 1971527 1972540 1972545) (-1077 "SUMFS.spad" 1971149 1971166 1971506 1971511) (-1076 "SULS.spad" 1961695 1961723 1962801 1963230) (-1075 "SUCH.spad" 1961375 1961390 1961685 1961690) (-1074 "SUBSPACE.spad" 1953382 1953397 1961365 1961370) (-1073 "SUBRESP.spad" 1952542 1952556 1953338 1953343) (-1072 "STTF.spad" 1948641 1948657 1952532 1952537) (-1071 "STTFNC.spad" 1945109 1945125 1948631 1948636) (-1070 "STTAYLOR.spad" 1937507 1937518 1944990 1944995) (-1069 "STRTBL.spad" 1936012 1936029 1936161 1936188) (-1068 "STRING.spad" 1935421 1935430 1935435 1935462) (-1067 "STRICAT.spad" 1935197 1935206 1935377 1935416) (-1066 "STREAM.spad" 1931965 1931976 1934722 1934737) (-1065 "STREAM3.spad" 1931510 1931525 1931955 1931960) (-1064 "STREAM2.spad" 1930578 1930591 1931500 1931505) (-1063 "STREAM1.spad" 1930282 1930293 1930568 1930573) (-1062 "STINPROD.spad" 1929188 1929204 1930272 1930277) (-1061 "STEP.spad" 1928389 1928398 1929178 1929183) (-1060 "STBL.spad" 1926915 1926943 1927082 1927097) (-1059 "STAGG.spad" 1925980 1925991 1926895 1926910) (-1058 "STAGG.spad" 1925053 1925066 1925970 1925975) (-1057 "STACK.spad" 1924404 1924415 1924660 1924687) (-1056 "SREGSET.spad" 1922108 1922125 1924050 1924077) (-1055 "SRDCMPK.spad" 1920653 1920673 1922098 1922103) (-1054 "SRAGG.spad" 1915738 1915747 1920609 1920648) (-1053 "SRAGG.spad" 1910855 1910866 1915728 1915733) (-1052 "SQMATRIX.spad" 1908481 1908499 1909389 1909476) (-1051 "SPLTREE.spad" 1903033 1903046 1907917 1907944) (-1050 "SPLNODE.spad" 1899621 1899634 1903023 1903028) (-1049 "SPFCAT.spad" 1898398 1898407 1899611 1899616) (-1048 "SPECOUT.spad" 1896948 1896957 1898388 1898393) (-1047 "spad-parser.spad" 1896413 1896422 1896938 1896943) (-1046 "SPACEC.spad" 1880426 1880437 1896403 1896408) (-1045 "SPACE3.spad" 1880202 1880213 1880416 1880421) (-1044 "SORTPAK.spad" 1879747 1879760 1880158 1880163) (-1043 "SOLVETRA.spad" 1877504 1877515 1879737 1879742) (-1042 "SOLVESER.spad" 1876024 1876035 1877494 1877499) (-1041 "SOLVERAD.spad" 1872034 1872045 1876014 1876019) (-1040 "SOLVEFOR.spad" 1870454 1870472 1872024 1872029) (-1039 "SNTSCAT.spad" 1870042 1870059 1870410 1870449) (-1038 "SMTS.spad" 1868302 1868328 1869607 1869704) (-1037 "SMP.spad" 1865744 1865764 1866134 1866261) (-1036 "SMITH.spad" 1864587 1864612 1865734 1865739) (-1035 "SMATCAT.spad" 1862685 1862715 1864519 1864582) (-1034 "SMATCAT.spad" 1860727 1860759 1862563 1862568) (-1033 "SKAGG.spad" 1859676 1859687 1860683 1860722) (-1032 "SINT.spad" 1857984 1857993 1859542 1859671) (-1031 "SIMPAN.spad" 1857712 1857721 1857974 1857979) (-1030 "SIGNRF.spad" 1856820 1856831 1857702 1857707) (-1029 "SIGNEF.spad" 1856089 1856106 1856810 1856815) (-1028 "SHP.spad" 1854007 1854022 1856045 1856050) (-1027 "SHDP.spad" 1845397 1845424 1845906 1846035) (-1026 "SGROUP.spad" 1844863 1844872 1845387 1845392) (-1025 "SGROUP.spad" 1844327 1844338 1844853 1844858) (-1024 "SGCF.spad" 1837208 1837217 1844317 1844322) (-1023 "SFRTCAT.spad" 1836124 1836141 1837164 1837203) (-1022 "SFRGCD.spad" 1835187 1835207 1836114 1836119) (-1021 "SFQCMPK.spad" 1829824 1829844 1835177 1835182) (-1020 "SFORT.spad" 1829259 1829273 1829814 1829819) (-1019 "SEXOF.spad" 1829102 1829142 1829249 1829254) (-1018 "SEX.spad" 1828994 1829003 1829092 1829097) (-1017 "SEXCAT.spad" 1826098 1826138 1828984 1828989) (-1016 "SET.spad" 1824398 1824409 1825519 1825558) (-1015 "SETMN.spad" 1822832 1822849 1824388 1824393) (-1014 "SETCAT.spad" 1822317 1822326 1822822 1822827) (-1013 "SETCAT.spad" 1821800 1821811 1822307 1822312) (-1012 "SETAGG.spad" 1818323 1818334 1821768 1821795) (-1011 "SETAGG.spad" 1814866 1814879 1818313 1818318) (-1010 "SEGXCAT.spad" 1813978 1813991 1814846 1814861) (-1009 "SEG.spad" 1813791 1813802 1813897 1813902) (-1008 "SEGCAT.spad" 1812610 1812621 1813771 1813786) (-1007 "SEGBIND.spad" 1811682 1811693 1812565 1812570) (-1006 "SEGBIND2.spad" 1811378 1811391 1811672 1811677) (-1005 "SEG2.spad" 1810803 1810816 1811334 1811339) (-1004 "SDVAR.spad" 1810079 1810090 1810793 1810798) (-1003 "SDPOL.spad" 1807472 1807483 1807763 1807890) (-1002 "SCPKG.spad" 1805551 1805562 1807462 1807467) (-1001 "SCOPE.spad" 1804696 1804705 1805541 1805546) (-1000 "SCACHE.spad" 1803378 1803389 1804686 1804691) (-999 "SAOS.spad" 1803251 1803259 1803368 1803373) (-998 "SAERFFC.spad" 1802965 1802984 1803241 1803246) (-997 "SAE.spad" 1801144 1801159 1801754 1801889) (-996 "SAEFACT.spad" 1800846 1800865 1801134 1801139) (-995 "RURPK.spad" 1798488 1798503 1800836 1800841) (-994 "RULESET.spad" 1797930 1797953 1798478 1798483) (-993 "RULE.spad" 1796135 1796158 1797920 1797925) (-992 "RULECOLD.spad" 1795988 1796000 1796125 1796130) (-991 "RSETGCD.spad" 1792367 1792386 1795978 1795983) (-990 "RSETCAT.spad" 1782140 1782156 1792323 1792362) (-989 "RSETCAT.spad" 1771945 1771963 1782130 1782135) (-988 "RSDCMPK.spad" 1770398 1770417 1771935 1771940) (-987 "RRCC.spad" 1768783 1768812 1770388 1770393) (-986 "RRCC.spad" 1767166 1767197 1768773 1768778) (-985 "RPOLCAT.spad" 1746527 1746541 1767034 1767161) (-984 "RPOLCAT.spad" 1725603 1725619 1746112 1746117) (-983 "ROUTINE.spad" 1721467 1721475 1724250 1724277) (-982 "ROMAN.spad" 1720700 1720708 1721333 1721462) (-981 "ROIRC.spad" 1719781 1719812 1720690 1720695) (-980 "RNS.spad" 1718685 1718693 1719683 1719776) (-979 "RNS.spad" 1717675 1717685 1718675 1718680) (-978 "RNG.spad" 1717411 1717419 1717665 1717670) (-977 "RMODULE.spad" 1717050 1717060 1717401 1717406) (-976 "RMCAT2.spad" 1716459 1716515 1717040 1717045) (-975 "RMATRIX.spad" 1715139 1715157 1715626 1715665) (-974 "RMATCAT.spad" 1710661 1710691 1715083 1715134) (-973 "RMATCAT.spad" 1706085 1706117 1710509 1710514) (-972 "RINTERP.spad" 1705974 1705993 1706075 1706080) (-971 "RING.spad" 1705332 1705340 1705954 1705969) (-970 "RING.spad" 1704698 1704708 1705322 1705327) (-969 "RIDIST.spad" 1704083 1704091 1704688 1704693) (-968 "RGCHAIN.spad" 1702663 1702678 1703568 1703595) (-967 "RF.spad" 1700278 1700288 1702653 1702658) (-966 "RFFACTOR.spad" 1699741 1699751 1700268 1700273) (-965 "RFFACT.spad" 1699477 1699488 1699731 1699736) (-964 "RFDIST.spad" 1698466 1698474 1699467 1699472) (-963 "RETSOL.spad" 1697884 1697896 1698456 1698461) (-962 "RETRACT.spad" 1697234 1697244 1697874 1697879) (-961 "RETRACT.spad" 1696582 1696594 1697224 1697229) (-960 "RESULT.spad" 1694643 1694651 1695229 1695256) (-959 "RESRING.spad" 1693991 1694037 1694581 1694638) (-958 "RESLATC.spad" 1693316 1693326 1693981 1693986) (-957 "REPSQ.spad" 1693046 1693056 1693306 1693311) (-956 "REP.spad" 1690599 1690607 1693036 1693041) (-955 "REPDB.spad" 1690305 1690315 1690589 1690594) (-954 "REP2.spad" 1679878 1679888 1690147 1690152) (-953 "REP1.spad" 1673869 1673879 1679828 1679833) (-952 "REGSET.spad" 1671667 1671683 1673515 1673542) (-951 "REF.spad" 1670997 1671007 1671622 1671627) (-950 "REDORDER.spad" 1670174 1670190 1670987 1670992) (-949 "RECLOS.spad" 1668964 1668983 1669667 1669760) (-948 "REALSOLV.spad" 1668097 1668105 1668954 1668959) (-947 "REAL.spad" 1667970 1667978 1668087 1668092) (-946 "REAL0Q.spad" 1665253 1665267 1667960 1667965) (-945 "REAL0.spad" 1662082 1662096 1665243 1665248) (-944 "RDIV.spad" 1661734 1661758 1662072 1662077) (-943 "RDIST.spad" 1661298 1661308 1661724 1661729) (-942 "RDETRS.spad" 1660095 1660112 1661288 1661293) (-941 "RDETR.spad" 1658203 1658220 1660085 1660090) (-940 "RDEEFS.spad" 1657277 1657293 1658193 1658198) (-939 "RDEEF.spad" 1656274 1656290 1657267 1657272) (-938 "RCFIELD.spad" 1653458 1653466 1656176 1656269) (-937 "RCFIELD.spad" 1650728 1650738 1653448 1653453) (-936 "RCAGG.spad" 1648631 1648641 1650708 1650723) (-935 "RCAGG.spad" 1646471 1646483 1648550 1648555) (-934 "RATRET.spad" 1645832 1645842 1646461 1646466) (-933 "RATFACT.spad" 1645525 1645536 1645822 1645827) (-932 "RANDSRC.spad" 1644845 1644853 1645515 1645520) (-931 "RADUTIL.spad" 1644600 1644608 1644835 1644840) (-930 "RADIX.spad" 1641393 1641406 1643070 1643163) (-929 "RADFF.spad" 1639810 1639846 1639928 1640084) (-928 "RADCAT.spad" 1639404 1639412 1639800 1639805) (-927 "RADCAT.spad" 1638996 1639006 1639394 1639399) (-926 "QUEUE.spad" 1638339 1638349 1638603 1638630) (-925 "QUAT.spad" 1636925 1636935 1637267 1637332) (-924 "QUATCT2.spad" 1636544 1636562 1636915 1636920) (-923 "QUATCAT.spad" 1634709 1634719 1636474 1636539) (-922 "QUATCAT.spad" 1632626 1632638 1634393 1634398) (-921 "QUAGG.spad" 1631440 1631450 1632582 1632621) (-920 "QFORM.spad" 1630903 1630917 1631430 1631435) (-919 "QFCAT.spad" 1629594 1629604 1630793 1630898) (-918 "QFCAT.spad" 1627891 1627903 1629092 1629097) (-917 "QFCAT2.spad" 1627582 1627598 1627881 1627886) (-916 "QEQUAT.spad" 1627139 1627147 1627572 1627577) (-915 "QCMPACK.spad" 1621886 1621905 1627129 1627134) (-914 "QALGSET.spad" 1617961 1617993 1621800 1621805) (-913 "QALGSET2.spad" 1615957 1615975 1617951 1617956) (-912 "PWFFINTB.spad" 1613267 1613288 1615947 1615952) (-911 "PUSHVAR.spad" 1612596 1612615 1613257 1613262) (-910 "PTRANFN.spad" 1608722 1608732 1612586 1612591) (-909 "PTPACK.spad" 1605810 1605820 1608712 1608717) (-908 "PTFUNC2.spad" 1605631 1605645 1605800 1605805) (-907 "PTCAT.spad" 1604713 1604723 1605587 1605626) (-906 "PSQFR.spad" 1604020 1604044 1604703 1604708) (-905 "PSEUDLIN.spad" 1602878 1602888 1604010 1604015) (-904 "PSETPK.spad" 1588311 1588327 1602756 1602761) (-903 "PSETCAT.spad" 1582219 1582242 1588279 1588306) (-902 "PSETCAT.spad" 1576113 1576138 1582175 1582180) (-901 "PSCURVE.spad" 1575096 1575104 1576103 1576108) (-900 "PSCAT.spad" 1573863 1573892 1574994 1575091) (-899 "PSCAT.spad" 1572720 1572751 1573853 1573858) (-898 "PRTITION.spad" 1571563 1571571 1572710 1572715) (-897 "PRS.spad" 1561125 1561142 1571519 1571524) (-896 "PRQAGG.spad" 1560544 1560554 1561081 1561120) (-895 "PROPLOG.spad" 1559947 1559955 1560534 1560539) (-894 "PROPFRML.spad" 1557812 1557823 1559883 1559888) (-893 "PROPERTY.spad" 1557306 1557314 1557802 1557807) (-892 "PRODUCT.spad" 1554986 1554998 1555272 1555327) (-891 "PR.spad" 1553375 1553387 1554080 1554207) (-890 "PRINT.spad" 1553127 1553135 1553365 1553370) (-889 "PRIMES.spad" 1551378 1551388 1553117 1553122) (-888 "PRIMELT.spad" 1549359 1549373 1551368 1551373) (-887 "PRIMCAT.spad" 1548982 1548990 1549349 1549354) (-886 "PRIMARR.spad" 1547987 1547997 1548165 1548192) (-885 "PRIMARR2.spad" 1546710 1546722 1547977 1547982) (-884 "PREASSOC.spad" 1546082 1546094 1546700 1546705) (-883 "PPCURVE.spad" 1545219 1545227 1546072 1546077) (-882 "POLYROOT.spad" 1543991 1544013 1545175 1545180) (-881 "POLY.spad" 1541291 1541301 1541808 1541935) (-880 "POLYLIFT.spad" 1540552 1540575 1541281 1541286) (-879 "POLYCATQ.spad" 1538654 1538676 1540542 1540547) (-878 "POLYCAT.spad" 1532060 1532081 1538522 1538649) (-877 "POLYCAT.spad" 1524768 1524791 1531232 1531237) (-876 "POLY2UP.spad" 1524216 1524230 1524758 1524763) (-875 "POLY2.spad" 1523811 1523823 1524206 1524211) (-874 "POLUTIL.spad" 1522752 1522781 1523767 1523772) (-873 "POLTOPOL.spad" 1521500 1521515 1522742 1522747) (-872 "POINT.spad" 1520341 1520351 1520428 1520455) (-871 "PNTHEORY.spad" 1517007 1517015 1520331 1520336) (-870 "PMTOOLS.spad" 1515764 1515778 1516997 1517002) (-869 "PMSYM.spad" 1515309 1515319 1515754 1515759) (-868 "PMQFCAT.spad" 1514896 1514910 1515299 1515304) (-867 "PMPRED.spad" 1514365 1514379 1514886 1514891) (-866 "PMPREDFS.spad" 1513809 1513831 1514355 1514360) (-865 "PMPLCAT.spad" 1512879 1512897 1513741 1513746) (-864 "PMLSAGG.spad" 1512460 1512474 1512869 1512874) (-863 "PMKERNEL.spad" 1512027 1512039 1512450 1512455) (-862 "PMINS.spad" 1511603 1511613 1512017 1512022) (-861 "PMFS.spad" 1511176 1511194 1511593 1511598) (-860 "PMDOWN.spad" 1510462 1510476 1511166 1511171) (-859 "PMASS.spad" 1509474 1509482 1510452 1510457) (-858 "PMASSFS.spad" 1508443 1508459 1509464 1509469) (-857 "PLOTTOOL.spad" 1508223 1508231 1508433 1508438) (-856 "PLOT.spad" 1503054 1503062 1508213 1508218) (-855 "PLOT3D.spad" 1499474 1499482 1503044 1503049) (-854 "PLOT1.spad" 1498615 1498625 1499464 1499469) (-853 "PLEQN.spad" 1485831 1485858 1498605 1498610) (-852 "PINTERP.spad" 1485447 1485466 1485821 1485826) (-851 "PINTERPA.spad" 1485229 1485245 1485437 1485442) (-850 "PI.spad" 1484836 1484844 1485203 1485224) (-849 "PID.spad" 1483792 1483800 1484762 1484831) (-848 "PICOERCE.spad" 1483449 1483459 1483782 1483787) (-847 "PGROEB.spad" 1482046 1482060 1483439 1483444) (-846 "PGE.spad" 1473299 1473307 1482036 1482041) (-845 "PGCD.spad" 1472181 1472198 1473289 1473294) (-844 "PFRPAC.spad" 1471324 1471334 1472171 1472176) (-843 "PFR.spad" 1467981 1467991 1471226 1471319) (-842 "PFOTOOLS.spad" 1467239 1467255 1467971 1467976) (-841 "PFOQ.spad" 1466609 1466627 1467229 1467234) (-840 "PFO.spad" 1466028 1466055 1466599 1466604) (-839 "PF.spad" 1465602 1465614 1465833 1465926) (-838 "PFECAT.spad" 1463268 1463276 1465528 1465597) (-837 "PFECAT.spad" 1460962 1460972 1463224 1463229) (-836 "PFBRU.spad" 1458832 1458844 1460952 1460957) (-835 "PFBR.spad" 1456370 1456393 1458822 1458827) (-834 "PERM.spad" 1452051 1452061 1456200 1456215) (-833 "PERMGRP.spad" 1446787 1446797 1452041 1452046) (-832 "PERMCAT.spad" 1445339 1445349 1446767 1446782) (-831 "PERMAN.spad" 1443871 1443885 1445329 1445334) (-830 "PENDTREE.spad" 1443144 1443154 1443500 1443505) (-829 "PDRING.spad" 1441635 1441645 1443124 1443139) (-828 "PDRING.spad" 1440134 1440146 1441625 1441630) (-827 "PDEPROB.spad" 1439091 1439099 1440124 1440129) (-826 "PDEPACK.spad" 1433093 1433101 1439081 1439086) (-825 "PDECOMP.spad" 1432555 1432572 1433083 1433088) (-824 "PDECAT.spad" 1430909 1430917 1432545 1432550) (-823 "PCOMP.spad" 1430760 1430773 1430899 1430904) (-822 "PBWLB.spad" 1429342 1429359 1430750 1430755) (-821 "PATTERN.spad" 1423773 1423783 1429332 1429337) (-820 "PATTERN2.spad" 1423509 1423521 1423763 1423768) (-819 "PATTERN1.spad" 1421811 1421827 1423499 1423504) (-818 "PATRES.spad" 1419358 1419370 1421801 1421806) (-817 "PATRES2.spad" 1419020 1419034 1419348 1419353) (-816 "PATMATCH.spad" 1417182 1417213 1418733 1418738) (-815 "PATMAB.spad" 1416607 1416617 1417172 1417177) (-814 "PATLRES.spad" 1415691 1415705 1416597 1416602) (-813 "PATAB.spad" 1415455 1415465 1415681 1415686) (-812 "PARTPERM.spad" 1412817 1412825 1415445 1415450) (-811 "PARSURF.spad" 1412245 1412273 1412807 1412812) (-810 "PARSU2.spad" 1412040 1412056 1412235 1412240) (-809 "script-parser.spad" 1411560 1411568 1412030 1412035) (-808 "PARSCURV.spad" 1410988 1411016 1411550 1411555) (-807 "PARSC2.spad" 1410777 1410793 1410978 1410983) (-806 "PARPCURV.spad" 1410235 1410263 1410767 1410772) (-805 "PARPC2.spad" 1410024 1410040 1410225 1410230) (-804 "PAN2EXPR.spad" 1409436 1409444 1410014 1410019) (-803 "PALETTE.spad" 1408406 1408414 1409426 1409431) (-802 "PAIR.spad" 1407389 1407402 1407994 1407999) (-801 "PADICRC.spad" 1404722 1404740 1405897 1405990) (-800 "PADICRAT.spad" 1402740 1402752 1402961 1403054) (-799 "PADIC.spad" 1402435 1402447 1402666 1402735) (-798 "PADICCT.spad" 1400976 1400988 1402361 1402430) (-797 "PADEPAC.spad" 1399655 1399674 1400966 1400971) (-796 "PADE.spad" 1398395 1398411 1399645 1399650) (-795 "OWP.spad" 1397379 1397409 1398253 1398320) (-794 "OVAR.spad" 1397160 1397183 1397369 1397374) (-793 "OUT.spad" 1396244 1396252 1397150 1397155) (-792 "OUTFORM.spad" 1385658 1385666 1396234 1396239) (-791 "OSI.spad" 1385133 1385141 1385648 1385653) (-790 "ORTHPOL.spad" 1383594 1383604 1385050 1385055) (-789 "OREUP.spad" 1382954 1382982 1383276 1383315) (-788 "ORESUP.spad" 1382255 1382279 1382636 1382675) (-787 "OREPCTO.spad" 1380074 1380086 1382175 1382180) (-786 "OREPCAT.spad" 1374131 1374141 1380030 1380069) (-785 "OREPCAT.spad" 1368078 1368090 1373979 1373984) (-784 "ORDSET.spad" 1367244 1367252 1368068 1368073) (-783 "ORDSET.spad" 1366408 1366418 1367234 1367239) (-782 "ORDRING.spad" 1365798 1365806 1366388 1366403) (-781 "ORDRING.spad" 1365196 1365206 1365788 1365793) (-780 "ORDMON.spad" 1365051 1365059 1365186 1365191) (-779 "ORDFUNS.spad" 1364177 1364193 1365041 1365046) (-778 "ORDFIN.spad" 1364111 1364119 1364167 1364172) (-777 "ORDCOMP.spad" 1362579 1362589 1363661 1363690) (-776 "ORDCOMP2.spad" 1361864 1361876 1362569 1362574) (-775 "OPTPROB.spad" 1360444 1360452 1361854 1361859) (-774 "OPTPACK.spad" 1352829 1352837 1360434 1360439) (-773 "OPTCAT.spad" 1350504 1350512 1352819 1352824) (-772 "OPQUERY.spad" 1350053 1350061 1350494 1350499) (-771 "OP.spad" 1349795 1349805 1349875 1349942) (-770 "ONECOMP.spad" 1348543 1348553 1349345 1349374) (-769 "ONECOMP2.spad" 1347961 1347973 1348533 1348538) (-768 "OMSERVER.spad" 1346963 1346971 1347951 1347956) (-767 "OMSAGG.spad" 1346739 1346749 1346907 1346958) (-766 "OMPKG.spad" 1345351 1345359 1346729 1346734) (-765 "OM.spad" 1344316 1344324 1345341 1345346) (-764 "OMLO.spad" 1343741 1343753 1344202 1344241) (-763 "OMEXPR.spad" 1343575 1343585 1343731 1343736) (-762 "OMERR.spad" 1343118 1343126 1343565 1343570) (-761 "OMERRK.spad" 1342152 1342160 1343108 1343113) (-760 "OMENC.spad" 1341496 1341504 1342142 1342147) (-759 "OMDEV.spad" 1335785 1335793 1341486 1341491) (-758 "OMCONN.spad" 1335194 1335202 1335775 1335780) (-757 "OINTDOM.spad" 1334957 1334965 1335120 1335189) (-756 "OFMONOID.spad" 1331144 1331154 1334947 1334952) (-755 "ODVAR.spad" 1330405 1330415 1331134 1331139) (-754 "ODR.spad" 1329853 1329879 1330217 1330366) (-753 "ODPOL.spad" 1327202 1327212 1327542 1327669) (-752 "ODP.spad" 1318728 1318748 1319101 1319230) (-751 "ODETOOLS.spad" 1317311 1317330 1318718 1318723) (-750 "ODESYS.spad" 1314961 1314978 1317301 1317306) (-749 "ODERTRIC.spad" 1310902 1310919 1314918 1314923) (-748 "ODERED.spad" 1310289 1310313 1310892 1310897) (-747 "ODERAT.spad" 1307840 1307857 1310279 1310284) (-746 "ODEPRRIC.spad" 1304731 1304753 1307830 1307835) (-745 "ODEPROB.spad" 1303930 1303938 1304721 1304726) (-744 "ODEPRIM.spad" 1301204 1301226 1303920 1303925) (-743 "ODEPAL.spad" 1300580 1300604 1301194 1301199) (-742 "ODEPACK.spad" 1287182 1287190 1300570 1300575) (-741 "ODEINT.spad" 1286613 1286629 1287172 1287177) (-740 "ODEIFTBL.spad" 1284008 1284016 1286603 1286608) (-739 "ODEEF.spad" 1279375 1279391 1283998 1284003) (-738 "ODECONST.spad" 1278894 1278912 1279365 1279370) (-737 "ODECAT.spad" 1277490 1277498 1278884 1278889) (-736 "OCT.spad" 1275637 1275647 1276353 1276392) (-735 "OCTCT2.spad" 1275281 1275302 1275627 1275632) (-734 "OC.spad" 1273055 1273065 1275237 1275276) (-733 "OC.spad" 1270555 1270567 1272739 1272744) (-732 "OCAMON.spad" 1270403 1270411 1270545 1270550) (-731 "OASGP.spad" 1270218 1270226 1270393 1270398) (-730 "OAMONS.spad" 1269738 1269746 1270208 1270213) (-729 "OAMON.spad" 1269599 1269607 1269728 1269733) (-728 "OAGROUP.spad" 1269461 1269469 1269589 1269594) (-727 "NUMTUBE.spad" 1269048 1269064 1269451 1269456) (-726 "NUMQUAD.spad" 1256910 1256918 1269038 1269043) (-725 "NUMODE.spad" 1248046 1248054 1256900 1256905) (-724 "NUMINT.spad" 1245604 1245612 1248036 1248041) (-723 "NUMFMT.spad" 1244444 1244452 1245594 1245599) (-722 "NUMERIC.spad" 1236517 1236527 1244250 1244255) (-721 "NTSCAT.spad" 1235007 1235023 1236473 1236512) (-720 "NTPOLFN.spad" 1234552 1234562 1234924 1234929) (-719 "NSUP.spad" 1227570 1227580 1232110 1232263) (-718 "NSUP2.spad" 1226962 1226974 1227560 1227565) (-717 "NSMP.spad" 1223161 1223180 1223469 1223596) (-716 "NREP.spad" 1221533 1221547 1223151 1223156) (-715 "NPCOEF.spad" 1220779 1220799 1221523 1221528) (-714 "NORMRETR.spad" 1220377 1220416 1220769 1220774) (-713 "NORMPK.spad" 1218279 1218298 1220367 1220372) (-712 "NORMMA.spad" 1217967 1217993 1218269 1218274) (-711 "NONE.spad" 1217708 1217716 1217957 1217962) (-710 "NONE1.spad" 1217384 1217394 1217698 1217703) (-709 "NODE1.spad" 1216853 1216869 1217374 1217379) (-708 "NNI.spad" 1215740 1215748 1216827 1216848) (-707 "NLINSOL.spad" 1214362 1214372 1215730 1215735) (-706 "NIPROB.spad" 1212845 1212853 1214352 1214357) (-705 "NFINTBAS.spad" 1210305 1210322 1212835 1212840) (-704 "NCODIV.spad" 1208503 1208519 1210295 1210300) (-703 "NCNTFRAC.spad" 1208145 1208159 1208493 1208498) (-702 "NCEP.spad" 1206305 1206319 1208135 1208140) (-701 "NASRING.spad" 1205901 1205909 1206295 1206300) (-700 "NASRING.spad" 1205495 1205505 1205891 1205896) (-699 "NARNG.spad" 1204839 1204847 1205485 1205490) (-698 "NARNG.spad" 1204181 1204191 1204829 1204834) (-697 "NAGSP.spad" 1203254 1203262 1204171 1204176) (-696 "NAGS.spad" 1192779 1192787 1203244 1203249) (-695 "NAGF07.spad" 1191172 1191180 1192769 1192774) (-694 "NAGF04.spad" 1185404 1185412 1191162 1191167) (-693 "NAGF02.spad" 1179213 1179221 1185394 1185399) (-692 "NAGF01.spad" 1174816 1174824 1179203 1179208) (-691 "NAGE04.spad" 1168276 1168284 1174806 1174811) (-690 "NAGE02.spad" 1158618 1158626 1168266 1168271) (-689 "NAGE01.spad" 1154502 1154510 1158608 1158613) (-688 "NAGD03.spad" 1152422 1152430 1154492 1154497) (-687 "NAGD02.spad" 1144953 1144961 1152412 1152417) (-686 "NAGD01.spad" 1139066 1139074 1144943 1144948) (-685 "NAGC06.spad" 1134853 1134861 1139056 1139061) (-684 "NAGC05.spad" 1133322 1133330 1134843 1134848) (-683 "NAGC02.spad" 1132577 1132585 1133312 1133317) (-682 "NAALG.spad" 1132112 1132122 1132545 1132572) (-681 "NAALG.spad" 1131667 1131679 1132102 1132107) (-680 "MULTSQFR.spad" 1128625 1128642 1131657 1131662) (-679 "MULTFACT.spad" 1128008 1128025 1128615 1128620) (-678 "MTSCAT.spad" 1126042 1126063 1127906 1128003) (-677 "MTHING.spad" 1125699 1125709 1126032 1126037) (-676 "MSYSCMD.spad" 1125133 1125141 1125689 1125694) (-675 "MSET.spad" 1123075 1123085 1124839 1124878) (-674 "MSETAGG.spad" 1122908 1122918 1123031 1123070) (-673 "MRING.spad" 1119879 1119891 1122616 1122683) (-672 "MRF2.spad" 1119447 1119461 1119869 1119874) (-671 "MRATFAC.spad" 1118993 1119010 1119437 1119442) (-670 "MPRFF.spad" 1117023 1117042 1118983 1118988) (-669 "MPOLY.spad" 1114461 1114476 1114820 1114947) (-668 "MPCPF.spad" 1113725 1113744 1114451 1114456) (-667 "MPC3.spad" 1113540 1113580 1113715 1113720) (-666 "MPC2.spad" 1113182 1113215 1113530 1113535) (-665 "MONOTOOL.spad" 1111517 1111534 1113172 1113177) (-664 "MONOID.spad" 1110691 1110699 1111507 1111512) (-663 "MONOID.spad" 1109863 1109873 1110681 1110686) (-662 "MONOGEN.spad" 1108609 1108622 1109723 1109858) (-661 "MONOGEN.spad" 1107377 1107392 1108493 1108498) (-660 "MONADWU.spad" 1105391 1105399 1107367 1107372) (-659 "MONADWU.spad" 1103403 1103413 1105381 1105386) (-658 "MONAD.spad" 1102547 1102555 1103393 1103398) (-657 "MONAD.spad" 1101689 1101699 1102537 1102542) (-656 "MOEBIUS.spad" 1100375 1100389 1101669 1101684) (-655 "MODULE.spad" 1100245 1100255 1100343 1100370) (-654 "MODULE.spad" 1100135 1100147 1100235 1100240) (-653 "MODRING.spad" 1099466 1099505 1100115 1100130) (-652 "MODOP.spad" 1098125 1098137 1099288 1099355) (-651 "MODMONOM.spad" 1097657 1097675 1098115 1098120) (-650 "MODMON.spad" 1094367 1094383 1095143 1095296) (-649 "MODFIELD.spad" 1093725 1093764 1094269 1094362) (-648 "MMAP.spad" 1093465 1093499 1093715 1093720) (-647 "MLO.spad" 1091892 1091902 1093421 1093460) (-646 "MLIFT.spad" 1090464 1090481 1091882 1091887) (-645 "MKUCFUNC.spad" 1089997 1090015 1090454 1090459) (-644 "MKRECORD.spad" 1089599 1089612 1089987 1089992) (-643 "MKFUNC.spad" 1088980 1088990 1089589 1089594) (-642 "MKFLCFN.spad" 1087936 1087946 1088970 1088975) (-641 "MKCHSET.spad" 1087712 1087722 1087926 1087931) (-640 "MKBCFUNC.spad" 1087197 1087215 1087702 1087707) (-639 "MINT.spad" 1086636 1086644 1087099 1087192) (-638 "MHROWRED.spad" 1085137 1085147 1086626 1086631) (-637 "MFLOAT.spad" 1083582 1083590 1085027 1085132) (-636 "MFINFACT.spad" 1082982 1083004 1083572 1083577) (-635 "MESH.spad" 1080714 1080722 1082972 1082977) (-634 "MDDFACT.spad" 1078907 1078917 1080704 1080709) (-633 "MDAGG.spad" 1078182 1078192 1078875 1078902) (-632 "MCMPLX.spad" 1074162 1074170 1074776 1074977) (-631 "MCDEN.spad" 1073370 1073382 1074152 1074157) (-630 "MCALCFN.spad" 1070472 1070498 1073360 1073365) (-629 "MATSTOR.spad" 1067748 1067758 1070462 1070467) (-628 "MATRIX.spad" 1066452 1066462 1066936 1066963) (-627 "MATLIN.spad" 1063778 1063802 1066336 1066341) (-626 "MATCAT.spad" 1055351 1055373 1063734 1063773) (-625 "MATCAT.spad" 1046808 1046832 1055193 1055198) (-624 "MATCAT2.spad" 1046076 1046124 1046798 1046803) (-623 "MAPPKG3.spad" 1044975 1044989 1046066 1046071) (-622 "MAPPKG2.spad" 1044309 1044321 1044965 1044970) (-621 "MAPPKG1.spad" 1043127 1043137 1044299 1044304) (-620 "MAPHACK3.spad" 1042935 1042949 1043117 1043122) (-619 "MAPHACK2.spad" 1042700 1042712 1042925 1042930) (-618 "MAPHACK1.spad" 1042330 1042340 1042690 1042695) (-617 "MAGMA.spad" 1040120 1040137 1042320 1042325) (-616 "M3D.spad" 1037818 1037828 1039500 1039505) (-615 "LZSTAGG.spad" 1035036 1035046 1037798 1037813) (-614 "LZSTAGG.spad" 1032262 1032274 1035026 1035031) (-613 "LWORD.spad" 1028967 1028984 1032252 1032257) (-612 "LSQM.spad" 1027195 1027209 1027593 1027644) (-611 "LSPP.spad" 1026728 1026745 1027185 1027190) (-610 "LSMP.spad" 1025568 1025596 1026718 1026723) (-609 "LSMP1.spad" 1023372 1023386 1025558 1025563) (-608 "LSAGG.spad" 1023029 1023039 1023328 1023367) (-607 "LSAGG.spad" 1022718 1022730 1023019 1023024) (-606 "LPOLY.spad" 1021672 1021691 1022574 1022643) (-605 "LPEFRAC.spad" 1020929 1020939 1021662 1021667) (-604 "LO.spad" 1020330 1020344 1020863 1020890) (-603 "LOGIC.spad" 1019932 1019940 1020320 1020325) (-602 "LOGIC.spad" 1019532 1019542 1019922 1019927) (-601 "LODOOPS.spad" 1018450 1018462 1019522 1019527) (-600 "LODO.spad" 1017836 1017852 1018132 1018171) (-599 "LODOF.spad" 1016880 1016897 1017793 1017798) (-598 "LODOCAT.spad" 1015538 1015548 1016836 1016875) (-597 "LODOCAT.spad" 1014194 1014206 1015494 1015499) (-596 "LODO2.spad" 1013469 1013481 1013876 1013915) (-595 "LODO1.spad" 1012871 1012881 1013151 1013190) (-594 "LODEEF.spad" 1011643 1011661 1012861 1012866) (-593 "LNAGG.spad" 1007435 1007445 1011623 1011638) (-592 "LNAGG.spad" 1003201 1003213 1007391 1007396) (-591 "LMOPS.spad" 999937 999954 1003191 1003196) (-590 "LMODULE.spad" 999579 999589 999927 999932) (-589 "LMDICT.spad" 998862 998872 999130 999157) (-588 "LIST.spad" 996580 996590 998009 998036) (-587 "LIST3.spad" 995871 995885 996570 996575) (-586 "LIST2.spad" 994511 994523 995861 995866) (-585 "LIST2MAP.spad" 991388 991400 994501 994506) (-584 "LINEXP.spad" 990820 990830 991368 991383) (-583 "LINDEP.spad" 989597 989609 990732 990737) (-582 "LIMITRF.spad" 987511 987521 989587 989592) (-581 "LIMITPS.spad" 986394 986407 987501 987506) (-580 "LIE.spad" 984408 984420 985684 985829) (-579 "LIECAT.spad" 983884 983894 984334 984403) (-578 "LIECAT.spad" 983388 983400 983840 983845) (-577 "LIB.spad" 981436 981444 982047 982062) (-576 "LGROBP.spad" 978789 978808 981426 981431) (-575 "LF.spad" 977708 977724 978779 978784) (-574 "LFCAT.spad" 976727 976735 977698 977703) (-573 "LEXTRIPK.spad" 972230 972245 976717 976722) (-572 "LEXP.spad" 970233 970260 972210 972225) (-571 "LEADCDET.spad" 968617 968634 970223 970228) (-570 "LAZM3PK.spad" 967321 967343 968607 968612) (-569 "LAUPOL.spad" 966012 966025 966916 966985) (-568 "LAPLACE.spad" 965585 965601 966002 966007) (-567 "LA.spad" 965025 965039 965507 965546) (-566 "LALG.spad" 964801 964811 965005 965020) (-565 "LALG.spad" 964585 964597 964791 964796) (-564 "KOVACIC.spad" 963298 963315 964575 964580) (-563 "KONVERT.spad" 963020 963030 963288 963293) (-562 "KOERCE.spad" 962757 962767 963010 963015) (-561 "KERNEL.spad" 961292 961302 962541 962546) (-560 "KERNEL2.spad" 960995 961007 961282 961287) (-559 "KDAGG.spad" 960086 960108 960963 960990) (-558 "KDAGG.spad" 959197 959221 960076 960081) (-557 "KAFILE.spad" 958160 958176 958395 958422) (-556 "JORDAN.spad" 955987 955999 957450 957595) (-555 "IXAGG.spad" 954100 954124 955967 955982) (-554 "IXAGG.spad" 952078 952104 953947 953952) (-553 "IVECTOR.spad" 950851 950866 951006 951033) (-552 "ITUPLE.spad" 949996 950006 950841 950846) (-551 "ITRIGMNP.spad" 948807 948826 949986 949991) (-550 "ITFUN3.spad" 948301 948315 948797 948802) (-549 "ITFUN2.spad" 948031 948043 948291 948296) (-548 "ITAYLOR.spad" 945823 945838 947867 947992) (-547 "ISUPS.spad" 938234 938249 944797 944894) (-546 "ISUMP.spad" 937731 937747 938224 938229) (-545 "ISTRING.spad" 936734 936747 936900 936927) (-544 "IRURPK.spad" 935447 935466 936724 936729) (-543 "IRSN.spad" 933407 933415 935437 935442) (-542 "IRRF2F.spad" 931882 931892 933363 933368) (-541 "IRREDFFX.spad" 931483 931494 931872 931877) (-540 "IROOT.spad" 929814 929824 931473 931478) (-539 "IR.spad" 927604 927618 929670 929697) (-538 "IR2.spad" 926624 926640 927594 927599) (-537 "IR2F.spad" 925824 925840 926614 926619) (-536 "IPRNTPK.spad" 925584 925592 925814 925819) (-535 "IPF.spad" 925149 925161 925389 925482) (-534 "IPADIC.spad" 924910 924936 925075 925144) (-533 "INVLAPLA.spad" 924555 924571 924900 924905) (-532 "INTTR.spad" 917801 917818 924545 924550) (-531 "INTTOOLS.spad" 915513 915529 917376 917381) (-530 "INTSLPE.spad" 914819 914827 915503 915508) (-529 "INTRVL.spad" 914385 914395 914733 914814) (-528 "INTRF.spad" 912749 912763 914375 914380) (-527 "INTRET.spad" 912181 912191 912739 912744) (-526 "INTRAT.spad" 910856 910873 912171 912176) (-525 "INTPM.spad" 909219 909235 910499 910504) (-524 "INTPAF.spad" 906987 907005 909151 909156) (-523 "INTPACK.spad" 897297 897305 906977 906982) (-522 "INT.spad" 896658 896666 897151 897292) (-521 "INTHERTR.spad" 895924 895941 896648 896653) (-520 "INTHERAL.spad" 895590 895614 895914 895919) (-519 "INTHEORY.spad" 892003 892011 895580 895585) (-518 "INTG0.spad" 885466 885484 891935 891940) (-517 "INTFTBL.spad" 879495 879503 885456 885461) (-516 "INTFACT.spad" 878554 878564 879485 879490) (-515 "INTEF.spad" 876869 876885 878544 878549) (-514 "INTDOM.spad" 875484 875492 876795 876864) (-513 "INTDOM.spad" 874161 874171 875474 875479) (-512 "INTCAT.spad" 872414 872424 874075 874156) (-511 "INTBIT.spad" 871917 871925 872404 872409) (-510 "INTALG.spad" 871099 871126 871907 871912) (-509 "INTAF.spad" 870591 870607 871089 871094) (-508 "INTABL.spad" 869109 869140 869272 869299) (-507 "INS.spad" 866505 866513 869011 869104) (-506 "INS.spad" 863987 863997 866495 866500) (-505 "INPSIGN.spad" 863421 863434 863977 863982) (-504 "INPRODPF.spad" 862487 862506 863411 863416) (-503 "INPRODFF.spad" 861545 861569 862477 862482) (-502 "INNMFACT.spad" 860516 860533 861535 861540) (-501 "INMODGCD.spad" 860000 860030 860506 860511) (-500 "INFSP.spad" 858285 858307 859990 859995) (-499 "INFPROD0.spad" 857335 857354 858275 858280) (-498 "INFORM.spad" 854603 854611 857325 857330) (-497 "INFORM1.spad" 854228 854238 854593 854598) (-496 "INFINITY.spad" 853780 853788 854218 854223) (-495 "INEP.spad" 852312 852334 853770 853775) (-494 "INDE.spad" 852218 852235 852302 852307) (-493 "INCRMAPS.spad" 851639 851649 852208 852213) (-492 "INBFF.spad" 847409 847420 851629 851634) (-491 "IMATRIX.spad" 846354 846380 846866 846893) (-490 "IMATQF.spad" 845448 845492 846310 846315) (-489 "IMATLIN.spad" 844053 844077 845404 845409) (-488 "ILIST.spad" 842709 842724 843236 843263) (-487 "IIARRAY2.spad" 842097 842135 842316 842343) (-486 "IFF.spad" 841507 841523 841778 841871) (-485 "IFARRAY.spad" 838994 839009 840690 840717) (-484 "IFAMON.spad" 838856 838873 838950 838955) (-483 "IEVALAB.spad" 838245 838257 838846 838851) (-482 "IEVALAB.spad" 837632 837646 838235 838240) (-481 "IDPO.spad" 837430 837442 837622 837627) (-480 "IDPOAMS.spad" 837186 837198 837420 837425) (-479 "IDPOAM.spad" 836906 836918 837176 837181) (-478 "IDPC.spad" 835840 835852 836896 836901) (-477 "IDPAM.spad" 835585 835597 835830 835835) (-476 "IDPAG.spad" 835332 835344 835575 835580) (-475 "IDECOMP.spad" 832569 832587 835322 835327) (-474 "IDEAL.spad" 827492 827531 832504 832509) (-473 "ICDEN.spad" 826643 826659 827482 827487) (-472 "ICARD.spad" 825832 825840 826633 826638) (-471 "IBPTOOLS.spad" 824425 824442 825822 825827) (-470 "IBITS.spad" 823624 823637 824061 824088) (-469 "IBATOOL.spad" 820499 820518 823614 823619) (-468 "IBACHIN.spad" 818986 819001 820489 820494) (-467 "IARRAY2.spad" 817974 818000 818593 818620) (-466 "IARRAY1.spad" 817019 817034 817157 817184) (-465 "IAN.spad" 815234 815242 816837 816930) (-464 "IALGFACT.spad" 814835 814868 815224 815229) (-463 "HYPCAT.spad" 814259 814267 814825 814830) (-462 "HYPCAT.spad" 813681 813691 814249 814254) (-461 "HOAGG.spad" 810939 810949 813661 813676) (-460 "HOAGG.spad" 807982 807994 810706 810711) (-459 "HEXADEC.spad" 805854 805862 806452 806545) (-458 "HEUGCD.spad" 804869 804880 805844 805849) (-457 "HELLFDIV.spad" 804459 804483 804859 804864) (-456 "HEAP.spad" 803851 803861 804066 804093) (-455 "HDP.spad" 795373 795389 795750 795879) (-454 "HDMP.spad" 792552 792567 793170 793297) (-453 "HB.spad" 790789 790797 792542 792547) (-452 "HASHTBL.spad" 789259 789290 789470 789497) (-451 "HACKPI.spad" 788742 788750 789161 789254) (-450 "GTSET.spad" 787681 787697 788388 788415) (-449 "GSTBL.spad" 786200 786235 786374 786389) (-448 "GSERIES.spad" 783367 783394 784332 784481) (-447 "GROUP.spad" 782541 782549 783347 783362) (-446 "GROUP.spad" 781723 781733 782531 782536) (-445 "GROEBSOL.spad" 780211 780232 781713 781718) (-444 "GRMOD.spad" 778782 778794 780201 780206) (-443 "GRMOD.spad" 777351 777365 778772 778777) (-442 "GRIMAGE.spad" 769956 769964 777341 777346) (-441 "GRDEF.spad" 768335 768343 769946 769951) (-440 "GRAY.spad" 766794 766802 768325 768330) (-439 "GRALG.spad" 765841 765853 766784 766789) (-438 "GRALG.spad" 764886 764900 765831 765836) (-437 "GPOLSET.spad" 764340 764363 764568 764595) (-436 "GOSPER.spad" 763605 763623 764330 764335) (-435 "GMODPOL.spad" 762743 762770 763573 763600) (-434 "GHENSEL.spad" 761812 761826 762733 762738) (-433 "GENUPS.spad" 757913 757926 761802 761807) (-432 "GENUFACT.spad" 757490 757500 757903 757908) (-431 "GENPGCD.spad" 757074 757091 757480 757485) (-430 "GENMFACT.spad" 756526 756545 757064 757069) (-429 "GENEEZ.spad" 754465 754478 756516 756521) (-428 "GDMP.spad" 751486 751503 752262 752389) (-427 "GCNAALG.spad" 745381 745408 751280 751347) (-426 "GCDDOM.spad" 744553 744561 745307 745376) (-425 "GCDDOM.spad" 743787 743797 744543 744548) (-424 "GB.spad" 741305 741343 743743 743748) (-423 "GBINTERN.spad" 737325 737363 741295 741300) (-422 "GBF.spad" 733082 733120 737315 737320) (-421 "GBEUCLID.spad" 730956 730994 733072 733077) (-420 "GAUSSFAC.spad" 730253 730261 730946 730951) (-419 "GALUTIL.spad" 728575 728585 730209 730214) (-418 "GALPOLYU.spad" 727021 727034 728565 728570) (-417 "GALFACTU.spad" 725186 725205 727011 727016) (-416 "GALFACT.spad" 715319 715330 725176 725181) (-415 "FVFUN.spad" 712332 712340 715299 715314) (-414 "FVC.spad" 711374 711382 712312 712327) (-413 "FUNCTION.spad" 711223 711235 711364 711369) (-412 "FT.spad" 709435 709443 711213 711218) (-411 "FTEM.spad" 708598 708606 709425 709430) (-410 "FSUPFACT.spad" 707499 707518 708535 708540) (-409 "FST.spad" 705585 705593 707489 707494) (-408 "FSRED.spad" 705063 705079 705575 705580) (-407 "FSPRMELT.spad" 703887 703903 705020 705025) (-406 "FSPECF.spad" 701964 701980 703877 703882) (-405 "FS.spad" 696015 696025 701728 701959) (-404 "FS.spad" 689857 689869 695572 695577) (-403 "FSINT.spad" 689515 689531 689847 689852) (-402 "FSERIES.spad" 688702 688714 689335 689434) (-401 "FSCINT.spad" 688015 688031 688692 688697) (-400 "FSAGG.spad" 687120 687130 687959 688010) (-399 "FSAGG.spad" 686199 686211 687040 687045) (-398 "FSAGG2.spad" 684898 684914 686189 686194) (-397 "FS2UPS.spad" 679287 679321 684888 684893) (-396 "FS2.spad" 678932 678948 679277 679282) (-395 "FS2EXPXP.spad" 678055 678078 678922 678927) (-394 "FRUTIL.spad" 676997 677007 678045 678050) (-393 "FR.spad" 670694 670704 676024 676093) (-392 "FRNAALG.spad" 665781 665791 670636 670689) (-391 "FRNAALG.spad" 660880 660892 665737 665742) (-390 "FRNAAF2.spad" 660334 660352 660870 660875) (-389 "FRMOD.spad" 659729 659759 660266 660271) (-388 "FRIDEAL.spad" 658924 658945 659709 659724) (-387 "FRIDEAL2.spad" 658526 658558 658914 658919) (-386 "FRETRCT.spad" 658037 658047 658516 658521) (-385 "FRETRCT.spad" 657416 657428 657897 657902) (-384 "FRAMALG.spad" 655744 655757 657372 657411) (-383 "FRAMALG.spad" 654104 654119 655734 655739) (-382 "FRAC.spad" 651207 651217 651610 651783) (-381 "FRAC2.spad" 650810 650822 651197 651202) (-380 "FR2.spad" 650144 650156 650800 650805) (-379 "FPS.spad" 646953 646961 650034 650139) (-378 "FPS.spad" 643790 643800 646873 646878) (-377 "FPC.spad" 642832 642840 643692 643785) (-376 "FPC.spad" 641960 641970 642822 642827) (-375 "FPATMAB.spad" 641712 641722 641940 641955) (-374 "FPARFRAC.spad" 640185 640202 641702 641707) (-373 "FORTRAN.spad" 638691 638734 640175 640180) (-372 "FORT.spad" 637620 637628 638681 638686) (-371 "FORTFN.spad" 634780 634788 637600 637615) (-370 "FORTCAT.spad" 634454 634462 634760 634775) (-369 "FORMULA.spad" 631792 631800 634444 634449) (-368 "FORMULA1.spad" 631271 631281 631782 631787) (-367 "FORDER.spad" 630962 630986 631261 631266) (-366 "FOP.spad" 630163 630171 630952 630957) (-365 "FNLA.spad" 629587 629609 630131 630158) (-364 "FNCAT.spad" 627915 627923 629577 629582) (-363 "FNAME.spad" 627807 627815 627905 627910) (-362 "FMTC.spad" 627605 627613 627733 627802) (-361 "FMONOID.spad" 624660 624670 627561 627566) (-360 "FM.spad" 624355 624367 624594 624621) (-359 "FMFUN.spad" 621375 621383 624335 624350) (-358 "FMC.spad" 620417 620425 621355 621370) (-357 "FMCAT.spad" 618071 618089 620385 620412) (-356 "FM1.spad" 617428 617440 618005 618032) (-355 "FLOATRP.spad" 615149 615163 617418 617423) (-354 "FLOAT.spad" 608313 608321 615015 615144) (-353 "FLOATCP.spad" 605730 605744 608303 608308) (-352 "FLINEXP.spad" 605442 605452 605710 605725) (-351 "FLINEXP.spad" 605108 605120 605378 605383) (-350 "FLASORT.spad" 604428 604440 605098 605103) (-349 "FLALG.spad" 602074 602093 604354 604423) (-348 "FLAGG.spad" 599080 599090 602042 602069) (-347 "FLAGG.spad" 595999 596011 598963 598968) (-346 "FLAGG2.spad" 594680 594696 595989 595994) (-345 "FINRALG.spad" 592709 592722 594636 594675) (-344 "FINRALG.spad" 590664 590679 592593 592598) (-343 "FINITE.spad" 589816 589824 590654 590659) (-342 "FINAALG.spad" 578797 578807 589758 589811) (-341 "FINAALG.spad" 567790 567802 578753 578758) (-340 "FILE.spad" 567373 567383 567780 567785) (-339 "FILECAT.spad" 565891 565908 567363 567368) (-338 "FIELD.spad" 565297 565305 565793 565886) (-337 "FIELD.spad" 564789 564799 565287 565292) (-336 "FGROUP.spad" 563398 563408 564769 564784) (-335 "FGLMICPK.spad" 562185 562200 563388 563393) (-334 "FFX.spad" 561560 561575 561901 561994) (-333 "FFSLPE.spad" 561049 561070 561550 561555) (-332 "FFPOLY.spad" 552301 552312 561039 561044) (-331 "FFPOLY2.spad" 551361 551378 552291 552296) (-330 "FFP.spad" 550758 550778 551077 551170) (-329 "FF.spad" 550206 550222 550439 550532) (-328 "FFNBX.spad" 548718 548738 549922 550015) (-327 "FFNBP.spad" 547231 547248 548434 548527) (-326 "FFNB.spad" 545696 545717 546912 547005) (-325 "FFINTBAS.spad" 543110 543129 545686 545691) (-324 "FFIELDC.spad" 540685 540693 543012 543105) (-323 "FFIELDC.spad" 538346 538356 540675 540680) (-322 "FFHOM.spad" 537094 537111 538336 538341) (-321 "FFF.spad" 534529 534540 537084 537089) (-320 "FFCGX.spad" 533376 533396 534245 534338) (-319 "FFCGP.spad" 532265 532285 533092 533185) (-318 "FFCG.spad" 531057 531078 531946 532039) (-317 "FFCAT.spad" 523958 523980 530896 531052) (-316 "FFCAT.spad" 516938 516962 523878 523883) (-315 "FFCAT2.spad" 516683 516723 516928 516933) (-314 "FEXPR.spad" 508396 508442 516443 516482) (-313 "FEVALAB.spad" 508102 508112 508386 508391) (-312 "FEVALAB.spad" 507593 507605 507879 507884) (-311 "FDIV.spad" 507035 507059 507583 507588) (-310 "FDIVCAT.spad" 505077 505101 507025 507030) (-309 "FDIVCAT.spad" 503117 503143 505067 505072) (-308 "FDIV2.spad" 502771 502811 503107 503112) (-307 "FCPAK1.spad" 501324 501332 502761 502766) (-306 "FCOMP.spad" 500703 500713 501314 501319) (-305 "FC.spad" 490528 490536 500693 500698) (-304 "FAXF.spad" 483463 483477 490430 490523) (-303 "FAXF.spad" 476450 476466 483419 483424) (-302 "FARRAY.spad" 474596 474606 475633 475660) (-301 "FAMR.spad" 472716 472728 474494 474591) (-300 "FAMR.spad" 470820 470834 472600 472605) (-299 "FAMONOID.spad" 470470 470480 470774 470779) (-298 "FAMONC.spad" 468692 468704 470460 470465) (-297 "FAGROUP.spad" 468298 468308 468588 468615) (-296 "FACUTIL.spad" 466494 466511 468288 468293) (-295 "FACTFUNC.spad" 465670 465680 466484 466489) (-294 "EXPUPXS.spad" 462503 462526 463802 463951) (-293 "EXPRTUBE.spad" 459731 459739 462493 462498) (-292 "EXPRODE.spad" 456603 456619 459721 459726) (-291 "EXPR.spad" 451905 451915 452619 453022) (-290 "EXPR2UPS.spad" 447997 448010 451895 451900) (-289 "EXPR2.spad" 447700 447712 447987 447992) (-288 "EXPEXPAN.spad" 444641 444666 445275 445368) (-287 "EXIT.spad" 444312 444320 444631 444636) (-286 "EVALCYC.spad" 443770 443784 444302 444307) (-285 "EVALAB.spad" 443334 443344 443760 443765) (-284 "EVALAB.spad" 442896 442908 443324 443329) (-283 "EUCDOM.spad" 440438 440446 442822 442891) (-282 "EUCDOM.spad" 438042 438052 440428 440433) (-281 "ESTOOLS.spad" 429882 429890 438032 438037) (-280 "ESTOOLS2.spad" 429483 429497 429872 429877) (-279 "ESTOOLS1.spad" 429168 429179 429473 429478) (-278 "ES.spad" 421715 421723 429158 429163) (-277 "ES.spad" 414170 414180 421615 421620) (-276 "ESCONT.spad" 410943 410951 414160 414165) (-275 "ESCONT1.spad" 410692 410704 410933 410938) (-274 "ES2.spad" 410187 410203 410682 410687) (-273 "ES1.spad" 409753 409769 410177 410182) (-272 "ERROR.spad" 407074 407082 409743 409748) (-271 "EQTBL.spad" 405546 405568 405755 405782) (-270 "EQ.spad" 400430 400440 403229 403338) (-269 "EQ2.spad" 400146 400158 400420 400425) (-268 "EP.spad" 396460 396470 400136 400141) (-267 "ENV.spad" 395162 395170 396450 396455) (-266 "ENTIRER.spad" 394830 394838 395106 395157) (-265 "EMR.spad" 394031 394072 394756 394825) (-264 "ELTAGG.spad" 392271 392290 394021 394026) (-263 "ELTAGG.spad" 390475 390496 392227 392232) (-262 "ELTAB.spad" 389922 389940 390465 390470) (-261 "ELFUTS.spad" 389301 389320 389912 389917) (-260 "ELEMFUN.spad" 388990 388998 389291 389296) (-259 "ELEMFUN.spad" 388677 388687 388980 388985) (-258 "ELAGG.spad" 386608 386618 388645 388672) (-257 "ELAGG.spad" 384488 384500 386527 386532) (-256 "ELABEXPR.spad" 383427 383435 384478 384483) (-255 "EFUPXS.spad" 380203 380233 383383 383388) (-254 "EFULS.spad" 377039 377062 380159 380164) (-253 "EFSTRUC.spad" 374994 375010 377029 377034) (-252 "EF.spad" 369760 369776 374984 374989) (-251 "EAB.spad" 368036 368044 369750 369755) (-250 "E04UCFA.spad" 367572 367580 368026 368031) (-249 "E04NAFA.spad" 367149 367157 367562 367567) (-248 "E04MBFA.spad" 366729 366737 367139 367144) (-247 "E04JAFA.spad" 366265 366273 366719 366724) (-246 "E04GCFA.spad" 365801 365809 366255 366260) (-245 "E04FDFA.spad" 365337 365345 365791 365796) (-244 "E04DGFA.spad" 364873 364881 365327 365332) (-243 "E04AGNT.spad" 360715 360723 364863 364868) (-242 "DVARCAT.spad" 357400 357410 360705 360710) (-241 "DVARCAT.spad" 354083 354095 357390 357395) (-240 "DSMP.spad" 351517 351531 351822 351949) (-239 "DROPT.spad" 345462 345470 351507 351512) (-238 "DROPT1.spad" 345125 345135 345452 345457) (-237 "DROPT0.spad" 339952 339960 345115 345120) (-236 "DRAWPT.spad" 338107 338115 339942 339947) (-235 "DRAW.spad" 330707 330720 338097 338102) (-234 "DRAWHACK.spad" 330015 330025 330697 330702) (-233 "DRAWCX.spad" 327457 327465 330005 330010) (-232 "DRAWCURV.spad" 326994 327009 327447 327452) (-231 "DRAWCFUN.spad" 316166 316174 326984 326989) (-230 "DQAGG.spad" 314322 314332 316122 316161) (-229 "DPOLCAT.spad" 309663 309679 314190 314317) (-228 "DPOLCAT.spad" 305090 305108 309619 309624) (-227 "DPMO.spad" 299077 299093 299215 299511) (-226 "DPMM.spad" 293077 293095 293202 293498) (-225 "domain.spad" 292348 292356 293067 293072) (-224 "DMP.spad" 289573 289588 290145 290272) (-223 "DLP.spad" 288921 288931 289563 289568) (-222 "DLIST.spad" 287333 287343 288104 288131) (-221 "DLAGG.spad" 285734 285744 287313 287328) (-220 "DIVRING.spad" 285181 285189 285678 285729) (-219 "DIVRING.spad" 284672 284682 285171 285176) (-218 "DISPLAY.spad" 282852 282860 284662 284667) (-217 "DIRPROD.spad" 274111 274127 274751 274880) (-216 "DIRPROD2.spad" 272919 272937 274101 274106) (-215 "DIRPCAT.spad" 271851 271867 272773 272914) (-214 "DIRPCAT.spad" 270523 270541 271447 271452) (-213 "DIOSP.spad" 269348 269356 270513 270518) (-212 "DIOPS.spad" 268320 268330 269316 269343) (-211 "DIOPS.spad" 267278 267290 268276 268281) (-210 "DIFRING.spad" 266570 266578 267258 267273) (-209 "DIFRING.spad" 265870 265880 266560 266565) (-208 "DIFEXT.spad" 265029 265039 265850 265865) (-207 "DIFEXT.spad" 264105 264117 264928 264933) (-206 "DIAGG.spad" 263723 263733 264073 264100) (-205 "DIAGG.spad" 263361 263373 263713 263718) (-204 "DHMATRIX.spad" 261665 261675 262818 262845) (-203 "DFSFUN.spad" 255073 255081 261655 261660) (-202 "DFLOAT.spad" 251596 251604 254963 255068) (-201 "DFINTTLS.spad" 249805 249821 251586 251591) (-200 "DERHAM.spad" 247715 247747 249785 249800) (-199 "DEQUEUE.spad" 247033 247043 247322 247349) (-198 "DEGRED.spad" 246648 246662 247023 247028) (-197 "DEFINTRF.spad" 244173 244183 246638 246643) (-196 "DEFINTEF.spad" 242669 242685 244163 244168) (-195 "DECIMAL.spad" 240553 240561 241139 241232) (-194 "DDFACT.spad" 238352 238369 240543 240548) (-193 "DBLRESP.spad" 237950 237974 238342 238347) (-192 "DBASE.spad" 236522 236532 237940 237945) (-191 "D03FAFA.spad" 236350 236358 236512 236517) (-190 "D03EEFA.spad" 236170 236178 236340 236345) (-189 "D03AGNT.spad" 235250 235258 236160 236165) (-188 "D02EJFA.spad" 234712 234720 235240 235245) (-187 "D02CJFA.spad" 234190 234198 234702 234707) (-186 "D02BHFA.spad" 233680 233688 234180 234185) (-185 "D02BBFA.spad" 233170 233178 233670 233675) (-184 "D02AGNT.spad" 227974 227982 233160 233165) (-183 "D01WGTS.spad" 226293 226301 227964 227969) (-182 "D01TRNS.spad" 226270 226278 226283 226288) (-181 "D01GBFA.spad" 225792 225800 226260 226265) (-180 "D01FCFA.spad" 225314 225322 225782 225787) (-179 "D01ASFA.spad" 224782 224790 225304 225309) (-178 "D01AQFA.spad" 224228 224236 224772 224777) (-177 "D01APFA.spad" 223652 223660 224218 224223) (-176 "D01ANFA.spad" 223146 223154 223642 223647) (-175 "D01AMFA.spad" 222656 222664 223136 223141) (-174 "D01ALFA.spad" 222196 222204 222646 222651) (-173 "D01AKFA.spad" 221722 221730 222186 222191) (-172 "D01AJFA.spad" 221245 221253 221712 221717) (-171 "D01AGNT.spad" 217304 217312 221235 221240) (-170 "CYCLOTOM.spad" 216810 216818 217294 217299) (-169 "CYCLES.spad" 213642 213650 216800 216805) (-168 "CVMP.spad" 213059 213069 213632 213637) (-167 "CTRIGMNP.spad" 211549 211565 213049 213054) (-166 "CTORCALL.spad" 211137 211145 211539 211544) (-165 "CSTTOOLS.spad" 210380 210393 211127 211132) (-164 "CRFP.spad" 204084 204097 210370 210375) (-163 "CRAPACK.spad" 203127 203137 204074 204079) (-162 "CPMATCH.spad" 202627 202642 203052 203057) (-161 "CPIMA.spad" 202332 202351 202617 202622) (-160 "COORDSYS.spad" 197225 197235 202322 202327) (-159 "CONTOUR.spad" 196627 196635 197215 197220) (-158 "CONTFRAC.spad" 192239 192249 196529 196622) (-157 "COMRING.spad" 191913 191921 192177 192234) (-156 "COMPPROP.spad" 191427 191435 191903 191908) (-155 "COMPLPAT.spad" 191194 191209 191417 191422) (-154 "COMPLEX.spad" 185227 185237 185471 185732) (-153 "COMPLEX2.spad" 184940 184952 185217 185222) (-152 "COMPFACT.spad" 184542 184556 184930 184935) (-151 "COMPCAT.spad" 182598 182608 184264 184537) (-150 "COMPCAT.spad" 180361 180373 182029 182034) (-149 "COMMUPC.spad" 180107 180125 180351 180356) (-148 "COMMONOP.spad" 179640 179648 180097 180102) (-147 "COMM.spad" 179449 179457 179630 179635) (-146 "COMBOPC.spad" 178354 178362 179439 179444) (-145 "COMBINAT.spad" 177099 177109 178344 178349) (-144 "COMBF.spad" 174467 174483 177089 177094) (-143 "COLOR.spad" 173304 173312 174457 174462) (-142 "CMPLXRT.spad" 173013 173030 173294 173299) (-141 "CLIP.spad" 169105 169113 173003 173008) (-140 "CLIF.spad" 167744 167760 169061 169100) (-139 "CLAGG.spad" 164219 164229 167724 167739) (-138 "CLAGG.spad" 160575 160587 164082 164087) (-137 "CINTSLPE.spad" 159900 159913 160565 160570) (-136 "CHVAR.spad" 157978 158000 159890 159895) (-135 "CHARZ.spad" 157893 157901 157958 157973) (-134 "CHARPOL.spad" 157401 157411 157883 157888) (-133 "CHARNZ.spad" 157154 157162 157381 157396) (-132 "CHAR.spad" 155044 155052 157144 157149) (-131 "CFCAT.spad" 154360 154368 155034 155039) (-130 "CDEN.spad" 153518 153532 154350 154355) (-129 "CCLASS.spad" 151667 151675 152929 152968) (-128 "CARTEN.spad" 146770 146794 151657 151662) (-127 "CARTEN2.spad" 146156 146183 146760 146765) (-126 "CARD.spad" 143445 143453 146130 146151) (-125 "CACHSET.spad" 143067 143075 143435 143440) (-124 "CABMON.spad" 142620 142628 143057 143062) (-123 "BTREE.spad" 141689 141699 142227 142254) (-122 "BTOURN.spad" 140692 140702 141296 141323) (-121 "BTCAT.spad" 140068 140078 140648 140687) (-120 "BTCAT.spad" 139476 139488 140058 140063) (-119 "BTAGG.spad" 138492 138500 139432 139471) (-118 "BTAGG.spad" 137540 137550 138482 138487) (-117 "BSTREE.spad" 136275 136285 137147 137174) (-116 "BRILL.spad" 134470 134481 136265 136270) (-115 "BRAGG.spad" 133384 133394 134450 134465) (-114 "BRAGG.spad" 132272 132284 133340 133345) (-113 "BPADICRT.spad" 130256 130268 130511 130604) (-112 "BPADIC.spad" 129920 129932 130182 130251) (-111 "BOUNDZRO.spad" 129576 129593 129910 129915) (-110 "BOP.spad" 125040 125048 129566 129571) (-109 "BOP1.spad" 122426 122436 124996 125001) (-108 "BOOLEAN.spad" 121679 121687 122416 122421) (-107 "BMODULE.spad" 121391 121403 121647 121674) (-106 "BITS.spad" 120810 120818 121027 121054) (-105 "BINFILE.spad" 120153 120161 120800 120805) (-104 "BINDING.spad" 119572 119580 120143 120148) (-103 "BINARY.spad" 117465 117473 118042 118135) (-102 "BGAGG.spad" 116650 116660 117433 117460) (-101 "BGAGG.spad" 115855 115867 116640 116645) (-100 "BFUNCT.spad" 115419 115427 115835 115850) (-99 "BEZOUT.spad" 114554 114580 115369 115374) (-98 "BBTREE.spad" 111374 111383 114161 114188) (-97 "BASTYPE.spad" 111047 111054 111364 111369) (-96 "BASTYPE.spad" 110718 110727 111037 111042) (-95 "BALFACT.spad" 110158 110170 110708 110713) (-94 "AUTOMOR.spad" 109605 109614 110138 110153) (-93 "ATTREG.spad" 106324 106331 109357 109600) (-92 "ATTRBUT.spad" 102347 102354 106304 106319) (-91 "ATRIG.spad" 101817 101824 102337 102342) (-90 "ATRIG.spad" 101285 101294 101807 101812) (-89 "ASTACK.spad" 100618 100627 100892 100919) (-88 "ASSOCEQ.spad" 99418 99429 100574 100579) (-87 "ASP9.spad" 98499 98512 99408 99413) (-86 "ASP8.spad" 97542 97555 98489 98494) (-85 "ASP80.spad" 96864 96877 97532 97537) (-84 "ASP7.spad" 96024 96037 96854 96859) (-83 "ASP78.spad" 95475 95488 96014 96019) (-82 "ASP77.spad" 94844 94857 95465 95470) (-81 "ASP74.spad" 93936 93949 94834 94839) (-80 "ASP73.spad" 93207 93220 93926 93931) (-79 "ASP6.spad" 91839 91852 93197 93202) (-78 "ASP55.spad" 90348 90361 91829 91834) (-77 "ASP50.spad" 88165 88178 90338 90343) (-76 "ASP4.spad" 87460 87473 88155 88160) (-75 "ASP49.spad" 86459 86472 87450 87455) (-74 "ASP42.spad" 84866 84905 86449 86454) (-73 "ASP41.spad" 83445 83484 84856 84861) (-72 "ASP35.spad" 82433 82446 83435 83440) (-71 "ASP34.spad" 81734 81747 82423 82428) (-70 "ASP33.spad" 81294 81307 81724 81729) (-69 "ASP31.spad" 80434 80447 81284 81289) (-68 "ASP30.spad" 79326 79339 80424 80429) (-67 "ASP29.spad" 78792 78805 79316 79321) (-66 "ASP28.spad" 70065 70078 78782 78787) (-65 "ASP27.spad" 68962 68975 70055 70060) (-64 "ASP24.spad" 68049 68062 68952 68957) (-63 "ASP20.spad" 67265 67278 68039 68044) (-62 "ASP1.spad" 66646 66659 67255 67260) (-61 "ASP19.spad" 61332 61345 66636 66641) (-60 "ASP12.spad" 60746 60759 61322 61327) (-59 "ASP10.spad" 60017 60030 60736 60741) (-58 "ARRAY2.spad" 59377 59386 59624 59651) (-57 "ARRAY1.spad" 58212 58221 58560 58587) (-56 "ARRAY12.spad" 56881 56892 58202 58207) (-55 "ARR2CAT.spad" 52531 52552 56837 56876) (-54 "ARR2CAT.spad" 48213 48236 52521 52526) (-53 "APPRULE.spad" 47457 47479 48203 48208) (-52 "APPLYORE.spad" 47072 47085 47447 47452) (-51 "ANY.spad" 45414 45421 47062 47067) (-50 "ANY1.spad" 44485 44494 45404 45409) (-49 "ANTISYM.spad" 42924 42940 44465 44480) (-48 "ANON.spad" 42837 42844 42914 42919) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2235816 2235821 2235826 2235831) (-2 NIL 2235796 2235801 2235806 2235811) (-1 NIL 2235776 2235781 2235786 2235791) (0 NIL 2235756 2235761 2235766 2235771) (-1194 "ZMOD.spad" 2235565 2235578 2235694 2235751) (-1193 "ZLINDEP.spad" 2234609 2234620 2235555 2235560) (-1192 "ZDSOLVE.spad" 2224458 2224480 2234599 2234604) (-1191 "YSTREAM.spad" 2223951 2223962 2224448 2224453) (-1190 "XRPOLY.spad" 2223171 2223191 2223807 2223876) (-1189 "XPR.spad" 2220900 2220913 2222889 2222988) (-1188 "XPOLY.spad" 2220455 2220466 2220756 2220825) (-1187 "XPOLYC.spad" 2219772 2219788 2220381 2220450) (-1186 "XPBWPOLY.spad" 2218209 2218229 2219552 2219621) (-1185 "XF.spad" 2216670 2216685 2218111 2218204) (-1184 "XF.spad" 2215111 2215128 2216554 2216559) (-1183 "XFALG.spad" 2212135 2212151 2215037 2215106) (-1182 "XEXPPKG.spad" 2211386 2211412 2212125 2212130) (-1181 "XDPOLY.spad" 2211000 2211016 2211242 2211311) (-1180 "XALG.spad" 2210598 2210609 2210956 2210995) (-1179 "WUTSET.spad" 2206437 2206454 2210244 2210271) (-1178 "WP.spad" 2205451 2205495 2206295 2206362) (-1177 "WFFINTBS.spad" 2203014 2203036 2205441 2205446) (-1176 "WEIER.spad" 2201228 2201239 2203004 2203009) (-1175 "VSPACE.spad" 2200901 2200912 2201196 2201223) (-1174 "VSPACE.spad" 2200594 2200607 2200891 2200896) (-1173 "VOID.spad" 2200184 2200193 2200584 2200589) (-1172 "VIEW.spad" 2197806 2197815 2200174 2200179) (-1171 "VIEWDEF.spad" 2193003 2193012 2197796 2197801) (-1170 "VIEW3D.spad" 2176838 2176847 2192993 2192998) (-1169 "VIEW2D.spad" 2164575 2164584 2176828 2176833) (-1168 "VECTOR.spad" 2163252 2163263 2163503 2163530) (-1167 "VECTOR2.spad" 2161879 2161892 2163242 2163247) (-1166 "VECTCAT.spad" 2159767 2159778 2161835 2161874) (-1165 "VECTCAT.spad" 2157476 2157489 2159546 2159551) (-1164 "VARIABLE.spad" 2157256 2157271 2157466 2157471) (-1163 "UTYPE.spad" 2156890 2156899 2157236 2157251) (-1162 "UTSODETL.spad" 2156183 2156207 2156846 2156851) (-1161 "UTSODE.spad" 2154371 2154391 2156173 2156178) (-1160 "UTS.spad" 2149160 2149188 2152838 2152935) (-1159 "UTSCAT.spad" 2146611 2146627 2149058 2149155) (-1158 "UTSCAT.spad" 2143706 2143724 2146155 2146160) (-1157 "UTS2.spad" 2143299 2143334 2143696 2143701) (-1156 "URAGG.spad" 2137921 2137932 2143279 2143294) (-1155 "URAGG.spad" 2132517 2132530 2137877 2137882) (-1154 "UPXSSING.spad" 2130163 2130189 2131601 2131734) (-1153 "UPXS.spad" 2127190 2127218 2128295 2128444) (-1152 "UPXSCONS.spad" 2124947 2124967 2125322 2125471) (-1151 "UPXSCCA.spad" 2123405 2123425 2124793 2124942) (-1150 "UPXSCCA.spad" 2122005 2122027 2123395 2123400) (-1149 "UPXSCAT.spad" 2120586 2120602 2121851 2122000) (-1148 "UPXS2.spad" 2120127 2120180 2120576 2120581) (-1147 "UPSQFREE.spad" 2118539 2118553 2120117 2120122) (-1146 "UPSCAT.spad" 2116132 2116156 2118437 2118534) (-1145 "UPSCAT.spad" 2113431 2113457 2115738 2115743) (-1144 "UPOLYC.spad" 2108409 2108420 2113273 2113426) (-1143 "UPOLYC.spad" 2103279 2103292 2108145 2108150) (-1142 "UPOLYC2.spad" 2102748 2102767 2103269 2103274) (-1141 "UP.spad" 2099793 2099808 2100301 2100454) (-1140 "UPMP.spad" 2098683 2098696 2099783 2099788) (-1139 "UPDIVP.spad" 2098246 2098260 2098673 2098678) (-1138 "UPDECOMP.spad" 2096483 2096497 2098236 2098241) (-1137 "UPCDEN.spad" 2095690 2095706 2096473 2096478) (-1136 "UP2.spad" 2095052 2095073 2095680 2095685) (-1135 "UNISEG.spad" 2094405 2094416 2094971 2094976) (-1134 "UNISEG2.spad" 2093898 2093911 2094361 2094366) (-1133 "UNIFACT.spad" 2092999 2093011 2093888 2093893) (-1132 "ULS.spad" 2083558 2083586 2084651 2085080) (-1131 "ULSCONS.spad" 2077601 2077621 2077973 2078122) (-1130 "ULSCCAT.spad" 2075198 2075218 2077421 2077596) (-1129 "ULSCCAT.spad" 2072929 2072951 2075154 2075159) (-1128 "ULSCAT.spad" 2071145 2071161 2072775 2072924) (-1127 "ULS2.spad" 2070657 2070710 2071135 2071140) (-1126 "UFD.spad" 2069722 2069731 2070583 2070652) (-1125 "UFD.spad" 2068849 2068860 2069712 2069717) (-1124 "UDVO.spad" 2067696 2067705 2068839 2068844) (-1123 "UDPO.spad" 2065123 2065134 2067652 2067657) (-1122 "TYPE.spad" 2065045 2065054 2065103 2065118) (-1121 "TWOFACT.spad" 2063695 2063710 2065035 2065040) (-1120 "TUPLE.spad" 2063081 2063092 2063594 2063599) (-1119 "TUBETOOL.spad" 2059918 2059927 2063071 2063076) (-1118 "TUBE.spad" 2058559 2058576 2059908 2059913) (-1117 "TS.spad" 2057148 2057164 2058124 2058221) (-1116 "TSETCAT.spad" 2044263 2044280 2057104 2057143) (-1115 "TSETCAT.spad" 2031376 2031395 2044219 2044224) (-1114 "TRMANIP.spad" 2025742 2025759 2031082 2031087) (-1113 "TRIMAT.spad" 2024701 2024726 2025732 2025737) (-1112 "TRIGMNIP.spad" 2023218 2023235 2024691 2024696) (-1111 "TRIGCAT.spad" 2022730 2022739 2023208 2023213) (-1110 "TRIGCAT.spad" 2022240 2022251 2022720 2022725) (-1109 "TREE.spad" 2020811 2020822 2021847 2021874) (-1108 "TRANFUN.spad" 2020642 2020651 2020801 2020806) (-1107 "TRANFUN.spad" 2020471 2020482 2020632 2020637) (-1106 "TOPSP.spad" 2020145 2020154 2020461 2020466) (-1105 "TOOLSIGN.spad" 2019808 2019819 2020135 2020140) (-1104 "TEXTFILE.spad" 2018365 2018374 2019798 2019803) (-1103 "TEX.spad" 2015382 2015391 2018355 2018360) (-1102 "TEX1.spad" 2014938 2014949 2015372 2015377) (-1101 "TEMUTL.spad" 2014493 2014502 2014928 2014933) (-1100 "TBCMPPK.spad" 2012586 2012609 2014483 2014488) (-1099 "TBAGG.spad" 2011610 2011633 2012554 2012581) (-1098 "TBAGG.spad" 2010654 2010679 2011600 2011605) (-1097 "TANEXP.spad" 2010030 2010041 2010644 2010649) (-1096 "TABLE.spad" 2008441 2008464 2008711 2008738) (-1095 "TABLEAU.spad" 2007922 2007933 2008431 2008436) (-1094 "TABLBUMP.spad" 2004705 2004716 2007912 2007917) (-1093 "SYSSOLP.spad" 2002178 2002189 2004695 2004700) (-1092 "SYNTAX.spad" 1998370 1998379 2002168 2002173) (-1091 "SYMTAB.spad" 1996426 1996435 1998360 1998365) (-1090 "SYMS.spad" 1992411 1992420 1996416 1996421) (-1089 "SYMPOLY.spad" 1991421 1991432 1991503 1991630) (-1088 "SYMFUNC.spad" 1990896 1990907 1991411 1991416) (-1087 "SYMBOL.spad" 1988232 1988241 1990886 1990891) (-1086 "SWITCH.spad" 1984989 1984998 1988222 1988227) (-1085 "SUTS.spad" 1981888 1981916 1983456 1983553) (-1084 "SUPXS.spad" 1978902 1978930 1980020 1980169) (-1083 "SUP.spad" 1975674 1975685 1976455 1976608) (-1082 "SUPFRACF.spad" 1974779 1974797 1975664 1975669) (-1081 "SUP2.spad" 1974169 1974182 1974769 1974774) (-1080 "SUMRF.spad" 1973135 1973146 1974159 1974164) (-1079 "SUMFS.spad" 1972768 1972785 1973125 1973130) (-1078 "SULS.spad" 1963314 1963342 1964420 1964849) (-1077 "SUCH.spad" 1962994 1963009 1963304 1963309) (-1076 "SUBSPACE.spad" 1955001 1955016 1962984 1962989) (-1075 "SUBRESP.spad" 1954161 1954175 1954957 1954962) (-1074 "STTF.spad" 1950260 1950276 1954151 1954156) (-1073 "STTFNC.spad" 1946728 1946744 1950250 1950255) (-1072 "STTAYLOR.spad" 1939126 1939137 1946609 1946614) (-1071 "STRTBL.spad" 1937631 1937648 1937780 1937807) (-1070 "STRING.spad" 1937040 1937049 1937054 1937081) (-1069 "STRICAT.spad" 1936816 1936825 1936996 1937035) (-1068 "STREAM.spad" 1933584 1933595 1936341 1936356) (-1067 "STREAM3.spad" 1933129 1933144 1933574 1933579) (-1066 "STREAM2.spad" 1932197 1932210 1933119 1933124) (-1065 "STREAM1.spad" 1931901 1931912 1932187 1932192) (-1064 "STINPROD.spad" 1930807 1930823 1931891 1931896) (-1063 "STEP.spad" 1930008 1930017 1930797 1930802) (-1062 "STBL.spad" 1928534 1928562 1928701 1928716) (-1061 "STAGG.spad" 1927599 1927610 1928514 1928529) (-1060 "STAGG.spad" 1926672 1926685 1927589 1927594) (-1059 "STACK.spad" 1926023 1926034 1926279 1926306) (-1058 "SREGSET.spad" 1923727 1923744 1925669 1925696) (-1057 "SRDCMPK.spad" 1922272 1922292 1923717 1923722) (-1056 "SRAGG.spad" 1917357 1917366 1922228 1922267) (-1055 "SRAGG.spad" 1912474 1912485 1917347 1917352) (-1054 "SQMATRIX.spad" 1910100 1910118 1911008 1911095) (-1053 "SPLTREE.spad" 1904652 1904665 1909536 1909563) (-1052 "SPLNODE.spad" 1901240 1901253 1904642 1904647) (-1051 "SPFCAT.spad" 1900017 1900026 1901230 1901235) (-1050 "SPECOUT.spad" 1898567 1898576 1900007 1900012) (-1049 "spad-parser.spad" 1898032 1898041 1898557 1898562) (-1048 "SPACEC.spad" 1882045 1882056 1898022 1898027) (-1047 "SPACE3.spad" 1881821 1881832 1882035 1882040) (-1046 "SORTPAK.spad" 1881366 1881379 1881777 1881782) (-1045 "SOLVETRA.spad" 1879123 1879134 1881356 1881361) (-1044 "SOLVESER.spad" 1877643 1877654 1879113 1879118) (-1043 "SOLVERAD.spad" 1873653 1873664 1877633 1877638) (-1042 "SOLVEFOR.spad" 1872073 1872091 1873643 1873648) (-1041 "SNTSCAT.spad" 1871661 1871678 1872029 1872068) (-1040 "SMTS.spad" 1869921 1869947 1871226 1871323) (-1039 "SMP.spad" 1867363 1867383 1867753 1867880) (-1038 "SMITH.spad" 1866206 1866231 1867353 1867358) (-1037 "SMATCAT.spad" 1864304 1864334 1866138 1866201) (-1036 "SMATCAT.spad" 1862346 1862378 1864182 1864187) (-1035 "SKAGG.spad" 1861295 1861306 1862302 1862341) (-1034 "SINT.spad" 1859603 1859612 1861161 1861290) (-1033 "SIMPAN.spad" 1859331 1859340 1859593 1859598) (-1032 "SIGNRF.spad" 1858439 1858450 1859321 1859326) (-1031 "SIGNEF.spad" 1857708 1857725 1858429 1858434) (-1030 "SHP.spad" 1855626 1855641 1857664 1857669) (-1029 "SHDP.spad" 1847016 1847043 1847525 1847654) (-1028 "SGROUP.spad" 1846482 1846491 1847006 1847011) (-1027 "SGROUP.spad" 1845946 1845957 1846472 1846477) (-1026 "SGCF.spad" 1838827 1838836 1845936 1845941) (-1025 "SFRTCAT.spad" 1837743 1837760 1838783 1838822) (-1024 "SFRGCD.spad" 1836806 1836826 1837733 1837738) (-1023 "SFQCMPK.spad" 1831443 1831463 1836796 1836801) (-1022 "SFORT.spad" 1830878 1830892 1831433 1831438) (-1021 "SEXOF.spad" 1830721 1830761 1830868 1830873) (-1020 "SEX.spad" 1830613 1830622 1830711 1830716) (-1019 "SEXCAT.spad" 1827717 1827757 1830603 1830608) (-1018 "SET.spad" 1826017 1826028 1827138 1827177) (-1017 "SETMN.spad" 1824451 1824468 1826007 1826012) (-1016 "SETCAT.spad" 1823936 1823945 1824441 1824446) (-1015 "SETCAT.spad" 1823419 1823430 1823926 1823931) (-1014 "SETAGG.spad" 1819942 1819953 1823387 1823414) (-1013 "SETAGG.spad" 1816485 1816498 1819932 1819937) (-1012 "SEGXCAT.spad" 1815597 1815610 1816465 1816480) (-1011 "SEG.spad" 1815410 1815421 1815516 1815521) (-1010 "SEGCAT.spad" 1814229 1814240 1815390 1815405) (-1009 "SEGBIND.spad" 1813301 1813312 1814184 1814189) (-1008 "SEGBIND2.spad" 1812997 1813010 1813291 1813296) (-1007 "SEG2.spad" 1812422 1812435 1812953 1812958) (-1006 "SDVAR.spad" 1811698 1811709 1812412 1812417) (-1005 "SDPOL.spad" 1809091 1809102 1809382 1809509) (-1004 "SCPKG.spad" 1807170 1807181 1809081 1809086) (-1003 "SCOPE.spad" 1806315 1806324 1807160 1807165) (-1002 "SCACHE.spad" 1804997 1805008 1806305 1806310) (-1001 "SAOS.spad" 1804869 1804878 1804987 1804992) (-1000 "SAERFFC.spad" 1804582 1804602 1804859 1804864) (-999 "SAE.spad" 1802761 1802776 1803371 1803506) (-998 "SAEFACT.spad" 1802463 1802482 1802751 1802756) (-997 "RURPK.spad" 1800105 1800120 1802453 1802458) (-996 "RULESET.spad" 1799547 1799570 1800095 1800100) (-995 "RULE.spad" 1797752 1797775 1799537 1799542) (-994 "RULECOLD.spad" 1797605 1797617 1797742 1797747) (-993 "RSETGCD.spad" 1793984 1794003 1797595 1797600) (-992 "RSETCAT.spad" 1783757 1783773 1793940 1793979) (-991 "RSETCAT.spad" 1773562 1773580 1783747 1783752) (-990 "RSDCMPK.spad" 1772015 1772034 1773552 1773557) (-989 "RRCC.spad" 1770400 1770429 1772005 1772010) (-988 "RRCC.spad" 1768783 1768814 1770390 1770395) (-987 "RPOLCAT.spad" 1748144 1748158 1768651 1768778) (-986 "RPOLCAT.spad" 1727220 1727236 1747729 1747734) (-985 "ROUTINE.spad" 1723084 1723092 1725867 1725894) (-984 "ROMAN.spad" 1722317 1722325 1722950 1723079) (-983 "ROIRC.spad" 1721398 1721429 1722307 1722312) (-982 "RNS.spad" 1720302 1720310 1721300 1721393) (-981 "RNS.spad" 1719292 1719302 1720292 1720297) (-980 "RNG.spad" 1719028 1719036 1719282 1719287) (-979 "RMODULE.spad" 1718667 1718677 1719018 1719023) (-978 "RMCAT2.spad" 1718076 1718132 1718657 1718662) (-977 "RMATRIX.spad" 1716756 1716774 1717243 1717282) (-976 "RMATCAT.spad" 1712278 1712308 1716700 1716751) (-975 "RMATCAT.spad" 1707702 1707734 1712126 1712131) (-974 "RINTERP.spad" 1707591 1707610 1707692 1707697) (-973 "RING.spad" 1706949 1706957 1707571 1707586) (-972 "RING.spad" 1706315 1706325 1706939 1706944) (-971 "RIDIST.spad" 1705700 1705708 1706305 1706310) (-970 "RGCHAIN.spad" 1704280 1704295 1705185 1705212) (-969 "RF.spad" 1701895 1701905 1704270 1704275) (-968 "RFFACTOR.spad" 1701358 1701368 1701885 1701890) (-967 "RFFACT.spad" 1701094 1701105 1701348 1701353) (-966 "RFDIST.spad" 1700083 1700091 1701084 1701089) (-965 "RETSOL.spad" 1699501 1699513 1700073 1700078) (-964 "RETRACT.spad" 1698851 1698861 1699491 1699496) (-963 "RETRACT.spad" 1698199 1698211 1698841 1698846) (-962 "RESULT.spad" 1696260 1696268 1696846 1696873) (-961 "RESRING.spad" 1695608 1695654 1696198 1696255) (-960 "RESLATC.spad" 1694933 1694943 1695598 1695603) (-959 "REPSQ.spad" 1694663 1694673 1694923 1694928) (-958 "REP.spad" 1692216 1692224 1694653 1694658) (-957 "REPDB.spad" 1691922 1691932 1692206 1692211) (-956 "REP2.spad" 1681495 1681505 1691764 1691769) (-955 "REP1.spad" 1675486 1675496 1681445 1681450) (-954 "REGSET.spad" 1673284 1673300 1675132 1675159) (-953 "REF.spad" 1672614 1672624 1673239 1673244) (-952 "REDORDER.spad" 1671791 1671807 1672604 1672609) (-951 "RECLOS.spad" 1670581 1670600 1671284 1671377) (-950 "REALSOLV.spad" 1669714 1669722 1670571 1670576) (-949 "REAL.spad" 1669587 1669595 1669704 1669709) (-948 "REAL0Q.spad" 1666870 1666884 1669577 1669582) (-947 "REAL0.spad" 1663699 1663713 1666860 1666865) (-946 "RDIV.spad" 1663351 1663375 1663689 1663694) (-945 "RDIST.spad" 1662915 1662925 1663341 1663346) (-944 "RDETRS.spad" 1661712 1661729 1662905 1662910) (-943 "RDETR.spad" 1659820 1659837 1661702 1661707) (-942 "RDEEFS.spad" 1658894 1658910 1659810 1659815) (-941 "RDEEF.spad" 1657891 1657907 1658884 1658889) (-940 "RCFIELD.spad" 1655075 1655083 1657793 1657886) (-939 "RCFIELD.spad" 1652345 1652355 1655065 1655070) (-938 "RCAGG.spad" 1650248 1650258 1652325 1652340) (-937 "RCAGG.spad" 1648088 1648100 1650167 1650172) (-936 "RATRET.spad" 1647449 1647459 1648078 1648083) (-935 "RATFACT.spad" 1647142 1647153 1647439 1647444) (-934 "RANDSRC.spad" 1646462 1646470 1647132 1647137) (-933 "RADUTIL.spad" 1646217 1646225 1646452 1646457) (-932 "RADIX.spad" 1643010 1643023 1644687 1644780) (-931 "RADFF.spad" 1641427 1641463 1641545 1641701) (-930 "RADCAT.spad" 1641021 1641029 1641417 1641422) (-929 "RADCAT.spad" 1640613 1640623 1641011 1641016) (-928 "QUEUE.spad" 1639956 1639966 1640220 1640247) (-927 "QUAT.spad" 1638542 1638552 1638884 1638949) (-926 "QUATCT2.spad" 1638161 1638179 1638532 1638537) (-925 "QUATCAT.spad" 1636326 1636336 1638091 1638156) (-924 "QUATCAT.spad" 1634243 1634255 1636010 1636015) (-923 "QUAGG.spad" 1633057 1633067 1634199 1634238) (-922 "QFORM.spad" 1632520 1632534 1633047 1633052) (-921 "QFCAT.spad" 1631211 1631221 1632410 1632515) (-920 "QFCAT.spad" 1629508 1629520 1630709 1630714) (-919 "QFCAT2.spad" 1629199 1629215 1629498 1629503) (-918 "QEQUAT.spad" 1628756 1628764 1629189 1629194) (-917 "QCMPACK.spad" 1623503 1623522 1628746 1628751) (-916 "QALGSET.spad" 1619578 1619610 1623417 1623422) (-915 "QALGSET2.spad" 1617574 1617592 1619568 1619573) (-914 "PWFFINTB.spad" 1614884 1614905 1617564 1617569) (-913 "PUSHVAR.spad" 1614213 1614232 1614874 1614879) (-912 "PTRANFN.spad" 1610339 1610349 1614203 1614208) (-911 "PTPACK.spad" 1607427 1607437 1610329 1610334) (-910 "PTFUNC2.spad" 1607248 1607262 1607417 1607422) (-909 "PTCAT.spad" 1606330 1606340 1607204 1607243) (-908 "PSQFR.spad" 1605637 1605661 1606320 1606325) (-907 "PSEUDLIN.spad" 1604495 1604505 1605627 1605632) (-906 "PSETPK.spad" 1589928 1589944 1604373 1604378) (-905 "PSETCAT.spad" 1583836 1583859 1589896 1589923) (-904 "PSETCAT.spad" 1577730 1577755 1583792 1583797) (-903 "PSCURVE.spad" 1576713 1576721 1577720 1577725) (-902 "PSCAT.spad" 1575480 1575509 1576611 1576708) (-901 "PSCAT.spad" 1574337 1574368 1575470 1575475) (-900 "PRTITION.spad" 1573180 1573188 1574327 1574332) (-899 "PRS.spad" 1562742 1562759 1573136 1573141) (-898 "PRQAGG.spad" 1562161 1562171 1562698 1562737) (-897 "PROPLOG.spad" 1561564 1561572 1562151 1562156) (-896 "PROPFRML.spad" 1559429 1559440 1561500 1561505) (-895 "PROPERTY.spad" 1558923 1558931 1559419 1559424) (-894 "PRODUCT.spad" 1556603 1556615 1556889 1556944) (-893 "PR.spad" 1554992 1555004 1555697 1555824) (-892 "PRINT.spad" 1554744 1554752 1554982 1554987) (-891 "PRIMES.spad" 1552995 1553005 1554734 1554739) (-890 "PRIMELT.spad" 1550976 1550990 1552985 1552990) (-889 "PRIMCAT.spad" 1550599 1550607 1550966 1550971) (-888 "PRIMARR.spad" 1549604 1549614 1549782 1549809) (-887 "PRIMARR2.spad" 1548327 1548339 1549594 1549599) (-886 "PREASSOC.spad" 1547699 1547711 1548317 1548322) (-885 "PPCURVE.spad" 1546836 1546844 1547689 1547694) (-884 "POLYROOT.spad" 1545608 1545630 1546792 1546797) (-883 "POLY.spad" 1542908 1542918 1543425 1543552) (-882 "POLYLIFT.spad" 1542169 1542192 1542898 1542903) (-881 "POLYCATQ.spad" 1540271 1540293 1542159 1542164) (-880 "POLYCAT.spad" 1533677 1533698 1540139 1540266) (-879 "POLYCAT.spad" 1526385 1526408 1532849 1532854) (-878 "POLY2UP.spad" 1525833 1525847 1526375 1526380) (-877 "POLY2.spad" 1525428 1525440 1525823 1525828) (-876 "POLUTIL.spad" 1524369 1524398 1525384 1525389) (-875 "POLTOPOL.spad" 1523117 1523132 1524359 1524364) (-874 "POINT.spad" 1521958 1521968 1522045 1522072) (-873 "PNTHEORY.spad" 1518624 1518632 1521948 1521953) (-872 "PMTOOLS.spad" 1517381 1517395 1518614 1518619) (-871 "PMSYM.spad" 1516926 1516936 1517371 1517376) (-870 "PMQFCAT.spad" 1516513 1516527 1516916 1516921) (-869 "PMPRED.spad" 1515982 1515996 1516503 1516508) (-868 "PMPREDFS.spad" 1515426 1515448 1515972 1515977) (-867 "PMPLCAT.spad" 1514496 1514514 1515358 1515363) (-866 "PMLSAGG.spad" 1514077 1514091 1514486 1514491) (-865 "PMKERNEL.spad" 1513644 1513656 1514067 1514072) (-864 "PMINS.spad" 1513220 1513230 1513634 1513639) (-863 "PMFS.spad" 1512793 1512811 1513210 1513215) (-862 "PMDOWN.spad" 1512079 1512093 1512783 1512788) (-861 "PMASS.spad" 1511091 1511099 1512069 1512074) (-860 "PMASSFS.spad" 1510060 1510076 1511081 1511086) (-859 "PLOTTOOL.spad" 1509840 1509848 1510050 1510055) (-858 "PLOT.spad" 1504671 1504679 1509830 1509835) (-857 "PLOT3D.spad" 1501091 1501099 1504661 1504666) (-856 "PLOT1.spad" 1500232 1500242 1501081 1501086) (-855 "PLEQN.spad" 1487448 1487475 1500222 1500227) (-854 "PINTERP.spad" 1487064 1487083 1487438 1487443) (-853 "PINTERPA.spad" 1486846 1486862 1487054 1487059) (-852 "PI.spad" 1486453 1486461 1486820 1486841) (-851 "PID.spad" 1485409 1485417 1486379 1486448) (-850 "PICOERCE.spad" 1485066 1485076 1485399 1485404) (-849 "PGROEB.spad" 1483663 1483677 1485056 1485061) (-848 "PGE.spad" 1474916 1474924 1483653 1483658) (-847 "PGCD.spad" 1473798 1473815 1474906 1474911) (-846 "PFRPAC.spad" 1472941 1472951 1473788 1473793) (-845 "PFR.spad" 1469598 1469608 1472843 1472936) (-844 "PFOTOOLS.spad" 1468856 1468872 1469588 1469593) (-843 "PFOQ.spad" 1468226 1468244 1468846 1468851) (-842 "PFO.spad" 1467645 1467672 1468216 1468221) (-841 "PF.spad" 1467219 1467231 1467450 1467543) (-840 "PFECAT.spad" 1464885 1464893 1467145 1467214) (-839 "PFECAT.spad" 1462579 1462589 1464841 1464846) (-838 "PFBRU.spad" 1460449 1460461 1462569 1462574) (-837 "PFBR.spad" 1457987 1458010 1460439 1460444) (-836 "PERM.spad" 1453668 1453678 1457817 1457832) (-835 "PERMGRP.spad" 1448404 1448414 1453658 1453663) (-834 "PERMCAT.spad" 1446956 1446966 1448384 1448399) (-833 "PERMAN.spad" 1445488 1445502 1446946 1446951) (-832 "PENDTREE.spad" 1444761 1444771 1445117 1445122) (-831 "PDRING.spad" 1443252 1443262 1444741 1444756) (-830 "PDRING.spad" 1441751 1441763 1443242 1443247) (-829 "PDEPROB.spad" 1440708 1440716 1441741 1441746) (-828 "PDEPACK.spad" 1434710 1434718 1440698 1440703) (-827 "PDECOMP.spad" 1434172 1434189 1434700 1434705) (-826 "PDECAT.spad" 1432526 1432534 1434162 1434167) (-825 "PCOMP.spad" 1432377 1432390 1432516 1432521) (-824 "PBWLB.spad" 1430959 1430976 1432367 1432372) (-823 "PATTERN.spad" 1425390 1425400 1430949 1430954) (-822 "PATTERN2.spad" 1425126 1425138 1425380 1425385) (-821 "PATTERN1.spad" 1423428 1423444 1425116 1425121) (-820 "PATRES.spad" 1420975 1420987 1423418 1423423) (-819 "PATRES2.spad" 1420637 1420651 1420965 1420970) (-818 "PATMATCH.spad" 1418799 1418830 1420350 1420355) (-817 "PATMAB.spad" 1418224 1418234 1418789 1418794) (-816 "PATLRES.spad" 1417308 1417322 1418214 1418219) (-815 "PATAB.spad" 1417072 1417082 1417298 1417303) (-814 "PARTPERM.spad" 1414434 1414442 1417062 1417067) (-813 "PARSURF.spad" 1413862 1413890 1414424 1414429) (-812 "PARSU2.spad" 1413657 1413673 1413852 1413857) (-811 "script-parser.spad" 1413177 1413185 1413647 1413652) (-810 "PARSCURV.spad" 1412605 1412633 1413167 1413172) (-809 "PARSC2.spad" 1412394 1412410 1412595 1412600) (-808 "PARPCURV.spad" 1411852 1411880 1412384 1412389) (-807 "PARPC2.spad" 1411641 1411657 1411842 1411847) (-806 "PAN2EXPR.spad" 1411053 1411061 1411631 1411636) (-805 "PALETTE.spad" 1410023 1410031 1411043 1411048) (-804 "PAIR.spad" 1409006 1409019 1409611 1409616) (-803 "PADICRC.spad" 1406339 1406357 1407514 1407607) (-802 "PADICRAT.spad" 1404357 1404369 1404578 1404671) (-801 "PADIC.spad" 1404052 1404064 1404283 1404352) (-800 "PADICCT.spad" 1402593 1402605 1403978 1404047) (-799 "PADEPAC.spad" 1401272 1401291 1402583 1402588) (-798 "PADE.spad" 1400012 1400028 1401262 1401267) (-797 "OWP.spad" 1398996 1399026 1399870 1399937) (-796 "OVAR.spad" 1398777 1398800 1398986 1398991) (-795 "OUT.spad" 1397861 1397869 1398767 1398772) (-794 "OUTFORM.spad" 1387275 1387283 1397851 1397856) (-793 "OSI.spad" 1386750 1386758 1387265 1387270) (-792 "ORTHPOL.spad" 1385211 1385221 1386667 1386672) (-791 "OREUP.spad" 1384571 1384599 1384893 1384932) (-790 "ORESUP.spad" 1383872 1383896 1384253 1384292) (-789 "OREPCTO.spad" 1381691 1381703 1383792 1383797) (-788 "OREPCAT.spad" 1375748 1375758 1381647 1381686) (-787 "OREPCAT.spad" 1369695 1369707 1375596 1375601) (-786 "ORDSET.spad" 1368861 1368869 1369685 1369690) (-785 "ORDSET.spad" 1368025 1368035 1368851 1368856) (-784 "ORDRING.spad" 1367415 1367423 1368005 1368020) (-783 "ORDRING.spad" 1366813 1366823 1367405 1367410) (-782 "ORDMON.spad" 1366668 1366676 1366803 1366808) (-781 "ORDFUNS.spad" 1365794 1365810 1366658 1366663) (-780 "ORDFIN.spad" 1365728 1365736 1365784 1365789) (-779 "ORDCOMP.spad" 1364196 1364206 1365278 1365307) (-778 "ORDCOMP2.spad" 1363481 1363493 1364186 1364191) (-777 "OPTPROB.spad" 1362061 1362069 1363471 1363476) (-776 "OPTPACK.spad" 1354446 1354454 1362051 1362056) (-775 "OPTCAT.spad" 1352121 1352129 1354436 1354441) (-774 "OPQUERY.spad" 1351670 1351678 1352111 1352116) (-773 "OP.spad" 1351412 1351422 1351492 1351559) (-772 "ONECOMP.spad" 1350160 1350170 1350962 1350991) (-771 "ONECOMP2.spad" 1349578 1349590 1350150 1350155) (-770 "OMSERVER.spad" 1348580 1348588 1349568 1349573) (-769 "OMSAGG.spad" 1348356 1348366 1348524 1348575) (-768 "OMPKG.spad" 1346968 1346976 1348346 1348351) (-767 "OM.spad" 1345933 1345941 1346958 1346963) (-766 "OMLO.spad" 1345358 1345370 1345819 1345858) (-765 "OMEXPR.spad" 1345192 1345202 1345348 1345353) (-764 "OMERR.spad" 1344735 1344743 1345182 1345187) (-763 "OMERRK.spad" 1343769 1343777 1344725 1344730) (-762 "OMENC.spad" 1343113 1343121 1343759 1343764) (-761 "OMDEV.spad" 1337402 1337410 1343103 1343108) (-760 "OMCONN.spad" 1336811 1336819 1337392 1337397) (-759 "OINTDOM.spad" 1336574 1336582 1336737 1336806) (-758 "OFMONOID.spad" 1332761 1332771 1336564 1336569) (-757 "ODVAR.spad" 1332022 1332032 1332751 1332756) (-756 "ODR.spad" 1331470 1331496 1331834 1331983) (-755 "ODPOL.spad" 1328819 1328829 1329159 1329286) (-754 "ODP.spad" 1320345 1320365 1320718 1320847) (-753 "ODETOOLS.spad" 1318928 1318947 1320335 1320340) (-752 "ODESYS.spad" 1316578 1316595 1318918 1318923) (-751 "ODERTRIC.spad" 1312519 1312536 1316535 1316540) (-750 "ODERED.spad" 1311906 1311930 1312509 1312514) (-749 "ODERAT.spad" 1309457 1309474 1311896 1311901) (-748 "ODEPRRIC.spad" 1306348 1306370 1309447 1309452) (-747 "ODEPROB.spad" 1305547 1305555 1306338 1306343) (-746 "ODEPRIM.spad" 1302821 1302843 1305537 1305542) (-745 "ODEPAL.spad" 1302197 1302221 1302811 1302816) (-744 "ODEPACK.spad" 1288799 1288807 1302187 1302192) (-743 "ODEINT.spad" 1288230 1288246 1288789 1288794) (-742 "ODEIFTBL.spad" 1285625 1285633 1288220 1288225) (-741 "ODEEF.spad" 1280992 1281008 1285615 1285620) (-740 "ODECONST.spad" 1280511 1280529 1280982 1280987) (-739 "ODECAT.spad" 1279107 1279115 1280501 1280506) (-738 "OCT.spad" 1277254 1277264 1277970 1278009) (-737 "OCTCT2.spad" 1276898 1276919 1277244 1277249) (-736 "OC.spad" 1274672 1274682 1276854 1276893) (-735 "OC.spad" 1272172 1272184 1274356 1274361) (-734 "OCAMON.spad" 1272020 1272028 1272162 1272167) (-733 "OASGP.spad" 1271835 1271843 1272010 1272015) (-732 "OAMONS.spad" 1271355 1271363 1271825 1271830) (-731 "OAMON.spad" 1271216 1271224 1271345 1271350) (-730 "OAGROUP.spad" 1271078 1271086 1271206 1271211) (-729 "NUMTUBE.spad" 1270665 1270681 1271068 1271073) (-728 "NUMQUAD.spad" 1258527 1258535 1270655 1270660) (-727 "NUMODE.spad" 1249663 1249671 1258517 1258522) (-726 "NUMINT.spad" 1247221 1247229 1249653 1249658) (-725 "NUMFMT.spad" 1246061 1246069 1247211 1247216) (-724 "NUMERIC.spad" 1238134 1238144 1245867 1245872) (-723 "NTSCAT.spad" 1236624 1236640 1238090 1238129) (-722 "NTPOLFN.spad" 1236169 1236179 1236541 1236546) (-721 "NSUP.spad" 1229182 1229192 1233722 1233875) (-720 "NSUP2.spad" 1228574 1228586 1229172 1229177) (-719 "NSMP.spad" 1224773 1224792 1225081 1225208) (-718 "NREP.spad" 1223145 1223159 1224763 1224768) (-717 "NPCOEF.spad" 1222391 1222411 1223135 1223140) (-716 "NORMRETR.spad" 1221989 1222028 1222381 1222386) (-715 "NORMPK.spad" 1219891 1219910 1221979 1221984) (-714 "NORMMA.spad" 1219579 1219605 1219881 1219886) (-713 "NONE.spad" 1219320 1219328 1219569 1219574) (-712 "NONE1.spad" 1218996 1219006 1219310 1219315) (-711 "NODE1.spad" 1218465 1218481 1218986 1218991) (-710 "NNI.spad" 1217352 1217360 1218439 1218460) (-709 "NLINSOL.spad" 1215974 1215984 1217342 1217347) (-708 "NIPROB.spad" 1214457 1214465 1215964 1215969) (-707 "NFINTBAS.spad" 1211917 1211934 1214447 1214452) (-706 "NCODIV.spad" 1210115 1210131 1211907 1211912) (-705 "NCNTFRAC.spad" 1209757 1209771 1210105 1210110) (-704 "NCEP.spad" 1207917 1207931 1209747 1209752) (-703 "NASRING.spad" 1207513 1207521 1207907 1207912) (-702 "NASRING.spad" 1207107 1207117 1207503 1207508) (-701 "NARNG.spad" 1206451 1206459 1207097 1207102) (-700 "NARNG.spad" 1205793 1205803 1206441 1206446) (-699 "NAGSP.spad" 1204866 1204874 1205783 1205788) (-698 "NAGS.spad" 1194391 1194399 1204856 1204861) (-697 "NAGF07.spad" 1192784 1192792 1194381 1194386) (-696 "NAGF04.spad" 1187016 1187024 1192774 1192779) (-695 "NAGF02.spad" 1180825 1180833 1187006 1187011) (-694 "NAGF01.spad" 1176428 1176436 1180815 1180820) (-693 "NAGE04.spad" 1169888 1169896 1176418 1176423) (-692 "NAGE02.spad" 1160230 1160238 1169878 1169883) (-691 "NAGE01.spad" 1156114 1156122 1160220 1160225) (-690 "NAGD03.spad" 1154034 1154042 1156104 1156109) (-689 "NAGD02.spad" 1146565 1146573 1154024 1154029) (-688 "NAGD01.spad" 1140678 1140686 1146555 1146560) (-687 "NAGC06.spad" 1136465 1136473 1140668 1140673) (-686 "NAGC05.spad" 1134934 1134942 1136455 1136460) (-685 "NAGC02.spad" 1134189 1134197 1134924 1134929) (-684 "NAALG.spad" 1133724 1133734 1134157 1134184) (-683 "NAALG.spad" 1133279 1133291 1133714 1133719) (-682 "MULTSQFR.spad" 1130237 1130254 1133269 1133274) (-681 "MULTFACT.spad" 1129620 1129637 1130227 1130232) (-680 "MTSCAT.spad" 1127654 1127675 1129518 1129615) (-679 "MTHING.spad" 1127311 1127321 1127644 1127649) (-678 "MSYSCMD.spad" 1126745 1126753 1127301 1127306) (-677 "MSET.spad" 1124687 1124697 1126451 1126490) (-676 "MSETAGG.spad" 1124520 1124530 1124643 1124682) (-675 "MRING.spad" 1121491 1121503 1124228 1124295) (-674 "MRF2.spad" 1121059 1121073 1121481 1121486) (-673 "MRATFAC.spad" 1120605 1120622 1121049 1121054) (-672 "MPRFF.spad" 1118635 1118654 1120595 1120600) (-671 "MPOLY.spad" 1116073 1116088 1116432 1116559) (-670 "MPCPF.spad" 1115337 1115356 1116063 1116068) (-669 "MPC3.spad" 1115152 1115192 1115327 1115332) (-668 "MPC2.spad" 1114794 1114827 1115142 1115147) (-667 "MONOTOOL.spad" 1113129 1113146 1114784 1114789) (-666 "MONOID.spad" 1112303 1112311 1113119 1113124) (-665 "MONOID.spad" 1111475 1111485 1112293 1112298) (-664 "MONOGEN.spad" 1110221 1110234 1111335 1111470) (-663 "MONOGEN.spad" 1108989 1109004 1110105 1110110) (-662 "MONADWU.spad" 1107003 1107011 1108979 1108984) (-661 "MONADWU.spad" 1105015 1105025 1106993 1106998) (-660 "MONAD.spad" 1104159 1104167 1105005 1105010) (-659 "MONAD.spad" 1103301 1103311 1104149 1104154) (-658 "MOEBIUS.spad" 1101987 1102001 1103281 1103296) (-657 "MODULE.spad" 1101857 1101867 1101955 1101982) (-656 "MODULE.spad" 1101747 1101759 1101847 1101852) (-655 "MODRING.spad" 1101078 1101117 1101727 1101742) (-654 "MODOP.spad" 1099737 1099749 1100900 1100967) (-653 "MODMONOM.spad" 1099269 1099287 1099727 1099732) (-652 "MODMON.spad" 1095974 1095990 1096750 1096903) (-651 "MODFIELD.spad" 1095332 1095371 1095876 1095969) (-650 "MMLFORM.spad" 1094192 1094200 1095322 1095327) (-649 "MMAP.spad" 1093932 1093966 1094182 1094187) (-648 "MLO.spad" 1092359 1092369 1093888 1093927) (-647 "MLIFT.spad" 1090931 1090948 1092349 1092354) (-646 "MKUCFUNC.spad" 1090464 1090482 1090921 1090926) (-645 "MKRECORD.spad" 1090066 1090079 1090454 1090459) (-644 "MKFUNC.spad" 1089447 1089457 1090056 1090061) (-643 "MKFLCFN.spad" 1088403 1088413 1089437 1089442) (-642 "MKCHSET.spad" 1088179 1088189 1088393 1088398) (-641 "MKBCFUNC.spad" 1087664 1087682 1088169 1088174) (-640 "MINT.spad" 1087103 1087111 1087566 1087659) (-639 "MHROWRED.spad" 1085604 1085614 1087093 1087098) (-638 "MFLOAT.spad" 1084049 1084057 1085494 1085599) (-637 "MFINFACT.spad" 1083449 1083471 1084039 1084044) (-636 "MESH.spad" 1081181 1081189 1083439 1083444) (-635 "MDDFACT.spad" 1079374 1079384 1081171 1081176) (-634 "MDAGG.spad" 1078649 1078659 1079342 1079369) (-633 "MCMPLX.spad" 1074629 1074637 1075243 1075444) (-632 "MCDEN.spad" 1073837 1073849 1074619 1074624) (-631 "MCALCFN.spad" 1070939 1070965 1073827 1073832) (-630 "MATSTOR.spad" 1068215 1068225 1070929 1070934) (-629 "MATRIX.spad" 1066919 1066929 1067403 1067430) (-628 "MATLIN.spad" 1064245 1064269 1066803 1066808) (-627 "MATCAT.spad" 1055818 1055840 1064201 1064240) (-626 "MATCAT.spad" 1047275 1047299 1055660 1055665) (-625 "MATCAT2.spad" 1046543 1046591 1047265 1047270) (-624 "MAPPKG3.spad" 1045442 1045456 1046533 1046538) (-623 "MAPPKG2.spad" 1044776 1044788 1045432 1045437) (-622 "MAPPKG1.spad" 1043594 1043604 1044766 1044771) (-621 "MAPHACK3.spad" 1043402 1043416 1043584 1043589) (-620 "MAPHACK2.spad" 1043167 1043179 1043392 1043397) (-619 "MAPHACK1.spad" 1042797 1042807 1043157 1043162) (-618 "MAGMA.spad" 1040587 1040604 1042787 1042792) (-617 "M3D.spad" 1038285 1038295 1039967 1039972) (-616 "LZSTAGG.spad" 1035503 1035513 1038265 1038280) (-615 "LZSTAGG.spad" 1032729 1032741 1035493 1035498) (-614 "LWORD.spad" 1029434 1029451 1032719 1032724) (-613 "LSQM.spad" 1027662 1027676 1028060 1028111) (-612 "LSPP.spad" 1027195 1027212 1027652 1027657) (-611 "LSMP.spad" 1026035 1026063 1027185 1027190) (-610 "LSMP1.spad" 1023839 1023853 1026025 1026030) (-609 "LSAGG.spad" 1023496 1023506 1023795 1023834) (-608 "LSAGG.spad" 1023185 1023197 1023486 1023491) (-607 "LPOLY.spad" 1022139 1022158 1023041 1023110) (-606 "LPEFRAC.spad" 1021396 1021406 1022129 1022134) (-605 "LO.spad" 1020797 1020811 1021330 1021357) (-604 "LOGIC.spad" 1020399 1020407 1020787 1020792) (-603 "LOGIC.spad" 1019999 1020009 1020389 1020394) (-602 "LODOOPS.spad" 1018917 1018929 1019989 1019994) (-601 "LODO.spad" 1018303 1018319 1018599 1018638) (-600 "LODOF.spad" 1017347 1017364 1018260 1018265) (-599 "LODOCAT.spad" 1016005 1016015 1017303 1017342) (-598 "LODOCAT.spad" 1014661 1014673 1015961 1015966) (-597 "LODO2.spad" 1013936 1013948 1014343 1014382) (-596 "LODO1.spad" 1013338 1013348 1013618 1013657) (-595 "LODEEF.spad" 1012110 1012128 1013328 1013333) (-594 "LNAGG.spad" 1007902 1007912 1012090 1012105) (-593 "LNAGG.spad" 1003668 1003680 1007858 1007863) (-592 "LMOPS.spad" 1000404 1000421 1003658 1003663) (-591 "LMODULE.spad" 1000046 1000056 1000394 1000399) (-590 "LMDICT.spad" 999329 999339 999597 999624) (-589 "LIST.spad" 997047 997057 998476 998503) (-588 "LIST3.spad" 996338 996352 997037 997042) (-587 "LIST2.spad" 994978 994990 996328 996333) (-586 "LIST2MAP.spad" 991855 991867 994968 994973) (-585 "LINEXP.spad" 991287 991297 991835 991850) (-584 "LINDEP.spad" 990064 990076 991199 991204) (-583 "LIMITRF.spad" 987978 987988 990054 990059) (-582 "LIMITPS.spad" 986861 986874 987968 987973) (-581 "LIE.spad" 984875 984887 986151 986296) (-580 "LIECAT.spad" 984351 984361 984801 984870) (-579 "LIECAT.spad" 983855 983867 984307 984312) (-578 "LIB.spad" 981903 981911 982514 982529) (-577 "LGROBP.spad" 979256 979275 981893 981898) (-576 "LF.spad" 978175 978191 979246 979251) (-575 "LFCAT.spad" 977194 977202 978165 978170) (-574 "LEXTRIPK.spad" 972697 972712 977184 977189) (-573 "LEXP.spad" 970700 970727 972677 972692) (-572 "LEADCDET.spad" 969084 969101 970690 970695) (-571 "LAZM3PK.spad" 967788 967810 969074 969079) (-570 "LAUPOL.spad" 966479 966492 967383 967452) (-569 "LAPLACE.spad" 966052 966068 966469 966474) (-568 "LA.spad" 965492 965506 965974 966013) (-567 "LALG.spad" 965268 965278 965472 965487) (-566 "LALG.spad" 965052 965064 965258 965263) (-565 "KOVACIC.spad" 963765 963782 965042 965047) (-564 "KONVERT.spad" 963487 963497 963755 963760) (-563 "KOERCE.spad" 963224 963234 963477 963482) (-562 "KERNEL.spad" 961759 961769 963008 963013) (-561 "KERNEL2.spad" 961462 961474 961749 961754) (-560 "KDAGG.spad" 960553 960575 961430 961457) (-559 "KDAGG.spad" 959664 959688 960543 960548) (-558 "KAFILE.spad" 958627 958643 958862 958889) (-557 "JORDAN.spad" 956454 956466 957917 958062) (-556 "IXAGG.spad" 954567 954591 956434 956449) (-555 "IXAGG.spad" 952545 952571 954414 954419) (-554 "IVECTOR.spad" 951318 951333 951473 951500) (-553 "ITUPLE.spad" 950463 950473 951308 951313) (-552 "ITRIGMNP.spad" 949274 949293 950453 950458) (-551 "ITFUN3.spad" 948768 948782 949264 949269) (-550 "ITFUN2.spad" 948498 948510 948758 948763) (-549 "ITAYLOR.spad" 946290 946305 948334 948459) (-548 "ISUPS.spad" 938701 938716 945264 945361) (-547 "ISUMP.spad" 938198 938214 938691 938696) (-546 "ISTRING.spad" 937201 937214 937367 937394) (-545 "IRURPK.spad" 935914 935933 937191 937196) (-544 "IRSN.spad" 933874 933882 935904 935909) (-543 "IRRF2F.spad" 932349 932359 933830 933835) (-542 "IRREDFFX.spad" 931950 931961 932339 932344) (-541 "IROOT.spad" 930281 930291 931940 931945) (-540 "IR.spad" 928071 928085 930137 930164) (-539 "IR2.spad" 927091 927107 928061 928066) (-538 "IR2F.spad" 926291 926307 927081 927086) (-537 "IPRNTPK.spad" 926051 926059 926281 926286) (-536 "IPF.spad" 925616 925628 925856 925949) (-535 "IPADIC.spad" 925377 925403 925542 925611) (-534 "INVLAPLA.spad" 925022 925038 925367 925372) (-533 "INTTR.spad" 918268 918285 925012 925017) (-532 "INTTOOLS.spad" 915980 915996 917843 917848) (-531 "INTSLPE.spad" 915286 915294 915970 915975) (-530 "INTRVL.spad" 914852 914862 915200 915281) (-529 "INTRF.spad" 913216 913230 914842 914847) (-528 "INTRET.spad" 912648 912658 913206 913211) (-527 "INTRAT.spad" 911323 911340 912638 912643) (-526 "INTPM.spad" 909686 909702 910966 910971) (-525 "INTPAF.spad" 907454 907472 909618 909623) (-524 "INTPACK.spad" 897764 897772 907444 907449) (-523 "INT.spad" 897125 897133 897618 897759) (-522 "INTHERTR.spad" 896391 896408 897115 897120) (-521 "INTHERAL.spad" 896057 896081 896381 896386) (-520 "INTHEORY.spad" 892470 892478 896047 896052) (-519 "INTG0.spad" 885933 885951 892402 892407) (-518 "INTFTBL.spad" 879962 879970 885923 885928) (-517 "INTFACT.spad" 879021 879031 879952 879957) (-516 "INTEF.spad" 877336 877352 879011 879016) (-515 "INTDOM.spad" 875951 875959 877262 877331) (-514 "INTDOM.spad" 874628 874638 875941 875946) (-513 "INTCAT.spad" 872881 872891 874542 874623) (-512 "INTBIT.spad" 872384 872392 872871 872876) (-511 "INTALG.spad" 871566 871593 872374 872379) (-510 "INTAF.spad" 871058 871074 871556 871561) (-509 "INTABL.spad" 869576 869607 869739 869766) (-508 "INS.spad" 866972 866980 869478 869571) (-507 "INS.spad" 864454 864464 866962 866967) (-506 "INPSIGN.spad" 863888 863901 864444 864449) (-505 "INPRODPF.spad" 862954 862973 863878 863883) (-504 "INPRODFF.spad" 862012 862036 862944 862949) (-503 "INNMFACT.spad" 860983 861000 862002 862007) (-502 "INMODGCD.spad" 860467 860497 860973 860978) (-501 "INFSP.spad" 858752 858774 860457 860462) (-500 "INFPROD0.spad" 857802 857821 858742 858747) (-499 "INFORM.spad" 855070 855078 857792 857797) (-498 "INFORM1.spad" 854695 854705 855060 855065) (-497 "INFINITY.spad" 854247 854255 854685 854690) (-496 "INEP.spad" 852779 852801 854237 854242) (-495 "INDE.spad" 852685 852702 852769 852774) (-494 "INCRMAPS.spad" 852106 852116 852675 852680) (-493 "INBFF.spad" 847876 847887 852096 852101) (-492 "IMATRIX.spad" 846821 846847 847333 847360) (-491 "IMATQF.spad" 845915 845959 846777 846782) (-490 "IMATLIN.spad" 844520 844544 845871 845876) (-489 "ILIST.spad" 843176 843191 843703 843730) (-488 "IIARRAY2.spad" 842564 842602 842783 842810) (-487 "IFF.spad" 841974 841990 842245 842338) (-486 "IFARRAY.spad" 839461 839476 841157 841184) (-485 "IFAMON.spad" 839323 839340 839417 839422) (-484 "IEVALAB.spad" 838712 838724 839313 839318) (-483 "IEVALAB.spad" 838099 838113 838702 838707) (-482 "IDPO.spad" 837897 837909 838089 838094) (-481 "IDPOAMS.spad" 837653 837665 837887 837892) (-480 "IDPOAM.spad" 837373 837385 837643 837648) (-479 "IDPC.spad" 836307 836319 837363 837368) (-478 "IDPAM.spad" 836052 836064 836297 836302) (-477 "IDPAG.spad" 835799 835811 836042 836047) (-476 "IDECOMP.spad" 833036 833054 835789 835794) (-475 "IDEAL.spad" 827959 827998 832971 832976) (-474 "ICDEN.spad" 827110 827126 827949 827954) (-473 "ICARD.spad" 826299 826307 827100 827105) (-472 "IBPTOOLS.spad" 824892 824909 826289 826294) (-471 "IBITS.spad" 824091 824104 824528 824555) (-470 "IBATOOL.spad" 820966 820985 824081 824086) (-469 "IBACHIN.spad" 819453 819468 820956 820961) (-468 "IARRAY2.spad" 818441 818467 819060 819087) (-467 "IARRAY1.spad" 817486 817501 817624 817651) (-466 "IAN.spad" 815701 815709 817304 817397) (-465 "IALGFACT.spad" 815302 815335 815691 815696) (-464 "HYPCAT.spad" 814726 814734 815292 815297) (-463 "HYPCAT.spad" 814148 814158 814716 814721) (-462 "HOAGG.spad" 811406 811416 814128 814143) (-461 "HOAGG.spad" 808449 808461 811173 811178) (-460 "HEXADEC.spad" 806321 806329 806919 807012) (-459 "HEUGCD.spad" 805336 805347 806311 806316) (-458 "HELLFDIV.spad" 804926 804950 805326 805331) (-457 "HEAP.spad" 804318 804328 804533 804560) (-456 "HDP.spad" 795840 795856 796217 796346) (-455 "HDMP.spad" 793019 793034 793637 793764) (-454 "HB.spad" 791256 791264 793009 793014) (-453 "HASHTBL.spad" 789726 789757 789937 789964) (-452 "HACKPI.spad" 789209 789217 789628 789721) (-451 "GTSET.spad" 788148 788164 788855 788882) (-450 "GSTBL.spad" 786667 786702 786841 786856) (-449 "GSERIES.spad" 783834 783861 784799 784948) (-448 "GROUP.spad" 783008 783016 783814 783829) (-447 "GROUP.spad" 782190 782200 782998 783003) (-446 "GROEBSOL.spad" 780678 780699 782180 782185) (-445 "GRMOD.spad" 779249 779261 780668 780673) (-444 "GRMOD.spad" 777818 777832 779239 779244) (-443 "GRIMAGE.spad" 770423 770431 777808 777813) (-442 "GRDEF.spad" 768802 768810 770413 770418) (-441 "GRAY.spad" 767261 767269 768792 768797) (-440 "GRALG.spad" 766308 766320 767251 767256) (-439 "GRALG.spad" 765353 765367 766298 766303) (-438 "GPOLSET.spad" 764807 764830 765035 765062) (-437 "GOSPER.spad" 764072 764090 764797 764802) (-436 "GMODPOL.spad" 763210 763237 764040 764067) (-435 "GHENSEL.spad" 762279 762293 763200 763205) (-434 "GENUPS.spad" 758380 758393 762269 762274) (-433 "GENUFACT.spad" 757957 757967 758370 758375) (-432 "GENPGCD.spad" 757541 757558 757947 757952) (-431 "GENMFACT.spad" 756993 757012 757531 757536) (-430 "GENEEZ.spad" 754932 754945 756983 756988) (-429 "GDMP.spad" 751953 751970 752729 752856) (-428 "GCNAALG.spad" 745848 745875 751747 751814) (-427 "GCDDOM.spad" 745020 745028 745774 745843) (-426 "GCDDOM.spad" 744254 744264 745010 745015) (-425 "GB.spad" 741772 741810 744210 744215) (-424 "GBINTERN.spad" 737792 737830 741762 741767) (-423 "GBF.spad" 733549 733587 737782 737787) (-422 "GBEUCLID.spad" 731423 731461 733539 733544) (-421 "GAUSSFAC.spad" 730720 730728 731413 731418) (-420 "GALUTIL.spad" 729042 729052 730676 730681) (-419 "GALPOLYU.spad" 727488 727501 729032 729037) (-418 "GALFACTU.spad" 725653 725672 727478 727483) (-417 "GALFACT.spad" 715786 715797 725643 725648) (-416 "FVFUN.spad" 712799 712807 715766 715781) (-415 "FVC.spad" 711841 711849 712779 712794) (-414 "FUNCTION.spad" 711690 711702 711831 711836) (-413 "FT.spad" 709902 709910 711680 711685) (-412 "FTEM.spad" 709065 709073 709892 709897) (-411 "FSUPFACT.spad" 707966 707985 709002 709007) (-410 "FST.spad" 706052 706060 707956 707961) (-409 "FSRED.spad" 705530 705546 706042 706047) (-408 "FSPRMELT.spad" 704354 704370 705487 705492) (-407 "FSPECF.spad" 702431 702447 704344 704349) (-406 "FS.spad" 696482 696492 702195 702426) (-405 "FS.spad" 690324 690336 696039 696044) (-404 "FSINT.spad" 689982 689998 690314 690319) (-403 "FSERIES.spad" 689169 689181 689802 689901) (-402 "FSCINT.spad" 688482 688498 689159 689164) (-401 "FSAGG.spad" 687587 687597 688426 688477) (-400 "FSAGG.spad" 686666 686678 687507 687512) (-399 "FSAGG2.spad" 685365 685381 686656 686661) (-398 "FS2UPS.spad" 679754 679788 685355 685360) (-397 "FS2.spad" 679399 679415 679744 679749) (-396 "FS2EXPXP.spad" 678522 678545 679389 679394) (-395 "FRUTIL.spad" 677464 677474 678512 678517) (-394 "FR.spad" 671161 671171 676491 676560) (-393 "FRNAALG.spad" 666248 666258 671103 671156) (-392 "FRNAALG.spad" 661347 661359 666204 666209) (-391 "FRNAAF2.spad" 660801 660819 661337 661342) (-390 "FRMOD.spad" 660196 660226 660733 660738) (-389 "FRIDEAL.spad" 659391 659412 660176 660191) (-388 "FRIDEAL2.spad" 658993 659025 659381 659386) (-387 "FRETRCT.spad" 658504 658514 658983 658988) (-386 "FRETRCT.spad" 657883 657895 658364 658369) (-385 "FRAMALG.spad" 656211 656224 657839 657878) (-384 "FRAMALG.spad" 654571 654586 656201 656206) (-383 "FRAC.spad" 651674 651684 652077 652250) (-382 "FRAC2.spad" 651277 651289 651664 651669) (-381 "FR2.spad" 650611 650623 651267 651272) (-380 "FPS.spad" 647420 647428 650501 650606) (-379 "FPS.spad" 644257 644267 647340 647345) (-378 "FPC.spad" 643299 643307 644159 644252) (-377 "FPC.spad" 642427 642437 643289 643294) (-376 "FPATMAB.spad" 642179 642189 642407 642422) (-375 "FPARFRAC.spad" 640652 640669 642169 642174) (-374 "FORTRAN.spad" 639158 639201 640642 640647) (-373 "FORT.spad" 638087 638095 639148 639153) (-372 "FORTFN.spad" 635247 635255 638067 638082) (-371 "FORTCAT.spad" 634921 634929 635227 635242) (-370 "FORMULA.spad" 632259 632267 634911 634916) (-369 "FORMULA1.spad" 631738 631748 632249 632254) (-368 "FORDER.spad" 631429 631453 631728 631733) (-367 "FOP.spad" 630630 630638 631419 631424) (-366 "FNLA.spad" 630054 630076 630598 630625) (-365 "FNCAT.spad" 628382 628390 630044 630049) (-364 "FNAME.spad" 628274 628282 628372 628377) (-363 "FMTC.spad" 628072 628080 628200 628269) (-362 "FMONOID.spad" 625127 625137 628028 628033) (-361 "FM.spad" 624822 624834 625061 625088) (-360 "FMFUN.spad" 621842 621850 624802 624817) (-359 "FMC.spad" 620884 620892 621822 621837) (-358 "FMCAT.spad" 618538 618556 620852 620879) (-357 "FM1.spad" 617895 617907 618472 618499) (-356 "FLOATRP.spad" 615616 615630 617885 617890) (-355 "FLOAT.spad" 608780 608788 615482 615611) (-354 "FLOATCP.spad" 606197 606211 608770 608775) (-353 "FLINEXP.spad" 605909 605919 606177 606192) (-352 "FLINEXP.spad" 605575 605587 605845 605850) (-351 "FLASORT.spad" 604895 604907 605565 605570) (-350 "FLALG.spad" 602541 602560 604821 604890) (-349 "FLAGG.spad" 599547 599557 602509 602536) (-348 "FLAGG.spad" 596466 596478 599430 599435) (-347 "FLAGG2.spad" 595147 595163 596456 596461) (-346 "FINRALG.spad" 593176 593189 595103 595142) (-345 "FINRALG.spad" 591131 591146 593060 593065) (-344 "FINITE.spad" 590283 590291 591121 591126) (-343 "FINAALG.spad" 579264 579274 590225 590278) (-342 "FINAALG.spad" 568257 568269 579220 579225) (-341 "FILE.spad" 567840 567850 568247 568252) (-340 "FILECAT.spad" 566358 566375 567830 567835) (-339 "FIELD.spad" 565764 565772 566260 566353) (-338 "FIELD.spad" 565256 565266 565754 565759) (-337 "FGROUP.spad" 563865 563875 565236 565251) (-336 "FGLMICPK.spad" 562652 562667 563855 563860) (-335 "FFX.spad" 562027 562042 562368 562461) (-334 "FFSLPE.spad" 561516 561537 562017 562022) (-333 "FFPOLY.spad" 552768 552779 561506 561511) (-332 "FFPOLY2.spad" 551828 551845 552758 552763) (-331 "FFP.spad" 551225 551245 551544 551637) (-330 "FF.spad" 550673 550689 550906 550999) (-329 "FFNBX.spad" 549185 549205 550389 550482) (-328 "FFNBP.spad" 547698 547715 548901 548994) (-327 "FFNB.spad" 546163 546184 547379 547472) (-326 "FFINTBAS.spad" 543577 543596 546153 546158) (-325 "FFIELDC.spad" 541152 541160 543479 543572) (-324 "FFIELDC.spad" 538813 538823 541142 541147) (-323 "FFHOM.spad" 537561 537578 538803 538808) (-322 "FFF.spad" 534996 535007 537551 537556) (-321 "FFCGX.spad" 533843 533863 534712 534805) (-320 "FFCGP.spad" 532732 532752 533559 533652) (-319 "FFCG.spad" 531524 531545 532413 532506) (-318 "FFCAT.spad" 524425 524447 531363 531519) (-317 "FFCAT.spad" 517405 517429 524345 524350) (-316 "FFCAT2.spad" 517150 517190 517395 517400) (-315 "FEXPR.spad" 508863 508909 516910 516949) (-314 "FEVALAB.spad" 508569 508579 508853 508858) (-313 "FEVALAB.spad" 508060 508072 508346 508351) (-312 "FDIV.spad" 507502 507526 508050 508055) (-311 "FDIVCAT.spad" 505544 505568 507492 507497) (-310 "FDIVCAT.spad" 503584 503610 505534 505539) (-309 "FDIV2.spad" 503238 503278 503574 503579) (-308 "FCPAK1.spad" 501791 501799 503228 503233) (-307 "FCOMP.spad" 501170 501180 501781 501786) (-306 "FC.spad" 490995 491003 501160 501165) (-305 "FAXF.spad" 483930 483944 490897 490990) (-304 "FAXF.spad" 476917 476933 483886 483891) (-303 "FARRAY.spad" 475063 475073 476100 476127) (-302 "FAMR.spad" 473183 473195 474961 475058) (-301 "FAMR.spad" 471287 471301 473067 473072) (-300 "FAMONOID.spad" 470937 470947 471241 471246) (-299 "FAMONC.spad" 469159 469171 470927 470932) (-298 "FAGROUP.spad" 468765 468775 469055 469082) (-297 "FACUTIL.spad" 466961 466978 468755 468760) (-296 "FACTFUNC.spad" 466137 466147 466951 466956) (-295 "EXPUPXS.spad" 462970 462993 464269 464418) (-294 "EXPRTUBE.spad" 460198 460206 462960 462965) (-293 "EXPRODE.spad" 457070 457086 460188 460193) (-292 "EXPR.spad" 452372 452382 453086 453489) (-291 "EXPR2UPS.spad" 448464 448477 452362 452367) (-290 "EXPR2.spad" 448167 448179 448454 448459) (-289 "EXPEXPAN.spad" 445108 445133 445742 445835) (-288 "EXIT.spad" 444779 444787 445098 445103) (-287 "EVALCYC.spad" 444237 444251 444769 444774) (-286 "EVALAB.spad" 443801 443811 444227 444232) (-285 "EVALAB.spad" 443363 443375 443791 443796) (-284 "EUCDOM.spad" 440905 440913 443289 443358) (-283 "EUCDOM.spad" 438509 438519 440895 440900) (-282 "ESTOOLS.spad" 430349 430357 438499 438504) (-281 "ESTOOLS2.spad" 429950 429964 430339 430344) (-280 "ESTOOLS1.spad" 429635 429646 429940 429945) (-279 "ES.spad" 422182 422190 429625 429630) (-278 "ES.spad" 414637 414647 422082 422087) (-277 "ESCONT.spad" 411410 411418 414627 414632) (-276 "ESCONT1.spad" 411159 411171 411400 411405) (-275 "ES2.spad" 410654 410670 411149 411154) (-274 "ES1.spad" 410220 410236 410644 410649) (-273 "ERROR.spad" 407541 407549 410210 410215) (-272 "EQTBL.spad" 406013 406035 406222 406249) (-271 "EQ.spad" 400897 400907 403696 403805) (-270 "EQ2.spad" 400613 400625 400887 400892) (-269 "EP.spad" 396927 396937 400603 400608) (-268 "ENV.spad" 395629 395637 396917 396922) (-267 "ENTIRER.spad" 395297 395305 395573 395624) (-266 "EMR.spad" 394498 394539 395223 395292) (-265 "ELTAGG.spad" 392738 392757 394488 394493) (-264 "ELTAGG.spad" 390942 390963 392694 392699) (-263 "ELTAB.spad" 390389 390407 390932 390937) (-262 "ELFUTS.spad" 389768 389787 390379 390384) (-261 "ELEMFUN.spad" 389457 389465 389758 389763) (-260 "ELEMFUN.spad" 389144 389154 389447 389452) (-259 "ELAGG.spad" 387075 387085 389112 389139) (-258 "ELAGG.spad" 384955 384967 386994 386999) (-257 "ELABEXPR.spad" 383886 383894 384945 384950) (-256 "EFUPXS.spad" 380662 380692 383842 383847) (-255 "EFULS.spad" 377498 377521 380618 380623) (-254 "EFSTRUC.spad" 375453 375469 377488 377493) (-253 "EF.spad" 370219 370235 375443 375448) (-252 "EAB.spad" 368495 368503 370209 370214) (-251 "E04UCFA.spad" 368031 368039 368485 368490) (-250 "E04NAFA.spad" 367608 367616 368021 368026) (-249 "E04MBFA.spad" 367188 367196 367598 367603) (-248 "E04JAFA.spad" 366724 366732 367178 367183) (-247 "E04GCFA.spad" 366260 366268 366714 366719) (-246 "E04FDFA.spad" 365796 365804 366250 366255) (-245 "E04DGFA.spad" 365332 365340 365786 365791) (-244 "E04AGNT.spad" 361174 361182 365322 365327) (-243 "DVARCAT.spad" 357859 357869 361164 361169) (-242 "DVARCAT.spad" 354542 354554 357849 357854) (-241 "DSMP.spad" 351976 351990 352281 352408) (-240 "DROPT.spad" 345921 345929 351966 351971) (-239 "DROPT1.spad" 345584 345594 345911 345916) (-238 "DROPT0.spad" 340411 340419 345574 345579) (-237 "DRAWPT.spad" 338566 338574 340401 340406) (-236 "DRAW.spad" 331166 331179 338556 338561) (-235 "DRAWHACK.spad" 330474 330484 331156 331161) (-234 "DRAWCX.spad" 327916 327924 330464 330469) (-233 "DRAWCURV.spad" 327453 327468 327906 327911) (-232 "DRAWCFUN.spad" 316625 316633 327443 327448) (-231 "DQAGG.spad" 314781 314791 316581 316620) (-230 "DPOLCAT.spad" 310122 310138 314649 314776) (-229 "DPOLCAT.spad" 305549 305567 310078 310083) (-228 "DPMO.spad" 299536 299552 299674 299970) (-227 "DPMM.spad" 293536 293554 293661 293957) (-226 "DOMAIN.spad" 292807 292815 293526 293531) (-225 "DMP.spad" 290032 290047 290604 290731) (-224 "DLP.spad" 289380 289390 290022 290027) (-223 "DLIST.spad" 287792 287802 288563 288590) (-222 "DLAGG.spad" 286193 286203 287772 287787) (-221 "DIVRING.spad" 285640 285648 286137 286188) (-220 "DIVRING.spad" 285131 285141 285630 285635) (-219 "DISPLAY.spad" 283311 283319 285121 285126) (-218 "DIRPROD.spad" 274570 274586 275210 275339) (-217 "DIRPROD2.spad" 273378 273396 274560 274565) (-216 "DIRPCAT.spad" 272310 272326 273232 273373) (-215 "DIRPCAT.spad" 270982 271000 271906 271911) (-214 "DIOSP.spad" 269807 269815 270972 270977) (-213 "DIOPS.spad" 268779 268789 269775 269802) (-212 "DIOPS.spad" 267737 267749 268735 268740) (-211 "DIFRING.spad" 267029 267037 267717 267732) (-210 "DIFRING.spad" 266329 266339 267019 267024) (-209 "DIFEXT.spad" 265488 265498 266309 266324) (-208 "DIFEXT.spad" 264564 264576 265387 265392) (-207 "DIAGG.spad" 264182 264192 264532 264559) (-206 "DIAGG.spad" 263820 263832 264172 264177) (-205 "DHMATRIX.spad" 262124 262134 263277 263304) (-204 "DFSFUN.spad" 255532 255540 262114 262119) (-203 "DFLOAT.spad" 252055 252063 255422 255527) (-202 "DFINTTLS.spad" 250264 250280 252045 252050) (-201 "DERHAM.spad" 248174 248206 250244 250259) (-200 "DEQUEUE.spad" 247492 247502 247781 247808) (-199 "DEGRED.spad" 247107 247121 247482 247487) (-198 "DEFINTRF.spad" 244632 244642 247097 247102) (-197 "DEFINTEF.spad" 243128 243144 244622 244627) (-196 "DECIMAL.spad" 241012 241020 241598 241691) (-195 "DDFACT.spad" 238811 238828 241002 241007) (-194 "DBLRESP.spad" 238409 238433 238801 238806) (-193 "DBASE.spad" 236981 236991 238399 238404) (-192 "D03FAFA.spad" 236809 236817 236971 236976) (-191 "D03EEFA.spad" 236629 236637 236799 236804) (-190 "D03AGNT.spad" 235709 235717 236619 236624) (-189 "D02EJFA.spad" 235171 235179 235699 235704) (-188 "D02CJFA.spad" 234649 234657 235161 235166) (-187 "D02BHFA.spad" 234139 234147 234639 234644) (-186 "D02BBFA.spad" 233629 233637 234129 234134) (-185 "D02AGNT.spad" 228433 228441 233619 233624) (-184 "D01WGTS.spad" 226752 226760 228423 228428) (-183 "D01TRNS.spad" 226729 226737 226742 226747) (-182 "D01GBFA.spad" 226251 226259 226719 226724) (-181 "D01FCFA.spad" 225773 225781 226241 226246) (-180 "D01ASFA.spad" 225241 225249 225763 225768) (-179 "D01AQFA.spad" 224687 224695 225231 225236) (-178 "D01APFA.spad" 224111 224119 224677 224682) (-177 "D01ANFA.spad" 223605 223613 224101 224106) (-176 "D01AMFA.spad" 223115 223123 223595 223600) (-175 "D01ALFA.spad" 222655 222663 223105 223110) (-174 "D01AKFA.spad" 222181 222189 222645 222650) (-173 "D01AJFA.spad" 221704 221712 222171 222176) (-172 "D01AGNT.spad" 217763 217771 221694 221699) (-171 "CYCLOTOM.spad" 217269 217277 217753 217758) (-170 "CYCLES.spad" 214101 214109 217259 217264) (-169 "CVMP.spad" 213518 213528 214091 214096) (-168 "CTRIGMNP.spad" 212008 212024 213508 213513) (-167 "CTORCALL.spad" 211596 211604 211998 212003) (-166 "CSTTOOLS.spad" 210839 210852 211586 211591) (-165 "CRFP.spad" 204543 204556 210829 210834) (-164 "CRAPACK.spad" 203586 203596 204533 204538) (-163 "CPMATCH.spad" 203086 203101 203511 203516) (-162 "CPIMA.spad" 202791 202810 203076 203081) (-161 "COORDSYS.spad" 197684 197694 202781 202786) (-160 "CONTOUR.spad" 197086 197094 197674 197679) (-159 "CONTFRAC.spad" 192698 192708 196988 197081) (-158 "COMRING.spad" 192372 192380 192636 192693) (-157 "COMPPROP.spad" 191886 191894 192362 192367) (-156 "COMPLPAT.spad" 191653 191668 191876 191881) (-155 "COMPLEX.spad" 185686 185696 185930 186191) (-154 "COMPLEX2.spad" 185399 185411 185676 185681) (-153 "COMPFACT.spad" 185001 185015 185389 185394) (-152 "COMPCAT.spad" 183057 183067 184723 184996) (-151 "COMPCAT.spad" 180820 180832 182488 182493) (-150 "COMMUPC.spad" 180566 180584 180810 180815) (-149 "COMMONOP.spad" 180099 180107 180556 180561) (-148 "COMM.spad" 179908 179916 180089 180094) (-147 "COMBOPC.spad" 178813 178821 179898 179903) (-146 "COMBINAT.spad" 177558 177568 178803 178808) (-145 "COMBF.spad" 174926 174942 177548 177553) (-144 "COLOR.spad" 173763 173771 174916 174921) (-143 "CMPLXRT.spad" 173472 173489 173753 173758) (-142 "CLIP.spad" 169564 169572 173462 173467) (-141 "CLIF.spad" 168203 168219 169520 169559) (-140 "CLAGG.spad" 164678 164688 168183 168198) (-139 "CLAGG.spad" 161034 161046 164541 164546) (-138 "CINTSLPE.spad" 160359 160372 161024 161029) (-137 "CHVAR.spad" 158437 158459 160349 160354) (-136 "CHARZ.spad" 158352 158360 158417 158432) (-135 "CHARPOL.spad" 157860 157870 158342 158347) (-134 "CHARNZ.spad" 157613 157621 157840 157855) (-133 "CHAR.spad" 155481 155489 157603 157608) (-132 "CFCAT.spad" 154797 154805 155471 155476) (-131 "CDEN.spad" 153955 153969 154787 154792) (-130 "CCLASS.spad" 152104 152112 153366 153405) (-129 "CATEGORY.spad" 151883 151891 152094 152099) (-128 "CARTEN.spad" 146986 147010 151873 151878) (-127 "CARTEN2.spad" 146372 146399 146976 146981) (-126 "CARD.spad" 143661 143669 146346 146367) (-125 "CACHSET.spad" 143283 143291 143651 143656) (-124 "CABMON.spad" 142836 142844 143273 143278) (-123 "BTREE.spad" 141905 141915 142443 142470) (-122 "BTOURN.spad" 140908 140918 141512 141539) (-121 "BTCAT.spad" 140284 140294 140864 140903) (-120 "BTCAT.spad" 139692 139704 140274 140279) (-119 "BTAGG.spad" 138708 138716 139648 139687) (-118 "BTAGG.spad" 137756 137766 138698 138703) (-117 "BSTREE.spad" 136491 136501 137363 137390) (-116 "BRILL.spad" 134686 134697 136481 136486) (-115 "BRAGG.spad" 133600 133610 134666 134681) (-114 "BRAGG.spad" 132488 132500 133556 133561) (-113 "BPADICRT.spad" 130472 130484 130727 130820) (-112 "BPADIC.spad" 130136 130148 130398 130467) (-111 "BOUNDZRO.spad" 129792 129809 130126 130131) (-110 "BOP.spad" 125256 125264 129782 129787) (-109 "BOP1.spad" 122642 122652 125212 125217) (-108 "BOOLEAN.spad" 121895 121903 122632 122637) (-107 "BMODULE.spad" 121607 121619 121863 121890) (-106 "BITS.spad" 121026 121034 121243 121270) (-105 "BINFILE.spad" 120369 120377 121016 121021) (-104 "BINDING.spad" 119788 119796 120359 120364) (-103 "BINARY.spad" 117681 117689 118258 118351) (-102 "BGAGG.spad" 116866 116876 117649 117676) (-101 "BGAGG.spad" 116071 116083 116856 116861) (-100 "BFUNCT.spad" 115635 115643 116051 116066) (-99 "BEZOUT.spad" 114770 114796 115585 115590) (-98 "BBTREE.spad" 111590 111599 114377 114404) (-97 "BASTYPE.spad" 111263 111270 111580 111585) (-96 "BASTYPE.spad" 110934 110943 111253 111258) (-95 "BALFACT.spad" 110374 110386 110924 110929) (-94 "AUTOMOR.spad" 109821 109830 110354 110369) (-93 "ATTREG.spad" 106540 106547 109573 109816) (-92 "ATTRBUT.spad" 102563 102570 106520 106535) (-91 "ATRIG.spad" 102033 102040 102553 102558) (-90 "ATRIG.spad" 101501 101510 102023 102028) (-89 "ASTACK.spad" 100834 100843 101108 101135) (-88 "ASSOCEQ.spad" 99634 99645 100790 100795) (-87 "ASP9.spad" 98715 98728 99624 99629) (-86 "ASP8.spad" 97758 97771 98705 98710) (-85 "ASP80.spad" 97080 97093 97748 97753) (-84 "ASP7.spad" 96240 96253 97070 97075) (-83 "ASP78.spad" 95691 95704 96230 96235) (-82 "ASP77.spad" 95060 95073 95681 95686) (-81 "ASP74.spad" 94152 94165 95050 95055) (-80 "ASP73.spad" 93423 93436 94142 94147) (-79 "ASP6.spad" 92055 92068 93413 93418) (-78 "ASP55.spad" 90564 90577 92045 92050) (-77 "ASP50.spad" 88381 88394 90554 90559) (-76 "ASP4.spad" 87676 87689 88371 88376) (-75 "ASP49.spad" 86675 86688 87666 87671) (-74 "ASP42.spad" 85082 85121 86665 86670) (-73 "ASP41.spad" 83661 83700 85072 85077) (-72 "ASP35.spad" 82649 82662 83651 83656) (-71 "ASP34.spad" 81950 81963 82639 82644) (-70 "ASP33.spad" 81510 81523 81940 81945) (-69 "ASP31.spad" 80650 80663 81500 81505) (-68 "ASP30.spad" 79542 79555 80640 80645) (-67 "ASP29.spad" 79008 79021 79532 79537) (-66 "ASP28.spad" 70281 70294 78998 79003) (-65 "ASP27.spad" 69178 69191 70271 70276) (-64 "ASP24.spad" 68265 68278 69168 69173) (-63 "ASP20.spad" 67481 67494 68255 68260) (-62 "ASP1.spad" 66862 66875 67471 67476) (-61 "ASP19.spad" 61548 61561 66852 66857) (-60 "ASP12.spad" 60962 60975 61538 61543) (-59 "ASP10.spad" 60233 60246 60952 60957) (-58 "ARRAY2.spad" 59593 59602 59840 59867) (-57 "ARRAY1.spad" 58428 58437 58776 58803) (-56 "ARRAY12.spad" 57097 57108 58418 58423) (-55 "ARR2CAT.spad" 52747 52768 57053 57092) (-54 "ARR2CAT.spad" 48429 48452 52737 52742) (-53 "APPRULE.spad" 47673 47695 48419 48424) (-52 "APPLYORE.spad" 47288 47301 47663 47668) (-51 "ANY.spad" 45630 45637 47278 47283) (-50 "ANY1.spad" 44701 44710 45620 45625) (-49 "ANTISYM.spad" 43140 43156 44681 44696) (-48 "ANON.spad" 42837 42844 43130 43135) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index d48ed6f3..505188a0 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,3209 +1,3211 @@ -(142485 . 3410359543) -(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((#0=(-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) #0#) |has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) +(142548 . 3415311735) +(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((#0=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) #0#) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) (((|#2| |#2|) . T)) -((((-522)) . T)) -((($ $) -3844 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) ((|#2| |#2|) . T) ((#0=(-382 (-522)) #0#) |has| |#2| (-37 (-382 (-522))))) +((((-523)) . T)) +((($ $) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) ((|#2| |#2|) . T) ((#0=(-383 (-523)) #0#) |has| |#2| (-37 (-383 (-523))))) ((($) . T)) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) +((($) . T) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (((|#2|) . T)) -((($) -3844 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) ((|#2|) . T) (((-382 (-522))) |has| |#2| (-37 (-382 (-522))))) -(|has| |#1| (-838)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((($) . T) (((-382 (-522))) . T)) +((($) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) ((|#2|) . T) (((-383 (-523))) |has| |#2| (-37 (-383 (-523))))) +(|has| |#1| (-840)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +((($) . T) (((-383 (-523))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) -((((-132)) . T)) -((((-498)) . T) (((-1068)) . T) (((-202)) . T) (((-354)) . T) (((-821 (-354))) . T)) -(((|#1|) . T)) -((((-202)) . T) (((-792)) . T)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) . T)) -(-3844 (|has| |#1| (-21)) (|has| |#1| (-782))) -((($ $) . T) ((#0=(-382 (-522)) #0#) -3844 (|has| |#1| (-338)) (|has| |#1| (-324))) ((|#1| |#1|) . T)) -(-3844 (|has| |#1| (-757)) (|has| |#1| (-784))) -((((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-522)) |has| |#1| (-962 (-522))) ((|#1|) . T)) -((((-792)) . T)) -((((-792)) . T)) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-514))) -(|has| |#1| (-782)) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) +((((-133)) . T)) +((((-499)) . T) (((-1070)) . T) (((-203)) . T) (((-355)) . T) (((-823 (-355))) . T)) +(((|#1|) . T)) +((((-203)) . T) (((-794)) . T)) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#1|) . T)) +(-3262 (|has| |#1| (-21)) (|has| |#1| (-784))) +((($ $) . T) ((#0=(-383 (-523)) #0#) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1| |#1|) . T)) +(-3262 (|has| |#1| (-759)) (|has| |#1| (-786))) +((((-383 (-523))) |has| |#1| (-964 (-383 (-523)))) (((-523)) |has| |#1| (-964 (-523))) ((|#1|) . T)) +((((-794)) . T)) +((((-794)) . T)) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +(|has| |#1| (-784)) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#1| |#2| |#3|) . T)) (((|#4|) . T)) -((($) . T) (((-382 (-522))) -3844 (|has| |#1| (-338)) (|has| |#1| (-324))) ((|#1|) . T)) -((((-792)) . T)) -((((-792)) |has| |#1| (-1014))) +((($) . T) (((-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) +((((-794)) . T)) +((((-794)) |has| |#1| (-1016))) (((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522))))) -(-3844 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -(((|#2| (-455 (-3591 |#1|) (-708))) . T)) -(((|#1| (-494 (-1085))) . T)) -(((#0=(-799 |#1|) #0#) . T) ((#1=(-382 (-522)) #1#) . T) (($ $) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -(|has| |#4| (-343)) -(|has| |#3| (-343)) -(((|#1|) . T)) -((((-799 |#1|)) . T) (((-382 (-522))) . T) (($) . T)) +(((|#1|) . T) (((-523)) |has| |#1| (-964 (-523))) (((-383 (-523))) |has| |#1| (-964 (-383 (-523))))) +(-3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(((|#2| (-456 (-2676 |#1|) (-710))) . T)) +(((|#1| (-495 (-1087))) . T)) +(((#0=(-801 |#1|) #0#) . T) ((#1=(-383 (-523)) #1#) . T) (($ $) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +(|has| |#4| (-344)) +(|has| |#3| (-344)) +(((|#1|) . T)) +((((-801 |#1|)) . T) (((-383 (-523))) . T) (($) . T)) (((|#1| |#2|) . T)) ((($) . T)) -(|has| |#1| (-133)) -(|has| |#1| (-135)) -(|has| |#1| (-514)) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-514))) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-514))) -((($) . T)) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014)))) -((((-498)) |has| |#1| (-563 (-498)))) -((($) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) . T)) -((($) . T)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -((((-792)) . T)) -((((-792)) . T)) -((((-382 (-522))) . T) (($) . T)) -((((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (((-1158 |#1| |#2| |#3|)) |has| |#1| (-338)) (($) . T) ((|#1|) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) . T)) -(((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) (($) . T)) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) +(|has| |#1| (-134)) +(|has| |#1| (-136)) +(|has| |#1| (-515)) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +((($) . T)) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) +((((-499)) |has| |#1| (-564 (-499)))) +((($) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T)) +((($) . T)) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +((((-794)) . T)) +((((-794)) . T)) +((((-383 (-523))) . T) (($) . T)) +((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (((-1160 |#1| |#2| |#3|)) |has| |#1| (-339)) (($) . T) ((|#1|) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) . T)) +(((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) (($) . T)) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) (((|#1| |#2|) . T)) -((((-792)) . T)) +((((-794)) . T)) (((|#1|) . T)) -(((#0=(-382 (-522)) #0#) |has| |#2| (-37 (-382 (-522)))) ((|#2| |#2|) . T) (($ $) -3844 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))) +(((#0=(-383 (-523)) #0#) |has| |#2| (-37 (-383 (-523)))) ((|#2| |#2|) . T) (($ $) -3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) (((|#1|) . T)) -((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) |has| |#2| (-157)) (($) -3844 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))) -((($) -3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -(((|#1|) . T) (((-382 (-522))) . T) (($) . T)) -(((|#1|) . T) (((-382 (-522))) . T) (($) . T)) -(((|#1|) . T) (((-382 (-522))) . T) (($) . T)) -(((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522)))) ((|#1| |#1|) . T) (($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +(((|#1|) . T) (((-383 (-523))) . T) (($) . T)) +(((|#1|) . T) (((-383 (-523))) . T) (($) . T)) +(((|#1|) . T) (((-383 (-523))) . T) (($) . T)) +(((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523)))) ((|#1| |#1|) . T) (($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) ((($ $) . T)) (((|#2|) . T)) -((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) . T) (($) -3844 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))) -((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) . T) (($) -3844 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) . T) (($) -3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T) (($) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) ((($) . T)) -(|has| |#1| (-343)) +(|has| |#1| (-344)) (((|#1|) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -((((-792)) . T)) -((((-792)) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +((((-794)) . T)) +((((-794)) . T)) (((|#1| |#2|) . T)) -(-3844 (|has| |#1| (-21)) (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))) (|has| |#1| (-971))) -(-3844 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))) (|has| |#1| (-971))) +(-3262 (|has| |#1| (-21)) (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973))) +(-3262 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973))) (((|#1| |#1|) . T)) -(|has| |#1| (-514)) -(((|#2| |#2|) -12 (|has| |#1| (-338)) (|has| |#2| (-285 |#2|))) (((-1085) |#2|) -12 (|has| |#1| (-338)) (|has| |#2| (-483 (-1085) |#2|)))) -((((-382 |#2|)) . T) (((-382 (-522))) . T) (($) . T)) -(-3844 (|has| |#1| (-21)) (|has| |#1| (-782))) -((($ $) . T) ((#0=(-382 (-522)) #0#) . T)) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) -(|has| |#1| (-1014)) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) -(|has| |#1| (-1014)) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) -(|has| |#1| (-782)) -((($) . T) (((-382 (-522))) . T)) -(((|#1|) . T)) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-324))) -(-3844 (|has| |#4| (-730)) (|has| |#4| (-782))) -(-3844 (|has| |#4| (-730)) (|has| |#4| (-782))) -(-3844 (|has| |#3| (-730)) (|has| |#3| (-782))) -(-3844 (|has| |#3| (-730)) (|has| |#3| (-782))) +(|has| |#1| (-515)) +(((|#2| |#2|) -12 (|has| |#1| (-339)) (|has| |#2| (-286 |#2|))) (((-1087) |#2|) -12 (|has| |#1| (-339)) (|has| |#2| (-484 (-1087) |#2|)))) +((((-383 |#2|)) . T) (((-383 (-523))) . T) (($) . T)) +(-3262 (|has| |#1| (-21)) (|has| |#1| (-784))) +((($ $) . T) ((#0=(-383 (-523)) #0#) . T)) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(|has| |#1| (-1016)) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(|has| |#1| (-1016)) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(|has| |#1| (-784)) +((($) . T) (((-383 (-523))) . T)) +(((|#1|) . T)) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-325))) +(-3262 (|has| |#4| (-732)) (|has| |#4| (-784))) +(-3262 (|has| |#4| (-732)) (|has| |#4| (-784))) +(-3262 (|has| |#3| (-732)) (|has| |#3| (-784))) +(-3262 (|has| |#3| (-732)) (|has| |#3| (-784))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-1014)) -(|has| |#1| (-1014)) -(((|#1| (-1085) (-1004 (-1085)) (-494 (-1004 (-1085)))) . T)) -((((-522) |#1|) . T)) -((((-522)) . T)) -((((-522)) . T)) -((((-839 |#1|)) . T)) -(((|#1| (-494 |#2|)) . T)) -((((-522)) . T)) -((((-522)) . T)) -(((|#1|) . T)) -(-3844 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971))) -(((|#1| (-708)) . T)) -(|has| |#2| (-730)) -(-3844 (|has| |#2| (-730)) (|has| |#2| (-782))) -(|has| |#2| (-782)) +(|has| |#1| (-1016)) +(|has| |#1| (-1016)) +(((|#1| (-1087) (-1006 (-1087)) (-495 (-1006 (-1087)))) . T)) +((((-523) |#1|) . T)) +((((-523)) . T)) +((((-523)) . T)) +((((-841 |#1|)) . T)) +(((|#1| (-495 |#2|)) . T)) +((((-523)) . T)) +((((-523)) . T)) +(((|#1|) . T)) +(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(((|#1| (-710)) . T)) +(|has| |#2| (-732)) +(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) +(|has| |#2| (-784)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1068) |#1|) . T)) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014)))) -(((|#1|) . T)) -(((|#3| (-708)) . T)) -(|has| |#1| (-135)) -(|has| |#1| (-133)) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) -(|has| |#1| (-1014)) -((((-382 (-522))) . T) (((-522)) . T)) -((((-1085) |#2|) |has| |#2| (-483 (-1085) |#2|)) ((|#2| |#2|) |has| |#2| (-285 |#2|))) -((((-382 (-522))) . T) (((-522)) . T)) +((((-1070) |#1|) . T)) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +(((|#1|) . T)) +(((|#3| (-710)) . T)) +(|has| |#1| (-136)) +(|has| |#1| (-134)) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) +(|has| |#1| (-1016)) +((((-383 (-523))) . T) (((-523)) . T)) +((((-1087) |#2|) |has| |#2| (-484 (-1087) |#2|)) ((|#2| |#2|) |has| |#2| (-286 |#2|))) +((((-383 (-523))) . T) (((-523)) . T)) (((|#1|) . T) (($) . T)) -((((-522)) . T)) -((((-522)) . T)) -((($) -3844 (|has| |#1| (-338)) (|has| |#1| (-514))) (((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((|#1|) |has| |#1| (-157))) -((((-522)) . T)) -((((-522)) . T)) -(((#0=(-637) (-1081 #0#)) . T)) -((((-382 (-522))) . T) (($) . T)) -(((|#1|) . T) (((-382 (-522))) . T) (($) . T)) -((((-522) |#1|) . T)) -((($) . T) (((-522)) . T) (((-382 (-522))) . T)) -(((|#1|) . T)) -(|has| |#2| (-338)) +((((-523)) . T)) +((((-523)) . T)) +((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#1|) |has| |#1| (-158))) +((((-523)) . T)) +((((-523)) . T)) +(((#0=(-638) (-1083 #0#)) . T)) +((((-383 (-523))) . T) (($) . T)) +(((|#1|) . T) (((-383 (-523))) . T) (($) . T)) +((((-523) |#1|) . T)) +((($) . T) (((-523)) . T) (((-383 (-523))) . T)) +(((|#1|) . T)) +(|has| |#2| (-339)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-792)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -((((-1068) |#1|) . T)) +((((-794)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +((((-1070) |#1|) . T)) (((|#3| |#3|) . T)) -((((-792)) . T)) -((((-792)) . T)) +((((-794)) . T)) +((((-794)) . T)) (((|#1| |#1|) . T)) -(((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522)))) ((|#1| |#1|) . T) (($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))) -((($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522))))) -(((|#1|) . T)) -((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) . T) (($) -3844 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))) -((($) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -((($) -3844 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971))) ((|#2|) -3844 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-971)))) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-522) |#1|) . T)) -((((-792)) . T)) -((((-154 (-202))) |has| |#1| (-947)) (((-154 (-354))) |has| |#1| (-947)) (((-498)) |has| |#1| (-563 (-498))) (((-1081 |#1|)) . T) (((-821 (-522))) |has| |#1| (-563 (-821 (-522)))) (((-821 (-354))) |has| |#1| (-563 (-821 (-354))))) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) . T)) -(-3844 (|has| |#1| (-21)) (|has| |#1| (-782))) -(-3844 (|has| |#1| (-21)) (|has| |#1| (-782))) -((((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3844 (|has| |#1| (-338)) (|has| |#1| (-514))) ((|#2|) |has| |#1| (-338)) ((|#1|) |has| |#1| (-157))) -(((|#1|) |has| |#1| (-157)) (((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3844 (|has| |#1| (-338)) (|has| |#1| (-514)))) -(|has| |#1| (-338)) -(-12 (|has| |#4| (-210)) (|has| |#4| (-971))) -(-12 (|has| |#3| (-210)) (|has| |#3| (-971))) -(-3844 (|has| |#4| (-157)) (|has| |#4| (-782)) (|has| |#4| (-971))) -(-3844 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-971))) -((((-792)) . T)) -(((|#1|) . T)) -((((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-522)) |has| |#1| (-962 (-522))) ((|#1|) . T)) -(((|#1|) . T) (((-522)) |has| |#1| (-584 (-522)))) -(((|#2|) . T) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) . T)) -(|has| |#1| (-514)) -(|has| |#1| (-514)) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) -(((|#1|) . T)) -(|has| |#1| (-514)) -(|has| |#1| (-514)) -(|has| |#1| (-514)) -((((-637)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-928)) (|has| |#1| (-1106))) -(((|#2|) . T) (($) . T) (((-382 (-522))) . T)) -(-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) -((($) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) . T)) -((((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (((-1083 |#1| |#2| |#3|)) |has| |#1| (-338)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) . T)) -(((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) (($) . T)) -(((|#4| |#4|) -3844 (|has| |#4| (-157)) (|has| |#4| (-338)) (|has| |#4| (-971))) (($ $) |has| |#4| (-157))) -(((|#3| |#3|) -3844 (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-971))) (($ $) |has| |#3| (-157))) -(((|#1|) . T)) -(((|#2|) . T)) -((((-498)) |has| |#2| (-563 (-498))) (((-821 (-354))) |has| |#2| (-563 (-821 (-354)))) (((-821 (-522))) |has| |#2| (-563 (-821 (-522))))) -((((-792)) . T)) +(((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523)))) ((|#1| |#1|) . T) (($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) +((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) +(((|#1|) . T)) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T) (($) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) +((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($) -3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) ((|#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973)))) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-523) |#1|) . T)) +((((-794)) . T)) +((((-155 (-203))) |has| |#1| (-949)) (((-155 (-355))) |has| |#1| (-949)) (((-499)) |has| |#1| (-564 (-499))) (((-1083 |#1|)) . T) (((-823 (-523))) |has| |#1| (-564 (-823 (-523)))) (((-823 (-355))) |has| |#1| (-564 (-823 (-355))))) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#1|) . T)) +(-3262 (|has| |#1| (-21)) (|has| |#1| (-784))) +(-3262 (|has| |#1| (-21)) (|has| |#1| (-784))) +((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515))) ((|#2|) |has| |#1| (-339)) ((|#1|) |has| |#1| (-158))) +(((|#1|) |has| |#1| (-158)) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515)))) +(|has| |#1| (-339)) +(-12 (|has| |#4| (-211)) (|has| |#4| (-973))) +(-12 (|has| |#3| (-211)) (|has| |#3| (-973))) +(-3262 (|has| |#4| (-158)) (|has| |#4| (-784)) (|has| |#4| (-973))) +(-3262 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) +((((-794)) . T)) +(((|#1|) . T)) +((((-383 (-523))) |has| |#1| (-964 (-383 (-523)))) (((-523)) |has| |#1| (-964 (-523))) ((|#1|) . T)) +(((|#1|) . T) (((-523)) |has| |#1| (-585 (-523)))) +(((|#2|) . T) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) +(|has| |#1| (-515)) +(|has| |#1| (-515)) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(((|#1|) . T)) +(|has| |#1| (-515)) +(|has| |#1| (-515)) +(|has| |#1| (-515)) +((((-638)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-930)) (|has| |#1| (-1108))) +(((|#2|) . T) (($) . T) (((-383 (-523))) . T)) +(-12 (|has| |#1| (-1016)) (|has| |#2| (-1016))) +((($) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T)) +((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (((-1085 |#1| |#2| |#3|)) |has| |#1| (-339)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) . T)) +(((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) (($) . T)) +(((|#4| |#4|) -3262 (|has| |#4| (-158)) (|has| |#4| (-339)) (|has| |#4| (-973))) (($ $) |has| |#4| (-158))) +(((|#3| |#3|) -3262 (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-973))) (($ $) |has| |#3| (-158))) +(((|#1|) . T)) +(((|#2|) . T)) +((((-499)) |has| |#2| (-564 (-499))) (((-823 (-355))) |has| |#2| (-564 (-823 (-355)))) (((-823 (-523))) |has| |#2| (-564 (-823 (-523))))) +((((-794)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-792)) . T)) -((((-498)) |has| |#1| (-563 (-498))) (((-821 (-354))) |has| |#1| (-563 (-821 (-354)))) (((-821 (-522))) |has| |#1| (-563 (-821 (-522))))) -((((-792)) . T)) -(((|#4|) -3844 (|has| |#4| (-157)) (|has| |#4| (-338)) (|has| |#4| (-971))) (($) |has| |#4| (-157))) -(((|#3|) -3844 (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-971))) (($) |has| |#3| (-157))) -((((-792)) . T)) -((((-498)) . T) (((-522)) . T) (((-821 (-522))) . T) (((-354)) . T) (((-202)) . T)) -(((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522))))) -((($) . T) (((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) . T)) -((((-382 $) (-382 $)) |has| |#2| (-514)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-838)) -((((-1068) (-51)) . T)) -((((-522)) |has| #0=(-382 |#2|) (-584 (-522))) ((#0#) . T)) -((((-498)) . T) (((-202)) . T) (((-354)) . T) (((-821 (-354))) . T)) -((((-792)) . T)) -(-3844 (|has| |#1| (-21)) (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))) (|has| |#1| (-971))) -(((|#1|) |has| |#1| (-157))) -(((|#1| $) |has| |#1| (-262 |#1| |#1|))) -((((-792)) . T)) -((((-792)) . T)) -((((-382 (-522))) . T) (($) . T)) -((((-382 (-522))) . T) (($) . T)) -((((-792)) . T)) -(|has| |#1| (-784)) -(|has| |#1| (-1014)) -(((|#1|) . T)) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014)))) -((((-498)) |has| |#1| (-563 (-498)))) -((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) |has| |#2| (-157)) (($) -3844 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))) -((($) -3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -((($) -3844 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -(|has| |#1| (-210)) -((($) -3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -(((|#1| (-494 (-755 (-1085)))) . T)) -(((|#1| (-898)) . T)) -(((#0=(-799 |#1|) $) |has| #0# (-262 #0# #0#))) -((((-522) |#4|) . T)) -((((-522) |#3|) . T)) +((((-794)) . T)) +((((-499)) |has| |#1| (-564 (-499))) (((-823 (-355))) |has| |#1| (-564 (-823 (-355)))) (((-823 (-523))) |has| |#1| (-564 (-823 (-523))))) +((((-794)) . T)) +(((|#4|) -3262 (|has| |#4| (-158)) (|has| |#4| (-339)) (|has| |#4| (-973))) (($) |has| |#4| (-158))) +(((|#3|) -3262 (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-973))) (($) |has| |#3| (-158))) +((((-794)) . T)) +((((-499)) . T) (((-523)) . T) (((-823 (-523))) . T) (((-355)) . T) (((-203)) . T)) +(((|#1|) . T) (((-523)) |has| |#1| (-964 (-523))) (((-383 (-523))) |has| |#1| (-964 (-383 (-523))))) +((($) . T) (((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) . T)) +((((-383 $) (-383 $)) |has| |#2| (-515)) (($ $) . T) ((|#2| |#2|) . T)) +((((-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-840)) +((((-1070) (-51)) . T)) +((((-523)) |has| #0=(-383 |#2|) (-585 (-523))) ((#0#) . T)) +((((-499)) . T) (((-203)) . T) (((-355)) . T) (((-823 (-355))) . T)) +((((-794)) . T)) +(-3262 (|has| |#1| (-21)) (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973))) +(((|#1|) |has| |#1| (-158))) +(((|#1| $) |has| |#1| (-263 |#1| |#1|))) +((((-794)) . T)) +((((-794)) . T)) +((((-383 (-523))) . T) (($) . T)) +((((-383 (-523))) . T) (($) . T)) +((((-794)) . T)) +(|has| |#1| (-786)) +(|has| |#1| (-1016)) +(((|#1|) . T)) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) +((((-499)) |has| |#1| (-564 (-499)))) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +(|has| |#1| (-211)) +((($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +(((|#1| (-495 (-757 (-1087)))) . T)) +(((|#1| (-900)) . T)) +(((#0=(-801 |#1|) $) |has| #0# (-263 #0# #0#))) +((((-523) |#4|) . T)) +((((-523) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1061)) -((((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) . T)) -(|has| (-1152 |#1| |#2| |#3| |#4|) (-133)) -(|has| (-1152 |#1| |#2| |#3| |#4|) (-135)) -(|has| |#1| (-133)) -(|has| |#1| (-135)) -(((|#1|) |has| |#1| (-157))) -((((-1085)) -12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) -(((|#2|) . T)) -(|has| |#1| (-1014)) -((((-1068) |#1|) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-522)) |has| |#2| (-584 (-522)))) -(|has| |#2| (-343)) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) +(|has| |#1| (-1063)) +((((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) +(|has| (-1154 |#1| |#2| |#3| |#4|) (-134)) +(|has| (-1154 |#1| |#2| |#3| |#4|) (-136)) +(|has| |#1| (-134)) +(|has| |#1| (-136)) +(((|#1|) |has| |#1| (-158))) +((((-1087)) -12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) +(((|#2|) . T)) +(|has| |#1| (-1016)) +((((-1070) |#1|) . T)) +(((|#1|) . T)) +(((|#2|) . T) (((-523)) |has| |#2| (-585 (-523)))) +(|has| |#2| (-344)) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-971))) -((((-792)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((#0=(-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) #0#) |has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) +(((|#2|) |has| |#2| (-973))) +((((-794)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((#0=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) #0#) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((#0=(-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) #0#) |has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-285 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))))) -((((-522) |#1|) . T)) -((((-792)) . T)) -((((-498)) -12 (|has| |#1| (-563 (-498))) (|has| |#2| (-563 (-498)))) (((-821 (-354))) -12 (|has| |#1| (-563 (-821 (-354)))) (|has| |#2| (-563 (-821 (-354))))) (((-821 (-522))) -12 (|has| |#1| (-563 (-821 (-522)))) (|has| |#2| (-563 (-821 (-522)))))) -((((-792)) . T)) -((((-792)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((#0=(-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) #0#) |has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))))) +((((-523) |#1|) . T)) +((((-794)) . T)) +((((-499)) -12 (|has| |#1| (-564 (-499))) (|has| |#2| (-564 (-499)))) (((-823 (-355))) -12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355))))) (((-823 (-523))) -12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) +((((-794)) . T)) +((((-794)) . T)) ((($) . T)) -((($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522))))) +((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -3844 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -((((-792)) . T)) -((((-792)) . T)) -(|has| (-1151 |#2| |#3| |#4|) (-135)) -(|has| (-1151 |#2| |#3| |#4|) (-133)) -(((|#2|) |has| |#2| (-1014)) (((-522)) -12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014))) (((-382 (-522))) -12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) +((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((((-794)) . T)) +((((-794)) . T)) +(|has| (-1153 |#2| |#3| |#4|) (-136)) +(|has| (-1153 |#2| |#3| |#4|) (-134)) +(((|#2|) |has| |#2| (-1016)) (((-523)) -12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016))) (((-383 (-523))) -12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (((|#1|) . T)) -(|has| |#1| (-1014)) -((((-792)) . T)) +(|has| |#1| (-1016)) +((((-794)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3844 (|has| |#1| (-21)) (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))) (|has| |#1| (-971))) +(-3262 (|has| |#1| (-21)) (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973))) (((|#1|) . T)) -((((-522) |#1|) . T)) -(((|#2|) |has| |#2| (-157))) -(((|#1|) |has| |#1| (-157))) +((((-523) |#1|) . T)) +(((|#2|) |has| |#2| (-158))) +(((|#1|) |has| |#1| (-158))) (((|#1|) . T)) -(-3844 (|has| |#1| (-21)) (|has| |#1| (-782))) -((((-792)) |has| |#1| (-1014))) -(-3844 (|has| |#1| (-447)) (|has| |#1| (-664)) (|has| |#1| (-829 (-1085))) (|has| |#1| (-971)) (|has| |#1| (-1026))) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-324))) -((((-839 |#1|)) . T)) -((((-382 |#2|) |#3|) . T)) -(|has| |#1| (-15 * (|#1| (-522) |#1|))) -((((-382 (-522))) . T) (($) . T)) -(|has| |#1| (-784)) +(-3262 (|has| |#1| (-21)) (|has| |#1| (-784))) +((((-794)) |has| |#1| (-1016))) +(-3262 (|has| |#1| (-448)) (|has| |#1| (-666)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973)) (|has| |#1| (-1028))) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-325))) +((((-841 |#1|)) . T)) +((((-383 |#2|) |#3|) . T)) +(|has| |#1| (-15 * (|#1| (-523) |#1|))) +((((-383 (-523))) . T) (($) . T)) +(|has| |#1| (-786)) (((|#1|) . T) (($) . T)) -((((-382 (-522))) . T) (($) . T)) -((((-792)) . T)) -(((|#1|) . T)) -((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-514))) -(|has| |#1| (-338)) -(-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|)))) -(|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) -(|has| |#1| (-338)) -((((-522)) . T)) -(|has| |#1| (-15 * (|#1| (-708) |#1|))) -((((-1052 |#2| (-382 (-881 |#1|)))) . T) (((-382 (-881 |#1|))) . T)) -((($) . T)) -(((|#1|) |has| |#1| (-157)) (($) . T)) -(((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) (($) . T)) -(((|#1|) . T)) -((((-522) |#1|) . T)) -(((|#2|) . T)) -(-3844 (|has| |#2| (-338)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) -(-3844 (|has| |#2| (-730)) (|has| |#2| (-782))) -(-3844 (|has| |#2| (-730)) (|has| |#2| (-782))) -(((|#1|) . T)) -((((-1085)) -12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(-12 (|has| |#1| (-338)) (|has| |#2| (-757))) -(-3844 (|has| |#1| (-283)) (|has| |#1| (-338)) (|has| |#1| (-324)) (|has| |#1| (-514))) -(((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522)))) ((|#1| |#1|) . T) (($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-514)))) -((($ $) |has| |#1| (-514))) -(((#0=(-637) (-1081 #0#)) . T)) -((((-792)) . T)) -((((-792)) . T) (((-1166 |#4|)) . T)) -((((-792)) . T) (((-1166 |#3|)) . T)) -((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) . T) (($) -3844 (|has| |#1| (-157)) (|has| |#1| (-514)))) -((($) |has| |#1| (-514))) -((((-792)) . T)) -((($) . T)) -((($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) ((#0=(-382 (-522)) #0#) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((#1=(-1158 |#1| |#2| |#3|) #1#) |has| |#1| (-338)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) ((#0=(-382 (-522)) #0#) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338)))) -((($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-514))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522))))) -((($) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) (((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (((-1158 |#1| |#2| |#3|)) |has| |#1| (-338)) ((|#1|) . T)) -(((|#1|) . T) (($) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) (((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338)))) -(((|#3|) |has| |#3| (-971))) -((($) -3844 (|has| |#1| (-157)) (|has| |#1| (-514))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -(|has| |#1| (-1014)) -(((|#2| (-756 |#1|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-338)) -((((-382 $) (-382 $)) |has| |#1| (-514)) (($ $) . T) ((|#1| |#1|) . T)) -(((#0=(-999) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-839 |#1|)) . T)) -((((-132)) . T)) -((((-132)) . T)) -(((|#3|) |has| |#3| (-1014)) (((-522)) -12 (|has| |#3| (-962 (-522))) (|has| |#3| (-1014))) (((-382 (-522))) -12 (|has| |#3| (-962 (-382 (-522)))) (|has| |#3| (-1014)))) -((((-792)) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -(((|#1|) . T)) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014)))) -((((-498)) |has| |#1| (-563 (-498)))) -((((-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) . T)) -(|has| |#1| (-338)) -(-3844 (|has| |#1| (-21)) (|has| |#1| (-782))) -((((-1085) |#1|) |has| |#1| (-483 (-1085) |#1|)) ((|#1| |#1|) |has| |#1| (-285 |#1|))) -(|has| |#2| (-757)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-782)) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) -((((-792)) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -((((-498)) |has| |#1| (-563 (-498)))) +((((-383 (-523))) . T) (($) . T)) +((((-794)) . T)) +(((|#1|) . T)) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) |has| |#1| (-158)) (($) |has| |#1| (-515))) +(|has| |#1| (-339)) +(-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))) +(|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) +(|has| |#1| (-339)) +((((-523)) . T)) +(|has| |#1| (-15 * (|#1| (-710) |#1|))) +((((-1054 |#2| (-383 (-883 |#1|)))) . T) (((-383 (-883 |#1|))) . T)) +((($) . T)) +(((|#1|) |has| |#1| (-158)) (($) . T)) +(((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) (($) . T)) +(((|#1|) . T)) +((((-523) |#1|) . T)) +(((|#2|) . T)) +(-3262 (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) +(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) +(((|#1|) . T)) +((((-1087)) -12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(-12 (|has| |#1| (-339)) (|has| |#2| (-759))) +(-3262 (|has| |#1| (-284)) (|has| |#1| (-339)) (|has| |#1| (-325)) (|has| |#1| (-515))) +(((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523)))) ((|#1| |#1|) . T) (($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-515)))) +((($ $) |has| |#1| (-515))) +(((#0=(-638) (-1083 #0#)) . T)) +((((-794)) . T)) +((((-794)) . T) (((-1168 |#4|)) . T)) +((((-794)) . T) (((-1168 |#3|)) . T)) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T) (($) -3262 (|has| |#1| (-158)) (|has| |#1| (-515)))) +((($) |has| |#1| (-515))) +((((-794)) . T)) +((($) . T)) +((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((#0=(-383 (-523)) #0#) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((#1=(-1160 |#1| |#2| |#3|) #1#) |has| |#1| (-339)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((#0=(-383 (-523)) #0#) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339)))) +((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) +((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (((-1160 |#1| |#2| |#3|)) |has| |#1| (-339)) ((|#1|) . T)) +(((|#1|) . T) (($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339)))) +(((|#3|) |has| |#3| (-973))) +((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +(|has| |#1| (-1016)) +(((|#2| (-758 |#1|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-339)) +((((-383 $) (-383 $)) |has| |#1| (-515)) (($ $) . T) ((|#1| |#1|) . T)) +(((#0=(-1001) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((((-841 |#1|)) . T)) +((((-133)) . T)) +((((-133)) . T)) +(((|#3|) |has| |#3| (-1016)) (((-523)) -12 (|has| |#3| (-964 (-523))) (|has| |#3| (-1016))) (((-383 (-523))) -12 (|has| |#3| (-964 (-383 (-523)))) (|has| |#3| (-1016)))) +((((-794)) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +(((|#1|) . T)) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) +((((-499)) |has| |#1| (-564 (-499)))) +((((-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) . T)) +(|has| |#1| (-339)) +(-3262 (|has| |#1| (-21)) (|has| |#1| (-784))) +((((-1087) |#1|) |has| |#1| (-484 (-1087) |#1|)) ((|#1| |#1|) |has| |#1| (-286 |#1|))) +(|has| |#2| (-759)) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-784)) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +((((-794)) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-499)) |has| |#1| (-564 (-499)))) (((|#1| |#2|) . T)) -((((-1085)) -12 (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))))) -((((-1068) |#1|) . T)) -(((|#1| |#2| |#3| (-494 |#3|)) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -(|has| |#1| (-343)) -(|has| |#1| (-343)) -(|has| |#1| (-343)) -((((-792)) . T)) -(((|#1|) . T)) -(-3844 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) -(|has| |#1| (-343)) -(-3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -((((-522)) . T)) -((((-522)) . T)) -(-3844 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) -((((-792)) . T)) -((((-792)) . T)) -(-12 (|has| |#2| (-210)) (|has| |#2| (-971))) -((((-1085) #0=(-799 |#1|)) |has| #0# (-483 (-1085) #0#)) ((#0# #0#) |has| #0# (-285 #0#))) -(((|#1|) . T)) -((((-522) |#4|) . T)) -((((-522) |#3|) . T)) -(((|#1|) . T) (((-522)) |has| |#1| (-584 (-522)))) -(-3844 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971))) -((((-1152 |#1| |#2| |#3| |#4|)) . T)) -((((-382 (-522))) . T) (((-522)) . T)) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014)))) +((((-1087)) -12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) +((((-1070) |#1|) . T)) +(((|#1| |#2| |#3| (-495 |#3|)) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +(|has| |#1| (-344)) +(|has| |#1| (-344)) +(|has| |#1| (-344)) +((((-794)) . T)) +(((|#1|) . T)) +(-3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(|has| |#1| (-344)) +(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +((((-523)) . T)) +((((-523)) . T)) +(-3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +((((-794)) . T)) +((((-794)) . T)) +(-12 (|has| |#2| (-211)) (|has| |#2| (-973))) +((((-1087) #0=(-801 |#1|)) |has| #0# (-484 (-1087) #0#)) ((#0# #0#) |has| #0# (-286 #0#))) +(((|#1|) . T)) +((((-523) |#4|) . T)) +((((-523) |#3|) . T)) +(((|#1|) . T) (((-523)) |has| |#1| (-585 (-523)))) +(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +((((-1154 |#1| |#2| |#3| |#4|)) . T)) +((((-383 (-523))) . T) (((-523)) . T)) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T) (((-522)) . T) (((-382 (-522))) . T)) -((((-522)) . T)) -((((-522)) . T)) -((($) . T) (((-522)) . T) (((-382 (-522))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-382 (-522)) #0#) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((#0=(-522) #0#) . T) ((#1=(-382 (-522)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522))))) -(((|#1|) . T) (($) . T) (((-382 (-522))) . T)) -(((|#1|) |has| |#1| (-514))) -((((-522) |#4|) . T)) -((((-522) |#3|) . T)) -((((-792)) . T)) -((((-522)) . T) (((-382 (-522))) . T) (($) . T)) -((((-792)) . T)) -((((-522) |#1|) . T)) -(((|#1|) . T)) -((($ $) . T) ((#0=(-794 |#1|) $) . T) ((#0# |#2|) . T)) -((($) . T)) -((($ $) . T) ((#0=(-1085) $) . T) ((#0# |#1|) . T)) -(((|#2|) |has| |#2| (-157))) -((($) -3844 (|has| |#2| (-338)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) ((|#2|) |has| |#2| (-157)) (((-382 (-522))) |has| |#2| (-37 (-382 (-522))))) -(((|#2| |#2|) -3844 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-971))) (($ $) |has| |#2| (-157))) -((((-132)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-343)) (|has| |#2| (-343))) -((((-792)) . T)) -(((|#2|) -3844 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-971))) (($) |has| |#2| (-157))) -(((|#1|) . T)) -((((-792)) . T)) -(|has| |#1| (-1014)) -(|has| $ (-135)) -((((-522) |#1|) . T)) -((($) -3844 (|has| |#1| (-283)) (|has| |#1| (-338)) (|has| |#1| (-324)) (|has| |#1| (-514))) (((-382 (-522))) -3844 (|has| |#1| (-338)) (|has| |#1| (-324))) ((|#1|) . T)) -((((-1085)) -12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) -(|has| |#1| (-338)) -(-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|)))) -(|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) -(|has| |#1| (-338)) -(|has| |#1| (-15 * (|#1| (-708) |#1|))) -(((|#1|) . T)) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) -((((-792)) . T)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(-3844 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) -(((|#2| (-494 (-794 |#1|))) . T)) -((((-792)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) . T)) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -(-3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -((((-535 |#1|)) . T)) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T) (((-523)) . T) (((-383 (-523))) . T)) +((((-523)) . T)) +((((-523)) . T)) +((($) . T) (((-523)) . T) (((-383 (-523))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-383 (-523)) #0#) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((#0=(-523) #0#) . T) ((#1=(-383 (-523)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-523)) |has| |#1| (-964 (-523))) (((-383 (-523))) |has| |#1| (-964 (-383 (-523))))) +(((|#1|) . T) (($) . T) (((-383 (-523))) . T)) +(((|#1|) |has| |#1| (-515))) +((((-523) |#4|) . T)) +((((-523) |#3|) . T)) +((((-794)) . T)) +((((-523)) . T) (((-383 (-523))) . T) (($) . T)) +((((-794)) . T)) +((((-523) |#1|) . T)) +(((|#1|) . T)) +((($ $) . T) ((#0=(-796 |#1|) $) . T) ((#0# |#2|) . T)) +((($) . T)) +((($ $) . T) ((#0=(-1087) $) . T) ((#0# |#1|) . T)) +(((|#2|) |has| |#2| (-158))) +((($) -3262 (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) ((|#2|) |has| |#2| (-158)) (((-383 (-523))) |has| |#2| (-37 (-383 (-523))))) +(((|#2| |#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973))) (($ $) |has| |#2| (-158))) +((((-133)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-344)) (|has| |#2| (-344))) +((((-794)) . T)) +(((|#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973))) (($) |has| |#2| (-158))) +(((|#1|) . T)) +((((-794)) . T)) +(|has| |#1| (-1016)) +(|has| $ (-136)) +((((-523) |#1|) . T)) +((($) -3262 (|has| |#1| (-284)) (|has| |#1| (-339)) (|has| |#1| (-325)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) +((((-1087)) -12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) +(|has| |#1| (-339)) +(-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))) +(|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) +(|has| |#1| (-339)) +(|has| |#1| (-15 * (|#1| (-710) |#1|))) +(((|#1|) . T)) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +((((-794)) . T)) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(-3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(((|#2| (-495 (-796 |#1|))) . T)) +((((-794)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#1|) . T)) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +((((-536 |#1|)) . T)) ((($) . T)) (((|#1|) . T) (($) . T)) -((((-522)) |has| |#1| (-584 (-522))) ((|#1|) . T)) +((((-523)) |has| |#1| (-585 (-523))) ((|#1|) . T)) (((|#4|) . T)) (((|#3|) . T)) -((((-799 |#1|)) . T) (($) . T) (((-382 (-522))) . T)) -((((-1085)) -12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) -(((|#1|) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-522) |#2|) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) +((((-801 |#1|)) . T) (($) . T) (((-383 (-523))) . T)) +((((-1087)) -12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) +(((|#1|) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-523) |#2|) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522)))) ((|#1| |#1|) . T) (($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-514)))) -((($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) ((#0=(-382 (-522)) #0#) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((#1=(-1083 |#1| |#2| |#3|) #1#) |has| |#1| (-338)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) ((#0=(-382 (-522)) #0#) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338)))) -((($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-514))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522))))) -(((|#2|) |has| |#2| (-971))) -(|has| |#1| (-1014)) -((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) . T) (($) -3844 (|has| |#1| (-157)) (|has| |#1| (-514)))) -((($) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) (((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (((-1083 |#1| |#2| |#3|)) |has| |#1| (-338)) ((|#1|) . T)) -(((|#1|) . T) (($) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) (((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338)))) -((($) -3844 (|has| |#1| (-157)) (|has| |#1| (-514))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -(((|#1|) |has| |#1| (-157)) (($) . T)) -(((|#1|) . T)) -(((#0=(-382 (-522)) #0#) |has| |#2| (-37 (-382 (-522)))) ((|#2| |#2|) . T) (($ $) -3844 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))) -((((-792)) . T)) -((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) |has| |#2| (-157)) (($) -3844 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))) +(((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523)))) ((|#1| |#1|) . T) (($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-515)))) +((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((#0=(-383 (-523)) #0#) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((#1=(-1085 |#1| |#2| |#3|) #1#) |has| |#1| (-339)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((#0=(-383 (-523)) #0#) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339)))) +((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) +(((|#2|) |has| |#2| (-973))) +(|has| |#1| (-1016)) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T) (($) -3262 (|has| |#1| (-158)) (|has| |#1| (-515)))) +((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (((-1085 |#1| |#2| |#3|)) |has| |#1| (-339)) ((|#1|) . T)) +(((|#1|) . T) (($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339)))) +((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +(((|#1|) |has| |#1| (-158)) (($) . T)) +(((|#1|) . T)) +(((#0=(-383 (-523)) #0#) |has| |#2| (-37 (-383 (-523)))) ((|#2| |#2|) . T) (($ $) -3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((((-794)) . T)) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) |has| |#1| (-157)) (($) -3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))) -(((#0=(-999) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) . T) (($) -3844 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))) -((($) . T)) -(((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) (($) . T)) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) -(((|#2|) |has| |#1| (-338))) -(((|#1|) . T)) -(((|#2|) |has| |#2| (-1014)) (((-522)) -12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014))) (((-382 (-522))) -12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) -((((-522) |#1|) . T)) -(((|#1| (-382 (-522))) . T)) -((((-382 |#2|) |#3|) . T)) -((((-382 (-522))) . T) (($) . T)) -((((-382 (-522))) . T) (($) . T)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-133)) -(|has| |#1| (-135)) -((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) |has| |#2| (-157)) (($) -3844 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))) -((($) -3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -((((-382 (-522))) . T) (($) . T)) -((((-382 (-522))) . T) (($) . T)) -((((-382 (-522))) . T) (($) . T)) -(((|#2| |#3| (-794 |#1|)) . T)) -((((-1085)) |has| |#2| (-829 (-1085)))) -(((|#1|) . T)) -(((|#1| (-494 |#2|) |#2|) . T)) -(((|#1| (-708) (-999)) . T)) -((((-382 (-522))) |has| |#2| (-338)) (($) . T)) -(((|#1| (-494 (-1004 (-1085))) (-1004 (-1085))) . T)) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -(((|#1|) . T)) -(-3844 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971))) -(|has| |#2| (-730)) -(-3844 (|has| |#2| (-730)) (|has| |#2| (-782))) -(|has| |#1| (-343)) -(|has| |#1| (-343)) -(|has| |#1| (-343)) -(|has| |#2| (-782)) -((((-822 |#1|)) . T) (((-756 |#1|)) . T)) -((((-756 (-1085))) . T)) -(((|#1|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-588 (-522))) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-498)) . T) (((-821 (-522))) . T) (((-354)) . T) (((-202)) . T)) -(|has| |#1| (-210)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) |has| |#1| (-158)) (($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) +(((#0=(-1001) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) . T) (($) -3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((($) . T)) +(((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) (($) . T)) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(((|#2|) |has| |#1| (-339))) +(((|#1|) . T)) +(((|#2|) |has| |#2| (-1016)) (((-523)) -12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016))) (((-383 (-523))) -12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) +((((-523) |#1|) . T)) +((((-794)) . T)) +((((-383 |#2|) |#3|) . T)) +(((|#1| (-383 (-523))) . T)) +((((-383 (-523))) . T) (($) . T)) +((((-383 (-523))) . T) (($) . T)) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-134)) +(|has| |#1| (-136)) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((((-383 (-523))) . T) (($) . T)) +((((-383 (-523))) . T) (($) . T)) +((((-383 (-523))) . T) (($) . T)) +(((|#2| |#3| (-796 |#1|)) . T)) +((((-1087)) |has| |#2| (-831 (-1087)))) +(((|#1|) . T)) +(((|#1| (-495 |#2|) |#2|) . T)) +(((|#1| (-710) (-1001)) . T)) +((((-383 (-523))) |has| |#2| (-339)) (($) . T)) +(((|#1| (-495 (-1006 (-1087))) (-1006 (-1087))) . T)) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(((|#1|) . T)) +(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(|has| |#2| (-732)) +(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) +(|has| |#1| (-344)) +(|has| |#1| (-344)) +(|has| |#1| (-344)) +(|has| |#2| (-784)) +((((-824 |#1|)) . T) (((-758 |#1|)) . T)) +((((-758 (-1087))) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-589 (-523))) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-499)) . T) (((-823 (-523))) . T) (((-355)) . T) (((-203)) . T)) +(|has| |#1| (-211)) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) ((($ $) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -((((-1158 |#1| |#2| |#3|) $) -12 (|has| (-1158 |#1| |#2| |#3|) (-262 (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338))) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +((((-1160 |#1| |#2| |#3|) $) -12 (|has| (-1160 |#1| |#2| |#3|) (-263 (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339))) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1|) . T)) -((((-1050 |#1| |#2|)) |has| (-1050 |#1| |#2|) (-285 (-1050 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) -(((|#2|) . T) (((-522)) |has| |#2| (-962 (-522))) (((-382 (-522))) |has| |#2| (-962 (-382 (-522))))) -(((|#3| |#3|) -12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) -(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) |has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) +((((-1052 |#1| |#2|)) |has| (-1052 |#1| |#2|) (-286 (-1052 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) +(((|#2|) . T) (((-523)) |has| |#2| (-964 (-523))) (((-383 (-523))) |has| |#2| (-964 (-383 (-523))))) +(((|#3| |#3|) -12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) +(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) -(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) |has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) -(((|#2|) . T)) -((((-792)) -3844 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-562 (-792))) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-343)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)) (|has| |#2| (-1014))) (((-1166 |#2|)) . T)) -(((|#1|) |has| |#1| (-157))) -((((-522)) . T)) -((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) |has| |#1| (-157)) (($) -3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))) -((($) -3844 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -((((-522) (-132)) . T)) -((($) -3844 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971))) ((|#2|) -3844 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-971)))) -(-3844 (|has| |#1| (-21)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-514)) (|has| |#1| (-971))) -(((|#1|) . T)) -(-3844 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-514)) (|has| |#1| (-971))) -(((|#2|) |has| |#1| (-338))) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) +(((|#2|) . T)) +((((-794)) -3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-563 (-794))) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) (((-1168 |#2|)) . T)) +(((|#1|) |has| |#1| (-158))) +((((-523)) . T)) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) |has| |#1| (-158)) (($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) +((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((((-523) (-133)) . T)) +((($) -3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) ((|#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973)))) +(-3262 (|has| |#1| (-21)) (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-515)) (|has| |#1| (-973))) +(((|#1|) . T)) +(-3262 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-515)) (|has| |#1| (-973))) +(((|#2|) |has| |#1| (-339))) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -3844 (|has| |#1| (-338)) (|has| |#1| (-514))) (((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((|#1|) |has| |#1| (-157))) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#1| (-494 #0=(-1085)) #0#) . T)) +((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#1|) |has| |#1| (-158))) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#1| (-495 #0=(-1087)) #0#) . T)) (((|#1|) . T) (($) . T)) -(|has| |#4| (-157)) -(|has| |#3| (-157)) -(((#0=(-382 (-881 |#1|)) #0#) . T)) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) -(|has| |#1| (-1014)) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) -(|has| |#1| (-1014)) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014)))) -((((-498)) |has| |#1| (-563 (-498)))) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) -(((|#1| |#1|) |has| |#1| (-157))) -((($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-514))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522))))) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) . T)) -((((-382 (-881 |#1|))) . T)) -(((|#1|) |has| |#1| (-157))) -((($) -3844 (|has| |#1| (-157)) (|has| |#1| (-514))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -(-3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -((((-792)) . T)) -((((-1152 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-971)) (((-522)) -12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971)))) +(|has| |#4| (-158)) +(|has| |#3| (-158)) +(((#0=(-383 (-883 |#1|)) #0#) . T)) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(|has| |#1| (-1016)) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(|has| |#1| (-1016)) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) +((((-499)) |has| |#1| (-564 (-499)))) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(((|#1| |#1|) |has| |#1| (-158))) +((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#1|) . T)) +((((-383 (-883 |#1|))) . T)) +(((|#1|) |has| |#1| (-158))) +((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +((((-794)) . T)) +((((-1154 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-973)) (((-523)) -12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))) (((|#1| |#2|) . T)) -(-3844 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-971))) -(|has| |#3| (-730)) -(-3844 (|has| |#3| (-730)) (|has| |#3| (-782))) -(|has| |#3| (-782)) -((((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3844 (|has| |#1| (-338)) (|has| |#1| (-514))) ((|#2|) |has| |#1| (-338)) ((|#1|) |has| |#1| (-157))) -(((|#1|) |has| |#1| (-157)) (((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3844 (|has| |#1| (-338)) (|has| |#1| (-514)))) -(((|#2|) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -(((|#1| (-1066 |#1|)) |has| |#1| (-782))) -((((-522) |#2|) . T)) -(|has| |#1| (-1014)) -(((|#1|) . T)) -(-12 (|has| |#1| (-338)) (|has| |#2| (-1061))) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(|has| |#1| (-1014)) -(((|#2|) . T)) -((((-498)) |has| |#2| (-563 (-498))) (((-821 (-354))) |has| |#2| (-563 (-821 (-354)))) (((-821 (-522))) |has| |#2| (-563 (-821 (-522))))) -(((|#4|) -3844 (|has| |#4| (-157)) (|has| |#4| (-338)))) -(((|#3|) -3844 (|has| |#3| (-157)) (|has| |#3| (-338)))) -((((-792)) . T)) -(((|#1|) . T)) -(-3844 (|has| |#2| (-426)) (|has| |#2| (-838))) -(-3844 (|has| |#1| (-426)) (|has| |#1| (-838))) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-838))) -((($ $) . T) ((#0=(-1085) $) |has| |#1| (-210)) ((#0# |#1|) |has| |#1| (-210)) ((#1=(-755 (-1085)) |#1|) . T) ((#1# $) . T)) -(-3844 (|has| |#1| (-426)) (|has| |#1| (-838))) -((((-522) |#2|) . T)) -((((-792)) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -((($) -3844 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-971))) ((|#3|) -3844 (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-971)))) -((((-522) |#1|) . T)) -(|has| (-382 |#2|) (-135)) -(|has| (-382 |#2|) (-133)) -(((|#2|) -12 (|has| |#1| (-338)) (|has| |#2| (-285 |#2|)))) -(|has| |#1| (-37 (-382 (-522)))) -(((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-382 (-522))) . T)) -((((-792)) . T)) -(|has| |#1| (-514)) -(|has| |#1| (-514)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -((((-792)) . T)) -((((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) . T)) -(|has| |#1| (-37 (-382 (-522)))) -((((-363) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) . T)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#2| (-1061)) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-514))) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-514))) -(((|#1|) . T)) -((((-363) (-1068)) . T)) -(|has| |#1| (-514)) +(-3262 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) +(|has| |#3| (-732)) +(-3262 (|has| |#3| (-732)) (|has| |#3| (-784))) +(|has| |#3| (-784)) +((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515))) ((|#2|) |has| |#1| (-339)) ((|#1|) |has| |#1| (-158))) +(((|#1|) |has| |#1| (-158)) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515)))) +(((|#2|) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +(((|#1| (-1068 |#1|)) |has| |#1| (-784))) +((((-523) |#2|) . T)) +(|has| |#1| (-1016)) +(((|#1|) . T)) +(-12 (|has| |#1| (-339)) (|has| |#2| (-1063))) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(|has| |#1| (-1016)) +(((|#2|) . T)) +((((-499)) |has| |#2| (-564 (-499))) (((-823 (-355))) |has| |#2| (-564 (-823 (-355)))) (((-823 (-523))) |has| |#2| (-564 (-823 (-523))))) +(((|#4|) -3262 (|has| |#4| (-158)) (|has| |#4| (-339)))) +(((|#3|) -3262 (|has| |#3| (-158)) (|has| |#3| (-339)))) +((((-794)) . T)) +(((|#1|) . T)) +(-3262 (|has| |#2| (-427)) (|has| |#2| (-840))) +(-3262 (|has| |#1| (-427)) (|has| |#1| (-840))) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-840))) +((($ $) . T) ((#0=(-1087) $) |has| |#1| (-211)) ((#0# |#1|) |has| |#1| (-211)) ((#1=(-757 (-1087)) |#1|) . T) ((#1# $) . T)) +(-3262 (|has| |#1| (-427)) (|has| |#1| (-840))) +((((-523) |#2|) . T)) +((((-794)) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +((($) -3262 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) ((|#3|) -3262 (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-973)))) +((((-523) |#1|) . T)) +(|has| (-383 |#2|) (-136)) +(|has| (-383 |#2|) (-134)) +(((|#2|) -12 (|has| |#1| (-339)) (|has| |#2| (-286 |#2|)))) +(|has| |#1| (-37 (-383 (-523)))) +(((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-383 (-523))) . T)) +((((-794)) . T)) +(|has| |#1| (-515)) +(|has| |#1| (-515)) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-794)) . T)) +((((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) +(|has| |#1| (-37 (-383 (-523)))) +((((-364) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#2| (-1063)) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +(((|#1|) . T)) +((((-364) (-1070)) . T)) +(|has| |#1| (-515)) ((((-112 |#1|)) . T)) -((((-522) |#1|) . T)) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -(((|#2|) . T)) -((((-792)) . T)) -((((-756 |#1|)) . T)) -(((|#2|) |has| |#2| (-157))) -((((-1085) (-51)) . T)) -(((|#1|) . T)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-514)) -(((|#1|) |has| |#1| (-157))) -((((-792)) . T)) -((((-498)) |has| |#1| (-563 (-498)))) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) -(((|#2|) |has| |#2| (-285 |#2|))) -(((#0=(-522) #0#) . T) ((#1=(-382 (-522)) #1#) . T) (($ $) . T)) -(((|#1|) . T)) -(((|#1| (-1081 |#1|)) . T)) -(|has| $ (-135)) -(((|#2|) . T)) -(((#0=(-522) #0#) . T) ((#1=(-382 (-522)) #1#) . T) (($ $) . T)) -((($) . T) (((-522)) . T) (((-382 (-522))) . T)) -(|has| |#2| (-343)) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) -(((|#1|) . T) (((-382 (-522))) . T) (($) . T)) -(((|#1|) . T) (((-382 (-522))) . T) (($) . T)) -(((|#1|) . T) (((-382 (-522))) . T) (($) . T)) -((((-522)) . T) (((-382 (-522))) . T) (($) . T)) +((((-523) |#1|) . T)) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(((|#2|) . T)) +((((-794)) . T)) +((((-758 |#1|)) . T)) +(((|#2|) |has| |#2| (-158))) +((((-1087) (-51)) . T)) +(((|#1|) . T)) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-515)) +(((|#1|) |has| |#1| (-158))) +((((-794)) . T)) +((((-499)) |has| |#1| (-564 (-499)))) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(((|#2|) |has| |#2| (-286 |#2|))) +(((#0=(-523) #0#) . T) ((#1=(-383 (-523)) #1#) . T) (($ $) . T)) +(((|#1|) . T)) +(((|#1| (-1083 |#1|)) . T)) +(|has| $ (-136)) +(((|#2|) . T)) +(((#0=(-523) #0#) . T) ((#1=(-383 (-523)) #1#) . T) (($ $) . T)) +((($) . T) (((-523)) . T) (((-383 (-523))) . T)) +(|has| |#2| (-344)) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(((|#1|) . T) (((-383 (-523))) . T) (($) . T)) +(((|#1|) . T) (((-383 (-523))) . T) (($) . T)) +(((|#1|) . T) (((-383 (-523))) . T) (($) . T)) +((((-523)) . T) (((-383 (-523))) . T) (($) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-522)) . T) (((-382 (-522))) . T) (($) . T)) -((((-1083 |#1| |#2| |#3|) $) -12 (|has| (-1083 |#1| |#2| |#3|) (-262 (-1083 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338))) (($ $) . T)) -((((-792)) . T)) -((((-792)) . T)) -((($) . T) (((-382 (-522))) -3844 (|has| |#1| (-338)) (|has| |#1| (-324))) ((|#1|) . T)) -((((-498)) |has| |#1| (-563 (-498)))) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014)))) +((((-523)) . T) (((-383 (-523))) . T) (($) . T)) +((((-1085 |#1| |#2| |#3|) $) -12 (|has| (-1085 |#1| |#2| |#3|) (-263 (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339))) (($ $) . T)) +((((-794)) . T)) +((((-794)) . T)) +((($) . T) (((-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) +((((-499)) |has| |#1| (-564 (-499)))) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) ((($ $) . T)) ((($ $) . T)) -((((-792)) . T)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((#0=(-1158 |#1| |#2| |#3|) #0#) -12 (|has| (-1158 |#1| |#2| |#3|) (-285 (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338))) (((-1085) #0#) -12 (|has| (-1158 |#1| |#2| |#3|) (-483 (-1085) (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338)))) -(-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) +((((-794)) . T)) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((#0=(-1160 |#1| |#2| |#3|) #0#) -12 (|has| (-1160 |#1| |#2| |#3|) (-286 (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339))) (((-1087) #0#) -12 (|has| (-1160 |#1| |#2| |#3|) (-484 (-1087) (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339)))) +(-12 (|has| |#1| (-1016)) (|has| |#2| (-1016))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) -3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -((((-382 (-522))) . T) (((-522)) . T)) -((((-522) (-132)) . T)) -((((-132)) . T)) +((($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((((-383 (-523))) . T) (((-523)) . T)) +((((-523) (-133)) . T)) +((((-133)) . T)) (((|#1|) . T)) -(-3844 (|has| |#1| (-21)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-514)) (|has| |#1| (-971))) +(-3262 (|has| |#1| (-21)) (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-515)) (|has| |#1| (-973))) ((((-108)) . T)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) ((((-108)) . T)) (((|#1|) . T)) -((((-498)) |has| |#1| (-563 (-498))) (((-202)) . #0=(|has| |#1| (-947))) (((-354)) . #0#)) -((((-792)) . T)) -(|has| |#1| (-757)) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -(|has| |#1| (-784)) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-514))) -(|has| |#1| (-514)) -(|has| |#1| (-838)) -(((|#1|) . T)) -(|has| |#1| (-1014)) -((((-792)) . T)) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-514))) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -(((|#1| (-1166 |#1|) (-1166 |#1|)) . T)) -((((-522) (-132)) . T)) -((($) . T)) -(-3844 (|has| |#4| (-157)) (|has| |#4| (-782)) (|has| |#4| (-971))) -(-3844 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-971))) -((((-792)) . T)) -(|has| |#1| (-1014)) -(((|#1| (-898)) . T)) +((((-499)) |has| |#1| (-564 (-499))) (((-203)) . #0=(|has| |#1| (-949))) (((-355)) . #0#)) +((((-794)) . T)) +(|has| |#1| (-759)) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(|has| |#1| (-786)) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-515))) +(|has| |#1| (-515)) +(|has| |#1| (-840)) +(((|#1|) . T)) +(|has| |#1| (-1016)) +((((-794)) . T)) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-515))) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +(((|#1| (-1168 |#1|) (-1168 |#1|)) . T)) +((((-523) (-133)) . T)) +((($) . T)) +(-3262 (|has| |#4| (-158)) (|has| |#4| (-784)) (|has| |#4| (-973))) +(-3262 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) +((((-794)) . T)) +(|has| |#1| (-1016)) +(((|#1| (-900)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(-3844 (|has| |#2| (-730)) (|has| |#2| (-782))) -(-3844 (|has| |#2| (-730)) (|has| |#2| (-782))) -(-12 (|has| |#1| (-447)) (|has| |#2| (-447))) -(-3844 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971))) -(-3844 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) +(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) +(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) +(-12 (|has| |#1| (-448)) (|has| |#2| (-448))) +(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3262 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666)))) (((|#1|) . T)) -(|has| |#2| (-730)) -(-3844 (|has| |#2| (-730)) (|has| |#2| (-782))) +(|has| |#2| (-732)) +(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(|has| |#2| (-782)) -(-12 (|has| |#1| (-730)) (|has| |#2| (-730))) -(-12 (|has| |#1| (-730)) (|has| |#2| (-730))) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(|has| |#2| (-784)) +(-12 (|has| |#1| (-732)) (|has| |#2| (-732))) +(-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-157))) -(((|#1|) |has| |#1| (-157))) -((((-792)) . T)) -(|has| |#1| (-324)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-382 (-522))) . T) (($) . T)) -((($) . T) (((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((|#1|) . T)) -(|has| |#1| (-765)) -((((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-522)) |has| |#1| (-962 (-522))) ((|#1|) . T)) -(|has| |#1| (-1014)) -(((|#1| $) |has| |#1| (-262 |#1| |#1|))) -((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-514))) -((($) |has| |#1| (-514))) -(((|#4|) |has| |#4| (-1014))) -(((|#3|) |has| |#3| (-1014))) -(|has| |#3| (-343)) -(((|#1|) . T) (((-792)) . T)) -((((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3844 (|has| |#1| (-338)) (|has| |#1| (-514))) (((-1158 |#1| |#2| |#3|)) |has| |#1| (-338)) ((|#1|) |has| |#1| (-157))) -(((|#1|) |has| |#1| (-157)) (((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3844 (|has| |#1| (-338)) (|has| |#1| (-514)))) -((((-792)) . T)) -((($) |has| |#1| (-514)) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -(((|#2|) . T)) -(((|#1| |#1|) |has| |#1| (-157))) +(((|#2|) |has| |#2| (-158))) +(((|#1|) |has| |#1| (-158))) +((((-794)) . T)) +(|has| |#1| (-325)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-383 (-523))) . T) (($) . T)) +((($) . T) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#1|) . T)) +(|has| |#1| (-767)) +((((-383 (-523))) |has| |#1| (-964 (-383 (-523)))) (((-523)) |has| |#1| (-964 (-523))) ((|#1|) . T)) +(|has| |#1| (-1016)) +(((|#1| $) |has| |#1| (-263 |#1| |#1|))) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) |has| |#1| (-158)) (($) |has| |#1| (-515))) +((($) |has| |#1| (-515))) +(((|#4|) |has| |#4| (-1016))) +(((|#3|) |has| |#3| (-1016))) +(|has| |#3| (-344)) +(((|#1|) . T) (((-794)) . T)) +((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-1160 |#1| |#2| |#3|)) |has| |#1| (-339)) ((|#1|) |has| |#1| (-158))) +(((|#1|) |has| |#1| (-158)) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515)))) +((((-794)) . T)) +((($) |has| |#1| (-515)) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +(((|#2|) . T)) +(((|#1| |#1|) |has| |#1| (-158))) (((|#1| |#2|) . T)) -(|has| |#2| (-338)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-157))) -((((-382 (-522))) . T) (((-522)) . T)) -((($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-514))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522))))) -((($) -3844 (|has| |#1| (-157)) (|has| |#1| (-514))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) -((((-132)) . T)) -(((|#1|) . T)) -((((-132)) . T)) -((($) -3844 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971))) ((|#2|) -3844 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-971)))) -((((-132)) . T)) +(|has| |#2| (-339)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-158))) +((((-383 (-523))) . T) (((-523)) . T)) +((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) +((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-515))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) +((((-133)) . T)) +(((|#1|) . T)) +((((-133)) . T)) +((($) -3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) ((|#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973)))) +((((-133)) . T)) (((|#1| |#2| |#3|) . T)) -(-3844 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-514)) (|has| |#1| (-971))) -(|has| $ (-135)) -(|has| $ (-135)) -(|has| |#1| (-1014)) -((((-792)) . T)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(-3844 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-447)) (|has| |#1| (-514)) (|has| |#1| (-971)) (|has| |#1| (-1026))) -((($ $) |has| |#1| (-262 $ $)) ((|#1| $) |has| |#1| (-262 |#1| |#1|))) -(((|#1| (-382 (-522))) . T)) -(((|#1|) . T)) -((((-1085)) . T)) -(|has| |#1| (-514)) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-514))) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-514))) -(|has| |#1| (-514)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -((((-792)) . T)) -(|has| |#2| (-133)) -(|has| |#2| (-135)) +(-3262 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-515)) (|has| |#1| (-973))) +(|has| $ (-136)) +(|has| $ (-136)) +(|has| |#1| (-1016)) +((((-794)) . T)) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(-3262 (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-448)) (|has| |#1| (-515)) (|has| |#1| (-973)) (|has| |#1| (-1028))) +((($ $) |has| |#1| (-263 $ $)) ((|#1| $) |has| |#1| (-263 |#1| |#1|))) +(((|#1| (-383 (-523))) . T)) +(((|#1|) . T)) +((((-1087)) . T)) +(|has| |#1| (-515)) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +(|has| |#1| (-515)) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +((((-794)) . T)) +(|has| |#2| (-134)) +(|has| |#2| (-136)) (((|#2|) . T) (($) . T)) -(|has| |#1| (-135)) -(|has| |#1| (-133)) -(|has| |#4| (-782)) -(((|#2| (-217 (-3591 |#1|) (-708)) (-794 |#1|)) . T)) -(|has| |#3| (-782)) -(((|#1| (-494 |#3|) |#3|) . T)) -(|has| |#1| (-135)) -(|has| |#1| (-133)) -(((#0=(-382 (-522)) #0#) |has| |#2| (-338)) (($ $) . T)) -((((-799 |#1|)) . T)) -(|has| |#1| (-135)) -(|has| |#1| (-343)) -(|has| |#1| (-343)) -(|has| |#1| (-343)) -(|has| |#1| (-133)) -((((-382 (-522))) |has| |#2| (-338)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(-3844 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) -(-3844 (|has| |#1| (-324)) (|has| |#1| (-343))) -((((-1052 |#2| |#1|)) . T) ((|#1|) . T)) -(|has| |#2| (-157)) +(|has| |#1| (-136)) +(|has| |#1| (-134)) +(|has| |#4| (-784)) +(((|#2| (-218 (-2676 |#1|) (-710)) (-796 |#1|)) . T)) +(|has| |#3| (-784)) +(((|#1| (-495 |#3|) |#3|) . T)) +(|has| |#1| (-136)) +(|has| |#1| (-134)) +(((#0=(-383 (-523)) #0#) |has| |#2| (-339)) (($ $) . T)) +((((-801 |#1|)) . T)) +(|has| |#1| (-136)) +(|has| |#1| (-344)) +(|has| |#1| (-344)) +(|has| |#1| (-344)) +(|has| |#1| (-134)) +((((-383 (-523))) |has| |#2| (-339)) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(-3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(-3262 (|has| |#1| (-325)) (|has| |#1| (-344))) +((((-1054 |#2| |#1|)) . T) ((|#1|) . T)) +(|has| |#2| (-158)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-210)) (|has| |#2| (-971))) -(((|#2|) . T) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -(-3844 (|has| |#3| (-730)) (|has| |#3| (-782))) -(-3844 (|has| |#3| (-730)) (|has| |#3| (-782))) -((((-792)) . T)) +(-12 (|has| |#2| (-211)) (|has| |#2| (-973))) +(((|#2|) . T) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +(-3262 (|has| |#3| (-732)) (|has| |#3| (-784))) +(-3262 (|has| |#3| (-732)) (|has| |#3| (-784))) +((((-794)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-637)) . T)) -(-3844 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971))) -(|has| |#1| (-514)) +((((-638)) . T)) +(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(|has| |#1| (-515)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1085) (-51)) . T)) -((((-792)) . T)) -((((-498)) . T) (((-821 (-522))) . T) (((-354)) . T) (((-202)) . T)) +((((-1087) (-51)) . T)) +((((-794)) . T)) +((((-499)) . T) (((-823 (-523))) . T) (((-355)) . T) (((-203)) . T)) (((|#1|) . T)) -((((-792)) . T)) -((((-498)) . T) (((-821 (-522))) . T) (((-354)) . T) (((-202)) . T)) -(((|#1| (-522)) . T)) -((((-792)) . T)) -((((-792)) . T)) +((((-794)) . T)) +((((-499)) . T) (((-823 (-523))) . T) (((-355)) . T) (((-203)) . T)) +(((|#1| (-523)) . T)) +((((-794)) . T)) +((((-794)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-382 (-522))) . T)) -(((|#3|) . T) (((-561 $)) . T)) +(((|#1| (-383 (-523))) . T)) +(((|#3|) . T) (((-562 $)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) ((($ $) . T) ((|#2| $) . T)) -(((|#1|) . T) (((-382 (-522))) . T) (($) . T)) -(((#0=(-1083 |#1| |#2| |#3|) #0#) -12 (|has| (-1083 |#1| |#2| |#3|) (-285 (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338))) (((-1085) #0#) -12 (|has| (-1083 |#1| |#2| |#3|) (-483 (-1085) (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338)))) -((((-522)) . T) (($) . T) (((-382 (-522))) . T)) -((((-792)) . T)) -((((-792)) . T)) +(((|#1|) . T) (((-383 (-523))) . T) (($) . T)) +(((#0=(-1085 |#1| |#2| |#3|) #0#) -12 (|has| (-1085 |#1| |#2| |#3|) (-286 (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339))) (((-1087) #0#) -12 (|has| (-1085 |#1| |#2| |#3|) (-484 (-1087) (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339)))) +((((-523)) . T) (($) . T) (((-383 (-523))) . T)) +((((-794)) . T)) +((((-794)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) |has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) (((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) |has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-285 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))))) -((((-792)) . T)) +(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) |has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))))) +((((-794)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T)) -((((-1085) (-51)) . T)) +((((-1087) (-51)) . T)) (((|#3|) . T)) -((($ $) . T) ((#0=(-794 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-765)) -(|has| |#1| (-1014)) -(((|#2| |#2|) -3844 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-971))) (($ $) |has| |#2| (-157))) -(((|#2|) -3844 (|has| |#2| (-157)) (|has| |#2| (-338)))) -((((-522) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -3844 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-971))) (($) |has| |#2| (-157))) -((((-708)) . T)) -((((-522)) . T)) -(|has| |#1| (-514)) -((((-792)) . T)) -(((|#1| (-382 (-522)) (-999)) . T)) -(|has| |#1| (-133)) -(((|#1|) . T)) -(|has| |#1| (-514)) -((((-522)) . T)) +((($ $) . T) ((#0=(-796 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-767)) +(|has| |#1| (-1016)) +(((|#2| |#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973))) (($ $) |has| |#2| (-158))) +(((|#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)))) +((((-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973))) (($) |has| |#2| (-158))) +((((-710)) . T)) +((((-523)) . T)) +(|has| |#1| (-515)) +((((-794)) . T)) +(((|#1| (-383 (-523)) (-1001)) . T)) +(|has| |#1| (-134)) +(((|#1|) . T)) +(|has| |#1| (-515)) +((((-523)) . T)) ((((-112 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-135)) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-514))) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-514))) -((((-821 (-522))) . T) (((-821 (-354))) . T) (((-498)) . T) (((-1085)) . T)) -((((-792)) . T)) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) -((($) . T)) -((((-792)) . T)) -(-3844 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) -(((|#2|) |has| |#2| (-157))) -((($) -3844 (|has| |#2| (-338)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) ((|#2|) |has| |#2| (-157)) (((-382 (-522))) |has| |#2| (-37 (-382 (-522))))) -((((-799 |#1|)) . T)) -(-3844 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-343)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)) (|has| |#2| (-1014))) -(-12 (|has| |#3| (-210)) (|has| |#3| (-971))) -(|has| |#2| (-1061)) -(((#0=(-51)) . T) (((-2 (|:| -2644 (-1085)) (|:| -3149 #0#))) . T)) +(|has| |#1| (-136)) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-515))) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-515))) +((((-823 (-523))) . T) (((-823 (-355))) . T) (((-499)) . T) (((-1087)) . T)) +((((-794)) . T)) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +((($) . T)) +((((-794)) . T)) +(-3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(((|#2|) |has| |#2| (-158))) +((($) -3262 (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) ((|#2|) |has| |#2| (-158)) (((-383 (-523))) |has| |#2| (-37 (-383 (-523))))) +((((-801 |#1|)) . T)) +(-3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) +(-12 (|has| |#3| (-211)) (|has| |#3| (-973))) +(|has| |#2| (-1063)) +(((#0=(-51)) . T) (((-2 (|:| -1853 (-1087)) (|:| -2433 #0#))) . T)) (((|#1| |#2|) . T)) -(-3844 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-971))) -(((|#1| (-522) (-999)) . T)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#1| (-382 (-522)) (-999)) . T)) -((($) -3844 (|has| |#1| (-283)) (|has| |#1| (-338)) (|has| |#1| (-324)) (|has| |#1| (-514))) (((-382 (-522))) -3844 (|has| |#1| (-338)) (|has| |#1| (-324))) ((|#1|) . T)) -((((-522) |#2|) . T)) +(-3262 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) +(((|#1| (-523) (-1001)) . T)) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#1| (-383 (-523)) (-1001)) . T)) +((($) -3262 (|has| |#1| (-284)) (|has| |#1| (-339)) (|has| |#1| (-325)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) +((((-523) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-343)) -(-12 (|has| |#1| (-343)) (|has| |#2| (-343))) -((((-792)) . T)) -((((-1085) |#1|) |has| |#1| (-483 (-1085) |#1|)) ((|#1| |#1|) |has| |#1| (-285 |#1|))) -(-3844 (|has| |#1| (-133)) (|has| |#1| (-343))) -(-3844 (|has| |#1| (-133)) (|has| |#1| (-343))) -(-3844 (|has| |#1| (-133)) (|has| |#1| (-343))) -(((|#1|) . T)) -((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-514))) -((((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3844 (|has| |#1| (-338)) (|has| |#1| (-514))) (((-1083 |#1| |#2| |#3|)) |has| |#1| (-338)) ((|#1|) |has| |#1| (-157))) -(((|#1|) |has| |#1| (-157)) (((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3844 (|has| |#1| (-338)) (|has| |#1| (-514)))) -((($) |has| |#1| (-514)) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -((((-792)) . T)) -(|has| |#1| (-324)) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((#0=(-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) #0#) |has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) -(|has| |#1| (-514)) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -((((-792)) . T)) +(|has| |#2| (-344)) +(-12 (|has| |#1| (-344)) (|has| |#2| (-344))) +((((-794)) . T)) +((((-1087) |#1|) |has| |#1| (-484 (-1087) |#1|)) ((|#1| |#1|) |has| |#1| (-286 |#1|))) +(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) +(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) +(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) +(((|#1|) . T)) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) |has| |#1| (-158)) (($) |has| |#1| (-515))) +((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-1085 |#1| |#2| |#3|)) |has| |#1| (-339)) ((|#1|) |has| |#1| (-158))) +(((|#1|) |has| |#1| (-158)) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515)))) +((($) |has| |#1| (-515)) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((((-794)) . T)) +(|has| |#1| (-325)) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((#0=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) #0#) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) +(|has| |#1| (-515)) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +((((-794)) . T)) (((|#1| |#2|) . T)) -(-3844 (|has| |#2| (-426)) (|has| |#2| (-838))) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) -(-3844 (|has| |#1| (-426)) (|has| |#1| (-838))) -((((-382 (-522))) . T) (((-522)) . T)) -((((-522)) . T)) -((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) |has| |#2| (-157)) (($) -3844 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))) -((($) . T)) -((((-792)) . T)) -(((|#1|) . T)) -((((-799 |#1|)) . T) (($) . T) (((-382 (-522))) . T)) -((((-792)) . T)) -(((|#3| |#3|) -3844 (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-971))) (($ $) |has| |#3| (-157))) -(|has| |#1| (-947)) -((((-792)) . T)) -(((|#3|) -3844 (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-971))) (($) |has| |#3| (-157))) -((((-522) (-108)) . T)) -(((|#1|) |has| |#1| (-285 |#1|))) -(|has| |#1| (-343)) -(|has| |#1| (-343)) -(|has| |#1| (-343)) -((((-1085) $) |has| |#1| (-483 (-1085) $)) (($ $) |has| |#1| (-285 $)) ((|#1| |#1|) |has| |#1| (-285 |#1|)) (((-1085) |#1|) |has| |#1| (-483 (-1085) |#1|))) -((((-1085)) |has| |#1| (-829 (-1085)))) -(-3844 (-12 (|has| |#1| (-210)) (|has| |#1| (-338))) (|has| |#1| (-324))) -((((-363) (-1032)) . T)) +(-3262 (|has| |#2| (-427)) (|has| |#2| (-840))) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(-3262 (|has| |#1| (-427)) (|has| |#1| (-840))) +((((-383 (-523))) . T) (((-523)) . T)) +((((-523)) . T)) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((($) . T)) +((((-794)) . T)) +(((|#1|) . T)) +((((-801 |#1|)) . T) (($) . T) (((-383 (-523))) . T)) +((((-794)) . T)) +(((|#3| |#3|) -3262 (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-973))) (($ $) |has| |#3| (-158))) +(|has| |#1| (-949)) +((((-794)) . T)) +(((|#3|) -3262 (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-973))) (($) |has| |#3| (-158))) +((((-523) (-108)) . T)) +(((|#1|) |has| |#1| (-286 |#1|))) +(|has| |#1| (-344)) +(|has| |#1| (-344)) +(|has| |#1| (-344)) +((((-1087) $) |has| |#1| (-484 (-1087) $)) (($ $) |has| |#1| (-286 $)) ((|#1| |#1|) |has| |#1| (-286 |#1|)) (((-1087) |#1|) |has| |#1| (-484 (-1087) |#1|))) +((((-1087)) |has| |#1| (-831 (-1087)))) +(-3262 (-12 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325))) +((((-364) (-1034)) . T)) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) -((((-363) |#1|) . T)) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-324))) -(|has| |#1| (-1014)) -((((-792)) . T)) -((((-792)) . T)) -((((-839 |#1|)) . T)) -((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) |has| |#2| (-157)) (($) -3844 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))) -((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) |has| |#1| (-157)) (($) -3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))) +((((-364) |#1|) . T)) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-325))) +(|has| |#1| (-1016)) +((((-794)) . T)) +((((-794)) . T)) +((((-841 |#1|)) . T)) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) |has| |#1| (-158)) (($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) (((|#1| |#2|) . T)) ((($) . T)) (((|#1| |#1|) . T)) -(((#0=(-799 |#1|)) |has| #0# (-285 #0#))) +(((#0=(-801 |#1|)) |has| #0# (-286 #0#))) (((|#1| |#2|) . T)) -(-3844 (|has| |#2| (-730)) (|has| |#2| (-782))) -(-3844 (|has| |#2| (-730)) (|has| |#2| (-782))) -(-12 (|has| |#1| (-730)) (|has| |#2| (-730))) +(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) +(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) +(-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (((|#1|) . T)) -(-12 (|has| |#1| (-730)) (|has| |#2| (-730))) -(-3844 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971))) +(-12 (|has| |#1| (-732)) (|has| |#2| (-732))) +(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -(|has| |#1| (-1106)) -(((#0=(-522) #0#) . T) ((#1=(-382 (-522)) #1#) . T) (($ $) . T)) -((((-382 (-522))) . T) (($) . T)) -(((|#4|) |has| |#4| (-971))) -(((|#3|) |has| |#3| (-971))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-382 (-522)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-382 (-522)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-382 (-522)) #0#) . T)) -(|has| |#1| (-338)) -((((-522)) . T) (((-382 (-522))) . T) (($) . T)) -((($ $) . T) ((#0=(-382 (-522)) #0#) -3844 (|has| |#1| (-338)) (|has| |#1| (-324))) ((|#1| |#1|) . T)) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014)))) -(((|#1|) . T) (($) . T) (((-382 (-522))) . T)) -((((-792)) . T)) -((((-792)) . T)) -(((|#1|) . T) (($) . T) (((-382 (-522))) . T)) -(((|#1|) . T) (($) . T) (((-382 (-522))) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-522) |#3|) . T)) -((((-792)) . T)) -((((-498)) |has| |#3| (-563 (-498)))) -((((-628 |#3|)) . T) (((-792)) . T)) +(((|#2|) . T) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +(|has| |#1| (-1108)) +(((#0=(-523) #0#) . T) ((#1=(-383 (-523)) #1#) . T) (($ $) . T)) +((((-383 (-523))) . T) (($) . T)) +(((|#4|) |has| |#4| (-973))) +(((|#3|) |has| |#3| (-973))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-383 (-523)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-383 (-523)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-383 (-523)) #0#) . T)) +(|has| |#1| (-339)) +((((-523)) . T) (((-383 (-523))) . T) (($) . T)) +((($ $) . T) ((#0=(-383 (-523)) #0#) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1| |#1|) . T)) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +(((|#1|) . T) (($) . T) (((-383 (-523))) . T)) +((((-794)) . T)) +((((-794)) . T)) +(((|#1|) . T) (($) . T) (((-383 (-523))) . T)) +(((|#1|) . T) (($) . T) (((-383 (-523))) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-523) |#3|) . T)) +((((-794)) . T)) +((((-499)) |has| |#3| (-564 (-499)))) +((((-629 |#3|)) . T) (((-794)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-782)) -(|has| |#1| (-782)) -((($) . T) (((-382 (-522))) -3844 (|has| |#1| (-338)) (|has| |#1| (-324))) ((|#1|) . T)) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-514))) -(((#0=(-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) #0#) |has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-285 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))))) -((($) . T)) -(|has| |#2| (-784)) -((($) . T)) -(((|#2|) |has| |#2| (-1014))) -((((-792)) -3844 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-562 (-792))) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-343)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)) (|has| |#2| (-1014))) (((-1166 |#2|)) . T)) (|has| |#1| (-784)) (|has| |#1| (-784)) -((((-1068) (-51)) . T)) +((($) . T) (((-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-515))) +(((#0=(-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) #0#) |has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))))) +((($) . T)) +(|has| |#2| (-786)) +((($) . T)) +(((|#2|) |has| |#2| (-1016))) +((((-794)) -3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-563 (-794))) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) (((-1168 |#2|)) . T)) +(|has| |#1| (-786)) +(|has| |#1| (-786)) +((((-1070) (-51)) . T)) +(|has| |#1| (-786)) +((((-794)) . T)) +((((-523)) |has| #0=(-383 |#2|) (-585 (-523))) ((#0#) . T)) +((((-523) (-133)) . T)) +((((-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T) ((|#1| |#2|) . T)) +((((-383 (-523))) . T) (($) . T)) +(((|#1|) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-794)) . T)) +((((-841 |#1|)) . T)) +(|has| |#1| (-339)) +(|has| |#1| (-339)) +(|has| |#1| (-339)) +(|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) +(|has| |#1| (-784)) +(|has| |#1| (-339)) (|has| |#1| (-784)) -((((-792)) . T)) -((((-522)) |has| #0=(-382 |#2|) (-584 (-522))) ((#0#) . T)) -((((-522) (-132)) . T)) -((((-522) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T) ((|#1| |#2|) . T)) -((((-382 (-522))) . T) (($) . T)) -(((|#1|) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -((((-792)) . T)) -((((-839 |#1|)) . T)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -(|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) -(|has| |#1| (-782)) -(|has| |#1| (-338)) -(|has| |#1| (-782)) (((|#1|) . T) (($) . T)) -(|has| |#1| (-782)) -((((-1085)) |has| |#1| (-829 (-1085)))) -(((|#1| (-1085)) . T)) -(((|#1| (-1166 |#1|) (-1166 |#1|)) . T)) +(|has| |#1| (-784)) +((((-1087)) |has| |#1| (-831 (-1087)))) +(((|#1| (-1087)) . T)) +(((|#1| (-1168 |#1|) (-1168 |#1|)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -(|has| |#1| (-1014)) -(((|#1| (-1085) (-755 (-1085)) (-494 (-755 (-1085)))) . T)) -((((-382 (-881 |#1|))) . T)) -((((-498)) . T)) -((((-792)) . T)) +(|has| |#1| (-1016)) +(((|#1| (-1087) (-757 (-1087)) (-495 (-757 (-1087)))) . T)) +((((-383 (-883 |#1|))) . T)) +((((-499)) . T)) +((((-794)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) -(((|#1|) |has| |#1| (-157))) -((((-522) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#1|) |has| |#1| (-158))) +((((-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) -((($) |has| |#1| (-514)) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) +((($) |has| |#1| (-515)) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#3|) . T)) -(((|#1|) |has| |#1| (-157))) -((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) |has| |#1| (-157)) (($) -3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))) -((($) -3844 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-498)) |has| |#1| (-563 (-498))) (((-821 (-354))) |has| |#1| (-563 (-821 (-354)))) (((-821 (-522))) |has| |#1| (-563 (-821 (-522))))) -((((-792)) . T)) -(((|#2|) . T) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -(|has| |#2| (-782)) -(-12 (|has| |#2| (-210)) (|has| |#2| (-971))) -(|has| |#1| (-514)) -(|has| |#1| (-1061)) -((((-1068) |#1|) . T)) -(-3844 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971))) -(((#0=(-382 (-522)) #0#) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) ((|#1| |#1|) . T)) -((((-382 (-522))) |has| |#1| (-962 (-522))) (((-522)) |has| |#1| (-962 (-522))) (((-1085)) |has| |#1| (-962 (-1085))) ((|#1|) . T)) -((((-522) |#2|) . T)) -((((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-522)) |has| |#1| (-962 (-522))) ((|#1|) . T)) -((((-522)) |has| |#1| (-815 (-522))) (((-354)) |has| |#1| (-815 (-354)))) -((((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) ((|#1|) . T)) -(((|#1|) . T)) -((((-588 |#4|)) . T) (((-792)) . T)) -((((-498)) |has| |#4| (-563 (-498)))) -((((-498)) |has| |#4| (-563 (-498)))) -((((-792)) . T) (((-588 |#4|)) . T)) -((($) |has| |#1| (-782))) -(((|#1|) . T)) -((((-588 |#4|)) . T) (((-792)) . T)) -((((-498)) |has| |#4| (-563 (-498)))) -(((|#1|) . T)) -(((|#2|) . T)) -((((-1085)) |has| (-382 |#2|) (-829 (-1085)))) -(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((#0=(-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) #0#) |has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) -((($) . T)) -((($) . T)) -(((|#2|) . T)) -((((-792)) -3844 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-562 (-792))) (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-343)) (|has| |#3| (-730)) (|has| |#3| (-782)) (|has| |#3| (-971)) (|has| |#3| (-1014))) (((-1166 |#3|)) . T)) -((((-522) |#2|) . T)) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) -(((|#2| |#2|) -3844 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-971))) (($ $) |has| |#2| (-157))) -((((-792)) . T)) -((((-792)) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T) ((|#2|) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-1068) (-1085) (-522) (-202) (-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -((((-792)) . T)) -((((-522) (-108)) . T)) -(((|#1|) . T)) -((((-792)) . T)) +(((|#1|) |has| |#1| (-158))) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) |has| |#1| (-158)) (($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840)))) +((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-499)) |has| |#1| (-564 (-499))) (((-823 (-355))) |has| |#1| (-564 (-823 (-355)))) (((-823 (-523))) |has| |#1| (-564 (-823 (-523))))) +((((-794)) . T)) +(((|#2|) . T) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +(|has| |#2| (-784)) +(-12 (|has| |#2| (-211)) (|has| |#2| (-973))) +(|has| |#1| (-515)) +(|has| |#1| (-1063)) +((((-1070) |#1|) . T)) +(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(((#0=(-383 (-523)) #0#) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((|#1| |#1|) . T)) +((((-383 (-523))) |has| |#1| (-964 (-523))) (((-523)) |has| |#1| (-964 (-523))) (((-1087)) |has| |#1| (-964 (-1087))) ((|#1|) . T)) +((((-523) |#2|) . T)) +((((-383 (-523))) |has| |#1| (-964 (-383 (-523)))) (((-523)) |has| |#1| (-964 (-523))) ((|#1|) . T)) +((((-523)) |has| |#1| (-817 (-523))) (((-355)) |has| |#1| (-817 (-355)))) +((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((|#1|) . T)) +(((|#1|) . T)) +((((-589 |#4|)) . T) (((-794)) . T)) +((((-499)) |has| |#4| (-564 (-499)))) +((((-499)) |has| |#4| (-564 (-499)))) +((((-794)) . T) (((-589 |#4|)) . T)) +((($) |has| |#1| (-784))) +(((|#1|) . T)) +((((-589 |#4|)) . T) (((-794)) . T)) +((((-499)) |has| |#4| (-564 (-499)))) +(((|#1|) . T)) +(((|#2|) . T)) +((((-1087)) |has| (-383 |#2|) (-831 (-1087)))) +(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((#0=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) #0#) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) +((($) . T)) +((($) . T)) +(((|#2|) . T)) +((((-794)) -3262 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-563 (-794))) (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-344)) (|has| |#3| (-732)) (|has| |#3| (-784)) (|has| |#3| (-973)) (|has| |#3| (-1016))) (((-1168 |#3|)) . T)) +((((-523) |#2|) . T)) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(((|#2| |#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973))) (($ $) |has| |#2| (-158))) +((((-794)) . T)) +((((-794)) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T) ((|#2|) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-1070) (-1087) (-523) (-203) (-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +((((-794)) . T)) +((((-523) (-108)) . T)) +(((|#1|) . T)) +((((-794)) . T)) ((((-108)) . T)) ((((-108)) . T)) -((((-792)) . T)) -((((-792)) . T)) +((((-794)) . T)) +((((-794)) . T)) ((((-108)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -((((-792)) . T)) -((((-498)) |has| |#1| (-563 (-498)))) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014)))) -(((|#2|) -3844 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-971))) (($) |has| |#2| (-157))) -(|has| $ (-135)) -((((-382 |#2|)) . T)) -((((-382 (-522))) |has| #0=(-382 |#2|) (-962 (-382 (-522)))) (((-522)) |has| #0# (-962 (-522))) ((#0#) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +((((-794)) . T)) +((((-499)) |has| |#1| (-564 (-499)))) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +(((|#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-973))) (($) |has| |#2| (-158))) +(|has| $ (-136)) +((((-383 |#2|)) . T)) +((((-383 (-523))) |has| #0=(-383 |#2|) (-964 (-383 (-523)))) (((-523)) |has| #0# (-964 (-523))) ((#0#) . T)) (((|#2| |#2|) . T)) -(((|#4|) |has| |#4| (-157))) -(|has| |#2| (-133)) -(|has| |#2| (-135)) -(((|#3|) |has| |#3| (-157))) -(|has| |#1| (-135)) -(|has| |#1| (-133)) -(-3844 (|has| |#1| (-133)) (|has| |#1| (-343))) -(|has| |#1| (-135)) -(-3844 (|has| |#1| (-133)) (|has| |#1| (-343))) -(|has| |#1| (-135)) -(-3844 (|has| |#1| (-133)) (|has| |#1| (-343))) -(|has| |#1| (-135)) -(((|#1|) . T)) -(((|#2|) . T)) -(|has| |#2| (-210)) -((((-1085) (-51)) . T)) -((((-792)) . T)) +(((|#4|) |has| |#4| (-158))) +(|has| |#2| (-134)) +(|has| |#2| (-136)) +(((|#3|) |has| |#3| (-158))) +(|has| |#1| (-136)) +(|has| |#1| (-134)) +(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) +(|has| |#1| (-136)) +(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) +(|has| |#1| (-136)) +(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) +(|has| |#1| (-136)) +(((|#1|) . T)) +(((|#2|) . T)) +(|has| |#2| (-211)) +((((-1087) (-51)) . T)) +((((-794)) . T)) (((|#1| |#1|) . T)) -((((-1085)) |has| |#2| (-829 (-1085)))) -((((-522) (-108)) . T)) -(|has| |#1| (-514)) +((((-1087)) |has| |#2| (-831 (-1087)))) +((((-523) (-108)) . T)) +(|has| |#1| (-515)) (((|#2|) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) (((|#3|) . T)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(((|#1|) . T)) -((((-792)) . T)) -((((-498)) . T) (((-821 (-522))) . T) (((-354)) . T) (((-202)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-925 |#1|)) . T) ((|#1|) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -((((-382 (-522))) . T) (((-382 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1081 |#1|)) . T)) -((((-522)) . T) (($) . T) (((-382 (-522))) . T)) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(((|#1|) . T)) +((((-794)) . T)) +((((-499)) . T) (((-823 (-523))) . T) (((-355)) . T) (((-203)) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-927 |#1|)) . T) ((|#1|) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-383 (-523))) . T) (((-383 |#1|)) . T) ((|#1|) . T) (($) . T)) +(((|#1| (-1083 |#1|)) . T)) +((((-523)) . T) (($) . T) (((-383 (-523))) . T)) (((|#3|) . T) (($) . T)) -(|has| |#1| (-784)) +(|has| |#1| (-786)) (((|#2|) . T)) -((((-522)) . T) (($) . T) (((-382 (-522))) . T)) -((((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) . T)) -((((-522) |#2|) . T)) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014)))) +((((-523)) . T) (($) . T) (((-383 (-523))) . T)) +((((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) +((((-523) |#2|) . T)) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) (((|#2|) . T)) -((((-522) |#3|) . T)) +((((-523) |#3|) . T)) (((|#2|) . T)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -((((-1158 |#1| |#2| |#3|)) |has| |#1| (-338))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -((((-792)) . T)) -(|has| |#1| (-1014)) -(((|#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) -(((|#3|) -12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +((((-1160 |#1| |#2| |#3|)) |has| |#1| (-339))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +((((-794)) . T)) +(|has| |#1| (-1016)) +(((|#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) +(((|#3|) -12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (((|#2|) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((#0=(-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) #0#) |has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((#0=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) #0#) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) (((|#2| |#2|) . T)) -(|has| |#2| (-338)) -(((|#2|) . T) (((-522)) |has| |#2| (-962 (-522))) (((-382 (-522))) |has| |#2| (-962 (-382 (-522))))) -(((|#2|) . T)) -((((-1068) (-51)) . T)) -(((|#2|) |has| |#2| (-157))) -((((-522) |#3|) . T)) -((((-522) (-132)) . T)) -((((-132)) . T)) -((((-792)) . T)) +(|has| |#2| (-339)) +(((|#2|) . T) (((-523)) |has| |#2| (-964 (-523))) (((-383 (-523))) |has| |#2| (-964 (-383 (-523))))) +(((|#2|) . T)) +((((-1070) (-51)) . T)) +(((|#2|) |has| |#2| (-158))) +((((-523) |#3|) . T)) +((((-523) (-133)) . T)) +((((-133)) . T)) +((((-794)) . T)) ((((-108)) . T)) -(|has| |#1| (-135)) +(|has| |#1| (-136)) (((|#1|) . T)) -(|has| |#1| (-133)) +(|has| |#1| (-134)) ((($) . T)) -(|has| |#1| (-514)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) +(|has| |#1| (-515)) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) ((($) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-522)) |has| |#2| (-584 (-522)))) -((((-792)) . T)) -((((-522)) |has| |#1| (-584 (-522))) ((|#1|) . T)) -((((-522)) |has| |#1| (-584 (-522))) ((|#1|) . T)) -((((-522)) |has| |#1| (-584 (-522))) ((|#1|) . T)) -((((-1068) (-51)) . T)) +(((|#2|) . T) (((-523)) |has| |#2| (-585 (-523)))) +((((-794)) . T)) +((((-523)) |has| |#1| (-585 (-523))) ((|#1|) . T)) +((((-523)) |has| |#1| (-585 (-523))) ((|#1|) . T)) +((((-523)) |has| |#1| (-585 (-523))) ((|#1|) . T)) +((((-1070) (-51)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#1| |#2|) . T)) -((((-522) (-132)) . T)) -(((#0=(-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) #0#) |has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) -((($) -3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -(|has| |#1| (-784)) -(((|#2| (-708) (-999)) . T)) +((((-523) (-133)) . T)) +(((#0=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) #0#) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) +((($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +(|has| |#1| (-786)) +(((|#2| (-710) (-1001)) . T)) (((|#1| |#2|) . T)) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-514))) -(|has| |#1| (-728)) -(((|#1|) |has| |#1| (-157))) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-515))) +(|has| |#1| (-730)) +(((|#1|) |has| |#1| (-158))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-3844 (|has| |#1| (-135)) (-12 (|has| |#1| (-338)) (|has| |#2| (-135)))) -(-3844 (|has| |#1| (-133)) (-12 (|has| |#1| (-338)) (|has| |#2| (-133)))) +(-3262 (|has| |#1| (-136)) (-12 (|has| |#1| (-339)) (|has| |#2| (-136)))) +(-3262 (|has| |#1| (-134)) (-12 (|has| |#1| (-339)) (|has| |#2| (-134)))) (((|#4|) . T)) -(|has| |#1| (-133)) -((((-1068) |#1|) . T)) -(|has| |#1| (-135)) +(|has| |#1| (-134)) +((((-1070) |#1|) . T)) +(|has| |#1| (-136)) (((|#1|) . T)) -((((-522)) . T)) -((((-792)) . T)) +((((-523)) . T)) +((((-794)) . T)) (((|#1| |#2|) . T)) -((((-792)) . T)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) +((((-794)) . T)) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#3|) . T)) -((((-1158 |#1| |#2| |#3|)) |has| |#1| (-338))) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) -(((|#1|) . T)) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014)))) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))) (((-886 |#1|)) . T)) -(|has| |#1| (-782)) -(|has| |#1| (-782)) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(|has| |#2| (-338)) -(((|#1|) |has| |#1| (-157))) -(((|#2|) |has| |#2| (-971))) -((((-1068) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) -(((|#2| (-822 |#1|)) . T)) -((($) . T)) -((((-363) (-1068)) . T)) -((($) |has| |#1| (-514)) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -((((-792)) -3844 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-562 (-792))) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-343)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)) (|has| |#2| (-1014))) (((-1166 |#2|)) . T)) -(((#0=(-51)) . T) (((-2 (|:| -2644 (-1068)) (|:| -3149 #0#))) . T)) -(((|#1|) . T)) -((((-792)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) -((((-132)) . T)) -(|has| |#2| (-133)) -(|has| |#2| (-135)) -(|has| |#1| (-447)) -(-3844 (|has| |#1| (-447)) (|has| |#1| (-664)) (|has| |#1| (-829 (-1085))) (|has| |#1| (-971))) -(|has| |#1| (-338)) -((((-792)) . T)) -(|has| |#1| (-37 (-382 (-522)))) -((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-514))) -((($) |has| |#1| (-514))) -(|has| |#1| (-782)) -(|has| |#1| (-782)) -((((-792)) . T)) -((((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3844 (|has| |#1| (-338)) (|has| |#1| (-514))) (((-1158 |#1| |#2| |#3|)) |has| |#1| (-338)) ((|#1|) |has| |#1| (-157))) -(((|#1|) |has| |#1| (-157)) (((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3844 (|has| |#1| (-338)) (|has| |#1| (-514)))) -((($) |has| |#1| (-514)) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) +((((-1160 |#1| |#2| |#3|)) |has| |#1| (-339))) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(((|#1|) . T)) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016))) (((-888 |#1|)) . T)) +(|has| |#1| (-784)) +(|has| |#1| (-784)) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(|has| |#2| (-339)) +(((|#1|) |has| |#1| (-158))) +(((|#2|) |has| |#2| (-973))) +((((-1070) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) +(((|#2| (-824 |#1|)) . T)) +((($) . T)) +((((-364) (-1070)) . T)) +((($) |has| |#1| (-515)) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((((-794)) -3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-563 (-794))) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) (((-1168 |#2|)) . T)) +(((#0=(-51)) . T) (((-2 (|:| -1853 (-1070)) (|:| -2433 #0#))) . T)) +(((|#1|) . T)) +((((-794)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) +((((-133)) . T)) +(|has| |#2| (-134)) +(|has| |#2| (-136)) +(|has| |#1| (-448)) +(-3262 (|has| |#1| (-448)) (|has| |#1| (-666)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973))) +(|has| |#1| (-339)) +((((-794)) . T)) +(|has| |#1| (-37 (-383 (-523)))) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) |has| |#1| (-158)) (($) |has| |#1| (-515))) +((($) |has| |#1| (-515))) +(|has| |#1| (-784)) +(|has| |#1| (-784)) +((((-794)) . T)) +((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-1160 |#1| |#2| |#3|)) |has| |#1| (-339)) ((|#1|) |has| |#1| (-158))) +(((|#1|) |has| |#1| (-158)) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515)))) +((($) |has| |#1| (-515)) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (((|#1| |#2|) . T)) -((((-1085)) |has| |#1| (-829 (-1085)))) -((((-839 |#1|)) . T) (((-382 (-522))) . T) (($) . T)) -((((-792)) . T)) -((((-792)) . T)) -(|has| |#1| (-1014)) -(((|#2| (-455 (-3591 |#1|) (-708)) (-794 |#1|)) . T)) -((((-382 (-522))) . #0=(|has| |#2| (-338))) (($) . #0#)) -(((|#1| (-494 (-1085)) (-1085)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-792)) . T)) -((((-792)) . T)) +((((-1087)) |has| |#1| (-831 (-1087)))) +((((-841 |#1|)) . T) (((-383 (-523))) . T) (($) . T)) +((((-794)) . T)) +((((-794)) . T)) +(|has| |#1| (-1016)) +(((|#2| (-456 (-2676 |#1|) (-710)) (-796 |#1|)) . T)) +((((-383 (-523))) . #0=(|has| |#2| (-339))) (($) . #0#)) +(((|#1| (-495 (-1087)) (-1087)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-794)) . T)) +((((-794)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#2| (-157)) +(|has| |#2| (-158)) (((|#2| |#2|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -(|has| |#1| (-133)) -(|has| |#1| (-135)) +(|has| |#1| (-134)) +(|has| |#1| (-136)) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -((((-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) . T)) -((((-1083 |#1| |#2| |#3|)) |has| |#1| (-338))) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -((((-1085) (-51)) . T)) +(((|#1|) . T) (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) . T)) +((((-1085 |#1| |#2| |#3|)) |has| |#1| (-339))) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-1087) (-51)) . T)) ((($ $) . T)) -(((|#1| (-522)) . T)) -((((-839 |#1|)) . T)) -(((|#1|) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-971))) (($) -3844 (|has| |#1| (-829 (-1085))) (|has| |#1| (-971)))) -(((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522))))) +(((|#1| (-523)) . T)) +((((-841 |#1|)) . T)) +(((|#1|) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-973))) (($) -3262 (|has| |#1| (-831 (-1087))) (|has| |#1| (-973)))) +(((|#1|) . T) (((-523)) |has| |#1| (-964 (-523))) (((-383 (-523))) |has| |#1| (-964 (-383 (-523))))) +(|has| |#1| (-786)) +(|has| |#1| (-786)) +((((-523) |#2|) . T)) +((((-523)) . T)) +((((-1160 |#1| |#2| |#3|)) -12 (|has| (-1160 |#1| |#2| |#3|) (-286 (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339)))) +(|has| |#1| (-786)) +((((-629 |#2|)) . T) (((-794)) . T)) +(((|#1| |#2|) . T)) +((((-383 (-883 |#1|))) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) +(((|#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) +(((|#1|) |has| |#1| (-158))) +(((|#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) +(((|#3|) -3262 (|has| |#3| (-158)) (|has| |#3| (-339)))) +(|has| |#2| (-786)) +(|has| |#1| (-786)) +(-3262 (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-840))) +((($ $) . T) ((#0=(-383 (-523)) #0#) . T)) +((((-523) |#2|) . T)) +(((|#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)))) +(|has| |#1| (-325)) +(((|#3| |#3|) -12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) +((($) . T) (((-383 (-523))) . T)) +((((-523) (-108)) . T)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(((|#1|) . T)) +(-3262 (|has| |#1| (-284)) (|has| |#1| (-339)) (|has| |#1| (-325))) (|has| |#1| (-784)) (|has| |#1| (-784)) -((((-522) |#2|) . T)) -((((-522)) . T)) -((((-1158 |#1| |#2| |#3|)) -12 (|has| (-1158 |#1| |#2| |#3|) (-285 (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338)))) (|has| |#1| (-784)) -((((-628 |#2|)) . T) (((-792)) . T)) -(((|#1| |#2|) . T)) -((((-382 (-881 |#1|))) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) -(((|#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) -(((|#1|) |has| |#1| (-157))) -(((|#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) -(((|#3|) -3844 (|has| |#3| (-157)) (|has| |#3| (-338)))) -(|has| |#2| (-784)) +(((|#1|) . T) (((-383 (-523))) . T) (($) . T)) +(|has| |#1| (-37 (-383 (-523)))) +((((-523)) . T) (($) . T) (((-383 (-523))) . T)) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-325))) +(|has| |#1| (-37 (-383 (-523)))) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-1087)) |has| |#1| (-831 (-1087))) (((-1001)) . T)) +(((|#1|) . T)) (|has| |#1| (-784)) -(-3844 (|has| |#2| (-338)) (|has| |#2| (-426)) (|has| |#2| (-838))) -((($ $) . T) ((#0=(-382 (-522)) #0#) . T)) -((((-522) |#2|) . T)) -(((|#2|) -3844 (|has| |#2| (-157)) (|has| |#2| (-338)))) -(|has| |#1| (-324)) -(((|#3| |#3|) -12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) -((($) . T) (((-382 (-522))) . T)) -((((-522) (-108)) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(((|#1|) . T)) -(-3844 (|has| |#1| (-283)) (|has| |#1| (-338)) (|has| |#1| (-324))) -(|has| |#1| (-782)) -(|has| |#1| (-782)) -(|has| |#1| (-782)) -(((|#1|) . T) (((-382 (-522))) . T) (($) . T)) -(|has| |#1| (-37 (-382 (-522)))) -((((-522)) . T) (($) . T) (((-382 (-522))) . T)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-324))) -(|has| |#1| (-37 (-382 (-522)))) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -((((-1085)) |has| |#1| (-829 (-1085))) (((-999)) . T)) -(((|#1|) . T)) -(|has| |#1| (-782)) -(((#0=(-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) #0#) |has| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-285 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))))) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(|has| |#1| (-1014)) +(((#0=(-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) #0#) |has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))))) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(|has| |#1| (-1016)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) -(((|#1| |#2| |#3| (-217 |#2| |#3|) (-217 |#1| |#3|)) . T)) +(((|#1| |#2| |#3| (-218 |#2| |#3|) (-218 |#1| |#3|)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#1| (-494 |#2|) |#2|) . T)) -((((-792)) . T)) -(((|#1| (-708) (-999)) . T)) +(((|#1| (-495 |#2|) |#2|) . T)) +((((-794)) . T)) +(((|#1| (-710) (-1001)) . T)) (((|#3|) . T)) (((|#1|) . T)) -((((-132)) . T)) -(((|#2|) |has| |#2| (-157))) -(-3844 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-343)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)) (|has| |#2| (-1014))) +((((-133)) . T)) +(((|#2|) |has| |#2| (-158))) +(-3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) (((|#1|) . T)) -(|has| |#1| (-133)) -(|has| |#1| (-135)) -(|has| |#3| (-157)) -(((|#4|) |has| |#4| (-338))) -(((|#3|) |has| |#3| (-338))) +(|has| |#1| (-134)) +(|has| |#1| (-136)) +(|has| |#3| (-158)) +(((|#4|) |has| |#4| (-339))) +(((|#3|) |has| |#3| (-339))) (((|#1|) . T)) -(((|#2|) |has| |#1| (-338))) -((((-792)) . T)) +(((|#2|) |has| |#1| (-339))) +((((-794)) . T)) (((|#2|) . T)) -(((|#1| (-1081 |#1|)) . T)) -((((-999)) . T) ((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522))))) -((($) . T) ((|#1|) . T) (((-382 (-522))) . T)) +(((|#1| (-1083 |#1|)) . T)) +((((-1001)) . T) ((|#1|) . T) (((-523)) |has| |#1| (-964 (-523))) (((-383 (-523))) |has| |#1| (-964 (-383 (-523))))) +((($) . T) ((|#1|) . T) (((-383 (-523))) . T)) (((|#2|) . T)) -((((-1083 |#1| |#2| |#3|)) |has| |#1| (-338))) -((($) |has| |#1| (-782))) -(|has| |#1| (-838)) -((((-792)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) +((((-1085 |#1| |#2| |#3|)) |has| |#1| (-339))) +((($) |has| |#1| (-784))) +(|has| |#1| (-840)) +((((-794)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((#0=(-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) #0#) |has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-285 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))))) -(-3844 (|has| |#2| (-426)) (|has| |#2| (-838))) -(-3844 (|has| |#1| (-426)) (|has| |#1| (-838))) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((#0=(-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) #0#) |has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))))) +(-3262 (|has| |#2| (-427)) (|has| |#2| (-840))) +(-3262 (|has| |#1| (-427)) (|has| |#1| (-840))) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) +(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -3844 (|has| |#3| (-157)) (|has| |#3| (-338)))) -(|has| |#1| (-784)) -(|has| |#1| (-514)) -((((-535 |#1|)) . T)) +(((|#3|) -3262 (|has| |#3| (-158)) (|has| |#3| (-339)))) +(|has| |#1| (-786)) +(|has| |#1| (-515)) +((((-536 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-3844 (-12 (|has| |#1| (-338)) (|has| |#2| (-757))) (-12 (|has| |#1| (-338)) (|has| |#2| (-784)))) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-514))) -((((-839 |#1|)) . T)) -(((|#1| (-466 |#1| |#3|) (-466 |#1| |#2|)) . T)) +(-3262 (-12 (|has| |#1| (-339)) (|has| |#2| (-759))) (-12 (|has| |#1| (-339)) (|has| |#2| (-786)))) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +((((-841 |#1|)) . T)) +(((|#1| (-467 |#1| |#3|) (-467 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) -(((|#1| (-708)) . T)) -((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-514))) -((((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3844 (|has| |#1| (-338)) (|has| |#1| (-514))) (((-1083 |#1| |#2| |#3|)) |has| |#1| (-338)) ((|#1|) |has| |#1| (-157))) -(((|#1|) |has| |#1| (-157)) (((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3844 (|has| |#1| (-338)) (|has| |#1| (-514)))) -((($) |has| |#1| (-514)) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -((((-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) . T)) -((((-382 |#2|)) . T) (((-382 (-522))) . T) (($) . T)) -((((-613 |#1|)) . T)) +(((|#1| (-710)) . T)) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) |has| |#1| (-158)) (($) |has| |#1| (-515))) +((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-1085 |#1| |#2| |#3|)) |has| |#1| (-339)) ((|#1|) |has| |#1| (-158))) +(((|#1|) |has| |#1| (-158)) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515)))) +((($) |has| |#1| (-515)) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((((-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) . T)) +((((-383 |#2|)) . T) (((-383 (-523))) . T) (($) . T)) +((((-614 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-498)) . T)) -((((-792)) . T)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -((((-792)) . T)) -((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) |has| |#2| (-157)) (($) -3844 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -(((|#2|) . T)) -(-3844 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-343)) (|has| |#3| (-730)) (|has| |#3| (-782)) (|has| |#3| (-971)) (|has| |#3| (-1014))) -(-3844 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971))) -((((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-522)) |has| |#1| (-962 (-522))) ((|#1|) . T)) -(|has| |#1| (-1106)) -(|has| |#1| (-1106)) -(-3844 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-343)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)) (|has| |#2| (-1014))) -(|has| |#1| (-1106)) -(|has| |#1| (-1106)) +((((-499)) . T)) +((((-794)) . T)) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +((((-794)) . T)) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +(((|#2|) . T)) +(-3262 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-344)) (|has| |#3| (-732)) (|has| |#3| (-784)) (|has| |#3| (-973)) (|has| |#3| (-1016))) +(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +((((-383 (-523))) |has| |#1| (-964 (-383 (-523)))) (((-523)) |has| |#1| (-964 (-523))) ((|#1|) . T)) +(|has| |#1| (-1108)) +(|has| |#1| (-1108)) +(-3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) +(|has| |#1| (-1108)) +(|has| |#1| (-1108)) (((|#3| |#3|) . T)) -(((|#1|) . T) (((-382 (-522))) . T) (($) . T)) -((($ $) . T) ((#0=(-382 (-522)) #0#) . T) ((#1=(-382 |#1|) #1#) . T) ((|#1| |#1|) . T)) -((((-522)) . T) (($) . T) (((-382 (-522))) . T)) +(((|#1|) . T) (((-383 (-523))) . T) (($) . T)) +((($ $) . T) ((#0=(-383 (-523)) #0#) . T) ((#1=(-383 |#1|) #1#) . T) ((|#1| |#1|) . T)) +((((-523)) . T) (($) . T) (((-383 (-523))) . T)) (((|#3|) . T)) -((($) . T) (((-382 (-522))) . T) (((-382 |#1|)) . T) ((|#1|) . T)) -(((|#1|) . T) (((-382 (-522))) . T) (($) . T)) -(((|#1|) . T) (((-382 (-522))) . T) (($) . T)) -((((-1068) (-51)) . T)) -(|has| |#1| (-1014)) -(-3844 (|has| |#2| (-757)) (|has| |#2| (-784))) -(((|#1|) . T)) -((($) -3844 (|has| |#1| (-338)) (|has| |#1| (-324))) (((-382 (-522))) -3844 (|has| |#1| (-338)) (|has| |#1| (-324))) ((|#1|) . T)) -(((|#1|) |has| |#1| (-157)) (($) . T)) -((($) . T)) -((((-1083 |#1| |#2| |#3|)) -12 (|has| (-1083 |#1| |#2| |#3|) (-285 (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338)))) -((((-792)) . T)) -(-3844 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) -((($) . T)) -(-3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -((((-792)) . T)) -(-3844 (|has| |#1| (-426)) (|has| |#1| (-838))) -(|has| |#2| (-838)) -(|has| |#1| (-338)) -(((|#2|) |has| |#2| (-1014))) -(-3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) +((($) . T) (((-383 (-523))) . T) (((-383 |#1|)) . T) ((|#1|) . T)) +(((|#1|) . T) (((-383 (-523))) . T) (($) . T)) +(((|#1|) . T) (((-383 (-523))) . T) (($) . T)) +((((-1070) (-51)) . T)) +(|has| |#1| (-1016)) +(-3262 (|has| |#2| (-759)) (|has| |#2| (-786))) +(((|#1|) . T)) +((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) (((-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) +(((|#1|) |has| |#1| (-158)) (($) . T)) +((($) . T)) +((((-1085 |#1| |#2| |#3|)) -12 (|has| (-1085 |#1| |#2| |#3|) (-286 (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339)))) +((((-794)) . T)) +(-3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +((($) . T)) +(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +((((-794)) . T)) +(-3262 (|has| |#1| (-427)) (|has| |#1| (-840))) +(|has| |#2| (-840)) +(|has| |#1| (-339)) +(((|#2|) |has| |#2| (-1016))) +(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((($) . T) ((|#2|) . T)) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-838))) -(|has| |#1| (-838)) -(|has| |#1| (-838)) -((((-498)) . T) (((-382 (-1081 (-522)))) . T) (((-202)) . T) (((-354)) . T)) -((((-354)) . T) (((-202)) . T) (((-792)) . T)) -(|has| |#1| (-838)) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-840))) +(|has| |#1| (-840)) +(|has| |#1| (-840)) +((((-499)) . T) (((-383 (-1083 (-523)))) . T) (((-203)) . T) (((-355)) . T)) +((((-355)) . T) (((-203)) . T) (((-794)) . T)) +(|has| |#1| (-840)) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) ((($ $) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) ((($ $) . T)) -((((-522) (-108)) . T)) +((((-523) (-108)) . T)) ((($) . T)) (((|#1|) . T)) -((((-522)) . T)) +((((-523)) . T)) ((((-108)) . T)) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) -(|has| |#1| (-37 (-382 (-522)))) -(((|#1| (-522)) . T)) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) +(|has| |#1| (-37 (-383 (-523)))) +(((|#1| (-523)) . T)) ((($) . T)) -(((|#2|) . T) (((-522)) |has| |#2| (-584 (-522)))) -((((-522)) |has| |#1| (-584 (-522))) ((|#1|) . T)) +(((|#2|) . T) (((-523)) |has| |#2| (-585 (-523)))) +((((-523)) |has| |#1| (-585 (-523))) ((|#1|) . T)) (((|#1|) . T)) -((((-522)) . T)) +((((-523)) . T)) (((|#1| |#2|) . T)) -((((-1085)) |has| |#1| (-971))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(((|#1|) . T)) -((((-792)) . T)) -(((|#1| (-522)) . T)) -(((|#1| (-1158 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(((|#1| (-382 (-522))) . T)) -(((|#1| (-1130 |#1| |#2| |#3|)) . T)) -(((|#1| (-708)) . T)) -(((|#1|) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -((((-792)) . T)) -(|has| |#1| (-1014)) -((((-1068) |#1|) . T)) -((($) . T)) -(|has| |#2| (-135)) -(|has| |#2| (-133)) -(((|#1| (-494 (-755 (-1085))) (-755 (-1085))) . T)) -((((-792)) . T)) -((((-1152 |#1| |#2| |#3| |#4|)) . T)) -((((-1152 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-971))) -((((-522) (-108)) . T)) -((((-792)) |has| |#1| (-1014))) -(|has| |#2| (-157)) -((((-522)) . T)) -(|has| |#2| (-782)) -(((|#1|) . T)) -((((-522)) . T)) -((((-792)) . T)) -(-3844 (|has| |#1| (-133)) (|has| |#1| (-324))) -((((-792)) . T)) -(|has| |#1| (-135)) +((((-1087)) |has| |#1| (-973))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(((|#1|) . T)) +((((-794)) . T)) +(((|#1| (-523)) . T)) +(((|#1| (-1160 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(((|#1| (-383 (-523))) . T)) +(((|#1| (-1132 |#1| |#2| |#3|)) . T)) +(((|#1| (-710)) . T)) +(((|#1|) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-794)) . T)) +(|has| |#1| (-1016)) +((((-1070) |#1|) . T)) +((($) . T)) +(|has| |#2| (-136)) +(|has| |#2| (-134)) +(((|#1| (-495 (-757 (-1087))) (-757 (-1087))) . T)) +((((-794)) . T)) +((((-1154 |#1| |#2| |#3| |#4|)) . T)) +((((-1154 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-973))) +((((-523) (-108)) . T)) +((((-794)) |has| |#1| (-1016))) +(|has| |#2| (-158)) +((((-523)) . T)) +(|has| |#2| (-784)) +(((|#1|) . T)) +((((-523)) . T)) +((((-794)) . T)) +(-3262 (|has| |#1| (-134)) (|has| |#1| (-325))) +((((-794)) . T)) +(|has| |#1| (-136)) (((|#3|) . T)) -(-3844 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-971))) -((((-792)) . T)) -((((-1151 |#2| |#3| |#4|)) . T) (((-1152 |#1| |#2| |#3| |#4|)) . T)) -((((-792)) . T)) -((((-47)) -12 (|has| |#1| (-514)) (|has| |#1| (-962 (-522)))) (((-561 $)) . T) ((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) -3844 (-12 (|has| |#1| (-514)) (|has| |#1| (-962 (-522)))) (|has| |#1| (-962 (-382 (-522))))) (((-382 (-881 |#1|))) |has| |#1| (-514)) (((-881 |#1|)) |has| |#1| (-971)) (((-1085)) . T)) +(-3262 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) +((((-794)) . T)) +((((-1153 |#2| |#3| |#4|)) . T) (((-1154 |#1| |#2| |#3| |#4|)) . T)) +((((-794)) . T)) +((((-47)) -12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523)))) (((-562 $)) . T) ((|#1|) . T) (((-523)) |has| |#1| (-964 (-523))) (((-383 (-523))) -3262 (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523)))) (|has| |#1| (-964 (-383 (-523))))) (((-383 (-883 |#1|))) |has| |#1| (-515)) (((-883 |#1|)) |has| |#1| (-973)) (((-1087)) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-708)) . T)) -((($) -3844 (|has| |#1| (-338)) (|has| |#1| (-514))) (((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((|#1|) |has| |#1| (-157))) -(((|#1|) |has| |#1| (-285 |#1|))) -((((-1152 |#1| |#2| |#3| |#4|)) . T)) -((((-522)) |has| |#1| (-815 (-522))) (((-354)) |has| |#1| (-815 (-354)))) -(((|#1|) . T)) -(|has| |#1| (-514)) -(((|#1|) . T)) -((((-792)) . T)) -(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) |has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) -(((|#1|) |has| |#1| (-157))) -((($) |has| |#1| (-514)) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) -(((|#1|) . T)) -(((|#3|) |has| |#3| (-1014))) -(((|#2|) -3844 (|has| |#2| (-157)) (|has| |#2| (-338)))) -((((-1151 |#2| |#3| |#4|)) . T)) +(((|#1| (-710)) . T)) +((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#1|) |has| |#1| (-158))) +(((|#1|) |has| |#1| (-286 |#1|))) +((((-1154 |#1| |#2| |#3| |#4|)) . T)) +((((-523)) |has| |#1| (-817 (-523))) (((-355)) |has| |#1| (-817 (-355)))) +(((|#1|) . T)) +(|has| |#1| (-515)) +(((|#1|) . T)) +((((-794)) . T)) +(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) +(((|#1|) |has| |#1| (-158))) +((($) |has| |#1| (-515)) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) +(((|#1|) . T)) +(((|#3|) |has| |#3| (-1016))) +(((|#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-339)))) +((((-1153 |#2| |#3| |#4|)) . T)) ((((-108)) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(((|#1| (-522) (-999)) . T)) -((($) |has| |#1| (-285 $)) ((|#1|) |has| |#1| (-285 |#1|))) -(|has| |#1| (-782)) -(|has| |#1| (-782)) -(((|#1| (-522) (-999)) . T)) -(-3844 (|has| |#1| (-829 (-1085))) (|has| |#1| (-971))) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -(((|#1| (-382 (-522)) (-999)) . T)) -(((|#1| (-708) (-999)) . T)) +(|has| |#1| (-759)) +(|has| |#1| (-759)) +(((|#1| (-523) (-1001)) . T)) +((($) |has| |#1| (-286 $)) ((|#1|) |has| |#1| (-286 |#1|))) (|has| |#1| (-784)) -(((#0=(-839 |#1|) #0#) . T) (($ $) . T) ((#1=(-382 (-522)) #1#) . T)) -(|has| |#2| (-133)) -(|has| |#2| (-135)) -(((|#2|) . T)) -(|has| |#1| (-133)) -(|has| |#1| (-135)) -(|has| |#1| (-1014)) -((((-839 |#1|)) . T) (($) . T) (((-382 (-522))) . T)) -(|has| |#1| (-1014)) -(((|#1|) . T)) -(|has| |#1| (-1014)) -((((-522)) -12 (|has| |#1| (-338)) (|has| |#2| (-584 (-522)))) ((|#2|) |has| |#1| (-338))) -(-3844 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-343)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)) (|has| |#2| (-1014))) -(((|#2|) |has| |#2| (-157))) -(((|#1|) |has| |#1| (-157))) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -((((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) . T)) -((((-792)) . T)) -(|has| |#3| (-782)) -((((-792)) . T)) -((((-1151 |#2| |#3| |#4|) (-294 |#2| |#3| |#4|)) . T)) -((((-792)) . T)) -(((|#1| |#1|) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-971)))) -(((|#1|) . T)) -((((-522)) . T)) -((((-522)) . T)) -(((|#1|) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-971)))) -(((|#2|) |has| |#2| (-338))) -((($) . T) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-338))) (|has| |#1| (-784)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -(((|#2|) . T)) -((((-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) |has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-285 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))))) -(-3844 (|has| |#1| (-426)) (|has| |#1| (-838))) -(((|#2|) . T) (((-522)) |has| |#2| (-584 (-522)))) -((((-792)) . T)) -((((-792)) . T)) -((((-498)) . T) (((-522)) . T) (((-821 (-522))) . T) (((-354)) . T) (((-202)) . T)) -((((-792)) . T)) -(|has| |#1| (-37 (-382 (-522)))) -((((-522)) . T) (($) . T) (((-382 (-522))) . T)) -((((-522)) . T) (($) . T) (((-382 (-522))) . T)) -(|has| |#1| (-210)) -(((|#1|) . T)) -(((|#1| (-522)) . T)) -(|has| |#1| (-782)) -(((|#1| (-1083 |#1| |#2| |#3|)) . T)) +(((|#1| (-523) (-1001)) . T)) +(-3262 (|has| |#1| (-831 (-1087))) (|has| |#1| (-973))) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +(((|#1| (-383 (-523)) (-1001)) . T)) +(((|#1| (-710) (-1001)) . T)) +(|has| |#1| (-786)) +(((#0=(-841 |#1|) #0#) . T) (($ $) . T) ((#1=(-383 (-523)) #1#) . T)) +(|has| |#2| (-134)) +(|has| |#2| (-136)) +(((|#2|) . T)) +(|has| |#1| (-134)) +(|has| |#1| (-136)) +(|has| |#1| (-1016)) +((((-841 |#1|)) . T) (($) . T) (((-383 (-523))) . T)) +(|has| |#1| (-1016)) +(((|#1|) . T)) +(|has| |#1| (-1016)) +((((-523)) -12 (|has| |#1| (-339)) (|has| |#2| (-585 (-523)))) ((|#2|) |has| |#1| (-339))) +(-3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) +(((|#2|) |has| |#2| (-158))) +(((|#1|) |has| |#1| (-158))) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) +((((-794)) . T)) +(|has| |#3| (-784)) +((((-794)) . T)) +((((-1153 |#2| |#3| |#4|) (-295 |#2| |#3| |#4|)) . T)) +((((-794)) . T)) +(((|#1| |#1|) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-973)))) +(((|#1|) . T)) +((((-523)) . T)) +((((-523)) . T)) +(((|#1|) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-973)))) +(((|#2|) |has| |#2| (-339))) +((($) . T) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-339))) +(|has| |#1| (-786)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +(((|#2|) . T)) +((((-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) |has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))))) +(-3262 (|has| |#1| (-427)) (|has| |#1| (-840))) +(((|#2|) . T) (((-523)) |has| |#2| (-585 (-523)))) +((((-794)) . T)) +((((-794)) . T)) +((((-499)) . T) (((-523)) . T) (((-823 (-523))) . T) (((-355)) . T) (((-203)) . T)) +((((-794)) . T)) +(|has| |#1| (-37 (-383 (-523)))) +((((-523)) . T) (($) . T) (((-383 (-523))) . T)) +((((-523)) . T) (($) . T) (((-383 (-523))) . T)) +(|has| |#1| (-211)) +(((|#1|) . T)) +(((|#1| (-523)) . T)) +(|has| |#1| (-784)) +(((|#1| (-1085 |#1| |#2| |#3|)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-382 (-522))) . T)) -(((|#1| (-1076 |#1| |#2| |#3|)) . T)) -(((|#1| (-708)) . T)) +(((|#1| (-383 (-523))) . T)) +(((|#1| (-1078 |#1| |#2| |#3|)) . T)) +(((|#1| (-710)) . T)) (((|#1|) . T)) -(((|#1| |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) . T)) +(((|#1| |#1| |#2| (-218 |#1| |#2|) (-218 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-133)) -(|has| |#1| (-135)) -(|has| |#1| (-135)) -(|has| |#1| (-133)) +(|has| |#1| (-134)) +(|has| |#1| (-136)) +(|has| |#1| (-136)) +(|has| |#1| (-134)) (((|#1| |#2|) . T)) -((((-132)) . T)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(((|#1|) . T)) -(-3844 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971))) -(((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) . T) (($ $) . T)) -((((-792)) . T)) -(((|#1|) . T) (((-382 (-522))) . T) (($) . T)) -((($) . T) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014)))) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -(|has| (-382 |#2|) (-210)) -(|has| |#1| (-838)) -(((|#2|) |has| |#2| (-971))) -(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) |has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) -(|has| |#1| (-338)) -(((|#1|) |has| |#1| (-157))) +((((-133)) . T)) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(((|#1|) . T)) +(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) . T) (($ $) . T)) +((((-794)) . T)) +(((|#1|) . T) (((-383 (-523))) . T) (($) . T)) +((($) . T) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +(|has| |#1| (-339)) +(|has| |#1| (-339)) +(|has| (-383 |#2|) (-211)) +(|has| |#1| (-840)) +(((|#2|) |has| |#2| (-973))) +(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) +(|has| |#1| (-339)) +(((|#1|) |has| |#1| (-158))) (((|#1| |#1|) . T)) -((((-799 |#1|)) . T)) -((((-792)) . T)) +((((-801 |#1|)) . T)) +((((-794)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1014))) -(|has| |#2| (-784)) +(((|#2|) |has| |#2| (-1016))) +(|has| |#2| (-786)) (((|#1|) . T)) -((((-382 (-522))) . T) (((-522)) . T) (((-561 $)) . T)) +((((-383 (-523))) . T) (((-523)) . T) (((-562 $)) . T)) (((|#1|) . T)) -((((-792)) . T)) +((((-794)) . T)) ((($) . T)) -(|has| |#1| (-784)) -((((-792)) . T)) -(((|#1| (-494 |#2|) |#2|) . T)) -(((|#1| (-522) (-999)) . T)) -((((-839 |#1|)) . T)) -((((-792)) . T)) +(|has| |#1| (-786)) +((((-794)) . T)) +(((|#1| (-495 |#2|) |#2|) . T)) +(((|#1| (-523) (-1001)) . T)) +((((-841 |#1|)) . T)) +((((-794)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-382 (-522)) (-999)) . T)) -(((|#1| (-708) (-999)) . T)) -(((#0=(-382 |#2|) #0#) . T) ((#1=(-382 (-522)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-522)) -3844 (|has| (-382 (-522)) (-962 (-522))) (|has| |#1| (-962 (-522)))) (((-382 (-522))) . T)) -(((|#1| (-553 |#1| |#3|) (-553 |#1| |#2|)) . T)) -(((|#1|) |has| |#1| (-157))) +(((|#1| (-383 (-523)) (-1001)) . T)) +(((|#1| (-710) (-1001)) . T)) +(((#0=(-383 |#2|) #0#) . T) ((#1=(-383 (-523)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-523)) -3262 (|has| (-383 (-523)) (-964 (-523))) (|has| |#1| (-964 (-523)))) (((-383 (-523))) . T)) +(((|#1| (-554 |#1| |#3|) (-554 |#1| |#2|)) . T)) +(((|#1|) |has| |#1| (-158))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-382 |#2|)) . T) (((-382 (-522))) . T) (($) . T)) -(|has| |#2| (-210)) -(((|#2| (-494 (-794 |#1|)) (-794 |#1|)) . T)) -((((-792)) . T)) -((($) |has| |#1| (-514)) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -((((-792)) . T)) +((((-383 |#2|)) . T) (((-383 (-523))) . T) (($) . T)) +(|has| |#2| (-211)) +(((|#2| (-495 (-796 |#1|)) (-796 |#1|)) . T)) +((((-794)) . T)) +((($) |has| |#1| (-515)) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((((-794)) . T)) (((|#1| |#3|) . T)) -((((-792)) . T)) -(((|#1|) |has| |#1| (-157))) -((((-637)) . T)) -((((-637)) . T)) -(((|#2|) |has| |#2| (-157))) -(|has| |#2| (-782)) -((((-108)) |has| |#1| (-1014)) (((-792)) -3844 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-447)) (|has| |#1| (-664)) (|has| |#1| (-829 (-1085))) (|has| |#1| (-971)) (|has| |#1| (-1026)) (|has| |#1| (-1014)))) +((((-794)) . T)) +(((|#1|) |has| |#1| (-158))) +((((-638)) . T)) +((((-638)) . T)) +(((|#2|) |has| |#2| (-158))) +(|has| |#2| (-784)) +((((-108)) |has| |#1| (-1016)) (((-794)) -3262 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-448)) (|has| |#1| (-666)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973)) (|has| |#1| (-1028)) (|has| |#1| (-1016)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) . T)) -((((-792)) . T)) -((((-522) |#1|) . T)) -((((-637)) . T) (((-382 (-522))) . T) (((-522)) . T)) -(((|#1| |#1|) |has| |#1| (-157))) -(((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) |has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) -((((-354)) . T)) -((((-637)) . T)) -((((-382 (-522))) . #0=(|has| |#2| (-338))) (($) . #0#)) -(((|#1|) |has| |#1| (-157))) -((((-382 (-881 |#1|))) . T)) +((((-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) . T)) +((((-794)) . T)) +((((-523) |#1|) . T)) +((((-638)) . T) (((-383 (-523))) . T) (((-523)) . T)) +(((|#1| |#1|) |has| |#1| (-158))) +(((|#2|) . T)) +(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) +((((-355)) . T)) +((((-638)) . T)) +((((-383 (-523))) . #0=(|has| |#2| (-339))) (($) . #0#)) +(((|#1|) |has| |#1| (-158))) +((((-383 (-883 |#1|))) . T)) (((|#2| |#2|) . T)) -(-3844 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) -(-3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -(((|#2|) . T)) -(|has| |#2| (-784)) -(((|#3|) |has| |#3| (-971))) -(|has| |#2| (-838)) -(|has| |#1| (-838)) -(|has| |#1| (-338)) -(|has| |#1| (-784)) -((((-1085)) |has| |#2| (-829 (-1085)))) -((((-792)) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -((((-382 (-522))) . T) (($) . T)) -(|has| |#1| (-447)) -(|has| |#1| (-343)) -(|has| |#1| (-343)) -(|has| |#1| (-343)) -(|has| |#1| (-338)) -(-3844 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-447)) (|has| |#1| (-514)) (|has| |#1| (-971)) (|has| |#1| (-1026))) -(|has| |#1| (-37 (-382 (-522)))) +(-3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(((|#2|) . T)) +(|has| |#2| (-786)) +(((|#3|) |has| |#3| (-973))) +(|has| |#2| (-840)) +(|has| |#1| (-840)) +(|has| |#1| (-339)) +(|has| |#1| (-786)) +((((-1087)) |has| |#2| (-831 (-1087)))) +((((-794)) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-383 (-523))) . T) (($) . T)) +(|has| |#1| (-448)) +(|has| |#1| (-344)) +(|has| |#1| (-344)) +(|has| |#1| (-344)) +(|has| |#1| (-339)) +(-3262 (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-448)) (|has| |#1| (-515)) (|has| |#1| (-973)) (|has| |#1| (-1028))) +(|has| |#1| (-37 (-383 (-523)))) ((((-112 |#1|)) . T)) ((((-112 |#1|)) . T)) -(|has| |#1| (-324)) -((((-132)) . T)) -(|has| |#1| (-37 (-382 (-522)))) -((($) . T)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(((|#2|) . T) (((-792)) . T)) -(((|#2|) . T) (((-792)) . T)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-784)) -((((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) . T)) +(|has| |#1| (-325)) +((((-133)) . T)) +(|has| |#1| (-37 (-383 (-523)))) +((($) . T)) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(((|#2|) . T) (((-794)) . T)) +(((|#2|) . T) (((-794)) . T)) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-786)) +((((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-135)) -(|has| |#1| (-133)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) |has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) ((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) +(|has| |#1| (-136)) +(|has| |#1| (-134)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) ((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (((|#2|) . T)) (((|#3|) . T)) ((((-112 |#1|)) . T)) -(|has| |#1| (-343)) -(|has| |#1| (-784)) -(((|#2|) . T) (((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-522)) |has| |#1| (-962 (-522))) ((|#1|) . T)) +(|has| |#1| (-344)) +(|has| |#1| (-786)) +(((|#2|) . T) (((-383 (-523))) |has| |#1| (-964 (-383 (-523)))) (((-523)) |has| |#1| (-964 (-523))) ((|#1|) . T)) ((((-112 |#1|)) . T)) -(((|#2|) |has| |#2| (-157))) -(((|#1|) . T)) -((((-522)) . T)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -((((-792)) . T)) -((((-792)) . T)) -((((-498)) |has| |#1| (-563 (-498))) (((-821 (-522))) |has| |#1| (-563 (-821 (-522)))) (((-821 (-354))) |has| |#1| (-563 (-821 (-354)))) (((-354)) . #0=(|has| |#1| (-947))) (((-202)) . #0#)) -(((|#1|) |has| |#1| (-338))) -((((-792)) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -((($ $) . T) (((-561 $) $) . T)) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-514))) -((($) . T) (((-1152 |#1| |#2| |#3| |#4|)) . T) (((-382 (-522))) . T)) -((($) -3844 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-514)) (|has| |#1| (-971))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-514))) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -((((-354)) . T) (((-522)) . T) (((-382 (-522))) . T)) -((((-588 (-717 |#1| (-794 |#2|)))) . T) (((-792)) . T)) -((((-498)) |has| (-717 |#1| (-794 |#2|)) (-563 (-498)))) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -((((-354)) . T)) -(((|#3|) -12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) -((((-792)) . T)) -(-3844 (|has| |#2| (-426)) (|has| |#2| (-838))) -(((|#1|) . T)) -(|has| |#1| (-784)) -(|has| |#1| (-784)) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014)))) -((((-498)) |has| |#1| (-563 (-498)))) -(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) -(|has| |#1| (-1014)) -((((-792)) . T)) -((((-382 (-522))) . T) (((-522)) . T) (((-561 $)) . T)) -(|has| |#1| (-133)) -(|has| |#1| (-135)) -((((-522)) . T)) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-514))) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-514))) -(((#0=(-1151 |#2| |#3| |#4|)) . T) (((-382 (-522))) |has| #0# (-37 (-382 (-522)))) (($) . T)) -((((-522)) . T)) -(|has| |#1| (-338)) -(-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-135)) (|has| |#1| (-338))) (|has| |#1| (-135))) -(-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-133)) (|has| |#1| (-338))) (|has| |#1| (-133))) -(|has| |#1| (-338)) -(|has| |#1| (-133)) -(|has| |#1| (-135)) -(|has| |#1| (-135)) -(|has| |#1| (-133)) -(|has| |#1| (-210)) -(|has| |#1| (-338)) +(((|#2|) |has| |#2| (-158))) +(((|#1|) . T)) +((((-523)) . T)) +(|has| |#1| (-339)) +(|has| |#1| (-339)) +((((-794)) . T)) +((((-794)) . T)) +((((-499)) |has| |#1| (-564 (-499))) (((-823 (-523))) |has| |#1| (-564 (-823 (-523)))) (((-823 (-355))) |has| |#1| (-564 (-823 (-355)))) (((-355)) . #0=(|has| |#1| (-949))) (((-203)) . #0#)) +(((|#1|) |has| |#1| (-339))) +((((-794)) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((($ $) . T) (((-562 $) $) . T)) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +((($) . T) (((-1154 |#1| |#2| |#3| |#4|)) . T) (((-383 (-523))) . T)) +((($) -3262 (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-515)) (|has| |#1| (-973))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-515))) +(|has| |#1| (-339)) +(|has| |#1| (-339)) +(|has| |#1| (-339)) +((((-355)) . T) (((-523)) . T) (((-383 (-523))) . T)) +((((-589 (-719 |#1| (-796 |#2|)))) . T) (((-794)) . T)) +((((-499)) |has| (-719 |#1| (-796 |#2|)) (-564 (-499)))) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +((((-355)) . T)) +(((|#3|) -12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) +((((-794)) . T)) +(-3262 (|has| |#2| (-427)) (|has| |#2| (-840))) +(((|#1|) . T)) +(|has| |#1| (-786)) +(|has| |#1| (-786)) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-499)) |has| |#1| (-564 (-499)))) +(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) +(|has| |#1| (-1016)) +((((-794)) . T)) +((((-383 (-523))) . T) (((-523)) . T) (((-562 $)) . T)) +(|has| |#1| (-134)) +(|has| |#1| (-136)) +((((-523)) . T)) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +(((#0=(-1153 |#2| |#3| |#4|)) . T) (((-383 (-523))) |has| #0# (-37 (-383 (-523)))) (($) . T)) +((((-523)) . T)) +(|has| |#1| (-339)) +(-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-136)) (|has| |#1| (-339))) (|has| |#1| (-136))) +(-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-134)) (|has| |#1| (-339))) (|has| |#1| (-134))) +(|has| |#1| (-339)) +(|has| |#1| (-134)) +(|has| |#1| (-136)) +(|has| |#1| (-136)) +(|has| |#1| (-134)) +(|has| |#1| (-211)) +(|has| |#1| (-339)) (((|#3|) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-522)) |has| |#2| (-584 (-522))) ((|#2|) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-523)) |has| |#2| (-585 (-523))) ((|#2|) . T)) (((|#2|) . T)) -(|has| |#1| (-1014)) +(|has| |#1| (-1016)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-522)) |has| |#1| (-584 (-522)))) -(((|#3|) |has| |#3| (-157))) -(-3844 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-343)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)) (|has| |#2| (-1014))) -((((-522)) . T)) -(((|#1| $) |has| |#1| (-262 |#1| |#1|))) -((((-382 (-522))) . T) (($) . T) (((-382 |#1|)) . T) ((|#1|) . T)) -((((-792)) . T)) +(((|#1|) . T) (((-523)) |has| |#1| (-585 (-523)))) +(((|#3|) |has| |#3| (-158))) +(-3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) +((((-523)) . T)) +(((|#1| $) |has| |#1| (-263 |#1| |#1|))) +((((-383 (-523))) . T) (($) . T) (((-383 |#1|)) . T) ((|#1|) . T)) +((((-794)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -3844 (|has| |#1| (-266)) (|has| |#1| (-338))) ((#0=(-382 (-522)) #0#) |has| |#1| (-338))) -((((-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) . T)) -((($) . T)) -((((-522) |#1|) . T)) -((((-1085)) |has| (-382 |#2|) (-829 (-1085)))) -(((|#1|) . T) (($) -3844 (|has| |#1| (-266)) (|has| |#1| (-338))) (((-382 (-522))) |has| |#1| (-338))) -((((-498)) |has| |#2| (-563 (-498)))) -((((-628 |#2|)) . T) (((-792)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) -(((|#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) -((((-799 |#1|)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(-3844 (|has| |#4| (-730)) (|has| |#4| (-782))) -(-3844 (|has| |#3| (-730)) (|has| |#3| (-782))) -((((-792)) . T)) -((((-792)) . T)) -(((|#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) -(((|#2|) |has| |#2| (-971))) -(((|#1|) . T)) -((((-382 |#2|)) . T)) -(((|#1|) . T)) -(((|#3|) -12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) -((((-522) |#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-522)) . T) (($) . T) (((-382 (-522))) . T)) -((((-382 (-522))) . T) (($) . T)) -((((-382 (-522))) . T) (($) . T)) -((((-382 (-522))) . T) (($) . T)) -(-3844 (|has| |#1| (-426)) (|has| |#1| (-1124))) -((($) . T)) -((((-382 (-522))) |has| #0=(-382 |#2|) (-962 (-382 (-522)))) (((-522)) |has| #0# (-962 (-522))) ((#0#) . T)) -(((|#2|) . T) (((-522)) |has| |#2| (-584 (-522)))) -(((|#1| (-708)) . T)) +(((|#1| |#1|) . T) (($ $) -3262 (|has| |#1| (-267)) (|has| |#1| (-339))) ((#0=(-383 (-523)) #0#) |has| |#1| (-339))) +((((-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) . T)) +((($) . T)) +((((-523) |#1|) . T)) +((((-1087)) |has| (-383 |#2|) (-831 (-1087)))) +(((|#1|) . T) (($) -3262 (|has| |#1| (-267)) (|has| |#1| (-339))) (((-383 (-523))) |has| |#1| (-339))) +((((-499)) |has| |#2| (-564 (-499)))) +((((-629 |#2|)) . T) (((-794)) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) +(((|#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) +((((-801 |#1|)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(-3262 (|has| |#4| (-732)) (|has| |#4| (-784))) +(-3262 (|has| |#3| (-732)) (|has| |#3| (-784))) +((((-794)) . T)) +((((-794)) . T)) +(((|#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) +(((|#2|) |has| |#2| (-973))) +(((|#1|) . T)) +((((-383 |#2|)) . T)) +(((|#1|) . T)) +(((|#3|) -12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) +((((-523) |#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-523)) . T) (($) . T) (((-383 (-523))) . T)) +((((-383 (-523))) . T) (($) . T)) +((((-383 (-523))) . T) (($) . T)) +((((-383 (-523))) . T) (($) . T)) +(-3262 (|has| |#1| (-427)) (|has| |#1| (-1126))) +((($) . T)) +((((-383 (-523))) |has| #0=(-383 |#2|) (-964 (-383 (-523)))) (((-523)) |has| #0# (-964 (-523))) ((#0#) . T)) +(((|#2|) . T) (((-523)) |has| |#2| (-585 (-523)))) +(((|#1| (-710)) . T)) +(|has| |#1| (-786)) +(((|#1|) . T) (((-523)) |has| |#1| (-585 (-523)))) +((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) (((-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) +((((-523)) . T)) +(|has| |#1| (-37 (-383 (-523)))) +((((-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) |has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))))) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (|has| |#1| (-784)) -(((|#1|) . T) (((-522)) |has| |#1| (-584 (-522)))) -((($) -3844 (|has| |#1| (-338)) (|has| |#1| (-324))) (((-382 (-522))) -3844 (|has| |#1| (-338)) (|has| |#1| (-324))) ((|#1|) . T)) -((((-522)) . T)) -(|has| |#1| (-37 (-382 (-522)))) -((((-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) |has| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-285 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))))) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(|has| |#1| (-782)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-343)) -(|has| |#1| (-343)) -(|has| |#1| (-343)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-324)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-344)) +(|has| |#1| (-344)) +(|has| |#1| (-344)) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-325)) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) (((|#1| |#2|) . T)) -((((-132)) . T)) -((((-717 |#1| (-794 |#2|))) . T)) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014)))) -(|has| |#1| (-1106)) -(((|#1|) . T)) -(-3844 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-343)) (|has| |#3| (-730)) (|has| |#3| (-782)) (|has| |#3| (-971)) (|has| |#3| (-1014))) -((((-1085) |#1|) |has| |#1| (-483 (-1085) |#1|))) -(((|#2|) . T)) -((($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522))))) -((($) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -((((-839 |#1|)) . T)) -((($) . T)) -((((-382 (-881 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -((((-498)) |has| |#4| (-563 (-498)))) -((((-792)) . T) (((-588 |#4|)) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -(((|#1|) . T)) -(|has| |#1| (-782)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) (((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) |has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-285 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))))) -(|has| |#1| (-1014)) -(|has| |#1| (-338)) -(|has| |#1| (-784)) -(((|#1|) . T)) +((((-133)) . T)) +((((-719 |#1| (-796 |#2|))) . T)) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +(|has| |#1| (-1108)) (((|#1|) . T)) +(-3262 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-344)) (|has| |#3| (-732)) (|has| |#3| (-784)) (|has| |#3| (-973)) (|has| |#3| (-1016))) +((((-1087) |#1|) |has| |#1| (-484 (-1087) |#1|))) +(((|#2|) . T)) +((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) +((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((((-841 |#1|)) . T)) +((($) . T)) +((((-383 (-883 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +((((-499)) |has| |#4| (-564 (-499)))) +((((-794)) . T) (((-589 |#4|)) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) (((|#1|) . T)) -((($) . T) (((-382 (-522))) . T)) -((($) -3844 (|has| |#1| (-338)) (|has| |#1| (-514))) (((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((|#1|) |has| |#1| (-157))) -(|has| |#1| (-133)) -(|has| |#1| (-135)) -(-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-135)) (|has| |#1| (-338))) (|has| |#1| (-135))) -(-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-133)) (|has| |#1| (-338))) (|has| |#1| (-133))) -(|has| |#1| (-133)) -(|has| |#1| (-135)) -(|has| |#1| (-135)) -(|has| |#1| (-133)) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014)))) -((((-1158 |#1| |#2| |#3|)) |has| |#1| (-338))) -(|has| |#1| (-782)) +(|has| |#1| (-784)) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) |has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))))) +(|has| |#1| (-1016)) +(|has| |#1| (-339)) +(|has| |#1| (-786)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T) (((-383 (-523))) . T)) +((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#1|) |has| |#1| (-158))) +(|has| |#1| (-134)) +(|has| |#1| (-136)) +(-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-136)) (|has| |#1| (-339))) (|has| |#1| (-136))) +(-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-134)) (|has| |#1| (-339))) (|has| |#1| (-134))) +(|has| |#1| (-134)) +(|has| |#1| (-136)) +(|has| |#1| (-136)) +(|has| |#1| (-134)) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-1160 |#1| |#2| |#3|)) |has| |#1| (-339))) +(|has| |#1| (-784)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-522)) |has| |#1| (-584 (-522)))) -((((-522)) |has| |#1| (-584 (-522))) ((|#1|) . T)) -((((-839 |#1|)) . T) (((-382 (-522))) . T) (($) . T)) -(|has| |#1| (-1014)) -(((|#1|) . T) (($) . T) (((-382 (-522))) . T) (((-522)) . T)) -(|has| |#2| (-133)) -(|has| |#2| (-135)) -((((-839 |#1|)) . T) (((-382 (-522))) . T) (($) . T)) -(|has| |#1| (-1014)) -(((|#2|) |has| |#2| (-157))) +(((|#1|) . T) (((-523)) |has| |#1| (-585 (-523)))) +((((-523)) |has| |#1| (-585 (-523))) ((|#1|) . T)) +((((-841 |#1|)) . T) (((-383 (-523))) . T) (($) . T)) +(|has| |#1| (-1016)) +(((|#1|) . T) (($) . T) (((-383 (-523))) . T) (((-523)) . T)) +(|has| |#2| (-134)) +(|has| |#2| (-136)) +((((-841 |#1|)) . T) (((-383 (-523))) . T) (($) . T)) +(|has| |#1| (-1016)) +(((|#2|) |has| |#2| (-158))) (((|#2|) . T)) (((|#1| |#1|) . T)) -(((|#3|) |has| |#3| (-338))) -((((-382 |#2|)) . T)) -((((-792)) . T)) -(((|#1|) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-498)) |has| |#1| (-563 (-498)))) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -((((-1085) |#1|) |has| |#1| (-483 (-1085) |#1|)) ((|#1| |#1|) |has| |#1| (-285 |#1|))) -(((|#1|) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)))) -((((-291 |#1|)) . T)) -(((|#2|) |has| |#2| (-338))) -(((|#2|) . T)) -((((-382 (-522))) . T) (((-637)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((#0=(-717 |#1| (-794 |#2|)) #0#) |has| (-717 |#1| (-794 |#2|)) (-285 (-717 |#1| (-794 |#2|))))) -((((-794 |#1|)) . T)) -(((|#2|) |has| |#2| (-157))) -(((|#1|) |has| |#1| (-157))) -(((|#2|) . T)) -((((-1085)) |has| |#1| (-829 (-1085))) (((-999)) . T)) -((((-1085)) |has| |#1| (-829 (-1085))) (((-1004 (-1085))) . T)) -(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(|has| |#1| (-37 (-382 (-522)))) -(((|#4|) |has| |#4| (-971)) (((-522)) -12 (|has| |#4| (-584 (-522))) (|has| |#4| (-971)))) -(((|#3|) |has| |#3| (-971)) (((-522)) -12 (|has| |#3| (-584 (-522))) (|has| |#3| (-971)))) -(|has| |#1| (-133)) -(|has| |#1| (-135)) +(((|#3|) |has| |#3| (-339))) +((((-383 |#2|)) . T)) +((((-794)) . T)) +(((|#1|) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-499)) |has| |#1| (-564 (-499)))) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-1087) |#1|) |has| |#1| (-484 (-1087) |#1|)) ((|#1| |#1|) |has| |#1| (-286 |#1|))) +(((|#1|) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)))) +((((-292 |#1|)) . T)) +(((|#2|) |has| |#2| (-339))) +(((|#2|) . T)) +((((-383 (-523))) . T) (((-638)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((#0=(-719 |#1| (-796 |#2|)) #0#) |has| (-719 |#1| (-796 |#2|)) (-286 (-719 |#1| (-796 |#2|))))) +((((-796 |#1|)) . T)) +(((|#2|) |has| |#2| (-158))) +(((|#1|) |has| |#1| (-158))) +(((|#2|) . T)) +((((-1087)) |has| |#1| (-831 (-1087))) (((-1001)) . T)) +((((-1087)) |has| |#1| (-831 (-1087))) (((-1006 (-1087))) . T)) +(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(|has| |#1| (-37 (-383 (-523)))) +(((|#4|) |has| |#4| (-973)) (((-523)) -12 (|has| |#4| (-585 (-523))) (|has| |#4| (-973)))) +(((|#3|) |has| |#3| (-973)) (((-523)) -12 (|has| |#3| (-585 (-523))) (|has| |#3| (-973)))) +(|has| |#1| (-134)) +(|has| |#1| (-136)) ((($ $) . T)) -(-3844 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-447)) (|has| |#1| (-664)) (|has| |#1| (-829 (-1085))) (|has| |#1| (-971)) (|has| |#1| (-1026)) (|has| |#1| (-1014))) -(|has| |#1| (-514)) +(-3262 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-448)) (|has| |#1| (-666)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973)) (|has| |#1| (-1028)) (|has| |#1| (-1016))) +(|has| |#1| (-515)) (((|#2|) . T)) -((((-522)) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) +((((-523)) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3844 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-514)) (|has| |#1| (-971))) -((((-535 |#1|)) . T)) +(-3262 (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-515)) (|has| |#1| (-973))) +((((-536 |#1|)) . T)) ((($) . T)) (((|#1| (-57 |#1|) (-57 |#1|)) . T)) (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-792)) . T)) -(((|#2|) |has| |#2| (-6 (-4240 "*")))) +((((-794)) . T)) +(((|#2|) |has| |#2| (-6 (-4246 "*")))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-382 (-522))) |has| |#2| (-962 (-382 (-522)))) (((-522)) |has| |#2| (-962 (-522))) ((|#2|) . T) (((-794 |#1|)) . T)) -((($) . T) (((-112 |#1|)) . T) (((-382 (-522))) . T)) -((((-1037 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522))))) -((((-1081 |#1|)) . T) (((-999)) . T) ((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522))))) -((((-1037 |#1| (-1085))) . T) (((-1004 (-1085))) . T) ((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-1085)) . T)) -(|has| |#1| (-1014)) +((((-383 (-523))) |has| |#2| (-964 (-383 (-523)))) (((-523)) |has| |#2| (-964 (-523))) ((|#2|) . T) (((-796 |#1|)) . T)) +((($) . T) (((-112 |#1|)) . T) (((-383 (-523))) . T)) +((((-1039 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-523)) |has| |#1| (-964 (-523))) (((-383 (-523))) |has| |#1| (-964 (-383 (-523))))) +((((-1083 |#1|)) . T) (((-1001)) . T) ((|#1|) . T) (((-523)) |has| |#1| (-964 (-523))) (((-383 (-523))) |has| |#1| (-964 (-383 (-523))))) +((((-1039 |#1| (-1087))) . T) (((-1006 (-1087))) . T) ((|#1|) . T) (((-523)) |has| |#1| (-964 (-523))) (((-383 (-523))) |has| |#1| (-964 (-383 (-523)))) (((-1087)) . T)) +(|has| |#1| (-1016)) ((($) . T)) -(|has| |#1| (-1014)) -((((-522)) -12 (|has| |#1| (-815 (-522))) (|has| |#2| (-815 (-522)))) (((-354)) -12 (|has| |#1| (-815 (-354))) (|has| |#2| (-815 (-354))))) +(|has| |#1| (-1016)) +((((-523)) -12 (|has| |#1| (-817 (-523))) (|has| |#2| (-817 (-523)))) (((-355)) -12 (|has| |#1| (-817 (-355))) (|has| |#2| (-817 (-355))))) (((|#1| |#2|) . T)) -((((-1085) |#1|) . T)) +((((-1087) |#1|) . T)) (((|#4|) . T)) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-324))) -((((-1085) (-51)) . T)) -((((-1151 |#2| |#3| |#4|) (-294 |#2| |#3| |#4|)) . T)) -((((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-522)) |has| |#1| (-962 (-522))) ((|#1|) . T)) -((((-792)) . T)) -(-3844 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-343)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)) (|has| |#2| (-1014))) -(((#0=(-1152 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-382 (-522)) #1#) . T) (($ $) . T)) -(((|#1| |#1|) |has| |#1| (-157)) ((#0=(-382 (-522)) #0#) |has| |#1| (-514)) (($ $) |has| |#1| (-514))) -(((|#1|) . T) (($) . T) (((-382 (-522))) . T)) -(((|#1| $) |has| |#1| (-262 |#1| |#1|))) -((((-1152 |#1| |#2| |#3| |#4|)) . T) (((-382 (-522))) . T) (($) . T)) -(((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-514)) (($) |has| |#1| (-514))) -(|has| |#1| (-338)) -(|has| |#1| (-133)) -(|has| |#1| (-135)) -(|has| |#1| (-135)) -(|has| |#1| (-133)) -((((-382 (-522))) . T) (($) . T)) -(((|#3|) |has| |#3| (-338))) -(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) -((((-1085)) . T)) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-325))) +((((-1087) (-51)) . T)) +((((-1153 |#2| |#3| |#4|) (-295 |#2| |#3| |#4|)) . T)) +((((-383 (-523))) |has| |#1| (-964 (-383 (-523)))) (((-523)) |has| |#1| (-964 (-523))) ((|#1|) . T)) +((((-794)) . T)) +(-3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-344)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973)) (|has| |#2| (-1016))) +(((#0=(-1154 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-383 (-523)) #1#) . T) (($ $) . T)) +(((|#1| |#1|) |has| |#1| (-158)) ((#0=(-383 (-523)) #0#) |has| |#1| (-515)) (($ $) |has| |#1| (-515))) +(((|#1|) . T) (($) . T) (((-383 (-523))) . T)) +(((|#1| $) |has| |#1| (-263 |#1| |#1|))) +((((-1154 |#1| |#2| |#3| |#4|)) . T) (((-383 (-523))) . T) (($) . T)) +(((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-515)) (($) |has| |#1| (-515))) +(|has| |#1| (-339)) +(|has| |#1| (-134)) +(|has| |#1| (-136)) +(|has| |#1| (-136)) +(|has| |#1| (-134)) +((((-383 (-523))) . T) (($) . T)) +(((|#3|) |has| |#3| (-339))) +(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) +((((-1087)) . T)) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (((|#2| |#3|) . T)) -(-3844 (|has| |#2| (-338)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) -(((|#1| (-494 |#2|)) . T)) -(((|#1| (-708)) . T)) -(((|#1| (-494 (-1004 (-1085)))) . T)) -(((|#1|) |has| |#1| (-157))) -(((|#1|) . T)) -(|has| |#2| (-838)) -(-3844 (|has| |#2| (-730)) (|has| |#2| (-782))) -((((-792)) . T)) -((($ $) . T) ((#0=(-1151 |#2| |#3| |#4|) #0#) . T) ((#1=(-382 (-522)) #1#) |has| #0# (-37 (-382 (-522))))) -((((-839 |#1|)) . T)) -(-12 (|has| |#1| (-338)) (|has| |#2| (-757))) -((($) . T) (((-382 (-522))) . T)) -((($) . T)) -((($) . T)) -(|has| |#1| (-338)) -(-3844 (|has| |#1| (-283)) (|has| |#1| (-338)) (|has| |#1| (-324)) (|has| |#1| (-514))) -(|has| |#1| (-338)) -((($) . T) ((#0=(-1151 |#2| |#3| |#4|)) . T) (((-382 (-522))) |has| #0# (-37 (-382 (-522))))) +(-3262 (|has| |#2| (-339)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(((|#1| (-495 |#2|)) . T)) +(((|#1| (-710)) . T)) +(((|#1| (-495 (-1006 (-1087)))) . T)) +(((|#1|) |has| |#1| (-158))) +(((|#1|) . T)) +(|has| |#2| (-840)) +(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) +((((-794)) . T)) +((($ $) . T) ((#0=(-1153 |#2| |#3| |#4|) #0#) . T) ((#1=(-383 (-523)) #1#) |has| #0# (-37 (-383 (-523))))) +((((-841 |#1|)) . T)) +(-12 (|has| |#1| (-339)) (|has| |#2| (-759))) +((($) . T) (((-383 (-523))) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-339)) +(-3262 (|has| |#1| (-284)) (|has| |#1| (-339)) (|has| |#1| (-325)) (|has| |#1| (-515))) +(|has| |#1| (-339)) +((($) . T) ((#0=(-1153 |#2| |#3| |#4|)) . T) (((-383 (-523))) |has| #0# (-37 (-383 (-523))))) (((|#1| |#2|) . T)) -((((-1083 |#1| |#2| |#3|)) |has| |#1| (-338))) -(-3844 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-338)) (|has| |#1| (-324))) -(-3844 (|has| |#1| (-829 (-1085))) (|has| |#1| (-971))) -((((-522)) |has| |#1| (-584 (-522))) ((|#1|) . T)) +((((-1085 |#1| |#2| |#3|)) |has| |#1| (-339))) +(-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339)) (|has| |#1| (-325))) +(-3262 (|has| |#1| (-831 (-1087))) (|has| |#1| (-973))) +((((-523)) |has| |#1| (-585 (-523))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-792)) . T)) -((((-792)) . T)) +((((-794)) . T)) +((((-794)) . T)) ((((-108)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-382 |#2|)) . T) (((-382 (-522))) . T) (($) . T)) +((((-383 |#2|)) . T) (((-383 (-523))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|))) . T)) -(|has| |#2| (-338)) -(|has| |#1| (-784)) +(((|#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|))) . T)) +(|has| |#2| (-339)) +(|has| |#1| (-786)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-792)) . T)) -(|has| |#1| (-1014)) +((((-794)) . T)) +(|has| |#1| (-1016)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -((((-382 $) (-382 $)) |has| |#1| (-514)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-757)) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +((((-383 $) (-383 $)) |has| |#1| (-515)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#2| (-759)) (((|#4|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) -((((-792)) . T)) -(((|#1| (-494 (-1085))) . T)) -(((|#1|) |has| |#1| (-157))) -((((-792)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) -(((|#2|) -3844 (|has| |#2| (-6 (-4240 "*"))) (|has| |#2| (-157)))) -(-3844 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) -(-3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -(|has| |#2| (-784)) -(|has| |#2| (-838)) -(|has| |#1| (-838)) -(((|#2|) |has| |#2| (-157))) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -((((-1158 |#1| |#2| |#3|)) |has| |#1| (-338))) -((((-792)) . T)) -((((-792)) . T)) -((((-498)) . T) (((-522)) . T) (((-821 (-522))) . T) (((-354)) . T) (((-202)) . T)) +((((-794)) . T)) +(((|#1| (-495 (-1087))) . T)) +(((|#1|) |has| |#1| (-158))) +((((-794)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) +(((|#2|) -3262 (|has| |#2| (-6 (-4246 "*"))) (|has| |#2| (-158)))) +(-3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(|has| |#2| (-786)) +(|has| |#2| (-840)) +(|has| |#1| (-840)) +(((|#2|) |has| |#2| (-158))) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-1160 |#1| |#2| |#3|)) |has| |#1| (-339))) +((((-794)) . T)) +((((-794)) . T)) +((((-499)) . T) (((-523)) . T) (((-823 (-523))) . T) (((-355)) . T) (((-203)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -((((-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) . T)) (((|#1|) . T)) -((((-792)) . T)) +((((-794)) . T)) (((|#1| |#2|) . T)) -(((|#1| (-382 (-522))) . T)) +(((|#1| (-383 (-523))) . T)) (((|#1|) . T)) -(-3844 (|has| |#1| (-266)) (|has| |#1| (-338))) -((((-132)) . T)) -((((-382 |#2|)) . T) (((-382 (-522))) . T) (($) . T)) -(|has| |#1| (-782)) -((((-792)) . T)) -((((-792)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#1| |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) . T)) +(-3262 (|has| |#1| (-267)) (|has| |#1| (-339))) +((((-133)) . T)) +((((-383 |#2|)) . T) (((-383 (-523))) . T) (($) . T)) +(|has| |#1| (-784)) +((((-794)) . T)) +((((-794)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#1| |#1| |#2| (-218 |#1| |#2|) (-218 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-382 (-522))) . T) (($) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) +((((-383 (-523))) . T) (($) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-498)) |has| |#1| (-563 (-498))) (((-821 (-522))) |has| |#1| (-563 (-821 (-522)))) (((-821 (-354))) |has| |#1| (-563 (-821 (-354))))) -((((-1085) (-51)) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-588 (-132))) . T) (((-1068)) . T)) -((((-792)) . T)) -((((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) . T)) -((((-1085) |#1|) |has| |#1| (-483 (-1085) |#1|)) ((|#1| |#1|) |has| |#1| (-285 |#1|))) +((((-794)) . T)) +((((-794)) . T)) +((((-499)) |has| |#1| (-564 (-499))) (((-823 (-523))) |has| |#1| (-564 (-823 (-523)))) (((-823 (-355))) |has| |#1| (-564 (-823 (-355))))) +((((-1087) (-51)) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-589 (-133))) . T) (((-1070)) . T)) +((((-794)) . T)) +((((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) +((((-1087) |#1|) |has| |#1| (-484 (-1087) |#1|)) ((|#1| |#1|) |has| |#1| (-286 |#1|))) +(|has| |#1| (-786)) +((((-794)) . T)) +((((-499)) |has| |#1| (-564 (-499)))) +((((-794)) . T)) +(((|#2|) |has| |#2| (-339))) +((((-794)) . T)) +((((-499)) |has| |#4| (-564 (-499)))) +((((-794)) . T) (((-589 |#4|)) . T)) +(((|#2|) . T)) +((((-841 |#1|)) . T) (((-383 (-523))) . T) (($) . T)) +(-3262 (|has| |#4| (-158)) (|has| |#4| (-784)) (|has| |#4| (-973))) +(-3262 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) +((((-1087) (-51)) . T)) +(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(|has| |#1| (-840)) +(|has| |#1| (-840)) +(((|#2|) . T)) +(((|#1|) . T)) +((((-794)) . T)) +((((-523)) . T)) +(((#0=(-383 (-523)) #0#) . T) (($ $) . T)) +((((-383 (-523))) . T) (($) . T)) +(((|#1| (-383 (-523)) (-1001)) . T)) +(|has| |#1| (-1016)) +(|has| |#1| (-515)) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(|has| |#1| (-759)) +(((#0=(-841 |#1|) #0#) . T) (($ $) . T) ((#1=(-383 (-523)) #1#) . T)) +((((-383 |#2|)) . T)) (|has| |#1| (-784)) -((((-792)) . T)) -((((-498)) |has| |#1| (-563 (-498)))) -((((-792)) . T)) -(((|#2|) |has| |#2| (-338))) -((((-792)) . T)) -((((-498)) |has| |#4| (-563 (-498)))) -((((-792)) . T) (((-588 |#4|)) . T)) -(((|#2|) . T)) -((((-839 |#1|)) . T) (((-382 (-522))) . T) (($) . T)) -(-3844 (|has| |#4| (-157)) (|has| |#4| (-782)) (|has| |#4| (-971))) -(-3844 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-971))) -((((-1085) (-51)) . T)) -(-3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3844 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971))) -(-3844 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-782)) (|has| |#2| (-971))) -(|has| |#1| (-838)) -(|has| |#1| (-838)) -(((|#2|) . T)) -(((|#1|) . T)) -((((-792)) . T)) -((((-522)) . T)) -(((#0=(-382 (-522)) #0#) . T) (($ $) . T)) -((((-382 (-522))) . T) (($) . T)) -(((|#1| (-382 (-522)) (-999)) . T)) -(|has| |#1| (-1014)) -(|has| |#1| (-514)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -(|has| |#1| (-757)) -(((#0=(-839 |#1|) #0#) . T) (($ $) . T) ((#1=(-382 (-522)) #1#) . T)) -((((-382 |#2|)) . T)) -(|has| |#1| (-782)) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014)))) -(((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) . T) ((#1=(-522) #1#) . T) (($ $) . T)) -((((-839 |#1|)) . T) (($) . T) (((-382 (-522))) . T)) -(((|#2|) |has| |#2| (-971)) (((-522)) -12 (|has| |#2| (-584 (-522))) (|has| |#2| (-971)))) -(((|#1|) . T) (((-382 (-522))) . T) (((-522)) . T) (($) . T)) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +(((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) . T) ((#1=(-523) #1#) . T) (($ $) . T)) +((((-841 |#1|)) . T) (($) . T) (((-383 (-523))) . T)) +(((|#2|) |has| |#2| (-973)) (((-523)) -12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) +(((|#1|) . T) (((-383 (-523))) . T) (((-523)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-135)) -(|has| |#1| (-133)) -(((|#2|) . T)) -((((-792)) . T)) -(-3844 (|has| |#1| (-133)) (|has| |#1| (-343))) -(-3844 (|has| |#1| (-133)) (|has| |#1| (-343))) -(-3844 (|has| |#1| (-133)) (|has| |#1| (-343))) -((((-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) . T)) -(((#0=(-51)) . T) (((-2 (|:| -2644 (-1085)) (|:| -3149 #0#))) . T)) -(|has| |#1| (-324)) -((((-522)) . T)) -((((-792)) . T)) -(((#0=(-1152 |#1| |#2| |#3| |#4|) $) |has| #0# (-262 #0# #0#))) -(|has| |#1| (-338)) -(((#0=(-999) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-324))) -(((#0=(-382 (-522)) #0#) . T) ((#1=(-637) #1#) . T) (($ $) . T)) -((((-291 |#1|)) . T) (($) . T)) -(((|#1|) . T) (((-382 (-522))) |has| |#1| (-338))) -(|has| |#1| (-1014)) -(((|#1|) . T)) -(((|#1|) -3844 (|has| |#2| (-342 |#1|)) (|has| |#2| (-392 |#1|)))) -(((|#1|) -3844 (|has| |#2| (-342 |#1|)) (|has| |#2| (-392 |#1|)))) -(((|#2|) . T)) -((((-382 (-522))) . T) (((-637)) . T) (($) . T)) +(|has| |#1| (-136)) +(|has| |#1| (-134)) +(((|#2|) . T)) +((((-794)) . T)) +(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) +(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) +(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) +((((-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) . T)) +(((#0=(-51)) . T) (((-2 (|:| -1853 (-1087)) (|:| -2433 #0#))) . T)) +(|has| |#1| (-325)) +((((-523)) . T)) +((((-794)) . T)) +(((#0=(-1154 |#1| |#2| |#3| |#4|) $) |has| #0# (-263 #0# #0#))) +(|has| |#1| (-339)) +(((#0=(-1001) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-325))) +(((#0=(-383 (-523)) #0#) . T) ((#1=(-638) #1#) . T) (($ $) . T)) +((((-292 |#1|)) . T) (($) . T)) +(((|#1|) . T) (((-383 (-523))) |has| |#1| (-339))) +(|has| |#1| (-1016)) +(((|#1|) . T)) +(((|#1|) -3262 (|has| |#2| (-343 |#1|)) (|has| |#2| (-393 |#1|)))) +(((|#1|) -3262 (|has| |#2| (-343 |#1|)) (|has| |#2| (-393 |#1|)))) +(((|#2|) . T)) +((((-383 (-523))) . T) (((-638)) . T) (($) . T)) (((|#3| |#3|) . T)) -(|has| |#2| (-210)) -((((-794 |#1|)) . T)) -((((-1085)) |has| |#1| (-829 (-1085))) ((|#3|) . T)) -(-12 (|has| |#1| (-338)) (|has| |#2| (-947))) -((((-1083 |#1| |#2| |#3|)) |has| |#1| (-338))) -((((-792)) . T)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -((((-382 (-522))) . T) (($) . T) (((-382 |#1|)) . T) ((|#1|) . T)) -((((-522)) . T)) -(|has| |#1| (-1014)) +(|has| |#2| (-211)) +((((-796 |#1|)) . T)) +((((-1087)) |has| |#1| (-831 (-1087))) ((|#3|) . T)) +(-12 (|has| |#1| (-339)) (|has| |#2| (-949))) +((((-1085 |#1| |#2| |#3|)) |has| |#1| (-339))) +((((-794)) . T)) +(|has| |#1| (-339)) +(|has| |#1| (-339)) +((((-383 (-523))) . T) (($) . T) (((-383 |#1|)) . T) ((|#1|) . T)) +((((-523)) . T)) +(|has| |#1| (-1016)) (((|#3|) . T)) (((|#2|) . T)) (((|#1|) . T)) -((((-522)) . T)) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -(((|#2|) . T) (((-522)) |has| |#2| (-584 (-522)))) +((((-523)) . T)) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(((|#2|) . T) (((-523)) |has| |#2| (-585 (-523)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-535 |#1|)) . T) (((-382 (-522))) . T) (($) . T)) -((($) . T) (((-382 (-522))) . T)) +((((-536 |#1|)) . T) (((-383 (-523))) . T) (($) . T)) +((($) . T) (((-383 (-523))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-1166 |#1|) (-1166 |#1|)) . T)) +(((|#1| (-1168 |#1|) (-1168 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-792)) . T)) -((((-792)) . T)) -(((#0=(-112 |#1|) #0#) . T) ((#1=(-382 (-522)) #1#) . T) (($ $) . T)) -((((-382 (-522))) |has| |#2| (-962 (-382 (-522)))) (((-522)) |has| |#2| (-962 (-522))) ((|#2|) . T) (((-794 |#1|)) . T)) -((((-1037 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((|#2|) . T)) +((((-794)) . T)) +((((-794)) . T)) +(((#0=(-112 |#1|) #0#) . T) ((#1=(-383 (-523)) #1#) . T) (($ $) . T)) +((((-383 (-523))) |has| |#2| (-964 (-383 (-523)))) (((-523)) |has| |#2| (-964 (-523))) ((|#2|) . T) (((-796 |#1|)) . T)) +((((-1039 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-523)) |has| |#1| (-964 (-523))) (((-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($ $) . T)) -((((-613 |#1|)) . T)) -((($) . T) (((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) . T)) -((((-112 |#1|)) . T) (((-382 (-522))) . T) (($) . T)) -((((-522)) -12 (|has| |#1| (-815 (-522))) (|has| |#3| (-815 (-522)))) (((-354)) -12 (|has| |#1| (-815 (-354))) (|has| |#3| (-815 (-354))))) +((((-614 |#1|)) . T)) +((($) . T) (((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) . T)) +((((-112 |#1|)) . T) (((-383 (-523))) . T) (($) . T)) +((((-523)) -12 (|has| |#1| (-817 (-523))) (|has| |#3| (-817 (-523)))) (((-355)) -12 (|has| |#1| (-817 (-355))) (|has| |#3| (-817 (-355))))) (((|#2|) . T) ((|#6|) . T)) -(((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) (($) . T)) -((((-132)) . T)) +(((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) (($) . T)) +((((-133)) . T)) ((($) . T)) -((($) . T) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -((($) . T) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) +((($) . T) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($) . T) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (((|#1|) . T)) -(|has| |#2| (-838)) -(|has| |#1| (-838)) -(|has| |#1| (-838)) +(|has| |#2| (-840)) +(|has| |#1| (-840)) +(|has| |#1| (-840)) (((|#4|) . T)) -(|has| |#2| (-947)) +(|has| |#2| (-949)) ((($) . T)) -(|has| |#1| (-838)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) +(|has| |#1| (-840)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((($) . T)) -(|has| |#1| (-338)) -((((-839 |#1|)) . T)) -((($) -3844 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -((($ $) . T) ((#0=(-382 (-522)) #0#) . T)) -(-3844 (|has| |#1| (-343)) (|has| |#1| (-784))) -(((|#1|) . T)) -((((-792)) . T)) -((((-1085)) -12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) -((((-382 |#2|) |#3|) . T)) -((($) . T) (((-382 (-522))) . T)) -((((-708) |#1|) . T)) -(((|#2| (-217 (-3591 |#1|) (-708))) . T)) -(((|#1| (-494 |#3|)) . T)) -((((-382 (-522))) . T)) -(-3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -((((-792)) . T)) -(((#0=(-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) #0#) |has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-285 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))))) -(|has| |#1| (-838)) -(|has| |#2| (-338)) -(-3844 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971))) -((((-154 (-354))) . T) (((-202)) . T) (((-354)) . T)) -((((-792)) . T)) -(((|#1|) . T)) -((((-354)) . T) (((-522)) . T)) -(((#0=(-382 (-522)) #0#) . T) (($ $) . T)) +(|has| |#1| (-339)) +((((-841 |#1|)) . T)) +((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($ $) . T) ((#0=(-383 (-523)) #0#) . T)) +(-3262 (|has| |#1| (-344)) (|has| |#1| (-786))) +(((|#1|) . T)) +((((-794)) . T)) +((((-1087)) -12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) +((((-383 |#2|) |#3|) . T)) +((($) . T) (((-383 (-523))) . T)) +((((-710) |#1|) . T)) +(((|#2| (-218 (-2676 |#1|) (-710))) . T)) +(((|#1| (-495 |#3|)) . T)) +((((-383 (-523))) . T)) +(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +((((-794)) . T)) +(((#0=(-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) #0#) |has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))))) +(|has| |#1| (-840)) +(|has| |#2| (-339)) +(-3262 (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) +((((-155 (-355))) . T) (((-203)) . T) (((-355)) . T)) +((((-794)) . T)) +(((|#1|) . T)) +((((-355)) . T) (((-523)) . T)) +(((#0=(-383 (-523)) #0#) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-792)) . T)) -(|has| |#1| (-514)) -((((-382 (-522))) . T) (($) . T)) -((($) . T)) -((($) . T)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(-3844 (|has| |#1| (-283)) (|has| |#1| (-338)) (|has| |#1| (-324))) -(|has| |#1| (-37 (-382 (-522)))) -(-12 (|has| |#1| (-507)) (|has| |#1| (-765))) -((((-792)) . T)) -((((-1085)) -3844 (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))) (-12 (|has| |#1| (-338)) (|has| |#2| (-829 (-1085)))))) -(|has| |#1| (-338)) -((((-1085)) -12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) -(|has| |#1| (-338)) -((((-382 (-522))) . T) (($) . T)) -((($) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) . T)) -((((-522) |#1|) . T)) -(((|#1|) . T)) -(((|#2|) |has| |#1| (-338))) -(((|#2|) |has| |#1| (-338))) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-157))) -(((|#1|) . T)) -(((|#2|) . T) (((-1085)) -12 (|has| |#1| (-338)) (|has| |#2| (-962 (-1085)))) (((-522)) -12 (|has| |#1| (-338)) (|has| |#2| (-962 (-522)))) (((-382 (-522))) -12 (|has| |#1| (-338)) (|has| |#2| (-962 (-522))))) -(((|#2|) . T)) -((((-1085) #0=(-1152 |#1| |#2| |#3| |#4|)) |has| #0# (-483 (-1085) #0#)) ((#0# #0#) |has| #0# (-285 #0#))) -((((-561 $) $) . T) (($ $) . T)) -((((-154 (-202))) . T) (((-154 (-354))) . T) (((-1081 (-637))) . T) (((-821 (-354))) . T)) -((((-792)) . T)) -(|has| |#1| (-514)) -(|has| |#1| (-514)) -(|has| (-382 |#2|) (-210)) -(((|#1| (-382 (-522))) . T)) +((((-794)) . T)) +(|has| |#1| (-515)) +((((-383 (-523))) . T) (($) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(-3262 (|has| |#1| (-284)) (|has| |#1| (-339)) (|has| |#1| (-325))) +(|has| |#1| (-37 (-383 (-523)))) +(-12 (|has| |#1| (-508)) (|has| |#1| (-767))) +((((-794)) . T)) +((((-1087)) -3262 (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))) (-12 (|has| |#1| (-339)) (|has| |#2| (-831 (-1087)))))) +(|has| |#1| (-339)) +((((-1087)) -12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) +(|has| |#1| (-339)) +((((-383 (-523))) . T) (($) . T)) +((($) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T)) +((((-523) |#1|) . T)) +(((|#1|) . T)) +(((|#2|) |has| |#1| (-339))) +(((|#2|) |has| |#1| (-339))) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-158))) +(((|#1|) . T)) +(((|#2|) . T) (((-1087)) -12 (|has| |#1| (-339)) (|has| |#2| (-964 (-1087)))) (((-523)) -12 (|has| |#1| (-339)) (|has| |#2| (-964 (-523)))) (((-383 (-523))) -12 (|has| |#1| (-339)) (|has| |#2| (-964 (-523))))) +(((|#2|) . T)) +((((-1087) #0=(-1154 |#1| |#2| |#3| |#4|)) |has| #0# (-484 (-1087) #0#)) ((#0# #0#) |has| #0# (-286 #0#))) +((((-562 $) $) . T) (($ $) . T)) +((((-155 (-203))) . T) (((-155 (-355))) . T) (((-1083 (-638))) . T) (((-823 (-355))) . T)) +((((-794)) . T)) +(|has| |#1| (-515)) +(|has| |#1| (-515)) +(|has| (-383 |#2|) (-211)) +(((|#1| (-383 (-523))) . T)) ((($ $) . T)) -((((-1085)) |has| |#2| (-829 (-1085)))) -((($) . T)) -((((-792)) . T)) -((((-382 (-522))) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#2|) |has| |#1| (-338))) -((((-354)) -12 (|has| |#1| (-338)) (|has| |#2| (-815 (-354)))) (((-522)) -12 (|has| |#1| (-338)) (|has| |#2| (-815 (-522))))) -(|has| |#1| (-338)) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-514))) -(|has| |#1| (-338)) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-514))) -(|has| |#1| (-338)) -(|has| |#1| (-514)) -(((|#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) +((((-1087)) |has| |#2| (-831 (-1087)))) +((($) . T)) +((((-794)) . T)) +((((-383 (-523))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#2|) |has| |#1| (-339))) +((((-355)) -12 (|has| |#1| (-339)) (|has| |#2| (-817 (-355)))) (((-523)) -12 (|has| |#1| (-339)) (|has| |#2| (-817 (-523))))) +(|has| |#1| (-339)) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +(|has| |#1| (-339)) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +(|has| |#1| (-339)) +(|has| |#1| (-515)) +(((|#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (((|#3|) . T)) (((|#1|) . T)) -(-3844 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971))) +(-3262 (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) (((|#2|) . T)) (((|#2|) . T)) -(-3844 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971))) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -((((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -(|has| |#1| (-37 (-382 (-522)))) +(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +(|has| |#1| (-37 (-383 (-523)))) (((|#1| |#2|) . T)) -(|has| |#1| (-37 (-382 (-522)))) -(-3844 (|has| |#1| (-133)) (|has| |#1| (-343))) -(|has| |#1| (-135)) -((((-1068) |#1|) . T)) -(-3844 (|has| |#1| (-133)) (|has| |#1| (-343))) -(|has| |#1| (-135)) -(-3844 (|has| |#1| (-133)) (|has| |#1| (-343))) -(|has| |#1| (-135)) -((((-535 |#1|)) . T)) -((($) . T)) -((((-382 |#2|)) . T)) -(|has| |#1| (-514)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) -(-3844 (|has| |#1| (-133)) (|has| |#1| (-324))) -(|has| |#1| (-135)) -((((-792)) . T)) -((($) . T)) -((((-382 (-522))) |has| |#2| (-962 (-522))) (((-522)) |has| |#2| (-962 (-522))) (((-1085)) |has| |#2| (-962 (-1085))) ((|#2|) . T)) -(((#0=(-382 |#2|) #0#) . T) ((#1=(-382 (-522)) #1#) . T) (($ $) . T)) -((((-1050 |#1| |#2|)) . T)) -(((|#1| (-522)) . T)) -(((|#1| (-382 (-522))) . T)) -((((-522)) |has| |#2| (-815 (-522))) (((-354)) |has| |#2| (-815 (-354)))) -(((|#2|) . T)) -((((-382 |#2|)) . T) (((-382 (-522))) . T) (($) . T)) +(|has| |#1| (-37 (-383 (-523)))) +(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) +(|has| |#1| (-136)) +((((-1070) |#1|) . T)) +(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) +(|has| |#1| (-136)) +(-3262 (|has| |#1| (-134)) (|has| |#1| (-344))) +(|has| |#1| (-136)) +((((-536 |#1|)) . T)) +((($) . T)) +((((-383 |#2|)) . T)) +(|has| |#1| (-515)) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) +(-3262 (|has| |#1| (-134)) (|has| |#1| (-325))) +(|has| |#1| (-136)) +((((-794)) . T)) +((($) . T)) +((((-383 (-523))) |has| |#2| (-964 (-523))) (((-523)) |has| |#2| (-964 (-523))) (((-1087)) |has| |#2| (-964 (-1087))) ((|#2|) . T)) +(((#0=(-383 |#2|) #0#) . T) ((#1=(-383 (-523)) #1#) . T) (($ $) . T)) +((((-1052 |#1| |#2|)) . T)) +(((|#1| (-523)) . T)) +(((|#1| (-383 (-523))) . T)) +((((-523)) |has| |#2| (-817 (-523))) (((-355)) |has| |#2| (-817 (-355)))) +(((|#2|) . T)) +((((-383 |#2|)) . T) (((-383 (-523))) . T) (($) . T)) ((((-108)) . T)) -(((|#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) . T)) -(((|#2|) . T)) -((((-792)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -((((-1085) (-51)) . T)) -((((-382 |#2|)) . T)) -((((-792)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1014)) -(|has| |#1| (-728)) -(|has| |#1| (-728)) -((((-498)) |has| |#1| (-563 (-498)))) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014)))) +(((|#1| |#2| (-218 |#1| |#2|) (-218 |#1| |#2|)) . T)) +(((|#2|) . T)) +((((-794)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +((((-1087) (-51)) . T)) +((((-383 |#2|)) . T)) +((((-794)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1016)) +(|has| |#1| (-730)) +(|has| |#1| (-730)) +((((-499)) |has| |#1| (-564 (-499)))) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) ((((-110)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-202)) . T) (((-354)) . T) (((-821 (-354))) . T)) -((((-792)) . T)) -((((-1152 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-382 (-522))) . T)) -(((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-514)) (((-382 (-522))) |has| |#1| (-514))) -((((-792)) . T)) -(((|#2|) . T)) -((((-792)) . T)) -(((#0=(-839 |#1|) #0#) . T) (($ $) . T) ((#1=(-382 (-522)) #1#) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-839 |#1|)) . T) (($) . T) (((-382 (-522))) . T)) -(|has| |#1| (-338)) -(((|#2|) . T)) -((((-522)) . T)) -((((-792)) . T)) -((((-522)) . T)) -(-3844 (|has| |#2| (-730)) (|has| |#2| (-782))) -((((-154 (-354))) . T) (((-202)) . T) (((-354)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-1068)) . T) (((-498)) . T) (((-522)) . T) (((-821 (-522))) . T) (((-354)) . T) (((-202)) . T)) -((((-792)) . T)) -(|has| |#1| (-135)) -(|has| |#1| (-133)) -((($) . T) ((#0=(-1151 |#2| |#3| |#4|)) |has| #0# (-157)) (((-382 (-522))) |has| #0# (-37 (-382 (-522))))) -(((|#1|) . T) (($) . T) (((-382 (-522))) . T)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014)))) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014)))) -(-3844 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-447)) (|has| |#1| (-664)) (|has| |#1| (-829 (-1085))) (|has| |#1| (-971)) (|has| |#1| (-1026)) (|has| |#1| (-1014))) -(|has| |#1| (-1061)) -((((-522) |#1|) . T)) -(((|#1|) . T)) -(((#0=(-112 |#1|) $) |has| #0# (-262 #0# #0#))) -(((|#1|) |has| |#1| (-157))) +((((-203)) . T) (((-355)) . T) (((-823 (-355))) . T)) +((((-794)) . T)) +((((-1154 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-383 (-523))) . T)) +(((|#1|) |has| |#1| (-158)) (($) |has| |#1| (-515)) (((-383 (-523))) |has| |#1| (-515))) +((((-794)) . T)) +((((-794)) . T)) +(((|#2|) . T)) +((((-794)) . T)) +(((#0=(-841 |#1|) #0#) . T) (($ $) . T) ((#1=(-383 (-523)) #1#) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-841 |#1|)) . T) (($) . T) (((-383 (-523))) . T)) +(|has| |#1| (-339)) +(((|#2|) . T)) +((((-523)) . T)) +((((-794)) . T)) +((((-523)) . T)) +(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) +((((-155 (-355))) . T) (((-203)) . T) (((-355)) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-1070)) . T) (((-499)) . T) (((-523)) . T) (((-823 (-523))) . T) (((-355)) . T) (((-203)) . T)) +((((-794)) . T)) +(|has| |#1| (-136)) +(|has| |#1| (-134)) +((($) . T) ((#0=(-1153 |#2| |#3| |#4|)) |has| #0# (-158)) (((-383 (-523))) |has| #0# (-37 (-383 (-523))))) +(((|#1|) . T) (($) . T) (((-383 (-523))) . T)) +(|has| |#1| (-339)) +(|has| |#1| (-339)) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +(-3262 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-448)) (|has| |#1| (-666)) (|has| |#1| (-831 (-1087))) (|has| |#1| (-973)) (|has| |#1| (-1028)) (|has| |#1| (-1016))) +(|has| |#1| (-1063)) +((((-523) |#1|) . T)) +(((|#1|) . T)) +(((#0=(-112 |#1|) $) |has| #0# (-263 #0# #0#))) +(((|#1|) |has| |#1| (-158))) (((|#1|) . T)) ((((-110)) . T) ((|#1|) . T)) -((((-792)) . T)) +((((-794)) . T)) (((|#1| |#2|) . T)) -((((-1085) |#1|) . T)) -(((|#1|) |has| |#1| (-285 |#1|))) -((((-522) |#1|) . T)) +((((-1087) |#1|) . T)) +(((|#1|) |has| |#1| (-286 |#1|))) +((((-523) |#1|) . T)) (((|#1|) . T)) -((((-522)) . T) (((-382 (-522))) . T)) +((((-523)) . T) (((-383 (-523))) . T)) (((|#1|) . T)) -(|has| |#1| (-514)) -((((-382 |#2|)) . T) (((-382 (-522))) . T) (($) . T)) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-514))) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-514))) -((((-354)) . T)) +(|has| |#1| (-515)) +((((-383 |#2|)) . T) (((-383 (-523))) . T) (($) . T)) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +((((-355)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -(|has| |#1| (-514)) -(|has| |#1| (-1014)) -((((-717 |#1| (-794 |#2|))) |has| (-717 |#1| (-794 |#2|)) (-285 (-717 |#1| (-794 |#2|))))) -(-3844 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) +(|has| |#1| (-339)) +(|has| |#1| (-339)) +(|has| |#1| (-515)) +(|has| |#1| (-1016)) +((((-719 |#1| (-796 |#2|))) |has| (-719 |#1| (-796 |#2|)) (-286 (-719 |#1| (-796 |#2|))))) +(-3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) (((|#1|) . T)) (((|#2| |#3|) . T)) -(|has| |#2| (-838)) +(|has| |#2| (-840)) (((|#1|) . T)) -(((|#1| (-494 |#2|)) . T)) -(((|#1| (-708)) . T)) -(|has| |#1| (-210)) -(((|#1| (-494 (-1004 (-1085)))) . T)) -(|has| |#2| (-338)) -((((-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) . T)) +(((|#1| (-495 |#2|)) . T)) +(((|#1| (-710)) . T)) +(|has| |#1| (-211)) +(((|#1| (-495 (-1006 (-1087)))) . T)) +(|has| |#2| (-339)) +((((-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -((((-792)) . T)) -((((-792)) . T)) -(-3844 (|has| |#3| (-730)) (|has| |#3| (-782))) -((((-792)) . T)) -((((-792)) . T)) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +((((-794)) . T)) +((((-794)) . T)) +(-3262 (|has| |#3| (-732)) (|has| |#3| (-784))) +((((-794)) . T)) +((((-794)) . T)) (((|#1|) . T)) -((($ $) . T) (((-561 $) $) . T)) +((($ $) . T) (((-562 $) $) . T)) (((|#1|) . T)) -((((-522)) . T)) +((((-523)) . T)) (((|#3|) . T)) -((((-792)) . T)) -(-3844 (|has| |#1| (-283)) (|has| |#1| (-338)) (|has| |#1| (-324))) -(-3844 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-514)) (|has| |#1| (-971))) -(((#0=(-535 |#1|) #0#) . T) (($ $) . T) ((#1=(-382 (-522)) #1#) . T)) -((($ $) . T) ((#0=(-382 (-522)) #0#) . T)) -(((|#1|) |has| |#1| (-157))) -(((|#1| (-1166 |#1|) (-1166 |#1|)) . T)) -((((-535 |#1|)) . T) (($) . T) (((-382 (-522))) . T)) -((($) . T) (((-382 (-522))) . T)) -((($) . T) (((-382 (-522))) . T)) -(((|#2|) |has| |#2| (-6 (-4240 "*")))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-792)) |has| |#1| (-562 (-792)))) -((((-270 |#3|)) . T)) -(((#0=(-382 (-522)) #0#) |has| |#2| (-37 (-382 (-522)))) ((|#2| |#2|) . T) (($ $) -3844 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))) +((((-794)) . T)) +(-3262 (|has| |#1| (-284)) (|has| |#1| (-339)) (|has| |#1| (-325))) +(-3262 (|has| |#1| (-134)) (|has| |#1| (-136)) (|has| |#1| (-158)) (|has| |#1| (-515)) (|has| |#1| (-973))) +(((#0=(-536 |#1|) #0#) . T) (($ $) . T) ((#1=(-383 (-523)) #1#) . T)) +((($ $) . T) ((#0=(-383 (-523)) #0#) . T)) +(((|#1|) |has| |#1| (-158))) +(((|#1| (-1168 |#1|) (-1168 |#1|)) . T)) +((((-536 |#1|)) . T) (($) . T) (((-383 (-523))) . T)) +((($) . T) (((-383 (-523))) . T)) +((($) . T) (((-383 (-523))) . T)) +(((|#2|) |has| |#2| (-6 (-4246 "*")))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-794)) |has| |#1| (-563 (-794)))) +((((-271 |#3|)) . T)) +(((#0=(-383 (-523)) #0#) |has| |#2| (-37 (-383 (-523)))) ((|#2| |#2|) . T) (($ $) -3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#1|) . T)) -((($) . T) (((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) . T)) -((($) . T) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -(((|#1|) . T) (((-382 (-522))) . T) (($) . T)) -(((|#1|) . T) (((-382 (-522))) . T) (($) . T)) -(((|#1|) . T) (((-382 (-522))) . T) (($) . T)) -((($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522))))) -((($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522))))) +((($) . T) (((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) . T)) +((($) . T) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +(((|#1|) . T) (((-383 (-523))) . T) (($) . T)) +(((|#1|) . T) (((-383 (-523))) . T) (($) . T)) +(((|#1|) . T) (((-383 (-523))) . T) (($) . T)) +((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) +((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) (((|#2|) . T)) -((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) . T) (($) -3844 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) . T) (($) -3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522))))) -((((-792)) . T)) -((($) -3844 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -((($) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -(|has| |#2| (-838)) -(|has| |#1| (-838)) -((($) -3844 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) +((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) +((((-794)) . T)) +((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +(|has| |#2| (-840)) +(|has| |#1| (-840)) +((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) (((|#1|) . T)) -((((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) . T)) +((((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1014)) -(((|#1|) . T)) -((((-1085)) . T) ((|#1|) . T)) -((((-792)) . T)) -((((-792)) . T)) -(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) -(((#0=(-382 (-522)) #0#) . T)) -((((-382 (-522))) . T)) -(-3844 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971))) -(((|#1|) . T)) -(((|#1|) . T)) -(-3844 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-782)) (|has| |#2| (-971))) -((((-498)) . T)) -((((-792)) . T)) -((((-1085)) |has| |#2| (-829 (-1085))) (((-999)) . T)) -((((-1151 |#2| |#3| |#4|)) . T)) -((((-839 |#1|)) . T)) -((($) . T) (((-382 (-522))) . T)) -(-12 (|has| |#1| (-338)) (|has| |#2| (-757))) -(-12 (|has| |#1| (-338)) (|has| |#2| (-757))) -(|has| |#1| (-1124)) -(((|#2|) . T)) -((($ $) . T) ((#0=(-382 (-522)) #0#) . T)) -((((-1085)) |has| |#1| (-829 (-1085)))) -((((-839 |#1|)) . T) (((-382 (-522))) . T) (($) . T)) -((($) . T) (((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((|#1|) . T)) -(((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522)))) ((|#1| |#1|) . T) (($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-514)))) -((($) . T) (((-382 (-522))) . T)) -(((|#1|) . T) (((-382 (-522))) . T) (((-522)) . T) (($) . T)) -(((|#2|) |has| |#2| (-971)) (((-522)) -12 (|has| |#2| (-584 (-522))) (|has| |#2| (-971)))) -((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) . T) (($) -3844 (|has| |#1| (-157)) (|has| |#1| (-514)))) -(|has| |#1| (-514)) -(((|#1|) |has| |#1| (-338))) -((((-522)) . T)) -(|has| |#1| (-728)) -(|has| |#1| (-728)) -((((-1085) #0=(-112 |#1|)) |has| #0# (-483 (-1085) #0#)) ((#0# #0#) |has| #0# (-285 #0#))) -(((|#2|) . T) (((-522)) |has| |#2| (-962 (-522))) (((-382 (-522))) |has| |#2| (-962 (-382 (-522))))) -((((-999)) . T) ((|#2|) . T) (((-522)) |has| |#2| (-962 (-522))) (((-382 (-522))) |has| |#2| (-962 (-382 (-522))))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-522) (-708)) . T) ((|#3| (-708)) . T)) +(|has| |#1| (-1016)) +(((|#1|) . T)) +((((-1087)) . T) ((|#1|) . T)) +((((-794)) . T)) +((((-794)) . T)) +(((|#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) +(((#0=(-383 (-523)) #0#) . T)) +((((-383 (-523))) . T)) +(-3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(((|#1|) . T)) +(((|#1|) . T)) +(-3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-784)) (|has| |#2| (-973))) +((((-499)) . T)) +((((-794)) . T)) +((((-1087)) |has| |#2| (-831 (-1087))) (((-1001)) . T)) +((((-1153 |#2| |#3| |#4|)) . T)) +((((-841 |#1|)) . T)) +((($) . T) (((-383 (-523))) . T)) +(-12 (|has| |#1| (-339)) (|has| |#2| (-759))) +(-12 (|has| |#1| (-339)) (|has| |#2| (-759))) +(|has| |#1| (-1126)) +(((|#2|) . T)) +((($ $) . T) ((#0=(-383 (-523)) #0#) . T)) +((((-1087)) |has| |#1| (-831 (-1087)))) +((((-841 |#1|)) . T) (((-383 (-523))) . T) (($) . T)) +((($) . T) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#1|) . T)) +(((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523)))) ((|#1| |#1|) . T) (($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-515)))) +((($) . T) (((-383 (-523))) . T)) +(((|#1|) . T) (((-383 (-523))) . T) (((-523)) . T) (($) . T)) +(((|#2|) |has| |#2| (-973)) (((-523)) -12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T) (($) -3262 (|has| |#1| (-158)) (|has| |#1| (-515)))) +(|has| |#1| (-515)) +(((|#1|) |has| |#1| (-339))) +((((-523)) . T)) +(|has| |#1| (-730)) +(|has| |#1| (-730)) +((((-1087) #0=(-112 |#1|)) |has| #0# (-484 (-1087) #0#)) ((#0# #0#) |has| #0# (-286 #0#))) +(((|#2|) . T) (((-523)) |has| |#2| (-964 (-523))) (((-383 (-523))) |has| |#2| (-964 (-383 (-523))))) +((((-1001)) . T) ((|#2|) . T) (((-523)) |has| |#2| (-964 (-523))) (((-383 (-523))) |has| |#2| (-964 (-383 (-523))))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-523) (-710)) . T) ((|#3| (-710)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -((((-792)) . T)) -(|has| |#2| (-757)) -(|has| |#2| (-757)) -((((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((|#2|) |has| |#1| (-338)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522))))) -((((-522)) |has| |#1| (-815 (-522))) (((-354)) |has| |#1| (-815 (-354)))) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +((((-794)) . T)) +(|has| |#2| (-759)) +(|has| |#2| (-759)) +((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#2|) |has| |#1| (-339)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#1|) . T) (((-523)) |has| |#1| (-964 (-523))) (((-383 (-523))) |has| |#1| (-964 (-383 (-523))))) +((((-523)) |has| |#1| (-817 (-523))) (((-355)) |has| |#1| (-817 (-355)))) (((|#1|) . T)) -((((-799 |#1|)) . T)) -((((-799 |#1|)) . T)) -(-12 (|has| |#1| (-338)) (|has| |#2| (-838))) -((((-382 (-522))) . T) (((-637)) . T) (($) . T)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) +((((-801 |#1|)) . T)) +((((-801 |#1|)) . T)) +(-12 (|has| |#1| (-339)) (|has| |#2| (-840))) +((((-383 (-523))) . T) (((-638)) . T) (($) . T)) +(|has| |#1| (-339)) +(|has| |#1| (-339)) (((|#1|) . T)) (((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) -(|has| |#1| (-338)) +(((|#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) +(|has| |#1| (-339)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-794 |#1|)) . T)) +((((-796 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| (-708)) . T)) -((((-1085)) . T)) -((((-799 |#1|)) . T)) -(-3844 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-730)) (|has| |#3| (-782)) (|has| |#3| (-971))) -(-3844 (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-782)) (|has| |#3| (-971))) -((((-792)) . T)) +(((|#2| (-710)) . T)) +((((-1087)) . T)) +((((-801 |#1|)) . T)) +(-3262 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-732)) (|has| |#3| (-784)) (|has| |#3| (-973))) +(-3262 (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-784)) (|has| |#3| (-973))) +((((-794)) . T)) (((|#1|) . T)) -(-3844 (|has| |#2| (-730)) (|has| |#2| (-782))) -(-3844 (-12 (|has| |#1| (-730)) (|has| |#2| (-730))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))) -((((-799 |#1|)) . T)) +(-3262 (|has| |#2| (-732)) (|has| |#2| (-784))) +(-3262 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-786)) (|has| |#2| (-786)))) +((((-801 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-343)) -(|has| |#1| (-343)) -(|has| |#1| (-343)) -((($ $) . T) (((-561 $) $) . T)) +(|has| |#1| (-344)) +(|has| |#1| (-344)) +(|has| |#1| (-344)) +((($ $) . T) (((-562 $) $) . T)) ((($) . T)) -((((-792)) . T)) -((((-522)) . T)) +((((-794)) . T)) +((((-523)) . T)) (((|#2|) . T)) -((((-792)) . T)) -(((|#1|) . T) (((-382 (-522))) |has| |#1| (-338))) -((((-792)) . T)) +((((-794)) . T)) +(((|#1|) . T) (((-383 (-523))) |has| |#1| (-339))) +((((-794)) . T)) (((|#1|) . T)) -((((-792)) . T)) -((($) . T) ((|#2|) . T) (((-382 (-522))) . T)) -(|has| |#1| (-1014)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) +((((-794)) . T)) +((($) . T) ((|#2|) . T) (((-383 (-523))) . T)) +(|has| |#1| (-1016)) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-792)) . T)) -(|has| |#2| (-838)) -((((-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) . T)) -((((-498)) |has| |#2| (-563 (-498))) (((-821 (-354))) |has| |#2| (-563 (-821 (-354)))) (((-821 (-522))) |has| |#2| (-563 (-821 (-522))))) -((((-792)) . T)) -((((-792)) . T)) -(((|#3|) |has| |#3| (-971)) (((-522)) -12 (|has| |#3| (-584 (-522))) (|has| |#3| (-971)))) -((((-1037 |#1| |#2|)) . T) (((-881 |#1|)) |has| |#2| (-563 (-1085))) (((-792)) . T)) -((((-881 |#1|)) |has| |#2| (-563 (-1085))) (((-1068)) -12 (|has| |#1| (-962 (-522))) (|has| |#2| (-563 (-1085)))) (((-821 (-522))) -12 (|has| |#1| (-563 (-821 (-522)))) (|has| |#2| (-563 (-821 (-522))))) (((-821 (-354))) -12 (|has| |#1| (-563 (-821 (-354)))) (|has| |#2| (-563 (-821 (-354))))) (((-498)) -12 (|has| |#1| (-563 (-498))) (|has| |#2| (-563 (-498))))) -((((-1081 |#1|)) . T) (((-792)) . T)) -((((-792)) . T)) -((((-382 (-522))) |has| |#2| (-962 (-382 (-522)))) (((-522)) |has| |#2| (-962 (-522))) ((|#2|) . T) (((-794 |#1|)) . T)) -((((-112 |#1|)) . T) (($) . T) (((-382 (-522))) . T)) -((((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-522)) |has| |#1| (-962 (-522))) ((|#1|) . T) (((-1085)) . T)) -((((-792)) . T)) -((((-522)) . T)) +((((-794)) . T)) +(|has| |#2| (-840)) +((((-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) . T)) +((((-499)) |has| |#2| (-564 (-499))) (((-823 (-355))) |has| |#2| (-564 (-823 (-355)))) (((-823 (-523))) |has| |#2| (-564 (-823 (-523))))) +((((-794)) . T)) +((((-794)) . T)) +(((|#3|) |has| |#3| (-973)) (((-523)) -12 (|has| |#3| (-585 (-523))) (|has| |#3| (-973)))) +((((-1039 |#1| |#2|)) . T) (((-883 |#1|)) |has| |#2| (-564 (-1087))) (((-794)) . T)) +((((-883 |#1|)) |has| |#2| (-564 (-1087))) (((-1070)) -12 (|has| |#1| (-964 (-523))) (|has| |#2| (-564 (-1087)))) (((-823 (-523))) -12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523))))) (((-823 (-355))) -12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355))))) (((-499)) -12 (|has| |#1| (-564 (-499))) (|has| |#2| (-564 (-499))))) +((((-1083 |#1|)) . T) (((-794)) . T)) +((((-794)) . T)) +((((-383 (-523))) |has| |#2| (-964 (-383 (-523)))) (((-523)) |has| |#2| (-964 (-523))) ((|#2|) . T) (((-796 |#1|)) . T)) +((((-112 |#1|)) . T) (($) . T) (((-383 (-523))) . T)) +((((-383 (-523))) |has| |#1| (-964 (-383 (-523)))) (((-523)) |has| |#1| (-964 (-523))) ((|#1|) . T) (((-1087)) . T)) +((((-794)) . T)) +((((-523)) . T)) ((($) . T)) -((((-354)) |has| |#1| (-815 (-354))) (((-522)) |has| |#1| (-815 (-522)))) -((((-522)) . T)) +((((-355)) |has| |#1| (-817 (-355))) (((-523)) |has| |#1| (-817 (-523)))) +((((-523)) . T)) (((|#1|) . T)) -((((-792)) . T)) +((((-794)) . T)) (((|#1|) . T)) -((((-792)) . T)) -(((|#1|) |has| |#1| (-157)) (($) . T)) -((((-522)) . T) (((-382 (-522))) . T)) -(((|#1|) |has| |#1| (-285 |#1|))) -((((-792)) . T)) -((((-354)) . T)) +((((-794)) . T)) +(((|#1|) |has| |#1| (-158)) (($) . T)) +((((-523)) . T) (((-383 (-523))) . T)) +(((|#1|) |has| |#1| (-286 |#1|))) +((((-794)) . T)) +((((-355)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-792)) . T)) -((((-382 (-522))) . T) (($) . T)) -((((-382 |#2|) |#3|) . T)) +((((-794)) . T)) +((((-383 (-523))) . T) (($) . T)) +((((-383 |#2|) |#3|) . T)) (((|#1|) . T)) -(|has| |#1| (-1014)) -(((|#2| (-455 (-3591 |#1|) (-708))) . T)) -((((-522) |#1|) . T)) +(|has| |#1| (-1016)) +(((|#2| (-456 (-2676 |#1|) (-710))) . T)) +((((-523) |#1|) . T)) (((|#2| |#2|) . T)) -(((|#1| (-494 (-1085))) . T)) -(-3844 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971))) -((((-522)) . T)) +(((|#1| (-495 (-1087))) . T)) +(-3262 (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) +((((-523)) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1085)) |has| |#1| (-829 (-1085))) (((-999)) . T)) -(((|#1|) . T) (((-522)) |has| |#1| (-584 (-522)))) -(|has| |#1| (-514)) -((($) . T) (((-382 (-522))) . T)) +((((-1087)) |has| |#1| (-831 (-1087))) (((-1001)) . T)) +(((|#1|) . T) (((-523)) |has| |#1| (-585 (-523)))) +(|has| |#1| (-515)) +((($) . T) (((-383 (-523))) . T)) ((($) . T)) ((($) . T)) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) (((|#1|) . T)) -((($) -3844 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -((((-792)) . T)) -((((-132)) . T)) -(((|#1|) . T) (((-382 (-522))) . T)) +((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((((-794)) . T)) +((((-133)) . T)) +(((|#1|) . T) (((-383 (-523))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-792)) . T)) +((((-794)) . T)) (((|#1|) . T)) -(|has| |#1| (-1061)) -(((|#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|))) . T)) +(|has| |#1| (-1063)) +(((|#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|))) . T)) (((|#1|) . T)) -((((-382 $) (-382 $)) |has| |#1| (-514)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522))))) -((((-792)) . T)) -((((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-522)) |has| |#1| (-962 (-522))) ((|#1|) . T) ((|#2|) . T)) -((((-999)) . T) ((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522))))) -((((-354)) -12 (|has| |#1| (-815 (-354))) (|has| |#2| (-815 (-354)))) (((-522)) -12 (|has| |#1| (-815 (-522))) (|has| |#2| (-815 (-522))))) -((((-1152 |#1| |#2| |#3| |#4|)) . T)) -((((-522) |#1|) . T)) +((((-383 $) (-383 $)) |has| |#1| (-515)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-523)) |has| |#1| (-964 (-523))) (((-383 (-523))) |has| |#1| (-964 (-383 (-523))))) +((((-794)) . T)) +((((-383 (-523))) |has| |#1| (-964 (-383 (-523)))) (((-523)) |has| |#1| (-964 (-523))) ((|#1|) . T) ((|#2|) . T)) +((((-1001)) . T) ((|#1|) . T) (((-523)) |has| |#1| (-964 (-523))) (((-383 (-523))) |has| |#1| (-964 (-383 (-523))))) +((((-355)) -12 (|has| |#1| (-817 (-355))) (|has| |#2| (-817 (-355)))) (((-523)) -12 (|has| |#1| (-817 (-523))) (|has| |#2| (-817 (-523))))) +((((-1154 |#1| |#2| |#3| |#4|)) . T)) +((((-523) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-157)) (($) . T)) -((($) . T)) -((((-637)) . T)) -((((-717 |#1| (-794 |#2|))) . T)) -((($) . T)) -((((-382 (-522))) . T) (($) . T)) -(|has| |#1| (-1014)) -(|has| |#1| (-1014)) -(|has| |#2| (-338)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -(|has| |#1| (-37 (-382 (-522)))) -((((-522)) . T)) -((((-1085)) -12 (|has| |#4| (-829 (-1085))) (|has| |#4| (-971)))) -((((-1085)) -12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) -(((|#1|) . T)) -(|has| |#1| (-210)) -(((|#1| (-494 |#3|)) . T)) -(|has| |#1| (-343)) -(((|#2| (-217 (-3591 |#1|) (-708))) . T)) -(|has| |#1| (-343)) -(|has| |#1| (-343)) +(((|#1|) |has| |#1| (-158)) (($) . T)) +((($) . T)) +((((-638)) . T)) +((((-719 |#1| (-796 |#2|))) . T)) +((($) . T)) +((((-383 (-523))) . T) (($) . T)) +(|has| |#1| (-1016)) +(|has| |#1| (-1016)) +(|has| |#2| (-339)) +(|has| |#1| (-339)) +(|has| |#1| (-339)) +(|has| |#1| (-37 (-383 (-523)))) +((((-523)) . T)) +((((-1087)) -12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) +((((-1087)) -12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) +(((|#1|) . T)) +(|has| |#1| (-211)) +(((|#1| (-495 |#3|)) . T)) +(|has| |#1| (-344)) +(((|#2| (-218 (-2676 |#1|) (-710))) . T)) +(|has| |#1| (-344)) +(|has| |#1| (-344)) (((|#1|) . T) (($) . T)) -(((|#1| (-494 |#2|)) . T)) -(-3844 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971))) -(((|#1| (-708)) . T)) -(|has| |#1| (-514)) -(-3844 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971))) -(-3844 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-782)) (|has| |#2| (-971))) +(((|#1| (-495 |#2|)) . T)) +(-3262 (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(((|#1| (-710)) . T)) +(|has| |#1| (-515)) +(-3262 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3262 (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-784)) (|has| |#2| (-973))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-792)) . T)) -(-3844 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-730)) (|has| |#2| (-730)))) -(-3844 (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-730)) (|has| |#3| (-782)) (|has| |#3| (-971))) -(-3844 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971))) -(((|#1|) |has| |#1| (-157))) -(((|#4|) |has| |#4| (-971))) -(((|#3|) |has| |#3| (-971))) -(-12 (|has| |#1| (-338)) (|has| |#2| (-757))) -(-12 (|has| |#1| (-338)) (|has| |#2| (-757))) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014)))) -((((-498)) |has| |#1| (-563 (-498)))) -((((-382 |#2|)) . T) (((-382 (-522))) . T) (($) . T)) -((($ $) . T) ((#0=(-382 (-522)) #0#) . T)) -((((-792)) . T)) -((($) . T) (((-382 (-522))) . T)) -(((|#1|) . T)) -(((|#4|) |has| |#4| (-1014)) (((-522)) -12 (|has| |#4| (-962 (-522))) (|has| |#4| (-1014))) (((-382 (-522))) -12 (|has| |#4| (-962 (-382 (-522)))) (|has| |#4| (-1014)))) -(((|#3|) |has| |#3| (-1014)) (((-522)) -12 (|has| |#3| (-962 (-522))) (|has| |#3| (-1014))) (((-382 (-522))) -12 (|has| |#3| (-962 (-382 (-522)))) (|has| |#3| (-1014)))) -(|has| |#2| (-338)) -(((|#2|) |has| |#2| (-971)) (((-522)) -12 (|has| |#2| (-584 (-522))) (|has| |#2| (-971)))) -(((|#1|) . T)) -(|has| |#2| (-338)) -(((#0=(-382 (-522)) #0#) |has| |#2| (-37 (-382 (-522)))) ((|#2| |#2|) . T) (($ $) -3844 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))) -((($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522))))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-382 (-522)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-382 (-522)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-382 (-522)) #0#) . T)) +((((-794)) . T)) +(-3262 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))) +(-3262 (|has| |#3| (-124)) (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-732)) (|has| |#3| (-784)) (|has| |#3| (-973))) +(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(((|#1|) |has| |#1| (-158))) +(((|#4|) |has| |#4| (-973))) +(((|#3|) |has| |#3| (-973))) +(-12 (|has| |#1| (-339)) (|has| |#2| (-759))) +(-12 (|has| |#1| (-339)) (|has| |#2| (-759))) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) +((((-499)) |has| |#1| (-564 (-499)))) +((((-383 |#2|)) . T) (((-383 (-523))) . T) (($) . T)) +((($ $) . T) ((#0=(-383 (-523)) #0#) . T)) +((((-794)) . T)) +((($) . T) (((-383 (-523))) . T)) +(((|#1|) . T)) +(((|#4|) |has| |#4| (-1016)) (((-523)) -12 (|has| |#4| (-964 (-523))) (|has| |#4| (-1016))) (((-383 (-523))) -12 (|has| |#4| (-964 (-383 (-523)))) (|has| |#4| (-1016)))) +(((|#3|) |has| |#3| (-1016)) (((-523)) -12 (|has| |#3| (-964 (-523))) (|has| |#3| (-1016))) (((-383 (-523))) -12 (|has| |#3| (-964 (-383 (-523)))) (|has| |#3| (-1016)))) +(|has| |#2| (-339)) +(((|#2|) |has| |#2| (-973)) (((-523)) -12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) +(((|#1|) . T)) +(|has| |#2| (-339)) +(((#0=(-383 (-523)) #0#) |has| |#2| (-37 (-383 (-523)))) ((|#2| |#2|) . T) (($ $) -3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1| |#1|) . T) ((#0=(-383 (-523)) #0#) |has| |#1| (-37 (-383 (-523))))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-383 (-523)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-383 (-523)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-383 (-523)) #0#) . T)) (((|#2| |#2|) . T)) -((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) . T) (($) -3844 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))) -((($) -3844 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -(((|#1|) . T) (($) . T) (((-382 (-522))) . T)) -(((|#1|) . T) (($) . T) (((-382 (-522))) . T)) -(((|#1|) . T) (($) . T) (((-382 (-522))) . T)) -(((|#2|) . T)) -((($) . T)) -((((-792)) |has| |#1| (-1014))) -((((-1152 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#2| (-757)) -(|has| |#2| (-757)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -(|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) -(|has| |#1| (-338)) -(((|#1|) |has| |#2| (-392 |#1|))) -(((|#1|) |has| |#2| (-392 |#1|))) -((((-839 |#1|)) . T) (((-382 (-522))) . T) (($) . T)) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014)))) -((((-498)) |has| |#1| (-563 (-498)))) -((((-792)) . T)) -((((-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) |has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-285 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))))) -(-3844 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) -((((-522) |#1|) . T)) -((((-522) |#1|) . T)) -((((-522) |#1|) . T)) -(-3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -((((-522) |#1|) . T)) -(((|#1|) . T)) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -(-3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -((((-1085)) |has| |#1| (-829 (-1085))) (((-755 (-1085))) . T)) -(-3844 (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-730)) (|has| |#3| (-782)) (|has| |#3| (-971))) -((((-756 |#1|)) . T)) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) . T) (($) -3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) +((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +(((|#1|) . T) (($) . T) (((-383 (-523))) . T)) +(((|#1|) . T) (($) . T) (((-383 (-523))) . T)) +(((|#1|) . T) (($) . T) (((-383 (-523))) . T)) +(((|#2|) . T)) +((($) . T)) +((((-794)) |has| |#1| (-1016))) +((((-1154 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-759)) +(|has| |#2| (-759)) +(|has| |#1| (-339)) +(|has| |#1| (-339)) +(|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) +(|has| |#1| (-339)) +(((|#1|) |has| |#2| (-393 |#1|))) +(((|#1|) |has| |#2| (-393 |#1|))) +((((-841 |#1|)) . T) (((-383 (-523))) . T) (($) . T)) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) +((((-499)) |has| |#1| (-564 (-499)))) +((((-794)) . T)) +((((-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) |has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))))) +(-3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +((((-523) |#1|) . T)) +((((-523) |#1|) . T)) +((((-523) |#1|) . T)) +(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +((((-523) |#1|) . T)) +(((|#1|) . T)) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +((((-1087)) |has| |#1| (-831 (-1087))) (((-757 (-1087))) . T)) +(-3262 (|has| |#3| (-124)) (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-732)) (|has| |#3| (-784)) (|has| |#3| (-973))) +((((-758 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-792)) . T)) -(-3844 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-971))) +((((-794)) . T)) +(-3262 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) (((|#1| |#2|) . T)) -(|has| |#1| (-37 (-382 (-522)))) -((((-792)) . T)) -((((-1152 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-382 (-522))) . T)) -(((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-514)) (((-382 (-522))) |has| |#1| (-514))) -(((|#2|) . T) (((-522)) |has| |#2| (-584 (-522)))) -(|has| |#1| (-338)) -(-3844 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (-12 (|has| |#1| (-338)) (|has| |#2| (-210)))) -(|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) -(|has| |#1| (-338)) -(((|#1|) . T)) -(((#0=(-382 (-522)) #0#) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) ((|#1| |#1|) . T)) -((((-522) |#1|) . T)) -((((-291 |#1|)) . T)) -(((#0=(-637) (-1081 #0#)) . T)) -((((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) ((|#1|) . T)) +(|has| |#1| (-37 (-383 (-523)))) +((((-794)) . T)) +((((-1154 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-383 (-523))) . T)) +(((|#1|) |has| |#1| (-158)) (($) |has| |#1| (-515)) (((-383 (-523))) |has| |#1| (-515))) +(((|#2|) . T) (((-523)) |has| |#2| (-585 (-523)))) +(|has| |#1| (-339)) +(-3262 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (-12 (|has| |#1| (-339)) (|has| |#2| (-211)))) +(|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) +(|has| |#1| (-339)) +(((|#1|) . T)) +(((#0=(-383 (-523)) #0#) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((|#1| |#1|) . T)) +((((-523) |#1|) . T)) +((((-292 |#1|)) . T)) +(((#0=(-638) (-1083 #0#)) . T)) +((((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) (($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-782)) -((($ $) . T) ((#0=(-794 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1037 |#1| (-1085))) . T) (((-755 (-1085))) . T) ((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-1085)) . T)) +(|has| |#1| (-784)) +((($ $) . T) ((#0=(-796 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1039 |#1| (-1087))) . T) (((-757 (-1087))) . T) ((|#1|) . T) (((-523)) |has| |#1| (-964 (-523))) (((-383 (-523))) |has| |#1| (-964 (-383 (-523)))) (((-1087)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-999) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1085) $) |has| |#1| (-210)) ((#0# |#1|) |has| |#1| (-210)) ((#1=(-1004 (-1085)) |#1|) . T) ((#1# $) . T)) +(((#0=(-1001) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1087) $) |has| |#1| (-211)) ((#0# |#1|) |has| |#1| (-211)) ((#1=(-1006 (-1087)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-382 (-522))) |has| |#2| (-37 (-382 (-522))))) -(|has| |#2| (-838)) -((($) . T) ((#0=(-1151 |#2| |#3| |#4|)) |has| #0# (-157)) (((-382 (-522))) |has| #0# (-37 (-382 (-522))))) -((((-522) |#1|) . T)) -(((#0=(-1152 |#1| |#2| |#3| |#4|)) |has| #0# (-285 #0#))) -((($) . T)) -(((|#1|) . T)) -((($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) ((#0=(-382 (-522)) #0#) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((|#2| |#2|) |has| |#1| (-338)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) ((#0=(-382 (-522)) #0#) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338)))) -(|has| |#2| (-210)) -(|has| $ (-135)) -((((-792)) . T)) -((($) . T) (((-382 (-522))) -3844 (|has| |#1| (-338)) (|has| |#1| (-324))) ((|#1|) . T)) -((((-792)) . T)) -(|has| |#1| (-782)) -((((-1085)) -12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))) -((((-382 |#2|) |#3|) . T)) -(((|#1|) . T)) -((((-792)) . T)) -(((|#2| (-613 |#1|)) . T)) -(-12 (|has| |#1| (-283)) (|has| |#1| (-838))) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) +((($) . T) ((|#2|) . T) (((-383 (-523))) |has| |#2| (-37 (-383 (-523))))) +(|has| |#2| (-840)) +((($) . T) ((#0=(-1153 |#2| |#3| |#4|)) |has| #0# (-158)) (((-383 (-523))) |has| #0# (-37 (-383 (-523))))) +((((-523) |#1|) . T)) +(((#0=(-1154 |#1| |#2| |#3| |#4|)) |has| #0# (-286 #0#))) +((($) . T)) +(((|#1|) . T)) +((($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((#0=(-383 (-523)) #0#) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#2| |#2|) |has| |#1| (-339)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) ((#0=(-383 (-523)) #0#) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339)))) +(|has| |#2| (-211)) +(|has| $ (-136)) +((((-794)) . T)) +((($) . T) (((-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-325))) ((|#1|) . T)) +((((-794)) . T)) +(|has| |#1| (-784)) +((((-1087)) -12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) +((((-383 |#2|) |#3|) . T)) +(((|#1|) . T)) +((((-794)) . T)) +(((|#2| (-614 |#1|)) . T)) +(-12 (|has| |#1| (-284)) (|has| |#1| (-840))) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#4|) . T)) -(|has| |#1| (-514)) -((($) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) (((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((|#2|) |has| |#1| (-338)) ((|#1|) . T)) -((((-1085)) -3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) -(((|#1|) . T) (($) -3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) (((-382 (-522))) -3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338)))) -((((-1085)) -12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) -((((-1085)) -12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) -(((|#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) -((((-522) |#1|) . T)) -(-3844 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) -(((|#1|) . T)) -(((|#1| (-494 (-755 (-1085)))) . T)) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -(((|#1|) . T)) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -(((|#1|) . T)) -(-3844 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971))) -(-3844 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-730)) (|has| |#2| (-730)))) -((((-1158 |#1| |#2| |#3|)) |has| |#1| (-338))) -((($) . T) (((-799 |#1|)) . T) (((-382 (-522))) . T)) -((((-1158 |#1| |#2| |#3|)) |has| |#1| (-338))) -(|has| |#1| (-514)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-382 |#2|)) . T)) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-324))) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014)))) -((((-498)) |has| |#1| (-563 (-498)))) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014)))) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014)))) -((((-498)) |has| |#1| (-563 (-498)))) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014)))) -((((-498)) |has| |#1| (-563 (-498)))) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014)))) -(((|#1|) . T)) -(((|#2| |#2|) . T) ((#0=(-382 (-522)) #0#) . T) (($ $) . T)) -((((-522)) . T)) -((((-792)) . T)) -(((|#2|) . T) (((-382 (-522))) . T) (($) . T)) -((((-535 |#1|)) . T) (((-382 (-522))) . T) (($) . T)) -((((-792)) . T)) -((((-382 (-522))) . T) (($) . T)) -((((-522) |#1|) . T)) -((((-792)) . T)) -((($ $) . T) (((-1085) $) . T)) -((((-1158 |#1| |#2| |#3|)) . T)) -((((-1158 |#1| |#2| |#3|)) . T) (((-1130 |#1| |#2| |#3|)) . T)) -(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|))) . T)) -((((-498)) |has| |#2| (-563 (-498))) (((-821 (-354))) |has| |#2| (-563 (-821 (-354)))) (((-821 (-522))) |has| |#2| (-563 (-821 (-522))))) -((((-792)) . T)) -((((-792)) . T)) -((((-821 (-522))) -12 (|has| |#1| (-563 (-821 (-522)))) (|has| |#3| (-563 (-821 (-522))))) (((-821 (-354))) -12 (|has| |#1| (-563 (-821 (-354)))) (|has| |#3| (-563 (-821 (-354))))) (((-498)) -12 (|has| |#1| (-563 (-498))) (|has| |#3| (-563 (-498))))) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -(((|#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) . T)) -((((-792)) . T)) -((((-1158 |#1| |#2| |#3|)) |has| |#1| (-338))) -((((-1085)) . T) (((-792)) . T)) -(|has| |#1| (-338)) -((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) |has| |#2| (-157)) (($) -3844 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))) +(|has| |#1| (-515)) +((($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339))) ((|#2|) |has| |#1| (-339)) ((|#1|) . T)) +((((-1087)) -3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) +(((|#1|) . T) (($) -3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-515))) (((-383 (-523))) -3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-339)))) +((((-1087)) -12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) +((((-1087)) -12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) +(((|#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) +((((-523) |#1|) . T)) +(-3262 (|has| |#2| (-158)) (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(((|#1|) . T)) +(((|#1| (-495 (-757 (-1087)))) . T)) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(((|#1|) . T)) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +(((|#1|) . T)) +(-3262 (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3262 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))) +((((-1160 |#1| |#2| |#3|)) |has| |#1| (-339))) +((($) . T) (((-801 |#1|)) . T) (((-383 (-523))) . T)) +((((-1160 |#1| |#2| |#3|)) |has| |#1| (-339))) +(|has| |#1| (-515)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-383 |#2|)) . T)) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-325))) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) +((((-499)) |has| |#1| (-564 (-499)))) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) +((((-499)) |has| |#1| (-564 (-499)))) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) +((((-499)) |has| |#1| (-564 (-499)))) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +(((|#1|) . T)) +(((|#2| |#2|) . T) ((#0=(-383 (-523)) #0#) . T) (($ $) . T)) +((((-523)) . T)) +((((-794)) . T)) +(((|#2|) . T) (((-383 (-523))) . T) (($) . T)) +((((-536 |#1|)) . T) (((-383 (-523))) . T) (($) . T)) +((((-794)) . T)) +((((-383 (-523))) . T) (($) . T)) +((((-523) |#1|) . T)) +((((-794)) . T)) +((($ $) . T) (((-1087) $) . T)) +((((-1160 |#1| |#2| |#3|)) . T)) +((((-1160 |#1| |#2| |#3|)) . T) (((-1132 |#1| |#2| |#3|)) . T)) +(((|#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|))) . T)) +((((-499)) |has| |#2| (-564 (-499))) (((-823 (-355))) |has| |#2| (-564 (-823 (-355)))) (((-823 (-523))) |has| |#2| (-564 (-823 (-523))))) +((((-794)) . T)) +((((-794)) . T)) +((((-823 (-523))) -12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#3| (-564 (-823 (-523))))) (((-823 (-355))) -12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#3| (-564 (-823 (-355))))) (((-499)) -12 (|has| |#1| (-564 (-499))) (|has| |#3| (-564 (-499))))) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +(((|#1| |#2| (-218 |#1| |#2|) (-218 |#1| |#2|)) . T)) +((((-794)) . T)) +((((-1160 |#1| |#2| |#3|)) |has| |#1| (-339))) +((((-1087)) . T) (((-794)) . T)) +(|has| |#1| (-339)) +((((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) |has| |#2| (-158)) (($) -3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840)))) (((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) . T)) -((($) -3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -((($) -3844 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -((((-1018)) . T)) -((((-792)) . T)) -((($) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) . T)) -((($) . T)) -((($) -3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -(|has| |#2| (-838)) -(|has| |#1| (-838)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| |#1|) |has| |#1| (-157))) -((((-637)) . T)) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014)))) -(((|#1|) |has| |#1| (-157))) -(((|#1|) |has| |#1| (-157))) -((((-382 (-522))) . T) (($) . T)) -(((|#1| (-522)) . T)) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-324))) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-324))) -(-3844 (|has| |#1| (-157)) (|has| |#1| (-514))) -(((|#1| (-522)) . T)) -(((|#1| (-382 (-522))) . T)) -(((|#1| (-708)) . T)) -((((-382 (-522))) . T)) -(((|#1| (-494 |#2|) |#2|) . T)) -((((-522) |#1|) . T)) -((((-522) |#1|) . T)) -(|has| |#1| (-1014)) -((((-522) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-821 (-354))) . T) (((-821 (-522))) . T) (((-1085)) . T) (((-498)) . T)) -(((|#1|) . T)) -((((-792)) . T)) -(-3844 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971))) -(-3844 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-730)) (|has| |#2| (-730)))) -((((-522)) . T)) -((((-522)) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) +((($) . T) (((-383 (-523))) |has| |#2| (-37 (-383 (-523)))) ((|#2|) . T)) +((($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((($) -3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +((((-1020)) . T)) +((((-794)) . T)) +((($) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T)) +((($) . T)) +((($) -3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) ((|#1|) |has| |#1| (-158)) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +(|has| |#2| (-840)) +(|has| |#1| (-840)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| |#1|) |has| |#1| (-158))) +((((-638)) . T)) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +(((|#1|) |has| |#1| (-158))) +(((|#1|) |has| |#1| (-158))) +((((-383 (-523))) . T) (($) . T)) +(((|#1| (-523)) . T)) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-325))) +(|has| |#1| (-339)) +(|has| |#1| (-339)) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-325))) +(-3262 (|has| |#1| (-158)) (|has| |#1| (-515))) +(((|#1| (-523)) . T)) +(((|#1| (-383 (-523))) . T)) +(((|#1| (-710)) . T)) +((((-383 (-523))) . T)) +(((|#1| (-495 |#2|) |#2|) . T)) +((((-523) |#1|) . T)) +((((-523) |#1|) . T)) +(|has| |#1| (-1016)) +((((-523) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-823 (-355))) . T) (((-823 (-523))) . T) (((-1087)) . T) (((-499)) . T)) +(((|#1|) . T)) +((((-794)) . T)) +(-3262 (|has| |#2| (-124)) (|has| |#2| (-158)) (|has| |#2| (-339)) (|has| |#2| (-732)) (|has| |#2| (-784)) (|has| |#2| (-973))) +(-3262 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))) +((((-523)) . T)) +((((-523)) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(-3844 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971))) -((((-1085)) -12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) -(-3844 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) -(|has| |#1| (-133)) -(|has| |#1| (-135)) -(|has| |#1| (-338)) +(-3262 (|has| |#2| (-158)) (|has| |#2| (-784)) (|has| |#2| (-973))) +((((-1087)) -12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) +(-3262 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666)))) +(|has| |#1| (-134)) +(|has| |#1| (-136)) +(|has| |#1| (-339)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-210)) -((((-792)) . T)) -(((|#1| (-708) (-999)) . T)) -((((-522) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -((((-522) |#1|) . T)) -((((-522) |#1|) . T)) +(|has| |#1| (-211)) +((((-794)) . T)) +(((|#1| (-710) (-1001)) . T)) +((((-523) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +((((-523) |#1|) . T)) +((((-523) |#1|) . T)) ((((-112 |#1|)) . T)) -((((-382 (-522))) . T) (((-522)) . T)) -(((|#2|) |has| |#2| (-971))) -((((-382 (-522))) . T) (($) . T)) -(((|#2|) . T)) -((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-514))) -((((-522)) . T)) -((((-522)) . T)) -((((-1068) (-1085) (-522) (-202) (-792)) . T)) +((((-383 (-523))) . T) (((-523)) . T)) +(((|#2|) |has| |#2| (-973))) +((((-383 (-523))) . T) (($) . T)) +(((|#2|) . T)) +((((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) |has| |#1| (-158)) (($) |has| |#1| (-515))) +((((-523)) . T)) +((((-523)) . T)) +((((-1070) (-1087) (-523) (-203) (-794)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -(-3844 (|has| |#1| (-324)) (|has| |#1| (-343))) +(-3262 (|has| |#1| (-325)) (|has| |#1| (-344))) (((|#1| |#2|) . T)) ((($) . T) ((|#1|) . T)) -((((-792)) . T)) -((($) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522))))) -(((|#2|) |has| |#2| (-1014)) (((-522)) -12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014))) (((-382 (-522))) -12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) -((((-498)) |has| |#1| (-563 (-498)))) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014)))) -((($) . T) (((-382 (-522))) . T)) -(|has| |#1| (-838)) -(|has| |#1| (-838)) -((((-202)) -12 (|has| |#1| (-338)) (|has| |#2| (-947))) (((-354)) -12 (|has| |#1| (-338)) (|has| |#2| (-947))) (((-821 (-354))) -12 (|has| |#1| (-338)) (|has| |#2| (-563 (-821 (-354))))) (((-821 (-522))) -12 (|has| |#1| (-338)) (|has| |#2| (-563 (-821 (-522))))) (((-498)) -12 (|has| |#1| (-338)) (|has| |#2| (-563 (-498))))) -((((-792)) . T)) -((((-792)) . T)) +((((-794)) . T)) +((($) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-383 (-523))) |has| |#1| (-37 (-383 (-523))))) +(((|#2|) |has| |#2| (-1016)) (((-523)) -12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016))) (((-383 (-523))) -12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) +((((-499)) |has| |#1| (-564 (-499)))) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-786)) (|has| |#1| (-1016)))) +((($) . T) (((-383 (-523))) . T)) +(|has| |#1| (-840)) +(|has| |#1| (-840)) +((((-203)) -12 (|has| |#1| (-339)) (|has| |#2| (-949))) (((-355)) -12 (|has| |#1| (-339)) (|has| |#2| (-949))) (((-823 (-355))) -12 (|has| |#1| (-339)) (|has| |#2| (-564 (-823 (-355))))) (((-823 (-523))) -12 (|has| |#1| (-339)) (|has| |#2| (-564 (-823 (-523))))) (((-499)) -12 (|has| |#1| (-339)) (|has| |#2| (-564 (-499))))) +((((-794)) . T)) +((((-794)) . T)) (((|#2| |#2|) . T)) -(((|#1| |#1|) |has| |#1| (-157))) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-514))) -(-3844 (|has| |#1| (-21)) (|has| |#1| (-782))) -(((|#2|) . T)) -(-3844 (|has| |#1| (-21)) (|has| |#1| (-782))) -(((|#1|) |has| |#1| (-157))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-792)) -3844 (-12 (|has| |#1| (-562 (-792))) (|has| |#2| (-562 (-792)))) (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))))) -((((-382 |#2|) |#3|) . T)) -((((-382 (-522))) . T) (($) . T)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-338)) -((($ $) . T) ((#0=(-382 (-522)) #0#) . T)) -(|has| (-382 |#2|) (-135)) -(|has| (-382 |#2|) (-133)) -((((-637)) . T)) -(((|#1|) . T) (((-382 (-522))) . T) (((-522)) . T) (($) . T)) -(((#0=(-522) #0#) . T)) -((($) . T) (((-382 (-522))) . T)) -(-3844 (|has| |#4| (-157)) (|has| |#4| (-782)) (|has| |#4| (-971))) -(-3844 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-971))) -(|has| |#4| (-730)) -(-3844 (|has| |#4| (-730)) (|has| |#4| (-782))) -(|has| |#4| (-782)) -(|has| |#3| (-730)) -(-3844 (|has| |#3| (-730)) (|has| |#3| (-782))) -(|has| |#3| (-782)) -((((-522)) . T)) -(((|#2|) . T)) -((((-1085)) -3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) -((((-1085)) -12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) -((((-1085)) -12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) +(((|#1| |#1|) |has| |#1| (-158))) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-515))) +(-3262 (|has| |#1| (-21)) (|has| |#1| (-784))) +(((|#2|) . T)) +(-3262 (|has| |#1| (-21)) (|has| |#1| (-784))) +(((|#1|) |has| |#1| (-158))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-794)) -3262 (-12 (|has| |#1| (-563 (-794))) (|has| |#2| (-563 (-794)))) (-12 (|has| |#1| (-1016)) (|has| |#2| (-1016))))) +((((-383 |#2|) |#3|) . T)) +((((-383 (-523))) . T) (($) . T)) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-339)) +((($ $) . T) ((#0=(-383 (-523)) #0#) . T)) +(|has| (-383 |#2|) (-136)) +(|has| (-383 |#2|) (-134)) +((((-638)) . T)) +(((|#1|) . T) (((-383 (-523))) . T) (((-523)) . T) (($) . T)) +(((#0=(-523) #0#) . T)) +((($) . T) (((-383 (-523))) . T)) +(-3262 (|has| |#4| (-158)) (|has| |#4| (-784)) (|has| |#4| (-973))) +(-3262 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) +(|has| |#4| (-732)) +(-3262 (|has| |#4| (-732)) (|has| |#4| (-784))) +(|has| |#4| (-784)) +(|has| |#3| (-732)) +(-3262 (|has| |#3| (-732)) (|has| |#3| (-784))) +(|has| |#3| (-784)) +((((-523)) . T)) +(((|#2|) . T)) +((((-1087)) -3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) +((((-1087)) -12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) +((((-1087)) -12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-794 |#1|)) . T)) -((((-1083 |#1| |#2| |#3|)) |has| |#1| (-338))) -((((-1083 |#1| |#2| |#3|)) |has| |#1| (-338))) -((((-1050 |#1| |#2|)) . T)) -(((|#2|) . T) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -((((-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) . T)) -((($) . T)) -(|has| |#1| (-947)) -(((|#2|) . T) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -((((-792)) . T)) -((((-498)) |has| |#2| (-563 (-498))) (((-821 (-522))) |has| |#2| (-563 (-821 (-522)))) (((-821 (-354))) |has| |#2| (-563 (-821 (-354)))) (((-354)) . #0=(|has| |#2| (-947))) (((-202)) . #0#)) -((((-1085) (-51)) . T)) -(|has| |#1| (-37 (-382 (-522)))) -(|has| |#1| (-37 (-382 (-522)))) +((((-796 |#1|)) . T)) +((((-1085 |#1| |#2| |#3|)) |has| |#1| (-339))) +((((-1085 |#1| |#2| |#3|)) |has| |#1| (-339))) +((((-1052 |#1| |#2|)) . T)) +(((|#2|) . T) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) . T)) +((($) . T)) +(|has| |#1| (-949)) +(((|#2|) . T) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +((((-794)) . T)) +((((-499)) |has| |#2| (-564 (-499))) (((-823 (-523))) |has| |#2| (-564 (-823 (-523)))) (((-823 (-355))) |has| |#2| (-564 (-823 (-355)))) (((-355)) . #0=(|has| |#2| (-949))) (((-203)) . #0#)) +((((-1087) (-51)) . T)) +(|has| |#1| (-37 (-383 (-523)))) +(|has| |#1| (-37 (-383 (-523)))) (((|#2|) . T)) ((($ $) . T)) -((((-382 (-522))) . T) (((-637)) . T) (($) . T)) -((((-1083 |#1| |#2| |#3|)) . T)) -((((-1083 |#1| |#2| |#3|)) . T) (((-1076 |#1| |#2| |#3|)) . T)) -((((-792)) . T)) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014)))) -((((-522) |#1|) . T)) -((((-1083 |#1| |#2| |#3|)) |has| |#1| (-338))) +((((-383 (-523))) . T) (((-638)) . T) (($) . T)) +((((-1085 |#1| |#2| |#3|)) . T)) +((((-1085 |#1| |#2| |#3|)) . T) (((-1078 |#1| |#2| |#3|)) . T)) +((((-794)) . T)) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-523) |#1|) . T)) +((((-1085 |#1| |#2| |#3|)) |has| |#1| (-339))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) -(|has| |#2| (-338)) -(((|#3|) . T) ((|#2|) . T) (($) -3844 (|has| |#4| (-157)) (|has| |#4| (-782)) (|has| |#4| (-971))) ((|#4|) -3844 (|has| |#4| (-157)) (|has| |#4| (-338)) (|has| |#4| (-971)))) -(((|#2|) . T) (($) -3844 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-971))) ((|#3|) -3844 (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-971)))) +(|has| |#2| (-339)) +(((|#3|) . T) ((|#2|) . T) (($) -3262 (|has| |#4| (-158)) (|has| |#4| (-784)) (|has| |#4| (-973))) ((|#4|) -3262 (|has| |#4| (-158)) (|has| |#4| (-339)) (|has| |#4| (-973)))) +(((|#2|) . T) (($) -3262 (|has| |#3| (-158)) (|has| |#3| (-784)) (|has| |#3| (-973))) ((|#3|) -3262 (|has| |#3| (-158)) (|has| |#3| (-339)) (|has| |#3| (-973)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-338)) +(|has| |#1| (-339)) ((((-112 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-382 (-522))) |has| |#2| (-962 (-382 (-522)))) (((-522)) |has| |#2| (-962 (-522))) ((|#2|) . T) (((-794 |#1|)) . T)) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) +((((-383 (-523))) |has| |#2| (-964 (-383 (-523)))) (((-523)) |has| |#2| (-964 (-523))) ((|#2|) . T) (((-796 |#1|)) . T)) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) (((|#1|) . T)) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014)))) -((((-522) |#1|) . T)) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) +((((-523) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-338)) (|has| |#2| (-262 |#2| |#2|))) (($ $) . T)) +(((|#2| $) -12 (|has| |#1| (-339)) (|has| |#2| (-263 |#2| |#2|))) (($ $) . T)) ((($ $) . T)) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-838))) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) -((((-792)) . T)) -((((-792)) . T)) -((((-792)) . T)) -(((|#1| (-494 |#2|)) . T)) -((((-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) . T)) -(((|#1| (-522)) . T)) -(((|#1| (-382 (-522))) . T)) -(((|#1| (-708)) . T)) -((((-112 |#1|)) . T) (($) . T) (((-382 (-522))) . T)) -(-3844 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) -(-3844 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) -((($) . T)) -(((|#2| (-494 (-794 |#1|))) . T)) -((((-522) |#1|) . T)) -(((|#2|) . T)) -(((|#2| (-708)) . T)) -((((-792)) -3844 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014)))) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-427)) (|has| |#1| (-840))) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) +((((-794)) . T)) +((((-794)) . T)) +((((-794)) . T)) +(((|#1| (-495 |#2|)) . T)) +((((-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) . T)) +(((|#1| (-523)) . T)) +(((|#1| (-383 (-523))) . T)) +(((|#1| (-710)) . T)) +((((-112 |#1|)) . T) (($) . T) (((-383 (-523))) . T)) +(-3262 (|has| |#2| (-427)) (|has| |#2| (-515)) (|has| |#2| (-840))) +(-3262 (|has| |#1| (-427)) (|has| |#1| (-515)) (|has| |#1| (-840))) +((($) . T)) +(((|#2| (-495 (-796 |#1|))) . T)) +((((-523) |#1|) . T)) +(((|#2|) . T)) +(((|#2| (-710)) . T)) +((((-794)) -3262 (|has| |#1| (-563 (-794))) (|has| |#1| (-1016)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-1068) |#1|) . T)) -((((-382 |#2|)) . T)) -((((-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T)) -(|has| |#1| (-514)) -(|has| |#1| (-514)) +((((-1070) |#1|) . T)) +((((-383 |#2|)) . T)) +((((-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T)) +(|has| |#1| (-515)) +(|has| |#1| (-515)) ((($) . T) ((|#2|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#2| $) |has| |#2| (-262 |#2| |#2|))) -(((|#1| (-588 |#1|)) |has| |#1| (-782))) -(-3844 (|has| |#1| (-210)) (|has| |#1| (-324))) -(-3844 (|has| |#1| (-338)) (|has| |#1| (-324))) -(|has| |#1| (-1014)) -(((|#1|) . T)) -((((-382 (-522))) . T) (($) . T)) -((((-925 |#1|)) . T) ((|#1|) . T) (((-522)) -3844 (|has| (-925 |#1|) (-962 (-522))) (|has| |#1| (-962 (-522)))) (((-382 (-522))) -3844 (|has| (-925 |#1|) (-962 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522)))))) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -((((-1085)) |has| |#1| (-829 (-1085)))) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) -(((|#1| (-553 |#1| |#3|) (-553 |#1| |#2|)) . T)) +(((|#2| $) |has| |#2| (-263 |#2| |#2|))) +(((|#1| (-589 |#1|)) |has| |#1| (-784))) +(-3262 (|has| |#1| (-211)) (|has| |#1| (-325))) +(-3262 (|has| |#1| (-339)) (|has| |#1| (-325))) +(|has| |#1| (-1016)) +(((|#1|) . T)) +((((-383 (-523))) . T) (($) . T)) +((((-927 |#1|)) . T) ((|#1|) . T) (((-523)) -3262 (|has| (-927 |#1|) (-964 (-523))) (|has| |#1| (-964 (-523)))) (((-383 (-523))) -3262 (|has| (-927 |#1|) (-964 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +((((-1087)) |has| |#1| (-831 (-1087)))) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) +(((|#1| (-554 |#1| |#3|) (-554 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1050 |#1| |#2|) #0#) |has| (-1050 |#1| |#2|) (-285 (-1050 |#1| |#2|)))) -(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((#0=(-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) #0#) |has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) -(((#0=(-112 |#1|)) |has| #0# (-285 #0#))) -(-3844 (|has| |#1| (-784)) (|has| |#1| (-1014))) +(((#0=(-1052 |#1| |#2|) #0#) |has| (-1052 |#1| |#2|) (-286 (-1052 |#1| |#2|)))) +(((|#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((#0=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) #0#) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) +(((#0=(-112 |#1|)) |has| #0# (-286 #0#))) +(-3262 (|has| |#1| (-786)) (|has| |#1| (-1016))) ((($ $) . T)) -((($ $) . T) ((#0=(-794 |#1|) $) . T) ((#0# |#2|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-210)) ((|#2| |#1|) |has| |#1| (-210)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-604 . -1014) T) ((-240 . -483) 142376) ((-224 . -483) 142319) ((-529 . -107) 142304) ((-494 . -23) T) ((-222 . -1014) 142254) ((-113 . -285) 142211) ((-452 . -483) 142003) ((-632 . -97) T) ((-1051 . -483) 141922) ((-365 . -124) T) ((-1177 . -903) 141891) ((-553 . -461) 141875) ((-567 . -124) T) ((-756 . -780) T) ((-491 . -55) 141825) ((-57 . -483) 141758) ((-487 . -483) 141691) ((-393 . -829) 141650) ((-154 . -971) T) ((-485 . -483) 141583) ((-467 . -483) 141516) ((-466 . -483) 141449) ((-736 . -962) 141236) ((-637 . -37) 141201) ((-318 . -324) T) ((-1009 . -1008) 141185) ((-1009 . -1014) 141163) ((-154 . -220) 141114) ((-154 . -210) 141065) ((-1009 . -1010) 141023) ((-801 . -262) 140981) ((-202 . -732) T) ((-202 . -729) T) ((-632 . -260) NIL) ((-1060 . -1097) 140960) ((-382 . -919) 140944) ((-639 . -21) T) ((-639 . -25) T) ((-1179 . -590) 140918) ((-291 . -146) 140897) ((-291 . -131) 140876) ((-1060 . -102) 140826) ((-126 . -25) T) ((-39 . -208) 140803) ((-112 . -21) T) ((-112 . -25) T) ((-557 . -264) 140779) ((-449 . -264) 140758) ((-1139 . -971) T) ((-789 . -971) T) ((-736 . -313) 140742) ((-113 . -1061) NIL) ((-89 . -562) 140674) ((-451 . -124) T) ((-545 . -1120) T) ((-1139 . -301) 140651) ((-529 . -971) T) ((-1139 . -210) T) ((-604 . -655) 140635) ((-886 . -264) 140612) ((-58 . -33) T) ((-982 . -732) T) ((-982 . -729) T) ((-753 . -664) T) ((-669 . -46) 140577) ((-569 . -37) 140564) ((-330 . -266) T) ((-327 . -266) T) ((-319 . -266) T) ((-240 . -266) 140495) ((-224 . -266) 140426) ((-949 . -97) T) ((-388 . -664) T) ((-113 . -37) 140371) ((-388 . -447) T) ((-329 . -97) T) ((-1115 . -978) T) ((-649 . -978) T) ((-1083 . -46) 140348) ((-1082 . -46) 140318) ((-1076 . -46) 140295) ((-960 . -139) 140241) ((-839 . -266) T) ((-1038 . -46) 140213) ((-632 . -285) NIL) ((-484 . -562) 140195) ((-479 . -562) 140177) ((-477 . -562) 140159) ((-302 . -1014) 140109) ((-650 . -426) 140040) ((-47 . -97) T) ((-1150 . -262) 140025) ((-1129 . -262) 139945) ((-588 . -608) 139929) ((-588 . -593) 139913) ((-314 . -21) T) ((-314 . -25) T) ((-39 . -324) NIL) ((-158 . -21) T) ((-158 . -25) T) ((-588 . -348) 139897) ((-553 . -262) 139874) ((-363 . -97) T) ((-1032 . -131) T) ((-122 . -562) 139806) ((-803 . -1014) T) ((-600 . -386) 139790) ((-652 . -562) 139772) ((-147 . -562) 139754) ((-143 . -562) 139736) ((-1179 . -664) T) ((-1016 . -33) T) ((-800 . -732) NIL) ((-800 . -729) NIL) ((-791 . -784) T) ((-669 . -815) NIL) ((-1188 . -124) T) ((-356 . -124) T) ((-833 . -97) T) ((-669 . -962) 139614) ((-494 . -124) T) ((-1003 . -386) 139598) ((-926 . -461) 139582) ((-113 . -375) 139559) ((-1076 . -1120) 139538) ((-719 . -386) 139522) ((-717 . -386) 139506) ((-872 . -33) T) ((-632 . -1061) NIL) ((-227 . -590) 139343) ((-226 . -590) 139167) ((-754 . -849) 139146) ((-428 . -386) 139130) ((-553 . -19) 139114) ((-1056 . -1114) 139083) ((-1076 . -815) NIL) ((-1076 . -813) 139035) ((-553 . -555) 139012) ((-1107 . -562) 138944) ((-1084 . -562) 138926) ((-60 . -370) T) ((-1082 . -962) 138861) ((-1076 . -962) 138827) ((-632 . -37) 138777) ((-448 . -262) 138762) ((-669 . -352) 138746) ((-600 . -978) T) ((-1150 . -928) 138712) ((-1129 . -928) 138678) ((-983 . -1097) 138653) ((-801 . -563) 138461) ((-801 . -562) 138443) ((-1094 . -461) 138380) ((-393 . -947) 138359) ((-47 . -285) 138346) ((-983 . -102) 138292) ((-452 . -461) 138229) ((-488 . -1120) T) ((-1051 . -461) 138200) ((-1076 . -313) 138152) ((-1076 . -352) 138104) ((-412 . -97) T) ((-1003 . -978) T) ((-227 . -33) T) ((-226 . -33) T) ((-719 . -978) T) ((-717 . -978) T) ((-669 . -829) 138081) ((-428 . -978) T) ((-57 . -461) 138065) ((-959 . -977) 138039) ((-487 . -461) 138023) ((-485 . -461) 138007) ((-467 . -461) 137991) ((-466 . -461) 137975) ((-222 . -483) 137908) ((-959 . -107) 137875) ((-1083 . -829) 137788) ((-612 . -1026) T) ((-1082 . -829) 137694) ((-1076 . -829) 137527) ((-1038 . -829) 137511) ((-329 . -1061) T) ((-297 . -977) 137493) ((-227 . -728) 137472) ((-227 . -731) 137423) ((-227 . -730) 137402) ((-226 . -728) 137381) ((-226 . -731) 137332) ((-226 . -730) 137311) ((-49 . -978) T) ((-227 . -664) 137242) ((-226 . -664) 137173) ((-1115 . -1014) T) ((-612 . -23) T) ((-535 . -978) T) ((-486 . -978) T) ((-354 . -977) 137138) ((-297 . -107) 137113) ((-71 . -358) T) ((-71 . -370) T) ((-949 . -37) 137050) ((-632 . -375) 137032) ((-94 . -97) T) ((-649 . -1014) T) ((-929 . -133) 137004) ((-929 . -135) 136976) ((-354 . -107) 136932) ((-294 . -1124) 136911) ((-448 . -928) 136877) ((-329 . -37) 136842) ((-39 . -345) 136814) ((-802 . -562) 136686) ((-123 . -121) 136670) ((-117 . -121) 136654) ((-771 . -977) 136624) ((-770 . -21) 136576) ((-764 . -977) 136560) ((-770 . -25) 136512) ((-294 . -514) 136463) ((-522 . -765) T) ((-217 . -1120) T) ((-771 . -107) 136428) ((-764 . -107) 136407) ((-1150 . -562) 136389) ((-1129 . -562) 136371) ((-1129 . -563) 136044) ((-1081 . -838) 136023) ((-1037 . -838) 136002) ((-47 . -37) 135967) ((-1186 . -1026) T) ((-553 . -562) 135879) ((-553 . -563) 135840) ((-1184 . -1026) T) ((-217 . -962) 135669) ((-1081 . -590) 135594) ((-1037 . -590) 135519) ((-656 . -562) 135501) ((-788 . -590) 135475) ((-1186 . -23) T) ((-1184 . -23) T) ((-959 . -971) T) ((-1094 . -262) 135454) ((-154 . -343) 135405) ((-930 . -1120) T) ((-43 . -23) T) ((-452 . -262) 135384) ((-539 . -1014) T) ((-1056 . -1023) 135353) ((-1018 . -1017) 135305) ((-365 . -21) T) ((-365 . -25) T) ((-140 . -1026) T) ((-1192 . -97) T) ((-930 . -813) 135287) ((-930 . -815) 135269) ((-1115 . -655) 135166) ((-569 . -208) 135150) ((-567 . -21) T) ((-265 . -514) T) ((-567 . -25) T) ((-1101 . -1014) T) ((-649 . -655) 135115) ((-217 . -352) 135085) ((-930 . -962) 135045) ((-354 . -971) T) ((-200 . -978) T) ((-113 . -208) 135022) ((-57 . -262) 134999) ((-140 . -23) T) ((-485 . -262) 134976) ((-302 . -483) 134909) ((-466 . -262) 134886) ((-354 . -220) T) ((-354 . -210) T) ((-771 . -971) T) ((-764 . -971) T) ((-650 . -878) 134856) ((-639 . -784) T) ((-448 . -562) 134838) ((-764 . -210) 134817) ((-126 . -784) T) ((-600 . -1014) T) ((-1094 . -555) 134796) ((-508 . -1097) 134775) ((-311 . -1014) T) ((-294 . -338) 134754) ((-382 . -135) 134733) ((-382 . -133) 134712) ((-892 . -1026) 134611) ((-217 . -829) 134544) ((-752 . -1026) 134475) ((-596 . -786) 134459) ((-452 . -555) 134438) ((-508 . -102) 134388) ((-930 . -352) 134370) ((-930 . -313) 134352) ((-92 . -1014) T) ((-892 . -23) 134163) ((-451 . -21) T) ((-451 . -25) T) ((-752 . -23) 134034) ((-1085 . -562) 134016) ((-57 . -19) 134000) ((-1085 . -563) 133922) ((-1081 . -664) T) ((-1037 . -664) T) ((-485 . -19) 133906) ((-466 . -19) 133890) ((-57 . -555) 133867) ((-1003 . -1014) T) ((-830 . -97) 133845) ((-788 . -664) T) ((-719 . -1014) T) ((-485 . -555) 133822) ((-466 . -555) 133799) ((-717 . -1014) T) ((-717 . -985) 133766) ((-435 . -1014) T) ((-428 . -1014) T) ((-539 . -655) 133741) ((-591 . -1014) T) ((-930 . -829) NIL) ((-1158 . -46) 133718) ((-572 . -1026) T) ((-612 . -124) T) ((-1152 . -97) T) ((-1151 . -46) 133688) ((-1130 . -46) 133665) ((-1115 . -157) 133616) ((-997 . -1124) 133567) ((-251 . -1014) T) ((-83 . -415) T) ((-83 . -370) T) ((-1082 . -283) 133546) ((-1076 . -283) 133525) ((-49 . -1014) T) ((-997 . -514) 133476) ((-649 . -157) T) ((-547 . -46) 133453) ((-202 . -590) 133418) ((-535 . -1014) T) ((-486 . -1014) T) ((-334 . -1124) T) ((-328 . -1124) T) ((-320 . -1124) T) ((-459 . -757) T) ((-459 . -849) T) ((-294 . -1026) T) ((-103 . -1124) T) ((-314 . -784) T) ((-195 . -849) T) ((-195 . -757) T) ((-652 . -977) 133388) ((-334 . -514) T) ((-328 . -514) T) ((-320 . -514) T) ((-103 . -514) T) ((-600 . -655) 133358) ((-1076 . -947) NIL) ((-294 . -23) T) ((-65 . -1120) T) ((-926 . -562) 133290) ((-632 . -208) 133272) ((-652 . -107) 133237) ((-588 . -33) T) ((-222 . -461) 133221) ((-1016 . -1012) 133205) ((-156 . -1014) T) ((-881 . -838) 133184) ((-454 . -838) 133163) ((-1188 . -21) T) ((-1188 . -25) T) ((-1186 . -124) T) ((-1184 . -124) T) ((-1003 . -655) 133012) ((-982 . -590) 132999) ((-881 . -590) 132924) ((-498 . -562) 132906) ((-498 . -563) 132887) ((-719 . -655) 132716) ((-717 . -655) 132565) ((-1177 . -97) T) ((-994 . -97) T) ((-356 . -25) T) ((-356 . -21) T) ((-454 . -590) 132490) ((-435 . -655) 132461) ((-428 . -655) 132310) ((-914 . -97) T) ((-675 . -97) T) ((-494 . -25) T) ((-1130 . -1120) 132289) ((-1162 . -562) 132255) ((-1130 . -815) NIL) ((-1130 . -813) 132207) ((-129 . -97) T) ((-43 . -124) T) ((-1094 . -563) NIL) ((-1094 . -562) 132189) ((-1052 . -1035) 132134) ((-318 . -978) T) ((-606 . -562) 132116) ((-265 . -1026) T) ((-330 . -562) 132098) ((-327 . -562) 132080) ((-319 . -562) 132062) ((-240 . -563) 131810) ((-240 . -562) 131792) ((-224 . -562) 131774) ((-224 . -563) 131635) ((-968 . -1114) 131564) ((-830 . -285) 131502) ((-1192 . -1061) T) ((-1151 . -962) 131437) ((-1130 . -962) 131403) ((-1115 . -483) 131370) ((-1051 . -562) 131352) ((-756 . -664) T) ((-553 . -264) 131329) ((-535 . -655) 131294) ((-452 . -563) NIL) ((-452 . -562) 131276) ((-486 . -655) 131221) ((-291 . -97) T) ((-288 . -97) T) ((-265 . -23) T) ((-140 . -124) T) ((-361 . -664) T) ((-801 . -977) 131173) ((-839 . -562) 131155) ((-839 . -563) 131137) ((-801 . -107) 131075) ((-128 . -97) T) ((-110 . -97) T) ((-650 . -1142) 131059) ((-652 . -971) T) ((-632 . -324) NIL) ((-487 . -562) 130991) ((-354 . -732) T) ((-200 . -1014) T) ((-354 . -729) T) ((-202 . -731) T) ((-202 . -728) T) ((-57 . -563) 130952) ((-57 . -562) 130864) ((-202 . -664) T) ((-485 . -563) 130825) ((-485 . -562) 130737) ((-467 . -562) 130669) ((-466 . -563) 130630) ((-466 . -562) 130542) ((-997 . -338) 130493) ((-39 . -386) 130470) ((-75 . -1120) T) ((-800 . -838) NIL) ((-334 . -304) 130454) ((-334 . -338) T) ((-328 . -304) 130438) ((-328 . -338) T) ((-320 . -304) 130422) ((-320 . -338) T) ((-291 . -260) 130401) ((-103 . -338) T) ((-68 . -1120) T) ((-1130 . -313) 130353) ((-800 . -590) 130298) ((-1130 . -352) 130250) ((-892 . -124) 130105) ((-752 . -124) 129976) ((-886 . -593) 129960) ((-1003 . -157) 129871) ((-886 . -348) 129855) ((-982 . -731) T) ((-982 . -728) T) ((-719 . -157) 129746) ((-717 . -157) 129657) ((-753 . -46) 129619) ((-982 . -664) T) ((-302 . -461) 129603) ((-881 . -664) T) ((-428 . -157) 129514) ((-222 . -262) 129491) ((-454 . -664) T) ((-1177 . -285) 129429) ((-1158 . -829) 129342) ((-1151 . -829) 129248) ((-1150 . -977) 129083) ((-1130 . -829) 128916) ((-1129 . -977) 128724) ((-1115 . -266) 128703) ((-1056 . -139) 128687) ((-992 . -97) T) ((-856 . -883) T) ((-73 . -1120) T) ((-675 . -285) 128625) ((-154 . -838) 128578) ((-606 . -357) 128550) ((-30 . -883) T) ((-1 . -562) 128532) ((-1032 . -97) T) ((-997 . -23) T) ((-49 . -566) 128516) ((-997 . -1026) T) ((-929 . -384) 128488) ((-547 . -829) 128401) ((-413 . -97) T) ((-129 . -285) NIL) ((-801 . -971) T) ((-770 . -784) 128380) ((-79 . -1120) T) ((-649 . -266) T) ((-39 . -978) T) ((-535 . -157) T) ((-486 . -157) T) ((-480 . -562) 128362) ((-154 . -590) 128272) ((-476 . -562) 128254) ((-326 . -135) 128236) ((-326 . -133) T) ((-334 . -1026) T) ((-328 . -1026) T) ((-320 . -1026) T) ((-930 . -283) T) ((-843 . -283) T) ((-801 . -220) T) ((-103 . -1026) T) ((-801 . -210) 128215) ((-1150 . -107) 128036) ((-1129 . -107) 127825) ((-222 . -1154) 127809) ((-522 . -782) T) ((-334 . -23) T) ((-329 . -324) T) ((-291 . -285) 127796) ((-288 . -285) 127737) ((-328 . -23) T) ((-294 . -124) T) ((-320 . -23) T) ((-930 . -947) T) ((-103 . -23) T) ((-222 . -555) 127714) ((-1152 . -37) 127606) ((-1139 . -838) 127585) ((-108 . -1014) T) ((-960 . -97) T) ((-1139 . -590) 127510) ((-800 . -731) NIL) ((-789 . -590) 127484) ((-800 . -728) NIL) ((-753 . -815) NIL) ((-800 . -664) T) ((-1003 . -483) 127357) ((-719 . -483) 127305) ((-717 . -483) 127257) ((-529 . -590) 127244) ((-753 . -962) 127074) ((-428 . -483) 127017) ((-363 . -364) T) ((-58 . -1120) T) ((-567 . -784) 126996) ((-470 . -603) T) ((-1056 . -903) 126965) ((-929 . -426) T) ((-637 . -782) T) ((-479 . -729) T) ((-448 . -977) 126800) ((-318 . -1014) T) ((-288 . -1061) NIL) ((-265 . -124) T) ((-369 . -1014) T) ((-632 . -345) 126767) ((-799 . -978) T) ((-200 . -566) 126744) ((-302 . -262) 126721) ((-448 . -107) 126542) ((-1150 . -971) T) ((-1129 . -971) T) ((-753 . -352) 126526) ((-154 . -664) T) ((-596 . -97) T) ((-1150 . -220) 126505) ((-1150 . -210) 126457) ((-1129 . -210) 126362) ((-1129 . -220) 126341) ((-929 . -377) NIL) ((-612 . -584) 126289) ((-291 . -37) 126199) ((-288 . -37) 126128) ((-67 . -562) 126110) ((-294 . -463) 126076) ((-1094 . -264) 126055) ((-1027 . -1026) 125986) ((-81 . -1120) T) ((-59 . -562) 125968) ((-452 . -264) 125947) ((-1179 . -962) 125924) ((-1074 . -1014) T) ((-1027 . -23) 125795) ((-753 . -829) 125731) ((-1139 . -664) T) ((-1016 . -1120) T) ((-1003 . -266) 125662) ((-822 . -97) T) ((-719 . -266) 125573) ((-302 . -19) 125557) ((-57 . -264) 125534) ((-717 . -266) 125465) ((-789 . -664) T) ((-113 . -782) NIL) ((-485 . -264) 125442) ((-302 . -555) 125419) ((-466 . -264) 125396) ((-428 . -266) 125327) ((-960 . -285) 125178) ((-529 . -664) T) ((-604 . -562) 125160) ((-222 . -563) 125121) ((-222 . -562) 125033) ((-1057 . -33) T) ((-872 . -1120) T) ((-318 . -655) 124978) ((-612 . -25) T) ((-612 . -21) T) ((-448 . -971) T) ((-580 . -392) 124943) ((-556 . -392) 124908) ((-1032 . -1061) T) ((-535 . -266) T) ((-486 . -266) T) ((-1151 . -283) 124887) ((-448 . -210) 124839) ((-448 . -220) 124818) ((-1130 . -283) 124797) ((-997 . -124) T) ((-801 . -732) 124776) ((-132 . -97) T) ((-39 . -1014) T) ((-801 . -729) 124755) ((-588 . -936) 124739) ((-534 . -978) T) ((-522 . -978) T) ((-465 . -978) T) ((-382 . -426) T) ((-334 . -124) T) ((-291 . -375) 124723) ((-288 . -375) 124684) ((-328 . -124) T) ((-320 . -124) T) ((-1130 . -947) NIL) ((-1090 . -1014) T) ((-1009 . -562) 124651) ((-103 . -124) T) ((-1032 . -37) 124638) ((-850 . -1014) T) ((-708 . -1014) T) ((-613 . -1014) T) ((-639 . -135) T) ((-112 . -135) T) ((-1186 . -21) T) ((-1186 . -25) T) ((-1184 . -21) T) ((-1184 . -25) T) ((-606 . -977) 124622) ((-494 . -784) T) ((-470 . -784) T) ((-330 . -977) 124574) ((-327 . -977) 124526) ((-319 . -977) 124478) ((-227 . -1120) T) ((-226 . -1120) T) ((-240 . -977) 124321) ((-224 . -977) 124164) ((-606 . -107) 124143) ((-330 . -107) 124081) ((-327 . -107) 124019) ((-319 . -107) 123957) ((-240 . -107) 123786) ((-224 . -107) 123615) ((-754 . -1124) 123594) ((-569 . -386) 123578) ((-43 . -21) T) ((-43 . -25) T) ((-752 . -584) 123486) ((-754 . -514) 123465) ((-227 . -962) 123294) ((-226 . -962) 123123) ((-122 . -115) 123107) ((-839 . -977) 123072) ((-637 . -978) T) ((-650 . -97) T) ((-318 . -157) T) ((-140 . -21) T) ((-140 . -25) T) ((-86 . -562) 123054) ((-839 . -107) 123010) ((-39 . -655) 122955) ((-799 . -1014) T) ((-302 . -563) 122916) ((-302 . -562) 122828) ((-1129 . -729) 122781) ((-1129 . -732) 122734) ((-227 . -352) 122704) ((-226 . -352) 122674) ((-596 . -37) 122644) ((-557 . -33) T) ((-455 . -1026) 122575) ((-449 . -33) T) ((-1027 . -124) 122446) ((-892 . -25) 122257) ((-803 . -562) 122239) ((-892 . -21) 122194) ((-752 . -21) 122105) ((-752 . -25) 121957) ((-569 . -978) T) ((-1087 . -514) 121936) ((-1081 . -46) 121913) ((-330 . -971) T) ((-327 . -971) T) ((-455 . -23) 121784) ((-319 . -971) T) ((-240 . -971) T) ((-224 . -971) T) ((-1037 . -46) 121756) ((-113 . -978) T) ((-959 . -590) 121730) ((-886 . -33) T) ((-330 . -210) 121709) ((-330 . -220) T) ((-327 . -210) 121688) ((-224 . -301) 121645) ((-327 . -220) T) ((-319 . -210) 121624) ((-319 . -220) T) ((-240 . -301) 121596) ((-240 . -210) 121575) ((-1066 . -139) 121559) ((-227 . -829) 121492) ((-226 . -829) 121425) ((-999 . -784) T) ((-1133 . -1120) T) ((-389 . -1026) T) ((-975 . -23) T) ((-839 . -971) T) ((-297 . -590) 121407) ((-949 . -782) T) ((-1115 . -928) 121373) ((-1082 . -849) 121352) ((-1076 . -849) 121331) ((-839 . -220) T) ((-754 . -338) 121310) ((-360 . -23) T) ((-123 . -1014) 121288) ((-117 . -1014) 121266) ((-839 . -210) T) ((-1076 . -757) NIL) ((-354 . -590) 121231) ((-799 . -655) 121218) ((-968 . -139) 121183) ((-39 . -157) T) ((-632 . -386) 121165) ((-650 . -285) 121152) ((-771 . -590) 121112) ((-764 . -590) 121086) ((-294 . -25) T) ((-294 . -21) T) ((-600 . -262) 121065) ((-534 . -1014) T) ((-522 . -1014) T) ((-465 . -1014) T) ((-222 . -264) 121042) ((-288 . -208) 121003) ((-1081 . -815) NIL) ((-1037 . -815) 120862) ((-1081 . -962) 120745) ((-1037 . -962) 120630) ((-166 . -562) 120612) ((-788 . -962) 120510) ((-719 . -262) 120437) ((-754 . -1026) T) ((-959 . -664) T) ((-553 . -593) 120421) ((-968 . -903) 120350) ((-925 . -97) T) ((-754 . -23) T) ((-650 . -1061) 120328) ((-632 . -978) T) ((-553 . -348) 120312) ((-326 . -426) T) ((-318 . -266) T) ((-1167 . -1014) T) ((-374 . -97) T) ((-265 . -21) T) ((-265 . -25) T) ((-336 . -664) T) ((-637 . -1014) T) ((-336 . -447) T) ((-1115 . -562) 120294) ((-1081 . -352) 120278) ((-1037 . -352) 120262) ((-949 . -386) 120224) ((-129 . -206) 120206) ((-354 . -731) T) ((-354 . -728) T) ((-799 . -157) T) ((-354 . -664) T) ((-649 . -562) 120188) ((-650 . -37) 120017) ((-1166 . -1164) 120001) ((-326 . -377) T) ((-1166 . -1014) 119951) ((-534 . -655) 119938) ((-522 . -655) 119925) ((-465 . -655) 119890) ((-291 . -574) 119869) ((-771 . -664) T) ((-764 . -664) T) ((-588 . -1120) T) ((-997 . -584) 119817) ((-1081 . -829) 119761) ((-1037 . -829) 119745) ((-604 . -977) 119729) ((-103 . -584) 119711) ((-455 . -124) 119582) ((-1087 . -1026) T) ((-881 . -46) 119551) ((-569 . -1014) T) ((-604 . -107) 119530) ((-302 . -264) 119507) ((-454 . -46) 119464) ((-1087 . -23) T) ((-113 . -1014) T) ((-98 . -97) 119442) ((-1176 . -1026) T) ((-975 . -124) T) ((-949 . -978) T) ((-756 . -962) 119426) ((-929 . -662) 119398) ((-1176 . -23) T) ((-637 . -655) 119363) ((-539 . -562) 119345) ((-361 . -962) 119329) ((-329 . -978) T) ((-360 . -124) T) ((-299 . -962) 119313) ((-202 . -815) 119295) ((-930 . -849) T) ((-89 . -33) T) ((-930 . -757) T) ((-843 . -849) T) ((-459 . -1124) T) ((-1101 . -562) 119277) ((-1019 . -1014) T) ((-195 . -1124) T) ((-925 . -285) 119242) ((-202 . -962) 119202) ((-39 . -266) T) ((-997 . -21) T) ((-997 . -25) T) ((-1032 . -765) T) ((-459 . -514) T) ((-334 . -25) T) ((-195 . -514) T) ((-334 . -21) T) ((-328 . -25) T) ((-328 . -21) T) ((-652 . -590) 119162) ((-320 . -25) T) ((-320 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -978) T) ((-534 . -157) T) ((-522 . -157) T) ((-465 . -157) T) ((-600 . -562) 119144) ((-675 . -674) 119128) ((-311 . -562) 119110) ((-66 . -358) T) ((-66 . -370) T) ((-1016 . -102) 119094) ((-982 . -815) 119076) ((-881 . -815) 119001) ((-595 . -1026) T) ((-569 . -655) 118988) ((-454 . -815) NIL) ((-1056 . -97) T) ((-982 . -962) 118970) ((-92 . -562) 118952) ((-451 . -135) T) ((-881 . -962) 118834) ((-113 . -655) 118779) ((-595 . -23) T) ((-454 . -962) 118657) ((-1003 . -563) NIL) ((-1003 . -562) 118639) ((-719 . -563) NIL) ((-719 . -562) 118600) ((-717 . -563) 118235) ((-717 . -562) 118149) ((-1027 . -584) 118057) ((-435 . -562) 118039) ((-428 . -562) 118021) ((-428 . -563) 117882) ((-960 . -206) 117828) ((-122 . -33) T) ((-754 . -124) T) ((-801 . -838) 117807) ((-591 . -562) 117789) ((-330 . -1183) 117773) ((-327 . -1183) 117757) ((-319 . -1183) 117741) ((-123 . -483) 117674) ((-117 . -483) 117607) ((-480 . -729) T) ((-480 . -732) T) ((-479 . -731) T) ((-98 . -285) 117545) ((-199 . -97) 117523) ((-632 . -1014) T) ((-637 . -157) T) ((-801 . -590) 117475) ((-63 . -359) T) ((-251 . -562) 117457) ((-63 . -370) T) ((-881 . -352) 117441) ((-799 . -266) T) ((-49 . -562) 117423) ((-925 . -37) 117371) ((-535 . -562) 117353) ((-454 . -352) 117337) ((-535 . -563) 117319) ((-486 . -562) 117301) ((-839 . -1183) 117288) ((-800 . -1120) T) ((-639 . -426) T) ((-465 . -483) 117254) ((-459 . -338) T) ((-330 . -343) 117233) ((-327 . -343) 117212) ((-319 . -343) 117191) ((-195 . -338) T) ((-652 . -664) T) ((-112 . -426) T) ((-1187 . -1178) 117175) ((-800 . -813) 117152) ((-800 . -815) NIL) ((-892 . -784) 117051) ((-752 . -784) 117002) ((-596 . -598) 116986) ((-1107 . -33) T) ((-156 . -562) 116968) ((-1027 . -21) 116879) ((-1027 . -25) 116731) ((-800 . -962) 116708) ((-881 . -829) 116689) ((-1139 . -46) 116666) ((-839 . -343) T) ((-57 . -593) 116650) ((-485 . -593) 116634) ((-454 . -829) 116611) ((-69 . -415) T) ((-69 . -370) T) ((-466 . -593) 116595) ((-57 . -348) 116579) ((-569 . -157) T) ((-485 . -348) 116563) ((-466 . -348) 116547) ((-764 . -647) 116531) ((-1081 . -283) 116510) ((-1087 . -124) T) ((-113 . -157) T) ((-1056 . -285) 116448) ((-154 . -1120) T) ((-580 . -682) 116432) ((-556 . -682) 116416) ((-1176 . -124) T) ((-1151 . -849) 116395) ((-1130 . -849) 116374) ((-1130 . -757) NIL) ((-632 . -655) 116324) ((-1129 . -838) 116277) ((-949 . -1014) T) ((-800 . -352) 116254) ((-800 . -313) 116231) ((-834 . -1026) T) ((-154 . -813) 116215) ((-154 . -815) 116140) ((-459 . -1026) T) ((-329 . -1014) T) ((-195 . -1026) T) ((-74 . -415) T) ((-74 . -370) T) ((-154 . -962) 116038) ((-294 . -784) T) ((-1166 . -483) 115971) ((-1150 . -590) 115868) ((-1129 . -590) 115738) ((-801 . -731) 115717) ((-801 . -728) 115696) ((-801 . -664) T) ((-459 . -23) T) ((-200 . -562) 115678) ((-158 . -426) T) ((-199 . -285) 115616) ((-84 . -415) T) ((-84 . -370) T) ((-195 . -23) T) ((-1188 . -1181) 115595) ((-534 . -266) T) ((-522 . -266) T) ((-617 . -962) 115579) ((-465 . -266) T) ((-128 . -444) 115534) ((-47 . -1014) T) ((-650 . -208) 115518) ((-800 . -829) NIL) ((-1139 . -815) NIL) ((-818 . -97) T) ((-814 . -97) T) ((-363 . -1014) T) ((-154 . -352) 115502) ((-154 . -313) 115486) ((-1139 . -962) 115369) ((-789 . -962) 115267) ((-1052 . -97) T) ((-595 . -124) T) ((-113 . -483) 115175) ((-604 . -729) 115154) ((-604 . -732) 115133) ((-529 . -962) 115115) ((-270 . -1173) 115085) ((-795 . -97) T) ((-891 . -514) 115064) ((-1115 . -977) 114947) ((-455 . -584) 114855) ((-833 . -1014) T) ((-949 . -655) 114792) ((-649 . -977) 114757) ((-553 . -33) T) ((-1057 . -1120) T) ((-1115 . -107) 114626) ((-448 . -590) 114523) ((-329 . -655) 114468) ((-154 . -829) 114427) ((-637 . -266) T) ((-632 . -157) T) ((-649 . -107) 114383) ((-1192 . -978) T) ((-1139 . -352) 114367) ((-393 . -1124) 114345) ((-288 . -782) NIL) ((-393 . -514) T) ((-202 . -283) T) ((-1129 . -728) 114298) ((-1129 . -731) 114251) ((-1150 . -664) T) ((-1129 . -664) T) ((-47 . -655) 114216) ((-202 . -947) T) ((-326 . -1173) 114193) ((-1152 . -386) 114159) ((-656 . -664) T) ((-1139 . -829) 114103) ((-108 . -562) 114085) ((-108 . -563) 114067) ((-656 . -447) T) ((-455 . -21) 113978) ((-123 . -461) 113962) ((-117 . -461) 113946) ((-455 . -25) 113798) ((-569 . -266) T) ((-539 . -977) 113773) ((-412 . -1014) T) ((-982 . -283) T) ((-113 . -266) T) ((-1018 . -97) T) ((-929 . -97) T) ((-539 . -107) 113741) ((-1052 . -285) 113679) ((-1115 . -971) T) ((-982 . -947) T) ((-64 . -1120) T) ((-975 . -25) T) ((-975 . -21) T) ((-649 . -971) T) ((-360 . -21) T) ((-360 . -25) T) ((-632 . -483) NIL) ((-949 . -157) T) ((-649 . -220) T) ((-982 . -507) T) ((-472 . -97) T) ((-329 . -157) T) ((-318 . -562) 113661) ((-369 . -562) 113643) ((-448 . -664) T) ((-1032 . -782) T) ((-821 . -962) 113611) ((-103 . -784) T) ((-600 . -977) 113595) ((-459 . -124) T) ((-1152 . -978) T) ((-195 . -124) T) ((-1066 . -97) 113573) ((-94 . -1014) T) ((-222 . -608) 113557) ((-222 . -593) 113541) ((-600 . -107) 113520) ((-291 . -386) 113504) ((-222 . -348) 113488) ((-1069 . -212) 113435) ((-925 . -208) 113419) ((-72 . -1120) T) ((-47 . -157) T) ((-639 . -362) T) ((-639 . -131) T) ((-1187 . -97) T) ((-1003 . -977) 113262) ((-240 . -838) 113241) ((-224 . -838) 113220) ((-719 . -977) 113043) ((-717 . -977) 112886) ((-557 . -1120) T) ((-1074 . -562) 112868) ((-1003 . -107) 112697) ((-968 . -97) T) ((-449 . -1120) T) ((-435 . -977) 112668) ((-428 . -977) 112511) ((-606 . -590) 112495) ((-800 . -283) T) ((-719 . -107) 112304) ((-717 . -107) 112133) ((-330 . -590) 112085) ((-327 . -590) 112037) ((-319 . -590) 111989) ((-240 . -590) 111914) ((-224 . -590) 111839) ((-1068 . -784) T) ((-1004 . -962) 111823) ((-435 . -107) 111784) ((-428 . -107) 111613) ((-993 . -962) 111590) ((-926 . -33) T) ((-894 . -562) 111551) ((-886 . -1120) T) ((-122 . -936) 111535) ((-891 . -1026) T) ((-800 . -947) NIL) ((-673 . -1026) T) ((-653 . -1026) T) ((-1166 . -461) 111519) ((-1052 . -37) 111479) ((-891 . -23) T) ((-777 . -97) T) ((-754 . -21) T) ((-754 . -25) T) ((-673 . -23) T) ((-653 . -23) T) ((-106 . -603) T) ((-839 . -590) 111444) ((-535 . -977) 111409) ((-486 . -977) 111354) ((-204 . -55) 111312) ((-427 . -23) T) ((-382 . -97) T) ((-239 . -97) T) ((-632 . -266) T) ((-795 . -37) 111282) ((-535 . -107) 111238) ((-486 . -107) 111167) ((-393 . -1026) T) ((-291 . -978) 111058) ((-288 . -978) T) ((-600 . -971) T) ((-1192 . -1014) T) ((-154 . -283) 110989) ((-393 . -23) T) ((-39 . -562) 110971) ((-39 . -563) 110955) ((-103 . -919) 110937) ((-112 . -798) 110921) ((-47 . -483) 110887) ((-1107 . -936) 110871) ((-1090 . -562) 110853) ((-1094 . -33) T) ((-850 . -562) 110835) ((-1027 . -784) 110786) ((-708 . -562) 110768) ((-613 . -562) 110750) ((-1066 . -285) 110688) ((-452 . -33) T) ((-1007 . -1120) T) ((-451 . -426) T) ((-1003 . -971) T) ((-1051 . -33) T) ((-719 . -971) T) ((-717 . -971) T) ((-589 . -212) 110672) ((-577 . -212) 110618) ((-1139 . -283) 110597) ((-1003 . -301) 110558) ((-428 . -971) T) ((-1087 . -21) T) ((-1003 . -210) 110537) ((-719 . -301) 110514) ((-719 . -210) T) ((-717 . -301) 110486) ((-302 . -593) 110470) ((-669 . -1124) 110449) ((-1087 . -25) T) ((-57 . -33) T) ((-487 . -33) T) ((-485 . -33) T) ((-428 . -301) 110428) ((-302 . -348) 110412) ((-467 . -33) T) ((-466 . -33) T) ((-929 . -1061) NIL) ((-580 . -97) T) ((-556 . -97) T) ((-669 . -514) 110343) ((-330 . -664) T) ((-327 . -664) T) ((-319 . -664) T) ((-240 . -664) T) ((-224 . -664) T) ((-968 . -285) 110251) ((-830 . -1014) 110229) ((-49 . -971) T) ((-1176 . -21) T) ((-1176 . -25) T) ((-1083 . -514) 110208) ((-1082 . -1124) 110187) ((-535 . -971) T) ((-486 . -971) T) ((-1076 . -1124) 110166) ((-336 . -962) 110150) ((-297 . -962) 110134) ((-949 . -266) T) ((-354 . -815) 110116) ((-1082 . -514) 110067) ((-1076 . -514) 110018) ((-929 . -37) 109963) ((-736 . -1026) T) ((-839 . -664) T) ((-535 . -220) T) ((-535 . -210) T) ((-486 . -210) T) ((-486 . -220) T) ((-1038 . -514) 109942) ((-329 . -266) T) ((-589 . -633) 109926) ((-354 . -962) 109886) ((-1032 . -978) T) ((-98 . -121) 109870) ((-736 . -23) T) ((-1166 . -262) 109847) ((-382 . -285) 109812) ((-1186 . -1181) 109788) ((-1184 . -1181) 109767) ((-1152 . -1014) T) ((-799 . -562) 109749) ((-771 . -962) 109718) ((-182 . -724) T) ((-181 . -724) T) ((-180 . -724) T) ((-179 . -724) T) ((-178 . -724) T) ((-177 . -724) T) ((-176 . -724) T) ((-175 . -724) T) ((-174 . -724) T) ((-173 . -724) T) ((-465 . -928) T) ((-250 . -773) T) ((-249 . -773) T) ((-248 . -773) T) ((-247 . -773) T) ((-47 . -266) T) ((-246 . -773) T) ((-245 . -773) T) ((-244 . -773) T) ((-172 . -724) T) ((-561 . -784) T) ((-596 . -386) 109702) ((-106 . -784) T) ((-595 . -21) T) ((-595 . -25) T) ((-1187 . -37) 109672) ((-113 . -262) 109623) ((-1166 . -19) 109607) ((-1166 . -555) 109584) ((-1177 . -1014) T) ((-994 . -1014) T) ((-914 . -1014) T) ((-891 . -124) T) ((-675 . -1014) T) ((-673 . -124) T) ((-653 . -124) T) ((-480 . -730) T) ((-382 . -1061) 109562) ((-427 . -124) T) ((-480 . -731) T) ((-200 . -971) T) ((-270 . -97) 109345) ((-129 . -1014) T) ((-637 . -928) T) ((-89 . -1120) T) ((-123 . -562) 109277) ((-117 . -562) 109209) ((-1192 . -157) T) ((-1082 . -338) 109188) ((-1076 . -338) 109167) ((-291 . -1014) T) ((-393 . -124) T) ((-288 . -1014) T) ((-382 . -37) 109119) ((-1045 . -97) T) ((-1152 . -655) 109011) ((-596 . -978) T) ((-294 . -133) 108990) ((-294 . -135) 108969) ((-128 . -1014) T) ((-110 . -1014) T) ((-791 . -97) T) ((-534 . -562) 108951) ((-522 . -563) 108850) ((-522 . -562) 108832) ((-465 . -562) 108814) ((-465 . -563) 108759) ((-457 . -23) T) ((-455 . -784) 108710) ((-459 . -584) 108692) ((-893 . -562) 108674) ((-195 . -584) 108656) ((-202 . -379) T) ((-604 . -590) 108640) ((-1081 . -849) 108619) ((-669 . -1026) T) ((-326 . -97) T) ((-755 . -784) T) ((-669 . -23) T) ((-318 . -977) 108564) ((-1068 . -1067) T) ((-1057 . -102) 108548) ((-1083 . -1026) T) ((-1082 . -1026) T) ((-484 . -962) 108532) ((-1076 . -1026) T) ((-1038 . -1026) T) ((-318 . -107) 108461) ((-930 . -1124) T) ((-122 . -1120) T) ((-843 . -1124) T) ((-632 . -262) NIL) ((-1167 . -562) 108443) ((-1083 . -23) T) ((-1082 . -23) T) ((-930 . -514) T) ((-1076 . -23) T) ((-843 . -514) T) ((-1052 . -208) 108427) ((-225 . -562) 108409) ((-1038 . -23) T) ((-992 . -1014) T) ((-736 . -124) T) ((-291 . -655) 108319) ((-288 . -655) 108248) ((-637 . -562) 108230) ((-637 . -563) 108175) ((-382 . -375) 108159) ((-413 . -1014) T) ((-459 . -25) T) ((-459 . -21) T) ((-1032 . -1014) T) ((-195 . -25) T) ((-195 . -21) T) ((-650 . -386) 108143) ((-652 . -962) 108112) ((-1166 . -562) 108024) ((-1166 . -563) 107985) ((-1152 . -157) T) ((-222 . -33) T) ((-855 . -901) T) ((-1107 . -1120) T) ((-604 . -728) 107964) ((-604 . -731) 107943) ((-373 . -370) T) ((-491 . -97) 107921) ((-960 . -1014) T) ((-199 . -921) 107905) ((-474 . -97) T) ((-569 . -562) 107887) ((-44 . -784) NIL) ((-569 . -563) 107864) ((-960 . -559) 107839) ((-830 . -483) 107772) ((-318 . -971) T) ((-113 . -563) NIL) ((-113 . -562) 107754) ((-801 . -1120) T) ((-612 . -392) 107738) ((-612 . -1035) 107683) ((-470 . -139) 107665) ((-318 . -210) T) ((-318 . -220) T) ((-39 . -977) 107610) ((-801 . -813) 107594) ((-801 . -815) 107519) ((-650 . -978) T) ((-632 . -928) NIL) ((-1150 . -46) 107489) ((-1129 . -46) 107466) ((-1051 . -936) 107437) ((-202 . -849) T) ((-39 . -107) 107366) ((-801 . -962) 107233) ((-1032 . -655) 107220) ((-1019 . -562) 107202) ((-997 . -135) 107181) ((-997 . -133) 107132) ((-930 . -338) T) ((-294 . -1109) 107098) ((-354 . -283) T) ((-294 . -1106) 107064) ((-291 . -157) 107043) ((-288 . -157) T) ((-929 . -208) 107020) ((-843 . -338) T) ((-535 . -1183) 107007) ((-486 . -1183) 106984) ((-334 . -135) 106963) ((-334 . -133) 106914) ((-328 . -135) 106893) ((-328 . -133) 106844) ((-557 . -1097) 106820) ((-320 . -135) 106799) ((-320 . -133) 106750) ((-294 . -34) 106716) ((-449 . -1097) 106695) ((0 . |EnumerationCategory|) T) ((-294 . -91) 106661) ((-354 . -947) T) ((-103 . -135) T) ((-103 . -133) NIL) ((-44 . -212) 106611) ((-596 . -1014) T) ((-557 . -102) 106558) ((-457 . -124) T) ((-449 . -102) 106508) ((-217 . -1026) 106439) ((-801 . -352) 106423) ((-801 . -313) 106407) ((-217 . -23) 106278) ((-982 . -849) T) ((-982 . -757) T) ((-535 . -343) T) ((-486 . -343) T) ((-326 . -1061) T) ((-302 . -33) T) ((-43 . -392) 106262) ((-802 . -1120) T) ((-365 . -682) 106246) ((-1177 . -483) 106179) ((-669 . -124) T) ((-1158 . -514) 106158) ((-1151 . -1124) 106137) ((-1151 . -514) 106088) ((-675 . -483) 106021) ((-1130 . -1124) 106000) ((-1130 . -514) 105951) ((-822 . -1014) T) ((-132 . -778) T) ((-1129 . -1120) 105930) ((-1129 . -815) 105803) ((-1129 . -813) 105773) ((-491 . -285) 105711) ((-1083 . -124) T) ((-129 . -483) NIL) ((-1082 . -124) T) ((-1076 . -124) T) ((-1038 . -124) T) ((-949 . -928) T) ((-326 . -37) 105676) ((-930 . -1026) T) ((-843 . -1026) T) ((-80 . -562) 105658) ((-39 . -971) T) ((-799 . -977) 105645) ((-930 . -23) T) ((-801 . -829) 105604) ((-639 . -97) T) ((-929 . -324) NIL) ((-553 . -1120) T) ((-898 . -23) T) ((-843 . -23) T) ((-799 . -107) 105589) ((-402 . -1026) T) ((-448 . -46) 105559) ((-126 . -97) T) ((-39 . -210) 105531) ((-39 . -220) T) ((-112 . -97) T) ((-548 . -514) 105510) ((-547 . -514) 105489) ((-632 . -562) 105471) ((-632 . -563) 105379) ((-291 . -483) 105345) ((-288 . -483) 105237) ((-1150 . -962) 105221) ((-1129 . -962) 105010) ((-925 . -386) 104994) ((-402 . -23) T) ((-1032 . -157) T) ((-1152 . -266) T) ((-596 . -655) 104964) ((-132 . -1014) T) ((-47 . -928) T) ((-382 . -208) 104948) ((-271 . -212) 104898) ((-800 . -849) T) ((-800 . -757) NIL) ((-794 . -784) T) ((-1129 . -313) 104868) ((-1129 . -352) 104838) ((-199 . -1033) 104822) ((-1166 . -264) 104799) ((-1115 . -590) 104724) ((-891 . -21) T) ((-891 . -25) T) ((-673 . -21) T) ((-673 . -25) T) ((-653 . -21) T) ((-653 . -25) T) ((-649 . -590) 104689) ((-427 . -21) T) ((-427 . -25) T) ((-314 . -97) T) ((-158 . -97) T) ((-925 . -978) T) ((-799 . -971) T) ((-711 . -97) T) ((-1151 . -338) 104668) ((-1150 . -829) 104574) ((-1130 . -338) 104553) ((-1129 . -829) 104404) ((-949 . -562) 104386) ((-382 . -765) 104339) ((-1083 . -463) 104305) ((-154 . -849) 104236) ((-1082 . -463) 104202) ((-1076 . -463) 104168) ((-650 . -1014) T) ((-1038 . -463) 104134) ((-534 . -977) 104121) ((-522 . -977) 104108) ((-465 . -977) 104073) ((-291 . -266) 104052) ((-288 . -266) T) ((-329 . -562) 104034) ((-393 . -25) T) ((-393 . -21) T) ((-94 . -262) 104013) ((-534 . -107) 103998) ((-522 . -107) 103983) ((-465 . -107) 103939) ((-1085 . -815) 103906) ((-830 . -461) 103890) ((-47 . -562) 103872) ((-47 . -563) 103817) ((-217 . -124) 103688) ((-1139 . -849) 103667) ((-753 . -1124) 103646) ((-960 . -483) 103490) ((-363 . -562) 103472) ((-753 . -514) 103403) ((-539 . -590) 103378) ((-240 . -46) 103350) ((-224 . -46) 103307) ((-494 . -478) 103284) ((-926 . -1120) T) ((-637 . -977) 103249) ((-1158 . -1026) T) ((-1151 . -1026) T) ((-1130 . -1026) T) ((-929 . -345) 103221) ((-108 . -343) T) ((-448 . -829) 103127) ((-1158 . -23) T) ((-1151 . -23) T) ((-833 . -562) 103109) ((-89 . -102) 103093) ((-1115 . -664) T) ((-834 . -784) 103044) ((-639 . -1061) T) ((-637 . -107) 103000) ((-1130 . -23) T) ((-548 . -1026) T) ((-547 . -1026) T) ((-650 . -655) 102829) ((-649 . -664) T) ((-1032 . -266) T) ((-930 . -124) T) ((-459 . -784) T) ((-898 . -124) T) ((-843 . -124) T) ((-534 . -971) T) ((-195 . -784) T) ((-522 . -971) T) ((-736 . -25) T) ((-736 . -21) T) ((-465 . -971) T) ((-548 . -23) T) ((-318 . -1183) 102806) ((-294 . -426) 102785) ((-314 . -285) 102772) ((-547 . -23) T) ((-402 . -124) T) ((-600 . -590) 102746) ((-222 . -936) 102730) ((-801 . -283) T) ((-1188 . -1178) 102714) ((-639 . -37) 102701) ((-522 . -210) T) ((-465 . -220) T) ((-465 . -210) T) ((-708 . -729) T) ((-708 . -732) T) ((-1060 . -212) 102651) ((-1003 . -838) 102630) ((-112 . -37) 102617) ((-188 . -737) T) ((-187 . -737) T) ((-186 . -737) T) ((-185 . -737) T) ((-801 . -947) 102596) ((-1177 . -461) 102580) ((-719 . -838) 102559) ((-717 . -838) 102538) ((-1094 . -1120) T) ((-428 . -838) 102517) ((-675 . -461) 102501) ((-1003 . -590) 102426) ((-719 . -590) 102351) ((-569 . -977) 102338) ((-452 . -1120) T) ((-318 . -343) T) ((-129 . -461) 102320) ((-717 . -590) 102245) ((-1051 . -1120) T) ((-435 . -590) 102216) ((-240 . -815) 102075) ((-224 . -815) NIL) ((-113 . -977) 102020) ((-428 . -590) 101945) ((-606 . -962) 101922) ((-569 . -107) 101907) ((-330 . -962) 101891) ((-327 . -962) 101875) ((-319 . -962) 101859) ((-240 . -962) 101705) ((-224 . -962) 101583) ((-113 . -107) 101512) ((-57 . -1120) T) ((-487 . -1120) T) ((-485 . -1120) T) ((-467 . -1120) T) ((-466 . -1120) T) ((-412 . -562) 101494) ((-409 . -562) 101476) ((-3 . -97) T) ((-952 . -1114) 101445) ((-770 . -97) T) ((-628 . -55) 101403) ((-637 . -971) T) ((-49 . -590) 101377) ((-265 . -426) T) ((-450 . -1114) 101346) ((0 . -97) T) ((-535 . -590) 101311) ((-486 . -590) 101256) ((-48 . -97) T) ((-839 . -962) 101243) ((-637 . -220) T) ((-997 . -384) 101222) ((-669 . -584) 101170) ((-925 . -1014) T) ((-650 . -157) 101061) ((-459 . -919) 101043) ((-240 . -352) 101027) ((-224 . -352) 101011) ((-374 . -1014) T) ((-314 . -37) 100995) ((-951 . -97) 100973) ((-195 . -919) 100955) ((-158 . -37) 100887) ((-1150 . -283) 100866) ((-1129 . -283) 100845) ((-600 . -664) T) ((-94 . -562) 100827) ((-1076 . -584) 100779) ((-457 . -25) T) ((-457 . -21) T) ((-1129 . -947) 100732) ((-569 . -971) T) ((-354 . -379) T) ((-365 . -97) T) ((-240 . -829) 100678) ((-224 . -829) 100655) ((-113 . -971) T) ((-753 . -1026) T) ((-1003 . -664) T) ((-569 . -210) 100634) ((-567 . -97) T) ((-719 . -664) T) ((-717 . -664) T) ((-388 . -1026) T) ((-113 . -220) T) ((-39 . -343) NIL) ((-113 . -210) NIL) ((-428 . -664) T) ((-753 . -23) T) ((-669 . -25) T) ((-669 . -21) T) ((-641 . -784) T) ((-994 . -262) 100613) ((-76 . -371) T) ((-76 . -370) T) ((-632 . -977) 100563) ((-1158 . -124) T) ((-1151 . -124) T) ((-1130 . -124) T) ((-1052 . -386) 100547) ((-580 . -342) 100479) ((-556 . -342) 100411) ((-1066 . -1059) 100395) ((-98 . -1014) 100373) ((-1083 . -25) T) ((-1083 . -21) T) ((-1082 . -21) T) ((-925 . -655) 100321) ((-200 . -590) 100288) ((-632 . -107) 100222) ((-49 . -664) T) ((-1082 . -25) T) ((-326 . -324) T) ((-1076 . -21) T) ((-997 . -426) 100173) ((-1076 . -25) T) ((-650 . -483) 100121) ((-535 . -664) T) ((-486 . -664) T) ((-1038 . -21) T) ((-1038 . -25) T) ((-548 . -124) T) ((-547 . -124) T) ((-334 . -426) T) ((-328 . -426) T) ((-320 . -426) T) ((-448 . -283) 100100) ((-288 . -262) 100035) ((-103 . -426) T) ((-77 . -415) T) ((-77 . -370) T) ((-451 . -97) T) ((-1192 . -562) 100017) ((-1192 . -563) 99999) ((-997 . -377) 99978) ((-960 . -461) 99909) ((-522 . -732) T) ((-522 . -729) T) ((-983 . -212) 99855) ((-334 . -377) 99806) ((-328 . -377) 99757) ((-320 . -377) 99708) ((-1179 . -1026) T) ((-1179 . -23) T) ((-1168 . -97) T) ((-159 . -562) 99690) ((-1052 . -978) T) ((-612 . -682) 99674) ((-1087 . -133) 99653) ((-1087 . -135) 99632) ((-1056 . -1014) T) ((-1056 . -990) 99601) ((-67 . -1120) T) ((-949 . -977) 99538) ((-795 . -978) T) ((-217 . -584) 99446) ((-632 . -971) T) ((-329 . -977) 99391) ((-59 . -1120) T) ((-949 . -107) 99307) ((-830 . -562) 99239) ((-632 . -220) T) ((-632 . -210) NIL) ((-777 . -782) 99218) ((-637 . -732) T) ((-637 . -729) T) ((-929 . -386) 99195) ((-329 . -107) 99124) ((-354 . -849) T) ((-382 . -782) 99103) ((-650 . -266) 99014) ((-200 . -664) T) ((-1158 . -463) 98980) ((-1151 . -463) 98946) ((-1130 . -463) 98912) ((-291 . -928) 98891) ((-199 . -1014) 98869) ((-294 . -900) 98832) ((-100 . -97) T) ((-47 . -977) 98797) ((-1188 . -97) T) ((-356 . -97) T) ((-47 . -107) 98753) ((-930 . -584) 98735) ((-1152 . -562) 98717) ((-494 . -97) T) ((-470 . -97) T) ((-1045 . -1046) 98701) ((-140 . -1173) 98685) ((-222 . -1120) T) ((-1081 . -1124) 98664) ((-1037 . -1124) 98643) ((-217 . -21) 98554) ((-217 . -25) 98406) ((-123 . -115) 98390) ((-117 . -115) 98374) ((-43 . -682) 98358) ((-1081 . -514) 98269) ((-1037 . -514) 98200) ((-960 . -262) 98175) ((-753 . -124) T) ((-113 . -732) NIL) ((-113 . -729) NIL) ((-330 . -283) T) ((-327 . -283) T) ((-319 . -283) T) ((-1009 . -1120) T) ((-227 . -1026) 98106) ((-226 . -1026) 98037) ((-949 . -971) T) ((-929 . -978) T) ((-318 . -590) 97982) ((-567 . -37) 97966) ((-1177 . -562) 97928) ((-1177 . -563) 97889) ((-994 . -562) 97871) ((-949 . -220) T) ((-329 . -971) T) ((-752 . -1173) 97841) ((-227 . -23) T) ((-226 . -23) T) ((-914 . -562) 97823) ((-675 . -563) 97784) ((-675 . -562) 97766) ((-736 . -784) 97745) ((-925 . -483) 97657) ((-329 . -210) T) ((-329 . -220) T) ((-1069 . -139) 97604) ((-930 . -25) T) ((-129 . -562) 97586) ((-129 . -563) 97545) ((-839 . -283) T) ((-930 . -21) T) ((-898 . -25) T) ((-843 . -21) T) ((-843 . -25) T) ((-402 . -21) T) ((-402 . -25) T) ((-777 . -386) 97529) ((-47 . -971) T) ((-1186 . -1178) 97513) ((-1184 . -1178) 97497) ((-960 . -555) 97472) ((-291 . -563) 97333) ((-291 . -562) 97315) ((-288 . -563) NIL) ((-288 . -562) 97297) ((-47 . -220) T) ((-47 . -210) T) ((-596 . -262) 97258) ((-508 . -212) 97208) ((-128 . -562) 97190) ((-110 . -562) 97172) ((-451 . -37) 97137) ((-1188 . -1185) 97116) ((-1179 . -124) T) ((-1187 . -978) T) ((-999 . -97) T) ((-86 . -1120) T) ((-470 . -285) NIL) ((-926 . -102) 97100) ((-818 . -1014) T) ((-814 . -1014) T) ((-1166 . -593) 97084) ((-1166 . -348) 97068) ((-302 . -1120) T) ((-545 . -784) T) ((-1052 . -1014) T) ((-1052 . -974) 97008) ((-98 . -483) 96941) ((-856 . -562) 96923) ((-318 . -664) T) ((-30 . -562) 96905) ((-795 . -1014) T) ((-777 . -978) 96884) ((-39 . -590) 96829) ((-202 . -1124) T) ((-382 . -978) T) ((-1068 . -139) 96811) ((-925 . -266) 96762) ((-202 . -514) T) ((-294 . -1147) 96746) ((-294 . -1144) 96716) ((-1094 . -1097) 96695) ((-992 . -562) 96677) ((-589 . -139) 96661) ((-577 . -139) 96607) ((-1094 . -102) 96557) ((-452 . -1097) 96536) ((-459 . -135) T) ((-459 . -133) NIL) ((-1032 . -563) 96451) ((-413 . -562) 96433) ((-195 . -135) T) ((-195 . -133) NIL) ((-1032 . -562) 96415) ((-51 . -97) T) ((-1130 . -584) 96367) ((-452 . -102) 96317) ((-920 . -23) T) ((-1188 . -37) 96287) ((-1081 . -1026) T) ((-1037 . -1026) T) ((-982 . -1124) T) ((-788 . -1026) T) ((-881 . -1124) 96266) ((-454 . -1124) 96245) ((-669 . -784) 96224) ((-982 . -514) T) ((-881 . -514) 96155) ((-1081 . -23) T) ((-1037 . -23) T) ((-788 . -23) T) ((-454 . -514) 96086) ((-1052 . -655) 96018) ((-1056 . -483) 95951) ((-960 . -563) NIL) ((-960 . -562) 95933) ((-795 . -655) 95903) ((-1115 . -46) 95872) ((-227 . -124) T) ((-226 . -124) T) ((-1018 . -1014) T) ((-929 . -1014) T) ((-60 . -562) 95854) ((-1076 . -784) NIL) ((-949 . -729) T) ((-949 . -732) T) ((-1192 . -977) 95841) ((-1192 . -107) 95826) ((-799 . -590) 95813) ((-1158 . -25) T) ((-1158 . -21) T) ((-1151 . -21) T) ((-1151 . -25) T) ((-1130 . -21) T) ((-1130 . -25) T) ((-952 . -139) 95797) ((-801 . -757) 95776) ((-801 . -849) T) ((-650 . -262) 95703) ((-548 . -21) T) ((-548 . -25) T) ((-547 . -21) T) ((-39 . -664) T) ((-199 . -483) 95636) ((-547 . -25) T) ((-450 . -139) 95620) ((-437 . -139) 95604) ((-850 . -664) T) ((-708 . -730) T) ((-708 . -731) T) ((-472 . -1014) T) ((-708 . -664) T) ((-202 . -338) T) ((-1066 . -1014) 95582) ((-800 . -1124) T) ((-596 . -562) 95564) ((-800 . -514) T) ((-632 . -343) NIL) ((-334 . -1173) 95548) ((-612 . -97) T) ((-328 . -1173) 95532) ((-320 . -1173) 95516) ((-1187 . -1014) T) ((-488 . -784) 95495) ((-754 . -426) 95474) ((-968 . -1014) T) ((-968 . -990) 95403) ((-952 . -903) 95372) ((-756 . -1026) T) ((-929 . -655) 95317) ((-361 . -1026) T) ((-450 . -903) 95286) ((-437 . -903) 95255) ((-106 . -139) 95237) ((-71 . -562) 95219) ((-822 . -562) 95201) ((-997 . -662) 95180) ((-1192 . -971) T) ((-753 . -584) 95128) ((-270 . -978) 95071) ((-154 . -1124) 94976) ((-202 . -1026) T) ((-299 . -23) T) ((-1076 . -919) 94928) ((-777 . -1014) T) ((-1038 . -678) 94907) ((-1152 . -977) 94812) ((-1150 . -849) 94791) ((-799 . -664) T) ((-154 . -514) 94702) ((-1129 . -849) 94681) ((-534 . -590) 94668) ((-382 . -1014) T) ((-522 . -590) 94655) ((-239 . -1014) T) ((-465 . -590) 94620) ((-202 . -23) T) ((-1129 . -757) 94573) ((-1186 . -97) T) ((-329 . -1183) 94550) ((-1184 . -97) T) ((-1152 . -107) 94442) ((-132 . -562) 94424) ((-920 . -124) T) ((-43 . -97) T) ((-217 . -784) 94375) ((-1139 . -1124) 94354) ((-98 . -461) 94338) ((-1187 . -655) 94308) ((-1003 . -46) 94269) ((-982 . -1026) T) ((-881 . -1026) T) ((-123 . -33) T) ((-117 . -33) T) ((-719 . -46) 94246) ((-717 . -46) 94218) ((-1139 . -514) 94129) ((-329 . -343) T) ((-454 . -1026) T) ((-1081 . -124) T) ((-1037 . -124) T) ((-428 . -46) 94108) ((-800 . -338) T) ((-788 . -124) T) ((-140 . -97) T) ((-982 . -23) T) ((-881 . -23) T) ((-529 . -514) T) ((-753 . -25) T) ((-753 . -21) T) ((-1052 . -483) 94041) ((-539 . -962) 94025) ((-454 . -23) T) ((-326 . -978) T) ((-1115 . -829) 94006) ((-612 . -285) 93944) ((-1027 . -1173) 93914) ((-637 . -590) 93879) ((-929 . -157) T) ((-891 . -133) 93858) ((-580 . -1014) T) ((-556 . -1014) T) ((-891 . -135) 93837) ((-930 . -784) T) ((-673 . -135) 93816) ((-673 . -133) 93795) ((-898 . -784) T) ((-448 . -849) 93774) ((-291 . -977) 93684) ((-288 . -977) 93613) ((-925 . -262) 93571) ((-382 . -655) 93523) ((-639 . -782) T) ((-1152 . -971) T) ((-291 . -107) 93419) ((-288 . -107) 93332) ((-892 . -97) T) ((-752 . -97) 93143) ((-650 . -563) NIL) ((-650 . -562) 93125) ((-600 . -962) 93023) ((-1152 . -301) 92967) ((-960 . -264) 92942) ((-534 . -664) T) ((-522 . -731) T) ((-154 . -338) 92893) ((-522 . -728) T) ((-522 . -664) T) ((-465 . -664) T) ((-1056 . -461) 92877) ((-1003 . -815) NIL) ((-800 . -1026) T) ((-113 . -838) NIL) ((-1186 . -1185) 92853) ((-1184 . -1185) 92832) ((-719 . -815) NIL) ((-717 . -815) 92691) ((-1179 . -25) T) ((-1179 . -21) T) ((-1118 . -97) 92669) ((-1020 . -370) T) ((-569 . -590) 92656) ((-428 . -815) NIL) ((-616 . -97) 92634) ((-1003 . -962) 92463) ((-800 . -23) T) ((-719 . -962) 92325) ((-717 . -962) 92184) ((-113 . -590) 92129) ((-428 . -962) 92007) ((-591 . -962) 91991) ((-572 . -97) T) ((-199 . -461) 91975) ((-1166 . -33) T) ((-580 . -655) 91959) ((-556 . -655) 91943) ((-612 . -37) 91903) ((-294 . -97) T) ((-83 . -562) 91885) ((-49 . -962) 91869) ((-1032 . -977) 91856) ((-1003 . -352) 91840) ((-58 . -55) 91802) ((-637 . -731) T) ((-637 . -728) T) ((-535 . -962) 91789) ((-486 . -962) 91766) ((-637 . -664) T) ((-291 . -971) 91657) ((-299 . -124) T) ((-288 . -971) T) ((-154 . -1026) T) ((-719 . -352) 91641) ((-717 . -352) 91625) ((-44 . -139) 91575) ((-930 . -919) 91557) ((-428 . -352) 91541) ((-382 . -157) T) ((-291 . -220) 91520) ((-288 . -220) T) ((-288 . -210) NIL) ((-270 . -1014) 91303) ((-202 . -124) T) ((-1032 . -107) 91288) ((-154 . -23) T) ((-736 . -135) 91267) ((-736 . -133) 91246) ((-227 . -584) 91154) ((-226 . -584) 91062) ((-294 . -260) 91028) ((-1066 . -483) 90961) ((-1045 . -1014) T) ((-202 . -980) T) ((-752 . -285) 90899) ((-1003 . -829) 90834) ((-719 . -829) 90778) ((-717 . -829) 90762) ((-1186 . -37) 90732) ((-1184 . -37) 90702) ((-1139 . -1026) T) ((-789 . -1026) T) ((-428 . -829) 90679) ((-791 . -1014) T) ((-1139 . -23) T) ((-529 . -1026) T) ((-789 . -23) T) ((-569 . -664) T) ((-330 . -849) T) ((-327 . -849) T) ((-265 . -97) T) ((-319 . -849) T) ((-982 . -124) T) ((-881 . -124) T) ((-113 . -731) NIL) ((-113 . -728) NIL) ((-113 . -664) T) ((-632 . -838) NIL) ((-968 . -483) 90580) ((-454 . -124) T) ((-529 . -23) T) ((-616 . -285) 90518) ((-580 . -699) T) ((-556 . -699) T) ((-1130 . -784) NIL) ((-929 . -266) T) ((-227 . -21) T) ((-632 . -590) 90468) ((-326 . -1014) T) ((-227 . -25) T) ((-226 . -21) T) ((-226 . -25) T) ((-140 . -37) 90452) ((-2 . -97) T) ((-839 . -849) T) ((-455 . -1173) 90422) ((-200 . -962) 90399) ((-1032 . -971) T) ((-649 . -283) T) ((-270 . -655) 90341) ((-639 . -978) T) ((-459 . -426) T) ((-382 . -483) 90253) ((-195 . -426) T) ((-1032 . -210) T) ((-271 . -139) 90203) ((-925 . -563) 90164) ((-925 . -562) 90146) ((-916 . -562) 90128) ((-112 . -978) T) ((-596 . -977) 90112) ((-202 . -463) T) ((-374 . -562) 90094) ((-374 . -563) 90071) ((-975 . -1173) 90041) ((-596 . -107) 90020) ((-1052 . -461) 90004) ((-752 . -37) 89974) ((-61 . -415) T) ((-61 . -370) T) ((-1069 . -97) T) ((-800 . -124) T) ((-456 . -97) 89952) ((-1192 . -343) T) ((-997 . -97) T) ((-981 . -97) T) ((-326 . -655) 89897) ((-669 . -135) 89876) ((-669 . -133) 89855) ((-949 . -590) 89792) ((-491 . -1014) 89770) ((-334 . -97) T) ((-328 . -97) T) ((-320 . -97) T) ((-103 . -97) T) ((-474 . -1014) T) ((-329 . -590) 89715) ((-1081 . -584) 89663) ((-1037 . -584) 89611) ((-360 . -478) 89590) ((-770 . -782) 89569) ((-354 . -1124) T) ((-632 . -664) T) ((-314 . -978) T) ((-1130 . -919) 89521) ((-158 . -978) T) ((-98 . -562) 89453) ((-1083 . -133) 89432) ((-1083 . -135) 89411) ((-354 . -514) T) ((-1082 . -135) 89390) ((-1082 . -133) 89369) ((-1076 . -133) 89276) ((-382 . -266) T) ((-1076 . -135) 89183) ((-1038 . -135) 89162) ((-1038 . -133) 89141) ((-294 . -37) 88982) ((-154 . -124) T) ((-288 . -732) NIL) ((-288 . -729) NIL) ((-596 . -971) T) ((-47 . -590) 88947) ((-920 . -21) T) ((-123 . -936) 88931) ((-117 . -936) 88915) ((-920 . -25) T) ((-830 . -115) 88899) ((-1068 . -97) T) ((-753 . -784) 88878) ((-1139 . -124) T) ((-1081 . -25) T) ((-1081 . -21) T) ((-789 . -124) T) ((-1037 . -25) T) ((-1037 . -21) T) ((-788 . -25) T) ((-788 . -21) T) ((-719 . -283) 88857) ((-589 . -97) 88835) ((-577 . -97) T) ((-1069 . -285) 88630) ((-529 . -124) T) ((-567 . -782) 88609) ((-1066 . -461) 88593) ((-1060 . -139) 88543) ((-1056 . -562) 88505) ((-1056 . -563) 88466) ((-949 . -728) T) ((-949 . -731) T) ((-949 . -664) T) ((-456 . -285) 88404) ((-427 . -392) 88374) ((-326 . -157) T) ((-265 . -37) 88361) ((-250 . -97) T) ((-249 . -97) T) ((-248 . -97) T) ((-247 . -97) T) ((-246 . -97) T) ((-245 . -97) T) ((-244 . -97) T) ((-318 . -962) 88338) ((-191 . -97) T) ((-190 . -97) T) ((-188 . -97) T) ((-187 . -97) T) ((-186 . -97) T) ((-185 . -97) T) ((-182 . -97) T) ((-181 . -97) T) ((-650 . -977) 88161) ((-180 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-174 . -97) T) ((-173 . -97) T) ((-172 . -97) T) ((-329 . -664) T) ((-650 . -107) 87970) ((-612 . -208) 87954) ((-535 . -283) T) ((-486 . -283) T) ((-270 . -483) 87903) ((-103 . -285) NIL) ((-70 . -370) T) ((-1027 . -97) 87714) ((-770 . -386) 87698) ((-1032 . -732) T) ((-1032 . -729) T) ((-639 . -1014) T) ((-354 . -338) T) ((-154 . -463) 87676) ((-199 . -562) 87608) ((-126 . -1014) T) ((-112 . -1014) T) ((-47 . -664) T) ((-968 . -461) 87573) ((-129 . -400) 87555) ((-129 . -343) T) ((-952 . -97) T) ((-481 . -478) 87534) ((-450 . -97) T) ((-437 . -97) T) ((-959 . -1026) T) ((-1083 . -34) 87500) ((-1083 . -91) 87466) ((-1083 . -1109) 87432) ((-1083 . -1106) 87398) ((-1068 . -285) NIL) ((-87 . -371) T) ((-87 . -370) T) ((-997 . -1061) 87377) ((-1082 . -1106) 87343) ((-1082 . -1109) 87309) ((-959 . -23) T) ((-1082 . -91) 87275) ((-529 . -463) T) ((-1082 . -34) 87241) ((-1076 . -1106) 87207) ((-1076 . -1109) 87173) ((-1076 . -91) 87139) ((-336 . -1026) T) ((-334 . -1061) 87118) ((-328 . -1061) 87097) ((-320 . -1061) 87076) ((-1076 . -34) 87042) ((-1038 . -34) 87008) ((-1038 . -91) 86974) ((-103 . -1061) T) ((-1038 . -1109) 86940) ((-770 . -978) 86919) ((-589 . -285) 86857) ((-577 . -285) 86708) ((-1038 . -1106) 86674) ((-650 . -971) T) ((-982 . -584) 86656) ((-997 . -37) 86524) ((-881 . -584) 86472) ((-930 . -135) T) ((-930 . -133) NIL) ((-354 . -1026) T) ((-299 . -25) T) ((-297 . -23) T) ((-872 . -784) 86451) ((-650 . -301) 86428) ((-454 . -584) 86376) ((-39 . -962) 86266) ((-639 . -655) 86253) ((-650 . -210) T) ((-314 . -1014) T) ((-158 . -1014) T) ((-306 . -784) T) ((-393 . -426) 86203) ((-354 . -23) T) ((-334 . -37) 86168) ((-328 . -37) 86133) ((-320 . -37) 86098) ((-78 . -415) T) ((-78 . -370) T) ((-202 . -25) T) ((-202 . -21) T) ((-771 . -1026) T) ((-103 . -37) 86048) ((-764 . -1026) T) ((-711 . -1014) T) ((-112 . -655) 86035) ((-613 . -962) 86019) ((-561 . -97) T) ((-771 . -23) T) ((-764 . -23) T) ((-1066 . -262) 85996) ((-1027 . -285) 85934) ((-1016 . -212) 85918) ((-62 . -371) T) ((-62 . -370) T) ((-106 . -97) T) ((-39 . -352) 85895) ((-595 . -786) 85879) ((-982 . -21) T) ((-982 . -25) T) ((-752 . -208) 85849) ((-881 . -25) T) ((-881 . -21) T) ((-567 . -978) T) ((-454 . -25) T) ((-454 . -21) T) ((-952 . -285) 85787) ((-818 . -562) 85769) ((-814 . -562) 85751) ((-227 . -784) 85702) ((-226 . -784) 85653) ((-491 . -483) 85586) ((-800 . -584) 85563) ((-450 . -285) 85501) ((-437 . -285) 85439) ((-326 . -266) T) ((-1066 . -1154) 85423) ((-1052 . -562) 85385) ((-1052 . -563) 85346) ((-1050 . -97) T) ((-925 . -977) 85242) ((-39 . -829) 85194) ((-1066 . -555) 85171) ((-1192 . -590) 85158) ((-983 . -139) 85104) ((-801 . -1124) T) ((-925 . -107) 84986) ((-314 . -655) 84970) ((-795 . -562) 84952) ((-158 . -655) 84884) ((-382 . -262) 84842) ((-801 . -514) T) ((-103 . -375) 84824) ((-82 . -359) T) ((-82 . -370) T) ((-639 . -157) T) ((-94 . -664) T) ((-455 . -97) 84635) ((-94 . -447) T) ((-112 . -157) T) ((-1027 . -37) 84605) ((-154 . -584) 84553) ((-975 . -97) T) ((-800 . -25) T) ((-752 . -215) 84532) ((-800 . -21) T) ((-755 . -97) T) ((-389 . -97) T) ((-360 . -97) T) ((-106 . -285) NIL) ((-204 . -97) 84510) ((-123 . -1120) T) ((-117 . -1120) T) ((-959 . -124) T) ((-612 . -342) 84494) ((-925 . -971) T) ((-1139 . -584) 84442) ((-1018 . -562) 84424) ((-929 . -562) 84406) ((-484 . -23) T) ((-479 . -23) T) ((-318 . -283) T) ((-477 . -23) T) ((-297 . -124) T) ((-3 . -1014) T) ((-929 . -563) 84390) ((-925 . -220) 84369) ((-925 . -210) 84348) ((-1192 . -664) T) ((-1158 . -133) 84327) ((-770 . -1014) T) ((-1158 . -135) 84306) ((-1151 . -135) 84285) ((-1151 . -133) 84264) ((-1150 . -1124) 84243) ((-1130 . -133) 84150) ((-1130 . -135) 84057) ((-1129 . -1124) 84036) ((-354 . -124) T) ((-522 . -815) 84018) ((0 . -1014) T) ((-158 . -157) T) ((-154 . -21) T) ((-154 . -25) T) ((-48 . -1014) T) ((-1152 . -590) 83923) ((-1150 . -514) 83874) ((-652 . -1026) T) ((-1129 . -514) 83825) ((-522 . -962) 83807) ((-547 . -135) 83786) ((-547 . -133) 83765) ((-465 . -962) 83708) ((-85 . -359) T) ((-85 . -370) T) ((-801 . -338) T) ((-771 . -124) T) ((-764 . -124) T) ((-652 . -23) T) ((-472 . -562) 83690) ((-1188 . -978) T) ((-354 . -980) T) ((-951 . -1014) 83668) ((-830 . -33) T) ((-455 . -285) 83606) ((-1066 . -563) 83567) ((-1066 . -562) 83499) ((-1081 . -784) 83478) ((-44 . -97) T) ((-1037 . -784) 83457) ((-754 . -97) T) ((-1139 . -25) T) ((-1139 . -21) T) ((-789 . -25) T) ((-43 . -342) 83441) ((-789 . -21) T) ((-669 . -426) 83392) ((-1187 . -562) 83374) ((-529 . -25) T) ((-529 . -21) T) ((-365 . -1014) T) ((-975 . -285) 83312) ((-567 . -1014) T) ((-637 . -815) 83294) ((-1166 . -1120) T) ((-204 . -285) 83232) ((-132 . -343) T) ((-968 . -563) 83174) ((-968 . -562) 83117) ((-288 . -838) NIL) ((-637 . -962) 83062) ((-649 . -849) T) ((-448 . -1124) 83041) ((-1082 . -426) 83020) ((-1076 . -426) 82999) ((-305 . -97) T) ((-801 . -1026) T) ((-291 . -590) 82821) ((-288 . -590) 82750) ((-448 . -514) 82701) ((-314 . -483) 82667) ((-508 . -139) 82617) ((-39 . -283) T) ((-777 . -562) 82599) ((-639 . -266) T) ((-801 . -23) T) ((-354 . -463) T) ((-997 . -208) 82569) ((-481 . -97) T) ((-382 . -563) 82377) ((-382 . -562) 82359) ((-239 . -562) 82341) ((-112 . -266) T) ((-1152 . -664) T) ((-1150 . -338) 82320) ((-1129 . -338) 82299) ((-1177 . -33) T) ((-113 . -1120) T) ((-103 . -208) 82281) ((-1087 . -97) T) ((-451 . -1014) T) ((-491 . -461) 82265) ((-675 . -33) T) ((-455 . -37) 82235) ((-129 . -33) T) ((-113 . -813) 82212) ((-113 . -815) NIL) ((-569 . -962) 82097) ((-588 . -784) 82076) ((-1176 . -97) T) ((-271 . -97) T) ((-650 . -343) 82055) ((-113 . -962) 82032) ((-365 . -655) 82016) ((-567 . -655) 82000) ((-44 . -285) 81804) ((-753 . -133) 81783) ((-753 . -135) 81762) ((-1187 . -357) 81741) ((-756 . -784) T) ((-1168 . -1014) T) ((-1069 . -206) 81688) ((-361 . -784) 81667) ((-1158 . -1109) 81633) ((-1158 . -1106) 81599) ((-1151 . -1106) 81565) ((-484 . -124) T) ((-1151 . -1109) 81531) ((-1130 . -1106) 81497) ((-1130 . -1109) 81463) ((-1158 . -34) 81429) ((-1158 . -91) 81395) ((-580 . -562) 81364) ((-556 . -562) 81333) ((-202 . -784) T) ((-1151 . -91) 81299) ((-1151 . -34) 81265) ((-1150 . -1026) T) ((-1032 . -590) 81252) ((-1130 . -91) 81218) ((-1129 . -1026) T) ((-545 . -139) 81200) ((-997 . -324) 81179) ((-113 . -352) 81156) ((-113 . -313) 81133) ((-158 . -266) T) ((-1130 . -34) 81099) ((-799 . -283) T) ((-288 . -731) NIL) ((-288 . -728) NIL) ((-291 . -664) 80949) ((-288 . -664) T) ((-448 . -338) 80928) ((-334 . -324) 80907) ((-328 . -324) 80886) ((-320 . -324) 80865) ((-291 . -447) 80844) ((-1150 . -23) T) ((-1129 . -23) T) ((-656 . -1026) T) ((-652 . -124) T) ((-595 . -97) T) ((-451 . -655) 80809) ((-44 . -258) 80759) ((-100 . -1014) T) ((-66 . -562) 80741) ((-794 . -97) T) ((-569 . -829) 80700) ((-1188 . -1014) T) ((-356 . -1014) T) ((-80 . -1120) T) ((-982 . -784) T) ((-881 . -784) 80679) ((-113 . -829) NIL) ((-719 . -849) 80658) ((-651 . -784) T) ((-494 . -1014) T) ((-470 . -1014) T) ((-330 . -1124) T) ((-327 . -1124) T) ((-319 . -1124) T) ((-240 . -1124) 80637) ((-224 . -1124) 80616) ((-1027 . -208) 80586) ((-454 . -784) 80565) ((-1052 . -977) 80549) ((-365 . -699) T) ((-1068 . -765) T) ((-632 . -1120) T) ((-330 . -514) T) ((-327 . -514) T) ((-319 . -514) T) ((-240 . -514) 80480) ((-224 . -514) 80411) ((-1052 . -107) 80390) ((-427 . -682) 80360) ((-795 . -977) 80330) ((-754 . -37) 80272) ((-632 . -813) 80254) ((-632 . -815) 80236) ((-271 . -285) 80040) ((-839 . -1124) T) ((-612 . -386) 80024) ((-795 . -107) 79989) ((-632 . -962) 79934) ((-930 . -426) T) ((-839 . -514) T) ((-535 . -849) T) ((-448 . -1026) T) ((-486 . -849) T) ((-1066 . -264) 79911) ((-843 . -426) T) ((-63 . -562) 79893) ((-577 . -206) 79839) ((-448 . -23) T) ((-1032 . -731) T) ((-801 . -124) T) ((-1032 . -728) T) ((-1179 . -1181) 79818) ((-1032 . -664) T) ((-596 . -590) 79792) ((-270 . -562) 79534) ((-960 . -33) T) ((-752 . -782) 79513) ((-534 . -283) T) ((-522 . -283) T) ((-465 . -283) T) ((-1188 . -655) 79483) ((-632 . -352) 79465) ((-632 . -313) 79447) ((-451 . -157) T) ((-356 . -655) 79417) ((-800 . -784) NIL) ((-522 . -947) T) ((-465 . -947) T) ((-1045 . -562) 79399) ((-1027 . -215) 79378) ((-192 . -97) T) ((-1060 . -97) T) ((-69 . -562) 79360) ((-1052 . -971) T) ((-1087 . -37) 79257) ((-791 . -562) 79239) ((-522 . -507) T) ((-612 . -978) T) ((-669 . -878) 79192) ((-1052 . -210) 79171) ((-999 . -1014) T) ((-959 . -25) T) ((-959 . -21) T) ((-929 . -977) 79116) ((-834 . -97) T) ((-795 . -971) T) ((-632 . -829) NIL) ((-330 . -304) 79100) ((-330 . -338) T) ((-327 . -304) 79084) ((-327 . -338) T) ((-319 . -304) 79068) ((-319 . -338) T) ((-459 . -97) T) ((-1176 . -37) 79038) ((-491 . -626) 78988) ((-195 . -97) T) ((-949 . -962) 78870) ((-929 . -107) 78799) ((-1083 . -900) 78769) ((-1082 . -900) 78732) ((-488 . -139) 78716) ((-997 . -345) 78695) ((-326 . -562) 78677) ((-297 . -21) T) ((-329 . -962) 78654) ((-297 . -25) T) ((-1076 . -900) 78624) ((-1038 . -900) 78591) ((-74 . -562) 78573) ((-637 . -283) T) ((-154 . -784) 78552) ((-839 . -338) T) ((-354 . -25) T) ((-354 . -21) T) ((-839 . -304) 78539) ((-84 . -562) 78521) ((-637 . -947) T) ((-617 . -784) T) ((-1150 . -124) T) ((-1129 . -124) T) ((-830 . -936) 78505) ((-771 . -21) T) ((-47 . -962) 78448) ((-771 . -25) T) ((-764 . -25) T) ((-764 . -21) T) ((-1186 . -978) T) ((-1184 . -978) T) ((-596 . -664) T) ((-1187 . -977) 78432) ((-1139 . -784) 78411) ((-752 . -386) 78380) ((-98 . -115) 78364) ((-51 . -1014) T) ((-855 . -562) 78346) ((-800 . -919) 78323) ((-760 . -97) T) ((-1187 . -107) 78302) ((-595 . -37) 78272) ((-529 . -784) T) ((-330 . -1026) T) ((-327 . -1026) T) ((-319 . -1026) T) ((-240 . -1026) T) ((-224 . -1026) T) ((-569 . -283) 78251) ((-1060 . -285) 78055) ((-606 . -23) T) ((-455 . -208) 78025) ((-140 . -978) T) ((-330 . -23) T) ((-327 . -23) T) ((-319 . -23) T) ((-113 . -283) T) ((-240 . -23) T) ((-224 . -23) T) ((-929 . -971) T) ((-650 . -838) 78004) ((-929 . -210) 77976) ((-929 . -220) T) ((-113 . -947) NIL) ((-839 . -1026) T) ((-1151 . -426) 77955) ((-1130 . -426) 77934) ((-491 . -562) 77866) ((-650 . -590) 77791) ((-382 . -977) 77743) ((-474 . -562) 77725) ((-839 . -23) T) ((-459 . -285) NIL) ((-448 . -124) T) ((-195 . -285) NIL) ((-382 . -107) 77663) ((-752 . -978) 77594) ((-675 . -1012) 77578) ((-1150 . -463) 77544) ((-1129 . -463) 77510) ((-129 . -1012) 77492) ((-451 . -266) T) ((-1187 . -971) T) ((-983 . -97) T) ((-470 . -483) NIL) ((-641 . -97) T) ((-455 . -215) 77471) ((-1081 . -133) 77450) ((-1081 . -135) 77429) ((-1037 . -135) 77408) ((-1037 . -133) 77387) ((-580 . -977) 77371) ((-556 . -977) 77355) ((-612 . -1014) T) ((-612 . -974) 77295) ((-1083 . -1157) 77279) ((-1083 . -1144) 77256) ((-459 . -1061) T) ((-1082 . -1149) 77217) ((-1082 . -1144) 77187) ((-1082 . -1147) 77171) ((-195 . -1061) T) ((-318 . -849) T) ((-755 . -242) 77155) ((-580 . -107) 77134) ((-556 . -107) 77113) ((-1076 . -1128) 77074) ((-777 . -971) 77053) ((-1076 . -1144) 77030) ((-484 . -25) T) ((-465 . -278) T) ((-480 . -23) T) ((-479 . -25) T) ((-477 . -25) T) ((-476 . -23) T) ((-1076 . -1126) 77014) ((-382 . -971) T) ((-294 . -978) T) ((-632 . -283) T) ((-103 . -782) T) ((-382 . -220) T) ((-382 . -210) 76993) ((-650 . -664) T) ((-459 . -37) 76943) ((-195 . -37) 76893) ((-448 . -463) 76859) ((-1068 . -1054) T) ((-1015 . -97) T) ((-639 . -562) 76841) ((-639 . -563) 76756) ((-652 . -21) T) ((-652 . -25) T) ((-126 . -562) 76738) ((-112 . -562) 76720) ((-143 . -25) T) ((-1186 . -1014) T) ((-801 . -584) 76668) ((-1184 . -1014) T) ((-891 . -97) T) ((-673 . -97) T) ((-653 . -97) T) ((-427 . -97) T) ((-753 . -426) 76619) ((-43 . -1014) T) ((-1004 . -784) T) ((-606 . -124) T) ((-983 . -285) 76470) ((-612 . -655) 76454) ((-265 . -978) T) ((-330 . -124) T) ((-327 . -124) T) ((-319 . -124) T) ((-240 . -124) T) ((-224 . -124) T) ((-393 . -97) T) ((-140 . -1014) T) ((-44 . -206) 76404) ((-886 . -784) 76383) ((-925 . -590) 76321) ((-217 . -1173) 76291) ((-949 . -283) T) ((-270 . -977) 76213) ((-839 . -124) T) ((-39 . -849) T) ((-459 . -375) 76195) ((-329 . -283) T) ((-195 . -375) 76177) ((-997 . -386) 76161) ((-270 . -107) 76078) ((-801 . -25) T) ((-801 . -21) T) ((-314 . -562) 76060) ((-1152 . -46) 76004) ((-202 . -135) T) ((-158 . -562) 75986) ((-1027 . -782) 75965) ((-711 . -562) 75947) ((-557 . -212) 75894) ((-449 . -212) 75844) ((-1186 . -655) 75814) ((-47 . -283) T) ((-1184 . -655) 75784) ((-892 . -1014) T) ((-752 . -1014) 75595) ((-287 . -97) T) ((-830 . -1120) T) ((-47 . -947) T) ((-1129 . -584) 75503) ((-628 . -97) 75481) ((-43 . -655) 75465) ((-508 . -97) T) ((-65 . -358) T) ((-65 . -370) T) ((-604 . -23) T) ((-612 . -699) T) ((-1118 . -1014) 75443) ((-326 . -977) 75388) ((-616 . -1014) 75366) ((-982 . -135) T) ((-881 . -135) 75345) ((-881 . -133) 75324) ((-736 . -97) T) ((-140 . -655) 75308) ((-454 . -135) 75287) ((-454 . -133) 75266) ((-326 . -107) 75195) ((-997 . -978) T) ((-297 . -784) 75174) ((-1158 . -900) 75144) ((-572 . -1014) T) ((-1151 . -900) 75107) ((-480 . -124) T) ((-476 . -124) T) ((-271 . -206) 75057) ((-334 . -978) T) ((-328 . -978) T) ((-320 . -978) T) ((-270 . -971) 75000) ((-1130 . -900) 74970) ((-354 . -784) T) ((-103 . -978) T) ((-925 . -664) T) ((-799 . -849) T) ((-777 . -732) 74949) ((-777 . -729) 74928) ((-393 . -285) 74867) ((-442 . -97) T) ((-547 . -900) 74837) ((-294 . -1014) T) ((-382 . -732) 74816) ((-382 . -729) 74795) ((-470 . -461) 74777) ((-1152 . -962) 74743) ((-1150 . -21) T) ((-1150 . -25) T) ((-1129 . -21) T) ((-1129 . -25) T) ((-752 . -655) 74685) ((-637 . -379) T) ((-1177 . -1120) T) ((-1027 . -386) 74654) ((-929 . -343) NIL) ((-98 . -33) T) ((-675 . -1120) T) ((-43 . -699) T) ((-545 . -97) T) ((-75 . -371) T) ((-75 . -370) T) ((-595 . -598) 74638) ((-129 . -1120) T) ((-800 . -135) T) ((-800 . -133) NIL) ((-326 . -971) T) ((-68 . -358) T) ((-68 . -370) T) ((-1075 . -97) T) ((-612 . -483) 74571) ((-628 . -285) 74509) ((-891 . -37) 74406) ((-673 . -37) 74376) ((-508 . -285) 74180) ((-291 . -1120) T) ((-326 . -210) T) ((-326 . -220) T) ((-288 . -1120) T) ((-265 . -1014) T) ((-1089 . -562) 74162) ((-649 . -1124) T) ((-1066 . -593) 74146) ((-1115 . -514) 74125) ((-649 . -514) T) ((-291 . -813) 74109) ((-291 . -815) 74034) ((-288 . -813) 73995) ((-288 . -815) NIL) ((-736 . -285) 73960) ((-294 . -655) 73801) ((-299 . -298) 73778) ((-457 . -97) T) ((-448 . -25) T) ((-448 . -21) T) ((-393 . -37) 73752) ((-291 . -962) 73420) ((-202 . -1106) T) ((-202 . -1109) T) ((-3 . -562) 73402) ((-288 . -962) 73332) ((-2 . -1014) T) ((-2 . |RecordCategory|) T) ((-770 . -562) 73314) ((-1027 . -978) 73245) ((-534 . -849) T) ((-522 . -757) T) ((-522 . -849) T) ((-465 . -849) T) ((-128 . -962) 73229) ((-202 . -91) T) ((-154 . -135) 73208) ((-73 . -415) T) ((0 . -562) 73190) ((-73 . -370) T) ((-154 . -133) 73141) ((-202 . -34) T) ((-48 . -562) 73123) ((-451 . -978) T) ((-459 . -208) 73105) ((-456 . -896) 73089) ((-455 . -782) 73068) ((-195 . -208) 73050) ((-79 . -415) T) ((-79 . -370) T) ((-1056 . -33) T) ((-752 . -157) 73029) ((-669 . -97) T) ((-951 . -562) 72996) ((-470 . -262) 72971) ((-291 . -352) 72941) ((-288 . -352) 72902) ((-288 . -313) 72863) ((-1001 . -562) 72845) ((-753 . -878) 72792) ((-604 . -124) T) ((-1139 . -133) 72771) ((-1139 . -135) 72750) ((-1083 . -97) T) ((-1082 . -97) T) ((-1076 . -97) T) ((-1069 . -1014) T) ((-1038 . -97) T) ((-199 . -33) T) ((-265 . -655) 72737) ((-1069 . -559) 72713) ((-545 . -285) NIL) ((-456 . -1014) 72691) ((-365 . -562) 72673) ((-479 . -784) T) ((-1060 . -206) 72623) ((-1158 . -1157) 72607) ((-1158 . -1144) 72584) ((-1151 . -1149) 72545) ((-1151 . -1144) 72515) ((-1151 . -1147) 72499) ((-1130 . -1128) 72460) ((-1130 . -1144) 72437) ((-567 . -562) 72419) ((-1130 . -1126) 72403) ((-637 . -849) T) ((-1083 . -260) 72369) ((-1082 . -260) 72335) ((-1076 . -260) 72301) ((-997 . -1014) T) ((-981 . -1014) T) ((-47 . -278) T) ((-291 . -829) 72268) ((-288 . -829) NIL) ((-981 . -987) 72247) ((-1032 . -815) 72229) ((-736 . -37) 72213) ((-240 . -584) 72161) ((-224 . -584) 72109) ((-639 . -977) 72096) ((-547 . -1144) 72073) ((-1038 . -260) 72039) ((-294 . -157) 71970) ((-334 . -1014) T) ((-328 . -1014) T) ((-320 . -1014) T) ((-470 . -19) 71952) ((-1032 . -962) 71934) ((-1016 . -139) 71918) ((-103 . -1014) T) ((-112 . -977) 71905) ((-649 . -338) T) ((-470 . -555) 71880) ((-639 . -107) 71865) ((-411 . -97) T) ((-44 . -1059) 71815) ((-112 . -107) 71800) ((-580 . -658) T) ((-556 . -658) T) ((-752 . -483) 71733) ((-960 . -1120) T) ((-872 . -139) 71717) ((-488 . -97) 71667) ((-1003 . -1124) 71646) ((-451 . -562) 71598) ((-451 . -563) 71520) ((-60 . -1120) T) ((-719 . -1124) 71499) ((-717 . -1124) 71478) ((-1081 . -426) 71409) ((-1068 . -1014) T) ((-1052 . -590) 71383) ((-1003 . -514) 71314) ((-455 . -386) 71283) ((-569 . -849) 71262) ((-428 . -1124) 71241) ((-1037 . -426) 71192) ((-373 . -562) 71174) ((-616 . -483) 71107) ((-719 . -514) 71018) ((-717 . -514) 70949) ((-669 . -285) 70936) ((-606 . -25) T) ((-606 . -21) T) ((-428 . -514) 70867) ((-113 . -849) T) ((-113 . -757) NIL) ((-330 . -25) T) ((-330 . -21) T) ((-327 . -25) T) ((-327 . -21) T) ((-319 . -25) T) ((-319 . -21) T) ((-240 . -25) T) ((-240 . -21) T) ((-81 . -359) T) ((-81 . -370) T) ((-224 . -25) T) ((-224 . -21) T) ((-1168 . -562) 70849) ((-1115 . -1026) T) ((-1115 . -23) T) ((-1076 . -285) 70734) ((-1038 . -285) 70721) ((-795 . -590) 70681) ((-997 . -655) 70549) ((-872 . -907) 70533) ((-265 . -157) T) ((-839 . -21) T) ((-839 . -25) T) ((-801 . -784) 70484) ((-649 . -1026) T) ((-649 . -23) T) ((-589 . -1014) 70462) ((-577 . -559) 70437) ((-577 . -1014) T) ((-535 . -1124) T) ((-486 . -1124) T) ((-535 . -514) T) ((-486 . -514) T) ((-334 . -655) 70389) ((-328 . -655) 70341) ((-158 . -977) 70273) ((-314 . -977) 70257) ((-103 . -655) 70207) ((-158 . -107) 70118) ((-320 . -655) 70070) ((-314 . -107) 70049) ((-250 . -1014) T) ((-249 . -1014) T) ((-248 . -1014) T) ((-247 . -1014) T) ((-639 . -971) T) ((-246 . -1014) T) ((-245 . -1014) T) ((-244 . -1014) T) ((-191 . -1014) T) ((-190 . -1014) T) ((-188 . -1014) T) ((-154 . -1109) 70027) ((-154 . -1106) 70005) ((-187 . -1014) T) ((-186 . -1014) T) ((-112 . -971) T) ((-185 . -1014) T) ((-182 . -1014) T) ((-639 . -210) T) ((-181 . -1014) T) ((-180 . -1014) T) ((-179 . -1014) T) ((-178 . -1014) T) ((-177 . -1014) T) ((-176 . -1014) T) ((-175 . -1014) T) ((-174 . -1014) T) ((-173 . -1014) T) ((-172 . -1014) T) ((-217 . -97) 69816) ((-154 . -34) 69794) ((-154 . -91) 69772) ((-596 . -962) 69670) ((-455 . -978) 69601) ((-1027 . -1014) 69412) ((-1052 . -33) T) ((-612 . -461) 69396) ((-71 . -1120) T) ((-100 . -562) 69378) ((-1188 . -562) 69360) ((-356 . -562) 69342) ((-529 . -1109) T) ((-529 . -1106) T) ((-669 . -37) 69191) ((-494 . -562) 69173) ((-488 . -285) 69111) ((-470 . -562) 69093) ((-470 . -563) 69075) ((-1076 . -1061) NIL) ((-952 . -990) 69044) ((-952 . -1014) T) ((-930 . -97) T) ((-898 . -97) T) ((-843 . -97) T) ((-822 . -962) 69021) ((-1052 . -664) T) ((-929 . -590) 68966) ((-450 . -1014) T) ((-437 . -1014) T) ((-539 . -23) T) ((-529 . -34) T) ((-529 . -91) T) ((-402 . -97) T) ((-983 . -206) 68912) ((-1083 . -37) 68809) ((-795 . -664) T) ((-632 . -849) T) ((-480 . -25) T) ((-476 . -21) T) ((-476 . -25) T) ((-1082 . -37) 68650) ((-314 . -971) T) ((-1076 . -37) 68446) ((-997 . -157) T) ((-158 . -971) T) ((-1038 . -37) 68343) ((-650 . -46) 68320) ((-334 . -157) T) ((-328 . -157) T) ((-487 . -55) 68294) ((-467 . -55) 68244) ((-326 . -1183) 68221) ((-202 . -426) T) ((-294 . -266) 68172) ((-320 . -157) T) ((-158 . -220) T) ((-1129 . -784) 68071) ((-103 . -157) T) ((-801 . -919) 68055) ((-600 . -1026) T) ((-535 . -338) T) ((-535 . -304) 68042) ((-486 . -304) 68019) ((-486 . -338) T) ((-291 . -283) 67998) ((-288 . -283) T) ((-553 . -784) 67977) ((-1027 . -655) 67919) ((-488 . -258) 67903) ((-600 . -23) T) ((-393 . -208) 67887) ((-288 . -947) NIL) ((-311 . -23) T) ((-98 . -936) 67871) ((-44 . -35) 67850) ((-561 . -1014) T) ((-326 . -343) T) ((-465 . -27) T) ((-217 . -285) 67788) ((-1003 . -1026) T) ((-1187 . -590) 67762) ((-719 . -1026) T) ((-717 . -1026) T) ((-428 . -1026) T) ((-982 . -426) T) ((-881 . -426) 67713) ((-106 . -1014) T) ((-1003 . -23) T) ((-754 . -978) T) ((-719 . -23) T) ((-717 . -23) T) ((-454 . -426) 67664) ((-1069 . -483) 67447) ((-356 . -357) 67426) ((-1087 . -386) 67410) ((-435 . -23) T) ((-428 . -23) T) ((-456 . -483) 67343) ((-265 . -266) T) ((-999 . -562) 67325) ((-382 . -838) 67304) ((-49 . -1026) T) ((-949 . -849) T) ((-929 . -664) T) ((-650 . -815) NIL) ((-535 . -1026) T) ((-486 . -1026) T) ((-777 . -590) 67277) ((-1115 . -124) T) ((-1076 . -375) 67229) ((-930 . -285) NIL) ((-752 . -461) 67213) ((-329 . -849) T) ((-1066 . -33) T) ((-382 . -590) 67165) ((-49 . -23) T) ((-649 . -124) T) ((-650 . -962) 67048) ((-535 . -23) T) ((-103 . -483) NIL) ((-486 . -23) T) ((-154 . -384) 67019) ((-1050 . -1014) T) ((-1179 . -1178) 67003) ((-639 . -732) T) ((-639 . -729) T) ((-1032 . -283) T) ((-354 . -135) T) ((-256 . -562) 66985) ((-1129 . -919) 66955) ((-47 . -849) T) ((-616 . -461) 66939) ((-227 . -1173) 66909) ((-226 . -1173) 66879) ((-1085 . -784) T) ((-1027 . -157) 66858) ((-1032 . -947) T) ((-968 . -33) T) ((-771 . -135) 66837) ((-771 . -133) 66816) ((-675 . -102) 66800) ((-561 . -125) T) ((-455 . -1014) 66611) ((-1087 . -978) T) ((-800 . -426) T) ((-83 . -1120) T) ((-217 . -37) 66581) ((-129 . -102) 66563) ((-650 . -352) 66547) ((-1032 . -507) T) ((-365 . -977) 66531) ((-1187 . -664) T) ((-1081 . -878) 66501) ((-51 . -562) 66483) ((-1037 . -878) 66450) ((-595 . -386) 66434) ((-1176 . -978) T) ((-567 . -977) 66418) ((-604 . -25) T) ((-604 . -21) T) ((-1068 . -483) NIL) ((-1158 . -97) T) ((-1151 . -97) T) ((-365 . -107) 66397) ((-199 . -230) 66381) ((-1130 . -97) T) ((-975 . -1014) T) ((-930 . -1061) T) ((-975 . -974) 66321) ((-755 . -1014) T) ((-318 . -1124) T) ((-580 . -590) 66305) ((-567 . -107) 66284) ((-556 . -590) 66268) ((-548 . -97) T) ((-539 . -124) T) ((-547 . -97) T) ((-389 . -1014) T) ((-360 . -1014) T) ((-204 . -1014) 66246) ((-589 . -483) 66179) ((-577 . -483) 66023) ((-770 . -971) 66002) ((-588 . -139) 65986) ((-318 . -514) T) ((-650 . -829) 65930) ((-508 . -206) 65880) ((-1158 . -260) 65846) ((-997 . -266) 65797) ((-459 . -782) T) ((-200 . -1026) T) ((-1151 . -260) 65763) ((-1130 . -260) 65729) ((-930 . -37) 65679) ((-195 . -782) T) ((-1115 . -463) 65645) ((-843 . -37) 65597) ((-777 . -731) 65576) ((-777 . -728) 65555) ((-777 . -664) 65534) ((-334 . -266) T) ((-328 . -266) T) ((-320 . -266) T) ((-154 . -426) 65465) ((-402 . -37) 65449) ((-103 . -266) T) ((-200 . -23) T) ((-382 . -731) 65428) ((-382 . -728) 65407) ((-382 . -664) T) ((-470 . -264) 65382) ((-451 . -977) 65347) ((-600 . -124) T) ((-1027 . -483) 65280) ((-311 . -124) T) ((-154 . -377) 65259) ((-455 . -655) 65201) ((-752 . -262) 65178) ((-451 . -107) 65134) ((-595 . -978) T) ((-1139 . -426) 65065) ((-1003 . -124) T) ((-240 . -784) 65044) ((-224 . -784) 65023) ((-719 . -124) T) ((-717 . -124) T) ((-529 . -426) T) ((-975 . -655) 64965) ((-567 . -971) T) ((-952 . -483) 64898) ((-435 . -124) T) ((-428 . -124) T) ((-44 . -1014) T) ((-360 . -655) 64868) ((-754 . -1014) T) ((-450 . -483) 64801) ((-437 . -483) 64734) ((-427 . -342) 64704) ((-44 . -559) 64683) ((-291 . -278) T) ((-612 . -562) 64645) ((-57 . -784) 64624) ((-1130 . -285) 64509) ((-930 . -375) 64491) ((-752 . -555) 64468) ((-485 . -784) 64447) ((-466 . -784) 64426) ((-39 . -1124) T) ((-925 . -962) 64324) ((-49 . -124) T) ((-535 . -124) T) ((-486 . -124) T) ((-270 . -590) 64186) ((-318 . -304) 64163) ((-318 . -338) T) ((-297 . -298) 64140) ((-294 . -262) 64125) ((-39 . -514) T) ((-354 . -1106) T) ((-354 . -1109) T) ((-960 . -1097) 64100) ((-1094 . -212) 64050) ((-1076 . -208) 64002) ((-305 . -1014) T) ((-354 . -91) T) ((-354 . -34) T) ((-960 . -102) 63948) ((-451 . -971) T) ((-452 . -212) 63898) ((-1069 . -461) 63832) ((-1188 . -977) 63816) ((-356 . -977) 63800) ((-451 . -220) T) ((-753 . -97) T) ((-652 . -135) 63779) ((-652 . -133) 63758) ((-456 . -461) 63742) ((-457 . -310) 63711) ((-1188 . -107) 63690) ((-481 . -1014) T) ((-455 . -157) 63669) ((-925 . -352) 63653) ((-388 . -97) T) ((-356 . -107) 63632) ((-925 . -313) 63616) ((-255 . -910) 63600) ((-254 . -910) 63584) ((-1186 . -562) 63566) ((-1184 . -562) 63548) ((-106 . -483) NIL) ((-1081 . -1142) 63532) ((-788 . -786) 63516) ((-1087 . -1014) T) ((-98 . -1120) T) ((-881 . -878) 63477) ((-754 . -655) 63419) ((-1130 . -1061) NIL) ((-454 . -878) 63364) ((-982 . -131) T) ((-58 . -97) 63342) ((-43 . -562) 63324) ((-76 . -562) 63306) ((-326 . -590) 63251) ((-1176 . -1014) T) ((-480 . -784) T) ((-318 . -1026) T) ((-271 . -1014) T) ((-925 . -829) 63210) ((-271 . -559) 63189) ((-1158 . -37) 63086) ((-1151 . -37) 62927) ((-459 . -978) T) ((-1130 . -37) 62723) ((-195 . -978) T) ((-318 . -23) T) ((-140 . -562) 62705) ((-770 . -732) 62684) ((-770 . -729) 62663) ((-548 . -37) 62636) ((-547 . -37) 62533) ((-799 . -514) T) ((-200 . -124) T) ((-294 . -928) 62499) ((-77 . -562) 62481) ((-650 . -283) 62460) ((-270 . -664) 62363) ((-761 . -97) T) ((-794 . -778) T) ((-270 . -447) 62342) ((-1179 . -97) T) ((-39 . -338) T) ((-801 . -135) 62321) ((-801 . -133) 62300) ((-1068 . -461) 62282) ((-1188 . -971) T) ((-455 . -483) 62215) ((-1056 . -1120) T) ((-892 . -562) 62197) ((-589 . -461) 62181) ((-577 . -461) 62112) ((-752 . -562) 61864) ((-47 . -27) T) ((-1087 . -655) 61761) ((-595 . -1014) T) ((-411 . -339) 61735) ((-1016 . -97) T) ((-753 . -285) 61722) ((-794 . -1014) T) ((-1184 . -357) 61694) ((-975 . -483) 61627) ((-1069 . -262) 61603) ((-217 . -208) 61573) ((-1176 . -655) 61543) ((-754 . -157) 61522) ((-204 . -483) 61455) ((-567 . -732) 61434) ((-567 . -729) 61413) ((-1118 . -562) 61325) ((-199 . -1120) T) ((-616 . -562) 61257) ((-1066 . -936) 61241) ((-326 . -664) T) ((-872 . -97) 61191) ((-1130 . -375) 61143) ((-1027 . -461) 61127) ((-58 . -285) 61065) ((-306 . -97) T) ((-1115 . -21) T) ((-1115 . -25) T) ((-39 . -1026) T) ((-649 . -21) T) ((-572 . -562) 61047) ((-484 . -298) 61026) ((-649 . -25) T) ((-103 . -262) NIL) ((-850 . -1026) T) ((-39 . -23) T) ((-708 . -1026) T) ((-522 . -1124) T) ((-465 . -1124) T) ((-294 . -562) 61008) ((-930 . -208) 60990) ((-154 . -151) 60974) ((-534 . -514) T) ((-522 . -514) T) ((-465 . -514) T) ((-708 . -23) T) ((-1150 . -135) 60953) ((-1069 . -555) 60929) ((-1150 . -133) 60908) ((-952 . -461) 60892) ((-1129 . -133) 60817) ((-1129 . -135) 60742) ((-1179 . -1185) 60721) ((-450 . -461) 60705) ((-437 . -461) 60689) ((-491 . -33) T) ((-595 . -655) 60659) ((-108 . -895) T) ((-604 . -784) 60638) ((-1087 . -157) 60589) ((-340 . -97) T) ((-217 . -215) 60568) ((-227 . -97) T) ((-226 . -97) T) ((-1139 . -878) 60538) ((-105 . -97) T) ((-222 . -784) 60517) ((-753 . -37) 60366) ((-44 . -483) 60158) ((-1068 . -262) 60133) ((-192 . -1014) T) ((-1060 . -1014) T) ((-1060 . -559) 60112) ((-539 . -25) T) ((-539 . -21) T) ((-1016 . -285) 60050) ((-891 . -386) 60034) ((-637 . -1124) T) ((-577 . -262) 60009) ((-1003 . -584) 59957) ((-719 . -584) 59905) ((-717 . -584) 59853) ((-318 . -124) T) ((-265 . -562) 59835) ((-637 . -514) T) ((-834 . -1014) T) ((-799 . -1026) T) ((-428 . -584) 59783) ((-834 . -832) 59767) ((-354 . -426) T) ((-459 . -1014) T) ((-639 . -590) 59754) ((-872 . -285) 59692) ((-195 . -1014) T) ((-291 . -849) 59671) ((-288 . -849) T) ((-288 . -757) NIL) ((-365 . -658) T) ((-799 . -23) T) ((-112 . -590) 59658) ((-448 . -133) 59637) ((-393 . -386) 59621) ((-448 . -135) 59600) ((-106 . -461) 59582) ((-2 . -562) 59564) ((-1068 . -19) 59546) ((-1068 . -555) 59521) ((-600 . -21) T) ((-600 . -25) T) ((-545 . -1054) T) ((-1027 . -262) 59498) ((-311 . -25) T) ((-311 . -21) T) ((-465 . -338) T) ((-1179 . -37) 59468) ((-1052 . -1120) T) ((-577 . -555) 59443) ((-1003 . -25) T) ((-1003 . -21) T) ((-494 . -729) T) ((-494 . -732) T) ((-113 . -1124) T) ((-891 . -978) T) ((-569 . -514) T) ((-673 . -978) T) ((-653 . -978) T) ((-719 . -25) T) ((-719 . -21) T) ((-717 . -21) T) ((-717 . -25) T) ((-612 . -977) 59427) ((-435 . -25) T) ((-113 . -514) T) ((-435 . -21) T) ((-428 . -25) T) ((-428 . -21) T) ((-1052 . -962) 59325) ((-754 . -266) 59304) ((-760 . -1014) T) ((-894 . -895) T) ((-612 . -107) 59283) ((-271 . -483) 59075) ((-1186 . -977) 59059) ((-1184 . -977) 59043) ((-227 . -285) 58981) ((-226 . -285) 58919) ((-1133 . -97) 58897) ((-1069 . -563) NIL) ((-1069 . -562) 58879) ((-1150 . -1106) 58845) ((-1150 . -1109) 58811) ((-1130 . -208) 58763) ((-1129 . -1106) 58729) ((-1129 . -1109) 58695) ((-1052 . -352) 58679) ((-1032 . -757) T) ((-1032 . -849) T) ((-1027 . -555) 58656) ((-997 . -563) 58640) ((-456 . -562) 58572) ((-752 . -264) 58549) ((-557 . -139) 58496) ((-393 . -978) T) ((-459 . -655) 58446) ((-455 . -461) 58430) ((-302 . -784) 58409) ((-314 . -590) 58383) ((-49 . -21) T) ((-49 . -25) T) ((-195 . -655) 58333) ((-154 . -662) 58304) ((-158 . -590) 58236) ((-535 . -21) T) ((-535 . -25) T) ((-486 . -25) T) ((-486 . -21) T) ((-449 . -139) 58186) ((-997 . -562) 58168) ((-981 . -562) 58150) ((-920 . -97) T) ((-792 . -97) T) ((-736 . -386) 58114) ((-39 . -124) T) ((-637 . -338) T) ((-191 . -824) T) ((-639 . -731) T) ((-639 . -728) T) ((-534 . -1026) T) ((-522 . -1026) T) ((-465 . -1026) T) ((-639 . -664) T) ((-334 . -562) 58096) ((-328 . -562) 58078) ((-320 . -562) 58060) ((-64 . -371) T) ((-64 . -370) T) ((-103 . -563) 57990) ((-103 . -562) 57972) ((-190 . -824) T) ((-886 . -139) 57956) ((-1150 . -91) 57922) ((-708 . -124) T) ((-126 . -664) T) ((-112 . -664) T) ((-1150 . -34) 57888) ((-975 . -461) 57872) ((-534 . -23) T) ((-522 . -23) T) ((-465 . -23) T) ((-1129 . -91) 57838) ((-1129 . -34) 57804) ((-1081 . -97) T) ((-1037 . -97) T) ((-788 . -97) T) ((-204 . -461) 57788) ((-1186 . -107) 57767) ((-1184 . -107) 57746) ((-43 . -977) 57730) ((-1139 . -1142) 57714) ((-789 . -786) 57698) ((-1087 . -266) 57677) ((-106 . -262) 57652) ((-1052 . -829) 57611) ((-43 . -107) 57590) ((-612 . -971) T) ((-1090 . -1161) T) ((-1068 . -563) NIL) ((-1068 . -562) 57572) ((-983 . -559) 57547) ((-983 . -1014) T) ((-72 . -415) T) ((-72 . -370) T) ((-612 . -210) 57526) ((-140 . -977) 57510) ((-529 . -512) 57494) ((-330 . -135) 57473) ((-330 . -133) 57424) ((-327 . -135) 57403) ((-641 . -1014) T) ((-327 . -133) 57354) ((-319 . -135) 57333) ((-319 . -133) 57284) ((-240 . -133) 57263) ((-240 . -135) 57242) ((-227 . -37) 57212) ((-224 . -135) 57191) ((-113 . -338) T) ((-224 . -133) 57170) ((-226 . -37) 57140) ((-140 . -107) 57119) ((-929 . -962) 57009) ((-1076 . -782) NIL) ((-632 . -1124) T) ((-736 . -978) T) ((-637 . -1026) T) ((-1186 . -971) T) ((-1184 . -971) T) ((-1066 . -1120) T) ((-929 . -352) 56986) ((-839 . -133) T) ((-839 . -135) 56968) ((-799 . -124) T) ((-752 . -977) 56866) ((-632 . -514) T) ((-637 . -23) T) ((-589 . -562) 56798) ((-589 . -563) 56759) ((-577 . -563) NIL) ((-577 . -562) 56741) ((-459 . -157) T) ((-200 . -21) T) ((-195 . -157) T) ((-200 . -25) T) ((-448 . -1109) 56707) ((-448 . -1106) 56673) ((-250 . -562) 56655) ((-249 . -562) 56637) ((-248 . -562) 56619) ((-247 . -562) 56601) ((-246 . -562) 56583) ((-470 . -593) 56565) ((-245 . -562) 56547) ((-314 . -664) T) ((-244 . -562) 56529) ((-106 . -19) 56511) ((-158 . -664) T) ((-470 . -348) 56493) ((-191 . -562) 56475) ((-488 . -1059) 56459) ((-470 . -119) T) ((-106 . -555) 56434) ((-190 . -562) 56416) ((-448 . -34) 56382) ((-448 . -91) 56348) ((-188 . -562) 56330) ((-187 . -562) 56312) ((-186 . -562) 56294) ((-185 . -562) 56276) ((-182 . -562) 56258) ((-181 . -562) 56240) ((-180 . -562) 56222) ((-179 . -562) 56204) ((-178 . -562) 56186) ((-177 . -562) 56168) ((-176 . -562) 56150) ((-498 . -1017) 56102) ((-175 . -562) 56084) ((-174 . -562) 56066) ((-44 . -461) 56003) ((-173 . -562) 55985) ((-172 . -562) 55967) ((-752 . -107) 55858) ((-588 . -97) 55808) ((-455 . -262) 55785) ((-1027 . -562) 55537) ((-1015 . -1014) T) ((-968 . -1120) T) ((-569 . -1026) T) ((-1187 . -962) 55521) ((-1081 . -285) 55508) ((-1037 . -285) 55495) ((-113 . -1026) T) ((-756 . -97) T) ((-569 . -23) T) ((-1060 . -483) 55287) ((-361 . -97) T) ((-299 . -97) T) ((-929 . -829) 55239) ((-891 . -1014) T) ((-140 . -971) T) ((-113 . -23) T) ((-669 . -386) 55223) ((-673 . -1014) T) ((-653 . -1014) T) ((-641 . -125) T) ((-427 . -1014) T) ((-291 . -405) 55207) ((-382 . -1120) T) ((-952 . -563) 55168) ((-949 . -1124) T) ((-202 . -97) T) ((-952 . -562) 55130) ((-753 . -208) 55114) ((-949 . -514) T) ((-770 . -590) 55087) ((-329 . -1124) T) ((-450 . -562) 55049) ((-450 . -563) 55010) ((-437 . -563) 54971) ((-437 . -562) 54933) ((-382 . -813) 54917) ((-294 . -977) 54752) ((-382 . -815) 54677) ((-777 . -962) 54575) ((-459 . -483) NIL) ((-455 . -555) 54552) ((-329 . -514) T) ((-195 . -483) NIL) ((-801 . -426) T) ((-393 . -1014) T) ((-382 . -962) 54419) ((-294 . -107) 54240) ((-632 . -338) T) ((-202 . -260) T) ((-47 . -1124) T) ((-752 . -971) 54171) ((-534 . -124) T) ((-522 . -124) T) ((-465 . -124) T) ((-47 . -514) T) ((-1069 . -264) 54147) ((-1081 . -1061) 54125) ((-291 . -27) 54104) ((-982 . -97) T) ((-752 . -210) 54057) ((-217 . -782) 54036) ((-881 . -97) T) ((-651 . -97) T) ((-271 . -461) 53973) ((-454 . -97) T) ((-669 . -978) T) ((-561 . -562) 53955) ((-561 . -563) 53816) ((-382 . -352) 53800) ((-382 . -313) 53784) ((-1081 . -37) 53613) ((-1037 . -37) 53462) ((-788 . -37) 53432) ((-365 . -590) 53416) ((-588 . -285) 53354) ((-891 . -655) 53251) ((-199 . -102) 53235) ((-44 . -262) 53160) ((-673 . -655) 53130) ((-567 . -590) 53104) ((-287 . -1014) T) ((-265 . -977) 53091) ((-106 . -562) 53073) ((-106 . -563) 53055) ((-427 . -655) 53025) ((-753 . -229) 52964) ((-628 . -1014) 52942) ((-508 . -1014) T) ((-1083 . -978) T) ((-1082 . -978) T) ((-265 . -107) 52927) ((-1076 . -978) T) ((-1038 . -978) T) ((-508 . -559) 52906) ((-930 . -782) T) ((-204 . -626) 52864) ((-632 . -1026) T) ((-1115 . -678) 52840) ((-294 . -971) T) ((-318 . -25) T) ((-318 . -21) T) ((-382 . -829) 52799) ((-66 . -1120) T) ((-770 . -731) 52778) ((-393 . -655) 52752) ((-736 . -1014) T) ((-770 . -728) 52731) ((-637 . -124) T) ((-650 . -849) 52710) ((-632 . -23) T) ((-459 . -266) T) ((-770 . -664) 52689) ((-294 . -210) 52641) ((-294 . -220) 52620) ((-195 . -266) T) ((-949 . -338) T) ((-1150 . -426) 52599) ((-1129 . -426) 52578) ((-329 . -304) 52555) ((-329 . -338) T) ((-1050 . -562) 52537) ((-44 . -1154) 52487) ((-800 . -97) T) ((-588 . -258) 52471) ((-637 . -980) T) ((-451 . -590) 52436) ((-442 . -1014) T) ((-44 . -555) 52361) ((-1068 . -264) 52336) ((-39 . -584) 52275) ((-47 . -338) T) ((-1020 . -562) 52257) ((-1003 . -784) 52236) ((-577 . -264) 52211) ((-719 . -784) 52190) ((-717 . -784) 52169) ((-455 . -562) 51921) ((-217 . -386) 51890) ((-881 . -285) 51877) ((-428 . -784) 51856) ((-63 . -1120) T) ((-569 . -124) T) ((-454 . -285) 51843) ((-983 . -483) 51687) ((-265 . -971) T) ((-113 . -124) T) ((-427 . -699) T) ((-891 . -157) 51638) ((-997 . -977) 51548) ((-567 . -731) 51527) ((-545 . -1014) T) ((-567 . -728) 51506) ((-567 . -664) T) ((-271 . -262) 51485) ((-270 . -1120) T) ((-975 . -562) 51447) ((-975 . -563) 51408) ((-949 . -1026) T) ((-154 . -97) T) ((-251 . -784) T) ((-1075 . -1014) T) ((-755 . -562) 51390) ((-1027 . -264) 51367) ((-1016 . -206) 51351) ((-929 . -283) T) ((-736 . -655) 51335) ((-334 . -977) 51287) ((-329 . -1026) T) ((-328 . -977) 51239) ((-389 . -562) 51221) ((-360 . -562) 51203) ((-320 . -977) 51155) ((-204 . -562) 51087) ((-997 . -107) 50983) ((-949 . -23) T) ((-103 . -977) 50933) ((-827 . -97) T) ((-775 . -97) T) ((-745 . -97) T) ((-706 . -97) T) ((-617 . -97) T) ((-448 . -426) 50912) ((-393 . -157) T) ((-334 . -107) 50850) ((-328 . -107) 50788) ((-320 . -107) 50726) ((-227 . -208) 50696) ((-226 . -208) 50666) ((-329 . -23) T) ((-69 . -1120) T) ((-202 . -37) 50631) ((-103 . -107) 50565) ((-39 . -25) T) ((-39 . -21) T) ((-612 . -658) T) ((-154 . -260) 50543) ((-47 . -1026) T) ((-850 . -25) T) ((-708 . -25) T) ((-1060 . -461) 50480) ((-457 . -1014) T) ((-1188 . -590) 50454) ((-1139 . -97) T) ((-789 . -97) T) ((-217 . -978) 50385) ((-982 . -1061) T) ((-892 . -729) 50338) ((-356 . -590) 50322) ((-47 . -23) T) ((-892 . -732) 50275) ((-752 . -732) 50226) ((-752 . -729) 50177) ((-271 . -555) 50156) ((-451 . -664) T) ((-529 . -97) T) ((-800 . -285) 50113) ((-595 . -262) 50092) ((-108 . -603) T) ((-74 . -1120) T) ((-982 . -37) 50079) ((-606 . -349) 50058) ((-881 . -37) 49907) ((-669 . -1014) T) ((-454 . -37) 49756) ((-84 . -1120) T) ((-529 . -260) T) ((-1130 . -782) NIL) ((-1083 . -1014) T) ((-1082 . -1014) T) ((-1076 . -1014) T) ((-326 . -962) 49733) ((-997 . -971) T) ((-930 . -978) T) ((-44 . -562) 49715) ((-44 . -563) NIL) ((-843 . -978) T) ((-754 . -562) 49697) ((-1057 . -97) 49675) ((-997 . -220) 49626) ((-402 . -978) T) ((-334 . -971) T) ((-328 . -971) T) ((-340 . -339) 49603) ((-320 . -971) T) ((-227 . -215) 49582) ((-226 . -215) 49561) ((-105 . -339) 49535) ((-997 . -210) 49460) ((-1038 . -1014) T) ((-270 . -829) 49419) ((-103 . -971) T) ((-632 . -124) T) ((-393 . -483) 49261) ((-334 . -210) 49240) ((-334 . -220) T) ((-43 . -658) T) ((-328 . -210) 49219) ((-328 . -220) T) ((-320 . -210) 49198) ((-320 . -220) T) ((-154 . -285) 49163) ((-103 . -220) T) ((-103 . -210) T) ((-294 . -729) T) ((-799 . -21) T) ((-799 . -25) T) ((-382 . -283) T) ((-470 . -33) T) ((-106 . -264) 49138) ((-1027 . -977) 49036) ((-800 . -1061) NIL) ((-305 . -562) 49018) ((-382 . -947) 48997) ((-1027 . -107) 48888) ((-411 . -1014) T) ((-1188 . -664) T) ((-61 . -562) 48870) ((-800 . -37) 48815) ((-491 . -1120) T) ((-553 . -139) 48799) ((-481 . -562) 48781) ((-1139 . -285) 48768) ((-669 . -655) 48617) ((-494 . -730) T) ((-494 . -731) T) ((-522 . -584) 48599) ((-465 . -584) 48559) ((-330 . -426) T) ((-327 . -426) T) ((-319 . -426) T) ((-240 . -426) 48510) ((-488 . -1014) 48460) ((-224 . -426) 48411) ((-1060 . -262) 48390) ((-1087 . -562) 48372) ((-628 . -483) 48305) ((-891 . -266) 48284) ((-508 . -483) 48076) ((-1081 . -208) 48060) ((-154 . -1061) 48039) ((-1176 . -562) 48021) ((-1083 . -655) 47918) ((-1082 . -655) 47759) ((-821 . -97) T) ((-1076 . -655) 47555) ((-1038 . -655) 47452) ((-1066 . -615) 47436) ((-330 . -377) 47387) ((-327 . -377) 47338) ((-319 . -377) 47289) ((-949 . -124) T) ((-736 . -483) 47201) ((-271 . -563) NIL) ((-271 . -562) 47183) ((-839 . -426) T) ((-892 . -343) 47136) ((-752 . -343) 47115) ((-479 . -478) 47094) ((-477 . -478) 47073) ((-459 . -262) NIL) ((-455 . -264) 47050) ((-393 . -266) T) ((-329 . -124) T) ((-195 . -262) NIL) ((-632 . -463) NIL) ((-94 . -1026) T) ((-154 . -37) 46878) ((-1150 . -900) 46841) ((-1057 . -285) 46779) ((-1129 . -900) 46749) ((-839 . -377) T) ((-1027 . -971) 46680) ((-1152 . -514) T) ((-1060 . -555) 46659) ((-108 . -784) T) ((-983 . -461) 46590) ((-534 . -21) T) ((-534 . -25) T) ((-522 . -21) T) ((-522 . -25) T) ((-465 . -25) T) ((-465 . -21) T) ((-1139 . -1061) 46568) ((-1027 . -210) 46521) ((-47 . -124) T) ((-1102 . -97) T) ((-217 . -1014) 46332) ((-800 . -375) 46309) ((-1004 . -97) T) ((-993 . -97) T) ((-557 . -97) T) ((-449 . -97) T) ((-1139 . -37) 46138) ((-789 . -37) 46108) ((-669 . -157) 46019) ((-595 . -562) 46001) ((-529 . -37) 45988) ((-886 . -97) 45938) ((-794 . -562) 45920) ((-794 . -563) 45842) ((-545 . -483) NIL) ((-1158 . -978) T) ((-1151 . -978) T) ((-1130 . -978) T) ((-548 . -978) T) ((-547 . -978) T) ((-1192 . -1026) T) ((-1083 . -157) 45793) ((-1082 . -157) 45724) ((-1076 . -157) 45655) ((-1038 . -157) 45606) ((-930 . -1014) T) ((-898 . -1014) T) ((-843 . -1014) T) ((-1115 . -135) 45585) ((-736 . -734) 45569) ((-637 . -25) T) ((-637 . -21) T) ((-113 . -584) 45546) ((-639 . -815) 45528) ((-402 . -1014) T) ((-291 . -1124) 45507) ((-288 . -1124) T) ((-154 . -375) 45491) ((-1115 . -133) 45470) ((-448 . -900) 45433) ((-70 . -562) 45415) ((-103 . -732) T) ((-103 . -729) T) ((-291 . -514) 45394) ((-639 . -962) 45376) ((-288 . -514) T) ((-1192 . -23) T) ((-126 . -962) 45358) ((-455 . -977) 45256) ((-44 . -264) 45181) ((-217 . -655) 45123) ((-455 . -107) 45014) ((-1007 . -97) 44992) ((-959 . -97) T) ((-588 . -765) 44971) ((-669 . -483) 44914) ((-975 . -977) 44898) ((-569 . -21) T) ((-569 . -25) T) ((-983 . -262) 44873) ((-336 . -97) T) ((-297 . -97) T) ((-612 . -590) 44847) ((-360 . -977) 44831) ((-975 . -107) 44810) ((-753 . -386) 44794) ((-113 . -25) T) ((-87 . -562) 44776) ((-113 . -21) T) ((-557 . -285) 44571) ((-449 . -285) 44375) ((-1060 . -563) NIL) ((-360 . -107) 44354) ((-354 . -97) T) ((-192 . -562) 44336) ((-1060 . -562) 44318) ((-930 . -655) 44268) ((-1076 . -483) 44037) ((-843 . -655) 43989) ((-1038 . -483) 43959) ((-326 . -283) T) ((-1094 . -139) 43909) ((-886 . -285) 43847) ((-771 . -97) T) ((-402 . -655) 43831) ((-202 . -765) T) ((-764 . -97) T) ((-762 . -97) T) ((-452 . -139) 43781) ((-1150 . -1149) 43760) ((-1032 . -1124) T) ((-314 . -962) 43727) ((-1150 . -1144) 43697) ((-1150 . -1147) 43681) ((-1129 . -1128) 43660) ((-78 . -562) 43642) ((-834 . -562) 43624) ((-1129 . -1144) 43601) ((-1032 . -514) T) ((-850 . -784) T) ((-459 . -563) 43531) ((-459 . -562) 43513) ((-708 . -784) T) ((-354 . -260) T) ((-613 . -784) T) ((-1129 . -1126) 43497) ((-1152 . -1026) T) ((-195 . -563) 43427) ((-195 . -562) 43409) ((-983 . -555) 43384) ((-57 . -139) 43368) ((-485 . -139) 43352) ((-466 . -139) 43336) ((-334 . -1183) 43320) ((-328 . -1183) 43304) ((-320 . -1183) 43288) ((-291 . -338) 43267) ((-288 . -338) T) ((-455 . -971) 43198) ((-632 . -584) 43180) ((-1186 . -590) 43154) ((-1184 . -590) 43128) ((-1152 . -23) T) ((-628 . -461) 43112) ((-62 . -562) 43094) ((-1027 . -732) 43045) ((-1027 . -729) 42996) ((-508 . -461) 42933) ((-612 . -33) T) ((-455 . -210) 42886) ((-271 . -264) 42865) ((-217 . -157) 42844) ((-753 . -978) T) ((-43 . -590) 42802) ((-997 . -343) 42753) ((-669 . -266) 42684) ((-488 . -483) 42617) ((-754 . -977) 42568) ((-1003 . -133) 42547) ((-334 . -343) 42526) ((-328 . -343) 42505) ((-320 . -343) 42484) ((-1003 . -135) 42463) ((-800 . -208) 42440) ((-754 . -107) 42382) ((-719 . -133) 42361) ((-719 . -135) 42340) ((-240 . -878) 42307) ((-227 . -782) 42286) ((-224 . -878) 42231) ((-226 . -782) 42210) ((-717 . -133) 42189) ((-717 . -135) 42168) ((-140 . -590) 42142) ((-428 . -135) 42121) ((-428 . -133) 42100) ((-612 . -664) T) ((-760 . -562) 42082) ((-1158 . -1014) T) ((-1151 . -1014) T) ((-1130 . -1014) T) ((-1115 . -1109) 42048) ((-1115 . -1106) 42014) ((-1083 . -266) 41993) ((-1082 . -266) 41944) ((-1076 . -266) 41895) ((-1038 . -266) 41874) ((-314 . -829) 41855) ((-930 . -157) T) ((-843 . -157) T) ((-548 . -1014) T) ((-547 . -1014) T) ((-632 . -21) T) ((-632 . -25) T) ((-448 . -1147) 41839) ((-448 . -1144) 41809) ((-393 . -262) 41737) ((-291 . -1026) 41587) ((-288 . -1026) T) ((-1115 . -34) 41553) ((-1115 . -91) 41519) ((-82 . -562) 41501) ((-89 . -97) 41479) ((-1192 . -124) T) ((-535 . -133) T) ((-535 . -135) 41461) ((-486 . -135) 41443) ((-486 . -133) T) ((-291 . -23) 41296) ((-39 . -317) 41270) ((-288 . -23) T) ((-1068 . -593) 41252) ((-752 . -590) 41102) ((-1179 . -978) T) ((-1068 . -348) 41084) ((-154 . -208) 41068) ((-545 . -461) 41050) ((-217 . -483) 40983) ((-1186 . -664) T) ((-1184 . -664) T) ((-1087 . -977) 40866) ((-1087 . -107) 40735) ((-754 . -971) T) ((-484 . -97) T) ((-47 . -584) 40695) ((-479 . -97) T) ((-477 . -97) T) ((-1176 . -977) 40665) ((-959 . -37) 40649) ((-754 . -210) T) ((-754 . -220) 40628) ((-508 . -262) 40607) ((-1176 . -107) 40572) ((-1139 . -208) 40556) ((-1158 . -655) 40453) ((-983 . -563) NIL) ((-983 . -562) 40435) ((-1151 . -655) 40276) ((-1130 . -655) 40072) ((-929 . -849) T) ((-641 . -562) 40041) ((-140 . -664) T) ((-1027 . -343) 40020) ((-930 . -483) NIL) ((-227 . -386) 39989) ((-226 . -386) 39958) ((-949 . -25) T) ((-949 . -21) T) ((-548 . -655) 39931) ((-547 . -655) 39828) ((-736 . -262) 39786) ((-122 . -97) 39764) ((-770 . -962) 39662) ((-154 . -765) 39641) ((-294 . -590) 39538) ((-752 . -33) T) ((-652 . -97) T) ((-1032 . -1026) T) ((-951 . -1120) T) ((-354 . -37) 39503) ((-329 . -25) T) ((-329 . -21) T) ((-147 . -97) T) ((-143 . -97) T) ((-330 . -1173) 39487) ((-327 . -1173) 39471) ((-319 . -1173) 39455) ((-154 . -324) 39434) ((-522 . -784) T) ((-465 . -784) T) ((-1032 . -23) T) ((-85 . -562) 39416) ((-639 . -283) T) ((-771 . -37) 39386) ((-764 . -37) 39356) ((-1152 . -124) T) ((-1060 . -264) 39335) ((-892 . -730) 39288) ((-892 . -731) 39241) ((-752 . -728) 39220) ((-112 . -283) T) ((-89 . -285) 39158) ((-616 . -33) T) ((-508 . -555) 39137) ((-47 . -25) T) ((-47 . -21) T) ((-752 . -731) 39088) ((-752 . -730) 39067) ((-639 . -947) T) ((-595 . -977) 39051) ((-892 . -664) 38950) ((-752 . -664) 38881) ((-892 . -447) 38834) ((-455 . -732) 38785) ((-455 . -729) 38736) ((-839 . -1173) 38723) ((-1087 . -971) T) ((-595 . -107) 38702) ((-1087 . -301) 38679) ((-1107 . -97) 38657) ((-1015 . -562) 38639) ((-639 . -507) T) ((-753 . -1014) T) ((-1176 . -971) T) ((-388 . -1014) T) ((-227 . -978) 38570) ((-226 . -978) 38501) ((-265 . -590) 38488) ((-545 . -262) 38463) ((-628 . -626) 38421) ((-891 . -562) 38403) ((-801 . -97) T) ((-673 . -562) 38385) ((-653 . -562) 38367) ((-1158 . -157) 38318) ((-1151 . -157) 38249) ((-1130 . -157) 38180) ((-637 . -784) T) ((-930 . -266) T) ((-427 . -562) 38162) ((-572 . -664) T) ((-58 . -1014) 38140) ((-222 . -139) 38124) ((-843 . -266) T) ((-949 . -938) T) ((-572 . -447) T) ((-650 . -1124) 38103) ((-548 . -157) 38082) ((-547 . -157) 38033) ((-1166 . -784) 38012) ((-650 . -514) 37923) ((-382 . -849) T) ((-382 . -757) 37902) ((-294 . -731) T) ((-294 . -664) T) ((-393 . -562) 37884) ((-393 . -563) 37792) ((-588 . -1059) 37776) ((-106 . -593) 37758) ((-122 . -285) 37696) ((-106 . -348) 37678) ((-158 . -283) T) ((-373 . -1120) T) ((-291 . -124) 37550) ((-288 . -124) T) ((-67 . -370) T) ((-106 . -119) T) ((-488 . -461) 37534) ((-596 . -1026) T) ((-545 . -19) 37516) ((-59 . -415) T) ((-59 . -370) T) ((-761 . -1014) T) ((-545 . -555) 37491) ((-451 . -962) 37451) ((-595 . -971) T) ((-596 . -23) T) ((-1179 . -1014) T) ((-753 . -655) 37300) ((-113 . -784) NIL) ((-1081 . -386) 37284) ((-1037 . -386) 37268) ((-788 . -386) 37252) ((-802 . -97) 37203) ((-1150 . -97) T) ((-1130 . -483) 36972) ((-1107 . -285) 36910) ((-287 . -562) 36892) ((-1129 . -97) T) ((-1016 . -1014) T) ((-1083 . -262) 36877) ((-1082 . -262) 36862) ((-265 . -664) T) ((-103 . -838) NIL) ((-628 . -562) 36794) ((-628 . -563) 36755) ((-997 . -590) 36665) ((-552 . -562) 36647) ((-508 . -563) NIL) ((-508 . -562) 36629) ((-1076 . -262) 36477) ((-459 . -977) 36427) ((-649 . -426) T) ((-480 . -478) 36406) ((-476 . -478) 36385) ((-195 . -977) 36335) ((-334 . -590) 36287) ((-328 . -590) 36239) ((-202 . -782) T) ((-320 . -590) 36191) ((-553 . -97) 36141) ((-455 . -343) 36120) ((-103 . -590) 36070) ((-459 . -107) 36004) ((-217 . -461) 35988) ((-318 . -135) 35970) ((-318 . -133) T) ((-154 . -345) 35941) ((-872 . -1164) 35925) ((-195 . -107) 35859) ((-801 . -285) 35824) ((-872 . -1014) 35774) ((-736 . -563) 35735) ((-736 . -562) 35717) ((-656 . -97) T) ((-306 . -1014) T) ((-1032 . -124) T) ((-652 . -37) 35687) ((-291 . -463) 35666) ((-470 . -1120) T) ((-1150 . -260) 35632) ((-1129 . -260) 35598) ((-302 . -139) 35582) ((-983 . -264) 35557) ((-1179 . -655) 35527) ((-1069 . -33) T) ((-1188 . -962) 35504) ((-442 . -562) 35486) ((-456 . -33) T) ((-356 . -962) 35470) ((-1081 . -978) T) ((-1037 . -978) T) ((-788 . -978) T) ((-982 . -782) T) ((-753 . -157) 35381) ((-488 . -262) 35358) ((-113 . -919) 35335) ((-1158 . -266) 35314) ((-1102 . -339) 35288) ((-1004 . -242) 35272) ((-448 . -97) T) ((-340 . -1014) T) ((-227 . -1014) T) ((-226 . -1014) T) ((-1151 . -266) 35223) ((-105 . -1014) T) ((-1130 . -266) 35174) ((-801 . -1061) 35152) ((-1083 . -928) 35118) ((-557 . -339) 35058) ((-1082 . -928) 35024) ((-557 . -206) 34971) ((-545 . -562) 34953) ((-545 . -563) NIL) ((-632 . -784) T) ((-449 . -206) 34903) ((-459 . -971) T) ((-1076 . -928) 34869) ((-86 . -414) T) ((-86 . -370) T) ((-195 . -971) T) ((-1038 . -928) 34835) ((-997 . -664) T) ((-650 . -1026) T) ((-548 . -266) 34814) ((-547 . -266) 34793) ((-459 . -220) T) ((-459 . -210) T) ((-195 . -220) T) ((-195 . -210) T) ((-1075 . -562) 34775) ((-801 . -37) 34727) ((-334 . -664) T) ((-328 . -664) T) ((-320 . -664) T) ((-103 . -731) T) ((-103 . -728) T) ((-488 . -1154) 34711) ((-103 . -664) T) ((-650 . -23) T) ((-1192 . -25) T) ((-448 . -260) 34677) ((-1192 . -21) T) ((-1129 . -285) 34616) ((-1085 . -97) T) ((-39 . -133) 34588) ((-39 . -135) 34560) ((-488 . -555) 34537) ((-1027 . -590) 34387) ((-553 . -285) 34325) ((-44 . -593) 34275) ((-44 . -608) 34225) ((-44 . -348) 34175) ((-1068 . -33) T) ((-800 . -782) NIL) ((-596 . -124) T) ((-457 . -562) 34157) ((-217 . -262) 34134) ((-589 . -33) T) ((-577 . -33) T) ((-1003 . -426) 34085) ((-753 . -483) 33959) ((-719 . -426) 33890) ((-717 . -426) 33841) ((-428 . -426) 33792) ((-881 . -386) 33776) ((-669 . -562) 33758) ((-227 . -655) 33700) ((-226 . -655) 33642) ((-669 . -563) 33503) ((-454 . -386) 33487) ((-314 . -278) T) ((-326 . -849) T) ((-926 . -97) 33465) ((-949 . -784) T) ((-58 . -483) 33398) ((-1129 . -1061) 33350) ((-930 . -262) NIL) ((-202 . -978) T) ((-354 . -765) T) ((-1027 . -33) T) ((-535 . -426) T) ((-486 . -426) T) ((-1133 . -1008) 33334) ((-1133 . -1014) 33312) ((-217 . -555) 33289) ((-1133 . -1010) 33246) ((-1083 . -562) 33228) ((-1082 . -562) 33210) ((-1076 . -562) 33192) ((-1076 . -563) NIL) ((-1038 . -562) 33174) ((-801 . -375) 33158) ((-498 . -97) T) ((-1150 . -37) 32999) ((-1129 . -37) 32813) ((-799 . -135) T) ((-535 . -377) T) ((-47 . -784) T) ((-486 . -377) T) ((-1152 . -21) T) ((-1152 . -25) T) ((-1027 . -728) 32792) ((-1027 . -731) 32743) ((-1027 . -730) 32722) ((-920 . -1014) T) ((-952 . -33) T) ((-792 . -1014) T) ((-1162 . -97) T) ((-1027 . -664) 32653) ((-606 . -97) T) ((-508 . -264) 32632) ((-1094 . -97) T) ((-450 . -33) T) ((-437 . -33) T) ((-330 . -97) T) ((-327 . -97) T) ((-319 . -97) T) ((-240 . -97) T) ((-224 . -97) T) ((-451 . -283) T) ((-982 . -978) T) ((-881 . -978) T) ((-291 . -584) 32540) ((-288 . -584) 32501) ((-454 . -978) T) ((-452 . -97) T) ((-411 . -562) 32483) ((-1081 . -1014) T) ((-1037 . -1014) T) ((-788 . -1014) T) ((-1051 . -97) T) ((-753 . -266) 32414) ((-891 . -977) 32297) ((-451 . -947) T) ((-673 . -977) 32267) ((-427 . -977) 32237) ((-1057 . -1033) 32221) ((-1016 . -483) 32154) ((-891 . -107) 32023) ((-839 . -97) T) ((-673 . -107) 31988) ((-57 . -97) 31938) ((-488 . -563) 31899) ((-488 . -562) 31811) ((-487 . -97) 31789) ((-485 . -97) 31739) ((-467 . -97) 31717) ((-466 . -97) 31667) ((-427 . -107) 31630) ((-227 . -157) 31609) ((-226 . -157) 31588) ((-393 . -977) 31562) ((-1115 . -900) 31524) ((-925 . -1026) T) ((-872 . -483) 31457) ((-459 . -732) T) ((-448 . -37) 31298) ((-393 . -107) 31265) ((-459 . -729) T) ((-926 . -285) 31203) ((-195 . -732) T) ((-195 . -729) T) ((-925 . -23) T) ((-650 . -124) T) ((-1129 . -375) 31173) ((-291 . -25) 31026) ((-154 . -386) 31010) ((-291 . -21) 30882) ((-288 . -25) T) ((-288 . -21) T) ((-794 . -343) T) ((-106 . -33) T) ((-455 . -590) 30732) ((-800 . -978) T) ((-545 . -264) 30707) ((-534 . -135) T) ((-522 . -135) T) ((-465 . -135) T) ((-1081 . -655) 30536) ((-1037 . -655) 30385) ((-1032 . -584) 30367) ((-788 . -655) 30337) ((-612 . -1120) T) ((-1 . -97) T) ((-217 . -562) 30089) ((-1139 . -386) 30073) ((-1094 . -285) 29877) ((-891 . -971) T) ((-673 . -971) T) ((-653 . -971) T) ((-588 . -1014) 29827) ((-975 . -590) 29811) ((-789 . -386) 29795) ((-480 . -97) T) ((-476 . -97) T) ((-224 . -285) 29782) ((-240 . -285) 29769) ((-891 . -301) 29748) ((-360 . -590) 29732) ((-452 . -285) 29536) ((-227 . -483) 29469) ((-612 . -962) 29367) ((-226 . -483) 29300) ((-1051 . -285) 29226) ((-756 . -1014) T) ((-736 . -977) 29210) ((-1158 . -262) 29195) ((-1151 . -262) 29180) ((-1130 . -262) 29028) ((-361 . -1014) T) ((-299 . -1014) T) ((-393 . -971) T) ((-154 . -978) T) ((-57 . -285) 28966) ((-736 . -107) 28945) ((-547 . -262) 28930) ((-487 . -285) 28868) ((-485 . -285) 28806) ((-467 . -285) 28744) ((-466 . -285) 28682) ((-393 . -210) 28661) ((-455 . -33) T) ((-930 . -563) 28591) ((-202 . -1014) T) ((-930 . -562) 28573) ((-898 . -562) 28555) ((-898 . -563) 28530) ((-843 . -562) 28512) ((-637 . -135) T) ((-639 . -849) T) ((-639 . -757) T) ((-402 . -562) 28494) ((-1032 . -21) T) ((-1032 . -25) T) ((-612 . -352) 28478) ((-112 . -849) T) ((-801 . -208) 28462) ((-76 . -1120) T) ((-122 . -121) 28446) ((-975 . -33) T) ((-1186 . -962) 28420) ((-1184 . -962) 28377) ((-1139 . -978) T) ((-789 . -978) T) ((-455 . -728) 28356) ((-330 . -1061) 28335) ((-327 . -1061) 28314) ((-319 . -1061) 28293) ((-455 . -731) 28244) ((-455 . -730) 28223) ((-204 . -33) T) ((-455 . -664) 28154) ((-58 . -461) 28138) ((-529 . -978) T) ((-1081 . -157) 28029) ((-1037 . -157) 27940) ((-982 . -1014) T) ((-1003 . -878) 27885) ((-881 . -1014) T) ((-754 . -590) 27836) ((-719 . -878) 27806) ((-651 . -1014) T) ((-717 . -878) 27773) ((-485 . -258) 27757) ((-612 . -829) 27716) ((-454 . -1014) T) ((-428 . -878) 27683) ((-77 . -1120) T) ((-330 . -37) 27648) ((-327 . -37) 27613) ((-319 . -37) 27578) ((-240 . -37) 27427) ((-224 . -37) 27276) ((-839 . -1061) T) ((-569 . -135) 27255) ((-569 . -133) 27234) ((-113 . -135) T) ((-113 . -133) NIL) ((-389 . -664) T) ((-736 . -971) T) ((-318 . -426) T) ((-1158 . -928) 27200) ((-1151 . -928) 27166) ((-1130 . -928) 27132) ((-839 . -37) 27097) ((-202 . -655) 27062) ((-39 . -384) 27034) ((-294 . -46) 27004) ((-925 . -124) T) ((-752 . -1120) T) ((-158 . -849) T) ((-318 . -377) T) ((-488 . -264) 26981) ((-44 . -33) T) ((-752 . -962) 26810) ((-604 . -97) T) ((-596 . -21) T) ((-596 . -25) T) ((-1016 . -461) 26794) ((-1129 . -208) 26764) ((-616 . -1120) T) ((-222 . -97) 26714) ((-800 . -1014) T) ((-1087 . -590) 26639) ((-982 . -655) 26626) ((-669 . -977) 26469) ((-1081 . -483) 26417) ((-881 . -655) 26266) ((-1037 . -483) 26218) ((-454 . -655) 26067) ((-65 . -562) 26049) ((-669 . -107) 25878) ((-872 . -461) 25862) ((-1176 . -590) 25822) ((-754 . -664) T) ((-1083 . -977) 25705) ((-1082 . -977) 25540) ((-1076 . -977) 25330) ((-1038 . -977) 25213) ((-929 . -1124) T) ((-1009 . -97) 25191) ((-752 . -352) 25161) ((-929 . -514) T) ((-1083 . -107) 25030) ((-1082 . -107) 24851) ((-1076 . -107) 24620) ((-1038 . -107) 24489) ((-1019 . -1017) 24453) ((-354 . -782) T) ((-1158 . -562) 24435) ((-1151 . -562) 24417) ((-1130 . -562) 24399) ((-1130 . -563) NIL) ((-217 . -264) 24376) ((-39 . -426) T) ((-202 . -157) T) ((-154 . -1014) T) ((-632 . -135) T) ((-632 . -133) NIL) ((-548 . -562) 24358) ((-547 . -562) 24340) ((-827 . -1014) T) ((-775 . -1014) T) ((-745 . -1014) T) ((-706 . -1014) T) ((-600 . -786) 24324) ((-617 . -1014) T) ((-752 . -829) 24257) ((-39 . -377) NIL) ((-1032 . -603) T) ((-800 . -655) 24202) ((-227 . -461) 24186) ((-226 . -461) 24170) ((-650 . -584) 24118) ((-595 . -590) 24092) ((-271 . -33) T) ((-669 . -971) T) ((-535 . -1173) 24079) ((-486 . -1173) 24056) ((-1139 . -1014) T) ((-1081 . -266) 23967) ((-1037 . -266) 23898) ((-982 . -157) T) ((-789 . -1014) T) ((-881 . -157) 23809) ((-719 . -1142) 23793) ((-588 . -483) 23726) ((-75 . -562) 23708) ((-669 . -301) 23673) ((-1087 . -664) T) ((-529 . -1014) T) ((-454 . -157) 23584) ((-222 . -285) 23522) ((-1052 . -1026) T) ((-68 . -562) 23504) ((-1176 . -664) T) ((-1083 . -971) T) ((-1082 . -971) T) ((-302 . -97) 23454) ((-1076 . -971) T) ((-1052 . -23) T) ((-1038 . -971) T) ((-89 . -1033) 23438) ((-795 . -1026) T) ((-1083 . -210) 23397) ((-1082 . -220) 23376) ((-1082 . -210) 23328) ((-1076 . -210) 23215) ((-1076 . -220) 23194) ((-294 . -829) 23100) ((-795 . -23) T) ((-154 . -655) 22928) ((-382 . -1124) T) ((-1015 . -343) T) ((-949 . -135) T) ((-929 . -338) T) ((-799 . -426) T) ((-872 . -262) 22905) ((-291 . -784) T) ((-288 . -784) NIL) ((-803 . -97) T) ((-650 . -25) T) ((-382 . -514) T) ((-650 . -21) T) ((-329 . -135) 22887) ((-329 . -133) T) ((-1057 . -1014) 22865) ((-427 . -658) T) ((-73 . -562) 22847) ((-110 . -784) T) ((-222 . -258) 22831) ((-217 . -977) 22729) ((-79 . -562) 22711) ((-673 . -343) 22664) ((-1085 . -765) T) ((-675 . -212) 22648) ((-1069 . -1120) T) ((-129 . -212) 22630) ((-217 . -107) 22521) ((-1139 . -655) 22350) ((-47 . -135) T) ((-800 . -157) T) ((-789 . -655) 22320) ((-456 . -1120) T) ((-881 . -483) 22267) ((-595 . -664) T) ((-529 . -655) 22254) ((-959 . -978) T) ((-454 . -483) 22197) ((-872 . -19) 22181) ((-872 . -555) 22158) ((-753 . -563) NIL) ((-753 . -562) 22140) ((-930 . -977) 22090) ((-388 . -562) 22072) ((-227 . -262) 22049) ((-226 . -262) 22026) ((-459 . -838) NIL) ((-291 . -29) 21996) ((-103 . -1120) T) ((-929 . -1026) T) ((-195 . -838) NIL) ((-843 . -977) 21948) ((-997 . -962) 21846) ((-930 . -107) 21780) ((-240 . -208) 21764) ((-675 . -633) 21748) ((-402 . -977) 21732) ((-354 . -978) T) ((-929 . -23) T) ((-843 . -107) 21670) ((-632 . -1109) NIL) ((-459 . -590) 21620) ((-103 . -813) 21602) ((-103 . -815) 21584) ((-632 . -1106) NIL) ((-195 . -590) 21534) ((-334 . -962) 21518) ((-328 . -962) 21502) ((-302 . -285) 21440) ((-320 . -962) 21424) ((-202 . -266) T) ((-402 . -107) 21403) ((-58 . -562) 21335) ((-154 . -157) T) ((-1032 . -784) T) ((-103 . -962) 21295) ((-821 . -1014) T) ((-771 . -978) T) ((-764 . -978) T) ((-632 . -34) NIL) ((-632 . -91) NIL) ((-288 . -919) 21256) ((-534 . -426) T) ((-522 . -426) T) ((-465 . -426) T) ((-382 . -338) T) ((-217 . -971) 21187) ((-1060 . -33) T) ((-451 . -849) T) ((-925 . -584) 21135) ((-227 . -555) 21112) ((-226 . -555) 21089) ((-997 . -352) 21073) ((-800 . -483) 20981) ((-217 . -210) 20934) ((-1068 . -1120) T) ((-761 . -562) 20916) ((-1187 . -1026) T) ((-1179 . -562) 20898) ((-1139 . -157) 20789) ((-103 . -352) 20771) ((-103 . -313) 20753) ((-982 . -266) T) ((-881 . -266) 20684) ((-736 . -343) 20663) ((-589 . -1120) T) ((-577 . -1120) T) ((-454 . -266) 20594) ((-529 . -157) T) ((-302 . -258) 20578) ((-1187 . -23) T) ((-1115 . -97) T) ((-1102 . -1014) T) ((-1004 . -1014) T) ((-993 . -1014) T) ((-81 . -562) 20560) ((-649 . -97) T) ((-330 . -324) 20539) ((-557 . -1014) T) ((-327 . -324) 20518) ((-319 . -324) 20497) ((-449 . -1014) T) ((-1094 . -206) 20447) ((-240 . -229) 20409) ((-1052 . -124) T) ((-557 . -559) 20385) ((-997 . -829) 20318) ((-930 . -971) T) ((-843 . -971) T) ((-449 . -559) 20297) ((-1076 . -729) NIL) ((-1076 . -732) NIL) ((-1016 . -563) 20258) ((-452 . -206) 20208) ((-1016 . -562) 20190) ((-930 . -220) T) ((-930 . -210) T) ((-402 . -971) T) ((-886 . -1014) 20140) ((-843 . -220) T) ((-795 . -124) T) ((-637 . -426) T) ((-777 . -1026) 20119) ((-103 . -829) NIL) ((-1115 . -260) 20085) ((-801 . -782) 20064) ((-1027 . -1120) T) ((-834 . -664) T) ((-154 . -483) 19976) ((-925 . -25) T) ((-834 . -447) T) ((-382 . -1026) T) ((-459 . -731) T) ((-459 . -728) T) ((-839 . -324) T) ((-459 . -664) T) ((-195 . -731) T) ((-195 . -728) T) ((-925 . -21) T) ((-195 . -664) T) ((-777 . -23) 19928) ((-294 . -283) 19907) ((-960 . -212) 19853) ((-382 . -23) T) ((-872 . -563) 19814) ((-872 . -562) 19726) ((-588 . -461) 19710) ((-44 . -936) 19660) ((-306 . -562) 19642) ((-1027 . -962) 19471) ((-545 . -593) 19453) ((-545 . -348) 19435) ((-318 . -1173) 19412) ((-952 . -1120) T) ((-800 . -266) T) ((-1139 . -483) 19360) ((-450 . -1120) T) ((-437 . -1120) T) ((-539 . -97) T) ((-1081 . -262) 19287) ((-569 . -426) 19266) ((-926 . -921) 19250) ((-1179 . -357) 19222) ((-113 . -426) T) ((-1101 . -97) T) ((-1007 . -1014) 19200) ((-959 . -1014) T) ((-822 . -784) T) ((-326 . -1124) T) ((-1158 . -977) 19083) ((-1027 . -352) 19053) ((-1151 . -977) 18888) ((-1130 . -977) 18678) ((-1158 . -107) 18547) ((-1151 . -107) 18368) ((-1130 . -107) 18137) ((-1115 . -285) 18124) ((-326 . -514) T) ((-340 . -562) 18106) ((-265 . -283) T) ((-548 . -977) 18079) ((-547 . -977) 17962) ((-336 . -1014) T) ((-297 . -1014) T) ((-227 . -562) 17923) ((-226 . -562) 17884) ((-929 . -124) T) ((-105 . -562) 17866) ((-580 . -23) T) ((-632 . -384) 17833) ((-556 . -23) T) ((-600 . -97) T) ((-548 . -107) 17804) ((-547 . -107) 17673) ((-354 . -1014) T) ((-311 . -97) T) ((-154 . -266) 17584) ((-1129 . -782) 17537) ((-652 . -978) T) ((-1057 . -483) 17470) ((-1027 . -829) 17403) ((-771 . -1014) T) ((-764 . -1014) T) ((-762 . -1014) T) ((-92 . -97) T) ((-132 . -784) T) ((-561 . -813) 17387) ((-106 . -1120) T) ((-1003 . -97) T) ((-983 . -33) T) ((-719 . -97) T) ((-717 . -97) T) ((-435 . -97) T) ((-428 . -97) T) ((-217 . -732) 17338) ((-217 . -729) 17289) ((-591 . -97) T) ((-1139 . -266) 17200) ((-606 . -579) 17184) ((-588 . -262) 17161) ((-959 . -655) 17145) ((-529 . -266) T) ((-891 . -590) 17070) ((-1187 . -124) T) ((-673 . -590) 17030) ((-653 . -590) 17017) ((-251 . -97) T) ((-427 . -590) 16947) ((-49 . -97) T) ((-535 . -97) T) ((-486 . -97) T) ((-1158 . -971) T) ((-1151 . -971) T) ((-1130 . -971) T) ((-1158 . -210) 16906) ((-297 . -655) 16888) ((-1151 . -220) 16867) ((-1151 . -210) 16819) ((-1130 . -210) 16706) ((-1130 . -220) 16685) ((-1115 . -37) 16582) ((-930 . -732) T) ((-548 . -971) T) ((-547 . -971) T) ((-930 . -729) T) ((-898 . -732) T) ((-898 . -729) T) ((-801 . -978) T) ((-799 . -798) 16566) ((-104 . -562) 16548) ((-632 . -426) T) ((-354 . -655) 16513) ((-393 . -590) 16487) ((-650 . -784) 16466) ((-649 . -37) 16431) ((-547 . -210) 16390) ((-39 . -662) 16362) ((-326 . -304) 16339) ((-326 . -338) T) ((-997 . -283) 16290) ((-270 . -1026) 16172) ((-1020 . -1120) T) ((-156 . -97) T) ((-1133 . -562) 16139) ((-777 . -124) 16091) ((-588 . -1154) 16075) ((-771 . -655) 16045) ((-764 . -655) 16015) ((-455 . -1120) T) ((-334 . -283) T) ((-328 . -283) T) ((-320 . -283) T) ((-588 . -555) 15992) ((-382 . -124) T) ((-488 . -608) 15976) ((-103 . -283) T) ((-270 . -23) 15860) ((-488 . -593) 15844) ((-632 . -377) NIL) ((-488 . -348) 15828) ((-267 . -562) 15810) ((-89 . -1014) 15788) ((-103 . -947) T) ((-522 . -131) T) ((-1166 . -139) 15772) ((-455 . -962) 15601) ((-1152 . -133) 15562) ((-1152 . -135) 15523) ((-975 . -1120) T) ((-920 . -562) 15505) ((-792 . -562) 15487) ((-753 . -977) 15330) ((-1003 . -285) 15317) ((-204 . -1120) T) ((-719 . -285) 15304) ((-717 . -285) 15291) ((-753 . -107) 15120) ((-428 . -285) 15107) ((-1081 . -563) NIL) ((-1081 . -562) 15089) ((-1037 . -562) 15071) ((-1037 . -563) 14819) ((-959 . -157) T) ((-788 . -562) 14801) ((-872 . -264) 14778) ((-557 . -483) 14561) ((-755 . -962) 14545) ((-449 . -483) 14337) ((-891 . -664) T) ((-673 . -664) T) ((-653 . -664) T) ((-326 . -1026) T) ((-1088 . -562) 14319) ((-200 . -97) T) ((-455 . -352) 14289) ((-484 . -1014) T) ((-479 . -1014) T) ((-477 . -1014) T) ((-736 . -590) 14263) ((-949 . -426) T) ((-886 . -483) 14196) ((-326 . -23) T) ((-580 . -124) T) ((-556 . -124) T) ((-329 . -426) T) ((-217 . -343) 14175) ((-354 . -157) T) ((-1150 . -978) T) ((-1129 . -978) T) ((-202 . -928) T) ((-637 . -362) T) ((-393 . -664) T) ((-639 . -1124) T) ((-1052 . -584) 14123) ((-534 . -798) 14107) ((-1069 . -1097) 14083) ((-639 . -514) T) ((-122 . -1014) 14061) ((-1179 . -977) 14045) ((-652 . -1014) T) ((-455 . -829) 13978) ((-600 . -37) 13948) ((-329 . -377) T) ((-291 . -135) 13927) ((-291 . -133) 13906) ((-112 . -514) T) ((-288 . -135) 13862) ((-288 . -133) 13818) ((-47 . -426) T) ((-147 . -1014) T) ((-143 . -1014) T) ((-1069 . -102) 13765) ((-719 . -1061) 13743) ((-628 . -33) T) ((-1179 . -107) 13722) ((-508 . -33) T) ((-456 . -102) 13706) ((-227 . -264) 13683) ((-226 . -264) 13660) ((-800 . -262) 13611) ((-44 . -1120) T) ((-753 . -971) T) ((-1087 . -46) 13588) ((-753 . -301) 13550) ((-1003 . -37) 13399) ((-753 . -210) 13378) ((-719 . -37) 13207) ((-717 . -37) 13056) ((-428 . -37) 12905) ((-588 . -563) 12866) ((-588 . -562) 12778) ((-535 . -1061) T) ((-486 . -1061) T) ((-1057 . -461) 12762) ((-1107 . -1014) 12740) ((-1052 . -25) T) ((-1052 . -21) T) ((-448 . -978) T) ((-1130 . -729) NIL) ((-1130 . -732) NIL) ((-925 . -784) 12719) ((-756 . -562) 12701) ((-795 . -21) T) ((-795 . -25) T) ((-736 . -664) T) ((-158 . -1124) T) ((-535 . -37) 12666) ((-486 . -37) 12631) ((-361 . -562) 12613) ((-299 . -562) 12595) ((-154 . -262) 12553) ((-61 . -1120) T) ((-108 . -97) T) ((-801 . -1014) T) ((-158 . -514) T) ((-652 . -655) 12523) ((-270 . -124) 12407) ((-202 . -562) 12389) ((-202 . -563) 12319) ((-929 . -584) 12258) ((-1179 . -971) T) ((-1032 . -135) T) ((-577 . -1097) 12233) ((-669 . -838) 12212) ((-545 . -33) T) ((-589 . -102) 12196) ((-577 . -102) 12142) ((-1139 . -262) 12069) ((-669 . -590) 11994) ((-271 . -1120) T) ((-1087 . -962) 11892) ((-1076 . -838) NIL) ((-982 . -563) 11807) ((-982 . -562) 11789) ((-318 . -97) T) ((-227 . -977) 11687) ((-226 . -977) 11585) ((-369 . -97) T) ((-881 . -562) 11567) ((-881 . -563) 11428) ((-651 . -562) 11410) ((-1177 . -1114) 11379) ((-454 . -562) 11361) ((-454 . -563) 11222) ((-224 . -386) 11206) ((-240 . -386) 11190) ((-227 . -107) 11081) ((-226 . -107) 10972) ((-1083 . -590) 10897) ((-1082 . -590) 10794) ((-1076 . -590) 10646) ((-1038 . -590) 10571) ((-326 . -124) T) ((-80 . -415) T) ((-80 . -370) T) ((-929 . -25) T) ((-929 . -21) T) ((-802 . -1014) 10522) ((-801 . -655) 10474) ((-354 . -266) T) ((-154 . -928) 10426) ((-632 . -362) T) ((-925 . -923) 10410) ((-639 . -1026) T) ((-632 . -151) 10392) ((-1150 . -1014) T) ((-1129 . -1014) T) ((-291 . -1106) 10371) ((-291 . -1109) 10350) ((-1074 . -97) T) ((-291 . -887) 10329) ((-126 . -1026) T) ((-112 . -1026) T) ((-553 . -1164) 10313) ((-639 . -23) T) ((-553 . -1014) 10263) ((-89 . -483) 10196) ((-158 . -338) T) ((-291 . -91) 10175) ((-291 . -34) 10154) ((-557 . -461) 10088) ((-126 . -23) T) ((-112 . -23) T) ((-656 . -1014) T) ((-449 . -461) 10025) ((-382 . -584) 9973) ((-595 . -962) 9871) ((-886 . -461) 9855) ((-330 . -978) T) ((-327 . -978) T) ((-319 . -978) T) ((-240 . -978) T) ((-224 . -978) T) ((-800 . -563) NIL) ((-800 . -562) 9837) ((-1187 . -21) T) ((-529 . -928) T) ((-669 . -664) T) ((-1187 . -25) T) ((-227 . -971) 9768) ((-226 . -971) 9699) ((-70 . -1120) T) ((-227 . -210) 9652) ((-226 . -210) 9605) ((-39 . -97) T) ((-839 . -978) T) ((-1090 . -97) T) ((-1083 . -664) T) ((-1082 . -664) T) ((-1076 . -664) T) ((-1076 . -728) NIL) ((-1076 . -731) NIL) ((-850 . -97) T) ((-1038 . -664) T) ((-708 . -97) T) ((-613 . -97) T) ((-448 . -1014) T) ((-314 . -1026) T) ((-158 . -1026) T) ((-294 . -849) 9584) ((-1150 . -655) 9425) ((-801 . -157) T) ((-1129 . -655) 9239) ((-777 . -21) 9191) ((-777 . -25) 9143) ((-222 . -1059) 9127) ((-122 . -483) 9060) ((-382 . -25) T) ((-382 . -21) T) ((-314 . -23) T) ((-154 . -563) 8828) ((-154 . -562) 8810) ((-158 . -23) T) ((-588 . -264) 8787) ((-488 . -33) T) ((-827 . -562) 8769) ((-87 . -1120) T) ((-775 . -562) 8751) ((-745 . -562) 8733) ((-706 . -562) 8715) ((-617 . -562) 8697) ((-217 . -590) 8547) ((-1085 . -1014) T) ((-1081 . -977) 8370) ((-1060 . -1120) T) ((-1037 . -977) 8213) ((-788 . -977) 8197) ((-1081 . -107) 8006) ((-1037 . -107) 7835) ((-788 . -107) 7814) ((-1139 . -563) NIL) ((-1139 . -562) 7796) ((-318 . -1061) T) ((-789 . -562) 7778) ((-993 . -262) 7757) ((-78 . -1120) T) ((-930 . -838) NIL) ((-557 . -262) 7733) ((-1107 . -483) 7666) ((-459 . -1120) T) ((-529 . -562) 7648) ((-449 . -262) 7627) ((-195 . -1120) T) ((-1003 . -208) 7611) ((-265 . -849) T) ((-754 . -283) 7590) ((-799 . -97) T) ((-719 . -208) 7574) ((-930 . -590) 7524) ((-886 . -262) 7501) ((-843 . -590) 7453) ((-580 . -21) T) ((-580 . -25) T) ((-556 . -21) T) ((-318 . -37) 7418) ((-632 . -662) 7385) ((-459 . -813) 7367) ((-459 . -815) 7349) ((-448 . -655) 7190) ((-195 . -813) 7172) ((-62 . -1120) T) ((-195 . -815) 7154) ((-556 . -25) T) ((-402 . -590) 7128) ((-459 . -962) 7088) ((-801 . -483) 7000) ((-195 . -962) 6960) ((-217 . -33) T) ((-926 . -1014) 6938) ((-1150 . -157) 6869) ((-1129 . -157) 6800) ((-650 . -133) 6779) ((-650 . -135) 6758) ((-639 . -124) T) ((-128 . -439) 6735) ((-600 . -598) 6719) ((-1057 . -562) 6651) ((-112 . -124) T) ((-451 . -1124) T) ((-557 . -555) 6627) ((-449 . -555) 6606) ((-311 . -310) 6575) ((-498 . -1014) T) ((-451 . -514) T) ((-1081 . -971) T) ((-1037 . -971) T) ((-788 . -971) T) ((-217 . -728) 6554) ((-217 . -731) 6505) ((-217 . -730) 6484) ((-1081 . -301) 6461) ((-217 . -664) 6392) ((-886 . -19) 6376) ((-459 . -352) 6358) ((-459 . -313) 6340) ((-1037 . -301) 6312) ((-329 . -1173) 6289) ((-195 . -352) 6271) ((-195 . -313) 6253) ((-886 . -555) 6230) ((-1081 . -210) T) ((-606 . -1014) T) ((-1162 . -1014) T) ((-1094 . -1014) T) ((-1003 . -229) 6167) ((-330 . -1014) T) ((-327 . -1014) T) ((-319 . -1014) T) ((-240 . -1014) T) ((-224 . -1014) T) ((-82 . -1120) T) ((-123 . -97) 6145) ((-117 . -97) 6123) ((-1094 . -559) 6102) ((-452 . -1014) T) ((-1051 . -1014) T) ((-452 . -559) 6081) ((-227 . -732) 6032) ((-227 . -729) 5983) ((-226 . -732) 5934) ((-39 . -1061) NIL) ((-226 . -729) 5885) ((-997 . -849) 5836) ((-930 . -731) T) ((-930 . -728) T) ((-930 . -664) T) ((-898 . -731) T) ((-843 . -664) T) ((-89 . -461) 5820) ((-459 . -829) NIL) ((-839 . -1014) T) ((-202 . -977) 5785) ((-801 . -266) T) ((-195 . -829) NIL) ((-770 . -1026) 5764) ((-57 . -1014) 5714) ((-487 . -1014) 5692) ((-485 . -1014) 5642) ((-467 . -1014) 5620) ((-466 . -1014) 5570) ((-534 . -97) T) ((-522 . -97) T) ((-465 . -97) T) ((-448 . -157) 5501) ((-334 . -849) T) ((-328 . -849) T) ((-320 . -849) T) ((-202 . -107) 5457) ((-770 . -23) 5409) ((-402 . -664) T) ((-103 . -849) T) ((-39 . -37) 5354) ((-103 . -757) T) ((-535 . -324) T) ((-486 . -324) T) ((-1129 . -483) 5214) ((-291 . -426) 5193) ((-288 . -426) T) ((-771 . -262) 5172) ((-314 . -124) T) ((-158 . -124) T) ((-270 . -25) 5037) ((-270 . -21) 4921) ((-44 . -1097) 4900) ((-64 . -562) 4882) ((-821 . -562) 4864) ((-553 . -483) 4797) ((-44 . -102) 4747) ((-1016 . -400) 4731) ((-1016 . -343) 4710) ((-983 . -1120) T) ((-982 . -977) 4697) ((-881 . -977) 4540) ((-454 . -977) 4383) ((-606 . -655) 4367) ((-982 . -107) 4352) ((-881 . -107) 4181) ((-451 . -338) T) ((-330 . -655) 4133) ((-327 . -655) 4085) ((-319 . -655) 4037) ((-240 . -655) 3886) ((-224 . -655) 3735) ((-872 . -593) 3719) ((-454 . -107) 3548) ((-1167 . -97) T) ((-872 . -348) 3532) ((-1130 . -838) NIL) ((-72 . -562) 3514) ((-891 . -46) 3493) ((-567 . -1026) T) ((-1 . -1014) T) ((-637 . -97) T) ((-1166 . -97) 3443) ((-1158 . -590) 3368) ((-1151 . -590) 3265) ((-122 . -461) 3249) ((-1102 . -562) 3231) ((-1004 . -562) 3213) ((-365 . -23) T) ((-993 . -562) 3195) ((-85 . -1120) T) ((-1130 . -590) 3047) ((-839 . -655) 3012) ((-567 . -23) T) ((-557 . -562) 2994) ((-557 . -563) NIL) ((-449 . -563) NIL) ((-449 . -562) 2976) ((-480 . -1014) T) ((-476 . -1014) T) ((-326 . -25) T) ((-326 . -21) T) ((-123 . -285) 2914) ((-117 . -285) 2852) ((-548 . -590) 2839) ((-202 . -971) T) ((-547 . -590) 2764) ((-354 . -928) T) ((-202 . -220) T) ((-202 . -210) T) ((-886 . -563) 2725) ((-886 . -562) 2637) ((-799 . -37) 2624) ((-1150 . -266) 2575) ((-1129 . -266) 2526) ((-1032 . -426) T) ((-472 . -784) T) ((-291 . -1049) 2505) ((-925 . -135) 2484) ((-925 . -133) 2463) ((-465 . -285) 2450) ((-271 . -1097) 2429) ((-451 . -1026) T) ((-800 . -977) 2374) ((-569 . -97) T) ((-1107 . -461) 2358) ((-227 . -343) 2337) ((-226 . -343) 2316) ((-271 . -102) 2266) ((-982 . -971) T) ((-113 . -97) T) ((-881 . -971) T) ((-800 . -107) 2195) ((-451 . -23) T) ((-454 . -971) T) ((-982 . -210) T) ((-881 . -301) 2164) ((-454 . -301) 2121) ((-330 . -157) T) ((-327 . -157) T) ((-319 . -157) T) ((-240 . -157) 2032) ((-224 . -157) 1943) ((-891 . -962) 1841) ((-673 . -962) 1812) ((-1019 . -97) T) ((-1007 . -562) 1779) ((-959 . -562) 1761) ((-1158 . -664) T) ((-1151 . -664) T) ((-1130 . -728) NIL) ((-154 . -977) 1671) ((-1130 . -731) NIL) ((-839 . -157) T) ((-1130 . -664) T) ((-1177 . -139) 1655) ((-929 . -317) 1629) ((-926 . -483) 1562) ((-777 . -784) 1541) ((-522 . -1061) T) ((-448 . -266) 1492) ((-548 . -664) T) ((-336 . -562) 1474) ((-297 . -562) 1456) ((-393 . -962) 1354) ((-547 . -664) T) ((-382 . -784) 1305) ((-154 . -107) 1201) ((-770 . -124) 1153) ((-675 . -139) 1137) ((-1166 . -285) 1075) ((-459 . -283) T) ((-354 . -562) 1042) ((-488 . -936) 1026) ((-354 . -563) 940) ((-195 . -283) T) ((-129 . -139) 922) ((-652 . -262) 901) ((-459 . -947) T) ((-534 . -37) 888) ((-522 . -37) 875) ((-465 . -37) 840) ((-195 . -947) T) ((-800 . -971) T) ((-771 . -562) 822) ((-764 . -562) 804) ((-762 . -562) 786) ((-753 . -838) 765) ((-1188 . -1026) T) ((-1139 . -977) 588) ((-789 . -977) 572) ((-800 . -220) T) ((-800 . -210) NIL) ((-628 . -1120) T) ((-1188 . -23) T) ((-753 . -590) 497) ((-508 . -1120) T) ((-393 . -313) 481) ((-529 . -977) 468) ((-1139 . -107) 277) ((-639 . -584) 259) ((-789 . -107) 238) ((-356 . -23) T) ((-1094 . -483) 30))
\ No newline at end of file +((($ $) . T) ((#0=(-796 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| (-211)) ((|#2| |#1|) |has| |#1| (-211)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(((-605 . -1016) T) ((-241 . -484) 142439) ((-225 . -484) 142382) ((-530 . -107) 142367) ((-495 . -23) T) ((-223 . -1016) 142317) ((-113 . -286) 142274) ((-453 . -484) 142066) ((-633 . -97) T) ((-1053 . -484) 141985) ((-366 . -124) T) ((-1179 . -905) 141954) ((-554 . -462) 141938) ((-568 . -124) T) ((-758 . -782) T) ((-492 . -55) 141888) ((-57 . -484) 141821) ((-488 . -484) 141754) ((-394 . -831) 141713) ((-155 . -973) T) ((-486 . -484) 141646) ((-468 . -484) 141579) ((-467 . -484) 141512) ((-738 . -964) 141299) ((-638 . -37) 141264) ((-319 . -325) T) ((-1011 . -1010) 141248) ((-1011 . -1016) 141226) ((-155 . -221) 141177) ((-155 . -211) 141128) ((-1011 . -1012) 141086) ((-803 . -263) 141044) ((-203 . -734) T) ((-203 . -731) T) ((-633 . -261) NIL) ((-1062 . -1099) 141023) ((-383 . -921) 141007) ((-640 . -21) T) ((-640 . -25) T) ((-1181 . -591) 140981) ((-292 . -147) 140960) ((-292 . -132) 140939) ((-1062 . -102) 140889) ((-126 . -25) T) ((-39 . -209) 140866) ((-112 . -21) T) ((-112 . -25) T) ((-558 . -265) 140842) ((-450 . -265) 140821) ((-1141 . -973) T) ((-791 . -973) T) ((-738 . -314) 140805) ((-113 . -1063) NIL) ((-89 . -563) 140737) ((-452 . -124) T) ((-546 . -1122) T) ((-1141 . -302) 140714) ((-530 . -973) T) ((-1141 . -211) T) ((-605 . -657) 140698) ((-888 . -265) 140675) ((-58 . -33) T) ((-984 . -734) T) ((-984 . -731) T) ((-755 . -666) T) ((-671 . -46) 140640) ((-570 . -37) 140627) ((-331 . -267) T) ((-328 . -267) T) ((-320 . -267) T) ((-241 . -267) 140558) ((-225 . -267) 140489) ((-951 . -97) T) ((-389 . -666) T) ((-113 . -37) 140434) ((-389 . -448) T) ((-330 . -97) T) ((-1117 . -980) T) ((-651 . -980) T) ((-1085 . -46) 140411) ((-1084 . -46) 140381) ((-1078 . -46) 140358) ((-962 . -140) 140304) ((-841 . -267) T) ((-1040 . -46) 140276) ((-633 . -286) NIL) ((-485 . -563) 140258) ((-480 . -563) 140240) ((-478 . -563) 140222) ((-303 . -1016) 140172) ((-652 . -427) 140103) ((-47 . -97) T) ((-1152 . -263) 140088) ((-1131 . -263) 140008) ((-589 . -609) 139992) ((-589 . -594) 139976) ((-315 . -21) T) ((-315 . -25) T) ((-39 . -325) NIL) ((-159 . -21) T) ((-159 . -25) T) ((-589 . -349) 139960) ((-554 . -263) 139937) ((-364 . -97) T) ((-1034 . -132) T) ((-122 . -563) 139869) ((-805 . -1016) T) ((-601 . -387) 139853) ((-654 . -563) 139835) ((-148 . -563) 139817) ((-144 . -563) 139799) ((-1181 . -666) T) ((-1018 . -33) T) ((-802 . -734) NIL) ((-802 . -731) NIL) ((-793 . -786) T) ((-671 . -817) NIL) ((-1190 . -124) T) ((-357 . -124) T) ((-835 . -97) T) ((-671 . -964) 139677) ((-495 . -124) T) ((-1005 . -387) 139661) ((-928 . -462) 139645) ((-113 . -376) 139622) ((-1078 . -1122) 139601) ((-721 . -387) 139585) ((-719 . -387) 139569) ((-874 . -33) T) ((-633 . -1063) NIL) ((-228 . -591) 139406) ((-227 . -591) 139230) ((-756 . -851) 139209) ((-429 . -387) 139193) ((-554 . -19) 139177) ((-1058 . -1116) 139146) ((-1078 . -817) NIL) ((-1078 . -815) 139098) ((-554 . -556) 139075) ((-1109 . -563) 139007) ((-1086 . -563) 138989) ((-60 . -371) T) ((-1084 . -964) 138924) ((-1078 . -964) 138890) ((-633 . -37) 138840) ((-449 . -263) 138825) ((-671 . -353) 138809) ((-601 . -980) T) ((-1152 . -930) 138775) ((-1131 . -930) 138741) ((-985 . -1099) 138716) ((-803 . -564) 138524) ((-803 . -563) 138506) ((-1096 . -462) 138443) ((-394 . -949) 138422) ((-47 . -286) 138409) ((-985 . -102) 138355) ((-453 . -462) 138292) ((-489 . -1122) T) ((-1053 . -462) 138263) ((-1078 . -314) 138215) ((-1078 . -353) 138167) ((-413 . -97) T) ((-1005 . -980) T) ((-228 . -33) T) ((-227 . -33) T) ((-721 . -980) T) ((-719 . -980) T) ((-671 . -831) 138144) ((-429 . -980) T) ((-57 . -462) 138128) ((-961 . -979) 138102) ((-488 . -462) 138086) ((-486 . -462) 138070) ((-468 . -462) 138054) ((-467 . -462) 138038) ((-223 . -484) 137971) ((-961 . -107) 137938) ((-1085 . -831) 137851) ((-613 . -1028) T) ((-1084 . -831) 137757) ((-1078 . -831) 137590) ((-1040 . -831) 137574) ((-330 . -1063) T) ((-298 . -979) 137556) ((-228 . -730) 137535) ((-228 . -733) 137486) ((-228 . -732) 137465) ((-227 . -730) 137444) ((-227 . -733) 137395) ((-227 . -732) 137374) ((-49 . -980) T) ((-228 . -666) 137305) ((-227 . -666) 137236) ((-1117 . -1016) T) ((-613 . -23) T) ((-536 . -980) T) ((-487 . -980) T) ((-355 . -979) 137201) ((-298 . -107) 137176) ((-71 . -359) T) ((-71 . -371) T) ((-951 . -37) 137113) ((-633 . -376) 137095) ((-94 . -97) T) ((-651 . -1016) T) ((-931 . -134) 137067) ((-931 . -136) 137039) ((-355 . -107) 136995) ((-295 . -1126) 136974) ((-449 . -930) 136940) ((-330 . -37) 136905) ((-39 . -346) 136877) ((-804 . -563) 136749) ((-123 . -121) 136733) ((-117 . -121) 136717) ((-773 . -979) 136687) ((-772 . -21) 136639) ((-766 . -979) 136623) ((-772 . -25) 136575) ((-295 . -515) 136526) ((-523 . -767) T) ((-218 . -1122) T) ((-773 . -107) 136491) ((-766 . -107) 136470) ((-1152 . -563) 136452) ((-1131 . -563) 136434) ((-1131 . -564) 136107) ((-1083 . -840) 136086) ((-1039 . -840) 136065) ((-47 . -37) 136030) ((-1188 . -1028) T) ((-554 . -563) 135942) ((-554 . -564) 135903) ((-1186 . -1028) T) ((-218 . -964) 135732) ((-1083 . -591) 135657) ((-1039 . -591) 135582) ((-658 . -563) 135564) ((-790 . -591) 135538) ((-1188 . -23) T) ((-1186 . -23) T) ((-961 . -973) T) ((-1096 . -263) 135517) ((-155 . -344) 135468) ((-932 . -1122) T) ((-43 . -23) T) ((-453 . -263) 135447) ((-540 . -1016) T) ((-1058 . -1025) 135416) ((-1020 . -1019) 135368) ((-366 . -21) T) ((-366 . -25) T) ((-141 . -1028) T) ((-1194 . -97) T) ((-932 . -815) 135350) ((-932 . -817) 135332) ((-1117 . -657) 135229) ((-570 . -209) 135213) ((-568 . -21) T) ((-266 . -515) T) ((-568 . -25) T) ((-1103 . -1016) T) ((-651 . -657) 135178) ((-218 . -353) 135148) ((-932 . -964) 135108) ((-355 . -973) T) ((-201 . -980) T) ((-113 . -209) 135085) ((-57 . -263) 135062) ((-141 . -23) T) ((-486 . -263) 135039) ((-303 . -484) 134972) ((-467 . -263) 134949) ((-355 . -221) T) ((-355 . -211) T) ((-773 . -973) T) ((-766 . -973) T) ((-652 . -880) 134918) ((-640 . -786) T) ((-449 . -563) 134900) ((-766 . -211) 134879) ((-126 . -786) T) ((-601 . -1016) T) ((-1096 . -556) 134858) ((-509 . -1099) 134837) ((-312 . -1016) T) ((-295 . -339) 134816) ((-383 . -136) 134795) ((-383 . -134) 134774) ((-894 . -1028) 134673) ((-218 . -831) 134606) ((-754 . -1028) 134537) ((-597 . -788) 134521) ((-453 . -556) 134500) ((-509 . -102) 134450) ((-932 . -353) 134432) ((-932 . -314) 134414) ((-92 . -1016) T) ((-894 . -23) 134225) ((-452 . -21) T) ((-452 . -25) T) ((-754 . -23) 134096) ((-1087 . -563) 134078) ((-57 . -19) 134062) ((-1087 . -564) 133984) ((-1083 . -666) T) ((-1039 . -666) T) ((-486 . -19) 133968) ((-467 . -19) 133952) ((-57 . -556) 133929) ((-1005 . -1016) T) ((-832 . -97) 133907) ((-790 . -666) T) ((-721 . -1016) T) ((-486 . -556) 133884) ((-467 . -556) 133861) ((-719 . -1016) T) ((-719 . -987) 133828) ((-436 . -1016) T) ((-429 . -1016) T) ((-540 . -657) 133803) ((-592 . -1016) T) ((-932 . -831) NIL) ((-1160 . -46) 133780) ((-573 . -1028) T) ((-613 . -124) T) ((-1154 . -97) T) ((-1153 . -46) 133750) ((-1132 . -46) 133727) ((-1117 . -158) 133678) ((-999 . -1126) 133629) ((-252 . -1016) T) ((-83 . -416) T) ((-83 . -371) T) ((-1084 . -284) 133608) ((-1078 . -284) 133587) ((-49 . -1016) T) ((-999 . -515) 133538) ((-651 . -158) T) ((-548 . -46) 133515) ((-203 . -591) 133480) ((-536 . -1016) T) ((-487 . -1016) T) ((-335 . -1126) T) ((-329 . -1126) T) ((-321 . -1126) T) ((-460 . -759) T) ((-460 . -851) T) ((-295 . -1028) T) ((-103 . -1126) T) ((-315 . -786) T) ((-196 . -851) T) ((-196 . -759) T) ((-654 . -979) 133450) ((-335 . -515) T) ((-329 . -515) T) ((-321 . -515) T) ((-103 . -515) T) ((-601 . -657) 133420) ((-1078 . -949) NIL) ((-295 . -23) T) ((-65 . -1122) T) ((-928 . -563) 133352) ((-633 . -209) 133334) ((-654 . -107) 133299) ((-589 . -33) T) ((-223 . -462) 133283) ((-1018 . -1014) 133267) ((-157 . -1016) T) ((-883 . -840) 133246) ((-455 . -840) 133225) ((-1190 . -21) T) ((-1190 . -25) T) ((-1188 . -124) T) ((-1186 . -124) T) ((-1005 . -657) 133074) ((-984 . -591) 133061) ((-883 . -591) 132986) ((-499 . -563) 132968) ((-499 . -564) 132949) ((-721 . -657) 132778) ((-719 . -657) 132627) ((-1179 . -97) T) ((-996 . -97) T) ((-357 . -25) T) ((-357 . -21) T) ((-455 . -591) 132552) ((-436 . -657) 132523) ((-429 . -657) 132372) ((-916 . -97) T) ((-677 . -97) T) ((-495 . -25) T) ((-1132 . -1122) 132351) ((-1164 . -563) 132317) ((-1132 . -817) NIL) ((-1132 . -815) 132269) ((-130 . -97) T) ((-43 . -124) T) ((-1096 . -564) NIL) ((-1096 . -563) 132251) ((-1054 . -1037) 132196) ((-319 . -980) T) ((-607 . -563) 132178) ((-266 . -1028) T) ((-331 . -563) 132160) ((-328 . -563) 132142) ((-320 . -563) 132124) ((-241 . -564) 131872) ((-241 . -563) 131854) ((-225 . -563) 131836) ((-225 . -564) 131697) ((-970 . -1116) 131626) ((-832 . -286) 131564) ((-1194 . -1063) T) ((-1153 . -964) 131499) ((-1132 . -964) 131465) ((-1117 . -484) 131432) ((-1053 . -563) 131414) ((-758 . -666) T) ((-554 . -265) 131391) ((-536 . -657) 131356) ((-453 . -564) NIL) ((-453 . -563) 131338) ((-487 . -657) 131283) ((-292 . -97) T) ((-289 . -97) T) ((-266 . -23) T) ((-141 . -124) T) ((-362 . -666) T) ((-803 . -979) 131235) ((-841 . -563) 131217) ((-841 . -564) 131199) ((-803 . -107) 131137) ((-128 . -97) T) ((-110 . -97) T) ((-652 . -1144) 131121) ((-654 . -973) T) ((-633 . -325) NIL) ((-488 . -563) 131053) ((-355 . -734) T) ((-201 . -1016) T) ((-355 . -731) T) ((-203 . -733) T) ((-203 . -730) T) ((-57 . -564) 131014) ((-57 . -563) 130926) ((-203 . -666) T) ((-486 . -564) 130887) ((-486 . -563) 130799) ((-468 . -563) 130731) ((-467 . -564) 130692) ((-467 . -563) 130604) ((-999 . -339) 130555) ((-39 . -387) 130532) ((-75 . -1122) T) ((-802 . -840) NIL) ((-335 . -305) 130516) ((-335 . -339) T) ((-329 . -305) 130500) ((-329 . -339) T) ((-321 . -305) 130484) ((-321 . -339) T) ((-292 . -261) 130463) ((-103 . -339) T) ((-68 . -1122) T) ((-1132 . -314) 130415) ((-802 . -591) 130360) ((-1132 . -353) 130312) ((-894 . -124) 130167) ((-754 . -124) 130038) ((-888 . -594) 130022) ((-1005 . -158) 129933) ((-888 . -349) 129917) ((-984 . -733) T) ((-984 . -730) T) ((-721 . -158) 129808) ((-719 . -158) 129719) ((-755 . -46) 129681) ((-984 . -666) T) ((-303 . -462) 129665) ((-883 . -666) T) ((-429 . -158) 129576) ((-223 . -263) 129553) ((-455 . -666) T) ((-1179 . -286) 129491) ((-1160 . -831) 129404) ((-1153 . -831) 129310) ((-1152 . -979) 129145) ((-1132 . -831) 128978) ((-1131 . -979) 128786) ((-1117 . -267) 128765) ((-1058 . -140) 128749) ((-994 . -97) T) ((-858 . -885) T) ((-73 . -1122) T) ((-677 . -286) 128687) ((-155 . -840) 128640) ((-607 . -358) 128612) ((-30 . -885) T) ((-1 . -563) 128594) ((-1034 . -97) T) ((-999 . -23) T) ((-49 . -567) 128578) ((-999 . -1028) T) ((-931 . -385) 128550) ((-548 . -831) 128463) ((-414 . -97) T) ((-130 . -286) NIL) ((-803 . -973) T) ((-772 . -786) 128442) ((-79 . -1122) T) ((-651 . -267) T) ((-39 . -980) T) ((-536 . -158) T) ((-487 . -158) T) ((-481 . -563) 128424) ((-155 . -591) 128334) ((-477 . -563) 128316) ((-327 . -136) 128298) ((-327 . -134) T) ((-335 . -1028) T) ((-329 . -1028) T) ((-321 . -1028) T) ((-932 . -284) T) ((-845 . -284) T) ((-803 . -221) T) ((-103 . -1028) T) ((-803 . -211) 128277) ((-1152 . -107) 128098) ((-1131 . -107) 127887) ((-223 . -1156) 127871) ((-523 . -784) T) ((-335 . -23) T) ((-330 . -325) T) ((-292 . -286) 127858) ((-289 . -286) 127799) ((-329 . -23) T) ((-295 . -124) T) ((-321 . -23) T) ((-932 . -949) T) ((-103 . -23) T) ((-223 . -556) 127776) ((-1154 . -37) 127668) ((-1141 . -840) 127647) ((-108 . -1016) T) ((-962 . -97) T) ((-1141 . -591) 127572) ((-802 . -733) NIL) ((-791 . -591) 127546) ((-802 . -730) NIL) ((-755 . -817) NIL) ((-802 . -666) T) ((-1005 . -484) 127419) ((-721 . -484) 127366) ((-719 . -484) 127318) ((-530 . -591) 127305) ((-755 . -964) 127135) ((-429 . -484) 127078) ((-364 . -365) T) ((-58 . -1122) T) ((-568 . -786) 127057) ((-471 . -604) T) ((-1058 . -905) 127026) ((-931 . -427) T) ((-638 . -784) T) ((-480 . -731) T) ((-449 . -979) 126861) ((-319 . -1016) T) ((-289 . -1063) NIL) ((-266 . -124) T) ((-370 . -1016) T) ((-633 . -346) 126828) ((-801 . -980) T) ((-201 . -567) 126805) ((-303 . -263) 126782) ((-449 . -107) 126603) ((-1152 . -973) T) ((-1131 . -973) T) ((-755 . -353) 126587) ((-155 . -666) T) ((-597 . -97) T) ((-1152 . -221) 126566) ((-1152 . -211) 126518) ((-1131 . -211) 126423) ((-1131 . -221) 126402) ((-931 . -378) NIL) ((-613 . -585) 126350) ((-292 . -37) 126260) ((-289 . -37) 126189) ((-67 . -563) 126171) ((-295 . -464) 126137) ((-1096 . -265) 126116) ((-1029 . -1028) 126047) ((-81 . -1122) T) ((-59 . -563) 126029) ((-453 . -265) 126008) ((-1181 . -964) 125985) ((-1076 . -1016) T) ((-1029 . -23) 125856) ((-755 . -831) 125792) ((-1141 . -666) T) ((-1018 . -1122) T) ((-1005 . -267) 125723) ((-824 . -97) T) ((-721 . -267) 125634) ((-303 . -19) 125618) ((-57 . -265) 125595) ((-719 . -267) 125526) ((-791 . -666) T) ((-113 . -784) NIL) ((-486 . -265) 125503) ((-303 . -556) 125480) ((-467 . -265) 125457) ((-429 . -267) 125388) ((-962 . -286) 125239) ((-530 . -666) T) ((-605 . -563) 125221) ((-223 . -564) 125182) ((-223 . -563) 125094) ((-1059 . -33) T) ((-874 . -1122) T) ((-319 . -657) 125039) ((-613 . -25) T) ((-613 . -21) T) ((-449 . -973) T) ((-581 . -393) 125004) ((-557 . -393) 124969) ((-1034 . -1063) T) ((-536 . -267) T) ((-487 . -267) T) ((-1153 . -284) 124948) ((-449 . -211) 124900) ((-449 . -221) 124879) ((-1132 . -284) 124858) ((-999 . -124) T) ((-803 . -734) 124837) ((-133 . -97) T) ((-39 . -1016) T) ((-803 . -731) 124816) ((-589 . -938) 124800) ((-535 . -980) T) ((-523 . -980) T) ((-466 . -980) T) ((-383 . -427) T) ((-335 . -124) T) ((-292 . -376) 124784) ((-289 . -376) 124745) ((-329 . -124) T) ((-321 . -124) T) ((-1132 . -949) NIL) ((-1092 . -1016) T) ((-1011 . -563) 124712) ((-103 . -124) T) ((-1034 . -37) 124699) ((-852 . -1016) T) ((-710 . -1016) T) ((-614 . -1016) T) ((-640 . -136) T) ((-112 . -136) T) ((-1188 . -21) T) ((-1188 . -25) T) ((-1186 . -21) T) ((-1186 . -25) T) ((-607 . -979) 124683) ((-495 . -786) T) ((-471 . -786) T) ((-331 . -979) 124635) ((-328 . -979) 124587) ((-320 . -979) 124539) ((-228 . -1122) T) ((-227 . -1122) T) ((-241 . -979) 124382) ((-225 . -979) 124225) ((-607 . -107) 124204) ((-331 . -107) 124142) ((-328 . -107) 124080) ((-320 . -107) 124018) ((-241 . -107) 123847) ((-225 . -107) 123676) ((-756 . -1126) 123655) ((-570 . -387) 123639) ((-43 . -21) T) ((-43 . -25) T) ((-754 . -585) 123547) ((-756 . -515) 123526) ((-228 . -964) 123355) ((-227 . -964) 123184) ((-122 . -115) 123168) ((-841 . -979) 123133) ((-638 . -980) T) ((-652 . -97) T) ((-319 . -158) T) ((-141 . -21) T) ((-141 . -25) T) ((-86 . -563) 123115) ((-841 . -107) 123071) ((-39 . -657) 123016) ((-801 . -1016) T) ((-303 . -564) 122977) ((-303 . -563) 122889) ((-1131 . -731) 122842) ((-1131 . -734) 122795) ((-228 . -353) 122765) ((-227 . -353) 122735) ((-597 . -37) 122705) ((-558 . -33) T) ((-456 . -1028) 122636) ((-450 . -33) T) ((-1029 . -124) 122507) ((-894 . -25) 122318) ((-805 . -563) 122300) ((-894 . -21) 122255) ((-754 . -21) 122166) ((-754 . -25) 122018) ((-570 . -980) T) ((-1089 . -515) 121997) ((-1083 . -46) 121974) ((-331 . -973) T) ((-328 . -973) T) ((-456 . -23) 121845) ((-320 . -973) T) ((-241 . -973) T) ((-225 . -973) T) ((-1039 . -46) 121817) ((-113 . -980) T) ((-961 . -591) 121791) ((-888 . -33) T) ((-331 . -211) 121770) ((-331 . -221) T) ((-328 . -211) 121749) ((-225 . -302) 121706) ((-328 . -221) T) ((-320 . -211) 121685) ((-320 . -221) T) ((-241 . -302) 121657) ((-241 . -211) 121636) ((-1068 . -140) 121620) ((-228 . -831) 121553) ((-227 . -831) 121486) ((-1001 . -786) T) ((-1135 . -1122) T) ((-390 . -1028) T) ((-977 . -23) T) ((-841 . -973) T) ((-298 . -591) 121468) ((-951 . -784) T) ((-1117 . -930) 121434) ((-1084 . -851) 121413) ((-1078 . -851) 121392) ((-841 . -221) T) ((-756 . -339) 121371) ((-361 . -23) T) ((-123 . -1016) 121349) ((-117 . -1016) 121327) ((-841 . -211) T) ((-1078 . -759) NIL) ((-355 . -591) 121292) ((-801 . -657) 121279) ((-970 . -140) 121244) ((-39 . -158) T) ((-633 . -387) 121226) ((-652 . -286) 121213) ((-773 . -591) 121173) ((-766 . -591) 121147) ((-295 . -25) T) ((-295 . -21) T) ((-601 . -263) 121126) ((-535 . -1016) T) ((-523 . -1016) T) ((-466 . -1016) T) ((-223 . -265) 121103) ((-289 . -209) 121064) ((-1083 . -817) NIL) ((-1039 . -817) 120923) ((-1083 . -964) 120805) ((-1039 . -964) 120690) ((-167 . -563) 120672) ((-790 . -964) 120570) ((-721 . -263) 120497) ((-756 . -1028) T) ((-961 . -666) T) ((-554 . -594) 120481) ((-970 . -905) 120410) ((-927 . -97) T) ((-756 . -23) T) ((-652 . -1063) 120388) ((-633 . -980) T) ((-554 . -349) 120372) ((-327 . -427) T) ((-319 . -267) T) ((-1169 . -1016) T) ((-375 . -97) T) ((-266 . -21) T) ((-266 . -25) T) ((-337 . -666) T) ((-650 . -1016) T) ((-638 . -1016) T) ((-337 . -448) T) ((-1117 . -563) 120354) ((-1083 . -353) 120338) ((-1039 . -353) 120322) ((-951 . -387) 120284) ((-130 . -207) 120266) ((-355 . -733) T) ((-355 . -730) T) ((-801 . -158) T) ((-355 . -666) T) ((-651 . -563) 120248) ((-652 . -37) 120077) ((-1168 . -1166) 120061) ((-327 . -378) T) ((-1168 . -1016) 120011) ((-535 . -657) 119998) ((-523 . -657) 119985) ((-466 . -657) 119950) ((-292 . -575) 119929) ((-773 . -666) T) ((-766 . -666) T) ((-589 . -1122) T) ((-999 . -585) 119877) ((-1083 . -831) 119820) ((-1039 . -831) 119804) ((-605 . -979) 119788) ((-103 . -585) 119770) ((-456 . -124) 119641) ((-1089 . -1028) T) ((-883 . -46) 119610) ((-570 . -1016) T) ((-605 . -107) 119589) ((-303 . -265) 119566) ((-455 . -46) 119523) ((-1089 . -23) T) ((-113 . -1016) T) ((-98 . -97) 119501) ((-1178 . -1028) T) ((-977 . -124) T) ((-951 . -980) T) ((-758 . -964) 119485) ((-931 . -664) 119457) ((-1178 . -23) T) ((-638 . -657) 119422) ((-540 . -563) 119404) ((-362 . -964) 119388) ((-330 . -980) T) ((-361 . -124) T) ((-300 . -964) 119372) ((-203 . -817) 119354) ((-932 . -851) T) ((-89 . -33) T) ((-932 . -759) T) ((-845 . -851) T) ((-460 . -1126) T) ((-1103 . -563) 119336) ((-1021 . -1016) T) ((-196 . -1126) T) ((-927 . -286) 119301) ((-203 . -964) 119261) ((-39 . -267) T) ((-999 . -21) T) ((-999 . -25) T) ((-1034 . -767) T) ((-460 . -515) T) ((-335 . -25) T) ((-196 . -515) T) ((-335 . -21) T) ((-329 . -25) T) ((-329 . -21) T) ((-654 . -591) 119221) ((-321 . -25) T) ((-321 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -980) T) ((-535 . -158) T) ((-523 . -158) T) ((-466 . -158) T) ((-601 . -563) 119203) ((-677 . -676) 119187) ((-312 . -563) 119169) ((-66 . -359) T) ((-66 . -371) T) ((-1018 . -102) 119153) ((-984 . -817) 119135) ((-883 . -817) 119060) ((-596 . -1028) T) ((-570 . -657) 119047) ((-455 . -817) NIL) ((-1058 . -97) T) ((-984 . -964) 119029) ((-92 . -563) 119011) ((-452 . -136) T) ((-883 . -964) 118893) ((-113 . -657) 118838) ((-596 . -23) T) ((-455 . -964) 118716) ((-1005 . -564) NIL) ((-1005 . -563) 118698) ((-721 . -564) NIL) ((-721 . -563) 118659) ((-719 . -564) 118294) ((-719 . -563) 118208) ((-1029 . -585) 118116) ((-436 . -563) 118098) ((-429 . -563) 118080) ((-429 . -564) 117941) ((-962 . -207) 117887) ((-122 . -33) T) ((-756 . -124) T) ((-803 . -840) 117866) ((-592 . -563) 117848) ((-331 . -1185) 117832) ((-328 . -1185) 117816) ((-320 . -1185) 117800) ((-123 . -484) 117733) ((-117 . -484) 117666) ((-481 . -731) T) ((-481 . -734) T) ((-480 . -733) T) ((-98 . -286) 117604) ((-200 . -97) 117582) ((-633 . -1016) T) ((-638 . -158) T) ((-803 . -591) 117534) ((-63 . -360) T) ((-252 . -563) 117516) ((-63 . -371) T) ((-883 . -353) 117500) ((-801 . -267) T) ((-49 . -563) 117482) ((-927 . -37) 117430) ((-536 . -563) 117412) ((-455 . -353) 117396) ((-536 . -564) 117378) ((-487 . -563) 117360) ((-841 . -1185) 117347) ((-802 . -1122) T) ((-640 . -427) T) ((-466 . -484) 117313) ((-460 . -339) T) ((-331 . -344) 117292) ((-328 . -344) 117271) ((-320 . -344) 117250) ((-196 . -339) T) ((-654 . -666) T) ((-112 . -427) T) ((-1189 . -1180) 117234) ((-802 . -815) 117211) ((-802 . -817) NIL) ((-894 . -786) 117110) ((-754 . -786) 117061) ((-597 . -599) 117045) ((-1109 . -33) T) ((-157 . -563) 117027) ((-1029 . -21) 116938) ((-1029 . -25) 116790) ((-802 . -964) 116767) ((-883 . -831) 116748) ((-1141 . -46) 116725) ((-841 . -344) T) ((-57 . -594) 116709) ((-486 . -594) 116693) ((-455 . -831) 116670) ((-69 . -416) T) ((-69 . -371) T) ((-467 . -594) 116654) ((-57 . -349) 116638) ((-570 . -158) T) ((-486 . -349) 116622) ((-467 . -349) 116606) ((-766 . -648) 116590) ((-1083 . -284) 116569) ((-1089 . -124) T) ((-113 . -158) T) ((-1058 . -286) 116507) ((-155 . -1122) T) ((-581 . -684) 116491) ((-557 . -684) 116475) ((-1178 . -124) T) ((-1153 . -851) 116454) ((-1132 . -851) 116433) ((-1132 . -759) NIL) ((-633 . -657) 116383) ((-1131 . -840) 116336) ((-951 . -1016) T) ((-802 . -353) 116313) ((-802 . -314) 116290) ((-836 . -1028) T) ((-155 . -815) 116274) ((-155 . -817) 116199) ((-460 . -1028) T) ((-330 . -1016) T) ((-196 . -1028) T) ((-74 . -416) T) ((-74 . -371) T) ((-155 . -964) 116097) ((-295 . -786) T) ((-1168 . -484) 116030) ((-1152 . -591) 115927) ((-1131 . -591) 115797) ((-803 . -733) 115776) ((-803 . -730) 115755) ((-803 . -666) T) ((-460 . -23) T) ((-201 . -563) 115737) ((-159 . -427) T) ((-200 . -286) 115675) ((-84 . -416) T) ((-84 . -371) T) ((-196 . -23) T) ((-1190 . -1183) 115654) ((-535 . -267) T) ((-523 . -267) T) ((-618 . -964) 115638) ((-466 . -267) T) ((-128 . -445) 115593) ((-47 . -1016) T) ((-652 . -209) 115577) ((-802 . -831) NIL) ((-1141 . -817) NIL) ((-820 . -97) T) ((-816 . -97) T) ((-364 . -1016) T) ((-155 . -353) 115561) ((-155 . -314) 115545) ((-1141 . -964) 115427) ((-791 . -964) 115325) ((-1054 . -97) T) ((-596 . -124) T) ((-113 . -484) 115233) ((-605 . -731) 115212) ((-605 . -734) 115191) ((-530 . -964) 115173) ((-271 . -1175) 115143) ((-797 . -97) T) ((-893 . -515) 115122) ((-1117 . -979) 115005) ((-456 . -585) 114913) ((-835 . -1016) T) ((-951 . -657) 114850) ((-651 . -979) 114815) ((-554 . -33) T) ((-1059 . -1122) T) ((-1117 . -107) 114684) ((-449 . -591) 114581) ((-330 . -657) 114526) ((-155 . -831) 114485) ((-638 . -267) T) ((-633 . -158) T) ((-651 . -107) 114441) ((-1194 . -980) T) ((-1141 . -353) 114425) ((-394 . -1126) 114403) ((-289 . -784) NIL) ((-394 . -515) T) ((-203 . -284) T) ((-1131 . -730) 114356) ((-1131 . -733) 114309) ((-1152 . -666) T) ((-1131 . -666) T) ((-47 . -657) 114274) ((-203 . -949) T) ((-327 . -1175) 114251) ((-1154 . -387) 114217) ((-658 . -666) T) ((-1141 . -831) 114160) ((-108 . -563) 114142) ((-108 . -564) 114124) ((-658 . -448) T) ((-456 . -21) 114035) ((-123 . -462) 114019) ((-117 . -462) 114003) ((-456 . -25) 113855) ((-570 . -267) T) ((-540 . -979) 113830) ((-413 . -1016) T) ((-984 . -284) T) ((-113 . -267) T) ((-1020 . -97) T) ((-931 . -97) T) ((-540 . -107) 113798) ((-1054 . -286) 113736) ((-1117 . -973) T) ((-984 . -949) T) ((-64 . -1122) T) ((-977 . -25) T) ((-977 . -21) T) ((-651 . -973) T) ((-361 . -21) T) ((-361 . -25) T) ((-633 . -484) NIL) ((-951 . -158) T) ((-651 . -221) T) ((-984 . -508) T) ((-473 . -97) T) ((-330 . -158) T) ((-319 . -563) 113718) ((-370 . -563) 113700) ((-449 . -666) T) ((-1034 . -784) T) ((-823 . -964) 113668) ((-103 . -786) T) ((-601 . -979) 113652) ((-460 . -124) T) ((-1154 . -980) T) ((-196 . -124) T) ((-1068 . -97) 113630) ((-94 . -1016) T) ((-223 . -609) 113614) ((-223 . -594) 113598) ((-601 . -107) 113577) ((-292 . -387) 113561) ((-223 . -349) 113545) ((-1071 . -213) 113492) ((-927 . -209) 113476) ((-72 . -1122) T) ((-47 . -158) T) ((-640 . -363) T) ((-640 . -132) T) ((-1189 . -97) T) ((-1005 . -979) 113319) ((-241 . -840) 113298) ((-225 . -840) 113277) ((-721 . -979) 113100) ((-719 . -979) 112943) ((-558 . -1122) T) ((-1076 . -563) 112925) ((-1005 . -107) 112754) ((-970 . -97) T) ((-450 . -1122) T) ((-436 . -979) 112725) ((-429 . -979) 112568) ((-607 . -591) 112552) ((-802 . -284) T) ((-721 . -107) 112361) ((-719 . -107) 112190) ((-331 . -591) 112142) ((-328 . -591) 112094) ((-320 . -591) 112046) ((-241 . -591) 111971) ((-225 . -591) 111896) ((-1070 . -786) T) ((-1006 . -964) 111880) ((-436 . -107) 111841) ((-429 . -107) 111670) ((-995 . -964) 111647) ((-928 . -33) T) ((-896 . -563) 111608) ((-888 . -1122) T) ((-122 . -938) 111592) ((-893 . -1028) T) ((-802 . -949) NIL) ((-675 . -1028) T) ((-655 . -1028) T) ((-1168 . -462) 111576) ((-1054 . -37) 111536) ((-893 . -23) T) ((-779 . -97) T) ((-756 . -21) T) ((-756 . -25) T) ((-675 . -23) T) ((-655 . -23) T) ((-106 . -604) T) ((-841 . -591) 111501) ((-536 . -979) 111466) ((-487 . -979) 111411) ((-205 . -55) 111369) ((-428 . -23) T) ((-383 . -97) T) ((-240 . -97) T) ((-633 . -267) T) ((-797 . -37) 111339) ((-536 . -107) 111295) ((-487 . -107) 111224) ((-394 . -1028) T) ((-292 . -980) 111115) ((-289 . -980) T) ((-601 . -973) T) ((-1194 . -1016) T) ((-155 . -284) 111046) ((-394 . -23) T) ((-39 . -563) 111028) ((-39 . -564) 111012) ((-103 . -921) 110994) ((-112 . -800) 110978) ((-47 . -484) 110944) ((-1109 . -938) 110928) ((-1092 . -563) 110910) ((-1096 . -33) T) ((-852 . -563) 110892) ((-1029 . -786) 110843) ((-710 . -563) 110825) ((-614 . -563) 110807) ((-1068 . -286) 110745) ((-453 . -33) T) ((-1009 . -1122) T) ((-452 . -427) T) ((-1005 . -973) T) ((-1053 . -33) T) ((-721 . -973) T) ((-719 . -973) T) ((-590 . -213) 110729) ((-578 . -213) 110675) ((-1141 . -284) 110654) ((-1005 . -302) 110615) ((-429 . -973) T) ((-1089 . -21) T) ((-1005 . -211) 110594) ((-721 . -302) 110571) ((-721 . -211) T) ((-719 . -302) 110543) ((-303 . -594) 110527) ((-671 . -1126) 110506) ((-1089 . -25) T) ((-57 . -33) T) ((-488 . -33) T) ((-486 . -33) T) ((-429 . -302) 110485) ((-303 . -349) 110469) ((-468 . -33) T) ((-467 . -33) T) ((-931 . -1063) NIL) ((-581 . -97) T) ((-557 . -97) T) ((-671 . -515) 110400) ((-331 . -666) T) ((-328 . -666) T) ((-320 . -666) T) ((-241 . -666) T) ((-225 . -666) T) ((-970 . -286) 110308) ((-832 . -1016) 110286) ((-49 . -973) T) ((-1178 . -21) T) ((-1178 . -25) T) ((-1085 . -515) 110265) ((-1084 . -1126) 110244) ((-536 . -973) T) ((-487 . -973) T) ((-1078 . -1126) 110223) ((-337 . -964) 110207) ((-298 . -964) 110191) ((-951 . -267) T) ((-355 . -817) 110173) ((-1084 . -515) 110124) ((-1078 . -515) 110075) ((-931 . -37) 110020) ((-738 . -1028) T) ((-841 . -666) T) ((-536 . -221) T) ((-536 . -211) T) ((-487 . -211) T) ((-487 . -221) T) ((-1040 . -515) 109999) ((-330 . -267) T) ((-590 . -634) 109983) ((-355 . -964) 109943) ((-1034 . -980) T) ((-98 . -121) 109927) ((-738 . -23) T) ((-1168 . -263) 109904) ((-383 . -286) 109869) ((-1188 . -1183) 109845) ((-1186 . -1183) 109824) ((-1154 . -1016) T) ((-801 . -563) 109806) ((-773 . -964) 109775) ((-183 . -726) T) ((-182 . -726) T) ((-181 . -726) T) ((-180 . -726) T) ((-179 . -726) T) ((-178 . -726) T) ((-177 . -726) T) ((-176 . -726) T) ((-175 . -726) T) ((-174 . -726) T) ((-466 . -930) T) ((-251 . -775) T) ((-250 . -775) T) ((-249 . -775) T) ((-248 . -775) T) ((-47 . -267) T) ((-247 . -775) T) ((-246 . -775) T) ((-245 . -775) T) ((-173 . -726) T) ((-562 . -786) T) ((-597 . -387) 109759) ((-106 . -786) T) ((-596 . -21) T) ((-596 . -25) T) ((-1189 . -37) 109729) ((-113 . -263) 109680) ((-1168 . -19) 109664) ((-1168 . -556) 109641) ((-1179 . -1016) T) ((-996 . -1016) T) ((-916 . -1016) T) ((-893 . -124) T) ((-677 . -1016) T) ((-675 . -124) T) ((-655 . -124) T) ((-481 . -732) T) ((-383 . -1063) 109619) ((-428 . -124) T) ((-481 . -733) T) ((-201 . -973) T) ((-271 . -97) 109402) ((-130 . -1016) T) ((-638 . -930) T) ((-89 . -1122) T) ((-123 . -563) 109334) ((-117 . -563) 109266) ((-1194 . -158) T) ((-1084 . -339) 109245) ((-1078 . -339) 109224) ((-292 . -1016) T) ((-394 . -124) T) ((-289 . -1016) T) ((-383 . -37) 109176) ((-1047 . -97) T) ((-1154 . -657) 109068) ((-597 . -980) T) ((-295 . -134) 109047) ((-295 . -136) 109026) ((-128 . -1016) T) ((-110 . -1016) T) ((-793 . -97) T) ((-535 . -563) 109008) ((-523 . -564) 108907) ((-523 . -563) 108889) ((-466 . -563) 108871) ((-466 . -564) 108816) ((-458 . -23) T) ((-456 . -786) 108767) ((-460 . -585) 108749) ((-895 . -563) 108731) ((-196 . -585) 108713) ((-203 . -380) T) ((-605 . -591) 108697) ((-1083 . -851) 108676) ((-671 . -1028) T) ((-327 . -97) T) ((-757 . -786) T) ((-671 . -23) T) ((-319 . -979) 108621) ((-1070 . -1069) T) ((-1059 . -102) 108605) ((-1085 . -1028) T) ((-1084 . -1028) T) ((-485 . -964) 108589) ((-1078 . -1028) T) ((-1040 . -1028) T) ((-319 . -107) 108518) ((-932 . -1126) T) ((-122 . -1122) T) ((-845 . -1126) T) ((-633 . -263) NIL) ((-1169 . -563) 108500) ((-1085 . -23) T) ((-1084 . -23) T) ((-1078 . -23) T) ((-932 . -515) T) ((-1054 . -209) 108484) ((-845 . -515) T) ((-1040 . -23) T) ((-226 . -563) 108466) ((-994 . -1016) T) ((-738 . -124) T) ((-650 . -563) 108448) ((-292 . -657) 108358) ((-289 . -657) 108287) ((-638 . -563) 108269) ((-638 . -564) 108214) ((-383 . -376) 108198) ((-414 . -1016) T) ((-460 . -25) T) ((-460 . -21) T) ((-1034 . -1016) T) ((-196 . -25) T) ((-196 . -21) T) ((-652 . -387) 108182) ((-654 . -964) 108151) ((-1168 . -563) 108063) ((-1168 . -564) 108024) ((-1154 . -158) T) ((-223 . -33) T) ((-857 . -903) T) ((-1109 . -1122) T) ((-605 . -730) 108003) ((-605 . -733) 107982) ((-374 . -371) T) ((-492 . -97) 107960) ((-962 . -1016) T) ((-200 . -923) 107944) ((-475 . -97) T) ((-570 . -563) 107926) ((-44 . -786) NIL) ((-570 . -564) 107903) ((-962 . -560) 107878) ((-832 . -484) 107811) ((-319 . -973) T) ((-113 . -564) NIL) ((-113 . -563) 107793) ((-803 . -1122) T) ((-613 . -393) 107777) ((-613 . -1037) 107722) ((-471 . -140) 107704) ((-319 . -211) T) ((-319 . -221) T) ((-39 . -979) 107649) ((-803 . -815) 107633) ((-803 . -817) 107558) ((-652 . -980) T) ((-633 . -930) NIL) ((-3 . |UnionCategory|) T) ((-1152 . -46) 107528) ((-1131 . -46) 107505) ((-1053 . -938) 107476) ((-203 . -851) T) ((-39 . -107) 107405) ((-803 . -964) 107272) ((-1034 . -657) 107259) ((-1021 . -563) 107241) ((-999 . -136) 107220) ((-999 . -134) 107171) ((-932 . -339) T) ((-295 . -1111) 107137) ((-355 . -284) T) ((-295 . -1108) 107103) ((-292 . -158) 107082) ((-289 . -158) T) ((-931 . -209) 107059) ((-845 . -339) T) ((-536 . -1185) 107046) ((-487 . -1185) 107023) ((-335 . -136) 107002) ((-335 . -134) 106953) ((-329 . -136) 106932) ((-329 . -134) 106883) ((-558 . -1099) 106859) ((-321 . -136) 106838) ((-321 . -134) 106789) ((-295 . -34) 106755) ((-450 . -1099) 106734) ((0 . |EnumerationCategory|) T) ((-295 . -91) 106700) ((-355 . -949) T) ((-103 . -136) T) ((-103 . -134) NIL) ((-44 . -213) 106650) ((-597 . -1016) T) ((-558 . -102) 106597) ((-458 . -124) T) ((-450 . -102) 106547) ((-218 . -1028) 106478) ((-803 . -353) 106462) ((-803 . -314) 106446) ((-218 . -23) 106317) ((-984 . -851) T) ((-984 . -759) T) ((-536 . -344) T) ((-487 . -344) T) ((-327 . -1063) T) ((-303 . -33) T) ((-43 . -393) 106301) ((-804 . -1122) T) ((-366 . -684) 106285) ((-1179 . -484) 106218) ((-671 . -124) T) ((-1160 . -515) 106197) ((-1153 . -1126) 106176) ((-1153 . -515) 106127) ((-677 . -484) 106060) ((-1132 . -1126) 106039) ((-1132 . -515) 105990) ((-824 . -1016) T) ((-133 . -780) T) ((-1131 . -1122) 105969) ((-1131 . -817) 105842) ((-1131 . -815) 105812) ((-492 . -286) 105750) ((-1085 . -124) T) ((-130 . -484) NIL) ((-1084 . -124) T) ((-1078 . -124) T) ((-1040 . -124) T) ((-951 . -930) T) ((-327 . -37) 105715) ((-932 . -1028) T) ((-845 . -1028) T) ((-80 . -563) 105697) ((-39 . -973) T) ((-801 . -979) 105684) ((-932 . -23) T) ((-803 . -831) 105643) ((-640 . -97) T) ((-931 . -325) NIL) ((-554 . -1122) T) ((-900 . -23) T) ((-845 . -23) T) ((-801 . -107) 105628) ((-403 . -1028) T) ((-449 . -46) 105598) ((-126 . -97) T) ((-39 . -211) 105570) ((-39 . -221) T) ((-112 . -97) T) ((-549 . -515) 105549) ((-548 . -515) 105528) ((-633 . -563) 105510) ((-633 . -564) 105418) ((-292 . -484) 105384) ((-289 . -484) 105276) ((-1152 . -964) 105260) ((-1131 . -964) 105049) ((-927 . -387) 105033) ((-403 . -23) T) ((-1034 . -158) T) ((-1154 . -267) T) ((-597 . -657) 105003) ((-133 . -1016) T) ((-47 . -930) T) ((-383 . -209) 104987) ((-272 . -213) 104937) ((-802 . -851) T) ((-802 . -759) NIL) ((-796 . -786) T) ((-1131 . -314) 104907) ((-1131 . -353) 104877) ((-200 . -1035) 104861) ((-1168 . -265) 104838) ((-1117 . -591) 104763) ((-893 . -21) T) ((-893 . -25) T) ((-675 . -21) T) ((-675 . -25) T) ((-655 . -21) T) ((-655 . -25) T) ((-651 . -591) 104728) ((-428 . -21) T) ((-428 . -25) T) ((-315 . -97) T) ((-159 . -97) T) ((-927 . -980) T) ((-801 . -973) T) ((-713 . -97) T) ((-1153 . -339) 104707) ((-1152 . -831) 104613) ((-1132 . -339) 104592) ((-1131 . -831) 104443) ((-951 . -563) 104425) ((-383 . -767) 104378) ((-1085 . -464) 104344) ((-155 . -851) 104275) ((-1084 . -464) 104241) ((-1078 . -464) 104207) ((-652 . -1016) T) ((-1040 . -464) 104173) ((-535 . -979) 104160) ((-523 . -979) 104147) ((-466 . -979) 104112) ((-292 . -267) 104091) ((-289 . -267) T) ((-330 . -563) 104073) ((-394 . -25) T) ((-394 . -21) T) ((-94 . -263) 104052) ((-535 . -107) 104037) ((-523 . -107) 104022) ((-466 . -107) 103978) ((-1087 . -817) 103945) ((-832 . -462) 103929) ((-47 . -563) 103911) ((-47 . -564) 103856) ((-218 . -124) 103727) ((-1141 . -851) 103706) ((-755 . -1126) 103685) ((-962 . -484) 103529) ((-364 . -563) 103511) ((-755 . -515) 103442) ((-540 . -591) 103417) ((-241 . -46) 103389) ((-225 . -46) 103346) ((-495 . -479) 103323) ((-928 . -1122) T) ((-638 . -979) 103288) ((-1160 . -1028) T) ((-1153 . -1028) T) ((-1132 . -1028) T) ((-931 . -346) 103260) ((-108 . -344) T) ((-449 . -831) 103166) ((-1160 . -23) T) ((-1153 . -23) T) ((-835 . -563) 103148) ((-89 . -102) 103132) ((-1117 . -666) T) ((-836 . -786) 103083) ((-640 . -1063) T) ((-638 . -107) 103039) ((-1132 . -23) T) ((-549 . -1028) T) ((-548 . -1028) T) ((-652 . -657) 102868) ((-651 . -666) T) ((-1034 . -267) T) ((-932 . -124) T) ((-460 . -786) T) ((-900 . -124) T) ((-845 . -124) T) ((-738 . -25) T) ((-196 . -786) T) ((-535 . -973) T) ((-523 . -973) T) ((-738 . -21) T) ((-466 . -973) T) ((-549 . -23) T) ((-319 . -1185) 102845) ((-295 . -427) 102824) ((-315 . -286) 102811) ((-548 . -23) T) ((-403 . -124) T) ((-601 . -591) 102785) ((-223 . -938) 102769) ((-803 . -284) T) ((-1190 . -1180) 102753) ((-640 . -37) 102740) ((-523 . -211) T) ((-466 . -221) T) ((-466 . -211) T) ((-710 . -731) T) ((-710 . -734) T) ((-1062 . -213) 102690) ((-1005 . -840) 102669) ((-112 . -37) 102656) ((-189 . -739) T) ((-188 . -739) T) ((-187 . -739) T) ((-186 . -739) T) ((-803 . -949) 102635) ((-1179 . -462) 102619) ((-721 . -840) 102598) ((-719 . -840) 102577) ((-1096 . -1122) T) ((-429 . -840) 102556) ((-677 . -462) 102540) ((-1005 . -591) 102465) ((-721 . -591) 102390) ((-570 . -979) 102377) ((-453 . -1122) T) ((-319 . -344) T) ((-130 . -462) 102359) ((-719 . -591) 102284) ((-1053 . -1122) T) ((-436 . -591) 102255) ((-241 . -817) 102114) ((-225 . -817) NIL) ((-113 . -979) 102059) ((-429 . -591) 101984) ((-607 . -964) 101961) ((-570 . -107) 101946) ((-331 . -964) 101930) ((-328 . -964) 101914) ((-320 . -964) 101898) ((-241 . -964) 101744) ((-225 . -964) 101622) ((-113 . -107) 101551) ((-57 . -1122) T) ((-488 . -1122) T) ((-486 . -1122) T) ((-468 . -1122) T) ((-467 . -1122) T) ((-413 . -563) 101533) ((-410 . -563) 101515) ((-3 . -97) T) ((-954 . -1116) 101484) ((-772 . -97) T) ((-629 . -55) 101442) ((-638 . -973) T) ((-49 . -591) 101416) ((-266 . -427) T) ((-451 . -1116) 101385) ((0 . -97) T) ((-536 . -591) 101350) ((-487 . -591) 101295) ((-48 . -97) T) ((-841 . -964) 101282) ((-638 . -221) T) ((-999 . -385) 101261) ((-671 . -585) 101209) ((-927 . -1016) T) ((-652 . -158) 101100) ((-460 . -921) 101082) ((-241 . -353) 101066) ((-225 . -353) 101050) ((-375 . -1016) T) ((-315 . -37) 101034) ((-953 . -97) 101012) ((-196 . -921) 100994) ((-159 . -37) 100926) ((-1152 . -284) 100905) ((-1131 . -284) 100884) ((-601 . -666) T) ((-94 . -563) 100866) ((-1078 . -585) 100818) ((-458 . -25) T) ((-458 . -21) T) ((-1131 . -949) 100771) ((-570 . -973) T) ((-355 . -380) T) ((-366 . -97) T) ((-241 . -831) 100717) ((-225 . -831) 100694) ((-113 . -973) T) ((-755 . -1028) T) ((-1005 . -666) T) ((-570 . -211) 100673) ((-568 . -97) T) ((-721 . -666) T) ((-719 . -666) T) ((-389 . -1028) T) ((-113 . -221) T) ((-39 . -344) NIL) ((-113 . -211) NIL) ((-429 . -666) T) ((-755 . -23) T) ((-671 . -25) T) ((-671 . -21) T) ((-642 . -786) T) ((-996 . -263) 100652) ((-76 . -372) T) ((-76 . -371) T) ((-633 . -979) 100602) ((-1160 . -124) T) ((-1153 . -124) T) ((-1132 . -124) T) ((-1054 . -387) 100586) ((-581 . -343) 100518) ((-557 . -343) 100450) ((-1068 . -1061) 100434) ((-98 . -1016) 100412) ((-1085 . -25) T) ((-1085 . -21) T) ((-1084 . -21) T) ((-927 . -657) 100360) ((-201 . -591) 100327) ((-633 . -107) 100261) ((-49 . -666) T) ((-1084 . -25) T) ((-327 . -325) T) ((-1078 . -21) T) ((-999 . -427) 100212) ((-1078 . -25) T) ((-652 . -484) 100159) ((-536 . -666) T) ((-487 . -666) T) ((-1040 . -21) T) ((-1040 . -25) T) ((-549 . -124) T) ((-548 . -124) T) ((-335 . -427) T) ((-329 . -427) T) ((-321 . -427) T) ((-449 . -284) 100138) ((-289 . -263) 100073) ((-103 . -427) T) ((-77 . -416) T) ((-77 . -371) T) ((-452 . -97) T) ((-1194 . -563) 100055) ((-1194 . -564) 100037) ((-999 . -378) 100016) ((-962 . -462) 99947) ((-523 . -734) T) ((-523 . -731) T) ((-985 . -213) 99893) ((-335 . -378) 99844) ((-329 . -378) 99795) ((-321 . -378) 99746) ((-1181 . -1028) T) ((-1181 . -23) T) ((-1170 . -97) T) ((-160 . -563) 99728) ((-1054 . -980) T) ((-613 . -684) 99712) ((-1089 . -134) 99691) ((-1089 . -136) 99670) ((-1058 . -1016) T) ((-1058 . -992) 99639) ((-67 . -1122) T) ((-951 . -979) 99576) ((-797 . -980) T) ((-218 . -585) 99484) ((-633 . -973) T) ((-330 . -979) 99429) ((-59 . -1122) T) ((-951 . -107) 99345) ((-832 . -563) 99277) ((-633 . -221) T) ((-633 . -211) NIL) ((-779 . -784) 99256) ((-638 . -734) T) ((-638 . -731) T) ((-931 . -387) 99233) ((-330 . -107) 99162) ((-355 . -851) T) ((-383 . -784) 99141) ((-652 . -267) 99052) ((-201 . -666) T) ((-1160 . -464) 99018) ((-1153 . -464) 98984) ((-1132 . -464) 98950) ((-292 . -930) 98929) ((-200 . -1016) 98907) ((-295 . -902) 98869) ((-100 . -97) T) ((-47 . -979) 98834) ((-1190 . -97) T) ((-357 . -97) T) ((-47 . -107) 98790) ((-932 . -585) 98772) ((-1154 . -563) 98754) ((-495 . -97) T) ((-471 . -97) T) ((-1047 . -1048) 98738) ((-141 . -1175) 98722) ((-223 . -1122) T) ((-1083 . -1126) 98701) ((-1039 . -1126) 98680) ((-218 . -21) 98591) ((-218 . -25) 98443) ((-123 . -115) 98427) ((-117 . -115) 98411) ((-43 . -684) 98395) ((-1083 . -515) 98306) ((-1039 . -515) 98237) ((-962 . -263) 98212) ((-755 . -124) T) ((-113 . -734) NIL) ((-113 . -731) NIL) ((-331 . -284) T) ((-328 . -284) T) ((-320 . -284) T) ((-1011 . -1122) T) ((-228 . -1028) 98143) ((-227 . -1028) 98074) ((-951 . -973) T) ((-931 . -980) T) ((-319 . -591) 98019) ((-568 . -37) 98003) ((-1179 . -563) 97965) ((-1179 . -564) 97926) ((-996 . -563) 97908) ((-951 . -221) T) ((-330 . -973) T) ((-754 . -1175) 97878) ((-228 . -23) T) ((-227 . -23) T) ((-916 . -563) 97860) ((-677 . -564) 97821) ((-677 . -563) 97803) ((-738 . -786) 97782) ((-927 . -484) 97694) ((-330 . -211) T) ((-330 . -221) T) ((-1071 . -140) 97641) ((-932 . -25) T) ((-130 . -563) 97623) ((-130 . -564) 97582) ((-841 . -284) T) ((-932 . -21) T) ((-900 . -25) T) ((-845 . -21) T) ((-845 . -25) T) ((-403 . -21) T) ((-403 . -25) T) ((-779 . -387) 97566) ((-47 . -973) T) ((-1188 . -1180) 97550) ((-1186 . -1180) 97534) ((-962 . -556) 97509) ((-292 . -564) 97370) ((-292 . -563) 97352) ((-289 . -564) NIL) ((-289 . -563) 97334) ((-47 . -221) T) ((-47 . -211) T) ((-597 . -263) 97295) ((-509 . -213) 97245) ((-128 . -563) 97227) ((-110 . -563) 97209) ((-452 . -37) 97174) ((-1190 . -1187) 97153) ((-1181 . -124) T) ((-1189 . -980) T) ((-1001 . -97) T) ((-86 . -1122) T) ((-471 . -286) NIL) ((-928 . -102) 97137) ((-820 . -1016) T) ((-816 . -1016) T) ((-1168 . -594) 97121) ((-1168 . -349) 97105) ((-303 . -1122) T) ((-546 . -786) T) ((-1054 . -1016) T) ((-1054 . -976) 97045) ((-98 . -484) 96978) ((-858 . -563) 96960) ((-319 . -666) T) ((-30 . -563) 96942) ((-797 . -1016) T) ((-779 . -980) 96921) ((-39 . -591) 96866) ((-203 . -1126) T) ((-383 . -980) T) ((-1070 . -140) 96848) ((-927 . -267) 96799) ((-203 . -515) T) ((-295 . -1149) 96783) ((-295 . -1146) 96753) ((-1096 . -1099) 96732) ((-994 . -563) 96714) ((-590 . -140) 96698) ((-578 . -140) 96644) ((-1096 . -102) 96594) ((-453 . -1099) 96573) ((-460 . -136) T) ((-460 . -134) NIL) ((-1034 . -564) 96488) ((-414 . -563) 96470) ((-196 . -136) T) ((-196 . -134) NIL) ((-1034 . -563) 96452) ((-51 . -97) T) ((-1132 . -585) 96404) ((-453 . -102) 96354) ((-922 . -23) T) ((-1190 . -37) 96324) ((-1083 . -1028) T) ((-1039 . -1028) T) ((-984 . -1126) T) ((-790 . -1028) T) ((-883 . -1126) 96303) ((-455 . -1126) 96282) ((-671 . -786) 96261) ((-984 . -515) T) ((-883 . -515) 96192) ((-1083 . -23) T) ((-1039 . -23) T) ((-790 . -23) T) ((-455 . -515) 96123) ((-1054 . -657) 96055) ((-1058 . -484) 95988) ((-962 . -564) NIL) ((-962 . -563) 95970) ((-797 . -657) 95940) ((-1117 . -46) 95909) ((-228 . -124) T) ((-227 . -124) T) ((-1020 . -1016) T) ((-931 . -1016) T) ((-60 . -563) 95891) ((-1078 . -786) NIL) ((-951 . -731) T) ((-951 . -734) T) ((-1194 . -979) 95878) ((-1194 . -107) 95863) ((-801 . -591) 95850) ((-1160 . -25) T) ((-1160 . -21) T) ((-1153 . -21) T) ((-1153 . -25) T) ((-1132 . -21) T) ((-1132 . -25) T) ((-954 . -140) 95834) ((-803 . -759) 95813) ((-803 . -851) T) ((-652 . -263) 95740) ((-549 . -21) T) ((-549 . -25) T) ((-548 . -21) T) ((-39 . -666) T) ((-200 . -484) 95673) ((-548 . -25) T) ((-451 . -140) 95657) ((-438 . -140) 95641) ((-852 . -666) T) ((-710 . -732) T) ((-710 . -733) T) ((-473 . -1016) T) ((-710 . -666) T) ((-203 . -339) T) ((-1068 . -1016) 95619) ((-802 . -1126) T) ((-597 . -563) 95601) ((-802 . -515) T) ((-633 . -344) NIL) ((-335 . -1175) 95585) ((-613 . -97) T) ((-329 . -1175) 95569) ((-321 . -1175) 95553) ((-1189 . -1016) T) ((-489 . -786) 95532) ((-756 . -427) 95511) ((-970 . -1016) T) ((-970 . -992) 95440) ((-954 . -905) 95409) ((-758 . -1028) T) ((-931 . -657) 95354) ((-362 . -1028) T) ((-451 . -905) 95323) ((-438 . -905) 95292) ((-106 . -140) 95274) ((-71 . -563) 95256) ((-824 . -563) 95238) ((-999 . -664) 95217) ((-1194 . -973) T) ((-755 . -585) 95165) ((-271 . -980) 95108) ((-155 . -1126) 95013) ((-203 . -1028) T) ((-300 . -23) T) ((-1078 . -921) 94965) ((-779 . -1016) T) ((-1040 . -680) 94944) ((-1154 . -979) 94849) ((-1152 . -851) 94828) ((-801 . -666) T) ((-155 . -515) 94739) ((-1131 . -851) 94718) ((-535 . -591) 94705) ((-383 . -1016) T) ((-523 . -591) 94692) ((-240 . -1016) T) ((-466 . -591) 94657) ((-203 . -23) T) ((-1131 . -759) 94610) ((-1188 . -97) T) ((-330 . -1185) 94587) ((-1186 . -97) T) ((-1154 . -107) 94479) ((-133 . -563) 94461) ((-922 . -124) T) ((-43 . -97) T) ((-218 . -786) 94412) ((-1141 . -1126) 94391) ((-98 . -462) 94375) ((-1189 . -657) 94345) ((-1005 . -46) 94306) ((-984 . -1028) T) ((-883 . -1028) T) ((-123 . -33) T) ((-117 . -33) T) ((-721 . -46) 94283) ((-719 . -46) 94255) ((-1141 . -515) 94166) ((-330 . -344) T) ((-455 . -1028) T) ((-1083 . -124) T) ((-1039 . -124) T) ((-429 . -46) 94145) ((-802 . -339) T) ((-790 . -124) T) ((-141 . -97) T) ((-984 . -23) T) ((-883 . -23) T) ((-530 . -515) T) ((-755 . -25) T) ((-755 . -21) T) ((-1054 . -484) 94078) ((-540 . -964) 94062) ((-455 . -23) T) ((-327 . -980) T) ((-1117 . -831) 94043) ((-613 . -286) 93981) ((-1029 . -1175) 93951) ((-638 . -591) 93916) ((-931 . -158) T) ((-893 . -134) 93895) ((-581 . -1016) T) ((-557 . -1016) T) ((-893 . -136) 93874) ((-932 . -786) T) ((-675 . -136) 93853) ((-675 . -134) 93832) ((-900 . -786) T) ((-449 . -851) 93811) ((-292 . -979) 93721) ((-289 . -979) 93650) ((-927 . -263) 93608) ((-383 . -657) 93560) ((-640 . -784) T) ((-1154 . -973) T) ((-292 . -107) 93456) ((-289 . -107) 93369) ((-894 . -97) T) ((-754 . -97) 93180) ((-652 . -564) NIL) ((-652 . -563) 93162) ((-601 . -964) 93060) ((-1154 . -302) 93004) ((-962 . -265) 92979) ((-535 . -666) T) ((-523 . -733) T) ((-155 . -339) 92930) ((-523 . -730) T) ((-523 . -666) T) ((-466 . -666) T) ((-1058 . -462) 92914) ((-1005 . -817) NIL) ((-802 . -1028) T) ((-113 . -840) NIL) ((-1188 . -1187) 92890) ((-1186 . -1187) 92869) ((-721 . -817) NIL) ((-719 . -817) 92728) ((-1181 . -25) T) ((-1181 . -21) T) ((-1120 . -97) 92706) ((-1022 . -371) T) ((-570 . -591) 92693) ((-429 . -817) NIL) ((-617 . -97) 92671) ((-1005 . -964) 92500) ((-802 . -23) T) ((-721 . -964) 92361) ((-719 . -964) 92220) ((-113 . -591) 92165) ((-429 . -964) 92043) ((-592 . -964) 92027) ((-573 . -97) T) ((-200 . -462) 92011) ((-1168 . -33) T) ((-581 . -657) 91995) ((-557 . -657) 91979) ((-613 . -37) 91939) ((-295 . -97) T) ((-83 . -563) 91921) ((-49 . -964) 91905) ((-1034 . -979) 91892) ((-1005 . -353) 91876) ((-58 . -55) 91838) ((-638 . -733) T) ((-638 . -730) T) ((-536 . -964) 91825) ((-487 . -964) 91802) ((-638 . -666) T) ((-292 . -973) 91693) ((-300 . -124) T) ((-289 . -973) T) ((-155 . -1028) T) ((-721 . -353) 91677) ((-719 . -353) 91661) ((-44 . -140) 91611) ((-932 . -921) 91593) ((-429 . -353) 91577) ((-383 . -158) T) ((-292 . -221) 91556) ((-289 . -221) T) ((-289 . -211) NIL) ((-271 . -1016) 91339) ((-203 . -124) T) ((-1034 . -107) 91324) ((-155 . -23) T) ((-738 . -136) 91303) ((-738 . -134) 91282) ((-228 . -585) 91190) ((-227 . -585) 91098) ((-295 . -261) 91064) ((-1068 . -484) 90997) ((-1047 . -1016) T) ((-203 . -982) T) ((-754 . -286) 90935) ((-1005 . -831) 90870) ((-721 . -831) 90813) ((-719 . -831) 90797) ((-1188 . -37) 90767) ((-1186 . -37) 90737) ((-1141 . -1028) T) ((-791 . -1028) T) ((-429 . -831) 90714) ((-793 . -1016) T) ((-1141 . -23) T) ((-530 . -1028) T) ((-791 . -23) T) ((-570 . -666) T) ((-331 . -851) T) ((-328 . -851) T) ((-266 . -97) T) ((-320 . -851) T) ((-984 . -124) T) ((-883 . -124) T) ((-113 . -733) NIL) ((-113 . -730) NIL) ((-113 . -666) T) ((-633 . -840) NIL) ((-970 . -484) 90615) ((-455 . -124) T) ((-530 . -23) T) ((-617 . -286) 90553) ((-581 . -701) T) ((-557 . -701) T) ((-1132 . -786) NIL) ((-931 . -267) T) ((-228 . -21) T) ((-633 . -591) 90503) ((-327 . -1016) T) ((-228 . -25) T) ((-227 . -21) T) ((-227 . -25) T) ((-141 . -37) 90487) ((-2 . -97) T) ((-841 . -851) T) ((-456 . -1175) 90457) ((-201 . -964) 90434) ((-1034 . -973) T) ((-651 . -284) T) ((-271 . -657) 90376) ((-640 . -980) T) ((-460 . -427) T) ((-383 . -484) 90288) ((-196 . -427) T) ((-1034 . -211) T) ((-272 . -140) 90238) ((-927 . -564) 90199) ((-927 . -563) 90181) ((-918 . -563) 90163) ((-112 . -980) T) ((-597 . -979) 90147) ((-203 . -464) T) ((-375 . -563) 90129) ((-375 . -564) 90106) ((-977 . -1175) 90076) ((-597 . -107) 90055) ((-1054 . -462) 90039) ((-754 . -37) 90009) ((-61 . -416) T) ((-61 . -371) T) ((-1071 . -97) T) ((-802 . -124) T) ((-457 . -97) 89987) ((-1194 . -344) T) ((-999 . -97) T) ((-983 . -97) T) ((-327 . -657) 89932) ((-671 . -136) 89911) ((-671 . -134) 89890) ((-951 . -591) 89827) ((-492 . -1016) 89805) ((-335 . -97) T) ((-329 . -97) T) ((-321 . -97) T) ((-103 . -97) T) ((-475 . -1016) T) ((-330 . -591) 89750) ((-1083 . -585) 89698) ((-1039 . -585) 89646) ((-361 . -479) 89625) ((-772 . -784) 89604) ((-355 . -1126) T) ((-633 . -666) T) ((-315 . -980) T) ((-1132 . -921) 89556) ((-159 . -980) T) ((-98 . -563) 89488) ((-1085 . -134) 89467) ((-1085 . -136) 89446) ((-355 . -515) T) ((-1084 . -136) 89425) ((-1084 . -134) 89404) ((-1078 . -134) 89311) ((-383 . -267) T) ((-1078 . -136) 89218) ((-1040 . -136) 89197) ((-1040 . -134) 89176) ((-295 . -37) 89017) ((-155 . -124) T) ((-289 . -734) NIL) ((-289 . -731) NIL) ((-597 . -973) T) ((-47 . -591) 88982) ((-922 . -21) T) ((-123 . -938) 88966) ((-117 . -938) 88950) ((-922 . -25) T) ((-832 . -115) 88934) ((-1070 . -97) T) ((-755 . -786) 88913) ((-1141 . -124) T) ((-1083 . -25) T) ((-1083 . -21) T) ((-791 . -124) T) ((-1039 . -25) T) ((-1039 . -21) T) ((-790 . -25) T) ((-790 . -21) T) ((-721 . -284) 88892) ((-590 . -97) 88870) ((-578 . -97) T) ((-1071 . -286) 88665) ((-530 . -124) T) ((-568 . -784) 88644) ((-1068 . -462) 88628) ((-1062 . -140) 88578) ((-1058 . -563) 88540) ((-1058 . -564) 88501) ((-951 . -730) T) ((-951 . -733) T) ((-951 . -666) T) ((-457 . -286) 88439) ((-428 . -393) 88409) ((-327 . -158) T) ((-266 . -37) 88396) ((-251 . -97) T) ((-250 . -97) T) ((-249 . -97) T) ((-248 . -97) T) ((-247 . -97) T) ((-246 . -97) T) ((-245 . -97) T) ((-319 . -964) 88373) ((-192 . -97) T) ((-191 . -97) T) ((-189 . -97) T) ((-188 . -97) T) ((-187 . -97) T) ((-186 . -97) T) ((-183 . -97) T) ((-182 . -97) T) ((-652 . -979) 88196) ((-181 . -97) T) ((-180 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-174 . -97) T) ((-173 . -97) T) ((-330 . -666) T) ((-652 . -107) 88005) ((-613 . -209) 87989) ((-536 . -284) T) ((-487 . -284) T) ((-271 . -484) 87938) ((-103 . -286) NIL) ((-70 . -371) T) ((-1029 . -97) 87749) ((-772 . -387) 87733) ((-1034 . -734) T) ((-1034 . -731) T) ((-640 . -1016) T) ((-355 . -339) T) ((-155 . -464) 87711) ((-200 . -563) 87643) ((-126 . -1016) T) ((-112 . -1016) T) ((-47 . -666) T) ((-970 . -462) 87608) ((-130 . -401) 87590) ((-130 . -344) T) ((-954 . -97) T) ((-482 . -479) 87569) ((-451 . -97) T) ((-438 . -97) T) ((-961 . -1028) T) ((-1085 . -34) 87535) ((-1085 . -91) 87501) ((-1085 . -1111) 87467) ((-1085 . -1108) 87433) ((-1070 . -286) NIL) ((-87 . -372) T) ((-87 . -371) T) ((-999 . -1063) 87412) ((-1084 . -1108) 87378) ((-1084 . -1111) 87344) ((-961 . -23) T) ((-1084 . -91) 87310) ((-530 . -464) T) ((-1084 . -34) 87276) ((-1078 . -1108) 87242) ((-1078 . -1111) 87208) ((-1078 . -91) 87174) ((-337 . -1028) T) ((-335 . -1063) 87153) ((-329 . -1063) 87132) ((-321 . -1063) 87111) ((-1078 . -34) 87077) ((-1040 . -34) 87043) ((-1040 . -91) 87009) ((-103 . -1063) T) ((-1040 . -1111) 86975) ((-772 . -980) 86954) ((-590 . -286) 86892) ((-578 . -286) 86743) ((-1040 . -1108) 86709) ((-652 . -973) T) ((-984 . -585) 86691) ((-999 . -37) 86559) ((-883 . -585) 86507) ((-932 . -136) T) ((-932 . -134) NIL) ((-355 . -1028) T) ((-300 . -25) T) ((-298 . -23) T) ((-874 . -786) 86486) ((-652 . -302) 86463) ((-455 . -585) 86411) ((-39 . -964) 86301) ((-640 . -657) 86288) ((-652 . -211) T) ((-315 . -1016) T) ((-159 . -1016) T) ((-307 . -786) T) ((-394 . -427) 86238) ((-355 . -23) T) ((-335 . -37) 86203) ((-329 . -37) 86168) ((-321 . -37) 86133) ((-78 . -416) T) ((-78 . -371) T) ((-203 . -25) T) ((-203 . -21) T) ((-773 . -1028) T) ((-103 . -37) 86083) ((-766 . -1028) T) ((-713 . -1016) T) ((-112 . -657) 86070) ((-614 . -964) 86054) ((-562 . -97) T) ((-773 . -23) T) ((-766 . -23) T) ((-1068 . -263) 86031) ((-1029 . -286) 85969) ((-1018 . -213) 85953) ((-62 . -372) T) ((-62 . -371) T) ((-106 . -97) T) ((-39 . -353) 85930) ((-596 . -788) 85914) ((-984 . -21) T) ((-984 . -25) T) ((-754 . -209) 85884) ((-883 . -25) T) ((-883 . -21) T) ((-568 . -980) T) ((-455 . -25) T) ((-455 . -21) T) ((-954 . -286) 85822) ((-820 . -563) 85804) ((-816 . -563) 85786) ((-228 . -786) 85737) ((-227 . -786) 85688) ((-492 . -484) 85621) ((-802 . -585) 85598) ((-451 . -286) 85536) ((-438 . -286) 85474) ((-327 . -267) T) ((-1068 . -1156) 85458) ((-1054 . -563) 85420) ((-1054 . -564) 85381) ((-1052 . -97) T) ((-927 . -979) 85277) ((-39 . -831) 85229) ((-1068 . -556) 85206) ((-1194 . -591) 85193) ((-985 . -140) 85139) ((-803 . -1126) T) ((-927 . -107) 85021) ((-315 . -657) 85005) ((-797 . -563) 84987) ((-159 . -657) 84919) ((-383 . -263) 84877) ((-803 . -515) T) ((-103 . -376) 84859) ((-82 . -360) T) ((-82 . -371) T) ((-640 . -158) T) ((-94 . -666) T) ((-456 . -97) 84670) ((-94 . -448) T) ((-112 . -158) T) ((-1029 . -37) 84640) ((-155 . -585) 84588) ((-977 . -97) T) ((-802 . -25) T) ((-754 . -216) 84567) ((-802 . -21) T) ((-757 . -97) T) ((-390 . -97) T) ((-361 . -97) T) ((-106 . -286) NIL) ((-205 . -97) 84545) ((-123 . -1122) T) ((-117 . -1122) T) ((-961 . -124) T) ((-613 . -343) 84529) ((-927 . -973) T) ((-1141 . -585) 84477) ((-1020 . -563) 84459) ((-931 . -563) 84441) ((-485 . -23) T) ((-480 . -23) T) ((-319 . -284) T) ((-478 . -23) T) ((-298 . -124) T) ((-3 . -1016) T) ((-931 . -564) 84425) ((-927 . -221) 84404) ((-927 . -211) 84383) ((-1194 . -666) T) ((-1160 . -134) 84362) ((-772 . -1016) T) ((-1160 . -136) 84341) ((-1153 . -136) 84320) ((-1153 . -134) 84299) ((-1152 . -1126) 84278) ((-1132 . -134) 84185) ((-1132 . -136) 84092) ((-1131 . -1126) 84071) ((-355 . -124) T) ((-523 . -817) 84053) ((0 . -1016) T) ((-159 . -158) T) ((-155 . -21) T) ((-155 . -25) T) ((-48 . -1016) T) ((-1154 . -591) 83958) ((-1152 . -515) 83909) ((-654 . -1028) T) ((-1131 . -515) 83860) ((-523 . -964) 83842) ((-548 . -136) 83821) ((-548 . -134) 83800) ((-466 . -964) 83743) ((-85 . -360) T) ((-85 . -371) T) ((-803 . -339) T) ((-773 . -124) T) ((-766 . -124) T) ((-654 . -23) T) ((-473 . -563) 83725) ((-1190 . -980) T) ((-355 . -982) T) ((-953 . -1016) 83703) ((-832 . -33) T) ((-456 . -286) 83641) ((-1068 . -564) 83602) ((-1068 . -563) 83534) ((-1083 . -786) 83513) ((-44 . -97) T) ((-1039 . -786) 83492) ((-756 . -97) T) ((-1141 . -25) T) ((-1141 . -21) T) ((-791 . -25) T) ((-43 . -343) 83476) ((-791 . -21) T) ((-671 . -427) 83427) ((-1189 . -563) 83409) ((-530 . -25) T) ((-530 . -21) T) ((-366 . -1016) T) ((-977 . -286) 83347) ((-568 . -1016) T) ((-638 . -817) 83329) ((-1168 . -1122) T) ((-205 . -286) 83267) ((-133 . -344) T) ((-970 . -564) 83209) ((-970 . -563) 83152) ((-289 . -840) NIL) ((-638 . -964) 83097) ((-651 . -851) T) ((-449 . -1126) 83076) ((-1084 . -427) 83055) ((-1078 . -427) 83034) ((-306 . -97) T) ((-803 . -1028) T) ((-292 . -591) 82856) ((-289 . -591) 82785) ((-449 . -515) 82736) ((-315 . -484) 82702) ((-509 . -140) 82652) ((-39 . -284) T) ((-779 . -563) 82634) ((-640 . -267) T) ((-803 . -23) T) ((-355 . -464) T) ((-999 . -209) 82604) ((-482 . -97) T) ((-383 . -564) 82412) ((-383 . -563) 82394) ((-240 . -563) 82376) ((-112 . -267) T) ((-1154 . -666) T) ((-1152 . -339) 82355) ((-1131 . -339) 82334) ((-1179 . -33) T) ((-113 . -1122) T) ((-103 . -209) 82316) ((-1089 . -97) T) ((-452 . -1016) T) ((-492 . -462) 82300) ((-677 . -33) T) ((-456 . -37) 82270) ((-130 . -33) T) ((-113 . -815) 82247) ((-113 . -817) NIL) ((-570 . -964) 82132) ((-589 . -786) 82111) ((-1178 . -97) T) ((-272 . -97) T) ((-652 . -344) 82090) ((-113 . -964) 82067) ((-366 . -657) 82051) ((-568 . -657) 82035) ((-44 . -286) 81839) ((-755 . -134) 81818) ((-755 . -136) 81797) ((-1189 . -358) 81776) ((-758 . -786) T) ((-1170 . -1016) T) ((-1071 . -207) 81723) ((-362 . -786) 81702) ((-1160 . -1111) 81668) ((-1160 . -1108) 81634) ((-1153 . -1108) 81600) ((-485 . -124) T) ((-1153 . -1111) 81566) ((-1132 . -1108) 81532) ((-1132 . -1111) 81498) ((-1160 . -34) 81464) ((-1160 . -91) 81430) ((-581 . -563) 81399) ((-557 . -563) 81368) ((-203 . -786) T) ((-1153 . -91) 81334) ((-1153 . -34) 81300) ((-1152 . -1028) T) ((-1034 . -591) 81287) ((-1132 . -91) 81253) ((-1131 . -1028) T) ((-546 . -140) 81235) ((-999 . -325) 81214) ((-113 . -353) 81191) ((-113 . -314) 81168) ((-159 . -267) T) ((-1132 . -34) 81134) ((-801 . -284) T) ((-289 . -733) NIL) ((-289 . -730) NIL) ((-292 . -666) 80984) ((-289 . -666) T) ((-449 . -339) 80963) ((-335 . -325) 80942) ((-329 . -325) 80921) ((-321 . -325) 80900) ((-292 . -448) 80879) ((-1152 . -23) T) ((-1131 . -23) T) ((-658 . -1028) T) ((-654 . -124) T) ((-596 . -97) T) ((-452 . -657) 80844) ((-44 . -259) 80794) ((-100 . -1016) T) ((-66 . -563) 80776) ((-796 . -97) T) ((-570 . -831) 80735) ((-1190 . -1016) T) ((-357 . -1016) T) ((-80 . -1122) T) ((-984 . -786) T) ((-883 . -786) 80714) ((-113 . -831) NIL) ((-721 . -851) 80693) ((-653 . -786) T) ((-495 . -1016) T) ((-471 . -1016) T) ((-331 . -1126) T) ((-328 . -1126) T) ((-320 . -1126) T) ((-241 . -1126) 80672) ((-225 . -1126) 80651) ((-1029 . -209) 80621) ((-455 . -786) 80600) ((-1054 . -979) 80584) ((-366 . -701) T) ((-1070 . -767) T) ((-633 . -1122) T) ((-331 . -515) T) ((-328 . -515) T) ((-320 . -515) T) ((-241 . -515) 80515) ((-225 . -515) 80446) ((-1054 . -107) 80425) ((-428 . -684) 80395) ((-797 . -979) 80365) ((-756 . -37) 80307) ((-633 . -815) 80289) ((-633 . -817) 80271) ((-272 . -286) 80075) ((-841 . -1126) T) ((-613 . -387) 80059) ((-797 . -107) 80024) ((-633 . -964) 79969) ((-932 . -427) T) ((-841 . -515) T) ((-536 . -851) T) ((-449 . -1028) T) ((-487 . -851) T) ((-1068 . -265) 79946) ((-845 . -427) T) ((-63 . -563) 79928) ((-578 . -207) 79874) ((-449 . -23) T) ((-1034 . -733) T) ((-803 . -124) T) ((-1034 . -730) T) ((-1181 . -1183) 79853) ((-1034 . -666) T) ((-597 . -591) 79827) ((-271 . -563) 79569) ((-962 . -33) T) ((-754 . -784) 79548) ((-535 . -284) T) ((-523 . -284) T) ((-466 . -284) T) ((-1190 . -657) 79518) ((-633 . -353) 79500) ((-633 . -314) 79482) ((-452 . -158) T) ((-357 . -657) 79452) ((-802 . -786) NIL) ((-523 . -949) T) ((-466 . -949) T) ((-1047 . -563) 79434) ((-1029 . -216) 79413) ((-193 . -97) T) ((-1062 . -97) T) ((-69 . -563) 79395) ((-1054 . -973) T) ((-1089 . -37) 79292) ((-793 . -563) 79274) ((-523 . -508) T) ((-613 . -980) T) ((-671 . -880) 79227) ((-1054 . -211) 79206) ((-1001 . -1016) T) ((-961 . -25) T) ((-961 . -21) T) ((-931 . -979) 79151) ((-836 . -97) T) ((-797 . -973) T) ((-633 . -831) NIL) ((-331 . -305) 79135) ((-331 . -339) T) ((-328 . -305) 79119) ((-328 . -339) T) ((-320 . -305) 79103) ((-320 . -339) T) ((-460 . -97) T) ((-1178 . -37) 79073) ((-492 . -627) 79023) ((-196 . -97) T) ((-951 . -964) 78905) ((-931 . -107) 78834) ((-1085 . -902) 78803) ((-1084 . -902) 78765) ((-489 . -140) 78749) ((-999 . -346) 78728) ((-327 . -563) 78710) ((-298 . -21) T) ((-330 . -964) 78687) ((-298 . -25) T) ((-1078 . -902) 78656) ((-1040 . -902) 78623) ((-74 . -563) 78605) ((-638 . -284) T) ((-155 . -786) 78584) ((-841 . -339) T) ((-355 . -25) T) ((-355 . -21) T) ((-841 . -305) 78571) ((-84 . -563) 78553) ((-638 . -949) T) ((-618 . -786) T) ((-1152 . -124) T) ((-1131 . -124) T) ((-832 . -938) 78537) ((-773 . -21) T) ((-47 . -964) 78480) ((-773 . -25) T) ((-766 . -25) T) ((-766 . -21) T) ((-1188 . -980) T) ((-1186 . -980) T) ((-597 . -666) T) ((-1189 . -979) 78464) ((-1141 . -786) 78443) ((-754 . -387) 78412) ((-98 . -115) 78396) ((-51 . -1016) T) ((-857 . -563) 78378) ((-802 . -921) 78355) ((-762 . -97) T) ((-1189 . -107) 78334) ((-596 . -37) 78304) ((-530 . -786) T) ((-331 . -1028) T) ((-328 . -1028) T) ((-320 . -1028) T) ((-241 . -1028) T) ((-225 . -1028) T) ((-570 . -284) 78283) ((-1062 . -286) 78087) ((-607 . -23) T) ((-456 . -209) 78057) ((-141 . -980) T) ((-331 . -23) T) ((-328 . -23) T) ((-320 . -23) T) ((-113 . -284) T) ((-241 . -23) T) ((-225 . -23) T) ((-931 . -973) T) ((-652 . -840) 78036) ((-931 . -211) 78008) ((-931 . -221) T) ((-113 . -949) NIL) ((-841 . -1028) T) ((-1153 . -427) 77987) ((-1132 . -427) 77966) ((-492 . -563) 77898) ((-652 . -591) 77823) ((-383 . -979) 77775) ((-475 . -563) 77757) ((-841 . -23) T) ((-460 . -286) NIL) ((-449 . -124) T) ((-196 . -286) NIL) ((-383 . -107) 77695) ((-754 . -980) 77626) ((-677 . -1014) 77610) ((-1152 . -464) 77576) ((-1131 . -464) 77542) ((-130 . -1014) 77524) ((-452 . -267) T) ((-1189 . -973) T) ((-985 . -97) T) ((-471 . -484) NIL) ((-642 . -97) T) ((-456 . -216) 77503) ((-1083 . -134) 77482) ((-1083 . -136) 77461) ((-1039 . -136) 77440) ((-1039 . -134) 77419) ((-581 . -979) 77403) ((-557 . -979) 77387) ((-613 . -1016) T) ((-613 . -976) 77327) ((-1085 . -1159) 77311) ((-1085 . -1146) 77288) ((-460 . -1063) T) ((-1084 . -1151) 77249) ((-1084 . -1146) 77219) ((-1084 . -1149) 77203) ((-196 . -1063) T) ((-319 . -851) T) ((-757 . -243) 77187) ((-581 . -107) 77166) ((-557 . -107) 77145) ((-1078 . -1130) 77106) ((-779 . -973) 77085) ((-1078 . -1146) 77062) ((-485 . -25) T) ((-466 . -279) T) ((-481 . -23) T) ((-480 . -25) T) ((-478 . -25) T) ((-477 . -23) T) ((-1078 . -1128) 77046) ((-383 . -973) T) ((-295 . -980) T) ((-633 . -284) T) ((-103 . -784) T) ((-383 . -221) T) ((-383 . -211) 77025) ((-652 . -666) T) ((-460 . -37) 76975) ((-196 . -37) 76925) ((-449 . -464) 76891) ((-1070 . -1056) T) ((-1017 . -97) T) ((-640 . -563) 76873) ((-640 . -564) 76788) ((-654 . -21) T) ((-654 . -25) T) ((-126 . -563) 76770) ((-112 . -563) 76752) ((-144 . -25) T) ((-1188 . -1016) T) ((-803 . -585) 76700) ((-1186 . -1016) T) ((-893 . -97) T) ((-675 . -97) T) ((-655 . -97) T) ((-428 . -97) T) ((-755 . -427) 76651) ((-43 . -1016) T) ((-1006 . -786) T) ((-607 . -124) T) ((-985 . -286) 76502) ((-613 . -657) 76486) ((-266 . -980) T) ((-331 . -124) T) ((-328 . -124) T) ((-320 . -124) T) ((-241 . -124) T) ((-225 . -124) T) ((-394 . -97) T) ((-141 . -1016) T) ((-44 . -207) 76436) ((-888 . -786) 76415) ((-927 . -591) 76353) ((-218 . -1175) 76323) ((-951 . -284) T) ((-271 . -979) 76245) ((-841 . -124) T) ((-39 . -851) T) ((-460 . -376) 76227) ((-330 . -284) T) ((-196 . -376) 76209) ((-999 . -387) 76193) ((-271 . -107) 76110) ((-803 . -25) T) ((-803 . -21) T) ((-315 . -563) 76092) ((-1154 . -46) 76036) ((-203 . -136) T) ((-159 . -563) 76018) ((-1029 . -784) 75997) ((-713 . -563) 75979) ((-558 . -213) 75926) ((-450 . -213) 75876) ((-1188 . -657) 75846) ((-47 . -284) T) ((-1186 . -657) 75816) ((-894 . -1016) T) ((-754 . -1016) 75627) ((-288 . -97) T) ((-832 . -1122) T) ((-47 . -949) T) ((-1131 . -585) 75535) ((-629 . -97) 75513) ((-43 . -657) 75497) ((-509 . -97) T) ((-65 . -359) T) ((-65 . -371) T) ((-605 . -23) T) ((-613 . -701) T) ((-1120 . -1016) 75475) ((-327 . -979) 75420) ((-617 . -1016) 75398) ((-984 . -136) T) ((-883 . -136) 75377) ((-883 . -134) 75356) ((-738 . -97) T) ((-141 . -657) 75340) ((-455 . -136) 75319) ((-455 . -134) 75298) ((-327 . -107) 75227) ((-999 . -980) T) ((-298 . -786) 75206) ((-1160 . -902) 75175) ((-573 . -1016) T) ((-1153 . -902) 75137) ((-481 . -124) T) ((-477 . -124) T) ((-272 . -207) 75087) ((-335 . -980) T) ((-329 . -980) T) ((-321 . -980) T) ((-271 . -973) 75030) ((-1132 . -902) 74999) ((-355 . -786) T) ((-103 . -980) T) ((-927 . -666) T) ((-801 . -851) T) ((-779 . -734) 74978) ((-779 . -731) 74957) ((-394 . -286) 74896) ((-443 . -97) T) ((-548 . -902) 74865) ((-295 . -1016) T) ((-383 . -734) 74844) ((-383 . -731) 74823) ((-471 . -462) 74805) ((-1154 . -964) 74771) ((-1152 . -21) T) ((-1152 . -25) T) ((-1131 . -21) T) ((-1131 . -25) T) ((-754 . -657) 74713) ((-638 . -380) T) ((-1179 . -1122) T) ((-1029 . -387) 74682) ((-931 . -344) NIL) ((-98 . -33) T) ((-677 . -1122) T) ((-43 . -701) T) ((-546 . -97) T) ((-75 . -372) T) ((-75 . -371) T) ((-596 . -599) 74666) ((-130 . -1122) T) ((-802 . -136) T) ((-802 . -134) NIL) ((-327 . -973) T) ((-68 . -359) T) ((-68 . -371) T) ((-1077 . -97) T) ((-613 . -484) 74599) ((-629 . -286) 74537) ((-893 . -37) 74434) ((-675 . -37) 74404) ((-509 . -286) 74208) ((-292 . -1122) T) ((-327 . -211) T) ((-327 . -221) T) ((-289 . -1122) T) ((-266 . -1016) T) ((-1091 . -563) 74190) ((-651 . -1126) T) ((-1068 . -594) 74174) ((-1117 . -515) 74153) ((-651 . -515) T) ((-292 . -815) 74137) ((-292 . -817) 74062) ((-289 . -815) 74023) ((-289 . -817) NIL) ((-738 . -286) 73988) ((-295 . -657) 73829) ((-300 . -299) 73806) ((-458 . -97) T) ((-449 . -25) T) ((-449 . -21) T) ((-394 . -37) 73780) ((-292 . -964) 73448) ((-203 . -1108) T) ((-203 . -1111) T) ((-3 . -563) 73430) ((-289 . -964) 73360) ((-2 . -1016) T) ((-2 . |RecordCategory|) T) ((-772 . -563) 73342) ((-1029 . -980) 73273) ((-535 . -851) T) ((-523 . -759) T) ((-523 . -851) T) ((-466 . -851) T) ((-128 . -964) 73257) ((-203 . -91) T) ((-155 . -136) 73236) ((-73 . -416) T) ((0 . -563) 73218) ((-73 . -371) T) ((-155 . -134) 73169) ((-203 . -34) T) ((-48 . -563) 73151) ((-452 . -980) T) ((-460 . -209) 73133) ((-457 . -898) 73117) ((-456 . -784) 73096) ((-196 . -209) 73078) ((-79 . -416) T) ((-79 . -371) T) ((-1058 . -33) T) ((-754 . -158) 73057) ((-671 . -97) T) ((-953 . -563) 73024) ((-471 . -263) 72999) ((-292 . -353) 72969) ((-289 . -353) 72930) ((-289 . -314) 72891) ((-1003 . -563) 72873) ((-755 . -880) 72820) ((-605 . -124) T) ((-1141 . -134) 72799) ((-1141 . -136) 72778) ((-1085 . -97) T) ((-1084 . -97) T) ((-1078 . -97) T) ((-1071 . -1016) T) ((-1040 . -97) T) ((-200 . -33) T) ((-266 . -657) 72765) ((-1071 . -560) 72741) ((-546 . -286) NIL) ((-457 . -1016) 72719) ((-366 . -563) 72701) ((-480 . -786) T) ((-1062 . -207) 72651) ((-1160 . -1159) 72635) ((-1160 . -1146) 72612) ((-1153 . -1151) 72573) ((-1153 . -1146) 72543) ((-1153 . -1149) 72527) ((-1132 . -1130) 72488) ((-1132 . -1146) 72465) ((-568 . -563) 72447) ((-1132 . -1128) 72431) ((-638 . -851) T) ((-1085 . -261) 72397) ((-1084 . -261) 72363) ((-1078 . -261) 72329) ((-999 . -1016) T) ((-983 . -1016) T) ((-47 . -279) T) ((-292 . -831) 72296) ((-289 . -831) NIL) ((-983 . -989) 72275) ((-1034 . -817) 72257) ((-738 . -37) 72241) ((-241 . -585) 72189) ((-225 . -585) 72137) ((-640 . -979) 72124) ((-548 . -1146) 72101) ((-1040 . -261) 72067) ((-295 . -158) 71998) ((-335 . -1016) T) ((-329 . -1016) T) ((-321 . -1016) T) ((-471 . -19) 71980) ((-1034 . -964) 71962) ((-1018 . -140) 71946) ((-103 . -1016) T) ((-112 . -979) 71933) ((-651 . -339) T) ((-471 . -556) 71908) ((-640 . -107) 71893) ((-412 . -97) T) ((-44 . -1061) 71843) ((-112 . -107) 71828) ((-581 . -660) T) ((-557 . -660) T) ((-754 . -484) 71761) ((-962 . -1122) T) ((-874 . -140) 71745) ((-489 . -97) 71695) ((-1005 . -1126) 71674) ((-452 . -563) 71626) ((-452 . -564) 71548) ((-60 . -1122) T) ((-721 . -1126) 71527) ((-719 . -1126) 71506) ((-1083 . -427) 71437) ((-1070 . -1016) T) ((-1054 . -591) 71411) ((-1005 . -515) 71342) ((-456 . -387) 71311) ((-570 . -851) 71290) ((-429 . -1126) 71269) ((-1039 . -427) 71220) ((-374 . -563) 71202) ((-617 . -484) 71135) ((-721 . -515) 71046) ((-719 . -515) 70977) ((-671 . -286) 70964) ((-607 . -25) T) ((-607 . -21) T) ((-429 . -515) 70895) ((-113 . -851) T) ((-113 . -759) NIL) ((-331 . -25) T) ((-331 . -21) T) ((-328 . -25) T) ((-328 . -21) T) ((-320 . -25) T) ((-320 . -21) T) ((-241 . -25) T) ((-241 . -21) T) ((-81 . -360) T) ((-81 . -371) T) ((-225 . -25) T) ((-225 . -21) T) ((-1170 . -563) 70877) ((-1117 . -1028) T) ((-1117 . -23) T) ((-1078 . -286) 70762) ((-1040 . -286) 70749) ((-797 . -591) 70709) ((-999 . -657) 70577) ((-874 . -909) 70561) ((-266 . -158) T) ((-841 . -21) T) ((-841 . -25) T) ((-803 . -786) 70512) ((-651 . -1028) T) ((-651 . -23) T) ((-590 . -1016) 70490) ((-578 . -560) 70465) ((-578 . -1016) T) ((-536 . -1126) T) ((-487 . -1126) T) ((-536 . -515) T) ((-487 . -515) T) ((-335 . -657) 70417) ((-329 . -657) 70369) ((-159 . -979) 70301) ((-315 . -979) 70285) ((-103 . -657) 70235) ((-159 . -107) 70146) ((-321 . -657) 70098) ((-315 . -107) 70077) ((-251 . -1016) T) ((-250 . -1016) T) ((-249 . -1016) T) ((-248 . -1016) T) ((-640 . -973) T) ((-247 . -1016) T) ((-246 . -1016) T) ((-245 . -1016) T) ((-192 . -1016) T) ((-191 . -1016) T) ((-189 . -1016) T) ((-155 . -1111) 70055) ((-155 . -1108) 70033) ((-188 . -1016) T) ((-187 . -1016) T) ((-112 . -973) T) ((-186 . -1016) T) ((-183 . -1016) T) ((-640 . -211) T) ((-182 . -1016) T) ((-181 . -1016) T) ((-180 . -1016) T) ((-179 . -1016) T) ((-178 . -1016) T) ((-177 . -1016) T) ((-176 . -1016) T) ((-175 . -1016) T) ((-174 . -1016) T) ((-173 . -1016) T) ((-218 . -97) 69844) ((-155 . -34) 69822) ((-155 . -91) 69800) ((-597 . -964) 69698) ((-456 . -980) 69629) ((-1029 . -1016) 69440) ((-1054 . -33) T) ((-613 . -462) 69424) ((-71 . -1122) T) ((-100 . -563) 69406) ((-1190 . -563) 69388) ((-357 . -563) 69370) ((-530 . -1111) T) ((-530 . -1108) T) ((-671 . -37) 69219) ((-495 . -563) 69201) ((-489 . -286) 69139) ((-471 . -563) 69121) ((-471 . -564) 69103) ((-1078 . -1063) NIL) ((-954 . -992) 69072) ((-954 . -1016) T) ((-932 . -97) T) ((-900 . -97) T) ((-845 . -97) T) ((-824 . -964) 69049) ((-1054 . -666) T) ((-931 . -591) 68994) ((-451 . -1016) T) ((-438 . -1016) T) ((-540 . -23) T) ((-530 . -34) T) ((-530 . -91) T) ((-403 . -97) T) ((-985 . -207) 68940) ((-1085 . -37) 68837) ((-797 . -666) T) ((-633 . -851) T) ((-481 . -25) T) ((-477 . -21) T) ((-477 . -25) T) ((-1084 . -37) 68678) ((-315 . -973) T) ((-1078 . -37) 68474) ((-999 . -158) T) ((-159 . -973) T) ((-1040 . -37) 68371) ((-652 . -46) 68348) ((-335 . -158) T) ((-329 . -158) T) ((-488 . -55) 68322) ((-468 . -55) 68272) ((-327 . -1185) 68249) ((-203 . -427) T) ((-295 . -267) 68200) ((-321 . -158) T) ((-159 . -221) T) ((-1131 . -786) 68099) ((-103 . -158) T) ((-803 . -921) 68083) ((-601 . -1028) T) ((-536 . -339) T) ((-536 . -305) 68070) ((-487 . -305) 68047) ((-487 . -339) T) ((-292 . -284) 68026) ((-289 . -284) T) ((-554 . -786) 68005) ((-1029 . -657) 67947) ((-489 . -259) 67931) ((-601 . -23) T) ((-394 . -209) 67915) ((-289 . -949) NIL) ((-312 . -23) T) ((-98 . -938) 67899) ((-44 . -35) 67878) ((-562 . -1016) T) ((-327 . -344) T) ((-466 . -27) T) ((-218 . -286) 67816) ((-1005 . -1028) T) ((-1189 . -591) 67790) ((-721 . -1028) T) ((-719 . -1028) T) ((-429 . -1028) T) ((-984 . -427) T) ((-883 . -427) 67741) ((-106 . -1016) T) ((-1005 . -23) T) ((-756 . -980) T) ((-721 . -23) T) ((-719 . -23) T) ((-455 . -427) 67692) ((-1071 . -484) 67475) ((-357 . -358) 67454) ((-1089 . -387) 67438) ((-436 . -23) T) ((-429 . -23) T) ((-457 . -484) 67371) ((-266 . -267) T) ((-1001 . -563) 67353) ((-383 . -840) 67332) ((-49 . -1028) T) ((-951 . -851) T) ((-931 . -666) T) ((-652 . -817) NIL) ((-536 . -1028) T) ((-487 . -1028) T) ((-779 . -591) 67305) ((-1117 . -124) T) ((-1078 . -376) 67257) ((-932 . -286) NIL) ((-754 . -462) 67241) ((-330 . -851) T) ((-1068 . -33) T) ((-383 . -591) 67193) ((-49 . -23) T) ((-651 . -124) T) ((-652 . -964) 67075) ((-536 . -23) T) ((-103 . -484) NIL) ((-487 . -23) T) ((-155 . -385) 67046) ((-1052 . -1016) T) ((-1181 . -1180) 67030) ((-640 . -734) T) ((-640 . -731) T) ((-1034 . -284) T) ((-355 . -136) T) ((-257 . -563) 67012) ((-1131 . -921) 66982) ((-47 . -851) T) ((-617 . -462) 66966) ((-228 . -1175) 66936) ((-227 . -1175) 66906) ((-1087 . -786) T) ((-1029 . -158) 66885) ((-1034 . -949) T) ((-970 . -33) T) ((-773 . -136) 66864) ((-773 . -134) 66843) ((-677 . -102) 66827) ((-562 . -125) T) ((-456 . -1016) 66638) ((-1089 . -980) T) ((-802 . -427) T) ((-83 . -1122) T) ((-218 . -37) 66608) ((-130 . -102) 66590) ((-652 . -353) 66574) ((-1034 . -508) T) ((-366 . -979) 66558) ((-1189 . -666) T) ((-1083 . -880) 66527) ((-51 . -563) 66509) ((-1039 . -880) 66476) ((-596 . -387) 66460) ((-1178 . -980) T) ((-568 . -979) 66444) ((-605 . -25) T) ((-605 . -21) T) ((-1070 . -484) NIL) ((-1160 . -97) T) ((-1153 . -97) T) ((-366 . -107) 66423) ((-200 . -231) 66407) ((-1132 . -97) T) ((-977 . -1016) T) ((-932 . -1063) T) ((-977 . -976) 66347) ((-757 . -1016) T) ((-319 . -1126) T) ((-581 . -591) 66331) ((-568 . -107) 66310) ((-557 . -591) 66294) ((-549 . -97) T) ((-540 . -124) T) ((-548 . -97) T) ((-390 . -1016) T) ((-361 . -1016) T) ((-205 . -1016) 66272) ((-590 . -484) 66205) ((-578 . -484) 66049) ((-772 . -973) 66028) ((-589 . -140) 66012) ((-319 . -515) T) ((-652 . -831) 65955) ((-509 . -207) 65905) ((-1160 . -261) 65871) ((-999 . -267) 65822) ((-460 . -784) T) ((-201 . -1028) T) ((-1153 . -261) 65788) ((-1132 . -261) 65754) ((-932 . -37) 65704) ((-196 . -784) T) ((-1117 . -464) 65670) ((-845 . -37) 65622) ((-779 . -733) 65601) ((-779 . -730) 65580) ((-779 . -666) 65559) ((-335 . -267) T) ((-329 . -267) T) ((-321 . -267) T) ((-155 . -427) 65490) ((-403 . -37) 65474) ((-103 . -267) T) ((-201 . -23) T) ((-383 . -733) 65453) ((-383 . -730) 65432) ((-383 . -666) T) ((-471 . -265) 65407) ((-452 . -979) 65372) ((-601 . -124) T) ((-1029 . -484) 65305) ((-312 . -124) T) ((-155 . -378) 65284) ((-456 . -657) 65226) ((-754 . -263) 65203) ((-452 . -107) 65159) ((-596 . -980) T) ((-1141 . -427) 65090) ((-1005 . -124) T) ((-241 . -786) 65069) ((-225 . -786) 65048) ((-721 . -124) T) ((-719 . -124) T) ((-530 . -427) T) ((-977 . -657) 64990) ((-568 . -973) T) ((-954 . -484) 64923) ((-436 . -124) T) ((-429 . -124) T) ((-44 . -1016) T) ((-361 . -657) 64893) ((-756 . -1016) T) ((-451 . -484) 64826) ((-438 . -484) 64759) ((-428 . -343) 64729) ((-44 . -560) 64708) ((-292 . -279) T) ((-613 . -563) 64670) ((-57 . -786) 64649) ((-1132 . -286) 64534) ((-932 . -376) 64516) ((-754 . -556) 64493) ((-486 . -786) 64472) ((-467 . -786) 64451) ((-39 . -1126) T) ((-927 . -964) 64349) ((-49 . -124) T) ((-536 . -124) T) ((-487 . -124) T) ((-271 . -591) 64211) ((-319 . -305) 64188) ((-319 . -339) T) ((-298 . -299) 64165) ((-295 . -263) 64150) ((-39 . -515) T) ((-355 . -1108) T) ((-355 . -1111) T) ((-962 . -1099) 64125) ((-1096 . -213) 64075) ((-1078 . -209) 64027) ((-306 . -1016) T) ((-355 . -91) T) ((-355 . -34) T) ((-962 . -102) 63973) ((-452 . -973) T) ((-453 . -213) 63923) ((-1071 . -462) 63857) ((-1190 . -979) 63841) ((-357 . -979) 63825) ((-452 . -221) T) ((-755 . -97) T) ((-654 . -136) 63804) ((-654 . -134) 63783) ((-457 . -462) 63767) ((-458 . -311) 63736) ((-1190 . -107) 63715) ((-482 . -1016) T) ((-456 . -158) 63694) ((-927 . -353) 63678) ((-389 . -97) T) ((-357 . -107) 63657) ((-927 . -314) 63641) ((-256 . -912) 63625) ((-255 . -912) 63609) ((-1188 . -563) 63591) ((-1186 . -563) 63573) ((-106 . -484) NIL) ((-1083 . -1144) 63557) ((-790 . -788) 63541) ((-1089 . -1016) T) ((-98 . -1122) T) ((-883 . -880) 63502) ((-756 . -657) 63444) ((-1132 . -1063) NIL) ((-455 . -880) 63389) ((-984 . -132) T) ((-58 . -97) 63367) ((-43 . -563) 63349) ((-76 . -563) 63331) ((-327 . -591) 63276) ((-1178 . -1016) T) ((-481 . -786) T) ((-319 . -1028) T) ((-272 . -1016) T) ((-927 . -831) 63235) ((-272 . -560) 63214) ((-1160 . -37) 63111) ((-1153 . -37) 62952) ((-460 . -980) T) ((-1132 . -37) 62748) ((-196 . -980) T) ((-319 . -23) T) ((-141 . -563) 62730) ((-772 . -734) 62709) ((-772 . -731) 62688) ((-549 . -37) 62661) ((-548 . -37) 62558) ((-801 . -515) T) ((-201 . -124) T) ((-295 . -930) 62524) ((-77 . -563) 62506) ((-652 . -284) 62485) ((-271 . -666) 62388) ((-763 . -97) T) ((-796 . -780) T) ((-271 . -448) 62367) ((-1181 . -97) T) ((-39 . -339) T) ((-803 . -136) 62346) ((-803 . -134) 62325) ((-1070 . -462) 62307) ((-1190 . -973) T) ((-456 . -484) 62240) ((-1058 . -1122) T) ((-894 . -563) 62222) ((-590 . -462) 62206) ((-578 . -462) 62137) ((-754 . -563) 61889) ((-47 . -27) T) ((-1089 . -657) 61786) ((-596 . -1016) T) ((-412 . -340) 61760) ((-1018 . -97) T) ((-755 . -286) 61747) ((-796 . -1016) T) ((-1186 . -358) 61719) ((-977 . -484) 61652) ((-1071 . -263) 61628) ((-218 . -209) 61598) ((-1178 . -657) 61568) ((-756 . -158) 61547) ((-205 . -484) 61480) ((-568 . -734) 61459) ((-568 . -731) 61438) ((-1120 . -563) 61350) ((-200 . -1122) T) ((-617 . -563) 61282) ((-1068 . -938) 61266) ((-327 . -666) T) ((-874 . -97) 61216) ((-1132 . -376) 61168) ((-1029 . -462) 61152) ((-58 . -286) 61090) ((-307 . -97) T) ((-1117 . -21) T) ((-1117 . -25) T) ((-39 . -1028) T) ((-651 . -21) T) ((-573 . -563) 61072) ((-485 . -299) 61051) ((-651 . -25) T) ((-103 . -263) NIL) ((-852 . -1028) T) ((-39 . -23) T) ((-710 . -1028) T) ((-523 . -1126) T) ((-466 . -1126) T) ((-295 . -563) 61033) ((-932 . -209) 61015) ((-155 . -152) 60999) ((-535 . -515) T) ((-523 . -515) T) ((-466 . -515) T) ((-710 . -23) T) ((-1152 . -136) 60978) ((-1071 . -556) 60954) ((-1152 . -134) 60933) ((-954 . -462) 60917) ((-1131 . -134) 60842) ((-1131 . -136) 60767) ((-1181 . -1187) 60746) ((-451 . -462) 60730) ((-438 . -462) 60714) ((-492 . -33) T) ((-596 . -657) 60684) ((-108 . -897) T) ((-605 . -786) 60663) ((-1089 . -158) 60614) ((-341 . -97) T) ((-218 . -216) 60593) ((-228 . -97) T) ((-227 . -97) T) ((-1141 . -880) 60562) ((-105 . -97) T) ((-223 . -786) 60541) ((-755 . -37) 60390) ((-44 . -484) 60182) ((-1070 . -263) 60157) ((-193 . -1016) T) ((-1062 . -1016) T) ((-1062 . -560) 60136) ((-540 . -25) T) ((-540 . -21) T) ((-1018 . -286) 60074) ((-893 . -387) 60058) ((-638 . -1126) T) ((-578 . -263) 60033) ((-1005 . -585) 59981) ((-721 . -585) 59929) ((-719 . -585) 59877) ((-319 . -124) T) ((-266 . -563) 59859) ((-638 . -515) T) ((-836 . -1016) T) ((-801 . -1028) T) ((-429 . -585) 59807) ((-836 . -834) 59791) ((-355 . -427) T) ((-460 . -1016) T) ((-640 . -591) 59778) ((-874 . -286) 59716) ((-196 . -1016) T) ((-292 . -851) 59695) ((-289 . -851) T) ((-289 . -759) NIL) ((-366 . -660) T) ((-801 . -23) T) ((-112 . -591) 59682) ((-449 . -134) 59661) ((-394 . -387) 59645) ((-449 . -136) 59624) ((-106 . -462) 59606) ((-2 . -563) 59588) ((-1070 . -19) 59570) ((-1070 . -556) 59545) ((-601 . -21) T) ((-601 . -25) T) ((-546 . -1056) T) ((-1029 . -263) 59522) ((-312 . -25) T) ((-312 . -21) T) ((-466 . -339) T) ((-1181 . -37) 59492) ((-1054 . -1122) T) ((-578 . -556) 59467) ((-1005 . -25) T) ((-1005 . -21) T) ((-495 . -731) T) ((-495 . -734) T) ((-113 . -1126) T) ((-893 . -980) T) ((-570 . -515) T) ((-675 . -980) T) ((-655 . -980) T) ((-721 . -25) T) ((-721 . -21) T) ((-719 . -21) T) ((-719 . -25) T) ((-613 . -979) 59451) ((-436 . -25) T) ((-113 . -515) T) ((-436 . -21) T) ((-429 . -25) T) ((-429 . -21) T) ((-1054 . -964) 59349) ((-756 . -267) 59328) ((-762 . -1016) T) ((-896 . -897) T) ((-613 . -107) 59307) ((-272 . -484) 59099) ((-1188 . -979) 59083) ((-1186 . -979) 59067) ((-228 . -286) 59005) ((-227 . -286) 58943) ((-1135 . -97) 58921) ((-1071 . -564) NIL) ((-1071 . -563) 58903) ((-1152 . -1108) 58869) ((-1152 . -1111) 58835) ((-1132 . -209) 58787) ((-1131 . -1108) 58753) ((-1131 . -1111) 58719) ((-1054 . -353) 58703) ((-1034 . -759) T) ((-1034 . -851) T) ((-1029 . -556) 58680) ((-999 . -564) 58664) ((-457 . -563) 58596) ((-754 . -265) 58573) ((-558 . -140) 58520) ((-394 . -980) T) ((-460 . -657) 58470) ((-456 . -462) 58454) ((-303 . -786) 58433) ((-315 . -591) 58407) ((-49 . -21) T) ((-49 . -25) T) ((-196 . -657) 58357) ((-155 . -664) 58328) ((-159 . -591) 58260) ((-536 . -21) T) ((-536 . -25) T) ((-487 . -25) T) ((-487 . -21) T) ((-450 . -140) 58210) ((-999 . -563) 58192) ((-983 . -563) 58174) ((-922 . -97) T) ((-794 . -97) T) ((-738 . -387) 58138) ((-39 . -124) T) ((-638 . -339) T) ((-192 . -826) T) ((-640 . -733) T) ((-640 . -730) T) ((-535 . -1028) T) ((-523 . -1028) T) ((-466 . -1028) T) ((-640 . -666) T) ((-335 . -563) 58120) ((-329 . -563) 58102) ((-321 . -563) 58084) ((-64 . -372) T) ((-64 . -371) T) ((-103 . -564) 58014) ((-103 . -563) 57996) ((-191 . -826) T) ((-888 . -140) 57980) ((-1152 . -91) 57946) ((-710 . -124) T) ((-126 . -666) T) ((-112 . -666) T) ((-1152 . -34) 57912) ((-977 . -462) 57896) ((-535 . -23) T) ((-523 . -23) T) ((-466 . -23) T) ((-1131 . -91) 57862) ((-1131 . -34) 57828) ((-1083 . -97) T) ((-1039 . -97) T) ((-790 . -97) T) ((-205 . -462) 57812) ((-1188 . -107) 57791) ((-1186 . -107) 57770) ((-43 . -979) 57754) ((-1141 . -1144) 57738) ((-791 . -788) 57722) ((-1089 . -267) 57701) ((-106 . -263) 57676) ((-1054 . -831) 57635) ((-43 . -107) 57614) ((-613 . -973) T) ((-1092 . -1163) T) ((-1070 . -564) NIL) ((-1070 . -563) 57596) ((-985 . -560) 57571) ((-985 . -1016) T) ((-72 . -416) T) ((-72 . -371) T) ((-613 . -211) 57550) ((-141 . -979) 57534) ((-530 . -513) 57518) ((-331 . -136) 57497) ((-331 . -134) 57448) ((-328 . -136) 57427) ((-642 . -1016) T) ((-328 . -134) 57378) ((-320 . -136) 57357) ((-320 . -134) 57308) ((-241 . -134) 57287) ((-241 . -136) 57266) ((-228 . -37) 57236) ((-225 . -136) 57215) ((-113 . -339) T) ((-225 . -134) 57194) ((-227 . -37) 57164) ((-141 . -107) 57143) ((-931 . -964) 57033) ((-1078 . -784) NIL) ((-633 . -1126) T) ((-738 . -980) T) ((-638 . -1028) T) ((-1188 . -973) T) ((-1186 . -973) T) ((-1068 . -1122) T) ((-931 . -353) 57010) ((-841 . -134) T) ((-841 . -136) 56992) ((-801 . -124) T) ((-754 . -979) 56890) ((-633 . -515) T) ((-638 . -23) T) ((-590 . -563) 56822) ((-590 . -564) 56783) ((-578 . -564) NIL) ((-578 . -563) 56765) ((-460 . -158) T) ((-201 . -21) T) ((-196 . -158) T) ((-201 . -25) T) ((-449 . -1111) 56731) ((-449 . -1108) 56697) ((-251 . -563) 56679) ((-250 . -563) 56661) ((-249 . -563) 56643) ((-248 . -563) 56625) ((-247 . -563) 56607) ((-471 . -594) 56589) ((-246 . -563) 56571) ((-315 . -666) T) ((-245 . -563) 56553) ((-106 . -19) 56535) ((-159 . -666) T) ((-471 . -349) 56517) ((-192 . -563) 56499) ((-489 . -1061) 56483) ((-471 . -119) T) ((-106 . -556) 56458) ((-191 . -563) 56440) ((-449 . -34) 56406) ((-449 . -91) 56372) ((-189 . -563) 56354) ((-188 . -563) 56336) ((-187 . -563) 56318) ((-186 . -563) 56300) ((-183 . -563) 56282) ((-182 . -563) 56264) ((-181 . -563) 56246) ((-180 . -563) 56228) ((-179 . -563) 56210) ((-178 . -563) 56192) ((-177 . -563) 56174) ((-499 . -1019) 56126) ((-176 . -563) 56108) ((-175 . -563) 56090) ((-44 . -462) 56027) ((-174 . -563) 56009) ((-173 . -563) 55991) ((-754 . -107) 55882) ((-589 . -97) 55832) ((-456 . -263) 55809) ((-1029 . -563) 55561) ((-1017 . -1016) T) ((-970 . -1122) T) ((-570 . -1028) T) ((-1189 . -964) 55545) ((-1083 . -286) 55532) ((-1039 . -286) 55519) ((-113 . -1028) T) ((-758 . -97) T) ((-570 . -23) T) ((-1062 . -484) 55311) ((-362 . -97) T) ((-300 . -97) T) ((-931 . -831) 55263) ((-893 . -1016) T) ((-141 . -973) T) ((-113 . -23) T) ((-671 . -387) 55247) ((-675 . -1016) T) ((-655 . -1016) T) ((-642 . -125) T) ((-428 . -1016) T) ((-292 . -406) 55231) ((-383 . -1122) T) ((-954 . -564) 55192) ((-951 . -1126) T) ((-203 . -97) T) ((-954 . -563) 55154) ((-755 . -209) 55138) ((-951 . -515) T) ((-772 . -591) 55111) ((-330 . -1126) T) ((-451 . -563) 55073) ((-451 . -564) 55034) ((-438 . -564) 54995) ((-438 . -563) 54957) ((-383 . -815) 54941) ((-295 . -979) 54776) ((-383 . -817) 54701) ((-779 . -964) 54599) ((-460 . -484) NIL) ((-456 . -556) 54576) ((-330 . -515) T) ((-196 . -484) NIL) ((-803 . -427) T) ((-394 . -1016) T) ((-383 . -964) 54443) ((-295 . -107) 54264) ((-633 . -339) T) ((-203 . -261) T) ((-47 . -1126) T) ((-754 . -973) 54195) ((-535 . -124) T) ((-523 . -124) T) ((-466 . -124) T) ((-47 . -515) T) ((-1071 . -265) 54171) ((-1083 . -1063) 54149) ((-292 . -27) 54128) ((-984 . -97) T) ((-754 . -211) 54081) ((-218 . -784) 54060) ((-883 . -97) T) ((-653 . -97) T) ((-272 . -462) 53997) ((-455 . -97) T) ((-671 . -980) T) ((-562 . -563) 53979) ((-562 . -564) 53840) ((-383 . -353) 53824) ((-383 . -314) 53808) ((-1083 . -37) 53637) ((-1039 . -37) 53486) ((-790 . -37) 53456) ((-366 . -591) 53440) ((-589 . -286) 53378) ((-893 . -657) 53275) ((-200 . -102) 53259) ((-44 . -263) 53184) ((-675 . -657) 53154) ((-568 . -591) 53128) ((-288 . -1016) T) ((-266 . -979) 53115) ((-106 . -563) 53097) ((-106 . -564) 53079) ((-428 . -657) 53049) ((-755 . -230) 52988) ((-629 . -1016) 52966) ((-509 . -1016) T) ((-1085 . -980) T) ((-1084 . -980) T) ((-266 . -107) 52951) ((-1078 . -980) T) ((-1040 . -980) T) ((-509 . -560) 52930) ((-932 . -784) T) ((-205 . -627) 52888) ((-633 . -1028) T) ((-1117 . -680) 52864) ((-295 . -973) T) ((-319 . -25) T) ((-319 . -21) T) ((-383 . -831) 52823) ((-66 . -1122) T) ((-772 . -733) 52802) ((-394 . -657) 52776) ((-738 . -1016) T) ((-772 . -730) 52755) ((-638 . -124) T) ((-652 . -851) 52734) ((-633 . -23) T) ((-460 . -267) T) ((-772 . -666) 52713) ((-295 . -211) 52665) ((-295 . -221) 52644) ((-196 . -267) T) ((-951 . -339) T) ((-1152 . -427) 52623) ((-1131 . -427) 52602) ((-330 . -305) 52579) ((-330 . -339) T) ((-1052 . -563) 52561) ((-44 . -1156) 52511) ((-802 . -97) T) ((-589 . -259) 52495) ((-638 . -982) T) ((-452 . -591) 52460) ((-443 . -1016) T) ((-44 . -556) 52385) ((-1070 . -265) 52360) ((-39 . -585) 52299) ((-47 . -339) T) ((-1022 . -563) 52281) ((-1005 . -786) 52260) ((-578 . -265) 52235) ((-721 . -786) 52214) ((-719 . -786) 52193) ((-456 . -563) 51945) ((-218 . -387) 51914) ((-883 . -286) 51901) ((-429 . -786) 51880) ((-63 . -1122) T) ((-570 . -124) T) ((-455 . -286) 51867) ((-985 . -484) 51711) ((-266 . -973) T) ((-113 . -124) T) ((-428 . -701) T) ((-893 . -158) 51662) ((-999 . -979) 51572) ((-568 . -733) 51551) ((-546 . -1016) T) ((-568 . -730) 51530) ((-568 . -666) T) ((-272 . -263) 51509) ((-271 . -1122) T) ((-977 . -563) 51471) ((-977 . -564) 51432) ((-951 . -1028) T) ((-155 . -97) T) ((-252 . -786) T) ((-1077 . -1016) T) ((-757 . -563) 51414) ((-1029 . -265) 51391) ((-1018 . -207) 51375) ((-931 . -284) T) ((-738 . -657) 51359) ((-335 . -979) 51311) ((-330 . -1028) T) ((-329 . -979) 51263) ((-390 . -563) 51245) ((-361 . -563) 51227) ((-321 . -979) 51179) ((-205 . -563) 51111) ((-999 . -107) 51007) ((-951 . -23) T) ((-103 . -979) 50957) ((-829 . -97) T) ((-777 . -97) T) ((-747 . -97) T) ((-708 . -97) T) ((-618 . -97) T) ((-449 . -427) 50936) ((-394 . -158) T) ((-335 . -107) 50874) ((-329 . -107) 50812) ((-321 . -107) 50750) ((-228 . -209) 50720) ((-227 . -209) 50690) ((-330 . -23) T) ((-69 . -1122) T) ((-203 . -37) 50655) ((-103 . -107) 50589) ((-39 . -25) T) ((-39 . -21) T) ((-613 . -660) T) ((-155 . -261) 50567) ((-47 . -1028) T) ((-852 . -25) T) ((-710 . -25) T) ((-1062 . -462) 50504) ((-458 . -1016) T) ((-1190 . -591) 50478) ((-1141 . -97) T) ((-791 . -97) T) ((-218 . -980) 50409) ((-984 . -1063) T) ((-894 . -731) 50362) ((-357 . -591) 50346) ((-47 . -23) T) ((-894 . -734) 50299) ((-754 . -734) 50250) ((-754 . -731) 50201) ((-272 . -556) 50180) ((-452 . -666) T) ((-530 . -97) T) ((-802 . -286) 50137) ((-596 . -263) 50116) ((-108 . -604) T) ((-74 . -1122) T) ((-984 . -37) 50103) ((-607 . -350) 50082) ((-883 . -37) 49931) ((-671 . -1016) T) ((-455 . -37) 49780) ((-84 . -1122) T) ((-530 . -261) T) ((-1132 . -784) NIL) ((-1085 . -1016) T) ((-1084 . -1016) T) ((-1078 . -1016) T) ((-327 . -964) 49757) ((-999 . -973) T) ((-932 . -980) T) ((-44 . -563) 49739) ((-44 . -564) NIL) ((-845 . -980) T) ((-756 . -563) 49721) ((-1059 . -97) 49699) ((-999 . -221) 49650) ((-403 . -980) T) ((-335 . -973) T) ((-329 . -973) T) ((-341 . -340) 49627) ((-321 . -973) T) ((-228 . -216) 49606) ((-227 . -216) 49585) ((-105 . -340) 49559) ((-999 . -211) 49484) ((-1040 . -1016) T) ((-271 . -831) 49443) ((-103 . -973) T) ((-633 . -124) T) ((-394 . -484) 49285) ((-335 . -211) 49264) ((-335 . -221) T) ((-43 . -660) T) ((-329 . -211) 49243) ((-329 . -221) T) ((-321 . -211) 49222) ((-321 . -221) T) ((-155 . -286) 49187) ((-103 . -221) T) ((-103 . -211) T) ((-295 . -731) T) ((-801 . -21) T) ((-801 . -25) T) ((-383 . -284) T) ((-471 . -33) T) ((-106 . -265) 49162) ((-1029 . -979) 49060) ((-802 . -1063) NIL) ((-306 . -563) 49042) ((-383 . -949) 49021) ((-1029 . -107) 48912) ((-412 . -1016) T) ((-1190 . -666) T) ((-61 . -563) 48894) ((-802 . -37) 48839) ((-492 . -1122) T) ((-554 . -140) 48823) ((-482 . -563) 48805) ((-1141 . -286) 48792) ((-671 . -657) 48641) ((-495 . -732) T) ((-495 . -733) T) ((-523 . -585) 48623) ((-466 . -585) 48583) ((-331 . -427) T) ((-328 . -427) T) ((-320 . -427) T) ((-241 . -427) 48534) ((-489 . -1016) 48484) ((-225 . -427) 48435) ((-1062 . -263) 48414) ((-1089 . -563) 48396) ((-629 . -484) 48329) ((-893 . -267) 48308) ((-509 . -484) 48100) ((-1083 . -209) 48084) ((-155 . -1063) 48063) ((-1178 . -563) 48045) ((-1085 . -657) 47942) ((-1084 . -657) 47783) ((-823 . -97) T) ((-1078 . -657) 47579) ((-1040 . -657) 47476) ((-1068 . -616) 47460) ((-331 . -378) 47411) ((-328 . -378) 47362) ((-320 . -378) 47313) ((-951 . -124) T) ((-738 . -484) 47225) ((-272 . -564) NIL) ((-272 . -563) 47207) ((-841 . -427) T) ((-894 . -344) 47160) ((-754 . -344) 47139) ((-480 . -479) 47118) ((-478 . -479) 47097) ((-460 . -263) NIL) ((-456 . -265) 47074) ((-394 . -267) T) ((-330 . -124) T) ((-196 . -263) NIL) ((-633 . -464) NIL) ((-94 . -1028) T) ((-155 . -37) 46902) ((-1152 . -902) 46864) ((-1059 . -286) 46802) ((-1131 . -902) 46771) ((-841 . -378) T) ((-1029 . -973) 46702) ((-1154 . -515) T) ((-1062 . -556) 46681) ((-108 . -786) T) ((-985 . -462) 46612) ((-535 . -21) T) ((-535 . -25) T) ((-523 . -21) T) ((-523 . -25) T) ((-466 . -25) T) ((-466 . -21) T) ((-1141 . -1063) 46590) ((-1029 . -211) 46543) ((-47 . -124) T) ((-1104 . -97) T) ((-218 . -1016) 46354) ((-802 . -376) 46331) ((-1006 . -97) T) ((-995 . -97) T) ((-558 . -97) T) ((-450 . -97) T) ((-1141 . -37) 46160) ((-791 . -37) 46130) ((-671 . -158) 46041) ((-596 . -563) 46023) ((-530 . -37) 46010) ((-888 . -97) 45960) ((-796 . -563) 45942) ((-796 . -564) 45864) ((-546 . -484) NIL) ((-1160 . -980) T) ((-1153 . -980) T) ((-1132 . -980) T) ((-549 . -980) T) ((-548 . -980) T) ((-1194 . -1028) T) ((-1085 . -158) 45815) ((-1084 . -158) 45746) ((-1078 . -158) 45677) ((-1040 . -158) 45628) ((-932 . -1016) T) ((-900 . -1016) T) ((-845 . -1016) T) ((-1117 . -136) 45607) ((-738 . -736) 45591) ((-638 . -25) T) ((-638 . -21) T) ((-113 . -585) 45568) ((-640 . -817) 45550) ((-403 . -1016) T) ((-292 . -1126) 45529) ((-289 . -1126) T) ((-155 . -376) 45513) ((-1117 . -134) 45492) ((-449 . -902) 45454) ((-70 . -563) 45436) ((-103 . -734) T) ((-103 . -731) T) ((-292 . -515) 45415) ((-640 . -964) 45397) ((-289 . -515) T) ((-1194 . -23) T) ((-126 . -964) 45379) ((-456 . -979) 45277) ((-44 . -265) 45202) ((-218 . -657) 45144) ((-456 . -107) 45035) ((-1009 . -97) 45013) ((-961 . -97) T) ((-589 . -767) 44992) ((-671 . -484) 44935) ((-977 . -979) 44919) ((-570 . -21) T) ((-570 . -25) T) ((-985 . -263) 44894) ((-337 . -97) T) ((-298 . -97) T) ((-613 . -591) 44868) ((-361 . -979) 44852) ((-977 . -107) 44831) ((-755 . -387) 44815) ((-113 . -25) T) ((-87 . -563) 44797) ((-113 . -21) T) ((-558 . -286) 44592) ((-450 . -286) 44396) ((-1062 . -564) NIL) ((-361 . -107) 44375) ((-355 . -97) T) ((-193 . -563) 44357) ((-1062 . -563) 44339) ((-932 . -657) 44289) ((-1078 . -484) 44058) ((-845 . -657) 44010) ((-1040 . -484) 43980) ((-327 . -284) T) ((-1096 . -140) 43930) ((-888 . -286) 43868) ((-773 . -97) T) ((-403 . -657) 43852) ((-203 . -767) T) ((-766 . -97) T) ((-764 . -97) T) ((-453 . -140) 43802) ((-1152 . -1151) 43781) ((-1034 . -1126) T) ((-315 . -964) 43748) ((-1152 . -1146) 43718) ((-1152 . -1149) 43702) ((-1131 . -1130) 43681) ((-78 . -563) 43663) ((-836 . -563) 43645) ((-1131 . -1146) 43622) ((-1034 . -515) T) ((-852 . -786) T) ((-460 . -564) 43552) ((-460 . -563) 43534) ((-710 . -786) T) ((-355 . -261) T) ((-614 . -786) T) ((-1131 . -1128) 43518) ((-1154 . -1028) T) ((-196 . -564) 43448) ((-196 . -563) 43430) ((-985 . -556) 43405) ((-57 . -140) 43389) ((-486 . -140) 43373) ((-467 . -140) 43357) ((-335 . -1185) 43341) ((-329 . -1185) 43325) ((-321 . -1185) 43309) ((-292 . -339) 43288) ((-289 . -339) T) ((-456 . -973) 43219) ((-633 . -585) 43201) ((-1188 . -591) 43175) ((-1186 . -591) 43149) ((-1154 . -23) T) ((-629 . -462) 43133) ((-62 . -563) 43115) ((-1029 . -734) 43066) ((-1029 . -731) 43017) ((-509 . -462) 42954) ((-613 . -33) T) ((-456 . -211) 42907) ((-272 . -265) 42886) ((-218 . -158) 42865) ((-755 . -980) T) ((-43 . -591) 42823) ((-999 . -344) 42774) ((-671 . -267) 42705) ((-489 . -484) 42638) ((-756 . -979) 42589) ((-1005 . -134) 42568) ((-335 . -344) 42547) ((-329 . -344) 42526) ((-321 . -344) 42505) ((-1005 . -136) 42484) ((-802 . -209) 42461) ((-756 . -107) 42403) ((-721 . -134) 42382) ((-721 . -136) 42361) ((-241 . -880) 42328) ((-228 . -784) 42307) ((-225 . -880) 42252) ((-227 . -784) 42231) ((-719 . -134) 42210) ((-719 . -136) 42189) ((-141 . -591) 42163) ((-429 . -136) 42142) ((-429 . -134) 42121) ((-613 . -666) T) ((-762 . -563) 42103) ((-1160 . -1016) T) ((-1153 . -1016) T) ((-1132 . -1016) T) ((-1117 . -1111) 42069) ((-1117 . -1108) 42035) ((-1085 . -267) 42014) ((-1084 . -267) 41965) ((-1078 . -267) 41916) ((-1040 . -267) 41895) ((-315 . -831) 41876) ((-932 . -158) T) ((-845 . -158) T) ((-549 . -1016) T) ((-548 . -1016) T) ((-633 . -21) T) ((-633 . -25) T) ((-449 . -1149) 41860) ((-449 . -1146) 41830) ((-394 . -263) 41758) ((-292 . -1028) 41608) ((-289 . -1028) T) ((-1117 . -34) 41574) ((-1117 . -91) 41540) ((-82 . -563) 41522) ((-89 . -97) 41500) ((-1194 . -124) T) ((-536 . -134) T) ((-536 . -136) 41482) ((-487 . -136) 41464) ((-487 . -134) T) ((-292 . -23) 41317) ((-39 . -318) 41291) ((-289 . -23) T) ((-1070 . -594) 41273) ((-754 . -591) 41123) ((-1181 . -980) T) ((-1070 . -349) 41105) ((-155 . -209) 41089) ((-546 . -462) 41071) ((-218 . -484) 41004) ((-1188 . -666) T) ((-1186 . -666) T) ((-1089 . -979) 40887) ((-1089 . -107) 40756) ((-756 . -973) T) ((-485 . -97) T) ((-47 . -585) 40716) ((-480 . -97) T) ((-478 . -97) T) ((-1178 . -979) 40686) ((-961 . -37) 40670) ((-756 . -211) T) ((-756 . -221) 40649) ((-509 . -263) 40628) ((-1178 . -107) 40593) ((-1141 . -209) 40577) ((-1160 . -657) 40474) ((-985 . -564) NIL) ((-985 . -563) 40456) ((-1153 . -657) 40297) ((-1132 . -657) 40093) ((-931 . -851) T) ((-642 . -563) 40062) ((-141 . -666) T) ((-1029 . -344) 40041) ((-932 . -484) NIL) ((-228 . -387) 40010) ((-227 . -387) 39979) ((-951 . -25) T) ((-951 . -21) T) ((-549 . -657) 39952) ((-548 . -657) 39849) ((-738 . -263) 39807) ((-122 . -97) 39785) ((-772 . -964) 39683) ((-155 . -767) 39662) ((-295 . -591) 39559) ((-754 . -33) T) ((-654 . -97) T) ((-1034 . -1028) T) ((-953 . -1122) T) ((-355 . -37) 39524) ((-330 . -25) T) ((-330 . -21) T) ((-148 . -97) T) ((-144 . -97) T) ((-331 . -1175) 39508) ((-328 . -1175) 39492) ((-320 . -1175) 39476) ((-155 . -325) 39455) ((-523 . -786) T) ((-466 . -786) T) ((-1034 . -23) T) ((-85 . -563) 39437) ((-640 . -284) T) ((-773 . -37) 39407) ((-766 . -37) 39377) ((-1154 . -124) T) ((-1062 . -265) 39356) ((-894 . -732) 39309) ((-894 . -733) 39262) ((-754 . -730) 39241) ((-112 . -284) T) ((-89 . -286) 39179) ((-617 . -33) T) ((-509 . -556) 39158) ((-47 . -25) T) ((-47 . -21) T) ((-754 . -733) 39109) ((-754 . -732) 39088) ((-640 . -949) T) ((-596 . -979) 39072) ((-894 . -666) 38971) ((-754 . -666) 38902) ((-894 . -448) 38855) ((-456 . -734) 38806) ((-456 . -731) 38757) ((-841 . -1175) 38744) ((-1089 . -973) T) ((-596 . -107) 38723) ((-1089 . -302) 38700) ((-1109 . -97) 38678) ((-1017 . -563) 38660) ((-640 . -508) T) ((-755 . -1016) T) ((-1178 . -973) T) ((-389 . -1016) T) ((-228 . -980) 38591) ((-227 . -980) 38522) ((-266 . -591) 38509) ((-546 . -263) 38484) ((-629 . -627) 38442) ((-893 . -563) 38424) ((-803 . -97) T) ((-675 . -563) 38406) ((-655 . -563) 38388) ((-1160 . -158) 38339) ((-1153 . -158) 38270) ((-1132 . -158) 38201) ((-638 . -786) T) ((-932 . -267) T) ((-428 . -563) 38183) ((-573 . -666) T) ((-58 . -1016) 38161) ((-223 . -140) 38145) ((-845 . -267) T) ((-951 . -940) T) ((-573 . -448) T) ((-652 . -1126) 38124) ((-549 . -158) 38103) ((-548 . -158) 38054) ((-1168 . -786) 38033) ((-652 . -515) 37944) ((-383 . -851) T) ((-383 . -759) 37923) ((-295 . -733) T) ((-295 . -666) T) ((-394 . -563) 37905) ((-394 . -564) 37813) ((-589 . -1061) 37797) ((-106 . -594) 37779) ((-122 . -286) 37717) ((-106 . -349) 37699) ((-159 . -284) T) ((-374 . -1122) T) ((-292 . -124) 37571) ((-289 . -124) T) ((-67 . -371) T) ((-106 . -119) T) ((-489 . -462) 37555) ((-597 . -1028) T) ((-546 . -19) 37537) ((-59 . -416) T) ((-59 . -371) T) ((-763 . -1016) T) ((-546 . -556) 37512) ((-452 . -964) 37472) ((-596 . -973) T) ((-597 . -23) T) ((-1181 . -1016) T) ((-755 . -657) 37321) ((-113 . -786) NIL) ((-1083 . -387) 37305) ((-1039 . -387) 37289) ((-790 . -387) 37273) ((-804 . -97) 37224) ((-1152 . -97) T) ((-1132 . -484) 36993) ((-1109 . -286) 36931) ((-288 . -563) 36913) ((-1131 . -97) T) ((-1018 . -1016) T) ((-1085 . -263) 36898) ((-1084 . -263) 36883) ((-266 . -666) T) ((-103 . -840) NIL) ((-629 . -563) 36815) ((-629 . -564) 36776) ((-999 . -591) 36686) ((-553 . -563) 36668) ((-509 . -564) NIL) ((-509 . -563) 36650) ((-1078 . -263) 36498) ((-460 . -979) 36448) ((-651 . -427) T) ((-481 . -479) 36427) ((-477 . -479) 36406) ((-196 . -979) 36356) ((-335 . -591) 36308) ((-329 . -591) 36260) ((-203 . -784) T) ((-321 . -591) 36212) ((-554 . -97) 36162) ((-456 . -344) 36141) ((-103 . -591) 36091) ((-460 . -107) 36025) ((-218 . -462) 36009) ((-319 . -136) 35991) ((-319 . -134) T) ((-155 . -346) 35962) ((-874 . -1166) 35946) ((-196 . -107) 35880) ((-803 . -286) 35845) ((-874 . -1016) 35795) ((-738 . -564) 35756) ((-738 . -563) 35738) ((-658 . -97) T) ((-307 . -1016) T) ((-1034 . -124) T) ((-654 . -37) 35708) ((-292 . -464) 35687) ((-471 . -1122) T) ((-1152 . -261) 35653) ((-1131 . -261) 35619) ((-303 . -140) 35603) ((-985 . -265) 35578) ((-1181 . -657) 35548) ((-1071 . -33) T) ((-1190 . -964) 35525) ((-443 . -563) 35507) ((-457 . -33) T) ((-357 . -964) 35491) ((-1083 . -980) T) ((-1039 . -980) T) ((-790 . -980) T) ((-984 . -784) T) ((-755 . -158) 35402) ((-489 . -263) 35379) ((-113 . -921) 35356) ((-1160 . -267) 35335) ((-1104 . -340) 35309) ((-1006 . -243) 35293) ((-449 . -97) T) ((-341 . -1016) T) ((-228 . -1016) T) ((-227 . -1016) T) ((-1153 . -267) 35244) ((-105 . -1016) T) ((-1132 . -267) 35195) ((-803 . -1063) 35173) ((-1085 . -930) 35139) ((-558 . -340) 35079) ((-1084 . -930) 35045) ((-558 . -207) 34992) ((-546 . -563) 34974) ((-546 . -564) NIL) ((-633 . -786) T) ((-450 . -207) 34924) ((-460 . -973) T) ((-1078 . -930) 34890) ((-86 . -415) T) ((-86 . -371) T) ((-196 . -973) T) ((-1040 . -930) 34856) ((-999 . -666) T) ((-652 . -1028) T) ((-549 . -267) 34835) ((-548 . -267) 34814) ((-460 . -221) T) ((-460 . -211) T) ((-196 . -221) T) ((-196 . -211) T) ((-1077 . -563) 34796) ((-803 . -37) 34748) ((-335 . -666) T) ((-329 . -666) T) ((-321 . -666) T) ((-103 . -733) T) ((-103 . -730) T) ((-489 . -1156) 34732) ((-103 . -666) T) ((-652 . -23) T) ((-1194 . -25) T) ((-449 . -261) 34698) ((-1194 . -21) T) ((-1131 . -286) 34637) ((-1087 . -97) T) ((-39 . -134) 34609) ((-39 . -136) 34581) ((-489 . -556) 34558) ((-1029 . -591) 34408) ((-554 . -286) 34346) ((-44 . -594) 34296) ((-44 . -609) 34246) ((-44 . -349) 34196) ((-1070 . -33) T) ((-802 . -784) NIL) ((-597 . -124) T) ((-458 . -563) 34178) ((-218 . -263) 34155) ((-590 . -33) T) ((-578 . -33) T) ((-1005 . -427) 34106) ((-755 . -484) 33980) ((-721 . -427) 33911) ((-719 . -427) 33862) ((-429 . -427) 33813) ((-883 . -387) 33797) ((-671 . -563) 33779) ((-228 . -657) 33721) ((-227 . -657) 33663) ((-671 . -564) 33524) ((-455 . -387) 33508) ((-315 . -279) T) ((-327 . -851) T) ((-928 . -97) 33486) ((-951 . -786) T) ((-58 . -484) 33419) ((-1131 . -1063) 33371) ((-932 . -263) NIL) ((-203 . -980) T) ((-355 . -767) T) ((-1029 . -33) T) ((-536 . -427) T) ((-487 . -427) T) ((-1135 . -1010) 33355) ((-1135 . -1016) 33333) ((-218 . -556) 33310) ((-1135 . -1012) 33267) ((-1085 . -563) 33249) ((-1084 . -563) 33231) ((-1078 . -563) 33213) ((-1078 . -564) NIL) ((-1040 . -563) 33195) ((-803 . -376) 33179) ((-499 . -97) T) ((-1152 . -37) 33020) ((-1131 . -37) 32834) ((-801 . -136) T) ((-536 . -378) T) ((-47 . -786) T) ((-487 . -378) T) ((-1154 . -21) T) ((-1154 . -25) T) ((-1029 . -730) 32813) ((-1029 . -733) 32764) ((-1029 . -732) 32743) ((-922 . -1016) T) ((-954 . -33) T) ((-794 . -1016) T) ((-1164 . -97) T) ((-1029 . -666) 32674) ((-607 . -97) T) ((-509 . -265) 32653) ((-1096 . -97) T) ((-451 . -33) T) ((-438 . -33) T) ((-331 . -97) T) ((-328 . -97) T) ((-320 . -97) T) ((-241 . -97) T) ((-225 . -97) T) ((-452 . -284) T) ((-984 . -980) T) ((-883 . -980) T) ((-292 . -585) 32561) ((-289 . -585) 32522) ((-455 . -980) T) ((-453 . -97) T) ((-412 . -563) 32504) ((-1083 . -1016) T) ((-1039 . -1016) T) ((-790 . -1016) T) ((-1053 . -97) T) ((-755 . -267) 32435) ((-893 . -979) 32318) ((-452 . -949) T) ((-675 . -979) 32288) ((-428 . -979) 32258) ((-1059 . -1035) 32242) ((-1018 . -484) 32175) ((-893 . -107) 32044) ((-841 . -97) T) ((-675 . -107) 32009) ((-57 . -97) 31959) ((-489 . -564) 31920) ((-489 . -563) 31832) ((-488 . -97) 31810) ((-486 . -97) 31760) ((-468 . -97) 31738) ((-467 . -97) 31688) ((-428 . -107) 31651) ((-228 . -158) 31630) ((-227 . -158) 31609) ((-394 . -979) 31583) ((-1117 . -902) 31545) ((-927 . -1028) T) ((-874 . -484) 31478) ((-460 . -734) T) ((-449 . -37) 31319) ((-394 . -107) 31286) ((-460 . -731) T) ((-928 . -286) 31224) ((-196 . -734) T) ((-196 . -731) T) ((-927 . -23) T) ((-652 . -124) T) ((-1131 . -376) 31194) ((-292 . -25) 31047) ((-155 . -387) 31031) ((-292 . -21) 30903) ((-289 . -25) T) ((-289 . -21) T) ((-796 . -344) T) ((-106 . -33) T) ((-456 . -591) 30753) ((-802 . -980) T) ((-546 . -265) 30728) ((-535 . -136) T) ((-523 . -136) T) ((-466 . -136) T) ((-1083 . -657) 30557) ((-1039 . -657) 30406) ((-1034 . -585) 30388) ((-790 . -657) 30358) ((-613 . -1122) T) ((-1 . -97) T) ((-218 . -563) 30110) ((-1141 . -387) 30094) ((-1096 . -286) 29898) ((-893 . -973) T) ((-675 . -973) T) ((-655 . -973) T) ((-589 . -1016) 29848) ((-977 . -591) 29832) ((-791 . -387) 29816) ((-481 . -97) T) ((-477 . -97) T) ((-225 . -286) 29803) ((-241 . -286) 29790) ((-893 . -302) 29769) ((-361 . -591) 29753) ((-453 . -286) 29557) ((-228 . -484) 29490) ((-613 . -964) 29388) ((-227 . -484) 29321) ((-1053 . -286) 29247) ((-758 . -1016) T) ((-738 . -979) 29231) ((-1160 . -263) 29216) ((-1153 . -263) 29201) ((-1132 . -263) 29049) ((-362 . -1016) T) ((-300 . -1016) T) ((-394 . -973) T) ((-155 . -980) T) ((-57 . -286) 28987) ((-738 . -107) 28966) ((-548 . -263) 28951) ((-488 . -286) 28889) ((-486 . -286) 28827) ((-468 . -286) 28765) ((-467 . -286) 28703) ((-394 . -211) 28682) ((-456 . -33) T) ((-932 . -564) 28612) ((-203 . -1016) T) ((-932 . -563) 28594) ((-900 . -563) 28576) ((-900 . -564) 28551) ((-845 . -563) 28533) ((-638 . -136) T) ((-640 . -851) T) ((-640 . -759) T) ((-403 . -563) 28515) ((-1034 . -21) T) ((-1034 . -25) T) ((-613 . -353) 28499) ((-112 . -851) T) ((-803 . -209) 28483) ((-76 . -1122) T) ((-122 . -121) 28467) ((-977 . -33) T) ((-1188 . -964) 28441) ((-1186 . -964) 28398) ((-1141 . -980) T) ((-791 . -980) T) ((-456 . -730) 28377) ((-331 . -1063) 28356) ((-328 . -1063) 28335) ((-320 . -1063) 28314) ((-456 . -733) 28265) ((-456 . -732) 28244) ((-205 . -33) T) ((-456 . -666) 28175) ((-58 . -462) 28159) ((-530 . -980) T) ((-1083 . -158) 28050) ((-1039 . -158) 27961) ((-984 . -1016) T) ((-1005 . -880) 27906) ((-883 . -1016) T) ((-756 . -591) 27857) ((-721 . -880) 27826) ((-653 . -1016) T) ((-719 . -880) 27793) ((-486 . -259) 27777) ((-613 . -831) 27736) ((-455 . -1016) T) ((-429 . -880) 27703) ((-77 . -1122) T) ((-331 . -37) 27668) ((-328 . -37) 27633) ((-320 . -37) 27598) ((-241 . -37) 27447) ((-225 . -37) 27296) ((-841 . -1063) T) ((-570 . -136) 27275) ((-570 . -134) 27254) ((-113 . -136) T) ((-113 . -134) NIL) ((-390 . -666) T) ((-738 . -973) T) ((-319 . -427) T) ((-1160 . -930) 27220) ((-1153 . -930) 27186) ((-1132 . -930) 27152) ((-841 . -37) 27117) ((-203 . -657) 27082) ((-295 . -46) 27052) ((-39 . -385) 27024) ((-129 . -563) 27006) ((-927 . -124) T) ((-754 . -1122) T) ((-159 . -851) T) ((-319 . -378) T) ((-489 . -265) 26983) ((-44 . -33) T) ((-754 . -964) 26812) ((-605 . -97) T) ((-597 . -21) T) ((-597 . -25) T) ((-1018 . -462) 26796) ((-1131 . -209) 26766) ((-617 . -1122) T) ((-223 . -97) 26716) ((-802 . -1016) T) ((-1089 . -591) 26641) ((-984 . -657) 26628) ((-671 . -979) 26471) ((-1083 . -484) 26418) ((-883 . -657) 26267) ((-1039 . -484) 26219) ((-455 . -657) 26068) ((-65 . -563) 26050) ((-671 . -107) 25879) ((-874 . -462) 25863) ((-1178 . -591) 25823) ((-756 . -666) T) ((-1085 . -979) 25706) ((-1084 . -979) 25541) ((-1078 . -979) 25331) ((-1040 . -979) 25214) ((-931 . -1126) T) ((-1011 . -97) 25192) ((-754 . -353) 25162) ((-931 . -515) T) ((-1085 . -107) 25031) ((-1084 . -107) 24852) ((-1078 . -107) 24621) ((-1040 . -107) 24490) ((-1021 . -1019) 24454) ((-355 . -784) T) ((-1160 . -563) 24436) ((-1153 . -563) 24418) ((-1132 . -563) 24400) ((-1132 . -564) NIL) ((-218 . -265) 24377) ((-39 . -427) T) ((-203 . -158) T) ((-155 . -1016) T) ((-633 . -136) T) ((-633 . -134) NIL) ((-549 . -563) 24359) ((-548 . -563) 24341) ((-829 . -1016) T) ((-777 . -1016) T) ((-747 . -1016) T) ((-708 . -1016) T) ((-601 . -788) 24325) ((-618 . -1016) T) ((-754 . -831) 24258) ((-39 . -378) NIL) ((-1034 . -604) T) ((-802 . -657) 24203) ((-228 . -462) 24187) ((-227 . -462) 24171) ((-652 . -585) 24119) ((-596 . -591) 24093) ((-272 . -33) T) ((-671 . -973) T) ((-536 . -1175) 24080) ((-487 . -1175) 24057) ((-1141 . -1016) T) ((-1083 . -267) 23968) ((-1039 . -267) 23899) ((-984 . -158) T) ((-791 . -1016) T) ((-883 . -158) 23810) ((-721 . -1144) 23794) ((-589 . -484) 23727) ((-75 . -563) 23709) ((-671 . -302) 23674) ((-1089 . -666) T) ((-530 . -1016) T) ((-455 . -158) 23585) ((-223 . -286) 23523) ((-1054 . -1028) T) ((-68 . -563) 23505) ((-1178 . -666) T) ((-1085 . -973) T) ((-1084 . -973) T) ((-303 . -97) 23455) ((-1078 . -973) T) ((-1054 . -23) T) ((-1040 . -973) T) ((-89 . -1035) 23439) ((-797 . -1028) T) ((-1085 . -211) 23398) ((-1084 . -221) 23377) ((-1084 . -211) 23329) ((-1078 . -211) 23216) ((-1078 . -221) 23195) ((-295 . -831) 23101) ((-797 . -23) T) ((-155 . -657) 22929) ((-383 . -1126) T) ((-1017 . -344) T) ((-951 . -136) T) ((-931 . -339) T) ((-801 . -427) T) ((-874 . -263) 22906) ((-292 . -786) T) ((-289 . -786) NIL) ((-805 . -97) T) ((-652 . -25) T) ((-383 . -515) T) ((-652 . -21) T) ((-330 . -136) 22888) ((-330 . -134) T) ((-1059 . -1016) 22866) ((-428 . -660) T) ((-73 . -563) 22848) ((-110 . -786) T) ((-223 . -259) 22832) ((-218 . -979) 22730) ((-79 . -563) 22712) ((-675 . -344) 22665) ((-1087 . -767) T) ((-677 . -213) 22649) ((-1071 . -1122) T) ((-130 . -213) 22631) ((-218 . -107) 22522) ((-1141 . -657) 22351) ((-47 . -136) T) ((-802 . -158) T) ((-791 . -657) 22321) ((-457 . -1122) T) ((-883 . -484) 22268) ((-596 . -666) T) ((-530 . -657) 22255) ((-961 . -980) T) ((-455 . -484) 22198) ((-874 . -19) 22182) ((-874 . -556) 22159) ((-755 . -564) NIL) ((-755 . -563) 22141) ((-932 . -979) 22091) ((-389 . -563) 22073) ((-228 . -263) 22050) ((-227 . -263) 22027) ((-460 . -840) NIL) ((-292 . -29) 21997) ((-103 . -1122) T) ((-931 . -1028) T) ((-196 . -840) NIL) ((-845 . -979) 21949) ((-999 . -964) 21847) ((-932 . -107) 21781) ((-241 . -209) 21765) ((-677 . -634) 21749) ((-403 . -979) 21733) ((-355 . -980) T) ((-931 . -23) T) ((-845 . -107) 21671) ((-633 . -1111) NIL) ((-460 . -591) 21621) ((-103 . -815) 21603) ((-103 . -817) 21585) ((-633 . -1108) NIL) ((-196 . -591) 21535) ((-335 . -964) 21519) ((-329 . -964) 21503) ((-303 . -286) 21441) ((-321 . -964) 21425) ((-203 . -267) T) ((-403 . -107) 21404) ((-58 . -563) 21336) ((-155 . -158) T) ((-1034 . -786) T) ((-103 . -964) 21296) ((-823 . -1016) T) ((-773 . -980) T) ((-766 . -980) T) ((-633 . -34) NIL) ((-633 . -91) NIL) ((-289 . -921) 21257) ((-535 . -427) T) ((-523 . -427) T) ((-466 . -427) T) ((-383 . -339) T) ((-218 . -973) 21188) ((-1062 . -33) T) ((-452 . -851) T) ((-927 . -585) 21136) ((-228 . -556) 21113) ((-227 . -556) 21090) ((-999 . -353) 21074) ((-802 . -484) 20982) ((-218 . -211) 20935) ((-1070 . -1122) T) ((-763 . -563) 20917) ((-1189 . -1028) T) ((-1181 . -563) 20899) ((-1141 . -158) 20790) ((-103 . -353) 20772) ((-103 . -314) 20754) ((-984 . -267) T) ((-883 . -267) 20685) ((-738 . -344) 20664) ((-590 . -1122) T) ((-578 . -1122) T) ((-455 . -267) 20595) ((-530 . -158) T) ((-303 . -259) 20579) ((-1189 . -23) T) ((-1117 . -97) T) ((-1104 . -1016) T) ((-1006 . -1016) T) ((-995 . -1016) T) ((-81 . -563) 20561) ((-651 . -97) T) ((-331 . -325) 20540) ((-558 . -1016) T) ((-328 . -325) 20519) ((-320 . -325) 20498) ((-450 . -1016) T) ((-1096 . -207) 20448) ((-241 . -230) 20410) ((-1054 . -124) T) ((-558 . -560) 20386) ((-999 . -831) 20319) ((-932 . -973) T) ((-845 . -973) T) ((-450 . -560) 20298) ((-1078 . -731) NIL) ((-1078 . -734) NIL) ((-1018 . -564) 20259) ((-453 . -207) 20209) ((-1018 . -563) 20191) ((-932 . -221) T) ((-932 . -211) T) ((-403 . -973) T) ((-888 . -1016) 20141) ((-845 . -221) T) ((-797 . -124) T) ((-638 . -427) T) ((-779 . -1028) 20120) ((-103 . -831) NIL) ((-1117 . -261) 20086) ((-803 . -784) 20065) ((-1029 . -1122) T) ((-836 . -666) T) ((-155 . -484) 19977) ((-927 . -25) T) ((-836 . -448) T) ((-383 . -1028) T) ((-460 . -733) T) ((-460 . -730) T) ((-841 . -325) T) ((-460 . -666) T) ((-196 . -733) T) ((-196 . -730) T) ((-927 . -21) T) ((-196 . -666) T) ((-779 . -23) 19929) ((-295 . -284) 19908) ((-962 . -213) 19854) ((-383 . -23) T) ((-874 . -564) 19815) ((-874 . -563) 19727) ((-589 . -462) 19711) ((-44 . -938) 19661) ((-307 . -563) 19643) ((-1029 . -964) 19472) ((-546 . -594) 19454) ((-546 . -349) 19436) ((-319 . -1175) 19413) ((-954 . -1122) T) ((-802 . -267) T) ((-1141 . -484) 19360) ((-451 . -1122) T) ((-438 . -1122) T) ((-540 . -97) T) ((-1083 . -263) 19287) ((-570 . -427) 19266) ((-928 . -923) 19250) ((-1181 . -358) 19222) ((-113 . -427) T) ((-1103 . -97) T) ((-1009 . -1016) 19200) ((-961 . -1016) T) ((-824 . -786) T) ((-327 . -1126) T) ((-1160 . -979) 19083) ((-1029 . -353) 19053) ((-1153 . -979) 18888) ((-1132 . -979) 18678) ((-1160 . -107) 18547) ((-1153 . -107) 18368) ((-1132 . -107) 18137) ((-1117 . -286) 18124) ((-327 . -515) T) ((-341 . -563) 18106) ((-266 . -284) T) ((-549 . -979) 18079) ((-548 . -979) 17962) ((-337 . -1016) T) ((-298 . -1016) T) ((-228 . -563) 17923) ((-227 . -563) 17884) ((-931 . -124) T) ((-105 . -563) 17866) ((-581 . -23) T) ((-633 . -385) 17833) ((-557 . -23) T) ((-601 . -97) T) ((-549 . -107) 17804) ((-548 . -107) 17673) ((-355 . -1016) T) ((-312 . -97) T) ((-155 . -267) 17584) ((-1131 . -784) 17537) ((-654 . -980) T) ((-1059 . -484) 17470) ((-1029 . -831) 17403) ((-773 . -1016) T) ((-766 . -1016) T) ((-764 . -1016) T) ((-92 . -97) T) ((-133 . -786) T) ((-562 . -815) 17387) ((-106 . -1122) T) ((-1005 . -97) T) ((-985 . -33) T) ((-721 . -97) T) ((-719 . -97) T) ((-436 . -97) T) ((-429 . -97) T) ((-218 . -734) 17338) ((-218 . -731) 17289) ((-592 . -97) T) ((-1141 . -267) 17200) ((-607 . -580) 17184) ((-589 . -263) 17161) ((-961 . -657) 17145) ((-530 . -267) T) ((-893 . -591) 17070) ((-1189 . -124) T) ((-675 . -591) 17030) ((-655 . -591) 17017) ((-252 . -97) T) ((-428 . -591) 16947) ((-49 . -97) T) ((-536 . -97) T) ((-487 . -97) T) ((-1160 . -973) T) ((-1153 . -973) T) ((-1132 . -973) T) ((-1160 . -211) 16906) ((-298 . -657) 16888) ((-1153 . -221) 16867) ((-1153 . -211) 16819) ((-1132 . -211) 16706) ((-1132 . -221) 16685) ((-1117 . -37) 16582) ((-932 . -734) T) ((-549 . -973) T) ((-548 . -973) T) ((-932 . -731) T) ((-900 . -734) T) ((-900 . -731) T) ((-803 . -980) T) ((-801 . -800) 16566) ((-104 . -563) 16548) ((-633 . -427) T) ((-355 . -657) 16513) ((-394 . -591) 16487) ((-652 . -786) 16466) ((-651 . -37) 16431) ((-548 . -211) 16390) ((-39 . -664) 16362) ((-327 . -305) 16339) ((-327 . -339) T) ((-999 . -284) 16290) ((-271 . -1028) 16172) ((-1022 . -1122) T) ((-157 . -97) T) ((-1135 . -563) 16139) ((-779 . -124) 16091) ((-589 . -1156) 16075) ((-773 . -657) 16045) ((-766 . -657) 16015) ((-456 . -1122) T) ((-335 . -284) T) ((-329 . -284) T) ((-321 . -284) T) ((-589 . -556) 15992) ((-383 . -124) T) ((-489 . -609) 15976) ((-103 . -284) T) ((-271 . -23) 15860) ((-489 . -594) 15844) ((-633 . -378) NIL) ((-489 . -349) 15828) ((-268 . -563) 15810) ((-89 . -1016) 15788) ((-103 . -949) T) ((-523 . -132) T) ((-1168 . -140) 15772) ((-456 . -964) 15601) ((-1154 . -134) 15562) ((-1154 . -136) 15523) ((-977 . -1122) T) ((-922 . -563) 15505) ((-794 . -563) 15487) ((-755 . -979) 15330) ((-1005 . -286) 15317) ((-205 . -1122) T) ((-721 . -286) 15304) ((-719 . -286) 15291) ((-755 . -107) 15120) ((-429 . -286) 15107) ((-1083 . -564) NIL) ((-1083 . -563) 15089) ((-1039 . -563) 15071) ((-1039 . -564) 14819) ((-961 . -158) T) ((-790 . -563) 14801) ((-874 . -265) 14778) ((-558 . -484) 14561) ((-757 . -964) 14545) ((-450 . -484) 14337) ((-893 . -666) T) ((-675 . -666) T) ((-655 . -666) T) ((-327 . -1028) T) ((-1090 . -563) 14319) ((-201 . -97) T) ((-456 . -353) 14289) ((-485 . -1016) T) ((-480 . -1016) T) ((-478 . -1016) T) ((-738 . -591) 14263) ((-951 . -427) T) ((-888 . -484) 14196) ((-327 . -23) T) ((-581 . -124) T) ((-557 . -124) T) ((-330 . -427) T) ((-218 . -344) 14175) ((-355 . -158) T) ((-1152 . -980) T) ((-1131 . -980) T) ((-203 . -930) T) ((-638 . -363) T) ((-394 . -666) T) ((-640 . -1126) T) ((-1054 . -585) 14123) ((-535 . -800) 14107) ((-1071 . -1099) 14083) ((-640 . -515) T) ((-122 . -1016) 14061) ((-1181 . -979) 14045) ((-654 . -1016) T) ((-456 . -831) 13978) ((-601 . -37) 13948) ((-330 . -378) T) ((-292 . -136) 13927) ((-292 . -134) 13906) ((-112 . -515) T) ((-289 . -136) 13862) ((-289 . -134) 13818) ((-47 . -427) T) ((-148 . -1016) T) ((-144 . -1016) T) ((-1071 . -102) 13765) ((-721 . -1063) 13743) ((-629 . -33) T) ((-1181 . -107) 13722) ((-509 . -33) T) ((-457 . -102) 13706) ((-228 . -265) 13683) ((-227 . -265) 13660) ((-802 . -263) 13611) ((-44 . -1122) T) ((-755 . -973) T) ((-1089 . -46) 13588) ((-755 . -302) 13550) ((-1005 . -37) 13399) ((-755 . -211) 13378) ((-721 . -37) 13207) ((-719 . -37) 13056) ((-429 . -37) 12905) ((-589 . -564) 12866) ((-589 . -563) 12778) ((-536 . -1063) T) ((-487 . -1063) T) ((-1059 . -462) 12762) ((-1109 . -1016) 12740) ((-1054 . -25) T) ((-1054 . -21) T) ((-449 . -980) T) ((-1132 . -731) NIL) ((-1132 . -734) NIL) ((-927 . -786) 12719) ((-758 . -563) 12701) ((-797 . -21) T) ((-797 . -25) T) ((-738 . -666) T) ((-159 . -1126) T) ((-536 . -37) 12666) ((-487 . -37) 12631) ((-362 . -563) 12613) ((-300 . -563) 12595) ((-155 . -263) 12553) ((-61 . -1122) T) ((-108 . -97) T) ((-803 . -1016) T) ((-159 . -515) T) ((-654 . -657) 12523) ((-271 . -124) 12407) ((-203 . -563) 12389) ((-203 . -564) 12319) ((-931 . -585) 12258) ((-1181 . -973) T) ((-1034 . -136) T) ((-578 . -1099) 12233) ((-671 . -840) 12212) ((-546 . -33) T) ((-590 . -102) 12196) ((-578 . -102) 12142) ((-1141 . -263) 12069) ((-671 . -591) 11994) ((-272 . -1122) T) ((-1089 . -964) 11892) ((-1078 . -840) NIL) ((-984 . -564) 11807) ((-984 . -563) 11789) ((-319 . -97) T) ((-228 . -979) 11687) ((-227 . -979) 11585) ((-370 . -97) T) ((-883 . -563) 11567) ((-883 . -564) 11428) ((-653 . -563) 11410) ((-1179 . -1116) 11379) ((-455 . -563) 11361) ((-455 . -564) 11222) ((-225 . -387) 11206) ((-241 . -387) 11190) ((-228 . -107) 11081) ((-227 . -107) 10972) ((-1085 . -591) 10897) ((-1084 . -591) 10794) ((-1078 . -591) 10646) ((-1040 . -591) 10571) ((-327 . -124) T) ((-80 . -416) T) ((-80 . -371) T) ((-931 . -25) T) ((-931 . -21) T) ((-804 . -1016) 10522) ((-803 . -657) 10474) ((-355 . -267) T) ((-155 . -930) 10426) ((-633 . -363) T) ((-927 . -925) 10410) ((-640 . -1028) T) ((-633 . -152) 10392) ((-1152 . -1016) T) ((-1131 . -1016) T) ((-292 . -1108) 10371) ((-292 . -1111) 10350) ((-1076 . -97) T) ((-292 . -889) 10329) ((-126 . -1028) T) ((-112 . -1028) T) ((-554 . -1166) 10313) ((-640 . -23) T) ((-554 . -1016) 10263) ((-89 . -484) 10196) ((-159 . -339) T) ((-292 . -91) 10175) ((-292 . -34) 10154) ((-558 . -462) 10088) ((-126 . -23) T) ((-112 . -23) T) ((-658 . -1016) T) ((-450 . -462) 10025) ((-383 . -585) 9973) ((-596 . -964) 9871) ((-888 . -462) 9855) ((-331 . -980) T) ((-328 . -980) T) ((-320 . -980) T) ((-241 . -980) T) ((-225 . -980) T) ((-802 . -564) NIL) ((-802 . -563) 9837) ((-1189 . -21) T) ((-530 . -930) T) ((-671 . -666) T) ((-1189 . -25) T) ((-228 . -973) 9768) ((-227 . -973) 9699) ((-70 . -1122) T) ((-228 . -211) 9652) ((-227 . -211) 9605) ((-39 . -97) T) ((-841 . -980) T) ((-1092 . -97) T) ((-1085 . -666) T) ((-1084 . -666) T) ((-1078 . -666) T) ((-1078 . -730) NIL) ((-1078 . -733) NIL) ((-852 . -97) T) ((-1040 . -666) T) ((-710 . -97) T) ((-614 . -97) T) ((-449 . -1016) T) ((-315 . -1028) T) ((-159 . -1028) T) ((-295 . -851) 9584) ((-1152 . -657) 9425) ((-803 . -158) T) ((-1131 . -657) 9239) ((-779 . -21) 9191) ((-779 . -25) 9143) ((-223 . -1061) 9127) ((-122 . -484) 9060) ((-383 . -25) T) ((-383 . -21) T) ((-315 . -23) T) ((-155 . -564) 8828) ((-155 . -563) 8810) ((-159 . -23) T) ((-589 . -265) 8787) ((-489 . -33) T) ((-829 . -563) 8769) ((-87 . -1122) T) ((-777 . -563) 8751) ((-747 . -563) 8733) ((-708 . -563) 8715) ((-618 . -563) 8697) ((-218 . -591) 8547) ((-1087 . -1016) T) ((-1083 . -979) 8370) ((-1062 . -1122) T) ((-1039 . -979) 8213) ((-790 . -979) 8197) ((-1083 . -107) 8006) ((-1039 . -107) 7835) ((-790 . -107) 7814) ((-1141 . -564) NIL) ((-1141 . -563) 7796) ((-319 . -1063) T) ((-791 . -563) 7778) ((-995 . -263) 7757) ((-78 . -1122) T) ((-932 . -840) NIL) ((-558 . -263) 7733) ((-1109 . -484) 7666) ((-460 . -1122) T) ((-530 . -563) 7648) ((-450 . -263) 7627) ((-196 . -1122) T) ((-1005 . -209) 7611) ((-266 . -851) T) ((-756 . -284) 7590) ((-801 . -97) T) ((-721 . -209) 7574) ((-932 . -591) 7524) ((-888 . -263) 7501) ((-845 . -591) 7453) ((-581 . -21) T) ((-581 . -25) T) ((-557 . -21) T) ((-319 . -37) 7418) ((-633 . -664) 7385) ((-460 . -815) 7367) ((-460 . -817) 7349) ((-449 . -657) 7190) ((-196 . -815) 7172) ((-62 . -1122) T) ((-196 . -817) 7154) ((-557 . -25) T) ((-403 . -591) 7128) ((-460 . -964) 7088) ((-803 . -484) 7000) ((-196 . -964) 6960) ((-218 . -33) T) ((-928 . -1016) 6938) ((-1152 . -158) 6869) ((-1131 . -158) 6800) ((-652 . -134) 6779) ((-652 . -136) 6758) ((-640 . -124) T) ((-128 . -440) 6735) ((-601 . -599) 6719) ((-1059 . -563) 6651) ((-112 . -124) T) ((-452 . -1126) T) ((-558 . -556) 6627) ((-450 . -556) 6606) ((-312 . -311) 6575) ((-499 . -1016) T) ((-452 . -515) T) ((-1083 . -973) T) ((-1039 . -973) T) ((-790 . -973) T) ((-218 . -730) 6554) ((-218 . -733) 6505) ((-218 . -732) 6484) ((-1083 . -302) 6461) ((-218 . -666) 6392) ((-888 . -19) 6376) ((-460 . -353) 6358) ((-460 . -314) 6340) ((-1039 . -302) 6312) ((-330 . -1175) 6289) ((-196 . -353) 6271) ((-196 . -314) 6253) ((-888 . -556) 6230) ((-1083 . -211) T) ((-607 . -1016) T) ((-1164 . -1016) T) ((-1096 . -1016) T) ((-1005 . -230) 6167) ((-331 . -1016) T) ((-328 . -1016) T) ((-320 . -1016) T) ((-241 . -1016) T) ((-225 . -1016) T) ((-82 . -1122) T) ((-123 . -97) 6145) ((-117 . -97) 6123) ((-1096 . -560) 6102) ((-453 . -1016) T) ((-1053 . -1016) T) ((-453 . -560) 6081) ((-228 . -734) 6032) ((-228 . -731) 5983) ((-227 . -734) 5934) ((-39 . -1063) NIL) ((-227 . -731) 5885) ((-999 . -851) 5836) ((-932 . -733) T) ((-932 . -730) T) ((-932 . -666) T) ((-900 . -733) T) ((-845 . -666) T) ((-89 . -462) 5820) ((-460 . -831) NIL) ((-841 . -1016) T) ((-203 . -979) 5785) ((-803 . -267) T) ((-196 . -831) NIL) ((-772 . -1028) 5764) ((-57 . -1016) 5714) ((-488 . -1016) 5692) ((-486 . -1016) 5642) ((-468 . -1016) 5620) ((-467 . -1016) 5570) ((-535 . -97) T) ((-523 . -97) T) ((-466 . -97) T) ((-449 . -158) 5501) ((-335 . -851) T) ((-329 . -851) T) ((-321 . -851) T) ((-203 . -107) 5457) ((-772 . -23) 5409) ((-403 . -666) T) ((-103 . -851) T) ((-39 . -37) 5354) ((-103 . -759) T) ((-536 . -325) T) ((-487 . -325) T) ((-1131 . -484) 5214) ((-292 . -427) 5193) ((-289 . -427) T) ((-773 . -263) 5172) ((-315 . -124) T) ((-159 . -124) T) ((-271 . -25) 5037) ((-271 . -21) 4921) ((-44 . -1099) 4900) ((-64 . -563) 4882) ((-823 . -563) 4864) ((-554 . -484) 4797) ((-44 . -102) 4747) ((-1018 . -401) 4731) ((-1018 . -344) 4710) ((-985 . -1122) T) ((-984 . -979) 4697) ((-883 . -979) 4540) ((-455 . -979) 4383) ((-607 . -657) 4367) ((-984 . -107) 4352) ((-883 . -107) 4181) ((-452 . -339) T) ((-331 . -657) 4133) ((-328 . -657) 4085) ((-320 . -657) 4037) ((-241 . -657) 3886) ((-225 . -657) 3735) ((-874 . -594) 3719) ((-455 . -107) 3548) ((-1169 . -97) T) ((-874 . -349) 3532) ((-1132 . -840) NIL) ((-72 . -563) 3514) ((-893 . -46) 3493) ((-568 . -1028) T) ((-1 . -1016) T) ((-650 . -97) T) ((-638 . -97) T) ((-1168 . -97) 3443) ((-1160 . -591) 3368) ((-1153 . -591) 3265) ((-122 . -462) 3249) ((-1104 . -563) 3231) ((-1006 . -563) 3213) ((-366 . -23) T) ((-995 . -563) 3195) ((-85 . -1122) T) ((-1132 . -591) 3047) ((-841 . -657) 3012) ((-568 . -23) T) ((-558 . -563) 2994) ((-558 . -564) NIL) ((-450 . -564) NIL) ((-450 . -563) 2976) ((-481 . -1016) T) ((-477 . -1016) T) ((-327 . -25) T) ((-327 . -21) T) ((-123 . -286) 2914) ((-117 . -286) 2852) ((-549 . -591) 2839) ((-203 . -973) T) ((-548 . -591) 2764) ((-355 . -930) T) ((-203 . -221) T) ((-203 . -211) T) ((-888 . -564) 2725) ((-888 . -563) 2637) ((-801 . -37) 2624) ((-1152 . -267) 2575) ((-1131 . -267) 2526) ((-1034 . -427) T) ((-473 . -786) T) ((-292 . -1051) 2505) ((-927 . -136) 2484) ((-927 . -134) 2463) ((-466 . -286) 2450) ((-272 . -1099) 2429) ((-452 . -1028) T) ((-802 . -979) 2374) ((-570 . -97) T) ((-1109 . -462) 2358) ((-228 . -344) 2337) ((-227 . -344) 2316) ((-272 . -102) 2266) ((-984 . -973) T) ((-113 . -97) T) ((-883 . -973) T) ((-802 . -107) 2195) ((-452 . -23) T) ((-455 . -973) T) ((-984 . -211) T) ((-883 . -302) 2164) ((-455 . -302) 2121) ((-331 . -158) T) ((-328 . -158) T) ((-320 . -158) T) ((-241 . -158) 2032) ((-225 . -158) 1943) ((-893 . -964) 1841) ((-675 . -964) 1812) ((-1021 . -97) T) ((-1009 . -563) 1779) ((-961 . -563) 1761) ((-1160 . -666) T) ((-1153 . -666) T) ((-1132 . -730) NIL) ((-155 . -979) 1671) ((-1132 . -733) NIL) ((-841 . -158) T) ((-1132 . -666) T) ((-1179 . -140) 1655) ((-931 . -318) 1629) ((-928 . -484) 1562) ((-779 . -786) 1541) ((-523 . -1063) T) ((-449 . -267) 1492) ((-549 . -666) T) ((-337 . -563) 1474) ((-298 . -563) 1456) ((-394 . -964) 1354) ((-548 . -666) T) ((-383 . -786) 1305) ((-155 . -107) 1201) ((-772 . -124) 1153) ((-677 . -140) 1137) ((-1168 . -286) 1075) ((-460 . -284) T) ((-355 . -563) 1042) ((-489 . -938) 1026) ((-355 . -564) 940) ((-196 . -284) T) ((-130 . -140) 922) ((-654 . -263) 901) ((-460 . -949) T) ((-535 . -37) 888) ((-523 . -37) 875) ((-466 . -37) 840) ((-196 . -949) T) ((-802 . -973) T) ((-773 . -563) 822) ((-766 . -563) 804) ((-764 . -563) 786) ((-755 . -840) 765) ((-1190 . -1028) T) ((-1141 . -979) 588) ((-791 . -979) 572) ((-802 . -221) T) ((-802 . -211) NIL) ((-629 . -1122) T) ((-1190 . -23) T) ((-755 . -591) 497) ((-509 . -1122) T) ((-394 . -314) 481) ((-530 . -979) 468) ((-1141 . -107) 277) ((-640 . -585) 259) ((-791 . -107) 238) ((-357 . -23) T) ((-1096 . -484) 30))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 9bc45ab2..bc4d7013 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3410359535) -(4241 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3415311727) +(4247 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -35,18 +35,18 @@ |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| |BinaryTree| |CancellationAbelianMonoid| |CachableSet| |CardinalNumber| |CartesianTensorFunctions2| |CartesianTensor| - |CharacterClass| |CommonDenominator| |CombinatorialFunctionCategory| - |Character| |CharacteristicNonZero| |CharacteristicPolynomialPackage| - |CharacteristicZero| |ChangeOfVariable| - |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| - |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping| - |ComplexRootPackage| |Color| |CombinatorialFunction| - |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator| - |CommonOperators| |CommuteUnivariatePolynomialCategory| - |ComplexCategory&| |ComplexCategory| |ComplexFactorization| - |ComplexFunctions2| |Complex| |ComplexPattern| - |SubSpaceComponentProperty| |CommutativeRing| |ContinuedFraction| - |Contour| |CoordinateSystems| + |Category| |CharacterClass| |CommonDenominator| + |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero| + |CharacteristicPolynomialPackage| |CharacteristicZero| + |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| + |Collection&| |Collection| |CliffordAlgebra| + |TwoDimensionalPlotClipping| |ComplexRootPackage| |Color| + |CombinatorialFunction| |IntegerCombinatoricFunctions| + |CombinatorialOpsCategory| |Commutator| |CommonOperators| + |CommuteUnivariatePolynomialCategory| |ComplexCategory&| + |ComplexCategory| |ComplexFactorization| |ComplexFunctions2| |Complex| + |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing| + |ContinuedFraction| |Contour| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| |CRApackage| |ComplexRootFindingPackage| |CyclicStreamTools| |ConstructorCall| |ComplexTrigonometricManipulations| @@ -242,12 +242,12 @@ |MakeBinaryCompiledFunction| |MakeCachableSet| |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord| |MakeUnaryCompiledFunction| |MultivariateLifting| - |MonogenicLinearOperator| |MultipleMap| |ModularField| |ModMonic| - |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&| |Module| - |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&| |MonadWithUnit| - |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&| |Monoid| - |MonomialExtensionTools| |MPolyCatFunctions2| |MPolyCatFunctions3| - |MPolyCatPolyFactorizer| |MultivariatePolynomial| + |MonogenicLinearOperator| |MultipleMap| |MathMLFormat| |ModularField| + |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&| + |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&| + |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&| + |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2| + |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |MultisetAggregate| |Multiset| |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory| @@ -460,643 +460,649 @@ |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |Category| |setvalue!| |quasiComponent| - |exprToGenUPS| |taylorRep| |balancedBinaryTree| |e01baf| - |exprHasLogarithmicWeights| |setEmpty!| |critT| |SturmHabicht| - |contract| |completeEchelonBasis| |viewpoint| |viewport2D| - |radicalEigenvectors| |select!| |linkToFortran| |selectAndPolynomials| - |leftMinimalPolynomial| |hex| |changeNameToObjf| |lowerCase!| - |getOperands| |Nul| |pointLists| |partialQuotients| |closeComponent| - |binomThmExpt| |reducedSystem| |declare| |yCoordinates| - |commutativeEquality| |nextPrime| |closedCurve| |complexNumeric| - |nil?| |s17dgf| |newSubProgram| |forLoop| |s17ajf| |log| |point| - |objectOf| |e04ycf| |impliesOperands| |genus| |resultantnaif| - |hexDigit| |modulus| |mainValue| |positiveSolve| |kernels| |mapExpon| - |pushdterm| |firstDenom| |viewZoomDefault| |complexElementary| - |comment| |OMgetEndAttr| |monic?| |unparse| |s18dcf| - |useEisensteinCriterion| |quoted?| |setStatus| |optpair| |univariate| - |rewriteSetByReducingWithParticularGenerators| |differentialVariables| - |sizePascalTriangle| |primextintfrac| |norm| |series| |chvar| - |polarCoordinates| |kmax| |factorial| |rootOf| |pleskenSplit| |s18def| - |expintegrate| |rightRecip| |showSummary| |realRoots| |leastPower| - |karatsuba| |e02agf| |usingTable?| |mkPrim| |leftMult| |getRef| - |sts2stst| |balancedFactorisation| |stirling2| |partition| |d01gbf| - |d02gaf| |pToHdmp| |subresultantVector| |linSolve| |roughUnitIdeal?| - |showAttributes| |trapezoidal| |routines| |component| |permanent| - |discreteLog| |OMputSymbol| |makeCos| |parametric?| |min| |nand| - |mathieu23| |contains?| |diagonals| |unitNormalize| - |subResultantsChain| |reduceBasisAtInfinity| |sylvesterSequence| - |digit| |printStats!| |s17adf| |oddintegers| |cycleLength| |top| - |hMonic| |stopTable!| |createZechTable| |checkRur| BY - |nextsousResultant2| |showArrayValues| Y |iitanh| - |multiplyCoefficients| |groebner?| |continue| |s17aef| - |algebraicCoefficients?| |outputMeasure| |asinIfCan| |doubleResultant| - |rightAlternative?| |outputFloating| |rightQuotient| |rule| |color| - |cRationalPower| |d02ejf| |matrix| |scalarMatrix| |cyclicCopy| |void| - |f02axf| |pattern| |deepCopy| |withPredicates| |string?| |over| - |functionIsFracPolynomial?| |upDateBranches| |regularRepresentation| - |sinh2csch| |measure| |genericLeftNorm| |stFunc2| |fractionFreeGauss!| - |coth2tanh| |numberOfComponents| |exprHasAlgebraicWeight| |generator| - |antiCommutator| |viewPosDefault| |viewWriteDefault| |normal?| - |OMencodingUnknown| |monomial?| |algintegrate| |e02bef| |powerSum| - |iisec| |ceiling| |primeFrobenius| |any?| |associatedSystem| |s19adf| - |normalized?| |f04axf| |FormatArabic| |putColorInfo| - |jordanAdmissible?| |null| |contours| |numberOfMonomials| - |removeCoshSq| |cup| |tryFunctionalDecomposition| |maximumExponent| - |doubleFloatFormat| |setClosed| |normalizedAssociate| |mergeFactors| - |subPolSet?| |padecf| |dequeue!| |getVariable| |expintfldpoly| - |sturmSequence| |insertTop!| |associates?| |real?| |OMgetEndBind| |op| - |selectOrPolynomials| |outputAsTex| |taylorIfCan| |listBranches| - |indicialEquationAtInfinity| |leftQuotient| |wordInGenerators| - |lastSubResultantElseSplit| ~= |listRepresentation| |companionBlocks| - |nlde| |tanh2trigh| |remove| |whatInfinity| |reduced?| |flexible?| - |vectorise| |makeResult| |pair?| |inspect| |rightDivide| |true| - |paraboloidal| |f07fef| |cycle| |sh| |cCsch| |middle| |denomLODE| - |selectPDERoutines| |last| |associatedEquations| |style| |match?| - |whileLoop| |clearTheFTable| |approximants| |rightZero| |d01apf| |lo| - |pointPlot| |assoc| |linearlyDependent?| |LyndonWordsList1| - |lazyPseudoDivide| |SFunction| |stoseInternalLastSubResultant| - |createNormalPoly| |changeThreshhold| |argumentListOf| |testModulus| - |incr| |radicalEigenvalues| |fortran| |exQuo| |f04mcf| |invertibleSet| - |integralLastSubResultant| |uncouplingMatrices| |continuedFraction| - |polar| |rightScalarTimes!| |OMUnknownCD?| |lookup| |hi| - |alphanumeric| |retract| |makingStats?| |more?| |validExponential| - |simpson| |lastSubResultantEuclidean| |infiniteProduct| - |basisOfRightNucloid| |getGoodPrime| |splitNodeOf!| |symbol| - |generalSqFr| |getConstant| |complex?| |outputList| |doubleRank| - |increasePrecision| |OMgetType| |firstNumer| |basisOfRightNucleus| - |cSin| |cAsech| |mindegTerm| |perfectSquare?| |cycleEntry| |mathieu12| - ~ |toseInvertibleSet| |minset| |noKaratsuba| |singular?| |tanhIfCan| - |primPartElseUnitCanonical| |userOrdered?| |stirling1| |string| - |semiDegreeSubResultantEuclidean| |children| |integer| |infRittWu?| - |cyclic| |atom?| |outputArgs| |leftTraceMatrix| |subresultantSequence| - |janko2| |collectQuasiMonic| |summation| |infinityNorm| |s17dcf| - |totalGroebner| |SturmHabichtMultiple| |tube| |ReduceOrder| - |weakBiRank| |realEigenvectors| |fortranLiteral| |normDeriv2| - |principal?| |stoseLastSubResultant| |linears| |e02bbf| - |nonLinearPart| |csch2sinh| |linearMatrix| |viewSizeDefault| - |functionIsContinuousAtEndPoints| |s14baf| |functionIsOscillatory| - |saturate| |associatorDependence| |relativeApprox| |s19acf| |besselK| - |genericLeftMinimalPolynomial| |monomialIntegrate| - |lazyPseudoRemainder| |imagE| |OMclose| |bat| |numerator| |findCycle| - |selectOptimizationRoutines| |readLineIfCan!| = |increase| |f04adf| - |chiSquare| |open| |normalise| |recolor| |bitLength| |cSech| - |matrixDimensions| |segment| |nextNormalPoly| |triangularSystems| - |clearCache| |representationType| |uniform| |frst| - |definingPolynomial| |OMopenString| |removeDuplicates!| |B1solve| - |iiasinh| |subspace| |e04naf| |viewDefaults| < |nor| |drawComplex| - |psolve| |binomial| |level| |transcendenceDegree| |iidprod| - |mathieu24| |commutator| > |lfunc| |d01alf| |iiacosh| |idealiser| - |interpret| |nsqfree| |bivariateSLPEBR| |axes| |reducedQPowers| - |e02ddf| |retractable?| <= |expr| |leader| |LiePoly| |getStream| - |list| |discriminant| |useNagFunctions| |c05nbf| |stopMusserTrials| - |moduleSum| |iiacot| |addPointLast| |mainDefiningPolynomial| >= - |safeFloor| |Vectorise| |generate| |lighting| |extendedIntegrate| - |setDifference| |script| |var2StepsDefault| |setref| |shiftRight| - |df2ef| |viewDeltaYDefault| |inverseColeman| |output| - |setIntersection| |perspective| |tubePoints| |symbolIfCan| |rroot| - |coefficient| |fibonacci| |polyred| |separant| |stoseInvertibleSet| - |incrementBy| |clipBoolean| |setUnion| |cartesian| |variable?| - |makeTerm| |generic?| |checkPrecision| |equation| |roughSubIdeal?| - |mesh?| |f07adf| |variable| + |rightRankPolynomial| |expand| |apply| - |basisOfLeftNucloid| |atoms| |simplify| |cycleSplit!| |factor1| - |lazyVariations| |sizeMultiplication| - |generalizedInverse| - |filterWhile| |getCode| |f02fjf| - |rewriteIdealWithQuasiMonicGenerators| - |standardBasisOfCyclicSubmodule| |RittWuCompare| |fprindINFO| - |identityMatrix| / |fillPascalTriangle| |filterUntil| |size| |log2| - |makeop| |decreasePrecision| |dominantTerm| |edf2ef| |OMReadError?| - |rank| |enumerate| |pointSizeDefault| |logical?| |select| - |fortranInteger| |tex| |rational| |remove!| |denomRicDE| - |OMgetEndBVar| |multiple?| |t| |createNormalElement| |pureLex| - |numerators| |explogs2trigs| |resetVariableOrder| |evaluate| - |algebraic?| |largest| |extensionDegree| |squareFreePrim| |poisson| - |power!| |isobaric?| |lSpaceBasis| |makeFloatFunction| |close| - |preprocess| |extractIfCan| |mapExponents| |bringDown| - |fortranCarriageReturn| |po| |mapmult| |iflist2Result| |palgintegrate| - |topFortranOutputStack| |insert| |setelt!| |OMputFloat| |rightLcm| - |removeIrreducibleRedundantFactors| |shift| |sechIfCan| |ListOfTerms| - |incrementKthElement| |OMreceive| |redPol| |nonSingularModel| - |dAndcExp| |moebius| |rquo| |OMputInteger| |eigenvectors| |mainForm| - |rationalFunction| |expandPower| |subset?| SEGMENT |f02akf| - |indicialEquation| |condition| |realEigenvalues| |display| |child| - |listLoops| |realSolve| |initTable!| |exprHasWeightCosWXorSinWX| - |bit?| |rootKerSimp| |makeRecord| |cap| |tValues| |adaptive| |f01maf| - |ratPoly| |operator| |selectNonFiniteRoutines| |imagI| |addMatch| - |charClass| |refine| |conditionsForIdempotents| |deref| |qPot| |build| - |mapUnivariate| |makeprod| |upperCase?| |genericLeftTrace| |zero| - |evaluateInverse| |curve?| |trace2PowMod| |gcdPolynomial| |s15aef| - |inverseIntegralMatrix| |factorGroebnerBasis| |makeViewport2D| - |palgRDE0| |tab1| |lllp| |escape| |basisOfCommutingElements| - |factorsOfCyclicGroupSize| |input| |leadingSupport| |hasSolution?| - |physicalLength| |certainlySubVariety?| |symmetricRemainder| - |laguerreL| |sequences| |wordInStrongGenerators| |knownInfBasis| - |library| |nthRoot| |probablyZeroDim?| |hermite| - |solveLinearPolynomialEquationByFractions| |generalLambert| |iprint| - |hitherPlane| |iicosh| |leftNorm| |exists?| |infix| |s15adf| - |ratDenom| |orbits| |returns| |zag| |sup| |diagonal| |trigs| |result| - |csch| |startTableGcd!| |ode2| |subMatrix| |getCurve| |factorFraction| - |cyclicParents| |complexExpand| |asinh| |mainContent| |unaryFunction| - |reducedForm| |lambert| |extractTop!| |insertMatch| |OMputVariable| - |subst| |innerSolve1| |acosh| |factorSquareFreeByRecursion| - |printStatement| |set| |argumentList!| |setprevious!| |alternative?| - |atanh| |nonQsign| |Aleph| |dfRange| |triangSolve| |recur| - |invertible?| |totalDifferential| |acoth| |clearTable!| |sorted?| - |datalist| |id| |interval| |iiacos| |generateIrredPoly| - |createMultiplicationTable| |asech| |palgint| |quatern| |compile| - |OMgetEndApp| |createRandomElement| |f04atf| |computeCycleLength| - |buildSyntax| |outputAsScript| |table| |iiperm| |OMputBVar| - |integralBasis| |objects| |rotatex| |multiple| |intcompBasis| |ptree| - |invertibleElseSplit?| |new| |calcRanges| |OMputEndAtp| |countable?| - |base| |fracPart| |applyQuote| |stronglyReduced?| |repeating| |yellow| - |space| |expandTrigProducts| |iifact| |ran| |setMaxPoints| - |modifyPoint| |exprToUPS| |createGenericMatrix| |call| |computeBasis| - |bumptab| |btwFact| |extendedEuclidean| |totolex| |skewSFunction| - |rCoord| |isPlus| |resultantReduit| |qfactor| |show| |graphStates| - |currentScope| |maxRowIndex| |ruleset| |BumInSepFFE| - |getMultiplicationMatrix| |singleFactorBound| |insertBottom!| - |areEquivalent?| |constantIfCan| |mvar| |simplifyPower| - |genericRightDiscriminant| |systemSizeIF| |f2df| |explimitedint| - |reverse| |edf2fi| |geometric| |rename| |round| |complete| |trace| - |leftPower| |closed?| |var2Steps| |sub| |smith| |showTheRoutinesTable| - |brillhartTrials| |fmecg| |removeSuperfluousQuasiComponents| - |OMconnInDevice| F2FG |swapColumns!| |suchThat| |minPol| - |resultantReduitEuclidean| |modTree| |lagrange| |numberOfHues| - |scopes| |movedPoints| |rightOne| |constant?| |positiveRemainder| - |ode1| |cTanh| |iisin| |fill!| |entries| |tower| |rightExactQuotient| - |pol| |cCot| |symmetricSquare| |normFactors| |center| |domainOf| - |algebraicVariables| |genericRightTrace| |numericIfCan| |gderiv| - |setPredicates| |makeSin| |invmod| |e02def| |parabolic| - |firstSubsetGray| |initial| |left| |constantKernel| |delay| - |internalIntegrate0| |choosemon| |lastSubResultant| |spherical| |swap| - |sumOfKthPowerDivisors| |right| |binaryTournament| |OMgetObject| - |inverseLaplace| |factor| |mapGen| |property| |previous| |integral?| - |genericPosition| |rationalApproximation| |newLine| |var1Steps| - |semiIndiceSubResultantEuclidean| |sqrt| |monomRDE| |f02aaf| |plot| - |c06gsf| |hasoln| |airyAi| |tab| |isExpt| |real| |OMsend| |divisors| - |extension| |solve1| |unvectorise| |harmonic| |acscIfCan| |imag| - |setEpilogue!| |units| |nextNormalPrimitivePoly| |mulmod| - |lazyPremWithDefault| |besselI| |findBinding| |directProduct| - |removeRoughlyRedundantFactorsInContents| |commaSeparate| - |semiResultantEuclidean2| |leftExtendedGcd| |rightTrace| |simplifyLog| - |tubePlot| |bottom!| |rischDE| |specialTrigs| |curry| |denominators| - |rischNormalize| |optimize| |univariate?| |corrPoly| |destruct| |mdeg| - |pastel| |toseSquareFreePart| |rischDEsys| |and?| |nodeOf?| |eq?| - |bindings| |region| |normalForm| |constantToUnaryFunction| - |leftDivide| |rombergo| |mapDown!| |OMputEndBind| |kroneckerDelta| - |type| |e02dcf| |code| |extendedSubResultantGcd| |singularitiesOf| - |subQuasiComponent?| |bumprow| |typeLists| |graphs| |tanSum| - |univcase| |intermediateResultsIF| |primitive?| |nil| |hcrf| - |parabolicCylindrical| |rowEchelon| |d03faf| |integral| - |inverseIntegralMatrixAtInfinity| |root?| |meatAxe| |character?| - |inHallBasis?| |scalarTypeOf| |print| |cubic| |autoReduced?| |index?| - |adaptive3D?| |acschIfCan| |indicialEquations| |increment| - |returnTypeOf| |primlimintfrac| |leastAffineMultiple| |updateStatus!| - |viewport3D| |fullDisplay| |maxdeg| |subCase?| |second| |elColumn2!| - |monicLeftDivide| |radicalOfLeftTraceForm| |lflimitedint| |eulerE| - |equivOperands| |OMgetBVar| |radicalRoots| |multinomial| |third| - |c02aff| |clearTheSymbolTable| |asechIfCan| |indices| - |intPatternMatch| |internalDecompose| |iilog| |powerAssociative?| - |principalIdeal| |rootsOf| |hue| |function| |OMputAttr| |setFormula!| - |c06gbf| |lift| |expandLog| |torsion?| |decomposeFunc| - |stoseSquareFreePart| |randomLC| |HenselLift| |mat| |radix| - |solveLinearPolynomialEquationByRecursion| |numberOfComposites| - |reduce| |collectUnder| |binary| |cAcos| |divideIfCan!| - |goodnessOfFit| |quartic| |primitiveElement| |trivialIdeal?| |csc2sin| - |stronglyReduce| |shallowCopy| |shiftLeft| |cExp| |setFieldInfo| - |startTableInvSet!| |subHeight| |expt| |or?| |option?| |rename!| - |arguments| |conical| |OMgetError| |removeSquaresIfCan| - |alphanumeric?| |perfectNthPower?| |coefficients| |check| |mirror| - |factorials| |quasiMonic?| |associator| |qelt| |find| |makeSeries| - |coerceListOfPairs| |constantRight| |getButtonValue| |lfextendedint| - |copy!| |acoshIfCan| |normalizeIfCan| |dmp2rfi| |euclideanNormalForm| - |setProperties!| |showClipRegion| |complementaryBasis| |maxIndex| - |oddInfiniteProduct| |measure2Result| |complexEigenvectors| |OMserve| - |limitedIntegrate| |ramified?| |square?| |deepestInitial| |octon| - |split!| |leviCivitaSymbol| |SturmHabichtCoefficients| |mix| |case| - |e02akf| |coerce| |musserTrials| |OMsupportsSymbol?| |elliptic?| - |rspace| |unprotectedRemoveRedundantFactors| |column| |f01rdf| - |c06ebf| |iFTable| |construct| |rightExtendedGcd| |OMputEndError| - |rationalPoints| |stopTableGcd!| |iExquo| |ScanFloatIgnoreSpacesIfCan| - |linearDependence| |nextSublist| |postfix| |tensorProduct| |s18adf| - |asecIfCan| |jacobi| |key?| |outputSpacing| |rowEch| |rdHack1| |Gamma| - |prinpolINFO| |lprop| |besselY| |alternatingGroup| |zCoord| - |intersect| D |KrullNumber| |cos2sec| |rootProduct| |lllip| |maxrow| - |colorDef| |linearAssociatedExp| |predicate| |sqfree| |compose| - |anfactor| |unmakeSUP| |subtractIfCan| |df2mf| |lcm| |cSinh| - |tan2trig| |chebyshevT| |collectUpper| |bright| |graphImage| - |stopTableInvSet!| |s20adf| |exquo| |colorFunction| |purelyAlgebraic?| - |expenseOfEvaluationIF| |limit| |e01bef| |currentCategoryFrame| - |showTheSymbolTable| |setTex!| |ScanFloatIgnoreSpaces| - |integralMatrixAtInfinity| |noncommutativeJordanAlgebra?| |Beta| |div| - |permutations| |setCondition!| |intensity| |setClipValue| |connect| - |iiexp| |OMgetInteger| |fi2df| |unitCanonical| |exponential1| - |alternating| |c06frf| |f04qaf| |quo| |acotIfCan| |external?| - |linearlyDependentOverZ?| |setRealSteps| |gcd| |subscript| |ldf2lst| - |latex| |fortranCompilerName| |factorPolynomial| |ignore?| - |binarySearchTree| |symbolTableOf| |partialNumerators| - |zeroDimensional?| |e04gcf| |OMunhandledSymbol| |range| - |degreeSubResultant| |union| |cAcot| UP2UTS |s13adf| |decompose| - |tRange| |pdf2ef| |eval| |primlimitedint| |s21bcf| |rem| |trim| - |concat!| |nullity| |first| |false| |acosIfCan| |iitan| |iisinh| - |prepareDecompose| |nextLatticePermutation| |fortranDoubleComplex| - |updatF| |bivariate?| |s21baf| |ScanRoman| |removeConstantTerm| - |extractSplittingLeaf| |xRange| |rest| |reify| |reorder| - |showTheFTable| |OMencodingXML| |transcendentalDecompose| - |indiceSubResultant| |reciprocalPolynomial| |resize| |monomialIntPoly| - |pushuconst| |d01akf| |sinIfCan| |substitute| |yRange| |isMult| - |freeOf?| |lowerCase| |modularGcdPrimitive| |selectfirst| - |identification| |basisOfLeftAnnihilator| |palgLODE0| |checkForZero| - |exactQuotient| |lyndon| |cothIfCan| |removeDuplicates| |zRange| - |basisOfNucleus| |clipWithRanges| |fortranDouble| |bombieriNorm| - |c06eaf| |e02adf| |s17ahf| |/\\| |lists| |linear?| |radPoly| |schema| - |lazyPseudoQuotient| |bracket| |parts| |purelyTranscendental?| |map!| - |setrest!| |applyRules| |transcendent?| |term| |node?| |position!| - |evenInfiniteProduct| |elementary| |cyclotomic| |s17dlf| - |mainPrimitivePart| |iicoth| |OMgetFloat| |qsetelt!| |imagJ| - |fglmIfCan| |fortranComplex| |symbol?| |divisor| |clearTheIFTable| - |pointColorPalette| |normalizedDivide| |eigenvalues| GF2FG |redPo| - |bsolve| |andOperands| |leadingIdeal| |badNum| |selectPolynomials| - |polygon?| |noLinearFactor?| |low| |createMultiplicationMatrix| - |sech2cosh| |exptMod| |cscIfCan| |jacobian| |hasHi| |setelt| |powers| - |leftUnits| |Ei| |const| |factorset| |idealiserMatrix| - |fullPartialFraction| |getPickedPoints| - |dimensionOfIrreducibleRepresentation| |f04jgf| |nthExponent| - |squareTop| |setProperty!| |setProperty| |f02aff| |innerint| - |direction| |dark| |getProperties| |plus| |separate| |setValue!| - |commonDenominator| |scaleRoots| |notOperand| |copy| - |integralRepresents| |reverse!| |pushucoef| |s20acf| |tanh2coth| - |hasTopPredicate?| |cTan| |s13aaf| |lazyIrreducibleFactors| |not| - |f04faf| |pToDmp| |acsch| |rationalPoint?| |createIrreduciblePoly| - |useEisensteinCriterion?| |numberOfFractionalTerms| |minPoints| - |presub| |totalfract| |sdf2lst| |groebgen| - |semiResultantEuclideannaif| |degree| ^= |limitedint| |badValues| - |csubst| |symbolTable| |adaptive?| |internalSubQuasiComponent?| - |linGenPos| |overlap| |properties| |rk4a| |quasiAlgebraicSet| - |determinant| |bag| |notelem| |autoCoerce| |taylorQuoByVar| |identity| - |optAttributes| |headRemainder| |clearDenominator| |setAdaptive3D| - |zeroSetSplit| |toScale| |iidsum| |diophantineSystem| |setImagSteps| - |multisect| |numberOfOperations| |s21bdf| |pushFortranOutputStack| - |pmintegrate| |rightFactorIfCan| |graphState| |f01rcf| |f04mbf| |max| - |leftZero| |writable?| |makeUnit| |central?| |trailingCoefficient| - |expenseOfEvaluation| |popFortranOutputStack| |controlPanel| - |wrregime| |redmat| |e02gaf| |surface| |aspFilename| |predicates| - |say| |cyclePartition| |unit| |gcdcofactprim| |distdfact| |nthCoef| - |fortranLogical| |chineseRemainder| |OMreadStr| |leaves| - |rationalIfCan| |outputAsFortran| |solveid| |s17def| - |OMencodingBinary| |vconcat| |translate| |initiallyReduce| |maxint| - |insertionSort!| |f02bjf| |move| |makeEq| |keys| |primitivePart!| - |FormatRoman| |mindeg| |readLine!| |splitDenominator| - |factorSFBRlcUnit| |prefixRagits| |tracePowMod| |s19aaf| |times| - |repeating?| |unravel| |LazardQuotient| |bezoutResultant| |socf2socdf| - |OMmakeConn| |setVariableOrder| |LazardQuotient2| |deepestTail| - |eisensteinIrreducible?| |conditionP| |decimal| |ratpart| |randnum| - |hexDigit?| |att2Result| |newReduc| |mapSolve| |null?| |prod| |aCubic| - |tableau| |maxColIndex| |setStatus!| |fixPredicate| |biRank| - |toseLastSubResultant| |divisorCascade| |myDegree| |pascalTriangle| - |cAtanh| |minRowIndex| |sumSquares| |OMputEndApp| - |generalizedContinuumHypothesisAssumed?| |alphabetic| |transform| - |virtualDegree| |integrate| |rootNormalize| |createPrimitivePoly| - |integers| |leadingCoefficientRicDE| |maxrank| |c06fpf| |lexico| - |wholeRadix| |derivationCoordinates| |nextPartition| |push!| |monom| - |imagk| |removeZero| |even?| |showAllElements| |createThreeSpace| - |hclf| |raisePolynomial| |setlast!| |e01sff| |genericRightTraceForm| - |permutation| |row| |argument| |makeViewport3D| - |cyclotomicDecomposition| |packageCall| |listConjugateBases| - |dmpToHdmp| |cotIfCan| |exponential| |key| |characteristicPolynomial| - |s17acf| |coord| |setPosition| |symmetricPower| |figureUnits| |rarrow| - |iiacoth| |back| |options| |messagePrint| |isList| |asinhIfCan| - |light| |pseudoRemainder| |degreeSubResultantEuclidean| |common| - |nextsubResultant2| |s19abf| |quasiRegular?| |separateFactors| - |f01bsf| |generic| |solid?| |LyndonWordsList| |createPrimitiveElement| - |rk4f| |polygon| |lineColorDefault| |nodes| |unary?| |edf2df| |e02aef| - |pushdown| |cPower| |finite?| |fortranReal| |transpose| |elt| - |setchildren!| |inR?| |redpps| |filename| |printTypes| - |curveColorPalette| |wronskianMatrix| |irreducibleRepresentation| - |f01brf| |schwerpunkt| |getMeasure| |argscript| |heapSort| - |mainMonomials| |rightPower| |initializeGroupForWordProblem| |romberg| - |stFunc1| |triangular?| |basisOfRightAnnihilator| |complexEigenvalues| - |slex| |revert| |lifting| |leftExactQuotient| |setErrorBound| |write!| - |curryRight| |OMParseError?| |vector| |mainVariables| |not?| - |setPrologue!| |size?| |makeVariable| |iicsc| |operation| |e02zaf| - |rightUnits| |hasPredicate?| |leftCharacteristicPolynomial| |prime?| - |someBasis| |leadingIndex| |sPol| |parametersOf| |parse| - |differentiate| |OMlistSymbols| |fixedPoints| - |leftRegularRepresentation| |mapUp!| |presuper| |reverseLex| - |radicalEigenvector| |clipParametric| |eigenvector| |clip| - |characteristic| |df2st| |cond| |branchPointAtInfinity?| |meshPar1Var| - |absolutelyIrreducible?| |enterPointData| |leftOne| - |exteriorDifferential| |UnVectorise| |baseRDE| |has?| - |createLowComplexityTable| |imaginary| |aQuartic| |modularFactor| - |d02bbf| |seed| |isTimes| |e02dff| |denominator| |ffactor| |delta| - |palglimint0| |setright!| |LyndonBasis| |shellSort| |OMconnectTCP| - |cn| |cAcsch| |implies?| |collect| |normalize| |viewPhiDefault| - |trigs2explogs| |drawToScale| |leadingBasisTerm| - |unrankImproperPartitions1| |bits| |drawCurves| |iicot| |d01asf| - |getSyntaxFormsFromFile| |s17dhf| |particularSolution| |dim| |pushup| - |createNormalPrimitivePoly| |computePowers| |cross| - |euclideanGroebner| |d01anf| |accuracyIF| |tanAn| |solveRetract| - |tanintegrate| |laplacian| |parent| |solveLinearPolynomialEquation| - |mergeDifference| |removeRoughlyRedundantFactorsInPol| |gcdPrimitive| - |inGroundField?| |sizeLess?| |sort!| |primes| |sinhIfCan| - |viewDeltaXDefault| |OMwrite| |gcdprim| |strongGenerators| - |normalDeriv| RF2UTS |width| |stFuncN| |subResultantChain| - |roughBase?| |nullSpace| |equiv| |quadraticNorm| |numFunEvals| - |f04arf| |atrapezoidal| |s17agf| |unitVector| |cycleElt| |upperCase!| - |callForm?| |pseudoQuotient| |OMUnknownSymbol?| |aLinear| |computeInt| - |components| |completeEval| |OMputAtp| |omError| |module| - |factorOfDegree| |lambda| |sumOfDivisors| |palgextint| |zoom| - |primeFactor| |subNode?| |bubbleSort!| |cardinality| |ptFunc| - |cot2trig| |weierstrass| |OMgetBind| |digamma| - |rightRegularRepresentation| |complexNormalize| |constant| - |singularAtInfinity?| |tubeRadius| |bernoulliB| |one?| |weighted| - |critpOrder| |listOfLists| |OMgetAtp| |writeLine!| |makeFR| |Ci| - |optional| |algebraicSort| |ParCond| |plenaryPower| |laguerre| - |modularGcd| |cAcsc| |reflect| |generalizedContinuumHypothesisAssumed| - |rotate!| |divideExponents| |dimensionsOf| |topPredicate| |erf| - |makeMulti| |index| |primitivePart| |sqfrFactor| |cycleTail| - |newTypeLists| LODO2FUN |mesh| |quoByVar| |rootSplit| |hdmpToP| |top!| - |leadingTerm| |mainSquareFreePart| |multiplyExponents| |operators| - |mightHaveRoots| |generalPosition| |cyclicSubmodule| |dilog| |pair| - |complexForm| |setOfMinN| |binding| |basis| |sin| |cyclicEqual?| - |resultant| |pointData| |stop| |npcoef| |antiAssociative?| - |PollardSmallFactor| |formula| |cos| |relationsIdeal| - |fixedPointExquo| |reduceByQuasiMonic| |internalIntegrate| |\\/| - |updatD| |pack!| |tan| |setleaves!| |solve| |roughBasicSet| - |karatsubaDivide| |cot| |OMgetAttr| |paren| |returnType!| |An| |green| - |super| |is?| |sec| |rootSimp| |Frobenius| |d03eef| |imagj| - |infieldint| |supRittWu?| |lepol| |zero?| |pr2dmp| |csc| |numer| - |primPartElseUnitCanonical!| |nrows| |branchPoint?| |hyperelliptic| - |rightMult| |internalAugment| |exponents| |d01gaf| |pop!| |asin| - |axesColorDefault| |denom| |ncols| |squareFreePart| |getDatabase| - |legendre| |backOldPos| |imagK| |acos| |radicalSolve| |invmultisect| - |aQuadratic| |message| |realElementary| |status| |ldf2vmf| |printCode| - |f02adf| |atan| |normal01| |extractClosed| |rightTrim| |pi| - |viewWriteAvailable| |read!| |conjugate| |solveInField| - |lazyIntegrate| |obj| |d02gbf| |content| |acot| |infinity| |ridHack1| - |leftTrim| |cyclicEntries| |OMputEndObject| |countRealRootsMultiple| - |drawComplexVectorField| |halfExtendedSubResultantGcd1| |rightRank| - |blue| |linearPart| |asec| |logpart| |cache| |reduction| |thetaCoord| - |in?| |unit?| |iicos| |clipPointsDefault| |f01qcf| |acsc| - |plusInfinity| |sturmVariationsOf| |eulerPhi| |name| |rootRadius| - |gramschmidt| |dihedralGroup| |cons| |leftDiscriminant| |vertConcat| - |s14aaf| |sinh| |terms| |minusInfinity| |subNodeOf?| |f02wef| |dom| - |lazyGintegrate| |divergence| |leftFactor| |label| |lowerCase?| - |leftScalarTimes!| |cosh| |enqueue!| |list?| |monomials| - |purelyAlgebraicLeadingMonomial?| |charthRoot| - |removeSuperfluousCases| |sumOfSquares| |kernel| |tanh| - |constantCoefficientRicDE| |stoseIntegralLastSubResultant| |besselJ| - |typeList| |wholePart| |rightUnit| |palgRDE| |enterInCache| |draw| - |coth| |moreAlgebraic?| |polygamma| |stoseInvertible?sqfreg| - |monicDivide| |groebner| |headReduced?| |exp1| |localAbs| |coshIfCan| - |extractBottom!| |d02kef| |sech| |sincos| |allRootsOf| |iibinom| - |leftRecip| |element?| |cyclicGroup| |inverse| |setRow!| - |highCommonTerms| |eigenMatrix| |odd?| |iCompose| |f01ref| - |appendPoint| |algint| |title| |alphabetic?| |sn| |cCoth| |f02xef| - |goodPoint| |simpleBounds?| |screenResolution3D| - |rewriteSetWithReduction| |makeObject| |inc| |cAsin| |outputForm| - |hspace| |graphCurves| |s17akf| |e| |inf| |logGamma| |fTable| - |ricDsolve| |antisymmetricTensors| |constDsolve| |algebraicOf| |error| - |fixedPoint| |nthFactor| |pdct| |mainMonomial| |coHeight| |coef| - |critBonD| |rk4| |assert| |close!| |loopPoints| |ef2edf| - |deleteRoutine!| |quadraticForm| |shuffle| |qinterval| |duplicates?| - |curveColor| |bat1| |semiResultantReduitEuclidean| |debug| - |getZechTable| |ideal| |subTriSet?| |option| |inRadical?| |squareFree| - |limitPlus| |selectMultiDimensionalRoutines| |lazyEvaluate| - |linearDependenceOverZ| |Lazard| |chiSquare1| |twoFactor| |Hausdorff| - |integralAtInfinity?| |evenlambert| |iicsch| |listYoungTableaus| - |integralCoordinates| |node| |ramifiedAtInfinity?| |entry| |debug3D| - |modifyPointData| |s18aff| |setScreenResolution| |pdf2df| - |mainVariable| |red| |stiffnessAndStabilityOfODEIF| |rootPower| - |complexNumericIfCan| |internalLastSubResultant| |atanIfCan| |taylor| - |times!| |merge| ** |integerBound| |shade| |pquo| |setMinPoints3D| - |laurent| |iiGamma| |ScanArabic| |float| |slash| - |indiceSubResultantEuclidean| |symFunc| |e02ajf| |puiseux| |asimpson| - |bumptab1| |failed| |arrayStack| |scanOneDimSubspaces| |morphism| EQ - |float?| |OMputObject| |chebyshevU| |rangeIsFinite| |primextendedint| - |monomRDEsys| |weight| |inv| |cCosh| |equiv?| |ord| |subSet| - |monicDecomposeIfCan| |ground?| |compiledFunction| |complement| - |fixedDivisor| |ravel| |groebnerFactorize| |numberOfDivisors| - |totalLex| |ground| |quasiRegular| |separateDegrees| |iiabs| - |directory| |zeroDim?| |reshape| |halfExtendedSubResultantGcd2| - |diagonalMatrix| |leadingMonomial| |extractProperty| |gbasis| |d03edf| - |laplace| |ODESolve| |dimension| |elliptic| |leadingCoefficient| - |represents| |e01bhf| |basisOfLeftNucleus| |recoverAfterFail| - |removeSinhSq| |quadratic| |f02awf| |primitiveMonomials| |zeroMatrix| - |OMencodingSGML| GE |localUnquote| |padicallyExpand| - |patternMatchTimes| |droot| |subscriptedVariables| |reductum| - |isPower| |printingInfo?| GT |printInfo| |orbit| |setAdaptive| - |definingInequation| |credPol| |createLowComplexityNormalBasis| - |block| |d01fcf| LE |completeHensel| FG2F |resultantEuclidean| - |update| |maxPoints| |divideIfCan| |pushNewContour| |traverse| LT - |shallowExpand| |rowEchelonLocal| |e01sef| |minrank| |plus!| - |setleft!| |create| |iomode| |car| |expextendedint| - |semicolonSeparate| |edf2efi| |polynomialZeros| |goto| |eq| - |showIntensityFunctions| |binaryFunction| |rangePascalTriangle| |cdr| - |addPoint| |leftLcm| |vspace| |numberOfNormalPoly| |iter| - |OMcloseConn| |interpolate| |outlineRender| |e04ucf| |factorsOfDegree| - |OMputEndAttr| |acothIfCan| |child?| |extract!| |sort| |log10| |empty| - |coth2trigh| UTS2UP |zeroDimPrime?| |palgLODE| |drawStyle| - |tubeRadiusDefault| |rectangularMatrix| |henselFact| - |oneDimensionalArray| |palgextint0| |less?| |rootPoly| - |fortranCharacter| |lfinfieldint| |monicRightFactorIfCan| |position| - |f02aef| |moduloP| |repSq| |setLabelValue| |c06gcf| |rightGcd| - |OMputBind| |euler| |yCoord| |makeYoungTableau| - |removeRedundantFactors| |nthr| |iiatan| |consnewpol| |dihedral| - |sncndn| |trunc| |addiag| |queue| |moebiusMu| |li| - |stoseInvertibleSetreg| |GospersMethod| |ratDsolve| |signAround| - |lexTriangular| |stoseInvertibleSetsqfreg| |mapdiv| |groebSolve| - |random| |defineProperty| |constantLeft| |reindex| |e02daf| - |normalizeAtInfinity| |cylindrical| |leftUnit| |setsubMatrix!| - |digits| |regime| |sign| |traceMatrix| |exp| |totalDegree| |epilogue| - |LagrangeInterpolation| |setButtonValue| |makeGraphImage| |twist| - |curve| |insert!| |powern| |sample| |hconcat| |doubleDisc| - |pseudoDivide| |deleteProperty!| |submod| |listOfMonoms| - |ellipticCylindrical| |shanksDiscLogAlgorithm| |basisOfCenter| - |expint| |lowerPolynomial| |solveLinear| |tanIfCan| |distance| - |f02ajf| |e02bdf| |sparsityIF| |integralDerivationMatrix| |augment| - |localIntegralBasis| |e04dgf| |polyPart| |f02bbf| |normInvertible?| - |getMatch| |setfirst!| |leaf?| |cyclic?| |doubleComplex?| |adjoint| - |rules| |cfirst| |halfExtendedResultant1| |unitNormal| |rk4qc| - |quotedOperators| |cycleRagits| |RemainderList| |distribute| - |getMultiplicationTable| |nullary?| |leastMonomial| |xn| |leftTrace| - |directSum| |addBadValue| |pile| |overlabel| |brillhartIrreducible?| - |nthRootIfCan| |isAbsolutelyIrreducible?| |distFact| |critMTonD1| - |toseInvertible?| |sin2csc| |numberOfVariables| |constantOperator| - |sortConstraints| |comparison| |expPot| |split| |curryLeft| - |getExplanations| |iiatanh| |setnext!| |df2fi| |entry?| - |boundOfCauchy| |crest| |viewThetaDefault| |solveLinearlyOverQ| - |nilFactor| |generalizedEigenvector| |rst| |d02cjf| |partialFraction| - |implies| |multiEuclideanTree| |leftFactorIfCan| |c06fuf| |multMonom| - |tablePow| |quotient| |mantissa| |rur| |leftGcd| |xor| |symmetric?| - |pade| |nextSubsetGray| |c05pbf| |numericalIntegration| |critM| - |rewriteIdealWithRemainder| |e02bcf| |setOrder| |dequeue| - |possiblyNewVariety?| |expIfCan| |makeSketch| |finiteBound| - |bernoulli| |selectFiniteRoutines| |double| |nthFlag| - |variationOfParameters| |internalInfRittWu?| |ocf2ocdf| |prefix| - |pointColor| |shufflein| |compactFraction| |gradient| |OMlistCDs| - |brace| |cosh2sech| |OMputApp| |subResultantGcd| |deepExpand| |every?| - |d02bhf| |reducedDiscriminant| |e02ahf| |externalList| - |selectSumOfSquaresRoutines| |monicCompleteDecompose| |empty?| - |truncate| |minIndex| |OMbindTCP| |diagonal?| |simpsono| |monomial| - |test| |varselect| |approxSqrt| |semiSubResultantGcdEuclidean1| - |lifting1| |prologue| |changeVar| |irreducible?| |jacobiIdentity?| - |coordinates| |mainCharacterization| |quadratic?| |radicalSimplify| - |cLog| |rationalPower| |compBound| |definingEquations| |dec| - |rational?| |multivariate| |mpsode| |iisqrt2| |sin?| - |fortranLiteralLine| |rightRemainder| |value| |setMinPoints| - |declare!| |ipow| |tanQ| |rightTraceMatrix| |homogeneous?| |variables| - |mapCoef| |OMgetEndAtp| |PDESolve| |supersub| |basicSet| - |discriminantEuclidean| |normalDenom| |OMopenFile| |iiasec| - |squareFreePolynomial| |rotatez| |finiteBasis| |dictionary| - |idealSimplify| |trapezoidalo| |llprop| |oddlambert| |delete!| |cAsec| - |genericLeftTraceForm| |e01sbf| |f02agf| |monicModulo| |merge!| - |resetAttributeButtons| |superHeight| |lexGroebner| |trueEqual| - |mainKernel| |polyRicDE| |minimumDegree| |stoseInvertible?| - |HermiteIntegrate| |insertRoot!| |closedCurve?| |d01amf| |tree| - |characteristicSet| |changeName| |physicalLength!| |irreducibleFactor| - |tubePointsDefault| |inrootof| |reduceLODE| |antiCommutative?| - |polCase| |univariatePolynomialsGcds| |getProperty| - |useSingleFactorBound?| |relerror| |imagi| |changeMeasure| - |generalInfiniteProduct| |decrease| |exprToXXP| |product| - |tryFunctionalDecomposition?| |#| |floor| |palginfieldint| - |horizConcat| |solid| |diff| |associative?| |roughEqualIdeals?| - |OMgetEndError| |LiePolyIfCan| |stoseInvertible?reg| |laurentRep| - |positive?| |And| |doublyTransitive?| |quotientByP| |mkcomm| - |showFortranOutputStack| |OMgetVariable| |univariatePolynomial| - |integerIfCan| |anticoord| |polyRDE| |possiblyInfinite?| - |safetyMargin| |Or| |iisqrt3| |semiLastSubResultantEuclidean| - |computeCycleEntry| |wreath| |bandedJacobian| ^ - |stiffnessAndStabilityFactor| |pmComplexintegrate| |e04mbf| - |var1StepsDefault| |genericLeftDiscriminant| |Not| |copyInto!| - |youngGroup| |char| |genericRightNorm| |sinhcosh| |untab| - |problemPoints| |high| |swapRows!| |f07fdf| |scan| |sum| |universe| - |fortranTypeOf| |squareFreeLexTriangular| |degreePartition| |OMgetApp| - |constantOpIfCan| |ref| |rowEchLocal| |removeCosSq| |eyeDistance| - |satisfy?| |roman| |elRow1!| |removeRedundantFactorsInPols| |head| - |prolateSpheroidal| |linearAssociatedOrder| |conjug| |conjugates| - |bivariatePolynomials| |cyclotomicFactorization| |unitsColorDefault| - |term?| |integralBasisAtInfinity| |subResultantGcdEuclidean| |s17aff| - |OMgetString| |rewriteIdealWithHeadRemainder| - |removeRoughlyRedundantFactorsInPols| |extractPoint| |s18aef| |pole?| - |addmod| |univariatePolynomials| |OMconnOutDevice| |rightNorm| |ksec| - |dflist| |selectsecond| |cAsinh| |hdmpToDmp| |f04asf| |cycles| - |precision| |stosePrepareSubResAlgo| |getBadValues| |linear| - |readIfCan!| |dmpToP| |structuralConstants| |cAcoth| |setTopPredicate| - |numberOfCycles| |clikeUniv| |minimize| |beauzamyBound| |Zero| - |tan2cot| |duplicates| |retractIfCan| |countRealRoots| |lieAlgebra?| - |generalTwoFactor| |listexp| |semiDiscriminantEuclidean| - |flexibleArray| |ddFact| |numberOfChildren| |One| |polynomial| - |realZeros| |clearFortranOutputStack| |comp| |hessian| |OMputString| - |expressIdealMember| |lhs| |pointColorDefault| |changeBase| |s21bbf| - |minordet| |mathieu22| |linearAssociatedLog| |abelianGroup| - |identitySquareMatrix| |explicitEntries?| |xCoord| |rhs| |digit?| - |symmetricProduct| |rootBound| |e01bff| |constructorName| - |removeZeroes| |depth| |orthonormalBasis| |errorInfo| |patternMatch| - |selectIntegrationRoutines| |negative?| |elements| - |genericRightMinimalPolynomial| |legendreP| |bfEntry| |next| - |complexIntegrate| |dn| |points| |mkAnswer| |invertIfCan| - |useSingleFactorBound| |setScreenResolution3D| |ranges| |c06gqf| - |leftRemainder| |multiset| |convergents| |Si| |hermiteH| |deriv| - |cCsc| |lyndon?| |root| |endOfFile?| |nextIrreduciblePoly| - |firstUncouplingMatrix| |rightCharacteristicPolynomial| - |normalElement| |complexRoots| |minimumExponent| |complexSolve| - |unexpand| |s18acf| |Is| |minGbasis| |systemCommand| |c06fqf| |bfKeys| - |toroidal| |OMputError| |semiSubResultantGcdEuclidean2| |prinshINFO| - |extractIndex| |gcdcofact| |palgint0| |primintfldpoly| |lazyPquo| - |copies| |lazy?| |e02baf| |screenResolution| |pomopo!| |inconsistent?| - |OMputEndBVar| |outputFixed| |symmetricTensors| |cAcosh| |normal| - |airyBi| |number?| |blankSeparate| |orOperands| - |semiResultantEuclidean1| |palglimint| |c05adf| |quote| |coleman| - |scale| |setAttributeButtonStep| |map| |box| - |createPrimitiveNormalPoly| |reopen!| |mainCoefficients| |compdegd| - |lazyResidueClass| |lfintegrate| |append| |startStats!| |triangulate| - |fortranLinkerArgs| |rightFactorCandidate| |jordanAlgebra?| |leftRank| - |basisOfCentroid| |mainVariable?| |algSplitSimple| |point?| - |zeroSetSplitIntoTriangularSystems| |laurentIfCan| |any| NOT - |tableForDiscreteLogarithm| |nextPrimitivePoly| |delete| |singRicDE| - |cSec| |removeSinSq| |binaryTree| |supDimElseRittWu?| |iisech| - |infieldIntegrate| |bipolar| OR |zeroSquareMatrix| |htrigs| - |numberOfComputedEntries| |midpoint| |assign| |s14abf| |partitions| - |errorKind| |Lazard2| |uniform01| |rootOfIrreduciblePoly| AND - |nextPrimitiveNormalPoly| |exponent| |powmod| |changeWeightLevel| - |setMaxPoints3D| |internalZeroSetSplit| |BasicMethod| - |initiallyReduced?| |monicRightDivide| |compound?| |nary?| - |lieAdmissible?| |mathieu11| |e04fdf| |integer?| |order| |convert| - |sylvesterMatrix| |bitTruth| |substring?| |atanhIfCan| |baseRDEsys| - |stripCommentsAndBlanks| |derivative| |univariateSolve| |branchIfCan| - |swap!| |composite| |showTypeInOutput| |frobenius| |iipow| - |irreducibleFactors| |coerceP| |complexLimit| |startPolynomial| - |seriesToOutputForm| |replaceKthElement| |rubiksGroup| |numeric| - |headReduce| |repeatUntilLoop| |iiasin| |zerosOf| |suffix?| |aromberg| - |linearPolynomials| |factorSquareFree| |radical| |elRow2!| - |getOperator| |c06ekf| |d01bbf| |prime| |nextColeman| |quickSort| - |lfextlimint| |splitSquarefree| |open?| |generators| - |factorByRecursion| |ParCondList| |resultantEuclideannaif| - |interReduce| |recip| |UpTriBddDenomInv| |fintegrate| |double?| |heap| - |nthFractionalTerm| |lintgcd| |infinite?| |prefix?| |froot| - |meshFun2Var| |contractSolve| |overbar| |showRegion| |extend| - |equality| |perfectSqrt| |init| |UP2ifCan| |crushedSet| - |resetBadValues| |graeffe| |completeSmith| |leftRankPolynomial| - |LyndonCoordinates| |e01bgf| |iteratedInitials| |zeroDimPrimary?| - |meshPar2Var| |ode| |oblateSpheroidal| |d01ajf| |readable?| - |primaryDecomp| |patternVariable| |midpoints| |SturmHabichtSequence| - |overset?| |bitCoef| |generalizedEigenvectors| |partialDenominators| - |tail| |difference| |explicitlyEmpty?| |f01qef| * |elem?| - |OMsetEncoding| |lazyPrem| |e04jaf| |sec2cos| |chainSubResultants| - |zeroVector| |internal?| |zeroOf| |f01qdf| |OMgetSymbol| |scripted?| - |characteristicSerie| |OMread| |combineFeatureCompatibility| - |selectODEIVPRoutines| |flatten| |basisOfMiddleNucleus| - |matrixConcat3D| |mkIntegral| |cAtan| |squareFreeFactors| |d02raf| - |iiacsch| |commutative?| |diag| |coefChoose| |infix?| |symmetricGroup| - |cosSinInfo| |approximate| |reseed| |karatsubaOnce| |completeHermite| - |mask| |f07aef| |remainder| |approxNthRoot| |plotPolar| |complex| - |phiCoord| |simplifyExp| |bezoutDiscriminant| |gethi| |vedf2vef| - |search| |intChoose| |algebraicDecompose| |mr| |localReal?| |showAll?| - |complexZeros| |splitLinear| |fractRagits| |s01eaf| |dimensions| - |factorSquareFreePolynomial| |e01daf| |dot| |minus!| |secIfCan| - |bandedHessian| |randomR| |replace| |length| |euclideanSize| |reset| - |rotatey| |dioSolve| |rightDiscriminant| |prevPrime| |cschIfCan| - |lquo| |scripts| |testDim| |exponentialOrder| |minColIndex| - |outerProduct| |weights| |factors| |getlo| |antisymmetric?| |write| - |nullary| |unrankImproperPartitions0| |restorePrecision| |startTable!| - |currentEnv| |f2st| |failed?| |front| |wholeRagits| |stack| |save| - |setColumn!| |algDsolve| |power| |putGraph| |sayLength| - |extendedResultant| |bipolarCylindrical| |internalSubPolSet?| - |numberOfPrimitivePoly| |permutationRepresentation| |or| - |permutationGroup| |LowTriBddDenomInv| |flagFactor| |infLex?| - |matrixGcd| |setPoly| |hypergeometric0F1| |extendIfCan| |and| - |rightMinimalPolynomial| |addMatchRestricted| |belong?| |fractRadix| - |members| |rdregime| |c02agf| |se2rfi| |categoryFrame| |s13acf| - |prepareSubResAlgo| |endSubProgram| |iiasech| |lex| |isOp| - |composites| |arity| |currentSubProgram| |lp| |symmetricDifference| - |tanNa| |mapMatrixIfCan| F |medialSet| |safeCeiling| |OMreadFile| - |opeval| |prem| |processTemplate| |minPoints3D| |e01saf| |cot2tan| - |setProperties| |magnitude| |leadingExponent| |halfExtendedResultant2| - |maxPoints3D| |logIfCan| |isQuotient| |neglist| |extendedint| - |interpretString| |cCos| |arg1| |qroot| |getGraph| |abs| |varList| - |numericalOptimization| |printInfo!| |showScalarValues| - |innerEigenvectors| |kovacic| |f04maf| |primintegrate| |arg2| - |numberOfIrreduciblePoly| |wordsForStrongGenerators| |initials| - |exactQuotient!| |upperCase| |reducedContinuedFraction| |prinb| - |cosIfCan| |vark| |superscript| |OMsupportsCD?| |diagonalProduct| - |padicFraction| |int| |getOrder| |makeCrit| |numberOfFactors| - |critMonD1| |lyndonIfCan| |numberOfImproperPartitions| |c06ecf| - |conditions| |bezoutMatrix| |shrinkable| |pow| |clipSurface| - |showTheIFTable| |quasiMonicPolynomials| |divide| |iiacsc| - |factorList| |f02abf| |numFunEvals3D| |printHeader| |concat| |match| - |iroot| |shiftRoots| |hash| |removeRedundantFactorsInContents| - |member?| |squareMatrix| |makeSUP| |height| |multiEuclidean| - |mapBivariate| |d01aqf| |coercePreimagesImages| |resetNew| |minPoly| - |seriesSolve| |count| |outputGeneral| |qqq| |push| |splitConstant| - |prindINFO| |optional?| |fractionPart| |create3Space| - |explicitlyFinite?| |leftAlternative?| |critB| |minimalPolynomial| - |coerceImages| |groebnerIdeal| |OMgetEndObject| |integralMatrix| - |birth| |factorAndSplit| |charpol| |setLegalFortranSourceExtensions| - |nextItem| |rotate| |torsionIfCan| |addPoint2| |f01mcf| |nthExpon| - |mapUnivariateIfCan| |perfectNthRoot| |innerSolve| |coordinate| - |getVariableOrder| |nil| |infinite| |arbitraryExponent| |approximate| - |complex| |shallowMutable| |canonical| |noetherian| |central| + |Record| |Union| |splitDenominator| |badValues| |interpolate| + |innerint| |symbolTableOf| |fortranDoubleComplex| + |subscriptedVariables| |reducedQPowers| |yCoordinates| + |tubePointsDefault| |green| |iiasec| |restorePrecision| |fibonacci| + |exprToUPS| |screenResolution| |normalizeAtInfinity| + |leftAlternative?| |palgint| |goodPoint| |factorSquareFreePolynomial| + |legendre| |lowerPolynomial| |f01maf| |wrregime| |zCoord| |notelem| + |bat1| |pow| |measure| |f04axf| |showTheSymbolTable| |deepExpand| + |possiblyInfinite?| |OMgetAtp| |dequeue!| |changeMeasure| + |lazyPremWithDefault| |cAtan| |node?| |pquo| |midpoints| |accuracyIF| + |goto| |nextPrimitivePoly| |constantKernel| |iiacoth| + |mainSquareFreePart| |matrixDimensions| |divergence| |d01gbf| + |linearMatrix| |coefficients| |basisOfCentroid| |meshPar1Var| + |genericRightMinimalPolynomial| |stopTable!| |elliptic?| |opeval| + |round| |getButtonValue| |composite| |ipow| |radicalEigenvector| + |poisson| |entries| |setLabelValue| |cCsch| |factorSFBRlcUnit| + |OMputFloat| |outlineRender| |wordInStrongGenerators| |lazyVariations| + |df2fi| |ksec| |heap| |d03faf| |pToDmp| |removeCosSq| |inrootof| + |rubiksGroup| |const| |exptMod| |updatF| |fixPredicate| |pomopo!| + |aLinear| |coercePreimagesImages| |e02ddf| |center| |csubst| + |inGroundField?| |separateDegrees| |rational?| |backOldPos| Y + |isPower| |complexEigenvalues| |quoted?| |mainMonomial| |cylindrical| + |critB| |commutativeEquality| |lastSubResultantEuclidean| |upperCase| + |startTable!| |polyred| |ratPoly| |createGenericMatrix| |atom?| + |intersect| |semiResultantReduitEuclidean| |quatern| + |internalDecompose| |sincos| |FormatArabic| |solveLinear| |position!| + |safetyMargin| |cExp| |rank| |SturmHabichtSequence| |taylorQuoByVar| + |check| |absolutelyIrreducible?| |d02ejf| |besselI| |setTex!| |every?| + |redmat| |bits| |keys| |writeLine!| |showTypeInOutput| + |generalInfiniteProduct| |singRicDE| |delay| |legendreP| + |squareFreeFactors| |leftFactor| |setMinPoints3D| |mathieu11| |d02gaf| + |showIntensityFunctions| |tanAn| |knownInfBasis| |clipParametric| + |dim| |ravel| |back| |multiplyExponents| |nextNormalPoly| |prem| + |extractTop!| |complete| |rightLcm| |viewSizeDefault| |tanQ| + |mainVariable?| |power!| |reshape| |createZechTable| |c06gcf| |middle| + |mainKernel| |prefixRagits| |getZechTable| |lfextendedint| + |sizeMultiplication| |factorset| |mantissa| |entry?| + |rightExactQuotient| |rspace| |integral| |rationalPoint?| + |eyeDistance| |e04ucf| |reduceLODE| |cscIfCan| |infiniteProduct| + |bivariate?| |biRank| |computeInt| |inconsistent?| |lists| |resetNew| + |leftUnit| |sizeLess?| |adaptive?| |iilog| |mpsode| |f2st| |dflist| + |nthFractionalTerm| |slex| |coHeight| |makeFR| |minimalPolynomial| + |headReduce| |reducedContinuedFraction| |cSec| |imagK| |printingInfo?| + |operator| |setStatus| |outputArgs| |retractable?| |expintfldpoly| + |nextPrime| |allRootsOf| |enterPointData| |putColorInfo| |update| + |separant| |computeBasis| |d02bhf| |setFieldInfo| |KrullNumber| + |decrease| |mirror| |nthRoot| |scalarMatrix| |findBinding| + |ScanFloatIgnoreSpaces| |iisqrt3| |evenInfiniteProduct| |e04fdf| + |bright| |overset?| |frobenius| |OMgetEndApp| |rightTraceMatrix| + |internalIntegrate0| |bfEntry| |tanIfCan| |lowerCase?| |e02gaf| + |drawCurves| |pToHdmp| |identity| |solveRetract| |eigenvector| + |idealiserMatrix| |messagePrint| |operators| |iiGamma| + |processTemplate| |insertMatch| |leftPower| |binaryFunction| + |removeIrreducibleRedundantFactors| |algSplitSimple| |eigenMatrix| + |isobaric?| |d02raf| |denomLODE| |triangularSystems| + |createIrreduciblePoly| |coerce| |debug| |tracePowMod| + |functionIsContinuousAtEndPoints| |antiCommutative?| + |generalizedInverse| |int| |s21baf| |mr| + |inverseIntegralMatrixAtInfinity| |checkRur| |delete| |rightGcd| + |polyRicDE| |construct| |satisfy?| |factorsOfDegree| + |internalSubQuasiComponent?| |basisOfRightNucloid| |iibinom| + |boundOfCauchy| |position| |pol| |OMputEndBVar| + |unprotectedRemoveRedundantFactors| |minPoly| |LiePoly| |ideal| + |copy!| |powerAssociative?| |prinb| |failed?| |selectsecond| |lintgcd| + |revert| |critBonD| |setsubMatrix!| |repeatUntilLoop| |coerceImages| + |leftOne| |cyclicCopy| |arg1| |radicalSolve| |toseLastSubResultant| + |selectNonFiniteRoutines| |components| |leftTraceMatrix| |cos2sec| + |sort!| |sturmSequence| |choosemon| |removeSinSq| |jordanAdmissible?| + |arg2| |orbit| |elementary| |optpair| |startTableInvSet!| |bitCoef| + |iipow| |closedCurve| |homogeneous?| |clip| |substring?| + |removeRoughlyRedundantFactorsInContents| |stoseInvertibleSet| + |reducedDiscriminant| |bumptab| |iicot| |Ci| |tanintegrate| + |createRandomElement| |probablyZeroDim?| |point?| |second| + |complexIntegrate| |conditions| |integralMatrixAtInfinity| + |leftScalarTimes!| |surface| |integer?| |optAttributes| + |subresultantVector| |getCode| |sechIfCan| |fullPartialFraction| + |null| |suffix?| |third| |match| |isList| |distance| |minPoints3D| + |semiLastSubResultantEuclidean| |OMputVariable| |closed?| |exprToXXP| + |polCase| |halfExtendedResultant1| |odd?| |lSpaceBasis| |iiacsch| + |ScanArabic| |selectPDERoutines| |useEisensteinCriterion?| |true| + |s19aaf| |linGenPos| |s14baf| |getOrder| |linearlyDependentOverZ?| + |prefix?| |ScanRoman| |mightHaveRoots| |representationType| |root?| + |log10| |minimumDegree| |roman| |groebnerIdeal| |OMputEndAttr| + |leftRecip| |getGoodPrime| |crest| |nextsousResultant2| |depth| + |outputFixed| |OMputBind| |seriesSolve| |iiabs| |acoshIfCan| + |subTriSet?| |principalIdeal| |cosIfCan| |front| |cCot| |lifting| + |column| |rk4| |getStream| |insertTop!| |iiasin| |binaryTree| |f02axf| + |invmultisect| |divisorCascade| |completeEval| |imagI| + |subresultantSequence| |rootProduct| |primes| |toseSquareFreePart| + |exteriorDifferential| |lastSubResultant| |contours| |cAsinh| |e02ahf| + |infinite?| |subHeight| |digits| |laplacian| |nil?| |mapCoef| + |characteristic| |commaSeparate| |d01asf| |setAdaptive| |cyclotomic| + |rewriteSetByReducingWithParticularGenerators| |cdr| |Not| + |generalizedEigenvectors| |f04atf| |irreducibleFactors| |hermite| + |zeroSetSplitIntoTriangularSystems| |infix?| |dn| |clipBoolean| + |btwFact| |setDifference| |e01saf| |order| |setelt| |algebraicSort| + |ListOfTerms| |headRemainder| |f02fjf| |getPickedPoints| |mask| + |asinhIfCan| |noncommutativeJordanAlgebra?| |computeCycleEntry| + |enqueue!| |innerSolve1| |setIntersection| |linSolve| |overlap| + |product| |setRealSteps| |makeCrit| |associatedEquations| |f02ajf| + |setUnion| |aspFilename| |numberOfFractionalTerms| |copy| |var2Steps| + |parts| |univariatePolynomialsGcds| |addPoint2| |unitNormal| + |iCompose| |powerSum| |say| |commutative?| |slash| |meatAxe| + |stoseInvertible?| |apply| |elRow1!| |inRadical?| |Hausdorff| + |element?| |splitNodeOf!| |extension| |brace| |close!| + |generalPosition| |leftExactQuotient| |uniform| |flatten| ^= + |repeating?| |functionIsOscillatory| |OMgetEndObject| |rootsOf| |vark| + |e01bff| |rules| |outputGeneral| |showArrayValues| |f01rdf| + |symmetricTensors| |autoCoerce| |size| |associates?| |normalizeIfCan| + |UnVectorise| |deepCopy| |exponential| |symmetricSquare| |eq| + |addMatch| |euler| |janko2| |commutator| |spherical| |acothIfCan| + |rischDEsys| |supDimElseRittWu?| |asec| |numerators| |iter| |myDegree| + |s17dlf| |OMputAtp| |expt| |rightMinimalPolynomial| |coerceP| + |zerosOf| |df2st| |solveLinearPolynomialEquationByFractions| |acsc| + |sortConstraints| |value| |hdmpToDmp| |froot| |externalList| + |sylvesterMatrix| |first| |next| |halfExtendedSubResultantGcd1| + |dimensionOfIrreducibleRepresentation| |sinhIfCan| |parent| |sinh| + |laurentIfCan| |concat!| |complexNumeric| |differentialVariables| + |list?| |getSyntaxFormsFromFile| |rest| |usingTable?| |s17dgf| + |OMgetEndAtp| |incrementKthElement| + |rewriteIdealWithQuasiMonicGenerators| |cosh| |minColIndex| |mapSolve| + |extendedEuclidean| |cot2tan| |HermiteIntegrate| |substitute| + |simplifyPower| |computeCycleLength| |getProperty| |numberOfFactors| + |rk4qc| |tanh| |internalAugment| |kernels| |extractPoint| + |removeDuplicates| |wreath| |style| |factorSquareFreeByRecursion| + |outerProduct| |rightCharacteristicPolynomial| + |tryFunctionalDecomposition?| |f01ref| |rk4a| |coth| |subscript| + |iisec| |zeroMatrix| |univariate| |lhs| |character?| |predicates| + |minPoints| |pushdown| |cyclicGroup| |sech| |generalSqFr| |solve1| + |colorFunction| |rhs| |setErrorBound| |indiceSubResultantEuclidean| + |loopPoints| |lfunc| |ef2edf| |rangePascalTriangle| |hue| |csch| + |superscript| |characteristicPolynomial| |submod| |cAcosh| |frst| + |exp| |qqq| |rowEch| |setleaves!| |summation| |iisech| + |withPredicates| |asinh| |removeZeroes| |factor| |inverseColeman| + |c06ebf| |setvalue!| |collectQuasiMonic| |stoseInvertibleSetsqfreg| + |option?| |algebraicDecompose| |swap| |baseRDE| |acosh| |comparison| + |sqrt| |OMread| |or?| |rightRank| |Nul| |atanhIfCan| |getIdentifier| + |atanh| |generalLambert| |explogs2trigs| |real| |mesh| |f04adf| + |tanSum| |bitTruth| |addMatchRestricted| |particularSolution| + |clearTable!| |f04jgf| |standardBasisOfCyclicSubmodule| |acoth| |key| + |weights| |digit| |imag| |leviCivitaSymbol| |palgint0| |s17dhf| + |mkPrim| |splitConstant| |wholeRadix| |ldf2lst| |PDESolve| |asech| + |options| |nullity| |directProduct| |constant?| |fortranCharacter| + |mainMonomials| |printStatement| |genericRightDiscriminant| + |argumentList!| |generalTwoFactor| |exponents| |s18aef| + |exprHasWeightCosWXorSinWX| |resultantEuclideannaif| |insertRoot!| + |normalElement| |totalfract| |create| |kovacic| + |squareFreeLexTriangular| |ceiling| |destruct| |null?| |bracket| + |unitVector| |plusInfinity| |presub| |cPower| |principal?| + |closedCurve?| |groebner| |monicDecomposeIfCan| |unvectorise| + |OMencodingSGML| |compactFraction| |complexElementary| |push| + |minusInfinity| |d01alf| |deleteRoutine!| |quasiMonic?| + |rightScalarTimes!| |asinIfCan| |s17acf| |combineFeatureCompatibility| + |vertConcat| |expandTrigProducts| |infinityNorm| |rdHack1| |equation| + |addPoint| |elColumn2!| |OMgetBVar| |orthonormalBasis| |makeUnit| + |perspective| |symmetricDifference| |sum| |f02agf| |minordet| |mapdiv| + |localReal?| |rename!| |oblateSpheroidal| |OMlistSymbols| + |resetVariableOrder| |listOfMonoms| |monomial| |inspect| + |OMgetVariable| |logical?| |factorFraction| |blue| |pushup| |solve| + |bernoulliB| |startStats!| |expPot| |purelyAlgebraic?| |multivariate| + |univcase| |atanIfCan| |brillhartIrreducible?| |antisymmetricTensors| + |belong?| |pointLists| |baseRDEsys| |leadingSupport| |palgRDE0| + |acosIfCan| |quoByVar| |variables| |primintfldpoly| |chiSquare| + |cAcot| |tanh2coth| |systemSizeIF| |setprevious!| |sorted?| + |quadratic?| |degreePartition| |d01gaf| |lfinfieldint| |printStats!| + |rightPower| |implies| |euclideanSize| |member?| |leftMult| |sdf2lst| + |derivationCoordinates| |selectPolynomials| |primitivePart!| |factors| + |positiveRemainder| |bit?| |SturmHabichtCoefficients| |xor| + |infieldint| |userOrdered?| |complexRoots| |d01amf| |listexp| + |compiledFunction| |f04maf| |primeFrobenius| |prod| |cycleElt| + |gradient| |antiCommutator| |primitiveElement| |finite?| |iomode| + |prindINFO| |OMUnknownCD?| |headReduced?| |harmonic| |pole?| + |interReduce| |purelyTranscendental?| |BasicMethod| |plot| |iiacosh| + |quadraticForm| |stoseLastSubResultant| |doubleResultant| + |radicalRoots| |coord| |localUnquote| |taylor| |s14aaf| |OMgetEndAttr| + |normalize| |mathieu22| |groebSolve| |s17dcf| |associator| |one?| + |monicLeftDivide| |iifact| |errorInfo| |tubePoints| |laurent| |dec| + |tanNa| |row| |cyclicParents| |Gamma| |conical| |leftLcm| |d01ajf| + |triangulate| |evaluate| |ellipticCylindrical| |central?| |shift| + |rightDivide| |fortranInteger| |hasTopPredicate?| |linearPart| + |createNormalPrimitivePoly| |roughBasicSet| |hasSolution?| + |fixedPoints| |iitan| |expenseOfEvaluationIF| |intermediateResultsIF| + |univariatePolynomial| |nthRootIfCan| |monicModulo| |fractRadix| + |showAll?| |stripCommentsAndBlanks| |complement| |coerceL| |varList| + |max| |split| |rootSplit| |times!| |initializeGroupForWordProblem| + |constDsolve| UP2UTS |getRef| |partialQuotients| |alternative?| + |lookup| |radicalSimplify| |getlo| |selectODEIVPRoutines| |normalise| + |lazyPquo| |rotatey| |squareMatrix| |f2df| |interval| |groebgen| + |multinomial| |polygon?| |pop!| |s17adf| |rootKerSimp| |mix| + |stirling1| |supRittWu?| |idealiser| |expextendedint| + |characteristicSet| |exp1| |readable?| |any?| |ode1| |OMlistCDs| + |monicRightFactorIfCan| |trivialIdeal?| |viewPosDefault| |prinpolINFO| + |linears| |shuffle| |primintegrate| |weighted| |acscIfCan| |addmod| + |upperCase!| |setrest!| |c06gsf| |initiallyReduced?| |defineProperty| + |find| |optional?| |iisqrt2| |rightAlternative?| |setPosition| + |aCubic| |mapMatrixIfCan| |recip| |linearAssociatedLog| + |viewPhiDefault| |logpart| |OMgetError| |vspace| + |radicalOfLeftTraceForm| |physicalLength| |replace| |patternMatch| + |padicallyExpand| |monic?| |terms| |complexExpand| |argument| + |members| |derivative| |complexZeros| |leftRegularRepresentation| + |jacobian| |iisinh| |shanksDiscLogAlgorithm| |paraboloidal| |ran| + |cTan| |rational| |result| |sts2stst| |computePowers| + |karatsubaDivide| |fortranLinkerArgs| |fixedDivisor| |algebraic?| + |symbolIfCan| |primitive?| |integerIfCan| |s13adf| |merge!| + |explimitedint| |changeName| |closeComponent| |alphanumeric| |atoms| + |curryLeft| |limit| |copies| |trailingCoefficient| |algebraicOf| + |isAbsolutelyIrreducible?| |FormatRoman| |iiacos| |nonQsign| + |noLinearFactor?| |c02aff| |antisymmetric?| |basisOfMiddleNucleus| + |romberg| |merge| |dioSolve| |makeSUP| |OMgetApp| + |useSingleFactorBound?| |semiResultantEuclideannaif| + |numberOfIrreduciblePoly| |critpOrder| |axesColorDefault| |hdmpToP| + |cap| |recolor| |lepol| |semiDegreeSubResultantEuclidean| |outputList| + |nsqfree| |qinterval| |quasiAlgebraicSet| |primaryDecomp| |cLog| + |associatedSystem| |oddintegers| |applyRules| |e02akf| |csc2sin| + |viewWriteDefault| |constantLeft| |numberOfNormalPoly| |fractionPart| + |sin?| |outputFloating| |plus| |setEpilogue!| |cTanh| |f02aef| + |cosh2sech| |trigs2explogs| |hasoln| |lprop| |mergeFactors| + |semicolonSeparate| |localAbs| |certainlySubVariety?| |symmetricPower| + |univariatePolynomials| |callForm?| |subNodeOf?| |monicRightDivide| + |abelianGroup| |reduction| |e02bbf| |removeSquaresIfCan| + |lflimitedint| |hasHi| |selectIntegrationRoutines| |tableau| + |UpTriBddDenomInv| |medialSet| |mainContent| |makeViewport3D| + |rdregime| |makeSeries| |cross| |mapUp!| |groebnerFactorize| |search| + |nullary| |patternMatchTimes| |unparse| |f07fef| + |resetAttributeButtons| |remove!| |balancedFactorisation| + |splitLinear| |univariateSolve| |rightFactorCandidate| |makingStats?| + |times| |largest| |rroot| |expenseOfEvaluation| |hcrf| |distFact| + |s13aaf| |init| |edf2fi| |Aleph| |OMgetAttr| |clearTheSymbolTable| + |simplify| |getExplanations| |basisOfCenter| |multiEuclidean| |lazy?| + |setMaxPoints| |label| |decompose| |constantOpIfCan| |binomThmExpt| + |physicalLength!| |patternVariable| |low| |prepareDecompose| |e01bef| + |anticoord| |stFunc1| |rightDiscriminant| |fixedPoint| |mindeg| + |generateIrredPoly| |duplicates?| |listOfLists| |rationalPower| + |squareFreePart| |top!| |integerBound| |tValues| |zero?| |children| + |reindex| |relerror| |degree| |fortranLiteralLine| + |wordsForStrongGenerators| |monom| |s19adf| |matrixConcat3D| + |bitLength| |OMputApp| |normal?| |stronglyReduce| |bivariateSLPEBR| + |determinant| |create3Space| |symmetricRemainder| |coshIfCan| + |nextNormalPrimitivePoly| F |cycleLength| |musserTrials| + |transcendent?| |drawToScale| |airyAi| |edf2efi| |besselY| + |subPolSet?| |rightQuotient| |powers| |concat| |iisin| |safeCeiling| + |moduloP| |compound?| |title| |c02agf| |alphanumeric?| |nonLinearPart| + |numberOfDivisors| |eulerE| |common| |OMconnOutDevice| |f02wef| + |fintegrate| |unaryFunction| |thetaCoord| |euclideanGroebner| + |OMcloseConn| |jordanAlgebra?| |more?| |maxColIndex| |cycle| + |pseudoQuotient| |superHeight| |stirling2| |coerceListOfPairs| + |branchIfCan| |presuper| |asechIfCan| |droot| |parabolicCylindrical| + |s18dcf| |lazyIrreducibleFactors| |dfRange| |paren| |leftUnits| + |cycleSplit!| ^ |coefficient| |e02baf| |polyRDE| |mapBivariate| + |corrPoly| |comp| |irreducibleFactor| |fractRagits| + |createMultiplicationMatrix| |laguerreL| |expint| |triangular?| + |modifyPoint| |nthFactor| |rk4f| |limitedint| |reducedSystem| + |compBound| |rightRemainder| |log| |option| |adaptive| + |currentCategoryFrame| |point| |controlPanel| |level| |infRittWu?| + |deriv| |curveColor| |createMultiplicationTable| |extractBottom!| + |totalLex| |term| |shade| |shallowCopy| |drawComplex| |bag| + |explicitlyFinite?| |validExponential| |initials| |powern| |cSech| + |subResultantGcd| |nary?| |sinIfCan| |imagi| |padecf| |indices| + |color| |tan2trig| |repSq| |OMreadFile| |series| |leadingBasisTerm| + |rur| |polynomialZeros| |perfectNthPower?| |leftRank| + |branchPointAtInfinity?| |makeMulti| |OMsupportsSymbol?| + |lazyGintegrate| |reducedForm| |lift| |flagFactor| + |tableForDiscreteLogarithm| |reverseLex| |internal?| |entry| |double?| + |sh| |f04faf| |reduce| |content| |relationsIdeal| |Ei| |factor1| + |contains?| |double| |OMUnknownSymbol?| |rowEchelon| |lexGroebner| + |expintegrate| |phiCoord| |sequences| |definingEquations| |modTree| + |basisOfRightAnnihilator| |useEisensteinCriterion| |min| |arguments| + |d01aqf| |mdeg| |selectAndPolynomials| |setMinPoints| |sech2cosh| + |cyclotomicDecomposition| |ratpart| |isQuotient| |pdct| |cCsc| + |firstSubsetGray| |d02kef| |quasiRegular| |identitySquareMatrix| + |subResultantGcdEuclidean| |equiv| |endSubProgram| |cyclic| |polygon| + |createPrimitivePoly| |simpson| |exactQuotient!| |denomRicDE| + |basisOfLeftNucleus| |mainValue| |tanh2trigh| |shiftLeft| |psolve| + |minimize| |intPatternMatch| |cRationalPower| |critMTonD1| |zeroOf| + |countable?| |extendedSubResultantGcd| |lieAdmissible?| |isMult| + |shallowExpand| |failed| |tRange| |var2StepsDefault| |toroidal| + |rightFactorIfCan| |unrankImproperPartitions1| |leftGcd| |tube| + |lifting1| |s18adf| |pr2dmp| |chebyshevT| |reset| + |irreducibleRepresentation| |laurentRep| |declare!| |height| |lambert| + |ridHack1| |palgRDE| |c06frf| |multiple| |stoseInvertibleSetreg| + |prevPrime| |sample| |nthFlag| |mainVariable| |trueEqual| |infLex?| + |applyQuote| |cyclic?| |leftRankPolynomial| |getGraph| + |OMencodingUnknown| |primitivePart| |write| |indicialEquation| + |numerator| |rightRecip| |simplifyExp| |createNormalPoly| + |weierstrass| |checkPrecision| |tab| |diagonals| |ramified?| |e02adf| + |setright!| |pastel| |fixedPointExquo| |insertBottom!| + |leastAffineMultiple| |packageCall| |call| |lagrange| |iiasech| + |henselFact| |rootOfIrreduciblePoly| |lyndon?| |leftMinimalPolynomial| + |createPrimitiveNormalPoly| |vconcat| |explicitEntries?| |remove| + |s17aff| |quadraticNorm| |sturmVariationsOf| |diagonal| |approximate| + |lineColorDefault| |beauzamyBound| |leftCharacteristicPolynomial| + |high| |pdf2ef| |randnum| |splitSquarefree| |whatInfinity| |complex| + |scaleRoots| ~ |binomial| |integers| |trace2PowMod| |monomRDEsys| + |OMgetEndBVar| |last| |recoverAfterFail| ** |singularitiesOf| + |positiveSolve| |llprop| |freeOf?| |rowEchelonLocal| GF2FG |f04mcf| + |assoc| |toseInvertible?| |fracPart| |sqfrFactor| |f01brf| |delta| + |f02abf| |matrixGcd| |GospersMethod| |ReduceOrder| |match?| |prologue| + |cschIfCan| |setref| |OMputError| |positive?| |graphCurves| + |symmetric?| |doubleComplex?| EQ |asecIfCan| |enterInCache| + |primPartElseUnitCanonical!| |hconcat| |realEigenvalues| |graphState| + |toseInvertibleSet| |cyclicEntries| |f04qaf| |LyndonCoordinates| |abs| + |monomial?| |collectUpper| |red| |s17ahf| |collectUnder| |open| + |realRoots| |bezoutDiscriminant| |OMgetBind| |changeThreshhold| + |isExpt| |f01qdf| |variationOfParameters| |findCycle| + |nextPrimitiveNormalPoly| |root| |reduceByQuasiMonic| |swapRows!| + |updateStatus!| |listConjugateBases| |unitNormalize| + |oneDimensionalArray| |eulerPhi| |LyndonBasis| |segment| |nodes| |hex| + |reopen!| |initiallyReduce| |xCoord| |numberOfHues| |square?| |lex| + |trigs| |transcendenceDegree| |triangSolve| |weight| |prime?| + |multiple?| |expr| |hexDigit?| |lambda| |numFunEvals| |reduced?| + |notOperand| |pade| |leadingCoefficientRicDE| |gcdPolynomial| + |invertibleSet| |primlimitedint| |OMgetString| |schwerpunkt| |open?| + |oddlambert| |lowerCase| |tan2cot| |#| |redPo| |jacobi| |eval| + |sin2csc| |removeSinhSq| |mapExpon| |subQuasiComponent?| |s17akf| + |precision| |setPoly| |e01sef| |status| |e01bgf| |changeVar| + |branchPoint?| |shiftRight| |semiSubResultantGcdEuclidean2| + |stronglyReduced?| |numFunEvals3D| |OMputEndObject| |weakBiRank| + |ratDsolve| |numericalOptimization| |variable| |lquo| |graphImage| + |optimize| |doublyTransitive?| |child| |minset| |leastPower| |adjoint| + |moreAlgebraic?| |digamma| |interpret| |algintegrate| |doubleDisc| + |f01rcf| |linear?| |binary| |areEquivalent?| |acotIfCan| + |argumentListOf| |tab1| |OMsend| |OMgetSymbol| + |stiffnessAndStabilityOfODEIF| |internalInfRittWu?| |shellSort| + |leaves| |unary?| |gethi| |maxint| |viewport3D| |symmetricProduct| + |cycleTail| |rootRadius| |selectOptimizationRoutines| |exponent| + |endOfFile?| |internalIntegrate| |someBasis| |f07fdf| |dmpToHdmp| + |subResultantsChain| |palgextint0| |isOp| |startTableGcd!| |iidprod| + |changeNameToObjf| |cCosh| |mainCoefficients| |createNormalElement| + |scopes| |flexible?| |deepestInitial| |delete!| |nextSubsetGray| + |recur| |Zero| |s15aef| |integralLastSubResultant| |formula| |s21bcf| + |att2Result| |f04arf| |bumprow| |integralRepresents| + |modularGcdPrimitive| |duplicates| |One| |irreducible?| |signAround| + |numberOfVariables| |rewriteIdealWithHeadRemainder| |prinshINFO| + |generators| |inf| |hypergeometric0F1| |maxrank| |key?| |bsolve| + |hyperelliptic| |pushdterm| |quadratic| |getMeasure| |hash| + |printHeader| |numer| |countRealRootsMultiple| |minrank| + |rightRegularRepresentation| |polygamma| |df2ef| |testDim| |count| + |repeating| |listLoops| |qelt| |noKaratsuba| |denom| |karatsuba| + |realEigenvectors| |iteratedInitials| |printInfo!| |e02bef| |nrows| + |stopTableInvSet!| |radPoly| |f04mbf| |cAcos| |constantIfCan| + |external?| |testModulus| |lllp| |divisors| |ncols| |ocf2ocdf| + |pseudoDivide| |quotientByP| |xRange| |any| |powmod| |pi| |zero| + |edf2df| |fullDisplay| |cfirst| |ptree| |insertionSort!| |rootBound| + |rootPower| |scripted?| |gramschmidt| |yRange| |OMconnectTCP| + |infinity| |nextIrreduciblePoly| |vedf2vef| |leadingIndex| |scan| + |cotIfCan| |composites| |newTypeLists| |readLineIfCan!| |zRange| + |ode2| |And| |mathieu24| |updatD| |insert| |compdegd| |equiv?| + |pureLex| |reduceBasisAtInfinity| |map!| |octon| |vectorise| |cAsec| + |Or| |c05pbf| |lowerCase!| |uncouplingMatrices| + |inverseIntegralMatrix| |constantOperator| D |qsetelt!| |movedPoints| + |typeLists| |less?| |reverse!| |kernel| |selectfirst| |invertible?| + |jacobiIdentity?| |outputSpacing| |dom| |trim| |newReduc| + |atrapezoidal| |extractIndex| |iroot| |draw| |drawComplexVectorField| + |append| |c06fpf| |lexTriangular| |andOperands| |exponentialOrder| + |removeRoughlyRedundantFactorsInPols| |factorByRecursion| |argscript| + |logGamma| |extendIfCan| |countRealRoots| |zeroDimPrimary?| + |showScalarValues| |rightMult| |f02awf| |firstDenom| |realSolve| + |singular?| |e02agf| |plus!| |stoseInvertible?sqfreg| + |complexNormalize| |deleteProperty!| |yellow| |pointColor| + |divideIfCan!| |mvar| |fortranLiteral| |escape| |maxdeg| |mkcomm| + |viewDeltaYDefault| |schema| |acsch| |cAcsch| |makeObject| |e02aef| + |pack!| |universe| |sPol| |s20adf| |arity| |leftZero| + |changeWeightLevel| |fortran| |firstUncouplingMatrix| |intChoose| + |f02bjf| |lazyResidueClass| |e| LODO2FUN |complexNumericIfCan| + |dihedralGroup| |subMatrix| |coef| |getOperands| |ord| + |factorGroebnerBasis| |characteristicSerie| |increase| |makeResult| + |genericLeftTraceForm| |save| |transcendentalDecompose| + |totalDifferential| |leadingIdeal| |continuedFraction| |print| + |sylvesterSequence| |rootPoly| |graphs| |cn| |pushucoef| + |extendedResultant| |subst| |lieAlgebra?| |singularAtInfinity?| + |exprex| |rightOne| |heapSort| |split!| |shiftRoots| |extractClosed| + |lexico| |meshPar2Var| |coordinates| |gcdcofact| |s17agf| |fTable| + |setClosed| |setleft!| |basisOfCommutingElements| |innerEigenvectors| + |discreteLog| |ParCondList| |initTable!| |tanhIfCan| |rischDE| + |normDeriv2| |fortranTypeOf| |monicDivide| |directory| + |removeSuperfluousQuasiComponents| |lazyPseudoQuotient| + |viewZoomDefault| |goodnessOfFit| |separateFactors| |factorials| + |outputMeasure| |move| |conjugates| |space| |shufflein| + |setMaxPoints3D| |c06gqf| |length| |objects| |subCase?| |subSet| + |setVariableOrder| |writable?| |leftDiscriminant| |implies?| |mapmult| + |scripts| |gderiv| |base| |polar| |lfintegrate| |laplace| + |showFortranOutputStack| |currentSubProgram| |op| |getCurve| + |multiEuclideanTree| |generalizedContinuumHypothesisAssumed?| + |equivOperands| |parametersOf| |addPointLast| + |internalLastSubResultant| |pair?| |e01sbf| |indiceSubResultant| |id| + |dmpToP| |tubeRadius| |coerceS| |setButtonValue| |s20acf| + |bipolarCylindrical| |script| FG2F |ode| |makeViewport2D| + |constructorName| |anfactor| |OMputInteger| |coordinate| LT + |ricDsolve| |viewWriteAvailable| |f07adf| |table| + |factorsOfCyclicGroupSize| |badNum| + |generalizedContinuumHypothesisAssumed| |dequeue| + |genericLeftMinimalPolynomial| |removeRedundantFactorsInContents| + |normalizedAssociate| |iiexp| |new| |makeEq| |mainCharacterization| + |lazyPrem| |maxIndex| |lyndon| |primPartElseUnitCanonical| |constant| + |specialTrigs| |tex| |polyPart| |OMputSymbol| |torsionIfCan| UTS2UP + |quartic| |f01bsf| |matrix| |completeHermite| + |genericLeftDiscriminant| |adaptive3D?| |tower| |OMconnInDevice| + |c06ekf| |twoFactor| |collect| |leftRemainder| |resultant| |size?| + |scanOneDimSubspaces| |bivariatePolynomials| |leftQuotient| RF2UTS + |erf| |internalZeroSetSplit| |iflist2Result| |viewpoint| |dihedral| + |palglimint| |LazardQuotient2| |leftDivide| |impliesOperands| + |reciprocalPolynomial| |systemCommand| |setPredicates| + |exprHasLogarithmicWeights| |subspace| |ODESolve| |rotatex| + |setchildren!| |basisOfRightNucleus| |genericPosition| + |leftFactorIfCan| |alphabetic| |previous| |mapUnivariate| |iExquo| + |property| |mainDefiningPolynomial| |setImagSteps| |unexpand| + |hessian| |stoseSquareFreePart| |read!| |structuralConstants| + |primeFactor| |diagonal?| |eigenvectors| |makeGraphImage| + |associative?| |function| |assign| |createThreeSpace| + |internalSubPolSet?| |top| |resultantEuclidean| |normal| |perfectSqrt| + |symbol?| |condition| |unmakeSUP| |debug3D| |possiblyNewVariety?| + |decreasePrecision| |seed| |continue| |curry| |rightRankPolynomial| + |morphism| |neglist| |e04jaf| |units| |cothIfCan| |getVariableOrder| + |partialNumerators| |s15adf| |generic| |f02bbf| |left| + |stoseIntegralLastSubResultant| |graphStates| |rotate!| + |zeroDimPrime?| |s18acf| |xn| |squareFreePolynomial| |multiset| + |OMgetInteger| |right| |copyInto!| |linearlyDependent?| |makeCos| + |monomialIntegrate| |wordInGenerators| |e01daf| |direction| + |palgintegrate| |f07aef| |chineseRemainder| |acschIfCan| F2FG + |rombergo| |oddInfiniteProduct| |simpleBounds?| |super| |c06fuf| + |pointData| |makeVariable| |sncndn| |cyclotomicFactorization| |d01bbf| + |inR?| |genericLeftNorm| |clipSurface| |resize| |viewport2D| |c05adf| + |e04naf| |code| |deepestTail| |mainForm| |stFuncN| + |rationalApproximation| |cSin| |predicate| |numberOfPrimitivePoly| + |initial| |makeSin| |ScanFloatIgnoreSpacesIfCan| |setEmpty!| |inc| + |basisOfNucleus| |dimension| |genus| |randomLC| |hclf| |string| + |conjugate| |cAcoth| |UP2ifCan| |makeprod| |subtractIfCan| + |intcompBasis| |expIfCan| |s14abf| |OMputString| |factorial| + |transform| |divisor| |subNode?| |currentEnv| |safeFloor| |elt| |in?| + |roughEqualIdeals?| |isTimes| |dominantTerm| |denominators| + |maxPoints| |simpsono| |currentScope| |numeric| |twist| |se2rfi| + |multisect| |ratDenom| |leftTrace| |solid?| |basisOfLeftNucloid| |lp| + |extendedint| |OMreadStr| |radical| |lcm| |sec2cos| + |lastSubResultantElseSplit| |modifyPointData| |rotatez| + |zeroDimensional?| |convergents| |fi2df| NOT |youngGroup| |besselJ| + |divideExponents| |mapDown!| |lazyPseudoRemainder| |dark| |is?| + |topFortranOutputStack| |normInvertible?| OR |LyndonWordsList1| + |float?| |parametric?| |measure2Result| |Is| |showTheIFTable| |dot| + |multMonom| |npcoef| AND |iicsc| |viewDefaults| |palgLODE| + |swapColumns!| |redpps| |gcd| |screenResolution3D| |stFunc2| + |monomialIntPoly| |remainder| |tree| |linearDependence| + |indicialEquations| |eisensteinIrreducible?| |prime| |union| + |rationalFunction| |newLine| |cAsech| |parameters| |solveInField| + |radicalEigenvectors| |quote| |trunc| |makeSketch| |false| + |unitsColorDefault| |raisePolynomial| |subResultantChain| |HenselLift| + |declare| |permutationRepresentation| |invmod| |critT| |crushedSet| + |elliptic| |clipWithRanges| |resultantnaif| |e02dff| + |expressIdealMember| |rootOf| |error| |virtualDegree| |upperCase?| + |bubbleSort!| |df2mf| |categoryFrame| |invertibleElseSplit?| |edf2ef| + |partitions| |rischNormalize| |output| |setTopPredicate| |assert| + |genericRightNorm| |varselect| |Vectorise| |numberOfOperations| + |unit?| |directSum| |orbits| |Si| |symbol| |divideIfCan| + |clearTheIFTable| |maxRowIndex| |dimensionsOf| |OMgetEndError| + |listRepresentation| |getProperties| |e04gcf| |LyndonWordsList| + |unitCanonical| |rationalIfCan| |typeList| |rootSimp| |curve| |s18aff| + |OMputEndBind| |finiteBasis| |symbolTable| |setelt!| |clearCache| + |integer| |getMatch| |OMputObject| |interpretString| + |chainSubResultants| |minGbasis| |imagE| |minus!| + |quasiMonicPolynomials| |tablePow| |antiAssociative?| * |nor| + |lazyPseudoDivide| |nand| |pushFortranOutputStack| + |complexEigenvectors| |printTypes| |fractionFreeGauss!| + |rewriteSetWithReduction| |pushuconst| |approxNthRoot| |increment| + |nextSublist| |var1Steps| |minPol| |expandPower| |drawStyle| + |popFortranOutputStack| |mindegTerm| |permutationGroup| |select!| + |e02zaf| |addiag| |finiteBound| |conditionP| |mat| |roughBase?| + |outputAsFortran| |setlast!| |lazyIntegrate| |e02def| |cardinality| + |coleman| |term?| |fortranDouble| |nextColeman| |errorKind| + |pointColorDefault| |pleskenSplit| |numberOfCycles| |resetBadValues| + |SturmHabicht| |represents| SEGMENT |hexDigit| |iicos| |OMReadError?| + |denominator| |leader| |univariate?| |integrate| |genericLeftTrace| + |BumInSepFFE| |zeroVector| |s13acf| |calcRanges| |returns| + |OMunhandledSymbol| |createPrimitiveElement| |pushNewContour| + |pointColorPalette| |solveid| |s21bdf| |lighting| |printInfo| + |companionBlocks| |dictionary| |addBadValue| |hermiteH| + |totalGroebner| |approxSqrt| |sinhcosh| |kroneckerDelta| |cSinh| + |generator| |LiePolyIfCan| |secIfCan| |separate| |quotient| |cCos| + |exponential1| |chebyshevU| |cons| |insert!| |curveColorPalette| + |setScreenResolution| |cAsin| |Frobenius| |d01akf| |setfirst!| + |postfix| |wholePart| |topPredicate| |c06fqf| |OMclose| |divide| + |coth2tanh| |operation| |d02gbf| |PollardSmallFactor| |SFunction| + |queue| |mathieu23| |OMserve| |subset?| |perfectSquare?| + |semiIndiceSubResultantEuclidean| |retract| |LowTriBddDenomInv| + |plotPolar| |graeffe| |returnTypeOf| |resultantReduitEuclidean| + |bombieriNorm| |tubeRadiusDefault| |e01sff| |radix| |s18def| + |linkToFortran| |rightUnits| |ptFunc| |decimal| |quickSort| + |bernoulli| |ffactor| |changeBase| |parabolic| + |getMultiplicationMatrix| |scale| |integralBasisAtInfinity| + |clipPointsDefault| |nullSpace| |range| |Lazard2| |makeFloatFunction| + |rootNormalize| |contract| |s17def| |bandedHessian| |e01bhf| |modulus| + |prepareSubResAlgo| |zag| |vector| |removeConstantTerm| + |evaluateInverse| |clikeUniv| |ruleset| |untab| |extendedIntegrate| + |retractIfCan| |idealSimplify| |lo| |OMputEndAtp| |nlde| |enumerate| + |differentiate| |viewThetaDefault| |traverse| |rangeIsFinite| + |normalizedDivide| |pmintegrate| |e02dcf| |incr| |pile| |setValue!| + |wholeRagits| |SturmHabichtMultiple| |semiSubResultantGcdEuclidean1| + |radicalEigenvalues| |zeroDim?| |bfKeys| |hi| |stoseInvertible?reg| + |iiacsc| |d03eef| |aQuadratic| |alternating| |rightUnit| |moebiusMu| + |suchThat| |linear| |discriminant| |pdf2df| |wronskianMatrix| + |numberOfComponents| |outputForm| |numberOfMonomials| |leaf?| |qroot| + |tensorProduct| |regime| |c06eaf| |bat| |monomRDE| |cycleEntry| + |semiResultantEuclidean2| |stoseInternalLastSubResultant| + |completeSmith| |polynomial| |stack| |lllip| |limitedIntegrate| + |f02akf| |genericRightTraceForm| + |solveLinearPolynomialEquationByRecursion| |light| + |definingInequation| |primlimintfrac| |cot2trig| |partialDenominators| + |rectangularMatrix| |selectFiniteRoutines| |palglimint0| |s21bbf| + |points| |cartesian| |setAttributeButtonStep| |singleFactorBound| + |ParCond| |lfextlimint| |f01qcf| |uniform01| |pointSizeDefault| + |preprocess| |e02bdf| |problemPoints| |hasPredicate?| + |roughUnitIdeal?| |sup| |overlabel| |extractSplittingLeaf| |Beta| + |OMencodingBinary| |completeEchelonBasis| |sub| |integralMatrix| + |clearDenominator| |trapezoidalo| |degreeSubResultant| + |solveLinearlyOverQ| |diag| |primextendedint| |curve?| |unravel| |map| + |integralAtInfinity?| |squareFree| |imagj| |commonDenominator| + |setColumn!| |cyclicSubmodule| |eigenvalues| |exQuo| + |removeRedundantFactorsInPols| |f01mcf| |real?| |factorList| |randomR| + |realElementary| |iitanh| |stop| |saturate| + |halfExtendedSubResultantGcd2| |reverse| |and?| + |exprHasAlgebraicWeight| |hspace| |removeCoshSq| |normFactors| + |charClass| |yCoord| |useNagFunctions| |/\\| |complexLimit| |dmp2rfi| + |f02aaf| |mathieu12| |leftExtendedGcd| |pascalTriangle| |meshFun2Var| + |selectSumOfSquaresRoutines| |cond| |plenaryPower| |\\/| + |solveLinearPolynomialEquation| |child?| |permutation| |generate| + |nil| |numberOfComposites| |mkAnswer| |f04asf| |omError| + |mainPrimitivePart| |maxrow| |convert| |aromberg| |OMreceive| + |pseudoRemainder| |credPol| |setProperties| |sizePascalTriangle| + |critMonD1| |sign| |birth| |viewDeltaXDefault| |incrementBy| + |quotedOperators| |extractIfCan| |variable?| |totolex| |monomials| + |filename| |appendPoint| |difference| |newSubProgram| |limitPlus| + |OMsupportsCD?| |expand| |reify| |sparsityIF| |case| |whileLoop| + |bandedJacobian| |properties| |getConstant| |dilog| |trapezoidal| + |OMgetEndBind| |buildSyntax| |inverse| |filterWhile| |nilFactor| + |permutations| |inHallBasis?| |cyclePartition| |OMputAttr| |not?| + |translate| |smith| |string?| |setAdaptive3D| |nodeOf?| |sin| + |filterUntil| |ldf2vmf| |coefChoose| |write!| |symFunc| |puiseux| + |has?| |startPolynomial| |LazardQuotient| |sumOfKthPowerDivisors| + |floor| |parse| |select| |algDsolve| |complexForm| + |definingPolynomial| |airyBi| |head| |mergeDifference| |nthExpon| + |infieldIntegrate| |semiDiscriminantEuclidean| |cup| + |multiplyCoefficients| |iFTable| |quasiComponent| |inv| + |diagonalMatrix| |redPol| |evenlambert| |nthExponent| |nextPartition| + |rightTrace| |domainOf| |exquo| |refine| |makeYoungTableau| |ground?| + |traceMatrix| |associatorDependence| |identification| |iprint| + |RittWuCompare| |invertIfCan| |cAtanh| |div| |iicoth| |module| + |ground| |extract!| |explicitlyEmpty?| BY |supersub| + |numericalIntegration| |cycleRagits| |cos| + |degreeSubResultantEuclidean| |quo| |cycles| |contractSolve| + |monicCompleteDecompose| |type| |leadingMonomial| |factorAndSplit| + |c05nbf| |euclideanNormalForm| |algint| |latex| |tan| |pattern| + |mapExponents| |createLowComplexityNormalBasis| |primextintfrac| + |purelyAlgebraicLeadingMonomial?| |leadingCoefficient| |setRow!| + |lyndonIfCan| |colorDef| |OMwrite| |selectMultiDimensionalRoutines| + |makeRecord| |cot| |generalizedEigenvector| |makeTerm| |rem| + |skewSFunction| |magnitude| |primitiveMonomials| |complex?| |laguerre| + |selectOrPolynomials| |linearPolynomials| |diagonalProduct| |sec| + |reorder| |integralDerivationMatrix| |stiffnessAndStabilityFactor| + |clearTheFTable| |reductum| |eq?| |routines| |forLoop| |setFormula!| + |over| |csc| |printCode| |setCondition!| |unit| |scalarTypeOf| + |binaryTournament| |box| |seriesToOutputForm| |showTheRoutinesTable| + |li| |outputAsScript| |bipolar| |asin| |power| |symmetricGroup| + |number?| |e02ajf| |bezoutResultant| |createLowComplexityTable| + |palginfieldint| |removeRoughlyRedundantFactorsInPol| |flexibleArray| + |acos| |tryFunctionalDecomposition| |setOfMinN| |curryRight| + |OMopenString| |prolateSpheroidal| |nonSingularModel| |push!| + |zeroSetSplit| |atan| |hitherPlane| |simplifyLog| |groebner?| + |exprToGenUPS| |rightExtendedGcd| |void| |basisOfLeftAnnihilator| + |extractProperty| |iicsch| |fprindINFO| |squareTop| |acot| + |useSingleFactorBound| |rule| |algebraicVariables| + |conditionsForIdempotents| |removeRedundantFactors| + |linearAssociatedExp| |critM| |mapUnivariateIfCan| + |fortranCompilerName| |basicSet| |nextsubResultant2| |minRowIndex| + |factorOfDegree| |OMgetFloat| |alphabetic?| |stopMusserTrials| + |charpol| |relativeApprox| |index| |RemainderList| |bringDown| + |stosePrepareSubResAlgo| |overbar| |empty?| |modularGcd| + |setProperties!| |lazyEvaluate| |highCommonTerms| + |numberOfImproperPartitions| |showTheFTable| |block| |leadingExponent| + |norm| |totalDegree| |gcdprim| |outputAsTex| |doubleRank| + |padicFraction| |rst| |generic?| |not| |charthRoot| |rCoord| + |bindings| |f01qef| |functionIsFracPolynomial?| |factorSquareFree| + |c06gbf| |pair| |f02adf| |augment| |approximants| |gcdcofactprim| + |body| |component| |s17ajf| |gcdPrimitive| |imaginary| |OMgetObject| + |width| |putGraph| |intensity| |pmComplexintegrate| |cubic| ~= + |brillhartTrials| |iiperm| |replaceKthElement| |zeroSquareMatrix| + |ddFact| |maximumExponent| |binding| |asimpson| |OMParseError?| + |socf2socdf| |toScale| |dAndcExp| |iicosh| |imagk| |tubePlot| + |cosSinInfo| |removeDuplicates!| |blankSeparate| + |linearAssociatedOrder| |palgLODE0| |horizConcat| |setProperty!| + |identityMatrix| |s19abf| |s17aef| |OMputEndError| |taylorRep| |close| + |comment| |gbasis| |perfectNthRoot| |rewriteIdealWithRemainder| + |distribute| |discriminantEuclidean| |setScreenResolution3D| + |genericRightTrace| |nthr| |deref| |moduleSum| + |setLegalFortranSourceExtensions| |listYoungTableaus| |sn| + |factorPolynomial| |fortranCarriageReturn| |optional| |sumSquares| + |sumOfDivisors| |imagJ| |display| |sort| |s19acf| |sqfree| |prefix| + |linearDependenceOverZ| |c06ecf| |upDateBranches| |d02cjf| + |getBadValues| = |truncate| |showRegion| |increasePrecision| + |epilogue| |empty| |taylorIfCan| |inverseLaplace| |message| |list| + |OMencodingXML| |test| |d01fcf| |chvar| |halfExtendedResultant2| + |elem?| |region| |showClipRegion| |numberOfChildren| |expandLog| |car| + |sayLength| |setClipValue| |isPlus| < |removeSuperfluousCases| |obj| + |cAcsc| |elRow2!| |moebius| |aQuartic| |removeZero| |normal01| + |distdfact| |roughSubIdeal?| |rightZero| > |cache| |permanent| + |checkForZero| |strongGenerators| |fillPascalTriangle| |htrigs| + |input| |doubleFloatFormat| |e04mbf| |localIntegralBasis| <= + |autoReduced?| |random| |objectOf| |fmecg| |setProperty| |e02bcf| + |ignore?| |name| |tail| |bottom!| |basis| |library| >= |orOperands| + |bumptab1| |OMmakeConn| |OMputBVar| |Lazard| |getMultiplicationTable| + |leftNorm| |ranges| |digit?| |reseed| |B1solve| |mainVariables| + |conjug| |iidsum| |nextItem| |normalDenom| |s01eaf| |quasiRegular?| + |algebraicCoefficients?| |balancedBinaryTree| |iiatan| |char| |d03edf| + |solid| |listBranches| |bezoutMatrix| |returnType!| |po| + |rationalPoints| |numericIfCan| |qPot| + |iiacot| + |integralCoordinates| |normalForm| |regularRepresentation| |cCoth| |t| + |palgextint| |partialFraction| |minIndex| |OMputEndApp| |set| - + |fortranReal| |LagrangeInterpolation| |or| |innerSolve| |float| + |mapGen| |OMgetType| |fglmIfCan| |readIfCan!| |extend| / |and| + |compose| |minimumExponent| |besselK| |modularFactor| |even?| + |figureUnits| |completeHensel| |polarCoordinates| |sumOfSquares| + |reflect| |complementaryBasis| |rquo| |torsion?| |realZeros| + |negative?| |mesh?| |maxPoints3D| |resultantReduit| |OMsetEncoding| + |exactQuotient| |coth2trigh| |log2| |numberOfComputedEntries| + |rightTrim| |extensionDegree| |e04dgf| |nthCoef| |d01apf| + |normalDeriv| |setOrder| |nullary?| |exists?| |iiatanh| |leftTrim| + |connect| |index?| |var1StepsDefault| |geometric| |chiSquare1| + |getOperator| |binarySearchTree| |f02aff| |nextLatticePermutation| + |datalist| |cyclicEqual?| |arrayStack| |semiResultantEuclidean1| |ref| + |e04ycf| |rotate| |An| |OMopenFile| |getDatabase| |karatsubaOnce| + |iiasinh| |setPrologue!| |readLine!| |indicialEquationAtInfinity| + |integralBasis| |shrinkable| |dimensions| |unrankImproperPartitions0| + |consnewpol| |e01baf| |show| |node| |axes| |constantToUnaryFunction| + |diff| GE |f02xef| |sinh2csch| |normalized?| |mkIntegral| |build| + |stopTableGcd!| |compile| |e02daf| |complexSolve| |diophantineSystem| + GT |integral?| |firstNumer| |mulmod| |leadingTerm| |equality| + |fortranComplex| |trace| |alternatingGroup| |ramifiedAtInfinity?| + |transpose| LE |clearFortranOutputStack| |decomposeFunc| |rarrow| + |hMonic| |OMbindTCP| |zoom| |showSummary| |partition| |d02bbf| + |showAllElements| |elements| |fill!| |qfactor| + |constantCoefficientRicDE| |rename| |swap!| |csch2sinh| |makeop| + |midpoint| |squareFreePrim| |rightNorm| |kmax| |logIfCan| + |showAttributes| |rowEchLocal| |constantRight| |d01anf| |infix| + |leastMonomial| |setnext!| |setStatus!| |fortranLogical| |pointPlot| + |nil| |infinite| |arbitraryExponent| |approximate| |complex| + |shallowMutable| |canonical| |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 92bcfff0..8fee8a1b 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,4903 +1,4908 @@ -(3137825 . 3410359557) -((-1866 (((-108) (-1 (-108) |#2| |#2|) $) 63) (((-108) $) NIL)) (-2806 (($ (-1 (-108) |#2| |#2|) $) 17) (($ $) NIL)) (-2437 ((|#2| $ (-522) |#2|) NIL) ((|#2| $ (-1133 (-522)) |#2|) 34)) (-2465 (($ $) 59)) (-2153 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 41) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3314 (((-522) (-1 (-108) |#2|) $) 22) (((-522) |#2| $) NIL) (((-522) |#2| $ (-522)) 71)) (-2395 (((-588 |#2|) $) 13)) (-3164 (($ (-1 (-108) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2397 (($ (-1 |#2| |#2|) $) 29)) (-3810 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 45)) (-1731 (($ |#2| $ (-522)) NIL) (($ $ $ (-522)) 50)) (-2187 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 24)) (-3487 (((-108) (-1 (-108) |#2|) $) 21)) (-2683 ((|#2| $ (-522) |#2|) NIL) ((|#2| $ (-522)) NIL) (($ $ (-1133 (-522))) 49)) (-3835 (($ $ (-522)) 56) (($ $ (-1133 (-522))) 55)) (-4187 (((-708) (-1 (-108) |#2|) $) 26) (((-708) |#2| $) NIL)) (-3629 (($ $ $ (-522)) 52)) (-2463 (($ $) 51)) (-2227 (($ (-588 |#2|)) 53)) (-4170 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-588 $)) 62)) (-2217 (((-792) $) 69)) (-1381 (((-108) (-1 (-108) |#2|) $) 20)) (-1562 (((-108) $ $) 70)) (-1587 (((-108) $ $) 73))) -(((-18 |#1| |#2|) (-10 -8 (-15 -1562 ((-108) |#1| |#1|)) (-15 -2217 ((-792) |#1|)) (-15 -1587 ((-108) |#1| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -2806 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2465 (|#1| |#1|)) (-15 -3629 (|#1| |#1| |#1| (-522))) (-15 -1866 ((-108) |#1|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -3314 ((-522) |#2| |#1| (-522))) (-15 -3314 ((-522) |#2| |#1|)) (-15 -3314 ((-522) (-1 (-108) |#2|) |#1|)) (-15 -1866 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3164 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2437 (|#2| |#1| (-1133 (-522)) |#2|)) (-15 -1731 (|#1| |#1| |#1| (-522))) (-15 -1731 (|#1| |#2| |#1| (-522))) (-15 -3835 (|#1| |#1| (-1133 (-522)))) (-15 -3835 (|#1| |#1| (-522))) (-15 -2683 (|#1| |#1| (-1133 (-522)))) (-15 -3810 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4170 (|#1| (-588 |#1|))) (-15 -4170 (|#1| |#1| |#1|)) (-15 -4170 (|#1| |#2| |#1|)) (-15 -4170 (|#1| |#1| |#2|)) (-15 -2227 (|#1| (-588 |#2|))) (-15 -2187 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -2153 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2153 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2153 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2683 (|#2| |#1| (-522))) (-15 -2683 (|#2| |#1| (-522) |#2|)) (-15 -2437 (|#2| |#1| (-522) |#2|)) (-15 -4187 ((-708) |#2| |#1|)) (-15 -2395 ((-588 |#2|) |#1|)) (-15 -4187 ((-708) (-1 (-108) |#2|) |#1|)) (-15 -3487 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1381 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3810 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2463 (|#1| |#1|))) (-19 |#2|) (-1120)) (T -18)) -NIL -(-10 -8 (-15 -1562 ((-108) |#1| |#1|)) (-15 -2217 ((-792) |#1|)) (-15 -1587 ((-108) |#1| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -2806 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2465 (|#1| |#1|)) (-15 -3629 (|#1| |#1| |#1| (-522))) (-15 -1866 ((-108) |#1|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -3314 ((-522) |#2| |#1| (-522))) (-15 -3314 ((-522) |#2| |#1|)) (-15 -3314 ((-522) (-1 (-108) |#2|) |#1|)) (-15 -1866 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3164 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2437 (|#2| |#1| (-1133 (-522)) |#2|)) (-15 -1731 (|#1| |#1| |#1| (-522))) (-15 -1731 (|#1| |#2| |#1| (-522))) (-15 -3835 (|#1| |#1| (-1133 (-522)))) (-15 -3835 (|#1| |#1| (-522))) (-15 -2683 (|#1| |#1| (-1133 (-522)))) (-15 -3810 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4170 (|#1| (-588 |#1|))) (-15 -4170 (|#1| |#1| |#1|)) (-15 -4170 (|#1| |#2| |#1|)) (-15 -4170 (|#1| |#1| |#2|)) (-15 -2227 (|#1| (-588 |#2|))) (-15 -2187 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -2153 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2153 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2153 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2683 (|#2| |#1| (-522))) (-15 -2683 (|#2| |#1| (-522) |#2|)) (-15 -2437 (|#2| |#1| (-522) |#2|)) (-15 -4187 ((-708) |#2| |#1|)) (-15 -2395 ((-588 |#2|) |#1|)) (-15 -4187 ((-708) (-1 (-108) |#2|) |#1|)) (-15 -3487 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1381 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3810 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2463 (|#1| |#1|))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3883 (((-1171) $ (-522) (-522)) 40 (|has| $ (-6 -4239)))) (-1866 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-784)))) (-2806 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4239))) (($ $) 88 (-12 (|has| |#1| (-784)) (|has| $ (-6 -4239))))) (-3296 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-784)))) (-2717 (((-108) $ (-708)) 8)) (-2437 ((|#1| $ (-522) |#1|) 52 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) 58 (|has| $ (-6 -4239)))) (-1696 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4238)))) (-3367 (($) 7 T CONST)) (-2465 (($ $) 90 (|has| $ (-6 -4239)))) (-1939 (($ $) 100)) (-2379 (($ $) 78 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1424 (($ |#1| $) 77 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4238)))) (-2411 ((|#1| $ (-522) |#1|) 53 (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-522)) 51)) (-3314 (((-522) (-1 (-108) |#1|) $) 97) (((-522) |#1| $) 96 (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) 95 (|has| |#1| (-1014)))) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1893 (($ (-708) |#1|) 69)) (-1480 (((-108) $ (-708)) 9)) (-3496 (((-522) $) 43 (|has| (-522) (-784)))) (-1308 (($ $ $) 87 (|has| |#1| (-784)))) (-3164 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-784)))) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2201 (((-522) $) 44 (|has| (-522) (-784)))) (-2524 (($ $ $) 86 (|has| |#1| (-784)))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3309 (((-108) $ (-708)) 10)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1731 (($ |#1| $ (-522)) 60) (($ $ $ (-522)) 59)) (-2130 (((-588 (-522)) $) 46)) (-2103 (((-108) (-522) $) 47)) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2337 ((|#1| $) 42 (|has| (-522) (-784)))) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1972 (($ $ |#1|) 41 (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3434 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) 48)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 ((|#1| $ (-522) |#1|) 50) ((|#1| $ (-522)) 49) (($ $ (-1133 (-522))) 63)) (-3835 (($ $ (-522)) 62) (($ $ (-1133 (-522))) 61)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3629 (($ $ $ (-522)) 91 (|has| $ (-6 -4239)))) (-2463 (($ $) 13)) (-3873 (((-498) $) 79 (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) 70)) (-4170 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-588 $)) 65)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1623 (((-108) $ $) 84 (|has| |#1| (-784)))) (-1597 (((-108) $ $) 83 (|has| |#1| (-784)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-1609 (((-108) $ $) 85 (|has| |#1| (-784)))) (-1587 (((-108) $ $) 82 (|has| |#1| (-784)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-19 |#1|) (-1197) (-1120)) (T -19)) -NIL -(-13 (-348 |t#1|) (-10 -7 (-6 -4239))) -(((-33) . T) ((-97) -3844 (|has| |#1| (-1014)) (|has| |#1| (-784))) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-784)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-262 #0=(-522) |#1|) . T) ((-264 #0# |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-348 |#1|) . T) ((-461 |#1|) . T) ((-555 #0# |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-593 |#1|) . T) ((-784) |has| |#1| (-784)) ((-1014) -3844 (|has| |#1| (-1014)) (|has| |#1| (-784))) ((-1120) . T)) -((-2265 (((-3 $ "failed") $ $) 12)) (-1672 (($ $) NIL) (($ $ $) 9)) (* (($ (-850) $) NIL) (($ (-708) $) 16) (($ (-522) $) 21))) -(((-20 |#1|) (-10 -8 (-15 * (|#1| (-522) |#1|)) (-15 -1672 (|#1| |#1| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 -2265 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|))) (-21)) (T -20)) -NIL -(-10 -8 (-15 * (|#1| (-522) |#1|)) (-15 -1672 (|#1| |#1| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 -2265 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-3697 (($) 18 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20))) -(((-21) (-1197)) (T -21)) -((-1672 (*1 *1 *1) (-4 *1 (-21))) (-1672 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-522))))) -(-13 (-124) (-10 -8 (-15 -1672 ($ $)) (-15 -1672 ($ $ $)) (-15 * ($ (-522) $)))) -(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-2944 (((-108) $) 10)) (-3367 (($) 15)) (* (($ (-850) $) 14) (($ (-708) $) 18))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-708) |#1|)) (-15 -2944 ((-108) |#1|)) (-15 -3367 (|#1|)) (-15 * (|#1| (-850) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-708) |#1|)) (-15 -2944 ((-108) |#1|)) (-15 -3367 (|#1|)) (-15 * (|#1| (-850) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3367 (($) 17 T CONST)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-3697 (($) 18 T CONST)) (-1562 (((-108) $ $) 6)) (-1661 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15))) -(((-23) (-1197)) (T -23)) -((-3697 (*1 *1) (-4 *1 (-23))) (-3367 (*1 *1) (-4 *1 (-23))) (-2944 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-708))))) -(-13 (-25) (-10 -8 (-15 (-3697) ($) -2855) (-15 -3367 ($) -2855) (-15 -2944 ((-108) $)) (-15 * ($ (-708) $)))) -(((-25) . T) ((-97) . T) ((-562 (-792)) . T) ((-1014) . T)) -((* (($ (-850) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-850) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-850) |#1|))) -((-1419 (((-108) $ $) 7)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-1562 (((-108) $ $) 6)) (-1661 (($ $ $) 14)) (* (($ (-850) $) 13))) -(((-25) (-1197)) (T -25)) -((-1661 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-850))))) -(-13 (-1014) (-10 -8 (-15 -1661 ($ $ $)) (-15 * ($ (-850) $)))) -(((-97) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-3899 (((-588 $) (-881 $)) 29) (((-588 $) (-1081 $)) 16) (((-588 $) (-1081 $) (-1085)) 20)) (-3974 (($ (-881 $)) 27) (($ (-1081 $)) 11) (($ (-1081 $) (-1085)) 54)) (-2136 (((-588 $) (-881 $)) 30) (((-588 $) (-1081 $)) 18) (((-588 $) (-1081 $) (-1085)) 19)) (-1275 (($ (-881 $)) 28) (($ (-1081 $)) 13) (($ (-1081 $) (-1085)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -3899 ((-588 |#1|) (-1081 |#1|) (-1085))) (-15 -3899 ((-588 |#1|) (-1081 |#1|))) (-15 -3899 ((-588 |#1|) (-881 |#1|))) (-15 -3974 (|#1| (-1081 |#1|) (-1085))) (-15 -3974 (|#1| (-1081 |#1|))) (-15 -3974 (|#1| (-881 |#1|))) (-15 -2136 ((-588 |#1|) (-1081 |#1|) (-1085))) (-15 -2136 ((-588 |#1|) (-1081 |#1|))) (-15 -2136 ((-588 |#1|) (-881 |#1|))) (-15 -1275 (|#1| (-1081 |#1|) (-1085))) (-15 -1275 (|#1| (-1081 |#1|))) (-15 -1275 (|#1| (-881 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -3899 ((-588 |#1|) (-1081 |#1|) (-1085))) (-15 -3899 ((-588 |#1|) (-1081 |#1|))) (-15 -3899 ((-588 |#1|) (-881 |#1|))) (-15 -3974 (|#1| (-1081 |#1|) (-1085))) (-15 -3974 (|#1| (-1081 |#1|))) (-15 -3974 (|#1| (-881 |#1|))) (-15 -2136 ((-588 |#1|) (-1081 |#1|) (-1085))) (-15 -2136 ((-588 |#1|) (-1081 |#1|))) (-15 -2136 ((-588 |#1|) (-881 |#1|))) (-15 -1275 (|#1| (-1081 |#1|) (-1085))) (-15 -1275 (|#1| (-1081 |#1|))) (-15 -1275 (|#1| (-881 |#1|)))) -((-1419 (((-108) $ $) 7)) (-3899 (((-588 $) (-881 $)) 80) (((-588 $) (-1081 $)) 79) (((-588 $) (-1081 $) (-1085)) 78)) (-3974 (($ (-881 $)) 83) (($ (-1081 $)) 82) (($ (-1081 $) (-1085)) 81)) (-2944 (((-108) $) 16)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2298 (($ $) 40)) (-3007 (((-108) $) 38)) (-2265 (((-3 $ "failed") $ $) 19)) (-2961 (($ $) 73)) (-3133 (((-393 $) $) 72)) (-2016 (($ $) 92)) (-2805 (((-108) $ $) 59)) (-3367 (($) 17 T CONST)) (-2136 (((-588 $) (-881 $)) 86) (((-588 $) (-1081 $)) 85) (((-588 $) (-1081 $) (-1085)) 84)) (-1275 (($ (-881 $)) 89) (($ (-1081 $)) 88) (($ (-1081 $) (-1085)) 87)) (-2333 (($ $ $) 55)) (-3920 (((-3 $ "failed") $) 34)) (-2303 (($ $ $) 56)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 51)) (-2725 (((-108) $) 71)) (-2859 (((-108) $) 31)) (-1811 (($ $ (-522)) 91)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-2267 (($ $ $) 46) (($ (-588 $)) 45)) (-2311 (((-1068) $) 9)) (-3193 (($ $) 70)) (-4174 (((-1032) $) 10)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2308 (($ $ $) 48) (($ (-588 $)) 47)) (-2006 (((-393 $) $) 74)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2276 (((-3 $ "failed") $ $) 42)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-4031 (((-708) $) 58)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 57)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-382 (-522))) 65)) (-2742 (((-708)) 29)) (-1407 (((-108) $ $) 39)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 69)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1682 (($ $ $) 64)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 68) (($ $ (-382 (-522))) 90)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 67) (($ (-382 (-522)) $) 66))) -(((-27) (-1197)) (T -27)) -((-1275 (*1 *1 *2) (-12 (-5 *2 (-881 *1)) (-4 *1 (-27)))) (-1275 (*1 *1 *2) (-12 (-5 *2 (-1081 *1)) (-4 *1 (-27)))) (-1275 (*1 *1 *2 *3) (-12 (-5 *2 (-1081 *1)) (-5 *3 (-1085)) (-4 *1 (-27)))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-881 *1)) (-4 *1 (-27)) (-5 *2 (-588 *1)))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-1081 *1)) (-4 *1 (-27)) (-5 *2 (-588 *1)))) (-2136 (*1 *2 *3 *4) (-12 (-5 *3 (-1081 *1)) (-5 *4 (-1085)) (-4 *1 (-27)) (-5 *2 (-588 *1)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-881 *1)) (-4 *1 (-27)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-1081 *1)) (-4 *1 (-27)))) (-3974 (*1 *1 *2 *3) (-12 (-5 *2 (-1081 *1)) (-5 *3 (-1085)) (-4 *1 (-27)))) (-3899 (*1 *2 *3) (-12 (-5 *3 (-881 *1)) (-4 *1 (-27)) (-5 *2 (-588 *1)))) (-3899 (*1 *2 *3) (-12 (-5 *3 (-1081 *1)) (-4 *1 (-27)) (-5 *2 (-588 *1)))) (-3899 (*1 *2 *3 *4) (-12 (-5 *3 (-1081 *1)) (-5 *4 (-1085)) (-4 *1 (-27)) (-5 *2 (-588 *1))))) -(-13 (-338) (-928) (-10 -8 (-15 -1275 ($ (-881 $))) (-15 -1275 ($ (-1081 $))) (-15 -1275 ($ (-1081 $) (-1085))) (-15 -2136 ((-588 $) (-881 $))) (-15 -2136 ((-588 $) (-1081 $))) (-15 -2136 ((-588 $) (-1081 $) (-1085))) (-15 -3974 ($ (-881 $))) (-15 -3974 ($ (-1081 $))) (-15 -3974 ($ (-1081 $) (-1085))) (-15 -3899 ((-588 $) (-881 $))) (-15 -3899 ((-588 $) (-1081 $))) (-15 -3899 ((-588 $) (-1081 $) (-1085))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-220) . T) ((-266) . T) ((-283) . T) ((-338) . T) ((-426) . T) ((-514) . T) ((-590 #0#) . T) ((-590 $) . T) ((-655 #0#) . T) ((-655 $) . T) ((-664) . T) ((-849) . T) ((-928) . T) ((-977 #0#) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) . T)) -((-3899 (((-588 $) (-881 $)) NIL) (((-588 $) (-1081 $)) NIL) (((-588 $) (-1081 $) (-1085)) 50) (((-588 $) $) 19) (((-588 $) $ (-1085)) 41)) (-3974 (($ (-881 $)) NIL) (($ (-1081 $)) NIL) (($ (-1081 $) (-1085)) 52) (($ $) 17) (($ $ (-1085)) 37)) (-2136 (((-588 $) (-881 $)) NIL) (((-588 $) (-1081 $)) NIL) (((-588 $) (-1081 $) (-1085)) 48) (((-588 $) $) 15) (((-588 $) $ (-1085)) 43)) (-1275 (($ (-881 $)) NIL) (($ (-1081 $)) NIL) (($ (-1081 $) (-1085)) NIL) (($ $) 12) (($ $ (-1085)) 39))) -(((-28 |#1| |#2|) (-10 -8 (-15 -3899 ((-588 |#1|) |#1| (-1085))) (-15 -3974 (|#1| |#1| (-1085))) (-15 -3899 ((-588 |#1|) |#1|)) (-15 -3974 (|#1| |#1|)) (-15 -2136 ((-588 |#1|) |#1| (-1085))) (-15 -1275 (|#1| |#1| (-1085))) (-15 -2136 ((-588 |#1|) |#1|)) (-15 -1275 (|#1| |#1|)) (-15 -3899 ((-588 |#1|) (-1081 |#1|) (-1085))) (-15 -3899 ((-588 |#1|) (-1081 |#1|))) (-15 -3899 ((-588 |#1|) (-881 |#1|))) (-15 -3974 (|#1| (-1081 |#1|) (-1085))) (-15 -3974 (|#1| (-1081 |#1|))) (-15 -3974 (|#1| (-881 |#1|))) (-15 -2136 ((-588 |#1|) (-1081 |#1|) (-1085))) (-15 -2136 ((-588 |#1|) (-1081 |#1|))) (-15 -2136 ((-588 |#1|) (-881 |#1|))) (-15 -1275 (|#1| (-1081 |#1|) (-1085))) (-15 -1275 (|#1| (-1081 |#1|))) (-15 -1275 (|#1| (-881 |#1|)))) (-29 |#2|) (-13 (-784) (-514))) (T -28)) -NIL -(-10 -8 (-15 -3899 ((-588 |#1|) |#1| (-1085))) (-15 -3974 (|#1| |#1| (-1085))) (-15 -3899 ((-588 |#1|) |#1|)) (-15 -3974 (|#1| |#1|)) (-15 -2136 ((-588 |#1|) |#1| (-1085))) (-15 -1275 (|#1| |#1| (-1085))) (-15 -2136 ((-588 |#1|) |#1|)) (-15 -1275 (|#1| |#1|)) (-15 -3899 ((-588 |#1|) (-1081 |#1|) (-1085))) (-15 -3899 ((-588 |#1|) (-1081 |#1|))) (-15 -3899 ((-588 |#1|) (-881 |#1|))) (-15 -3974 (|#1| (-1081 |#1|) (-1085))) (-15 -3974 (|#1| (-1081 |#1|))) (-15 -3974 (|#1| (-881 |#1|))) (-15 -2136 ((-588 |#1|) (-1081 |#1|) (-1085))) (-15 -2136 ((-588 |#1|) (-1081 |#1|))) (-15 -2136 ((-588 |#1|) (-881 |#1|))) (-15 -1275 (|#1| (-1081 |#1|) (-1085))) (-15 -1275 (|#1| (-1081 |#1|))) (-15 -1275 (|#1| (-881 |#1|)))) -((-1419 (((-108) $ $) 7)) (-3899 (((-588 $) (-881 $)) 80) (((-588 $) (-1081 $)) 79) (((-588 $) (-1081 $) (-1085)) 78) (((-588 $) $) 126) (((-588 $) $ (-1085)) 124)) (-3974 (($ (-881 $)) 83) (($ (-1081 $)) 82) (($ (-1081 $) (-1085)) 81) (($ $) 127) (($ $ (-1085)) 125)) (-2944 (((-108) $) 16)) (-3533 (((-588 (-1085)) $) 201)) (-1264 (((-382 (-1081 $)) $ (-561 $)) 233 (|has| |#1| (-514)))) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2298 (($ $) 40)) (-3007 (((-108) $) 38)) (-1974 (((-588 (-561 $)) $) 164)) (-2265 (((-3 $ "failed") $ $) 19)) (-1847 (($ $ (-588 (-561 $)) (-588 $)) 154) (($ $ (-588 (-270 $))) 153) (($ $ (-270 $)) 152)) (-2961 (($ $) 73)) (-3133 (((-393 $) $) 72)) (-2016 (($ $) 92)) (-2805 (((-108) $ $) 59)) (-3367 (($) 17 T CONST)) (-2136 (((-588 $) (-881 $)) 86) (((-588 $) (-1081 $)) 85) (((-588 $) (-1081 $) (-1085)) 84) (((-588 $) $) 130) (((-588 $) $ (-1085)) 128)) (-1275 (($ (-881 $)) 89) (($ (-1081 $)) 88) (($ (-1081 $) (-1085)) 87) (($ $) 131) (($ $ (-1085)) 129)) (-3700 (((-3 (-881 |#1|) "failed") $) 251 (|has| |#1| (-971))) (((-3 (-382 (-881 |#1|)) "failed") $) 235 (|has| |#1| (-514))) (((-3 |#1| "failed") $) 197) (((-3 (-522) "failed") $) 195 (|has| |#1| (-962 (-522)))) (((-3 (-1085) "failed") $) 188) (((-3 (-561 $) "failed") $) 139) (((-3 (-382 (-522)) "failed") $) 123 (-3844 (-12 (|has| |#1| (-962 (-522))) (|has| |#1| (-514))) (|has| |#1| (-962 (-382 (-522))))))) (-1478 (((-881 |#1|) $) 252 (|has| |#1| (-971))) (((-382 (-881 |#1|)) $) 236 (|has| |#1| (-514))) ((|#1| $) 198) (((-522) $) 194 (|has| |#1| (-962 (-522)))) (((-1085) $) 189) (((-561 $) $) 140) (((-382 (-522)) $) 122 (-3844 (-12 (|has| |#1| (-962 (-522))) (|has| |#1| (-514))) (|has| |#1| (-962 (-382 (-522))))))) (-2333 (($ $ $) 55)) (-1226 (((-628 |#1|) (-628 $)) 241 (|has| |#1| (-971))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 240 (|has| |#1| (-971))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 121 (-3844 (-4079 (|has| |#1| (-971)) (|has| |#1| (-584 (-522)))) (-4079 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))))) (((-628 (-522)) (-628 $)) 120 (-3844 (-4079 (|has| |#1| (-971)) (|has| |#1| (-584 (-522)))) (-4079 (|has| |#1| (-584 (-522))) (|has| |#1| (-971)))))) (-3920 (((-3 $ "failed") $) 34)) (-2303 (($ $ $) 56)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 51)) (-2725 (((-108) $) 71)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 193 (|has| |#1| (-815 (-354)))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 192 (|has| |#1| (-815 (-522))))) (-2930 (($ (-588 $)) 158) (($ $) 157)) (-2896 (((-588 (-110)) $) 165)) (-1771 (((-110) (-110)) 166)) (-2859 (((-108) $) 31)) (-3077 (((-108) $) 186 (|has| $ (-962 (-522))))) (-1558 (($ $) 218 (|has| |#1| (-971)))) (-2947 (((-1037 |#1| (-561 $)) $) 217 (|has| |#1| (-971)))) (-1811 (($ $ (-522)) 91)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-4185 (((-1081 $) (-561 $)) 183 (|has| $ (-971)))) (-1308 (($ $ $) 137)) (-2524 (($ $ $) 136)) (-3810 (($ (-1 $ $) (-561 $)) 172)) (-3562 (((-3 (-561 $) "failed") $) 162)) (-2267 (($ $ $) 46) (($ (-588 $)) 45)) (-2311 (((-1068) $) 9)) (-1249 (((-588 (-561 $)) $) 163)) (-3043 (($ (-110) (-588 $)) 171) (($ (-110) $) 170)) (-2760 (((-3 (-588 $) "failed") $) 212 (|has| |#1| (-1026)))) (-3242 (((-3 (-2 (|:| |val| $) (|:| -3858 (-522))) "failed") $) 221 (|has| |#1| (-971)))) (-1919 (((-3 (-588 $) "failed") $) 214 (|has| |#1| (-25)))) (-2367 (((-3 (-2 (|:| -3112 (-522)) (|:| |var| (-561 $))) "failed") $) 215 (|has| |#1| (-25)))) (-2024 (((-3 (-2 (|:| |var| (-561 $)) (|:| -3858 (-522))) "failed") $ (-1085)) 220 (|has| |#1| (-971))) (((-3 (-2 (|:| |var| (-561 $)) (|:| -3858 (-522))) "failed") $ (-110)) 219 (|has| |#1| (-971))) (((-3 (-2 (|:| |var| (-561 $)) (|:| -3858 (-522))) "failed") $) 213 (|has| |#1| (-1026)))) (-2935 (((-108) $ (-1085)) 169) (((-108) $ (-110)) 168)) (-3193 (($ $) 70)) (-4179 (((-708) $) 161)) (-4174 (((-1032) $) 10)) (-3199 (((-108) $) 199)) (-3207 ((|#1| $) 200)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2308 (($ $ $) 48) (($ (-588 $)) 47)) (-2368 (((-108) $ (-1085)) 174) (((-108) $ $) 173)) (-2006 (((-393 $) $) 74)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2276 (((-3 $ "failed") $ $) 42)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-2626 (((-108) $) 185 (|has| $ (-962 (-522))))) (-2330 (($ $ (-1085) (-708) (-1 $ $)) 225 (|has| |#1| (-971))) (($ $ (-1085) (-708) (-1 $ (-588 $))) 224 (|has| |#1| (-971))) (($ $ (-588 (-1085)) (-588 (-708)) (-588 (-1 $ (-588 $)))) 223 (|has| |#1| (-971))) (($ $ (-588 (-1085)) (-588 (-708)) (-588 (-1 $ $))) 222 (|has| |#1| (-971))) (($ $ (-588 (-110)) (-588 $) (-1085)) 211 (|has| |#1| (-563 (-498)))) (($ $ (-110) $ (-1085)) 210 (|has| |#1| (-563 (-498)))) (($ $) 209 (|has| |#1| (-563 (-498)))) (($ $ (-588 (-1085))) 208 (|has| |#1| (-563 (-498)))) (($ $ (-1085)) 207 (|has| |#1| (-563 (-498)))) (($ $ (-110) (-1 $ $)) 182) (($ $ (-110) (-1 $ (-588 $))) 181) (($ $ (-588 (-110)) (-588 (-1 $ (-588 $)))) 180) (($ $ (-588 (-110)) (-588 (-1 $ $))) 179) (($ $ (-1085) (-1 $ $)) 178) (($ $ (-1085) (-1 $ (-588 $))) 177) (($ $ (-588 (-1085)) (-588 (-1 $ (-588 $)))) 176) (($ $ (-588 (-1085)) (-588 (-1 $ $))) 175) (($ $ (-588 $) (-588 $)) 146) (($ $ $ $) 145) (($ $ (-270 $)) 144) (($ $ (-588 (-270 $))) 143) (($ $ (-588 (-561 $)) (-588 $)) 142) (($ $ (-561 $) $) 141)) (-4031 (((-708) $) 58)) (-2683 (($ (-110) (-588 $)) 151) (($ (-110) $ $ $ $) 150) (($ (-110) $ $ $) 149) (($ (-110) $ $) 148) (($ (-110) $) 147)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 57)) (-3406 (($ $ $) 160) (($ $) 159)) (-2731 (($ $ (-1085)) 249 (|has| |#1| (-971))) (($ $ (-588 (-1085))) 248 (|has| |#1| (-971))) (($ $ (-1085) (-708)) 247 (|has| |#1| (-971))) (($ $ (-588 (-1085)) (-588 (-708))) 246 (|has| |#1| (-971)))) (-2762 (($ $) 228 (|has| |#1| (-514)))) (-2959 (((-1037 |#1| (-561 $)) $) 227 (|has| |#1| (-514)))) (-1579 (($ $) 184 (|has| $ (-971)))) (-3873 (((-498) $) 255 (|has| |#1| (-563 (-498)))) (($ (-393 $)) 226 (|has| |#1| (-514))) (((-821 (-354)) $) 191 (|has| |#1| (-563 (-821 (-354))))) (((-821 (-522)) $) 190 (|has| |#1| (-563 (-821 (-522)))))) (-2983 (($ $ $) 254 (|has| |#1| (-447)))) (-1596 (($ $ $) 253 (|has| |#1| (-447)))) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-382 (-522))) 65) (($ (-881 |#1|)) 250 (|has| |#1| (-971))) (($ (-382 (-881 |#1|))) 234 (|has| |#1| (-514))) (($ (-382 (-881 (-382 |#1|)))) 232 (|has| |#1| (-514))) (($ (-881 (-382 |#1|))) 231 (|has| |#1| (-514))) (($ (-382 |#1|)) 230 (|has| |#1| (-514))) (($ (-1037 |#1| (-561 $))) 216 (|has| |#1| (-971))) (($ |#1|) 196) (($ (-1085)) 187) (($ (-561 $)) 138)) (-3040 (((-3 $ "failed") $) 239 (|has| |#1| (-133)))) (-2742 (((-708)) 29)) (-3811 (($ (-588 $)) 156) (($ $) 155)) (-4082 (((-108) (-110)) 167)) (-1407 (((-108) $ $) 39)) (-1899 (($ (-1085) (-588 $)) 206) (($ (-1085) $ $ $ $) 205) (($ (-1085) $ $ $) 204) (($ (-1085) $ $) 203) (($ (-1085) $) 202)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 69)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $ (-1085)) 245 (|has| |#1| (-971))) (($ $ (-588 (-1085))) 244 (|has| |#1| (-971))) (($ $ (-1085) (-708)) 243 (|has| |#1| (-971))) (($ $ (-588 (-1085)) (-588 (-708))) 242 (|has| |#1| (-971)))) (-1623 (((-108) $ $) 134)) (-1597 (((-108) $ $) 133)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 135)) (-1587 (((-108) $ $) 132)) (-1682 (($ $ $) 64) (($ (-1037 |#1| (-561 $)) (-1037 |#1| (-561 $))) 229 (|has| |#1| (-514)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 68) (($ $ (-382 (-522))) 90)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 67) (($ (-382 (-522)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-157))) (($ |#1| $) 237 (|has| |#1| (-157))))) -(((-29 |#1|) (-1197) (-13 (-784) (-514))) (T -29)) -((-1275 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-784) (-514))))) (-2136 (*1 *2 *1) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *2 (-588 *1)) (-4 *1 (-29 *3)))) (-1275 (*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-784) (-514))))) (-2136 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-588 *1)) (-4 *1 (-29 *4)))) (-3974 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-784) (-514))))) (-3899 (*1 *2 *1) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *2 (-588 *1)) (-4 *1 (-29 *3)))) (-3974 (*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-784) (-514))))) (-3899 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-588 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-405 |t#1|) (-10 -8 (-15 -1275 ($ $)) (-15 -2136 ((-588 $) $)) (-15 -1275 ($ $ (-1085))) (-15 -2136 ((-588 $) $ (-1085))) (-15 -3974 ($ $)) (-15 -3899 ((-588 $) $)) (-15 -3974 ($ $ (-1085))) (-15 -3899 ((-588 $) $ (-1085))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) |has| |#1| (-157)) ((-107 $ $) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-563 (-821 (-354))) |has| |#1| (-563 (-821 (-354)))) ((-563 (-821 (-522))) |has| |#1| (-563 (-821 (-522)))) ((-220) . T) ((-266) . T) ((-283) . T) ((-285 $) . T) ((-278) . T) ((-338) . T) ((-352 |#1|) |has| |#1| (-971)) ((-375 |#1|) . T) ((-386 |#1|) . T) ((-405 |#1|) . T) ((-426) . T) ((-447) |has| |#1| (-447)) ((-483 (-561 $) $) . T) ((-483 $ $) . T) ((-514) . T) ((-590 #0#) . T) ((-590 |#1|) |has| |#1| (-157)) ((-590 $) . T) ((-584 (-522)) -12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) ((-584 |#1|) |has| |#1| (-971)) ((-655 #0#) . T) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) . T) ((-664) . T) ((-784) . T) ((-829 (-1085)) |has| |#1| (-971)) ((-815 (-354)) |has| |#1| (-815 (-354))) ((-815 (-522)) |has| |#1| (-815 (-522))) ((-813 |#1|) . T) ((-849) . T) ((-928) . T) ((-962 (-382 (-522))) -3844 (|has| |#1| (-962 (-382 (-522)))) (-12 (|has| |#1| (-514)) (|has| |#1| (-962 (-522))))) ((-962 (-382 (-881 |#1|))) |has| |#1| (-514)) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 (-561 $)) . T) ((-962 (-881 |#1|)) |has| |#1| (-971)) ((-962 (-1085)) . T) ((-962 |#1|) . T) ((-977 #0#) . T) ((-977 |#1|) |has| |#1| (-157)) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1120) . T) ((-1124) . T)) -((-2366 (((-1009 (-202)) $) NIL)) (-2351 (((-1009 (-202)) $) NIL)) (-1776 (($ $ (-202)) 123)) (-3467 (($ (-881 (-522)) (-1085) (-1085) (-1009 (-382 (-522))) (-1009 (-382 (-522)))) 85)) (-1414 (((-588 (-588 (-872 (-202)))) $) 135)) (-2217 (((-792) $) 147))) -(((-30) (-13 (-883) (-10 -8 (-15 -3467 ($ (-881 (-522)) (-1085) (-1085) (-1009 (-382 (-522))) (-1009 (-382 (-522))))) (-15 -1776 ($ $ (-202)))))) (T -30)) -((-3467 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-881 (-522))) (-5 *3 (-1085)) (-5 *4 (-1009 (-382 (-522)))) (-5 *1 (-30)))) (-1776 (*1 *1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-30))))) -(-13 (-883) (-10 -8 (-15 -3467 ($ (-881 (-522)) (-1085) (-1085) (-1009 (-382 (-522))) (-1009 (-382 (-522))))) (-15 -1776 ($ $ (-202))))) -((-1275 ((|#2| (-1081 |#2|) (-1085)) 42)) (-1771 (((-110) (-110)) 55)) (-4185 (((-1081 |#2|) (-561 |#2|)) 131 (|has| |#1| (-962 (-522))))) (-4172 ((|#2| |#1| (-522)) 110 (|has| |#1| (-962 (-522))))) (-3576 ((|#2| (-1081 |#2|) |#2|) 30)) (-3239 (((-792) (-588 |#2|)) 86)) (-1579 ((|#2| |#2|) 127 (|has| |#1| (-962 (-522))))) (-4082 (((-108) (-110)) 18)) (** ((|#2| |#2| (-382 (-522))) 91 (|has| |#1| (-962 (-522)))))) -(((-31 |#1| |#2|) (-10 -7 (-15 -1275 (|#2| (-1081 |#2|) (-1085))) (-15 -1771 ((-110) (-110))) (-15 -4082 ((-108) (-110))) (-15 -3576 (|#2| (-1081 |#2|) |#2|)) (-15 -3239 ((-792) (-588 |#2|))) (IF (|has| |#1| (-962 (-522))) (PROGN (-15 ** (|#2| |#2| (-382 (-522)))) (-15 -4185 ((-1081 |#2|) (-561 |#2|))) (-15 -1579 (|#2| |#2|)) (-15 -4172 (|#2| |#1| (-522)))) |%noBranch|)) (-13 (-784) (-514)) (-405 |#1|)) (T -31)) -((-4172 (*1 *2 *3 *4) (-12 (-5 *4 (-522)) (-4 *2 (-405 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-962 *4)) (-4 *3 (-13 (-784) (-514))))) (-1579 (*1 *2 *2) (-12 (-4 *3 (-962 (-522))) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-31 *3 *2)) (-4 *2 (-405 *3)))) (-4185 (*1 *2 *3) (-12 (-5 *3 (-561 *5)) (-4 *5 (-405 *4)) (-4 *4 (-962 (-522))) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-1081 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-382 (-522))) (-4 *4 (-962 (-522))) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-31 *4 *2)) (-4 *2 (-405 *4)))) (-3239 (*1 *2 *3) (-12 (-5 *3 (-588 *5)) (-4 *5 (-405 *4)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-792)) (-5 *1 (-31 *4 *5)))) (-3576 (*1 *2 *3 *2) (-12 (-5 *3 (-1081 *2)) (-4 *2 (-405 *4)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-31 *4 *2)))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108)) (-5 *1 (-31 *4 *5)) (-4 *5 (-405 *4)))) (-1771 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-31 *3 *4)) (-4 *4 (-405 *3)))) (-1275 (*1 *2 *3 *4) (-12 (-5 *3 (-1081 *2)) (-5 *4 (-1085)) (-4 *2 (-405 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-784) (-514)))))) -(-10 -7 (-15 -1275 (|#2| (-1081 |#2|) (-1085))) (-15 -1771 ((-110) (-110))) (-15 -4082 ((-108) (-110))) (-15 -3576 (|#2| (-1081 |#2|) |#2|)) (-15 -3239 ((-792) (-588 |#2|))) (IF (|has| |#1| (-962 (-522))) (PROGN (-15 ** (|#2| |#2| (-382 (-522)))) (-15 -4185 ((-1081 |#2|) (-561 |#2|))) (-15 -1579 (|#2| |#2|)) (-15 -4172 (|#2| |#1| (-522)))) |%noBranch|)) -((-2717 (((-108) $ (-708)) 16)) (-3367 (($) 10)) (-1480 (((-108) $ (-708)) 15)) (-3309 (((-108) $ (-708)) 14)) (-2065 (((-108) $ $) 8)) (-3494 (((-108) $) 13))) -(((-32 |#1|) (-10 -8 (-15 -3367 (|#1|)) (-15 -2717 ((-108) |#1| (-708))) (-15 -1480 ((-108) |#1| (-708))) (-15 -3309 ((-108) |#1| (-708))) (-15 -3494 ((-108) |#1|)) (-15 -2065 ((-108) |#1| |#1|))) (-33)) (T -32)) -NIL -(-10 -8 (-15 -3367 (|#1|)) (-15 -2717 ((-108) |#1| (-708))) (-15 -1480 ((-108) |#1| (-708))) (-15 -3309 ((-108) |#1| (-708))) (-15 -3494 ((-108) |#1|)) (-15 -2065 ((-108) |#1| |#1|))) -((-2717 (((-108) $ (-708)) 8)) (-3367 (($) 7 T CONST)) (-1480 (((-108) $ (-708)) 9)) (-3309 (((-108) $ (-708)) 10)) (-2065 (((-108) $ $) 14)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2463 (($ $) 13)) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-33) (-1197)) (T -33)) -((-2065 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-2463 (*1 *1 *1) (-4 *1 (-33))) (-3298 (*1 *1) (-4 *1 (-33))) (-3494 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-3309 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-708)) (-5 *2 (-108)))) (-1480 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-708)) (-5 *2 (-108)))) (-2717 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-708)) (-5 *2 (-108)))) (-3367 (*1 *1) (-4 *1 (-33))) (-3591 (*1 *2 *1) (-12 (|has| *1 (-6 -4238)) (-4 *1 (-33)) (-5 *2 (-708))))) -(-13 (-1120) (-10 -8 (-15 -2065 ((-108) $ $)) (-15 -2463 ($ $)) (-15 -3298 ($)) (-15 -3494 ((-108) $)) (-15 -3309 ((-108) $ (-708))) (-15 -1480 ((-108) $ (-708))) (-15 -2717 ((-108) $ (-708))) (-15 -3367 ($) -2855) (IF (|has| $ (-6 -4238)) (-15 -3591 ((-708) $)) |%noBranch|))) -(((-1120) . T)) -((-1856 (($ $) 11)) (-1839 (($ $) 10)) (-1873 (($ $) 9)) (-2476 (($ $) 8)) (-1864 (($ $) 7)) (-1849 (($ $) 6))) -(((-34) (-1197)) (T -34)) -((-1856 (*1 *1 *1) (-4 *1 (-34))) (-1839 (*1 *1 *1) (-4 *1 (-34))) (-1873 (*1 *1 *1) (-4 *1 (-34))) (-2476 (*1 *1 *1) (-4 *1 (-34))) (-1864 (*1 *1 *1) (-4 *1 (-34))) (-1849 (*1 *1 *1) (-4 *1 (-34)))) -(-13 (-10 -8 (-15 -1849 ($ $)) (-15 -1864 ($ $)) (-15 -2476 ($ $)) (-15 -1873 ($ $)) (-15 -1839 ($ $)) (-15 -1856 ($ $)))) -((-1419 (((-108) $ $) 19 (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))))) (-3526 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 125)) (-2126 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 148)) (-3961 (($ $) 146)) (-1883 (($) 72) (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) 71)) (-3883 (((-1171) $ |#1| |#1|) 99 (|has| $ (-6 -4239))) (((-1171) $ (-522) (-522)) 178 (|has| $ (-6 -4239)))) (-2211 (($ $ (-522)) 159 (|has| $ (-6 -4239)))) (-1866 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 209) (((-108) $) 203 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)))) (-2806 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 200 (|has| $ (-6 -4239))) (($ $) 199 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)) (|has| $ (-6 -4239))))) (-3296 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)))) (-2717 (((-108) $ (-708)) 8)) (-1198 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 134 (|has| $ (-6 -4239)))) (-2398 (($ $ $) 155 (|has| $ (-6 -4239)))) (-2631 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 157 (|has| $ (-6 -4239)))) (-3393 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 153 (|has| $ (-6 -4239)))) (-2437 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-522) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 189 (|has| $ (-6 -4239))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-1133 (-522)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 160 (|has| $ (-6 -4239))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ "last" (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 158 (|has| $ (-6 -4239))) (($ $ "rest" $) 156 (|has| $ (-6 -4239))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ "first" (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 154 (|has| $ (-6 -4239))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ "value" (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 133 (|has| $ (-6 -4239)))) (-2684 (($ $ (-588 $)) 132 (|has| $ (-6 -4239)))) (-1213 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 45 (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 216)) (-1696 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 55 (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 175 (|has| $ (-6 -4238)))) (-2116 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 147)) (-4011 (((-3 |#2| "failed") |#1| $) 61)) (-3367 (($) 7 T CONST)) (-2465 (($ $) 201 (|has| $ (-6 -4239)))) (-1939 (($ $) 211)) (-2352 (($ $ (-708)) 142) (($ $) 140)) (-1581 (($ $) 214 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (-2379 (($ $) 58 (-3844 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| $ (-6 -4238))) (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| $ (-6 -4238)))))) (-1700 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 47 (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 46 (|has| $ (-6 -4238))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 220) (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 215 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (-1424 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 54 (|has| $ (-6 -4238))) (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 174 (|has| $ (-6 -4238)))) (-2153 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 56 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 53 (|has| $ (-6 -4238))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 52 (|has| $ (-6 -4238))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 176 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 173 (|has| $ (-6 -4238))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 172 (|has| $ (-6 -4238)))) (-2411 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4239))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-522) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 190 (|has| $ (-6 -4239)))) (-2186 ((|#2| $ |#1|) 88) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-522)) 188)) (-3614 (((-108) $) 192)) (-3314 (((-522) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 208) (((-522) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 207 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))) (((-522) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-522)) 206 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (-2395 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 30 (|has| $ (-6 -4238))) (((-588 |#2|) $) 79 (|has| $ (-6 -4238))) (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 114 (|has| $ (-6 -4238)))) (-2674 (((-588 $) $) 123)) (-2402 (((-108) $ $) 131 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (-1893 (($ (-708) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 169)) (-1480 (((-108) $ (-708)) 9)) (-3496 ((|#1| $) 96 (|has| |#1| (-784))) (((-522) $) 180 (|has| (-522) (-784)))) (-1308 (($ $ $) 198 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)))) (-3557 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)))) (-3164 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)))) (-4084 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 29 (|has| $ (-6 -4238))) (((-588 |#2|) $) 80 (|has| $ (-6 -4238))) (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 115 (|has| $ (-6 -4238)))) (-4176 (((-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1014)) (|has| $ (-6 -4238)))) (((-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| $ (-6 -4238))))) (-2201 ((|#1| $) 95 (|has| |#1| (-784))) (((-522) $) 181 (|has| (-522) (-784)))) (-2524 (($ $ $) 197 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)))) (-2397 (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 34 (|has| $ (-6 -4239))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4239))) (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 110 (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 109)) (-1614 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 225)) (-3309 (((-108) $ (-708)) 10)) (-2548 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 128)) (-3394 (((-108) $) 124)) (-2311 (((-1068) $) 22 (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))))) (-1442 (($ $ (-708)) 145) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 143)) (-2562 (((-588 |#1|) $) 63)) (-2241 (((-108) |#1| $) 64)) (-1431 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 39)) (-3365 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 40) (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-522)) 219) (($ $ $ (-522)) 218)) (-1731 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-522)) 162) (($ $ $ (-522)) 161)) (-2130 (((-588 |#1|) $) 93) (((-588 (-522)) $) 183)) (-2103 (((-108) |#1| $) 92) (((-108) (-522) $) 184)) (-4174 (((-1032) $) 21 (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))))) (-2337 ((|#2| $) 97 (|has| |#1| (-784))) (($ $ (-708)) 139) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 137)) (-2187 (((-3 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) "failed") (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 51) (((-3 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) "failed") (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 171)) (-1972 (($ $ |#2|) 98 (|has| $ (-6 -4239))) (($ $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 179 (|has| $ (-6 -4239)))) (-3295 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 41)) (-4196 (((-108) $) 191)) (-3487 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 32 (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 112 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) 26 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) 25 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 24 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) 23 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) 86 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) 84 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-270 |#2|))) 83 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) 121 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 120 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) 119 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-588 (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) 118 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))))) (-2065 (((-108) $ $) 14)) (-3434 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014)))) (((-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 182 (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))))) (-1973 (((-588 |#2|) $) 91) (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 185)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-522) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 187) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-522)) 186) (($ $ (-1133 (-522))) 165) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ "first") 138) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ "value") 126)) (-3381 (((-522) $ $) 129)) (-3546 (($) 49) (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) 48)) (-3551 (($ $ (-522)) 222) (($ $ (-1133 (-522))) 221)) (-3835 (($ $ (-522)) 164) (($ $ (-1133 (-522))) 163)) (-3395 (((-108) $) 127)) (-2885 (($ $) 151)) (-1668 (($ $) 152 (|has| $ (-6 -4239)))) (-1321 (((-708) $) 150)) (-1502 (($ $) 149)) (-4187 (((-708) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 31 (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (((-708) |#2| $) 81 (-12 (|has| |#2| (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 113 (|has| $ (-6 -4238)))) (-3629 (($ $ $ (-522)) 202 (|has| $ (-6 -4239)))) (-2463 (($ $) 13)) (-3873 (((-498) $) 59 (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-563 (-498))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-563 (-498)))))) (-2227 (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) 50) (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) 170)) (-2335 (($ $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 224) (($ $ $) 223)) (-4170 (($ $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 168) (($ (-588 $)) 167) (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 136) (($ $ $) 135)) (-2217 (((-792) $) 18 (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-562 (-792))) (|has| |#2| (-562 (-792))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-562 (-792)))))) (-1515 (((-588 $) $) 122)) (-3294 (((-108) $ $) 130 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (-2501 (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) 42)) (-1453 (((-3 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) "failed") |#1| $) 108)) (-1381 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 33 (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 111 (|has| $ (-6 -4238)))) (-1623 (((-108) $ $) 195 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)))) (-1597 (((-108) $ $) 194 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)))) (-1562 (((-108) $ $) 20 (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))))) (-1609 (((-108) $ $) 196 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)))) (-1587 (((-108) $ $) 193 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-35 |#1| |#2|) (-1197) (-1014) (-1014)) (T -35)) -((-1453 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-2 (|:| -2644 *3) (|:| -3149 *4)))))) -(-13 (-1097 |t#1| |t#2|) (-608 (-2 (|:| -2644 |t#1|) (|:| -3149 |t#2|))) (-10 -8 (-15 -1453 ((-3 (-2 (|:| -2644 |t#1|) (|:| -3149 |t#2|)) "failed") |t#1| $)))) -(((-33) . T) ((-102 #0=(-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T) ((-97) -3844 (|has| |#2| (-1014)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784))) ((-562 (-792)) -3844 (|has| |#2| (-1014)) (|has| |#2| (-562 (-792))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-562 (-792)))) ((-139 #1=(-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T) ((-563 (-498)) |has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-563 (-498))) ((-206 #0#) . T) ((-212 #0#) . T) ((-262 #2=(-522) #1#) . T) ((-262 |#1| |#2|) . T) ((-264 #2# #1#) . T) ((-264 |#1| |#2|) . T) ((-285 #1#) -12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))) ((-285 |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((-258 #1#) . T) ((-348 #1#) . T) ((-461 #1#) . T) ((-461 |#2|) . T) ((-555 #2# #1#) . T) ((-555 |#1| |#2|) . T) ((-483 #1# #1#) -12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))) ((-483 |#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((-559 |#1| |#2|) . T) ((-593 #1#) . T) ((-608 #1#) . T) ((-784) |has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)) ((-936 #1#) . T) ((-1014) -3844 (|has| |#2| (-1014)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784))) ((-1059 #1#) . T) ((-1097 |#1| |#2|) . T) ((-1120) . T) ((-1154 #1#) . T)) -((-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#2|) 10))) -(((-36 |#1| |#2|) (-10 -8 (-15 -2217 (|#1| |#2|)) (-15 -2217 (|#1| (-522))) (-15 -2217 ((-792) |#1|))) (-37 |#2|) (-157)) (T -36)) -NIL -(-10 -8 (-15 -2217 (|#1| |#2|)) (-15 -2217 (|#1| (-522))) (-15 -2217 ((-792) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3920 (((-3 $ "failed") $) 34)) (-2859 (((-108) $) 31)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 37)) (-2742 (((-708)) 29)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) -(((-37 |#1|) (-1197) (-157)) (T -37)) -((-2217 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-157))))) -(-13 (-971) (-655 |t#1|) (-10 -8 (-15 -2217 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-655 |#1|) . T) ((-664) . T) ((-977 |#1|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-3428 (((-393 |#1|) |#1|) 38)) (-2006 (((-393 |#1|) |#1|) 27) (((-393 |#1|) |#1| (-588 (-47))) 30)) (-3605 (((-108) |#1|) 54))) -(((-38 |#1|) (-10 -7 (-15 -2006 ((-393 |#1|) |#1| (-588 (-47)))) (-15 -2006 ((-393 |#1|) |#1|)) (-15 -3428 ((-393 |#1|) |#1|)) (-15 -3605 ((-108) |#1|))) (-1142 (-47))) (T -38)) -((-3605 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1142 (-47))))) (-3428 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1142 (-47))))) (-2006 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1142 (-47))))) (-2006 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-47))) (-5 *2 (-393 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1142 (-47)))))) -(-10 -7 (-15 -2006 ((-393 |#1|) |#1| (-588 (-47)))) (-15 -2006 ((-393 |#1|) |#1|)) (-15 -3428 ((-393 |#1|) |#1|)) (-15 -3605 ((-108) |#1|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-1228 (((-2 (|:| |num| (-1166 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| (-382 |#2|) (-338)))) (-2298 (($ $) NIL (|has| (-382 |#2|) (-338)))) (-3007 (((-108) $) NIL (|has| (-382 |#2|) (-338)))) (-3356 (((-628 (-382 |#2|)) (-1166 $)) NIL) (((-628 (-382 |#2|))) NIL)) (-1945 (((-382 |#2|) $) NIL)) (-3833 (((-1094 (-850) (-708)) (-522)) NIL (|has| (-382 |#2|) (-324)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL (|has| (-382 |#2|) (-338)))) (-3133 (((-393 $) $) NIL (|has| (-382 |#2|) (-338)))) (-2805 (((-108) $ $) NIL (|has| (-382 |#2|) (-338)))) (-1685 (((-708)) NIL (|has| (-382 |#2|) (-343)))) (-2856 (((-108)) NIL)) (-1508 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) NIL (|has| (-382 |#2|) (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| (-382 |#2|) (-962 (-382 (-522))))) (((-3 (-382 |#2|) "failed") $) NIL)) (-1478 (((-522) $) NIL (|has| (-382 |#2|) (-962 (-522)))) (((-382 (-522)) $) NIL (|has| (-382 |#2|) (-962 (-382 (-522))))) (((-382 |#2|) $) NIL)) (-3225 (($ (-1166 (-382 |#2|)) (-1166 $)) NIL) (($ (-1166 (-382 |#2|))) 57) (($ (-1166 |#2|) |#2|) 124)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-382 |#2|) (-324)))) (-2333 (($ $ $) NIL (|has| (-382 |#2|) (-338)))) (-1359 (((-628 (-382 |#2|)) $ (-1166 $)) NIL) (((-628 (-382 |#2|)) $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| (-382 |#2|) (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| (-382 |#2|) (-584 (-522)))) (((-2 (|:| -2149 (-628 (-382 |#2|))) (|:| |vec| (-1166 (-382 |#2|)))) (-628 $) (-1166 $)) NIL) (((-628 (-382 |#2|)) (-628 $)) NIL)) (-1315 (((-1166 $) (-1166 $)) NIL)) (-2153 (($ |#3|) NIL) (((-3 $ "failed") (-382 |#3|)) NIL (|has| (-382 |#2|) (-338)))) (-3920 (((-3 $ "failed") $) NIL)) (-2230 (((-588 (-588 |#1|))) NIL (|has| |#1| (-343)))) (-2477 (((-108) |#1| |#1|) NIL)) (-1692 (((-850)) NIL)) (-3344 (($) NIL (|has| (-382 |#2|) (-343)))) (-3148 (((-108)) NIL)) (-2207 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-2303 (($ $ $) NIL (|has| (-382 |#2|) (-338)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL (|has| (-382 |#2|) (-338)))) (-2883 (($ $) NIL)) (-2160 (($) NIL (|has| (-382 |#2|) (-324)))) (-2087 (((-108) $) NIL (|has| (-382 |#2|) (-324)))) (-1380 (($ $ (-708)) NIL (|has| (-382 |#2|) (-324))) (($ $) NIL (|has| (-382 |#2|) (-324)))) (-2725 (((-108) $) NIL (|has| (-382 |#2|) (-338)))) (-3872 (((-850) $) NIL (|has| (-382 |#2|) (-324))) (((-770 (-850)) $) NIL (|has| (-382 |#2|) (-324)))) (-2859 (((-108) $) NIL)) (-1366 (((-708)) NIL)) (-3349 (((-1166 $) (-1166 $)) 100)) (-1269 (((-382 |#2|) $) NIL)) (-1742 (((-588 (-881 |#1|)) (-1085)) NIL (|has| |#1| (-338)))) (-4208 (((-3 $ "failed") $) NIL (|has| (-382 |#2|) (-324)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| (-382 |#2|) (-338)))) (-4199 ((|#3| $) NIL (|has| (-382 |#2|) (-338)))) (-1475 (((-850) $) NIL (|has| (-382 |#2|) (-343)))) (-2142 ((|#3| $) NIL)) (-2267 (($ (-588 $)) NIL (|has| (-382 |#2|) (-338))) (($ $ $) NIL (|has| (-382 |#2|) (-338)))) (-2311 (((-1068) $) NIL)) (-1809 (((-1171) (-708)) 78)) (-2094 (((-628 (-382 |#2|))) 51)) (-1791 (((-628 (-382 |#2|))) 44)) (-3193 (($ $) NIL (|has| (-382 |#2|) (-338)))) (-2464 (($ (-1166 |#2|) |#2|) 125)) (-2286 (((-628 (-382 |#2|))) 45)) (-4203 (((-628 (-382 |#2|))) 43)) (-3385 (((-2 (|:| |num| (-628 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 122)) (-3146 (((-2 (|:| |num| (-1166 |#2|)) (|:| |den| |#2|)) $) 63)) (-3664 (((-1166 $)) 42)) (-1886 (((-1166 $)) 41)) (-3142 (((-108) $) NIL)) (-2010 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-3937 (($) NIL (|has| (-382 |#2|) (-324)) CONST)) (-2882 (($ (-850)) NIL (|has| (-382 |#2|) (-343)))) (-2951 (((-3 |#2| "failed")) NIL)) (-4174 (((-1032) $) NIL)) (-1243 (((-708)) NIL)) (-1368 (($) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| (-382 |#2|) (-338)))) (-2308 (($ (-588 $)) NIL (|has| (-382 |#2|) (-338))) (($ $ $) NIL (|has| (-382 |#2|) (-338)))) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) NIL (|has| (-382 |#2|) (-324)))) (-2006 (((-393 $) $) NIL (|has| (-382 |#2|) (-338)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-382 |#2|) (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| (-382 |#2|) (-338)))) (-2276 (((-3 $ "failed") $ $) NIL (|has| (-382 |#2|) (-338)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| (-382 |#2|) (-338)))) (-4031 (((-708) $) NIL (|has| (-382 |#2|) (-338)))) (-2683 ((|#1| $ |#1| |#1|) NIL)) (-3223 (((-3 |#2| "failed")) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| (-382 |#2|) (-338)))) (-1615 (((-382 |#2|) (-1166 $)) NIL) (((-382 |#2|)) 39)) (-1304 (((-708) $) NIL (|has| (-382 |#2|) (-324))) (((-3 (-708) "failed") $ $) NIL (|has| (-382 |#2|) (-324)))) (-2731 (($ $ (-1 (-382 |#2|) (-382 |#2|)) (-708)) NIL (|has| (-382 |#2|) (-338))) (($ $ (-1 (-382 |#2|) (-382 |#2|))) NIL (|has| (-382 |#2|) (-338))) (($ $ (-1 |#2| |#2|)) 118) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-708)) NIL (-3844 (-12 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324)))) (($ $) NIL (-3844 (-12 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324))))) (-2620 (((-628 (-382 |#2|)) (-1166 $) (-1 (-382 |#2|) (-382 |#2|))) NIL (|has| (-382 |#2|) (-338)))) (-1579 ((|#3|) 50)) (-2670 (($) NIL (|has| (-382 |#2|) (-324)))) (-3510 (((-1166 (-382 |#2|)) $ (-1166 $)) NIL) (((-628 (-382 |#2|)) (-1166 $) (-1166 $)) NIL) (((-1166 (-382 |#2|)) $) 58) (((-628 (-382 |#2|)) (-1166 $)) 101)) (-3873 (((-1166 (-382 |#2|)) $) NIL) (($ (-1166 (-382 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| (-382 |#2|) (-324)))) (-2200 (((-1166 $) (-1166 $)) NIL)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ (-382 |#2|)) NIL) (($ (-382 (-522))) NIL (-3844 (|has| (-382 |#2|) (-962 (-382 (-522)))) (|has| (-382 |#2|) (-338)))) (($ $) NIL (|has| (-382 |#2|) (-338)))) (-3040 (($ $) NIL (|has| (-382 |#2|) (-324))) (((-3 $ "failed") $) NIL (|has| (-382 |#2|) (-133)))) (-2645 ((|#3| $) NIL)) (-2742 (((-708)) NIL)) (-2745 (((-108)) 37)) (-2950 (((-108) |#1|) 49) (((-108) |#2|) 131)) (-2905 (((-1166 $)) 91)) (-1407 (((-108) $ $) NIL (|has| (-382 |#2|) (-338)))) (-3827 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2747 (((-108)) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| (-382 |#2|) (-338)))) (-3697 (($) 16 T CONST)) (-3709 (($) 26 T CONST)) (-2252 (($ $ (-1 (-382 |#2|) (-382 |#2|)) (-708)) NIL (|has| (-382 |#2|) (-338))) (($ $ (-1 (-382 |#2|) (-382 |#2|))) NIL (|has| (-382 |#2|) (-338))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-708)) NIL (-3844 (-12 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324)))) (($ $) NIL (-3844 (-12 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324))))) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ $) NIL (|has| (-382 |#2|) (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| (-382 |#2|) (-338)))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 |#2|)) NIL) (($ (-382 |#2|) $) NIL) (($ (-382 (-522)) $) NIL (|has| (-382 |#2|) (-338))) (($ $ (-382 (-522))) NIL (|has| (-382 |#2|) (-338))))) -(((-39 |#1| |#2| |#3| |#4|) (-13 (-317 |#1| |#2| |#3|) (-10 -7 (-15 -1809 ((-1171) (-708))))) (-338) (-1142 |#1|) (-1142 (-382 |#2|)) |#3|) (T -39)) -((-1809 (*1 *2 *3) (-12 (-5 *3 (-708)) (-4 *4 (-338)) (-4 *5 (-1142 *4)) (-5 *2 (-1171)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1142 (-382 *5))) (-14 *7 *6)))) -(-13 (-317 |#1| |#2| |#3|) (-10 -7 (-15 -1809 ((-1171) (-708))))) -((-2890 ((|#2| |#2|) 47)) (-2937 ((|#2| |#2|) 117 (-12 (|has| |#2| (-405 |#1|)) (|has| |#1| (-426)) (|has| |#1| (-784)) (|has| |#1| (-962 (-522)))))) (-2255 ((|#2| |#2|) 86 (-12 (|has| |#2| (-405 |#1|)) (|has| |#1| (-426)) (|has| |#1| (-784)) (|has| |#1| (-962 (-522)))))) (-3158 ((|#2| |#2|) 87 (-12 (|has| |#2| (-405 |#1|)) (|has| |#1| (-426)) (|has| |#1| (-784)) (|has| |#1| (-962 (-522)))))) (-1764 ((|#2| (-110) |#2| (-708)) 74 (-12 (|has| |#2| (-405 |#1|)) (|has| |#1| (-426)) (|has| |#1| (-784)) (|has| |#1| (-962 (-522)))))) (-1770 (((-1081 |#2|) |#2|) 44)) (-1823 ((|#2| |#2| (-588 (-561 |#2|))) 17) ((|#2| |#2| (-588 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15))) -(((-40 |#1| |#2|) (-10 -7 (-15 -2890 (|#2| |#2|)) (-15 -1823 (|#2| |#2|)) (-15 -1823 (|#2| |#2| |#2|)) (-15 -1823 (|#2| |#2| (-588 |#2|))) (-15 -1823 (|#2| |#2| (-588 (-561 |#2|)))) (-15 -1770 ((-1081 |#2|) |#2|)) (IF (|has| |#1| (-784)) (IF (|has| |#1| (-426)) (IF (|has| |#1| (-962 (-522))) (IF (|has| |#2| (-405 |#1|)) (PROGN (-15 -3158 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -2937 (|#2| |#2|)) (-15 -1764 (|#2| (-110) |#2| (-708)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-514) (-13 (-338) (-278) (-10 -8 (-15 -2947 ((-1037 |#1| (-561 $)) $)) (-15 -2959 ((-1037 |#1| (-561 $)) $)) (-15 -2217 ($ (-1037 |#1| (-561 $))))))) (T -40)) -((-1764 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-110)) (-5 *4 (-708)) (-4 *5 (-426)) (-4 *5 (-784)) (-4 *5 (-962 (-522))) (-4 *5 (-514)) (-5 *1 (-40 *5 *2)) (-4 *2 (-405 *5)) (-4 *2 (-13 (-338) (-278) (-10 -8 (-15 -2947 ((-1037 *5 (-561 $)) $)) (-15 -2959 ((-1037 *5 (-561 $)) $)) (-15 -2217 ($ (-1037 *5 (-561 $))))))))) (-2937 (*1 *2 *2) (-12 (-4 *3 (-426)) (-4 *3 (-784)) (-4 *3 (-962 (-522))) (-4 *3 (-514)) (-5 *1 (-40 *3 *2)) (-4 *2 (-405 *3)) (-4 *2 (-13 (-338) (-278) (-10 -8 (-15 -2947 ((-1037 *3 (-561 $)) $)) (-15 -2959 ((-1037 *3 (-561 $)) $)) (-15 -2217 ($ (-1037 *3 (-561 $))))))))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-426)) (-4 *3 (-784)) (-4 *3 (-962 (-522))) (-4 *3 (-514)) (-5 *1 (-40 *3 *2)) (-4 *2 (-405 *3)) (-4 *2 (-13 (-338) (-278) (-10 -8 (-15 -2947 ((-1037 *3 (-561 $)) $)) (-15 -2959 ((-1037 *3 (-561 $)) $)) (-15 -2217 ($ (-1037 *3 (-561 $))))))))) (-3158 (*1 *2 *2) (-12 (-4 *3 (-426)) (-4 *3 (-784)) (-4 *3 (-962 (-522))) (-4 *3 (-514)) (-5 *1 (-40 *3 *2)) (-4 *2 (-405 *3)) (-4 *2 (-13 (-338) (-278) (-10 -8 (-15 -2947 ((-1037 *3 (-561 $)) $)) (-15 -2959 ((-1037 *3 (-561 $)) $)) (-15 -2217 ($ (-1037 *3 (-561 $))))))))) (-1770 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-1081 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-338) (-278) (-10 -8 (-15 -2947 ((-1037 *4 (-561 $)) $)) (-15 -2959 ((-1037 *4 (-561 $)) $)) (-15 -2217 ($ (-1037 *4 (-561 $))))))))) (-1823 (*1 *2 *2 *3) (-12 (-5 *3 (-588 (-561 *2))) (-4 *2 (-13 (-338) (-278) (-10 -8 (-15 -2947 ((-1037 *4 (-561 $)) $)) (-15 -2959 ((-1037 *4 (-561 $)) $)) (-15 -2217 ($ (-1037 *4 (-561 $))))))) (-4 *4 (-514)) (-5 *1 (-40 *4 *2)))) (-1823 (*1 *2 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-13 (-338) (-278) (-10 -8 (-15 -2947 ((-1037 *4 (-561 $)) $)) (-15 -2959 ((-1037 *4 (-561 $)) $)) (-15 -2217 ($ (-1037 *4 (-561 $))))))) (-4 *4 (-514)) (-5 *1 (-40 *4 *2)))) (-1823 (*1 *2 *2 *2) (-12 (-4 *3 (-514)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-338) (-278) (-10 -8 (-15 -2947 ((-1037 *3 (-561 $)) $)) (-15 -2959 ((-1037 *3 (-561 $)) $)) (-15 -2217 ($ (-1037 *3 (-561 $))))))))) (-1823 (*1 *2 *2) (-12 (-4 *3 (-514)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-338) (-278) (-10 -8 (-15 -2947 ((-1037 *3 (-561 $)) $)) (-15 -2959 ((-1037 *3 (-561 $)) $)) (-15 -2217 ($ (-1037 *3 (-561 $))))))))) (-2890 (*1 *2 *2) (-12 (-4 *3 (-514)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-338) (-278) (-10 -8 (-15 -2947 ((-1037 *3 (-561 $)) $)) (-15 -2959 ((-1037 *3 (-561 $)) $)) (-15 -2217 ($ (-1037 *3 (-561 $)))))))))) -(-10 -7 (-15 -2890 (|#2| |#2|)) (-15 -1823 (|#2| |#2|)) (-15 -1823 (|#2| |#2| |#2|)) (-15 -1823 (|#2| |#2| (-588 |#2|))) (-15 -1823 (|#2| |#2| (-588 (-561 |#2|)))) (-15 -1770 ((-1081 |#2|) |#2|)) (IF (|has| |#1| (-784)) (IF (|has| |#1| (-426)) (IF (|has| |#1| (-962 (-522))) (IF (|has| |#2| (-405 |#1|)) (PROGN (-15 -3158 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -2937 (|#2| |#2|)) (-15 -1764 (|#2| (-110) |#2| (-708)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-2006 (((-393 (-1081 |#3|)) (-1081 |#3|) (-588 (-47))) 22) (((-393 |#3|) |#3| (-588 (-47))) 18))) -(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -2006 ((-393 |#3|) |#3| (-588 (-47)))) (-15 -2006 ((-393 (-1081 |#3|)) (-1081 |#3|) (-588 (-47))))) (-784) (-730) (-878 (-47) |#2| |#1|)) (T -41)) -((-2006 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-47))) (-4 *5 (-784)) (-4 *6 (-730)) (-4 *7 (-878 (-47) *6 *5)) (-5 *2 (-393 (-1081 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1081 *7)))) (-2006 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-47))) (-4 *5 (-784)) (-4 *6 (-730)) (-5 *2 (-393 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-878 (-47) *6 *5))))) -(-10 -7 (-15 -2006 ((-393 |#3|) |#3| (-588 (-47)))) (-15 -2006 ((-393 (-1081 |#3|)) (-1081 |#3|) (-588 (-47))))) -((-1532 (((-708) |#2|) 65)) (-2998 (((-708) |#2|) 68)) (-2119 (((-588 |#2|)) 33)) (-3824 (((-708) |#2|) 67)) (-1493 (((-708) |#2|) 64)) (-2598 (((-708) |#2|) 66)) (-1485 (((-588 (-628 |#1|))) 60)) (-1497 (((-588 |#2|)) 55)) (-2703 (((-588 |#2|) |#2|) 43)) (-2381 (((-588 |#2|)) 57)) (-3983 (((-588 |#2|)) 56)) (-1665 (((-588 (-628 |#1|))) 48)) (-3227 (((-588 |#2|)) 54)) (-2373 (((-588 |#2|) |#2|) 42)) (-1798 (((-588 |#2|)) 50)) (-3825 (((-588 (-628 |#1|))) 61)) (-3376 (((-588 |#2|)) 59)) (-2905 (((-1166 |#2|) (-1166 |#2|)) 84 (|has| |#1| (-283))))) -(((-42 |#1| |#2|) (-10 -7 (-15 -3824 ((-708) |#2|)) (-15 -2998 ((-708) |#2|)) (-15 -1493 ((-708) |#2|)) (-15 -1532 ((-708) |#2|)) (-15 -2598 ((-708) |#2|)) (-15 -1798 ((-588 |#2|))) (-15 -2373 ((-588 |#2|) |#2|)) (-15 -2703 ((-588 |#2|) |#2|)) (-15 -3227 ((-588 |#2|))) (-15 -1497 ((-588 |#2|))) (-15 -3983 ((-588 |#2|))) (-15 -2381 ((-588 |#2|))) (-15 -3376 ((-588 |#2|))) (-15 -1665 ((-588 (-628 |#1|)))) (-15 -1485 ((-588 (-628 |#1|)))) (-15 -3825 ((-588 (-628 |#1|)))) (-15 -2119 ((-588 |#2|))) (IF (|has| |#1| (-283)) (-15 -2905 ((-1166 |#2|) (-1166 |#2|))) |%noBranch|)) (-514) (-392 |#1|)) (T -42)) -((-2905 (*1 *2 *2) (-12 (-5 *2 (-1166 *4)) (-4 *4 (-392 *3)) (-4 *3 (-283)) (-4 *3 (-514)) (-5 *1 (-42 *3 *4)))) (-2119 (*1 *2) (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-392 *3)))) (-3825 (*1 *2) (-12 (-4 *3 (-514)) (-5 *2 (-588 (-628 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-392 *3)))) (-1485 (*1 *2) (-12 (-4 *3 (-514)) (-5 *2 (-588 (-628 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-392 *3)))) (-1665 (*1 *2) (-12 (-4 *3 (-514)) (-5 *2 (-588 (-628 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-392 *3)))) (-3376 (*1 *2) (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-392 *3)))) (-2381 (*1 *2) (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-392 *3)))) (-3983 (*1 *2) (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-392 *3)))) (-1497 (*1 *2) (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-392 *3)))) (-3227 (*1 *2) (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-392 *3)))) (-2703 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-588 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-392 *4)))) (-2373 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-588 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-392 *4)))) (-1798 (*1 *2) (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-392 *3)))) (-2598 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-42 *4 *3)) (-4 *3 (-392 *4)))) (-1532 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-42 *4 *3)) (-4 *3 (-392 *4)))) (-1493 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-42 *4 *3)) (-4 *3 (-392 *4)))) (-2998 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-42 *4 *3)) (-4 *3 (-392 *4)))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-42 *4 *3)) (-4 *3 (-392 *4))))) -(-10 -7 (-15 -3824 ((-708) |#2|)) (-15 -2998 ((-708) |#2|)) (-15 -1493 ((-708) |#2|)) (-15 -1532 ((-708) |#2|)) (-15 -2598 ((-708) |#2|)) (-15 -1798 ((-588 |#2|))) (-15 -2373 ((-588 |#2|) |#2|)) (-15 -2703 ((-588 |#2|) |#2|)) (-15 -3227 ((-588 |#2|))) (-15 -1497 ((-588 |#2|))) (-15 -3983 ((-588 |#2|))) (-15 -2381 ((-588 |#2|))) (-15 -3376 ((-588 |#2|))) (-15 -1665 ((-588 (-628 |#1|)))) (-15 -1485 ((-588 (-628 |#1|)))) (-15 -3825 ((-588 (-628 |#1|)))) (-15 -2119 ((-588 |#2|))) (IF (|has| |#1| (-283)) (-15 -2905 ((-1166 |#2|) (-1166 |#2|))) |%noBranch|)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2541 (((-3 $ "failed")) NIL (|has| |#1| (-514)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-3690 (((-1166 (-628 |#1|)) (-1166 $)) NIL) (((-1166 (-628 |#1|))) 24)) (-2726 (((-1166 $)) 50)) (-3367 (($) NIL T CONST)) (-2722 (((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed")) NIL (|has| |#1| (-514)))) (-3050 (((-3 $ "failed")) NIL (|has| |#1| (-514)))) (-3531 (((-628 |#1|) (-1166 $)) NIL) (((-628 |#1|)) NIL)) (-2046 ((|#1| $) NIL)) (-2853 (((-628 |#1|) $ (-1166 $)) NIL) (((-628 |#1|) $) NIL)) (-1279 (((-3 $ "failed") $) NIL (|has| |#1| (-514)))) (-1662 (((-1081 (-881 |#1|))) NIL (|has| |#1| (-338)))) (-2698 (($ $ (-850)) NIL)) (-3676 ((|#1| $) NIL)) (-4080 (((-1081 |#1|) $) NIL (|has| |#1| (-514)))) (-4035 ((|#1| (-1166 $)) NIL) ((|#1|) NIL)) (-3767 (((-1081 |#1|) $) NIL)) (-1340 (((-108)) 86)) (-3225 (($ (-1166 |#1|) (-1166 $)) NIL) (($ (-1166 |#1|)) NIL)) (-3920 (((-3 $ "failed") $) 14 (|has| |#1| (-514)))) (-1692 (((-850)) 51)) (-2134 (((-108)) NIL)) (-2870 (($ $ (-850)) NIL)) (-2287 (((-108)) NIL)) (-3702 (((-108)) NIL)) (-3868 (((-108)) 88)) (-2439 (((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed")) NIL (|has| |#1| (-514)))) (-3351 (((-3 $ "failed")) NIL (|has| |#1| (-514)))) (-1521 (((-628 |#1|) (-1166 $)) NIL) (((-628 |#1|)) NIL)) (-3411 ((|#1| $) NIL)) (-2734 (((-628 |#1|) $ (-1166 $)) NIL) (((-628 |#1|) $) NIL)) (-3070 (((-3 $ "failed") $) NIL (|has| |#1| (-514)))) (-3943 (((-1081 (-881 |#1|))) NIL (|has| |#1| (-338)))) (-1946 (($ $ (-850)) NIL)) (-1819 ((|#1| $) NIL)) (-1216 (((-1081 |#1|) $) NIL (|has| |#1| (-514)))) (-3020 ((|#1| (-1166 $)) NIL) ((|#1|) NIL)) (-2724 (((-1081 |#1|) $) NIL)) (-4197 (((-108)) 85)) (-2311 (((-1068) $) NIL)) (-3823 (((-108)) 92)) (-1388 (((-108)) 91)) (-3509 (((-108)) 93)) (-4174 (((-1032) $) NIL)) (-1427 (((-108)) 87)) (-2683 ((|#1| $ (-522)) 53)) (-3510 (((-1166 |#1|) $ (-1166 $)) 47) (((-628 |#1|) (-1166 $) (-1166 $)) NIL) (((-1166 |#1|) $) 28) (((-628 |#1|) (-1166 $)) NIL)) (-3873 (((-1166 |#1|) $) NIL) (($ (-1166 |#1|)) NIL)) (-1777 (((-588 (-881 |#1|)) (-1166 $)) NIL) (((-588 (-881 |#1|))) NIL)) (-1596 (($ $ $) NIL)) (-3990 (((-108)) 83)) (-2217 (((-792) $) 68) (($ (-1166 |#1|)) 22)) (-2905 (((-1166 $)) 44)) (-1548 (((-588 (-1166 |#1|))) NIL (|has| |#1| (-514)))) (-2185 (($ $ $ $) NIL)) (-3597 (((-108)) 81)) (-1664 (($ (-628 |#1|) $) 18)) (-1369 (($ $ $) NIL)) (-3578 (((-108)) 84)) (-2912 (((-108)) 82)) (-1855 (((-108)) 80)) (-3697 (($) NIL T CONST)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1052 |#2| |#1|) $) 19))) -(((-43 |#1| |#2| |#3| |#4|) (-13 (-392 |#1|) (-590 (-1052 |#2| |#1|)) (-10 -8 (-15 -2217 ($ (-1166 |#1|))))) (-338) (-850) (-588 (-1085)) (-1166 (-628 |#1|))) (T -43)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-338)) (-14 *6 (-1166 (-628 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-850)) (-14 *5 (-588 (-1085)))))) -(-13 (-392 |#1|) (-590 (-1052 |#2| |#1|)) (-10 -8 (-15 -2217 ($ (-1166 |#1|))))) -((-1419 (((-108) $ $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-3526 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-2126 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-3961 (($ $) NIL)) (-1883 (($) NIL) (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-3883 (((-1171) $ |#1| |#1|) NIL (|has| $ (-6 -4239))) (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-2211 (($ $ (-522)) NIL (|has| $ (-6 -4239)))) (-1866 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL) (((-108) $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)))) (-2806 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784))))) (-3296 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)))) (-2717 (((-108) $ (-708)) NIL)) (-1198 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (|has| $ (-6 -4239)))) (-2398 (($ $ $) 27 (|has| $ (-6 -4239)))) (-2631 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (|has| $ (-6 -4239)))) (-3393 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 29 (|has| $ (-6 -4239)))) (-2437 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-522) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (|has| $ (-6 -4239))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-1133 (-522)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (|has| $ (-6 -4239))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ "last" (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (|has| $ (-6 -4239))) (($ $ "rest" $) NIL (|has| $ (-6 -4239))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ "first" (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (|has| $ (-6 -4239))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ "value" (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (|has| $ (-6 -4239)))) (-2684 (($ $ (-588 $)) NIL (|has| $ (-6 -4239)))) (-1213 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL)) (-1696 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2116 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-4011 (((-3 |#2| "failed") |#1| $) 37)) (-3367 (($) NIL T CONST)) (-2465 (($ $) NIL (|has| $ (-6 -4239)))) (-1939 (($ $) NIL)) (-2352 (($ $ (-708)) NIL) (($ $) 24)) (-1581 (($ $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))))) (-1700 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-3 |#2| "failed") |#1| $) 47) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL) (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (-1424 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2153 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2411 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4239))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-522) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (|has| $ (-6 -4239)))) (-2186 ((|#2| $ |#1|) NIL) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-522)) NIL)) (-3614 (((-108) $) NIL)) (-3314 (((-522) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL) (((-522) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))) (((-522) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-522)) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (-2395 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 18 (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238))) (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 18 (|has| $ (-6 -4238)))) (-2674 (((-588 $) $) NIL)) (-2402 (((-108) $ $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (-1893 (($ (-708) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL)) (-1480 (((-108) $ (-708)) NIL)) (-3496 ((|#1| $) NIL (|has| |#1| (-784))) (((-522) $) 32 (|has| (-522) (-784)))) (-1308 (($ $ $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)))) (-3557 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)))) (-3164 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)))) (-4084 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238))) (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014)))) (((-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))))) (-2201 ((|#1| $) NIL (|has| |#1| (-784))) (((-522) $) 34 (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)))) (-2397 (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4239))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239))) (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL)) (-1614 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2548 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL)) (-3394 (((-108) $) NIL)) (-2311 (((-1068) $) 42 (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-1442 (($ $ (-708)) NIL) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-2562 (((-588 |#1|) $) 20)) (-2241 (((-108) |#1| $) NIL)) (-1431 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-3365 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL) (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-1731 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-2130 (((-588 |#1|) $) NIL) (((-588 (-522)) $) NIL)) (-2103 (((-108) |#1| $) NIL) (((-108) (-522) $) NIL)) (-4174 (((-1032) $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2337 ((|#2| $) NIL (|has| |#1| (-784))) (($ $ (-708)) NIL) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 23)) (-2187 (((-3 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) "failed") (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL) (((-3 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) "failed") (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL)) (-1972 (($ $ |#2|) NIL (|has| $ (-6 -4239))) (($ $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (|has| $ (-6 -4239)))) (-3295 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-4196 (((-108) $) NIL)) (-3487 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-588 (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014)))) (((-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))))) (-1973 (((-588 |#2|) $) NIL) (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 17)) (-3494 (((-108) $) 16)) (-3298 (($) 13)) (-2683 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-522) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ (-522)) NIL) (($ $ (-1133 (-522))) NIL) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ "first") NIL) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $ "value") NIL)) (-3381 (((-522) $ $) NIL)) (-3546 (($) 12) (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-3551 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-3835 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-3395 (((-108) $) NIL)) (-2885 (($ $) NIL)) (-1668 (($ $) NIL (|has| $ (-6 -4239)))) (-1321 (((-708) $) NIL)) (-1502 (($ $) NIL)) (-4187 (((-708) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014)))) (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-708) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-3629 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-563 (-498))))) (-2227 (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL) (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-2335 (($ $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL) (($ $ $) NIL)) (-4170 (($ $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL) (($ (-588 $)) NIL) (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 25) (($ $ $) NIL)) (-2217 (((-792) $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-562 (-792))) (|has| |#2| (-562 (-792)))))) (-1515 (((-588 $) $) NIL)) (-3294 (((-108) $ $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (-2501 (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-1453 (((-3 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) "failed") |#1| $) 44)) (-1381 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-1623 (((-108) $ $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)))) (-1597 (((-108) $ $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)))) (-1562 (((-108) $ $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-1609 (((-108) $ $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)))) (-1587 (((-108) $ $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-784)))) (-3591 (((-708) $) 22 (|has| $ (-6 -4238))))) -(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1014) (-1014)) (T -44)) +(3139326 . 3415311749) +((-1964 (((-108) (-1 (-108) |#2| |#2|) $) 63) (((-108) $) NIL)) (-1506 (($ (-1 (-108) |#2| |#2|) $) 17) (($ $) NIL)) (-1641 ((|#2| $ (-523) |#2|) NIL) ((|#2| $ (-1135 (-523)) |#2|) 34)) (-2867 (($ $) 59)) (-2437 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 41) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-1479 (((-523) (-1 (-108) |#2|) $) 22) (((-523) |#2| $) NIL) (((-523) |#2| $ (-523)) 71)) (-1666 (((-589 |#2|) $) 13)) (-2178 (($ (-1 (-108) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2852 (($ (-1 |#2| |#2|) $) 29)) (-3612 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 45)) (-2847 (($ |#2| $ (-523)) NIL) (($ $ $ (-523)) 50)) (-2114 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 24)) (-1327 (((-108) (-1 (-108) |#2|) $) 21)) (-3223 ((|#2| $ (-523) |#2|) NIL) ((|#2| $ (-523)) NIL) (($ $ (-1135 (-523))) 49)) (-1469 (($ $ (-523)) 56) (($ $ (-1135 (-523))) 55)) (-2792 (((-710) (-1 (-108) |#2|) $) 26) (((-710) |#2| $) NIL)) (-3160 (($ $ $ (-523)) 52)) (-1664 (($ $) 51)) (-1472 (($ (-589 |#2|)) 53)) (-2326 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-589 $)) 62)) (-1458 (((-794) $) 69)) (-2096 (((-108) (-1 (-108) |#2|) $) 20)) (-3983 (((-108) $ $) 70)) (-4007 (((-108) $ $) 73))) +(((-18 |#1| |#2|) (-10 -8 (-15 -3983 ((-108) |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -4007 ((-108) |#1| |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -1506 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2867 (|#1| |#1|)) (-15 -3160 (|#1| |#1| |#1| (-523))) (-15 -1964 ((-108) |#1|)) (-15 -2178 (|#1| |#1| |#1|)) (-15 -1479 ((-523) |#2| |#1| (-523))) (-15 -1479 ((-523) |#2| |#1|)) (-15 -1479 ((-523) (-1 (-108) |#2|) |#1|)) (-15 -1964 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -2178 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1641 (|#2| |#1| (-1135 (-523)) |#2|)) (-15 -2847 (|#1| |#1| |#1| (-523))) (-15 -2847 (|#1| |#2| |#1| (-523))) (-15 -1469 (|#1| |#1| (-1135 (-523)))) (-15 -1469 (|#1| |#1| (-523))) (-15 -3223 (|#1| |#1| (-1135 (-523)))) (-15 -3612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2326 (|#1| (-589 |#1|))) (-15 -2326 (|#1| |#1| |#1|)) (-15 -2326 (|#1| |#2| |#1|)) (-15 -2326 (|#1| |#1| |#2|)) (-15 -1472 (|#1| (-589 |#2|))) (-15 -2114 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3223 (|#2| |#1| (-523))) (-15 -3223 (|#2| |#1| (-523) |#2|)) (-15 -1641 (|#2| |#1| (-523) |#2|)) (-15 -2792 ((-710) |#2| |#1|)) (-15 -1666 ((-589 |#2|) |#1|)) (-15 -2792 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -1327 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2852 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1664 (|#1| |#1|))) (-19 |#2|) (-1122)) (T -18)) +NIL +(-10 -8 (-15 -3983 ((-108) |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -4007 ((-108) |#1| |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -1506 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2867 (|#1| |#1|)) (-15 -3160 (|#1| |#1| |#1| (-523))) (-15 -1964 ((-108) |#1|)) (-15 -2178 (|#1| |#1| |#1|)) (-15 -1479 ((-523) |#2| |#1| (-523))) (-15 -1479 ((-523) |#2| |#1|)) (-15 -1479 ((-523) (-1 (-108) |#2|) |#1|)) (-15 -1964 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -2178 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1641 (|#2| |#1| (-1135 (-523)) |#2|)) (-15 -2847 (|#1| |#1| |#1| (-523))) (-15 -2847 (|#1| |#2| |#1| (-523))) (-15 -1469 (|#1| |#1| (-1135 (-523)))) (-15 -1469 (|#1| |#1| (-523))) (-15 -3223 (|#1| |#1| (-1135 (-523)))) (-15 -3612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2326 (|#1| (-589 |#1|))) (-15 -2326 (|#1| |#1| |#1|)) (-15 -2326 (|#1| |#2| |#1|)) (-15 -2326 (|#1| |#1| |#2|)) (-15 -1472 (|#1| (-589 |#2|))) (-15 -2114 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3223 (|#2| |#1| (-523))) (-15 -3223 (|#2| |#1| (-523) |#2|)) (-15 -1641 (|#2| |#1| (-523) |#2|)) (-15 -2792 ((-710) |#2| |#1|)) (-15 -1666 ((-589 |#2|) |#1|)) (-15 -2792 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -1327 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2852 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1664 (|#1| |#1|))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-4207 (((-1173) $ (-523) (-523)) 40 (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4245))) (($ $) 88 (-12 (|has| |#1| (-786)) (|has| $ (-6 -4245))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) 8)) (-1641 ((|#1| $ (-523) |#1|) 52 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) 58 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-2867 (($ $) 90 (|has| $ (-6 -4245)))) (-3631 (($ $) 100)) (-1773 (($ $) 78 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#1| $) 77 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) 53 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 51)) (-1479 (((-523) (-1 (-108) |#1|) $) 97) (((-523) |#1| $) 96 (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) 95 (|has| |#1| (-1016)))) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-3052 (($ (-710) |#1|) 69)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 43 (|has| (-523) (-786)))) (-2454 (($ $ $) 87 (|has| |#1| (-786)))) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 44 (|has| (-523) (-786)))) (-2062 (($ $ $) 86 (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) 60) (($ $ $ (-523)) 59)) (-2412 (((-589 (-523)) $) 46)) (-4135 (((-108) (-523) $) 47)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1738 ((|#1| $) 42 (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-4203 (($ $ |#1|) 41 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ (-523) |#1|) 50) ((|#1| $ (-523)) 49) (($ $ (-1135 (-523))) 63)) (-1469 (($ $ (-523)) 62) (($ $ (-1135 (-523))) 61)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3160 (($ $ $ (-523)) 91 (|has| $ (-6 -4245)))) (-1664 (($ $) 13)) (-3663 (((-499) $) 79 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 70)) (-2326 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) 84 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 83 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-4030 (((-108) $ $) 85 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 82 (|has| |#1| (-786)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-19 |#1|) (-129) (-1122)) (T -19)) +NIL +(-13 (-349 |t#1|) (-10 -7 (-6 -4245))) +(((-33) . T) ((-97) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-349 |#1|) . T) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-786) |has| |#1| (-786)) ((-1016) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-1122) . T)) +((-3212 (((-3 $ "failed") $ $) 12)) (-4087 (($ $) NIL) (($ $ $) 9)) (* (($ (-852) $) NIL) (($ (-710) $) 16) (($ (-523) $) 21))) +(((-20 |#1|) (-10 -8 (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -3212 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) (-21)) (T -20)) +NIL +(-10 -8 (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -3212 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20))) +(((-21) (-129)) (T -21)) +((-4087 (*1 *1 *1) (-4 *1 (-21))) (-4087 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-523))))) +(-13 (-124) (-10 -8 (-15 -4087 ($ $)) (-15 -4087 ($ $ $)) (-15 * ($ (-523) $)))) +(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-2295 (((-108) $) 10)) (-2518 (($) 15)) (* (($ (-852) $) 14) (($ (-710) $) 18))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-710) |#1|)) (-15 -2295 ((-108) |#1|)) (-15 -2518 (|#1|)) (-15 * (|#1| (-852) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-710) |#1|)) (-15 -2295 ((-108) |#1|)) (-15 -2518 (|#1|)) (-15 * (|#1| (-852) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-2518 (($) 17 T CONST)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15))) +(((-23) (-129)) (T -23)) +((-2756 (*1 *1) (-4 *1 (-23))) (-2518 (*1 *1) (-4 *1 (-23))) (-2295 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-710))))) +(-13 (-25) (-10 -8 (-15 (-2756) ($) -3059) (-15 -2518 ($) -3059) (-15 -2295 ((-108) $)) (-15 * ($ (-710) $)))) +(((-25) . T) ((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) +((* (($ (-852) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-852) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-852) |#1|))) +((-3924 (((-108) $ $) 7)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 6)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13))) +(((-25) (-129)) (T -25)) +((-4075 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-852))))) +(-13 (-1016) (-10 -8 (-15 -4075 ($ $ $)) (-15 * ($ (-852) $)))) +(((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-1728 (((-589 $) (-883 $)) 29) (((-589 $) (-1083 $)) 16) (((-589 $) (-1083 $) (-1087)) 20)) (-2488 (($ (-883 $)) 27) (($ (-1083 $)) 11) (($ (-1083 $) (-1087)) 54)) (-1694 (((-589 $) (-883 $)) 30) (((-589 $) (-1083 $)) 18) (((-589 $) (-1083 $) (-1087)) 19)) (-3313 (($ (-883 $)) 28) (($ (-1083 $)) 13) (($ (-1083 $) (-1087)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -1728 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -1728 ((-589 |#1|) (-1083 |#1|))) (-15 -1728 ((-589 |#1|) (-883 |#1|))) (-15 -2488 (|#1| (-1083 |#1|) (-1087))) (-15 -2488 (|#1| (-1083 |#1|))) (-15 -2488 (|#1| (-883 |#1|))) (-15 -1694 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -1694 ((-589 |#1|) (-1083 |#1|))) (-15 -1694 ((-589 |#1|) (-883 |#1|))) (-15 -3313 (|#1| (-1083 |#1|) (-1087))) (-15 -3313 (|#1| (-1083 |#1|))) (-15 -3313 (|#1| (-883 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -1728 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -1728 ((-589 |#1|) (-1083 |#1|))) (-15 -1728 ((-589 |#1|) (-883 |#1|))) (-15 -2488 (|#1| (-1083 |#1|) (-1087))) (-15 -2488 (|#1| (-1083 |#1|))) (-15 -2488 (|#1| (-883 |#1|))) (-15 -1694 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -1694 ((-589 |#1|) (-1083 |#1|))) (-15 -1694 ((-589 |#1|) (-883 |#1|))) (-15 -3313 (|#1| (-1083 |#1|) (-1087))) (-15 -3313 (|#1| (-1083 |#1|))) (-15 -3313 (|#1| (-883 |#1|)))) +((-3924 (((-108) $ $) 7)) (-1728 (((-589 $) (-883 $)) 80) (((-589 $) (-1083 $)) 79) (((-589 $) (-1083 $) (-1087)) 78)) (-2488 (($ (-883 $)) 83) (($ (-1083 $)) 82) (($ (-1083 $) (-1087)) 81)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 73)) (-3614 (((-394 $) $) 72)) (-1832 (($ $) 92)) (-1387 (((-108) $ $) 59)) (-2518 (($) 17 T CONST)) (-1694 (((-589 $) (-883 $)) 86) (((-589 $) (-1083 $)) 85) (((-589 $) (-1083 $) (-1087)) 84)) (-3313 (($ (-883 $)) 89) (($ (-1083 $)) 88) (($ (-1083 $) (-1087)) 87)) (-3796 (($ $ $) 55)) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-2657 (((-108) $) 71)) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 91)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 70)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-1820 (((-394 $) $) 74)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1972 (((-710) $) 58)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ $) 64)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68) (($ $ (-383 (-523))) 90)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66))) +(((-27) (-129)) (T -27)) +((-3313 (*1 *1 *2) (-12 (-5 *2 (-883 *1)) (-4 *1 (-27)))) (-3313 (*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) (-3313 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1087)) (-4 *1 (-27)))) (-1694 (*1 *2 *3) (-12 (-5 *3 (-883 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) (-1694 (*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) (-1694 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1087)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) (-2488 (*1 *1 *2) (-12 (-5 *2 (-883 *1)) (-4 *1 (-27)))) (-2488 (*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) (-2488 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1087)) (-4 *1 (-27)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-883 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1087)) (-4 *1 (-27)) (-5 *2 (-589 *1))))) +(-13 (-339) (-930) (-10 -8 (-15 -3313 ($ (-883 $))) (-15 -3313 ($ (-1083 $))) (-15 -3313 ($ (-1083 $) (-1087))) (-15 -1694 ((-589 $) (-883 $))) (-15 -1694 ((-589 $) (-1083 $))) (-15 -1694 ((-589 $) (-1083 $) (-1087))) (-15 -2488 ($ (-883 $))) (-15 -2488 ($ (-1083 $))) (-15 -2488 ($ (-1083 $) (-1087))) (-15 -1728 ((-589 $) (-883 $))) (-15 -1728 ((-589 $) (-1083 $))) (-15 -1728 ((-589 $) (-1083 $) (-1087))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-339) . T) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-930) . T) ((-979 #0#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) . T)) +((-1728 (((-589 $) (-883 $)) NIL) (((-589 $) (-1083 $)) NIL) (((-589 $) (-1083 $) (-1087)) 50) (((-589 $) $) 19) (((-589 $) $ (-1087)) 41)) (-2488 (($ (-883 $)) NIL) (($ (-1083 $)) NIL) (($ (-1083 $) (-1087)) 52) (($ $) 17) (($ $ (-1087)) 37)) (-1694 (((-589 $) (-883 $)) NIL) (((-589 $) (-1083 $)) NIL) (((-589 $) (-1083 $) (-1087)) 48) (((-589 $) $) 15) (((-589 $) $ (-1087)) 43)) (-3313 (($ (-883 $)) NIL) (($ (-1083 $)) NIL) (($ (-1083 $) (-1087)) NIL) (($ $) 12) (($ $ (-1087)) 39))) +(((-28 |#1| |#2|) (-10 -8 (-15 -1728 ((-589 |#1|) |#1| (-1087))) (-15 -2488 (|#1| |#1| (-1087))) (-15 -1728 ((-589 |#1|) |#1|)) (-15 -2488 (|#1| |#1|)) (-15 -1694 ((-589 |#1|) |#1| (-1087))) (-15 -3313 (|#1| |#1| (-1087))) (-15 -1694 ((-589 |#1|) |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -1728 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -1728 ((-589 |#1|) (-1083 |#1|))) (-15 -1728 ((-589 |#1|) (-883 |#1|))) (-15 -2488 (|#1| (-1083 |#1|) (-1087))) (-15 -2488 (|#1| (-1083 |#1|))) (-15 -2488 (|#1| (-883 |#1|))) (-15 -1694 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -1694 ((-589 |#1|) (-1083 |#1|))) (-15 -1694 ((-589 |#1|) (-883 |#1|))) (-15 -3313 (|#1| (-1083 |#1|) (-1087))) (-15 -3313 (|#1| (-1083 |#1|))) (-15 -3313 (|#1| (-883 |#1|)))) (-29 |#2|) (-13 (-786) (-515))) (T -28)) +NIL +(-10 -8 (-15 -1728 ((-589 |#1|) |#1| (-1087))) (-15 -2488 (|#1| |#1| (-1087))) (-15 -1728 ((-589 |#1|) |#1|)) (-15 -2488 (|#1| |#1|)) (-15 -1694 ((-589 |#1|) |#1| (-1087))) (-15 -3313 (|#1| |#1| (-1087))) (-15 -1694 ((-589 |#1|) |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -1728 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -1728 ((-589 |#1|) (-1083 |#1|))) (-15 -1728 ((-589 |#1|) (-883 |#1|))) (-15 -2488 (|#1| (-1083 |#1|) (-1087))) (-15 -2488 (|#1| (-1083 |#1|))) (-15 -2488 (|#1| (-883 |#1|))) (-15 -1694 ((-589 |#1|) (-1083 |#1|) (-1087))) (-15 -1694 ((-589 |#1|) (-1083 |#1|))) (-15 -1694 ((-589 |#1|) (-883 |#1|))) (-15 -3313 (|#1| (-1083 |#1|) (-1087))) (-15 -3313 (|#1| (-1083 |#1|))) (-15 -3313 (|#1| (-883 |#1|)))) +((-3924 (((-108) $ $) 7)) (-1728 (((-589 $) (-883 $)) 80) (((-589 $) (-1083 $)) 79) (((-589 $) (-1083 $) (-1087)) 78) (((-589 $) $) 126) (((-589 $) $ (-1087)) 124)) (-2488 (($ (-883 $)) 83) (($ (-1083 $)) 82) (($ (-1083 $) (-1087)) 81) (($ $) 127) (($ $ (-1087)) 125)) (-2295 (((-108) $) 16)) (-1957 (((-589 (-1087)) $) 201)) (-1786 (((-383 (-1083 $)) $ (-562 $)) 233 (|has| |#1| (-515)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3072 (((-589 (-562 $)) $) 164)) (-3212 (((-3 $ "failed") $ $) 19)) (-2955 (($ $ (-589 (-562 $)) (-589 $)) 154) (($ $ (-589 (-271 $))) 153) (($ $ (-271 $)) 152)) (-2291 (($ $) 73)) (-3614 (((-394 $) $) 72)) (-1832 (($ $) 92)) (-1387 (((-108) $ $) 59)) (-2518 (($) 17 T CONST)) (-1694 (((-589 $) (-883 $)) 86) (((-589 $) (-1083 $)) 85) (((-589 $) (-1083 $) (-1087)) 84) (((-589 $) $) 130) (((-589 $) $ (-1087)) 128)) (-3313 (($ (-883 $)) 89) (($ (-1083 $)) 88) (($ (-1083 $) (-1087)) 87) (($ $) 131) (($ $ (-1087)) 129)) (-3517 (((-3 (-883 |#1|) "failed") $) 251 (|has| |#1| (-973))) (((-3 (-383 (-883 |#1|)) "failed") $) 235 (|has| |#1| (-515))) (((-3 |#1| "failed") $) 197) (((-3 (-523) "failed") $) 195 (|has| |#1| (-964 (-523)))) (((-3 (-1087) "failed") $) 188) (((-3 (-562 $) "failed") $) 139) (((-3 (-383 (-523)) "failed") $) 123 (-3262 (-12 (|has| |#1| (-964 (-523))) (|has| |#1| (-515))) (|has| |#1| (-964 (-383 (-523))))))) (-3474 (((-883 |#1|) $) 252 (|has| |#1| (-973))) (((-383 (-883 |#1|)) $) 236 (|has| |#1| (-515))) ((|#1| $) 198) (((-523) $) 194 (|has| |#1| (-964 (-523)))) (((-1087) $) 189) (((-562 $) $) 140) (((-383 (-523)) $) 122 (-3262 (-12 (|has| |#1| (-964 (-523))) (|has| |#1| (-515))) (|has| |#1| (-964 (-383 (-523))))))) (-3796 (($ $ $) 55)) (-2381 (((-629 |#1|) (-629 $)) 241 (|has| |#1| (-973))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 240 (|has| |#1| (-973))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 121 (-3262 (-4099 (|has| |#1| (-973)) (|has| |#1| (-585 (-523)))) (-4099 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))))) (((-629 (-523)) (-629 $)) 120 (-3262 (-4099 (|has| |#1| (-973)) (|has| |#1| (-585 (-523)))) (-4099 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))))) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-2657 (((-108) $) 71)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 193 (|has| |#1| (-817 (-355)))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 192 (|has| |#1| (-817 (-523))))) (-2361 (($ (-589 $)) 158) (($ $) 157)) (-1444 (((-589 (-110)) $) 165)) (-1403 (((-110) (-110)) 166)) (-2023 (((-108) $) 31)) (-1557 (((-108) $) 186 (|has| $ (-964 (-523))))) (-2531 (($ $) 218 (|has| |#1| (-973)))) (-2785 (((-1039 |#1| (-562 $)) $) 217 (|has| |#1| (-973)))) (-1420 (($ $ (-523)) 91)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-1483 (((-1083 $) (-562 $)) 183 (|has| $ (-973)))) (-2454 (($ $ $) 137)) (-2062 (($ $ $) 136)) (-3612 (($ (-1 $ $) (-562 $)) 172)) (-1363 (((-3 (-562 $) "failed") $) 162)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-1771 (((-589 (-562 $)) $) 163)) (-2868 (($ (-110) (-589 $)) 171) (($ (-110) $) 170)) (-3226 (((-3 (-589 $) "failed") $) 212 (|has| |#1| (-1028)))) (-1295 (((-3 (-2 (|:| |val| $) (|:| -2735 (-523))) "failed") $) 221 (|has| |#1| (-973)))) (-4006 (((-3 (-589 $) "failed") $) 214 (|has| |#1| (-25)))) (-2492 (((-3 (-2 (|:| -2935 (-523)) (|:| |var| (-562 $))) "failed") $) 215 (|has| |#1| (-25)))) (-2630 (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $ (-1087)) 220 (|has| |#1| (-973))) (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $ (-110)) 219 (|has| |#1| (-973))) (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $) 213 (|has| |#1| (-1028)))) (-3259 (((-108) $ (-1087)) 169) (((-108) $ (-110)) 168)) (-3738 (($ $) 70)) (-2510 (((-710) $) 161)) (-2783 (((-1034) $) 10)) (-3749 (((-108) $) 199)) (-3760 ((|#1| $) 200)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-2585 (((-108) $ (-1087)) 174) (((-108) $ $) 173)) (-1820 (((-394 $) $) 74)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-4104 (((-108) $) 185 (|has| $ (-964 (-523))))) (-2679 (($ $ (-1087) (-710) (-1 $ $)) 225 (|has| |#1| (-973))) (($ $ (-1087) (-710) (-1 $ (-589 $))) 224 (|has| |#1| (-973))) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ (-589 $)))) 223 (|has| |#1| (-973))) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ $))) 222 (|has| |#1| (-973))) (($ $ (-589 (-110)) (-589 $) (-1087)) 211 (|has| |#1| (-564 (-499)))) (($ $ (-110) $ (-1087)) 210 (|has| |#1| (-564 (-499)))) (($ $) 209 (|has| |#1| (-564 (-499)))) (($ $ (-589 (-1087))) 208 (|has| |#1| (-564 (-499)))) (($ $ (-1087)) 207 (|has| |#1| (-564 (-499)))) (($ $ (-110) (-1 $ $)) 182) (($ $ (-110) (-1 $ (-589 $))) 181) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) 180) (($ $ (-589 (-110)) (-589 (-1 $ $))) 179) (($ $ (-1087) (-1 $ $)) 178) (($ $ (-1087) (-1 $ (-589 $))) 177) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) 176) (($ $ (-589 (-1087)) (-589 (-1 $ $))) 175) (($ $ (-589 $) (-589 $)) 146) (($ $ $ $) 145) (($ $ (-271 $)) 144) (($ $ (-589 (-271 $))) 143) (($ $ (-589 (-562 $)) (-589 $)) 142) (($ $ (-562 $) $) 141)) (-1972 (((-710) $) 58)) (-3223 (($ (-110) (-589 $)) 151) (($ (-110) $ $ $ $) 150) (($ (-110) $ $ $) 149) (($ (-110) $ $) 148) (($ (-110) $) 147)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-3957 (($ $ $) 160) (($ $) 159)) (-3523 (($ $ (-1087)) 249 (|has| |#1| (-973))) (($ $ (-589 (-1087))) 248 (|has| |#1| (-973))) (($ $ (-1087) (-710)) 247 (|has| |#1| (-973))) (($ $ (-589 (-1087)) (-589 (-710))) 246 (|has| |#1| (-973)))) (-3414 (($ $) 228 (|has| |#1| (-515)))) (-2797 (((-1039 |#1| (-562 $)) $) 227 (|has| |#1| (-515)))) (-3727 (($ $) 184 (|has| $ (-973)))) (-3663 (((-499) $) 255 (|has| |#1| (-564 (-499)))) (($ (-394 $)) 226 (|has| |#1| (-515))) (((-823 (-355)) $) 191 (|has| |#1| (-564 (-823 (-355))))) (((-823 (-523)) $) 190 (|has| |#1| (-564 (-823 (-523)))))) (-3208 (($ $ $) 254 (|has| |#1| (-448)))) (-1714 (($ $ $) 253 (|has| |#1| (-448)))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65) (($ (-883 |#1|)) 250 (|has| |#1| (-973))) (($ (-383 (-883 |#1|))) 234 (|has| |#1| (-515))) (($ (-383 (-883 (-383 |#1|)))) 232 (|has| |#1| (-515))) (($ (-883 (-383 |#1|))) 231 (|has| |#1| (-515))) (($ (-383 |#1|)) 230 (|has| |#1| (-515))) (($ (-1039 |#1| (-562 $))) 216 (|has| |#1| (-973))) (($ |#1|) 196) (($ (-1087)) 187) (($ (-562 $)) 138)) (-3901 (((-3 $ "failed") $) 239 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-3822 (($ (-589 $)) 156) (($ $) 155)) (-1950 (((-108) (-110)) 167)) (-1704 (((-108) $ $) 39)) (-2523 (($ (-1087) (-589 $)) 206) (($ (-1087) $ $ $ $) 205) (($ (-1087) $ $ $) 204) (($ (-1087) $ $) 203) (($ (-1087) $) 202)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-1087)) 245 (|has| |#1| (-973))) (($ $ (-589 (-1087))) 244 (|has| |#1| (-973))) (($ $ (-1087) (-710)) 243 (|has| |#1| (-973))) (($ $ (-589 (-1087)) (-589 (-710))) 242 (|has| |#1| (-973)))) (-4043 (((-108) $ $) 134)) (-4019 (((-108) $ $) 133)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 135)) (-4007 (((-108) $ $) 132)) (-4098 (($ $ $) 64) (($ (-1039 |#1| (-562 $)) (-1039 |#1| (-562 $))) 229 (|has| |#1| (-515)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68) (($ $ (-383 (-523))) 90)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-158))) (($ |#1| $) 237 (|has| |#1| (-158))))) +(((-29 |#1|) (-129) (-13 (-786) (-515))) (T -29)) +((-3313 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-786) (-515))))) (-1694 (*1 *2 *1) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *2 (-589 *1)) (-4 *1 (-29 *3)))) (-3313 (*1 *1 *1 *2) (-12 (-5 *2 (-1087)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-786) (-515))))) (-1694 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-589 *1)) (-4 *1 (-29 *4)))) (-2488 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-786) (-515))))) (-1728 (*1 *2 *1) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *2 (-589 *1)) (-4 *1 (-29 *3)))) (-2488 (*1 *1 *1 *2) (-12 (-5 *2 (-1087)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-786) (-515))))) (-1728 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-589 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-406 |t#1|) (-10 -8 (-15 -3313 ($ $)) (-15 -1694 ((-589 $) $)) (-15 -3313 ($ $ (-1087))) (-15 -1694 ((-589 $) $ (-1087))) (-15 -2488 ($ $)) (-15 -1728 ((-589 $) $)) (-15 -2488 ($ $ (-1087))) (-15 -1728 ((-589 $) $ (-1087))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) |has| |#1| (-158)) ((-107 $ $) . T) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-564 (-823 (-355))) |has| |#1| (-564 (-823 (-355)))) ((-564 (-823 (-523))) |has| |#1| (-564 (-823 (-523)))) ((-221) . T) ((-267) . T) ((-284) . T) ((-286 $) . T) ((-279) . T) ((-339) . T) ((-353 |#1|) |has| |#1| (-973)) ((-376 |#1|) . T) ((-387 |#1|) . T) ((-406 |#1|) . T) ((-427) . T) ((-448) |has| |#1| (-448)) ((-484 (-562 $) $) . T) ((-484 $ $) . T) ((-515) . T) ((-591 #0#) . T) ((-591 |#1|) |has| |#1| (-158)) ((-591 $) . T) ((-585 (-523)) -12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) ((-585 |#1|) |has| |#1| (-973)) ((-657 #0#) . T) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) . T) ((-666) . T) ((-786) . T) ((-831 (-1087)) |has| |#1| (-973)) ((-817 (-355)) |has| |#1| (-817 (-355))) ((-817 (-523)) |has| |#1| (-817 (-523))) ((-815 |#1|) . T) ((-851) . T) ((-930) . T) ((-964 (-383 (-523))) -3262 (|has| |#1| (-964 (-383 (-523)))) (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523))))) ((-964 (-383 (-883 |#1|))) |has| |#1| (-515)) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 (-562 $)) . T) ((-964 (-883 |#1|)) |has| |#1| (-973)) ((-964 (-1087)) . T) ((-964 |#1|) . T) ((-979 #0#) . T) ((-979 |#1|) |has| |#1| (-158)) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1122) . T) ((-1126) . T)) +((-2831 (((-1011 (-203)) $) NIL)) (-2817 (((-1011 (-203)) $) NIL)) (-3747 (($ $ (-203)) 123)) (-3297 (($ (-883 (-523)) (-1087) (-1087) (-1011 (-383 (-523))) (-1011 (-383 (-523)))) 85)) (-4068 (((-589 (-589 (-874 (-203)))) $) 135)) (-1458 (((-794) $) 147))) +(((-30) (-13 (-885) (-10 -8 (-15 -3297 ($ (-883 (-523)) (-1087) (-1087) (-1011 (-383 (-523))) (-1011 (-383 (-523))))) (-15 -3747 ($ $ (-203)))))) (T -30)) +((-3297 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-883 (-523))) (-5 *3 (-1087)) (-5 *4 (-1011 (-383 (-523)))) (-5 *1 (-30)))) (-3747 (*1 *1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-30))))) +(-13 (-885) (-10 -8 (-15 -3297 ($ (-883 (-523)) (-1087) (-1087) (-1011 (-383 (-523))) (-1011 (-383 (-523))))) (-15 -3747 ($ $ (-203))))) +((-3313 ((|#2| (-1083 |#2|) (-1087)) 42)) (-1403 (((-110) (-110)) 55)) (-1483 (((-1083 |#2|) (-562 |#2|)) 131 (|has| |#1| (-964 (-523))))) (-2878 ((|#2| |#1| (-523)) 110 (|has| |#1| (-964 (-523))))) (-1278 ((|#2| (-1083 |#2|) |#2|) 30)) (-2356 (((-794) (-589 |#2|)) 86)) (-3727 ((|#2| |#2|) 127 (|has| |#1| (-964 (-523))))) (-1950 (((-108) (-110)) 18)) (** ((|#2| |#2| (-383 (-523))) 91 (|has| |#1| (-964 (-523)))))) +(((-31 |#1| |#2|) (-10 -7 (-15 -3313 (|#2| (-1083 |#2|) (-1087))) (-15 -1403 ((-110) (-110))) (-15 -1950 ((-108) (-110))) (-15 -1278 (|#2| (-1083 |#2|) |#2|)) (-15 -2356 ((-794) (-589 |#2|))) (IF (|has| |#1| (-964 (-523))) (PROGN (-15 ** (|#2| |#2| (-383 (-523)))) (-15 -1483 ((-1083 |#2|) (-562 |#2|))) (-15 -3727 (|#2| |#2|)) (-15 -2878 (|#2| |#1| (-523)))) |%noBranch|)) (-13 (-786) (-515)) (-406 |#1|)) (T -31)) +((-2878 (*1 *2 *3 *4) (-12 (-5 *4 (-523)) (-4 *2 (-406 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-964 *4)) (-4 *3 (-13 (-786) (-515))))) (-3727 (*1 *2 *2) (-12 (-4 *3 (-964 (-523))) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-31 *3 *2)) (-4 *2 (-406 *3)))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-562 *5)) (-4 *5 (-406 *4)) (-4 *4 (-964 (-523))) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-1083 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-383 (-523))) (-4 *4 (-964 (-523))) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-31 *4 *2)) (-4 *2 (-406 *4)))) (-2356 (*1 *2 *3) (-12 (-5 *3 (-589 *5)) (-4 *5 (-406 *4)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-794)) (-5 *1 (-31 *4 *5)))) (-1278 (*1 *2 *3 *2) (-12 (-5 *3 (-1083 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-31 *4 *2)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) (-5 *1 (-31 *4 *5)) (-4 *5 (-406 *4)))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-31 *3 *4)) (-4 *4 (-406 *3)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *2)) (-5 *4 (-1087)) (-4 *2 (-406 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-786) (-515)))))) +(-10 -7 (-15 -3313 (|#2| (-1083 |#2|) (-1087))) (-15 -1403 ((-110) (-110))) (-15 -1950 ((-108) (-110))) (-15 -1278 (|#2| (-1083 |#2|) |#2|)) (-15 -2356 ((-794) (-589 |#2|))) (IF (|has| |#1| (-964 (-523))) (PROGN (-15 ** (|#2| |#2| (-383 (-523)))) (-15 -1483 ((-1083 |#2|) (-562 |#2|))) (-15 -3727 (|#2| |#2|)) (-15 -2878 (|#2| |#1| (-523)))) |%noBranch|)) +((-3079 (((-108) $ (-710)) 16)) (-2518 (($) 10)) (-2346 (((-108) $ (-710)) 15)) (-2866 (((-108) $ (-710)) 14)) (-3811 (((-108) $ $) 8)) (-3883 (((-108) $) 13))) +(((-32 |#1|) (-10 -8 (-15 -2518 (|#1|)) (-15 -3079 ((-108) |#1| (-710))) (-15 -2346 ((-108) |#1| (-710))) (-15 -2866 ((-108) |#1| (-710))) (-15 -3883 ((-108) |#1|)) (-15 -3811 ((-108) |#1| |#1|))) (-33)) (T -32)) +NIL +(-10 -8 (-15 -2518 (|#1|)) (-15 -3079 ((-108) |#1| (-710))) (-15 -2346 ((-108) |#1| (-710))) (-15 -2866 ((-108) |#1| (-710))) (-15 -3883 ((-108) |#1|)) (-15 -3811 ((-108) |#1| |#1|))) +((-3079 (((-108) $ (-710)) 8)) (-2518 (($) 7 T CONST)) (-2346 (((-108) $ (-710)) 9)) (-2866 (((-108) $ (-710)) 10)) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-1664 (($ $) 13)) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-33) (-129)) (T -33)) +((-3811 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-1664 (*1 *1 *1) (-4 *1 (-33))) (-3988 (*1 *1) (-4 *1 (-33))) (-3883 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-2866 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-710)) (-5 *2 (-108)))) (-2346 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-710)) (-5 *2 (-108)))) (-3079 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-710)) (-5 *2 (-108)))) (-2518 (*1 *1) (-4 *1 (-33))) (-2676 (*1 *2 *1) (-12 (|has| *1 (-6 -4244)) (-4 *1 (-33)) (-5 *2 (-710))))) +(-13 (-1122) (-10 -8 (-15 -3811 ((-108) $ $)) (-15 -1664 ($ $)) (-15 -3988 ($)) (-15 -3883 ((-108) $)) (-15 -2866 ((-108) $ (-710))) (-15 -2346 ((-108) $ (-710))) (-15 -3079 ((-108) $ (-710))) (-15 -2518 ($) -3059) (IF (|has| $ (-6 -4244)) (-15 -2676 ((-710) $)) |%noBranch|))) +(((-1122) . T)) +((-1839 (($ $) 11)) (-1818 (($ $) 10)) (-1865 (($ $) 9)) (-2914 (($ $) 8)) (-1852 (($ $) 7)) (-1830 (($ $) 6))) +(((-34) (-129)) (T -34)) +((-1839 (*1 *1 *1) (-4 *1 (-34))) (-1818 (*1 *1 *1) (-4 *1 (-34))) (-1865 (*1 *1 *1) (-4 *1 (-34))) (-2914 (*1 *1 *1) (-4 *1 (-34))) (-1852 (*1 *1 *1) (-4 *1 (-34))) (-1830 (*1 *1 *1) (-4 *1 (-34)))) +(-13 (-10 -8 (-15 -1830 ($ $)) (-15 -1852 ($ $)) (-15 -2914 ($ $)) (-15 -1865 ($ $)) (-15 -1818 ($ $)) (-15 -1839 ($ $)))) +((-3924 (((-108) $ $) 19 (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-1733 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 125)) (-1546 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 148)) (-4039 (($ $) 146)) (-3043 (($) 72) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 71)) (-4207 (((-1173) $ |#1| |#1|) 99 (|has| $ (-6 -4245))) (((-1173) $ (-523) (-523)) 178 (|has| $ (-6 -4245)))) (-2961 (($ $ (-523)) 159 (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 209) (((-108) $) 203 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-1506 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 200 (|has| $ (-6 -4245))) (($ $) 199 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)) (|has| $ (-6 -4245))))) (-3974 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-3079 (((-108) $ (-710)) 8)) (-1823 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 134 (|has| $ (-6 -4245)))) (-2110 (($ $ $) 155 (|has| $ (-6 -4245)))) (-3395 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 157 (|has| $ (-6 -4245)))) (-3456 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 153 (|has| $ (-6 -4245)))) (-1641 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 189 (|has| $ (-6 -4245))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-1135 (-523)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 160 (|has| $ (-6 -4245))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "last" (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 158 (|has| $ (-6 -4245))) (($ $ "rest" $) 156 (|has| $ (-6 -4245))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "first" (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 154 (|has| $ (-6 -4245))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "value" (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 133 (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 132 (|has| $ (-6 -4245)))) (-3387 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 45 (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 216)) (-3724 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 55 (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 175 (|has| $ (-6 -4244)))) (-1532 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 147)) (-2243 (((-3 |#2| "failed") |#1| $) 61)) (-2518 (($) 7 T CONST)) (-2867 (($ $) 201 (|has| $ (-6 -4245)))) (-3631 (($ $) 211)) (-1751 (($ $ (-710)) 142) (($ $) 140)) (-3941 (($ $) 214 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-1773 (($ $) 58 (-3262 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244))) (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))))) (-2249 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 47 (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 46 (|has| $ (-6 -4244))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 220) (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 215 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-2557 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 57 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 54 (|has| $ (-6 -4244))) (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 177 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 174 (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 56 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 53 (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 52 (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 176 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 173 (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 172 (|has| $ (-6 -4244)))) (-2863 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4245))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 190 (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) 88) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523)) 188)) (-1232 (((-108) $) 192)) (-1479 (((-523) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 208) (((-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 207 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))) (((-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523)) 206 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-1666 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 30 (|has| $ (-6 -4244))) (((-589 |#2|) $) 79 (|has| $ (-6 -4244))) (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 114 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) 123)) (-1238 (((-108) $ $) 131 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-3052 (($ (-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 169)) (-2346 (((-108) $ (-710)) 9)) (-4084 ((|#1| $) 96 (|has| |#1| (-786))) (((-523) $) 180 (|has| (-523) (-786)))) (-2454 (($ $ $) 198 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-2158 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-2178 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-2136 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 29 (|has| $ (-6 -4244))) (((-589 |#2|) $) 80 (|has| $ (-6 -4244))) (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 115 (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 27 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4244)))) (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 117 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244))))) (-3056 ((|#1| $) 95 (|has| |#1| (-786))) (((-523) $) 181 (|has| (-523) (-786)))) (-2062 (($ $ $) 197 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 34 (|has| $ (-6 -4245))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4245))) (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 110 (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 109)) (-3992 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 225)) (-2866 (((-108) $ (-710)) 10)) (-2726 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 128)) (-3555 (((-108) $) 124)) (-3779 (((-1070) $) 22 (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-2579 (($ $ (-710)) 145) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 143)) (-1330 (((-589 |#1|) $) 63)) (-2777 (((-108) |#1| $) 64)) (-1934 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 39)) (-3450 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 40) (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523)) 219) (($ $ $ (-523)) 218)) (-2847 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523)) 162) (($ $ $ (-523)) 161)) (-2412 (((-589 |#1|) $) 93) (((-589 (-523)) $) 183)) (-4135 (((-108) |#1| $) 92) (((-108) (-523) $) 184)) (-2783 (((-1034) $) 21 (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-1738 ((|#2| $) 97 (|has| |#1| (-786))) (($ $ (-710)) 139) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 137)) (-2114 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 51) (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 171)) (-4203 (($ $ |#2|) 98 (|has| $ (-6 -4245))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 179 (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 41)) (-2402 (((-108) $) 191)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 32 (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 112 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) 26 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 25 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 24 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 23 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) 86 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) 84 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) 83 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 121 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 120 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 119 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) 118 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016)))) (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 182 (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-1264 (((-589 |#2|) $) 91) (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 185)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 187) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523)) 186) (($ $ (-1135 (-523))) 165) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "first") 138) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "value") 126)) (-1549 (((-523) $ $) 129)) (-3433 (($) 49) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 48)) (-2753 (($ $ (-523)) 222) (($ $ (-1135 (-523))) 221)) (-1469 (($ $ (-523)) 164) (($ $ (-1135 (-523))) 163)) (-2524 (((-108) $) 127)) (-2732 (($ $) 151)) (-2363 (($ $) 152 (|has| $ (-6 -4245)))) (-2316 (((-710) $) 150)) (-3562 (($ $) 149)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 31 (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (((-710) |#2| $) 81 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 116 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 113 (|has| $ (-6 -4244)))) (-3160 (($ $ $ (-523)) 202 (|has| $ (-6 -4245)))) (-1664 (($ $) 13)) (-3663 (((-499) $) 59 (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499)))))) (-1472 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 50) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 170)) (-1746 (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 224) (($ $ $) 223)) (-2326 (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 168) (($ (-589 $)) 167) (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 136) (($ $ $) 135)) (-1458 (((-794) $) 18 (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794)))))) (-2296 (((-589 $) $) 122)) (-3653 (((-108) $ $) 130 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-2401 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 42)) (-2589 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") |#1| $) 108)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 33 (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 111 (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) 195 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-4019 (((-108) $ $) 194 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-3983 (((-108) $ $) 20 (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-4030 (((-108) $ $) 196 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-4007 (((-108) $ $) 193 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-35 |#1| |#2|) (-129) (-1016) (-1016)) (T -35)) +((-2589 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-5 *2 (-2 (|:| -1853 *3) (|:| -2433 *4)))))) +(-13 (-1099 |t#1| |t#2|) (-609 (-2 (|:| -1853 |t#1|) (|:| -2433 |t#2|))) (-10 -8 (-15 -2589 ((-3 (-2 (|:| -1853 |t#1|) (|:| -2433 |t#2|)) "failed") |t#1| $)))) +(((-33) . T) ((-102 #0=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T) ((-97) -3262 (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786))) ((-563 (-794)) -3262 (|has| |#2| (-1016)) (|has| |#2| (-563 (-794))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794)))) ((-140 #1=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T) ((-564 (-499)) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))) ((-207 #0#) . T) ((-213 #0#) . T) ((-263 #2=(-523) #1#) . T) ((-263 |#1| |#2|) . T) ((-265 #2# #1#) . T) ((-265 |#1| |#2|) . T) ((-286 #1#) -12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))) ((-286 |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-259 #1#) . T) ((-349 #1#) . T) ((-462 #1#) . T) ((-462 |#2|) . T) ((-556 #2# #1#) . T) ((-556 |#1| |#2|) . T) ((-484 #1# #1#) -12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))) ((-484 |#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-560 |#1| |#2|) . T) ((-594 #1#) . T) ((-609 #1#) . T) ((-786) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)) ((-938 #1#) . T) ((-1016) -3262 (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786))) ((-1061 #1#) . T) ((-1099 |#1| |#2|) . T) ((-1122) . T) ((-1156 #1#) . T)) +((-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) 10))) +(((-36 |#1| |#2|) (-10 -8 (-15 -1458 (|#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) (-37 |#2|) (-158)) (T -36)) +NIL +(-10 -8 (-15 -1458 (|#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 37)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) +(((-37 |#1|) (-129) (-158)) (T -37)) +((-1458 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-158))))) +(-13 (-973) (-657 |t#1|) (-10 -8 (-15 -1458 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-657 |#1|) . T) ((-666) . T) ((-979 |#1|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-2063 (((-394 |#1|) |#1|) 38)) (-1820 (((-394 |#1|) |#1|) 27) (((-394 |#1|) |#1| (-589 (-47))) 30)) (-2704 (((-108) |#1|) 54))) +(((-38 |#1|) (-10 -7 (-15 -1820 ((-394 |#1|) |#1| (-589 (-47)))) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -2063 ((-394 |#1|) |#1|)) (-15 -2704 ((-108) |#1|))) (-1144 (-47))) (T -38)) +((-2704 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1144 (-47))))) (-2063 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1144 (-47))))) (-1820 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1144 (-47))))) (-1820 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-47))) (-5 *2 (-394 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1144 (-47)))))) +(-10 -7 (-15 -1820 ((-394 |#1|) |#1| (-589 (-47)))) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -2063 ((-394 |#1|) |#1|)) (-15 -2704 ((-108) |#1|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1207 (((-2 (|:| |num| (-1168 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| (-383 |#2|) (-339)))) (-3345 (($ $) NIL (|has| (-383 |#2|) (-339)))) (-3331 (((-108) $) NIL (|has| (-383 |#2|) (-339)))) (-3750 (((-629 (-383 |#2|)) (-1168 $)) NIL) (((-629 (-383 |#2|))) NIL)) (-4187 (((-383 |#2|) $) NIL)) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| (-383 |#2|) (-325)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL (|has| (-383 |#2|) (-339)))) (-3614 (((-394 $) $) NIL (|has| (-383 |#2|) (-339)))) (-1387 (((-108) $ $) NIL (|has| (-383 |#2|) (-339)))) (-1703 (((-710)) NIL (|has| (-383 |#2|) (-344)))) (-2957 (((-108)) NIL)) (-2898 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| (-383 |#2|) (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-383 |#2|) (-964 (-383 (-523))))) (((-3 (-383 |#2|) "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| (-383 |#2|) (-964 (-523)))) (((-383 (-523)) $) NIL (|has| (-383 |#2|) (-964 (-383 (-523))))) (((-383 |#2|) $) NIL)) (-3409 (($ (-1168 (-383 |#2|)) (-1168 $)) NIL) (($ (-1168 (-383 |#2|))) 57) (($ (-1168 |#2|) |#2|) 124)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-383 |#2|) (-325)))) (-3796 (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-4079 (((-629 (-383 |#2|)) $ (-1168 $)) NIL) (((-629 (-383 |#2|)) $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| (-383 |#2|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| (-383 |#2|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-383 |#2|))) (|:| |vec| (-1168 (-383 |#2|)))) (-629 $) (-1168 $)) NIL) (((-629 (-383 |#2|)) (-629 $)) NIL)) (-2851 (((-1168 $) (-1168 $)) NIL)) (-2437 (($ |#3|) NIL) (((-3 $ "failed") (-383 |#3|)) NIL (|has| (-383 |#2|) (-339)))) (-2121 (((-3 $ "failed") $) NIL)) (-4072 (((-589 (-589 |#1|))) NIL (|has| |#1| (-344)))) (-1374 (((-108) |#1| |#1|) NIL)) (-1319 (((-852)) NIL)) (-4032 (($) NIL (|has| (-383 |#2|) (-344)))) (-4189 (((-108)) NIL)) (-2539 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-3769 (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| (-383 |#2|) (-339)))) (-2528 (($ $) NIL)) (-1996 (($) NIL (|has| (-383 |#2|) (-325)))) (-2155 (((-108) $) NIL (|has| (-383 |#2|) (-325)))) (-1991 (($ $ (-710)) NIL (|has| (-383 |#2|) (-325))) (($ $) NIL (|has| (-383 |#2|) (-325)))) (-2657 (((-108) $) NIL (|has| (-383 |#2|) (-339)))) (-1640 (((-852) $) NIL (|has| (-383 |#2|) (-325))) (((-772 (-852)) $) NIL (|has| (-383 |#2|) (-325)))) (-2023 (((-108) $) NIL)) (-3552 (((-710)) NIL)) (-1215 (((-1168 $) (-1168 $)) 100)) (-3892 (((-383 |#2|) $) NIL)) (-3844 (((-589 (-883 |#1|)) (-1087)) NIL (|has| |#1| (-339)))) (-4058 (((-3 $ "failed") $) NIL (|has| (-383 |#2|) (-325)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| (-383 |#2|) (-339)))) (-1397 ((|#3| $) NIL (|has| (-383 |#2|) (-339)))) (-2072 (((-852) $) NIL (|has| (-383 |#2|) (-344)))) (-2428 ((|#3| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| (-383 |#2|) (-339))) (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-3779 (((-1070) $) NIL)) (-1344 (((-1173) (-710)) 78)) (-1467 (((-629 (-383 |#2|))) 51)) (-2860 (((-629 (-383 |#2|))) 44)) (-3738 (($ $) NIL (|has| (-383 |#2|) (-339)))) (-2764 (($ (-1168 |#2|) |#2|) 125)) (-1535 (((-629 (-383 |#2|))) 45)) (-3603 (((-629 (-383 |#2|))) 43)) (-3807 (((-2 (|:| |num| (-629 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 122)) (-4077 (((-2 (|:| |num| (-1168 |#2|)) (|:| |den| |#2|)) $) 63)) (-3496 (((-1168 $)) 42)) (-4158 (((-1168 $)) 41)) (-3613 (((-108) $) NIL)) (-4181 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-2262 (($) NIL (|has| (-383 |#2|) (-325)) CONST)) (-3878 (($ (-852)) NIL (|has| (-383 |#2|) (-344)))) (-2779 (((-3 |#2| "failed")) NIL)) (-2783 (((-1034) $) NIL)) (-3204 (((-710)) NIL)) (-3441 (($) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| (-383 |#2|) (-339)))) (-3278 (($ (-589 $)) NIL (|has| (-383 |#2|) (-339))) (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| (-383 |#2|) (-325)))) (-1820 (((-394 $) $) NIL (|has| (-383 |#2|) (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-383 |#2|) (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| (-383 |#2|) (-339)))) (-3746 (((-3 $ "failed") $ $) NIL (|has| (-383 |#2|) (-339)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| (-383 |#2|) (-339)))) (-1972 (((-710) $) NIL (|has| (-383 |#2|) (-339)))) (-3223 ((|#1| $ |#1| |#1|) NIL)) (-3308 (((-3 |#2| "failed")) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| (-383 |#2|) (-339)))) (-3549 (((-383 |#2|) (-1168 $)) NIL) (((-383 |#2|)) 39)) (-2974 (((-710) $) NIL (|has| (-383 |#2|) (-325))) (((-3 (-710) "failed") $ $) NIL (|has| (-383 |#2|) (-325)))) (-3523 (($ $ (-1 (-383 |#2|) (-383 |#2|)) (-710)) NIL (|has| (-383 |#2|) (-339))) (($ $ (-1 (-383 |#2|) (-383 |#2|))) NIL (|has| (-383 |#2|) (-339))) (($ $ (-1 |#2| |#2|)) 118) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-710)) NIL (-3262 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325)))) (($ $) NIL (-3262 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325))))) (-1976 (((-629 (-383 |#2|)) (-1168 $) (-1 (-383 |#2|) (-383 |#2|))) NIL (|has| (-383 |#2|) (-339)))) (-3727 ((|#3|) 50)) (-3425 (($) NIL (|has| (-383 |#2|) (-325)))) (-2966 (((-1168 (-383 |#2|)) $ (-1168 $)) NIL) (((-629 (-383 |#2|)) (-1168 $) (-1168 $)) NIL) (((-1168 (-383 |#2|)) $) 58) (((-629 (-383 |#2|)) (-1168 $)) 101)) (-3663 (((-1168 (-383 |#2|)) $) NIL) (($ (-1168 (-383 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| (-383 |#2|) (-325)))) (-4110 (((-1168 $) (-1168 $)) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 |#2|)) NIL) (($ (-383 (-523))) NIL (-3262 (|has| (-383 |#2|) (-964 (-383 (-523)))) (|has| (-383 |#2|) (-339)))) (($ $) NIL (|has| (-383 |#2|) (-339)))) (-3901 (($ $) NIL (|has| (-383 |#2|) (-325))) (((-3 $ "failed") $) NIL (|has| (-383 |#2|) (-134)))) (-1807 ((|#3| $) NIL)) (-1621 (((-710)) NIL)) (-2423 (((-108)) 37)) (-2691 (((-108) |#1|) 49) (((-108) |#2|) 131)) (-4041 (((-1168 $)) 91)) (-1704 (((-108) $ $) NIL (|has| (-383 |#2|) (-339)))) (-1451 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1323 (((-108)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| (-383 |#2|) (-339)))) (-2756 (($) 16 T CONST)) (-2767 (($) 26 T CONST)) (-2862 (($ $ (-1 (-383 |#2|) (-383 |#2|)) (-710)) NIL (|has| (-383 |#2|) (-339))) (($ $ (-1 (-383 |#2|) (-383 |#2|))) NIL (|has| (-383 |#2|) (-339))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-710)) NIL (-3262 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325)))) (($ $) NIL (-3262 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325))))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| (-383 |#2|) (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 |#2|)) NIL) (($ (-383 |#2|) $) NIL) (($ (-383 (-523)) $) NIL (|has| (-383 |#2|) (-339))) (($ $ (-383 (-523))) NIL (|has| (-383 |#2|) (-339))))) +(((-39 |#1| |#2| |#3| |#4|) (-13 (-318 |#1| |#2| |#3|) (-10 -7 (-15 -1344 ((-1173) (-710))))) (-339) (-1144 |#1|) (-1144 (-383 |#2|)) |#3|) (T -39)) +((-1344 (*1 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-339)) (-4 *5 (-1144 *4)) (-5 *2 (-1173)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1144 (-383 *5))) (-14 *7 *6)))) +(-13 (-318 |#1| |#2| |#3|) (-10 -7 (-15 -1344 ((-1173) (-710))))) +((-2064 ((|#2| |#2|) 47)) (-3348 ((|#2| |#2|) 117 (-12 (|has| |#2| (-406 |#1|)) (|has| |#1| (-427)) (|has| |#1| (-786)) (|has| |#1| (-964 (-523)))))) (-1607 ((|#2| |#2|) 86 (-12 (|has| |#2| (-406 |#1|)) (|has| |#1| (-427)) (|has| |#1| (-786)) (|has| |#1| (-964 (-523)))))) (-2828 ((|#2| |#2|) 87 (-12 (|has| |#2| (-406 |#1|)) (|has| |#1| (-427)) (|has| |#1| (-786)) (|has| |#1| (-964 (-523)))))) (-2087 ((|#2| (-110) |#2| (-710)) 74 (-12 (|has| |#2| (-406 |#1|)) (|has| |#1| (-427)) (|has| |#1| (-786)) (|has| |#1| (-964 (-523)))))) (-1306 (((-1083 |#2|) |#2|) 44)) (-3236 ((|#2| |#2| (-589 (-562 |#2|))) 17) ((|#2| |#2| (-589 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15))) +(((-40 |#1| |#2|) (-10 -7 (-15 -2064 (|#2| |#2|)) (-15 -3236 (|#2| |#2|)) (-15 -3236 (|#2| |#2| |#2|)) (-15 -3236 (|#2| |#2| (-589 |#2|))) (-15 -3236 (|#2| |#2| (-589 (-562 |#2|)))) (-15 -1306 ((-1083 |#2|) |#2|)) (IF (|has| |#1| (-786)) (IF (|has| |#1| (-427)) (IF (|has| |#1| (-964 (-523))) (IF (|has| |#2| (-406 |#1|)) (PROGN (-15 -2828 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -3348 (|#2| |#2|)) (-15 -2087 (|#2| (-110) |#2| (-710)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-515) (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 |#1| (-562 $)) $)) (-15 -2797 ((-1039 |#1| (-562 $)) $)) (-15 -1458 ($ (-1039 |#1| (-562 $))))))) (T -40)) +((-2087 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-110)) (-5 *4 (-710)) (-4 *5 (-427)) (-4 *5 (-786)) (-4 *5 (-964 (-523))) (-4 *5 (-515)) (-5 *1 (-40 *5 *2)) (-4 *2 (-406 *5)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 *5 (-562 $)) $)) (-15 -2797 ((-1039 *5 (-562 $)) $)) (-15 -1458 ($ (-1039 *5 (-562 $))))))))) (-3348 (*1 *2 *2) (-12 (-4 *3 (-427)) (-4 *3 (-786)) (-4 *3 (-964 (-523))) (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) (-15 -2797 ((-1039 *3 (-562 $)) $)) (-15 -1458 ($ (-1039 *3 (-562 $))))))))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-427)) (-4 *3 (-786)) (-4 *3 (-964 (-523))) (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) (-15 -2797 ((-1039 *3 (-562 $)) $)) (-15 -1458 ($ (-1039 *3 (-562 $))))))))) (-2828 (*1 *2 *2) (-12 (-4 *3 (-427)) (-4 *3 (-786)) (-4 *3 (-964 (-523))) (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) (-15 -2797 ((-1039 *3 (-562 $)) $)) (-15 -1458 ($ (-1039 *3 (-562 $))))))))) (-1306 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-1083 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 *4 (-562 $)) $)) (-15 -2797 ((-1039 *4 (-562 $)) $)) (-15 -1458 ($ (-1039 *4 (-562 $))))))))) (-3236 (*1 *2 *2 *3) (-12 (-5 *3 (-589 (-562 *2))) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 *4 (-562 $)) $)) (-15 -2797 ((-1039 *4 (-562 $)) $)) (-15 -1458 ($ (-1039 *4 (-562 $))))))) (-4 *4 (-515)) (-5 *1 (-40 *4 *2)))) (-3236 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 *4 (-562 $)) $)) (-15 -2797 ((-1039 *4 (-562 $)) $)) (-15 -1458 ($ (-1039 *4 (-562 $))))))) (-4 *4 (-515)) (-5 *1 (-40 *4 *2)))) (-3236 (*1 *2 *2 *2) (-12 (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) (-15 -2797 ((-1039 *3 (-562 $)) $)) (-15 -1458 ($ (-1039 *3 (-562 $))))))))) (-3236 (*1 *2 *2) (-12 (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) (-15 -2797 ((-1039 *3 (-562 $)) $)) (-15 -1458 ($ (-1039 *3 (-562 $))))))))) (-2064 (*1 *2 *2) (-12 (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-339) (-279) (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) (-15 -2797 ((-1039 *3 (-562 $)) $)) (-15 -1458 ($ (-1039 *3 (-562 $)))))))))) +(-10 -7 (-15 -2064 (|#2| |#2|)) (-15 -3236 (|#2| |#2|)) (-15 -3236 (|#2| |#2| |#2|)) (-15 -3236 (|#2| |#2| (-589 |#2|))) (-15 -3236 (|#2| |#2| (-589 (-562 |#2|)))) (-15 -1306 ((-1083 |#2|) |#2|)) (IF (|has| |#1| (-786)) (IF (|has| |#1| (-427)) (IF (|has| |#1| (-964 (-523))) (IF (|has| |#2| (-406 |#1|)) (PROGN (-15 -2828 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -3348 (|#2| |#2|)) (-15 -2087 (|#2| (-110) |#2| (-710)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-1820 (((-394 (-1083 |#3|)) (-1083 |#3|) (-589 (-47))) 22) (((-394 |#3|) |#3| (-589 (-47))) 18))) +(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -1820 ((-394 |#3|) |#3| (-589 (-47)))) (-15 -1820 ((-394 (-1083 |#3|)) (-1083 |#3|) (-589 (-47))))) (-786) (-732) (-880 (-47) |#2| |#1|)) (T -41)) +((-1820 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-47))) (-4 *5 (-786)) (-4 *6 (-732)) (-4 *7 (-880 (-47) *6 *5)) (-5 *2 (-394 (-1083 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-1820 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-47))) (-4 *5 (-786)) (-4 *6 (-732)) (-5 *2 (-394 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-880 (-47) *6 *5))))) +(-10 -7 (-15 -1820 ((-394 |#3|) |#3| (-589 (-47)))) (-15 -1820 ((-394 (-1083 |#3|)) (-1083 |#3|) (-589 (-47))))) +((-2697 (((-710) |#2|) 65)) (-1835 (((-710) |#2|) 68)) (-2127 (((-589 |#2|)) 33)) (-2422 (((-710) |#2|) 67)) (-3896 (((-710) |#2|) 64)) (-1381 (((-710) |#2|) 66)) (-1476 (((-589 (-629 |#1|))) 60)) (-3101 (((-589 |#2|)) 55)) (-2452 (((-589 |#2|) |#2|) 43)) (-3202 (((-589 |#2|)) 57)) (-2176 (((-589 |#2|)) 56)) (-3239 (((-589 (-629 |#1|))) 48)) (-2479 (((-589 |#2|)) 54)) (-3854 (((-589 |#2|) |#2|) 42)) (-2972 (((-589 |#2|)) 50)) (-1252 (((-589 (-629 |#1|))) 61)) (-2269 (((-589 |#2|)) 59)) (-4041 (((-1168 |#2|) (-1168 |#2|)) 84 (|has| |#1| (-284))))) +(((-42 |#1| |#2|) (-10 -7 (-15 -2422 ((-710) |#2|)) (-15 -1835 ((-710) |#2|)) (-15 -3896 ((-710) |#2|)) (-15 -2697 ((-710) |#2|)) (-15 -1381 ((-710) |#2|)) (-15 -2972 ((-589 |#2|))) (-15 -3854 ((-589 |#2|) |#2|)) (-15 -2452 ((-589 |#2|) |#2|)) (-15 -2479 ((-589 |#2|))) (-15 -3101 ((-589 |#2|))) (-15 -2176 ((-589 |#2|))) (-15 -3202 ((-589 |#2|))) (-15 -2269 ((-589 |#2|))) (-15 -3239 ((-589 (-629 |#1|)))) (-15 -1476 ((-589 (-629 |#1|)))) (-15 -1252 ((-589 (-629 |#1|)))) (-15 -2127 ((-589 |#2|))) (IF (|has| |#1| (-284)) (-15 -4041 ((-1168 |#2|) (-1168 |#2|))) |%noBranch|)) (-515) (-393 |#1|)) (T -42)) +((-4041 (*1 *2 *2) (-12 (-5 *2 (-1168 *4)) (-4 *4 (-393 *3)) (-4 *3 (-284)) (-4 *3 (-515)) (-5 *1 (-42 *3 *4)))) (-2127 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-1252 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 (-629 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-1476 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 (-629 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-3239 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 (-629 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-2269 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-3202 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-2176 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-3101 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-2479 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-2452 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-589 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-393 *4)))) (-3854 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-589 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-393 *4)))) (-2972 (*1 *2) (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-393 *3)))) (-1381 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) (-4 *3 (-393 *4)))) (-2697 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) (-4 *3 (-393 *4)))) (-3896 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) (-4 *3 (-393 *4)))) (-1835 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) (-4 *3 (-393 *4)))) (-2422 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) (-4 *3 (-393 *4))))) +(-10 -7 (-15 -2422 ((-710) |#2|)) (-15 -1835 ((-710) |#2|)) (-15 -3896 ((-710) |#2|)) (-15 -2697 ((-710) |#2|)) (-15 -1381 ((-710) |#2|)) (-15 -2972 ((-589 |#2|))) (-15 -3854 ((-589 |#2|) |#2|)) (-15 -2452 ((-589 |#2|) |#2|)) (-15 -2479 ((-589 |#2|))) (-15 -3101 ((-589 |#2|))) (-15 -2176 ((-589 |#2|))) (-15 -3202 ((-589 |#2|))) (-15 -2269 ((-589 |#2|))) (-15 -3239 ((-589 (-629 |#1|)))) (-15 -1476 ((-589 (-629 |#1|)))) (-15 -1252 ((-589 (-629 |#1|)))) (-15 -2127 ((-589 |#2|))) (IF (|has| |#1| (-284)) (-15 -4041 ((-1168 |#2|) (-1168 |#2|))) |%noBranch|)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3819 (((-3 $ "failed")) NIL (|has| |#1| (-515)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3115 (((-1168 (-629 |#1|)) (-1168 $)) NIL) (((-1168 (-629 |#1|))) 24)) (-2738 (((-1168 $)) 50)) (-2518 (($) NIL T CONST)) (-3486 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) NIL (|has| |#1| (-515)))) (-3545 (((-3 $ "failed")) NIL (|has| |#1| (-515)))) (-1431 (((-629 |#1|) (-1168 $)) NIL) (((-629 |#1|)) NIL)) (-3744 ((|#1| $) NIL)) (-2788 (((-629 |#1|) $ (-1168 $)) NIL) (((-629 |#1|) $) NIL)) (-2532 (((-3 $ "failed") $) NIL (|has| |#1| (-515)))) (-3138 (((-1083 (-883 |#1|))) NIL (|has| |#1| (-339)))) (-1970 (($ $ (-852)) NIL)) (-4212 ((|#1| $) NIL)) (-1726 (((-1083 |#1|) $) NIL (|has| |#1| (-515)))) (-2284 ((|#1| (-1168 $)) NIL) ((|#1|) NIL)) (-1778 (((-1083 |#1|) $) NIL)) (-2117 (((-108)) 86)) (-3409 (($ (-1168 |#1|) (-1168 $)) NIL) (($ (-1168 |#1|)) NIL)) (-2121 (((-3 $ "failed") $) 14 (|has| |#1| (-515)))) (-1319 (((-852)) 51)) (-1487 (((-108)) NIL)) (-3650 (($ $ (-852)) NIL)) (-1649 (((-108)) NIL)) (-2956 (((-108)) NIL)) (-2491 (((-108)) 88)) (-2362 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) NIL (|has| |#1| (-515)))) (-1386 (((-3 $ "failed")) NIL (|has| |#1| (-515)))) (-1504 (((-629 |#1|) (-1168 $)) NIL) (((-629 |#1|)) NIL)) (-3237 ((|#1| $) NIL)) (-2139 (((-629 |#1|) $ (-1168 $)) NIL) (((-629 |#1|) $) NIL)) (-1579 (((-3 $ "failed") $) NIL (|has| |#1| (-515)))) (-2525 (((-1083 (-883 |#1|))) NIL (|has| |#1| (-339)))) (-1448 (($ $ (-852)) NIL)) (-4050 ((|#1| $) NIL)) (-2553 (((-1083 |#1|) $) NIL (|has| |#1| (-515)))) (-3002 ((|#1| (-1168 $)) NIL) ((|#1|) NIL)) (-2565 (((-1083 |#1|) $) NIL)) (-1216 (((-108)) 85)) (-3779 (((-1070) $) NIL)) (-2345 (((-108)) 92)) (-1510 (((-108)) 91)) (-2871 (((-108)) 93)) (-2783 (((-1034) $) NIL)) (-2751 (((-108)) 87)) (-3223 ((|#1| $ (-523)) 53)) (-2966 (((-1168 |#1|) $ (-1168 $)) 47) (((-629 |#1|) (-1168 $) (-1168 $)) NIL) (((-1168 |#1|) $) 28) (((-629 |#1|) (-1168 $)) NIL)) (-3663 (((-1168 |#1|) $) NIL) (($ (-1168 |#1|)) NIL)) (-3863 (((-589 (-883 |#1|)) (-1168 $)) NIL) (((-589 (-883 |#1|))) NIL)) (-1714 (($ $ $) NIL)) (-1673 (((-108)) 83)) (-1458 (((-794) $) 68) (($ (-1168 |#1|)) 22)) (-4041 (((-1168 $)) 44)) (-3751 (((-589 (-1168 |#1|))) NIL (|has| |#1| (-515)))) (-2022 (($ $ $ $) NIL)) (-3120 (((-108)) 81)) (-1677 (($ (-629 |#1|) $) 18)) (-1995 (($ $ $) NIL)) (-1462 (((-108)) 84)) (-3366 (((-108)) 82)) (-2071 (((-108)) 80)) (-2756 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1054 |#2| |#1|) $) 19))) +(((-43 |#1| |#2| |#3| |#4|) (-13 (-393 |#1|) (-591 (-1054 |#2| |#1|)) (-10 -8 (-15 -1458 ($ (-1168 |#1|))))) (-339) (-852) (-589 (-1087)) (-1168 (-629 |#1|))) (T -43)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-339)) (-14 *6 (-1168 (-629 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-852)) (-14 *5 (-589 (-1087)))))) +(-13 (-393 |#1|) (-591 (-1054 |#2| |#1|)) (-10 -8 (-15 -1458 ($ (-1168 |#1|))))) +((-3924 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1733 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-1546 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-4039 (($ $) NIL)) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-4207 (((-1173) $ |#1| |#1|) NIL (|has| $ (-6 -4245))) (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-2961 (($ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (((-108) $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-1506 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786))))) (-3974 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-1823 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4245)))) (-2110 (($ $ $) 27 (|has| $ (-6 -4245)))) (-3395 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4245)))) (-3456 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 29 (|has| $ (-6 -4245)))) (-1641 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4245))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-1135 (-523)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4245))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "last" (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4245))) (($ $ "rest" $) NIL (|has| $ (-6 -4245))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "first" (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4245))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "value" (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) NIL (|has| $ (-6 -4245)))) (-3387 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL)) (-3724 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-1532 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-2243 (((-3 |#2| "failed") |#1| $) 37)) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1751 (($ $ (-710)) NIL) (($ $) 24)) (-3941 (($ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-2249 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-3 |#2| "failed") |#1| $) 47) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-2557 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4245))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) NIL) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523)) NIL)) (-1232 (((-108) $) NIL)) (-1479 (((-523) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (((-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))) (((-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523)) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-1666 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 18 (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244))) (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 18 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) NIL)) (-1238 (((-108) $ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-3052 (($ (-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 ((|#1| $) NIL (|has| |#1| (-786))) (((-523) $) 32 (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-2158 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-2178 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-2136 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244))) (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016)))) (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-3056 ((|#1| $) NIL (|has| |#1| (-786))) (((-523) $) 34 (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4245))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245))) (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL)) (-3992 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-2726 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL)) (-3555 (((-108) $) NIL)) (-3779 (((-1070) $) 42 (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2579 (($ $ (-710)) NIL) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-1330 (((-589 |#1|) $) 20)) (-2777 (((-108) |#1| $) NIL)) (-1934 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-3450 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL) (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2847 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2412 (((-589 |#1|) $) NIL) (((-589 (-523)) $) NIL)) (-4135 (((-108) |#1| $) NIL) (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1738 ((|#2| $) NIL (|has| |#1| (-786))) (($ $ (-710)) NIL) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 23)) (-2114 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL)) (-4203 (($ $ |#2|) NIL (|has| $ (-6 -4245))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-2402 (((-108) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016)))) (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-1264 (((-589 |#2|) $) NIL) (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 17)) (-3883 (((-108) $) 16)) (-3988 (($) 13)) (-3223 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ (-523)) NIL) (($ $ (-1135 (-523))) NIL) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "first") NIL) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $ "value") NIL)) (-1549 (((-523) $ $) NIL)) (-3433 (($) 12) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2753 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2524 (((-108) $) NIL)) (-2732 (($ $) NIL)) (-2363 (($ $) NIL (|has| $ (-6 -4245)))) (-2316 (((-710) $) NIL)) (-3562 (($ $) NIL)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016)))) (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-1746 (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL) (($ $ $) NIL)) (-2326 (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL) (($ (-589 $)) NIL) (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 25) (($ $ $) NIL)) (-1458 (((-794) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794)))))) (-2296 (((-589 $) $) NIL)) (-3653 (((-108) $ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-2401 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2589 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") |#1| $) 44)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-4019 (((-108) $ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-3983 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-4030 (((-108) $ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-4007 (((-108) $ $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-786)))) (-2676 (((-710) $) 22 (|has| $ (-6 -4244))))) +(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1016) (-1016)) (T -44)) NIL (-35 |#1| |#2|) -((-1374 (((-108) $) 12)) (-3810 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-382 (-522)) $) 24) (($ $ (-382 (-522))) NIL))) -(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-382 (-522)))) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 -1374 ((-108) |#1|)) (-15 -3810 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|))) (-46 |#2| |#3|) (-971) (-729)) (T -45)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-382 (-522)))) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 -1374 ((-108) |#1|)) (-15 -3810 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 51 (|has| |#1| (-514)))) (-2298 (($ $) 52 (|has| |#1| (-514)))) (-3007 (((-108) $) 54 (|has| |#1| (-514)))) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3241 (($ $) 60)) (-3920 (((-3 $ "failed") $) 34)) (-2859 (((-108) $) 31)) (-1374 (((-108) $) 62)) (-3500 (($ |#1| |#2|) 61)) (-3810 (($ (-1 |#1| |#1|) $) 63)) (-3216 (($ $) 65)) (-3224 ((|#1| $) 66)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2276 (((-3 $ "failed") $ $) 50 (|has| |#1| (-514)))) (-2487 ((|#2| $) 64)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ (-382 (-522))) 57 (|has| |#1| (-37 (-382 (-522))))) (($ $) 49 (|has| |#1| (-514))) (($ |#1|) 47 (|has| |#1| (-157)))) (-1643 ((|#1| $ |#2|) 59)) (-3040 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-2742 (((-708)) 29)) (-1407 (((-108) $ $) 53 (|has| |#1| (-514)))) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1682 (($ $ |#1|) 58 (|has| |#1| (-338)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-382 (-522)) $) 56 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 55 (|has| |#1| (-37 (-382 (-522))))))) -(((-46 |#1| |#2|) (-1197) (-971) (-729)) (T -46)) -((-3224 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971)))) (-3216 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729)))) (-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)))) (-1374 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) (-5 *2 (-108)))) (-3500 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729)))) (-3241 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729)))) (-1643 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971)))) (-1682 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729)) (-4 *2 (-338))))) -(-13 (-971) (-107 |t#1| |t#1|) (-10 -8 (-15 -3224 (|t#1| $)) (-15 -3216 ($ $)) (-15 -2487 (|t#2| $)) (-15 -3810 ($ (-1 |t#1| |t#1|) $)) (-15 -1374 ((-108) $)) (-15 -3500 ($ |t#1| |t#2|)) (-15 -3241 ($ $)) (-15 -1643 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-338)) (-15 -1682 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-157)) (PROGN (-6 (-157)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-514)) (-6 (-514)) |%noBranch|) (IF (|has| |t#1| (-37 (-382 (-522)))) (-6 (-37 (-382 (-522)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-514)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-382 (-522)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3844 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3844 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-266) |has| |#1| (-514)) ((-514) |has| |#1| (-514)) ((-590 #0#) |has| |#1| (-37 (-382 (-522)))) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #0#) |has| |#1| (-37 (-382 (-522)))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) |has| |#1| (-514)) ((-664) . T) ((-977 #0#) |has| |#1| (-37 (-382 (-522)))) ((-977 |#1|) . T) ((-977 $) -3844 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-3899 (((-588 $) (-1081 $) (-1085)) NIL) (((-588 $) (-1081 $)) NIL) (((-588 $) (-881 $)) NIL)) (-3974 (($ (-1081 $) (-1085)) NIL) (($ (-1081 $)) NIL) (($ (-881 $)) NIL)) (-2944 (((-108) $) 11)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-1974 (((-588 (-561 $)) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-1847 (($ $ (-270 $)) NIL) (($ $ (-588 (-270 $))) NIL) (($ $ (-588 (-561 $)) (-588 $)) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2016 (($ $) NIL)) (-2805 (((-108) $ $) NIL)) (-3367 (($) NIL T CONST)) (-2136 (((-588 $) (-1081 $) (-1085)) NIL) (((-588 $) (-1081 $)) NIL) (((-588 $) (-881 $)) NIL)) (-1275 (($ (-1081 $) (-1085)) NIL) (($ (-1081 $)) NIL) (($ (-881 $)) NIL)) (-3700 (((-3 (-561 $) "failed") $) NIL) (((-3 (-522) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL)) (-1478 (((-561 $) $) NIL) (((-522) $) NIL) (((-382 (-522)) $) NIL)) (-2333 (($ $ $) NIL)) (-1226 (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-628 (-522)) (-628 $)) NIL) (((-2 (|:| -2149 (-628 (-382 (-522)))) (|:| |vec| (-1166 (-382 (-522))))) (-628 $) (-1166 $)) NIL) (((-628 (-382 (-522))) (-628 $)) NIL)) (-2153 (($ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-2930 (($ $) NIL) (($ (-588 $)) NIL)) (-2896 (((-588 (-110)) $) NIL)) (-1771 (((-110) (-110)) NIL)) (-2859 (((-108) $) 14)) (-3077 (((-108) $) NIL (|has| $ (-962 (-522))))) (-2947 (((-1037 (-522) (-561 $)) $) NIL)) (-1811 (($ $ (-522)) NIL)) (-1269 (((-1081 $) (-1081 $) (-561 $)) NIL) (((-1081 $) (-1081 $) (-588 (-561 $))) NIL) (($ $ (-561 $)) NIL) (($ $ (-588 (-561 $))) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4185 (((-1081 $) (-561 $)) NIL (|has| $ (-971)))) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-3810 (($ (-1 $ $) (-561 $)) NIL)) (-3562 (((-3 (-561 $) "failed") $) NIL)) (-2267 (($ (-588 $)) NIL) (($ $ $) NIL)) (-2311 (((-1068) $) NIL)) (-1249 (((-588 (-561 $)) $) NIL)) (-3043 (($ (-110) $) NIL) (($ (-110) (-588 $)) NIL)) (-2935 (((-108) $ (-110)) NIL) (((-108) $ (-1085)) NIL)) (-3193 (($ $) NIL)) (-4179 (((-708) $) NIL)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ (-588 $)) NIL) (($ $ $) NIL)) (-2368 (((-108) $ $) NIL) (((-108) $ (-1085)) NIL)) (-2006 (((-393 $) $) NIL)) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2626 (((-108) $) NIL (|has| $ (-962 (-522))))) (-2330 (($ $ (-561 $) $) NIL) (($ $ (-588 (-561 $)) (-588 $)) NIL) (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ $))) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ (-588 $)))) NIL) (($ $ (-1085) (-1 $ (-588 $))) NIL) (($ $ (-1085) (-1 $ $)) NIL) (($ $ (-588 (-110)) (-588 (-1 $ $))) NIL) (($ $ (-588 (-110)) (-588 (-1 $ (-588 $)))) NIL) (($ $ (-110) (-1 $ (-588 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-4031 (((-708) $) NIL)) (-2683 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-588 $)) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-3406 (($ $) NIL) (($ $ $) NIL)) (-2731 (($ $ (-708)) NIL) (($ $) NIL)) (-2959 (((-1037 (-522) (-561 $)) $) NIL)) (-1579 (($ $) NIL (|has| $ (-971)))) (-3873 (((-354) $) NIL) (((-202) $) NIL) (((-154 (-354)) $) NIL)) (-2217 (((-792) $) NIL) (($ (-561 $)) NIL) (($ (-382 (-522))) NIL) (($ $) NIL) (($ (-522)) NIL) (($ (-1037 (-522) (-561 $))) NIL)) (-2742 (((-708)) NIL)) (-3811 (($ $) NIL) (($ (-588 $)) NIL)) (-4082 (((-108) (-110)) NIL)) (-1407 (((-108) $ $) NIL)) (-3622 (($ $ (-522)) NIL) (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (-3697 (($) 7 T CONST)) (-3709 (($) 12 T CONST)) (-2252 (($ $ (-708)) NIL) (($ $) NIL)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 16)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) NIL)) (-1682 (($ $ $) NIL)) (-1672 (($ $ $) 15) (($ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-382 (-522))) NIL) (($ $ (-522)) NIL) (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (* (($ (-382 (-522)) $) NIL) (($ $ (-382 (-522))) NIL) (($ $ $) NIL) (($ (-522) $) NIL) (($ (-708) $) NIL) (($ (-850) $) NIL))) -(((-47) (-13 (-278) (-27) (-962 (-522)) (-962 (-382 (-522))) (-584 (-522)) (-947) (-584 (-382 (-522))) (-135) (-563 (-154 (-354))) (-210) (-10 -8 (-15 -2217 ($ (-1037 (-522) (-561 $)))) (-15 -2947 ((-1037 (-522) (-561 $)) $)) (-15 -2959 ((-1037 (-522) (-561 $)) $)) (-15 -2153 ($ $)) (-15 -1269 ((-1081 $) (-1081 $) (-561 $))) (-15 -1269 ((-1081 $) (-1081 $) (-588 (-561 $)))) (-15 -1269 ($ $ (-561 $))) (-15 -1269 ($ $ (-588 (-561 $))))))) (T -47)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1037 (-522) (-561 (-47)))) (-5 *1 (-47)))) (-2947 (*1 *2 *1) (-12 (-5 *2 (-1037 (-522) (-561 (-47)))) (-5 *1 (-47)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-1037 (-522) (-561 (-47)))) (-5 *1 (-47)))) (-2153 (*1 *1 *1) (-5 *1 (-47))) (-1269 (*1 *2 *2 *3) (-12 (-5 *2 (-1081 (-47))) (-5 *3 (-561 (-47))) (-5 *1 (-47)))) (-1269 (*1 *2 *2 *3) (-12 (-5 *2 (-1081 (-47))) (-5 *3 (-588 (-561 (-47)))) (-5 *1 (-47)))) (-1269 (*1 *1 *1 *2) (-12 (-5 *2 (-561 (-47))) (-5 *1 (-47)))) (-1269 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-561 (-47)))) (-5 *1 (-47))))) -(-13 (-278) (-27) (-962 (-522)) (-962 (-382 (-522))) (-584 (-522)) (-947) (-584 (-382 (-522))) (-135) (-563 (-154 (-354))) (-210) (-10 -8 (-15 -2217 ($ (-1037 (-522) (-561 $)))) (-15 -2947 ((-1037 (-522) (-561 $)) $)) (-15 -2959 ((-1037 (-522) (-561 $)) $)) (-15 -2153 ($ $)) (-15 -1269 ((-1081 $) (-1081 $) (-561 $))) (-15 -1269 ((-1081 $) (-1081 $) (-588 (-561 $)))) (-15 -1269 ($ $ (-561 $))) (-15 -1269 ($ $ (-588 (-561 $)))))) -((-1419 (((-108) $ $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 7)) (-1562 (((-108) $ $) NIL))) -(((-48) (-1014)) (T -48)) -NIL -(-1014) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 60)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-1608 (((-108) $) 20)) (-3700 (((-3 |#1| "failed") $) 23)) (-1478 ((|#1| $) 24)) (-3241 (($ $) 27)) (-3920 (((-3 $ "failed") $) NIL)) (-2859 (((-108) $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-3224 ((|#1| $) 21)) (-2778 (($ $) 49)) (-2311 (((-1068) $) NIL)) (-3532 (((-108) $) 28)) (-4174 (((-1032) $) NIL)) (-1368 (($ (-708)) 47)) (-3357 (($ (-588 (-522))) 48)) (-2487 (((-708) $) 29)) (-2217 (((-792) $) 63) (($ (-522)) 44) (($ |#1|) 42)) (-1643 ((|#1| $ $) 19)) (-2742 (((-708)) 46)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 30 T CONST)) (-3709 (($) 14 T CONST)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) 40)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) -(((-49 |#1| |#2|) (-13 (-566 |#1|) (-962 |#1|) (-10 -8 (-15 -3224 (|#1| $)) (-15 -2778 ($ $)) (-15 -3241 ($ $)) (-15 -1643 (|#1| $ $)) (-15 -1368 ($ (-708))) (-15 -3357 ($ (-588 (-522)))) (-15 -3532 ((-108) $)) (-15 -1608 ((-108) $)) (-15 -2487 ((-708) $)) (-15 -3810 ($ (-1 |#1| |#1|) $)))) (-971) (-588 (-1085))) (T -49)) -((-3224 (*1 *2 *1) (-12 (-4 *2 (-971)) (-5 *1 (-49 *2 *3)) (-14 *3 (-588 (-1085))))) (-2778 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-971)) (-14 *3 (-588 (-1085))))) (-3241 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-971)) (-14 *3 (-588 (-1085))))) (-1643 (*1 *2 *1 *1) (-12 (-4 *2 (-971)) (-5 *1 (-49 *2 *3)) (-14 *3 (-588 (-1085))))) (-1368 (*1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-49 *3 *4)) (-4 *3 (-971)) (-14 *4 (-588 (-1085))))) (-3357 (*1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-49 *3 *4)) (-4 *3 (-971)) (-14 *4 (-588 (-1085))))) (-3532 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-971)) (-14 *4 (-588 (-1085))))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-971)) (-14 *4 (-588 (-1085))))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-49 *3 *4)) (-4 *3 (-971)) (-14 *4 (-588 (-1085))))) (-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-49 *3 *4)) (-14 *4 (-588 (-1085)))))) -(-13 (-566 |#1|) (-962 |#1|) (-10 -8 (-15 -3224 (|#1| $)) (-15 -2778 ($ $)) (-15 -3241 ($ $)) (-15 -1643 (|#1| $ $)) (-15 -1368 ($ (-708))) (-15 -3357 ($ (-588 (-522)))) (-15 -3532 ((-108) $)) (-15 -1608 ((-108) $)) (-15 -2487 ((-708) $)) (-15 -3810 ($ (-1 |#1| |#1|) $)))) -((-1608 (((-108) (-51)) 13)) (-3700 (((-3 |#1| "failed") (-51)) 21)) (-1478 ((|#1| (-51)) 22)) (-2217 (((-51) |#1|) 18))) -(((-50 |#1|) (-10 -7 (-15 -2217 ((-51) |#1|)) (-15 -3700 ((-3 |#1| "failed") (-51))) (-15 -1608 ((-108) (-51))) (-15 -1478 (|#1| (-51)))) (-1120)) (T -50)) -((-1478 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1120)))) (-1608 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1120)))) (-3700 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1120)))) (-2217 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1120))))) -(-10 -7 (-15 -2217 ((-51) |#1|)) (-15 -3700 ((-3 |#1| "failed") (-51))) (-15 -1608 ((-108) (-51))) (-15 -1478 (|#1| (-51)))) -((-1419 (((-108) $ $) NIL)) (-3885 (((-1068) (-108)) 25)) (-1240 (((-792) $) 24)) (-2986 (((-711) $) 12)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-1981 (((-792) $) 16)) (-3028 (((-1018) $) 14)) (-2217 (((-792) $) 32)) (-3831 (($ (-1018) (-711)) 33)) (-1562 (((-108) $ $) 18))) -(((-51) (-13 (-1014) (-10 -8 (-15 -3831 ($ (-1018) (-711))) (-15 -1981 ((-792) $)) (-15 -1240 ((-792) $)) (-15 -3028 ((-1018) $)) (-15 -2986 ((-711) $)) (-15 -3885 ((-1068) (-108)))))) (T -51)) -((-3831 (*1 *1 *2 *3) (-12 (-5 *2 (-1018)) (-5 *3 (-711)) (-5 *1 (-51)))) (-1981 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-51)))) (-1240 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-51)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-51)))) (-2986 (*1 *2 *1) (-12 (-5 *2 (-711)) (-5 *1 (-51)))) (-3885 (*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1068)) (-5 *1 (-51))))) -(-13 (-1014) (-10 -8 (-15 -3831 ($ (-1018) (-711))) (-15 -1981 ((-792) $)) (-15 -1240 ((-792) $)) (-15 -3028 ((-1018) $)) (-15 -2986 ((-711) $)) (-15 -3885 ((-1068) (-108))))) -((-1664 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -1664 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-971) (-590 |#1|) (-786 |#1|)) (T -52)) -((-1664 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-590 *5)) (-4 *5 (-971)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-786 *5))))) -(-10 -7 (-15 -1664 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-3236 ((|#3| |#3| (-588 (-1085))) 35)) (-2399 ((|#3| (-588 (-993 |#1| |#2| |#3|)) |#3| (-850)) 22) ((|#3| (-588 (-993 |#1| |#2| |#3|)) |#3|) 20))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2399 (|#3| (-588 (-993 |#1| |#2| |#3|)) |#3|)) (-15 -2399 (|#3| (-588 (-993 |#1| |#2| |#3|)) |#3| (-850))) (-15 -3236 (|#3| |#3| (-588 (-1085))))) (-1014) (-13 (-971) (-815 |#1|) (-784) (-563 (-821 |#1|))) (-13 (-405 |#2|) (-815 |#1|) (-563 (-821 |#1|)))) (T -53)) -((-3236 (*1 *2 *2 *3) (-12 (-5 *3 (-588 (-1085))) (-4 *4 (-1014)) (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-405 *5) (-815 *4) (-563 (-821 *4)))))) (-2399 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-588 (-993 *5 *6 *2))) (-5 *4 (-850)) (-4 *5 (-1014)) (-4 *6 (-13 (-971) (-815 *5) (-784) (-563 (-821 *5)))) (-4 *2 (-13 (-405 *6) (-815 *5) (-563 (-821 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-2399 (*1 *2 *3 *2) (-12 (-5 *3 (-588 (-993 *4 *5 *2))) (-4 *4 (-1014)) (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4)))) (-4 *2 (-13 (-405 *5) (-815 *4) (-563 (-821 *4)))) (-5 *1 (-53 *4 *5 *2))))) -(-10 -7 (-15 -2399 (|#3| (-588 (-993 |#1| |#2| |#3|)) |#3|)) (-15 -2399 (|#3| (-588 (-993 |#1| |#2| |#3|)) |#3| (-850))) (-15 -3236 (|#3| |#3| (-588 (-1085))))) -((-2717 (((-108) $ (-708)) 23)) (-3074 (($ $ (-522) |#3|) 45)) (-4060 (($ $ (-522) |#4|) 49)) (-2635 ((|#3| $ (-522)) 58)) (-2395 (((-588 |#2|) $) 30)) (-1480 (((-108) $ (-708)) 25)) (-4176 (((-108) |#2| $) 53)) (-2397 (($ (-1 |#2| |#2|) $) 37)) (-3810 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 39) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 41)) (-3309 (((-108) $ (-708)) 24)) (-1972 (($ $ |#2|) 34)) (-3487 (((-108) (-1 (-108) |#2|) $) 19)) (-2683 ((|#2| $ (-522) (-522)) NIL) ((|#2| $ (-522) (-522) |#2|) 27)) (-4187 (((-708) (-1 (-108) |#2|) $) 28) (((-708) |#2| $) 55)) (-2463 (($ $) 33)) (-2223 ((|#4| $ (-522)) 61)) (-2217 (((-792) $) 66)) (-1381 (((-108) (-1 (-108) |#2|) $) 18)) (-1562 (((-108) $ $) 52)) (-3591 (((-708) $) 26))) -(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2217 ((-792) |#1|)) (-15 -3810 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3810 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4060 (|#1| |#1| (-522) |#4|)) (-15 -3074 (|#1| |#1| (-522) |#3|)) (-15 -2395 ((-588 |#2|) |#1|)) (-15 -2223 (|#4| |#1| (-522))) (-15 -2635 (|#3| |#1| (-522))) (-15 -2683 (|#2| |#1| (-522) (-522) |#2|)) (-15 -2683 (|#2| |#1| (-522) (-522))) (-15 -1972 (|#1| |#1| |#2|)) (-15 -1562 ((-108) |#1| |#1|)) (-15 -4176 ((-108) |#2| |#1|)) (-15 -4187 ((-708) |#2| |#1|)) (-15 -4187 ((-708) (-1 (-108) |#2|) |#1|)) (-15 -3487 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1381 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3810 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3591 ((-708) |#1|)) (-15 -2717 ((-108) |#1| (-708))) (-15 -1480 ((-108) |#1| (-708))) (-15 -3309 ((-108) |#1| (-708))) (-15 -2463 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1120) (-348 |#2|) (-348 |#2|)) (T -54)) -NIL -(-10 -8 (-15 -2217 ((-792) |#1|)) (-15 -3810 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3810 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4060 (|#1| |#1| (-522) |#4|)) (-15 -3074 (|#1| |#1| (-522) |#3|)) (-15 -2395 ((-588 |#2|) |#1|)) (-15 -2223 (|#4| |#1| (-522))) (-15 -2635 (|#3| |#1| (-522))) (-15 -2683 (|#2| |#1| (-522) (-522) |#2|)) (-15 -2683 (|#2| |#1| (-522) (-522))) (-15 -1972 (|#1| |#1| |#2|)) (-15 -1562 ((-108) |#1| |#1|)) (-15 -4176 ((-108) |#2| |#1|)) (-15 -4187 ((-708) |#2| |#1|)) (-15 -4187 ((-708) (-1 (-108) |#2|) |#1|)) (-15 -3487 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1381 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3810 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3591 ((-708) |#1|)) (-15 -2717 ((-108) |#1| (-708))) (-15 -1480 ((-108) |#1| (-708))) (-15 -3309 ((-108) |#1| (-708))) (-15 -2463 (|#1| |#1|))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-2717 (((-108) $ (-708)) 8)) (-2437 ((|#1| $ (-522) (-522) |#1|) 44)) (-3074 (($ $ (-522) |#2|) 42)) (-4060 (($ $ (-522) |#3|) 41)) (-3367 (($) 7 T CONST)) (-2635 ((|#2| $ (-522)) 46)) (-2411 ((|#1| $ (-522) (-522) |#1|) 43)) (-2186 ((|#1| $ (-522) (-522)) 48)) (-2395 (((-588 |#1|) $) 30)) (-2949 (((-708) $) 51)) (-1893 (($ (-708) (-708) |#1|) 57)) (-2960 (((-708) $) 50)) (-1480 (((-108) $ (-708)) 9)) (-2604 (((-522) $) 55)) (-4042 (((-522) $) 53)) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1925 (((-522) $) 54)) (-2595 (((-522) $) 52)) (-2397 (($ (-1 |#1| |#1|) $) 34)) (-3810 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3309 (((-108) $ (-708)) 10)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-1972 (($ $ |#1|) 56)) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 ((|#1| $ (-522) (-522)) 49) ((|#1| $ (-522) (-522) |#1|) 47)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-2223 ((|#3| $ (-522)) 45)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-55 |#1| |#2| |#3|) (-1197) (-1120) (-348 |t#1|) (-348 |t#1|)) (T -55)) -((-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-1893 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-708)) (-4 *3 (-1120)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-1972 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-522)))) (-1925 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-522)))) (-4042 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-522)))) (-2595 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-522)))) (-2949 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-708)))) (-2960 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-708)))) (-2683 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-522)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-348 *2)) (-4 *5 (-348 *2)) (-4 *2 (-1120)))) (-2186 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-522)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-348 *2)) (-4 *5 (-348 *2)) (-4 *2 (-1120)))) (-2683 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-522)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1120)) (-4 *4 (-348 *2)) (-4 *5 (-348 *2)))) (-2635 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1120)) (-4 *5 (-348 *4)) (-4 *2 (-348 *4)))) (-2223 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1120)) (-4 *5 (-348 *4)) (-4 *2 (-348 *4)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-588 *3)))) (-2437 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-522)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1120)) (-4 *4 (-348 *2)) (-4 *5 (-348 *2)))) (-2411 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-522)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1120)) (-4 *4 (-348 *2)) (-4 *5 (-348 *2)))) (-3074 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-522)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1120)) (-4 *3 (-348 *4)) (-4 *5 (-348 *4)))) (-4060 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-522)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1120)) (-4 *5 (-348 *4)) (-4 *3 (-348 *4)))) (-2397 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-3810 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-3810 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3))))) -(-13 (-461 |t#1|) (-10 -8 (-6 -4239) (-6 -4238) (-15 -1893 ($ (-708) (-708) |t#1|)) (-15 -1972 ($ $ |t#1|)) (-15 -2604 ((-522) $)) (-15 -1925 ((-522) $)) (-15 -4042 ((-522) $)) (-15 -2595 ((-522) $)) (-15 -2949 ((-708) $)) (-15 -2960 ((-708) $)) (-15 -2683 (|t#1| $ (-522) (-522))) (-15 -2186 (|t#1| $ (-522) (-522))) (-15 -2683 (|t#1| $ (-522) (-522) |t#1|)) (-15 -2635 (|t#2| $ (-522))) (-15 -2223 (|t#3| $ (-522))) (-15 -2395 ((-588 |t#1|) $)) (-15 -2437 (|t#1| $ (-522) (-522) |t#1|)) (-15 -2411 (|t#1| $ (-522) (-522) |t#1|)) (-15 -3074 ($ $ (-522) |t#2|)) (-15 -4060 ($ $ (-522) |t#3|)) (-15 -3810 ($ (-1 |t#1| |t#1|) $)) (-15 -2397 ($ (-1 |t#1| |t#1|) $)) (-15 -3810 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3810 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T)) -((-3639 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-2153 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-3810 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13))) -(((-56 |#1| |#2|) (-10 -7 (-15 -3639 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -2153 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3810 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1120) (-1120)) (T -56)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-2153 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1120)) (-4 *2 (-1120)) (-5 *1 (-56 *5 *2)))) (-3639 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1120)) (-4 *5 (-1120)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))) -(-10 -7 (-15 -3639 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -2153 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3810 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3883 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1866 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-2806 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784))))) (-3296 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-2717 (((-108) $ (-708)) NIL)) (-2437 ((|#1| $ (-522) |#1|) 11 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239)))) (-1696 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3367 (($) NIL T CONST)) (-2465 (($ $) NIL (|has| $ (-6 -4239)))) (-1939 (($ $) NIL)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1424 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238)))) (-2411 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-522)) NIL)) (-3314 (((-522) (-1 (-108) |#1|) $) NIL) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014)))) (-2395 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-3307 (($ (-588 |#1|)) 13) (($ (-708) |#1|) 14)) (-1893 (($ (-708) |#1|) 9)) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) NIL (|has| (-522) (-784)))) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-3164 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-784)))) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2201 (((-522) $) NIL (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-2397 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1731 (($ |#1| $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) NIL)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2337 ((|#1| $) NIL (|has| (-522) (-784)))) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1972 (($ $ |#1|) NIL (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) 7)) (-2683 ((|#1| $ (-522) |#1|) NIL) ((|#1| $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-3835 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3629 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) NIL)) (-4170 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-588 $)) NIL)) (-2217 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3307 ($ (-588 |#1|))) (-15 -3307 ($ (-708) |#1|)))) (-1120)) (T -57)) -((-3307 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-57 *3)))) (-3307 (*1 *1 *2 *3) (-12 (-5 *2 (-708)) (-5 *1 (-57 *3)) (-4 *3 (-1120))))) -(-13 (-19 |#1|) (-10 -8 (-15 -3307 ($ (-588 |#1|))) (-15 -3307 ($ (-708) |#1|)))) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2717 (((-108) $ (-708)) NIL)) (-2437 ((|#1| $ (-522) (-522) |#1|) NIL)) (-3074 (($ $ (-522) (-57 |#1|)) NIL)) (-4060 (($ $ (-522) (-57 |#1|)) NIL)) (-3367 (($) NIL T CONST)) (-2635 (((-57 |#1|) $ (-522)) NIL)) (-2411 ((|#1| $ (-522) (-522) |#1|) NIL)) (-2186 ((|#1| $ (-522) (-522)) NIL)) (-2395 (((-588 |#1|) $) NIL)) (-2949 (((-708) $) NIL)) (-1893 (($ (-708) (-708) |#1|) NIL)) (-2960 (((-708) $) NIL)) (-1480 (((-108) $ (-708)) NIL)) (-2604 (((-522) $) NIL)) (-4042 (((-522) $) NIL)) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1925 (((-522) $) NIL)) (-2595 (((-522) $) NIL)) (-2397 (($ (-1 |#1| |#1|) $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-1972 (($ $ |#1|) NIL)) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#1| $ (-522) (-522)) NIL) ((|#1| $ (-522) (-522) |#1|) NIL)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) NIL)) (-2223 (((-57 |#1|) $ (-522)) NIL)) (-2217 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4239))) (-1120)) (T -58)) -NIL -(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4239))) -((-3700 (((-3 $ "failed") (-1166 (-291 (-354)))) 69) (((-3 $ "failed") (-1166 (-291 (-522)))) 58) (((-3 $ "failed") (-1166 (-881 (-354)))) 91) (((-3 $ "failed") (-1166 (-881 (-522)))) 80) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 47) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 36)) (-1478 (($ (-1166 (-291 (-354)))) 65) (($ (-1166 (-291 (-522)))) 54) (($ (-1166 (-881 (-354)))) 87) (($ (-1166 (-881 (-522)))) 76) (($ (-1166 (-382 (-881 (-354))))) 43) (($ (-1166 (-382 (-881 (-522))))) 29)) (-2550 (((-1171) $) 118)) (-2217 (((-792) $) 111) (($ (-588 (-305))) 100) (($ (-305)) 94) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 97) (($ (-1166 (-314 (-2227 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2227) (-637)))) 28))) -(((-59 |#1|) (-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2227) (-637))))))) (-1085)) (T -59)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2227 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2227) (-637)))) (-5 *1 (-59 *3)) (-14 *3 (-1085))))) -(-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2227) (-637))))))) -((-2550 (((-1171) $) 48) (((-1171)) 49)) (-2217 (((-792) $) 45))) -(((-60 |#1|) (-13 (-370) (-10 -7 (-15 -2550 ((-1171))))) (-1085)) (T -60)) -((-2550 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-60 *3)) (-14 *3 (-1085))))) -(-13 (-370) (-10 -7 (-15 -2550 ((-1171))))) -((-3700 (((-3 $ "failed") (-1166 (-291 (-354)))) 142) (((-3 $ "failed") (-1166 (-291 (-522)))) 132) (((-3 $ "failed") (-1166 (-881 (-354)))) 163) (((-3 $ "failed") (-1166 (-881 (-522)))) 152) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 121) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 110)) (-1478 (($ (-1166 (-291 (-354)))) 138) (($ (-1166 (-291 (-522)))) 128) (($ (-1166 (-881 (-354)))) 159) (($ (-1166 (-881 (-522)))) 148) (($ (-1166 (-382 (-881 (-354))))) 117) (($ (-1166 (-382 (-881 (-522))))) 103)) (-2550 (((-1171) $) 96)) (-2217 (((-792) $) 90) (($ (-588 (-305))) 28) (($ (-305)) 34) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 31) (($ (-1166 (-314 (-2227) (-2227 (QUOTE XC)) (-637)))) 88))) -(((-61 |#1|) (-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227) (-2227 (QUOTE XC)) (-637))))))) (-1085)) (T -61)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2227) (-2227 (QUOTE XC)) (-637)))) (-5 *1 (-61 *3)) (-14 *3 (-1085))))) -(-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227) (-2227 (QUOTE XC)) (-637))))))) -((-3700 (((-3 $ "failed") (-291 (-354))) 36) (((-3 $ "failed") (-291 (-522))) 41) (((-3 $ "failed") (-881 (-354))) 46) (((-3 $ "failed") (-881 (-522))) 51) (((-3 $ "failed") (-382 (-881 (-354)))) 31) (((-3 $ "failed") (-382 (-881 (-522)))) 26)) (-1478 (($ (-291 (-354))) 34) (($ (-291 (-522))) 39) (($ (-881 (-354))) 44) (($ (-881 (-522))) 49) (($ (-382 (-881 (-354)))) 29) (($ (-382 (-881 (-522)))) 23)) (-2550 (((-1171) $) 73)) (-2217 (((-792) $) 66) (($ (-588 (-305))) 57) (($ (-305)) 63) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 60) (($ (-314 (-2227 (QUOTE X)) (-2227) (-637))) 22))) -(((-62 |#1|) (-13 (-371) (-10 -8 (-15 -2217 ($ (-314 (-2227 (QUOTE X)) (-2227) (-637)))))) (-1085)) (T -62)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-314 (-2227 (QUOTE X)) (-2227) (-637))) (-5 *1 (-62 *3)) (-14 *3 (-1085))))) -(-13 (-371) (-10 -8 (-15 -2217 ($ (-314 (-2227 (QUOTE X)) (-2227) (-637)))))) -((-3700 (((-3 $ "failed") (-628 (-291 (-354)))) 100) (((-3 $ "failed") (-628 (-291 (-522)))) 89) (((-3 $ "failed") (-628 (-881 (-354)))) 122) (((-3 $ "failed") (-628 (-881 (-522)))) 111) (((-3 $ "failed") (-628 (-382 (-881 (-354))))) 78) (((-3 $ "failed") (-628 (-382 (-881 (-522))))) 67)) (-1478 (($ (-628 (-291 (-354)))) 96) (($ (-628 (-291 (-522)))) 85) (($ (-628 (-881 (-354)))) 118) (($ (-628 (-881 (-522)))) 107) (($ (-628 (-382 (-881 (-354))))) 74) (($ (-628 (-382 (-881 (-522))))) 60)) (-2550 (((-1171) $) 130)) (-2217 (((-792) $) 124) (($ (-588 (-305))) 27) (($ (-305)) 33) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 30) (($ (-628 (-314 (-2227) (-2227 (QUOTE X) (QUOTE HESS)) (-637)))) 53))) -(((-63 |#1|) (-13 (-359) (-10 -8 (-15 -2217 ($ (-628 (-314 (-2227) (-2227 (QUOTE X) (QUOTE HESS)) (-637))))))) (-1085)) (T -63)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-628 (-314 (-2227) (-2227 (QUOTE X) (QUOTE HESS)) (-637)))) (-5 *1 (-63 *3)) (-14 *3 (-1085))))) -(-13 (-359) (-10 -8 (-15 -2217 ($ (-628 (-314 (-2227) (-2227 (QUOTE X) (QUOTE HESS)) (-637))))))) -((-3700 (((-3 $ "failed") (-291 (-354))) 54) (((-3 $ "failed") (-291 (-522))) 59) (((-3 $ "failed") (-881 (-354))) 64) (((-3 $ "failed") (-881 (-522))) 69) (((-3 $ "failed") (-382 (-881 (-354)))) 49) (((-3 $ "failed") (-382 (-881 (-522)))) 44)) (-1478 (($ (-291 (-354))) 52) (($ (-291 (-522))) 57) (($ (-881 (-354))) 62) (($ (-881 (-522))) 67) (($ (-382 (-881 (-354)))) 47) (($ (-382 (-881 (-522)))) 41)) (-2550 (((-1171) $) 78)) (-2217 (((-792) $) 72) (($ (-588 (-305))) 27) (($ (-305)) 33) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 30) (($ (-314 (-2227) (-2227 (QUOTE XC)) (-637))) 38))) -(((-64 |#1|) (-13 (-371) (-10 -8 (-15 -2217 ($ (-314 (-2227) (-2227 (QUOTE XC)) (-637)))))) (-1085)) (T -64)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-314 (-2227) (-2227 (QUOTE XC)) (-637))) (-5 *1 (-64 *3)) (-14 *3 (-1085))))) -(-13 (-371) (-10 -8 (-15 -2217 ($ (-314 (-2227) (-2227 (QUOTE XC)) (-637)))))) -((-2550 (((-1171) $) 63)) (-2217 (((-792) $) 57) (($ (-628 (-637))) 49) (($ (-588 (-305))) 48) (($ (-305)) 55) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 53))) -(((-65 |#1|) (-358) (-1085)) (T -65)) -NIL -(-358) -((-2550 (((-1171) $) 64)) (-2217 (((-792) $) 58) (($ (-628 (-637))) 50) (($ (-588 (-305))) 49) (($ (-305)) 52) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 55))) -(((-66 |#1|) (-358) (-1085)) (T -66)) -NIL -(-358) -((-2550 (((-1171) $) NIL) (((-1171)) 32)) (-2217 (((-792) $) NIL))) -(((-67 |#1|) (-13 (-370) (-10 -7 (-15 -2550 ((-1171))))) (-1085)) (T -67)) -((-2550 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-67 *3)) (-14 *3 (-1085))))) -(-13 (-370) (-10 -7 (-15 -2550 ((-1171))))) -((-2550 (((-1171) $) 68)) (-2217 (((-792) $) 62) (($ (-628 (-637))) 53) (($ (-588 (-305))) 56) (($ (-305)) 59) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 52))) -(((-68 |#1|) (-358) (-1085)) (T -68)) -NIL -(-358) -((-3700 (((-3 $ "failed") (-1166 (-291 (-354)))) 98) (((-3 $ "failed") (-1166 (-291 (-522)))) 87) (((-3 $ "failed") (-1166 (-881 (-354)))) 119) (((-3 $ "failed") (-1166 (-881 (-522)))) 108) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 76) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 65)) (-1478 (($ (-1166 (-291 (-354)))) 94) (($ (-1166 (-291 (-522)))) 83) (($ (-1166 (-881 (-354)))) 115) (($ (-1166 (-881 (-522)))) 104) (($ (-1166 (-382 (-881 (-354))))) 72) (($ (-1166 (-382 (-881 (-522))))) 58)) (-2550 (((-1171) $) 133)) (-2217 (((-792) $) 127) (($ (-588 (-305))) 122) (($ (-305)) 125) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 50) (($ (-1166 (-314 (-2227 (QUOTE X)) (-2227 (QUOTE -1330)) (-637)))) 51))) -(((-69 |#1|) (-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227 (QUOTE X)) (-2227 (QUOTE -1330)) (-637))))))) (-1085)) (T -69)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2227 (QUOTE X)) (-2227 (QUOTE -1330)) (-637)))) (-5 *1 (-69 *3)) (-14 *3 (-1085))))) -(-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227 (QUOTE X)) (-2227 (QUOTE -1330)) (-637))))))) -((-2550 (((-1171) $) 32) (((-1171)) 31)) (-2217 (((-792) $) 35))) -(((-70 |#1|) (-13 (-370) (-10 -7 (-15 -2550 ((-1171))))) (-1085)) (T -70)) -((-2550 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-70 *3)) (-14 *3 (-1085))))) -(-13 (-370) (-10 -7 (-15 -2550 ((-1171))))) -((-2550 (((-1171) $) 62)) (-2217 (((-792) $) 56) (($ (-628 (-637))) 47) (($ (-588 (-305))) 50) (($ (-305)) 53) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 46))) -(((-71 |#1|) (-358) (-1085)) (T -71)) -NIL -(-358) -((-3700 (((-3 $ "failed") (-1166 (-291 (-354)))) 119) (((-3 $ "failed") (-1166 (-291 (-522)))) 108) (((-3 $ "failed") (-1166 (-881 (-354)))) 141) (((-3 $ "failed") (-1166 (-881 (-522)))) 130) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 98) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 87)) (-1478 (($ (-1166 (-291 (-354)))) 115) (($ (-1166 (-291 (-522)))) 104) (($ (-1166 (-881 (-354)))) 137) (($ (-1166 (-881 (-522)))) 126) (($ (-1166 (-382 (-881 (-354))))) 94) (($ (-1166 (-382 (-881 (-522))))) 80)) (-2550 (((-1171) $) 73)) (-2217 (((-792) $) 27) (($ (-588 (-305))) 63) (($ (-305)) 59) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 66) (($ (-1166 (-314 (-2227) (-2227 (QUOTE X)) (-637)))) 60))) -(((-72 |#1|) (-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227) (-2227 (QUOTE X)) (-637))))))) (-1085)) (T -72)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2227) (-2227 (QUOTE X)) (-637)))) (-5 *1 (-72 *3)) (-14 *3 (-1085))))) -(-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227) (-2227 (QUOTE X)) (-637))))))) -((-3700 (((-3 $ "failed") (-1166 (-291 (-354)))) 125) (((-3 $ "failed") (-1166 (-291 (-522)))) 114) (((-3 $ "failed") (-1166 (-881 (-354)))) 147) (((-3 $ "failed") (-1166 (-881 (-522)))) 136) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 103) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 92)) (-1478 (($ (-1166 (-291 (-354)))) 121) (($ (-1166 (-291 (-522)))) 110) (($ (-1166 (-881 (-354)))) 143) (($ (-1166 (-881 (-522)))) 132) (($ (-1166 (-382 (-881 (-354))))) 99) (($ (-1166 (-382 (-881 (-522))))) 85)) (-2550 (((-1171) $) 78)) (-2217 (((-792) $) 70) (($ (-588 (-305))) NIL) (($ (-305)) NIL) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) NIL) (($ (-1166 (-314 (-2227 (QUOTE X) (QUOTE EPS)) (-2227 (QUOTE -1330)) (-637)))) 65))) -(((-73 |#1| |#2| |#3|) (-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227 (QUOTE X) (QUOTE EPS)) (-2227 (QUOTE -1330)) (-637))))))) (-1085) (-1085) (-1085)) (T -73)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2227 (QUOTE X) (QUOTE EPS)) (-2227 (QUOTE -1330)) (-637)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1085)) (-14 *4 (-1085)) (-14 *5 (-1085))))) -(-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227 (QUOTE X) (QUOTE EPS)) (-2227 (QUOTE -1330)) (-637))))))) -((-3700 (((-3 $ "failed") (-1166 (-291 (-354)))) 129) (((-3 $ "failed") (-1166 (-291 (-522)))) 118) (((-3 $ "failed") (-1166 (-881 (-354)))) 151) (((-3 $ "failed") (-1166 (-881 (-522)))) 140) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 107) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 96)) (-1478 (($ (-1166 (-291 (-354)))) 125) (($ (-1166 (-291 (-522)))) 114) (($ (-1166 (-881 (-354)))) 147) (($ (-1166 (-881 (-522)))) 136) (($ (-1166 (-382 (-881 (-354))))) 103) (($ (-1166 (-382 (-881 (-522))))) 89)) (-2550 (((-1171) $) 82)) (-2217 (((-792) $) 74) (($ (-588 (-305))) NIL) (($ (-305)) NIL) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) NIL) (($ (-1166 (-314 (-2227 (QUOTE EPS)) (-2227 (QUOTE YA) (QUOTE YB)) (-637)))) 69))) -(((-74 |#1| |#2| |#3|) (-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227 (QUOTE EPS)) (-2227 (QUOTE YA) (QUOTE YB)) (-637))))))) (-1085) (-1085) (-1085)) (T -74)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2227 (QUOTE EPS)) (-2227 (QUOTE YA) (QUOTE YB)) (-637)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1085)) (-14 *4 (-1085)) (-14 *5 (-1085))))) -(-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227 (QUOTE EPS)) (-2227 (QUOTE YA) (QUOTE YB)) (-637))))))) -((-3700 (((-3 $ "failed") (-291 (-354))) 77) (((-3 $ "failed") (-291 (-522))) 82) (((-3 $ "failed") (-881 (-354))) 87) (((-3 $ "failed") (-881 (-522))) 92) (((-3 $ "failed") (-382 (-881 (-354)))) 72) (((-3 $ "failed") (-382 (-881 (-522)))) 67)) (-1478 (($ (-291 (-354))) 75) (($ (-291 (-522))) 80) (($ (-881 (-354))) 85) (($ (-881 (-522))) 90) (($ (-382 (-881 (-354)))) 70) (($ (-382 (-881 (-522)))) 64)) (-2550 (((-1171) $) 61)) (-2217 (((-792) $) 49) (($ (-588 (-305))) 45) (($ (-305)) 55) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 53) (($ (-314 (-2227) (-2227 (QUOTE X)) (-637))) 46))) -(((-75 |#1|) (-13 (-371) (-10 -8 (-15 -2217 ($ (-314 (-2227) (-2227 (QUOTE X)) (-637)))))) (-1085)) (T -75)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-314 (-2227) (-2227 (QUOTE X)) (-637))) (-5 *1 (-75 *3)) (-14 *3 (-1085))))) -(-13 (-371) (-10 -8 (-15 -2217 ($ (-314 (-2227) (-2227 (QUOTE X)) (-637)))))) -((-3700 (((-3 $ "failed") (-291 (-354))) 41) (((-3 $ "failed") (-291 (-522))) 46) (((-3 $ "failed") (-881 (-354))) 51) (((-3 $ "failed") (-881 (-522))) 56) (((-3 $ "failed") (-382 (-881 (-354)))) 36) (((-3 $ "failed") (-382 (-881 (-522)))) 31)) (-1478 (($ (-291 (-354))) 39) (($ (-291 (-522))) 44) (($ (-881 (-354))) 49) (($ (-881 (-522))) 54) (($ (-382 (-881 (-354)))) 34) (($ (-382 (-881 (-522)))) 28)) (-2550 (((-1171) $) 77)) (-2217 (((-792) $) 71) (($ (-588 (-305))) 62) (($ (-305)) 68) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 65) (($ (-314 (-2227) (-2227 (QUOTE X)) (-637))) 27))) -(((-76 |#1|) (-13 (-371) (-10 -8 (-15 -2217 ($ (-314 (-2227) (-2227 (QUOTE X)) (-637)))))) (-1085)) (T -76)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-314 (-2227) (-2227 (QUOTE X)) (-637))) (-5 *1 (-76 *3)) (-14 *3 (-1085))))) -(-13 (-371) (-10 -8 (-15 -2217 ($ (-314 (-2227) (-2227 (QUOTE X)) (-637)))))) -((-3700 (((-3 $ "failed") (-1166 (-291 (-354)))) 84) (((-3 $ "failed") (-1166 (-291 (-522)))) 73) (((-3 $ "failed") (-1166 (-881 (-354)))) 106) (((-3 $ "failed") (-1166 (-881 (-522)))) 95) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 62) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 51)) (-1478 (($ (-1166 (-291 (-354)))) 80) (($ (-1166 (-291 (-522)))) 69) (($ (-1166 (-881 (-354)))) 102) (($ (-1166 (-881 (-522)))) 91) (($ (-1166 (-382 (-881 (-354))))) 58) (($ (-1166 (-382 (-881 (-522))))) 44)) (-2550 (((-1171) $) 122)) (-2217 (((-792) $) 116) (($ (-588 (-305))) 109) (($ (-305)) 36) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 112) (($ (-1166 (-314 (-2227) (-2227 (QUOTE XC)) (-637)))) 37))) -(((-77 |#1|) (-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227) (-2227 (QUOTE XC)) (-637))))))) (-1085)) (T -77)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2227) (-2227 (QUOTE XC)) (-637)))) (-5 *1 (-77 *3)) (-14 *3 (-1085))))) -(-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227) (-2227 (QUOTE XC)) (-637))))))) -((-3700 (((-3 $ "failed") (-1166 (-291 (-354)))) 137) (((-3 $ "failed") (-1166 (-291 (-522)))) 126) (((-3 $ "failed") (-1166 (-881 (-354)))) 158) (((-3 $ "failed") (-1166 (-881 (-522)))) 147) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 116) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 105)) (-1478 (($ (-1166 (-291 (-354)))) 133) (($ (-1166 (-291 (-522)))) 122) (($ (-1166 (-881 (-354)))) 154) (($ (-1166 (-881 (-522)))) 143) (($ (-1166 (-382 (-881 (-354))))) 112) (($ (-1166 (-382 (-881 (-522))))) 98)) (-2550 (((-1171) $) 91)) (-2217 (((-792) $) 85) (($ (-588 (-305))) 76) (($ (-305)) 83) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 81) (($ (-1166 (-314 (-2227) (-2227 (QUOTE X)) (-637)))) 77))) -(((-78 |#1|) (-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227) (-2227 (QUOTE X)) (-637))))))) (-1085)) (T -78)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2227) (-2227 (QUOTE X)) (-637)))) (-5 *1 (-78 *3)) (-14 *3 (-1085))))) -(-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227) (-2227 (QUOTE X)) (-637))))))) -((-3700 (((-3 $ "failed") (-1166 (-291 (-354)))) 73) (((-3 $ "failed") (-1166 (-291 (-522)))) 62) (((-3 $ "failed") (-1166 (-881 (-354)))) 95) (((-3 $ "failed") (-1166 (-881 (-522)))) 84) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 51) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 40)) (-1478 (($ (-1166 (-291 (-354)))) 69) (($ (-1166 (-291 (-522)))) 58) (($ (-1166 (-881 (-354)))) 91) (($ (-1166 (-881 (-522)))) 80) (($ (-1166 (-382 (-881 (-354))))) 47) (($ (-1166 (-382 (-881 (-522))))) 33)) (-2550 (((-1171) $) 121)) (-2217 (((-792) $) 115) (($ (-588 (-305))) 106) (($ (-305)) 112) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 110) (($ (-1166 (-314 (-2227) (-2227 (QUOTE X)) (-637)))) 32))) -(((-79 |#1|) (-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227) (-2227 (QUOTE X)) (-637))))))) (-1085)) (T -79)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2227) (-2227 (QUOTE X)) (-637)))) (-5 *1 (-79 *3)) (-14 *3 (-1085))))) -(-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227) (-2227 (QUOTE X)) (-637))))))) -((-3700 (((-3 $ "failed") (-1166 (-291 (-354)))) 90) (((-3 $ "failed") (-1166 (-291 (-522)))) 79) (((-3 $ "failed") (-1166 (-881 (-354)))) 112) (((-3 $ "failed") (-1166 (-881 (-522)))) 101) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 68) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 57)) (-1478 (($ (-1166 (-291 (-354)))) 86) (($ (-1166 (-291 (-522)))) 75) (($ (-1166 (-881 (-354)))) 108) (($ (-1166 (-881 (-522)))) 97) (($ (-1166 (-382 (-881 (-354))))) 64) (($ (-1166 (-382 (-881 (-522))))) 50)) (-2550 (((-1171) $) 43)) (-2217 (((-792) $) 36) (($ (-588 (-305))) 26) (($ (-305)) 29) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 32) (($ (-1166 (-314 (-2227 (QUOTE X) (QUOTE -1330)) (-2227) (-637)))) 27))) -(((-80 |#1|) (-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227 (QUOTE X) (QUOTE -1330)) (-2227) (-637))))))) (-1085)) (T -80)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2227 (QUOTE X) (QUOTE -1330)) (-2227) (-637)))) (-5 *1 (-80 *3)) (-14 *3 (-1085))))) -(-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227 (QUOTE X) (QUOTE -1330)) (-2227) (-637))))))) -((-3700 (((-3 $ "failed") (-628 (-291 (-354)))) 103) (((-3 $ "failed") (-628 (-291 (-522)))) 92) (((-3 $ "failed") (-628 (-881 (-354)))) 125) (((-3 $ "failed") (-628 (-881 (-522)))) 114) (((-3 $ "failed") (-628 (-382 (-881 (-354))))) 82) (((-3 $ "failed") (-628 (-382 (-881 (-522))))) 71)) (-1478 (($ (-628 (-291 (-354)))) 99) (($ (-628 (-291 (-522)))) 88) (($ (-628 (-881 (-354)))) 121) (($ (-628 (-881 (-522)))) 110) (($ (-628 (-382 (-881 (-354))))) 78) (($ (-628 (-382 (-881 (-522))))) 64)) (-2550 (((-1171) $) 57)) (-2217 (((-792) $) 43) (($ (-588 (-305))) 50) (($ (-305)) 39) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 47) (($ (-628 (-314 (-2227 (QUOTE X) (QUOTE -1330)) (-2227) (-637)))) 40))) -(((-81 |#1|) (-13 (-359) (-10 -8 (-15 -2217 ($ (-628 (-314 (-2227 (QUOTE X) (QUOTE -1330)) (-2227) (-637))))))) (-1085)) (T -81)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-628 (-314 (-2227 (QUOTE X) (QUOTE -1330)) (-2227) (-637)))) (-5 *1 (-81 *3)) (-14 *3 (-1085))))) -(-13 (-359) (-10 -8 (-15 -2217 ($ (-628 (-314 (-2227 (QUOTE X) (QUOTE -1330)) (-2227) (-637))))))) -((-3700 (((-3 $ "failed") (-628 (-291 (-354)))) 103) (((-3 $ "failed") (-628 (-291 (-522)))) 92) (((-3 $ "failed") (-628 (-881 (-354)))) 124) (((-3 $ "failed") (-628 (-881 (-522)))) 113) (((-3 $ "failed") (-628 (-382 (-881 (-354))))) 81) (((-3 $ "failed") (-628 (-382 (-881 (-522))))) 70)) (-1478 (($ (-628 (-291 (-354)))) 99) (($ (-628 (-291 (-522)))) 88) (($ (-628 (-881 (-354)))) 120) (($ (-628 (-881 (-522)))) 109) (($ (-628 (-382 (-881 (-354))))) 77) (($ (-628 (-382 (-881 (-522))))) 63)) (-2550 (((-1171) $) 56)) (-2217 (((-792) $) 50) (($ (-588 (-305))) 44) (($ (-305)) 47) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 40) (($ (-628 (-314 (-2227 (QUOTE X)) (-2227) (-637)))) 41))) -(((-82 |#1|) (-13 (-359) (-10 -8 (-15 -2217 ($ (-628 (-314 (-2227 (QUOTE X)) (-2227) (-637))))))) (-1085)) (T -82)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-628 (-314 (-2227 (QUOTE X)) (-2227) (-637)))) (-5 *1 (-82 *3)) (-14 *3 (-1085))))) -(-13 (-359) (-10 -8 (-15 -2217 ($ (-628 (-314 (-2227 (QUOTE X)) (-2227) (-637))))))) -((-3700 (((-3 $ "failed") (-1166 (-291 (-354)))) 99) (((-3 $ "failed") (-1166 (-291 (-522)))) 88) (((-3 $ "failed") (-1166 (-881 (-354)))) 121) (((-3 $ "failed") (-1166 (-881 (-522)))) 110) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 77) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 66)) (-1478 (($ (-1166 (-291 (-354)))) 95) (($ (-1166 (-291 (-522)))) 84) (($ (-1166 (-881 (-354)))) 117) (($ (-1166 (-881 (-522)))) 106) (($ (-1166 (-382 (-881 (-354))))) 73) (($ (-1166 (-382 (-881 (-522))))) 59)) (-2550 (((-1171) $) 45)) (-2217 (((-792) $) 39) (($ (-588 (-305))) 48) (($ (-305)) 35) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 51) (($ (-1166 (-314 (-2227 (QUOTE X)) (-2227) (-637)))) 36))) -(((-83 |#1|) (-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227 (QUOTE X)) (-2227) (-637))))))) (-1085)) (T -83)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2227 (QUOTE X)) (-2227) (-637)))) (-5 *1 (-83 *3)) (-14 *3 (-1085))))) -(-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227 (QUOTE X)) (-2227) (-637))))))) -((-3700 (((-3 $ "failed") (-1166 (-291 (-354)))) 74) (((-3 $ "failed") (-1166 (-291 (-522)))) 63) (((-3 $ "failed") (-1166 (-881 (-354)))) 96) (((-3 $ "failed") (-1166 (-881 (-522)))) 85) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 52) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 41)) (-1478 (($ (-1166 (-291 (-354)))) 70) (($ (-1166 (-291 (-522)))) 59) (($ (-1166 (-881 (-354)))) 92) (($ (-1166 (-881 (-522)))) 81) (($ (-1166 (-382 (-881 (-354))))) 48) (($ (-1166 (-382 (-881 (-522))))) 34)) (-2550 (((-1171) $) 122)) (-2217 (((-792) $) 116) (($ (-588 (-305))) 107) (($ (-305)) 113) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 111) (($ (-1166 (-314 (-2227 (QUOTE X)) (-2227 (QUOTE -1330)) (-637)))) 33))) -(((-84 |#1|) (-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227 (QUOTE X)) (-2227 (QUOTE -1330)) (-637))))))) (-1085)) (T -84)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2227 (QUOTE X)) (-2227 (QUOTE -1330)) (-637)))) (-5 *1 (-84 *3)) (-14 *3 (-1085))))) -(-13 (-415) (-10 -8 (-15 -2217 ($ (-1166 (-314 (-2227 (QUOTE X)) (-2227 (QUOTE -1330)) (-637))))))) -((-3700 (((-3 $ "failed") (-628 (-291 (-354)))) 105) (((-3 $ "failed") (-628 (-291 (-522)))) 94) (((-3 $ "failed") (-628 (-881 (-354)))) 127) (((-3 $ "failed") (-628 (-881 (-522)))) 116) (((-3 $ "failed") (-628 (-382 (-881 (-354))))) 83) (((-3 $ "failed") (-628 (-382 (-881 (-522))))) 72)) (-1478 (($ (-628 (-291 (-354)))) 101) (($ (-628 (-291 (-522)))) 90) (($ (-628 (-881 (-354)))) 123) (($ (-628 (-881 (-522)))) 112) (($ (-628 (-382 (-881 (-354))))) 79) (($ (-628 (-382 (-881 (-522))))) 65)) (-2550 (((-1171) $) 58)) (-2217 (((-792) $) 52) (($ (-588 (-305))) 42) (($ (-305)) 49) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 47) (($ (-628 (-314 (-2227 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2227) (-637)))) 43))) -(((-85 |#1|) (-13 (-359) (-10 -8 (-15 -2217 ($ (-628 (-314 (-2227 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2227) (-637))))))) (-1085)) (T -85)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-628 (-314 (-2227 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2227) (-637)))) (-5 *1 (-85 *3)) (-14 *3 (-1085))))) -(-13 (-359) (-10 -8 (-15 -2217 ($ (-628 (-314 (-2227 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2227) (-637))))))) -((-2550 (((-1171) $) 44)) (-2217 (((-792) $) 38) (($ (-1166 (-637))) 88) (($ (-588 (-305))) 29) (($ (-305)) 35) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 32))) -(((-86 |#1|) (-414) (-1085)) (T -86)) -NIL -(-414) -((-3700 (((-3 $ "failed") (-291 (-354))) 42) (((-3 $ "failed") (-291 (-522))) 47) (((-3 $ "failed") (-881 (-354))) 52) (((-3 $ "failed") (-881 (-522))) 57) (((-3 $ "failed") (-382 (-881 (-354)))) 37) (((-3 $ "failed") (-382 (-881 (-522)))) 32)) (-1478 (($ (-291 (-354))) 40) (($ (-291 (-522))) 45) (($ (-881 (-354))) 50) (($ (-881 (-522))) 55) (($ (-382 (-881 (-354)))) 35) (($ (-382 (-881 (-522)))) 29)) (-2550 (((-1171) $) 88)) (-2217 (((-792) $) 82) (($ (-588 (-305))) 76) (($ (-305)) 79) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 73) (($ (-314 (-2227 (QUOTE X)) (-2227 (QUOTE -1330)) (-637))) 28))) -(((-87 |#1|) (-13 (-371) (-10 -8 (-15 -2217 ($ (-314 (-2227 (QUOTE X)) (-2227 (QUOTE -1330)) (-637)))))) (-1085)) (T -87)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-314 (-2227 (QUOTE X)) (-2227 (QUOTE -1330)) (-637))) (-5 *1 (-87 *3)) (-14 *3 (-1085))))) -(-13 (-371) (-10 -8 (-15 -2217 ($ (-314 (-2227 (QUOTE X)) (-2227 (QUOTE -1330)) (-637)))))) -((-1470 (((-1166 (-628 |#1|)) (-628 |#1|)) 55)) (-1382 (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 (-588 (-850))))) |#2| (-850)) 45)) (-1443 (((-2 (|:| |minor| (-588 (-850))) (|:| -3277 |#2|) (|:| |minors| (-588 (-588 (-850)))) (|:| |ops| (-588 |#2|))) |#2| (-850)) 63 (|has| |#1| (-338))))) -(((-88 |#1| |#2|) (-10 -7 (-15 -1382 ((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 (-588 (-850))))) |#2| (-850))) (-15 -1470 ((-1166 (-628 |#1|)) (-628 |#1|))) (IF (|has| |#1| (-338)) (-15 -1443 ((-2 (|:| |minor| (-588 (-850))) (|:| -3277 |#2|) (|:| |minors| (-588 (-588 (-850)))) (|:| |ops| (-588 |#2|))) |#2| (-850))) |%noBranch|)) (-514) (-598 |#1|)) (T -88)) -((-1443 (*1 *2 *3 *4) (-12 (-4 *5 (-338)) (-4 *5 (-514)) (-5 *2 (-2 (|:| |minor| (-588 (-850))) (|:| -3277 *3) (|:| |minors| (-588 (-588 (-850)))) (|:| |ops| (-588 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-850)) (-4 *3 (-598 *5)))) (-1470 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-1166 (-628 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-628 *4)) (-4 *5 (-598 *4)))) (-1382 (*1 *2 *3 *4) (-12 (-4 *5 (-514)) (-5 *2 (-2 (|:| -2149 (-628 *5)) (|:| |vec| (-1166 (-588 (-850)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-850)) (-4 *3 (-598 *5))))) -(-10 -7 (-15 -1382 ((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 (-588 (-850))))) |#2| (-850))) (-15 -1470 ((-1166 (-628 |#1|)) (-628 |#1|))) (IF (|has| |#1| (-338)) (-15 -1443 ((-2 (|:| |minor| (-588 (-850))) (|:| -3277 |#2|) (|:| |minors| (-588 (-588 (-850)))) (|:| |ops| (-588 |#2|))) |#2| (-850))) |%noBranch|)) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1322 ((|#1| $) 35)) (-2717 (((-108) $ (-708)) NIL)) (-3367 (($) NIL T CONST)) (-2622 ((|#1| |#1| $) 30)) (-2956 ((|#1| $) 28)) (-2395 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) NIL)) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2397 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1431 ((|#1| $) NIL)) (-3365 (($ |#1| $) 31)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3295 ((|#1| $) 29)) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) 16)) (-3298 (($) 39)) (-3735 (((-708) $) 26)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) 15)) (-2217 (((-792) $) 25 (|has| |#1| (-562 (-792))))) (-2501 (($ (-588 |#1|)) NIL)) (-3182 (($ (-588 |#1|)) 37)) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 13 (|has| |#1| (-1014)))) (-3591 (((-708) $) 10 (|has| $ (-6 -4238))))) -(((-89 |#1|) (-13 (-1033 |#1|) (-10 -8 (-15 -3182 ($ (-588 |#1|))))) (-1014)) (T -89)) -((-3182 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-89 *3))))) -(-13 (-1033 |#1|) (-10 -8 (-15 -3182 ($ (-588 |#1|))))) -((-3001 (($ $) 10)) (-3011 (($ $) 12))) -(((-90 |#1|) (-10 -8 (-15 -3011 (|#1| |#1|)) (-15 -3001 (|#1| |#1|))) (-91)) (T -90)) -NIL -(-10 -8 (-15 -3011 (|#1| |#1|)) (-15 -3001 (|#1| |#1|))) -((-2976 (($ $) 11)) (-2957 (($ $) 10)) (-3001 (($ $) 9)) (-3011 (($ $) 8)) (-2989 (($ $) 7)) (-2966 (($ $) 6))) -(((-91) (-1197)) (T -91)) -((-2976 (*1 *1 *1) (-4 *1 (-91))) (-2957 (*1 *1 *1) (-4 *1 (-91))) (-3001 (*1 *1 *1) (-4 *1 (-91))) (-3011 (*1 *1 *1) (-4 *1 (-91))) (-2989 (*1 *1 *1) (-4 *1 (-91))) (-2966 (*1 *1 *1) (-4 *1 (-91)))) -(-13 (-10 -8 (-15 -2966 ($ $)) (-15 -2989 ($ $)) (-15 -3011 ($ $)) (-15 -3001 ($ $)) (-15 -2957 ($ $)) (-15 -2976 ($ $)))) -((-1419 (((-108) $ $) NIL)) (-3361 (((-354) (-1068) (-354)) 42) (((-354) (-1068) (-1068) (-354)) 41)) (-3809 (((-354) (-354)) 33)) (-3558 (((-1171)) 36)) (-2311 (((-1068) $) NIL)) (-1563 (((-354) (-1068) (-1068)) 46) (((-354) (-1068)) 48)) (-4174 (((-1032) $) NIL)) (-2191 (((-354) (-1068) (-1068)) 47)) (-3587 (((-354) (-1068) (-1068)) 49) (((-354) (-1068)) 50)) (-2217 (((-792) $) NIL)) (-1562 (((-108) $ $) NIL))) -(((-92) (-13 (-1014) (-10 -7 (-15 -1563 ((-354) (-1068) (-1068))) (-15 -1563 ((-354) (-1068))) (-15 -3587 ((-354) (-1068) (-1068))) (-15 -3587 ((-354) (-1068))) (-15 -2191 ((-354) (-1068) (-1068))) (-15 -3558 ((-1171))) (-15 -3809 ((-354) (-354))) (-15 -3361 ((-354) (-1068) (-354))) (-15 -3361 ((-354) (-1068) (-1068) (-354))) (-6 -4238)))) (T -92)) -((-1563 (*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-92)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-92)))) (-3587 (*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-92)))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-92)))) (-2191 (*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-92)))) (-3558 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-92)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-92)))) (-3361 (*1 *2 *3 *2) (-12 (-5 *2 (-354)) (-5 *3 (-1068)) (-5 *1 (-92)))) (-3361 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-354)) (-5 *3 (-1068)) (-5 *1 (-92))))) -(-13 (-1014) (-10 -7 (-15 -1563 ((-354) (-1068) (-1068))) (-15 -1563 ((-354) (-1068))) (-15 -3587 ((-354) (-1068) (-1068))) (-15 -3587 ((-354) (-1068))) (-15 -2191 ((-354) (-1068) (-1068))) (-15 -3558 ((-1171))) (-15 -3809 ((-354) (-354))) (-15 -3361 ((-354) (-1068) (-354))) (-15 -3361 ((-354) (-1068) (-1068) (-354))) (-6 -4238))) -NIL -(((-93) (-1197)) (T -93)) -NIL -(-13 (-10 -7 (-6 -4238) (-6 (-4240 "*")) (-6 -4239) (-6 -4235) (-6 -4233) (-6 -4232) (-6 -4231) (-6 -4236) (-6 -4230) (-6 -4229) (-6 -4228) (-6 -4227) (-6 -4226) (-6 -4234) (-6 -4237) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4225))) -((-1419 (((-108) $ $) NIL)) (-3367 (($) NIL T CONST)) (-3920 (((-3 $ "failed") $) NIL)) (-2859 (((-108) $) NIL)) (-3184 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-522))) 22)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) 14)) (-4174 (((-1032) $) NIL)) (-2683 ((|#1| $ |#1|) 11)) (-2983 (($ $ $) NIL)) (-1596 (($ $ $) NIL)) (-2217 (((-792) $) 20)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3709 (($) 8 T CONST)) (-1562 (((-108) $ $) 10)) (-1682 (($ $ $) NIL)) (** (($ $ (-850)) 28) (($ $ (-708)) NIL) (($ $ (-522)) 16)) (* (($ $ $) 29))) -(((-94 |#1|) (-13 (-447) (-262 |#1| |#1|) (-10 -8 (-15 -3184 ($ (-1 |#1| |#1|))) (-15 -3184 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3184 ($ (-1 |#1| |#1| (-522)))))) (-971)) (T -94)) -((-3184 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-94 *3)))) (-3184 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-94 *3)))) (-3184 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-522))) (-4 *3 (-971)) (-5 *1 (-94 *3))))) -(-13 (-447) (-262 |#1| |#1|) (-10 -8 (-15 -3184 ($ (-1 |#1| |#1|))) (-15 -3184 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3184 ($ (-1 |#1| |#1| (-522)))))) -((-1290 (((-393 |#2|) |#2| (-588 |#2|)) 10) (((-393 |#2|) |#2| |#2|) 11))) -(((-95 |#1| |#2|) (-10 -7 (-15 -1290 ((-393 |#2|) |#2| |#2|)) (-15 -1290 ((-393 |#2|) |#2| (-588 |#2|)))) (-13 (-426) (-135)) (-1142 |#1|)) (T -95)) -((-1290 (*1 *2 *3 *4) (-12 (-5 *4 (-588 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-13 (-426) (-135))) (-5 *2 (-393 *3)) (-5 *1 (-95 *5 *3)))) (-1290 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-426) (-135))) (-5 *2 (-393 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1142 *4))))) -(-10 -7 (-15 -1290 ((-393 |#2|) |#2| |#2|)) (-15 -1290 ((-393 |#2|) |#2| (-588 |#2|)))) -((-1419 (((-108) $ $) 10))) -(((-96 |#1|) (-10 -8 (-15 -1419 ((-108) |#1| |#1|))) (-97)) (T -96)) -NIL -(-10 -8 (-15 -1419 ((-108) |#1| |#1|))) -((-1419 (((-108) $ $) 7)) (-1562 (((-108) $ $) 6))) -(((-97) (-1197)) (T -97)) -((-1419 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) (-1562 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108))))) -(-13 (-10 -8 (-15 -1562 ((-108) $ $)) (-15 -1419 ((-108) $ $)))) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3526 ((|#1| $) NIL)) (-2717 (((-108) $ (-708)) NIL)) (-1198 ((|#1| $ |#1|) 13 (|has| $ (-6 -4239)))) (-2766 (($ $ $) NIL (|has| $ (-6 -4239)))) (-3268 (($ $ $) NIL (|has| $ (-6 -4239)))) (-2924 (($ $ (-588 |#1|)) 15)) (-2437 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4239))) (($ $ "left" $) NIL (|has| $ (-6 -4239))) (($ $ "right" $) NIL (|has| $ (-6 -4239)))) (-2684 (($ $ (-588 $)) NIL (|has| $ (-6 -4239)))) (-3367 (($) NIL T CONST)) (-2002 (($ $) 11)) (-2395 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2674 (((-588 $) $) NIL)) (-2402 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3147 (($ $ |#1| $) 17)) (-1480 (((-108) $ (-708)) NIL)) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2735 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-2072 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-588 |#1|) |#1| |#1| |#1|)) 35)) (-2397 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-1993 (($ $) 10)) (-2548 (((-588 |#1|) $) NIL)) (-3394 (((-108) $) 12)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) 9)) (-3298 (($) 16)) (-2683 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3381 (((-522) $ $) NIL)) (-3395 (((-108) $) NIL)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) NIL)) (-2217 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1515 (((-588 $) $) NIL)) (-3294 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1202 (($ (-708) |#1|) 19)) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-98 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4238) (-6 -4239) (-15 -1202 ($ (-708) |#1|)) (-15 -2924 ($ $ (-588 |#1|))) (-15 -2735 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2735 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2072 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2072 ($ $ |#1| (-1 (-588 |#1|) |#1| |#1| |#1|))))) (-1014)) (T -98)) -((-1202 (*1 *1 *2 *3) (-12 (-5 *2 (-708)) (-5 *1 (-98 *3)) (-4 *3 (-1014)))) (-2924 (*1 *1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-98 *3)))) (-2735 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1014)))) (-2735 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-98 *3)))) (-2072 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-98 *2)))) (-2072 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-588 *2) *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-98 *2))))) -(-13 (-121 |#1|) (-10 -8 (-6 -4238) (-6 -4239) (-15 -1202 ($ (-708) |#1|)) (-15 -2924 ($ $ (-588 |#1|))) (-15 -2735 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2735 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2072 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2072 ($ $ |#1| (-1 (-588 |#1|) |#1| |#1| |#1|))))) -((-3874 ((|#3| |#2| |#2|) 29)) (-2576 ((|#1| |#2| |#2|) 37 (|has| |#1| (-6 (-4240 "*"))))) (-4158 ((|#3| |#2| |#2|) 30)) (-4008 ((|#1| |#2|) 41 (|has| |#1| (-6 (-4240 "*")))))) -(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3874 (|#3| |#2| |#2|)) (-15 -4158 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4240 "*"))) (PROGN (-15 -2576 (|#1| |#2| |#2|)) (-15 -4008 (|#1| |#2|))) |%noBranch|)) (-971) (-1142 |#1|) (-626 |#1| |#4| |#5|) (-348 |#1|) (-348 |#1|)) (T -99)) -((-4008 (*1 *2 *3) (-12 (|has| *2 (-6 (-4240 "*"))) (-4 *5 (-348 *2)) (-4 *6 (-348 *2)) (-4 *2 (-971)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1142 *2)) (-4 *4 (-626 *2 *5 *6)))) (-2576 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4240 "*"))) (-4 *5 (-348 *2)) (-4 *6 (-348 *2)) (-4 *2 (-971)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1142 *2)) (-4 *4 (-626 *2 *5 *6)))) (-4158 (*1 *2 *3 *3) (-12 (-4 *4 (-971)) (-4 *2 (-626 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1142 *4)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)))) (-3874 (*1 *2 *3 *3) (-12 (-4 *4 (-971)) (-4 *2 (-626 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1142 *4)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4))))) -(-10 -7 (-15 -3874 (|#3| |#2| |#2|)) (-15 -4158 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4240 "*"))) (PROGN (-15 -2576 (|#1| |#2| |#2|)) (-15 -4008 (|#1| |#2|))) |%noBranch|)) -((-1419 (((-108) $ $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-3778 (((-588 (-1085))) 32)) (-3744 (((-2 (|:| |zeros| (-1066 (-202))) (|:| |ones| (-1066 (-202))) (|:| |singularities| (-1066 (-202)))) (-1085)) 35)) (-1562 (((-108) $ $) NIL))) -(((-100) (-13 (-1014) (-10 -7 (-15 -3778 ((-588 (-1085)))) (-15 -3744 ((-2 (|:| |zeros| (-1066 (-202))) (|:| |ones| (-1066 (-202))) (|:| |singularities| (-1066 (-202)))) (-1085))) (-6 -4238)))) (T -100)) -((-3778 (*1 *2) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-100)))) (-3744 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-2 (|:| |zeros| (-1066 (-202))) (|:| |ones| (-1066 (-202))) (|:| |singularities| (-1066 (-202))))) (-5 *1 (-100))))) -(-13 (-1014) (-10 -7 (-15 -3778 ((-588 (-1085)))) (-15 -3744 ((-2 (|:| |zeros| (-1066 (-202))) (|:| |ones| (-1066 (-202))) (|:| |singularities| (-1066 (-202)))) (-1085))) (-6 -4238))) -((-2501 (($ (-588 |#2|)) 11))) -(((-101 |#1| |#2|) (-10 -8 (-15 -2501 (|#1| (-588 |#2|)))) (-102 |#2|) (-1120)) (T -101)) -NIL -(-10 -8 (-15 -2501 (|#1| (-588 |#2|)))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-2717 (((-108) $ (-708)) 8)) (-3367 (($) 7 T CONST)) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) 9)) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35)) (-3309 (((-108) $ (-708)) 10)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1431 ((|#1| $) 39)) (-3365 (($ |#1| $) 40)) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-3295 ((|#1| $) 41)) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-2501 (($ (-588 |#1|)) 42)) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-102 |#1|) (-1197) (-1120)) (T -102)) -((-2501 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-4 *1 (-102 *3)))) (-3295 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1120)))) (-3365 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1120)))) (-1431 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1120))))) -(-13 (-461 |t#1|) (-10 -8 (-6 -4239) (-15 -2501 ($ (-588 |t#1|))) (-15 -3295 (|t#1| $)) (-15 -3365 ($ |t#1| $)) (-15 -1431 (|t#1| $)))) -(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3049 (((-522) $) NIL (|has| (-522) (-283)))) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-2805 (((-108) $ $) NIL)) (-3355 (((-522) $) NIL (|has| (-522) (-757)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) NIL) (((-3 (-1085) "failed") $) NIL (|has| (-522) (-962 (-1085)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| (-522) (-962 (-522)))) (((-3 (-522) "failed") $) NIL (|has| (-522) (-962 (-522))))) (-1478 (((-522) $) NIL) (((-1085) $) NIL (|has| (-522) (-962 (-1085)))) (((-382 (-522)) $) NIL (|has| (-522) (-962 (-522)))) (((-522) $) NIL (|has| (-522) (-962 (-522))))) (-2333 (($ $ $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| (-522) (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| (-522) (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-628 (-522)) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3344 (($) NIL (|has| (-522) (-507)))) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-3603 (((-108) $) NIL (|has| (-522) (-757)))) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| (-522) (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| (-522) (-815 (-354))))) (-2859 (((-108) $) NIL)) (-1558 (($ $) NIL)) (-2947 (((-522) $) NIL)) (-4208 (((-3 $ "failed") $) NIL (|has| (-522) (-1061)))) (-3740 (((-108) $) NIL (|has| (-522) (-757)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1308 (($ $ $) NIL (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (|has| (-522) (-784)))) (-3810 (($ (-1 (-522) (-522)) $) NIL)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-3937 (($) NIL (|has| (-522) (-1061)) CONST)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4194 (($ $) NIL (|has| (-522) (-283))) (((-382 (-522)) $) NIL)) (-3592 (((-522) $) NIL (|has| (-522) (-507)))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-2006 (((-393 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2330 (($ $ (-588 (-522)) (-588 (-522))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-522) (-522)) NIL (|has| (-522) (-285 (-522)))) (($ $ (-270 (-522))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-588 (-270 (-522)))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-588 (-1085)) (-588 (-522))) NIL (|has| (-522) (-483 (-1085) (-522)))) (($ $ (-1085) (-522)) NIL (|has| (-522) (-483 (-1085) (-522))))) (-4031 (((-708) $) NIL)) (-2683 (($ $ (-522)) NIL (|has| (-522) (-262 (-522) (-522))))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-2731 (($ $) NIL (|has| (-522) (-210))) (($ $ (-708)) NIL (|has| (-522) (-210))) (($ $ (-1085)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1 (-522) (-522)) (-708)) NIL) (($ $ (-1 (-522) (-522))) NIL)) (-2762 (($ $) NIL)) (-2959 (((-522) $) NIL)) (-3873 (((-821 (-522)) $) NIL (|has| (-522) (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| (-522) (-563 (-821 (-354))))) (((-498) $) NIL (|has| (-522) (-563 (-498)))) (((-354) $) NIL (|has| (-522) (-947))) (((-202) $) NIL (|has| (-522) (-947)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| (-522) (-838))))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) 7) (($ (-522)) NIL) (($ (-1085)) NIL (|has| (-522) (-962 (-1085)))) (((-382 (-522)) $) NIL) (((-930 2) $) 9)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| (-522) (-838))) (|has| (-522) (-133))))) (-2742 (((-708)) NIL)) (-1379 (((-522) $) NIL (|has| (-522) (-507)))) (-2155 (($ (-382 (-522))) 8)) (-1407 (((-108) $ $) NIL)) (-4126 (($ $) NIL (|has| (-522) (-757)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $) NIL (|has| (-522) (-210))) (($ $ (-708)) NIL (|has| (-522) (-210))) (($ $ (-1085)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1 (-522) (-522)) (-708)) NIL) (($ $ (-1 (-522) (-522))) NIL)) (-1623 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1597 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1587 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1682 (($ $ $) NIL) (($ (-522) (-522)) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ (-522) $) NIL) (($ $ (-522)) NIL))) -(((-103) (-13 (-919 (-522)) (-10 -8 (-15 -2217 ((-382 (-522)) $)) (-15 -2217 ((-930 2) $)) (-15 -4194 ((-382 (-522)) $)) (-15 -2155 ($ (-382 (-522))))))) (T -103)) -((-2217 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-103)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-930 2)) (-5 *1 (-103)))) (-4194 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-103)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-103))))) -(-13 (-919 (-522)) (-10 -8 (-15 -2217 ((-382 (-522)) $)) (-15 -2217 ((-930 2) $)) (-15 -4194 ((-382 (-522)) $)) (-15 -2155 ($ (-382 (-522)))))) -((-2497 (((-588 (-893)) $) 13)) (-3015 (((-1085) $) 10)) (-2217 (((-792) $) 22)) (-2904 (($ (-1085) (-588 (-893))) 14))) -(((-104) (-13 (-562 (-792)) (-10 -8 (-15 -3015 ((-1085) $)) (-15 -2497 ((-588 (-893)) $)) (-15 -2904 ($ (-1085) (-588 (-893))))))) (T -104)) -((-3015 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-104)))) (-2497 (*1 *2 *1) (-12 (-5 *2 (-588 (-893))) (-5 *1 (-104)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-893))) (-5 *1 (-104))))) -(-13 (-562 (-792)) (-10 -8 (-15 -3015 ((-1085) $)) (-15 -2497 ((-588 (-893)) $)) (-15 -2904 ($ (-1085) (-588 (-893)))))) -((-1419 (((-108) $ $) NIL)) (-2710 (((-1032) $ (-1032)) 23)) (-3813 (($ $ (-1068)) 17)) (-3688 (((-3 (-1032) "failed") $) 22)) (-2982 (((-1032) $) 20)) (-2403 (((-1032) $ (-1032)) 25)) (-3314 (((-1032) $) 24)) (-1566 (($ (-363)) NIL) (($ (-363) (-1068)) 16)) (-3015 (((-363) $) NIL)) (-2311 (((-1068) $) NIL)) (-3270 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-3116 (($ $) 18)) (-1562 (((-108) $ $) NIL))) -(((-105) (-13 (-339 (-363) (-1032)) (-10 -8 (-15 -3688 ((-3 (-1032) "failed") $)) (-15 -3314 ((-1032) $)) (-15 -2403 ((-1032) $ (-1032)))))) (T -105)) -((-3688 (*1 *2 *1) (|partial| -12 (-5 *2 (-1032)) (-5 *1 (-105)))) (-3314 (*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-105)))) (-2403 (*1 *2 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-105))))) -(-13 (-339 (-363) (-1032)) (-10 -8 (-15 -3688 ((-3 (-1032) "failed") $)) (-15 -3314 ((-1032) $)) (-15 -2403 ((-1032) $ (-1032))))) -((-1419 (((-108) $ $) NIL)) (-1504 (($ $) NIL)) (-3454 (($ $ $) NIL)) (-3883 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1866 (((-108) $) NIL (|has| (-108) (-784))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-2806 (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| (-108) (-784)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4239)))) (-3296 (($ $) NIL (|has| (-108) (-784))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-2717 (((-108) $ (-708)) NIL)) (-2437 (((-108) $ (-1133 (-522)) (-108)) NIL (|has| $ (-6 -4239))) (((-108) $ (-522) (-108)) NIL (|has| $ (-6 -4239)))) (-1696 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4238)))) (-3367 (($) NIL T CONST)) (-2465 (($ $) NIL (|has| $ (-6 -4239)))) (-1939 (($ $) NIL)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-1424 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4238))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-2153 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-2411 (((-108) $ (-522) (-108)) NIL (|has| $ (-6 -4239)))) (-2186 (((-108) $ (-522)) NIL)) (-3314 (((-522) (-108) $ (-522)) NIL (|has| (-108) (-1014))) (((-522) (-108) $) NIL (|has| (-108) (-1014))) (((-522) (-1 (-108) (-108)) $) NIL)) (-2395 (((-588 (-108)) $) NIL (|has| $ (-6 -4238)))) (-4070 (($ $ $) NIL)) (-2473 (($ $) NIL)) (-1588 (($ $ $) NIL)) (-1893 (($ (-708) (-108)) 8)) (-1309 (($ $ $) NIL)) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) NIL (|has| (-522) (-784)))) (-1308 (($ $ $) NIL)) (-3164 (($ $ $) NIL (|has| (-108) (-784))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-4084 (((-588 (-108)) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-2201 (((-522) $) NIL (|has| (-522) (-784)))) (-2524 (($ $ $) NIL)) (-2397 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-108) (-108) (-108)) $ $) NIL) (($ (-1 (-108) (-108)) $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL)) (-1731 (($ $ $ (-522)) NIL) (($ (-108) $ (-522)) NIL)) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) NIL)) (-4174 (((-1032) $) NIL)) (-2337 (((-108) $) NIL (|has| (-522) (-784)))) (-2187 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-1972 (($ $ (-108)) NIL (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-108)) (-588 (-108))) NIL (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014)))) (($ $ (-270 (-108))) NIL (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014)))) (($ $ (-588 (-270 (-108)))) NIL (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-1973 (((-588 (-108)) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 (($ $ (-1133 (-522))) NIL) (((-108) $ (-522)) NIL) (((-108) $ (-522) (-108)) NIL)) (-3835 (($ $ (-1133 (-522))) NIL) (($ $ (-522)) NIL)) (-4187 (((-708) (-108) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014)))) (((-708) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4238)))) (-3629 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| (-108) (-563 (-498))))) (-2227 (($ (-588 (-108))) NIL)) (-4170 (($ (-588 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-2217 (((-792) $) NIL)) (-2780 (($ (-708) (-108)) 9)) (-1381 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4238)))) (-4079 (($ $ $) NIL)) (-3622 (($ $) NIL)) (-2920 (($ $ $) NIL)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) NIL)) (-2388 (($ $ $) NIL)) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-106) (-13 (-119) (-10 -8 (-15 -2780 ($ (-708) (-108)))))) (T -106)) -((-2780 (*1 *1 *2 *3) (-12 (-5 *2 (-708)) (-5 *3 (-108)) (-5 *1 (-106))))) -(-13 (-119) (-10 -8 (-15 -2780 ($ (-708) (-108))))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-3697 (($) 18 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) -(((-107 |#1| |#2|) (-1197) (-971) (-971)) (T -107)) -NIL -(-13 (-590 |t#1|) (-977 |t#2|) (-10 -7 (-6 -4233) (-6 -4232))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-977 |#2|) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-1504 (($ $) 12)) (-3454 (($ $ $) 17)) (-1433 (($) 8 T CONST)) (-3501 (((-108) $) 7)) (-1685 (((-708)) 26)) (-3344 (($) 32)) (-4070 (($ $ $) 15)) (-2473 (($ $) 10)) (-1588 (($ $ $) 18)) (-1309 (($ $ $) 19)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-1475 (((-850) $) 31)) (-2311 (((-1068) $) NIL)) (-2882 (($ (-850)) 30)) (-3444 (($ $ $) 21)) (-4174 (((-1032) $) NIL)) (-2338 (($) 9 T CONST)) (-2820 (($ $ $) 22)) (-3873 (((-498) $) 38)) (-2217 (((-792) $) 41)) (-4079 (($ $ $) 13)) (-3622 (($ $) 11)) (-2920 (($ $ $) 16)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 20)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 24)) (-2388 (($ $ $) 14))) -(((-108) (-13 (-784) (-343) (-603) (-895) (-563 (-498)) (-10 -8 (-15 -1433 ($) -2855) (-15 -2338 ($) -2855) (-15 -3622 ($ $)) (-15 -3454 ($ $ $)) (-15 -1309 ($ $ $)) (-15 -1588 ($ $ $)) (-15 -3501 ((-108) $))))) (T -108)) -((-1433 (*1 *1) (-5 *1 (-108))) (-2338 (*1 *1) (-5 *1 (-108))) (-3622 (*1 *1 *1) (-5 *1 (-108))) (-3454 (*1 *1 *1 *1) (-5 *1 (-108))) (-1309 (*1 *1 *1 *1) (-5 *1 (-108))) (-1588 (*1 *1 *1 *1) (-5 *1 (-108))) (-3501 (*1 *1 *1) (-5 *1 (-108)))) -(-13 (-784) (-343) (-603) (-895) (-563 (-498)) (-10 -8 (-15 -1433 ($) -2855) (-15 -2338 ($) -2855) (-15 -3622 ($ $)) (-15 -3454 ($ $ $)) (-15 -1309 ($ $ $)) (-15 -1588 ($ $ $)) (-15 -3501 ((-108) $)))) -((-1710 (((-3 (-1 |#1| (-588 |#1|)) "failed") (-110)) 18) (((-110) (-110) (-1 |#1| |#1|)) 13) (((-110) (-110) (-1 |#1| (-588 |#1|))) 11) (((-3 |#1| "failed") (-110) (-588 |#1|)) 20)) (-3880 (((-3 (-588 (-1 |#1| (-588 |#1|))) "failed") (-110)) 24) (((-110) (-110) (-1 |#1| |#1|)) 30) (((-110) (-110) (-588 (-1 |#1| (-588 |#1|)))) 26)) (-3424 (((-110) |#1|) 54 (|has| |#1| (-784)))) (-3646 (((-3 |#1| "failed") (-110)) 49 (|has| |#1| (-784))))) -(((-109 |#1|) (-10 -7 (-15 -1710 ((-3 |#1| "failed") (-110) (-588 |#1|))) (-15 -1710 ((-110) (-110) (-1 |#1| (-588 |#1|)))) (-15 -1710 ((-110) (-110) (-1 |#1| |#1|))) (-15 -1710 ((-3 (-1 |#1| (-588 |#1|)) "failed") (-110))) (-15 -3880 ((-110) (-110) (-588 (-1 |#1| (-588 |#1|))))) (-15 -3880 ((-110) (-110) (-1 |#1| |#1|))) (-15 -3880 ((-3 (-588 (-1 |#1| (-588 |#1|))) "failed") (-110))) (IF (|has| |#1| (-784)) (PROGN (-15 -3424 ((-110) |#1|)) (-15 -3646 ((-3 |#1| "failed") (-110)))) |%noBranch|)) (-1014)) (T -109)) -((-3646 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1014)) (-4 *2 (-784)) (-5 *1 (-109 *2)))) (-3424 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-784)) (-4 *3 (-1014)))) (-3880 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-588 (-1 *4 (-588 *4)))) (-5 *1 (-109 *4)) (-4 *4 (-1014)))) (-3880 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-109 *4)))) (-3880 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-588 (-1 *4 (-588 *4)))) (-4 *4 (-1014)) (-5 *1 (-109 *4)))) (-1710 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-588 *4))) (-5 *1 (-109 *4)) (-4 *4 (-1014)))) (-1710 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-109 *4)))) (-1710 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-588 *4))) (-4 *4 (-1014)) (-5 *1 (-109 *4)))) (-1710 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-588 *2)) (-5 *1 (-109 *2)) (-4 *2 (-1014))))) -(-10 -7 (-15 -1710 ((-3 |#1| "failed") (-110) (-588 |#1|))) (-15 -1710 ((-110) (-110) (-1 |#1| (-588 |#1|)))) (-15 -1710 ((-110) (-110) (-1 |#1| |#1|))) (-15 -1710 ((-3 (-1 |#1| (-588 |#1|)) "failed") (-110))) (-15 -3880 ((-110) (-110) (-588 (-1 |#1| (-588 |#1|))))) (-15 -3880 ((-110) (-110) (-1 |#1| |#1|))) (-15 -3880 ((-3 (-588 (-1 |#1| (-588 |#1|))) "failed") (-110))) (IF (|has| |#1| (-784)) (PROGN (-15 -3424 ((-110) |#1|)) (-15 -3646 ((-3 |#1| "failed") (-110)))) |%noBranch|)) -((-1419 (((-108) $ $) NIL)) (-3192 (((-708) $) 68) (($ $ (-708)) 30)) (-2675 (((-108) $) 32)) (-2451 (($ $ (-1068) (-711)) 26)) (-4112 (($ $ (-44 (-1068) (-711))) 13)) (-2008 (((-3 (-711) "failed") $ (-1068)) 24)) (-2497 (((-44 (-1068) (-711)) $) 12)) (-1771 (($ (-1085)) 15) (($ (-1085) (-708)) 20)) (-3408 (((-108) $) 31)) (-3867 (((-108) $) 33)) (-3015 (((-1085) $) 8)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-2311 (((-1068) $) NIL)) (-2935 (((-108) $ (-1085)) 10)) (-1800 (($ $ (-1 (-498) (-588 (-498)))) 50) (((-3 (-1 (-498) (-588 (-498))) "failed") $) 54)) (-4174 (((-1032) $) NIL)) (-2753 (((-108) $ (-1068)) 29)) (-3935 (($ $ (-1 (-108) $ $)) 35)) (-1757 (((-3 (-1 (-792) (-588 (-792))) "failed") $) 52) (($ $ (-1 (-792) (-588 (-792)))) 41) (($ $ (-1 (-792) (-792))) 43)) (-3371 (($ $ (-1068)) 45)) (-2463 (($ $) 61)) (-3426 (($ $ (-1 (-108) $ $)) 36)) (-2217 (((-792) $) 48)) (-3115 (($ $ (-1068)) 27)) (-4096 (((-3 (-708) "failed") $) 56)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 67)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 73))) -(((-110) (-13 (-784) (-10 -8 (-15 -3015 ((-1085) $)) (-15 -2497 ((-44 (-1068) (-711)) $)) (-15 -2463 ($ $)) (-15 -1771 ($ (-1085))) (-15 -1771 ($ (-1085) (-708))) (-15 -4096 ((-3 (-708) "failed") $)) (-15 -3408 ((-108) $)) (-15 -2675 ((-108) $)) (-15 -3867 ((-108) $)) (-15 -3192 ((-708) $)) (-15 -3192 ($ $ (-708))) (-15 -3935 ($ $ (-1 (-108) $ $))) (-15 -3426 ($ $ (-1 (-108) $ $))) (-15 -1757 ((-3 (-1 (-792) (-588 (-792))) "failed") $)) (-15 -1757 ($ $ (-1 (-792) (-588 (-792))))) (-15 -1757 ($ $ (-1 (-792) (-792)))) (-15 -1800 ($ $ (-1 (-498) (-588 (-498))))) (-15 -1800 ((-3 (-1 (-498) (-588 (-498))) "failed") $)) (-15 -2935 ((-108) $ (-1085))) (-15 -2753 ((-108) $ (-1068))) (-15 -3115 ($ $ (-1068))) (-15 -3371 ($ $ (-1068))) (-15 -2008 ((-3 (-711) "failed") $ (-1068))) (-15 -2451 ($ $ (-1068) (-711))) (-15 -4112 ($ $ (-44 (-1068) (-711))))))) (T -110)) -((-3015 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-110)))) (-2497 (*1 *2 *1) (-12 (-5 *2 (-44 (-1068) (-711))) (-5 *1 (-110)))) (-2463 (*1 *1 *1) (-5 *1 (-110))) (-1771 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-110)))) (-1771 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-708)) (-5 *1 (-110)))) (-4096 (*1 *2 *1) (|partial| -12 (-5 *2 (-708)) (-5 *1 (-110)))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-3192 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-110)))) (-3192 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-110)))) (-3935 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-3426 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-1757 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-792) (-588 (-792)))) (-5 *1 (-110)))) (-1757 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-792) (-588 (-792)))) (-5 *1 (-110)))) (-1757 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-792) (-792))) (-5 *1 (-110)))) (-1800 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-498) (-588 (-498)))) (-5 *1 (-110)))) (-1800 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-498) (-588 (-498)))) (-5 *1 (-110)))) (-2935 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-108)) (-5 *1 (-110)))) (-2753 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-108)) (-5 *1 (-110)))) (-3115 (*1 *1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-110)))) (-3371 (*1 *1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-110)))) (-2008 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1068)) (-5 *2 (-711)) (-5 *1 (-110)))) (-2451 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1068)) (-5 *3 (-711)) (-5 *1 (-110)))) (-4112 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1068) (-711))) (-5 *1 (-110))))) -(-13 (-784) (-10 -8 (-15 -3015 ((-1085) $)) (-15 -2497 ((-44 (-1068) (-711)) $)) (-15 -2463 ($ $)) (-15 -1771 ($ (-1085))) (-15 -1771 ($ (-1085) (-708))) (-15 -4096 ((-3 (-708) "failed") $)) (-15 -3408 ((-108) $)) (-15 -2675 ((-108) $)) (-15 -3867 ((-108) $)) (-15 -3192 ((-708) $)) (-15 -3192 ($ $ (-708))) (-15 -3935 ($ $ (-1 (-108) $ $))) (-15 -3426 ($ $ (-1 (-108) $ $))) (-15 -1757 ((-3 (-1 (-792) (-588 (-792))) "failed") $)) (-15 -1757 ($ $ (-1 (-792) (-588 (-792))))) (-15 -1757 ($ $ (-1 (-792) (-792)))) (-15 -1800 ($ $ (-1 (-498) (-588 (-498))))) (-15 -1800 ((-3 (-1 (-498) (-588 (-498))) "failed") $)) (-15 -2935 ((-108) $ (-1085))) (-15 -2753 ((-108) $ (-1068))) (-15 -3115 ($ $ (-1068))) (-15 -3371 ($ $ (-1068))) (-15 -2008 ((-3 (-711) "failed") $ (-1068))) (-15 -2451 ($ $ (-1068) (-711))) (-15 -4112 ($ $ (-44 (-1068) (-711)))))) -((-3166 (((-522) |#2|) 36))) -(((-111 |#1| |#2|) (-10 -7 (-15 -3166 ((-522) |#2|))) (-13 (-338) (-962 (-382 (-522)))) (-1142 |#1|)) (T -111)) -((-3166 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-962 (-382 *2)))) (-5 *2 (-522)) (-5 *1 (-111 *4 *3)) (-4 *3 (-1142 *4))))) -(-10 -7 (-15 -3166 ((-522) |#2|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-2016 (($ $ (-522)) NIL)) (-2805 (((-108) $ $) NIL)) (-3367 (($) NIL T CONST)) (-3763 (($ (-1081 (-522)) (-522)) NIL)) (-2333 (($ $ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3606 (($ $) NIL)) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-3872 (((-708) $) NIL)) (-2859 (((-108) $) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1246 (((-522)) NIL)) (-3316 (((-522) $) NIL)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3934 (($ $ (-522)) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-3353 (((-1066 (-522)) $) NIL)) (-1944 (($ $) NIL)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL)) (-2742 (((-708)) NIL)) (-1407 (((-108) $ $) NIL)) (-3996 (((-522) $ (-522)) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL))) -(((-112 |#1|) (-798 |#1|) (-522)) (T -112)) -NIL -(-798 |#1|) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3049 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-283)))) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-112 |#1|) (-838)))) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| (-112 |#1|) (-838)))) (-2805 (((-108) $ $) NIL)) (-3355 (((-522) $) NIL (|has| (-112 |#1|) (-757)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-112 |#1|) "failed") $) NIL) (((-3 (-1085) "failed") $) NIL (|has| (-112 |#1|) (-962 (-1085)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| (-112 |#1|) (-962 (-522)))) (((-3 (-522) "failed") $) NIL (|has| (-112 |#1|) (-962 (-522))))) (-1478 (((-112 |#1|) $) NIL) (((-1085) $) NIL (|has| (-112 |#1|) (-962 (-1085)))) (((-382 (-522)) $) NIL (|has| (-112 |#1|) (-962 (-522)))) (((-522) $) NIL (|has| (-112 |#1|) (-962 (-522))))) (-3734 (($ $) NIL) (($ (-522) $) NIL)) (-2333 (($ $ $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| (-112 |#1|) (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| (-112 |#1|) (-584 (-522)))) (((-2 (|:| -2149 (-628 (-112 |#1|))) (|:| |vec| (-1166 (-112 |#1|)))) (-628 $) (-1166 $)) NIL) (((-628 (-112 |#1|)) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3344 (($) NIL (|has| (-112 |#1|) (-507)))) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-3603 (((-108) $) NIL (|has| (-112 |#1|) (-757)))) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| (-112 |#1|) (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| (-112 |#1|) (-815 (-354))))) (-2859 (((-108) $) NIL)) (-1558 (($ $) NIL)) (-2947 (((-112 |#1|) $) NIL)) (-4208 (((-3 $ "failed") $) NIL (|has| (-112 |#1|) (-1061)))) (-3740 (((-108) $) NIL (|has| (-112 |#1|) (-757)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1308 (($ $ $) NIL (|has| (-112 |#1|) (-784)))) (-2524 (($ $ $) NIL (|has| (-112 |#1|) (-784)))) (-3810 (($ (-1 (-112 |#1|) (-112 |#1|)) $) NIL)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-3937 (($) NIL (|has| (-112 |#1|) (-1061)) CONST)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4194 (($ $) NIL (|has| (-112 |#1|) (-283)))) (-3592 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-507)))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-112 |#1|) (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-112 |#1|) (-838)))) (-2006 (((-393 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2330 (($ $ (-588 (-112 |#1|)) (-588 (-112 |#1|))) NIL (|has| (-112 |#1|) (-285 (-112 |#1|)))) (($ $ (-112 |#1|) (-112 |#1|)) NIL (|has| (-112 |#1|) (-285 (-112 |#1|)))) (($ $ (-270 (-112 |#1|))) NIL (|has| (-112 |#1|) (-285 (-112 |#1|)))) (($ $ (-588 (-270 (-112 |#1|)))) NIL (|has| (-112 |#1|) (-285 (-112 |#1|)))) (($ $ (-588 (-1085)) (-588 (-112 |#1|))) NIL (|has| (-112 |#1|) (-483 (-1085) (-112 |#1|)))) (($ $ (-1085) (-112 |#1|)) NIL (|has| (-112 |#1|) (-483 (-1085) (-112 |#1|))))) (-4031 (((-708) $) NIL)) (-2683 (($ $ (-112 |#1|)) NIL (|has| (-112 |#1|) (-262 (-112 |#1|) (-112 |#1|))))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-2731 (($ $) NIL (|has| (-112 |#1|) (-210))) (($ $ (-708)) NIL (|has| (-112 |#1|) (-210))) (($ $ (-1085)) NIL (|has| (-112 |#1|) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-112 |#1|) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-112 |#1|) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-112 |#1|) (-829 (-1085)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-708)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-2762 (($ $) NIL)) (-2959 (((-112 |#1|) $) NIL)) (-3873 (((-821 (-522)) $) NIL (|has| (-112 |#1|) (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| (-112 |#1|) (-563 (-821 (-354))))) (((-498) $) NIL (|has| (-112 |#1|) (-563 (-498)))) (((-354) $) NIL (|has| (-112 |#1|) (-947))) (((-202) $) NIL (|has| (-112 |#1|) (-947)))) (-1471 (((-158 (-382 (-522))) $) NIL)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| (-112 |#1|) (-838))))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ (-112 |#1|)) NIL) (($ (-1085)) NIL (|has| (-112 |#1|) (-962 (-1085))))) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| (-112 |#1|) (-838))) (|has| (-112 |#1|) (-133))))) (-2742 (((-708)) NIL)) (-1379 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-507)))) (-1407 (((-108) $ $) NIL)) (-3996 (((-382 (-522)) $ (-522)) NIL)) (-4126 (($ $) NIL (|has| (-112 |#1|) (-757)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $) NIL (|has| (-112 |#1|) (-210))) (($ $ (-708)) NIL (|has| (-112 |#1|) (-210))) (($ $ (-1085)) NIL (|has| (-112 |#1|) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-112 |#1|) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-112 |#1|) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-112 |#1|) (-829 (-1085)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-708)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-1623 (((-108) $ $) NIL (|has| (-112 |#1|) (-784)))) (-1597 (((-108) $ $) NIL (|has| (-112 |#1|) (-784)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| (-112 |#1|) (-784)))) (-1587 (((-108) $ $) NIL (|has| (-112 |#1|) (-784)))) (-1682 (($ $ $) NIL) (($ (-112 |#1|) (-112 |#1|)) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ (-112 |#1|) $) NIL) (($ $ (-112 |#1|)) NIL))) -(((-113 |#1|) (-13 (-919 (-112 |#1|)) (-10 -8 (-15 -3996 ((-382 (-522)) $ (-522))) (-15 -1471 ((-158 (-382 (-522))) $)) (-15 -3734 ($ $)) (-15 -3734 ($ (-522) $)))) (-522)) (T -113)) -((-3996 (*1 *2 *1 *3) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-113 *4)) (-14 *4 *3) (-5 *3 (-522)))) (-1471 (*1 *2 *1) (-12 (-5 *2 (-158 (-382 (-522)))) (-5 *1 (-113 *3)) (-14 *3 (-522)))) (-3734 (*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-522)))) (-3734 (*1 *1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-113 *3)) (-14 *3 *2)))) -(-13 (-919 (-112 |#1|)) (-10 -8 (-15 -3996 ((-382 (-522)) $ (-522))) (-15 -1471 ((-158 (-382 (-522))) $)) (-15 -3734 ($ $)) (-15 -3734 ($ (-522) $)))) -((-2437 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-2674 (((-588 $) $) 27)) (-2402 (((-108) $ $) 32)) (-4176 (((-108) |#2| $) 36)) (-2548 (((-588 |#2|) $) 22)) (-3394 (((-108) $) 16)) (-2683 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3395 (((-108) $) 45)) (-2217 (((-792) $) 41)) (-1515 (((-588 $) $) 28)) (-1562 (((-108) $ $) 34)) (-3591 (((-708) $) 43))) -(((-114 |#1| |#2|) (-10 -8 (-15 -2217 ((-792) |#1|)) (-15 -2437 (|#1| |#1| "right" |#1|)) (-15 -2437 (|#1| |#1| "left" |#1|)) (-15 -2683 (|#1| |#1| "right")) (-15 -2683 (|#1| |#1| "left")) (-15 -2437 (|#2| |#1| "value" |#2|)) (-15 -2402 ((-108) |#1| |#1|)) (-15 -2548 ((-588 |#2|) |#1|)) (-15 -3395 ((-108) |#1|)) (-15 -2683 (|#2| |#1| "value")) (-15 -3394 ((-108) |#1|)) (-15 -2674 ((-588 |#1|) |#1|)) (-15 -1515 ((-588 |#1|) |#1|)) (-15 -1562 ((-108) |#1| |#1|)) (-15 -4176 ((-108) |#2| |#1|)) (-15 -3591 ((-708) |#1|))) (-115 |#2|) (-1120)) (T -114)) -NIL -(-10 -8 (-15 -2217 ((-792) |#1|)) (-15 -2437 (|#1| |#1| "right" |#1|)) (-15 -2437 (|#1| |#1| "left" |#1|)) (-15 -2683 (|#1| |#1| "right")) (-15 -2683 (|#1| |#1| "left")) (-15 -2437 (|#2| |#1| "value" |#2|)) (-15 -2402 ((-108) |#1| |#1|)) (-15 -2548 ((-588 |#2|) |#1|)) (-15 -3395 ((-108) |#1|)) (-15 -2683 (|#2| |#1| "value")) (-15 -3394 ((-108) |#1|)) (-15 -2674 ((-588 |#1|) |#1|)) (-15 -1515 ((-588 |#1|) |#1|)) (-15 -1562 ((-108) |#1| |#1|)) (-15 -4176 ((-108) |#2| |#1|)) (-15 -3591 ((-708) |#1|))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3526 ((|#1| $) 48)) (-2717 (((-108) $ (-708)) 8)) (-1198 ((|#1| $ |#1|) 39 (|has| $ (-6 -4239)))) (-2766 (($ $ $) 52 (|has| $ (-6 -4239)))) (-3268 (($ $ $) 54 (|has| $ (-6 -4239)))) (-2437 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4239))) (($ $ "left" $) 55 (|has| $ (-6 -4239))) (($ $ "right" $) 53 (|has| $ (-6 -4239)))) (-2684 (($ $ (-588 $)) 41 (|has| $ (-6 -4239)))) (-3367 (($) 7 T CONST)) (-2002 (($ $) 57)) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-2674 (((-588 $) $) 50)) (-2402 (((-108) $ $) 42 (|has| |#1| (-1014)))) (-1480 (((-108) $ (-708)) 9)) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35)) (-3309 (((-108) $ (-708)) 10)) (-1993 (($ $) 59)) (-2548 (((-588 |#1|) $) 45)) (-3394 (((-108) $) 49)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3381 (((-522) $ $) 44)) (-3395 (((-108) $) 46)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1515 (((-588 $) $) 51)) (-3294 (((-108) $ $) 43 (|has| |#1| (-1014)))) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-115 |#1|) (-1197) (-1120)) (T -115)) -((-1993 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1120)))) (-2683 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1120)))) (-2002 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1120)))) (-2683 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1120)))) (-2437 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4239)) (-4 *1 (-115 *3)) (-4 *3 (-1120)))) (-3268 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-115 *2)) (-4 *2 (-1120)))) (-2437 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4239)) (-4 *1 (-115 *3)) (-4 *3 (-1120)))) (-2766 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-115 *2)) (-4 *2 (-1120))))) -(-13 (-936 |t#1|) (-10 -8 (-15 -1993 ($ $)) (-15 -2683 ($ $ "left")) (-15 -2002 ($ $)) (-15 -2683 ($ $ "right")) (IF (|has| $ (-6 -4239)) (PROGN (-15 -2437 ($ $ "left" $)) (-15 -3268 ($ $ $)) (-15 -2437 ($ $ "right" $)) (-15 -2766 ($ $ $))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-936 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1120) . T)) -((-2429 (((-108) |#1|) 24)) (-1952 (((-708) (-708)) 23) (((-708)) 22)) (-3416 (((-108) |#1| (-108)) 25) (((-108) |#1|) 26))) -(((-116 |#1|) (-10 -7 (-15 -3416 ((-108) |#1|)) (-15 -3416 ((-108) |#1| (-108))) (-15 -1952 ((-708))) (-15 -1952 ((-708) (-708))) (-15 -2429 ((-108) |#1|))) (-1142 (-522))) (T -116)) -((-2429 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1142 (-522))))) (-1952 (*1 *2 *2) (-12 (-5 *2 (-708)) (-5 *1 (-116 *3)) (-4 *3 (-1142 (-522))))) (-1952 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-116 *3)) (-4 *3 (-1142 (-522))))) (-3416 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1142 (-522))))) (-3416 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1142 (-522)))))) -(-10 -7 (-15 -3416 ((-108) |#1|)) (-15 -3416 ((-108) |#1| (-108))) (-15 -1952 ((-708))) (-15 -1952 ((-708) (-708))) (-15 -2429 ((-108) |#1|))) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3526 ((|#1| $) 15)) (-3428 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-2717 (((-108) $ (-708)) NIL)) (-1198 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-2766 (($ $ $) 18 (|has| $ (-6 -4239)))) (-3268 (($ $ $) 20 (|has| $ (-6 -4239)))) (-2437 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4239))) (($ $ "left" $) NIL (|has| $ (-6 -4239))) (($ $ "right" $) NIL (|has| $ (-6 -4239)))) (-2684 (($ $ (-588 $)) NIL (|has| $ (-6 -4239)))) (-3367 (($) NIL T CONST)) (-2002 (($ $) 17)) (-2395 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2674 (((-588 $) $) NIL)) (-2402 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3147 (($ $ |#1| $) 23)) (-1480 (((-108) $ (-708)) NIL)) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2397 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-1993 (($ $) 19)) (-2548 (((-588 |#1|) $) NIL)) (-3394 (((-108) $) NIL)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-3567 (($ |#1| $) 24)) (-3365 (($ |#1| $) 10)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) 14)) (-3298 (($) 8)) (-2683 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3381 (((-522) $ $) NIL)) (-3395 (((-108) $) NIL)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) NIL)) (-2217 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1515 (((-588 $) $) NIL)) (-3294 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2315 (($ (-588 |#1|)) 12)) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-117 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4239) (-6 -4238) (-15 -2315 ($ (-588 |#1|))) (-15 -3365 ($ |#1| $)) (-15 -3567 ($ |#1| $)) (-15 -3428 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-784)) (T -117)) -((-2315 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-117 *3)))) (-3365 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-784)))) (-3567 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-784)))) (-3428 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) (-5 *1 (-117 *3)) (-4 *3 (-784))))) -(-13 (-121 |#1|) (-10 -8 (-6 -4239) (-6 -4238) (-15 -2315 ($ (-588 |#1|))) (-15 -3365 ($ |#1| $)) (-15 -3567 ($ |#1| $)) (-15 -3428 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-1504 (($ $) 14)) (-2473 (($ $) 11)) (-1588 (($ $ $) 24)) (-1309 (($ $ $) 22)) (-3622 (($ $) 12)) (-2920 (($ $ $) 20)) (-2388 (($ $ $) 18))) -(((-118 |#1|) (-10 -8 (-15 -1588 (|#1| |#1| |#1|)) (-15 -1309 (|#1| |#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -2473 (|#1| |#1|)) (-15 -1504 (|#1| |#1|)) (-15 -2388 (|#1| |#1| |#1|)) (-15 -2920 (|#1| |#1| |#1|))) (-119)) (T -118)) -NIL -(-10 -8 (-15 -1588 (|#1| |#1| |#1|)) (-15 -1309 (|#1| |#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -2473 (|#1| |#1|)) (-15 -1504 (|#1| |#1|)) (-15 -2388 (|#1| |#1| |#1|)) (-15 -2920 (|#1| |#1| |#1|))) -((-1419 (((-108) $ $) 7)) (-1504 (($ $) 104)) (-3454 (($ $ $) 25)) (-3883 (((-1171) $ (-522) (-522)) 67 (|has| $ (-6 -4239)))) (-1866 (((-108) $) 99 (|has| (-108) (-784))) (((-108) (-1 (-108) (-108) (-108)) $) 93)) (-2806 (($ $) 103 (-12 (|has| (-108) (-784)) (|has| $ (-6 -4239)))) (($ (-1 (-108) (-108) (-108)) $) 102 (|has| $ (-6 -4239)))) (-3296 (($ $) 98 (|has| (-108) (-784))) (($ (-1 (-108) (-108) (-108)) $) 92)) (-2717 (((-108) $ (-708)) 38)) (-2437 (((-108) $ (-1133 (-522)) (-108)) 89 (|has| $ (-6 -4239))) (((-108) $ (-522) (-108)) 55 (|has| $ (-6 -4239)))) (-1696 (($ (-1 (-108) (-108)) $) 72 (|has| $ (-6 -4238)))) (-3367 (($) 39 T CONST)) (-2465 (($ $) 101 (|has| $ (-6 -4239)))) (-1939 (($ $) 91)) (-2379 (($ $) 69 (-12 (|has| (-108) (-1014)) (|has| $ (-6 -4238))))) (-1424 (($ (-1 (-108) (-108)) $) 73 (|has| $ (-6 -4238))) (($ (-108) $) 70 (-12 (|has| (-108) (-1014)) (|has| $ (-6 -4238))))) (-2153 (((-108) (-1 (-108) (-108) (-108)) $) 75 (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) 74 (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) 71 (-12 (|has| (-108) (-1014)) (|has| $ (-6 -4238))))) (-2411 (((-108) $ (-522) (-108)) 54 (|has| $ (-6 -4239)))) (-2186 (((-108) $ (-522)) 56)) (-3314 (((-522) (-108) $ (-522)) 96 (|has| (-108) (-1014))) (((-522) (-108) $) 95 (|has| (-108) (-1014))) (((-522) (-1 (-108) (-108)) $) 94)) (-2395 (((-588 (-108)) $) 46 (|has| $ (-6 -4238)))) (-4070 (($ $ $) 26)) (-2473 (($ $) 31)) (-1588 (($ $ $) 28)) (-1893 (($ (-708) (-108)) 78)) (-1309 (($ $ $) 29)) (-1480 (((-108) $ (-708)) 37)) (-3496 (((-522) $) 64 (|has| (-522) (-784)))) (-1308 (($ $ $) 13)) (-3164 (($ $ $) 97 (|has| (-108) (-784))) (($ (-1 (-108) (-108) (-108)) $ $) 90)) (-4084 (((-588 (-108)) $) 47 (|has| $ (-6 -4238)))) (-4176 (((-108) (-108) $) 49 (-12 (|has| (-108) (-1014)) (|has| $ (-6 -4238))))) (-2201 (((-522) $) 63 (|has| (-522) (-784)))) (-2524 (($ $ $) 14)) (-2397 (($ (-1 (-108) (-108)) $) 42 (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-108) (-108) (-108)) $ $) 83) (($ (-1 (-108) (-108)) $) 41)) (-3309 (((-108) $ (-708)) 36)) (-2311 (((-1068) $) 9)) (-1731 (($ $ $ (-522)) 88) (($ (-108) $ (-522)) 87)) (-2130 (((-588 (-522)) $) 61)) (-2103 (((-108) (-522) $) 60)) (-4174 (((-1032) $) 10)) (-2337 (((-108) $) 65 (|has| (-522) (-784)))) (-2187 (((-3 (-108) "failed") (-1 (-108) (-108)) $) 76)) (-1972 (($ $ (-108)) 66 (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) (-108)) $) 44 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-108)) (-588 (-108))) 53 (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014)))) (($ $ (-108) (-108)) 52 (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014)))) (($ $ (-270 (-108))) 51 (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014)))) (($ $ (-588 (-270 (-108)))) 50 (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014))))) (-2065 (((-108) $ $) 32)) (-3434 (((-108) (-108) $) 62 (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-1973 (((-588 (-108)) $) 59)) (-3494 (((-108) $) 35)) (-3298 (($) 34)) (-2683 (($ $ (-1133 (-522))) 84) (((-108) $ (-522)) 58) (((-108) $ (-522) (-108)) 57)) (-3835 (($ $ (-1133 (-522))) 86) (($ $ (-522)) 85)) (-4187 (((-708) (-108) $) 48 (-12 (|has| (-108) (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) (-108)) $) 45 (|has| $ (-6 -4238)))) (-3629 (($ $ $ (-522)) 100 (|has| $ (-6 -4239)))) (-2463 (($ $) 33)) (-3873 (((-498) $) 68 (|has| (-108) (-563 (-498))))) (-2227 (($ (-588 (-108))) 77)) (-4170 (($ (-588 $)) 82) (($ $ $) 81) (($ (-108) $) 80) (($ $ (-108)) 79)) (-2217 (((-792) $) 11)) (-1381 (((-108) (-1 (-108) (-108)) $) 43 (|has| $ (-6 -4238)))) (-4079 (($ $ $) 27)) (-3622 (($ $) 30)) (-2920 (($ $ $) 106)) (-1623 (((-108) $ $) 16)) (-1597 (((-108) $ $) 17)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 15)) (-1587 (((-108) $ $) 18)) (-2388 (($ $ $) 105)) (-3591 (((-708) $) 40 (|has| $ (-6 -4238))))) -(((-119) (-1197)) (T -119)) -((-2473 (*1 *1 *1) (-4 *1 (-119))) (-3622 (*1 *1 *1) (-4 *1 (-119))) (-1309 (*1 *1 *1 *1) (-4 *1 (-119))) (-1588 (*1 *1 *1 *1) (-4 *1 (-119))) (-4079 (*1 *1 *1 *1) (-4 *1 (-119))) (-4070 (*1 *1 *1 *1) (-4 *1 (-119))) (-3454 (*1 *1 *1 *1) (-4 *1 (-119)))) -(-13 (-784) (-603) (-19 (-108)) (-10 -8 (-15 -2473 ($ $)) (-15 -3622 ($ $)) (-15 -1309 ($ $ $)) (-15 -1588 ($ $ $)) (-15 -4079 ($ $ $)) (-15 -4070 ($ $ $)) (-15 -3454 ($ $ $)))) -(((-33) . T) ((-97) . T) ((-562 (-792)) . T) ((-139 #0=(-108)) . T) ((-563 (-498)) |has| (-108) (-563 (-498))) ((-262 #1=(-522) #0#) . T) ((-264 #1# #0#) . T) ((-285 #0#) -12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014))) ((-348 #0#) . T) ((-461 #0#) . T) ((-555 #1# #0#) . T) ((-483 #0# #0#) -12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014))) ((-593 #0#) . T) ((-603) . T) ((-19 #0#) . T) ((-784) . T) ((-1014) . T) ((-1120) . T)) -((-2397 (($ (-1 |#2| |#2|) $) 22)) (-2463 (($ $) 16)) (-3591 (((-708) $) 24))) -(((-120 |#1| |#2|) (-10 -8 (-15 -2397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3591 ((-708) |#1|)) (-15 -2463 (|#1| |#1|))) (-121 |#2|) (-1014)) (T -120)) -NIL -(-10 -8 (-15 -2397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3591 ((-708) |#1|)) (-15 -2463 (|#1| |#1|))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3526 ((|#1| $) 48)) (-2717 (((-108) $ (-708)) 8)) (-1198 ((|#1| $ |#1|) 39 (|has| $ (-6 -4239)))) (-2766 (($ $ $) 52 (|has| $ (-6 -4239)))) (-3268 (($ $ $) 54 (|has| $ (-6 -4239)))) (-2437 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4239))) (($ $ "left" $) 55 (|has| $ (-6 -4239))) (($ $ "right" $) 53 (|has| $ (-6 -4239)))) (-2684 (($ $ (-588 $)) 41 (|has| $ (-6 -4239)))) (-3367 (($) 7 T CONST)) (-2002 (($ $) 57)) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-2674 (((-588 $) $) 50)) (-2402 (((-108) $ $) 42 (|has| |#1| (-1014)))) (-3147 (($ $ |#1| $) 60)) (-1480 (((-108) $ (-708)) 9)) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35)) (-3309 (((-108) $ (-708)) 10)) (-1993 (($ $) 59)) (-2548 (((-588 |#1|) $) 45)) (-3394 (((-108) $) 49)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3381 (((-522) $ $) 44)) (-3395 (((-108) $) 46)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1515 (((-588 $) $) 51)) (-3294 (((-108) $ $) 43 (|has| |#1| (-1014)))) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-121 |#1|) (-1197) (-1014)) (T -121)) -((-3147 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1014))))) -(-13 (-115 |t#1|) (-10 -8 (-6 -4239) (-6 -4238) (-15 -3147 ($ $ |t#1| $)))) -(((-33) . T) ((-97) |has| |#1| (-1014)) ((-115 |#1|) . T) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-936 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1120) . T)) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3526 ((|#1| $) 15)) (-2717 (((-108) $ (-708)) NIL)) (-1198 ((|#1| $ |#1|) 19 (|has| $ (-6 -4239)))) (-2766 (($ $ $) 20 (|has| $ (-6 -4239)))) (-3268 (($ $ $) 18 (|has| $ (-6 -4239)))) (-2437 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4239))) (($ $ "left" $) NIL (|has| $ (-6 -4239))) (($ $ "right" $) NIL (|has| $ (-6 -4239)))) (-2684 (($ $ (-588 $)) NIL (|has| $ (-6 -4239)))) (-3367 (($) NIL T CONST)) (-2002 (($ $) 21)) (-2395 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2674 (((-588 $) $) NIL)) (-2402 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3147 (($ $ |#1| $) NIL)) (-1480 (((-108) $ (-708)) NIL)) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2397 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-1993 (($ $) NIL)) (-2548 (((-588 |#1|) $) NIL)) (-3394 (((-108) $) NIL)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-3365 (($ |#1| $) 10)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) 14)) (-3298 (($) 8)) (-2683 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3381 (((-522) $ $) NIL)) (-3395 (((-108) $) NIL)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) 17)) (-2217 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1515 (((-588 $) $) NIL)) (-3294 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2003 (($ (-588 |#1|)) 12)) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-122 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4239) (-15 -2003 ($ (-588 |#1|))) (-15 -3365 ($ |#1| $)))) (-784)) (T -122)) -((-2003 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-122 *3)))) (-3365 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-784))))) -(-13 (-121 |#1|) (-10 -8 (-6 -4239) (-15 -2003 ($ (-588 |#1|))) (-15 -3365 ($ |#1| $)))) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3526 ((|#1| $) 24)) (-2717 (((-108) $ (-708)) NIL)) (-1198 ((|#1| $ |#1|) 26 (|has| $ (-6 -4239)))) (-2766 (($ $ $) 30 (|has| $ (-6 -4239)))) (-3268 (($ $ $) 28 (|has| $ (-6 -4239)))) (-2437 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4239))) (($ $ "left" $) NIL (|has| $ (-6 -4239))) (($ $ "right" $) NIL (|has| $ (-6 -4239)))) (-2684 (($ $ (-588 $)) NIL (|has| $ (-6 -4239)))) (-3367 (($) NIL T CONST)) (-2002 (($ $) 20)) (-2395 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2674 (((-588 $) $) NIL)) (-2402 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3147 (($ $ |#1| $) 15)) (-1480 (((-108) $ (-708)) NIL)) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2397 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-1993 (($ $) 19)) (-2548 (((-588 |#1|) $) NIL)) (-3394 (((-108) $) 21)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) 18)) (-3298 (($) 11)) (-2683 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3381 (((-522) $ $) NIL)) (-3395 (((-108) $) NIL)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) NIL)) (-2217 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1515 (((-588 $) $) NIL)) (-3294 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3839 (($ |#1|) 17) (($ $ |#1| $) 16)) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 10 (|has| |#1| (-1014)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-123 |#1|) (-13 (-121 |#1|) (-10 -8 (-15 -3839 ($ |#1|)) (-15 -3839 ($ $ |#1| $)))) (-1014)) (T -123)) -((-3839 (*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1014)))) (-3839 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1014))))) -(-13 (-121 |#1|) (-10 -8 (-15 -3839 ($ |#1|)) (-15 -3839 ($ $ |#1| $)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-3697 (($) 18 T CONST)) (-1562 (((-108) $ $) 6)) (-1661 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15))) -(((-124) (-1197)) (T -124)) -((-2265 (*1 *1 *1 *1) (|partial| -4 *1 (-124)))) -(-13 (-23) (-10 -8 (-15 -2265 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-97) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-1419 (((-108) $ $) 7)) (-2648 (((-1171) $ (-708)) 19)) (-3314 (((-708) $) 20)) (-1308 (($ $ $) 13)) (-2524 (($ $ $) 14)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-1623 (((-108) $ $) 16)) (-1597 (((-108) $ $) 17)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 15)) (-1587 (((-108) $ $) 18))) -(((-125) (-1197)) (T -125)) -((-3314 (*1 *2 *1) (-12 (-4 *1 (-125)) (-5 *2 (-708)))) (-2648 (*1 *2 *1 *3) (-12 (-4 *1 (-125)) (-5 *3 (-708)) (-5 *2 (-1171))))) -(-13 (-784) (-10 -8 (-15 -3314 ((-708) $)) (-15 -2648 ((-1171) $ (-708))))) -(((-97) . T) ((-562 (-792)) . T) ((-784) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-708) "failed") $) 38)) (-1478 (((-708) $) 36)) (-3920 (((-3 $ "failed") $) NIL)) (-2859 (((-108) $) NIL)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) 26)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2607 (((-108)) 39)) (-2875 (((-108) (-108)) 41)) (-2680 (((-108) $) 23)) (-1896 (((-108) $) 35)) (-2217 (((-792) $) 22) (($ (-708)) 14)) (-3622 (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (-3697 (($) 12 T CONST)) (-3709 (($) 11 T CONST)) (-1858 (($ (-708)) 15)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 24)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 25)) (-1672 (((-3 $ "failed") $ $) 29)) (-1661 (($ $ $) 27)) (** (($ $ (-708)) NIL) (($ $ (-850)) NIL) (($ $ $) 34)) (* (($ (-708) $) 32) (($ (-850) $) NIL) (($ $ $) 30))) -(((-126) (-13 (-784) (-23) (-664) (-962 (-708)) (-10 -8 (-6 (-4240 "*")) (-15 -1672 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1858 ($ (-708))) (-15 -2680 ((-108) $)) (-15 -1896 ((-108) $)) (-15 -2607 ((-108))) (-15 -2875 ((-108) (-108)))))) (T -126)) -((-1672 (*1 *1 *1 *1) (|partial| -5 *1 (-126))) (** (*1 *1 *1 *1) (-5 *1 (-126))) (-1858 (*1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-126)))) (-2680 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-2607 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-2875 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126))))) -(-13 (-784) (-23) (-664) (-962 (-708)) (-10 -8 (-6 (-4240 "*")) (-15 -1672 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1858 ($ (-708))) (-15 -2680 ((-108) $)) (-15 -1896 ((-108) $)) (-15 -2607 ((-108))) (-15 -2875 ((-108) (-108))))) -((-3213 (((-128 |#1| |#2| |#4|) (-588 |#4|) (-128 |#1| |#2| |#3|)) 14)) (-3810 (((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)) 18))) -(((-127 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3213 ((-128 |#1| |#2| |#4|) (-588 |#4|) (-128 |#1| |#2| |#3|))) (-15 -3810 ((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)))) (-522) (-708) (-157) (-157)) (T -127)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-522)) (-14 *6 (-708)) (-4 *7 (-157)) (-4 *8 (-157)) (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) (-3213 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-522)) (-14 *6 (-708)) (-4 *7 (-157)) (-4 *8 (-157)) (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8))))) -(-10 -7 (-15 -3213 ((-128 |#1| |#2| |#4|) (-588 |#4|) (-128 |#1| |#2| |#3|))) (-15 -3810 ((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)))) -((-1419 (((-108) $ $) NIL)) (-2574 (($ (-588 |#3|)) 39)) (-2682 (($ $) 98) (($ $ (-522) (-522)) 97)) (-3367 (($) 17)) (-3700 (((-3 |#3| "failed") $) 59)) (-1478 ((|#3| $) NIL)) (-3347 (($ $ (-588 (-522))) 99)) (-3203 (((-588 |#3|) $) 35)) (-1692 (((-708) $) 43)) (-3589 (($ $ $) 92)) (-2212 (($) 42)) (-2311 (((-1068) $) NIL)) (-2074 (($) 16)) (-4174 (((-1032) $) NIL)) (-2683 ((|#3| $) 45) ((|#3| $ (-522)) 46) ((|#3| $ (-522) (-522)) 47) ((|#3| $ (-522) (-522) (-522)) 48) ((|#3| $ (-522) (-522) (-522) (-522)) 49) ((|#3| $ (-588 (-522))) 51)) (-2487 (((-708) $) 44)) (-1208 (($ $ (-522) $ (-522)) 93) (($ $ (-522) (-522)) 95)) (-2217 (((-792) $) 66) (($ |#3|) 67) (($ (-217 |#2| |#3|)) 74) (($ (-1052 |#2| |#3|)) 77) (($ (-588 |#3|)) 52) (($ (-588 $)) 57)) (-3697 (($) 68 T CONST)) (-3709 (($) 69 T CONST)) (-1562 (((-108) $ $) 79)) (-1672 (($ $) 85) (($ $ $) 83)) (-1661 (($ $ $) 81)) (* (($ |#3| $) 90) (($ $ |#3|) 91) (($ $ (-522)) 88) (($ (-522) $) 87) (($ $ $) 94))) -(((-128 |#1| |#2| |#3|) (-13 (-439 |#3| (-708)) (-444 (-522) (-708)) (-10 -8 (-15 -2217 ($ (-217 |#2| |#3|))) (-15 -2217 ($ (-1052 |#2| |#3|))) (-15 -2217 ($ (-588 |#3|))) (-15 -2217 ($ (-588 $))) (-15 -1692 ((-708) $)) (-15 -2683 (|#3| $)) (-15 -2683 (|#3| $ (-522))) (-15 -2683 (|#3| $ (-522) (-522))) (-15 -2683 (|#3| $ (-522) (-522) (-522))) (-15 -2683 (|#3| $ (-522) (-522) (-522) (-522))) (-15 -2683 (|#3| $ (-588 (-522)))) (-15 -3589 ($ $ $)) (-15 * ($ $ $)) (-15 -1208 ($ $ (-522) $ (-522))) (-15 -1208 ($ $ (-522) (-522))) (-15 -2682 ($ $)) (-15 -2682 ($ $ (-522) (-522))) (-15 -3347 ($ $ (-588 (-522)))) (-15 -2074 ($)) (-15 -2212 ($)) (-15 -3203 ((-588 |#3|) $)) (-15 -2574 ($ (-588 |#3|))) (-15 -3367 ($)))) (-522) (-708) (-157)) (T -128)) -((-3589 (*1 *1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708)) (-4 *4 (-157)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-217 *4 *5)) (-14 *4 (-708)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1052 *4 *5)) (-14 *4 (-708)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-588 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522)) (-14 *4 (-708)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-588 (-128 *3 *4 *5))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522)) (-14 *4 (-708)) (-4 *5 (-157)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522)) (-14 *4 *2) (-4 *5 (-157)))) (-2683 (*1 *2 *1) (-12 (-4 *2 (-157)) (-5 *1 (-128 *3 *4 *2)) (-14 *3 (-522)) (-14 *4 (-708)))) (-2683 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-708)))) (-2683 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-522)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-708)))) (-2683 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-522)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-708)))) (-2683 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-522)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-708)))) (-2683 (*1 *2 *1 *3) (-12 (-5 *3 (-588 (-522))) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 (-522)) (-14 *5 (-708)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708)) (-4 *4 (-157)))) (-1208 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-708)) (-4 *5 (-157)))) (-1208 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-708)) (-4 *5 (-157)))) (-2682 (*1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708)) (-4 *4 (-157)))) (-2682 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-708)) (-4 *5 (-157)))) (-3347 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522)) (-14 *4 (-708)) (-4 *5 (-157)))) (-2074 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708)) (-4 *4 (-157)))) (-2212 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708)) (-4 *4 (-157)))) (-3203 (*1 *2 *1) (-12 (-5 *2 (-588 *5)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522)) (-14 *4 (-708)) (-4 *5 (-157)))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-588 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522)) (-14 *4 (-708)))) (-3367 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708)) (-4 *4 (-157))))) -(-13 (-439 |#3| (-708)) (-444 (-522) (-708)) (-10 -8 (-15 -2217 ($ (-217 |#2| |#3|))) (-15 -2217 ($ (-1052 |#2| |#3|))) (-15 -2217 ($ (-588 |#3|))) (-15 -2217 ($ (-588 $))) (-15 -1692 ((-708) $)) (-15 -2683 (|#3| $)) (-15 -2683 (|#3| $ (-522))) (-15 -2683 (|#3| $ (-522) (-522))) (-15 -2683 (|#3| $ (-522) (-522) (-522))) (-15 -2683 (|#3| $ (-522) (-522) (-522) (-522))) (-15 -2683 (|#3| $ (-588 (-522)))) (-15 -3589 ($ $ $)) (-15 * ($ $ $)) (-15 -1208 ($ $ (-522) $ (-522))) (-15 -1208 ($ $ (-522) (-522))) (-15 -2682 ($ $)) (-15 -2682 ($ $ (-522) (-522))) (-15 -3347 ($ $ (-588 (-522)))) (-15 -2074 ($)) (-15 -2212 ($)) (-15 -3203 ((-588 |#3|) $)) (-15 -2574 ($ (-588 |#3|))) (-15 -3367 ($)))) -((-1419 (((-108) $ $) NIL)) (-4140 (($) 15 T CONST)) (-3641 (($) NIL (|has| (-132) (-343)))) (-2323 (($ $ $) 17) (($ $ (-132)) NIL) (($ (-132) $) NIL)) (-4099 (($ $ $) NIL)) (-1751 (((-108) $ $) NIL)) (-2717 (((-108) $ (-708)) NIL)) (-1685 (((-708)) NIL (|has| (-132) (-343)))) (-1852 (($) NIL) (($ (-588 (-132))) NIL)) (-1213 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-3367 (($) NIL T CONST)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-1700 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238))) (($ (-132) $) 51 (|has| $ (-6 -4238)))) (-1424 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238))) (($ (-132) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-2153 (((-132) (-1 (-132) (-132) (-132)) $) NIL (|has| $ (-6 -4238))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) NIL (|has| $ (-6 -4238))) (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-3344 (($) NIL (|has| (-132) (-343)))) (-2395 (((-588 (-132)) $) 60 (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) NIL)) (-1308 (((-132) $) NIL (|has| (-132) (-784)))) (-4084 (((-588 (-132)) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) (-132) $) 26 (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-2524 (((-132) $) NIL (|has| (-132) (-784)))) (-2397 (($ (-1 (-132) (-132)) $) 59 (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-132) (-132)) $) 55)) (-2369 (($) 16 T CONST)) (-1475 (((-850) $) NIL (|has| (-132) (-343)))) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL)) (-2251 (($ $ $) 29)) (-1431 (((-132) $) 52)) (-3365 (($ (-132) $) 50)) (-2882 (($ (-850)) NIL (|has| (-132) (-343)))) (-1245 (($) 14 T CONST)) (-4174 (((-1032) $) NIL)) (-2187 (((-3 (-132) "failed") (-1 (-108) (-132)) $) NIL)) (-3295 (((-132) $) 53)) (-3487 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-132)) (-588 (-132))) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-132) (-132)) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-270 (-132))) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-588 (-270 (-132)))) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) 48)) (-1317 (($) 13 T CONST)) (-3962 (($ $ $) 31) (($ $ (-132)) NIL)) (-3546 (($ (-588 (-132))) NIL) (($) NIL)) (-4187 (((-708) (-132) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014)))) (((-708) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-2463 (($ $) NIL)) (-3873 (((-1068) $) 36) (((-498) $) NIL (|has| (-132) (-563 (-498)))) (((-588 (-132)) $) 34)) (-2227 (($ (-588 (-132))) NIL)) (-3201 (($ $) 32 (|has| (-132) (-343)))) (-2217 (((-792) $) 46)) (-1775 (($ (-1068)) 12) (($ (-588 (-132))) 43)) (-2847 (((-708) $) NIL)) (-3482 (($) 49) (($ (-588 (-132))) NIL)) (-2501 (($ (-588 (-132))) NIL)) (-1381 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-1477 (($) 19 T CONST)) (-2608 (($) 18 T CONST)) (-1562 (((-108) $ $) 22)) (-1587 (((-108) $ $) NIL)) (-3591 (((-708) $) 47 (|has| $ (-6 -4238))))) -(((-129) (-13 (-1014) (-563 (-1068)) (-400 (-132)) (-563 (-588 (-132))) (-10 -8 (-15 -1775 ($ (-1068))) (-15 -1775 ($ (-588 (-132)))) (-15 -1317 ($) -2855) (-15 -1245 ($) -2855) (-15 -4140 ($) -2855) (-15 -2369 ($) -2855) (-15 -2608 ($) -2855) (-15 -1477 ($) -2855)))) (T -129)) -((-1775 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-129)))) (-1775 (*1 *1 *2) (-12 (-5 *2 (-588 (-132))) (-5 *1 (-129)))) (-1317 (*1 *1) (-5 *1 (-129))) (-1245 (*1 *1) (-5 *1 (-129))) (-4140 (*1 *1) (-5 *1 (-129))) (-2369 (*1 *1) (-5 *1 (-129))) (-2608 (*1 *1) (-5 *1 (-129))) (-1477 (*1 *1) (-5 *1 (-129)))) -(-13 (-1014) (-563 (-1068)) (-400 (-132)) (-563 (-588 (-132))) (-10 -8 (-15 -1775 ($ (-1068))) (-15 -1775 ($ (-588 (-132)))) (-15 -1317 ($) -2855) (-15 -1245 ($) -2855) (-15 -4140 ($) -2855) (-15 -2369 ($) -2855) (-15 -2608 ($) -2855) (-15 -1477 ($) -2855))) -((-2567 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2460 ((|#1| |#3|) 9)) (-2508 ((|#3| |#3|) 15))) -(((-130 |#1| |#2| |#3|) (-10 -7 (-15 -2460 (|#1| |#3|)) (-15 -2508 (|#3| |#3|)) (-15 -2567 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-514) (-919 |#1|) (-348 |#2|)) (T -130)) -((-2567 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-919 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-130 *4 *5 *3)) (-4 *3 (-348 *5)))) (-2508 (*1 *2 *2) (-12 (-4 *3 (-514)) (-4 *4 (-919 *3)) (-5 *1 (-130 *3 *4 *2)) (-4 *2 (-348 *4)))) (-2460 (*1 *2 *3) (-12 (-4 *4 (-919 *2)) (-4 *2 (-514)) (-5 *1 (-130 *2 *4 *3)) (-4 *3 (-348 *4))))) -(-10 -7 (-15 -2460 (|#1| |#3|)) (-15 -2508 (|#3| |#3|)) (-15 -2567 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2634 (($ $ $) 8)) (-1274 (($ $) 7)) (-1591 (($ $ $) 6))) -(((-131) (-1197)) (T -131)) -((-2634 (*1 *1 *1 *1) (-4 *1 (-131))) (-1274 (*1 *1 *1) (-4 *1 (-131))) (-1591 (*1 *1 *1 *1) (-4 *1 (-131)))) -(-13 (-10 -8 (-15 -1591 ($ $ $)) (-15 -1274 ($ $)) (-15 -2634 ($ $ $)))) -((-1419 (((-108) $ $) NIL)) (-1783 (((-108) $) 38)) (-4140 (($ $) 50)) (-1903 (($) 25)) (-1685 (((-708)) 16)) (-3344 (($) 24)) (-3806 (($) 26)) (-3196 (((-522) $) 21)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-3033 (((-108) $) 40)) (-2369 (($ $) 51)) (-1475 (((-850) $) 22)) (-2311 (((-1068) $) 46)) (-2882 (($ (-850)) 20)) (-2587 (((-108) $) 36)) (-4174 (((-1032) $) NIL)) (-1797 (($) 27)) (-3729 (((-108) $) 34)) (-2217 (((-792) $) 29)) (-3631 (($ (-522)) 18) (($ (-1068)) 49)) (-2178 (((-108) $) 44)) (-3083 (((-108) $) 42)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 13)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 14))) -(((-132) (-13 (-778) (-10 -8 (-15 -3196 ((-522) $)) (-15 -3631 ($ (-522))) (-15 -3631 ($ (-1068))) (-15 -1903 ($)) (-15 -3806 ($)) (-15 -1797 ($)) (-15 -4140 ($ $)) (-15 -2369 ($ $)) (-15 -3729 ((-108) $)) (-15 -2587 ((-108) $)) (-15 -3083 ((-108) $)) (-15 -1783 ((-108) $)) (-15 -3033 ((-108) $)) (-15 -2178 ((-108) $))))) (T -132)) -((-3196 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-132)))) (-3631 (*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-132)))) (-3631 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-132)))) (-1903 (*1 *1) (-5 *1 (-132))) (-3806 (*1 *1) (-5 *1 (-132))) (-1797 (*1 *1) (-5 *1 (-132))) (-4140 (*1 *1 *1) (-5 *1 (-132))) (-2369 (*1 *1 *1) (-5 *1 (-132))) (-3729 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-2587 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-1783 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-3033 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-2178 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132))))) -(-13 (-778) (-10 -8 (-15 -3196 ((-522) $)) (-15 -3631 ($ (-522))) (-15 -3631 ($ (-1068))) (-15 -1903 ($)) (-15 -3806 ($)) (-15 -1797 ($)) (-15 -4140 ($ $)) (-15 -2369 ($ $)) (-15 -3729 ((-108) $)) (-15 -2587 ((-108) $)) (-15 -3083 ((-108) $)) (-15 -1783 ((-108) $)) (-15 -3033 ((-108) $)) (-15 -2178 ((-108) $)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3920 (((-3 $ "failed") $) 34)) (-2859 (((-108) $) 31)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11) (($ (-522)) 28)) (-3040 (((-3 $ "failed") $) 35)) (-2742 (((-708)) 29)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-133) (-1197)) (T -133)) -((-3040 (*1 *1 *1) (|partial| -4 *1 (-133)))) -(-13 (-971) (-10 -8 (-15 -3040 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 $) . T) ((-664) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-2645 ((|#1| (-628 |#1|) |#1|) 17))) -(((-134 |#1|) (-10 -7 (-15 -2645 (|#1| (-628 |#1|) |#1|))) (-157)) (T -134)) -((-2645 (*1 *2 *3 *2) (-12 (-5 *3 (-628 *2)) (-4 *2 (-157)) (-5 *1 (-134 *2))))) -(-10 -7 (-15 -2645 (|#1| (-628 |#1|) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3920 (((-3 $ "failed") $) 34)) (-2859 (((-108) $) 31)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11) (($ (-522)) 28)) (-2742 (((-708)) 29)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-135) (-1197)) (T -135)) -NIL -(-13 (-971)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 $) . T) ((-664) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-3310 (((-2 (|:| -3858 (-708)) (|:| -3112 (-382 |#2|)) (|:| |radicand| |#2|)) (-382 |#2|) (-708)) 70)) (-2391 (((-3 (-2 (|:| |radicand| (-382 |#2|)) (|:| |deg| (-708))) "failed") |#3|) 52)) (-3985 (((-2 (|:| -3112 (-382 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-3087 ((|#1| |#3| |#3|) 40)) (-2330 ((|#3| |#3| (-382 |#2|) (-382 |#2|)) 19)) (-1271 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-382 |#2|)) (|:| |c2| (-382 |#2|)) (|:| |deg| (-708))) |#3| |#3|) 49))) -(((-136 |#1| |#2| |#3|) (-10 -7 (-15 -3985 ((-2 (|:| -3112 (-382 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2391 ((-3 (-2 (|:| |radicand| (-382 |#2|)) (|:| |deg| (-708))) "failed") |#3|)) (-15 -3310 ((-2 (|:| -3858 (-708)) (|:| -3112 (-382 |#2|)) (|:| |radicand| |#2|)) (-382 |#2|) (-708))) (-15 -3087 (|#1| |#3| |#3|)) (-15 -2330 (|#3| |#3| (-382 |#2|) (-382 |#2|))) (-15 -1271 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-382 |#2|)) (|:| |c2| (-382 |#2|)) (|:| |deg| (-708))) |#3| |#3|))) (-1124) (-1142 |#1|) (-1142 (-382 |#2|))) (T -136)) -((-1271 (*1 *2 *3 *3) (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-382 *5)) (|:| |c2| (-382 *5)) (|:| |deg| (-708)))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1142 (-382 *5))))) (-2330 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-382 *5)) (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-5 *1 (-136 *4 *5 *2)) (-4 *2 (-1142 *3)))) (-3087 (*1 *2 *3 *3) (-12 (-4 *4 (-1142 *2)) (-4 *2 (-1124)) (-5 *1 (-136 *2 *4 *3)) (-4 *3 (-1142 (-382 *4))))) (-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-382 *6)) (-4 *5 (-1124)) (-4 *6 (-1142 *5)) (-5 *2 (-2 (|:| -3858 (-708)) (|:| -3112 *3) (|:| |radicand| *6))) (-5 *1 (-136 *5 *6 *7)) (-5 *4 (-708)) (-4 *7 (-1142 *3)))) (-2391 (*1 *2 *3) (|partial| -12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-5 *2 (-2 (|:| |radicand| (-382 *5)) (|:| |deg| (-708)))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1142 (-382 *5))))) (-3985 (*1 *2 *3) (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-5 *2 (-2 (|:| -3112 (-382 *5)) (|:| |poly| *3))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1142 (-382 *5)))))) -(-10 -7 (-15 -3985 ((-2 (|:| -3112 (-382 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2391 ((-3 (-2 (|:| |radicand| (-382 |#2|)) (|:| |deg| (-708))) "failed") |#3|)) (-15 -3310 ((-2 (|:| -3858 (-708)) (|:| -3112 (-382 |#2|)) (|:| |radicand| |#2|)) (-382 |#2|) (-708))) (-15 -3087 (|#1| |#3| |#3|)) (-15 -2330 (|#3| |#3| (-382 |#2|) (-382 |#2|))) (-15 -1271 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-382 |#2|)) (|:| |c2| (-382 |#2|)) (|:| |deg| (-708))) |#3| |#3|))) -((-2800 (((-3 (-588 (-1081 |#2|)) "failed") (-588 (-1081 |#2|)) (-1081 |#2|)) 32))) -(((-137 |#1| |#2|) (-10 -7 (-15 -2800 ((-3 (-588 (-1081 |#2|)) "failed") (-588 (-1081 |#2|)) (-1081 |#2|)))) (-507) (-151 |#1|)) (T -137)) -((-2800 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-588 (-1081 *5))) (-5 *3 (-1081 *5)) (-4 *5 (-151 *4)) (-4 *4 (-507)) (-5 *1 (-137 *4 *5))))) -(-10 -7 (-15 -2800 ((-3 (-588 (-1081 |#2|)) "failed") (-588 (-1081 |#2|)) (-1081 |#2|)))) -((-1696 (($ (-1 (-108) |#2|) $) 29)) (-2379 (($ $) 36)) (-1424 (($ (-1 (-108) |#2|) $) 27) (($ |#2| $) 32)) (-2153 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-2187 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 19)) (-3487 (((-108) (-1 (-108) |#2|) $) 16)) (-4187 (((-708) (-1 (-108) |#2|) $) 13) (((-708) |#2| $) NIL)) (-1381 (((-108) (-1 (-108) |#2|) $) 15)) (-3591 (((-708) $) 11))) -(((-138 |#1| |#2|) (-10 -8 (-15 -2379 (|#1| |#1|)) (-15 -1424 (|#1| |#2| |#1|)) (-15 -2153 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1696 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1424 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2153 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2153 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2187 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -4187 ((-708) |#2| |#1|)) (-15 -4187 ((-708) (-1 (-108) |#2|) |#1|)) (-15 -3487 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1381 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3591 ((-708) |#1|))) (-139 |#2|) (-1120)) (T -138)) -NIL -(-10 -8 (-15 -2379 (|#1| |#1|)) (-15 -1424 (|#1| |#2| |#1|)) (-15 -2153 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1696 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1424 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2153 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2153 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2187 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -4187 ((-708) |#2| |#1|)) (-15 -4187 ((-708) (-1 (-108) |#2|) |#1|)) (-15 -3487 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1381 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3591 ((-708) |#1|))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-2717 (((-108) $ (-708)) 8)) (-1696 (($ (-1 (-108) |#1|) $) 44 (|has| $ (-6 -4238)))) (-3367 (($) 7 T CONST)) (-2379 (($ $) 41 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1424 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4238))) (($ |#1| $) 42 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) 9)) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35)) (-3309 (((-108) $ (-708)) 10)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 48)) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-3873 (((-498) $) 40 (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) 49)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-139 |#1|) (-1197) (-1120)) (T -139)) -((-2227 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-4 *1 (-139 *3)))) (-2187 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-139 *2)) (-4 *2 (-1120)))) (-2153 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4238)) (-4 *1 (-139 *2)) (-4 *2 (-1120)))) (-2153 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4238)) (-4 *1 (-139 *2)) (-4 *2 (-1120)))) (-1424 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4238)) (-4 *1 (-139 *3)) (-4 *3 (-1120)))) (-1696 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4238)) (-4 *1 (-139 *3)) (-4 *3 (-1120)))) (-2153 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (|has| *1 (-6 -4238)) (-4 *1 (-139 *2)) (-4 *2 (-1120)))) (-1424 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4238)) (-4 *1 (-139 *2)) (-4 *2 (-1120)) (-4 *2 (-1014)))) (-2379 (*1 *1 *1) (-12 (|has| *1 (-6 -4238)) (-4 *1 (-139 *2)) (-4 *2 (-1120)) (-4 *2 (-1014))))) -(-13 (-461 |t#1|) (-10 -8 (-15 -2227 ($ (-588 |t#1|))) (-15 -2187 ((-3 |t#1| "failed") (-1 (-108) |t#1|) $)) (IF (|has| $ (-6 -4238)) (PROGN (-15 -2153 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2153 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1424 ($ (-1 (-108) |t#1|) $)) (-15 -1696 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1014)) (PROGN (-15 -2153 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1424 ($ |t#1| $)) (-15 -2379 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3920 (((-3 $ "failed") $) 86)) (-2859 (((-108) $) NIL)) (-3500 (($ |#2| (-588 (-850))) 57)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-3098 (($ (-850)) 48)) (-3222 (((-126)) 23)) (-2217 (((-792) $) 69) (($ (-522)) 46) (($ |#2|) 47)) (-1643 ((|#2| $ (-588 (-850))) 59)) (-2742 (((-708)) 20)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 40 T CONST)) (-3709 (($) 44 T CONST)) (-1562 (((-108) $ $) 26)) (-1682 (($ $ |#2|) NIL)) (-1672 (($ $) 34) (($ $ $) 32)) (-1661 (($ $ $) 30)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL))) -(((-140 |#1| |#2| |#3|) (-13 (-971) (-37 |#2|) (-1173 |#2|) (-10 -8 (-15 -3098 ($ (-850))) (-15 -3500 ($ |#2| (-588 (-850)))) (-15 -1643 (|#2| $ (-588 (-850)))) (-15 -3920 ((-3 $ "failed") $)))) (-850) (-338) (-920 |#1| |#2|)) (T -140)) -((-3920 (*1 *1 *1) (|partial| -12 (-5 *1 (-140 *2 *3 *4)) (-14 *2 (-850)) (-4 *3 (-338)) (-14 *4 (-920 *2 *3)))) (-3098 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-140 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-338)) (-14 *5 (-920 *3 *4)))) (-3500 (*1 *1 *2 *3) (-12 (-5 *3 (-588 (-850))) (-5 *1 (-140 *4 *2 *5)) (-14 *4 (-850)) (-4 *2 (-338)) (-14 *5 (-920 *4 *2)))) (-1643 (*1 *2 *1 *3) (-12 (-5 *3 (-588 (-850))) (-4 *2 (-338)) (-5 *1 (-140 *4 *2 *5)) (-14 *4 (-850)) (-14 *5 (-920 *4 *2))))) -(-13 (-971) (-37 |#2|) (-1173 |#2|) (-10 -8 (-15 -3098 ($ (-850))) (-15 -3500 ($ |#2| (-588 (-850)))) (-15 -1643 (|#2| $ (-588 (-850)))) (-15 -3920 ((-3 $ "failed") $)))) -((-2382 (((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-588 (-588 (-872 (-202)))) (-202) (-202) (-202) (-202)) 38)) (-2739 (((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856) (-382 (-522)) (-382 (-522))) 63) (((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856)) 64)) (-2741 (((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-588 (-588 (-872 (-202))))) 67) (((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-588 (-872 (-202)))) 66) (((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856) (-382 (-522)) (-382 (-522))) 58) (((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856)) 59))) -(((-141) (-10 -7 (-15 -2741 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856))) (-15 -2741 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856) (-382 (-522)) (-382 (-522)))) (-15 -2739 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856))) (-15 -2739 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856) (-382 (-522)) (-382 (-522)))) (-15 -2382 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-588 (-588 (-872 (-202)))) (-202) (-202) (-202) (-202))) (-15 -2741 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-588 (-872 (-202))))) (-15 -2741 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-588 (-588 (-872 (-202)))))))) (T -141)) -((-2741 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202))))) (-5 *1 (-141)) (-5 *3 (-588 (-588 (-872 (-202))))))) (-2741 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202))))) (-5 *1 (-141)) (-5 *3 (-588 (-872 (-202)))))) (-2382 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-202)) (-5 *2 (-2 (|:| |brans| (-588 (-588 (-872 *4)))) (|:| |xValues| (-1009 *4)) (|:| |yValues| (-1009 *4)))) (-5 *1 (-141)) (-5 *3 (-588 (-588 (-872 *4)))))) (-2739 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-856)) (-5 *4 (-382 (-522))) (-5 *2 (-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202))))) (-5 *1 (-141)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202))))) (-5 *1 (-141)))) (-2741 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-856)) (-5 *4 (-382 (-522))) (-5 *2 (-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202))))) (-5 *1 (-141)))) (-2741 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202))))) (-5 *1 (-141))))) -(-10 -7 (-15 -2741 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856))) (-15 -2741 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856) (-382 (-522)) (-382 (-522)))) (-15 -2739 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856))) (-15 -2739 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856) (-382 (-522)) (-382 (-522)))) (-15 -2382 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-588 (-588 (-872 (-202)))) (-202) (-202) (-202) (-202))) (-15 -2741 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-588 (-872 (-202))))) (-15 -2741 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-588 (-588 (-872 (-202))))))) -((-4017 (((-588 (-154 |#2|)) |#1| |#2|) 45))) -(((-142 |#1| |#2|) (-10 -7 (-15 -4017 ((-588 (-154 |#2|)) |#1| |#2|))) (-1142 (-154 (-522))) (-13 (-338) (-782))) (T -142)) -((-4017 (*1 *2 *3 *4) (-12 (-5 *2 (-588 (-154 *4))) (-5 *1 (-142 *3 *4)) (-4 *3 (-1142 (-154 (-522)))) (-4 *4 (-13 (-338) (-782)))))) -(-10 -7 (-15 -4017 ((-588 (-154 |#2|)) |#1| |#2|))) -((-1419 (((-108) $ $) NIL)) (-1902 (($) 16)) (-3156 (($) 15)) (-1963 (((-850)) 23)) (-2311 (((-1068) $) NIL)) (-2137 (((-522) $) 20)) (-4174 (((-1032) $) NIL)) (-2933 (($) 17)) (-1344 (($ (-522)) 24)) (-2217 (((-792) $) 30)) (-2999 (($) 18)) (-1562 (((-108) $ $) 14)) (-1661 (($ $ $) 13)) (* (($ (-850) $) 22) (($ (-202) $) 8))) -(((-143) (-13 (-25) (-10 -8 (-15 * ($ (-850) $)) (-15 * ($ (-202) $)) (-15 -1661 ($ $ $)) (-15 -3156 ($)) (-15 -1902 ($)) (-15 -2933 ($)) (-15 -2999 ($)) (-15 -2137 ((-522) $)) (-15 -1963 ((-850))) (-15 -1344 ($ (-522)))))) (T -143)) -((-1661 (*1 *1 *1 *1) (-5 *1 (-143))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-143)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-143)))) (-3156 (*1 *1) (-5 *1 (-143))) (-1902 (*1 *1) (-5 *1 (-143))) (-2933 (*1 *1) (-5 *1 (-143))) (-2999 (*1 *1) (-5 *1 (-143))) (-2137 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-143)))) (-1963 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-143)))) (-1344 (*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-143))))) -(-13 (-25) (-10 -8 (-15 * ($ (-850) $)) (-15 * ($ (-202) $)) (-15 -1661 ($ $ $)) (-15 -3156 ($)) (-15 -1902 ($)) (-15 -2933 ($)) (-15 -2999 ($)) (-15 -2137 ((-522) $)) (-15 -1963 ((-850))) (-15 -1344 ($ (-522))))) -((-1525 ((|#2| |#2| (-1007 |#2|)) 87) ((|#2| |#2| (-1085)) 67)) (-3589 ((|#2| |#2| (-1007 |#2|)) 86) ((|#2| |#2| (-1085)) 66)) (-2634 ((|#2| |#2| |#2|) 27)) (-1771 (((-110) (-110)) 97)) (-3529 ((|#2| (-588 |#2|)) 116)) (-3887 ((|#2| (-588 |#2|)) 134)) (-1884 ((|#2| (-588 |#2|)) 124)) (-1905 ((|#2| |#2|) 122)) (-2512 ((|#2| (-588 |#2|)) 109)) (-1594 ((|#2| (-588 |#2|)) 110)) (-3069 ((|#2| (-588 |#2|)) 132)) (-2183 ((|#2| |#2| (-1085)) 54) ((|#2| |#2|) 53)) (-1274 ((|#2| |#2|) 23)) (-1591 ((|#2| |#2| |#2|) 26)) (-4082 (((-108) (-110)) 47)) (** ((|#2| |#2| |#2|) 38))) -(((-144 |#1| |#2|) (-10 -7 (-15 -4082 ((-108) (-110))) (-15 -1771 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -1591 (|#2| |#2| |#2|)) (-15 -2634 (|#2| |#2| |#2|)) (-15 -1274 (|#2| |#2|)) (-15 -2183 (|#2| |#2|)) (-15 -2183 (|#2| |#2| (-1085))) (-15 -1525 (|#2| |#2| (-1085))) (-15 -1525 (|#2| |#2| (-1007 |#2|))) (-15 -3589 (|#2| |#2| (-1085))) (-15 -3589 (|#2| |#2| (-1007 |#2|))) (-15 -1905 (|#2| |#2|)) (-15 -3069 (|#2| (-588 |#2|))) (-15 -1884 (|#2| (-588 |#2|))) (-15 -3887 (|#2| (-588 |#2|))) (-15 -2512 (|#2| (-588 |#2|))) (-15 -1594 (|#2| (-588 |#2|))) (-15 -3529 (|#2| (-588 |#2|)))) (-13 (-784) (-514)) (-405 |#1|)) (T -144)) -((-3529 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-784) (-514))))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-784) (-514))))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-784) (-514))))) (-3887 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-784) (-514))))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-784) (-514))))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-784) (-514))))) (-1905 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2)) (-4 *2 (-405 *3)))) (-3589 (*1 *2 *2 *3) (-12 (-5 *3 (-1007 *2)) (-4 *2 (-405 *4)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-144 *4 *2)))) (-3589 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-144 *4 *2)) (-4 *2 (-405 *4)))) (-1525 (*1 *2 *2 *3) (-12 (-5 *3 (-1007 *2)) (-4 *2 (-405 *4)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-144 *4 *2)))) (-1525 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-144 *4 *2)) (-4 *2 (-405 *4)))) (-2183 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-144 *4 *2)) (-4 *2 (-405 *4)))) (-2183 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2)) (-4 *2 (-405 *3)))) (-1274 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2)) (-4 *2 (-405 *3)))) (-2634 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2)) (-4 *2 (-405 *3)))) (-1591 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2)) (-4 *2 (-405 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2)) (-4 *2 (-405 *3)))) (-1771 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *4)) (-4 *4 (-405 *3)))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108)) (-5 *1 (-144 *4 *5)) (-4 *5 (-405 *4))))) -(-10 -7 (-15 -4082 ((-108) (-110))) (-15 -1771 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -1591 (|#2| |#2| |#2|)) (-15 -2634 (|#2| |#2| |#2|)) (-15 -1274 (|#2| |#2|)) (-15 -2183 (|#2| |#2|)) (-15 -2183 (|#2| |#2| (-1085))) (-15 -1525 (|#2| |#2| (-1085))) (-15 -1525 (|#2| |#2| (-1007 |#2|))) (-15 -3589 (|#2| |#2| (-1085))) (-15 -3589 (|#2| |#2| (-1007 |#2|))) (-15 -1905 (|#2| |#2|)) (-15 -3069 (|#2| (-588 |#2|))) (-15 -1884 (|#2| (-588 |#2|))) (-15 -3887 (|#2| (-588 |#2|))) (-15 -2512 (|#2| (-588 |#2|))) (-15 -1594 (|#2| (-588 |#2|))) (-15 -3529 (|#2| (-588 |#2|)))) -((-1291 ((|#1| |#1| |#1|) 52)) (-1512 ((|#1| |#1| |#1|) 49)) (-2634 ((|#1| |#1| |#1|) 43)) (-1292 ((|#1| |#1|) 34)) (-2125 ((|#1| |#1| (-588 |#1|)) 42)) (-1274 ((|#1| |#1|) 36)) (-1591 ((|#1| |#1| |#1|) 39))) -(((-145 |#1|) (-10 -7 (-15 -1591 (|#1| |#1| |#1|)) (-15 -1274 (|#1| |#1|)) (-15 -2125 (|#1| |#1| (-588 |#1|))) (-15 -1292 (|#1| |#1|)) (-15 -2634 (|#1| |#1| |#1|)) (-15 -1512 (|#1| |#1| |#1|)) (-15 -1291 (|#1| |#1| |#1|))) (-507)) (T -145)) -((-1291 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507)))) (-1512 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507)))) (-2634 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507)))) (-1292 (*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507)))) (-2125 (*1 *2 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-507)) (-5 *1 (-145 *2)))) (-1274 (*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507)))) (-1591 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507))))) -(-10 -7 (-15 -1591 (|#1| |#1| |#1|)) (-15 -1274 (|#1| |#1|)) (-15 -2125 (|#1| |#1| (-588 |#1|))) (-15 -1292 (|#1| |#1|)) (-15 -2634 (|#1| |#1| |#1|)) (-15 -1512 (|#1| |#1| |#1|)) (-15 -1291 (|#1| |#1| |#1|))) -((-1525 (($ $ (-1085)) 12) (($ $ (-1007 $)) 11)) (-3589 (($ $ (-1085)) 10) (($ $ (-1007 $)) 9)) (-2634 (($ $ $) 8)) (-2183 (($ $) 14) (($ $ (-1085)) 13)) (-1274 (($ $) 7)) (-1591 (($ $ $) 6))) -(((-146) (-1197)) (T -146)) -((-2183 (*1 *1 *1) (-4 *1 (-146))) (-2183 (*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1085)))) (-1525 (*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1085)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-1007 *1)) (-4 *1 (-146)))) (-3589 (*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1085)))) (-3589 (*1 *1 *1 *2) (-12 (-5 *2 (-1007 *1)) (-4 *1 (-146))))) -(-13 (-131) (-10 -8 (-15 -2183 ($ $)) (-15 -2183 ($ $ (-1085))) (-15 -1525 ($ $ (-1085))) (-15 -1525 ($ $ (-1007 $))) (-15 -3589 ($ $ (-1085))) (-15 -3589 ($ $ (-1007 $))))) -(((-131) . T)) -((-1419 (((-108) $ $) NIL)) (-3607 (($ (-522)) 13) (($ $ $) 14)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 17)) (-1562 (((-108) $ $) 9))) -(((-147) (-13 (-1014) (-10 -8 (-15 -3607 ($ (-522))) (-15 -3607 ($ $ $))))) (T -147)) -((-3607 (*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-147)))) (-3607 (*1 *1 *1 *1) (-5 *1 (-147)))) -(-13 (-1014) (-10 -8 (-15 -3607 ($ (-522))) (-15 -3607 ($ $ $)))) -((-1771 (((-110) (-1085)) 97))) -(((-148) (-10 -7 (-15 -1771 ((-110) (-1085))))) (T -148)) -((-1771 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-110)) (-5 *1 (-148))))) -(-10 -7 (-15 -1771 ((-110) (-1085)))) -((-2000 ((|#3| |#3|) 20))) -(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -2000 (|#3| |#3|))) (-971) (-1142 |#1|) (-1142 |#2|)) (T -149)) -((-2000 (*1 *2 *2) (-12 (-4 *3 (-971)) (-4 *4 (-1142 *3)) (-5 *1 (-149 *3 *4 *2)) (-4 *2 (-1142 *4))))) -(-10 -7 (-15 -2000 (|#3| |#3|))) -((-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 216)) (-1945 ((|#2| $) 96)) (-3044 (($ $) 243)) (-2923 (($ $) 237)) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 40)) (-3023 (($ $) 241)) (-2906 (($ $) 235)) (-3700 (((-3 (-522) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 |#2| "failed") $) 140)) (-1478 (((-522) $) NIL) (((-382 (-522)) $) NIL) ((|#2| $) 138)) (-2333 (($ $ $) 221)) (-1226 (((-628 (-522)) (-628 $)) NIL) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) 154) (((-628 |#2|) (-628 $)) 148)) (-2153 (($ (-1081 |#2|)) 119) (((-3 $ "failed") (-382 (-1081 |#2|))) NIL)) (-3920 (((-3 $ "failed") $) 208)) (-2549 (((-3 (-382 (-522)) "failed") $) 198)) (-3519 (((-108) $) 193)) (-1699 (((-382 (-522)) $) 196)) (-1692 (((-850)) 89)) (-2303 (($ $ $) 223)) (-1272 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 259)) (-2980 (($) 232)) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 185) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 190)) (-1269 ((|#2| $) 94)) (-4199 (((-1081 |#2|) $) 121)) (-3810 (($ (-1 |#2| |#2|) $) 102)) (-1238 (($ $) 234)) (-2142 (((-1081 |#2|) $) 120)) (-3193 (($ $) 201)) (-2755 (($) 97)) (-4022 (((-393 (-1081 $)) (-1081 $)) 88)) (-2313 (((-393 (-1081 $)) (-1081 $)) 57)) (-2276 (((-3 $ "failed") $ |#2|) 203) (((-3 $ "failed") $ $) 206)) (-3357 (($ $) 233)) (-4031 (((-708) $) 218)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 227)) (-1615 ((|#2| (-1166 $)) NIL) ((|#2|) 91)) (-2731 (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085)) NIL) (($ $ (-708)) NIL) (($ $) NIL)) (-1579 (((-1081 |#2|)) 114)) (-3035 (($ $) 242)) (-2915 (($ $) 236)) (-3510 (((-1166 |#2|) $ (-1166 $)) 127) (((-628 |#2|) (-1166 $) (-1166 $)) NIL) (((-1166 |#2|) $) 110) (((-628 |#2|) (-1166 $)) NIL)) (-3873 (((-1166 |#2|) $) NIL) (($ (-1166 |#2|)) NIL) (((-1081 |#2|) $) NIL) (($ (-1081 |#2|)) NIL) (((-821 (-522)) $) 176) (((-821 (-354)) $) 180) (((-154 (-354)) $) 166) (((-154 (-202)) $) 161) (((-498) $) 172)) (-2983 (($ $) 98)) (-2217 (((-792) $) 137) (($ (-522)) NIL) (($ |#2|) NIL) (($ (-382 (-522))) NIL) (($ $) NIL)) (-2645 (((-1081 |#2|) $) 23)) (-2742 (((-708)) 100)) (-1856 (($ $) 246)) (-2976 (($ $) 240)) (-1839 (($ $) 244)) (-2957 (($ $) 238)) (-2636 ((|#2| $) 231)) (-1849 (($ $) 245)) (-2966 (($ $) 239)) (-4126 (($ $) 156)) (-1562 (((-108) $ $) 104)) (-1587 (((-108) $ $) 192)) (-1672 (($ $) 106) (($ $ $) NIL)) (-1661 (($ $ $) 105)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-382 (-522))) 265) (($ $ $) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 112) (($ $ $) 141) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-382 (-522)) $) NIL) (($ $ (-382 (-522))) NIL))) -(((-150 |#1| |#2|) (-10 -8 (-15 -2731 (|#1| |#1|)) (-15 -2731 (|#1| |#1| (-708))) (-15 -2217 (|#1| |#1|)) (-15 -2276 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3401 ((-2 (|:| -2541 |#1|) (|:| -4225 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -4031 ((-708) |#1|)) (-15 -4164 ((-2 (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1|)) (-15 -2303 (|#1| |#1| |#1|)) (-15 -2333 (|#1| |#1| |#1|)) (-15 -3193 (|#1| |#1|)) (-15 ** (|#1| |#1| (-522))) (-15 * (|#1| |#1| (-382 (-522)))) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -1587 ((-108) |#1| |#1|)) (-15 -3873 ((-498) |#1|)) (-15 -3873 ((-154 (-202)) |#1|)) (-15 -3873 ((-154 (-354)) |#1|)) (-15 -2923 (|#1| |#1|)) (-15 -2906 (|#1| |#1|)) (-15 -2915 (|#1| |#1|)) (-15 -2966 (|#1| |#1|)) (-15 -2957 (|#1| |#1|)) (-15 -2976 (|#1| |#1|)) (-15 -3035 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 -1849 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1856 (|#1| |#1|)) (-15 -1238 (|#1| |#1|)) (-15 -3357 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2980 (|#1|)) (-15 ** (|#1| |#1| (-382 (-522)))) (-15 -2313 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -4022 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -2800 ((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|))) (-15 -2549 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1699 ((-382 (-522)) |#1|)) (-15 -3519 ((-108) |#1|)) (-15 -1272 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2636 (|#2| |#1|)) (-15 -4126 (|#1| |#1|)) (-15 -2276 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2983 (|#1| |#1|)) (-15 -2755 (|#1|)) (-15 -3873 ((-821 (-354)) |#1|)) (-15 -3873 ((-821 (-522)) |#1|)) (-15 -3738 ((-818 (-354) |#1|) |#1| (-821 (-354)) (-818 (-354) |#1|))) (-15 -3738 ((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|))) (-15 -3810 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2153 ((-3 |#1| "failed") (-382 (-1081 |#2|)))) (-15 -2142 ((-1081 |#2|) |#1|)) (-15 -3873 (|#1| (-1081 |#2|))) (-15 -2153 (|#1| (-1081 |#2|))) (-15 -1579 ((-1081 |#2|))) (-15 -1226 ((-628 |#2|) (-628 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 |#1|) (-1166 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -1226 ((-628 (-522)) (-628 |#1|))) (-15 -1478 (|#2| |#1|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-522) |#1|)) (-15 -3873 ((-1081 |#2|) |#1|)) (-15 -1615 (|#2|)) (-15 -3873 (|#1| (-1166 |#2|))) (-15 -3873 ((-1166 |#2|) |#1|)) (-15 -3510 ((-628 |#2|) (-1166 |#1|))) (-15 -3510 ((-1166 |#2|) |#1|)) (-15 -4199 ((-1081 |#2|) |#1|)) (-15 -2645 ((-1081 |#2|) |#1|)) (-15 -1615 (|#2| (-1166 |#1|))) (-15 -3510 ((-628 |#2|) (-1166 |#1|) (-1166 |#1|))) (-15 -3510 ((-1166 |#2|) |#1| (-1166 |#1|))) (-15 -1269 (|#2| |#1|)) (-15 -1945 (|#2| |#1|)) (-15 -1692 ((-850))) (-15 -2217 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2217 (|#1| (-522))) (-15 -2742 ((-708))) (-15 ** (|#1| |#1| (-708))) (-15 -3920 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-850))) (-15 * (|#1| (-522) |#1|)) (-15 -1672 (|#1| |#1| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -1661 (|#1| |#1| |#1|)) (-15 -2217 ((-792) |#1|)) (-15 -1562 ((-108) |#1| |#1|))) (-151 |#2|) (-157)) (T -150)) -((-2742 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-708)) (-5 *1 (-150 *3 *4)) (-4 *3 (-151 *4)))) (-1692 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-850)) (-5 *1 (-150 *3 *4)) (-4 *3 (-151 *4)))) (-1615 (*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-150 *3 *2)) (-4 *3 (-151 *2)))) (-1579 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1081 *4)) (-5 *1 (-150 *3 *4)) (-4 *3 (-151 *4))))) -(-10 -8 (-15 -2731 (|#1| |#1|)) (-15 -2731 (|#1| |#1| (-708))) (-15 -2217 (|#1| |#1|)) (-15 -2276 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3401 ((-2 (|:| -2541 |#1|) (|:| -4225 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -4031 ((-708) |#1|)) (-15 -4164 ((-2 (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1|)) (-15 -2303 (|#1| |#1| |#1|)) (-15 -2333 (|#1| |#1| |#1|)) (-15 -3193 (|#1| |#1|)) (-15 ** (|#1| |#1| (-522))) (-15 * (|#1| |#1| (-382 (-522)))) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -1587 ((-108) |#1| |#1|)) (-15 -3873 ((-498) |#1|)) (-15 -3873 ((-154 (-202)) |#1|)) (-15 -3873 ((-154 (-354)) |#1|)) (-15 -2923 (|#1| |#1|)) (-15 -2906 (|#1| |#1|)) (-15 -2915 (|#1| |#1|)) (-15 -2966 (|#1| |#1|)) (-15 -2957 (|#1| |#1|)) (-15 -2976 (|#1| |#1|)) (-15 -3035 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 -1849 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1856 (|#1| |#1|)) (-15 -1238 (|#1| |#1|)) (-15 -3357 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2980 (|#1|)) (-15 ** (|#1| |#1| (-382 (-522)))) (-15 -2313 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -4022 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -2800 ((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|))) (-15 -2549 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1699 ((-382 (-522)) |#1|)) (-15 -3519 ((-108) |#1|)) (-15 -1272 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2636 (|#2| |#1|)) (-15 -4126 (|#1| |#1|)) (-15 -2276 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2983 (|#1| |#1|)) (-15 -2755 (|#1|)) (-15 -3873 ((-821 (-354)) |#1|)) (-15 -3873 ((-821 (-522)) |#1|)) (-15 -3738 ((-818 (-354) |#1|) |#1| (-821 (-354)) (-818 (-354) |#1|))) (-15 -3738 ((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|))) (-15 -3810 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2153 ((-3 |#1| "failed") (-382 (-1081 |#2|)))) (-15 -2142 ((-1081 |#2|) |#1|)) (-15 -3873 (|#1| (-1081 |#2|))) (-15 -2153 (|#1| (-1081 |#2|))) (-15 -1579 ((-1081 |#2|))) (-15 -1226 ((-628 |#2|) (-628 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 |#1|) (-1166 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -1226 ((-628 (-522)) (-628 |#1|))) (-15 -1478 (|#2| |#1|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-522) |#1|)) (-15 -3873 ((-1081 |#2|) |#1|)) (-15 -1615 (|#2|)) (-15 -3873 (|#1| (-1166 |#2|))) (-15 -3873 ((-1166 |#2|) |#1|)) (-15 -3510 ((-628 |#2|) (-1166 |#1|))) (-15 -3510 ((-1166 |#2|) |#1|)) (-15 -4199 ((-1081 |#2|) |#1|)) (-15 -2645 ((-1081 |#2|) |#1|)) (-15 -1615 (|#2| (-1166 |#1|))) (-15 -3510 ((-628 |#2|) (-1166 |#1|) (-1166 |#1|))) (-15 -3510 ((-1166 |#2|) |#1| (-1166 |#1|))) (-15 -1269 (|#2| |#1|)) (-15 -1945 (|#2| |#1|)) (-15 -1692 ((-850))) (-15 -2217 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2217 (|#1| (-522))) (-15 -2742 ((-708))) (-15 ** (|#1| |#1| (-708))) (-15 -3920 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-850))) (-15 * (|#1| (-522) |#1|)) (-15 -1672 (|#1| |#1| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -1661 (|#1| |#1| |#1|)) (-15 -2217 ((-792) |#1|)) (-15 -1562 ((-108) |#1| |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 93 (-3844 (|has| |#1| (-514)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))))) (-2298 (($ $) 94 (-3844 (|has| |#1| (-514)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))))) (-3007 (((-108) $) 96 (-3844 (|has| |#1| (-514)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))))) (-3356 (((-628 |#1|) (-1166 $)) 46) (((-628 |#1|)) 61)) (-1945 ((|#1| $) 52)) (-3044 (($ $) 228 (|has| |#1| (-1106)))) (-2923 (($ $) 211 (|has| |#1| (-1106)))) (-3833 (((-1094 (-850) (-708)) (-522)) 147 (|has| |#1| (-324)))) (-2265 (((-3 $ "failed") $ $) 19)) (-3543 (((-393 (-1081 $)) (-1081 $)) 242 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))))) (-2961 (($ $) 113 (-3844 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-338))))) (-3133 (((-393 $) $) 114 (-3844 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-338))))) (-2016 (($ $) 241 (-12 (|has| |#1| (-928)) (|has| |#1| (-1106))))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 245 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))))) (-2805 (((-108) $ $) 104 (|has| |#1| (-283)))) (-1685 (((-708)) 87 (|has| |#1| (-343)))) (-3023 (($ $) 227 (|has| |#1| (-1106)))) (-2906 (($ $) 212 (|has| |#1| (-1106)))) (-3066 (($ $) 226 (|has| |#1| (-1106)))) (-2936 (($ $) 213 (|has| |#1| (-1106)))) (-3367 (($) 17 T CONST)) (-3700 (((-3 (-522) "failed") $) 169 (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) 167 (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 166)) (-1478 (((-522) $) 170 (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) 168 (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) 165)) (-3225 (($ (-1166 |#1|) (-1166 $)) 48) (($ (-1166 |#1|)) 64)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-324)))) (-2333 (($ $ $) 108 (|has| |#1| (-283)))) (-1359 (((-628 |#1|) $ (-1166 $)) 53) (((-628 |#1|) $) 59)) (-1226 (((-628 (-522)) (-628 $)) 164 (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 163 (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 162) (((-628 |#1|) (-628 $)) 161)) (-2153 (($ (-1081 |#1|)) 158) (((-3 $ "failed") (-382 (-1081 |#1|))) 155 (|has| |#1| (-338)))) (-3920 (((-3 $ "failed") $) 34)) (-2025 ((|#1| $) 253)) (-2549 (((-3 (-382 (-522)) "failed") $) 246 (|has| |#1| (-507)))) (-3519 (((-108) $) 248 (|has| |#1| (-507)))) (-1699 (((-382 (-522)) $) 247 (|has| |#1| (-507)))) (-1692 (((-850)) 54)) (-3344 (($) 90 (|has| |#1| (-343)))) (-2303 (($ $ $) 107 (|has| |#1| (-283)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 102 (|has| |#1| (-283)))) (-2160 (($) 149 (|has| |#1| (-324)))) (-2087 (((-108) $) 150 (|has| |#1| (-324)))) (-1380 (($ $ (-708)) 141 (|has| |#1| (-324))) (($ $) 140 (|has| |#1| (-324)))) (-2725 (((-108) $) 115 (-3844 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-338))))) (-1272 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-980)) (|has| |#1| (-1106))))) (-2980 (($) 238 (|has| |#1| (-1106)))) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 261 (|has| |#1| (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 260 (|has| |#1| (-815 (-354))))) (-3872 (((-850) $) 152 (|has| |#1| (-324))) (((-770 (-850)) $) 138 (|has| |#1| (-324)))) (-2859 (((-108) $) 31)) (-1811 (($ $ (-522)) 240 (-12 (|has| |#1| (-928)) (|has| |#1| (-1106))))) (-1269 ((|#1| $) 51)) (-4208 (((-3 $ "failed") $) 142 (|has| |#1| (-324)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 111 (|has| |#1| (-283)))) (-4199 (((-1081 |#1|) $) 44 (|has| |#1| (-338)))) (-1308 (($ $ $) 207 (|has| |#1| (-784)))) (-2524 (($ $ $) 206 (|has| |#1| (-784)))) (-3810 (($ (-1 |#1| |#1|) $) 262)) (-1475 (((-850) $) 89 (|has| |#1| (-343)))) (-1238 (($ $) 235 (|has| |#1| (-1106)))) (-2142 (((-1081 |#1|) $) 156)) (-2267 (($ (-588 $)) 100 (-3844 (|has| |#1| (-283)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838))))) (($ $ $) 99 (-3844 (|has| |#1| (-283)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))))) (-2311 (((-1068) $) 9)) (-3193 (($ $) 116 (|has| |#1| (-338)))) (-3937 (($) 143 (|has| |#1| (-324)) CONST)) (-2882 (($ (-850)) 88 (|has| |#1| (-343)))) (-2755 (($) 257)) (-2033 ((|#1| $) 254)) (-4174 (((-1032) $) 10)) (-1368 (($) 160)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 101 (-3844 (|has| |#1| (-283)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))))) (-2308 (($ (-588 $)) 98 (-3844 (|has| |#1| (-283)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838))))) (($ $ $) 97 (-3844 (|has| |#1| (-283)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))))) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) 146 (|has| |#1| (-324)))) (-4022 (((-393 (-1081 $)) (-1081 $)) 244 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))))) (-2313 (((-393 (-1081 $)) (-1081 $)) 243 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))))) (-2006 (((-393 $) $) 112 (-3844 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-338))))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-283))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 109 (|has| |#1| (-283)))) (-2276 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-514))) (((-3 $ "failed") $ $) 92 (-3844 (|has| |#1| (-514)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 103 (|has| |#1| (-283)))) (-3357 (($ $) 236 (|has| |#1| (-1106)))) (-2330 (($ $ (-588 |#1|) (-588 |#1|)) 268 (|has| |#1| (-285 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-285 |#1|))) (($ $ (-270 |#1|)) 266 (|has| |#1| (-285 |#1|))) (($ $ (-588 (-270 |#1|))) 265 (|has| |#1| (-285 |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) 264 (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-1085) |#1|) 263 (|has| |#1| (-483 (-1085) |#1|)))) (-4031 (((-708) $) 105 (|has| |#1| (-283)))) (-2683 (($ $ |#1|) 269 (|has| |#1| (-262 |#1| |#1|)))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 106 (|has| |#1| (-283)))) (-1615 ((|#1| (-1166 $)) 47) ((|#1|) 60)) (-1304 (((-708) $) 151 (|has| |#1| (-324))) (((-3 (-708) "failed") $ $) 139 (|has| |#1| (-324)))) (-2731 (($ $ (-1 |#1| |#1|) (-708)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-588 (-1085)) (-588 (-708))) 130 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 131 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 132 (|has| |#1| (-829 (-1085)))) (($ $ (-1085)) 133 (|has| |#1| (-829 (-1085)))) (($ $ (-708)) 135 (-3844 (-4079 (|has| |#1| (-338)) (|has| |#1| (-210))) (|has| |#1| (-210)) (-4079 (|has| |#1| (-210)) (|has| |#1| (-338))))) (($ $) 137 (-3844 (-4079 (|has| |#1| (-338)) (|has| |#1| (-210))) (|has| |#1| (-210)) (-4079 (|has| |#1| (-210)) (|has| |#1| (-338)))))) (-2620 (((-628 |#1|) (-1166 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-338)))) (-1579 (((-1081 |#1|)) 159)) (-1831 (($ $) 225 (|has| |#1| (-1106)))) (-2946 (($ $) 214 (|has| |#1| (-1106)))) (-2670 (($) 148 (|has| |#1| (-324)))) (-3054 (($ $) 224 (|has| |#1| (-1106)))) (-2928 (($ $) 215 (|has| |#1| (-1106)))) (-3035 (($ $) 223 (|has| |#1| (-1106)))) (-2915 (($ $) 216 (|has| |#1| (-1106)))) (-3510 (((-1166 |#1|) $ (-1166 $)) 50) (((-628 |#1|) (-1166 $) (-1166 $)) 49) (((-1166 |#1|) $) 66) (((-628 |#1|) (-1166 $)) 65)) (-3873 (((-1166 |#1|) $) 63) (($ (-1166 |#1|)) 62) (((-1081 |#1|) $) 171) (($ (-1081 |#1|)) 157) (((-821 (-522)) $) 259 (|has| |#1| (-563 (-821 (-522))))) (((-821 (-354)) $) 258 (|has| |#1| (-563 (-821 (-354))))) (((-154 (-354)) $) 210 (|has| |#1| (-947))) (((-154 (-202)) $) 209 (|has| |#1| (-947))) (((-498) $) 208 (|has| |#1| (-563 (-498))))) (-2983 (($ $) 256)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) 145 (-3844 (-4079 (|has| $ (-133)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))) (|has| |#1| (-324))))) (-4005 (($ |#1| |#1|) 255)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 37) (($ (-382 (-522))) 86 (-3844 (|has| |#1| (-338)) (|has| |#1| (-962 (-382 (-522)))))) (($ $) 91 (-3844 (|has| |#1| (-514)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))))) (-3040 (($ $) 144 (|has| |#1| (-324))) (((-3 $ "failed") $) 43 (-3844 (-4079 (|has| $ (-133)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))) (|has| |#1| (-133))))) (-2645 (((-1081 |#1|) $) 45)) (-2742 (((-708)) 29)) (-2905 (((-1166 $)) 67)) (-1856 (($ $) 234 (|has| |#1| (-1106)))) (-2976 (($ $) 222 (|has| |#1| (-1106)))) (-1407 (((-108) $ $) 95 (-3844 (|has| |#1| (-514)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))))) (-1839 (($ $) 233 (|has| |#1| (-1106)))) (-2957 (($ $) 221 (|has| |#1| (-1106)))) (-1873 (($ $) 232 (|has| |#1| (-1106)))) (-3001 (($ $) 220 (|has| |#1| (-1106)))) (-2636 ((|#1| $) 250 (|has| |#1| (-1106)))) (-2476 (($ $) 231 (|has| |#1| (-1106)))) (-3011 (($ $) 219 (|has| |#1| (-1106)))) (-1864 (($ $) 230 (|has| |#1| (-1106)))) (-2989 (($ $) 218 (|has| |#1| (-1106)))) (-1849 (($ $) 229 (|has| |#1| (-1106)))) (-2966 (($ $) 217 (|has| |#1| (-1106)))) (-4126 (($ $) 251 (|has| |#1| (-980)))) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 117 (|has| |#1| (-338)))) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $ (-1 |#1| |#1|) (-708)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-588 (-1085)) (-588 (-708))) 126 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 127 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 128 (|has| |#1| (-829 (-1085)))) (($ $ (-1085)) 129 (|has| |#1| (-829 (-1085)))) (($ $ (-708)) 134 (-3844 (-4079 (|has| |#1| (-338)) (|has| |#1| (-210))) (|has| |#1| (-210)) (-4079 (|has| |#1| (-210)) (|has| |#1| (-338))))) (($ $) 136 (-3844 (-4079 (|has| |#1| (-338)) (|has| |#1| (-210))) (|has| |#1| (-210)) (-4079 (|has| |#1| (-210)) (|has| |#1| (-338)))))) (-1623 (((-108) $ $) 204 (|has| |#1| (-784)))) (-1597 (((-108) $ $) 203 (|has| |#1| (-784)))) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 205 (|has| |#1| (-784)))) (-1587 (((-108) $ $) 202 (|has| |#1| (-784)))) (-1682 (($ $ $) 121 (|has| |#1| (-338)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-382 (-522))) 239 (-12 (|has| |#1| (-928)) (|has| |#1| (-1106)))) (($ $ $) 237 (|has| |#1| (-1106))) (($ $ (-522)) 118 (|has| |#1| (-338)))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-382 (-522)) $) 120 (|has| |#1| (-338))) (($ $ (-382 (-522))) 119 (|has| |#1| (-338))))) -(((-151 |#1|) (-1197) (-157)) (T -151)) -((-1269 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-2755 (*1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-2983 (*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-4005 (*1 *1 *2 *2) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-2033 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-2025 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-2276 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-514)))) (-4126 (*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-980)))) (-2636 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-1106)))) (-1272 (*1 *2 *1) (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-980)) (-4 *3 (-1106)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-108)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-382 (-522))))) (-2549 (*1 *2 *1) (|partial| -12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-382 (-522)))))) -(-13 (-662 |t#1| (-1081 |t#1|)) (-386 |t#1|) (-208 |t#1|) (-313 |t#1|) (-375 |t#1|) (-813 |t#1|) (-352 |t#1|) (-157) (-10 -8 (-6 -4005) (-15 -2755 ($)) (-15 -2983 ($ $)) (-15 -4005 ($ |t#1| |t#1|)) (-15 -2033 (|t#1| $)) (-15 -2025 (|t#1| $)) (-15 -1269 (|t#1| $)) (IF (|has| |t#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#1| (-514)) (PROGN (-6 (-514)) (-15 -2276 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-283)) (-6 (-283)) |%noBranch|) (IF (|has| |t#1| (-6 -4237)) (-6 -4237) |%noBranch|) (IF (|has| |t#1| (-6 -4234)) (-6 -4234) |%noBranch|) (IF (|has| |t#1| (-338)) (-6 (-338)) |%noBranch|) (IF (|has| |t#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-947)) (PROGN (-6 (-563 (-154 (-202)))) (-6 (-563 (-154 (-354))))) |%noBranch|) (IF (|has| |t#1| (-980)) (-15 -4126 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1106)) (PROGN (-6 (-1106)) (-15 -2636 (|t#1| $)) (IF (|has| |t#1| (-928)) (-6 (-928)) |%noBranch|) (IF (|has| |t#1| (-980)) (-15 -1272 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-507)) (PROGN (-15 -3519 ((-108) $)) (-15 -1699 ((-382 (-522)) $)) (-15 -2549 ((-3 (-382 (-522)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-838)) (IF (|has| |t#1| (-283)) (-6 (-838)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) -3844 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-37 |#1|) . T) ((-37 $) -3844 (|has| |#1| (-514)) (|has| |#1| (-324)) (|has| |#1| (-338)) (|has| |#1| (-283))) ((-34) |has| |#1| (-1106)) ((-91) |has| |#1| (-1106)) ((-97) . T) ((-107 #0# #0#) -3844 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3844 (|has| |#1| (-324)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) . T) ((-563 (-154 (-202))) |has| |#1| (-947)) ((-563 (-154 (-354))) |has| |#1| (-947)) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-563 (-821 (-354))) |has| |#1| (-563 (-821 (-354)))) ((-563 (-821 (-522))) |has| |#1| (-563 (-821 (-522)))) ((-563 #1=(-1081 |#1|)) . T) ((-208 |#1|) . T) ((-210) -3844 (|has| |#1| (-324)) (|has| |#1| (-210))) ((-220) -3844 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-260) |has| |#1| (-1106)) ((-262 |#1| $) |has| |#1| (-262 |#1| |#1|)) ((-266) -3844 (|has| |#1| (-514)) (|has| |#1| (-324)) (|has| |#1| (-338)) (|has| |#1| (-283))) ((-283) -3844 (|has| |#1| (-324)) (|has| |#1| (-338)) (|has| |#1| (-283))) ((-285 |#1|) |has| |#1| (-285 |#1|)) ((-338) -3844 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-377) |has| |#1| (-324)) ((-343) -3844 (|has| |#1| (-343)) (|has| |#1| (-324))) ((-324) |has| |#1| (-324)) ((-345 |#1| #1#) . T) ((-384 |#1| #1#) . T) ((-313 |#1|) . T) ((-352 |#1|) . T) ((-375 |#1|) . T) ((-386 |#1|) . T) ((-426) -3844 (|has| |#1| (-324)) (|has| |#1| (-338)) (|has| |#1| (-283))) ((-463) |has| |#1| (-1106)) ((-483 (-1085) |#1|) |has| |#1| (-483 (-1085) |#1|)) ((-483 |#1| |#1|) |has| |#1| (-285 |#1|)) ((-514) -3844 (|has| |#1| (-514)) (|has| |#1| (-324)) (|has| |#1| (-338)) (|has| |#1| (-283))) ((-590 #0#) -3844 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-590 |#1|) . T) ((-590 $) . T) ((-584 (-522)) |has| |#1| (-584 (-522))) ((-584 |#1|) . T) ((-655 #0#) -3844 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-655 |#1|) . T) ((-655 $) -3844 (|has| |#1| (-514)) (|has| |#1| (-324)) (|has| |#1| (-338)) (|has| |#1| (-283))) ((-662 |#1| #1#) . T) ((-664) . T) ((-784) |has| |#1| (-784)) ((-829 (-1085)) |has| |#1| (-829 (-1085))) ((-815 (-354)) |has| |#1| (-815 (-354))) ((-815 (-522)) |has| |#1| (-815 (-522))) ((-813 |#1|) . T) ((-838) -12 (|has| |#1| (-283)) (|has| |#1| (-838))) ((-849) -3844 (|has| |#1| (-324)) (|has| |#1| (-338)) (|has| |#1| (-283))) ((-928) -12 (|has| |#1| (-928)) (|has| |#1| (-1106))) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T) ((-977 #0#) -3844 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-977 |#1|) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1061) |has| |#1| (-324)) ((-1106) |has| |#1| (-1106)) ((-1109) |has| |#1| (-1106)) ((-1120) . T) ((-1124) -3844 (|has| |#1| (-324)) (|has| |#1| (-338)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838))))) -((-2006 (((-393 |#2|) |#2|) 63))) -(((-152 |#1| |#2|) (-10 -7 (-15 -2006 ((-393 |#2|) |#2|))) (-283) (-1142 (-154 |#1|))) (T -152)) -((-2006 (*1 *2 *3) (-12 (-4 *4 (-283)) (-5 *2 (-393 *3)) (-5 *1 (-152 *4 *3)) (-4 *3 (-1142 (-154 *4)))))) -(-10 -7 (-15 -2006 ((-393 |#2|) |#2|))) -((-3810 (((-154 |#2|) (-1 |#2| |#1|) (-154 |#1|)) 14))) -(((-153 |#1| |#2|) (-10 -7 (-15 -3810 ((-154 |#2|) (-1 |#2| |#1|) (-154 |#1|)))) (-157) (-157)) (T -153)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-154 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-5 *2 (-154 *6)) (-5 *1 (-153 *5 *6))))) -(-10 -7 (-15 -3810 ((-154 |#2|) (-1 |#2| |#1|) (-154 |#1|)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 33)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (-3844 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-514))))) (-2298 (($ $) NIL (-3844 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-514))))) (-3007 (((-108) $) NIL (-3844 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-514))))) (-3356 (((-628 |#1|) (-1166 $)) NIL) (((-628 |#1|)) NIL)) (-1945 ((|#1| $) NIL)) (-3044 (($ $) NIL (|has| |#1| (-1106)))) (-2923 (($ $) NIL (|has| |#1| (-1106)))) (-3833 (((-1094 (-850) (-708)) (-522)) NIL (|has| |#1| (-324)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| |#1| (-283)) (|has| |#1| (-838))))) (-2961 (($ $) NIL (-3844 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-338))))) (-3133 (((-393 $) $) NIL (-3844 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-338))))) (-2016 (($ $) NIL (-12 (|has| |#1| (-928)) (|has| |#1| (-1106))))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (-12 (|has| |#1| (-283)) (|has| |#1| (-838))))) (-2805 (((-108) $ $) NIL (|has| |#1| (-283)))) (-1685 (((-708)) NIL (|has| |#1| (-343)))) (-3023 (($ $) NIL (|has| |#1| (-1106)))) (-2906 (($ $) NIL (|has| |#1| (-1106)))) (-3066 (($ $) NIL (|has| |#1| (-1106)))) (-2936 (($ $) NIL (|has| |#1| (-1106)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) NIL)) (-1478 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) NIL)) (-3225 (($ (-1166 |#1|) (-1166 $)) NIL) (($ (-1166 |#1|)) NIL)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-324)))) (-2333 (($ $ $) NIL (|has| |#1| (-283)))) (-1359 (((-628 |#1|) $ (-1166 $)) NIL) (((-628 |#1|) $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-2153 (($ (-1081 |#1|)) NIL) (((-3 $ "failed") (-382 (-1081 |#1|))) NIL (|has| |#1| (-338)))) (-3920 (((-3 $ "failed") $) NIL)) (-2025 ((|#1| $) 13)) (-2549 (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-507)))) (-3519 (((-108) $) NIL (|has| |#1| (-507)))) (-1699 (((-382 (-522)) $) NIL (|has| |#1| (-507)))) (-1692 (((-850)) NIL)) (-3344 (($) NIL (|has| |#1| (-343)))) (-2303 (($ $ $) NIL (|has| |#1| (-283)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL (|has| |#1| (-283)))) (-2160 (($) NIL (|has| |#1| (-324)))) (-2087 (((-108) $) NIL (|has| |#1| (-324)))) (-1380 (($ $ (-708)) NIL (|has| |#1| (-324))) (($ $) NIL (|has| |#1| (-324)))) (-2725 (((-108) $) NIL (-3844 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-338))))) (-1272 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-980)) (|has| |#1| (-1106))))) (-2980 (($) NIL (|has| |#1| (-1106)))) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| |#1| (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| |#1| (-815 (-354))))) (-3872 (((-850) $) NIL (|has| |#1| (-324))) (((-770 (-850)) $) NIL (|has| |#1| (-324)))) (-2859 (((-108) $) 35)) (-1811 (($ $ (-522)) NIL (-12 (|has| |#1| (-928)) (|has| |#1| (-1106))))) (-1269 ((|#1| $) 46)) (-4208 (((-3 $ "failed") $) NIL (|has| |#1| (-324)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-283)))) (-4199 (((-1081 |#1|) $) NIL (|has| |#1| (-338)))) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-1475 (((-850) $) NIL (|has| |#1| (-343)))) (-1238 (($ $) NIL (|has| |#1| (-1106)))) (-2142 (((-1081 |#1|) $) NIL)) (-2267 (($ (-588 $)) NIL (|has| |#1| (-283))) (($ $ $) NIL (|has| |#1| (-283)))) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL (|has| |#1| (-338)))) (-3937 (($) NIL (|has| |#1| (-324)) CONST)) (-2882 (($ (-850)) NIL (|has| |#1| (-343)))) (-2755 (($) NIL)) (-2033 ((|#1| $) 15)) (-4174 (((-1032) $) NIL)) (-1368 (($) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-283)))) (-2308 (($ (-588 $)) NIL (|has| |#1| (-283))) (($ $ $) NIL (|has| |#1| (-283)))) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) NIL (|has| |#1| (-324)))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| |#1| (-283)) (|has| |#1| (-838))))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| |#1| (-283)) (|has| |#1| (-838))))) (-2006 (((-393 $) $) NIL (-3844 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-338))))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-283))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-283)))) (-2276 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-514))) (((-3 $ "failed") $ $) 47 (-3844 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-514))))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-283)))) (-3357 (($ $) NIL (|has| |#1| (-1106)))) (-2330 (($ $ (-588 |#1|) (-588 |#1|)) NIL (|has| |#1| (-285 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-285 |#1|))) (($ $ (-270 |#1|)) NIL (|has| |#1| (-285 |#1|))) (($ $ (-588 (-270 |#1|))) NIL (|has| |#1| (-285 |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) NIL (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-1085) |#1|) NIL (|has| |#1| (-483 (-1085) |#1|)))) (-4031 (((-708) $) NIL (|has| |#1| (-283)))) (-2683 (($ $ |#1|) NIL (|has| |#1| (-262 |#1| |#1|)))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-283)))) (-1615 ((|#1| (-1166 $)) NIL) ((|#1|) NIL)) (-1304 (((-708) $) NIL (|has| |#1| (-324))) (((-3 (-708) "failed") $ $) NIL (|has| |#1| (-324)))) (-2731 (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $) NIL (|has| |#1| (-210)))) (-2620 (((-628 |#1|) (-1166 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-338)))) (-1579 (((-1081 |#1|)) NIL)) (-1831 (($ $) NIL (|has| |#1| (-1106)))) (-2946 (($ $) NIL (|has| |#1| (-1106)))) (-2670 (($) NIL (|has| |#1| (-324)))) (-3054 (($ $) NIL (|has| |#1| (-1106)))) (-2928 (($ $) NIL (|has| |#1| (-1106)))) (-3035 (($ $) NIL (|has| |#1| (-1106)))) (-2915 (($ $) NIL (|has| |#1| (-1106)))) (-3510 (((-1166 |#1|) $ (-1166 $)) NIL) (((-628 |#1|) (-1166 $) (-1166 $)) NIL) (((-1166 |#1|) $) NIL) (((-628 |#1|) (-1166 $)) NIL)) (-3873 (((-1166 |#1|) $) NIL) (($ (-1166 |#1|)) NIL) (((-1081 |#1|) $) NIL) (($ (-1081 |#1|)) NIL) (((-821 (-522)) $) NIL (|has| |#1| (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| |#1| (-563 (-821 (-354))))) (((-154 (-354)) $) NIL (|has| |#1| (-947))) (((-154 (-202)) $) NIL (|has| |#1| (-947))) (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-2983 (($ $) 45)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-3844 (-12 (|has| $ (-133)) (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-324))))) (-4005 (($ |#1| |#1|) 37)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) 36) (($ (-382 (-522))) NIL (-3844 (|has| |#1| (-338)) (|has| |#1| (-962 (-382 (-522)))))) (($ $) NIL (-3844 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-514))))) (-3040 (($ $) NIL (|has| |#1| (-324))) (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2645 (((-1081 |#1|) $) NIL)) (-2742 (((-708)) NIL)) (-2905 (((-1166 $)) NIL)) (-1856 (($ $) NIL (|has| |#1| (-1106)))) (-2976 (($ $) NIL (|has| |#1| (-1106)))) (-1407 (((-108) $ $) NIL (-3844 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-514))))) (-1839 (($ $) NIL (|has| |#1| (-1106)))) (-2957 (($ $) NIL (|has| |#1| (-1106)))) (-1873 (($ $) NIL (|has| |#1| (-1106)))) (-3001 (($ $) NIL (|has| |#1| (-1106)))) (-2636 ((|#1| $) NIL (|has| |#1| (-1106)))) (-2476 (($ $) NIL (|has| |#1| (-1106)))) (-3011 (($ $) NIL (|has| |#1| (-1106)))) (-1864 (($ $) NIL (|has| |#1| (-1106)))) (-2989 (($ $) NIL (|has| |#1| (-1106)))) (-1849 (($ $) NIL (|has| |#1| (-1106)))) (-2966 (($ $) NIL (|has| |#1| (-1106)))) (-4126 (($ $) NIL (|has| |#1| (-980)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3697 (($) 28 T CONST)) (-3709 (($) 30 T CONST)) (-2810 (((-1068) $) 23 (|has| |#1| (-765))) (((-1068) $ (-108)) 25 (|has| |#1| (-765))) (((-1171) (-759) $) 26 (|has| |#1| (-765))) (((-1171) (-759) $ (-108)) 27 (|has| |#1| (-765)))) (-2252 (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $) NIL (|has| |#1| (-210)))) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1682 (($ $ $) NIL (|has| |#1| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) 39)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-382 (-522))) NIL (-12 (|has| |#1| (-928)) (|has| |#1| (-1106)))) (($ $ $) NIL (|has| |#1| (-1106))) (($ $ (-522)) NIL (|has| |#1| (-338)))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-382 (-522)) $) NIL (|has| |#1| (-338))) (($ $ (-382 (-522))) NIL (|has| |#1| (-338))))) -(((-154 |#1|) (-13 (-151 |#1|) (-10 -7 (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|))) (-157)) (T -154)) -NIL -(-13 (-151 |#1|) (-10 -7 (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|))) -((-3873 (((-821 |#1|) |#3|) 22))) -(((-155 |#1| |#2| |#3|) (-10 -7 (-15 -3873 ((-821 |#1|) |#3|))) (-1014) (-13 (-563 (-821 |#1|)) (-157)) (-151 |#2|)) (T -155)) -((-3873 (*1 *2 *3) (-12 (-4 *5 (-13 (-563 *2) (-157))) (-5 *2 (-821 *4)) (-5 *1 (-155 *4 *5 *3)) (-4 *4 (-1014)) (-4 *3 (-151 *5))))) -(-10 -7 (-15 -3873 ((-821 |#1|) |#3|))) -((-1419 (((-108) $ $) NIL)) (-2668 (((-108) $) 9)) (-3595 (((-108) $ (-108)) 11)) (-1893 (($) 12)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2463 (($ $) 13)) (-2217 (((-792) $) 17)) (-1947 (((-108) $) 8)) (-1720 (((-108) $ (-108)) 10)) (-1562 (((-108) $ $) NIL))) -(((-156) (-13 (-1014) (-10 -8 (-15 -1893 ($)) (-15 -1947 ((-108) $)) (-15 -2668 ((-108) $)) (-15 -1720 ((-108) $ (-108))) (-15 -3595 ((-108) $ (-108))) (-15 -2463 ($ $))))) (T -156)) -((-1893 (*1 *1) (-5 *1 (-156))) (-1947 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-1720 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-3595 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-2463 (*1 *1 *1) (-5 *1 (-156)))) -(-13 (-1014) (-10 -8 (-15 -1893 ($)) (-15 -1947 ((-108) $)) (-15 -2668 ((-108) $)) (-15 -1720 ((-108) $ (-108))) (-15 -3595 ((-108) $ (-108))) (-15 -2463 ($ $)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3920 (((-3 $ "failed") $) 34)) (-2859 (((-108) $) 31)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11) (($ (-522)) 28)) (-2742 (((-708)) 29)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-157) (-1197)) (T -157)) -NIL -(-13 (-971) (-107 $ $) (-10 -7 (-6 (-4240 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 $) . T) ((-664) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3049 ((|#1| $) 75)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2805 (((-108) $ $) NIL)) (-3367 (($) NIL T CONST)) (-2333 (($ $ $) NIL)) (-1842 (($ $) 19)) (-4141 (($ |#1| (-1066 |#1|)) 48)) (-3920 (((-3 $ "failed") $) 117)) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-1223 (((-1066 |#1|) $) 82)) (-2317 (((-1066 |#1|) $) 79)) (-3960 (((-1066 |#1|) $) 80)) (-2859 (((-108) $) NIL)) (-1707 (((-1066 |#1|) $) 88)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2267 (($ (-588 $)) NIL) (($ $ $) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ (-588 $)) NIL) (($ $ $) NIL)) (-2006 (((-393 $) $) NIL)) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL)) (-3934 (($ $ (-522)) 91)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-2053 (((-1066 |#1|) $) 89)) (-3757 (((-1066 (-382 |#1|)) $) 13)) (-1471 (($ (-382 |#1|)) 17) (($ |#1| (-1066 |#1|) (-1066 |#1|)) 38)) (-1944 (($ $) 93)) (-2217 (((-792) $) 127) (($ (-522)) 51) (($ |#1|) 52) (($ (-382 |#1|)) 36) (($ (-382 (-522))) NIL) (($ $) NIL)) (-2742 (((-708)) 64)) (-1407 (((-108) $ $) NIL)) (-1448 (((-1066 (-382 |#1|)) $) 18)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) 25 T CONST)) (-3709 (($) 28 T CONST)) (-1562 (((-108) $ $) 35)) (-1682 (($ $ $) 115)) (-1672 (($ $) 106) (($ $ $) 103)) (-1661 (($ $ $) 101)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-382 |#1|) $) 111) (($ $ (-382 |#1|)) NIL) (($ (-382 (-522)) $) NIL) (($ $ (-382 (-522))) NIL))) -(((-158 |#1|) (-13 (-37 |#1|) (-37 (-382 |#1|)) (-338) (-10 -8 (-15 -1471 ($ (-382 |#1|))) (-15 -1471 ($ |#1| (-1066 |#1|) (-1066 |#1|))) (-15 -4141 ($ |#1| (-1066 |#1|))) (-15 -2317 ((-1066 |#1|) $)) (-15 -3960 ((-1066 |#1|) $)) (-15 -1223 ((-1066 |#1|) $)) (-15 -3049 (|#1| $)) (-15 -1842 ($ $)) (-15 -1448 ((-1066 (-382 |#1|)) $)) (-15 -3757 ((-1066 (-382 |#1|)) $)) (-15 -1707 ((-1066 |#1|) $)) (-15 -2053 ((-1066 |#1|) $)) (-15 -3934 ($ $ (-522))) (-15 -1944 ($ $)))) (-283)) (T -158)) -((-1471 (*1 *1 *2) (-12 (-5 *2 (-382 *3)) (-4 *3 (-283)) (-5 *1 (-158 *3)))) (-1471 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1066 *2)) (-4 *2 (-283)) (-5 *1 (-158 *2)))) (-4141 (*1 *1 *2 *3) (-12 (-5 *3 (-1066 *2)) (-4 *2 (-283)) (-5 *1 (-158 *2)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-158 *3)) (-4 *3 (-283)))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-158 *3)) (-4 *3 (-283)))) (-1223 (*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-158 *3)) (-4 *3 (-283)))) (-3049 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-283)))) (-1842 (*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-283)))) (-1448 (*1 *2 *1) (-12 (-5 *2 (-1066 (-382 *3))) (-5 *1 (-158 *3)) (-4 *3 (-283)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-1066 (-382 *3))) (-5 *1 (-158 *3)) (-4 *3 (-283)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-158 *3)) (-4 *3 (-283)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-158 *3)) (-4 *3 (-283)))) (-3934 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-158 *3)) (-4 *3 (-283)))) (-1944 (*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-283))))) -(-13 (-37 |#1|) (-37 (-382 |#1|)) (-338) (-10 -8 (-15 -1471 ($ (-382 |#1|))) (-15 -1471 ($ |#1| (-1066 |#1|) (-1066 |#1|))) (-15 -4141 ($ |#1| (-1066 |#1|))) (-15 -2317 ((-1066 |#1|) $)) (-15 -3960 ((-1066 |#1|) $)) (-15 -1223 ((-1066 |#1|) $)) (-15 -3049 (|#1| $)) (-15 -1842 ($ $)) (-15 -1448 ((-1066 (-382 |#1|)) $)) (-15 -3757 ((-1066 (-382 |#1|)) $)) (-15 -1707 ((-1066 |#1|) $)) (-15 -2053 ((-1066 |#1|) $)) (-15 -3934 ($ $ (-522))) (-15 -1944 ($ $)))) -((-4190 (($ (-104) $) 13)) (-2040 (((-3 (-104) "failed") (-1085) $) 12)) (-2217 (((-792) $) 16)) (-2066 (((-588 (-104)) $) 7))) -(((-159) (-13 (-562 (-792)) (-10 -8 (-15 -2066 ((-588 (-104)) $)) (-15 -4190 ($ (-104) $)) (-15 -2040 ((-3 (-104) "failed") (-1085) $))))) (T -159)) -((-2066 (*1 *2 *1) (-12 (-5 *2 (-588 (-104))) (-5 *1 (-159)))) (-4190 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-159)))) (-2040 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-104)) (-5 *1 (-159))))) -(-13 (-562 (-792)) (-10 -8 (-15 -2066 ((-588 (-104)) $)) (-15 -4190 ($ (-104) $)) (-15 -2040 ((-3 (-104) "failed") (-1085) $)))) -((-3779 (((-1 (-872 |#1|) (-872 |#1|)) |#1|) 40)) (-1999 (((-872 |#1|) (-872 |#1|)) 19)) (-3656 (((-1 (-872 |#1|) (-872 |#1|)) |#1|) 36)) (-1472 (((-872 |#1|) (-872 |#1|)) 17)) (-1434 (((-872 |#1|) (-872 |#1|)) 25)) (-2090 (((-872 |#1|) (-872 |#1|)) 24)) (-1990 (((-872 |#1|) (-872 |#1|)) 23)) (-3950 (((-1 (-872 |#1|) (-872 |#1|)) |#1|) 37)) (-3374 (((-1 (-872 |#1|) (-872 |#1|)) |#1|) 35)) (-3223 (((-1 (-872 |#1|) (-872 |#1|)) |#1|) 34)) (-3350 (((-872 |#1|) (-872 |#1|)) 18)) (-2175 (((-1 (-872 |#1|) (-872 |#1|)) |#1| |#1|) 43)) (-1651 (((-872 |#1|) (-872 |#1|)) 8)) (-4066 (((-1 (-872 |#1|) (-872 |#1|)) |#1|) 39)) (-3843 (((-1 (-872 |#1|) (-872 |#1|)) |#1|) 38))) -(((-160 |#1|) (-10 -7 (-15 -1651 ((-872 |#1|) (-872 |#1|))) (-15 -1472 ((-872 |#1|) (-872 |#1|))) (-15 -3350 ((-872 |#1|) (-872 |#1|))) (-15 -1999 ((-872 |#1|) (-872 |#1|))) (-15 -1990 ((-872 |#1|) (-872 |#1|))) (-15 -2090 ((-872 |#1|) (-872 |#1|))) (-15 -1434 ((-872 |#1|) (-872 |#1|))) (-15 -3223 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -3374 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -3656 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -3950 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -3843 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -4066 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -3779 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -2175 ((-1 (-872 |#1|) (-872 |#1|)) |#1| |#1|))) (-13 (-338) (-1106) (-928))) (T -160)) -((-2175 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-338) (-1106) (-928))))) (-3779 (*1 *2 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-338) (-1106) (-928))))) (-4066 (*1 *2 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-338) (-1106) (-928))))) (-3843 (*1 *2 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-338) (-1106) (-928))))) (-3950 (*1 *2 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-338) (-1106) (-928))))) (-3656 (*1 *2 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-338) (-1106) (-928))))) (-3374 (*1 *2 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-338) (-1106) (-928))))) (-3223 (*1 *2 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-338) (-1106) (-928))))) (-1434 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928))) (-5 *1 (-160 *3)))) (-2090 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928))) (-5 *1 (-160 *3)))) (-1990 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928))) (-5 *1 (-160 *3)))) (-1999 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928))) (-5 *1 (-160 *3)))) (-3350 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928))) (-5 *1 (-160 *3)))) (-1472 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928))) (-5 *1 (-160 *3)))) (-1651 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928))) (-5 *1 (-160 *3))))) -(-10 -7 (-15 -1651 ((-872 |#1|) (-872 |#1|))) (-15 -1472 ((-872 |#1|) (-872 |#1|))) (-15 -3350 ((-872 |#1|) (-872 |#1|))) (-15 -1999 ((-872 |#1|) (-872 |#1|))) (-15 -1990 ((-872 |#1|) (-872 |#1|))) (-15 -2090 ((-872 |#1|) (-872 |#1|))) (-15 -1434 ((-872 |#1|) (-872 |#1|))) (-15 -3223 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -3374 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -3656 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -3950 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -3843 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -4066 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -3779 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -2175 ((-1 (-872 |#1|) (-872 |#1|)) |#1| |#1|))) -((-2645 ((|#2| |#3|) 27))) -(((-161 |#1| |#2| |#3|) (-10 -7 (-15 -2645 (|#2| |#3|))) (-157) (-1142 |#1|) (-662 |#1| |#2|)) (T -161)) -((-2645 (*1 *2 *3) (-12 (-4 *4 (-157)) (-4 *2 (-1142 *4)) (-5 *1 (-161 *4 *2 *3)) (-4 *3 (-662 *4 *2))))) -(-10 -7 (-15 -2645 (|#2| |#3|))) -((-3738 (((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)) 47 (|has| (-881 |#2|) (-815 |#1|))))) -(((-162 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-881 |#2|) (-815 |#1|)) (-15 -3738 ((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|))) |%noBranch|)) (-1014) (-13 (-815 |#1|) (-157)) (-151 |#2|)) (T -162)) -((-3738 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 *3)) (-5 *4 (-821 *5)) (-4 *5 (-1014)) (-4 *3 (-151 *6)) (-4 (-881 *6) (-815 *5)) (-4 *6 (-13 (-815 *5) (-157))) (-5 *1 (-162 *5 *6 *3))))) -(-10 -7 (IF (|has| (-881 |#2|) (-815 |#1|)) (-15 -3738 ((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|))) |%noBranch|)) -((-3445 (((-588 |#1|) (-588 |#1|) |#1|) 36)) (-1961 (((-588 |#1|) |#1| (-588 |#1|)) 19)) (-2546 (((-588 |#1|) (-588 (-588 |#1|)) (-588 |#1|)) 31) ((|#1| (-588 |#1|) (-588 |#1|)) 29))) -(((-163 |#1|) (-10 -7 (-15 -1961 ((-588 |#1|) |#1| (-588 |#1|))) (-15 -2546 (|#1| (-588 |#1|) (-588 |#1|))) (-15 -2546 ((-588 |#1|) (-588 (-588 |#1|)) (-588 |#1|))) (-15 -3445 ((-588 |#1|) (-588 |#1|) |#1|))) (-283)) (T -163)) -((-3445 (*1 *2 *2 *3) (-12 (-5 *2 (-588 *3)) (-4 *3 (-283)) (-5 *1 (-163 *3)))) (-2546 (*1 *2 *3 *2) (-12 (-5 *3 (-588 (-588 *4))) (-5 *2 (-588 *4)) (-4 *4 (-283)) (-5 *1 (-163 *4)))) (-2546 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *2)) (-5 *1 (-163 *2)) (-4 *2 (-283)))) (-1961 (*1 *2 *3 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-283)) (-5 *1 (-163 *3))))) -(-10 -7 (-15 -1961 ((-588 |#1|) |#1| (-588 |#1|))) (-15 -2546 (|#1| (-588 |#1|) (-588 |#1|))) (-15 -2546 ((-588 |#1|) (-588 (-588 |#1|)) (-588 |#1|))) (-15 -3445 ((-588 |#1|) (-588 |#1|) |#1|))) -((-3891 (((-2 (|:| |start| |#2|) (|:| -4045 (-393 |#2|))) |#2|) 61)) (-2709 ((|#1| |#1|) 54)) (-2693 (((-154 |#1|) |#2|) 83)) (-3016 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 81)) (-2359 ((|#2| |#2|) 82)) (-1276 (((-393 |#2|) |#2| |#1|) 113) (((-393 |#2|) |#2| |#1| (-108)) 80)) (-1269 ((|#1| |#2|) 112)) (-3941 ((|#2| |#2|) 119)) (-2006 (((-393 |#2|) |#2|) 134) (((-393 |#2|) |#2| |#1|) 32) (((-393 |#2|) |#2| |#1| (-108)) 133)) (-2600 (((-588 (-2 (|:| -4045 (-588 |#2|)) (|:| -3106 |#1|))) |#2| |#2|) 132) (((-588 (-2 (|:| -4045 (-588 |#2|)) (|:| -3106 |#1|))) |#2| |#2| (-108)) 75)) (-4017 (((-588 (-154 |#1|)) |#2| |#1|) 40) (((-588 (-154 |#1|)) |#2|) 41))) -(((-164 |#1| |#2|) (-10 -7 (-15 -4017 ((-588 (-154 |#1|)) |#2|)) (-15 -4017 ((-588 (-154 |#1|)) |#2| |#1|)) (-15 -2600 ((-588 (-2 (|:| -4045 (-588 |#2|)) (|:| -3106 |#1|))) |#2| |#2| (-108))) (-15 -2600 ((-588 (-2 (|:| -4045 (-588 |#2|)) (|:| -3106 |#1|))) |#2| |#2|)) (-15 -2006 ((-393 |#2|) |#2| |#1| (-108))) (-15 -2006 ((-393 |#2|) |#2| |#1|)) (-15 -2006 ((-393 |#2|) |#2|)) (-15 -3941 (|#2| |#2|)) (-15 -1269 (|#1| |#2|)) (-15 -1276 ((-393 |#2|) |#2| |#1| (-108))) (-15 -1276 ((-393 |#2|) |#2| |#1|)) (-15 -2359 (|#2| |#2|)) (-15 -3016 (|#1| |#2| |#1|)) (-15 -3016 (|#1| |#2|)) (-15 -2693 ((-154 |#1|) |#2|)) (-15 -2709 (|#1| |#1|)) (-15 -3891 ((-2 (|:| |start| |#2|) (|:| -4045 (-393 |#2|))) |#2|))) (-13 (-338) (-782)) (-1142 (-154 |#1|))) (T -164)) -((-3891 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-2 (|:| |start| *3) (|:| -4045 (-393 *3)))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))) (-2709 (*1 *2 *2) (-12 (-4 *2 (-13 (-338) (-782))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1142 (-154 *2))))) (-2693 (*1 *2 *3) (-12 (-5 *2 (-154 *4)) (-5 *1 (-164 *4 *3)) (-4 *4 (-13 (-338) (-782))) (-4 *3 (-1142 *2)))) (-3016 (*1 *2 *3) (-12 (-4 *2 (-13 (-338) (-782))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1142 (-154 *2))))) (-3016 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-338) (-782))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1142 (-154 *2))))) (-2359 (*1 *2 *2) (-12 (-4 *3 (-13 (-338) (-782))) (-5 *1 (-164 *3 *2)) (-4 *2 (-1142 (-154 *3))))) (-1276 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-393 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))) (-1276 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-338) (-782))) (-5 *2 (-393 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))) (-1269 (*1 *2 *3) (-12 (-4 *2 (-13 (-338) (-782))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1142 (-154 *2))))) (-3941 (*1 *2 *2) (-12 (-4 *3 (-13 (-338) (-782))) (-5 *1 (-164 *3 *2)) (-4 *2 (-1142 (-154 *3))))) (-2006 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-393 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))) (-2006 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-393 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))) (-2006 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-338) (-782))) (-5 *2 (-393 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))) (-2600 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-588 (-2 (|:| -4045 (-588 *3)) (|:| -3106 *4)))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))) (-2600 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-338) (-782))) (-5 *2 (-588 (-2 (|:| -4045 (-588 *3)) (|:| -3106 *5)))) (-5 *1 (-164 *5 *3)) (-4 *3 (-1142 (-154 *5))))) (-4017 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-588 (-154 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))) (-4017 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-588 (-154 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4)))))) -(-10 -7 (-15 -4017 ((-588 (-154 |#1|)) |#2|)) (-15 -4017 ((-588 (-154 |#1|)) |#2| |#1|)) (-15 -2600 ((-588 (-2 (|:| -4045 (-588 |#2|)) (|:| -3106 |#1|))) |#2| |#2| (-108))) (-15 -2600 ((-588 (-2 (|:| -4045 (-588 |#2|)) (|:| -3106 |#1|))) |#2| |#2|)) (-15 -2006 ((-393 |#2|) |#2| |#1| (-108))) (-15 -2006 ((-393 |#2|) |#2| |#1|)) (-15 -2006 ((-393 |#2|) |#2|)) (-15 -3941 (|#2| |#2|)) (-15 -1269 (|#1| |#2|)) (-15 -1276 ((-393 |#2|) |#2| |#1| (-108))) (-15 -1276 ((-393 |#2|) |#2| |#1|)) (-15 -2359 (|#2| |#2|)) (-15 -3016 (|#1| |#2| |#1|)) (-15 -3016 (|#1| |#2|)) (-15 -2693 ((-154 |#1|) |#2|)) (-15 -2709 (|#1| |#1|)) (-15 -3891 ((-2 (|:| |start| |#2|) (|:| -4045 (-393 |#2|))) |#2|))) -((-2827 (((-3 |#2| "failed") |#2|) 14)) (-1880 (((-708) |#2|) 16)) (-3619 ((|#2| |#2| |#2|) 18))) -(((-165 |#1| |#2|) (-10 -7 (-15 -2827 ((-3 |#2| "failed") |#2|)) (-15 -1880 ((-708) |#2|)) (-15 -3619 (|#2| |#2| |#2|))) (-1120) (-615 |#1|)) (T -165)) -((-3619 (*1 *2 *2 *2) (-12 (-4 *3 (-1120)) (-5 *1 (-165 *3 *2)) (-4 *2 (-615 *3)))) (-1880 (*1 *2 *3) (-12 (-4 *4 (-1120)) (-5 *2 (-708)) (-5 *1 (-165 *4 *3)) (-4 *3 (-615 *4)))) (-2827 (*1 *2 *2) (|partial| -12 (-4 *3 (-1120)) (-5 *1 (-165 *3 *2)) (-4 *2 (-615 *3))))) -(-10 -7 (-15 -2827 ((-3 |#2| "failed") |#2|)) (-15 -1880 ((-708) |#2|)) (-15 -3619 (|#2| |#2| |#2|))) -((-3733 (((-1085) $) 9)) (-2217 (((-792) $) 13)) (-2174 (((-588 (-1090)) $) 11))) -(((-166) (-13 (-562 (-792)) (-10 -8 (-15 -3733 ((-1085) $)) (-15 -2174 ((-588 (-1090)) $))))) (T -166)) -((-3733 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-166)))) (-2174 (*1 *2 *1) (-12 (-5 *2 (-588 (-1090))) (-5 *1 (-166))))) -(-13 (-562 (-792)) (-10 -8 (-15 -3733 ((-1085) $)) (-15 -2174 ((-588 (-1090)) $)))) -((-1829 ((|#2| |#2|) 28)) (-1408 (((-108) |#2|) 19)) (-2025 (((-291 |#1|) |#2|) 12)) (-2033 (((-291 |#1|) |#2|) 14)) (-2854 ((|#2| |#2| (-1085)) 68) ((|#2| |#2|) 69)) (-2902 (((-154 (-291 |#1|)) |#2|) 9)) (-1254 ((|#2| |#2| (-1085)) 65) ((|#2| |#2|) 58))) -(((-167 |#1| |#2|) (-10 -7 (-15 -2854 (|#2| |#2|)) (-15 -2854 (|#2| |#2| (-1085))) (-15 -1254 (|#2| |#2|)) (-15 -1254 (|#2| |#2| (-1085))) (-15 -2025 ((-291 |#1|) |#2|)) (-15 -2033 ((-291 |#1|) |#2|)) (-15 -1408 ((-108) |#2|)) (-15 -1829 (|#2| |#2|)) (-15 -2902 ((-154 (-291 |#1|)) |#2|))) (-13 (-514) (-784) (-962 (-522))) (-13 (-27) (-1106) (-405 (-154 |#1|)))) (T -167)) -((-2902 (*1 *2 *3) (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-154 (-291 *4))) (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 (-154 *4)))))) (-1829 (*1 *2 *2) (-12 (-4 *3 (-13 (-514) (-784) (-962 (-522)))) (-5 *1 (-167 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 (-154 *3)))))) (-1408 (*1 *2 *3) (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-108)) (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 (-154 *4)))))) (-2033 (*1 *2 *3) (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-291 *4)) (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 (-154 *4)))))) (-2025 (*1 *2 *3) (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-291 *4)) (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 (-154 *4)))))) (-1254 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-5 *1 (-167 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 (-154 *4)))))) (-1254 (*1 *2 *2) (-12 (-4 *3 (-13 (-514) (-784) (-962 (-522)))) (-5 *1 (-167 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 (-154 *3)))))) (-2854 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-5 *1 (-167 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 (-154 *4)))))) (-2854 (*1 *2 *2) (-12 (-4 *3 (-13 (-514) (-784) (-962 (-522)))) (-5 *1 (-167 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 (-154 *3))))))) -(-10 -7 (-15 -2854 (|#2| |#2|)) (-15 -2854 (|#2| |#2| (-1085))) (-15 -1254 (|#2| |#2|)) (-15 -1254 (|#2| |#2| (-1085))) (-15 -2025 ((-291 |#1|) |#2|)) (-15 -2033 ((-291 |#1|) |#2|)) (-15 -1408 ((-108) |#2|)) (-15 -1829 (|#2| |#2|)) (-15 -2902 ((-154 (-291 |#1|)) |#2|))) -((-3889 (((-1166 (-628 (-881 |#1|))) (-1166 (-628 |#1|))) 22)) (-2217 (((-1166 (-628 (-382 (-881 |#1|)))) (-1166 (-628 |#1|))) 30))) -(((-168 |#1|) (-10 -7 (-15 -3889 ((-1166 (-628 (-881 |#1|))) (-1166 (-628 |#1|)))) (-15 -2217 ((-1166 (-628 (-382 (-881 |#1|)))) (-1166 (-628 |#1|))))) (-157)) (T -168)) -((-2217 (*1 *2 *3) (-12 (-5 *3 (-1166 (-628 *4))) (-4 *4 (-157)) (-5 *2 (-1166 (-628 (-382 (-881 *4))))) (-5 *1 (-168 *4)))) (-3889 (*1 *2 *3) (-12 (-5 *3 (-1166 (-628 *4))) (-4 *4 (-157)) (-5 *2 (-1166 (-628 (-881 *4)))) (-5 *1 (-168 *4))))) -(-10 -7 (-15 -3889 ((-1166 (-628 (-881 |#1|))) (-1166 (-628 |#1|)))) (-15 -2217 ((-1166 (-628 (-382 (-881 |#1|)))) (-1166 (-628 |#1|))))) -((-3620 (((-1087 (-382 (-522))) (-1087 (-382 (-522))) (-1087 (-382 (-522)))) 66)) (-1917 (((-1087 (-382 (-522))) (-588 (-522)) (-588 (-522))) 74)) (-1377 (((-1087 (-382 (-522))) (-522)) 40)) (-2083 (((-1087 (-382 (-522))) (-522)) 52)) (-2330 (((-382 (-522)) (-1087 (-382 (-522)))) 62)) (-2405 (((-1087 (-382 (-522))) (-522)) 32)) (-3329 (((-1087 (-382 (-522))) (-522)) 48)) (-1518 (((-1087 (-382 (-522))) (-522)) 46)) (-1393 (((-1087 (-382 (-522))) (-1087 (-382 (-522))) (-1087 (-382 (-522)))) 60)) (-1944 (((-1087 (-382 (-522))) (-522)) 25)) (-1766 (((-382 (-522)) (-1087 (-382 (-522))) (-1087 (-382 (-522)))) 64)) (-2300 (((-1087 (-382 (-522))) (-522)) 30)) (-1457 (((-1087 (-382 (-522))) (-588 (-522))) 71))) -(((-169) (-10 -7 (-15 -1944 ((-1087 (-382 (-522))) (-522))) (-15 -1377 ((-1087 (-382 (-522))) (-522))) (-15 -2405 ((-1087 (-382 (-522))) (-522))) (-15 -2300 ((-1087 (-382 (-522))) (-522))) (-15 -1518 ((-1087 (-382 (-522))) (-522))) (-15 -3329 ((-1087 (-382 (-522))) (-522))) (-15 -2083 ((-1087 (-382 (-522))) (-522))) (-15 -1766 ((-382 (-522)) (-1087 (-382 (-522))) (-1087 (-382 (-522))))) (-15 -1393 ((-1087 (-382 (-522))) (-1087 (-382 (-522))) (-1087 (-382 (-522))))) (-15 -2330 ((-382 (-522)) (-1087 (-382 (-522))))) (-15 -3620 ((-1087 (-382 (-522))) (-1087 (-382 (-522))) (-1087 (-382 (-522))))) (-15 -1457 ((-1087 (-382 (-522))) (-588 (-522)))) (-15 -1917 ((-1087 (-382 (-522))) (-588 (-522)) (-588 (-522)))))) (T -169)) -((-1917 (*1 *2 *3 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)))) (-3620 (*1 *2 *2 *2) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)))) (-2330 (*1 *2 *3) (-12 (-5 *3 (-1087 (-382 (-522)))) (-5 *2 (-382 (-522))) (-5 *1 (-169)))) (-1393 (*1 *2 *2 *2) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)))) (-1766 (*1 *2 *3 *3) (-12 (-5 *3 (-1087 (-382 (-522)))) (-5 *2 (-382 (-522))) (-5 *1 (-169)))) (-2083 (*1 *2 *3) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522)))) (-3329 (*1 *2 *3) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522)))) (-1518 (*1 *2 *3) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522)))) (-2300 (*1 *2 *3) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522)))) (-2405 (*1 *2 *3) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522)))) (-1377 (*1 *2 *3) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522)))) (-1944 (*1 *2 *3) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522))))) -(-10 -7 (-15 -1944 ((-1087 (-382 (-522))) (-522))) (-15 -1377 ((-1087 (-382 (-522))) (-522))) (-15 -2405 ((-1087 (-382 (-522))) (-522))) (-15 -2300 ((-1087 (-382 (-522))) (-522))) (-15 -1518 ((-1087 (-382 (-522))) (-522))) (-15 -3329 ((-1087 (-382 (-522))) (-522))) (-15 -2083 ((-1087 (-382 (-522))) (-522))) (-15 -1766 ((-382 (-522)) (-1087 (-382 (-522))) (-1087 (-382 (-522))))) (-15 -1393 ((-1087 (-382 (-522))) (-1087 (-382 (-522))) (-1087 (-382 (-522))))) (-15 -2330 ((-382 (-522)) (-1087 (-382 (-522))))) (-15 -3620 ((-1087 (-382 (-522))) (-1087 (-382 (-522))) (-1087 (-382 (-522))))) (-15 -1457 ((-1087 (-382 (-522))) (-588 (-522)))) (-15 -1917 ((-1087 (-382 (-522))) (-588 (-522)) (-588 (-522))))) -((-3661 (((-393 (-1081 (-522))) (-522)) 28)) (-2638 (((-588 (-1081 (-522))) (-522)) 23)) (-2406 (((-1081 (-522)) (-522)) 21))) -(((-170) (-10 -7 (-15 -2638 ((-588 (-1081 (-522))) (-522))) (-15 -2406 ((-1081 (-522)) (-522))) (-15 -3661 ((-393 (-1081 (-522))) (-522))))) (T -170)) -((-3661 (*1 *2 *3) (-12 (-5 *2 (-393 (-1081 (-522)))) (-5 *1 (-170)) (-5 *3 (-522)))) (-2406 (*1 *2 *3) (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-170)) (-5 *3 (-522)))) (-2638 (*1 *2 *3) (-12 (-5 *2 (-588 (-1081 (-522)))) (-5 *1 (-170)) (-5 *3 (-522))))) -(-10 -7 (-15 -2638 ((-588 (-1081 (-522))) (-522))) (-15 -2406 ((-1081 (-522)) (-522))) (-15 -3661 ((-393 (-1081 (-522))) (-522)))) -((-2079 (((-1066 (-202)) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 101)) (-2484 (((-588 (-1068)) (-1066 (-202))) NIL)) (-3189 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 77)) (-3635 (((-588 (-202)) (-291 (-202)) (-1085) (-1009 (-777 (-202)))) NIL)) (-2310 (((-588 (-1068)) (-588 (-202))) NIL)) (-4046 (((-202) (-1009 (-777 (-202)))) 22)) (-4009 (((-202) (-1009 (-777 (-202)))) 23)) (-1546 (((-354) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 93)) (-1544 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 40)) (-2743 (((-1068) (-202)) NIL)) (-2043 (((-1068) (-588 (-1068))) 19)) (-3572 (((-960) (-1085) (-1085) (-960)) 12))) -(((-171) (-10 -7 (-15 -3189 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1544 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -4046 ((-202) (-1009 (-777 (-202))))) (-15 -4009 ((-202) (-1009 (-777 (-202))))) (-15 -1546 ((-354) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3635 ((-588 (-202)) (-291 (-202)) (-1085) (-1009 (-777 (-202))))) (-15 -2079 ((-1066 (-202)) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2743 ((-1068) (-202))) (-15 -2310 ((-588 (-1068)) (-588 (-202)))) (-15 -2484 ((-588 (-1068)) (-1066 (-202)))) (-15 -2043 ((-1068) (-588 (-1068)))) (-15 -3572 ((-960) (-1085) (-1085) (-960))))) (T -171)) -((-3572 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-960)) (-5 *3 (-1085)) (-5 *1 (-171)))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-1068)) (-5 *1 (-171)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-1066 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-171)))) (-2310 (*1 *2 *3) (-12 (-5 *3 (-588 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-171)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1068)) (-5 *1 (-171)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-1066 (-202))) (-5 *1 (-171)))) (-3635 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-291 (-202))) (-5 *4 (-1085)) (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-588 (-202))) (-5 *1 (-171)))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-354)) (-5 *1 (-171)))) (-4009 (*1 *2 *3) (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-171)))) (-4046 (*1 *2 *3) (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-171)))) (-1544 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-171)))) (-3189 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-171))))) -(-10 -7 (-15 -3189 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1544 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -4046 ((-202) (-1009 (-777 (-202))))) (-15 -4009 ((-202) (-1009 (-777 (-202))))) (-15 -1546 ((-354) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3635 ((-588 (-202)) (-291 (-202)) (-1085) (-1009 (-777 (-202))))) (-15 -2079 ((-1066 (-202)) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2743 ((-1068) (-202))) (-15 -2310 ((-588 (-1068)) (-588 (-202)))) (-15 -2484 ((-588 (-1068)) (-1066 (-202)))) (-15 -2043 ((-1068) (-588 (-1068)))) (-15 -3572 ((-960) (-1085) (-1085) (-960)))) -((-1419 (((-108) $ $) NIL)) (-3459 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 53) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 28) (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-1562 (((-108) $ $) NIL))) -(((-172) (-724)) (T -172)) -NIL -(-724) -((-1419 (((-108) $ $) NIL)) (-3459 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 58) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 37) (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-1562 (((-108) $ $) NIL))) -(((-173) (-724)) (T -173)) -NIL -(-724) -((-1419 (((-108) $ $) NIL)) (-3459 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 67) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 36) (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-1562 (((-108) $ $) NIL))) -(((-174) (-724)) (T -174)) -NIL -(-724) -((-1419 (((-108) $ $) NIL)) (-3459 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 54) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 30) (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-1562 (((-108) $ $) NIL))) -(((-175) (-724)) (T -175)) -NIL -(-724) -((-1419 (((-108) $ $) NIL)) (-3459 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 65) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 35) (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-1562 (((-108) $ $) NIL))) -(((-176) (-724)) (T -176)) -NIL -(-724) -((-1419 (((-108) $ $) NIL)) (-3459 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 71) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 33) (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-1562 (((-108) $ $) NIL))) -(((-177) (-724)) (T -177)) -NIL -(-724) -((-1419 (((-108) $ $) NIL)) (-3459 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 78) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 43) (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-1562 (((-108) $ $) NIL))) -(((-178) (-724)) (T -178)) -NIL -(-724) -((-1419 (((-108) $ $) NIL)) (-3459 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 68) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 37) (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-1562 (((-108) $ $) NIL))) -(((-179) (-724)) (T -179)) -NIL -(-724) -((-1419 (((-108) $ $) NIL)) (-3459 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 62)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL) (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 29)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-1562 (((-108) $ $) NIL))) -(((-180) (-724)) (T -180)) -NIL -(-724) -((-1419 (((-108) $ $) NIL)) (-3459 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 60)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL) (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 32)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-1562 (((-108) $ $) NIL))) -(((-181) (-724)) (T -181)) -NIL -(-724) -((-1419 (((-108) $ $) NIL)) (-3459 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 89) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 77) (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-1562 (((-108) $ $) NIL))) -(((-182) (-724)) (T -182)) -NIL -(-724) -((-1762 (((-3 (-2 (|:| -1410 (-110)) (|:| |w| (-202))) "failed") (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 81)) (-1204 (((-522) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 39)) (-1367 (((-3 (-588 (-202)) "failed") (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 69))) -(((-183) (-10 -7 (-15 -1762 ((-3 (-2 (|:| -1410 (-110)) (|:| |w| (-202))) "failed") (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1367 ((-3 (-588 (-202)) "failed") (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1204 ((-522) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (T -183)) -((-1204 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-522)) (-5 *1 (-183)))) (-1367 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-588 (-202))) (-5 *1 (-183)))) (-1762 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| -1410 (-110)) (|:| |w| (-202)))) (-5 *1 (-183))))) -(-10 -7 (-15 -1762 ((-3 (-2 (|:| -1410 (-110)) (|:| |w| (-202))) "failed") (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1367 ((-3 (-588 (-202)) "failed") (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1204 ((-522) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) -((-1936 (((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 37)) (-3157 (((-2 (|:| |stiffnessFactor| (-354)) (|:| |stabilityFactor| (-354))) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 128)) (-3623 (((-2 (|:| |stiffnessFactor| (-354)) (|:| |stabilityFactor| (-354))) (-628 (-291 (-202)))) 88)) (-3384 (((-354) (-628 (-291 (-202)))) 111)) (-2435 (((-628 (-291 (-202))) (-1166 (-291 (-202))) (-588 (-1085))) 108)) (-2086 (((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 26)) (-2279 (((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 42)) (-2330 (((-628 (-291 (-202))) (-628 (-291 (-202))) (-588 (-1085)) (-1166 (-291 (-202)))) 100)) (-3980 (((-354) (-354) (-588 (-354))) 105) (((-354) (-354) (-354)) 103)) (-2794 (((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 33))) -(((-184) (-10 -7 (-15 -3980 ((-354) (-354) (-354))) (-15 -3980 ((-354) (-354) (-588 (-354)))) (-15 -3384 ((-354) (-628 (-291 (-202))))) (-15 -2435 ((-628 (-291 (-202))) (-1166 (-291 (-202))) (-588 (-1085)))) (-15 -2330 ((-628 (-291 (-202))) (-628 (-291 (-202))) (-588 (-1085)) (-1166 (-291 (-202))))) (-15 -3623 ((-2 (|:| |stiffnessFactor| (-354)) (|:| |stabilityFactor| (-354))) (-628 (-291 (-202))))) (-15 -3157 ((-2 (|:| |stiffnessFactor| (-354)) (|:| |stabilityFactor| (-354))) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1936 ((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2279 ((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2794 ((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2086 ((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (T -184)) -((-2086 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-354)) (-5 *1 (-184)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-354)) (-5 *1 (-184)))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-354)) (-5 *1 (-184)))) (-1936 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-354)) (-5 *1 (-184)))) (-3157 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-354)) (|:| |stabilityFactor| (-354)))) (-5 *1 (-184)))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-628 (-291 (-202)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-354)) (|:| |stabilityFactor| (-354)))) (-5 *1 (-184)))) (-2330 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-628 (-291 (-202)))) (-5 *3 (-588 (-1085))) (-5 *4 (-1166 (-291 (-202)))) (-5 *1 (-184)))) (-2435 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 (-291 (-202)))) (-5 *4 (-588 (-1085))) (-5 *2 (-628 (-291 (-202)))) (-5 *1 (-184)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-628 (-291 (-202)))) (-5 *2 (-354)) (-5 *1 (-184)))) (-3980 (*1 *2 *2 *3) (-12 (-5 *3 (-588 (-354))) (-5 *2 (-354)) (-5 *1 (-184)))) (-3980 (*1 *2 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-184))))) -(-10 -7 (-15 -3980 ((-354) (-354) (-354))) (-15 -3980 ((-354) (-354) (-588 (-354)))) (-15 -3384 ((-354) (-628 (-291 (-202))))) (-15 -2435 ((-628 (-291 (-202))) (-1166 (-291 (-202))) (-588 (-1085)))) (-15 -2330 ((-628 (-291 (-202))) (-628 (-291 (-202))) (-588 (-1085)) (-1166 (-291 (-202))))) (-15 -3623 ((-2 (|:| |stiffnessFactor| (-354)) (|:| |stabilityFactor| (-354))) (-628 (-291 (-202))))) (-15 -3157 ((-2 (|:| |stiffnessFactor| (-354)) (|:| |stabilityFactor| (-354))) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1936 ((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2279 ((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2794 ((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2086 ((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) -((-1419 (((-108) $ $) NIL)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 37)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-3221 (((-960) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 60)) (-1562 (((-108) $ $) NIL))) -(((-185) (-737)) (T -185)) -NIL -(-737) -((-1419 (((-108) $ $) NIL)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 37)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-3221 (((-960) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 60)) (-1562 (((-108) $ $) NIL))) -(((-186) (-737)) (T -186)) -NIL -(-737) -((-1419 (((-108) $ $) NIL)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 36)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-3221 (((-960) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 64)) (-1562 (((-108) $ $) NIL))) -(((-187) (-737)) (T -187)) -NIL -(-737) -((-1419 (((-108) $ $) NIL)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 42)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-3221 (((-960) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 73)) (-1562 (((-108) $ $) NIL))) -(((-188) (-737)) (T -188)) -NIL -(-737) -((-4127 (((-588 (-1085)) (-1085) (-708)) 22)) (-3240 (((-291 (-202)) (-291 (-202))) 29)) (-2220 (((-108) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) 67)) (-2528 (((-108) (-202) (-202) (-588 (-291 (-202)))) 43))) -(((-189) (-10 -7 (-15 -4127 ((-588 (-1085)) (-1085) (-708))) (-15 -3240 ((-291 (-202)) (-291 (-202)))) (-15 -2528 ((-108) (-202) (-202) (-588 (-291 (-202))))) (-15 -2220 ((-108) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202))))))) (T -189)) -((-2220 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) (-5 *2 (-108)) (-5 *1 (-189)))) (-2528 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-588 (-291 (-202)))) (-5 *3 (-202)) (-5 *2 (-108)) (-5 *1 (-189)))) (-3240 (*1 *2 *2) (-12 (-5 *2 (-291 (-202))) (-5 *1 (-189)))) (-4127 (*1 *2 *3 *4) (-12 (-5 *4 (-708)) (-5 *2 (-588 (-1085))) (-5 *1 (-189)) (-5 *3 (-1085))))) -(-10 -7 (-15 -4127 ((-588 (-1085)) (-1085) (-708))) (-15 -3240 ((-291 (-202)) (-291 (-202)))) (-15 -2528 ((-108) (-202) (-202) (-588 (-291 (-202))))) (-15 -2220 ((-108) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))))) -((-1419 (((-108) $ $) NIL)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) 17)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-3536 (((-960) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) 55)) (-1562 (((-108) $ $) NIL))) -(((-190) (-824)) (T -190)) -NIL -(-824) -((-1419 (((-108) $ $) NIL)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) 12)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-3536 (((-960) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) NIL)) (-1562 (((-108) $ $) NIL))) -(((-191) (-824)) (T -191)) -NIL -(-824) -((-1419 (((-108) $ $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2113 (((-1171) $) 36) (((-1171) $ (-850) (-850)) 38)) (-2683 (($ $ (-916)) 19) (((-222 (-1068)) $ (-1085)) 15)) (-1757 (((-1171) $) 34)) (-2217 (((-792) $) 31) (($ (-588 |#1|)) 8)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $ $) 27)) (-1661 (($ $ $) 22))) -(((-192 |#1|) (-13 (-1014) (-10 -8 (-15 -2683 ($ $ (-916))) (-15 -2683 ((-222 (-1068)) $ (-1085))) (-15 -1661 ($ $ $)) (-15 -1672 ($ $ $)) (-15 -2217 ($ (-588 |#1|))) (-15 -1757 ((-1171) $)) (-15 -2113 ((-1171) $)) (-15 -2113 ((-1171) $ (-850) (-850))))) (-13 (-784) (-10 -8 (-15 -2683 ((-1068) $ (-1085))) (-15 -1757 ((-1171) $)) (-15 -2113 ((-1171) $))))) (T -192)) -((-2683 (*1 *1 *1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-192 *3)) (-4 *3 (-13 (-784) (-10 -8 (-15 -2683 ((-1068) $ (-1085))) (-15 -1757 ((-1171) $)) (-15 -2113 ((-1171) $))))))) (-2683 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-222 (-1068))) (-5 *1 (-192 *4)) (-4 *4 (-13 (-784) (-10 -8 (-15 -2683 ((-1068) $ *3)) (-15 -1757 ((-1171) $)) (-15 -2113 ((-1171) $))))))) (-1661 (*1 *1 *1 *1) (-12 (-5 *1 (-192 *2)) (-4 *2 (-13 (-784) (-10 -8 (-15 -2683 ((-1068) $ (-1085))) (-15 -1757 ((-1171) $)) (-15 -2113 ((-1171) $))))))) (-1672 (*1 *1 *1 *1) (-12 (-5 *1 (-192 *2)) (-4 *2 (-13 (-784) (-10 -8 (-15 -2683 ((-1068) $ (-1085))) (-15 -1757 ((-1171) $)) (-15 -2113 ((-1171) $))))))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-13 (-784) (-10 -8 (-15 -2683 ((-1068) $ (-1085))) (-15 -1757 ((-1171) $)) (-15 -2113 ((-1171) $))))) (-5 *1 (-192 *3)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-192 *3)) (-4 *3 (-13 (-784) (-10 -8 (-15 -2683 ((-1068) $ (-1085))) (-15 -1757 (*2 $)) (-15 -2113 (*2 $))))))) (-2113 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-192 *3)) (-4 *3 (-13 (-784) (-10 -8 (-15 -2683 ((-1068) $ (-1085))) (-15 -1757 (*2 $)) (-15 -2113 (*2 $))))))) (-2113 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1171)) (-5 *1 (-192 *4)) (-4 *4 (-13 (-784) (-10 -8 (-15 -2683 ((-1068) $ (-1085))) (-15 -1757 (*2 $)) (-15 -2113 (*2 $)))))))) -(-13 (-1014) (-10 -8 (-15 -2683 ($ $ (-916))) (-15 -2683 ((-222 (-1068)) $ (-1085))) (-15 -1661 ($ $ $)) (-15 -1672 ($ $ $)) (-15 -2217 ($ (-588 |#1|))) (-15 -1757 ((-1171) $)) (-15 -2113 ((-1171) $)) (-15 -2113 ((-1171) $ (-850) (-850))))) -((-1339 ((|#2| |#4| (-1 |#2| |#2|)) 46))) -(((-193 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1339 (|#2| |#4| (-1 |#2| |#2|)))) (-338) (-1142 |#1|) (-1142 (-382 |#2|)) (-317 |#1| |#2| |#3|)) (T -193)) -((-1339 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-338)) (-4 *6 (-1142 (-382 *2))) (-4 *2 (-1142 *5)) (-5 *1 (-193 *5 *2 *6 *3)) (-4 *3 (-317 *5 *2 *6))))) -(-10 -7 (-15 -1339 (|#2| |#4| (-1 |#2| |#2|)))) -((-2570 ((|#2| |#2| (-708) |#2|) 41)) (-1788 ((|#2| |#2| (-708) |#2|) 37)) (-2665 (((-588 |#2|) (-588 (-2 (|:| |deg| (-708)) (|:| -2592 |#2|)))) 57)) (-3209 (((-588 (-2 (|:| |deg| (-708)) (|:| -2592 |#2|))) |#2|) 52)) (-3508 (((-108) |#2|) 49)) (-3903 (((-393 |#2|) |#2|) 76)) (-2006 (((-393 |#2|) |#2|) 75)) (-2433 ((|#2| |#2| (-708) |#2|) 35)) (-2543 (((-2 (|:| |cont| |#1|) (|:| -4045 (-588 (-2 (|:| |irr| |#2|) (|:| -4160 (-522)))))) |#2| (-108)) 68))) -(((-194 |#1| |#2|) (-10 -7 (-15 -2006 ((-393 |#2|) |#2|)) (-15 -3903 ((-393 |#2|) |#2|)) (-15 -2543 ((-2 (|:| |cont| |#1|) (|:| -4045 (-588 (-2 (|:| |irr| |#2|) (|:| -4160 (-522)))))) |#2| (-108))) (-15 -3209 ((-588 (-2 (|:| |deg| (-708)) (|:| -2592 |#2|))) |#2|)) (-15 -2665 ((-588 |#2|) (-588 (-2 (|:| |deg| (-708)) (|:| -2592 |#2|))))) (-15 -2433 (|#2| |#2| (-708) |#2|)) (-15 -1788 (|#2| |#2| (-708) |#2|)) (-15 -2570 (|#2| |#2| (-708) |#2|)) (-15 -3508 ((-108) |#2|))) (-324) (-1142 |#1|)) (T -194)) -((-3508 (*1 *2 *3) (-12 (-4 *4 (-324)) (-5 *2 (-108)) (-5 *1 (-194 *4 *3)) (-4 *3 (-1142 *4)))) (-2570 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-708)) (-4 *4 (-324)) (-5 *1 (-194 *4 *2)) (-4 *2 (-1142 *4)))) (-1788 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-708)) (-4 *4 (-324)) (-5 *1 (-194 *4 *2)) (-4 *2 (-1142 *4)))) (-2433 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-708)) (-4 *4 (-324)) (-5 *1 (-194 *4 *2)) (-4 *2 (-1142 *4)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| |deg| (-708)) (|:| -2592 *5)))) (-4 *5 (-1142 *4)) (-4 *4 (-324)) (-5 *2 (-588 *5)) (-5 *1 (-194 *4 *5)))) (-3209 (*1 *2 *3) (-12 (-4 *4 (-324)) (-5 *2 (-588 (-2 (|:| |deg| (-708)) (|:| -2592 *3)))) (-5 *1 (-194 *4 *3)) (-4 *3 (-1142 *4)))) (-2543 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-324)) (-5 *2 (-2 (|:| |cont| *5) (|:| -4045 (-588 (-2 (|:| |irr| *3) (|:| -4160 (-522))))))) (-5 *1 (-194 *5 *3)) (-4 *3 (-1142 *5)))) (-3903 (*1 *2 *3) (-12 (-4 *4 (-324)) (-5 *2 (-393 *3)) (-5 *1 (-194 *4 *3)) (-4 *3 (-1142 *4)))) (-2006 (*1 *2 *3) (-12 (-4 *4 (-324)) (-5 *2 (-393 *3)) (-5 *1 (-194 *4 *3)) (-4 *3 (-1142 *4))))) -(-10 -7 (-15 -2006 ((-393 |#2|) |#2|)) (-15 -3903 ((-393 |#2|) |#2|)) (-15 -2543 ((-2 (|:| |cont| |#1|) (|:| -4045 (-588 (-2 (|:| |irr| |#2|) (|:| -4160 (-522)))))) |#2| (-108))) (-15 -3209 ((-588 (-2 (|:| |deg| (-708)) (|:| -2592 |#2|))) |#2|)) (-15 -2665 ((-588 |#2|) (-588 (-2 (|:| |deg| (-708)) (|:| -2592 |#2|))))) (-15 -2433 (|#2| |#2| (-708) |#2|)) (-15 -1788 (|#2| |#2| (-708) |#2|)) (-15 -2570 (|#2| |#2| (-708) |#2|)) (-15 -3508 ((-108) |#2|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3049 (((-522) $) NIL (|has| (-522) (-283)))) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-2805 (((-108) $ $) NIL)) (-3355 (((-522) $) NIL (|has| (-522) (-757)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) NIL) (((-3 (-1085) "failed") $) NIL (|has| (-522) (-962 (-1085)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| (-522) (-962 (-522)))) (((-3 (-522) "failed") $) NIL (|has| (-522) (-962 (-522))))) (-1478 (((-522) $) NIL) (((-1085) $) NIL (|has| (-522) (-962 (-1085)))) (((-382 (-522)) $) NIL (|has| (-522) (-962 (-522)))) (((-522) $) NIL (|has| (-522) (-962 (-522))))) (-2333 (($ $ $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| (-522) (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| (-522) (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-628 (-522)) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3344 (($) NIL (|has| (-522) (-507)))) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-3603 (((-108) $) NIL (|has| (-522) (-757)))) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| (-522) (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| (-522) (-815 (-354))))) (-2859 (((-108) $) NIL)) (-1558 (($ $) NIL)) (-2947 (((-522) $) NIL)) (-4208 (((-3 $ "failed") $) NIL (|has| (-522) (-1061)))) (-3740 (((-108) $) NIL (|has| (-522) (-757)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1308 (($ $ $) NIL (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (|has| (-522) (-784)))) (-3810 (($ (-1 (-522) (-522)) $) NIL)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-3937 (($) NIL (|has| (-522) (-1061)) CONST)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4194 (($ $) NIL (|has| (-522) (-283))) (((-382 (-522)) $) NIL)) (-3592 (((-522) $) NIL (|has| (-522) (-507)))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-2006 (((-393 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2330 (($ $ (-588 (-522)) (-588 (-522))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-522) (-522)) NIL (|has| (-522) (-285 (-522)))) (($ $ (-270 (-522))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-588 (-270 (-522)))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-588 (-1085)) (-588 (-522))) NIL (|has| (-522) (-483 (-1085) (-522)))) (($ $ (-1085) (-522)) NIL (|has| (-522) (-483 (-1085) (-522))))) (-4031 (((-708) $) NIL)) (-2683 (($ $ (-522)) NIL (|has| (-522) (-262 (-522) (-522))))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-2731 (($ $) NIL (|has| (-522) (-210))) (($ $ (-708)) NIL (|has| (-522) (-210))) (($ $ (-1085)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1 (-522) (-522)) (-708)) NIL) (($ $ (-1 (-522) (-522))) NIL)) (-2762 (($ $) NIL)) (-2959 (((-522) $) NIL)) (-2584 (($ (-382 (-522))) 8)) (-3873 (((-821 (-522)) $) NIL (|has| (-522) (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| (-522) (-563 (-821 (-354))))) (((-498) $) NIL (|has| (-522) (-563 (-498)))) (((-354) $) NIL (|has| (-522) (-947))) (((-202) $) NIL (|has| (-522) (-947)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| (-522) (-838))))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) 7) (($ (-522)) NIL) (($ (-1085)) NIL (|has| (-522) (-962 (-1085)))) (((-382 (-522)) $) NIL) (((-930 10) $) 9)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| (-522) (-838))) (|has| (-522) (-133))))) (-2742 (((-708)) NIL)) (-1379 (((-522) $) NIL (|has| (-522) (-507)))) (-1407 (((-108) $ $) NIL)) (-4126 (($ $) NIL (|has| (-522) (-757)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $) NIL (|has| (-522) (-210))) (($ $ (-708)) NIL (|has| (-522) (-210))) (($ $ (-1085)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1 (-522) (-522)) (-708)) NIL) (($ $ (-1 (-522) (-522))) NIL)) (-1623 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1597 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1587 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1682 (($ $ $) NIL) (($ (-522) (-522)) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ (-522) $) NIL) (($ $ (-522)) NIL))) -(((-195) (-13 (-919 (-522)) (-10 -8 (-15 -2217 ((-382 (-522)) $)) (-15 -2217 ((-930 10) $)) (-15 -4194 ((-382 (-522)) $)) (-15 -2584 ($ (-382 (-522))))))) (T -195)) -((-2217 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-195)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-930 10)) (-5 *1 (-195)))) (-4194 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-195)))) (-2584 (*1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-195))))) -(-13 (-919 (-522)) (-10 -8 (-15 -2217 ((-382 (-522)) $)) (-15 -2217 ((-930 10) $)) (-15 -4194 ((-382 (-522)) $)) (-15 -2584 ($ (-382 (-522)))))) -((-2611 (((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-588 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1007 (-777 |#2|)) (-1068)) 27) (((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-588 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1007 (-777 |#2|))) 23)) (-2453 (((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-588 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085) (-777 |#2|) (-777 |#2|) (-108)) 16))) -(((-196 |#1| |#2|) (-10 -7 (-15 -2611 ((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-588 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1007 (-777 |#2|)))) (-15 -2611 ((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-588 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1007 (-777 |#2|)) (-1068))) (-15 -2453 ((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-588 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085) (-777 |#2|) (-777 |#2|) (-108)))) (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))) (-13 (-1106) (-887) (-29 |#1|))) (T -196)) -((-2453 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1085)) (-5 *6 (-108)) (-4 *7 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-4 *3 (-13 (-1106) (-887) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-777 *3)) (|:| |f2| (-588 (-777 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-196 *7 *3)) (-5 *5 (-777 *3)))) (-2611 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1007 (-777 *3))) (-5 *5 (-1068)) (-4 *3 (-13 (-1106) (-887) (-29 *6))) (-4 *6 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-3 (|:| |f1| (-777 *3)) (|:| |f2| (-588 (-777 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-196 *6 *3)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-1007 (-777 *3))) (-4 *3 (-13 (-1106) (-887) (-29 *5))) (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-3 (|:| |f1| (-777 *3)) (|:| |f2| (-588 (-777 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-196 *5 *3))))) -(-10 -7 (-15 -2611 ((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-588 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1007 (-777 |#2|)))) (-15 -2611 ((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-588 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1007 (-777 |#2|)) (-1068))) (-15 -2453 ((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-588 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085) (-777 |#2|) (-777 |#2|) (-108)))) -((-2611 (((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-382 (-881 |#1|)))) (-1068)) 44) (((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-382 (-881 |#1|))))) 41) (((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-291 |#1|))) (-1068)) 45) (((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-291 |#1|)))) 17))) -(((-197 |#1|) (-10 -7 (-15 -2611 ((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-291 |#1|))))) (-15 -2611 ((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-291 |#1|))) (-1068))) (-15 -2611 ((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-382 (-881 |#1|)))))) (-15 -2611 ((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-382 (-881 |#1|)))) (-1068)))) (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (T -197)) -((-2611 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1007 (-777 (-382 (-881 *6))))) (-5 *5 (-1068)) (-5 *3 (-382 (-881 *6))) (-4 *6 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-3 (|:| |f1| (-777 (-291 *6))) (|:| |f2| (-588 (-777 (-291 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *6)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-1007 (-777 (-382 (-881 *5))))) (-5 *3 (-382 (-881 *5))) (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-3 (|:| |f1| (-777 (-291 *5))) (|:| |f2| (-588 (-777 (-291 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *5)))) (-2611 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-382 (-881 *6))) (-5 *4 (-1007 (-777 (-291 *6)))) (-5 *5 (-1068)) (-4 *6 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-3 (|:| |f1| (-777 (-291 *6))) (|:| |f2| (-588 (-777 (-291 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *6)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1007 (-777 (-291 *5)))) (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-3 (|:| |f1| (-777 (-291 *5))) (|:| |f2| (-588 (-777 (-291 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *5))))) -(-10 -7 (-15 -2611 ((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-291 |#1|))))) (-15 -2611 ((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-291 |#1|))) (-1068))) (-15 -2611 ((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-382 (-881 |#1|)))))) (-15 -2611 ((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-382 (-881 |#1|)))) (-1068)))) -((-2153 (((-2 (|:| -1976 (-1081 |#1|)) (|:| |deg| (-850))) (-1081 |#1|)) 21)) (-1663 (((-588 (-291 |#2|)) (-291 |#2|) (-850)) 43))) -(((-198 |#1| |#2|) (-10 -7 (-15 -2153 ((-2 (|:| -1976 (-1081 |#1|)) (|:| |deg| (-850))) (-1081 |#1|))) (-15 -1663 ((-588 (-291 |#2|)) (-291 |#2|) (-850)))) (-971) (-13 (-514) (-784))) (T -198)) -((-1663 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-4 *6 (-13 (-514) (-784))) (-5 *2 (-588 (-291 *6))) (-5 *1 (-198 *5 *6)) (-5 *3 (-291 *6)) (-4 *5 (-971)))) (-2153 (*1 *2 *3) (-12 (-4 *4 (-971)) (-5 *2 (-2 (|:| -1976 (-1081 *4)) (|:| |deg| (-850)))) (-5 *1 (-198 *4 *5)) (-5 *3 (-1081 *4)) (-4 *5 (-13 (-514) (-784)))))) -(-10 -7 (-15 -2153 ((-2 (|:| -1976 (-1081 |#1|)) (|:| |deg| (-850))) (-1081 |#1|))) (-15 -1663 ((-588 (-291 |#2|)) (-291 |#2|) (-850)))) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2892 ((|#1| $) NIL)) (-1322 ((|#1| $) 25)) (-2717 (((-108) $ (-708)) NIL)) (-3367 (($) NIL T CONST)) (-2876 (($ $) NIL)) (-2465 (($ $) 31)) (-2622 ((|#1| |#1| $) NIL)) (-2956 ((|#1| $) NIL)) (-2395 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) NIL)) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2397 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-4030 (((-708) $) NIL)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1431 ((|#1| $) NIL)) (-1406 ((|#1| |#1| $) 28)) (-1930 ((|#1| |#1| $) 30)) (-3365 (($ |#1| $) NIL)) (-4179 (((-708) $) 27)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-4056 ((|#1| $) NIL)) (-1844 ((|#1| $) 26)) (-3064 ((|#1| $) 24)) (-3295 ((|#1| $) NIL)) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3036 ((|#1| |#1| $) NIL)) (-3494 (((-108) $) 9)) (-3298 (($) NIL)) (-1402 ((|#1| $) NIL)) (-3464 (($) NIL) (($ (-588 |#1|)) 16)) (-3735 (((-708) $) NIL)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) NIL)) (-2217 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-2049 ((|#1| $) 13)) (-2501 (($ (-588 |#1|)) NIL)) (-2653 ((|#1| $) NIL)) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-199 |#1|) (-13 (-230 |#1|) (-10 -8 (-15 -3464 ($ (-588 |#1|))))) (-1014)) (T -199)) -((-3464 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-199 *3))))) -(-13 (-230 |#1|) (-10 -8 (-15 -3464 ($ (-588 |#1|))))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-1863 (($ (-291 |#1|)) 23)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-1608 (((-108) $) NIL)) (-3700 (((-3 (-291 |#1|) "failed") $) NIL)) (-1478 (((-291 |#1|) $) NIL)) (-3241 (($ $) 31)) (-3920 (((-3 $ "failed") $) NIL)) (-2859 (((-108) $) NIL)) (-3810 (($ (-1 (-291 |#1|) (-291 |#1|)) $) NIL)) (-3224 (((-291 |#1|) $) NIL)) (-2778 (($ $) 30)) (-2311 (((-1068) $) NIL)) (-3532 (((-108) $) NIL)) (-4174 (((-1032) $) NIL)) (-1368 (($ (-708)) NIL)) (-2750 (($ $) 32)) (-2487 (((-522) $) NIL)) (-2217 (((-792) $) 57) (($ (-522)) NIL) (($ (-291 |#1|)) NIL)) (-1643 (((-291 |#1|) $ $) NIL)) (-2742 (((-708)) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 25 T CONST)) (-3709 (($) 50 T CONST)) (-1562 (((-108) $ $) 28)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) 19)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 24) (($ (-291 |#1|) $) 18))) -(((-200 |#1| |#2|) (-13 (-566 (-291 |#1|)) (-962 (-291 |#1|)) (-10 -8 (-15 -3224 ((-291 |#1|) $)) (-15 -2778 ($ $)) (-15 -3241 ($ $)) (-15 -1643 ((-291 |#1|) $ $)) (-15 -1368 ($ (-708))) (-15 -3532 ((-108) $)) (-15 -1608 ((-108) $)) (-15 -2487 ((-522) $)) (-15 -3810 ($ (-1 (-291 |#1|) (-291 |#1|)) $)) (-15 -1863 ($ (-291 |#1|))) (-15 -2750 ($ $)))) (-13 (-971) (-784)) (-588 (-1085))) (T -200)) -((-3224 (*1 *2 *1) (-12 (-5 *2 (-291 *3)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-971) (-784))) (-14 *4 (-588 (-1085))))) (-2778 (*1 *1 *1) (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-971) (-784))) (-14 *3 (-588 (-1085))))) (-3241 (*1 *1 *1) (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-971) (-784))) (-14 *3 (-588 (-1085))))) (-1643 (*1 *2 *1 *1) (-12 (-5 *2 (-291 *3)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-971) (-784))) (-14 *4 (-588 (-1085))))) (-1368 (*1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-971) (-784))) (-14 *4 (-588 (-1085))))) (-3532 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-971) (-784))) (-14 *4 (-588 (-1085))))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-971) (-784))) (-14 *4 (-588 (-1085))))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-971) (-784))) (-14 *4 (-588 (-1085))))) (-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-291 *3) (-291 *3))) (-4 *3 (-13 (-971) (-784))) (-5 *1 (-200 *3 *4)) (-14 *4 (-588 (-1085))))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-291 *3)) (-4 *3 (-13 (-971) (-784))) (-5 *1 (-200 *3 *4)) (-14 *4 (-588 (-1085))))) (-2750 (*1 *1 *1) (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-971) (-784))) (-14 *3 (-588 (-1085)))))) -(-13 (-566 (-291 |#1|)) (-962 (-291 |#1|)) (-10 -8 (-15 -3224 ((-291 |#1|) $)) (-15 -2778 ($ $)) (-15 -3241 ($ $)) (-15 -1643 ((-291 |#1|) $ $)) (-15 -1368 ($ (-708))) (-15 -3532 ((-108) $)) (-15 -1608 ((-108) $)) (-15 -2487 ((-522) $)) (-15 -3810 ($ (-1 (-291 |#1|) (-291 |#1|)) $)) (-15 -1863 ($ (-291 |#1|))) (-15 -2750 ($ $)))) -((-2314 (((-108) (-1068)) 22)) (-2833 (((-3 (-777 |#2|) "failed") (-561 |#2|) |#2| (-777 |#2|) (-777 |#2|) (-108)) 32)) (-2375 (((-3 (-108) "failed") (-1081 |#2|) (-777 |#2|) (-777 |#2|) (-108)) 73) (((-3 (-108) "failed") (-881 |#1|) (-1085) (-777 |#2|) (-777 |#2|) (-108)) 74))) -(((-201 |#1| |#2|) (-10 -7 (-15 -2314 ((-108) (-1068))) (-15 -2833 ((-3 (-777 |#2|) "failed") (-561 |#2|) |#2| (-777 |#2|) (-777 |#2|) (-108))) (-15 -2375 ((-3 (-108) "failed") (-881 |#1|) (-1085) (-777 |#2|) (-777 |#2|) (-108))) (-15 -2375 ((-3 (-108) "failed") (-1081 |#2|) (-777 |#2|) (-777 |#2|) (-108)))) (-13 (-426) (-784) (-962 (-522)) (-584 (-522))) (-13 (-1106) (-29 |#1|))) (T -201)) -((-2375 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1081 *6)) (-5 *4 (-777 *6)) (-4 *6 (-13 (-1106) (-29 *5))) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-201 *5 *6)))) (-2375 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-881 *6)) (-5 *4 (-1085)) (-5 *5 (-777 *7)) (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-4 *7 (-13 (-1106) (-29 *6))) (-5 *1 (-201 *6 *7)))) (-2833 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-777 *4)) (-5 *3 (-561 *4)) (-5 *5 (-108)) (-4 *4 (-13 (-1106) (-29 *6))) (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-201 *6 *4)))) (-2314 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-108)) (-5 *1 (-201 *4 *5)) (-4 *5 (-13 (-1106) (-29 *4)))))) -(-10 -7 (-15 -2314 ((-108) (-1068))) (-15 -2833 ((-3 (-777 |#2|) "failed") (-561 |#2|) |#2| (-777 |#2|) (-777 |#2|) (-108))) (-15 -2375 ((-3 (-108) "failed") (-881 |#1|) (-1085) (-777 |#2|) (-777 |#2|) (-108))) (-15 -2375 ((-3 (-108) "failed") (-1081 |#2|) (-777 |#2|) (-777 |#2|) (-108)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 89)) (-3049 (((-522) $) 99)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-3495 (($ $) NIL)) (-3044 (($ $) 77)) (-2923 (($ $) 65)) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2016 (($ $) 56)) (-2805 (((-108) $ $) NIL)) (-3023 (($ $) 75)) (-2906 (($ $) 63)) (-3355 (((-522) $) 116)) (-3066 (($ $) 80)) (-2936 (($ $) 67)) (-3367 (($) NIL T CONST)) (-1943 (($ $) NIL)) (-3700 (((-3 (-522) "failed") $) 115) (((-3 (-382 (-522)) "failed") $) 112)) (-1478 (((-522) $) 113) (((-382 (-522)) $) 110)) (-2333 (($ $ $) NIL)) (-3920 (((-3 $ "failed") $) 92)) (-2012 (((-382 (-522)) $ (-708)) 108) (((-382 (-522)) $ (-708) (-708)) 107)) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-3684 (((-850)) 29) (((-850) (-850)) NIL (|has| $ (-6 -4229)))) (-3603 (((-108) $) NIL)) (-2980 (($) 39)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL)) (-3872 (((-522) $) 35)) (-2859 (((-108) $) NIL)) (-1811 (($ $ (-522)) NIL)) (-1269 (($ $) NIL)) (-3740 (((-108) $) 88)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1308 (($ $ $) 53) (($) 34 (-12 (-2473 (|has| $ (-6 -4221))) (-2473 (|has| $ (-6 -4229)))))) (-2524 (($ $ $) 52) (($) 33 (-12 (-2473 (|has| $ (-6 -4221))) (-2473 (|has| $ (-6 -4229)))))) (-3451 (((-522) $) 27)) (-1686 (($ $) 30)) (-3297 (($ $) 57)) (-1238 (($ $) 62)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-1494 (((-850) (-522)) NIL (|has| $ (-6 -4229)))) (-4174 (((-1032) $) NIL) (((-522) $) 90)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4194 (($ $) NIL)) (-3592 (($ $) NIL)) (-3173 (($ (-522) (-522)) NIL) (($ (-522) (-522) (-850)) 100)) (-2006 (((-393 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3858 (((-522) $) 28)) (-3061 (($) 38)) (-3357 (($ $) 61)) (-4031 (((-708) $) NIL)) (-1396 (((-1068) (-1068)) 8)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-3353 (((-850)) NIL) (((-850) (-850)) NIL (|has| $ (-6 -4229)))) (-2731 (($ $ (-708)) NIL) (($ $) 93)) (-1688 (((-850) (-522)) NIL (|has| $ (-6 -4229)))) (-1831 (($ $) 78)) (-2946 (($ $) 68)) (-3054 (($ $) 79)) (-2928 (($ $) 66)) (-3035 (($ $) 76)) (-2915 (($ $) 64)) (-3873 (((-354) $) 104) (((-202) $) 101) (((-821 (-354)) $) NIL) (((-498) $) 45)) (-2217 (((-792) $) 42) (($ (-522)) 60) (($ $) NIL) (($ (-382 (-522))) NIL) (($ (-522)) 60) (($ (-382 (-522))) NIL)) (-2742 (((-708)) NIL)) (-1379 (($ $) NIL)) (-2780 (((-850)) 32) (((-850) (-850)) NIL (|has| $ (-6 -4229)))) (-1897 (((-850)) 25)) (-1856 (($ $) 83)) (-2976 (($ $) 71) (($ $ $) 109)) (-1407 (((-108) $ $) NIL)) (-1839 (($ $) 81)) (-2957 (($ $) 69)) (-1873 (($ $) 86)) (-3001 (($ $) 74)) (-2476 (($ $) 84)) (-3011 (($ $) 72)) (-1864 (($ $) 85)) (-2989 (($ $) 73)) (-1849 (($ $) 82)) (-2966 (($ $) 70)) (-4126 (($ $) 117)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) 36 T CONST)) (-3709 (($) 37 T CONST)) (-2810 (((-1068) $) 19) (((-1068) $ (-108)) 21) (((-1171) (-759) $) 22) (((-1171) (-759) $ (-108)) 23)) (-2245 (($ $) 96)) (-2252 (($ $ (-708)) NIL) (($ $) NIL)) (-2288 (($ $ $) 98)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 54)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 46)) (-1682 (($ $ $) 87) (($ $ (-522)) 55)) (-1672 (($ $) 47) (($ $ $) 49)) (-1661 (($ $ $) 48)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) 58) (($ $ (-382 (-522))) 128) (($ $ $) 59)) (* (($ (-850) $) 31) (($ (-708) $) NIL) (($ (-522) $) 51) (($ $ $) 50) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL))) -(((-202) (-13 (-379) (-210) (-765) (-1106) (-563 (-498)) (-10 -8 (-15 -1682 ($ $ (-522))) (-15 ** ($ $ $)) (-15 -3061 ($)) (-15 -4174 ((-522) $)) (-15 -1686 ($ $)) (-15 -3297 ($ $)) (-15 -2976 ($ $ $)) (-15 -2245 ($ $)) (-15 -2288 ($ $ $)) (-15 -1396 ((-1068) (-1068))) (-15 -2012 ((-382 (-522)) $ (-708))) (-15 -2012 ((-382 (-522)) $ (-708) (-708)))))) (T -202)) -((** (*1 *1 *1 *1) (-5 *1 (-202))) (-1682 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-202)))) (-3061 (*1 *1) (-5 *1 (-202))) (-4174 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-202)))) (-1686 (*1 *1 *1) (-5 *1 (-202))) (-3297 (*1 *1 *1) (-5 *1 (-202))) (-2976 (*1 *1 *1 *1) (-5 *1 (-202))) (-2245 (*1 *1 *1) (-5 *1 (-202))) (-2288 (*1 *1 *1 *1) (-5 *1 (-202))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-202)))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *2 (-382 (-522))) (-5 *1 (-202)))) (-2012 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-708)) (-5 *2 (-382 (-522))) (-5 *1 (-202))))) -(-13 (-379) (-210) (-765) (-1106) (-563 (-498)) (-10 -8 (-15 -1682 ($ $ (-522))) (-15 ** ($ $ $)) (-15 -3061 ($)) (-15 -4174 ((-522) $)) (-15 -1686 ($ $)) (-15 -3297 ($ $)) (-15 -2976 ($ $ $)) (-15 -2245 ($ $)) (-15 -2288 ($ $ $)) (-15 -1396 ((-1068) (-1068))) (-15 -2012 ((-382 (-522)) $ (-708))) (-15 -2012 ((-382 (-522)) $ (-708) (-708))))) -((-3056 (((-154 (-202)) (-708) (-154 (-202))) 11) (((-202) (-708) (-202)) 12)) (-3100 (((-154 (-202)) (-154 (-202))) 13) (((-202) (-202)) 14)) (-4077 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 19) (((-202) (-202) (-202)) 22)) (-2852 (((-154 (-202)) (-154 (-202))) 25) (((-202) (-202)) 24)) (-2248 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 43) (((-202) (-202) (-202)) 35)) (-1551 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 48) (((-202) (-202) (-202)) 45)) (-3047 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 15) (((-202) (-202) (-202)) 16)) (-2039 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 17) (((-202) (-202) (-202)) 18)) (-3799 (((-154 (-202)) (-154 (-202))) 60) (((-202) (-202)) 59)) (-2022 (((-202) (-202)) 54) (((-154 (-202)) (-154 (-202))) 58)) (-2245 (((-154 (-202)) (-154 (-202))) 7) (((-202) (-202)) 9)) (-2288 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 30) (((-202) (-202) (-202)) 26))) -(((-203) (-10 -7 (-15 -2245 ((-202) (-202))) (-15 -2245 ((-154 (-202)) (-154 (-202)))) (-15 -2288 ((-202) (-202) (-202))) (-15 -2288 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -3100 ((-202) (-202))) (-15 -3100 ((-154 (-202)) (-154 (-202)))) (-15 -2852 ((-202) (-202))) (-15 -2852 ((-154 (-202)) (-154 (-202)))) (-15 -3056 ((-202) (-708) (-202))) (-15 -3056 ((-154 (-202)) (-708) (-154 (-202)))) (-15 -3047 ((-202) (-202) (-202))) (-15 -3047 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -2248 ((-202) (-202) (-202))) (-15 -2248 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -2039 ((-202) (-202) (-202))) (-15 -2039 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -1551 ((-202) (-202) (-202))) (-15 -1551 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -2022 ((-154 (-202)) (-154 (-202)))) (-15 -2022 ((-202) (-202))) (-15 -3799 ((-202) (-202))) (-15 -3799 ((-154 (-202)) (-154 (-202)))) (-15 -4077 ((-202) (-202) (-202))) (-15 -4077 ((-154 (-202)) (-154 (-202)) (-154 (-202)))))) (T -203)) -((-4077 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-4077 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-2022 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-2022 (*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-1551 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-1551 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-2039 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-2039 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-2248 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-2248 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-3047 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-3047 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-3056 (*1 *2 *3 *2) (-12 (-5 *2 (-154 (-202))) (-5 *3 (-708)) (-5 *1 (-203)))) (-3056 (*1 *2 *3 *2) (-12 (-5 *2 (-202)) (-5 *3 (-708)) (-5 *1 (-203)))) (-2852 (*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-2852 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-3100 (*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-3100 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-2288 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-2288 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-2245 (*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-2245 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))) -(-10 -7 (-15 -2245 ((-202) (-202))) (-15 -2245 ((-154 (-202)) (-154 (-202)))) (-15 -2288 ((-202) (-202) (-202))) (-15 -2288 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -3100 ((-202) (-202))) (-15 -3100 ((-154 (-202)) (-154 (-202)))) (-15 -2852 ((-202) (-202))) (-15 -2852 ((-154 (-202)) (-154 (-202)))) (-15 -3056 ((-202) (-708) (-202))) (-15 -3056 ((-154 (-202)) (-708) (-154 (-202)))) (-15 -3047 ((-202) (-202) (-202))) (-15 -3047 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -2248 ((-202) (-202) (-202))) (-15 -2248 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -2039 ((-202) (-202) (-202))) (-15 -2039 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -1551 ((-202) (-202) (-202))) (-15 -1551 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -2022 ((-154 (-202)) (-154 (-202)))) (-15 -2022 ((-202) (-202))) (-15 -3799 ((-202) (-202))) (-15 -3799 ((-154 (-202)) (-154 (-202)))) (-15 -4077 ((-202) (-202) (-202))) (-15 -4077 ((-154 (-202)) (-154 (-202)) (-154 (-202))))) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1785 (($ (-708) (-708)) NIL)) (-3021 (($ $ $) NIL)) (-2682 (($ (-1166 |#1|)) NIL) (($ $) NIL)) (-2555 (($ |#1| |#1| |#1|) 32)) (-3455 (((-108) $) NIL)) (-3637 (($ $ (-522) (-522)) NIL)) (-1957 (($ $ (-522) (-522)) NIL)) (-1834 (($ $ (-522) (-522) (-522) (-522)) NIL)) (-2449 (($ $) NIL)) (-2208 (((-108) $) NIL)) (-2717 (((-108) $ (-708)) NIL)) (-3352 (($ $ (-522) (-522) $) NIL)) (-2437 ((|#1| $ (-522) (-522) |#1|) NIL) (($ $ (-588 (-522)) (-588 (-522)) $) NIL)) (-3074 (($ $ (-522) (-1166 |#1|)) NIL)) (-4060 (($ $ (-522) (-1166 |#1|)) NIL)) (-3808 (($ |#1| |#1| |#1|) 31)) (-1348 (($ (-708) |#1|) NIL)) (-3367 (($) NIL T CONST)) (-2091 (($ $) NIL (|has| |#1| (-283)))) (-2635 (((-1166 |#1|) $ (-522)) NIL)) (-3544 (($ |#1|) 30)) (-4033 (($ |#1|) 29)) (-1888 (($ |#1|) 28)) (-1692 (((-708) $) NIL (|has| |#1| (-514)))) (-2411 ((|#1| $ (-522) (-522) |#1|) NIL)) (-2186 ((|#1| $ (-522) (-522)) NIL)) (-2395 (((-588 |#1|) $) NIL)) (-2336 (((-708) $) NIL (|has| |#1| (-514)))) (-2819 (((-588 (-1166 |#1|)) $) NIL (|has| |#1| (-514)))) (-2949 (((-708) $) NIL)) (-1893 (($ (-708) (-708) |#1|) NIL)) (-2960 (((-708) $) NIL)) (-1480 (((-108) $ (-708)) NIL)) (-3721 ((|#1| $) NIL (|has| |#1| (-6 (-4240 "*"))))) (-2604 (((-522) $) NIL)) (-4042 (((-522) $) NIL)) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1925 (((-522) $) NIL)) (-2595 (((-522) $) NIL)) (-1347 (($ (-588 (-588 |#1|))) 10)) (-2397 (($ (-1 |#1| |#1|) $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2862 (((-588 (-588 |#1|)) $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-3073 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2505 (($) 11)) (-3594 (($ $ $) NIL)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-1972 (($ $ |#1|) NIL)) (-2276 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514)))) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#1| $ (-522) (-522)) NIL) ((|#1| $ (-522) (-522) |#1|) NIL) (($ $ (-588 (-522)) (-588 (-522))) NIL)) (-3215 (($ (-588 |#1|)) NIL) (($ (-588 $)) NIL)) (-3498 (((-108) $) NIL)) (-2500 ((|#1| $) NIL (|has| |#1| (-6 (-4240 "*"))))) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) NIL)) (-2223 (((-1166 |#1|) $ (-522)) NIL)) (-2217 (($ (-1166 |#1|)) NIL) (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-4047 (((-108) $) NIL)) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1672 (($ $ $) NIL) (($ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-522) $) NIL) (((-1166 |#1|) $ (-1166 |#1|)) 14) (((-1166 |#1|) (-1166 |#1|) $) NIL) (((-872 |#1|) $ (-872 |#1|)) 20)) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-204 |#1|) (-13 (-626 |#1| (-1166 |#1|) (-1166 |#1|)) (-10 -8 (-15 * ((-872 |#1|) $ (-872 |#1|))) (-15 -2505 ($)) (-15 -1888 ($ |#1|)) (-15 -4033 ($ |#1|)) (-15 -3544 ($ |#1|)) (-15 -3808 ($ |#1| |#1| |#1|)) (-15 -2555 ($ |#1| |#1| |#1|)))) (-13 (-338) (-1106))) (T -204)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106))) (-5 *1 (-204 *3)))) (-2505 (*1 *1) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106))))) (-1888 (*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106))))) (-4033 (*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106))))) (-3544 (*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106))))) (-3808 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106))))) (-2555 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106)))))) -(-13 (-626 |#1| (-1166 |#1|) (-1166 |#1|)) (-10 -8 (-15 * ((-872 |#1|) $ (-872 |#1|))) (-15 -2505 ($)) (-15 -1888 ($ |#1|)) (-15 -4033 ($ |#1|)) (-15 -3544 ($ |#1|)) (-15 -3808 ($ |#1| |#1| |#1|)) (-15 -2555 ($ |#1| |#1| |#1|)))) -((-1213 (($ (-1 (-108) |#2|) $) 16)) (-1700 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 24)) (-3546 (($) NIL) (($ (-588 |#2|)) 11)) (-1562 (((-108) $ $) 22))) -(((-205 |#1| |#2|) (-10 -8 (-15 -1213 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1700 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1700 (|#1| |#2| |#1|)) (-15 -3546 (|#1| (-588 |#2|))) (-15 -3546 (|#1|)) (-15 -1562 ((-108) |#1| |#1|))) (-206 |#2|) (-1014)) (T -205)) -NIL -(-10 -8 (-15 -1213 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1700 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1700 (|#1| |#2| |#1|)) (-15 -3546 (|#1| (-588 |#2|))) (-15 -3546 (|#1|)) (-15 -1562 ((-108) |#1| |#1|))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-2717 (((-108) $ (-708)) 8)) (-1213 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4238)))) (-3367 (($) 7 T CONST)) (-2379 (($ $) 58 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1700 (($ |#1| $) 47 (|has| $ (-6 -4238))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4238)))) (-1424 (($ |#1| $) 57 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4238)))) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) 9)) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35)) (-3309 (((-108) $ (-708)) 10)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1431 ((|#1| $) 39)) (-3365 (($ |#1| $) 40)) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3295 ((|#1| $) 41)) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-3546 (($) 49) (($ (-588 |#1|)) 48)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-3873 (((-498) $) 59 (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) 50)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-2501 (($ (-588 |#1|)) 42)) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-206 |#1|) (-1197) (-1014)) (T -206)) -NIL -(-13 (-212 |t#1|)) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-212 |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T)) -((-2731 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-708)) 11) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085)) 19) (($ $ (-708)) NIL) (($ $) 16)) (-2252 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-708)) 14) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085)) NIL) (($ $ (-708)) NIL) (($ $) NIL))) -(((-207 |#1| |#2|) (-10 -8 (-15 -2731 (|#1| |#1|)) (-15 -2252 (|#1| |#1|)) (-15 -2731 (|#1| |#1| (-708))) (-15 -2252 (|#1| |#1| (-708))) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2252 (|#1| |#1| (-1085))) (-15 -2252 (|#1| |#1| (-588 (-1085)))) (-15 -2252 (|#1| |#1| (-1085) (-708))) (-15 -2252 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2252 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2252 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|)))) (-208 |#2|) (-971)) (T -207)) -NIL -(-10 -8 (-15 -2731 (|#1| |#1|)) (-15 -2252 (|#1| |#1|)) (-15 -2731 (|#1| |#1| (-708))) (-15 -2252 (|#1| |#1| (-708))) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2252 (|#1| |#1| (-1085))) (-15 -2252 (|#1| |#1| (-588 (-1085)))) (-15 -2252 (|#1| |#1| (-1085) (-708))) (-15 -2252 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2252 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2252 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3920 (((-3 $ "failed") $) 34)) (-2859 (((-108) $) 31)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2731 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-708)) 51) (($ $ (-588 (-1085)) (-588 (-708))) 44 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 43 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 42 (|has| |#1| (-829 (-1085)))) (($ $ (-1085)) 41 (|has| |#1| (-829 (-1085)))) (($ $ (-708)) 39 (|has| |#1| (-210))) (($ $) 37 (|has| |#1| (-210)))) (-2217 (((-792) $) 11) (($ (-522)) 28)) (-2742 (((-708)) 29)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-708)) 49) (($ $ (-588 (-1085)) (-588 (-708))) 48 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 47 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 46 (|has| |#1| (-829 (-1085)))) (($ $ (-1085)) 45 (|has| |#1| (-829 (-1085)))) (($ $ (-708)) 40 (|has| |#1| (-210))) (($ $) 38 (|has| |#1| (-210)))) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-208 |#1|) (-1197) (-971)) (T -208)) -((-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-208 *3)) (-4 *3 (-971)))) (-2731 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-708)) (-4 *1 (-208 *4)) (-4 *4 (-971)))) (-2252 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-208 *3)) (-4 *3 (-971)))) (-2252 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-708)) (-4 *1 (-208 *4)) (-4 *4 (-971))))) -(-13 (-971) (-10 -8 (-15 -2731 ($ $ (-1 |t#1| |t#1|))) (-15 -2731 ($ $ (-1 |t#1| |t#1|) (-708))) (-15 -2252 ($ $ (-1 |t#1| |t#1|))) (-15 -2252 ($ $ (-1 |t#1| |t#1|) (-708))) (IF (|has| |t#1| (-210)) (-6 (-210)) |%noBranch|) (IF (|has| |t#1| (-829 (-1085))) (-6 (-829 (-1085))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-210) |has| |#1| (-210)) ((-590 $) . T) ((-664) . T) ((-829 (-1085)) |has| |#1| (-829 (-1085))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-2731 (($ $) NIL) (($ $ (-708)) 10)) (-2252 (($ $) 8) (($ $ (-708)) 12))) -(((-209 |#1|) (-10 -8 (-15 -2252 (|#1| |#1| (-708))) (-15 -2731 (|#1| |#1| (-708))) (-15 -2252 (|#1| |#1|)) (-15 -2731 (|#1| |#1|))) (-210)) (T -209)) -NIL -(-10 -8 (-15 -2252 (|#1| |#1| (-708))) (-15 -2731 (|#1| |#1| (-708))) (-15 -2252 (|#1| |#1|)) (-15 -2731 (|#1| |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3920 (((-3 $ "failed") $) 34)) (-2859 (((-108) $) 31)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2731 (($ $) 38) (($ $ (-708)) 36)) (-2217 (((-792) $) 11) (($ (-522)) 28)) (-2742 (((-708)) 29)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $) 37) (($ $ (-708)) 35)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-210) (-1197)) (T -210)) -((-2731 (*1 *1 *1) (-4 *1 (-210))) (-2252 (*1 *1 *1) (-4 *1 (-210))) (-2731 (*1 *1 *1 *2) (-12 (-4 *1 (-210)) (-5 *2 (-708)))) (-2252 (*1 *1 *1 *2) (-12 (-4 *1 (-210)) (-5 *2 (-708))))) -(-13 (-971) (-10 -8 (-15 -2731 ($ $)) (-15 -2252 ($ $)) (-15 -2731 ($ $ (-708))) (-15 -2252 ($ $ (-708))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 $) . T) ((-664) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-3546 (($) 12) (($ (-588 |#2|)) NIL)) (-2463 (($ $) 14)) (-2227 (($ (-588 |#2|)) 10)) (-2217 (((-792) $) 21))) -(((-211 |#1| |#2|) (-10 -8 (-15 -2217 ((-792) |#1|)) (-15 -3546 (|#1| (-588 |#2|))) (-15 -3546 (|#1|)) (-15 -2227 (|#1| (-588 |#2|))) (-15 -2463 (|#1| |#1|))) (-212 |#2|) (-1014)) (T -211)) -NIL -(-10 -8 (-15 -2217 ((-792) |#1|)) (-15 -3546 (|#1| (-588 |#2|))) (-15 -3546 (|#1|)) (-15 -2227 (|#1| (-588 |#2|))) (-15 -2463 (|#1| |#1|))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-2717 (((-108) $ (-708)) 8)) (-1213 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4238)))) (-3367 (($) 7 T CONST)) (-2379 (($ $) 58 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1700 (($ |#1| $) 47 (|has| $ (-6 -4238))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4238)))) (-1424 (($ |#1| $) 57 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4238)))) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) 9)) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35)) (-3309 (((-108) $ (-708)) 10)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1431 ((|#1| $) 39)) (-3365 (($ |#1| $) 40)) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3295 ((|#1| $) 41)) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-3546 (($) 49) (($ (-588 |#1|)) 48)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-3873 (((-498) $) 59 (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) 50)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-2501 (($ (-588 |#1|)) 42)) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-212 |#1|) (-1197) (-1014)) (T -212)) -((-3546 (*1 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1014)))) (-3546 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-4 *1 (-212 *3)))) (-1700 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4238)) (-4 *1 (-212 *2)) (-4 *2 (-1014)))) (-1700 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4238)) (-4 *1 (-212 *3)) (-4 *3 (-1014)))) (-1213 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4238)) (-4 *1 (-212 *3)) (-4 *3 (-1014))))) -(-13 (-102 |t#1|) (-139 |t#1|) (-10 -8 (-15 -3546 ($)) (-15 -3546 ($ (-588 |t#1|))) (IF (|has| $ (-6 -4238)) (PROGN (-15 -1700 ($ |t#1| $)) (-15 -1700 ($ (-1 (-108) |t#1|) $)) (-15 -1213 ($ (-1 (-108) |t#1|) $))) |%noBranch|))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T)) -((-4034 (((-2 (|:| |varOrder| (-588 (-1085))) (|:| |inhom| (-3 (-588 (-1166 (-708))) "failed")) (|:| |hom| (-588 (-1166 (-708))))) (-270 (-881 (-522)))) 25))) -(((-213) (-10 -7 (-15 -4034 ((-2 (|:| |varOrder| (-588 (-1085))) (|:| |inhom| (-3 (-588 (-1166 (-708))) "failed")) (|:| |hom| (-588 (-1166 (-708))))) (-270 (-881 (-522))))))) (T -213)) -((-4034 (*1 *2 *3) (-12 (-5 *3 (-270 (-881 (-522)))) (-5 *2 (-2 (|:| |varOrder| (-588 (-1085))) (|:| |inhom| (-3 (-588 (-1166 (-708))) "failed")) (|:| |hom| (-588 (-1166 (-708)))))) (-5 *1 (-213))))) -(-10 -7 (-15 -4034 ((-2 (|:| |varOrder| (-588 (-1085))) (|:| |inhom| (-3 (-588 (-1166 (-708))) "failed")) (|:| |hom| (-588 (-1166 (-708))))) (-270 (-881 (-522)))))) -((-1685 (((-708)) 51)) (-1226 (((-2 (|:| -2149 (-628 |#3|)) (|:| |vec| (-1166 |#3|))) (-628 $) (-1166 $)) 49) (((-628 |#3|) (-628 $)) 41) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-628 (-522)) (-628 $)) NIL)) (-3222 (((-126)) 57)) (-2731 (($ $ (-1 |#3| |#3|) (-708)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085)) NIL) (($ $ (-708)) NIL) (($ $) NIL)) (-2217 (((-1166 |#3|) $) NIL) (($ |#3|) NIL) (((-792) $) NIL) (($ (-522)) 12) (($ (-382 (-522))) NIL)) (-2742 (((-708)) 15)) (-1682 (($ $ |#3|) 54))) -(((-214 |#1| |#2| |#3|) (-10 -8 (-15 -2217 (|#1| (-382 (-522)))) (-15 -2217 (|#1| (-522))) (-15 -2217 ((-792) |#1|)) (-15 -2742 ((-708))) (-15 -2731 (|#1| |#1|)) (-15 -2731 (|#1| |#1| (-708))) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -1226 ((-628 (-522)) (-628 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -2217 (|#1| |#3|)) (-15 -2731 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2731 (|#1| |#1| (-1 |#3| |#3|) (-708))) (-15 -1226 ((-628 |#3|) (-628 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 |#3|)) (|:| |vec| (-1166 |#3|))) (-628 |#1|) (-1166 |#1|))) (-15 -1685 ((-708))) (-15 -1682 (|#1| |#1| |#3|)) (-15 -3222 ((-126))) (-15 -2217 ((-1166 |#3|) |#1|))) (-215 |#2| |#3|) (-708) (-1120)) (T -214)) -((-3222 (*1 *2) (-12 (-14 *4 (-708)) (-4 *5 (-1120)) (-5 *2 (-126)) (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5)))) (-1685 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1120)) (-5 *2 (-708)) (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5)))) (-2742 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1120)) (-5 *2 (-708)) (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5))))) -(-10 -8 (-15 -2217 (|#1| (-382 (-522)))) (-15 -2217 (|#1| (-522))) (-15 -2217 ((-792) |#1|)) (-15 -2742 ((-708))) (-15 -2731 (|#1| |#1|)) (-15 -2731 (|#1| |#1| (-708))) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -1226 ((-628 (-522)) (-628 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -2217 (|#1| |#3|)) (-15 -2731 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2731 (|#1| |#1| (-1 |#3| |#3|) (-708))) (-15 -1226 ((-628 |#3|) (-628 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 |#3|)) (|:| |vec| (-1166 |#3|))) (-628 |#1|) (-1166 |#1|))) (-15 -1685 ((-708))) (-15 -1682 (|#1| |#1| |#3|)) (-15 -3222 ((-126))) (-15 -2217 ((-1166 |#3|) |#1|))) -((-1419 (((-108) $ $) 19 (|has| |#2| (-1014)))) (-2944 (((-108) $) 72 (|has| |#2| (-124)))) (-2826 (($ (-850)) 127 (|has| |#2| (-971)))) (-3883 (((-1171) $ (-522) (-522)) 40 (|has| $ (-6 -4239)))) (-1827 (($ $ $) 123 (|has| |#2| (-730)))) (-2265 (((-3 $ "failed") $ $) 74 (|has| |#2| (-124)))) (-2717 (((-108) $ (-708)) 8)) (-1685 (((-708)) 109 (|has| |#2| (-343)))) (-3355 (((-522) $) 121 (|has| |#2| (-782)))) (-2437 ((|#2| $ (-522) |#2|) 52 (|has| $ (-6 -4239)))) (-3367 (($) 7 T CONST)) (-3700 (((-3 (-522) "failed") $) 67 (-4079 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014)))) (((-3 (-382 (-522)) "failed") $) 64 (-4079 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1014)))) (-1478 (((-522) $) 68 (-4079 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014)))) (((-382 (-522)) $) 65 (-4079 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) ((|#2| $) 60 (|has| |#2| (-1014)))) (-1226 (((-628 (-522)) (-628 $)) 108 (-4079 (|has| |#2| (-584 (-522))) (|has| |#2| (-971)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 107 (-4079 (|has| |#2| (-584 (-522))) (|has| |#2| (-971)))) (((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) 106 (|has| |#2| (-971))) (((-628 |#2|) (-628 $)) 105 (|has| |#2| (-971)))) (-3920 (((-3 $ "failed") $) 99 (|has| |#2| (-971)))) (-3344 (($) 112 (|has| |#2| (-343)))) (-2411 ((|#2| $ (-522) |#2|) 53 (|has| $ (-6 -4239)))) (-2186 ((|#2| $ (-522)) 51)) (-3603 (((-108) $) 119 (|has| |#2| (-782)))) (-2395 (((-588 |#2|) $) 30 (|has| $ (-6 -4238)))) (-2859 (((-108) $) 102 (|has| |#2| (-971)))) (-3740 (((-108) $) 120 (|has| |#2| (-782)))) (-1480 (((-108) $ (-708)) 9)) (-3496 (((-522) $) 43 (|has| (-522) (-784)))) (-1308 (($ $ $) 118 (-3844 (|has| |#2| (-782)) (|has| |#2| (-730))))) (-4084 (((-588 |#2|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1014)) (|has| $ (-6 -4238))))) (-2201 (((-522) $) 44 (|has| (-522) (-784)))) (-2524 (($ $ $) 117 (-3844 (|has| |#2| (-782)) (|has| |#2| (-730))))) (-2397 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#2| |#2|) $) 35)) (-1475 (((-850) $) 111 (|has| |#2| (-343)))) (-3309 (((-108) $ (-708)) 10)) (-2311 (((-1068) $) 22 (|has| |#2| (-1014)))) (-2130 (((-588 (-522)) $) 46)) (-2103 (((-108) (-522) $) 47)) (-2882 (($ (-850)) 110 (|has| |#2| (-343)))) (-4174 (((-1032) $) 21 (|has| |#2| (-1014)))) (-2337 ((|#2| $) 42 (|has| (-522) (-784)))) (-1972 (($ $ |#2|) 41 (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#2|))) 26 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) 25 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) 23 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-2065 (((-108) $ $) 14)) (-3434 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1973 (((-588 |#2|) $) 48)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 ((|#2| $ (-522) |#2|) 50) ((|#2| $ (-522)) 49)) (-4024 ((|#2| $ $) 126 (|has| |#2| (-971)))) (-2041 (($ (-1166 |#2|)) 128)) (-3222 (((-126)) 125 (|has| |#2| (-338)))) (-2731 (($ $) 92 (-4079 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-708)) 90 (-4079 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-1085)) 88 (-4079 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085))) 87 (-4079 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1085) (-708)) 86 (-4079 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085)) (-588 (-708))) 85 (-4079 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1 |#2| |#2|) (-708)) 78 (|has| |#2| (-971))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-971)))) (-4187 (((-708) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4238))) (((-708) |#2| $) 28 (-12 (|has| |#2| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-2217 (((-1166 |#2|) $) 129) (($ (-522)) 66 (-3844 (-4079 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014))) (|has| |#2| (-971)))) (($ (-382 (-522))) 63 (-4079 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) (($ |#2|) 62 (|has| |#2| (-1014))) (((-792) $) 18 (|has| |#2| (-562 (-792))))) (-2742 (((-708)) 104 (|has| |#2| (-971)))) (-1381 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4238)))) (-4126 (($ $) 122 (|has| |#2| (-782)))) (-3622 (($ $ (-708)) 100 (|has| |#2| (-971))) (($ $ (-850)) 96 (|has| |#2| (-971)))) (-3697 (($) 71 (|has| |#2| (-124)) CONST)) (-3709 (($) 103 (|has| |#2| (-971)) CONST)) (-2252 (($ $) 91 (-4079 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-708)) 89 (-4079 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-1085)) 84 (-4079 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085))) 83 (-4079 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1085) (-708)) 82 (-4079 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085)) (-588 (-708))) 81 (-4079 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1 |#2| |#2|) (-708)) 80 (|has| |#2| (-971))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-971)))) (-1623 (((-108) $ $) 115 (-3844 (|has| |#2| (-782)) (|has| |#2| (-730))))) (-1597 (((-108) $ $) 114 (-3844 (|has| |#2| (-782)) (|has| |#2| (-730))))) (-1562 (((-108) $ $) 20 (|has| |#2| (-1014)))) (-1609 (((-108) $ $) 116 (-3844 (|has| |#2| (-782)) (|has| |#2| (-730))))) (-1587 (((-108) $ $) 113 (-3844 (|has| |#2| (-782)) (|has| |#2| (-730))))) (-1682 (($ $ |#2|) 124 (|has| |#2| (-338)))) (-1672 (($ $ $) 94 (|has| |#2| (-971))) (($ $) 93 (|has| |#2| (-971)))) (-1661 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-708)) 101 (|has| |#2| (-971))) (($ $ (-850)) 97 (|has| |#2| (-971)))) (* (($ $ $) 98 (|has| |#2| (-971))) (($ (-522) $) 95 (|has| |#2| (-971))) (($ $ |#2|) 76 (|has| |#2| (-664))) (($ |#2| $) 75 (|has| |#2| (-664))) (($ (-708) $) 73 (|has| |#2| (-124))) (($ (-850) $) 70 (|has| |#2| (-25)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-215 |#1| |#2|) (-1197) (-708) (-1120)) (T -215)) -((-2041 (*1 *1 *2) (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1120)) (-4 *1 (-215 *3 *4)))) (-2826 (*1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-215 *3 *4)) (-4 *4 (-971)) (-4 *4 (-1120)))) (-4024 (*1 *2 *1 *1) (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1120)) (-4 *2 (-971)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1120)) (-4 *2 (-664)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1120)) (-4 *2 (-664))))) -(-13 (-555 (-522) |t#2|) (-562 (-1166 |t#2|)) (-10 -8 (-6 -4238) (-15 -2041 ($ (-1166 |t#2|))) (IF (|has| |t#2| (-1014)) (-6 (-386 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-971)) (PROGN (-6 (-107 |t#2| |t#2|)) (-6 (-208 |t#2|)) (-6 (-352 |t#2|)) (-15 -2826 ($ (-850))) (-15 -4024 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-124)) (-6 (-124)) |%noBranch|) (IF (|has| |t#2| (-664)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-343)) (-6 (-343)) |%noBranch|) (IF (|has| |t#2| (-157)) (PROGN (-6 (-37 |t#2|)) (-6 (-157))) |%noBranch|) (IF (|has| |t#2| (-6 -4235)) (-6 -4235) |%noBranch|) (IF (|has| |t#2| (-782)) (-6 (-782)) |%noBranch|) (IF (|has| |t#2| (-730)) (-6 (-730)) |%noBranch|) (IF (|has| |t#2| (-338)) (-6 (-1173 |t#2|)) |%noBranch|))) -(((-21) -3844 (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-338)) (|has| |#2| (-157))) ((-23) -3844 (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-730)) (|has| |#2| (-338)) (|has| |#2| (-157)) (|has| |#2| (-124))) ((-25) -3844 (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-730)) (|has| |#2| (-338)) (|has| |#2| (-157)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-157)) ((-97) -3844 (|has| |#2| (-1014)) (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-730)) (|has| |#2| (-343)) (|has| |#2| (-338)) (|has| |#2| (-157)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-107 |#2| |#2|) -3844 (|has| |#2| (-971)) (|has| |#2| (-338)) (|has| |#2| (-157))) ((-107 $ $) |has| |#2| (-157)) ((-124) -3844 (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-730)) (|has| |#2| (-338)) (|has| |#2| (-157)) (|has| |#2| (-124))) ((-562 (-792)) -3844 (|has| |#2| (-1014)) (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-730)) (|has| |#2| (-343)) (|has| |#2| (-338)) (|has| |#2| (-157)) (|has| |#2| (-562 (-792))) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-562 (-1166 |#2|)) . T) ((-157) |has| |#2| (-157)) ((-208 |#2|) |has| |#2| (-971)) ((-210) -12 (|has| |#2| (-210)) (|has| |#2| (-971))) ((-262 #0=(-522) |#2|) . T) ((-264 #0# |#2|) . T) ((-285 |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((-343) |has| |#2| (-343)) ((-352 |#2|) |has| |#2| (-971)) ((-386 |#2|) |has| |#2| (-1014)) ((-461 |#2|) . T) ((-555 #0# |#2|) . T) ((-483 |#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((-590 |#2|) -3844 (|has| |#2| (-971)) (|has| |#2| (-338)) (|has| |#2| (-157))) ((-590 $) -3844 (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-157))) ((-584 (-522)) -12 (|has| |#2| (-584 (-522))) (|has| |#2| (-971))) ((-584 |#2|) |has| |#2| (-971)) ((-655 |#2|) -3844 (|has| |#2| (-338)) (|has| |#2| (-157))) ((-664) -3844 (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-157))) ((-728) |has| |#2| (-782)) ((-729) -3844 (|has| |#2| (-782)) (|has| |#2| (-730))) ((-730) |has| |#2| (-730)) ((-731) -3844 (|has| |#2| (-782)) (|has| |#2| (-730))) ((-732) -3844 (|has| |#2| (-782)) (|has| |#2| (-730))) ((-782) |has| |#2| (-782)) ((-784) -3844 (|has| |#2| (-782)) (|has| |#2| (-730))) ((-829 (-1085)) -12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971))) ((-962 (-382 (-522))) -12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014))) ((-962 (-522)) -12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014))) ((-962 |#2|) |has| |#2| (-1014)) ((-977 |#2|) -3844 (|has| |#2| (-971)) (|has| |#2| (-338)) (|has| |#2| (-157))) ((-977 $) |has| |#2| (-157)) ((-971) -3844 (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-157))) ((-978) -3844 (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-157))) ((-1026) -3844 (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-157))) ((-1014) -3844 (|has| |#2| (-1014)) (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-730)) (|has| |#2| (-343)) (|has| |#2| (-338)) (|has| |#2| (-157)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-1120) . T) ((-1173 |#2|) |has| |#2| (-338))) -((-3639 (((-217 |#1| |#3|) (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|) 21)) (-2153 ((|#3| (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|) 23)) (-3810 (((-217 |#1| |#3|) (-1 |#3| |#2|) (-217 |#1| |#2|)) 18))) -(((-216 |#1| |#2| |#3|) (-10 -7 (-15 -3639 ((-217 |#1| |#3|) (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|)) (-15 -2153 (|#3| (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|)) (-15 -3810 ((-217 |#1| |#3|) (-1 |#3| |#2|) (-217 |#1| |#2|)))) (-708) (-1120) (-1120)) (T -216)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-217 *5 *6)) (-14 *5 (-708)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-217 *5 *7)) (-5 *1 (-216 *5 *6 *7)))) (-2153 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-217 *5 *6)) (-14 *5 (-708)) (-4 *6 (-1120)) (-4 *2 (-1120)) (-5 *1 (-216 *5 *6 *2)))) (-3639 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-217 *6 *7)) (-14 *6 (-708)) (-4 *7 (-1120)) (-4 *5 (-1120)) (-5 *2 (-217 *6 *5)) (-5 *1 (-216 *6 *7 *5))))) -(-10 -7 (-15 -3639 ((-217 |#1| |#3|) (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|)) (-15 -2153 (|#3| (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|)) (-15 -3810 ((-217 |#1| |#3|) (-1 |#3| |#2|) (-217 |#1| |#2|)))) -((-1419 (((-108) $ $) NIL (|has| |#2| (-1014)))) (-2944 (((-108) $) NIL (|has| |#2| (-124)))) (-2826 (($ (-850)) 56 (|has| |#2| (-971)))) (-3883 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1827 (($ $ $) 60 (|has| |#2| (-730)))) (-2265 (((-3 $ "failed") $ $) 48 (|has| |#2| (-124)))) (-2717 (((-108) $ (-708)) 17)) (-1685 (((-708)) NIL (|has| |#2| (-343)))) (-3355 (((-522) $) NIL (|has| |#2| (-782)))) (-2437 ((|#2| $ (-522) |#2|) NIL (|has| $ (-6 -4239)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) NIL (-12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014)))) (((-3 (-382 (-522)) "failed") $) NIL (-12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1014)))) (-1478 (((-522) $) NIL (-12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014)))) (((-382 (-522)) $) NIL (-12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) ((|#2| $) 27 (|has| |#2| (-1014)))) (-1226 (((-628 (-522)) (-628 $)) NIL (-12 (|has| |#2| (-584 (-522))) (|has| |#2| (-971)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (-12 (|has| |#2| (-584 (-522))) (|has| |#2| (-971)))) (((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL (|has| |#2| (-971))) (((-628 |#2|) (-628 $)) NIL (|has| |#2| (-971)))) (-3920 (((-3 $ "failed") $) 53 (|has| |#2| (-971)))) (-3344 (($) NIL (|has| |#2| (-343)))) (-2411 ((|#2| $ (-522) |#2|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#2| $ (-522)) 51)) (-3603 (((-108) $) NIL (|has| |#2| (-782)))) (-2395 (((-588 |#2|) $) 15 (|has| $ (-6 -4238)))) (-2859 (((-108) $) NIL (|has| |#2| (-971)))) (-3740 (((-108) $) NIL (|has| |#2| (-782)))) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) 20 (|has| (-522) (-784)))) (-1308 (($ $ $) NIL (-3844 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-4084 (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2201 (((-522) $) 50 (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (-3844 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-2397 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#2| |#2|) $) 41)) (-1475 (((-850) $) NIL (|has| |#2| (-343)))) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (|has| |#2| (-1014)))) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) NIL)) (-2882 (($ (-850)) NIL (|has| |#2| (-343)))) (-4174 (((-1032) $) NIL (|has| |#2| (-1014)))) (-2337 ((|#2| $) NIL (|has| (-522) (-784)))) (-1972 (($ $ |#2|) NIL (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) |#2|) $) 24 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1973 (((-588 |#2|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#2| $ (-522) |#2|) NIL) ((|#2| $ (-522)) 21)) (-4024 ((|#2| $ $) NIL (|has| |#2| (-971)))) (-2041 (($ (-1166 |#2|)) 18)) (-3222 (((-126)) NIL (|has| |#2| (-338)))) (-2731 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1 |#2| |#2|) (-708)) NIL (|has| |#2| (-971))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-971)))) (-4187 (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2463 (($ $) NIL)) (-2217 (((-1166 |#2|) $) 10) (($ (-522)) NIL (-3844 (-12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014))) (|has| |#2| (-971)))) (($ (-382 (-522))) NIL (-12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) (($ |#2|) 13 (|has| |#2| (-1014))) (((-792) $) NIL (|has| |#2| (-562 (-792))))) (-2742 (((-708)) NIL (|has| |#2| (-971)))) (-1381 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-4126 (($ $) NIL (|has| |#2| (-782)))) (-3622 (($ $ (-708)) NIL (|has| |#2| (-971))) (($ $ (-850)) NIL (|has| |#2| (-971)))) (-3697 (($) 35 (|has| |#2| (-124)) CONST)) (-3709 (($) 38 (|has| |#2| (-971)) CONST)) (-2252 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1 |#2| |#2|) (-708)) NIL (|has| |#2| (-971))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-971)))) (-1623 (((-108) $ $) NIL (-3844 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1597 (((-108) $ $) NIL (-3844 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1562 (((-108) $ $) 26 (|has| |#2| (-1014)))) (-1609 (((-108) $ $) NIL (-3844 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1587 (((-108) $ $) 58 (-3844 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1682 (($ $ |#2|) NIL (|has| |#2| (-338)))) (-1672 (($ $ $) NIL (|has| |#2| (-971))) (($ $) NIL (|has| |#2| (-971)))) (-1661 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-708)) NIL (|has| |#2| (-971))) (($ $ (-850)) NIL (|has| |#2| (-971)))) (* (($ $ $) 49 (|has| |#2| (-971))) (($ (-522) $) NIL (|has| |#2| (-971))) (($ $ |#2|) 42 (|has| |#2| (-664))) (($ |#2| $) 43 (|has| |#2| (-664))) (($ (-708) $) NIL (|has| |#2| (-124))) (($ (-850) $) NIL (|has| |#2| (-25)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-217 |#1| |#2|) (-215 |#1| |#2|) (-708) (-1120)) (T -217)) -NIL -(-215 |#1| |#2|) -((-4064 (((-522) (-588 (-1068))) 24) (((-522) (-1068)) 19)) (-2539 (((-1171) (-588 (-1068))) 29) (((-1171) (-1068)) 28)) (-2013 (((-1068)) 14)) (-3788 (((-1068) (-522) (-1068)) 16)) (-1980 (((-588 (-1068)) (-588 (-1068)) (-522) (-1068)) 25) (((-1068) (-1068) (-522) (-1068)) 23)) (-2272 (((-588 (-1068)) (-588 (-1068))) 13) (((-588 (-1068)) (-1068)) 11))) -(((-218) (-10 -7 (-15 -2272 ((-588 (-1068)) (-1068))) (-15 -2272 ((-588 (-1068)) (-588 (-1068)))) (-15 -2013 ((-1068))) (-15 -3788 ((-1068) (-522) (-1068))) (-15 -1980 ((-1068) (-1068) (-522) (-1068))) (-15 -1980 ((-588 (-1068)) (-588 (-1068)) (-522) (-1068))) (-15 -2539 ((-1171) (-1068))) (-15 -2539 ((-1171) (-588 (-1068)))) (-15 -4064 ((-522) (-1068))) (-15 -4064 ((-522) (-588 (-1068)))))) (T -218)) -((-4064 (*1 *2 *3) (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-522)) (-5 *1 (-218)))) (-4064 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-522)) (-5 *1 (-218)))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-1171)) (-5 *1 (-218)))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-218)))) (-1980 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-588 (-1068))) (-5 *3 (-522)) (-5 *4 (-1068)) (-5 *1 (-218)))) (-1980 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1068)) (-5 *3 (-522)) (-5 *1 (-218)))) (-3788 (*1 *2 *3 *2) (-12 (-5 *2 (-1068)) (-5 *3 (-522)) (-5 *1 (-218)))) (-2013 (*1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-218)))) (-2272 (*1 *2 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-218)))) (-2272 (*1 *2 *3) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-218)) (-5 *3 (-1068))))) -(-10 -7 (-15 -2272 ((-588 (-1068)) (-1068))) (-15 -2272 ((-588 (-1068)) (-588 (-1068)))) (-15 -2013 ((-1068))) (-15 -3788 ((-1068) (-522) (-1068))) (-15 -1980 ((-1068) (-1068) (-522) (-1068))) (-15 -1980 ((-588 (-1068)) (-588 (-1068)) (-522) (-1068))) (-15 -2539 ((-1171) (-1068))) (-15 -2539 ((-1171) (-588 (-1068)))) (-15 -4064 ((-522) (-1068))) (-15 -4064 ((-522) (-588 (-1068))))) -((-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) 9)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) 18)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ (-382 (-522)) $) 25) (($ $ (-382 (-522))) NIL))) -(((-219 |#1|) (-10 -8 (-15 -3622 (|#1| |#1| (-522))) (-15 ** (|#1| |#1| (-522))) (-15 * (|#1| |#1| (-382 (-522)))) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 ** (|#1| |#1| (-708))) (-15 -3622 (|#1| |#1| (-708))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-850))) (-15 -3622 (|#1| |#1| (-850))) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|))) (-220)) (T -219)) -NIL -(-10 -8 (-15 -3622 (|#1| |#1| (-522))) (-15 ** (|#1| |#1| (-522))) (-15 * (|#1| |#1| (-382 (-522)))) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 ** (|#1| |#1| (-708))) (-15 -3622 (|#1| |#1| (-708))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-850))) (-15 -3622 (|#1| |#1| (-850))) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3920 (((-3 $ "failed") $) 34)) (-2859 (((-108) $) 31)) (-2311 (((-1068) $) 9)) (-3193 (($ $) 39)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ (-382 (-522))) 44)) (-2742 (((-708)) 29)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 40)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 41)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ (-382 (-522)) $) 43) (($ $ (-382 (-522))) 42))) -(((-220) (-1197)) (T -220)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-220)) (-5 *2 (-522)))) (-3622 (*1 *1 *1 *2) (-12 (-4 *1 (-220)) (-5 *2 (-522)))) (-3193 (*1 *1 *1) (-4 *1 (-220)))) -(-13 (-266) (-37 (-382 (-522))) (-10 -8 (-15 ** ($ $ (-522))) (-15 -3622 ($ $ (-522))) (-15 -3193 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-266) . T) ((-590 #0#) . T) ((-590 $) . T) ((-655 #0#) . T) ((-664) . T) ((-977 #0#) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3526 ((|#1| $) 48)) (-3961 (($ $) 57)) (-2717 (((-108) $ (-708)) 8)) (-1198 ((|#1| $ |#1|) 39 (|has| $ (-6 -4239)))) (-1854 (($ $ $) 53 (|has| $ (-6 -4239)))) (-3432 (($ $ $) 52 (|has| $ (-6 -4239)))) (-2437 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4239)))) (-2684 (($ $ (-588 $)) 41 (|has| $ (-6 -4239)))) (-3367 (($) 7 T CONST)) (-2009 (($ $) 56)) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-2674 (((-588 $) $) 50)) (-2402 (((-108) $ $) 42 (|has| |#1| (-1014)))) (-3745 (($ $) 55)) (-1480 (((-108) $ (-708)) 9)) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35)) (-3309 (((-108) $ (-708)) 10)) (-2548 (((-588 |#1|) $) 45)) (-3394 (((-108) $) 49)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1442 ((|#1| $) 59)) (-3655 (($ $) 58)) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 ((|#1| $ "value") 47)) (-3381 (((-522) $ $) 44)) (-3395 (((-108) $) 46)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-2335 (($ $ $) 54 (|has| $ (-6 -4239)))) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1515 (((-588 $) $) 51)) (-3294 (((-108) $ $) 43 (|has| |#1| (-1014)))) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-221 |#1|) (-1197) (-1120)) (T -221)) -((-1442 (*1 *2 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1120)))) (-3655 (*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1120)))) (-3961 (*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1120)))) (-2009 (*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1120)))) (-3745 (*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1120)))) (-2335 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-221 *2)) (-4 *2 (-1120)))) (-1854 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-221 *2)) (-4 *2 (-1120)))) (-3432 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-221 *2)) (-4 *2 (-1120))))) -(-13 (-936 |t#1|) (-10 -8 (-15 -1442 (|t#1| $)) (-15 -3655 ($ $)) (-15 -3961 ($ $)) (-15 -2009 ($ $)) (-15 -3745 ($ $)) (IF (|has| $ (-6 -4239)) (PROGN (-15 -2335 ($ $ $)) (-15 -1854 ($ $ $)) (-15 -3432 ($ $ $))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-936 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1120) . T)) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3526 ((|#1| $) NIL)) (-2126 ((|#1| $) NIL)) (-3961 (($ $) NIL)) (-3883 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-2211 (($ $ (-522)) NIL (|has| $ (-6 -4239)))) (-1866 (((-108) $) NIL (|has| |#1| (-784))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-2806 (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3296 (($ $) 10 (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-2717 (((-108) $ (-708)) NIL)) (-1198 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-2398 (($ $ $) NIL (|has| $ (-6 -4239)))) (-2631 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-3393 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-2437 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4239))) (($ $ "rest" $) NIL (|has| $ (-6 -4239))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-2684 (($ $ (-588 $)) NIL (|has| $ (-6 -4239)))) (-1213 (($ (-1 (-108) |#1|) $) NIL)) (-1696 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2116 ((|#1| $) NIL)) (-3367 (($) NIL T CONST)) (-2465 (($ $) NIL (|has| $ (-6 -4239)))) (-1939 (($ $) NIL)) (-2352 (($ $) NIL) (($ $ (-708)) NIL)) (-1581 (($ $) NIL (|has| |#1| (-1014)))) (-2379 (($ $) 7 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1700 (($ |#1| $) NIL (|has| |#1| (-1014))) (($ (-1 (-108) |#1|) $) NIL)) (-1424 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2411 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-522)) NIL)) (-3614 (((-108) $) NIL)) (-3314 (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014))) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) (-1 (-108) |#1|) $) NIL)) (-2395 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2674 (((-588 $) $) NIL)) (-2402 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1893 (($ (-708) |#1|) NIL)) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) NIL (|has| (-522) (-784)))) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-3557 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3164 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2201 (((-522) $) NIL (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-2397 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1614 (($ |#1|) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2548 (((-588 |#1|) $) NIL)) (-3394 (((-108) $) NIL)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1442 ((|#1| $) NIL) (($ $ (-708)) NIL)) (-3365 (($ $ $ (-522)) NIL) (($ |#1| $ (-522)) NIL)) (-1731 (($ $ $ (-522)) NIL) (($ |#1| $ (-522)) NIL)) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) NIL)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2337 ((|#1| $) NIL) (($ $ (-708)) NIL)) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1972 (($ $ |#1|) NIL (|has| $ (-6 -4239)))) (-4196 (((-108) $) NIL)) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1133 (-522))) NIL) ((|#1| $ (-522)) NIL) ((|#1| $ (-522) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-708) $ "count") 16)) (-3381 (((-522) $ $) NIL)) (-3551 (($ $ (-1133 (-522))) NIL) (($ $ (-522)) NIL)) (-3835 (($ $ (-1133 (-522))) NIL) (($ $ (-522)) NIL)) (-1867 (($ (-588 |#1|)) 22)) (-3395 (((-108) $) NIL)) (-2885 (($ $) NIL)) (-1668 (($ $) NIL (|has| $ (-6 -4239)))) (-1321 (((-708) $) NIL)) (-1502 (($ $) NIL)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3629 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) NIL)) (-2335 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4170 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-588 $)) NIL) (($ $ |#1|) NIL)) (-2217 (($ (-588 |#1|)) 17) (((-588 |#1|) $) 18) (((-792) $) 21 (|has| |#1| (-562 (-792))))) (-1515 (((-588 $) $) NIL)) (-3294 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3591 (((-708) $) 14 (|has| $ (-6 -4238))))) -(((-222 |#1|) (-13 (-608 |#1|) (-10 -8 (-15 -2217 ($ (-588 |#1|))) (-15 -2217 ((-588 |#1|) $)) (-15 -1867 ($ (-588 |#1|))) (-15 -2683 ($ $ "unique")) (-15 -2683 ($ $ "sort")) (-15 -2683 ((-708) $ "count")))) (-784)) (T -222)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-222 *3)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-222 *3)) (-4 *3 (-784)))) (-1867 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-222 *3)))) (-2683 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-222 *3)) (-4 *3 (-784)))) (-2683 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-222 *3)) (-4 *3 (-784)))) (-2683 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-708)) (-5 *1 (-222 *4)) (-4 *4 (-784))))) -(-13 (-608 |#1|) (-10 -8 (-15 -2217 ($ (-588 |#1|))) (-15 -2217 ((-588 |#1|) $)) (-15 -1867 ($ (-588 |#1|))) (-15 -2683 ($ $ "unique")) (-15 -2683 ($ $ "sort")) (-15 -2683 ((-708) $ "count")))) -((-3375 (((-3 (-708) "failed") |#1| |#1| (-708)) 27))) -(((-223 |#1|) (-10 -7 (-15 -3375 ((-3 (-708) "failed") |#1| |#1| (-708)))) (-13 (-664) (-343) (-10 -7 (-15 ** (|#1| |#1| (-522)))))) (T -223)) -((-3375 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-708)) (-4 *3 (-13 (-664) (-343) (-10 -7 (-15 ** (*3 *3 (-522)))))) (-5 *1 (-223 *3))))) -(-10 -7 (-15 -3375 ((-3 (-708) "failed") |#1| |#1| (-708)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3533 (((-588 (-794 |#1|)) $) NIL)) (-1264 (((-1081 $) $ (-794 |#1|)) NIL) (((-1081 |#2|) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#2| (-514)))) (-2298 (($ $) NIL (|has| |#2| (-514)))) (-3007 (((-108) $) NIL (|has| |#2| (-514)))) (-3358 (((-708) $) NIL) (((-708) $ (-588 (-794 |#1|))) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-2961 (($ $) NIL (|has| |#2| (-426)))) (-3133 (((-393 $) $) NIL (|has| |#2| (-426)))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#2| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#2| (-962 (-522)))) (((-3 (-794 |#1|) "failed") $) NIL)) (-1478 ((|#2| $) NIL) (((-382 (-522)) $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#2| (-962 (-522)))) (((-794 |#1|) $) NIL)) (-2908 (($ $ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-2354 (($ $ (-588 (-522))) NIL)) (-3241 (($ $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL) (((-628 |#2|) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2883 (($ $) NIL (|has| |#2| (-426))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-426)))) (-3232 (((-588 $) $) NIL)) (-2725 (((-108) $) NIL (|has| |#2| (-838)))) (-3792 (($ $ |#2| (-217 (-3591 |#1|) (-708)) $) NIL)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-354))) (|has| |#2| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-522))) (|has| |#2| (-815 (-522)))))) (-2859 (((-108) $) NIL)) (-1391 (((-708) $) NIL)) (-3520 (($ (-1081 |#2|) (-794 |#1|)) NIL) (($ (-1081 $) (-794 |#1|)) NIL)) (-3038 (((-588 $) $) NIL)) (-1374 (((-108) $) NIL)) (-3500 (($ |#2| (-217 (-3591 |#1|) (-708))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-3058 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $ (-794 |#1|)) NIL)) (-3564 (((-217 (-3591 |#1|) (-708)) $) NIL) (((-708) $ (-794 |#1|)) NIL) (((-588 (-708)) $ (-588 (-794 |#1|))) NIL)) (-1308 (($ $ $) NIL (|has| |#2| (-784)))) (-2524 (($ $ $) NIL (|has| |#2| (-784)))) (-1723 (($ (-1 (-217 (-3591 |#1|) (-708)) (-217 (-3591 |#1|) (-708))) $) NIL)) (-3810 (($ (-1 |#2| |#2|) $) NIL)) (-3155 (((-3 (-794 |#1|) "failed") $) NIL)) (-3216 (($ $) NIL)) (-3224 ((|#2| $) NIL)) (-2267 (($ (-588 $)) NIL (|has| |#2| (-426))) (($ $ $) NIL (|has| |#2| (-426)))) (-2311 (((-1068) $) NIL)) (-2760 (((-3 (-588 $) "failed") $) NIL)) (-1919 (((-3 (-588 $) "failed") $) NIL)) (-2024 (((-3 (-2 (|:| |var| (-794 |#1|)) (|:| -3858 (-708))) "failed") $) NIL)) (-4174 (((-1032) $) NIL)) (-3199 (((-108) $) NIL)) (-3207 ((|#2| $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#2| (-426)))) (-2308 (($ (-588 $)) NIL (|has| |#2| (-426))) (($ $ $) NIL (|has| |#2| (-426)))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-2006 (((-393 $) $) NIL (|has| |#2| (-838)))) (-2276 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-514))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-514)))) (-2330 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-794 |#1|) |#2|) NIL) (($ $ (-588 (-794 |#1|)) (-588 |#2|)) NIL) (($ $ (-794 |#1|) $) NIL) (($ $ (-588 (-794 |#1|)) (-588 $)) NIL)) (-1615 (($ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-2731 (($ $ (-794 |#1|)) NIL) (($ $ (-588 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-2487 (((-217 (-3591 |#1|) (-708)) $) NIL) (((-708) $ (-794 |#1|)) NIL) (((-588 (-708)) $ (-588 (-794 |#1|))) NIL)) (-3873 (((-821 (-354)) $) NIL (-12 (|has| (-794 |#1|) (-563 (-821 (-354)))) (|has| |#2| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-794 |#1|) (-563 (-821 (-522)))) (|has| |#2| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-794 |#1|) (-563 (-498))) (|has| |#2| (-563 (-498)))))) (-2988 ((|#2| $) NIL (|has| |#2| (-426))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-426)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-838))))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#2|) NIL) (($ (-794 |#1|)) NIL) (($ (-382 (-522))) NIL (-3844 (|has| |#2| (-37 (-382 (-522)))) (|has| |#2| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#2| (-514)))) (-2180 (((-588 |#2|) $) NIL)) (-1643 ((|#2| $ (-217 (-3591 |#1|) (-708))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| |#2| (-838))) (|has| |#2| (-133))))) (-2742 (((-708)) NIL)) (-1225 (($ $ $ (-708)) NIL (|has| |#2| (-157)))) (-1407 (((-108) $ $) NIL (|has| |#2| (-514)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $ (-794 |#1|)) NIL) (($ $ (-588 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-1623 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1682 (($ $ |#2|) NIL (|has| |#2| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL (|has| |#2| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#2| (-37 (-382 (-522))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-224 |#1| |#2|) (-13 (-878 |#2| (-217 (-3591 |#1|) (-708)) (-794 |#1|)) (-10 -8 (-15 -2354 ($ $ (-588 (-522)))))) (-588 (-1085)) (-971)) (T -224)) -((-2354 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-224 *3 *4)) (-14 *3 (-588 (-1085))) (-4 *4 (-971))))) -(-13 (-878 |#2| (-217 (-3591 |#1|) (-708)) (-794 |#1|)) (-10 -8 (-15 -2354 ($ $ (-588 (-522)))))) -((-1280 (((-1171) $) 12)) (-2353 (((-166) $) 9)) (-2874 (($ (-166)) 10)) (-2217 (((-792) $) 7))) -(((-225) (-13 (-562 (-792)) (-10 -8 (-15 -2353 ((-166) $)) (-15 -2874 ($ (-166))) (-15 -1280 ((-1171) $))))) (T -225)) -((-2353 (*1 *2 *1) (-12 (-5 *2 (-166)) (-5 *1 (-225)))) (-2874 (*1 *1 *2) (-12 (-5 *2 (-166)) (-5 *1 (-225)))) (-1280 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-225))))) -(-13 (-562 (-792)) (-10 -8 (-15 -2353 ((-166) $)) (-15 -2874 ($ (-166))) (-15 -1280 ((-1171) $)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2826 (($ (-850)) NIL (|has| |#4| (-971)))) (-3883 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1827 (($ $ $) NIL (|has| |#4| (-730)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2717 (((-108) $ (-708)) NIL)) (-1685 (((-708)) NIL (|has| |#4| (-343)))) (-3355 (((-522) $) NIL (|has| |#4| (-782)))) (-2437 ((|#4| $ (-522) |#4|) NIL (|has| $ (-6 -4239)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1014))) (((-3 (-522) "failed") $) NIL (-12 (|has| |#4| (-962 (-522))) (|has| |#4| (-1014)))) (((-3 (-382 (-522)) "failed") $) NIL (-12 (|has| |#4| (-962 (-382 (-522)))) (|has| |#4| (-1014))))) (-1478 ((|#4| $) NIL (|has| |#4| (-1014))) (((-522) $) NIL (-12 (|has| |#4| (-962 (-522))) (|has| |#4| (-1014)))) (((-382 (-522)) $) NIL (-12 (|has| |#4| (-962 (-382 (-522)))) (|has| |#4| (-1014))))) (-1226 (((-2 (|:| -2149 (-628 |#4|)) (|:| |vec| (-1166 |#4|))) (-628 $) (-1166 $)) NIL (|has| |#4| (-971))) (((-628 |#4|) (-628 $)) NIL (|has| |#4| (-971))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (-12 (|has| |#4| (-584 (-522))) (|has| |#4| (-971)))) (((-628 (-522)) (-628 $)) NIL (-12 (|has| |#4| (-584 (-522))) (|has| |#4| (-971))))) (-3920 (((-3 $ "failed") $) NIL (|has| |#4| (-971)))) (-3344 (($) NIL (|has| |#4| (-343)))) (-2411 ((|#4| $ (-522) |#4|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#4| $ (-522)) NIL)) (-3603 (((-108) $) NIL (|has| |#4| (-782)))) (-2395 (((-588 |#4|) $) NIL (|has| $ (-6 -4238)))) (-2859 (((-108) $) NIL (|has| |#4| (-971)))) (-3740 (((-108) $) NIL (|has| |#4| (-782)))) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) NIL (|has| (-522) (-784)))) (-1308 (($ $ $) NIL (-3844 (|has| |#4| (-730)) (|has| |#4| (-782))))) (-4084 (((-588 |#4|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-2201 (((-522) $) NIL (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (-3844 (|has| |#4| (-730)) (|has| |#4| (-782))))) (-2397 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#4| |#4|) $) NIL)) (-1475 (((-850) $) NIL (|has| |#4| (-343)))) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL)) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) NIL)) (-2882 (($ (-850)) NIL (|has| |#4| (-343)))) (-4174 (((-1032) $) NIL)) (-2337 ((|#4| $) NIL (|has| (-522) (-784)))) (-1972 (($ $ |#4|) NIL (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#4|))) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 |#4|) (-588 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-1973 (((-588 |#4|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#4| $ (-522) |#4|) NIL) ((|#4| $ (-522)) 12)) (-4024 ((|#4| $ $) NIL (|has| |#4| (-971)))) (-2041 (($ (-1166 |#4|)) NIL)) (-3222 (((-126)) NIL (|has| |#4| (-338)))) (-2731 (($ $ (-1 |#4| |#4|) (-708)) NIL (|has| |#4| (-971))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-971))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#4| (-829 (-1085))) (|has| |#4| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#4| (-829 (-1085))) (|has| |#4| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#4| (-829 (-1085))) (|has| |#4| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#4| (-829 (-1085))) (|has| |#4| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#4| (-210)) (|has| |#4| (-971)))) (($ $) NIL (-12 (|has| |#4| (-210)) (|has| |#4| (-971))))) (-4187 (((-708) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238))) (((-708) |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-2463 (($ $) NIL)) (-2217 (((-1166 |#4|) $) NIL) (((-792) $) NIL) (($ |#4|) NIL (|has| |#4| (-1014))) (($ (-522)) NIL (-3844 (-12 (|has| |#4| (-962 (-522))) (|has| |#4| (-1014))) (|has| |#4| (-971)))) (($ (-382 (-522))) NIL (-12 (|has| |#4| (-962 (-382 (-522)))) (|has| |#4| (-1014))))) (-2742 (((-708)) NIL (|has| |#4| (-971)))) (-1381 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-4126 (($ $) NIL (|has| |#4| (-782)))) (-3622 (($ $ (-708)) NIL (|has| |#4| (-971))) (($ $ (-850)) NIL (|has| |#4| (-971)))) (-3697 (($) NIL T CONST)) (-3709 (($) NIL (|has| |#4| (-971)) CONST)) (-2252 (($ $ (-1 |#4| |#4|) (-708)) NIL (|has| |#4| (-971))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-971))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#4| (-829 (-1085))) (|has| |#4| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#4| (-829 (-1085))) (|has| |#4| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#4| (-829 (-1085))) (|has| |#4| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#4| (-829 (-1085))) (|has| |#4| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#4| (-210)) (|has| |#4| (-971)))) (($ $) NIL (-12 (|has| |#4| (-210)) (|has| |#4| (-971))))) (-1623 (((-108) $ $) NIL (-3844 (|has| |#4| (-730)) (|has| |#4| (-782))))) (-1597 (((-108) $ $) NIL (-3844 (|has| |#4| (-730)) (|has| |#4| (-782))))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (-3844 (|has| |#4| (-730)) (|has| |#4| (-782))))) (-1587 (((-108) $ $) NIL (-3844 (|has| |#4| (-730)) (|has| |#4| (-782))))) (-1682 (($ $ |#4|) NIL (|has| |#4| (-338)))) (-1672 (($ $ $) NIL) (($ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-708)) NIL (|has| |#4| (-971))) (($ $ (-850)) NIL (|has| |#4| (-971)))) (* (($ |#2| $) 14) (($ (-522) $) NIL) (($ (-708) $) NIL) (($ (-850) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-664))) (($ |#4| $) NIL (|has| |#4| (-664))) (($ $ $) NIL (|has| |#4| (-971)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-226 |#1| |#2| |#3| |#4|) (-13 (-215 |#1| |#4|) (-590 |#2|) (-590 |#3|)) (-850) (-971) (-1035 |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) (-590 |#2|)) (T -226)) -NIL -(-13 (-215 |#1| |#4|) (-590 |#2|) (-590 |#3|)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2826 (($ (-850)) NIL (|has| |#3| (-971)))) (-3883 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1827 (($ $ $) NIL (|has| |#3| (-730)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2717 (((-108) $ (-708)) NIL)) (-1685 (((-708)) NIL (|has| |#3| (-343)))) (-3355 (((-522) $) NIL (|has| |#3| (-782)))) (-2437 ((|#3| $ (-522) |#3|) NIL (|has| $ (-6 -4239)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1014))) (((-3 (-522) "failed") $) NIL (-12 (|has| |#3| (-962 (-522))) (|has| |#3| (-1014)))) (((-3 (-382 (-522)) "failed") $) NIL (-12 (|has| |#3| (-962 (-382 (-522)))) (|has| |#3| (-1014))))) (-1478 ((|#3| $) NIL (|has| |#3| (-1014))) (((-522) $) NIL (-12 (|has| |#3| (-962 (-522))) (|has| |#3| (-1014)))) (((-382 (-522)) $) NIL (-12 (|has| |#3| (-962 (-382 (-522)))) (|has| |#3| (-1014))))) (-1226 (((-2 (|:| -2149 (-628 |#3|)) (|:| |vec| (-1166 |#3|))) (-628 $) (-1166 $)) NIL (|has| |#3| (-971))) (((-628 |#3|) (-628 $)) NIL (|has| |#3| (-971))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (-12 (|has| |#3| (-584 (-522))) (|has| |#3| (-971)))) (((-628 (-522)) (-628 $)) NIL (-12 (|has| |#3| (-584 (-522))) (|has| |#3| (-971))))) (-3920 (((-3 $ "failed") $) NIL (|has| |#3| (-971)))) (-3344 (($) NIL (|has| |#3| (-343)))) (-2411 ((|#3| $ (-522) |#3|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#3| $ (-522)) NIL)) (-3603 (((-108) $) NIL (|has| |#3| (-782)))) (-2395 (((-588 |#3|) $) NIL (|has| $ (-6 -4238)))) (-2859 (((-108) $) NIL (|has| |#3| (-971)))) (-3740 (((-108) $) NIL (|has| |#3| (-782)))) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) NIL (|has| (-522) (-784)))) (-1308 (($ $ $) NIL (-3844 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-4084 (((-588 |#3|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#3| (-1014))))) (-2201 (((-522) $) NIL (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (-3844 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-2397 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#3| |#3|) $) NIL)) (-1475 (((-850) $) NIL (|has| |#3| (-343)))) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL)) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) NIL)) (-2882 (($ (-850)) NIL (|has| |#3| (-343)))) (-4174 (((-1032) $) NIL)) (-2337 ((|#3| $) NIL (|has| (-522) (-784)))) (-1972 (($ $ |#3|) NIL (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#3|))) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ (-270 |#3|)) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ (-588 |#3|) (-588 |#3|)) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#3| (-1014))))) (-1973 (((-588 |#3|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#3| $ (-522) |#3|) NIL) ((|#3| $ (-522)) 11)) (-4024 ((|#3| $ $) NIL (|has| |#3| (-971)))) (-2041 (($ (-1166 |#3|)) NIL)) (-3222 (((-126)) NIL (|has| |#3| (-338)))) (-2731 (($ $ (-1 |#3| |#3|) (-708)) NIL (|has| |#3| (-971))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-971))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-971)))) (($ $) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-971))))) (-4187 (((-708) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4238))) (((-708) |#3| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#3| (-1014))))) (-2463 (($ $) NIL)) (-2217 (((-1166 |#3|) $) NIL) (((-792) $) NIL) (($ |#3|) NIL (|has| |#3| (-1014))) (($ (-522)) NIL (-3844 (-12 (|has| |#3| (-962 (-522))) (|has| |#3| (-1014))) (|has| |#3| (-971)))) (($ (-382 (-522))) NIL (-12 (|has| |#3| (-962 (-382 (-522)))) (|has| |#3| (-1014))))) (-2742 (((-708)) NIL (|has| |#3| (-971)))) (-1381 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4238)))) (-4126 (($ $) NIL (|has| |#3| (-782)))) (-3622 (($ $ (-708)) NIL (|has| |#3| (-971))) (($ $ (-850)) NIL (|has| |#3| (-971)))) (-3697 (($) NIL T CONST)) (-3709 (($) NIL (|has| |#3| (-971)) CONST)) (-2252 (($ $ (-1 |#3| |#3|) (-708)) NIL (|has| |#3| (-971))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-971))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-971)))) (($ $) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-971))))) (-1623 (((-108) $ $) NIL (-3844 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-1597 (((-108) $ $) NIL (-3844 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (-3844 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-1587 (((-108) $ $) NIL (-3844 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-1682 (($ $ |#3|) NIL (|has| |#3| (-338)))) (-1672 (($ $ $) NIL) (($ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-708)) NIL (|has| |#3| (-971))) (($ $ (-850)) NIL (|has| |#3| (-971)))) (* (($ |#2| $) 13) (($ (-522) $) NIL) (($ (-708) $) NIL) (($ (-850) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-664))) (($ |#3| $) NIL (|has| |#3| (-664))) (($ $ $) NIL (|has| |#3| (-971)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-227 |#1| |#2| |#3|) (-13 (-215 |#1| |#3|) (-590 |#2|)) (-708) (-971) (-590 |#2|)) (T -227)) -NIL -(-13 (-215 |#1| |#3|) (-590 |#2|)) -((-4044 (((-588 (-708)) $) 47) (((-588 (-708)) $ |#3|) 50)) (-3192 (((-708) $) 49) (((-708) $ |#3|) 52)) (-1646 (($ $) 65)) (-3700 (((-3 |#2| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 (-522) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3872 (((-708) $ |#3|) 39) (((-708) $) 36)) (-2718 (((-1 $ (-708)) |#3|) 15) (((-1 $ (-708)) $) 77)) (-1611 ((|#4| $) 58)) (-1717 (((-108) $) 56)) (-1992 (($ $) 64)) (-2330 (($ $ (-588 (-270 $))) 96) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-588 |#4|) (-588 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-588 |#4|) (-588 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-588 |#3|) (-588 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-588 |#3|) (-588 |#2|)) 84)) (-2731 (($ $ |#4|) NIL) (($ $ (-588 |#4|)) NIL) (($ $ |#4| (-708)) NIL) (($ $ (-588 |#4|) (-588 (-708))) NIL) (($ $) NIL) (($ $ (-708)) NIL) (($ $ (-1085)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1266 (((-588 |#3|) $) 75)) (-2487 ((|#5| $) NIL) (((-708) $ |#4|) NIL) (((-588 (-708)) $ (-588 |#4|)) NIL) (((-708) $ |#3|) 44)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-382 (-522))) NIL) (($ $) NIL))) -(((-228 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2217 (|#1| |#1|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -2330 (|#1| |#1| (-588 |#3|) (-588 |#2|))) (-15 -2330 (|#1| |#1| |#3| |#2|)) (-15 -2330 (|#1| |#1| (-588 |#3|) (-588 |#1|))) (-15 -2330 (|#1| |#1| |#3| |#1|)) (-15 -2718 ((-1 |#1| (-708)) |#1|)) (-15 -1646 (|#1| |#1|)) (-15 -1992 (|#1| |#1|)) (-15 -1611 (|#4| |#1|)) (-15 -1717 ((-108) |#1|)) (-15 -3192 ((-708) |#1| |#3|)) (-15 -4044 ((-588 (-708)) |#1| |#3|)) (-15 -3192 ((-708) |#1|)) (-15 -4044 ((-588 (-708)) |#1|)) (-15 -2487 ((-708) |#1| |#3|)) (-15 -3872 ((-708) |#1|)) (-15 -3872 ((-708) |#1| |#3|)) (-15 -1266 ((-588 |#3|) |#1|)) (-15 -2718 ((-1 |#1| (-708)) |#3|)) (-15 -3700 ((-3 |#3| "failed") |#1|)) (-15 -2217 (|#1| |#3|)) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1| (-708))) (-15 -2731 (|#1| |#1|)) (-15 -2487 ((-588 (-708)) |#1| (-588 |#4|))) (-15 -2487 ((-708) |#1| |#4|)) (-15 -3700 ((-3 |#4| "failed") |#1|)) (-15 -2217 (|#1| |#4|)) (-15 -2330 (|#1| |#1| (-588 |#4|) (-588 |#1|))) (-15 -2330 (|#1| |#1| |#4| |#1|)) (-15 -2330 (|#1| |#1| (-588 |#4|) (-588 |#2|))) (-15 -2330 (|#1| |#1| |#4| |#2|)) (-15 -2330 (|#1| |#1| (-588 |#1|) (-588 |#1|))) (-15 -2330 (|#1| |#1| |#1| |#1|)) (-15 -2330 (|#1| |#1| (-270 |#1|))) (-15 -2330 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -2487 (|#5| |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -2731 (|#1| |#1| (-588 |#4|) (-588 (-708)))) (-15 -2731 (|#1| |#1| |#4| (-708))) (-15 -2731 (|#1| |#1| (-588 |#4|))) (-15 -2731 (|#1| |#1| |#4|)) (-15 -2217 (|#1| (-522))) (-15 -2217 ((-792) |#1|))) (-229 |#2| |#3| |#4| |#5|) (-971) (-784) (-242 |#3|) (-730)) (T -228)) -NIL -(-10 -8 (-15 -2217 (|#1| |#1|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -2330 (|#1| |#1| (-588 |#3|) (-588 |#2|))) (-15 -2330 (|#1| |#1| |#3| |#2|)) (-15 -2330 (|#1| |#1| (-588 |#3|) (-588 |#1|))) (-15 -2330 (|#1| |#1| |#3| |#1|)) (-15 -2718 ((-1 |#1| (-708)) |#1|)) (-15 -1646 (|#1| |#1|)) (-15 -1992 (|#1| |#1|)) (-15 -1611 (|#4| |#1|)) (-15 -1717 ((-108) |#1|)) (-15 -3192 ((-708) |#1| |#3|)) (-15 -4044 ((-588 (-708)) |#1| |#3|)) (-15 -3192 ((-708) |#1|)) (-15 -4044 ((-588 (-708)) |#1|)) (-15 -2487 ((-708) |#1| |#3|)) (-15 -3872 ((-708) |#1|)) (-15 -3872 ((-708) |#1| |#3|)) (-15 -1266 ((-588 |#3|) |#1|)) (-15 -2718 ((-1 |#1| (-708)) |#3|)) (-15 -3700 ((-3 |#3| "failed") |#1|)) (-15 -2217 (|#1| |#3|)) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1| (-708))) (-15 -2731 (|#1| |#1|)) (-15 -2487 ((-588 (-708)) |#1| (-588 |#4|))) (-15 -2487 ((-708) |#1| |#4|)) (-15 -3700 ((-3 |#4| "failed") |#1|)) (-15 -2217 (|#1| |#4|)) (-15 -2330 (|#1| |#1| (-588 |#4|) (-588 |#1|))) (-15 -2330 (|#1| |#1| |#4| |#1|)) (-15 -2330 (|#1| |#1| (-588 |#4|) (-588 |#2|))) (-15 -2330 (|#1| |#1| |#4| |#2|)) (-15 -2330 (|#1| |#1| (-588 |#1|) (-588 |#1|))) (-15 -2330 (|#1| |#1| |#1| |#1|)) (-15 -2330 (|#1| |#1| (-270 |#1|))) (-15 -2330 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -2487 (|#5| |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -2731 (|#1| |#1| (-588 |#4|) (-588 (-708)))) (-15 -2731 (|#1| |#1| |#4| (-708))) (-15 -2731 (|#1| |#1| (-588 |#4|))) (-15 -2731 (|#1| |#1| |#4|)) (-15 -2217 (|#1| (-522))) (-15 -2217 ((-792) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-4044 (((-588 (-708)) $) 214) (((-588 (-708)) $ |#2|) 212)) (-3192 (((-708) $) 213) (((-708) $ |#2|) 211)) (-3533 (((-588 |#3|) $) 110)) (-1264 (((-1081 $) $ |#3|) 125) (((-1081 |#1|) $) 124)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 87 (|has| |#1| (-514)))) (-2298 (($ $) 88 (|has| |#1| (-514)))) (-3007 (((-108) $) 90 (|has| |#1| (-514)))) (-3358 (((-708) $) 112) (((-708) $ (-588 |#3|)) 111)) (-2265 (((-3 $ "failed") $ $) 19)) (-3543 (((-393 (-1081 $)) (-1081 $)) 100 (|has| |#1| (-838)))) (-2961 (($ $) 98 (|has| |#1| (-426)))) (-3133 (((-393 $) $) 97 (|has| |#1| (-426)))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 103 (|has| |#1| (-838)))) (-1646 (($ $) 207)) (-3367 (($) 17 T CONST)) (-3700 (((-3 |#1| "failed") $) 164) (((-3 (-382 (-522)) "failed") $) 162 (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) 160 (|has| |#1| (-962 (-522)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-1478 ((|#1| $) 165) (((-382 (-522)) $) 161 (|has| |#1| (-962 (-382 (-522))))) (((-522) $) 159 (|has| |#1| (-962 (-522)))) ((|#3| $) 135) ((|#2| $) 220)) (-2908 (($ $ $ |#3|) 108 (|has| |#1| (-157)))) (-3241 (($ $) 154)) (-1226 (((-628 (-522)) (-628 $)) 134 (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 133 (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 132) (((-628 |#1|) (-628 $)) 131)) (-3920 (((-3 $ "failed") $) 34)) (-2883 (($ $) 176 (|has| |#1| (-426))) (($ $ |#3|) 105 (|has| |#1| (-426)))) (-3232 (((-588 $) $) 109)) (-2725 (((-108) $) 96 (|has| |#1| (-838)))) (-3792 (($ $ |#1| |#4| $) 172)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 84 (-12 (|has| |#3| (-815 (-354))) (|has| |#1| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 83 (-12 (|has| |#3| (-815 (-522))) (|has| |#1| (-815 (-522)))))) (-3872 (((-708) $ |#2|) 217) (((-708) $) 216)) (-2859 (((-108) $) 31)) (-1391 (((-708) $) 169)) (-3520 (($ (-1081 |#1|) |#3|) 117) (($ (-1081 $) |#3|) 116)) (-3038 (((-588 $) $) 126)) (-1374 (((-108) $) 152)) (-3500 (($ |#1| |#4|) 153) (($ $ |#3| (-708)) 119) (($ $ (-588 |#3|) (-588 (-708))) 118)) (-3058 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $ |#3|) 120)) (-3564 ((|#4| $) 170) (((-708) $ |#3|) 122) (((-588 (-708)) $ (-588 |#3|)) 121)) (-1308 (($ $ $) 79 (|has| |#1| (-784)))) (-2524 (($ $ $) 78 (|has| |#1| (-784)))) (-1723 (($ (-1 |#4| |#4|) $) 171)) (-3810 (($ (-1 |#1| |#1|) $) 151)) (-2718 (((-1 $ (-708)) |#2|) 219) (((-1 $ (-708)) $) 206 (|has| |#1| (-210)))) (-3155 (((-3 |#3| "failed") $) 123)) (-3216 (($ $) 149)) (-3224 ((|#1| $) 148)) (-1611 ((|#3| $) 209)) (-2267 (($ (-588 $)) 94 (|has| |#1| (-426))) (($ $ $) 93 (|has| |#1| (-426)))) (-2311 (((-1068) $) 9)) (-1717 (((-108) $) 210)) (-2760 (((-3 (-588 $) "failed") $) 114)) (-1919 (((-3 (-588 $) "failed") $) 115)) (-2024 (((-3 (-2 (|:| |var| |#3|) (|:| -3858 (-708))) "failed") $) 113)) (-1992 (($ $) 208)) (-4174 (((-1032) $) 10)) (-3199 (((-108) $) 166)) (-3207 ((|#1| $) 167)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 95 (|has| |#1| (-426)))) (-2308 (($ (-588 $)) 92 (|has| |#1| (-426))) (($ $ $) 91 (|has| |#1| (-426)))) (-4022 (((-393 (-1081 $)) (-1081 $)) 102 (|has| |#1| (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) 101 (|has| |#1| (-838)))) (-2006 (((-393 $) $) 99 (|has| |#1| (-838)))) (-2276 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-514))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-514)))) (-2330 (($ $ (-588 (-270 $))) 145) (($ $ (-270 $)) 144) (($ $ $ $) 143) (($ $ (-588 $) (-588 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-588 |#3|) (-588 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-588 |#3|) (-588 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-210))) (($ $ (-588 |#2|) (-588 $)) 204 (|has| |#1| (-210))) (($ $ |#2| |#1|) 203 (|has| |#1| (-210))) (($ $ (-588 |#2|) (-588 |#1|)) 202 (|has| |#1| (-210)))) (-1615 (($ $ |#3|) 107 (|has| |#1| (-157)))) (-2731 (($ $ |#3|) 42) (($ $ (-588 |#3|)) 41) (($ $ |#3| (-708)) 40) (($ $ (-588 |#3|) (-588 (-708))) 39) (($ $) 238 (|has| |#1| (-210))) (($ $ (-708)) 236 (|has| |#1| (-210))) (($ $ (-1085)) 234 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 233 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 232 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) 231 (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-1266 (((-588 |#2|) $) 218)) (-2487 ((|#4| $) 150) (((-708) $ |#3|) 130) (((-588 (-708)) $ (-588 |#3|)) 129) (((-708) $ |#2|) 215)) (-3873 (((-821 (-354)) $) 82 (-12 (|has| |#3| (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354)))))) (((-821 (-522)) $) 81 (-12 (|has| |#3| (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522)))))) (((-498) $) 80 (-12 (|has| |#3| (-563 (-498))) (|has| |#1| (-563 (-498)))))) (-2988 ((|#1| $) 175 (|has| |#1| (-426))) (($ $ |#3|) 106 (|has| |#1| (-426)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) 104 (-4079 (|has| $ (-133)) (|has| |#1| (-838))))) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-382 (-522))) 72 (-3844 (|has| |#1| (-962 (-382 (-522)))) (|has| |#1| (-37 (-382 (-522)))))) (($ $) 85 (|has| |#1| (-514)))) (-2180 (((-588 |#1|) $) 168)) (-1643 ((|#1| $ |#4|) 155) (($ $ |#3| (-708)) 128) (($ $ (-588 |#3|) (-588 (-708))) 127)) (-3040 (((-3 $ "failed") $) 73 (-3844 (-4079 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2742 (((-708)) 29)) (-1225 (($ $ $ (-708)) 173 (|has| |#1| (-157)))) (-1407 (((-108) $ $) 89 (|has| |#1| (-514)))) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $ |#3|) 38) (($ $ (-588 |#3|)) 37) (($ $ |#3| (-708)) 36) (($ $ (-588 |#3|) (-588 (-708))) 35) (($ $) 237 (|has| |#1| (-210))) (($ $ (-708)) 235 (|has| |#1| (-210))) (($ $ (-1085)) 230 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 229 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 228 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) 227 (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1623 (((-108) $ $) 76 (|has| |#1| (-784)))) (-1597 (((-108) $ $) 75 (|has| |#1| (-784)))) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 77 (|has| |#1| (-784)))) (-1587 (((-108) $ $) 74 (|has| |#1| (-784)))) (-1682 (($ $ |#1|) 156 (|has| |#1| (-338)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 158 (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) 157 (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-229 |#1| |#2| |#3| |#4|) (-1197) (-971) (-784) (-242 |t#2|) (-730)) (T -229)) -((-2718 (*1 *2 *3) (-12 (-4 *4 (-971)) (-4 *3 (-784)) (-4 *5 (-242 *3)) (-4 *6 (-730)) (-5 *2 (-1 *1 (-708))) (-4 *1 (-229 *4 *3 *5 *6)))) (-1266 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-588 *4)))) (-3872 (*1 *2 *1 *3) (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-971)) (-4 *3 (-784)) (-4 *5 (-242 *3)) (-4 *6 (-730)) (-5 *2 (-708)))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-708)))) (-2487 (*1 *2 *1 *3) (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-971)) (-4 *3 (-784)) (-4 *5 (-242 *3)) (-4 *6 (-730)) (-5 *2 (-708)))) (-4044 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-588 (-708))))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-708)))) (-4044 (*1 *2 *1 *3) (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-971)) (-4 *3 (-784)) (-4 *5 (-242 *3)) (-4 *6 (-730)) (-5 *2 (-588 (-708))))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-971)) (-4 *3 (-784)) (-4 *5 (-242 *3)) (-4 *6 (-730)) (-5 *2 (-708)))) (-1717 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-108)))) (-1611 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *2 *5)) (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-730)) (-4 *2 (-242 *4)))) (-1992 (*1 *1 *1) (-12 (-4 *1 (-229 *2 *3 *4 *5)) (-4 *2 (-971)) (-4 *3 (-784)) (-4 *4 (-242 *3)) (-4 *5 (-730)))) (-1646 (*1 *1 *1) (-12 (-4 *1 (-229 *2 *3 *4 *5)) (-4 *2 (-971)) (-4 *3 (-784)) (-4 *4 (-242 *3)) (-4 *5 (-730)))) (-2718 (*1 *2 *1) (-12 (-4 *3 (-210)) (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-1 *1 (-708))) (-4 *1 (-229 *3 *4 *5 *6))))) -(-13 (-878 |t#1| |t#4| |t#3|) (-208 |t#1|) (-962 |t#2|) (-10 -8 (-15 -2718 ((-1 $ (-708)) |t#2|)) (-15 -1266 ((-588 |t#2|) $)) (-15 -3872 ((-708) $ |t#2|)) (-15 -3872 ((-708) $)) (-15 -2487 ((-708) $ |t#2|)) (-15 -4044 ((-588 (-708)) $)) (-15 -3192 ((-708) $)) (-15 -4044 ((-588 (-708)) $ |t#2|)) (-15 -3192 ((-708) $ |t#2|)) (-15 -1717 ((-108) $)) (-15 -1611 (|t#3| $)) (-15 -1992 ($ $)) (-15 -1646 ($ $)) (IF (|has| |t#1| (-210)) (PROGN (-6 (-483 |t#2| |t#1|)) (-6 (-483 |t#2| $)) (-6 (-285 $)) (-15 -2718 ((-1 $ (-708)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-382 (-522)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-157))) ((-563 (-498)) -12 (|has| |#1| (-563 (-498))) (|has| |#3| (-563 (-498)))) ((-563 (-821 (-354))) -12 (|has| |#1| (-563 (-821 (-354)))) (|has| |#3| (-563 (-821 (-354))))) ((-563 (-821 (-522))) -12 (|has| |#1| (-563 (-821 (-522)))) (|has| |#3| (-563 (-821 (-522))))) ((-208 |#1|) . T) ((-210) |has| |#1| (-210)) ((-266) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-285 $) . T) ((-301 |#1| |#4|) . T) ((-352 |#1|) . T) ((-386 |#1|) . T) ((-426) -3844 (|has| |#1| (-838)) (|has| |#1| (-426))) ((-483 |#2| |#1|) |has| |#1| (-210)) ((-483 |#2| $) |has| |#1| (-210)) ((-483 |#3| |#1|) . T) ((-483 |#3| $) . T) ((-483 $ $) . T) ((-514) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-590 #0#) |has| |#1| (-37 (-382 (-522)))) ((-590 |#1|) . T) ((-590 $) . T) ((-584 (-522)) |has| |#1| (-584 (-522))) ((-584 |#1|) . T) ((-655 #0#) |has| |#1| (-37 (-382 (-522)))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-664) . T) ((-784) |has| |#1| (-784)) ((-829 (-1085)) |has| |#1| (-829 (-1085))) ((-829 |#3|) . T) ((-815 (-354)) -12 (|has| |#1| (-815 (-354))) (|has| |#3| (-815 (-354)))) ((-815 (-522)) -12 (|has| |#1| (-815 (-522))) (|has| |#3| (-815 (-522)))) ((-878 |#1| |#4| |#3|) . T) ((-838) |has| |#1| (-838)) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T) ((-962 |#2|) . T) ((-962 |#3|) . T) ((-977 #0#) |has| |#1| (-37 (-382 (-522)))) ((-977 |#1|) . T) ((-977 $) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) |has| |#1| (-838))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-2892 ((|#1| $) 54)) (-1322 ((|#1| $) 44)) (-2717 (((-108) $ (-708)) 8)) (-3367 (($) 7 T CONST)) (-2876 (($ $) 60)) (-2465 (($ $) 48)) (-2622 ((|#1| |#1| $) 46)) (-2956 ((|#1| $) 45)) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) 9)) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35)) (-3309 (((-108) $ (-708)) 10)) (-4030 (((-708) $) 61)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1431 ((|#1| $) 39)) (-1406 ((|#1| |#1| $) 52)) (-1930 ((|#1| |#1| $) 51)) (-3365 (($ |#1| $) 40)) (-4179 (((-708) $) 55)) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-4056 ((|#1| $) 62)) (-1844 ((|#1| $) 50)) (-3064 ((|#1| $) 49)) (-3295 ((|#1| $) 41)) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3036 ((|#1| |#1| $) 58)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-1402 ((|#1| $) 59)) (-3464 (($) 57) (($ (-588 |#1|)) 56)) (-3735 (((-708) $) 43)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-2049 ((|#1| $) 53)) (-2501 (($ (-588 |#1|)) 42)) (-2653 ((|#1| $) 63)) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-230 |#1|) (-1197) (-1120)) (T -230)) -((-3464 (*1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))) (-3464 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-4 *1 (-230 *3)))) (-4179 (*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-1120)) (-5 *2 (-708)))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))) (-2049 (*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))) (-1406 (*1 *2 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))) (-1930 (*1 *2 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))) (-1844 (*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))) (-3064 (*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))) (-2465 (*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120))))) -(-13 (-1033 |t#1|) (-921 |t#1|) (-10 -8 (-15 -3464 ($)) (-15 -3464 ($ (-588 |t#1|))) (-15 -4179 ((-708) $)) (-15 -2892 (|t#1| $)) (-15 -2049 (|t#1| $)) (-15 -1406 (|t#1| |t#1| $)) (-15 -1930 (|t#1| |t#1| $)) (-15 -1844 (|t#1| $)) (-15 -3064 (|t#1| $)) (-15 -2465 ($ $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-921 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1033 |#1|) . T) ((-1120) . T)) -((-1568 (((-1 (-872 (-202)) (-202) (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202) (-202))) 139)) (-3091 (((-1045 (-202)) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354))) 160) (((-1045 (-202)) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354)) (-588 (-239))) 158) (((-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354))) 163) (((-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239))) 159) (((-1045 (-202)) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354))) 150) (((-1045 (-202)) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239))) 149) (((-1045 (-202)) (-1 (-872 (-202)) (-202)) (-1009 (-354))) 129) (((-1045 (-202)) (-1 (-872 (-202)) (-202)) (-1009 (-354)) (-588 (-239))) 127) (((-1045 (-202)) (-808 (-1 (-202) (-202))) (-1009 (-354))) 128) (((-1045 (-202)) (-808 (-1 (-202) (-202))) (-1009 (-354)) (-588 (-239))) 125)) (-3053 (((-1168) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354))) 162) (((-1168) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354)) (-588 (-239))) 161) (((-1168) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354))) 165) (((-1168) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239))) 164) (((-1168) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354))) 152) (((-1168) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239))) 151) (((-1168) (-1 (-872 (-202)) (-202)) (-1009 (-354))) 135) (((-1168) (-1 (-872 (-202)) (-202)) (-1009 (-354)) (-588 (-239))) 134) (((-1168) (-808 (-1 (-202) (-202))) (-1009 (-354))) 133) (((-1168) (-808 (-1 (-202) (-202))) (-1009 (-354)) (-588 (-239))) 132) (((-1167) (-806 (-1 (-202) (-202))) (-1009 (-354))) 99) (((-1167) (-806 (-1 (-202) (-202))) (-1009 (-354)) (-588 (-239))) 98) (((-1167) (-1 (-202) (-202)) (-1009 (-354))) 95) (((-1167) (-1 (-202) (-202)) (-1009 (-354)) (-588 (-239))) 94))) -(((-231) (-10 -7 (-15 -3053 ((-1167) (-1 (-202) (-202)) (-1009 (-354)) (-588 (-239)))) (-15 -3053 ((-1167) (-1 (-202) (-202)) (-1009 (-354)))) (-15 -3053 ((-1167) (-806 (-1 (-202) (-202))) (-1009 (-354)) (-588 (-239)))) (-15 -3053 ((-1167) (-806 (-1 (-202) (-202))) (-1009 (-354)))) (-15 -3053 ((-1168) (-808 (-1 (-202) (-202))) (-1009 (-354)) (-588 (-239)))) (-15 -3053 ((-1168) (-808 (-1 (-202) (-202))) (-1009 (-354)))) (-15 -3053 ((-1168) (-1 (-872 (-202)) (-202)) (-1009 (-354)) (-588 (-239)))) (-15 -3053 ((-1168) (-1 (-872 (-202)) (-202)) (-1009 (-354)))) (-15 -3091 ((-1045 (-202)) (-808 (-1 (-202) (-202))) (-1009 (-354)) (-588 (-239)))) (-15 -3091 ((-1045 (-202)) (-808 (-1 (-202) (-202))) (-1009 (-354)))) (-15 -3091 ((-1045 (-202)) (-1 (-872 (-202)) (-202)) (-1009 (-354)) (-588 (-239)))) (-15 -3091 ((-1045 (-202)) (-1 (-872 (-202)) (-202)) (-1009 (-354)))) (-15 -3053 ((-1168) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -3053 ((-1168) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354)))) (-15 -3091 ((-1045 (-202)) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -3091 ((-1045 (-202)) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354)))) (-15 -3053 ((-1168) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -3053 ((-1168) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354)))) (-15 -3091 ((-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -3091 ((-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354)))) (-15 -3053 ((-1168) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -3053 ((-1168) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354)))) (-15 -3091 ((-1045 (-202)) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -3091 ((-1045 (-202)) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354)))) (-15 -1568 ((-1 (-872 (-202)) (-202) (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202) (-202)))))) (T -231)) -((-1568 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-872 (-202)) (-202) (-202))) (-5 *3 (-1 (-202) (-202) (-202) (-202))) (-5 *1 (-231)))) (-3091 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1009 (-354))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) (-3091 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) (-3053 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1009 (-354))) (-5 *2 (-1168)) (-5 *1 (-231)))) (-3053 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-231)))) (-3091 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-354))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) (-3091 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) (-3053 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-354))) (-5 *2 (-1168)) (-5 *1 (-231)))) (-3053 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-231)))) (-3091 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1009 (-354))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) (-3091 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) (-3053 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1009 (-354))) (-5 *2 (-1168)) (-5 *1 (-231)))) (-3053 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-231)))) (-3091 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1009 (-354))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) (-3091 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) (-3091 (*1 *2 *3 *4) (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) (-3091 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) (-3053 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1009 (-354))) (-5 *2 (-1168)) (-5 *1 (-231)))) (-3053 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-231)))) (-3053 (*1 *2 *3 *4) (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354))) (-5 *2 (-1168)) (-5 *1 (-231)))) (-3053 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-231)))) (-3053 (*1 *2 *3 *4) (-12 (-5 *3 (-806 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-3053 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-806 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-3053 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-202) (-202))) (-5 *4 (-1009 (-354))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-3053 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-202) (-202))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1167)) (-5 *1 (-231))))) -(-10 -7 (-15 -3053 ((-1167) (-1 (-202) (-202)) (-1009 (-354)) (-588 (-239)))) (-15 -3053 ((-1167) (-1 (-202) (-202)) (-1009 (-354)))) (-15 -3053 ((-1167) (-806 (-1 (-202) (-202))) (-1009 (-354)) (-588 (-239)))) (-15 -3053 ((-1167) (-806 (-1 (-202) (-202))) (-1009 (-354)))) (-15 -3053 ((-1168) (-808 (-1 (-202) (-202))) (-1009 (-354)) (-588 (-239)))) (-15 -3053 ((-1168) (-808 (-1 (-202) (-202))) (-1009 (-354)))) (-15 -3053 ((-1168) (-1 (-872 (-202)) (-202)) (-1009 (-354)) (-588 (-239)))) (-15 -3053 ((-1168) (-1 (-872 (-202)) (-202)) (-1009 (-354)))) (-15 -3091 ((-1045 (-202)) (-808 (-1 (-202) (-202))) (-1009 (-354)) (-588 (-239)))) (-15 -3091 ((-1045 (-202)) (-808 (-1 (-202) (-202))) (-1009 (-354)))) (-15 -3091 ((-1045 (-202)) (-1 (-872 (-202)) (-202)) (-1009 (-354)) (-588 (-239)))) (-15 -3091 ((-1045 (-202)) (-1 (-872 (-202)) (-202)) (-1009 (-354)))) (-15 -3053 ((-1168) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -3053 ((-1168) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354)))) (-15 -3091 ((-1045 (-202)) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -3091 ((-1045 (-202)) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354)))) (-15 -3053 ((-1168) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -3053 ((-1168) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354)))) (-15 -3091 ((-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -3091 ((-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354)))) (-15 -3053 ((-1168) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -3053 ((-1168) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354)))) (-15 -3091 ((-1045 (-202)) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -3091 ((-1045 (-202)) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354)))) (-15 -1568 ((-1 (-872 (-202)) (-202) (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202) (-202))))) -((-3053 (((-1167) (-270 |#2|) (-1085) (-1085) (-588 (-239))) 93))) -(((-232 |#1| |#2|) (-10 -7 (-15 -3053 ((-1167) (-270 |#2|) (-1085) (-1085) (-588 (-239))))) (-13 (-514) (-784) (-962 (-522))) (-405 |#1|)) (T -232)) -((-3053 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-270 *7)) (-5 *4 (-1085)) (-5 *5 (-588 (-239))) (-4 *7 (-405 *6)) (-4 *6 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-1167)) (-5 *1 (-232 *6 *7))))) -(-10 -7 (-15 -3053 ((-1167) (-270 |#2|) (-1085) (-1085) (-588 (-239))))) -((-2307 (((-522) (-522)) 50)) (-2514 (((-522) (-522)) 51)) (-2293 (((-202) (-202)) 52)) (-2996 (((-1168) (-1 (-154 (-202)) (-154 (-202))) (-1009 (-202)) (-1009 (-202))) 49)) (-1589 (((-1168) (-1 (-154 (-202)) (-154 (-202))) (-1009 (-202)) (-1009 (-202)) (-108)) 47))) -(((-233) (-10 -7 (-15 -1589 ((-1168) (-1 (-154 (-202)) (-154 (-202))) (-1009 (-202)) (-1009 (-202)) (-108))) (-15 -2996 ((-1168) (-1 (-154 (-202)) (-154 (-202))) (-1009 (-202)) (-1009 (-202)))) (-15 -2307 ((-522) (-522))) (-15 -2514 ((-522) (-522))) (-15 -2293 ((-202) (-202))))) (T -233)) -((-2293 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-233)))) (-2514 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-233)))) (-2307 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-233)))) (-2996 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-154 (-202)) (-154 (-202)))) (-5 *4 (-1009 (-202))) (-5 *2 (-1168)) (-5 *1 (-233)))) (-1589 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-154 (-202)) (-154 (-202)))) (-5 *4 (-1009 (-202))) (-5 *5 (-108)) (-5 *2 (-1168)) (-5 *1 (-233))))) -(-10 -7 (-15 -1589 ((-1168) (-1 (-154 (-202)) (-154 (-202))) (-1009 (-202)) (-1009 (-202)) (-108))) (-15 -2996 ((-1168) (-1 (-154 (-202)) (-154 (-202))) (-1009 (-202)) (-1009 (-202)))) (-15 -2307 ((-522) (-522))) (-15 -2514 ((-522) (-522))) (-15 -2293 ((-202) (-202)))) -((-2217 (((-1007 (-354)) (-1007 (-291 |#1|))) 16))) -(((-234 |#1|) (-10 -7 (-15 -2217 ((-1007 (-354)) (-1007 (-291 |#1|))))) (-13 (-784) (-514) (-563 (-354)))) (T -234)) -((-2217 (*1 *2 *3) (-12 (-5 *3 (-1007 (-291 *4))) (-4 *4 (-13 (-784) (-514) (-563 (-354)))) (-5 *2 (-1007 (-354))) (-5 *1 (-234 *4))))) -(-10 -7 (-15 -2217 ((-1007 (-354)) (-1007 (-291 |#1|))))) -((-3091 (((-1045 (-202)) (-811 |#1|) (-1007 (-354)) (-1007 (-354))) 69) (((-1045 (-202)) (-811 |#1|) (-1007 (-354)) (-1007 (-354)) (-588 (-239))) 68) (((-1045 (-202)) |#1| (-1007 (-354)) (-1007 (-354))) 59) (((-1045 (-202)) |#1| (-1007 (-354)) (-1007 (-354)) (-588 (-239))) 58) (((-1045 (-202)) (-808 |#1|) (-1007 (-354))) 50) (((-1045 (-202)) (-808 |#1|) (-1007 (-354)) (-588 (-239))) 49)) (-3053 (((-1168) (-811 |#1|) (-1007 (-354)) (-1007 (-354))) 72) (((-1168) (-811 |#1|) (-1007 (-354)) (-1007 (-354)) (-588 (-239))) 71) (((-1168) |#1| (-1007 (-354)) (-1007 (-354))) 62) (((-1168) |#1| (-1007 (-354)) (-1007 (-354)) (-588 (-239))) 61) (((-1168) (-808 |#1|) (-1007 (-354))) 54) (((-1168) (-808 |#1|) (-1007 (-354)) (-588 (-239))) 53) (((-1167) (-806 |#1|) (-1007 (-354))) 41) (((-1167) (-806 |#1|) (-1007 (-354)) (-588 (-239))) 40) (((-1167) |#1| (-1007 (-354))) 33) (((-1167) |#1| (-1007 (-354)) (-588 (-239))) 32))) -(((-235 |#1|) (-10 -7 (-15 -3053 ((-1167) |#1| (-1007 (-354)) (-588 (-239)))) (-15 -3053 ((-1167) |#1| (-1007 (-354)))) (-15 -3053 ((-1167) (-806 |#1|) (-1007 (-354)) (-588 (-239)))) (-15 -3053 ((-1167) (-806 |#1|) (-1007 (-354)))) (-15 -3053 ((-1168) (-808 |#1|) (-1007 (-354)) (-588 (-239)))) (-15 -3053 ((-1168) (-808 |#1|) (-1007 (-354)))) (-15 -3091 ((-1045 (-202)) (-808 |#1|) (-1007 (-354)) (-588 (-239)))) (-15 -3091 ((-1045 (-202)) (-808 |#1|) (-1007 (-354)))) (-15 -3053 ((-1168) |#1| (-1007 (-354)) (-1007 (-354)) (-588 (-239)))) (-15 -3053 ((-1168) |#1| (-1007 (-354)) (-1007 (-354)))) (-15 -3091 ((-1045 (-202)) |#1| (-1007 (-354)) (-1007 (-354)) (-588 (-239)))) (-15 -3091 ((-1045 (-202)) |#1| (-1007 (-354)) (-1007 (-354)))) (-15 -3053 ((-1168) (-811 |#1|) (-1007 (-354)) (-1007 (-354)) (-588 (-239)))) (-15 -3053 ((-1168) (-811 |#1|) (-1007 (-354)) (-1007 (-354)))) (-15 -3091 ((-1045 (-202)) (-811 |#1|) (-1007 (-354)) (-1007 (-354)) (-588 (-239)))) (-15 -3091 ((-1045 (-202)) (-811 |#1|) (-1007 (-354)) (-1007 (-354))))) (-13 (-563 (-498)) (-1014))) (T -235)) -((-3091 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-811 *5)) (-5 *4 (-1007 (-354))) (-4 *5 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1045 (-202))) (-5 *1 (-235 *5)))) (-3091 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-811 *6)) (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) (-4 *6 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1045 (-202))) (-5 *1 (-235 *6)))) (-3053 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-811 *5)) (-5 *4 (-1007 (-354))) (-4 *5 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1168)) (-5 *1 (-235 *5)))) (-3053 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-811 *6)) (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) (-4 *6 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1168)) (-5 *1 (-235 *6)))) (-3091 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1007 (-354))) (-5 *2 (-1045 (-202))) (-5 *1 (-235 *3)) (-4 *3 (-13 (-563 (-498)) (-1014))))) (-3091 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-235 *3)) (-4 *3 (-13 (-563 (-498)) (-1014))))) (-3053 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1007 (-354))) (-5 *2 (-1168)) (-5 *1 (-235 *3)) (-4 *3 (-13 (-563 (-498)) (-1014))))) (-3053 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-235 *3)) (-4 *3 (-13 (-563 (-498)) (-1014))))) (-3091 (*1 *2 *3 *4) (-12 (-5 *3 (-808 *5)) (-5 *4 (-1007 (-354))) (-4 *5 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1045 (-202))) (-5 *1 (-235 *5)))) (-3091 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-808 *6)) (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) (-4 *6 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1045 (-202))) (-5 *1 (-235 *6)))) (-3053 (*1 *2 *3 *4) (-12 (-5 *3 (-808 *5)) (-5 *4 (-1007 (-354))) (-4 *5 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1168)) (-5 *1 (-235 *5)))) (-3053 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-808 *6)) (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) (-4 *6 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1168)) (-5 *1 (-235 *6)))) (-3053 (*1 *2 *3 *4) (-12 (-5 *3 (-806 *5)) (-5 *4 (-1007 (-354))) (-4 *5 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1167)) (-5 *1 (-235 *5)))) (-3053 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-806 *6)) (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) (-4 *6 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1167)) (-5 *1 (-235 *6)))) (-3053 (*1 *2 *3 *4) (-12 (-5 *4 (-1007 (-354))) (-5 *2 (-1167)) (-5 *1 (-235 *3)) (-4 *3 (-13 (-563 (-498)) (-1014))))) (-3053 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1167)) (-5 *1 (-235 *3)) (-4 *3 (-13 (-563 (-498)) (-1014)))))) -(-10 -7 (-15 -3053 ((-1167) |#1| (-1007 (-354)) (-588 (-239)))) (-15 -3053 ((-1167) |#1| (-1007 (-354)))) (-15 -3053 ((-1167) (-806 |#1|) (-1007 (-354)) (-588 (-239)))) (-15 -3053 ((-1167) (-806 |#1|) (-1007 (-354)))) (-15 -3053 ((-1168) (-808 |#1|) (-1007 (-354)) (-588 (-239)))) (-15 -3053 ((-1168) (-808 |#1|) (-1007 (-354)))) (-15 -3091 ((-1045 (-202)) (-808 |#1|) (-1007 (-354)) (-588 (-239)))) (-15 -3091 ((-1045 (-202)) (-808 |#1|) (-1007 (-354)))) (-15 -3053 ((-1168) |#1| (-1007 (-354)) (-1007 (-354)) (-588 (-239)))) (-15 -3053 ((-1168) |#1| (-1007 (-354)) (-1007 (-354)))) (-15 -3091 ((-1045 (-202)) |#1| (-1007 (-354)) (-1007 (-354)) (-588 (-239)))) (-15 -3091 ((-1045 (-202)) |#1| (-1007 (-354)) (-1007 (-354)))) (-15 -3053 ((-1168) (-811 |#1|) (-1007 (-354)) (-1007 (-354)) (-588 (-239)))) (-15 -3053 ((-1168) (-811 |#1|) (-1007 (-354)) (-1007 (-354)))) (-15 -3091 ((-1045 (-202)) (-811 |#1|) (-1007 (-354)) (-1007 (-354)) (-588 (-239)))) (-15 -3091 ((-1045 (-202)) (-811 |#1|) (-1007 (-354)) (-1007 (-354))))) -((-3053 (((-1168) (-588 (-202)) (-588 (-202)) (-588 (-202)) (-588 (-239))) 21) (((-1168) (-588 (-202)) (-588 (-202)) (-588 (-202))) 22) (((-1167) (-588 (-872 (-202))) (-588 (-239))) 13) (((-1167) (-588 (-872 (-202)))) 14) (((-1167) (-588 (-202)) (-588 (-202)) (-588 (-239))) 18) (((-1167) (-588 (-202)) (-588 (-202))) 19))) -(((-236) (-10 -7 (-15 -3053 ((-1167) (-588 (-202)) (-588 (-202)))) (-15 -3053 ((-1167) (-588 (-202)) (-588 (-202)) (-588 (-239)))) (-15 -3053 ((-1167) (-588 (-872 (-202))))) (-15 -3053 ((-1167) (-588 (-872 (-202))) (-588 (-239)))) (-15 -3053 ((-1168) (-588 (-202)) (-588 (-202)) (-588 (-202)))) (-15 -3053 ((-1168) (-588 (-202)) (-588 (-202)) (-588 (-202)) (-588 (-239)))))) (T -236)) -((-3053 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-588 (-202))) (-5 *4 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-236)))) (-3053 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-588 (-202))) (-5 *2 (-1168)) (-5 *1 (-236)))) (-3053 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-872 (-202)))) (-5 *4 (-588 (-239))) (-5 *2 (-1167)) (-5 *1 (-236)))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-588 (-872 (-202)))) (-5 *2 (-1167)) (-5 *1 (-236)))) (-3053 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-588 (-202))) (-5 *4 (-588 (-239))) (-5 *2 (-1167)) (-5 *1 (-236)))) (-3053 (*1 *2 *3 *3) (-12 (-5 *3 (-588 (-202))) (-5 *2 (-1167)) (-5 *1 (-236))))) -(-10 -7 (-15 -3053 ((-1167) (-588 (-202)) (-588 (-202)))) (-15 -3053 ((-1167) (-588 (-202)) (-588 (-202)) (-588 (-239)))) (-15 -3053 ((-1167) (-588 (-872 (-202))))) (-15 -3053 ((-1167) (-588 (-872 (-202))) (-588 (-239)))) (-15 -3053 ((-1168) (-588 (-202)) (-588 (-202)) (-588 (-202)))) (-15 -3053 ((-1168) (-588 (-202)) (-588 (-202)) (-588 (-202)) (-588 (-239))))) -((-1210 (((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) (-588 (-239)) (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) 24)) (-1948 (((-850) (-588 (-239)) (-850)) 49)) (-2014 (((-850) (-588 (-239)) (-850)) 48)) (-2035 (((-588 (-354)) (-588 (-239)) (-588 (-354))) 65)) (-2857 (((-354) (-588 (-239)) (-354)) 55)) (-1640 (((-850) (-588 (-239)) (-850)) 50)) (-2511 (((-108) (-588 (-239)) (-108)) 26)) (-3082 (((-1068) (-588 (-239)) (-1068)) 19)) (-1444 (((-1068) (-588 (-239)) (-1068)) 25)) (-1903 (((-1045 (-202)) (-588 (-239))) 43)) (-3753 (((-588 (-1009 (-354))) (-588 (-239)) (-588 (-1009 (-354)))) 37)) (-2418 (((-803) (-588 (-239)) (-803)) 31)) (-2689 (((-803) (-588 (-239)) (-803)) 32)) (-2647 (((-1 (-872 (-202)) (-872 (-202))) (-588 (-239)) (-1 (-872 (-202)) (-872 (-202)))) 60)) (-1649 (((-108) (-588 (-239)) (-108)) 15)) (-1768 (((-108) (-588 (-239)) (-108)) 14))) -(((-237) (-10 -7 (-15 -1768 ((-108) (-588 (-239)) (-108))) (-15 -1649 ((-108) (-588 (-239)) (-108))) (-15 -1210 ((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) (-588 (-239)) (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -3082 ((-1068) (-588 (-239)) (-1068))) (-15 -1444 ((-1068) (-588 (-239)) (-1068))) (-15 -2511 ((-108) (-588 (-239)) (-108))) (-15 -2418 ((-803) (-588 (-239)) (-803))) (-15 -2689 ((-803) (-588 (-239)) (-803))) (-15 -3753 ((-588 (-1009 (-354))) (-588 (-239)) (-588 (-1009 (-354))))) (-15 -2014 ((-850) (-588 (-239)) (-850))) (-15 -1948 ((-850) (-588 (-239)) (-850))) (-15 -1903 ((-1045 (-202)) (-588 (-239)))) (-15 -1640 ((-850) (-588 (-239)) (-850))) (-15 -2857 ((-354) (-588 (-239)) (-354))) (-15 -2647 ((-1 (-872 (-202)) (-872 (-202))) (-588 (-239)) (-1 (-872 (-202)) (-872 (-202))))) (-15 -2035 ((-588 (-354)) (-588 (-239)) (-588 (-354)))))) (T -237)) -((-2035 (*1 *2 *3 *2) (-12 (-5 *2 (-588 (-354))) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-2647 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-872 (-202)) (-872 (-202)))) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-2857 (*1 *2 *3 *2) (-12 (-5 *2 (-354)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-1640 (*1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-237)))) (-1948 (*1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-2014 (*1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-3753 (*1 *2 *3 *2) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-2689 (*1 *2 *3 *2) (-12 (-5 *2 (-803)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-2418 (*1 *2 *3 *2) (-12 (-5 *2 (-803)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-2511 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-1444 (*1 *2 *3 *2) (-12 (-5 *2 (-1068)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-3082 (*1 *2 *3 *2) (-12 (-5 *2 (-1068)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-1210 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-1649 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-1768 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-588 (-239))) (-5 *1 (-237))))) -(-10 -7 (-15 -1768 ((-108) (-588 (-239)) (-108))) (-15 -1649 ((-108) (-588 (-239)) (-108))) (-15 -1210 ((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) (-588 (-239)) (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -3082 ((-1068) (-588 (-239)) (-1068))) (-15 -1444 ((-1068) (-588 (-239)) (-1068))) (-15 -2511 ((-108) (-588 (-239)) (-108))) (-15 -2418 ((-803) (-588 (-239)) (-803))) (-15 -2689 ((-803) (-588 (-239)) (-803))) (-15 -3753 ((-588 (-1009 (-354))) (-588 (-239)) (-588 (-1009 (-354))))) (-15 -2014 ((-850) (-588 (-239)) (-850))) (-15 -1948 ((-850) (-588 (-239)) (-850))) (-15 -1903 ((-1045 (-202)) (-588 (-239)))) (-15 -1640 ((-850) (-588 (-239)) (-850))) (-15 -2857 ((-354) (-588 (-239)) (-354))) (-15 -2647 ((-1 (-872 (-202)) (-872 (-202))) (-588 (-239)) (-1 (-872 (-202)) (-872 (-202))))) (-15 -2035 ((-588 (-354)) (-588 (-239)) (-588 (-354))))) -((-3131 (((-3 |#1| "failed") (-588 (-239)) (-1085)) 17))) -(((-238 |#1|) (-10 -7 (-15 -3131 ((-3 |#1| "failed") (-588 (-239)) (-1085)))) (-1120)) (T -238)) -((-3131 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-588 (-239))) (-5 *4 (-1085)) (-5 *1 (-238 *2)) (-4 *2 (-1120))))) -(-10 -7 (-15 -3131 ((-3 |#1| "failed") (-588 (-239)) (-1085)))) -((-1419 (((-108) $ $) NIL)) (-1210 (($ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) 14)) (-1948 (($ (-850)) 70)) (-2014 (($ (-850)) 69)) (-2541 (($ (-588 (-354))) 76)) (-2857 (($ (-354)) 55)) (-1640 (($ (-850)) 71)) (-2511 (($ (-108)) 22)) (-3082 (($ (-1068)) 17)) (-1444 (($ (-1068)) 18)) (-1903 (($ (-1045 (-202))) 65)) (-3753 (($ (-588 (-1009 (-354)))) 61)) (-2321 (($ (-588 (-1009 (-354)))) 56) (($ (-588 (-1009 (-382 (-522))))) 60)) (-3477 (($ (-354)) 28) (($ (-803)) 32)) (-2172 (((-108) (-588 $) (-1085)) 85)) (-3131 (((-3 (-51) "failed") (-588 $) (-1085)) 87)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-3124 (($ (-354)) 33) (($ (-803)) 34)) (-3510 (($ (-1 (-872 (-202)) (-872 (-202)))) 54)) (-2647 (($ (-1 (-872 (-202)) (-872 (-202)))) 72)) (-2277 (($ (-1 (-202) (-202))) 38) (($ (-1 (-202) (-202) (-202))) 42) (($ (-1 (-202) (-202) (-202) (-202))) 46)) (-2217 (((-792) $) 81)) (-2741 (($ (-108)) 23) (($ (-588 (-1009 (-354)))) 50)) (-1768 (($ (-108)) 24)) (-1562 (((-108) $ $) 83))) -(((-239) (-13 (-1014) (-10 -8 (-15 -1768 ($ (-108))) (-15 -2741 ($ (-108))) (-15 -1210 ($ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -3082 ($ (-1068))) (-15 -1444 ($ (-1068))) (-15 -2511 ($ (-108))) (-15 -2741 ($ (-588 (-1009 (-354))))) (-15 -3510 ($ (-1 (-872 (-202)) (-872 (-202))))) (-15 -3477 ($ (-354))) (-15 -3477 ($ (-803))) (-15 -3124 ($ (-354))) (-15 -3124 ($ (-803))) (-15 -2277 ($ (-1 (-202) (-202)))) (-15 -2277 ($ (-1 (-202) (-202) (-202)))) (-15 -2277 ($ (-1 (-202) (-202) (-202) (-202)))) (-15 -2857 ($ (-354))) (-15 -2321 ($ (-588 (-1009 (-354))))) (-15 -2321 ($ (-588 (-1009 (-382 (-522)))))) (-15 -3753 ($ (-588 (-1009 (-354))))) (-15 -1903 ($ (-1045 (-202)))) (-15 -2014 ($ (-850))) (-15 -1948 ($ (-850))) (-15 -1640 ($ (-850))) (-15 -2647 ($ (-1 (-872 (-202)) (-872 (-202))))) (-15 -2541 ($ (-588 (-354)))) (-15 -3131 ((-3 (-51) "failed") (-588 $) (-1085))) (-15 -2172 ((-108) (-588 $) (-1085)))))) (T -239)) -((-1768 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239)))) (-2741 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239)))) (-1210 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) (-5 *1 (-239)))) (-3082 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-239)))) (-1444 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-239)))) (-2511 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239)))) (-2741 (*1 *1 *2) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *1 (-239)))) (-3510 (*1 *1 *2) (-12 (-5 *2 (-1 (-872 (-202)) (-872 (-202)))) (-5 *1 (-239)))) (-3477 (*1 *1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-239)))) (-3477 (*1 *1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-239)))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-239)))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-239)))) (-2277 (*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-239)))) (-2277 (*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202) (-202))) (-5 *1 (-239)))) (-2277 (*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202) (-202) (-202))) (-5 *1 (-239)))) (-2857 (*1 *1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-239)))) (-2321 (*1 *1 *2) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *1 (-239)))) (-2321 (*1 *1 *2) (-12 (-5 *2 (-588 (-1009 (-382 (-522))))) (-5 *1 (-239)))) (-3753 (*1 *1 *2) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *1 (-239)))) (-1903 (*1 *1 *2) (-12 (-5 *2 (-1045 (-202))) (-5 *1 (-239)))) (-2014 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-239)))) (-1948 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-239)))) (-1640 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-239)))) (-2647 (*1 *1 *2) (-12 (-5 *2 (-1 (-872 (-202)) (-872 (-202)))) (-5 *1 (-239)))) (-2541 (*1 *1 *2) (-12 (-5 *2 (-588 (-354))) (-5 *1 (-239)))) (-3131 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-588 (-239))) (-5 *4 (-1085)) (-5 *2 (-51)) (-5 *1 (-239)))) (-2172 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-239))) (-5 *4 (-1085)) (-5 *2 (-108)) (-5 *1 (-239))))) -(-13 (-1014) (-10 -8 (-15 -1768 ($ (-108))) (-15 -2741 ($ (-108))) (-15 -1210 ($ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -3082 ($ (-1068))) (-15 -1444 ($ (-1068))) (-15 -2511 ($ (-108))) (-15 -2741 ($ (-588 (-1009 (-354))))) (-15 -3510 ($ (-1 (-872 (-202)) (-872 (-202))))) (-15 -3477 ($ (-354))) (-15 -3477 ($ (-803))) (-15 -3124 ($ (-354))) (-15 -3124 ($ (-803))) (-15 -2277 ($ (-1 (-202) (-202)))) (-15 -2277 ($ (-1 (-202) (-202) (-202)))) (-15 -2277 ($ (-1 (-202) (-202) (-202) (-202)))) (-15 -2857 ($ (-354))) (-15 -2321 ($ (-588 (-1009 (-354))))) (-15 -2321 ($ (-588 (-1009 (-382 (-522)))))) (-15 -3753 ($ (-588 (-1009 (-354))))) (-15 -1903 ($ (-1045 (-202)))) (-15 -2014 ($ (-850))) (-15 -1948 ($ (-850))) (-15 -1640 ($ (-850))) (-15 -2647 ($ (-1 (-872 (-202)) (-872 (-202))))) (-15 -2541 ($ (-588 (-354)))) (-15 -3131 ((-3 (-51) "failed") (-588 $) (-1085))) (-15 -2172 ((-108) (-588 $) (-1085))))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-4044 (((-588 (-708)) $) NIL) (((-588 (-708)) $ |#2|) NIL)) (-3192 (((-708) $) NIL) (((-708) $ |#2|) NIL)) (-3533 (((-588 |#3|) $) NIL)) (-1264 (((-1081 $) $ |#3|) NIL) (((-1081 |#1|) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) NIL (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-3358 (((-708) $) NIL) (((-708) $ (-588 |#3|)) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2961 (($ $) NIL (|has| |#1| (-426)))) (-3133 (((-393 $) $) NIL (|has| |#1| (-426)))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-1646 (($ $) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1037 |#1| |#2|) "failed") $) 20)) (-1478 ((|#1| $) NIL) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#1| (-962 (-522)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1037 |#1| |#2|) $) NIL)) (-2908 (($ $ $ |#3|) NIL (|has| |#1| (-157)))) (-3241 (($ $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2883 (($ $) NIL (|has| |#1| (-426))) (($ $ |#3|) NIL (|has| |#1| (-426)))) (-3232 (((-588 $) $) NIL)) (-2725 (((-108) $) NIL (|has| |#1| (-838)))) (-3792 (($ $ |#1| (-494 |#3|) $) NIL)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| |#1| (-815 (-354))) (|has| |#3| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| |#1| (-815 (-522))) (|has| |#3| (-815 (-522)))))) (-3872 (((-708) $ |#2|) NIL) (((-708) $) 10)) (-2859 (((-108) $) NIL)) (-1391 (((-708) $) NIL)) (-3520 (($ (-1081 |#1|) |#3|) NIL) (($ (-1081 $) |#3|) NIL)) (-3038 (((-588 $) $) NIL)) (-1374 (((-108) $) NIL)) (-3500 (($ |#1| (-494 |#3|)) NIL) (($ $ |#3| (-708)) NIL) (($ $ (-588 |#3|) (-588 (-708))) NIL)) (-3058 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $ |#3|) NIL)) (-3564 (((-494 |#3|) $) NIL) (((-708) $ |#3|) NIL) (((-588 (-708)) $ (-588 |#3|)) NIL)) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-1723 (($ (-1 (-494 |#3|) (-494 |#3|)) $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-2718 (((-1 $ (-708)) |#2|) NIL) (((-1 $ (-708)) $) NIL (|has| |#1| (-210)))) (-3155 (((-3 |#3| "failed") $) NIL)) (-3216 (($ $) NIL)) (-3224 ((|#1| $) NIL)) (-1611 ((|#3| $) NIL)) (-2267 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-2311 (((-1068) $) NIL)) (-1717 (((-108) $) NIL)) (-2760 (((-3 (-588 $) "failed") $) NIL)) (-1919 (((-3 (-588 $) "failed") $) NIL)) (-2024 (((-3 (-2 (|:| |var| |#3|) (|:| -3858 (-708))) "failed") $) NIL)) (-1992 (($ $) NIL)) (-4174 (((-1032) $) NIL)) (-3199 (((-108) $) NIL)) (-3207 ((|#1| $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-426)))) (-2308 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2006 (((-393 $) $) NIL (|has| |#1| (-838)))) (-2276 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-2330 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-588 |#3|) (-588 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-588 |#3|) (-588 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-210))) (($ $ (-588 |#2|) (-588 $)) NIL (|has| |#1| (-210))) (($ $ |#2| |#1|) NIL (|has| |#1| (-210))) (($ $ (-588 |#2|) (-588 |#1|)) NIL (|has| |#1| (-210)))) (-1615 (($ $ |#3|) NIL (|has| |#1| (-157)))) (-2731 (($ $ |#3|) NIL) (($ $ (-588 |#3|)) NIL) (($ $ |#3| (-708)) NIL) (($ $ (-588 |#3|) (-588 (-708))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1266 (((-588 |#2|) $) NIL)) (-2487 (((-494 |#3|) $) NIL) (((-708) $ |#3|) NIL) (((-588 (-708)) $ (-588 |#3|)) NIL) (((-708) $ |#2|) NIL)) (-3873 (((-821 (-354)) $) NIL (-12 (|has| |#1| (-563 (-821 (-354)))) (|has| |#3| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| |#1| (-563 (-821 (-522)))) (|has| |#3| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| |#1| (-563 (-498))) (|has| |#3| (-563 (-498)))))) (-2988 ((|#1| $) NIL (|has| |#1| (-426))) (($ $ |#3|) NIL (|has| |#1| (-426)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1037 |#1| |#2|)) 28) (($ (-382 (-522))) NIL (-3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#1| (-514)))) (-2180 (((-588 |#1|) $) NIL)) (-1643 ((|#1| $ (-494 |#3|)) NIL) (($ $ |#3| (-708)) NIL) (($ $ (-588 |#3|) (-588 (-708))) NIL)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2742 (((-708)) NIL)) (-1225 (($ $ $ (-708)) NIL (|has| |#1| (-157)))) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $ |#3|) NIL) (($ $ (-588 |#3|)) NIL) (($ $ |#3| (-708)) NIL) (($ $ (-588 |#3|) (-588 (-708))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-240 |#1| |#2| |#3|) (-13 (-229 |#1| |#2| |#3| (-494 |#3|)) (-962 (-1037 |#1| |#2|))) (-971) (-784) (-242 |#2|)) (T -240)) -NIL -(-13 (-229 |#1| |#2| |#3| (-494 |#3|)) (-962 (-1037 |#1| |#2|))) -((-3192 (((-708) $) 30)) (-3700 (((-3 |#2| "failed") $) 17)) (-1478 ((|#2| $) 27)) (-2731 (($ $) 12) (($ $ (-708)) 15)) (-2217 (((-792) $) 26) (($ |#2|) 10)) (-1562 (((-108) $ $) 20)) (-1587 (((-108) $ $) 29))) -(((-241 |#1| |#2|) (-10 -8 (-15 -2731 (|#1| |#1| (-708))) (-15 -2731 (|#1| |#1|)) (-15 -3192 ((-708) |#1|)) (-15 -1478 (|#2| |#1|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -1587 ((-108) |#1| |#1|)) (-15 -2217 ((-792) |#1|)) (-15 -1562 ((-108) |#1| |#1|))) (-242 |#2|) (-784)) (T -241)) -NIL -(-10 -8 (-15 -2731 (|#1| |#1| (-708))) (-15 -2731 (|#1| |#1|)) (-15 -3192 ((-708) |#1|)) (-15 -1478 (|#2| |#1|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -1587 ((-108) |#1| |#1|)) (-15 -2217 ((-792) |#1|)) (-15 -1562 ((-108) |#1| |#1|))) -((-1419 (((-108) $ $) 7)) (-3192 (((-708) $) 22)) (-1660 ((|#1| $) 23)) (-3700 (((-3 |#1| "failed") $) 27)) (-1478 ((|#1| $) 26)) (-3872 (((-708) $) 24)) (-1308 (($ $ $) 13)) (-2524 (($ $ $) 14)) (-2718 (($ |#1| (-708)) 25)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2731 (($ $) 21) (($ $ (-708)) 20)) (-2217 (((-792) $) 11) (($ |#1|) 28)) (-1623 (((-108) $ $) 16)) (-1597 (((-108) $ $) 17)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 15)) (-1587 (((-108) $ $) 18))) -(((-242 |#1|) (-1197) (-784)) (T -242)) -((-2217 (*1 *1 *2) (-12 (-4 *1 (-242 *2)) (-4 *2 (-784)))) (-2718 (*1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-242 *2)) (-4 *2 (-784)))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-242 *3)) (-4 *3 (-784)) (-5 *2 (-708)))) (-1660 (*1 *2 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-784)))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-242 *3)) (-4 *3 (-784)) (-5 *2 (-708)))) (-2731 (*1 *1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-784)))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-242 *3)) (-4 *3 (-784))))) -(-13 (-784) (-962 |t#1|) (-10 -8 (-15 -2718 ($ |t#1| (-708))) (-15 -3872 ((-708) $)) (-15 -1660 (|t#1| $)) (-15 -3192 ((-708) $)) (-15 -2731 ($ $)) (-15 -2731 ($ $ (-708))) (-15 -2217 ($ |t#1|)))) -(((-97) . T) ((-562 (-792)) . T) ((-784) . T) ((-962 |#1|) . T) ((-1014) . T)) -((-3533 (((-588 (-1085)) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) 40)) (-4127 (((-588 (-1085)) (-291 (-202)) (-708)) 79)) (-3042 (((-3 (-291 (-202)) "failed") (-291 (-202))) 50)) (-4018 (((-291 (-202)) (-291 (-202))) 65)) (-3425 (((-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202))))) (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 26)) (-3088 (((-108) (-588 (-291 (-202)))) 83)) (-3512 (((-108) (-291 (-202))) 24)) (-2506 (((-588 (-1068)) (-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))))) 105)) (-1540 (((-588 (-291 (-202))) (-588 (-291 (-202)))) 87)) (-3000 (((-588 (-291 (-202))) (-588 (-291 (-202)))) 85)) (-1542 (((-628 (-202)) (-588 (-291 (-202))) (-708)) 94)) (-2390 (((-108) (-291 (-202))) 20) (((-108) (-588 (-291 (-202)))) 84)) (-3468 (((-588 (-202)) (-588 (-777 (-202))) (-202)) 14)) (-2530 (((-354) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) 100)) (-1218 (((-960) (-1085) (-960)) 33))) -(((-243) (-10 -7 (-15 -3468 ((-588 (-202)) (-588 (-777 (-202))) (-202))) (-15 -3425 ((-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202))))) (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202))))))) (-15 -3042 ((-3 (-291 (-202)) "failed") (-291 (-202)))) (-15 -4018 ((-291 (-202)) (-291 (-202)))) (-15 -3088 ((-108) (-588 (-291 (-202))))) (-15 -2390 ((-108) (-588 (-291 (-202))))) (-15 -2390 ((-108) (-291 (-202)))) (-15 -1542 ((-628 (-202)) (-588 (-291 (-202))) (-708))) (-15 -3000 ((-588 (-291 (-202))) (-588 (-291 (-202))))) (-15 -1540 ((-588 (-291 (-202))) (-588 (-291 (-202))))) (-15 -3512 ((-108) (-291 (-202)))) (-15 -3533 ((-588 (-1085)) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202)))))) (-15 -4127 ((-588 (-1085)) (-291 (-202)) (-708))) (-15 -1218 ((-960) (-1085) (-960))) (-15 -2530 ((-354) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202)))))) (-15 -2506 ((-588 (-1068)) (-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202)))))))))) (T -243)) -((-2506 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))))) (-5 *2 (-588 (-1068))) (-5 *1 (-243)))) (-2530 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) (-5 *2 (-354)) (-5 *1 (-243)))) (-1218 (*1 *2 *3 *2) (-12 (-5 *2 (-960)) (-5 *3 (-1085)) (-5 *1 (-243)))) (-4127 (*1 *2 *3 *4) (-12 (-5 *3 (-291 (-202))) (-5 *4 (-708)) (-5 *2 (-588 (-1085))) (-5 *1 (-243)))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) (-5 *2 (-588 (-1085))) (-5 *1 (-243)))) (-3512 (*1 *2 *3) (-12 (-5 *3 (-291 (-202))) (-5 *2 (-108)) (-5 *1 (-243)))) (-1540 (*1 *2 *2) (-12 (-5 *2 (-588 (-291 (-202)))) (-5 *1 (-243)))) (-3000 (*1 *2 *2) (-12 (-5 *2 (-588 (-291 (-202)))) (-5 *1 (-243)))) (-1542 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-291 (-202)))) (-5 *4 (-708)) (-5 *2 (-628 (-202))) (-5 *1 (-243)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-291 (-202))) (-5 *2 (-108)) (-5 *1 (-243)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-588 (-291 (-202)))) (-5 *2 (-108)) (-5 *1 (-243)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-588 (-291 (-202)))) (-5 *2 (-108)) (-5 *1 (-243)))) (-4018 (*1 *2 *2) (-12 (-5 *2 (-291 (-202))) (-5 *1 (-243)))) (-3042 (*1 *2 *2) (|partial| -12 (-5 *2 (-291 (-202))) (-5 *1 (-243)))) (-3425 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (-5 *1 (-243)))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-777 (-202)))) (-5 *4 (-202)) (-5 *2 (-588 *4)) (-5 *1 (-243))))) -(-10 -7 (-15 -3468 ((-588 (-202)) (-588 (-777 (-202))) (-202))) (-15 -3425 ((-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202))))) (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202))))))) (-15 -3042 ((-3 (-291 (-202)) "failed") (-291 (-202)))) (-15 -4018 ((-291 (-202)) (-291 (-202)))) (-15 -3088 ((-108) (-588 (-291 (-202))))) (-15 -2390 ((-108) (-588 (-291 (-202))))) (-15 -2390 ((-108) (-291 (-202)))) (-15 -1542 ((-628 (-202)) (-588 (-291 (-202))) (-708))) (-15 -3000 ((-588 (-291 (-202))) (-588 (-291 (-202))))) (-15 -1540 ((-588 (-291 (-202))) (-588 (-291 (-202))))) (-15 -3512 ((-108) (-291 (-202)))) (-15 -3533 ((-588 (-1085)) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202)))))) (-15 -4127 ((-588 (-1085)) (-291 (-202)) (-708))) (-15 -1218 ((-960) (-1085) (-960))) (-15 -2530 ((-354) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202)))))) (-15 -2506 ((-588 (-1068)) (-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))))))) -((-1419 (((-108) $ $) NIL)) (-4128 (((-960) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) NIL) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 39)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 20) (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-1562 (((-108) $ $) NIL))) -(((-244) (-773)) (T -244)) -NIL -(-773) -((-1419 (((-108) $ $) NIL)) (-4128 (((-960) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) 54) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 49)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 29) (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) 31)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-1562 (((-108) $ $) NIL))) -(((-245) (-773)) (T -245)) -NIL -(-773) -((-1419 (((-108) $ $) NIL)) (-4128 (((-960) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) 73) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 69)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 40) (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) 51)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-1562 (((-108) $ $) NIL))) -(((-246) (-773)) (T -246)) -NIL -(-773) -((-1419 (((-108) $ $) NIL)) (-4128 (((-960) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) NIL) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 48)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 27) (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-1562 (((-108) $ $) NIL))) -(((-247) (-773)) (T -247)) -NIL -(-773) -((-1419 (((-108) $ $) NIL)) (-4128 (((-960) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) NIL) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 48)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 23) (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-1562 (((-108) $ $) NIL))) -(((-248) (-773)) (T -248)) -NIL -(-773) -((-1419 (((-108) $ $) NIL)) (-4128 (((-960) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) NIL) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 69)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 23) (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-1562 (((-108) $ $) NIL))) -(((-249) (-773)) (T -249)) -NIL -(-773) -((-1419 (((-108) $ $) NIL)) (-4128 (((-960) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) NIL) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 73)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 19) (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-1562 (((-108) $ $) NIL))) -(((-250) (-773)) (T -250)) -NIL -(-773) -((-1419 (((-108) $ $) NIL)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2954 (((-588 (-522)) $) 17)) (-2487 (((-708) $) 15)) (-2217 (((-792) $) 21) (($ (-588 (-522))) 13)) (-1221 (($ (-708)) 18)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 9)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 11))) -(((-251) (-13 (-784) (-10 -8 (-15 -2217 ($ (-588 (-522)))) (-15 -2487 ((-708) $)) (-15 -2954 ((-588 (-522)) $)) (-15 -1221 ($ (-708)))))) (T -251)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-251)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-251)))) (-2954 (*1 *2 *1) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-251)))) (-1221 (*1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-251))))) -(-13 (-784) (-10 -8 (-15 -2217 ($ (-588 (-522)))) (-15 -2487 ((-708) $)) (-15 -2954 ((-588 (-522)) $)) (-15 -1221 ($ (-708))))) -((-3044 ((|#2| |#2|) 77)) (-2923 ((|#2| |#2|) 65)) (-2051 (((-3 |#2| "failed") |#2| (-588 (-2 (|:| |func| |#2|) (|:| |pole| (-108))))) 116)) (-3023 ((|#2| |#2|) 75)) (-2906 ((|#2| |#2|) 63)) (-3066 ((|#2| |#2|) 79)) (-2936 ((|#2| |#2|) 67)) (-2980 ((|#2|) 46)) (-1771 (((-110) (-110)) 95)) (-1238 ((|#2| |#2|) 61)) (-4015 (((-108) |#2|) 134)) (-1331 ((|#2| |#2|) 180)) (-2340 ((|#2| |#2|) 156)) (-3617 ((|#2|) 59)) (-3522 ((|#2|) 58)) (-2341 ((|#2| |#2|) 176)) (-1971 ((|#2| |#2|) 152)) (-3841 ((|#2| |#2|) 184)) (-1378 ((|#2| |#2|) 160)) (-2133 ((|#2| |#2|) 148)) (-2295 ((|#2| |#2|) 150)) (-3144 ((|#2| |#2|) 186)) (-2719 ((|#2| |#2|) 162)) (-2409 ((|#2| |#2|) 182)) (-2782 ((|#2| |#2|) 158)) (-1818 ((|#2| |#2|) 178)) (-3008 ((|#2| |#2|) 154)) (-3431 ((|#2| |#2|) 192)) (-3327 ((|#2| |#2|) 168)) (-1583 ((|#2| |#2|) 188)) (-3898 ((|#2| |#2|) 164)) (-4092 ((|#2| |#2|) 196)) (-3542 ((|#2| |#2|) 172)) (-3989 ((|#2| |#2|) 198)) (-4165 ((|#2| |#2|) 174)) (-2652 ((|#2| |#2|) 194)) (-1620 ((|#2| |#2|) 170)) (-1600 ((|#2| |#2|) 190)) (-1870 ((|#2| |#2|) 166)) (-3357 ((|#2| |#2|) 62)) (-1831 ((|#2| |#2|) 80)) (-2946 ((|#2| |#2|) 68)) (-3054 ((|#2| |#2|) 78)) (-2928 ((|#2| |#2|) 66)) (-3035 ((|#2| |#2|) 76)) (-2915 ((|#2| |#2|) 64)) (-4082 (((-108) (-110)) 93)) (-1856 ((|#2| |#2|) 83)) (-2976 ((|#2| |#2|) 71)) (-1839 ((|#2| |#2|) 81)) (-2957 ((|#2| |#2|) 69)) (-1873 ((|#2| |#2|) 85)) (-3001 ((|#2| |#2|) 73)) (-2476 ((|#2| |#2|) 86)) (-3011 ((|#2| |#2|) 74)) (-1864 ((|#2| |#2|) 84)) (-2989 ((|#2| |#2|) 72)) (-1849 ((|#2| |#2|) 82)) (-2966 ((|#2| |#2|) 70))) -(((-252 |#1| |#2|) (-10 -7 (-15 -3357 (|#2| |#2|)) (-15 -1238 (|#2| |#2|)) (-15 -2906 (|#2| |#2|)) (-15 -2915 (|#2| |#2|)) (-15 -2923 (|#2| |#2|)) (-15 -2928 (|#2| |#2|)) (-15 -2936 (|#2| |#2|)) (-15 -2946 (|#2| |#2|)) (-15 -2957 (|#2| |#2|)) (-15 -2966 (|#2| |#2|)) (-15 -2976 (|#2| |#2|)) (-15 -2989 (|#2| |#2|)) (-15 -3001 (|#2| |#2|)) (-15 -3011 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -3035 (|#2| |#2|)) (-15 -3044 (|#2| |#2|)) (-15 -3054 (|#2| |#2|)) (-15 -3066 (|#2| |#2|)) (-15 -1831 (|#2| |#2|)) (-15 -1839 (|#2| |#2|)) (-15 -1849 (|#2| |#2|)) (-15 -1856 (|#2| |#2|)) (-15 -1864 (|#2| |#2|)) (-15 -1873 (|#2| |#2|)) (-15 -2476 (|#2| |#2|)) (-15 -2980 (|#2|)) (-15 -4082 ((-108) (-110))) (-15 -1771 ((-110) (-110))) (-15 -3522 (|#2|)) (-15 -3617 (|#2|)) (-15 -2295 (|#2| |#2|)) (-15 -2133 (|#2| |#2|)) (-15 -1971 (|#2| |#2|)) (-15 -3008 (|#2| |#2|)) (-15 -2340 (|#2| |#2|)) (-15 -2782 (|#2| |#2|)) (-15 -1378 (|#2| |#2|)) (-15 -2719 (|#2| |#2|)) (-15 -3898 (|#2| |#2|)) (-15 -1870 (|#2| |#2|)) (-15 -3327 (|#2| |#2|)) (-15 -1620 (|#2| |#2|)) (-15 -3542 (|#2| |#2|)) (-15 -4165 (|#2| |#2|)) (-15 -2341 (|#2| |#2|)) (-15 -1818 (|#2| |#2|)) (-15 -1331 (|#2| |#2|)) (-15 -2409 (|#2| |#2|)) (-15 -3841 (|#2| |#2|)) (-15 -3144 (|#2| |#2|)) (-15 -1583 (|#2| |#2|)) (-15 -1600 (|#2| |#2|)) (-15 -3431 (|#2| |#2|)) (-15 -2652 (|#2| |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -3989 (|#2| |#2|)) (-15 -2051 ((-3 |#2| "failed") |#2| (-588 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -4015 ((-108) |#2|))) (-13 (-784) (-514)) (-13 (-405 |#1|) (-928))) (T -252)) -((-4015 (*1 *2 *3) (-12 (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108)) (-5 *1 (-252 *4 *3)) (-4 *3 (-13 (-405 *4) (-928))))) (-2051 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-588 (-2 (|:| |func| *2) (|:| |pole| (-108))))) (-4 *2 (-13 (-405 *4) (-928))) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-252 *4 *2)))) (-3989 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-4092 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2652 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3431 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1600 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1583 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3144 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3841 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1331 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1818 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2341 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-4165 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3542 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1620 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3327 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1870 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2719 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1378 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2782 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2340 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3008 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1971 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2133 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2295 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3617 (*1 *2) (-12 (-4 *2 (-13 (-405 *3) (-928))) (-5 *1 (-252 *3 *2)) (-4 *3 (-13 (-784) (-514))))) (-3522 (*1 *2) (-12 (-4 *2 (-13 (-405 *3) (-928))) (-5 *1 (-252 *3 *2)) (-4 *3 (-13 (-784) (-514))))) (-1771 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *4)) (-4 *4 (-13 (-405 *3) (-928))))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108)) (-5 *1 (-252 *4 *5)) (-4 *5 (-13 (-405 *4) (-928))))) (-2980 (*1 *2) (-12 (-4 *2 (-13 (-405 *3) (-928))) (-5 *1 (-252 *3 *2)) (-4 *3 (-13 (-784) (-514))))) (-2476 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1873 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1864 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1856 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1849 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1831 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3066 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3054 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3044 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3035 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3011 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3001 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2989 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2976 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2966 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2957 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2946 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2936 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2928 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2923 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2915 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2906 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1238 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3357 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928)))))) -(-10 -7 (-15 -3357 (|#2| |#2|)) (-15 -1238 (|#2| |#2|)) (-15 -2906 (|#2| |#2|)) (-15 -2915 (|#2| |#2|)) (-15 -2923 (|#2| |#2|)) (-15 -2928 (|#2| |#2|)) (-15 -2936 (|#2| |#2|)) (-15 -2946 (|#2| |#2|)) (-15 -2957 (|#2| |#2|)) (-15 -2966 (|#2| |#2|)) (-15 -2976 (|#2| |#2|)) (-15 -2989 (|#2| |#2|)) (-15 -3001 (|#2| |#2|)) (-15 -3011 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -3035 (|#2| |#2|)) (-15 -3044 (|#2| |#2|)) (-15 -3054 (|#2| |#2|)) (-15 -3066 (|#2| |#2|)) (-15 -1831 (|#2| |#2|)) (-15 -1839 (|#2| |#2|)) (-15 -1849 (|#2| |#2|)) (-15 -1856 (|#2| |#2|)) (-15 -1864 (|#2| |#2|)) (-15 -1873 (|#2| |#2|)) (-15 -2476 (|#2| |#2|)) (-15 -2980 (|#2|)) (-15 -4082 ((-108) (-110))) (-15 -1771 ((-110) (-110))) (-15 -3522 (|#2|)) (-15 -3617 (|#2|)) (-15 -2295 (|#2| |#2|)) (-15 -2133 (|#2| |#2|)) (-15 -1971 (|#2| |#2|)) (-15 -3008 (|#2| |#2|)) (-15 -2340 (|#2| |#2|)) (-15 -2782 (|#2| |#2|)) (-15 -1378 (|#2| |#2|)) (-15 -2719 (|#2| |#2|)) (-15 -3898 (|#2| |#2|)) (-15 -1870 (|#2| |#2|)) (-15 -3327 (|#2| |#2|)) (-15 -1620 (|#2| |#2|)) (-15 -3542 (|#2| |#2|)) (-15 -4165 (|#2| |#2|)) (-15 -2341 (|#2| |#2|)) (-15 -1818 (|#2| |#2|)) (-15 -1331 (|#2| |#2|)) (-15 -2409 (|#2| |#2|)) (-15 -3841 (|#2| |#2|)) (-15 -3144 (|#2| |#2|)) (-15 -1583 (|#2| |#2|)) (-15 -1600 (|#2| |#2|)) (-15 -3431 (|#2| |#2|)) (-15 -2652 (|#2| |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -3989 (|#2| |#2|)) (-15 -2051 ((-3 |#2| "failed") |#2| (-588 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -4015 ((-108) |#2|))) -((-1481 (((-3 |#2| "failed") (-588 (-561 |#2|)) |#2| (-1085)) 133)) (-3530 ((|#2| (-382 (-522)) |#2|) 50)) (-2612 ((|#2| |#2| (-561 |#2|)) 126)) (-2054 (((-2 (|:| |func| |#2|) (|:| |kers| (-588 (-561 |#2|))) (|:| |vals| (-588 |#2|))) |#2| (-1085)) 125)) (-2971 ((|#2| |#2| (-1085)) 19) ((|#2| |#2|) 22)) (-2774 ((|#2| |#2| (-1085)) 139) ((|#2| |#2|) 137))) -(((-253 |#1| |#2|) (-10 -7 (-15 -2774 (|#2| |#2|)) (-15 -2774 (|#2| |#2| (-1085))) (-15 -2054 ((-2 (|:| |func| |#2|) (|:| |kers| (-588 (-561 |#2|))) (|:| |vals| (-588 |#2|))) |#2| (-1085))) (-15 -2971 (|#2| |#2|)) (-15 -2971 (|#2| |#2| (-1085))) (-15 -1481 ((-3 |#2| "failed") (-588 (-561 |#2|)) |#2| (-1085))) (-15 -2612 (|#2| |#2| (-561 |#2|))) (-15 -3530 (|#2| (-382 (-522)) |#2|))) (-13 (-514) (-784) (-962 (-522)) (-584 (-522))) (-13 (-27) (-1106) (-405 |#1|))) (T -253)) -((-3530 (*1 *2 *3 *2) (-12 (-5 *3 (-382 (-522))) (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4))))) (-2612 (*1 *2 *2 *3) (-12 (-5 *3 (-561 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4))) (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-253 *4 *2)))) (-1481 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-588 (-561 *2))) (-5 *4 (-1085)) (-4 *2 (-13 (-27) (-1106) (-405 *5))) (-4 *5 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-253 *5 *2)))) (-2971 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4))))) (-2971 (*1 *2 *2) (-12 (-4 *3 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3))))) (-2054 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-588 (-561 *3))) (|:| |vals| (-588 *3)))) (-5 *1 (-253 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))))) (-2774 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4))))) (-2774 (*1 *2 *2) (-12 (-4 *3 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3)))))) -(-10 -7 (-15 -2774 (|#2| |#2|)) (-15 -2774 (|#2| |#2| (-1085))) (-15 -2054 ((-2 (|:| |func| |#2|) (|:| |kers| (-588 (-561 |#2|))) (|:| |vals| (-588 |#2|))) |#2| (-1085))) (-15 -2971 (|#2| |#2|)) (-15 -2971 (|#2| |#2| (-1085))) (-15 -1481 ((-3 |#2| "failed") (-588 (-561 |#2|)) |#2| (-1085))) (-15 -2612 (|#2| |#2| (-561 |#2|))) (-15 -3530 (|#2| (-382 (-522)) |#2|))) -((-1509 (((-3 |#3| "failed") |#3|) 110)) (-3044 ((|#3| |#3|) 131)) (-3380 (((-3 |#3| "failed") |#3|) 82)) (-2923 ((|#3| |#3|) 121)) (-2808 (((-3 |#3| "failed") |#3|) 58)) (-3023 ((|#3| |#3|) 129)) (-2364 (((-3 |#3| "failed") |#3|) 46)) (-2906 ((|#3| |#3|) 119)) (-1737 (((-3 |#3| "failed") |#3|) 112)) (-3066 ((|#3| |#3|) 133)) (-4026 (((-3 |#3| "failed") |#3|) 84)) (-2936 ((|#3| |#3|) 123)) (-3417 (((-3 |#3| "failed") |#3| (-708)) 36)) (-4117 (((-3 |#3| "failed") |#3|) 74)) (-1238 ((|#3| |#3|) 118)) (-3466 (((-3 |#3| "failed") |#3|) 44)) (-3357 ((|#3| |#3|) 117)) (-4037 (((-3 |#3| "failed") |#3|) 113)) (-1831 ((|#3| |#3|) 134)) (-2434 (((-3 |#3| "failed") |#3|) 85)) (-2946 ((|#3| |#3|) 124)) (-2378 (((-3 |#3| "failed") |#3|) 111)) (-3054 ((|#3| |#3|) 132)) (-2642 (((-3 |#3| "failed") |#3|) 83)) (-2928 ((|#3| |#3|) 122)) (-3063 (((-3 |#3| "failed") |#3|) 60)) (-3035 ((|#3| |#3|) 130)) (-4143 (((-3 |#3| "failed") |#3|) 48)) (-2915 ((|#3| |#3|) 120)) (-3877 (((-3 |#3| "failed") |#3|) 66)) (-1856 ((|#3| |#3|) 137)) (-3161 (((-3 |#3| "failed") |#3|) 104)) (-2976 ((|#3| |#3|) 142)) (-2657 (((-3 |#3| "failed") |#3|) 62)) (-1839 ((|#3| |#3|) 135)) (-1338 (((-3 |#3| "failed") |#3|) 50)) (-2957 ((|#3| |#3|) 125)) (-2129 (((-3 |#3| "failed") |#3|) 70)) (-1873 ((|#3| |#3|) 139)) (-2239 (((-3 |#3| "failed") |#3|) 54)) (-3001 ((|#3| |#3|) 127)) (-2105 (((-3 |#3| "failed") |#3|) 72)) (-2476 ((|#3| |#3|) 140)) (-2032 (((-3 |#3| "failed") |#3|) 56)) (-3011 ((|#3| |#3|) 128)) (-3293 (((-3 |#3| "failed") |#3|) 68)) (-1864 ((|#3| |#3|) 138)) (-2304 (((-3 |#3| "failed") |#3|) 107)) (-2989 ((|#3| |#3|) 143)) (-2194 (((-3 |#3| "failed") |#3|) 64)) (-1849 ((|#3| |#3|) 136)) (-2339 (((-3 |#3| "failed") |#3|) 52)) (-2966 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-382 (-522))) 40 (|has| |#1| (-338))))) -(((-254 |#1| |#2| |#3|) (-13 (-910 |#3|) (-10 -7 (IF (|has| |#1| (-338)) (-15 ** (|#3| |#3| (-382 (-522)))) |%noBranch|) (-15 -3357 (|#3| |#3|)) (-15 -1238 (|#3| |#3|)) (-15 -2906 (|#3| |#3|)) (-15 -2915 (|#3| |#3|)) (-15 -2923 (|#3| |#3|)) (-15 -2928 (|#3| |#3|)) (-15 -2936 (|#3| |#3|)) (-15 -2946 (|#3| |#3|)) (-15 -2957 (|#3| |#3|)) (-15 -2966 (|#3| |#3|)) (-15 -2976 (|#3| |#3|)) (-15 -2989 (|#3| |#3|)) (-15 -3001 (|#3| |#3|)) (-15 -3011 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3035 (|#3| |#3|)) (-15 -3044 (|#3| |#3|)) (-15 -3054 (|#3| |#3|)) (-15 -3066 (|#3| |#3|)) (-15 -1831 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1849 (|#3| |#3|)) (-15 -1856 (|#3| |#3|)) (-15 -1864 (|#3| |#3|)) (-15 -1873 (|#3| |#3|)) (-15 -2476 (|#3| |#3|)))) (-37 (-382 (-522))) (-1157 |#1|) (-1128 |#1| |#2|)) (T -254)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-382 (-522))) (-4 *4 (-338)) (-4 *4 (-37 *3)) (-4 *5 (-1157 *4)) (-5 *1 (-254 *4 *5 *2)) (-4 *2 (-1128 *4 *5)))) (-3357 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-1238 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2906 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2915 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2923 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2928 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2936 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2946 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2957 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2966 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2976 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2989 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3001 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3011 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3035 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3044 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3054 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3066 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-1831 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-1849 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-1856 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-1864 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-1873 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2476 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))) -(-13 (-910 |#3|) (-10 -7 (IF (|has| |#1| (-338)) (-15 ** (|#3| |#3| (-382 (-522)))) |%noBranch|) (-15 -3357 (|#3| |#3|)) (-15 -1238 (|#3| |#3|)) (-15 -2906 (|#3| |#3|)) (-15 -2915 (|#3| |#3|)) (-15 -2923 (|#3| |#3|)) (-15 -2928 (|#3| |#3|)) (-15 -2936 (|#3| |#3|)) (-15 -2946 (|#3| |#3|)) (-15 -2957 (|#3| |#3|)) (-15 -2966 (|#3| |#3|)) (-15 -2976 (|#3| |#3|)) (-15 -2989 (|#3| |#3|)) (-15 -3001 (|#3| |#3|)) (-15 -3011 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3035 (|#3| |#3|)) (-15 -3044 (|#3| |#3|)) (-15 -3054 (|#3| |#3|)) (-15 -3066 (|#3| |#3|)) (-15 -1831 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1849 (|#3| |#3|)) (-15 -1856 (|#3| |#3|)) (-15 -1864 (|#3| |#3|)) (-15 -1873 (|#3| |#3|)) (-15 -2476 (|#3| |#3|)))) -((-1509 (((-3 |#3| "failed") |#3|) 66)) (-3044 ((|#3| |#3|) 133)) (-3380 (((-3 |#3| "failed") |#3|) 50)) (-2923 ((|#3| |#3|) 121)) (-2808 (((-3 |#3| "failed") |#3|) 62)) (-3023 ((|#3| |#3|) 131)) (-2364 (((-3 |#3| "failed") |#3|) 46)) (-2906 ((|#3| |#3|) 119)) (-1737 (((-3 |#3| "failed") |#3|) 70)) (-3066 ((|#3| |#3|) 135)) (-4026 (((-3 |#3| "failed") |#3|) 54)) (-2936 ((|#3| |#3|) 123)) (-3417 (((-3 |#3| "failed") |#3| (-708)) 35)) (-4117 (((-3 |#3| "failed") |#3|) 44)) (-1238 ((|#3| |#3|) 112)) (-3466 (((-3 |#3| "failed") |#3|) 42)) (-3357 ((|#3| |#3|) 118)) (-4037 (((-3 |#3| "failed") |#3|) 72)) (-1831 ((|#3| |#3|) 136)) (-2434 (((-3 |#3| "failed") |#3|) 56)) (-2946 ((|#3| |#3|) 124)) (-2378 (((-3 |#3| "failed") |#3|) 68)) (-3054 ((|#3| |#3|) 134)) (-2642 (((-3 |#3| "failed") |#3|) 52)) (-2928 ((|#3| |#3|) 122)) (-3063 (((-3 |#3| "failed") |#3|) 64)) (-3035 ((|#3| |#3|) 132)) (-4143 (((-3 |#3| "failed") |#3|) 48)) (-2915 ((|#3| |#3|) 120)) (-3877 (((-3 |#3| "failed") |#3|) 78)) (-1856 ((|#3| |#3|) 139)) (-3161 (((-3 |#3| "failed") |#3|) 58)) (-2976 ((|#3| |#3|) 127)) (-2657 (((-3 |#3| "failed") |#3|) 74)) (-1839 ((|#3| |#3|) 137)) (-1338 (((-3 |#3| "failed") |#3|) 102)) (-2957 ((|#3| |#3|) 125)) (-2129 (((-3 |#3| "failed") |#3|) 82)) (-1873 ((|#3| |#3|) 141)) (-2239 (((-3 |#3| "failed") |#3|) 109)) (-3001 ((|#3| |#3|) 129)) (-2105 (((-3 |#3| "failed") |#3|) 84)) (-2476 ((|#3| |#3|) 142)) (-2032 (((-3 |#3| "failed") |#3|) 111)) (-3011 ((|#3| |#3|) 130)) (-3293 (((-3 |#3| "failed") |#3|) 80)) (-1864 ((|#3| |#3|) 140)) (-2304 (((-3 |#3| "failed") |#3|) 60)) (-2989 ((|#3| |#3|) 128)) (-2194 (((-3 |#3| "failed") |#3|) 76)) (-1849 ((|#3| |#3|) 138)) (-2339 (((-3 |#3| "failed") |#3|) 105)) (-2966 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-382 (-522))) 40 (|has| |#1| (-338))))) -(((-255 |#1| |#2| |#3| |#4|) (-13 (-910 |#3|) (-10 -7 (IF (|has| |#1| (-338)) (-15 ** (|#3| |#3| (-382 (-522)))) |%noBranch|) (-15 -3357 (|#3| |#3|)) (-15 -1238 (|#3| |#3|)) (-15 -2906 (|#3| |#3|)) (-15 -2915 (|#3| |#3|)) (-15 -2923 (|#3| |#3|)) (-15 -2928 (|#3| |#3|)) (-15 -2936 (|#3| |#3|)) (-15 -2946 (|#3| |#3|)) (-15 -2957 (|#3| |#3|)) (-15 -2966 (|#3| |#3|)) (-15 -2976 (|#3| |#3|)) (-15 -2989 (|#3| |#3|)) (-15 -3001 (|#3| |#3|)) (-15 -3011 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3035 (|#3| |#3|)) (-15 -3044 (|#3| |#3|)) (-15 -3054 (|#3| |#3|)) (-15 -3066 (|#3| |#3|)) (-15 -1831 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1849 (|#3| |#3|)) (-15 -1856 (|#3| |#3|)) (-15 -1864 (|#3| |#3|)) (-15 -1873 (|#3| |#3|)) (-15 -2476 (|#3| |#3|)))) (-37 (-382 (-522))) (-1126 |#1|) (-1149 |#1| |#2|) (-910 |#2|)) (T -255)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-382 (-522))) (-4 *4 (-338)) (-4 *4 (-37 *3)) (-4 *5 (-1126 *4)) (-5 *1 (-255 *4 *5 *2 *6)) (-4 *2 (-1149 *4 *5)) (-4 *6 (-910 *5)))) (-3357 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-1238 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2906 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2915 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2923 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2928 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2936 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2946 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2957 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2966 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2976 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2989 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-3001 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-3011 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-3035 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-3044 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-3054 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-3066 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-1831 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-1849 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-1856 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-1864 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-1873 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2476 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))) -(-13 (-910 |#3|) (-10 -7 (IF (|has| |#1| (-338)) (-15 ** (|#3| |#3| (-382 (-522)))) |%noBranch|) (-15 -3357 (|#3| |#3|)) (-15 -1238 (|#3| |#3|)) (-15 -2906 (|#3| |#3|)) (-15 -2915 (|#3| |#3|)) (-15 -2923 (|#3| |#3|)) (-15 -2928 (|#3| |#3|)) (-15 -2936 (|#3| |#3|)) (-15 -2946 (|#3| |#3|)) (-15 -2957 (|#3| |#3|)) (-15 -2966 (|#3| |#3|)) (-15 -2976 (|#3| |#3|)) (-15 -2989 (|#3| |#3|)) (-15 -3001 (|#3| |#3|)) (-15 -3011 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3035 (|#3| |#3|)) (-15 -3044 (|#3| |#3|)) (-15 -3054 (|#3| |#3|)) (-15 -3066 (|#3| |#3|)) (-15 -1831 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1849 (|#3| |#3|)) (-15 -1856 (|#3| |#3|)) (-15 -1864 (|#3| |#3|)) (-15 -1873 (|#3| |#3|)) (-15 -2476 (|#3| |#3|)))) -((-1652 (((-108) $) 19)) (-2075 (((-166) $) 8)) (-1403 (((-3 (-1085) "failed") $) 22)) (-3906 (((-3 (-1085) "failed") $) 14)) (-1220 (((-3 (-588 $) "failed") $) NIL)) (-1490 (((-3 (-1018) "failed") $) 17)) (-1967 (((-108) $) 15)) (-2217 (((-792) $) NIL)) (-2829 (((-108) $) 10))) -(((-256) (-13 (-562 (-792)) (-10 -8 (-15 -2075 ((-166) $)) (-15 -1967 ((-108) $)) (-15 -1490 ((-3 (-1018) "failed") $)) (-15 -1652 ((-108) $)) (-15 -1403 ((-3 (-1085) "failed") $)) (-15 -2829 ((-108) $)) (-15 -3906 ((-3 (-1085) "failed") $)) (-15 -1220 ((-3 (-588 $) "failed") $))))) (T -256)) -((-2075 (*1 *2 *1) (-12 (-5 *2 (-166)) (-5 *1 (-256)))) (-1967 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-256)))) (-1490 (*1 *2 *1) (|partial| -12 (-5 *2 (-1018)) (-5 *1 (-256)))) (-1652 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-256)))) (-1403 (*1 *2 *1) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-256)))) (-2829 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-256)))) (-3906 (*1 *2 *1) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-256)))) (-1220 (*1 *2 *1) (|partial| -12 (-5 *2 (-588 (-256))) (-5 *1 (-256))))) -(-13 (-562 (-792)) (-10 -8 (-15 -2075 ((-166) $)) (-15 -1967 ((-108) $)) (-15 -1490 ((-3 (-1018) "failed") $)) (-15 -1652 ((-108) $)) (-15 -1403 ((-3 (-1085) "failed") $)) (-15 -2829 ((-108) $)) (-15 -3906 ((-3 (-1085) "failed") $)) (-15 -1220 ((-3 (-588 $) "failed") $)))) -((-1696 (($ (-1 (-108) |#2|) $) 23)) (-2379 (($ $) 36)) (-1700 (($ (-1 (-108) |#2|) $) NIL) (($ |#2| $) 34)) (-1424 (($ |#2| $) 31) (($ (-1 (-108) |#2|) $) 17)) (-3557 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-1731 (($ |#2| $ (-522)) 19) (($ $ $ (-522)) 21)) (-3835 (($ $ (-522)) 11) (($ $ (-1133 (-522))) 14)) (-2335 (($ $ |#2|) 29) (($ $ $) NIL)) (-4170 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-588 $)) NIL))) -(((-257 |#1| |#2|) (-10 -8 (-15 -3557 (|#1| |#1| |#1|)) (-15 -1700 (|#1| |#2| |#1|)) (-15 -3557 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1700 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2335 (|#1| |#1| |#1|)) (-15 -2335 (|#1| |#1| |#2|)) (-15 -1731 (|#1| |#1| |#1| (-522))) (-15 -1731 (|#1| |#2| |#1| (-522))) (-15 -3835 (|#1| |#1| (-1133 (-522)))) (-15 -3835 (|#1| |#1| (-522))) (-15 -4170 (|#1| (-588 |#1|))) (-15 -4170 (|#1| |#1| |#1|)) (-15 -4170 (|#1| |#2| |#1|)) (-15 -4170 (|#1| |#1| |#2|)) (-15 -1424 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1696 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1424 (|#1| |#2| |#1|)) (-15 -2379 (|#1| |#1|))) (-258 |#2|) (-1120)) (T -257)) -NIL -(-10 -8 (-15 -3557 (|#1| |#1| |#1|)) (-15 -1700 (|#1| |#2| |#1|)) (-15 -3557 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1700 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2335 (|#1| |#1| |#1|)) (-15 -2335 (|#1| |#1| |#2|)) (-15 -1731 (|#1| |#1| |#1| (-522))) (-15 -1731 (|#1| |#2| |#1| (-522))) (-15 -3835 (|#1| |#1| (-1133 (-522)))) (-15 -3835 (|#1| |#1| (-522))) (-15 -4170 (|#1| (-588 |#1|))) (-15 -4170 (|#1| |#1| |#1|)) (-15 -4170 (|#1| |#2| |#1|)) (-15 -4170 (|#1| |#1| |#2|)) (-15 -1424 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1696 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1424 (|#1| |#2| |#1|)) (-15 -2379 (|#1| |#1|))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3883 (((-1171) $ (-522) (-522)) 40 (|has| $ (-6 -4239)))) (-2717 (((-108) $ (-708)) 8)) (-2437 ((|#1| $ (-522) |#1|) 52 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) 58 (|has| $ (-6 -4239)))) (-1213 (($ (-1 (-108) |#1|) $) 85)) (-1696 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4238)))) (-3367 (($) 7 T CONST)) (-1581 (($ $) 83 (|has| |#1| (-1014)))) (-2379 (($ $) 78 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1700 (($ (-1 (-108) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1014)))) (-1424 (($ |#1| $) 77 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4238)))) (-2411 ((|#1| $ (-522) |#1|) 53 (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-522)) 51)) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1893 (($ (-708) |#1|) 69)) (-1480 (((-108) $ (-708)) 9)) (-3496 (((-522) $) 43 (|has| (-522) (-784)))) (-3557 (($ (-1 (-108) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-784)))) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2201 (((-522) $) 44 (|has| (-522) (-784)))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3309 (((-108) $ (-708)) 10)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-3365 (($ |#1| $ (-522)) 88) (($ $ $ (-522)) 87)) (-1731 (($ |#1| $ (-522)) 60) (($ $ $ (-522)) 59)) (-2130 (((-588 (-522)) $) 46)) (-2103 (((-108) (-522) $) 47)) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2337 ((|#1| $) 42 (|has| (-522) (-784)))) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1972 (($ $ |#1|) 41 (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3434 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) 48)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 ((|#1| $ (-522) |#1|) 50) ((|#1| $ (-522)) 49) (($ $ (-1133 (-522))) 63)) (-3551 (($ $ (-522)) 91) (($ $ (-1133 (-522))) 90)) (-3835 (($ $ (-522)) 62) (($ $ (-1133 (-522))) 61)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-3873 (((-498) $) 79 (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) 70)) (-2335 (($ $ |#1|) 93) (($ $ $) 92)) (-4170 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-588 $)) 65)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-258 |#1|) (-1197) (-1120)) (T -258)) -((-2335 (*1 *1 *1 *2) (-12 (-4 *1 (-258 *2)) (-4 *2 (-1120)))) (-2335 (*1 *1 *1 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-1120)))) (-3551 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-258 *3)) (-4 *3 (-1120)))) (-3551 (*1 *1 *1 *2) (-12 (-5 *2 (-1133 (-522))) (-4 *1 (-258 *3)) (-4 *3 (-1120)))) (-1700 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-258 *3)) (-4 *3 (-1120)))) (-3365 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-258 *2)) (-4 *2 (-1120)))) (-3365 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-258 *3)) (-4 *3 (-1120)))) (-3557 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-258 *3)) (-4 *3 (-1120)))) (-1213 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-258 *3)) (-4 *3 (-1120)))) (-1700 (*1 *1 *2 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-1120)) (-4 *2 (-1014)))) (-1581 (*1 *1 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-1120)) (-4 *2 (-1014)))) (-3557 (*1 *1 *1 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-1120)) (-4 *2 (-784))))) -(-13 (-593 |t#1|) (-10 -8 (-6 -4239) (-15 -2335 ($ $ |t#1|)) (-15 -2335 ($ $ $)) (-15 -3551 ($ $ (-522))) (-15 -3551 ($ $ (-1133 (-522)))) (-15 -1700 ($ (-1 (-108) |t#1|) $)) (-15 -3365 ($ |t#1| $ (-522))) (-15 -3365 ($ $ $ (-522))) (-15 -3557 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -1213 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1014)) (PROGN (-15 -1700 ($ |t#1| $)) (-15 -1581 ($ $))) |%noBranch|) (IF (|has| |t#1| (-784)) (-15 -3557 ($ $ $)) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-262 #0=(-522) |#1|) . T) ((-264 #0# |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-555 #0# |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-593 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1120) . T)) +((-2620 (((-108) $) 12)) (-3612 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-383 (-523)) $) 24) (($ $ (-383 (-523))) NIL))) +(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -2620 ((-108) |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) (-46 |#2| |#3|) (-973) (-731)) (T -45)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -2620 ((-108) |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3345 (($ $) 52 (|has| |#1| (-515)))) (-3331 (((-108) $) 54 (|has| |#1| (-515)))) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3810 (($ $) 60)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-2620 (((-108) $) 62)) (-1933 (($ |#1| |#2|) 61)) (-3612 (($ (-1 |#1| |#1|) $) 63)) (-3774 (($ $) 65)) (-3786 ((|#1| $) 66)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3746 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-2299 ((|#2| $) 64)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515))) (($ |#1|) 47 (|has| |#1| (-158)))) (-2365 ((|#1| $ |#2|) 59)) (-3901 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 53 (|has| |#1| (-515)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 58 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) +(((-46 |#1| |#2|) (-129) (-973) (-731)) (T -46)) +((-3786 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) (-3774 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) (-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (-5 *2 (-108)))) (-1933 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)))) (-2365 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) (-4098 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)) (-4 *2 (-339))))) +(-13 (-973) (-107 |t#1| |t#1|) (-10 -8 (-15 -3786 (|t#1| $)) (-15 -3774 ($ $)) (-15 -2299 (|t#2| $)) (-15 -3612 ($ (-1 |t#1| |t#1|) $)) (-15 -2620 ((-108) $)) (-15 -1933 ($ |t#1| |t#2|)) (-15 -3810 ($ $)) (-15 -2365 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-339)) (-15 -4098 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-158)) (PROGN (-6 (-158)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-515)) (-6 (-515)) |%noBranch|) (IF (|has| |t#1| (-37 (-383 (-523)))) (-6 (-37 (-383 (-523)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) |has| |#1| (-515)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-267) |has| |#1| (-515)) ((-515) |has| |#1| (-515)) ((-591 #0#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #0#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) |has| |#1| (-515)) ((-666) . T) ((-979 #0#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-1728 (((-589 $) (-1083 $) (-1087)) NIL) (((-589 $) (-1083 $)) NIL) (((-589 $) (-883 $)) NIL)) (-2488 (($ (-1083 $) (-1087)) NIL) (($ (-1083 $)) NIL) (($ (-883 $)) NIL)) (-2295 (((-108) $) 11)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3072 (((-589 (-562 $)) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2955 (($ $ (-271 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-589 (-562 $)) (-589 $)) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1832 (($ $) NIL)) (-1387 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-1694 (((-589 $) (-1083 $) (-1087)) NIL) (((-589 $) (-1083 $)) NIL) (((-589 $) (-883 $)) NIL)) (-3313 (($ (-1083 $) (-1087)) NIL) (($ (-1083 $)) NIL) (($ (-883 $)) NIL)) (-3517 (((-3 (-562 $) "failed") $) NIL) (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL)) (-3474 (((-562 $) $) NIL) (((-523) $) NIL) (((-383 (-523)) $) NIL)) (-3796 (($ $ $) NIL)) (-2381 (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-629 (-523)) (-629 $)) NIL) (((-2 (|:| -3392 (-629 (-383 (-523)))) (|:| |vec| (-1168 (-383 (-523))))) (-629 $) (-1168 $)) NIL) (((-629 (-383 (-523))) (-629 $)) NIL)) (-2437 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2361 (($ $) NIL) (($ (-589 $)) NIL)) (-1444 (((-589 (-110)) $) NIL)) (-1403 (((-110) (-110)) NIL)) (-2023 (((-108) $) 14)) (-1557 (((-108) $) NIL (|has| $ (-964 (-523))))) (-2785 (((-1039 (-523) (-562 $)) $) NIL)) (-1420 (($ $ (-523)) NIL)) (-3892 (((-1083 $) (-1083 $) (-562 $)) NIL) (((-1083 $) (-1083 $) (-589 (-562 $))) NIL) (($ $ (-562 $)) NIL) (($ $ (-589 (-562 $))) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1483 (((-1083 $) (-562 $)) NIL (|has| $ (-973)))) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3612 (($ (-1 $ $) (-562 $)) NIL)) (-1363 (((-3 (-562 $) "failed") $) NIL)) (-3244 (($ (-589 $)) NIL) (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-1771 (((-589 (-562 $)) $) NIL)) (-2868 (($ (-110) $) NIL) (($ (-110) (-589 $)) NIL)) (-3259 (((-108) $ (-110)) NIL) (((-108) $ (-1087)) NIL)) (-3738 (($ $) NIL)) (-2510 (((-710) $) NIL)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ (-589 $)) NIL) (($ $ $) NIL)) (-2585 (((-108) $ $) NIL) (((-108) $ (-1087)) NIL)) (-1820 (((-394 $) $) NIL)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4104 (((-108) $) NIL (|has| $ (-964 (-523))))) (-2679 (($ $ (-562 $) $) NIL) (($ $ (-589 (-562 $)) (-589 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-1087) (-1 $ (-589 $))) NIL) (($ $ (-1087) (-1 $ $)) NIL) (($ $ (-589 (-110)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-110) (-1 $ (-589 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-1972 (((-710) $) NIL)) (-3223 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-589 $)) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3957 (($ $) NIL) (($ $ $) NIL)) (-3523 (($ $ (-710)) NIL) (($ $) NIL)) (-2797 (((-1039 (-523) (-562 $)) $) NIL)) (-3727 (($ $) NIL (|has| $ (-973)))) (-3663 (((-355) $) NIL) (((-203) $) NIL) (((-155 (-355)) $) NIL)) (-1458 (((-794) $) NIL) (($ (-562 $)) NIL) (($ (-383 (-523))) NIL) (($ $) NIL) (($ (-523)) NIL) (($ (-1039 (-523) (-562 $))) NIL)) (-1621 (((-710)) NIL)) (-3822 (($ $) NIL) (($ (-589 $)) NIL)) (-1950 (((-108) (-110)) NIL)) (-1704 (((-108) $ $) NIL)) (-2364 (($ $ (-523)) NIL) (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-2756 (($) 7 T CONST)) (-2767 (($) 12 T CONST)) (-2862 (($ $ (-710)) NIL) (($ $) NIL)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 16)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL)) (-4087 (($ $ $) 15) (($ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-383 (-523))) NIL) (($ $ (-523)) NIL) (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (* (($ (-383 (-523)) $) NIL) (($ $ (-383 (-523))) NIL) (($ $ $) NIL) (($ (-523) $) NIL) (($ (-710) $) NIL) (($ (-852) $) NIL))) +(((-47) (-13 (-279) (-27) (-964 (-523)) (-964 (-383 (-523))) (-585 (-523)) (-949) (-585 (-383 (-523))) (-136) (-564 (-155 (-355))) (-211) (-10 -8 (-15 -1458 ($ (-1039 (-523) (-562 $)))) (-15 -2785 ((-1039 (-523) (-562 $)) $)) (-15 -2797 ((-1039 (-523) (-562 $)) $)) (-15 -2437 ($ $)) (-15 -3892 ((-1083 $) (-1083 $) (-562 $))) (-15 -3892 ((-1083 $) (-1083 $) (-589 (-562 $)))) (-15 -3892 ($ $ (-562 $))) (-15 -3892 ($ $ (-589 (-562 $))))))) (T -47)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1039 (-523) (-562 (-47)))) (-5 *1 (-47)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-47)))) (-5 *1 (-47)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-47)))) (-5 *1 (-47)))) (-2437 (*1 *1 *1) (-5 *1 (-47))) (-3892 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-47))) (-5 *3 (-562 (-47))) (-5 *1 (-47)))) (-3892 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-47))) (-5 *3 (-589 (-562 (-47)))) (-5 *1 (-47)))) (-3892 (*1 *1 *1 *2) (-12 (-5 *2 (-562 (-47))) (-5 *1 (-47)))) (-3892 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-562 (-47)))) (-5 *1 (-47))))) +(-13 (-279) (-27) (-964 (-523)) (-964 (-383 (-523))) (-585 (-523)) (-949) (-585 (-383 (-523))) (-136) (-564 (-155 (-355))) (-211) (-10 -8 (-15 -1458 ($ (-1039 (-523) (-562 $)))) (-15 -2785 ((-1039 (-523) (-562 $)) $)) (-15 -2797 ((-1039 (-523) (-562 $)) $)) (-15 -2437 ($ $)) (-15 -3892 ((-1083 $) (-1083 $) (-562 $))) (-15 -3892 ((-1083 $) (-1083 $) (-589 (-562 $)))) (-15 -3892 ($ $ (-562 $))) (-15 -3892 ($ $ (-589 (-562 $)))))) +((-3924 (((-108) $ $) NIL)) (-3292 (((-589 (-1087)) $) 17)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 7)) (-3913 (((-1092) $) 18)) (-3983 (((-108) $ $) NIL))) +(((-48) (-13 (-1016) (-10 -8 (-15 -3292 ((-589 (-1087)) $)) (-15 -3913 ((-1092) $))))) (T -48)) +((-3292 (*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-48)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-48))))) +(-13 (-1016) (-10 -8 (-15 -3292 ((-589 (-1087)) $)) (-15 -3913 ((-1092) $)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 60)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-1406 (((-108) $) 20)) (-3517 (((-3 |#1| "failed") $) 23)) (-3474 ((|#1| $) 24)) (-3810 (($ $) 27)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-3786 ((|#1| $) 21)) (-2418 (($ $) 49)) (-3779 (((-1070) $) NIL)) (-1519 (((-108) $) 28)) (-2783 (((-1034) $) NIL)) (-3441 (($ (-710)) 47)) (-1811 (($ (-589 (-523))) 48)) (-2299 (((-710) $) 29)) (-1458 (((-794) $) 63) (($ (-523)) 44) (($ |#1|) 42)) (-2365 ((|#1| $ $) 19)) (-1621 (((-710)) 46)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 30 T CONST)) (-2767 (($) 14 T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 40)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) +(((-49 |#1| |#2|) (-13 (-567 |#1|) (-964 |#1|) (-10 -8 (-15 -3786 (|#1| $)) (-15 -2418 ($ $)) (-15 -3810 ($ $)) (-15 -2365 (|#1| $ $)) (-15 -3441 ($ (-710))) (-15 -1811 ($ (-589 (-523)))) (-15 -1519 ((-108) $)) (-15 -1406 ((-108) $)) (-15 -2299 ((-710) $)) (-15 -3612 ($ (-1 |#1| |#1|) $)))) (-973) (-589 (-1087))) (T -49)) +((-3786 (*1 *2 *1) (-12 (-4 *2 (-973)) (-5 *1 (-49 *2 *3)) (-14 *3 (-589 (-1087))))) (-2418 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-973)) (-14 *3 (-589 (-1087))))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-973)) (-14 *3 (-589 (-1087))))) (-2365 (*1 *2 *1 *1) (-12 (-4 *2 (-973)) (-5 *1 (-49 *2 *3)) (-14 *3 (-589 (-1087))))) (-3441 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) (-14 *4 (-589 (-1087))))) (-1811 (*1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) (-14 *4 (-589 (-1087))))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) (-14 *4 (-589 (-1087))))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) (-14 *4 (-589 (-1087))))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) (-14 *4 (-589 (-1087))))) (-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-49 *3 *4)) (-14 *4 (-589 (-1087)))))) +(-13 (-567 |#1|) (-964 |#1|) (-10 -8 (-15 -3786 (|#1| $)) (-15 -2418 ($ $)) (-15 -3810 ($ $)) (-15 -2365 (|#1| $ $)) (-15 -3441 ($ (-710))) (-15 -1811 ($ (-589 (-523)))) (-15 -1519 ((-108) $)) (-15 -1406 ((-108) $)) (-15 -2299 ((-710) $)) (-15 -3612 ($ (-1 |#1| |#1|) $)))) +((-1406 (((-108) (-51)) 13)) (-3517 (((-3 |#1| "failed") (-51)) 21)) (-3474 ((|#1| (-51)) 22)) (-1458 (((-51) |#1|) 18))) +(((-50 |#1|) (-10 -7 (-15 -1458 ((-51) |#1|)) (-15 -3517 ((-3 |#1| "failed") (-51))) (-15 -1406 ((-108) (-51))) (-15 -3474 (|#1| (-51)))) (-1122)) (T -50)) +((-3474 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1122)))) (-1406 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1122)))) (-3517 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1122)))) (-1458 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1122))))) +(-10 -7 (-15 -1458 ((-51) |#1|)) (-15 -3517 ((-3 |#1| "failed") (-51))) (-15 -1406 ((-108) (-51))) (-15 -3474 (|#1| (-51)))) +((-3924 (((-108) $ $) NIL)) (-1332 (((-1070) (-108)) 25)) (-4033 (((-794) $) 24)) (-4009 (((-713) $) 12)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3745 (((-794) $) 16)) (-2873 (((-1020) $) 14)) (-1458 (((-794) $) 32)) (-2818 (($ (-1020) (-713)) 33)) (-3983 (((-108) $ $) 18))) +(((-51) (-13 (-1016) (-10 -8 (-15 -2818 ($ (-1020) (-713))) (-15 -3745 ((-794) $)) (-15 -4033 ((-794) $)) (-15 -2873 ((-1020) $)) (-15 -4009 ((-713) $)) (-15 -1332 ((-1070) (-108)))))) (T -51)) +((-2818 (*1 *1 *2 *3) (-12 (-5 *2 (-1020)) (-5 *3 (-713)) (-5 *1 (-51)))) (-3745 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-51)))) (-4033 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-51)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-51)))) (-4009 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-51)))) (-1332 (*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1070)) (-5 *1 (-51))))) +(-13 (-1016) (-10 -8 (-15 -2818 ($ (-1020) (-713))) (-15 -3745 ((-794) $)) (-15 -4033 ((-794) $)) (-15 -2873 ((-1020) $)) (-15 -4009 ((-713) $)) (-15 -1332 ((-1070) (-108))))) +((-1677 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -1677 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-973) (-591 |#1|) (-788 |#1|)) (T -52)) +((-1677 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-591 *5)) (-4 *5 (-973)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-788 *5))))) +(-10 -7 (-15 -1677 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-2014 ((|#3| |#3| (-589 (-1087))) 35)) (-2200 ((|#3| (-589 (-995 |#1| |#2| |#3|)) |#3| (-852)) 22) ((|#3| (-589 (-995 |#1| |#2| |#3|)) |#3|) 20))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2200 (|#3| (-589 (-995 |#1| |#2| |#3|)) |#3|)) (-15 -2200 (|#3| (-589 (-995 |#1| |#2| |#3|)) |#3| (-852))) (-15 -2014 (|#3| |#3| (-589 (-1087))))) (-1016) (-13 (-973) (-817 |#1|) (-786) (-564 (-823 |#1|))) (-13 (-406 |#2|) (-817 |#1|) (-564 (-823 |#1|)))) (T -53)) +((-2014 (*1 *2 *2 *3) (-12 (-5 *3 (-589 (-1087))) (-4 *4 (-1016)) (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))))) (-2200 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-589 (-995 *5 *6 *2))) (-5 *4 (-852)) (-4 *5 (-1016)) (-4 *6 (-13 (-973) (-817 *5) (-786) (-564 (-823 *5)))) (-4 *2 (-13 (-406 *6) (-817 *5) (-564 (-823 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-2200 (*1 *2 *3 *2) (-12 (-5 *3 (-589 (-995 *4 *5 *2))) (-4 *4 (-1016)) (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))) (-5 *1 (-53 *4 *5 *2))))) +(-10 -7 (-15 -2200 (|#3| (-589 (-995 |#1| |#2| |#3|)) |#3|)) (-15 -2200 (|#3| (-589 (-995 |#1| |#2| |#3|)) |#3| (-852))) (-15 -2014 (|#3| |#3| (-589 (-1087))))) +((-3079 (((-108) $ (-710)) 23)) (-3787 (($ $ (-523) |#3|) 45)) (-3617 (($ $ (-523) |#4|) 49)) (-2031 ((|#3| $ (-523)) 58)) (-1666 (((-589 |#2|) $) 30)) (-2346 (((-108) $ (-710)) 25)) (-1973 (((-108) |#2| $) 53)) (-2852 (($ (-1 |#2| |#2|) $) 37)) (-3612 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 39) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 41)) (-2866 (((-108) $ (-710)) 24)) (-4203 (($ $ |#2|) 34)) (-1327 (((-108) (-1 (-108) |#2|) $) 19)) (-3223 ((|#2| $ (-523) (-523)) NIL) ((|#2| $ (-523) (-523) |#2|) 27)) (-2792 (((-710) (-1 (-108) |#2|) $) 28) (((-710) |#2| $) 55)) (-1664 (($ $) 33)) (-1595 ((|#4| $ (-523)) 61)) (-1458 (((-794) $) 66)) (-2096 (((-108) (-1 (-108) |#2|) $) 18)) (-3983 (((-108) $ $) 52)) (-2676 (((-710) $) 26))) +(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2852 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3617 (|#1| |#1| (-523) |#4|)) (-15 -3787 (|#1| |#1| (-523) |#3|)) (-15 -1666 ((-589 |#2|) |#1|)) (-15 -1595 (|#4| |#1| (-523))) (-15 -2031 (|#3| |#1| (-523))) (-15 -3223 (|#2| |#1| (-523) (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523) (-523))) (-15 -4203 (|#1| |#1| |#2|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1973 ((-108) |#2| |#1|)) (-15 -2792 ((-710) |#2| |#1|)) (-15 -2792 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -1327 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2676 ((-710) |#1|)) (-15 -3079 ((-108) |#1| (-710))) (-15 -2346 ((-108) |#1| (-710))) (-15 -2866 ((-108) |#1| (-710))) (-15 -1664 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1122) (-349 |#2|) (-349 |#2|)) (T -54)) +NIL +(-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2852 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3617 (|#1| |#1| (-523) |#4|)) (-15 -3787 (|#1| |#1| (-523) |#3|)) (-15 -1666 ((-589 |#2|) |#1|)) (-15 -1595 (|#4| |#1| (-523))) (-15 -2031 (|#3| |#1| (-523))) (-15 -3223 (|#2| |#1| (-523) (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523) (-523))) (-15 -4203 (|#1| |#1| |#2|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1973 ((-108) |#2| |#1|)) (-15 -2792 ((-710) |#2| |#1|)) (-15 -2792 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -1327 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2676 ((-710) |#1|)) (-15 -3079 ((-108) |#1| (-710))) (-15 -2346 ((-108) |#1| (-710))) (-15 -2866 ((-108) |#1| (-710))) (-15 -1664 (|#1| |#1|))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) 8)) (-1641 ((|#1| $ (-523) (-523) |#1|) 44)) (-3787 (($ $ (-523) |#2|) 42)) (-3617 (($ $ (-523) |#3|) 41)) (-2518 (($) 7 T CONST)) (-2031 ((|#2| $ (-523)) 46)) (-2863 ((|#1| $ (-523) (-523) |#1|) 43)) (-2795 ((|#1| $ (-523) (-523)) 48)) (-1666 (((-589 |#1|) $) 30)) (-2803 (((-710) $) 51)) (-3052 (($ (-710) (-710) |#1|) 57)) (-2813 (((-710) $) 50)) (-2346 (((-108) $ (-710)) 9)) (-3871 (((-523) $) 55)) (-1758 (((-523) $) 53)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3338 (((-523) $) 54)) (-2347 (((-523) $) 52)) (-2852 (($ (-1 |#1| |#1|) $) 34)) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-4203 (($ $ |#1|) 56)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ (-523) (-523)) 49) ((|#1| $ (-523) (-523) |#1|) 47)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1595 ((|#3| $ (-523)) 45)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-55 |#1| |#2| |#3|) (-129) (-1122) (-349 |t#1|) (-349 |t#1|)) (T -55)) +((-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-3052 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-710)) (-4 *3 (-1122)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-4203 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-523)))) (-3338 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-523)))) (-1758 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-523)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-523)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-710)))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-710)))) (-3223 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-1122)))) (-2795 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-1122)))) (-3223 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1122)) (-4 *4 (-349 *2)) (-4 *5 (-349 *2)))) (-2031 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1122)) (-4 *5 (-349 *4)) (-4 *2 (-349 *4)))) (-1595 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1122)) (-4 *5 (-349 *4)) (-4 *2 (-349 *4)))) (-1666 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-589 *3)))) (-1641 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1122)) (-4 *4 (-349 *2)) (-4 *5 (-349 *2)))) (-2863 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1122)) (-4 *4 (-349 *2)) (-4 *5 (-349 *2)))) (-3787 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-523)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1122)) (-4 *3 (-349 *4)) (-4 *5 (-349 *4)))) (-3617 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-523)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1122)) (-4 *5 (-349 *4)) (-4 *3 (-349 *4)))) (-2852 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-3612 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-3612 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3))))) +(-13 (-462 |t#1|) (-10 -8 (-6 -4245) (-6 -4244) (-15 -3052 ($ (-710) (-710) |t#1|)) (-15 -4203 ($ $ |t#1|)) (-15 -3871 ((-523) $)) (-15 -3338 ((-523) $)) (-15 -1758 ((-523) $)) (-15 -2347 ((-523) $)) (-15 -2803 ((-710) $)) (-15 -2813 ((-710) $)) (-15 -3223 (|t#1| $ (-523) (-523))) (-15 -2795 (|t#1| $ (-523) (-523))) (-15 -3223 (|t#1| $ (-523) (-523) |t#1|)) (-15 -2031 (|t#2| $ (-523))) (-15 -1595 (|t#3| $ (-523))) (-15 -1666 ((-589 |t#1|) $)) (-15 -1641 (|t#1| $ (-523) (-523) |t#1|)) (-15 -2863 (|t#1| $ (-523) (-523) |t#1|)) (-15 -3787 ($ $ (-523) |t#2|)) (-15 -3617 ($ $ (-523) |t#3|)) (-15 -3612 ($ (-1 |t#1| |t#1|) $)) (-15 -2852 ($ (-1 |t#1| |t#1|) $)) (-15 -3612 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3612 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) +((-2837 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-2437 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-3612 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13))) +(((-56 |#1| |#2|) (-10 -7 (-15 -2837 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -2437 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3612 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1122) (-1122)) (T -56)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-2437 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1122)) (-4 *2 (-1122)) (-5 *1 (-56 *5 *2)))) (-2837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1122)) (-4 *5 (-1122)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))) +(-10 -7 (-15 -2837 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -2437 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3612 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-523) |#1|) 11 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) NIL)) (-1479 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2641 (($ (-589 |#1|)) 13) (($ (-710) |#1|) 14)) (-3052 (($ (-710) |#1|) 9)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1738 ((|#1| $) NIL (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) 7)) (-3223 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) NIL)) (-2326 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2641 ($ (-589 |#1|))) (-15 -2641 ($ (-710) |#1|)))) (-1122)) (T -57)) +((-2641 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-57 *3)))) (-2641 (*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *1 (-57 *3)) (-4 *3 (-1122))))) +(-13 (-19 |#1|) (-10 -8 (-15 -2641 ($ (-589 |#1|))) (-15 -2641 ($ (-710) |#1|)))) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-523) (-523) |#1|) NIL)) (-3787 (($ $ (-523) (-57 |#1|)) NIL)) (-3617 (($ $ (-523) (-57 |#1|)) NIL)) (-2518 (($) NIL T CONST)) (-2031 (((-57 |#1|) $ (-523)) NIL)) (-2863 ((|#1| $ (-523) (-523) |#1|) NIL)) (-2795 ((|#1| $ (-523) (-523)) NIL)) (-1666 (((-589 |#1|) $) NIL)) (-2803 (((-710) $) NIL)) (-3052 (($ (-710) (-710) |#1|) NIL)) (-2813 (((-710) $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-3871 (((-523) $) NIL)) (-1758 (((-523) $) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3338 (((-523) $) NIL)) (-2347 (((-523) $) NIL)) (-2852 (($ (-1 |#1| |#1|) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-4203 (($ $ |#1|) NIL)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-523) (-523)) NIL) ((|#1| $ (-523) (-523) |#1|) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1595 (((-57 |#1|) $ (-523)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4245))) (-1122)) (T -58)) +NIL +(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4245))) +((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 69) (((-3 $ "failed") (-1168 (-292 (-523)))) 58) (((-3 $ "failed") (-1168 (-883 (-355)))) 91) (((-3 $ "failed") (-1168 (-883 (-523)))) 80) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 47) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 36)) (-3474 (($ (-1168 (-292 (-355)))) 65) (($ (-1168 (-292 (-523)))) 54) (($ (-1168 (-883 (-355)))) 87) (($ (-1168 (-883 (-523)))) 76) (($ (-1168 (-383 (-883 (-355))))) 43) (($ (-1168 (-383 (-883 (-523))))) 29)) (-3394 (((-1173) $) 118)) (-1458 (((-794) $) 111) (($ (-589 (-306))) 100) (($ (-306)) 94) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 97) (($ (-1168 (-315 (-1472 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1472) (-638)))) 28))) +(((-59 |#1|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1472) (-638))))))) (-1087)) (T -59)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1472) (-638)))) (-5 *1 (-59 *3)) (-14 *3 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1472) (-638))))))) +((-3394 (((-1173) $) 48) (((-1173)) 49)) (-1458 (((-794) $) 45))) +(((-60 |#1|) (-13 (-371) (-10 -7 (-15 -3394 ((-1173))))) (-1087)) (T -60)) +((-3394 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-60 *3)) (-14 *3 (-1087))))) +(-13 (-371) (-10 -7 (-15 -3394 ((-1173))))) +((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 142) (((-3 $ "failed") (-1168 (-292 (-523)))) 132) (((-3 $ "failed") (-1168 (-883 (-355)))) 163) (((-3 $ "failed") (-1168 (-883 (-523)))) 152) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 121) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 110)) (-3474 (($ (-1168 (-292 (-355)))) 138) (($ (-1168 (-292 (-523)))) 128) (($ (-1168 (-883 (-355)))) 159) (($ (-1168 (-883 (-523)))) 148) (($ (-1168 (-383 (-883 (-355))))) 117) (($ (-1168 (-383 (-883 (-523))))) 103)) (-3394 (((-1173) $) 96)) (-1458 (((-794) $) 90) (($ (-589 (-306))) 28) (($ (-306)) 34) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 31) (($ (-1168 (-315 (-1472) (-1472 (QUOTE XC)) (-638)))) 88))) +(((-61 |#1|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472) (-1472 (QUOTE XC)) (-638))))))) (-1087)) (T -61)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472) (-1472 (QUOTE XC)) (-638)))) (-5 *1 (-61 *3)) (-14 *3 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472) (-1472 (QUOTE XC)) (-638))))))) +((-3517 (((-3 $ "failed") (-292 (-355))) 36) (((-3 $ "failed") (-292 (-523))) 41) (((-3 $ "failed") (-883 (-355))) 46) (((-3 $ "failed") (-883 (-523))) 51) (((-3 $ "failed") (-383 (-883 (-355)))) 31) (((-3 $ "failed") (-383 (-883 (-523)))) 26)) (-3474 (($ (-292 (-355))) 34) (($ (-292 (-523))) 39) (($ (-883 (-355))) 44) (($ (-883 (-523))) 49) (($ (-383 (-883 (-355)))) 29) (($ (-383 (-883 (-523)))) 23)) (-3394 (((-1173) $) 73)) (-1458 (((-794) $) 66) (($ (-589 (-306))) 57) (($ (-306)) 63) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 60) (($ (-315 (-1472 (QUOTE X)) (-1472) (-638))) 22))) +(((-62 |#1|) (-13 (-372) (-10 -8 (-15 -1458 ($ (-315 (-1472 (QUOTE X)) (-1472) (-638)))))) (-1087)) (T -62)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-315 (-1472 (QUOTE X)) (-1472) (-638))) (-5 *1 (-62 *3)) (-14 *3 (-1087))))) +(-13 (-372) (-10 -8 (-15 -1458 ($ (-315 (-1472 (QUOTE X)) (-1472) (-638)))))) +((-3517 (((-3 $ "failed") (-629 (-292 (-355)))) 100) (((-3 $ "failed") (-629 (-292 (-523)))) 89) (((-3 $ "failed") (-629 (-883 (-355)))) 122) (((-3 $ "failed") (-629 (-883 (-523)))) 111) (((-3 $ "failed") (-629 (-383 (-883 (-355))))) 78) (((-3 $ "failed") (-629 (-383 (-883 (-523))))) 67)) (-3474 (($ (-629 (-292 (-355)))) 96) (($ (-629 (-292 (-523)))) 85) (($ (-629 (-883 (-355)))) 118) (($ (-629 (-883 (-523)))) 107) (($ (-629 (-383 (-883 (-355))))) 74) (($ (-629 (-383 (-883 (-523))))) 60)) (-3394 (((-1173) $) 130)) (-1458 (((-794) $) 124) (($ (-589 (-306))) 27) (($ (-306)) 33) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 30) (($ (-629 (-315 (-1472) (-1472 (QUOTE X) (QUOTE HESS)) (-638)))) 53))) +(((-63 |#1|) (-13 (-360) (-10 -8 (-15 -1458 ($ (-629 (-315 (-1472) (-1472 (QUOTE X) (QUOTE HESS)) (-638))))))) (-1087)) (T -63)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-629 (-315 (-1472) (-1472 (QUOTE X) (QUOTE HESS)) (-638)))) (-5 *1 (-63 *3)) (-14 *3 (-1087))))) +(-13 (-360) (-10 -8 (-15 -1458 ($ (-629 (-315 (-1472) (-1472 (QUOTE X) (QUOTE HESS)) (-638))))))) +((-3517 (((-3 $ "failed") (-292 (-355))) 54) (((-3 $ "failed") (-292 (-523))) 59) (((-3 $ "failed") (-883 (-355))) 64) (((-3 $ "failed") (-883 (-523))) 69) (((-3 $ "failed") (-383 (-883 (-355)))) 49) (((-3 $ "failed") (-383 (-883 (-523)))) 44)) (-3474 (($ (-292 (-355))) 52) (($ (-292 (-523))) 57) (($ (-883 (-355))) 62) (($ (-883 (-523))) 67) (($ (-383 (-883 (-355)))) 47) (($ (-383 (-883 (-523)))) 41)) (-3394 (((-1173) $) 78)) (-1458 (((-794) $) 72) (($ (-589 (-306))) 27) (($ (-306)) 33) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 30) (($ (-315 (-1472) (-1472 (QUOTE XC)) (-638))) 38))) +(((-64 |#1|) (-13 (-372) (-10 -8 (-15 -1458 ($ (-315 (-1472) (-1472 (QUOTE XC)) (-638)))))) (-1087)) (T -64)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-315 (-1472) (-1472 (QUOTE XC)) (-638))) (-5 *1 (-64 *3)) (-14 *3 (-1087))))) +(-13 (-372) (-10 -8 (-15 -1458 ($ (-315 (-1472) (-1472 (QUOTE XC)) (-638)))))) +((-3394 (((-1173) $) 63)) (-1458 (((-794) $) 57) (($ (-629 (-638))) 49) (($ (-589 (-306))) 48) (($ (-306)) 55) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 53))) +(((-65 |#1|) (-359) (-1087)) (T -65)) +NIL +(-359) +((-3394 (((-1173) $) 64)) (-1458 (((-794) $) 58) (($ (-629 (-638))) 50) (($ (-589 (-306))) 49) (($ (-306)) 52) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 55))) +(((-66 |#1|) (-359) (-1087)) (T -66)) +NIL +(-359) +((-3394 (((-1173) $) NIL) (((-1173)) 32)) (-1458 (((-794) $) NIL))) +(((-67 |#1|) (-13 (-371) (-10 -7 (-15 -3394 ((-1173))))) (-1087)) (T -67)) +((-3394 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-67 *3)) (-14 *3 (-1087))))) +(-13 (-371) (-10 -7 (-15 -3394 ((-1173))))) +((-3394 (((-1173) $) 68)) (-1458 (((-794) $) 62) (($ (-629 (-638))) 53) (($ (-589 (-306))) 56) (($ (-306)) 59) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 52))) +(((-68 |#1|) (-359) (-1087)) (T -68)) +NIL +(-359) +((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 98) (((-3 $ "failed") (-1168 (-292 (-523)))) 87) (((-3 $ "failed") (-1168 (-883 (-355)))) 119) (((-3 $ "failed") (-1168 (-883 (-523)))) 108) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 76) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 65)) (-3474 (($ (-1168 (-292 (-355)))) 94) (($ (-1168 (-292 (-523)))) 83) (($ (-1168 (-883 (-355)))) 115) (($ (-1168 (-883 (-523)))) 104) (($ (-1168 (-383 (-883 (-355))))) 72) (($ (-1168 (-383 (-883 (-523))))) 58)) (-3394 (((-1173) $) 133)) (-1458 (((-794) $) 127) (($ (-589 (-306))) 122) (($ (-306)) 125) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 50) (($ (-1168 (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638)))) 51))) +(((-69 |#1|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638))))))) (-1087)) (T -69)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638)))) (-5 *1 (-69 *3)) (-14 *3 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638))))))) +((-3394 (((-1173) $) 32) (((-1173)) 31)) (-1458 (((-794) $) 35))) +(((-70 |#1|) (-13 (-371) (-10 -7 (-15 -3394 ((-1173))))) (-1087)) (T -70)) +((-3394 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-70 *3)) (-14 *3 (-1087))))) +(-13 (-371) (-10 -7 (-15 -3394 ((-1173))))) +((-3394 (((-1173) $) 62)) (-1458 (((-794) $) 56) (($ (-629 (-638))) 47) (($ (-589 (-306))) 50) (($ (-306)) 53) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 46))) +(((-71 |#1|) (-359) (-1087)) (T -71)) +NIL +(-359) +((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 119) (((-3 $ "failed") (-1168 (-292 (-523)))) 108) (((-3 $ "failed") (-1168 (-883 (-355)))) 141) (((-3 $ "failed") (-1168 (-883 (-523)))) 130) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 98) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 87)) (-3474 (($ (-1168 (-292 (-355)))) 115) (($ (-1168 (-292 (-523)))) 104) (($ (-1168 (-883 (-355)))) 137) (($ (-1168 (-883 (-523)))) 126) (($ (-1168 (-383 (-883 (-355))))) 94) (($ (-1168 (-383 (-883 (-523))))) 80)) (-3394 (((-1173) $) 73)) (-1458 (((-794) $) 27) (($ (-589 (-306))) 63) (($ (-306)) 59) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 66) (($ (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638)))) 60))) +(((-72 |#1|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638))))))) (-1087)) (T -72)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638)))) (-5 *1 (-72 *3)) (-14 *3 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638))))))) +((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 125) (((-3 $ "failed") (-1168 (-292 (-523)))) 114) (((-3 $ "failed") (-1168 (-883 (-355)))) 147) (((-3 $ "failed") (-1168 (-883 (-523)))) 136) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 103) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 92)) (-3474 (($ (-1168 (-292 (-355)))) 121) (($ (-1168 (-292 (-523)))) 110) (($ (-1168 (-883 (-355)))) 143) (($ (-1168 (-883 (-523)))) 132) (($ (-1168 (-383 (-883 (-355))))) 99) (($ (-1168 (-383 (-883 (-523))))) 85)) (-3394 (((-1173) $) 78)) (-1458 (((-794) $) 70) (($ (-589 (-306))) NIL) (($ (-306)) NIL) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) NIL) (($ (-1168 (-315 (-1472 (QUOTE X) (QUOTE EPS)) (-1472 (QUOTE -1294)) (-638)))) 65))) +(((-73 |#1| |#2| |#3|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE X) (QUOTE EPS)) (-1472 (QUOTE -1294)) (-638))))))) (-1087) (-1087) (-1087)) (T -73)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472 (QUOTE X) (QUOTE EPS)) (-1472 (QUOTE -1294)) (-638)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1087)) (-14 *4 (-1087)) (-14 *5 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE X) (QUOTE EPS)) (-1472 (QUOTE -1294)) (-638))))))) +((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 129) (((-3 $ "failed") (-1168 (-292 (-523)))) 118) (((-3 $ "failed") (-1168 (-883 (-355)))) 151) (((-3 $ "failed") (-1168 (-883 (-523)))) 140) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 107) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 96)) (-3474 (($ (-1168 (-292 (-355)))) 125) (($ (-1168 (-292 (-523)))) 114) (($ (-1168 (-883 (-355)))) 147) (($ (-1168 (-883 (-523)))) 136) (($ (-1168 (-383 (-883 (-355))))) 103) (($ (-1168 (-383 (-883 (-523))))) 89)) (-3394 (((-1173) $) 82)) (-1458 (((-794) $) 74) (($ (-589 (-306))) NIL) (($ (-306)) NIL) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) NIL) (($ (-1168 (-315 (-1472 (QUOTE EPS)) (-1472 (QUOTE YA) (QUOTE YB)) (-638)))) 69))) +(((-74 |#1| |#2| |#3|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE EPS)) (-1472 (QUOTE YA) (QUOTE YB)) (-638))))))) (-1087) (-1087) (-1087)) (T -74)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472 (QUOTE EPS)) (-1472 (QUOTE YA) (QUOTE YB)) (-638)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1087)) (-14 *4 (-1087)) (-14 *5 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE EPS)) (-1472 (QUOTE YA) (QUOTE YB)) (-638))))))) +((-3517 (((-3 $ "failed") (-292 (-355))) 77) (((-3 $ "failed") (-292 (-523))) 82) (((-3 $ "failed") (-883 (-355))) 87) (((-3 $ "failed") (-883 (-523))) 92) (((-3 $ "failed") (-383 (-883 (-355)))) 72) (((-3 $ "failed") (-383 (-883 (-523)))) 67)) (-3474 (($ (-292 (-355))) 75) (($ (-292 (-523))) 80) (($ (-883 (-355))) 85) (($ (-883 (-523))) 90) (($ (-383 (-883 (-355)))) 70) (($ (-383 (-883 (-523)))) 64)) (-3394 (((-1173) $) 61)) (-1458 (((-794) $) 49) (($ (-589 (-306))) 45) (($ (-306)) 55) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 53) (($ (-315 (-1472) (-1472 (QUOTE X)) (-638))) 46))) +(((-75 |#1|) (-13 (-372) (-10 -8 (-15 -1458 ($ (-315 (-1472) (-1472 (QUOTE X)) (-638)))))) (-1087)) (T -75)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-315 (-1472) (-1472 (QUOTE X)) (-638))) (-5 *1 (-75 *3)) (-14 *3 (-1087))))) +(-13 (-372) (-10 -8 (-15 -1458 ($ (-315 (-1472) (-1472 (QUOTE X)) (-638)))))) +((-3517 (((-3 $ "failed") (-292 (-355))) 41) (((-3 $ "failed") (-292 (-523))) 46) (((-3 $ "failed") (-883 (-355))) 51) (((-3 $ "failed") (-883 (-523))) 56) (((-3 $ "failed") (-383 (-883 (-355)))) 36) (((-3 $ "failed") (-383 (-883 (-523)))) 31)) (-3474 (($ (-292 (-355))) 39) (($ (-292 (-523))) 44) (($ (-883 (-355))) 49) (($ (-883 (-523))) 54) (($ (-383 (-883 (-355)))) 34) (($ (-383 (-883 (-523)))) 28)) (-3394 (((-1173) $) 77)) (-1458 (((-794) $) 71) (($ (-589 (-306))) 62) (($ (-306)) 68) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 65) (($ (-315 (-1472) (-1472 (QUOTE X)) (-638))) 27))) +(((-76 |#1|) (-13 (-372) (-10 -8 (-15 -1458 ($ (-315 (-1472) (-1472 (QUOTE X)) (-638)))))) (-1087)) (T -76)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-315 (-1472) (-1472 (QUOTE X)) (-638))) (-5 *1 (-76 *3)) (-14 *3 (-1087))))) +(-13 (-372) (-10 -8 (-15 -1458 ($ (-315 (-1472) (-1472 (QUOTE X)) (-638)))))) +((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 84) (((-3 $ "failed") (-1168 (-292 (-523)))) 73) (((-3 $ "failed") (-1168 (-883 (-355)))) 106) (((-3 $ "failed") (-1168 (-883 (-523)))) 95) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 62) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 51)) (-3474 (($ (-1168 (-292 (-355)))) 80) (($ (-1168 (-292 (-523)))) 69) (($ (-1168 (-883 (-355)))) 102) (($ (-1168 (-883 (-523)))) 91) (($ (-1168 (-383 (-883 (-355))))) 58) (($ (-1168 (-383 (-883 (-523))))) 44)) (-3394 (((-1173) $) 122)) (-1458 (((-794) $) 116) (($ (-589 (-306))) 109) (($ (-306)) 36) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 112) (($ (-1168 (-315 (-1472) (-1472 (QUOTE XC)) (-638)))) 37))) +(((-77 |#1|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472) (-1472 (QUOTE XC)) (-638))))))) (-1087)) (T -77)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472) (-1472 (QUOTE XC)) (-638)))) (-5 *1 (-77 *3)) (-14 *3 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472) (-1472 (QUOTE XC)) (-638))))))) +((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 137) (((-3 $ "failed") (-1168 (-292 (-523)))) 126) (((-3 $ "failed") (-1168 (-883 (-355)))) 158) (((-3 $ "failed") (-1168 (-883 (-523)))) 147) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 116) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 105)) (-3474 (($ (-1168 (-292 (-355)))) 133) (($ (-1168 (-292 (-523)))) 122) (($ (-1168 (-883 (-355)))) 154) (($ (-1168 (-883 (-523)))) 143) (($ (-1168 (-383 (-883 (-355))))) 112) (($ (-1168 (-383 (-883 (-523))))) 98)) (-3394 (((-1173) $) 91)) (-1458 (((-794) $) 85) (($ (-589 (-306))) 76) (($ (-306)) 83) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 81) (($ (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638)))) 77))) +(((-78 |#1|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638))))))) (-1087)) (T -78)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638)))) (-5 *1 (-78 *3)) (-14 *3 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638))))))) +((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 73) (((-3 $ "failed") (-1168 (-292 (-523)))) 62) (((-3 $ "failed") (-1168 (-883 (-355)))) 95) (((-3 $ "failed") (-1168 (-883 (-523)))) 84) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 51) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 40)) (-3474 (($ (-1168 (-292 (-355)))) 69) (($ (-1168 (-292 (-523)))) 58) (($ (-1168 (-883 (-355)))) 91) (($ (-1168 (-883 (-523)))) 80) (($ (-1168 (-383 (-883 (-355))))) 47) (($ (-1168 (-383 (-883 (-523))))) 33)) (-3394 (((-1173) $) 121)) (-1458 (((-794) $) 115) (($ (-589 (-306))) 106) (($ (-306)) 112) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 110) (($ (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638)))) 32))) +(((-79 |#1|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638))))))) (-1087)) (T -79)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638)))) (-5 *1 (-79 *3)) (-14 *3 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472) (-1472 (QUOTE X)) (-638))))))) +((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 90) (((-3 $ "failed") (-1168 (-292 (-523)))) 79) (((-3 $ "failed") (-1168 (-883 (-355)))) 112) (((-3 $ "failed") (-1168 (-883 (-523)))) 101) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 68) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 57)) (-3474 (($ (-1168 (-292 (-355)))) 86) (($ (-1168 (-292 (-523)))) 75) (($ (-1168 (-883 (-355)))) 108) (($ (-1168 (-883 (-523)))) 97) (($ (-1168 (-383 (-883 (-355))))) 64) (($ (-1168 (-383 (-883 (-523))))) 50)) (-3394 (((-1173) $) 43)) (-1458 (((-794) $) 36) (($ (-589 (-306))) 26) (($ (-306)) 29) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 32) (($ (-1168 (-315 (-1472 (QUOTE X) (QUOTE -1294)) (-1472) (-638)))) 27))) +(((-80 |#1|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE X) (QUOTE -1294)) (-1472) (-638))))))) (-1087)) (T -80)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472 (QUOTE X) (QUOTE -1294)) (-1472) (-638)))) (-5 *1 (-80 *3)) (-14 *3 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE X) (QUOTE -1294)) (-1472) (-638))))))) +((-3517 (((-3 $ "failed") (-629 (-292 (-355)))) 103) (((-3 $ "failed") (-629 (-292 (-523)))) 92) (((-3 $ "failed") (-629 (-883 (-355)))) 125) (((-3 $ "failed") (-629 (-883 (-523)))) 114) (((-3 $ "failed") (-629 (-383 (-883 (-355))))) 82) (((-3 $ "failed") (-629 (-383 (-883 (-523))))) 71)) (-3474 (($ (-629 (-292 (-355)))) 99) (($ (-629 (-292 (-523)))) 88) (($ (-629 (-883 (-355)))) 121) (($ (-629 (-883 (-523)))) 110) (($ (-629 (-383 (-883 (-355))))) 78) (($ (-629 (-383 (-883 (-523))))) 64)) (-3394 (((-1173) $) 57)) (-1458 (((-794) $) 43) (($ (-589 (-306))) 50) (($ (-306)) 39) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 47) (($ (-629 (-315 (-1472 (QUOTE X) (QUOTE -1294)) (-1472) (-638)))) 40))) +(((-81 |#1|) (-13 (-360) (-10 -8 (-15 -1458 ($ (-629 (-315 (-1472 (QUOTE X) (QUOTE -1294)) (-1472) (-638))))))) (-1087)) (T -81)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-629 (-315 (-1472 (QUOTE X) (QUOTE -1294)) (-1472) (-638)))) (-5 *1 (-81 *3)) (-14 *3 (-1087))))) +(-13 (-360) (-10 -8 (-15 -1458 ($ (-629 (-315 (-1472 (QUOTE X) (QUOTE -1294)) (-1472) (-638))))))) +((-3517 (((-3 $ "failed") (-629 (-292 (-355)))) 103) (((-3 $ "failed") (-629 (-292 (-523)))) 92) (((-3 $ "failed") (-629 (-883 (-355)))) 124) (((-3 $ "failed") (-629 (-883 (-523)))) 113) (((-3 $ "failed") (-629 (-383 (-883 (-355))))) 81) (((-3 $ "failed") (-629 (-383 (-883 (-523))))) 70)) (-3474 (($ (-629 (-292 (-355)))) 99) (($ (-629 (-292 (-523)))) 88) (($ (-629 (-883 (-355)))) 120) (($ (-629 (-883 (-523)))) 109) (($ (-629 (-383 (-883 (-355))))) 77) (($ (-629 (-383 (-883 (-523))))) 63)) (-3394 (((-1173) $) 56)) (-1458 (((-794) $) 50) (($ (-589 (-306))) 44) (($ (-306)) 47) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 40) (($ (-629 (-315 (-1472 (QUOTE X)) (-1472) (-638)))) 41))) +(((-82 |#1|) (-13 (-360) (-10 -8 (-15 -1458 ($ (-629 (-315 (-1472 (QUOTE X)) (-1472) (-638))))))) (-1087)) (T -82)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-629 (-315 (-1472 (QUOTE X)) (-1472) (-638)))) (-5 *1 (-82 *3)) (-14 *3 (-1087))))) +(-13 (-360) (-10 -8 (-15 -1458 ($ (-629 (-315 (-1472 (QUOTE X)) (-1472) (-638))))))) +((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 99) (((-3 $ "failed") (-1168 (-292 (-523)))) 88) (((-3 $ "failed") (-1168 (-883 (-355)))) 121) (((-3 $ "failed") (-1168 (-883 (-523)))) 110) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 77) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 66)) (-3474 (($ (-1168 (-292 (-355)))) 95) (($ (-1168 (-292 (-523)))) 84) (($ (-1168 (-883 (-355)))) 117) (($ (-1168 (-883 (-523)))) 106) (($ (-1168 (-383 (-883 (-355))))) 73) (($ (-1168 (-383 (-883 (-523))))) 59)) (-3394 (((-1173) $) 45)) (-1458 (((-794) $) 39) (($ (-589 (-306))) 48) (($ (-306)) 35) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 51) (($ (-1168 (-315 (-1472 (QUOTE X)) (-1472) (-638)))) 36))) +(((-83 |#1|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE X)) (-1472) (-638))))))) (-1087)) (T -83)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472 (QUOTE X)) (-1472) (-638)))) (-5 *1 (-83 *3)) (-14 *3 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE X)) (-1472) (-638))))))) +((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 74) (((-3 $ "failed") (-1168 (-292 (-523)))) 63) (((-3 $ "failed") (-1168 (-883 (-355)))) 96) (((-3 $ "failed") (-1168 (-883 (-523)))) 85) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 52) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 41)) (-3474 (($ (-1168 (-292 (-355)))) 70) (($ (-1168 (-292 (-523)))) 59) (($ (-1168 (-883 (-355)))) 92) (($ (-1168 (-883 (-523)))) 81) (($ (-1168 (-383 (-883 (-355))))) 48) (($ (-1168 (-383 (-883 (-523))))) 34)) (-3394 (((-1173) $) 122)) (-1458 (((-794) $) 116) (($ (-589 (-306))) 107) (($ (-306)) 113) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 111) (($ (-1168 (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638)))) 33))) +(((-84 |#1|) (-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638))))))) (-1087)) (T -84)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638)))) (-5 *1 (-84 *3)) (-14 *3 (-1087))))) +(-13 (-416) (-10 -8 (-15 -1458 ($ (-1168 (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638))))))) +((-3517 (((-3 $ "failed") (-629 (-292 (-355)))) 105) (((-3 $ "failed") (-629 (-292 (-523)))) 94) (((-3 $ "failed") (-629 (-883 (-355)))) 127) (((-3 $ "failed") (-629 (-883 (-523)))) 116) (((-3 $ "failed") (-629 (-383 (-883 (-355))))) 83) (((-3 $ "failed") (-629 (-383 (-883 (-523))))) 72)) (-3474 (($ (-629 (-292 (-355)))) 101) (($ (-629 (-292 (-523)))) 90) (($ (-629 (-883 (-355)))) 123) (($ (-629 (-883 (-523)))) 112) (($ (-629 (-383 (-883 (-355))))) 79) (($ (-629 (-383 (-883 (-523))))) 65)) (-3394 (((-1173) $) 58)) (-1458 (((-794) $) 52) (($ (-589 (-306))) 42) (($ (-306)) 49) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 47) (($ (-629 (-315 (-1472 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1472) (-638)))) 43))) +(((-85 |#1|) (-13 (-360) (-10 -8 (-15 -1458 ($ (-629 (-315 (-1472 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1472) (-638))))))) (-1087)) (T -85)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-629 (-315 (-1472 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1472) (-638)))) (-5 *1 (-85 *3)) (-14 *3 (-1087))))) +(-13 (-360) (-10 -8 (-15 -1458 ($ (-629 (-315 (-1472 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1472) (-638))))))) +((-3394 (((-1173) $) 44)) (-1458 (((-794) $) 38) (($ (-1168 (-638))) 88) (($ (-589 (-306))) 29) (($ (-306)) 35) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 32))) +(((-86 |#1|) (-415) (-1087)) (T -86)) +NIL +(-415) +((-3517 (((-3 $ "failed") (-292 (-355))) 42) (((-3 $ "failed") (-292 (-523))) 47) (((-3 $ "failed") (-883 (-355))) 52) (((-3 $ "failed") (-883 (-523))) 57) (((-3 $ "failed") (-383 (-883 (-355)))) 37) (((-3 $ "failed") (-383 (-883 (-523)))) 32)) (-3474 (($ (-292 (-355))) 40) (($ (-292 (-523))) 45) (($ (-883 (-355))) 50) (($ (-883 (-523))) 55) (($ (-383 (-883 (-355)))) 35) (($ (-383 (-883 (-523)))) 29)) (-3394 (((-1173) $) 88)) (-1458 (((-794) $) 82) (($ (-589 (-306))) 76) (($ (-306)) 79) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 73) (($ (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638))) 28))) +(((-87 |#1|) (-13 (-372) (-10 -8 (-15 -1458 ($ (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638)))))) (-1087)) (T -87)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638))) (-5 *1 (-87 *3)) (-14 *3 (-1087))))) +(-13 (-372) (-10 -8 (-15 -1458 ($ (-315 (-1472 (QUOTE X)) (-1472 (QUOTE -1294)) (-638)))))) +((-2859 (((-1168 (-629 |#1|)) (-629 |#1|)) 55)) (-2198 (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 (-589 (-852))))) |#2| (-852)) 45)) (-1659 (((-2 (|:| |minor| (-589 (-852))) (|:| -1710 |#2|) (|:| |minors| (-589 (-589 (-852)))) (|:| |ops| (-589 |#2|))) |#2| (-852)) 63 (|has| |#1| (-339))))) +(((-88 |#1| |#2|) (-10 -7 (-15 -2198 ((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 (-589 (-852))))) |#2| (-852))) (-15 -2859 ((-1168 (-629 |#1|)) (-629 |#1|))) (IF (|has| |#1| (-339)) (-15 -1659 ((-2 (|:| |minor| (-589 (-852))) (|:| -1710 |#2|) (|:| |minors| (-589 (-589 (-852)))) (|:| |ops| (-589 |#2|))) |#2| (-852))) |%noBranch|)) (-515) (-599 |#1|)) (T -88)) +((-1659 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-4 *5 (-515)) (-5 *2 (-2 (|:| |minor| (-589 (-852))) (|:| -1710 *3) (|:| |minors| (-589 (-589 (-852)))) (|:| |ops| (-589 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-852)) (-4 *3 (-599 *5)))) (-2859 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-1168 (-629 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-629 *4)) (-4 *5 (-599 *4)))) (-2198 (*1 *2 *3 *4) (-12 (-4 *5 (-515)) (-5 *2 (-2 (|:| -3392 (-629 *5)) (|:| |vec| (-1168 (-589 (-852)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-852)) (-4 *3 (-599 *5))))) +(-10 -7 (-15 -2198 ((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 (-589 (-852))))) |#2| (-852))) (-15 -2859 ((-1168 (-629 |#1|)) (-629 |#1|))) (IF (|has| |#1| (-339)) (-15 -1659 ((-2 (|:| |minor| (-589 (-852))) (|:| -1710 |#2|) (|:| |minors| (-589 (-589 (-852)))) (|:| |ops| (-589 |#2|))) |#2| (-852))) |%noBranch|)) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3125 ((|#1| $) 35)) (-3079 (((-108) $ (-710)) NIL)) (-2518 (($) NIL T CONST)) (-3845 ((|#1| |#1| $) 30)) (-2085 ((|#1| $) 28)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1934 ((|#1| $) NIL)) (-3450 (($ |#1| $) 31)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3761 ((|#1| $) 29)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 16)) (-3988 (($) 39)) (-1583 (((-710) $) 26)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) 15)) (-1458 (((-794) $) 25 (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) NIL)) (-4145 (($ (-589 |#1|)) 37)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 13 (|has| |#1| (-1016)))) (-2676 (((-710) $) 10 (|has| $ (-6 -4244))))) +(((-89 |#1|) (-13 (-1035 |#1|) (-10 -8 (-15 -4145 ($ (-589 |#1|))))) (-1016)) (T -89)) +((-4145 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-89 *3))))) +(-13 (-1035 |#1|) (-10 -8 (-15 -4145 ($ (-589 |#1|))))) +((-1719 (($ $) 10)) (-1731 (($ $) 12))) +(((-90 |#1|) (-10 -8 (-15 -1731 (|#1| |#1|)) (-15 -1719 (|#1| |#1|))) (-91)) (T -90)) +NIL +(-10 -8 (-15 -1731 (|#1| |#1|)) (-15 -1719 (|#1| |#1|))) +((-3847 (($ $) 11)) (-3828 (($ $) 10)) (-1719 (($ $) 9)) (-1731 (($ $) 8)) (-3859 (($ $) 7)) (-3838 (($ $) 6))) +(((-91) (-129)) (T -91)) +((-3847 (*1 *1 *1) (-4 *1 (-91))) (-3828 (*1 *1 *1) (-4 *1 (-91))) (-1719 (*1 *1 *1) (-4 *1 (-91))) (-1731 (*1 *1 *1) (-4 *1 (-91))) (-3859 (*1 *1 *1) (-4 *1 (-91))) (-3838 (*1 *1 *1) (-4 *1 (-91)))) +(-13 (-10 -8 (-15 -3838 ($ $)) (-15 -3859 ($ $)) (-15 -1731 ($ $)) (-15 -1719 ($ $)) (-15 -3828 ($ $)) (-15 -3847 ($ $)))) +((-3924 (((-108) $ $) NIL)) (-3028 (((-355) (-1070) (-355)) 42) (((-355) (-1070) (-1070) (-355)) 41)) (-3584 (((-355) (-355)) 33)) (-2248 (((-1173)) 36)) (-3779 (((-1070) $) NIL)) (-2940 (((-355) (-1070) (-1070)) 46) (((-355) (-1070)) 48)) (-2783 (((-1034) $) NIL)) (-1259 (((-355) (-1070) (-1070)) 47)) (-1418 (((-355) (-1070) (-1070)) 49) (((-355) (-1070)) 50)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +(((-92) (-13 (-1016) (-10 -7 (-15 -2940 ((-355) (-1070) (-1070))) (-15 -2940 ((-355) (-1070))) (-15 -1418 ((-355) (-1070) (-1070))) (-15 -1418 ((-355) (-1070))) (-15 -1259 ((-355) (-1070) (-1070))) (-15 -2248 ((-1173))) (-15 -3584 ((-355) (-355))) (-15 -3028 ((-355) (-1070) (-355))) (-15 -3028 ((-355) (-1070) (-1070) (-355))) (-6 -4244)))) (T -92)) +((-2940 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92)))) (-1418 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92)))) (-1418 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92)))) (-1259 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92)))) (-2248 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-92)))) (-3584 (*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-92)))) (-3028 (*1 *2 *3 *2) (-12 (-5 *2 (-355)) (-5 *3 (-1070)) (-5 *1 (-92)))) (-3028 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-355)) (-5 *3 (-1070)) (-5 *1 (-92))))) +(-13 (-1016) (-10 -7 (-15 -2940 ((-355) (-1070) (-1070))) (-15 -2940 ((-355) (-1070))) (-15 -1418 ((-355) (-1070) (-1070))) (-15 -1418 ((-355) (-1070))) (-15 -1259 ((-355) (-1070) (-1070))) (-15 -2248 ((-1173))) (-15 -3584 ((-355) (-355))) (-15 -3028 ((-355) (-1070) (-355))) (-15 -3028 ((-355) (-1070) (-1070) (-355))) (-6 -4244))) +NIL +(((-93) (-129)) (T -93)) +NIL +(-13 (-10 -7 (-6 -4244) (-6 (-4246 "*")) (-6 -4245) (-6 -4241) (-6 -4239) (-6 -4238) (-6 -4237) (-6 -4242) (-6 -4236) (-6 -4235) (-6 -4234) (-6 -4233) (-6 -4232) (-6 -4240) (-6 -4243) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4231))) +((-3924 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-3139 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-523))) 22)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 14)) (-2783 (((-1034) $) NIL)) (-3223 ((|#1| $ |#1|) 11)) (-3208 (($ $ $) NIL)) (-1714 (($ $ $) NIL)) (-1458 (((-794) $) 20)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2767 (($) 8 T CONST)) (-3983 (((-108) $ $) 10)) (-4098 (($ $ $) NIL)) (** (($ $ (-852)) 28) (($ $ (-710)) NIL) (($ $ (-523)) 16)) (* (($ $ $) 29))) +(((-94 |#1|) (-13 (-448) (-263 |#1| |#1|) (-10 -8 (-15 -3139 ($ (-1 |#1| |#1|))) (-15 -3139 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3139 ($ (-1 |#1| |#1| (-523)))))) (-973)) (T -94)) +((-3139 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-94 *3)))) (-3139 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-94 *3)))) (-3139 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-523))) (-4 *3 (-973)) (-5 *1 (-94 *3))))) +(-13 (-448) (-263 |#1| |#1|) (-10 -8 (-15 -3139 ($ (-1 |#1| |#1|))) (-15 -3139 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3139 ($ (-1 |#1| |#1| (-523)))))) +((-2250 (((-394 |#2|) |#2| (-589 |#2|)) 10) (((-394 |#2|) |#2| |#2|) 11))) +(((-95 |#1| |#2|) (-10 -7 (-15 -2250 ((-394 |#2|) |#2| |#2|)) (-15 -2250 ((-394 |#2|) |#2| (-589 |#2|)))) (-13 (-427) (-136)) (-1144 |#1|)) (T -95)) +((-2250 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-13 (-427) (-136))) (-5 *2 (-394 *3)) (-5 *1 (-95 *5 *3)))) (-2250 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-427) (-136))) (-5 *2 (-394 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1144 *4))))) +(-10 -7 (-15 -2250 ((-394 |#2|) |#2| |#2|)) (-15 -2250 ((-394 |#2|) |#2| (-589 |#2|)))) +((-3924 (((-108) $ $) 10))) +(((-96 |#1|) (-10 -8 (-15 -3924 ((-108) |#1| |#1|))) (-97)) (T -96)) +NIL +(-10 -8 (-15 -3924 ((-108) |#1| |#1|))) +((-3924 (((-108) $ $) 7)) (-3983 (((-108) $ $) 6))) +(((-97) (-129)) (T -97)) +((-3924 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) (-3983 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108))))) +(-13 (-10 -8 (-15 -3983 ((-108) $ $)) (-15 -3924 ((-108) $ $)))) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1733 ((|#1| $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1823 ((|#1| $ |#1|) 13 (|has| $ (-6 -4245)))) (-2541 (($ $ $) NIL (|has| $ (-6 -4245)))) (-2971 (($ $ $) NIL (|has| $ (-6 -4245)))) (-1814 (($ $ (-589 |#1|)) 15)) (-1641 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4245))) (($ $ "left" $) NIL (|has| $ (-6 -4245))) (($ $ "right" $) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3159 (($ $) 11)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) NIL)) (-1238 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4165 (($ $ |#1| $) 17)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2241 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-3256 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-589 |#1|) |#1| |#1| |#1|)) 35)) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3149 (($ $) 10)) (-2726 (((-589 |#1|) $) NIL)) (-3555 (((-108) $) 12)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 9)) (-3988 (($) 16)) (-3223 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1549 (((-523) $ $) NIL)) (-2524 (((-108) $) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) NIL)) (-3653 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4063 (($ (-710) |#1|) 19)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-98 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4244) (-6 -4245) (-15 -4063 ($ (-710) |#1|)) (-15 -1814 ($ $ (-589 |#1|))) (-15 -2241 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2241 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3256 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3256 ($ $ |#1| (-1 (-589 |#1|) |#1| |#1| |#1|))))) (-1016)) (T -98)) +((-4063 (*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *1 (-98 *3)) (-4 *3 (-1016)))) (-1814 (*1 *1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) (-2241 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1016)))) (-2241 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) (-3256 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1016)) (-5 *1 (-98 *2)))) (-3256 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-589 *2) *2 *2 *2)) (-4 *2 (-1016)) (-5 *1 (-98 *2))))) +(-13 (-121 |#1|) (-10 -8 (-6 -4244) (-6 -4245) (-15 -4063 ($ (-710) |#1|)) (-15 -1814 ($ $ (-589 |#1|))) (-15 -2241 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2241 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3256 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3256 ($ $ |#1| (-1 (-589 |#1|) |#1| |#1| |#1|))))) +((-1737 ((|#3| |#2| |#2|) 29)) (-3833 ((|#1| |#2| |#2|) 37 (|has| |#1| (-6 (-4246 "*"))))) (-4069 ((|#3| |#2| |#2|) 30)) (-2627 ((|#1| |#2|) 41 (|has| |#1| (-6 (-4246 "*")))))) +(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1737 (|#3| |#2| |#2|)) (-15 -4069 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4246 "*"))) (PROGN (-15 -3833 (|#1| |#2| |#2|)) (-15 -2627 (|#1| |#2|))) |%noBranch|)) (-973) (-1144 |#1|) (-627 |#1| |#4| |#5|) (-349 |#1|) (-349 |#1|)) (T -99)) +((-2627 (*1 *2 *3) (-12 (|has| *2 (-6 (-4246 "*"))) (-4 *5 (-349 *2)) (-4 *6 (-349 *2)) (-4 *2 (-973)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1144 *2)) (-4 *4 (-627 *2 *5 *6)))) (-3833 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4246 "*"))) (-4 *5 (-349 *2)) (-4 *6 (-349 *2)) (-4 *2 (-973)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1144 *2)) (-4 *4 (-627 *2 *5 *6)))) (-4069 (*1 *2 *3 *3) (-12 (-4 *4 (-973)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1144 *4)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)))) (-1737 (*1 *2 *3 *3) (-12 (-4 *4 (-973)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1144 *4)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4))))) +(-10 -7 (-15 -1737 (|#3| |#2| |#2|)) (-15 -4069 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4246 "*"))) (PROGN (-15 -3833 (|#1| |#2| |#2|)) (-15 -2627 (|#1| |#2|))) |%noBranch|)) +((-3924 (((-108) $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3538 (((-589 (-1087))) 32)) (-1433 (((-2 (|:| |zeros| (-1068 (-203))) (|:| |ones| (-1068 (-203))) (|:| |singularities| (-1068 (-203)))) (-1087)) 35)) (-3983 (((-108) $ $) NIL))) +(((-100) (-13 (-1016) (-10 -7 (-15 -3538 ((-589 (-1087)))) (-15 -1433 ((-2 (|:| |zeros| (-1068 (-203))) (|:| |ones| (-1068 (-203))) (|:| |singularities| (-1068 (-203)))) (-1087))) (-6 -4244)))) (T -100)) +((-3538 (*1 *2) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-100)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-2 (|:| |zeros| (-1068 (-203))) (|:| |ones| (-1068 (-203))) (|:| |singularities| (-1068 (-203))))) (-5 *1 (-100))))) +(-13 (-1016) (-10 -7 (-15 -3538 ((-589 (-1087)))) (-15 -1433 ((-2 (|:| |zeros| (-1068 (-203))) (|:| |ones| (-1068 (-203))) (|:| |singularities| (-1068 (-203)))) (-1087))) (-6 -4244))) +((-2401 (($ (-589 |#2|)) 11))) +(((-101 |#1| |#2|) (-10 -8 (-15 -2401 (|#1| (-589 |#2|)))) (-102 |#2|) (-1122)) (T -101)) +NIL +(-10 -8 (-15 -2401 (|#1| (-589 |#2|)))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) 8)) (-2518 (($) 7 T CONST)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1934 ((|#1| $) 39)) (-3450 (($ |#1| $) 40)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) 42)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-102 |#1|) (-129) (-1122)) (T -102)) +((-2401 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-4 *1 (-102 *3)))) (-3761 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1122)))) (-3450 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1122)))) (-1934 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1122))))) +(-13 (-462 |t#1|) (-10 -8 (-6 -4245) (-15 -2401 ($ (-589 |t#1|))) (-15 -3761 (|t#1| $)) (-15 -3450 ($ |t#1| $)) (-15 -1934 (|t#1| $)))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3458 (((-523) $) NIL (|has| (-523) (-284)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL (|has| (-523) (-759)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (|has| (-523) (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-523) (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| (-523) (-964 (-523))))) (-3474 (((-523) $) NIL) (((-1087) $) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| (-523) (-964 (-523)))) (((-523) $) NIL (|has| (-523) (-964 (-523))))) (-3796 (($ $ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-629 (-523)) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-523) (-508)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2604 (((-108) $) NIL (|has| (-523) (-759)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-523) (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-523) (-817 (-355))))) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL)) (-2785 (((-523) $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| (-523) (-1063)))) (-4114 (((-108) $) NIL (|has| (-523) (-759)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| (-523) (-786)))) (-3612 (($ (-1 (-523) (-523)) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-523) (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL (|has| (-523) (-284))) (((-383 (-523)) $) NIL)) (-3722 (((-523) $) NIL (|has| (-523) (-508)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2679 (($ $ (-589 (-523)) (-589 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-523) (-523)) NIL (|has| (-523) (-286 (-523)))) (($ $ (-271 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-271 (-523)))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-1087)) (-589 (-523))) NIL (|has| (-523) (-484 (-1087) (-523)))) (($ $ (-1087) (-523)) NIL (|has| (-523) (-484 (-1087) (-523))))) (-1972 (((-710) $) NIL)) (-3223 (($ $ (-523)) NIL (|has| (-523) (-263 (-523) (-523))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $) NIL (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-3414 (($ $) NIL)) (-2797 (((-523) $) NIL)) (-3663 (((-823 (-523)) $) NIL (|has| (-523) (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| (-523) (-564 (-823 (-355))))) (((-499) $) NIL (|has| (-523) (-564 (-499)))) (((-355) $) NIL (|has| (-523) (-949))) (((-203) $) NIL (|has| (-523) (-949)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-523) (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) 7) (($ (-523)) NIL) (($ (-1087)) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) NIL) (((-932 2) $) 9)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| (-523) (-840))) (|has| (-523) (-134))))) (-1621 (((-710)) NIL)) (-1886 (((-523) $) NIL (|has| (-523) (-508)))) (-2716 (($ (-383 (-523))) 8)) (-1704 (((-108) $ $) NIL)) (-2619 (($ $) NIL (|has| (-523) (-759)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $) NIL (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-4043 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4019 (((-108) $ $) NIL (|has| (-523) (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4007 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4098 (($ $ $) NIL) (($ (-523) (-523)) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ (-523) $) NIL) (($ $ (-523)) NIL))) +(((-103) (-13 (-921 (-523)) (-10 -8 (-15 -1458 ((-383 (-523)) $)) (-15 -1458 ((-932 2) $)) (-15 -2206 ((-383 (-523)) $)) (-15 -2716 ($ (-383 (-523))))))) (T -103)) +((-1458 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-103)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-932 2)) (-5 *1 (-103)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-103)))) (-2716 (*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-103))))) +(-13 (-921 (-523)) (-10 -8 (-15 -1458 ((-383 (-523)) $)) (-15 -1458 ((-932 2) $)) (-15 -2206 ((-383 (-523)) $)) (-15 -2716 ($ (-383 (-523)))))) +((-3692 (((-589 (-895)) $) 13)) (-4038 (((-1087) $) 10)) (-1458 (((-794) $) 22)) (-3931 (($ (-1087) (-589 (-895))) 14))) +(((-104) (-13 (-563 (-794)) (-10 -8 (-15 -4038 ((-1087) $)) (-15 -3692 ((-589 (-895)) $)) (-15 -3931 ($ (-1087) (-589 (-895))))))) (T -104)) +((-4038 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-104)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-589 (-895))) (-5 *1 (-104)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-895))) (-5 *1 (-104))))) +(-13 (-563 (-794)) (-10 -8 (-15 -4038 ((-1087) $)) (-15 -3692 ((-589 (-895)) $)) (-15 -3931 ($ (-1087) (-589 (-895)))))) +((-3924 (((-108) $ $) NIL)) (-3715 (((-1034) $ (-1034)) 23)) (-2647 (($ $ (-1070)) 17)) (-4096 (((-3 (-1034) "failed") $) 22)) (-3114 (((-1034) $) 20)) (-1316 (((-1034) $ (-1034)) 25)) (-1479 (((-1034) $) 24)) (-2625 (($ (-364)) NIL) (($ (-364) (-1070)) 16)) (-4038 (((-364) $) NIL)) (-3779 (((-1070) $) NIL)) (-1998 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-1685 (($ $) 18)) (-3983 (((-108) $ $) NIL))) +(((-105) (-13 (-340 (-364) (-1034)) (-10 -8 (-15 -4096 ((-3 (-1034) "failed") $)) (-15 -1479 ((-1034) $)) (-15 -1316 ((-1034) $ (-1034)))))) (T -105)) +((-4096 (*1 *2 *1) (|partial| -12 (-5 *2 (-1034)) (-5 *1 (-105)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-105)))) (-1316 (*1 *2 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-105))))) +(-13 (-340 (-364) (-1034)) (-10 -8 (-15 -4096 ((-3 (-1034) "failed") $)) (-15 -1479 ((-1034) $)) (-15 -1316 ((-1034) $ (-1034))))) +((-3924 (((-108) $ $) NIL)) (-2573 (($ $) NIL)) (-1983 (($ $ $) NIL)) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) $) NIL (|has| (-108) (-786))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-1506 (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| (-108) (-786)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4245)))) (-3974 (($ $) NIL (|has| (-108) (-786))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1641 (((-108) $ (-1135 (-523)) (-108)) NIL (|has| $ (-6 -4245))) (((-108) $ (-523) (-108)) NIL (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-2557 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4244))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-2437 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-2863 (((-108) $ (-523) (-108)) NIL (|has| $ (-6 -4245)))) (-2795 (((-108) $ (-523)) NIL)) (-1479 (((-523) (-108) $ (-523)) NIL (|has| (-108) (-1016))) (((-523) (-108) $) NIL (|has| (-108) (-1016))) (((-523) (-1 (-108) (-108)) $) NIL)) (-1666 (((-589 (-108)) $) NIL (|has| $ (-6 -4244)))) (-4090 (($ $ $) NIL)) (-3900 (($ $) NIL)) (-3368 (($ $ $) NIL)) (-3052 (($ (-710) (-108)) 8)) (-3370 (($ $ $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL)) (-2178 (($ $ $) NIL (|has| (-108) (-786))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-2136 (((-589 (-108)) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL)) (-2852 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-108) (-108) (-108)) $ $) NIL) (($ (-1 (-108) (-108)) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-2847 (($ $ $ (-523)) NIL) (($ (-108) $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 (((-108) $) NIL (|has| (-523) (-786)))) (-2114 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-4203 (($ $ (-108)) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-108)) (-589 (-108))) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-271 (-108))) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-589 (-271 (-108)))) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-1264 (((-589 (-108)) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 (($ $ (-1135 (-523))) NIL) (((-108) $ (-523)) NIL) (((-108) $ (-523) (-108)) NIL)) (-1469 (($ $ (-1135 (-523))) NIL) (($ $ (-523)) NIL)) (-2792 (((-710) (-108) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016)))) (((-710) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4244)))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-108) (-564 (-499))))) (-1472 (($ (-589 (-108))) NIL)) (-2326 (($ (-589 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-1458 (((-794) $) NIL)) (-1329 (($ (-710) (-108)) 9)) (-2096 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4244)))) (-4099 (($ $ $) NIL)) (-2364 (($ $) NIL)) (-3651 (($ $ $) NIL)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-3640 (($ $ $) NIL)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-106) (-13 (-119) (-10 -8 (-15 -1329 ($ (-710) (-108)))))) (T -106)) +((-1329 (*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *3 (-108)) (-5 *1 (-106))))) +(-13 (-119) (-10 -8 (-15 -1329 ($ (-710) (-108))))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) +(((-107 |#1| |#2|) (-129) (-973) (-973)) (T -107)) +NIL +(-13 (-591 |t#1|) (-979 |t#2|) (-10 -7 (-6 -4239) (-6 -4238))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-979 |#2|) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-2573 (($ $) 12)) (-1983 (($ $ $) 17)) (-1563 (($) 8 T CONST)) (-3994 (((-108) $) 7)) (-1703 (((-710)) 25)) (-4032 (($) 31)) (-4090 (($ $ $) 15)) (-3900 (($ $) 10)) (-3368 (($ $ $) 18)) (-3370 (($ $ $) 19)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-2072 (((-852) $) 30)) (-3779 (((-1070) $) NIL)) (-3878 (($ (-852)) 29)) (-1971 (($ $ $) 21)) (-2783 (((-1034) $) NIL)) (-3298 (($) 9 T CONST)) (-2471 (($ $ $) 22)) (-3663 (((-499) $) 37)) (-1458 (((-794) $) 40)) (-4099 (($ $ $) 13)) (-2364 (($ $) 11)) (-3651 (($ $ $) 16)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 20)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 23)) (-3640 (($ $ $) 14))) +(((-108) (-13 (-786) (-344) (-604) (-897) (-564 (-499)) (-10 -8 (-15 -1563 ($) -3059) (-15 -3298 ($) -3059) (-15 -2364 ($ $)) (-15 -1983 ($ $ $)) (-15 -3370 ($ $ $)) (-15 -3368 ($ $ $)) (-15 -3994 ((-108) $))))) (T -108)) +((-1563 (*1 *1) (-5 *1 (-108))) (-3298 (*1 *1) (-5 *1 (-108))) (-2364 (*1 *1 *1) (-5 *1 (-108))) (-1983 (*1 *1 *1 *1) (-5 *1 (-108))) (-3370 (*1 *1 *1 *1) (-5 *1 (-108))) (-3368 (*1 *1 *1 *1) (-5 *1 (-108))) (-3994 (*1 *1 *1) (-5 *1 (-108)))) +(-13 (-786) (-344) (-604) (-897) (-564 (-499)) (-10 -8 (-15 -1563 ($) -3059) (-15 -3298 ($) -3059) (-15 -2364 ($ $)) (-15 -1983 ($ $ $)) (-15 -3370 ($ $ $)) (-15 -3368 ($ $ $)) (-15 -3994 ((-108) $)))) +((-2038 (((-3 (-1 |#1| (-589 |#1|)) "failed") (-110)) 18) (((-110) (-110) (-1 |#1| |#1|)) 13) (((-110) (-110) (-1 |#1| (-589 |#1|))) 11) (((-3 |#1| "failed") (-110) (-589 |#1|)) 20)) (-2137 (((-3 (-589 (-1 |#1| (-589 |#1|))) "failed") (-110)) 24) (((-110) (-110) (-1 |#1| |#1|)) 30) (((-110) (-110) (-589 (-1 |#1| (-589 |#1|)))) 26)) (-2861 (((-110) |#1|) 54 (|has| |#1| (-786)))) (-2275 (((-3 |#1| "failed") (-110)) 49 (|has| |#1| (-786))))) +(((-109 |#1|) (-10 -7 (-15 -2038 ((-3 |#1| "failed") (-110) (-589 |#1|))) (-15 -2038 ((-110) (-110) (-1 |#1| (-589 |#1|)))) (-15 -2038 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2038 ((-3 (-1 |#1| (-589 |#1|)) "failed") (-110))) (-15 -2137 ((-110) (-110) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2137 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2137 ((-3 (-589 (-1 |#1| (-589 |#1|))) "failed") (-110))) (IF (|has| |#1| (-786)) (PROGN (-15 -2861 ((-110) |#1|)) (-15 -2275 ((-3 |#1| "failed") (-110)))) |%noBranch|)) (-1016)) (T -109)) +((-2275 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1016)) (-4 *2 (-786)) (-5 *1 (-109 *2)))) (-2861 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-786)) (-4 *3 (-1016)))) (-2137 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-589 (-1 *4 (-589 *4)))) (-5 *1 (-109 *4)) (-4 *4 (-1016)))) (-2137 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1016)) (-5 *1 (-109 *4)))) (-2137 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-589 (-1 *4 (-589 *4)))) (-4 *4 (-1016)) (-5 *1 (-109 *4)))) (-2038 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-589 *4))) (-5 *1 (-109 *4)) (-4 *4 (-1016)))) (-2038 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1016)) (-5 *1 (-109 *4)))) (-2038 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-589 *4))) (-4 *4 (-1016)) (-5 *1 (-109 *4)))) (-2038 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-589 *2)) (-5 *1 (-109 *2)) (-4 *2 (-1016))))) +(-10 -7 (-15 -2038 ((-3 |#1| "failed") (-110) (-589 |#1|))) (-15 -2038 ((-110) (-110) (-1 |#1| (-589 |#1|)))) (-15 -2038 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2038 ((-3 (-1 |#1| (-589 |#1|)) "failed") (-110))) (-15 -2137 ((-110) (-110) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2137 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2137 ((-3 (-589 (-1 |#1| (-589 |#1|))) "failed") (-110))) (IF (|has| |#1| (-786)) (PROGN (-15 -2861 ((-110) |#1|)) (-15 -2275 ((-3 |#1| "failed") (-110)))) |%noBranch|)) +((-3924 (((-108) $ $) NIL)) (-2656 (((-710) $) 68) (($ $ (-710)) 30)) (-2727 (((-108) $) 32)) (-4035 (($ $ (-1070) (-713)) 26)) (-3668 (($ $ (-44 (-1070) (-713))) 13)) (-3108 (((-3 (-713) "failed") $ (-1070)) 24)) (-3692 (((-44 (-1070) (-713)) $) 12)) (-1403 (($ (-1087)) 15) (($ (-1087) (-710)) 20)) (-4130 (((-108) $) 31)) (-2408 (((-108) $) 33)) (-4038 (((-1087) $) 8)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-3259 (((-108) $ (-1087)) 10)) (-4026 (($ $ (-1 (-499) (-589 (-499)))) 50) (((-3 (-1 (-499) (-589 (-499))) "failed") $) 54)) (-2783 (((-1034) $) NIL)) (-3718 (((-108) $ (-1070)) 29)) (-4185 (($ $ (-1 (-108) $ $)) 35)) (-3973 (((-3 (-1 (-794) (-589 (-794))) "failed") $) 52) (($ $ (-1 (-794) (-589 (-794)))) 41) (($ $ (-1 (-794) (-794))) 43)) (-2903 (($ $ (-1070)) 45)) (-1664 (($ $) 61)) (-1831 (($ $ (-1 (-108) $ $)) 36)) (-1458 (((-794) $) 48)) (-3326 (($ $ (-1070)) 27)) (-2922 (((-3 (-710) "failed") $) 56)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 67)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 73))) +(((-110) (-13 (-786) (-10 -8 (-15 -4038 ((-1087) $)) (-15 -3692 ((-44 (-1070) (-713)) $)) (-15 -1664 ($ $)) (-15 -1403 ($ (-1087))) (-15 -1403 ($ (-1087) (-710))) (-15 -2922 ((-3 (-710) "failed") $)) (-15 -4130 ((-108) $)) (-15 -2727 ((-108) $)) (-15 -2408 ((-108) $)) (-15 -2656 ((-710) $)) (-15 -2656 ($ $ (-710))) (-15 -4185 ($ $ (-1 (-108) $ $))) (-15 -1831 ($ $ (-1 (-108) $ $))) (-15 -3973 ((-3 (-1 (-794) (-589 (-794))) "failed") $)) (-15 -3973 ($ $ (-1 (-794) (-589 (-794))))) (-15 -3973 ($ $ (-1 (-794) (-794)))) (-15 -4026 ($ $ (-1 (-499) (-589 (-499))))) (-15 -4026 ((-3 (-1 (-499) (-589 (-499))) "failed") $)) (-15 -3259 ((-108) $ (-1087))) (-15 -3718 ((-108) $ (-1070))) (-15 -3326 ($ $ (-1070))) (-15 -2903 ($ $ (-1070))) (-15 -3108 ((-3 (-713) "failed") $ (-1070))) (-15 -4035 ($ $ (-1070) (-713))) (-15 -3668 ($ $ (-44 (-1070) (-713))))))) (T -110)) +((-4038 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-110)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-44 (-1070) (-713))) (-5 *1 (-110)))) (-1664 (*1 *1 *1) (-5 *1 (-110))) (-1403 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-110)))) (-1403 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-710)) (-5 *1 (-110)))) (-2922 (*1 *2 *1) (|partial| -12 (-5 *2 (-710)) (-5 *1 (-110)))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-2408 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-110)))) (-2656 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-110)))) (-4185 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-1831 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-3973 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-794) (-589 (-794)))) (-5 *1 (-110)))) (-3973 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-794) (-589 (-794)))) (-5 *1 (-110)))) (-3973 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-794) (-794))) (-5 *1 (-110)))) (-4026 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-499) (-589 (-499)))) (-5 *1 (-110)))) (-4026 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-499) (-589 (-499)))) (-5 *1 (-110)))) (-3259 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-108)) (-5 *1 (-110)))) (-3718 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-110)))) (-3326 (*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-110)))) (-2903 (*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-110)))) (-3108 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1070)) (-5 *2 (-713)) (-5 *1 (-110)))) (-4035 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-713)) (-5 *1 (-110)))) (-3668 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1070) (-713))) (-5 *1 (-110))))) +(-13 (-786) (-10 -8 (-15 -4038 ((-1087) $)) (-15 -3692 ((-44 (-1070) (-713)) $)) (-15 -1664 ($ $)) (-15 -1403 ($ (-1087))) (-15 -1403 ($ (-1087) (-710))) (-15 -2922 ((-3 (-710) "failed") $)) (-15 -4130 ((-108) $)) (-15 -2727 ((-108) $)) (-15 -2408 ((-108) $)) (-15 -2656 ((-710) $)) (-15 -2656 ($ $ (-710))) (-15 -4185 ($ $ (-1 (-108) $ $))) (-15 -1831 ($ $ (-1 (-108) $ $))) (-15 -3973 ((-3 (-1 (-794) (-589 (-794))) "failed") $)) (-15 -3973 ($ $ (-1 (-794) (-589 (-794))))) (-15 -3973 ($ $ (-1 (-794) (-794)))) (-15 -4026 ($ $ (-1 (-499) (-589 (-499))))) (-15 -4026 ((-3 (-1 (-499) (-589 (-499))) "failed") $)) (-15 -3259 ((-108) $ (-1087))) (-15 -3718 ((-108) $ (-1070))) (-15 -3326 ($ $ (-1070))) (-15 -2903 ($ $ (-1070))) (-15 -3108 ((-3 (-713) "failed") $ (-1070))) (-15 -4035 ($ $ (-1070) (-713))) (-15 -3668 ($ $ (-44 (-1070) (-713)))))) +((-2293 (((-523) |#2|) 36))) +(((-111 |#1| |#2|) (-10 -7 (-15 -2293 ((-523) |#2|))) (-13 (-339) (-964 (-383 (-523)))) (-1144 |#1|)) (T -111)) +((-2293 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-964 (-383 *2)))) (-5 *2 (-523)) (-5 *1 (-111 *4 *3)) (-4 *3 (-1144 *4))))) +(-10 -7 (-15 -2293 ((-523) |#2|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1832 (($ $ (-523)) NIL)) (-1387 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-2635 (($ (-1083 (-523)) (-523)) NIL)) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2816 (($ $) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1640 (((-710) $) NIL)) (-2023 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3507 (((-523)) NIL)) (-2329 (((-523) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4097 (($ $ (-523)) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-1617 (((-1068 (-523)) $) NIL)) (-1353 (($ $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL)) (-1621 (((-710)) NIL)) (-1704 (((-108) $ $) NIL)) (-2562 (((-523) $ (-523)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL))) +(((-112 |#1|) (-800 |#1|) (-523)) (T -112)) +NIL +(-800 |#1|) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3458 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-284)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-112 |#1|) (-840)))) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| (-112 |#1|) (-840)))) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL (|has| (-112 |#1|) (-759)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-112 |#1|) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (|has| (-112 |#1|) (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-112 |#1|) (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| (-112 |#1|) (-964 (-523))))) (-3474 (((-112 |#1|) $) NIL) (((-1087) $) NIL (|has| (-112 |#1|) (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| (-112 |#1|) (-964 (-523)))) (((-523) $) NIL (|has| (-112 |#1|) (-964 (-523))))) (-1819 (($ $) NIL) (($ (-523) $) NIL)) (-3796 (($ $ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| (-112 |#1|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| (-112 |#1|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-112 |#1|))) (|:| |vec| (-1168 (-112 |#1|)))) (-629 $) (-1168 $)) NIL) (((-629 (-112 |#1|)) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-112 |#1|) (-508)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2604 (((-108) $) NIL (|has| (-112 |#1|) (-759)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-112 |#1|) (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-112 |#1|) (-817 (-355))))) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL)) (-2785 (((-112 |#1|) $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| (-112 |#1|) (-1063)))) (-4114 (((-108) $) NIL (|has| (-112 |#1|) (-759)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL (|has| (-112 |#1|) (-786)))) (-2062 (($ $ $) NIL (|has| (-112 |#1|) (-786)))) (-3612 (($ (-1 (-112 |#1|) (-112 |#1|)) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-112 |#1|) (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL (|has| (-112 |#1|) (-284)))) (-3722 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-508)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-112 |#1|) (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-112 |#1|) (-840)))) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2679 (($ $ (-589 (-112 |#1|)) (-589 (-112 |#1|))) NIL (|has| (-112 |#1|) (-286 (-112 |#1|)))) (($ $ (-112 |#1|) (-112 |#1|)) NIL (|has| (-112 |#1|) (-286 (-112 |#1|)))) (($ $ (-271 (-112 |#1|))) NIL (|has| (-112 |#1|) (-286 (-112 |#1|)))) (($ $ (-589 (-271 (-112 |#1|)))) NIL (|has| (-112 |#1|) (-286 (-112 |#1|)))) (($ $ (-589 (-1087)) (-589 (-112 |#1|))) NIL (|has| (-112 |#1|) (-484 (-1087) (-112 |#1|)))) (($ $ (-1087) (-112 |#1|)) NIL (|has| (-112 |#1|) (-484 (-1087) (-112 |#1|))))) (-1972 (((-710) $) NIL)) (-3223 (($ $ (-112 |#1|)) NIL (|has| (-112 |#1|) (-263 (-112 |#1|) (-112 |#1|))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $) NIL (|has| (-112 |#1|) (-211))) (($ $ (-710)) NIL (|has| (-112 |#1|) (-211))) (($ $ (-1087)) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-710)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-3414 (($ $) NIL)) (-2797 (((-112 |#1|) $) NIL)) (-3663 (((-823 (-523)) $) NIL (|has| (-112 |#1|) (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| (-112 |#1|) (-564 (-823 (-355))))) (((-499) $) NIL (|has| (-112 |#1|) (-564 (-499)))) (((-355) $) NIL (|has| (-112 |#1|) (-949))) (((-203) $) NIL (|has| (-112 |#1|) (-949)))) (-2947 (((-159 (-383 (-523))) $) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-112 |#1|) (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-112 |#1|)) NIL) (($ (-1087)) NIL (|has| (-112 |#1|) (-964 (-1087))))) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| (-112 |#1|) (-840))) (|has| (-112 |#1|) (-134))))) (-1621 (((-710)) NIL)) (-1886 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-508)))) (-1704 (((-108) $ $) NIL)) (-2562 (((-383 (-523)) $ (-523)) NIL)) (-2619 (($ $) NIL (|has| (-112 |#1|) (-759)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $) NIL (|has| (-112 |#1|) (-211))) (($ $ (-710)) NIL (|has| (-112 |#1|) (-211))) (($ $ (-1087)) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-112 |#1|) (-831 (-1087)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-710)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-4043 (((-108) $ $) NIL (|has| (-112 |#1|) (-786)))) (-4019 (((-108) $ $) NIL (|has| (-112 |#1|) (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| (-112 |#1|) (-786)))) (-4007 (((-108) $ $) NIL (|has| (-112 |#1|) (-786)))) (-4098 (($ $ $) NIL) (($ (-112 |#1|) (-112 |#1|)) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ (-112 |#1|) $) NIL) (($ $ (-112 |#1|)) NIL))) +(((-113 |#1|) (-13 (-921 (-112 |#1|)) (-10 -8 (-15 -2562 ((-383 (-523)) $ (-523))) (-15 -2947 ((-159 (-383 (-523))) $)) (-15 -1819 ($ $)) (-15 -1819 ($ (-523) $)))) (-523)) (T -113)) +((-2562 (*1 *2 *1 *3) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-113 *4)) (-14 *4 *3) (-5 *3 (-523)))) (-2947 (*1 *2 *1) (-12 (-5 *2 (-159 (-383 (-523)))) (-5 *1 (-113 *3)) (-14 *3 (-523)))) (-1819 (*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-523)))) (-1819 (*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-113 *3)) (-14 *3 *2)))) +(-13 (-921 (-112 |#1|)) (-10 -8 (-15 -2562 ((-383 (-523)) $ (-523))) (-15 -2947 ((-159 (-383 (-523))) $)) (-15 -1819 ($ $)) (-15 -1819 ($ (-523) $)))) +((-1641 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-2645 (((-589 $) $) 27)) (-1238 (((-108) $ $) 32)) (-1973 (((-108) |#2| $) 36)) (-2726 (((-589 |#2|) $) 22)) (-3555 (((-108) $) 16)) (-3223 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2524 (((-108) $) 45)) (-1458 (((-794) $) 41)) (-2296 (((-589 $) $) 28)) (-3983 (((-108) $ $) 34)) (-2676 (((-710) $) 43))) +(((-114 |#1| |#2|) (-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -1641 (|#1| |#1| "right" |#1|)) (-15 -1641 (|#1| |#1| "left" |#1|)) (-15 -3223 (|#1| |#1| "right")) (-15 -3223 (|#1| |#1| "left")) (-15 -1641 (|#2| |#1| "value" |#2|)) (-15 -1238 ((-108) |#1| |#1|)) (-15 -2726 ((-589 |#2|) |#1|)) (-15 -2524 ((-108) |#1|)) (-15 -3223 (|#2| |#1| "value")) (-15 -3555 ((-108) |#1|)) (-15 -2645 ((-589 |#1|) |#1|)) (-15 -2296 ((-589 |#1|) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1973 ((-108) |#2| |#1|)) (-15 -2676 ((-710) |#1|))) (-115 |#2|) (-1122)) (T -114)) +NIL +(-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -1641 (|#1| |#1| "right" |#1|)) (-15 -1641 (|#1| |#1| "left" |#1|)) (-15 -3223 (|#1| |#1| "right")) (-15 -3223 (|#1| |#1| "left")) (-15 -1641 (|#2| |#1| "value" |#2|)) (-15 -1238 ((-108) |#1| |#1|)) (-15 -2726 ((-589 |#2|) |#1|)) (-15 -2524 ((-108) |#1|)) (-15 -3223 (|#2| |#1| "value")) (-15 -3555 ((-108) |#1|)) (-15 -2645 ((-589 |#1|) |#1|)) (-15 -2296 ((-589 |#1|) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1973 ((-108) |#2| |#1|)) (-15 -2676 ((-710) |#1|))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1733 ((|#1| $) 48)) (-3079 (((-108) $ (-710)) 8)) (-1823 ((|#1| $ |#1|) 39 (|has| $ (-6 -4245)))) (-2541 (($ $ $) 52 (|has| $ (-6 -4245)))) (-2971 (($ $ $) 54 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4245))) (($ $ "left" $) 55 (|has| $ (-6 -4245))) (($ $ "right" $) 53 (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 41 (|has| $ (-6 -4245)))) (-2518 (($) 7 T CONST)) (-3159 (($ $) 57)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) 50)) (-1238 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3149 (($ $) 59)) (-2726 (((-589 |#1|) $) 45)) (-3555 (((-108) $) 49)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1549 (((-523) $ $) 44)) (-2524 (((-108) $) 46)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) 51)) (-3653 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-115 |#1|) (-129) (-1122)) (T -115)) +((-3149 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1122)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1122)))) (-3159 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1122)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1122)))) (-1641 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4245)) (-4 *1 (-115 *3)) (-4 *3 (-1122)))) (-2971 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-115 *2)) (-4 *2 (-1122)))) (-1641 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4245)) (-4 *1 (-115 *3)) (-4 *3 (-1122)))) (-2541 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-115 *2)) (-4 *2 (-1122))))) +(-13 (-938 |t#1|) (-10 -8 (-15 -3149 ($ $)) (-15 -3223 ($ $ "left")) (-15 -3159 ($ $)) (-15 -3223 ($ $ "right")) (IF (|has| $ (-6 -4245)) (PROGN (-15 -1641 ($ $ "left" $)) (-15 -2971 ($ $ $)) (-15 -1641 ($ $ "right" $)) (-15 -2541 ($ $ $))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-938 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) +((-2173 (((-108) |#1|) 24)) (-3925 (((-710) (-710)) 23) (((-710)) 22)) (-1948 (((-108) |#1| (-108)) 25) (((-108) |#1|) 26))) +(((-116 |#1|) (-10 -7 (-15 -1948 ((-108) |#1|)) (-15 -1948 ((-108) |#1| (-108))) (-15 -3925 ((-710))) (-15 -3925 ((-710) (-710))) (-15 -2173 ((-108) |#1|))) (-1144 (-523))) (T -116)) +((-2173 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1144 (-523))))) (-3925 (*1 *2 *2) (-12 (-5 *2 (-710)) (-5 *1 (-116 *3)) (-4 *3 (-1144 (-523))))) (-3925 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-116 *3)) (-4 *3 (-1144 (-523))))) (-1948 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1144 (-523))))) (-1948 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1144 (-523)))))) +(-10 -7 (-15 -1948 ((-108) |#1|)) (-15 -1948 ((-108) |#1| (-108))) (-15 -3925 ((-710))) (-15 -3925 ((-710) (-710))) (-15 -2173 ((-108) |#1|))) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1733 ((|#1| $) 15)) (-2063 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3079 (((-108) $ (-710)) NIL)) (-1823 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-2541 (($ $ $) 18 (|has| $ (-6 -4245)))) (-2971 (($ $ $) 20 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4245))) (($ $ "left" $) NIL (|has| $ (-6 -4245))) (($ $ "right" $) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3159 (($ $) 17)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) NIL)) (-1238 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4165 (($ $ |#1| $) 23)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3149 (($ $) 19)) (-2726 (((-589 |#1|) $) NIL)) (-3555 (((-108) $) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1880 (($ |#1| $) 24)) (-3450 (($ |#1| $) 10)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 14)) (-3988 (($) 8)) (-3223 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1549 (((-523) $ $) NIL)) (-2524 (((-108) $) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) NIL)) (-3653 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4140 (($ (-589 |#1|)) 12)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-117 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4245) (-6 -4244) (-15 -4140 ($ (-589 |#1|))) (-15 -3450 ($ |#1| $)) (-15 -1880 ($ |#1| $)) (-15 -2063 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-786)) (T -117)) +((-4140 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-117 *3)))) (-3450 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-786)))) (-1880 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-786)))) (-2063 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) (-5 *1 (-117 *3)) (-4 *3 (-786))))) +(-13 (-121 |#1|) (-10 -8 (-6 -4245) (-6 -4244) (-15 -4140 ($ (-589 |#1|))) (-15 -3450 ($ |#1| $)) (-15 -1880 ($ |#1| $)) (-15 -2063 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-2573 (($ $) 14)) (-3900 (($ $) 11)) (-3368 (($ $ $) 24)) (-3370 (($ $ $) 22)) (-2364 (($ $) 12)) (-3651 (($ $ $) 20)) (-3640 (($ $ $) 18))) +(((-118 |#1|) (-10 -8 (-15 -3368 (|#1| |#1| |#1|)) (-15 -3370 (|#1| |#1| |#1|)) (-15 -2364 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -3640 (|#1| |#1| |#1|)) (-15 -3651 (|#1| |#1| |#1|))) (-119)) (T -118)) +NIL +(-10 -8 (-15 -3368 (|#1| |#1| |#1|)) (-15 -3370 (|#1| |#1| |#1|)) (-15 -2364 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -3640 (|#1| |#1| |#1|)) (-15 -3651 (|#1| |#1| |#1|))) +((-3924 (((-108) $ $) 7)) (-2573 (($ $) 104)) (-1983 (($ $ $) 25)) (-4207 (((-1173) $ (-523) (-523)) 67 (|has| $ (-6 -4245)))) (-1964 (((-108) $) 99 (|has| (-108) (-786))) (((-108) (-1 (-108) (-108) (-108)) $) 93)) (-1506 (($ $) 103 (-12 (|has| (-108) (-786)) (|has| $ (-6 -4245)))) (($ (-1 (-108) (-108) (-108)) $) 102 (|has| $ (-6 -4245)))) (-3974 (($ $) 98 (|has| (-108) (-786))) (($ (-1 (-108) (-108) (-108)) $) 92)) (-3079 (((-108) $ (-710)) 38)) (-1641 (((-108) $ (-1135 (-523)) (-108)) 89 (|has| $ (-6 -4245))) (((-108) $ (-523) (-108)) 55 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) (-108)) $) 72 (|has| $ (-6 -4244)))) (-2518 (($) 39 T CONST)) (-2867 (($ $) 101 (|has| $ (-6 -4245)))) (-3631 (($ $) 91)) (-1773 (($ $) 69 (-12 (|has| (-108) (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ (-1 (-108) (-108)) $) 73 (|has| $ (-6 -4244))) (($ (-108) $) 70 (-12 (|has| (-108) (-1016)) (|has| $ (-6 -4244))))) (-2437 (((-108) (-1 (-108) (-108) (-108)) $) 75 (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) 74 (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) 71 (-12 (|has| (-108) (-1016)) (|has| $ (-6 -4244))))) (-2863 (((-108) $ (-523) (-108)) 54 (|has| $ (-6 -4245)))) (-2795 (((-108) $ (-523)) 56)) (-1479 (((-523) (-108) $ (-523)) 96 (|has| (-108) (-1016))) (((-523) (-108) $) 95 (|has| (-108) (-1016))) (((-523) (-1 (-108) (-108)) $) 94)) (-1666 (((-589 (-108)) $) 46 (|has| $ (-6 -4244)))) (-4090 (($ $ $) 26)) (-3900 (($ $) 31)) (-3368 (($ $ $) 28)) (-3052 (($ (-710) (-108)) 78)) (-3370 (($ $ $) 29)) (-2346 (((-108) $ (-710)) 37)) (-4084 (((-523) $) 64 (|has| (-523) (-786)))) (-2454 (($ $ $) 13)) (-2178 (($ $ $) 97 (|has| (-108) (-786))) (($ (-1 (-108) (-108) (-108)) $ $) 90)) (-2136 (((-589 (-108)) $) 47 (|has| $ (-6 -4244)))) (-1973 (((-108) (-108) $) 49 (-12 (|has| (-108) (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 63 (|has| (-523) (-786)))) (-2062 (($ $ $) 14)) (-2852 (($ (-1 (-108) (-108)) $) 42 (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-108) (-108) (-108)) $ $) 83) (($ (-1 (-108) (-108)) $) 41)) (-2866 (((-108) $ (-710)) 36)) (-3779 (((-1070) $) 9)) (-2847 (($ $ $ (-523)) 88) (($ (-108) $ (-523)) 87)) (-2412 (((-589 (-523)) $) 61)) (-4135 (((-108) (-523) $) 60)) (-2783 (((-1034) $) 10)) (-1738 (((-108) $) 65 (|has| (-523) (-786)))) (-2114 (((-3 (-108) "failed") (-1 (-108) (-108)) $) 76)) (-4203 (($ $ (-108)) 66 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) (-108)) $) 44 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-108)) (-589 (-108))) 53 (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-108) (-108)) 52 (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-271 (-108))) 51 (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-589 (-271 (-108)))) 50 (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016))))) (-3811 (((-108) $ $) 32)) (-1370 (((-108) (-108) $) 62 (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-1264 (((-589 (-108)) $) 59)) (-3883 (((-108) $) 35)) (-3988 (($) 34)) (-3223 (($ $ (-1135 (-523))) 84) (((-108) $ (-523)) 58) (((-108) $ (-523) (-108)) 57)) (-1469 (($ $ (-1135 (-523))) 86) (($ $ (-523)) 85)) (-2792 (((-710) (-108) $) 48 (-12 (|has| (-108) (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) (-108)) $) 45 (|has| $ (-6 -4244)))) (-3160 (($ $ $ (-523)) 100 (|has| $ (-6 -4245)))) (-1664 (($ $) 33)) (-3663 (((-499) $) 68 (|has| (-108) (-564 (-499))))) (-1472 (($ (-589 (-108))) 77)) (-2326 (($ (-589 $)) 82) (($ $ $) 81) (($ (-108) $) 80) (($ $ (-108)) 79)) (-1458 (((-794) $) 11)) (-2096 (((-108) (-1 (-108) (-108)) $) 43 (|has| $ (-6 -4244)))) (-4099 (($ $ $) 27)) (-2364 (($ $) 30)) (-3651 (($ $ $) 106)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18)) (-3640 (($ $ $) 105)) (-2676 (((-710) $) 40 (|has| $ (-6 -4244))))) +(((-119) (-129)) (T -119)) +((-3900 (*1 *1 *1) (-4 *1 (-119))) (-2364 (*1 *1 *1) (-4 *1 (-119))) (-3370 (*1 *1 *1 *1) (-4 *1 (-119))) (-3368 (*1 *1 *1 *1) (-4 *1 (-119))) (-4099 (*1 *1 *1 *1) (-4 *1 (-119))) (-4090 (*1 *1 *1 *1) (-4 *1 (-119))) (-1983 (*1 *1 *1 *1) (-4 *1 (-119)))) +(-13 (-786) (-604) (-19 (-108)) (-10 -8 (-15 -3900 ($ $)) (-15 -2364 ($ $)) (-15 -3370 ($ $ $)) (-15 -3368 ($ $ $)) (-15 -4099 ($ $ $)) (-15 -4090 ($ $ $)) (-15 -1983 ($ $ $)))) +(((-33) . T) ((-97) . T) ((-563 (-794)) . T) ((-140 #0=(-108)) . T) ((-564 (-499)) |has| (-108) (-564 (-499))) ((-263 #1=(-523) #0#) . T) ((-265 #1# #0#) . T) ((-286 #0#) -12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016))) ((-349 #0#) . T) ((-462 #0#) . T) ((-556 #1# #0#) . T) ((-484 #0# #0#) -12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016))) ((-594 #0#) . T) ((-604) . T) ((-19 #0#) . T) ((-786) . T) ((-1016) . T) ((-1122) . T)) +((-2852 (($ (-1 |#2| |#2|) $) 22)) (-1664 (($ $) 16)) (-2676 (((-710) $) 24))) +(((-120 |#1| |#2|) (-10 -8 (-15 -2852 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2676 ((-710) |#1|)) (-15 -1664 (|#1| |#1|))) (-121 |#2|) (-1016)) (T -120)) +NIL +(-10 -8 (-15 -2852 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2676 ((-710) |#1|)) (-15 -1664 (|#1| |#1|))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1733 ((|#1| $) 48)) (-3079 (((-108) $ (-710)) 8)) (-1823 ((|#1| $ |#1|) 39 (|has| $ (-6 -4245)))) (-2541 (($ $ $) 52 (|has| $ (-6 -4245)))) (-2971 (($ $ $) 54 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4245))) (($ $ "left" $) 55 (|has| $ (-6 -4245))) (($ $ "right" $) 53 (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 41 (|has| $ (-6 -4245)))) (-2518 (($) 7 T CONST)) (-3159 (($ $) 57)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) 50)) (-1238 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-4165 (($ $ |#1| $) 60)) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3149 (($ $) 59)) (-2726 (((-589 |#1|) $) 45)) (-3555 (((-108) $) 49)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1549 (((-523) $ $) 44)) (-2524 (((-108) $) 46)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) 51)) (-3653 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-121 |#1|) (-129) (-1016)) (T -121)) +((-4165 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1016))))) +(-13 (-115 |t#1|) (-10 -8 (-6 -4245) (-6 -4244) (-15 -4165 ($ $ |t#1| $)))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-115 |#1|) . T) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-938 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1733 ((|#1| $) 15)) (-3079 (((-108) $ (-710)) NIL)) (-1823 ((|#1| $ |#1|) 19 (|has| $ (-6 -4245)))) (-2541 (($ $ $) 20 (|has| $ (-6 -4245)))) (-2971 (($ $ $) 18 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4245))) (($ $ "left" $) NIL (|has| $ (-6 -4245))) (($ $ "right" $) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3159 (($ $) 21)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) NIL)) (-1238 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4165 (($ $ |#1| $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3149 (($ $) NIL)) (-2726 (((-589 |#1|) $) NIL)) (-3555 (((-108) $) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3450 (($ |#1| $) 10)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 14)) (-3988 (($) 8)) (-3223 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1549 (((-523) $ $) NIL)) (-2524 (((-108) $) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) 17)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) NIL)) (-3653 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3821 (($ (-589 |#1|)) 12)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-122 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4245) (-15 -3821 ($ (-589 |#1|))) (-15 -3450 ($ |#1| $)))) (-786)) (T -122)) +((-3821 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-122 *3)))) (-3450 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-786))))) +(-13 (-121 |#1|) (-10 -8 (-6 -4245) (-15 -3821 ($ (-589 |#1|))) (-15 -3450 ($ |#1| $)))) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1733 ((|#1| $) 24)) (-3079 (((-108) $ (-710)) NIL)) (-1823 ((|#1| $ |#1|) 26 (|has| $ (-6 -4245)))) (-2541 (($ $ $) 30 (|has| $ (-6 -4245)))) (-2971 (($ $ $) 28 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4245))) (($ $ "left" $) NIL (|has| $ (-6 -4245))) (($ $ "right" $) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3159 (($ $) 20)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) NIL)) (-1238 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4165 (($ $ |#1| $) 15)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3149 (($ $) 19)) (-2726 (((-589 |#1|) $) NIL)) (-3555 (((-108) $) 21)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 18)) (-3988 (($) 11)) (-3223 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1549 (((-523) $ $) NIL)) (-2524 (((-108) $) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) NIL)) (-3653 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1600 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 10 (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-123 |#1|) (-13 (-121 |#1|) (-10 -8 (-15 -1600 ($ |#1|)) (-15 -1600 ($ $ |#1| $)))) (-1016)) (T -123)) +((-1600 (*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1016)))) (-1600 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1016))))) +(-13 (-121 |#1|) (-10 -8 (-15 -1600 ($ |#1|)) (-15 -1600 ($ $ |#1| $)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15))) +(((-124) (-129)) (T -124)) +((-3212 (*1 *1 *1 *1) (|partial| -4 *1 (-124)))) +(-13 (-23) (-10 -8 (-15 -3212 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-3924 (((-108) $ $) 7)) (-2118 (((-1173) $ (-710)) 19)) (-1479 (((-710) $) 20)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18))) +(((-125) (-129)) (T -125)) +((-1479 (*1 *2 *1) (-12 (-4 *1 (-125)) (-5 *2 (-710)))) (-2118 (*1 *2 *1 *3) (-12 (-4 *1 (-125)) (-5 *3 (-710)) (-5 *2 (-1173))))) +(-13 (-786) (-10 -8 (-15 -1479 ((-710) $)) (-15 -2118 ((-1173) $ (-710))))) +(((-97) . T) ((-563 (-794)) . T) ((-786) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-710) "failed") $) 38)) (-3474 (((-710) $) 36)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) 26)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3016 (((-108)) 39)) (-3046 (((-108) (-108)) 41)) (-1997 (((-108) $) 23)) (-2489 (((-108) $) 35)) (-1458 (((-794) $) 22) (($ (-710)) 14)) (-2364 (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-2756 (($) 12 T CONST)) (-2767 (($) 11 T CONST)) (-2264 (($ (-710)) 15)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 24)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 25)) (-4087 (((-3 $ "failed") $ $) 29)) (-4075 (($ $ $) 27)) (** (($ $ (-710)) NIL) (($ $ (-852)) NIL) (($ $ $) 34)) (* (($ (-710) $) 32) (($ (-852) $) NIL) (($ $ $) 30))) +(((-126) (-13 (-786) (-23) (-666) (-964 (-710)) (-10 -8 (-6 (-4246 "*")) (-15 -4087 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2264 ($ (-710))) (-15 -1997 ((-108) $)) (-15 -2489 ((-108) $)) (-15 -3016 ((-108))) (-15 -3046 ((-108) (-108)))))) (T -126)) +((-4087 (*1 *1 *1 *1) (|partial| -5 *1 (-126))) (** (*1 *1 *1 *1) (-5 *1 (-126))) (-2264 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-126)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-2489 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-3016 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-3046 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126))))) +(-13 (-786) (-23) (-666) (-964 (-710)) (-10 -8 (-6 (-4246 "*")) (-15 -4087 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2264 ($ (-710))) (-15 -1997 ((-108) $)) (-15 -2489 ((-108) $)) (-15 -3016 ((-108))) (-15 -3046 ((-108) (-108))))) +((-1359 (((-128 |#1| |#2| |#4|) (-589 |#4|) (-128 |#1| |#2| |#3|)) 14)) (-3612 (((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)) 18))) +(((-127 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1359 ((-128 |#1| |#2| |#4|) (-589 |#4|) (-128 |#1| |#2| |#3|))) (-15 -3612 ((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)))) (-523) (-710) (-158) (-158)) (T -127)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-523)) (-14 *6 (-710)) (-4 *7 (-158)) (-4 *8 (-158)) (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) (-1359 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-523)) (-14 *6 (-710)) (-4 *7 (-158)) (-4 *8 (-158)) (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8))))) +(-10 -7 (-15 -1359 ((-128 |#1| |#2| |#4|) (-589 |#4|) (-128 |#1| |#2| |#3|))) (-15 -3612 ((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)))) +((-3924 (((-108) $ $) NIL)) (-3611 (($ (-589 |#3|)) 39)) (-4190 (($ $) 98) (($ $ (-523) (-523)) 97)) (-2518 (($) 17)) (-3517 (((-3 |#3| "failed") $) 59)) (-3474 ((|#3| $) NIL)) (-2297 (($ $ (-589 (-523))) 99)) (-1347 (((-589 |#3|) $) 35)) (-1319 (((-710) $) 43)) (-1656 (($ $ $) 92)) (-1857 (($) 42)) (-3779 (((-1070) $) NIL)) (-3439 (($) 16)) (-2783 (((-1034) $) NIL)) (-3223 ((|#3| $) 45) ((|#3| $ (-523)) 46) ((|#3| $ (-523) (-523)) 47) ((|#3| $ (-523) (-523) (-523)) 48) ((|#3| $ (-523) (-523) (-523) (-523)) 49) ((|#3| $ (-589 (-523))) 51)) (-2299 (((-710) $) 44)) (-3503 (($ $ (-523) $ (-523)) 93) (($ $ (-523) (-523)) 95)) (-1458 (((-794) $) 66) (($ |#3|) 67) (($ (-218 |#2| |#3|)) 74) (($ (-1054 |#2| |#3|)) 77) (($ (-589 |#3|)) 52) (($ (-589 $)) 57)) (-2756 (($) 68 T CONST)) (-2767 (($) 69 T CONST)) (-3983 (((-108) $ $) 79)) (-4087 (($ $) 85) (($ $ $) 83)) (-4075 (($ $ $) 81)) (* (($ |#3| $) 90) (($ $ |#3|) 91) (($ $ (-523)) 88) (($ (-523) $) 87) (($ $ $) 94))) +(((-128 |#1| |#2| |#3|) (-13 (-440 |#3| (-710)) (-445 (-523) (-710)) (-10 -8 (-15 -1458 ($ (-218 |#2| |#3|))) (-15 -1458 ($ (-1054 |#2| |#3|))) (-15 -1458 ($ (-589 |#3|))) (-15 -1458 ($ (-589 $))) (-15 -1319 ((-710) $)) (-15 -3223 (|#3| $)) (-15 -3223 (|#3| $ (-523))) (-15 -3223 (|#3| $ (-523) (-523))) (-15 -3223 (|#3| $ (-523) (-523) (-523))) (-15 -3223 (|#3| $ (-523) (-523) (-523) (-523))) (-15 -3223 (|#3| $ (-589 (-523)))) (-15 -1656 ($ $ $)) (-15 * ($ $ $)) (-15 -3503 ($ $ (-523) $ (-523))) (-15 -3503 ($ $ (-523) (-523))) (-15 -4190 ($ $)) (-15 -4190 ($ $ (-523) (-523))) (-15 -2297 ($ $ (-589 (-523)))) (-15 -3439 ($)) (-15 -1857 ($)) (-15 -1347 ((-589 |#3|) $)) (-15 -3611 ($ (-589 |#3|))) (-15 -2518 ($)))) (-523) (-710) (-158)) (T -128)) +((-1656 (*1 *1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) (-4 *4 (-158)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-218 *4 *5)) (-14 *4 (-710)) (-4 *5 (-158)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1054 *4 *5)) (-14 *4 (-710)) (-4 *5 (-158)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 *5)) (-4 *5 (-158)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) (-14 *4 (-710)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-128 *3 *4 *5))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) (-14 *4 (-710)) (-4 *5 (-158)))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) (-14 *4 *2) (-4 *5 (-158)))) (-3223 (*1 *2 *1) (-12 (-4 *2 (-158)) (-5 *1 (-128 *3 *4 *2)) (-14 *3 (-523)) (-14 *4 (-710)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-710)))) (-3223 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-710)))) (-3223 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-710)))) (-3223 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-710)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-589 (-523))) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 (-523)) (-14 *5 (-710)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) (-4 *4 (-158)))) (-3503 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-710)) (-4 *5 (-158)))) (-3503 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-710)) (-4 *5 (-158)))) (-4190 (*1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) (-4 *4 (-158)))) (-4190 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-710)) (-4 *5 (-158)))) (-2297 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) (-14 *4 (-710)) (-4 *5 (-158)))) (-3439 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) (-4 *4 (-158)))) (-1857 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) (-4 *4 (-158)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-589 *5)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) (-14 *4 (-710)) (-4 *5 (-158)))) (-3611 (*1 *1 *2) (-12 (-5 *2 (-589 *5)) (-4 *5 (-158)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) (-14 *4 (-710)))) (-2518 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) (-4 *4 (-158))))) +(-13 (-440 |#3| (-710)) (-445 (-523) (-710)) (-10 -8 (-15 -1458 ($ (-218 |#2| |#3|))) (-15 -1458 ($ (-1054 |#2| |#3|))) (-15 -1458 ($ (-589 |#3|))) (-15 -1458 ($ (-589 $))) (-15 -1319 ((-710) $)) (-15 -3223 (|#3| $)) (-15 -3223 (|#3| $ (-523))) (-15 -3223 (|#3| $ (-523) (-523))) (-15 -3223 (|#3| $ (-523) (-523) (-523))) (-15 -3223 (|#3| $ (-523) (-523) (-523) (-523))) (-15 -3223 (|#3| $ (-589 (-523)))) (-15 -1656 ($ $ $)) (-15 * ($ $ $)) (-15 -3503 ($ $ (-523) $ (-523))) (-15 -3503 ($ $ (-523) (-523))) (-15 -4190 ($ $)) (-15 -4190 ($ $ (-523) (-523))) (-15 -2297 ($ $ (-589 (-523)))) (-15 -3439 ($)) (-15 -1857 ($)) (-15 -1347 ((-589 |#3|) $)) (-15 -3611 ($ (-589 |#3|))) (-15 -2518 ($)))) +((-1458 (((-794) $) 7))) +(((-129) (-563 (-794))) (T -129)) +NIL +(-563 (-794)) +((-3924 (((-108) $ $) NIL)) (-1303 (($) 15 T CONST)) (-2919 (($) NIL (|has| (-133) (-344)))) (-3288 (($ $ $) 17) (($ $ (-133)) NIL) (($ (-133) $) NIL)) (-1922 (($ $ $) NIL)) (-3471 (((-108) $ $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1703 (((-710)) NIL (|has| (-133) (-344)))) (-4086 (($) NIL) (($ (-589 (-133))) NIL)) (-3387 (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-2249 (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244))) (($ (-133) $) 51 (|has| $ (-6 -4244)))) (-2557 (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244))) (($ (-133) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-2437 (((-133) (-1 (-133) (-133) (-133)) $) NIL (|has| $ (-6 -4244))) (((-133) (-1 (-133) (-133) (-133)) $ (-133)) NIL (|has| $ (-6 -4244))) (((-133) (-1 (-133) (-133) (-133)) $ (-133) (-133)) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-4032 (($) NIL (|has| (-133) (-344)))) (-1666 (((-589 (-133)) $) 60 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-2454 (((-133) $) NIL (|has| (-133) (-786)))) (-2136 (((-589 (-133)) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-133) $) 26 (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-2062 (((-133) $) NIL (|has| (-133) (-786)))) (-2852 (($ (-1 (-133) (-133)) $) 59 (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-133) (-133)) $) 55)) (-2674 (($) 16 T CONST)) (-2072 (((-852) $) NIL (|has| (-133) (-344)))) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-1309 (($ $ $) 29)) (-1934 (((-133) $) 52)) (-3450 (($ (-133) $) 50)) (-3878 (($ (-852)) NIL (|has| (-133) (-344)))) (-3411 (($) 14 T CONST)) (-2783 (((-1034) $) NIL)) (-2114 (((-3 (-133) "failed") (-1 (-108) (-133)) $) NIL)) (-3761 (((-133) $) 53)) (-1327 (((-108) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-133)) (-589 (-133))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-133) (-133)) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-271 (-133))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-589 (-271 (-133)))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) 48)) (-1855 (($) 13 T CONST)) (-3682 (($ $ $) 31) (($ $ (-133)) NIL)) (-3433 (($ (-589 (-133))) NIL) (($) NIL)) (-2792 (((-710) (-133) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016)))) (((-710) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-1070) $) 36) (((-499) $) NIL (|has| (-133) (-564 (-499)))) (((-589 (-133)) $) 34)) (-1472 (($ (-589 (-133))) NIL)) (-2059 (($ $) 32 (|has| (-133) (-344)))) (-1458 (((-794) $) 46)) (-3637 (($ (-1070)) 12) (($ (-589 (-133))) 43)) (-3398 (((-710) $) NIL)) (-1684 (($) 49) (($ (-589 (-133))) NIL)) (-2401 (($ (-589 (-133))) NIL)) (-2096 (((-108) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2162 (($) 19 T CONST)) (-3104 (($) 18 T CONST)) (-3983 (((-108) $ $) 22)) (-4007 (((-108) $ $) NIL)) (-2676 (((-710) $) 47 (|has| $ (-6 -4244))))) +(((-130) (-13 (-1016) (-564 (-1070)) (-401 (-133)) (-564 (-589 (-133))) (-10 -8 (-15 -3637 ($ (-1070))) (-15 -3637 ($ (-589 (-133)))) (-15 -1855 ($) -3059) (-15 -3411 ($) -3059) (-15 -1303 ($) -3059) (-15 -2674 ($) -3059) (-15 -3104 ($) -3059) (-15 -2162 ($) -3059)))) (T -130)) +((-3637 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-130)))) (-3637 (*1 *1 *2) (-12 (-5 *2 (-589 (-133))) (-5 *1 (-130)))) (-1855 (*1 *1) (-5 *1 (-130))) (-3411 (*1 *1) (-5 *1 (-130))) (-1303 (*1 *1) (-5 *1 (-130))) (-2674 (*1 *1) (-5 *1 (-130))) (-3104 (*1 *1) (-5 *1 (-130))) (-2162 (*1 *1) (-5 *1 (-130)))) +(-13 (-1016) (-564 (-1070)) (-401 (-133)) (-564 (-589 (-133))) (-10 -8 (-15 -3637 ($ (-1070))) (-15 -3637 ($ (-589 (-133)))) (-15 -1855 ($) -3059) (-15 -3411 ($) -3059) (-15 -1303 ($) -3059) (-15 -2674 ($) -3059) (-15 -3104 ($) -3059) (-15 -2162 ($) -3059))) +((-1199 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3616 ((|#1| |#3|) 9)) (-3604 ((|#3| |#3|) 15))) +(((-131 |#1| |#2| |#3|) (-10 -7 (-15 -3616 (|#1| |#3|)) (-15 -3604 (|#3| |#3|)) (-15 -1199 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-515) (-921 |#1|) (-349 |#2|)) (T -131)) +((-1199 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-131 *4 *5 *3)) (-4 *3 (-349 *5)))) (-3604 (*1 *2 *2) (-12 (-4 *3 (-515)) (-4 *4 (-921 *3)) (-5 *1 (-131 *3 *4 *2)) (-4 *2 (-349 *4)))) (-3616 (*1 *2 *3) (-12 (-4 *4 (-921 *2)) (-4 *2 (-515)) (-5 *1 (-131 *2 *4 *3)) (-4 *3 (-349 *4))))) +(-10 -7 (-15 -3616 (|#1| |#3|)) (-15 -3604 (|#3| |#3|)) (-15 -1199 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-3654 (($ $ $) 8)) (-3217 (($ $) 7)) (-2574 (($ $ $) 6))) +(((-132) (-129)) (T -132)) +((-3654 (*1 *1 *1 *1) (-4 *1 (-132))) (-3217 (*1 *1 *1) (-4 *1 (-132))) (-2574 (*1 *1 *1 *1) (-4 *1 (-132)))) +(-13 (-10 -8 (-15 -2574 ($ $ $)) (-15 -3217 ($ $)) (-15 -3654 ($ $ $)))) +((-3924 (((-108) $ $) NIL)) (-3316 (((-108) $) 30)) (-1303 (($ $) 43)) (-2992 (($) 17)) (-1703 (((-710)) 10)) (-4032 (($) 16)) (-3295 (($) 18)) (-2937 (((-710) $) 14)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-1435 (((-108) $) 32)) (-2674 (($ $) 44)) (-2072 (((-852) $) 15)) (-3779 (((-1070) $) 38)) (-3878 (($ (-852)) 13)) (-2660 (((-108) $) 28)) (-2783 (((-1034) $) NIL)) (-2909 (($) 19)) (-4052 (((-108) $) 26)) (-1458 (((-794) $) 21)) (-4065 (($ (-710)) 11) (($ (-1070)) 42)) (-2333 (((-108) $) 36)) (-3874 (((-108) $) 34)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 7)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 8))) +(((-133) (-13 (-780) (-10 -8 (-15 -2937 ((-710) $)) (-15 -4065 ($ (-710))) (-15 -4065 ($ (-1070))) (-15 -2992 ($)) (-15 -3295 ($)) (-15 -2909 ($)) (-15 -1303 ($ $)) (-15 -2674 ($ $)) (-15 -4052 ((-108) $)) (-15 -2660 ((-108) $)) (-15 -3874 ((-108) $)) (-15 -3316 ((-108) $)) (-15 -1435 ((-108) $)) (-15 -2333 ((-108) $))))) (T -133)) +((-2937 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-133)))) (-4065 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-133)))) (-4065 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-133)))) (-2992 (*1 *1) (-5 *1 (-133))) (-3295 (*1 *1) (-5 *1 (-133))) (-2909 (*1 *1) (-5 *1 (-133))) (-1303 (*1 *1 *1) (-5 *1 (-133))) (-2674 (*1 *1 *1) (-5 *1 (-133))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133)))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133)))) (-3874 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133)))) (-1435 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133)))) (-2333 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133))))) +(-13 (-780) (-10 -8 (-15 -2937 ((-710) $)) (-15 -4065 ($ (-710))) (-15 -4065 ($ (-1070))) (-15 -2992 ($)) (-15 -3295 ($)) (-15 -2909 ($)) (-15 -1303 ($ $)) (-15 -2674 ($ $)) (-15 -4052 ((-108) $)) (-15 -2660 ((-108) $)) (-15 -3874 ((-108) $)) (-15 -3316 ((-108) $)) (-15 -1435 ((-108) $)) (-15 -2333 ((-108) $)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28)) (-3901 (((-3 $ "failed") $) 35)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-134) (-129)) (T -134)) +((-3901 (*1 *1 *1) (|partial| -4 *1 (-134)))) +(-13 (-973) (-10 -8 (-15 -3901 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 $) . T) ((-666) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-1807 ((|#1| (-629 |#1|) |#1|) 17))) +(((-135 |#1|) (-10 -7 (-15 -1807 (|#1| (-629 |#1|) |#1|))) (-158)) (T -135)) +((-1807 (*1 *2 *3 *2) (-12 (-5 *3 (-629 *2)) (-4 *2 (-158)) (-5 *1 (-135 *2))))) +(-10 -7 (-15 -1807 (|#1| (-629 |#1|) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-136) (-129)) (T -136)) +NIL +(-13 (-973)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 $) . T) ((-666) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-2950 (((-2 (|:| -2735 (-710)) (|:| -2935 (-383 |#2|)) (|:| |radicand| |#2|)) (-383 |#2|) (-710)) 70)) (-2805 (((-3 (-2 (|:| |radicand| (-383 |#2|)) (|:| |deg| (-710))) "failed") |#3|) 52)) (-4173 (((-2 (|:| -2935 (-383 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-1218 ((|#1| |#3| |#3|) 40)) (-2679 ((|#3| |#3| (-383 |#2|) (-383 |#2|)) 19)) (-3996 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-383 |#2|)) (|:| |c2| (-383 |#2|)) (|:| |deg| (-710))) |#3| |#3|) 49))) +(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -4173 ((-2 (|:| -2935 (-383 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2805 ((-3 (-2 (|:| |radicand| (-383 |#2|)) (|:| |deg| (-710))) "failed") |#3|)) (-15 -2950 ((-2 (|:| -2735 (-710)) (|:| -2935 (-383 |#2|)) (|:| |radicand| |#2|)) (-383 |#2|) (-710))) (-15 -1218 (|#1| |#3| |#3|)) (-15 -2679 (|#3| |#3| (-383 |#2|) (-383 |#2|))) (-15 -3996 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-383 |#2|)) (|:| |c2| (-383 |#2|)) (|:| |deg| (-710))) |#3| |#3|))) (-1126) (-1144 |#1|) (-1144 (-383 |#2|))) (T -137)) +((-3996 (*1 *2 *3 *3) (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-383 *5)) (|:| |c2| (-383 *5)) (|:| |deg| (-710)))) (-5 *1 (-137 *4 *5 *3)) (-4 *3 (-1144 (-383 *5))))) (-2679 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-383 *5)) (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-5 *1 (-137 *4 *5 *2)) (-4 *2 (-1144 *3)))) (-1218 (*1 *2 *3 *3) (-12 (-4 *4 (-1144 *2)) (-4 *2 (-1126)) (-5 *1 (-137 *2 *4 *3)) (-4 *3 (-1144 (-383 *4))))) (-2950 (*1 *2 *3 *4) (-12 (-5 *3 (-383 *6)) (-4 *5 (-1126)) (-4 *6 (-1144 *5)) (-5 *2 (-2 (|:| -2735 (-710)) (|:| -2935 *3) (|:| |radicand| *6))) (-5 *1 (-137 *5 *6 *7)) (-5 *4 (-710)) (-4 *7 (-1144 *3)))) (-2805 (*1 *2 *3) (|partial| -12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| |radicand| (-383 *5)) (|:| |deg| (-710)))) (-5 *1 (-137 *4 *5 *3)) (-4 *3 (-1144 (-383 *5))))) (-4173 (*1 *2 *3) (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| -2935 (-383 *5)) (|:| |poly| *3))) (-5 *1 (-137 *4 *5 *3)) (-4 *3 (-1144 (-383 *5)))))) +(-10 -7 (-15 -4173 ((-2 (|:| -2935 (-383 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2805 ((-3 (-2 (|:| |radicand| (-383 |#2|)) (|:| |deg| (-710))) "failed") |#3|)) (-15 -2950 ((-2 (|:| -2735 (-710)) (|:| -2935 (-383 |#2|)) (|:| |radicand| |#2|)) (-383 |#2|) (-710))) (-15 -1218 (|#1| |#3| |#3|)) (-15 -2679 (|#3| |#3| (-383 |#2|) (-383 |#2|))) (-15 -3996 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-383 |#2|)) (|:| |c2| (-383 |#2|)) (|:| |deg| (-710))) |#3| |#3|))) +((-3652 (((-3 (-589 (-1083 |#2|)) "failed") (-589 (-1083 |#2|)) (-1083 |#2|)) 32))) +(((-138 |#1| |#2|) (-10 -7 (-15 -3652 ((-3 (-589 (-1083 |#2|)) "failed") (-589 (-1083 |#2|)) (-1083 |#2|)))) (-508) (-152 |#1|)) (T -138)) +((-3652 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 (-1083 *5))) (-5 *3 (-1083 *5)) (-4 *5 (-152 *4)) (-4 *4 (-508)) (-5 *1 (-138 *4 *5))))) +(-10 -7 (-15 -3652 ((-3 (-589 (-1083 |#2|)) "failed") (-589 (-1083 |#2|)) (-1083 |#2|)))) +((-3724 (($ (-1 (-108) |#2|) $) 29)) (-1773 (($ $) 36)) (-2557 (($ (-1 (-108) |#2|) $) 27) (($ |#2| $) 32)) (-2437 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-2114 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 19)) (-1327 (((-108) (-1 (-108) |#2|) $) 16)) (-2792 (((-710) (-1 (-108) |#2|) $) 13) (((-710) |#2| $) NIL)) (-2096 (((-108) (-1 (-108) |#2|) $) 15)) (-2676 (((-710) $) 11))) +(((-139 |#1| |#2|) (-10 -8 (-15 -1773 (|#1| |#1|)) (-15 -2557 (|#1| |#2| |#1|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3724 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2557 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2114 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -2792 ((-710) |#2| |#1|)) (-15 -2792 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -1327 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2676 ((-710) |#1|))) (-140 |#2|) (-1122)) (T -139)) +NIL +(-10 -8 (-15 -1773 (|#1| |#1|)) (-15 -2557 (|#1| |#2| |#1|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3724 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2557 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2114 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -2792 ((-710) |#2| |#1|)) (-15 -2792 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -1327 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2676 ((-710) |#1|))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) 8)) (-3724 (($ (-1 (-108) |#1|) $) 44 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-1773 (($ $) 41 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4244))) (($ |#1| $) 42 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 48)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 40 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 49)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-140 |#1|) (-129) (-1122)) (T -140)) +((-1472 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-4 *1 (-140 *3)))) (-2114 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-140 *2)) (-4 *2 (-1122)))) (-2437 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4244)) (-4 *1 (-140 *2)) (-4 *2 (-1122)))) (-2437 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4244)) (-4 *1 (-140 *2)) (-4 *2 (-1122)))) (-2557 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4244)) (-4 *1 (-140 *3)) (-4 *3 (-1122)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4244)) (-4 *1 (-140 *3)) (-4 *3 (-1122)))) (-2437 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1016)) (|has| *1 (-6 -4244)) (-4 *1 (-140 *2)) (-4 *2 (-1122)))) (-2557 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4244)) (-4 *1 (-140 *2)) (-4 *2 (-1122)) (-4 *2 (-1016)))) (-1773 (*1 *1 *1) (-12 (|has| *1 (-6 -4244)) (-4 *1 (-140 *2)) (-4 *2 (-1122)) (-4 *2 (-1016))))) +(-13 (-462 |t#1|) (-10 -8 (-15 -1472 ($ (-589 |t#1|))) (-15 -2114 ((-3 |t#1| "failed") (-1 (-108) |t#1|) $)) (IF (|has| $ (-6 -4244)) (PROGN (-15 -2437 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2437 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2557 ($ (-1 (-108) |t#1|) $)) (-15 -3724 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1016)) (PROGN (-15 -2437 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2557 ($ |t#1| $)) (-15 -1773 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) 86)) (-2023 (((-108) $) NIL)) (-1933 (($ |#2| (-589 (-852))) 57)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2930 (($ (-852)) 48)) (-3203 (((-126)) 23)) (-1458 (((-794) $) 69) (($ (-523)) 46) (($ |#2|) 47)) (-2365 ((|#2| $ (-589 (-852))) 59)) (-1621 (((-710)) 20)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 40 T CONST)) (-2767 (($) 44 T CONST)) (-3983 (((-108) $ $) 26)) (-4098 (($ $ |#2|) NIL)) (-4087 (($ $) 34) (($ $ $) 32)) (-4075 (($ $ $) 30)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL))) +(((-141 |#1| |#2| |#3|) (-13 (-973) (-37 |#2|) (-1175 |#2|) (-10 -8 (-15 -2930 ($ (-852))) (-15 -1933 ($ |#2| (-589 (-852)))) (-15 -2365 (|#2| $ (-589 (-852)))) (-15 -2121 ((-3 $ "failed") $)))) (-852) (-339) (-922 |#1| |#2|)) (T -141)) +((-2121 (*1 *1 *1) (|partial| -12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-852)) (-4 *3 (-339)) (-14 *4 (-922 *2 *3)))) (-2930 (*1 *1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-339)) (-14 *5 (-922 *3 *4)))) (-1933 (*1 *1 *2 *3) (-12 (-5 *3 (-589 (-852))) (-5 *1 (-141 *4 *2 *5)) (-14 *4 (-852)) (-4 *2 (-339)) (-14 *5 (-922 *4 *2)))) (-2365 (*1 *2 *1 *3) (-12 (-5 *3 (-589 (-852))) (-4 *2 (-339)) (-5 *1 (-141 *4 *2 *5)) (-14 *4 (-852)) (-14 *5 (-922 *4 *2))))) +(-13 (-973) (-37 |#2|) (-1175 |#2|) (-10 -8 (-15 -2930 ($ (-852))) (-15 -1933 ($ |#2| (-589 (-852)))) (-15 -2365 (|#2| $ (-589 (-852)))) (-15 -2121 ((-3 $ "failed") $)))) +((-3309 (((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-589 (-874 (-203)))) (-203) (-203) (-203) (-203)) 38)) (-1345 (((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858) (-383 (-523)) (-383 (-523))) 63) (((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858)) 64)) (-1520 (((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-589 (-874 (-203))))) 67) (((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-874 (-203)))) 66) (((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858) (-383 (-523)) (-383 (-523))) 58) (((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858)) 59))) +(((-142) (-10 -7 (-15 -1520 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858))) (-15 -1520 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858) (-383 (-523)) (-383 (-523)))) (-15 -1345 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858))) (-15 -1345 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858) (-383 (-523)) (-383 (-523)))) (-15 -3309 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-589 (-874 (-203)))) (-203) (-203) (-203) (-203))) (-15 -1520 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-874 (-203))))) (-15 -1520 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-589 (-874 (-203)))))))) (T -142)) +((-1520 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) (-5 *1 (-142)) (-5 *3 (-589 (-589 (-874 (-203))))))) (-1520 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) (-5 *1 (-142)) (-5 *3 (-589 (-874 (-203)))))) (-3309 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-203)) (-5 *2 (-2 (|:| |brans| (-589 (-589 (-874 *4)))) (|:| |xValues| (-1011 *4)) (|:| |yValues| (-1011 *4)))) (-5 *1 (-142)) (-5 *3 (-589 (-589 (-874 *4)))))) (-1345 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858)) (-5 *4 (-383 (-523))) (-5 *2 (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) (-5 *1 (-142)))) (-1345 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) (-5 *1 (-142)))) (-1520 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858)) (-5 *4 (-383 (-523))) (-5 *2 (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) (-5 *1 (-142)))) (-1520 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) (-5 *1 (-142))))) +(-10 -7 (-15 -1520 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858))) (-15 -1520 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858) (-383 (-523)) (-383 (-523)))) (-15 -1345 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858))) (-15 -1345 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-858) (-383 (-523)) (-383 (-523)))) (-15 -3309 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-589 (-874 (-203)))) (-203) (-203) (-203) (-203))) (-15 -1520 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-874 (-203))))) (-15 -1520 ((-2 (|:| |brans| (-589 (-589 (-874 (-203))))) (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203)))) (-589 (-589 (-874 (-203))))))) +((-2138 (((-589 (-155 |#2|)) |#1| |#2|) 45))) +(((-143 |#1| |#2|) (-10 -7 (-15 -2138 ((-589 (-155 |#2|)) |#1| |#2|))) (-1144 (-155 (-523))) (-13 (-339) (-784))) (T -143)) +((-2138 (*1 *2 *3 *4) (-12 (-5 *2 (-589 (-155 *4))) (-5 *1 (-143 *3 *4)) (-4 *3 (-1144 (-155 (-523)))) (-4 *4 (-13 (-339) (-784)))))) +(-10 -7 (-15 -2138 ((-589 (-155 |#2|)) |#1| |#2|))) +((-3924 (((-108) $ $) NIL)) (-2904 (($) 16)) (-2622 (($) 15)) (-2650 (((-852)) 23)) (-3779 (((-1070) $) NIL)) (-1804 (((-523) $) 20)) (-2783 (((-1034) $) NIL)) (-1209 (($) 17)) (-2413 (($ (-523)) 24)) (-1458 (((-794) $) 30)) (-1938 (($) 18)) (-3983 (((-108) $ $) 14)) (-4075 (($ $ $) 13)) (* (($ (-852) $) 22) (($ (-203) $) 8))) +(((-144) (-13 (-25) (-10 -8 (-15 * ($ (-852) $)) (-15 * ($ (-203) $)) (-15 -4075 ($ $ $)) (-15 -2622 ($)) (-15 -2904 ($)) (-15 -1209 ($)) (-15 -1938 ($)) (-15 -1804 ((-523) $)) (-15 -2650 ((-852))) (-15 -2413 ($ (-523)))))) (T -144)) +((-4075 (*1 *1 *1 *1) (-5 *1 (-144))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-852)) (-5 *1 (-144)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-203)) (-5 *1 (-144)))) (-2622 (*1 *1) (-5 *1 (-144))) (-2904 (*1 *1) (-5 *1 (-144))) (-1209 (*1 *1) (-5 *1 (-144))) (-1938 (*1 *1) (-5 *1 (-144))) (-1804 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-144)))) (-2650 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-144)))) (-2413 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-144))))) +(-13 (-25) (-10 -8 (-15 * ($ (-852) $)) (-15 * ($ (-203) $)) (-15 -4075 ($ $ $)) (-15 -2622 ($)) (-15 -2904 ($)) (-15 -1209 ($)) (-15 -1938 ($)) (-15 -1804 ((-523) $)) (-15 -2650 ((-852))) (-15 -2413 ($ (-523))))) +((-1815 ((|#2| |#2| (-1009 |#2|)) 87) ((|#2| |#2| (-1087)) 67)) (-1656 ((|#2| |#2| (-1009 |#2|)) 86) ((|#2| |#2| (-1087)) 66)) (-3654 ((|#2| |#2| |#2|) 27)) (-1403 (((-110) (-110)) 97)) (-1261 ((|#2| (-589 |#2|)) 116)) (-1517 ((|#2| (-589 |#2|)) 134)) (-3926 ((|#2| (-589 |#2|)) 124)) (-2025 ((|#2| |#2|) 122)) (-4057 ((|#2| (-589 |#2|)) 109)) (-2745 ((|#2| (-589 |#2|)) 110)) (-1477 ((|#2| (-589 |#2|)) 132)) (-2988 ((|#2| |#2| (-1087)) 54) ((|#2| |#2|) 53)) (-3217 ((|#2| |#2|) 23)) (-2574 ((|#2| |#2| |#2|) 26)) (-1950 (((-108) (-110)) 47)) (** ((|#2| |#2| |#2|) 38))) +(((-145 |#1| |#2|) (-10 -7 (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -2574 (|#2| |#2| |#2|)) (-15 -3654 (|#2| |#2| |#2|)) (-15 -3217 (|#2| |#2|)) (-15 -2988 (|#2| |#2|)) (-15 -2988 (|#2| |#2| (-1087))) (-15 -1815 (|#2| |#2| (-1087))) (-15 -1815 (|#2| |#2| (-1009 |#2|))) (-15 -1656 (|#2| |#2| (-1087))) (-15 -1656 (|#2| |#2| (-1009 |#2|))) (-15 -2025 (|#2| |#2|)) (-15 -1477 (|#2| (-589 |#2|))) (-15 -3926 (|#2| (-589 |#2|))) (-15 -1517 (|#2| (-589 |#2|))) (-15 -4057 (|#2| (-589 |#2|))) (-15 -2745 (|#2| (-589 |#2|))) (-15 -1261 (|#2| (-589 |#2|)))) (-13 (-786) (-515)) (-406 |#1|)) (T -145)) +((-1261 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) (-4 *4 (-13 (-786) (-515))))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) (-4 *4 (-13 (-786) (-515))))) (-4057 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) (-4 *4 (-13 (-786) (-515))))) (-1517 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) (-4 *4 (-13 (-786) (-515))))) (-3926 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) (-4 *4 (-13 (-786) (-515))))) (-1477 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) (-4 *4 (-13 (-786) (-515))))) (-2025 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) (-4 *2 (-406 *3)))) (-1656 (*1 *2 *2 *3) (-12 (-5 *3 (-1009 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)))) (-1656 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)) (-4 *2 (-406 *4)))) (-1815 (*1 *2 *2 *3) (-12 (-5 *3 (-1009 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)))) (-1815 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)) (-4 *2 (-406 *4)))) (-2988 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)) (-4 *2 (-406 *4)))) (-2988 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) (-4 *2 (-406 *3)))) (-3217 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) (-4 *2 (-406 *3)))) (-3654 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) (-4 *2 (-406 *3)))) (-2574 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) (-4 *2 (-406 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) (-4 *2 (-406 *3)))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *4)) (-4 *4 (-406 *3)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) (-5 *1 (-145 *4 *5)) (-4 *5 (-406 *4))))) +(-10 -7 (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -2574 (|#2| |#2| |#2|)) (-15 -3654 (|#2| |#2| |#2|)) (-15 -3217 (|#2| |#2|)) (-15 -2988 (|#2| |#2|)) (-15 -2988 (|#2| |#2| (-1087))) (-15 -1815 (|#2| |#2| (-1087))) (-15 -1815 (|#2| |#2| (-1009 |#2|))) (-15 -1656 (|#2| |#2| (-1087))) (-15 -1656 (|#2| |#2| (-1009 |#2|))) (-15 -2025 (|#2| |#2|)) (-15 -1477 (|#2| (-589 |#2|))) (-15 -3926 (|#2| (-589 |#2|))) (-15 -1517 (|#2| (-589 |#2|))) (-15 -4057 (|#2| (-589 |#2|))) (-15 -2745 (|#2| (-589 |#2|))) (-15 -1261 (|#2| (-589 |#2|)))) +((-2351 ((|#1| |#1| |#1|) 52)) (-2089 ((|#1| |#1| |#1|) 49)) (-3654 ((|#1| |#1| |#1|) 43)) (-4199 ((|#1| |#1|) 34)) (-2083 ((|#1| |#1| (-589 |#1|)) 42)) (-3217 ((|#1| |#1|) 36)) (-2574 ((|#1| |#1| |#1|) 39))) +(((-146 |#1|) (-10 -7 (-15 -2574 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1|)) (-15 -2083 (|#1| |#1| (-589 |#1|))) (-15 -4199 (|#1| |#1|)) (-15 -3654 (|#1| |#1| |#1|)) (-15 -2089 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1| |#1|))) (-508)) (T -146)) +((-2351 (*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508)))) (-2089 (*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508)))) (-3654 (*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508)))) (-4199 (*1 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508)))) (-2083 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-508)) (-5 *1 (-146 *2)))) (-3217 (*1 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508)))) (-2574 (*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508))))) +(-10 -7 (-15 -2574 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1|)) (-15 -2083 (|#1| |#1| (-589 |#1|))) (-15 -4199 (|#1| |#1|)) (-15 -3654 (|#1| |#1| |#1|)) (-15 -2089 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1| |#1|))) +((-1815 (($ $ (-1087)) 12) (($ $ (-1009 $)) 11)) (-1656 (($ $ (-1087)) 10) (($ $ (-1009 $)) 9)) (-3654 (($ $ $) 8)) (-2988 (($ $) 14) (($ $ (-1087)) 13)) (-3217 (($ $) 7)) (-2574 (($ $ $) 6))) +(((-147) (-129)) (T -147)) +((-2988 (*1 *1 *1) (-4 *1 (-147))) (-2988 (*1 *1 *1 *2) (-12 (-4 *1 (-147)) (-5 *2 (-1087)))) (-1815 (*1 *1 *1 *2) (-12 (-4 *1 (-147)) (-5 *2 (-1087)))) (-1815 (*1 *1 *1 *2) (-12 (-5 *2 (-1009 *1)) (-4 *1 (-147)))) (-1656 (*1 *1 *1 *2) (-12 (-4 *1 (-147)) (-5 *2 (-1087)))) (-1656 (*1 *1 *1 *2) (-12 (-5 *2 (-1009 *1)) (-4 *1 (-147))))) +(-13 (-132) (-10 -8 (-15 -2988 ($ $)) (-15 -2988 ($ $ (-1087))) (-15 -1815 ($ $ (-1087))) (-15 -1815 ($ $ (-1009 $))) (-15 -1656 ($ $ (-1087))) (-15 -1656 ($ $ (-1009 $))))) +(((-132) . T)) +((-3924 (((-108) $ $) NIL)) (-2911 (($ (-523)) 13) (($ $ $) 14)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 17)) (-3983 (((-108) $ $) 9))) +(((-148) (-13 (-1016) (-10 -8 (-15 -2911 ($ (-523))) (-15 -2911 ($ $ $))))) (T -148)) +((-2911 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-148)))) (-2911 (*1 *1 *1 *1) (-5 *1 (-148)))) +(-13 (-1016) (-10 -8 (-15 -2911 ($ (-523))) (-15 -2911 ($ $ $)))) +((-1403 (((-110) (-1087)) 97))) +(((-149) (-10 -7 (-15 -1403 ((-110) (-1087))))) (T -149)) +((-1403 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-110)) (-5 *1 (-149))))) +(-10 -7 (-15 -1403 ((-110) (-1087)))) +((-1828 ((|#3| |#3|) 20))) +(((-150 |#1| |#2| |#3|) (-10 -7 (-15 -1828 (|#3| |#3|))) (-973) (-1144 |#1|) (-1144 |#2|)) (T -150)) +((-1828 (*1 *2 *2) (-12 (-4 *3 (-973)) (-4 *4 (-1144 *3)) (-5 *1 (-150 *3 *4 *2)) (-4 *2 (-1144 *4))))) +(-10 -7 (-15 -1828 (|#3| |#3|))) +((-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 216)) (-4187 ((|#2| $) 96)) (-1769 (($ $) 243)) (-3780 (($ $) 237)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 40)) (-1744 (($ $) 241)) (-3711 (($ $) 235)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 |#2| "failed") $) 140)) (-3474 (((-523) $) NIL) (((-383 (-523)) $) NIL) ((|#2| $) 138)) (-3796 (($ $ $) 221)) (-2381 (((-629 (-523)) (-629 $)) NIL) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) 154) (((-629 |#2|) (-629 $)) 148)) (-2437 (($ (-1083 |#2|)) 119) (((-3 $ "failed") (-383 (-1083 |#2|))) NIL)) (-2121 (((-3 $ "failed") $) 208)) (-3346 (((-3 (-383 (-523)) "failed") $) 198)) (-1292 (((-108) $) 193)) (-2146 (((-383 (-523)) $) 196)) (-1319 (((-852)) 89)) (-3769 (($ $ $) 223)) (-4107 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 259)) (-2820 (($) 232)) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 185) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 190)) (-3892 ((|#2| $) 94)) (-1397 (((-1083 |#2|) $) 121)) (-3612 (($ (-1 |#2| |#2|) $) 102)) (-2384 (($ $) 234)) (-2428 (((-1083 |#2|) $) 120)) (-3738 (($ $) 201)) (-3917 (($) 97)) (-1219 (((-394 (-1083 $)) (-1083 $)) 88)) (-3967 (((-394 (-1083 $)) (-1083 $)) 57)) (-3746 (((-3 $ "failed") $ |#2|) 203) (((-3 $ "failed") $ $) 206)) (-1811 (($ $) 233)) (-1972 (((-710) $) 218)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 227)) (-3549 ((|#2| (-1168 $)) NIL) ((|#2|) 91)) (-3523 (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL) (($ $ (-710)) NIL) (($ $) NIL)) (-3727 (((-1083 |#2|)) 114)) (-1757 (($ $) 242)) (-3767 (($ $) 236)) (-2966 (((-1168 |#2|) $ (-1168 $)) 127) (((-629 |#2|) (-1168 $) (-1168 $)) NIL) (((-1168 |#2|) $) 110) (((-629 |#2|) (-1168 $)) NIL)) (-3663 (((-1168 |#2|) $) NIL) (($ (-1168 |#2|)) NIL) (((-1083 |#2|) $) NIL) (($ (-1083 |#2|)) NIL) (((-823 (-523)) $) 176) (((-823 (-355)) $) 180) (((-155 (-355)) $) 166) (((-155 (-203)) $) 161) (((-499) $) 172)) (-3208 (($ $) 98)) (-1458 (((-794) $) 137) (($ (-523)) NIL) (($ |#2|) NIL) (($ (-383 (-523))) NIL) (($ $) NIL)) (-1807 (((-1083 |#2|) $) 23)) (-1621 (((-710)) 100)) (-1839 (($ $) 246)) (-3847 (($ $) 240)) (-1818 (($ $) 244)) (-3828 (($ $) 238)) (-2135 ((|#2| $) 231)) (-1830 (($ $) 245)) (-3838 (($ $) 239)) (-2619 (($ $) 156)) (-3983 (((-108) $ $) 104)) (-4007 (((-108) $ $) 192)) (-4087 (($ $) 106) (($ $ $) NIL)) (-4075 (($ $ $) 105)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-383 (-523))) 265) (($ $ $) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 112) (($ $ $) 141) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-383 (-523)) $) NIL) (($ $ (-383 (-523))) NIL))) +(((-151 |#1| |#2|) (-10 -8 (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -1458 (|#1| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1669 ((-2 (|:| -3819 |#1|) (|:| -4231 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -1972 ((-710) |#1|)) (-15 -3462 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -3769 (|#1| |#1| |#1|)) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3738 (|#1| |#1|)) (-15 ** (|#1| |#1| (-523))) (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -4007 ((-108) |#1| |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3663 ((-155 (-203)) |#1|)) (-15 -3663 ((-155 (-355)) |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -3711 (|#1| |#1|)) (-15 -3767 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1769 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -1818 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -2384 (|#1| |#1|)) (-15 -1811 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2820 (|#1|)) (-15 ** (|#1| |#1| (-383 (-523)))) (-15 -3967 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -1219 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3652 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -3346 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -2146 ((-383 (-523)) |#1|)) (-15 -1292 ((-108) |#1|)) (-15 -4107 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2135 (|#2| |#1|)) (-15 -2619 (|#1| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3208 (|#1| |#1|)) (-15 -3917 (|#1|)) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -2130 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -2130 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -2437 ((-3 |#1| "failed") (-383 (-1083 |#2|)))) (-15 -2428 ((-1083 |#2|) |#1|)) (-15 -3663 (|#1| (-1083 |#2|))) (-15 -2437 (|#1| (-1083 |#2|))) (-15 -3727 ((-1083 |#2|))) (-15 -2381 ((-629 |#2|) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3663 ((-1083 |#2|) |#1|)) (-15 -3549 (|#2|)) (-15 -3663 (|#1| (-1168 |#2|))) (-15 -3663 ((-1168 |#2|) |#1|)) (-15 -2966 ((-629 |#2|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1|)) (-15 -1397 ((-1083 |#2|) |#1|)) (-15 -1807 ((-1083 |#2|) |#1|)) (-15 -3549 (|#2| (-1168 |#1|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -3892 (|#2| |#1|)) (-15 -4187 (|#2| |#1|)) (-15 -1319 ((-852))) (-15 -1458 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 -1621 ((-710))) (-15 ** (|#1| |#1| (-710))) (-15 -2121 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-852))) (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -4075 (|#1| |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) (-152 |#2|) (-158)) (T -151)) +((-1621 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-710)) (-5 *1 (-151 *3 *4)) (-4 *3 (-152 *4)))) (-1319 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-852)) (-5 *1 (-151 *3 *4)) (-4 *3 (-152 *4)))) (-3549 (*1 *2) (-12 (-4 *2 (-158)) (-5 *1 (-151 *3 *2)) (-4 *3 (-152 *2)))) (-3727 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-1083 *4)) (-5 *1 (-151 *3 *4)) (-4 *3 (-152 *4))))) +(-10 -8 (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -1458 (|#1| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1669 ((-2 (|:| -3819 |#1|) (|:| -4231 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -1972 ((-710) |#1|)) (-15 -3462 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -3769 (|#1| |#1| |#1|)) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3738 (|#1| |#1|)) (-15 ** (|#1| |#1| (-523))) (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -4007 ((-108) |#1| |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3663 ((-155 (-203)) |#1|)) (-15 -3663 ((-155 (-355)) |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -3711 (|#1| |#1|)) (-15 -3767 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1769 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -1818 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -2384 (|#1| |#1|)) (-15 -1811 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2820 (|#1|)) (-15 ** (|#1| |#1| (-383 (-523)))) (-15 -3967 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -1219 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3652 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -3346 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -2146 ((-383 (-523)) |#1|)) (-15 -1292 ((-108) |#1|)) (-15 -4107 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2135 (|#2| |#1|)) (-15 -2619 (|#1| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3208 (|#1| |#1|)) (-15 -3917 (|#1|)) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -2130 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -2130 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -2437 ((-3 |#1| "failed") (-383 (-1083 |#2|)))) (-15 -2428 ((-1083 |#2|) |#1|)) (-15 -3663 (|#1| (-1083 |#2|))) (-15 -2437 (|#1| (-1083 |#2|))) (-15 -3727 ((-1083 |#2|))) (-15 -2381 ((-629 |#2|) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3663 ((-1083 |#2|) |#1|)) (-15 -3549 (|#2|)) (-15 -3663 (|#1| (-1168 |#2|))) (-15 -3663 ((-1168 |#2|) |#1|)) (-15 -2966 ((-629 |#2|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1|)) (-15 -1397 ((-1083 |#2|) |#1|)) (-15 -1807 ((-1083 |#2|) |#1|)) (-15 -3549 (|#2| (-1168 |#1|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -3892 (|#2| |#1|)) (-15 -4187 (|#2| |#1|)) (-15 -1319 ((-852))) (-15 -1458 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 -1621 ((-710))) (-15 ** (|#1| |#1| (-710))) (-15 -2121 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-852))) (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -4075 (|#1| |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 93 (-3262 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-3345 (($ $) 94 (-3262 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-3331 (((-108) $) 96 (-3262 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-3750 (((-629 |#1|) (-1168 $)) 46) (((-629 |#1|)) 61)) (-4187 ((|#1| $) 52)) (-1769 (($ $) 228 (|has| |#1| (-1108)))) (-3780 (($ $) 211 (|has| |#1| (-1108)))) (-2430 (((-1096 (-852) (-710)) (-523)) 147 (|has| |#1| (-325)))) (-3212 (((-3 $ "failed") $ $) 19)) (-3156 (((-394 (-1083 $)) (-1083 $)) 242 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-2291 (($ $) 113 (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-3614 (((-394 $) $) 114 (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-1832 (($ $) 241 (-12 (|has| |#1| (-930)) (|has| |#1| (-1108))))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 245 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-1387 (((-108) $ $) 104 (|has| |#1| (-284)))) (-1703 (((-710)) 87 (|has| |#1| (-344)))) (-1744 (($ $) 227 (|has| |#1| (-1108)))) (-3711 (($ $) 212 (|has| |#1| (-1108)))) (-1793 (($ $) 226 (|has| |#1| (-1108)))) (-3805 (($ $) 213 (|has| |#1| (-1108)))) (-2518 (($) 17 T CONST)) (-3517 (((-3 (-523) "failed") $) 169 (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 167 (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 166)) (-3474 (((-523) $) 170 (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) 168 (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 165)) (-3409 (($ (-1168 |#1|) (-1168 $)) 48) (($ (-1168 |#1|)) 64)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-325)))) (-3796 (($ $ $) 108 (|has| |#1| (-284)))) (-4079 (((-629 |#1|) $ (-1168 $)) 53) (((-629 |#1|) $) 59)) (-2381 (((-629 (-523)) (-629 $)) 164 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 163 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 162) (((-629 |#1|) (-629 $)) 161)) (-2437 (($ (-1083 |#1|)) 158) (((-3 $ "failed") (-383 (-1083 |#1|))) 155 (|has| |#1| (-339)))) (-2121 (((-3 $ "failed") $) 34)) (-1842 ((|#1| $) 253)) (-3346 (((-3 (-383 (-523)) "failed") $) 246 (|has| |#1| (-508)))) (-1292 (((-108) $) 248 (|has| |#1| (-508)))) (-2146 (((-383 (-523)) $) 247 (|has| |#1| (-508)))) (-1319 (((-852)) 54)) (-4032 (($) 90 (|has| |#1| (-344)))) (-3769 (($ $ $) 107 (|has| |#1| (-284)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 102 (|has| |#1| (-284)))) (-1996 (($) 149 (|has| |#1| (-325)))) (-2155 (((-108) $) 150 (|has| |#1| (-325)))) (-1991 (($ $ (-710)) 141 (|has| |#1| (-325))) (($ $) 140 (|has| |#1| (-325)))) (-2657 (((-108) $) 115 (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-4107 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-982)) (|has| |#1| (-1108))))) (-2820 (($) 238 (|has| |#1| (-1108)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 261 (|has| |#1| (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 260 (|has| |#1| (-817 (-355))))) (-1640 (((-852) $) 152 (|has| |#1| (-325))) (((-772 (-852)) $) 138 (|has| |#1| (-325)))) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 240 (-12 (|has| |#1| (-930)) (|has| |#1| (-1108))))) (-3892 ((|#1| $) 51)) (-4058 (((-3 $ "failed") $) 142 (|has| |#1| (-325)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 111 (|has| |#1| (-284)))) (-1397 (((-1083 |#1|) $) 44 (|has| |#1| (-339)))) (-2454 (($ $ $) 207 (|has| |#1| (-786)))) (-2062 (($ $ $) 206 (|has| |#1| (-786)))) (-3612 (($ (-1 |#1| |#1|) $) 262)) (-2072 (((-852) $) 89 (|has| |#1| (-344)))) (-2384 (($ $) 235 (|has| |#1| (-1108)))) (-2428 (((-1083 |#1|) $) 156)) (-3244 (($ (-589 $)) 100 (-3262 (|has| |#1| (-284)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (($ $ $) 99 (-3262 (|has| |#1| (-284)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-3779 (((-1070) $) 9)) (-3738 (($ $) 116 (|has| |#1| (-339)))) (-2262 (($) 143 (|has| |#1| (-325)) CONST)) (-3878 (($ (-852)) 88 (|has| |#1| (-344)))) (-3917 (($) 257)) (-1856 ((|#1| $) 254)) (-2783 (((-1034) $) 10)) (-3441 (($) 160)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 101 (-3262 (|has| |#1| (-284)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-3278 (($ (-589 $)) 98 (-3262 (|has| |#1| (-284)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (($ $ $) 97 (-3262 (|has| |#1| (-284)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) 146 (|has| |#1| (-325)))) (-1219 (((-394 (-1083 $)) (-1083 $)) 244 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-3967 (((-394 (-1083 $)) (-1083 $)) 243 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-1820 (((-394 $) $) 112 (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-284))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 109 (|has| |#1| (-284)))) (-3746 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-515))) (((-3 $ "failed") $ $) 92 (-3262 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 103 (|has| |#1| (-284)))) (-1811 (($ $) 236 (|has| |#1| (-1108)))) (-2679 (($ $ (-589 |#1|) (-589 |#1|)) 268 (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) 266 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) 265 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) 264 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) 263 (|has| |#1| (-484 (-1087) |#1|)))) (-1972 (((-710) $) 105 (|has| |#1| (-284)))) (-3223 (($ $ |#1|) 269 (|has| |#1| (-263 |#1| |#1|)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 106 (|has| |#1| (-284)))) (-3549 ((|#1| (-1168 $)) 47) ((|#1|) 60)) (-2974 (((-710) $) 151 (|has| |#1| (-325))) (((-3 (-710) "failed") $ $) 139 (|has| |#1| (-325)))) (-3523 (($ $ (-1 |#1| |#1|) (-710)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-589 (-1087)) (-589 (-710))) 130 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 131 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 132 (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) 133 (|has| |#1| (-831 (-1087)))) (($ $ (-710)) 135 (-3262 (-4099 (|has| |#1| (-339)) (|has| |#1| (-211))) (|has| |#1| (-211)) (-4099 (|has| |#1| (-211)) (|has| |#1| (-339))))) (($ $) 137 (-3262 (-4099 (|has| |#1| (-339)) (|has| |#1| (-211))) (|has| |#1| (-211)) (-4099 (|has| |#1| (-211)) (|has| |#1| (-339)))))) (-1976 (((-629 |#1|) (-1168 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-339)))) (-3727 (((-1083 |#1|)) 159)) (-1805 (($ $) 225 (|has| |#1| (-1108)))) (-3816 (($ $) 214 (|has| |#1| (-1108)))) (-3425 (($) 148 (|has| |#1| (-325)))) (-1782 (($ $) 224 (|has| |#1| (-1108)))) (-3793 (($ $) 215 (|has| |#1| (-1108)))) (-1757 (($ $) 223 (|has| |#1| (-1108)))) (-3767 (($ $) 216 (|has| |#1| (-1108)))) (-2966 (((-1168 |#1|) $ (-1168 $)) 50) (((-629 |#1|) (-1168 $) (-1168 $)) 49) (((-1168 |#1|) $) 66) (((-629 |#1|) (-1168 $)) 65)) (-3663 (((-1168 |#1|) $) 63) (($ (-1168 |#1|)) 62) (((-1083 |#1|) $) 171) (($ (-1083 |#1|)) 157) (((-823 (-523)) $) 259 (|has| |#1| (-564 (-823 (-523))))) (((-823 (-355)) $) 258 (|has| |#1| (-564 (-823 (-355))))) (((-155 (-355)) $) 210 (|has| |#1| (-949))) (((-155 (-203)) $) 209 (|has| |#1| (-949))) (((-499) $) 208 (|has| |#1| (-564 (-499))))) (-3208 (($ $) 256)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 145 (-3262 (-4099 (|has| $ (-134)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))) (|has| |#1| (-325))))) (-2571 (($ |#1| |#1|) 255)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 37) (($ (-383 (-523))) 86 (-3262 (|has| |#1| (-339)) (|has| |#1| (-964 (-383 (-523)))))) (($ $) 91 (-3262 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-3901 (($ $) 144 (|has| |#1| (-325))) (((-3 $ "failed") $) 43 (-3262 (-4099 (|has| $ (-134)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))) (|has| |#1| (-134))))) (-1807 (((-1083 |#1|) $) 45)) (-1621 (((-710)) 29)) (-4041 (((-1168 $)) 67)) (-1839 (($ $) 234 (|has| |#1| (-1108)))) (-3847 (($ $) 222 (|has| |#1| (-1108)))) (-1704 (((-108) $ $) 95 (-3262 (|has| |#1| (-515)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840)))))) (-1818 (($ $) 233 (|has| |#1| (-1108)))) (-3828 (($ $) 221 (|has| |#1| (-1108)))) (-1865 (($ $) 232 (|has| |#1| (-1108)))) (-1719 (($ $) 220 (|has| |#1| (-1108)))) (-2135 ((|#1| $) 250 (|has| |#1| (-1108)))) (-2914 (($ $) 231 (|has| |#1| (-1108)))) (-1731 (($ $) 219 (|has| |#1| (-1108)))) (-1852 (($ $) 230 (|has| |#1| (-1108)))) (-3859 (($ $) 218 (|has| |#1| (-1108)))) (-1830 (($ $) 229 (|has| |#1| (-1108)))) (-3838 (($ $) 217 (|has| |#1| (-1108)))) (-2619 (($ $) 251 (|has| |#1| (-982)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 117 (|has| |#1| (-339)))) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-1 |#1| |#1|) (-710)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-589 (-1087)) (-589 (-710))) 126 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 127 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 128 (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) 129 (|has| |#1| (-831 (-1087)))) (($ $ (-710)) 134 (-3262 (-4099 (|has| |#1| (-339)) (|has| |#1| (-211))) (|has| |#1| (-211)) (-4099 (|has| |#1| (-211)) (|has| |#1| (-339))))) (($ $) 136 (-3262 (-4099 (|has| |#1| (-339)) (|has| |#1| (-211))) (|has| |#1| (-211)) (-4099 (|has| |#1| (-211)) (|has| |#1| (-339)))))) (-4043 (((-108) $ $) 204 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 203 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 205 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 202 (|has| |#1| (-786)))) (-4098 (($ $ $) 121 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-383 (-523))) 239 (-12 (|has| |#1| (-930)) (|has| |#1| (-1108)))) (($ $ $) 237 (|has| |#1| (-1108))) (($ $ (-523)) 118 (|has| |#1| (-339)))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-383 (-523)) $) 120 (|has| |#1| (-339))) (($ $ (-383 (-523))) 119 (|has| |#1| (-339))))) +(((-152 |#1|) (-129) (-158)) (T -152)) +((-3892 (*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) (-3917 (*1 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) (-3208 (*1 *1 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) (-2571 (*1 *1 *2 *2) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) (-3746 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-152 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) (-2619 (*1 *1 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)) (-4 *2 (-982)))) (-2135 (*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)) (-4 *2 (-1108)))) (-4107 (*1 *2 *1) (-12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-982)) (-4 *3 (-1108)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1292 (*1 *2 *1) (-12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-108)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-383 (-523))))) (-3346 (*1 *2 *1) (|partial| -12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-383 (-523)))))) +(-13 (-664 |t#1| (-1083 |t#1|)) (-387 |t#1|) (-209 |t#1|) (-314 |t#1|) (-376 |t#1|) (-815 |t#1|) (-353 |t#1|) (-158) (-10 -8 (-6 -2571) (-15 -3917 ($)) (-15 -3208 ($ $)) (-15 -2571 ($ |t#1| |t#1|)) (-15 -1856 (|t#1| $)) (-15 -1842 (|t#1| $)) (-15 -3892 (|t#1| $)) (IF (|has| |t#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-6 (-515)) (-15 -3746 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-284)) (-6 (-284)) |%noBranch|) (IF (|has| |t#1| (-6 -4243)) (-6 -4243) |%noBranch|) (IF (|has| |t#1| (-6 -4240)) (-6 -4240) |%noBranch|) (IF (|has| |t#1| (-339)) (-6 (-339)) |%noBranch|) (IF (|has| |t#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-949)) (PROGN (-6 (-564 (-155 (-203)))) (-6 (-564 (-155 (-355))))) |%noBranch|) (IF (|has| |t#1| (-982)) (-15 -2619 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1108)) (PROGN (-6 (-1108)) (-15 -2135 (|t#1| $)) (IF (|has| |t#1| (-930)) (-6 (-930)) |%noBranch|) (IF (|has| |t#1| (-982)) (-15 -4107 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-15 -1292 ((-108) $)) (-15 -2146 ((-383 (-523)) $)) (-15 -3346 ((-3 (-383 (-523)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-840)) (IF (|has| |t#1| (-284)) (-6 (-840)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-37 |#1|) . T) ((-37 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-325)) (|has| |#1| (-339)) (|has| |#1| (-284))) ((-34) |has| |#1| (-1108)) ((-91) |has| |#1| (-1108)) ((-97) . T) ((-107 #0# #0#) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-134) -3262 (|has| |#1| (-325)) (|has| |#1| (-134))) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) . T) ((-564 (-155 (-203))) |has| |#1| (-949)) ((-564 (-155 (-355))) |has| |#1| (-949)) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-564 (-823 (-355))) |has| |#1| (-564 (-823 (-355)))) ((-564 (-823 (-523))) |has| |#1| (-564 (-823 (-523)))) ((-564 #1=(-1083 |#1|)) . T) ((-209 |#1|) . T) ((-211) -3262 (|has| |#1| (-325)) (|has| |#1| (-211))) ((-221) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-261) |has| |#1| (-1108)) ((-263 |#1| $) |has| |#1| (-263 |#1| |#1|)) ((-267) -3262 (|has| |#1| (-515)) (|has| |#1| (-325)) (|has| |#1| (-339)) (|has| |#1| (-284))) ((-284) -3262 (|has| |#1| (-325)) (|has| |#1| (-339)) (|has| |#1| (-284))) ((-286 |#1|) |has| |#1| (-286 |#1|)) ((-339) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-378) |has| |#1| (-325)) ((-344) -3262 (|has| |#1| (-344)) (|has| |#1| (-325))) ((-325) |has| |#1| (-325)) ((-346 |#1| #1#) . T) ((-385 |#1| #1#) . T) ((-314 |#1|) . T) ((-353 |#1|) . T) ((-376 |#1|) . T) ((-387 |#1|) . T) ((-427) -3262 (|has| |#1| (-325)) (|has| |#1| (-339)) (|has| |#1| (-284))) ((-464) |has| |#1| (-1108)) ((-484 (-1087) |#1|) |has| |#1| (-484 (-1087) |#1|)) ((-484 |#1| |#1|) |has| |#1| (-286 |#1|)) ((-515) -3262 (|has| |#1| (-515)) (|has| |#1| (-325)) (|has| |#1| (-339)) (|has| |#1| (-284))) ((-591 #0#) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #0#) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-657 |#1|) . T) ((-657 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-325)) (|has| |#1| (-339)) (|has| |#1| (-284))) ((-664 |#1| #1#) . T) ((-666) . T) ((-786) |has| |#1| (-786)) ((-831 (-1087)) |has| |#1| (-831 (-1087))) ((-817 (-355)) |has| |#1| (-817 (-355))) ((-817 (-523)) |has| |#1| (-817 (-523))) ((-815 |#1|) . T) ((-840) -12 (|has| |#1| (-284)) (|has| |#1| (-840))) ((-851) -3262 (|has| |#1| (-325)) (|has| |#1| (-339)) (|has| |#1| (-284))) ((-930) -12 (|has| |#1| (-930)) (|has| |#1| (-1108))) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-979 #0#) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-979 |#1|) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) |has| |#1| (-325)) ((-1108) |has| |#1| (-1108)) ((-1111) |has| |#1| (-1108)) ((-1122) . T) ((-1126) -3262 (|has| |#1| (-325)) (|has| |#1| (-339)) (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) +((-1820 (((-394 |#2|) |#2|) 63))) +(((-153 |#1| |#2|) (-10 -7 (-15 -1820 ((-394 |#2|) |#2|))) (-284) (-1144 (-155 |#1|))) (T -153)) +((-1820 (*1 *2 *3) (-12 (-4 *4 (-284)) (-5 *2 (-394 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1144 (-155 *4)))))) +(-10 -7 (-15 -1820 ((-394 |#2|) |#2|))) +((-3612 (((-155 |#2|) (-1 |#2| |#1|) (-155 |#1|)) 14))) +(((-154 |#1| |#2|) (-10 -7 (-15 -3612 ((-155 |#2|) (-1 |#2| |#1|) (-155 |#1|)))) (-158) (-158)) (T -154)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-155 *5)) (-4 *5 (-158)) (-4 *6 (-158)) (-5 *2 (-155 *6)) (-5 *1 (-154 *5 *6))))) +(-10 -7 (-15 -3612 ((-155 |#2|) (-1 |#2| |#1|) (-155 |#1|)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 33)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-515))))) (-3345 (($ $) NIL (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-515))))) (-3331 (((-108) $) NIL (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-515))))) (-3750 (((-629 |#1|) (-1168 $)) NIL) (((-629 |#1|)) NIL)) (-4187 ((|#1| $) NIL)) (-1769 (($ $) NIL (|has| |#1| (-1108)))) (-3780 (($ $) NIL (|has| |#1| (-1108)))) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| |#1| (-325)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-2291 (($ $) NIL (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-3614 (((-394 $) $) NIL (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-1832 (($ $) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-1108))))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-1387 (((-108) $ $) NIL (|has| |#1| (-284)))) (-1703 (((-710)) NIL (|has| |#1| (-344)))) (-1744 (($ $) NIL (|has| |#1| (-1108)))) (-3711 (($ $) NIL (|has| |#1| (-1108)))) (-1793 (($ $) NIL (|has| |#1| (-1108)))) (-3805 (($ $) NIL (|has| |#1| (-1108)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-3409 (($ (-1168 |#1|) (-1168 $)) NIL) (($ (-1168 |#1|)) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-325)))) (-3796 (($ $ $) NIL (|has| |#1| (-284)))) (-4079 (((-629 |#1|) $ (-1168 $)) NIL) (((-629 |#1|) $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2437 (($ (-1083 |#1|)) NIL) (((-3 $ "failed") (-383 (-1083 |#1|))) NIL (|has| |#1| (-339)))) (-2121 (((-3 $ "failed") $) NIL)) (-1842 ((|#1| $) 13)) (-3346 (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-508)))) (-1292 (((-108) $) NIL (|has| |#1| (-508)))) (-2146 (((-383 (-523)) $) NIL (|has| |#1| (-508)))) (-1319 (((-852)) NIL)) (-4032 (($) NIL (|has| |#1| (-344)))) (-3769 (($ $ $) NIL (|has| |#1| (-284)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-284)))) (-1996 (($) NIL (|has| |#1| (-325)))) (-2155 (((-108) $) NIL (|has| |#1| (-325)))) (-1991 (($ $ (-710)) NIL (|has| |#1| (-325))) (($ $) NIL (|has| |#1| (-325)))) (-2657 (((-108) $) NIL (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-4107 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-982)) (|has| |#1| (-1108))))) (-2820 (($) NIL (|has| |#1| (-1108)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| |#1| (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| |#1| (-817 (-355))))) (-1640 (((-852) $) NIL (|has| |#1| (-325))) (((-772 (-852)) $) NIL (|has| |#1| (-325)))) (-2023 (((-108) $) 35)) (-1420 (($ $ (-523)) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-1108))))) (-3892 ((|#1| $) 46)) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-325)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-284)))) (-1397 (((-1083 |#1|) $) NIL (|has| |#1| (-339)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2072 (((-852) $) NIL (|has| |#1| (-344)))) (-2384 (($ $) NIL (|has| |#1| (-1108)))) (-2428 (((-1083 |#1|) $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-284))) (($ $ $) NIL (|has| |#1| (-284)))) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| |#1| (-339)))) (-2262 (($) NIL (|has| |#1| (-325)) CONST)) (-3878 (($ (-852)) NIL (|has| |#1| (-344)))) (-3917 (($) NIL)) (-1856 ((|#1| $) 15)) (-2783 (((-1034) $) NIL)) (-3441 (($) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-284)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-284))) (($ $ $) NIL (|has| |#1| (-284)))) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| |#1| (-325)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-284)) (|has| |#1| (-840))))) (-1820 (((-394 $) $) NIL (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-339))))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-284))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-284)))) (-3746 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-515))) (((-3 $ "failed") $ $) 47 (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-515))))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-284)))) (-1811 (($ $) NIL (|has| |#1| (-1108)))) (-2679 (($ $ (-589 |#1|) (-589 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) NIL (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-484 (-1087) |#1|)))) (-1972 (((-710) $) NIL (|has| |#1| (-284)))) (-3223 (($ $ |#1|) NIL (|has| |#1| (-263 |#1| |#1|)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-284)))) (-3549 ((|#1| (-1168 $)) NIL) ((|#1|) NIL)) (-2974 (((-710) $) NIL (|has| |#1| (-325))) (((-3 (-710) "failed") $ $) NIL (|has| |#1| (-325)))) (-3523 (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $) NIL (|has| |#1| (-211)))) (-1976 (((-629 |#1|) (-1168 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-339)))) (-3727 (((-1083 |#1|)) NIL)) (-1805 (($ $) NIL (|has| |#1| (-1108)))) (-3816 (($ $) NIL (|has| |#1| (-1108)))) (-3425 (($) NIL (|has| |#1| (-325)))) (-1782 (($ $) NIL (|has| |#1| (-1108)))) (-3793 (($ $) NIL (|has| |#1| (-1108)))) (-1757 (($ $) NIL (|has| |#1| (-1108)))) (-3767 (($ $) NIL (|has| |#1| (-1108)))) (-2966 (((-1168 |#1|) $ (-1168 $)) NIL) (((-629 |#1|) (-1168 $) (-1168 $)) NIL) (((-1168 |#1|) $) NIL) (((-629 |#1|) (-1168 $)) NIL)) (-3663 (((-1168 |#1|) $) NIL) (($ (-1168 |#1|)) NIL) (((-1083 |#1|) $) NIL) (($ (-1083 |#1|)) NIL) (((-823 (-523)) $) NIL (|has| |#1| (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| |#1| (-564 (-823 (-355))))) (((-155 (-355)) $) NIL (|has| |#1| (-949))) (((-155 (-203)) $) NIL (|has| |#1| (-949))) (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-3208 (($ $) 45)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-325))))) (-2571 (($ |#1| |#1|) 37)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) 36) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-339)) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-515))))) (-3901 (($ $) NIL (|has| |#1| (-325))) (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1807 (((-1083 |#1|) $) NIL)) (-1621 (((-710)) NIL)) (-4041 (((-1168 $)) NIL)) (-1839 (($ $) NIL (|has| |#1| (-1108)))) (-3847 (($ $) NIL (|has| |#1| (-1108)))) (-1704 (((-108) $ $) NIL (-3262 (-12 (|has| |#1| (-284)) (|has| |#1| (-840))) (|has| |#1| (-515))))) (-1818 (($ $) NIL (|has| |#1| (-1108)))) (-3828 (($ $) NIL (|has| |#1| (-1108)))) (-1865 (($ $) NIL (|has| |#1| (-1108)))) (-1719 (($ $) NIL (|has| |#1| (-1108)))) (-2135 ((|#1| $) NIL (|has| |#1| (-1108)))) (-2914 (($ $) NIL (|has| |#1| (-1108)))) (-1731 (($ $) NIL (|has| |#1| (-1108)))) (-1852 (($ $) NIL (|has| |#1| (-1108)))) (-3859 (($ $) NIL (|has| |#1| (-1108)))) (-1830 (($ $) NIL (|has| |#1| (-1108)))) (-3838 (($ $) NIL (|has| |#1| (-1108)))) (-2619 (($ $) NIL (|has| |#1| (-982)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) 28 T CONST)) (-2767 (($) 30 T CONST)) (-3790 (((-1070) $) 23 (|has| |#1| (-767))) (((-1070) $ (-108)) 25 (|has| |#1| (-767))) (((-1173) (-761) $) 26 (|has| |#1| (-767))) (((-1173) (-761) $ (-108)) 27 (|has| |#1| (-767)))) (-2862 (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $) NIL (|has| |#1| (-211)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4098 (($ $ $) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 39)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-383 (-523))) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-1108)))) (($ $ $) NIL (|has| |#1| (-1108))) (($ $ (-523)) NIL (|has| |#1| (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-383 (-523)) $) NIL (|has| |#1| (-339))) (($ $ (-383 (-523))) NIL (|has| |#1| (-339))))) +(((-155 |#1|) (-13 (-152 |#1|) (-10 -7 (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|))) (-158)) (T -155)) +NIL +(-13 (-152 |#1|) (-10 -7 (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|))) +((-3663 (((-823 |#1|) |#3|) 22))) +(((-156 |#1| |#2| |#3|) (-10 -7 (-15 -3663 ((-823 |#1|) |#3|))) (-1016) (-13 (-564 (-823 |#1|)) (-158)) (-152 |#2|)) (T -156)) +((-3663 (*1 *2 *3) (-12 (-4 *5 (-13 (-564 *2) (-158))) (-5 *2 (-823 *4)) (-5 *1 (-156 *4 *5 *3)) (-4 *4 (-1016)) (-4 *3 (-152 *5))))) +(-10 -7 (-15 -3663 ((-823 |#1|) |#3|))) +((-3924 (((-108) $ $) NIL)) (-3238 (((-108) $) 9)) (-4067 (((-108) $ (-108)) 11)) (-3052 (($) 12)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1664 (($ $) 13)) (-1458 (((-794) $) 17)) (-1553 (((-108) $) 8)) (-3952 (((-108) $ (-108)) 10)) (-3983 (((-108) $ $) NIL))) +(((-157) (-13 (-1016) (-10 -8 (-15 -3052 ($)) (-15 -1553 ((-108) $)) (-15 -3238 ((-108) $)) (-15 -3952 ((-108) $ (-108))) (-15 -4067 ((-108) $ (-108))) (-15 -1664 ($ $))))) (T -157)) +((-3052 (*1 *1) (-5 *1 (-157))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-157)))) (-3238 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-157)))) (-3952 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-157)))) (-4067 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-157)))) (-1664 (*1 *1 *1) (-5 *1 (-157)))) +(-13 (-1016) (-10 -8 (-15 -3052 ($)) (-15 -1553 ((-108) $)) (-15 -3238 ((-108) $)) (-15 -3952 ((-108) $ (-108))) (-15 -4067 ((-108) $ (-108))) (-15 -1664 ($ $)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-158) (-129)) (T -158)) +NIL +(-13 (-973) (-107 $ $) (-10 -7 (-6 (-4246 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 $) . T) ((-666) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3458 ((|#1| $) 75)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-3796 (($ $ $) NIL)) (-2427 (($ $) 19)) (-1399 (($ |#1| (-1068 |#1|)) 48)) (-2121 (((-3 $ "failed") $) 117)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2070 (((-1068 |#1|) $) 82)) (-3145 (((-1068 |#1|) $) 79)) (-3577 (((-1068 |#1|) $) 80)) (-2023 (((-108) $) NIL)) (-1720 (((-1068 |#1|) $) 88)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3244 (($ (-589 $)) NIL) (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ (-589 $)) NIL) (($ $ $) NIL)) (-1820 (((-394 $) $) NIL)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL)) (-4097 (($ $ (-523)) 91)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3228 (((-1068 |#1|) $) 89)) (-3250 (((-1068 (-383 |#1|)) $) 13)) (-2947 (($ (-383 |#1|)) 17) (($ |#1| (-1068 |#1|) (-1068 |#1|)) 38)) (-1353 (($ $) 93)) (-1458 (((-794) $) 127) (($ (-523)) 51) (($ |#1|) 52) (($ (-383 |#1|)) 36) (($ (-383 (-523))) NIL) (($ $) NIL)) (-1621 (((-710)) 64)) (-1704 (((-108) $ $) NIL)) (-3911 (((-1068 (-383 |#1|)) $) 18)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 25 T CONST)) (-2767 (($) 28 T CONST)) (-3983 (((-108) $ $) 35)) (-4098 (($ $ $) 115)) (-4087 (($ $) 106) (($ $ $) 103)) (-4075 (($ $ $) 101)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-383 |#1|) $) 111) (($ $ (-383 |#1|)) NIL) (($ (-383 (-523)) $) NIL) (($ $ (-383 (-523))) NIL))) +(((-159 |#1|) (-13 (-37 |#1|) (-37 (-383 |#1|)) (-339) (-10 -8 (-15 -2947 ($ (-383 |#1|))) (-15 -2947 ($ |#1| (-1068 |#1|) (-1068 |#1|))) (-15 -1399 ($ |#1| (-1068 |#1|))) (-15 -3145 ((-1068 |#1|) $)) (-15 -3577 ((-1068 |#1|) $)) (-15 -2070 ((-1068 |#1|) $)) (-15 -3458 (|#1| $)) (-15 -2427 ($ $)) (-15 -3911 ((-1068 (-383 |#1|)) $)) (-15 -3250 ((-1068 (-383 |#1|)) $)) (-15 -1720 ((-1068 |#1|) $)) (-15 -3228 ((-1068 |#1|) $)) (-15 -4097 ($ $ (-523))) (-15 -1353 ($ $)))) (-284)) (T -159)) +((-2947 (*1 *1 *2) (-12 (-5 *2 (-383 *3)) (-4 *3 (-284)) (-5 *1 (-159 *3)))) (-2947 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-284)) (-5 *1 (-159 *2)))) (-1399 (*1 *1 *2 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-284)) (-5 *1 (-159 *2)))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-2070 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-3458 (*1 *2 *1) (-12 (-5 *1 (-159 *2)) (-4 *2 (-284)))) (-2427 (*1 *1 *1) (-12 (-5 *1 (-159 *2)) (-4 *2 (-284)))) (-3911 (*1 *2 *1) (-12 (-5 *2 (-1068 (-383 *3))) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-1068 (-383 *3))) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-1720 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-4097 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-159 *3)) (-4 *3 (-284)))) (-1353 (*1 *1 *1) (-12 (-5 *1 (-159 *2)) (-4 *2 (-284))))) +(-13 (-37 |#1|) (-37 (-383 |#1|)) (-339) (-10 -8 (-15 -2947 ($ (-383 |#1|))) (-15 -2947 ($ |#1| (-1068 |#1|) (-1068 |#1|))) (-15 -1399 ($ |#1| (-1068 |#1|))) (-15 -3145 ((-1068 |#1|) $)) (-15 -3577 ((-1068 |#1|) $)) (-15 -2070 ((-1068 |#1|) $)) (-15 -3458 (|#1| $)) (-15 -2427 ($ $)) (-15 -3911 ((-1068 (-383 |#1|)) $)) (-15 -3250 ((-1068 (-383 |#1|)) $)) (-15 -1720 ((-1068 |#1|) $)) (-15 -3228 ((-1068 |#1|) $)) (-15 -4097 ($ $ (-523))) (-15 -1353 ($ $)))) +((-1902 (($ (-104) $) 13)) (-1422 (((-3 (-104) "failed") (-1087) $) 12)) (-1458 (((-794) $) 16)) (-3903 (((-589 (-104)) $) 7))) +(((-160) (-13 (-563 (-794)) (-10 -8 (-15 -3903 ((-589 (-104)) $)) (-15 -1902 ($ (-104) $)) (-15 -1422 ((-3 (-104) "failed") (-1087) $))))) (T -160)) +((-3903 (*1 *2 *1) (-12 (-5 *2 (-589 (-104))) (-5 *1 (-160)))) (-1902 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-160)))) (-1422 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-104)) (-5 *1 (-160))))) +(-13 (-563 (-794)) (-10 -8 (-15 -3903 ((-589 (-104)) $)) (-15 -1902 ($ (-104) $)) (-15 -1422 ((-3 (-104) "failed") (-1087) $)))) +((-2497 (((-1 (-874 |#1|) (-874 |#1|)) |#1|) 40)) (-1715 (((-874 |#1|) (-874 |#1|)) 19)) (-3843 (((-1 (-874 |#1|) (-874 |#1|)) |#1|) 36)) (-3008 (((-874 |#1|) (-874 |#1|)) 17)) (-2143 (((-874 |#1|) (-874 |#1|)) 25)) (-2357 (((-874 |#1|) (-874 |#1|)) 24)) (-3493 (((-874 |#1|) (-874 |#1|)) 23)) (-1929 (((-1 (-874 |#1|) (-874 |#1|)) |#1|) 37)) (-2039 (((-1 (-874 |#1|) (-874 |#1|)) |#1|) 35)) (-3308 (((-1 (-874 |#1|) (-874 |#1|)) |#1|) 34)) (-1299 (((-874 |#1|) (-874 |#1|)) 18)) (-2034 (((-1 (-874 |#1|) (-874 |#1|)) |#1| |#1|) 43)) (-3583 (((-874 |#1|) (-874 |#1|)) 8)) (-3030 (((-1 (-874 |#1|) (-874 |#1|)) |#1|) 39)) (-3827 (((-1 (-874 |#1|) (-874 |#1|)) |#1|) 38))) +(((-161 |#1|) (-10 -7 (-15 -3583 ((-874 |#1|) (-874 |#1|))) (-15 -3008 ((-874 |#1|) (-874 |#1|))) (-15 -1299 ((-874 |#1|) (-874 |#1|))) (-15 -1715 ((-874 |#1|) (-874 |#1|))) (-15 -3493 ((-874 |#1|) (-874 |#1|))) (-15 -2357 ((-874 |#1|) (-874 |#1|))) (-15 -2143 ((-874 |#1|) (-874 |#1|))) (-15 -3308 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2039 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -3843 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -1929 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -3827 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -3030 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2497 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2034 ((-1 (-874 |#1|) (-874 |#1|)) |#1| |#1|))) (-13 (-339) (-1108) (-930))) (T -161)) +((-2034 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1108) (-930))))) (-2497 (*1 *2 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1108) (-930))))) (-3030 (*1 *2 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1108) (-930))))) (-3827 (*1 *2 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1108) (-930))))) (-1929 (*1 *2 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1108) (-930))))) (-3843 (*1 *2 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1108) (-930))))) (-2039 (*1 *2 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1108) (-930))))) (-3308 (*1 *2 *3) (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) (-4 *3 (-13 (-339) (-1108) (-930))))) (-2143 (*1 *2 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) (-5 *1 (-161 *3)))) (-2357 (*1 *2 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) (-5 *1 (-161 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) (-5 *1 (-161 *3)))) (-1715 (*1 *2 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) (-5 *1 (-161 *3)))) (-1299 (*1 *2 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) (-5 *1 (-161 *3)))) (-3008 (*1 *2 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) (-5 *1 (-161 *3)))) (-3583 (*1 *2 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) (-5 *1 (-161 *3))))) +(-10 -7 (-15 -3583 ((-874 |#1|) (-874 |#1|))) (-15 -3008 ((-874 |#1|) (-874 |#1|))) (-15 -1299 ((-874 |#1|) (-874 |#1|))) (-15 -1715 ((-874 |#1|) (-874 |#1|))) (-15 -3493 ((-874 |#1|) (-874 |#1|))) (-15 -2357 ((-874 |#1|) (-874 |#1|))) (-15 -2143 ((-874 |#1|) (-874 |#1|))) (-15 -3308 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2039 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -3843 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -1929 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -3827 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -3030 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2497 ((-1 (-874 |#1|) (-874 |#1|)) |#1|)) (-15 -2034 ((-1 (-874 |#1|) (-874 |#1|)) |#1| |#1|))) +((-1807 ((|#2| |#3|) 27))) +(((-162 |#1| |#2| |#3|) (-10 -7 (-15 -1807 (|#2| |#3|))) (-158) (-1144 |#1|) (-664 |#1| |#2|)) (T -162)) +((-1807 (*1 *2 *3) (-12 (-4 *4 (-158)) (-4 *2 (-1144 *4)) (-5 *1 (-162 *4 *2 *3)) (-4 *3 (-664 *4 *2))))) +(-10 -7 (-15 -1807 (|#2| |#3|))) +((-2130 (((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)) 47 (|has| (-883 |#2|) (-817 |#1|))))) +(((-163 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-883 |#2|) (-817 |#1|)) (-15 -2130 ((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|))) |%noBranch|)) (-1016) (-13 (-817 |#1|) (-158)) (-152 |#2|)) (T -163)) +((-2130 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *3)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-4 *3 (-152 *6)) (-4 (-883 *6) (-817 *5)) (-4 *6 (-13 (-817 *5) (-158))) (-5 *1 (-163 *5 *6 *3))))) +(-10 -7 (IF (|has| (-883 |#2|) (-817 |#1|)) (-15 -2130 ((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|))) |%noBranch|)) +((-3015 (((-589 |#1|) (-589 |#1|) |#1|) 36)) (-2451 (((-589 |#1|) |#1| (-589 |#1|)) 19)) (-3169 (((-589 |#1|) (-589 (-589 |#1|)) (-589 |#1|)) 31) ((|#1| (-589 |#1|) (-589 |#1|)) 29))) +(((-164 |#1|) (-10 -7 (-15 -2451 ((-589 |#1|) |#1| (-589 |#1|))) (-15 -3169 (|#1| (-589 |#1|) (-589 |#1|))) (-15 -3169 ((-589 |#1|) (-589 (-589 |#1|)) (-589 |#1|))) (-15 -3015 ((-589 |#1|) (-589 |#1|) |#1|))) (-284)) (T -164)) +((-3015 (*1 *2 *2 *3) (-12 (-5 *2 (-589 *3)) (-4 *3 (-284)) (-5 *1 (-164 *3)))) (-3169 (*1 *2 *3 *2) (-12 (-5 *3 (-589 (-589 *4))) (-5 *2 (-589 *4)) (-4 *4 (-284)) (-5 *1 (-164 *4)))) (-3169 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *2)) (-5 *1 (-164 *2)) (-4 *2 (-284)))) (-2451 (*1 *2 *3 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-284)) (-5 *1 (-164 *3))))) +(-10 -7 (-15 -2451 ((-589 |#1|) |#1| (-589 |#1|))) (-15 -3169 (|#1| (-589 |#1|) (-589 |#1|))) (-15 -3169 ((-589 |#1|) (-589 (-589 |#1|)) (-589 |#1|))) (-15 -3015 ((-589 |#1|) (-589 |#1|) |#1|))) +((-3719 (((-2 (|:| |start| |#2|) (|:| -1979 (-394 |#2|))) |#2|) 61)) (-1798 ((|#1| |#1|) 54)) (-2671 (((-155 |#1|) |#2|) 83)) (-2733 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 81)) (-3093 ((|#2| |#2|) 82)) (-3405 (((-394 |#2|) |#2| |#1|) 113) (((-394 |#2|) |#2| |#1| (-108)) 80)) (-3892 ((|#1| |#2|) 112)) (-3477 ((|#2| |#2|) 119)) (-1820 (((-394 |#2|) |#2|) 134) (((-394 |#2|) |#2| |#1|) 32) (((-394 |#2|) |#2| |#1| (-108)) 133)) (-1603 (((-589 (-2 (|:| -1979 (-589 |#2|)) (|:| -3314 |#1|))) |#2| |#2|) 132) (((-589 (-2 (|:| -1979 (-589 |#2|)) (|:| -3314 |#1|))) |#2| |#2| (-108)) 75)) (-2138 (((-589 (-155 |#1|)) |#2| |#1|) 40) (((-589 (-155 |#1|)) |#2|) 41))) +(((-165 |#1| |#2|) (-10 -7 (-15 -2138 ((-589 (-155 |#1|)) |#2|)) (-15 -2138 ((-589 (-155 |#1|)) |#2| |#1|)) (-15 -1603 ((-589 (-2 (|:| -1979 (-589 |#2|)) (|:| -3314 |#1|))) |#2| |#2| (-108))) (-15 -1603 ((-589 (-2 (|:| -1979 (-589 |#2|)) (|:| -3314 |#1|))) |#2| |#2|)) (-15 -1820 ((-394 |#2|) |#2| |#1| (-108))) (-15 -1820 ((-394 |#2|) |#2| |#1|)) (-15 -1820 ((-394 |#2|) |#2|)) (-15 -3477 (|#2| |#2|)) (-15 -3892 (|#1| |#2|)) (-15 -3405 ((-394 |#2|) |#2| |#1| (-108))) (-15 -3405 ((-394 |#2|) |#2| |#1|)) (-15 -3093 (|#2| |#2|)) (-15 -2733 (|#1| |#2| |#1|)) (-15 -2733 (|#1| |#2|)) (-15 -2671 ((-155 |#1|) |#2|)) (-15 -1798 (|#1| |#1|)) (-15 -3719 ((-2 (|:| |start| |#2|) (|:| -1979 (-394 |#2|))) |#2|))) (-13 (-339) (-784)) (-1144 (-155 |#1|))) (T -165)) +((-3719 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-2 (|:| |start| *3) (|:| -1979 (-394 *3)))) (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) (-1798 (*1 *2 *2) (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) (-4 *3 (-1144 (-155 *2))))) (-2671 (*1 *2 *3) (-12 (-5 *2 (-155 *4)) (-5 *1 (-165 *4 *3)) (-4 *4 (-13 (-339) (-784))) (-4 *3 (-1144 *2)))) (-2733 (*1 *2 *3) (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) (-4 *3 (-1144 (-155 *2))))) (-2733 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) (-4 *3 (-1144 (-155 *2))))) (-3093 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-784))) (-5 *1 (-165 *3 *2)) (-4 *2 (-1144 (-155 *3))))) (-3405 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) (-3405 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) (-3892 (*1 *2 *3) (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) (-4 *3 (-1144 (-155 *2))))) (-3477 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-784))) (-5 *1 (-165 *3 *2)) (-4 *2 (-1144 (-155 *3))))) (-1820 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) (-1820 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) (-1820 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) (-1603 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-589 (-2 (|:| -1979 (-589 *3)) (|:| -3314 *4)))) (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) (-1603 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-339) (-784))) (-5 *2 (-589 (-2 (|:| -1979 (-589 *3)) (|:| -3314 *5)))) (-5 *1 (-165 *5 *3)) (-4 *3 (-1144 (-155 *5))))) (-2138 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-589 (-155 *4))) (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) (-2138 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-589 (-155 *4))) (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4)))))) +(-10 -7 (-15 -2138 ((-589 (-155 |#1|)) |#2|)) (-15 -2138 ((-589 (-155 |#1|)) |#2| |#1|)) (-15 -1603 ((-589 (-2 (|:| -1979 (-589 |#2|)) (|:| -3314 |#1|))) |#2| |#2| (-108))) (-15 -1603 ((-589 (-2 (|:| -1979 (-589 |#2|)) (|:| -3314 |#1|))) |#2| |#2|)) (-15 -1820 ((-394 |#2|) |#2| |#1| (-108))) (-15 -1820 ((-394 |#2|) |#2| |#1|)) (-15 -1820 ((-394 |#2|) |#2|)) (-15 -3477 (|#2| |#2|)) (-15 -3892 (|#1| |#2|)) (-15 -3405 ((-394 |#2|) |#2| |#1| (-108))) (-15 -3405 ((-394 |#2|) |#2| |#1|)) (-15 -3093 (|#2| |#2|)) (-15 -2733 (|#1| |#2| |#1|)) (-15 -2733 (|#1| |#2|)) (-15 -2671 ((-155 |#1|) |#2|)) (-15 -1798 (|#1| |#1|)) (-15 -3719 ((-2 (|:| |start| |#2|) (|:| -1979 (-394 |#2|))) |#2|))) +((-1993 (((-3 |#2| "failed") |#2|) 14)) (-1765 (((-710) |#2|) 16)) (-1650 ((|#2| |#2| |#2|) 18))) +(((-166 |#1| |#2|) (-10 -7 (-15 -1993 ((-3 |#2| "failed") |#2|)) (-15 -1765 ((-710) |#2|)) (-15 -1650 (|#2| |#2| |#2|))) (-1122) (-616 |#1|)) (T -166)) +((-1650 (*1 *2 *2 *2) (-12 (-4 *3 (-1122)) (-5 *1 (-166 *3 *2)) (-4 *2 (-616 *3)))) (-1765 (*1 *2 *3) (-12 (-4 *4 (-1122)) (-5 *2 (-710)) (-5 *1 (-166 *4 *3)) (-4 *3 (-616 *4)))) (-1993 (*1 *2 *2) (|partial| -12 (-4 *3 (-1122)) (-5 *1 (-166 *3 *2)) (-4 *2 (-616 *3))))) +(-10 -7 (-15 -1993 ((-3 |#2| "failed") |#2|)) (-15 -1765 ((-710) |#2|)) (-15 -1650 (|#2| |#2| |#2|))) +((-3035 (((-1087) $) 9)) (-1458 (((-794) $) 13)) (-2455 (((-589 (-1092)) $) 11))) +(((-167) (-13 (-563 (-794)) (-10 -8 (-15 -3035 ((-1087) $)) (-15 -2455 ((-589 (-1092)) $))))) (T -167)) +((-3035 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-167)))) (-2455 (*1 *2 *1) (-12 (-5 *2 (-589 (-1092))) (-5 *1 (-167))))) +(-13 (-563 (-794)) (-10 -8 (-15 -3035 ((-1087) $)) (-15 -2455 ((-589 (-1092)) $)))) +((-2653 ((|#2| |#2|) 28)) (-3623 (((-108) |#2|) 19)) (-1842 (((-292 |#1|) |#2|) 12)) (-1856 (((-292 |#1|) |#2|) 14)) (-2902 ((|#2| |#2| (-1087)) 68) ((|#2| |#2|) 69)) (-3726 (((-155 (-292 |#1|)) |#2|) 9)) (-1901 ((|#2| |#2| (-1087)) 65) ((|#2| |#2|) 58))) +(((-168 |#1| |#2|) (-10 -7 (-15 -2902 (|#2| |#2|)) (-15 -2902 (|#2| |#2| (-1087))) (-15 -1901 (|#2| |#2|)) (-15 -1901 (|#2| |#2| (-1087))) (-15 -1842 ((-292 |#1|) |#2|)) (-15 -1856 ((-292 |#1|) |#2|)) (-15 -3623 ((-108) |#2|)) (-15 -2653 (|#2| |#2|)) (-15 -3726 ((-155 (-292 |#1|)) |#2|))) (-13 (-515) (-786) (-964 (-523))) (-13 (-27) (-1108) (-406 (-155 |#1|)))) (T -168)) +((-3726 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-155 (-292 *4))) (-5 *1 (-168 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 (-155 *4)))))) (-2653 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 (-155 *3)))))) (-3623 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-108)) (-5 *1 (-168 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 (-155 *4)))))) (-1856 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-292 *4)) (-5 *1 (-168 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 (-155 *4)))))) (-1842 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-292 *4)) (-5 *1 (-168 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 (-155 *4)))))) (-1901 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 (-155 *4)))))) (-1901 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 (-155 *3)))))) (-2902 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 (-155 *4)))))) (-2902 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 (-155 *3))))))) +(-10 -7 (-15 -2902 (|#2| |#2|)) (-15 -2902 (|#2| |#2| (-1087))) (-15 -1901 (|#2| |#2|)) (-15 -1901 (|#2| |#2| (-1087))) (-15 -1842 ((-292 |#1|) |#2|)) (-15 -1856 ((-292 |#1|) |#2|)) (-15 -3623 ((-108) |#2|)) (-15 -2653 (|#2| |#2|)) (-15 -3726 ((-155 (-292 |#1|)) |#2|))) +((-1727 (((-1168 (-629 (-883 |#1|))) (-1168 (-629 |#1|))) 22)) (-1458 (((-1168 (-629 (-383 (-883 |#1|)))) (-1168 (-629 |#1|))) 30))) +(((-169 |#1|) (-10 -7 (-15 -1727 ((-1168 (-629 (-883 |#1|))) (-1168 (-629 |#1|)))) (-15 -1458 ((-1168 (-629 (-383 (-883 |#1|)))) (-1168 (-629 |#1|))))) (-158)) (T -169)) +((-1458 (*1 *2 *3) (-12 (-5 *3 (-1168 (-629 *4))) (-4 *4 (-158)) (-5 *2 (-1168 (-629 (-383 (-883 *4))))) (-5 *1 (-169 *4)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-1168 (-629 *4))) (-4 *4 (-158)) (-5 *2 (-1168 (-629 (-883 *4)))) (-5 *1 (-169 *4))))) +(-10 -7 (-15 -1727 ((-1168 (-629 (-883 |#1|))) (-1168 (-629 |#1|)))) (-15 -1458 ((-1168 (-629 (-383 (-883 |#1|)))) (-1168 (-629 |#1|))))) +((-1774 (((-1089 (-383 (-523))) (-1089 (-383 (-523))) (-1089 (-383 (-523)))) 66)) (-3797 (((-1089 (-383 (-523))) (-589 (-523)) (-589 (-523))) 74)) (-1671 (((-1089 (-383 (-523))) (-523)) 40)) (-2951 (((-1089 (-383 (-523))) (-523)) 52)) (-2679 (((-383 (-523)) (-1089 (-383 (-523)))) 62)) (-1513 (((-1089 (-383 (-523))) (-523)) 32)) (-3088 (((-1089 (-383 (-523))) (-523)) 48)) (-2473 (((-1089 (-383 (-523))) (-523)) 46)) (-3734 (((-1089 (-383 (-523))) (-1089 (-383 (-523))) (-1089 (-383 (-523)))) 60)) (-1353 (((-1089 (-383 (-523))) (-523)) 25)) (-2188 (((-383 (-523)) (-1089 (-383 (-523))) (-1089 (-383 (-523)))) 64)) (-3544 (((-1089 (-383 (-523))) (-523)) 30)) (-3467 (((-1089 (-383 (-523))) (-589 (-523))) 71))) +(((-170) (-10 -7 (-15 -1353 ((-1089 (-383 (-523))) (-523))) (-15 -1671 ((-1089 (-383 (-523))) (-523))) (-15 -1513 ((-1089 (-383 (-523))) (-523))) (-15 -3544 ((-1089 (-383 (-523))) (-523))) (-15 -2473 ((-1089 (-383 (-523))) (-523))) (-15 -3088 ((-1089 (-383 (-523))) (-523))) (-15 -2951 ((-1089 (-383 (-523))) (-523))) (-15 -2188 ((-383 (-523)) (-1089 (-383 (-523))) (-1089 (-383 (-523))))) (-15 -3734 ((-1089 (-383 (-523))) (-1089 (-383 (-523))) (-1089 (-383 (-523))))) (-15 -2679 ((-383 (-523)) (-1089 (-383 (-523))))) (-15 -1774 ((-1089 (-383 (-523))) (-1089 (-383 (-523))) (-1089 (-383 (-523))))) (-15 -3467 ((-1089 (-383 (-523))) (-589 (-523)))) (-15 -3797 ((-1089 (-383 (-523))) (-589 (-523)) (-589 (-523)))))) (T -170)) +((-3797 (*1 *2 *3 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)))) (-1774 (*1 *2 *2 *2) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-1089 (-383 (-523)))) (-5 *2 (-383 (-523))) (-5 *1 (-170)))) (-3734 (*1 *2 *2 *2) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)))) (-2188 (*1 *2 *3 *3) (-12 (-5 *3 (-1089 (-383 (-523)))) (-5 *2 (-383 (-523))) (-5 *1 (-170)))) (-2951 (*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) (-3088 (*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) (-2473 (*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) (-3544 (*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) (-1513 (*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) (-1671 (*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) (-1353 (*1 *2 *3) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523))))) +(-10 -7 (-15 -1353 ((-1089 (-383 (-523))) (-523))) (-15 -1671 ((-1089 (-383 (-523))) (-523))) (-15 -1513 ((-1089 (-383 (-523))) (-523))) (-15 -3544 ((-1089 (-383 (-523))) (-523))) (-15 -2473 ((-1089 (-383 (-523))) (-523))) (-15 -3088 ((-1089 (-383 (-523))) (-523))) (-15 -2951 ((-1089 (-383 (-523))) (-523))) (-15 -2188 ((-383 (-523)) (-1089 (-383 (-523))) (-1089 (-383 (-523))))) (-15 -3734 ((-1089 (-383 (-523))) (-1089 (-383 (-523))) (-1089 (-383 (-523))))) (-15 -2679 ((-383 (-523)) (-1089 (-383 (-523))))) (-15 -1774 ((-1089 (-383 (-523))) (-1089 (-383 (-523))) (-1089 (-383 (-523))))) (-15 -3467 ((-1089 (-383 (-523))) (-589 (-523)))) (-15 -3797 ((-1089 (-383 (-523))) (-589 (-523)) (-589 (-523))))) +((-3180 (((-394 (-1083 (-523))) (-523)) 28)) (-2461 (((-589 (-1083 (-523))) (-523)) 23)) (-1625 (((-1083 (-523)) (-523)) 21))) +(((-171) (-10 -7 (-15 -2461 ((-589 (-1083 (-523))) (-523))) (-15 -1625 ((-1083 (-523)) (-523))) (-15 -3180 ((-394 (-1083 (-523))) (-523))))) (T -171)) +((-3180 (*1 *2 *3) (-12 (-5 *2 (-394 (-1083 (-523)))) (-5 *1 (-171)) (-5 *3 (-523)))) (-1625 (*1 *2 *3) (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-171)) (-5 *3 (-523)))) (-2461 (*1 *2 *3) (-12 (-5 *2 (-589 (-1083 (-523)))) (-5 *1 (-171)) (-5 *3 (-523))))) +(-10 -7 (-15 -2461 ((-589 (-1083 (-523))) (-523))) (-15 -1625 ((-1083 (-523)) (-523))) (-15 -3180 ((-394 (-1083 (-523))) (-523)))) +((-2582 (((-1068 (-203)) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 101)) (-1975 (((-589 (-1070)) (-1068 (-203))) NIL)) (-3526 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 77)) (-3593 (((-589 (-203)) (-292 (-203)) (-1087) (-1011 (-779 (-203)))) NIL)) (-1863 (((-589 (-1070)) (-589 (-203))) NIL)) (-2074 (((-203) (-1011 (-779 (-203)))) 22)) (-2728 (((-203) (-1011 (-779 (-203)))) 23)) (-1692 (((-355) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 93)) (-1461 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 40)) (-1729 (((-1070) (-203)) NIL)) (-1622 (((-1070) (-589 (-1070))) 19)) (-2160 (((-962) (-1087) (-1087) (-962)) 12))) +(((-172) (-10 -7 (-15 -3526 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1461 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -2074 ((-203) (-1011 (-779 (-203))))) (-15 -2728 ((-203) (-1011 (-779 (-203))))) (-15 -1692 ((-355) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3593 ((-589 (-203)) (-292 (-203)) (-1087) (-1011 (-779 (-203))))) (-15 -2582 ((-1068 (-203)) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1729 ((-1070) (-203))) (-15 -1863 ((-589 (-1070)) (-589 (-203)))) (-15 -1975 ((-589 (-1070)) (-1068 (-203)))) (-15 -1622 ((-1070) (-589 (-1070)))) (-15 -2160 ((-962) (-1087) (-1087) (-962))))) (T -172)) +((-2160 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-962)) (-5 *3 (-1087)) (-5 *1 (-172)))) (-1622 (*1 *2 *3) (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1070)) (-5 *1 (-172)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-1068 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-172)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-589 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-172)))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1070)) (-5 *1 (-172)))) (-2582 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-1068 (-203))) (-5 *1 (-172)))) (-3593 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-292 (-203))) (-5 *4 (-1087)) (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-589 (-203))) (-5 *1 (-172)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-355)) (-5 *1 (-172)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-172)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-172)))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-172)))) (-3526 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-172))))) +(-10 -7 (-15 -3526 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1461 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -2074 ((-203) (-1011 (-779 (-203))))) (-15 -2728 ((-203) (-1011 (-779 (-203))))) (-15 -1692 ((-355) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3593 ((-589 (-203)) (-292 (-203)) (-1087) (-1011 (-779 (-203))))) (-15 -2582 ((-1068 (-203)) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1729 ((-1070) (-203))) (-15 -1863 ((-589 (-1070)) (-589 (-203)))) (-15 -1975 ((-589 (-1070)) (-1068 (-203)))) (-15 -1622 ((-1070) (-589 (-1070)))) (-15 -2160 ((-962) (-1087) (-1087) (-962)))) +((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 53) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 28) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +(((-173) (-726)) (T -173)) +NIL +(-726) +((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 58) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 37) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +(((-174) (-726)) (T -174)) +NIL +(-726) +((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 67) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 36) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +(((-175) (-726)) (T -175)) +NIL +(-726) +((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 54) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 30) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +(((-176) (-726)) (T -176)) +NIL +(-726) +((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 65) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 35) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +(((-177) (-726)) (T -177)) +NIL +(-726) +((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 71) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 33) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +(((-178) (-726)) (T -178)) +NIL +(-726) +((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 78) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 43) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +(((-179) (-726)) (T -179)) +NIL +(-726) +((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 68) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 37) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +(((-180) (-726)) (T -180)) +NIL +(-726) +((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 62)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 29)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +(((-181) (-726)) (T -181)) +NIL +(-726) +((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 60)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 32)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +(((-182) (-726)) (T -182)) +NIL +(-726) +((-3924 (((-108) $ $) NIL)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 89) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 77) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +(((-183) (-726)) (T -183)) +NIL +(-726) +((-1878 (((-3 (-2 (|:| -3013 (-110)) (|:| |w| (-203))) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 81)) (-3096 (((-523) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 39)) (-3633 (((-3 (-589 (-203)) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 69))) +(((-184) (-10 -7 (-15 -1878 ((-3 (-2 (|:| -3013 (-110)) (|:| |w| (-203))) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3633 ((-3 (-589 (-203)) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3096 ((-523) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) (T -184)) +((-3096 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-523)) (-5 *1 (-184)))) (-3633 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-589 (-203))) (-5 *1 (-184)))) (-1878 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| -3013 (-110)) (|:| |w| (-203)))) (-5 *1 (-184))))) +(-10 -7 (-15 -1878 ((-3 (-2 (|:| -3013 (-110)) (|:| |w| (-203))) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3633 ((-3 (-589 (-203)) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3096 ((-523) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) +((-1962 (((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 37)) (-2723 (((-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355))) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 128)) (-3808 (((-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355))) (-629 (-292 (-203)))) 88)) (-3688 (((-355) (-629 (-292 (-203)))) 111)) (-2140 (((-629 (-292 (-203))) (-1168 (-292 (-203))) (-589 (-1087))) 108)) (-2052 (((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 26)) (-2051 (((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 42)) (-2679 (((-629 (-292 (-203))) (-629 (-292 (-203))) (-589 (-1087)) (-1168 (-292 (-203)))) 100)) (-1910 (((-355) (-355) (-589 (-355))) 105) (((-355) (-355) (-355)) 103)) (-1241 (((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 33))) +(((-185) (-10 -7 (-15 -1910 ((-355) (-355) (-355))) (-15 -1910 ((-355) (-355) (-589 (-355)))) (-15 -3688 ((-355) (-629 (-292 (-203))))) (-15 -2140 ((-629 (-292 (-203))) (-1168 (-292 (-203))) (-589 (-1087)))) (-15 -2679 ((-629 (-292 (-203))) (-629 (-292 (-203))) (-589 (-1087)) (-1168 (-292 (-203))))) (-15 -3808 ((-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355))) (-629 (-292 (-203))))) (-15 -2723 ((-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355))) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1962 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -2051 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1241 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -2052 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) (T -185)) +((-2052 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-355)) (-5 *1 (-185)))) (-1241 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-355)) (-5 *1 (-185)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-355)) (-5 *1 (-185)))) (-1962 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-355)) (-5 *1 (-185)))) (-2723 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355)))) (-5 *1 (-185)))) (-3808 (*1 *2 *3) (-12 (-5 *3 (-629 (-292 (-203)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355)))) (-5 *1 (-185)))) (-2679 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-629 (-292 (-203)))) (-5 *3 (-589 (-1087))) (-5 *4 (-1168 (-292 (-203)))) (-5 *1 (-185)))) (-2140 (*1 *2 *3 *4) (-12 (-5 *3 (-1168 (-292 (-203)))) (-5 *4 (-589 (-1087))) (-5 *2 (-629 (-292 (-203)))) (-5 *1 (-185)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-629 (-292 (-203)))) (-5 *2 (-355)) (-5 *1 (-185)))) (-1910 (*1 *2 *2 *3) (-12 (-5 *3 (-589 (-355))) (-5 *2 (-355)) (-5 *1 (-185)))) (-1910 (*1 *2 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-185))))) +(-10 -7 (-15 -1910 ((-355) (-355) (-355))) (-15 -1910 ((-355) (-355) (-589 (-355)))) (-15 -3688 ((-355) (-629 (-292 (-203))))) (-15 -2140 ((-629 (-292 (-203))) (-1168 (-292 (-203))) (-589 (-1087)))) (-15 -2679 ((-629 (-292 (-203))) (-629 (-292 (-203))) (-589 (-1087)) (-1168 (-292 (-203))))) (-15 -3808 ((-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355))) (-629 (-292 (-203))))) (-15 -2723 ((-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355))) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1962 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -2051 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1241 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -2052 ((-355) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) +((-3924 (((-108) $ $) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 37)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3098 (((-962) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 60)) (-3983 (((-108) $ $) NIL))) +(((-186) (-739)) (T -186)) +NIL +(-739) +((-3924 (((-108) $ $) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 37)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3098 (((-962) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 60)) (-3983 (((-108) $ $) NIL))) +(((-187) (-739)) (T -187)) +NIL +(-739) +((-3924 (((-108) $ $) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 36)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3098 (((-962) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 64)) (-3983 (((-108) $ $) NIL))) +(((-188) (-739)) (T -188)) +NIL +(-739) +((-3924 (((-108) $ $) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 42)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3098 (((-962) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 73)) (-3983 (((-108) $ $) NIL))) +(((-189) (-739)) (T -189)) +NIL +(-739) +((-2061 (((-589 (-1087)) (-1087) (-710)) 22)) (-1205 (((-292 (-203)) (-292 (-203))) 29)) (-1256 (((-108) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) 67)) (-2040 (((-108) (-203) (-203) (-589 (-292 (-203)))) 43))) +(((-190) (-10 -7 (-15 -2061 ((-589 (-1087)) (-1087) (-710))) (-15 -1205 ((-292 (-203)) (-292 (-203)))) (-15 -2040 ((-108) (-203) (-203) (-589 (-292 (-203))))) (-15 -1256 ((-108) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))))))) (T -190)) +((-1256 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) (-5 *2 (-108)) (-5 *1 (-190)))) (-2040 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-589 (-292 (-203)))) (-5 *3 (-203)) (-5 *2 (-108)) (-5 *1 (-190)))) (-1205 (*1 *2 *2) (-12 (-5 *2 (-292 (-203))) (-5 *1 (-190)))) (-2061 (*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-5 *2 (-589 (-1087))) (-5 *1 (-190)) (-5 *3 (-1087))))) +(-10 -7 (-15 -2061 ((-589 (-1087)) (-1087) (-710))) (-15 -1205 ((-292 (-203)) (-292 (-203)))) (-15 -2040 ((-108) (-203) (-203) (-589 (-292 (-203))))) (-15 -1256 ((-108) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))))) +((-3924 (((-108) $ $) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) 17)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-1864 (((-962) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) 55)) (-3983 (((-108) $ $) NIL))) +(((-191) (-826)) (T -191)) +NIL +(-826) +((-3924 (((-108) $ $) NIL)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) 12)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-1864 (((-962) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) NIL)) (-3983 (((-108) $ $) NIL))) +(((-192) (-826)) (T -192)) +NIL +(-826) +((-3924 (((-108) $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2823 (((-1173) $) 36) (((-1173) $ (-852) (-852)) 38)) (-3223 (($ $ (-918)) 19) (((-223 (-1070)) $ (-1087)) 15)) (-3973 (((-1173) $) 34)) (-1458 (((-794) $) 31) (($ (-589 |#1|)) 8)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $ $) 27)) (-4075 (($ $ $) 22))) +(((-193 |#1|) (-13 (-1016) (-10 -8 (-15 -3223 ($ $ (-918))) (-15 -3223 ((-223 (-1070)) $ (-1087))) (-15 -4075 ($ $ $)) (-15 -4087 ($ $ $)) (-15 -1458 ($ (-589 |#1|))) (-15 -3973 ((-1173) $)) (-15 -2823 ((-1173) $)) (-15 -2823 ((-1173) $ (-852) (-852))))) (-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) (-15 -2823 ((-1173) $))))) (T -193)) +((-3223 (*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-193 *3)) (-4 *3 (-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) (-15 -2823 ((-1173) $))))))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-223 (-1070))) (-5 *1 (-193 *4)) (-4 *4 (-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ *3)) (-15 -3973 ((-1173) $)) (-15 -2823 ((-1173) $))))))) (-4075 (*1 *1 *1 *1) (-12 (-5 *1 (-193 *2)) (-4 *2 (-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) (-15 -2823 ((-1173) $))))))) (-4087 (*1 *1 *1 *1) (-12 (-5 *1 (-193 *2)) (-4 *2 (-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) (-15 -2823 ((-1173) $))))))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) (-15 -2823 ((-1173) $))))) (-5 *1 (-193 *3)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-193 *3)) (-4 *3 (-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 (*2 $)) (-15 -2823 (*2 $))))))) (-2823 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-193 *3)) (-4 *3 (-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 (*2 $)) (-15 -2823 (*2 $))))))) (-2823 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1173)) (-5 *1 (-193 *4)) (-4 *4 (-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 (*2 $)) (-15 -2823 (*2 $)))))))) +(-13 (-1016) (-10 -8 (-15 -3223 ($ $ (-918))) (-15 -3223 ((-223 (-1070)) $ (-1087))) (-15 -4075 ($ $ $)) (-15 -4087 ($ $ $)) (-15 -1458 ($ (-589 |#1|))) (-15 -3973 ((-1173) $)) (-15 -2823 ((-1173) $)) (-15 -2823 ((-1173) $ (-852) (-852))))) +((-2011 ((|#2| |#4| (-1 |#2| |#2|)) 46))) +(((-194 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2011 (|#2| |#4| (-1 |#2| |#2|)))) (-339) (-1144 |#1|) (-1144 (-383 |#2|)) (-318 |#1| |#2| |#3|)) (T -194)) +((-2011 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-339)) (-4 *6 (-1144 (-383 *2))) (-4 *2 (-1144 *5)) (-5 *1 (-194 *5 *2 *6 *3)) (-4 *3 (-318 *5 *2 *6))))) +(-10 -7 (-15 -2011 (|#2| |#4| (-1 |#2| |#2|)))) +((-1460 ((|#2| |#2| (-710) |#2|) 41)) (-2576 ((|#2| |#2| (-710) |#2|) 37)) (-2987 (((-589 |#2|) (-589 (-2 (|:| |deg| (-710)) (|:| -1992 |#2|)))) 57)) (-1291 (((-589 (-2 (|:| |deg| (-710)) (|:| -1992 |#2|))) |#2|) 52)) (-2768 (((-108) |#2|) 49)) (-3906 (((-394 |#2|) |#2|) 76)) (-1820 (((-394 |#2|) |#2|) 75)) (-1281 ((|#2| |#2| (-710) |#2|) 35)) (-4016 (((-2 (|:| |cont| |#1|) (|:| -1979 (-589 (-2 (|:| |irr| |#2|) (|:| -1227 (-523)))))) |#2| (-108)) 68))) +(((-195 |#1| |#2|) (-10 -7 (-15 -1820 ((-394 |#2|) |#2|)) (-15 -3906 ((-394 |#2|) |#2|)) (-15 -4016 ((-2 (|:| |cont| |#1|) (|:| -1979 (-589 (-2 (|:| |irr| |#2|) (|:| -1227 (-523)))))) |#2| (-108))) (-15 -1291 ((-589 (-2 (|:| |deg| (-710)) (|:| -1992 |#2|))) |#2|)) (-15 -2987 ((-589 |#2|) (-589 (-2 (|:| |deg| (-710)) (|:| -1992 |#2|))))) (-15 -1281 (|#2| |#2| (-710) |#2|)) (-15 -2576 (|#2| |#2| (-710) |#2|)) (-15 -1460 (|#2| |#2| (-710) |#2|)) (-15 -2768 ((-108) |#2|))) (-325) (-1144 |#1|)) (T -195)) +((-2768 (*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-108)) (-5 *1 (-195 *4 *3)) (-4 *3 (-1144 *4)))) (-1460 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-710)) (-4 *4 (-325)) (-5 *1 (-195 *4 *2)) (-4 *2 (-1144 *4)))) (-2576 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-710)) (-4 *4 (-325)) (-5 *1 (-195 *4 *2)) (-4 *2 (-1144 *4)))) (-1281 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-710)) (-4 *4 (-325)) (-5 *1 (-195 *4 *2)) (-4 *2 (-1144 *4)))) (-2987 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| |deg| (-710)) (|:| -1992 *5)))) (-4 *5 (-1144 *4)) (-4 *4 (-325)) (-5 *2 (-589 *5)) (-5 *1 (-195 *4 *5)))) (-1291 (*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-589 (-2 (|:| |deg| (-710)) (|:| -1992 *3)))) (-5 *1 (-195 *4 *3)) (-4 *3 (-1144 *4)))) (-4016 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-325)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1979 (-589 (-2 (|:| |irr| *3) (|:| -1227 (-523))))))) (-5 *1 (-195 *5 *3)) (-4 *3 (-1144 *5)))) (-3906 (*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-394 *3)) (-5 *1 (-195 *4 *3)) (-4 *3 (-1144 *4)))) (-1820 (*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-394 *3)) (-5 *1 (-195 *4 *3)) (-4 *3 (-1144 *4))))) +(-10 -7 (-15 -1820 ((-394 |#2|) |#2|)) (-15 -3906 ((-394 |#2|) |#2|)) (-15 -4016 ((-2 (|:| |cont| |#1|) (|:| -1979 (-589 (-2 (|:| |irr| |#2|) (|:| -1227 (-523)))))) |#2| (-108))) (-15 -1291 ((-589 (-2 (|:| |deg| (-710)) (|:| -1992 |#2|))) |#2|)) (-15 -2987 ((-589 |#2|) (-589 (-2 (|:| |deg| (-710)) (|:| -1992 |#2|))))) (-15 -1281 (|#2| |#2| (-710) |#2|)) (-15 -2576 (|#2| |#2| (-710) |#2|)) (-15 -1460 (|#2| |#2| (-710) |#2|)) (-15 -2768 ((-108) |#2|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3458 (((-523) $) NIL (|has| (-523) (-284)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL (|has| (-523) (-759)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (|has| (-523) (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-523) (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| (-523) (-964 (-523))))) (-3474 (((-523) $) NIL) (((-1087) $) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| (-523) (-964 (-523)))) (((-523) $) NIL (|has| (-523) (-964 (-523))))) (-3796 (($ $ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-629 (-523)) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-523) (-508)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2604 (((-108) $) NIL (|has| (-523) (-759)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-523) (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-523) (-817 (-355))))) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL)) (-2785 (((-523) $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| (-523) (-1063)))) (-4114 (((-108) $) NIL (|has| (-523) (-759)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| (-523) (-786)))) (-3612 (($ (-1 (-523) (-523)) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-523) (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL (|has| (-523) (-284))) (((-383 (-523)) $) NIL)) (-3722 (((-523) $) NIL (|has| (-523) (-508)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2679 (($ $ (-589 (-523)) (-589 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-523) (-523)) NIL (|has| (-523) (-286 (-523)))) (($ $ (-271 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-271 (-523)))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-1087)) (-589 (-523))) NIL (|has| (-523) (-484 (-1087) (-523)))) (($ $ (-1087) (-523)) NIL (|has| (-523) (-484 (-1087) (-523))))) (-1972 (((-710) $) NIL)) (-3223 (($ $ (-523)) NIL (|has| (-523) (-263 (-523) (-523))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $) NIL (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-3414 (($ $) NIL)) (-2797 (((-523) $) NIL)) (-3488 (($ (-383 (-523))) 8)) (-3663 (((-823 (-523)) $) NIL (|has| (-523) (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| (-523) (-564 (-823 (-355))))) (((-499) $) NIL (|has| (-523) (-564 (-499)))) (((-355) $) NIL (|has| (-523) (-949))) (((-203) $) NIL (|has| (-523) (-949)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-523) (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) 7) (($ (-523)) NIL) (($ (-1087)) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) NIL) (((-932 10) $) 9)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| (-523) (-840))) (|has| (-523) (-134))))) (-1621 (((-710)) NIL)) (-1886 (((-523) $) NIL (|has| (-523) (-508)))) (-1704 (((-108) $ $) NIL)) (-2619 (($ $) NIL (|has| (-523) (-759)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $) NIL (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-4043 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4019 (((-108) $ $) NIL (|has| (-523) (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4007 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4098 (($ $ $) NIL) (($ (-523) (-523)) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ (-523) $) NIL) (($ $ (-523)) NIL))) +(((-196) (-13 (-921 (-523)) (-10 -8 (-15 -1458 ((-383 (-523)) $)) (-15 -1458 ((-932 10) $)) (-15 -2206 ((-383 (-523)) $)) (-15 -3488 ($ (-383 (-523))))))) (T -196)) +((-1458 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-196)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-932 10)) (-5 *1 (-196)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-196)))) (-3488 (*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-196))))) +(-13 (-921 (-523)) (-10 -8 (-15 -1458 ((-383 (-523)) $)) (-15 -1458 ((-932 10) $)) (-15 -2206 ((-383 (-523)) $)) (-15 -3488 ($ (-383 (-523)))))) +((-3417 (((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1009 (-779 |#2|)) (-1070)) 27) (((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1009 (-779 |#2|))) 23)) (-1202 (((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1087) (-779 |#2|) (-779 |#2|) (-108)) 16))) +(((-197 |#1| |#2|) (-10 -7 (-15 -3417 ((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1009 (-779 |#2|)))) (-15 -3417 ((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1009 (-779 |#2|)) (-1070))) (-15 -1202 ((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1087) (-779 |#2|) (-779 |#2|) (-108)))) (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-1108) (-889) (-29 |#1|))) (T -197)) +((-1202 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1087)) (-5 *6 (-108)) (-4 *7 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-4 *3 (-13 (-1108) (-889) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-779 *3)) (|:| |f2| (-589 (-779 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *7 *3)) (-5 *5 (-779 *3)))) (-3417 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1009 (-779 *3))) (-5 *5 (-1070)) (-4 *3 (-13 (-1108) (-889) (-29 *6))) (-4 *6 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (|:| |f1| (-779 *3)) (|:| |f2| (-589 (-779 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *6 *3)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-1009 (-779 *3))) (-4 *3 (-13 (-1108) (-889) (-29 *5))) (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (|:| |f1| (-779 *3)) (|:| |f2| (-589 (-779 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *5 *3))))) +(-10 -7 (-15 -3417 ((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1009 (-779 |#2|)))) (-15 -3417 ((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1009 (-779 |#2|)) (-1070))) (-15 -1202 ((-3 (|:| |f1| (-779 |#2|)) (|:| |f2| (-589 (-779 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1087) (-779 |#2|) (-779 |#2|) (-108)))) +((-3417 (((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-383 (-883 |#1|)))) (-1070)) 44) (((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-383 (-883 |#1|))))) 41) (((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-292 |#1|))) (-1070)) 45) (((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-292 |#1|)))) 17))) +(((-198 |#1|) (-10 -7 (-15 -3417 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-292 |#1|))))) (-15 -3417 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-292 |#1|))) (-1070))) (-15 -3417 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-383 (-883 |#1|)))))) (-15 -3417 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-383 (-883 |#1|)))) (-1070)))) (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (T -198)) +((-3417 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1009 (-779 (-383 (-883 *6))))) (-5 *5 (-1070)) (-5 *3 (-383 (-883 *6))) (-4 *6 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (|:| |f1| (-779 (-292 *6))) (|:| |f2| (-589 (-779 (-292 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-198 *6)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-1009 (-779 (-383 (-883 *5))))) (-5 *3 (-383 (-883 *5))) (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (|:| |f1| (-779 (-292 *5))) (|:| |f2| (-589 (-779 (-292 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-198 *5)))) (-3417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-383 (-883 *6))) (-5 *4 (-1009 (-779 (-292 *6)))) (-5 *5 (-1070)) (-4 *6 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (|:| |f1| (-779 (-292 *6))) (|:| |f2| (-589 (-779 (-292 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-198 *6)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1009 (-779 (-292 *5)))) (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (|:| |f1| (-779 (-292 *5))) (|:| |f2| (-589 (-779 (-292 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-198 *5))))) +(-10 -7 (-15 -3417 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-292 |#1|))))) (-15 -3417 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-292 |#1|))) (-1070))) (-15 -3417 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-383 (-883 |#1|)))))) (-15 -3417 ((-3 (|:| |f1| (-779 (-292 |#1|))) (|:| |f2| (-589 (-779 (-292 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-383 (-883 |#1|)) (-1009 (-779 (-383 (-883 |#1|)))) (-1070)))) +((-2437 (((-2 (|:| -1480 (-1083 |#1|)) (|:| |deg| (-852))) (-1083 |#1|)) 21)) (-3686 (((-589 (-292 |#2|)) (-292 |#2|) (-852)) 43))) +(((-199 |#1| |#2|) (-10 -7 (-15 -2437 ((-2 (|:| -1480 (-1083 |#1|)) (|:| |deg| (-852))) (-1083 |#1|))) (-15 -3686 ((-589 (-292 |#2|)) (-292 |#2|) (-852)))) (-973) (-13 (-515) (-786))) (T -199)) +((-3686 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-4 *6 (-13 (-515) (-786))) (-5 *2 (-589 (-292 *6))) (-5 *1 (-199 *5 *6)) (-5 *3 (-292 *6)) (-4 *5 (-973)))) (-2437 (*1 *2 *3) (-12 (-4 *4 (-973)) (-5 *2 (-2 (|:| -1480 (-1083 *4)) (|:| |deg| (-852)))) (-5 *1 (-199 *4 *5)) (-5 *3 (-1083 *4)) (-4 *5 (-13 (-515) (-786)))))) +(-10 -7 (-15 -2437 ((-2 (|:| -1480 (-1083 |#1|)) (|:| |deg| (-852))) (-1083 |#1|))) (-15 -3686 ((-589 (-292 |#2|)) (-292 |#2|) (-852)))) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2292 ((|#1| $) NIL)) (-3125 ((|#1| $) 25)) (-3079 (((-108) $ (-710)) NIL)) (-2518 (($) NIL T CONST)) (-3152 (($ $) NIL)) (-2867 (($ $) 31)) (-3845 ((|#1| |#1| $) NIL)) (-2085 ((|#1| $) NIL)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-2996 (((-710) $) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1934 ((|#1| $) NIL)) (-1598 ((|#1| |#1| $) 28)) (-2544 ((|#1| |#1| $) 30)) (-3450 (($ |#1| $) NIL)) (-2510 (((-710) $) 27)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1592 ((|#1| $) NIL)) (-1352 ((|#1| $) 26)) (-2395 ((|#1| $) 24)) (-3761 ((|#1| $) NIL)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1651 ((|#1| |#1| $) NIL)) (-3883 (((-108) $) 9)) (-3988 (($) NIL)) (-1234 ((|#1| $) NIL)) (-3047 (($) NIL) (($ (-589 |#1|)) 16)) (-1583 (((-710) $) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-4040 ((|#1| $) 13)) (-2401 (($ (-589 |#1|)) NIL)) (-1348 ((|#1| $) NIL)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-200 |#1|) (-13 (-231 |#1|) (-10 -8 (-15 -3047 ($ (-589 |#1|))))) (-1016)) (T -200)) +((-3047 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-200 *3))))) +(-13 (-231 |#1|) (-10 -8 (-15 -3047 ($ (-589 |#1|))))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2945 (($ (-292 |#1|)) 23)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-1406 (((-108) $) NIL)) (-3517 (((-3 (-292 |#1|) "failed") $) NIL)) (-3474 (((-292 |#1|) $) NIL)) (-3810 (($ $) 31)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-3612 (($ (-1 (-292 |#1|) (-292 |#1|)) $) NIL)) (-3786 (((-292 |#1|) $) NIL)) (-2418 (($ $) 30)) (-3779 (((-1070) $) NIL)) (-1519 (((-108) $) NIL)) (-2783 (((-1034) $) NIL)) (-3441 (($ (-710)) NIL)) (-1610 (($ $) 32)) (-2299 (((-523) $) NIL)) (-1458 (((-794) $) 57) (($ (-523)) NIL) (($ (-292 |#1|)) NIL)) (-2365 (((-292 |#1|) $ $) NIL)) (-1621 (((-710)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 25 T CONST)) (-2767 (($) 50 T CONST)) (-3983 (((-108) $ $) 28)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 19)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 24) (($ (-292 |#1|) $) 18))) +(((-201 |#1| |#2|) (-13 (-567 (-292 |#1|)) (-964 (-292 |#1|)) (-10 -8 (-15 -3786 ((-292 |#1|) $)) (-15 -2418 ($ $)) (-15 -3810 ($ $)) (-15 -2365 ((-292 |#1|) $ $)) (-15 -3441 ($ (-710))) (-15 -1519 ((-108) $)) (-15 -1406 ((-108) $)) (-15 -2299 ((-523) $)) (-15 -3612 ($ (-1 (-292 |#1|) (-292 |#1|)) $)) (-15 -2945 ($ (-292 |#1|))) (-15 -1610 ($ $)))) (-13 (-973) (-786)) (-589 (-1087))) (T -201)) +((-3786 (*1 *2 *1) (-12 (-5 *2 (-292 *3)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) (-2418 (*1 *1 *1) (-12 (-5 *1 (-201 *2 *3)) (-4 *2 (-13 (-973) (-786))) (-14 *3 (-589 (-1087))))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-201 *2 *3)) (-4 *2 (-13 (-973) (-786))) (-14 *3 (-589 (-1087))))) (-2365 (*1 *2 *1 *1) (-12 (-5 *2 (-292 *3)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) (-3441 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) (-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-292 *3) (-292 *3))) (-4 *3 (-13 (-973) (-786))) (-5 *1 (-201 *3 *4)) (-14 *4 (-589 (-1087))))) (-2945 (*1 *1 *2) (-12 (-5 *2 (-292 *3)) (-4 *3 (-13 (-973) (-786))) (-5 *1 (-201 *3 *4)) (-14 *4 (-589 (-1087))))) (-1610 (*1 *1 *1) (-12 (-5 *1 (-201 *2 *3)) (-4 *2 (-13 (-973) (-786))) (-14 *3 (-589 (-1087)))))) +(-13 (-567 (-292 |#1|)) (-964 (-292 |#1|)) (-10 -8 (-15 -3786 ((-292 |#1|) $)) (-15 -2418 ($ $)) (-15 -3810 ($ $)) (-15 -2365 ((-292 |#1|) $ $)) (-15 -3441 ($ (-710))) (-15 -1519 ((-108) $)) (-15 -1406 ((-108) $)) (-15 -2299 ((-523) $)) (-15 -3612 ($ (-1 (-292 |#1|) (-292 |#1|)) $)) (-15 -2945 ($ (-292 |#1|))) (-15 -1610 ($ $)))) +((-4037 (((-108) (-1070)) 22)) (-1382 (((-3 (-779 |#2|) "failed") (-562 |#2|) |#2| (-779 |#2|) (-779 |#2|) (-108)) 32)) (-4022 (((-3 (-108) "failed") (-1083 |#2|) (-779 |#2|) (-779 |#2|) (-108)) 73) (((-3 (-108) "failed") (-883 |#1|) (-1087) (-779 |#2|) (-779 |#2|) (-108)) 74))) +(((-202 |#1| |#2|) (-10 -7 (-15 -4037 ((-108) (-1070))) (-15 -1382 ((-3 (-779 |#2|) "failed") (-562 |#2|) |#2| (-779 |#2|) (-779 |#2|) (-108))) (-15 -4022 ((-3 (-108) "failed") (-883 |#1|) (-1087) (-779 |#2|) (-779 |#2|) (-108))) (-15 -4022 ((-3 (-108) "failed") (-1083 |#2|) (-779 |#2|) (-779 |#2|) (-108)))) (-13 (-427) (-786) (-964 (-523)) (-585 (-523))) (-13 (-1108) (-29 |#1|))) (T -202)) +((-4022 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1083 *6)) (-5 *4 (-779 *6)) (-4 *6 (-13 (-1108) (-29 *5))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-202 *5 *6)))) (-4022 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-883 *6)) (-5 *4 (-1087)) (-5 *5 (-779 *7)) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-4 *7 (-13 (-1108) (-29 *6))) (-5 *1 (-202 *6 *7)))) (-1382 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-779 *4)) (-5 *3 (-562 *4)) (-5 *5 (-108)) (-4 *4 (-13 (-1108) (-29 *6))) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-202 *6 *4)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-108)) (-5 *1 (-202 *4 *5)) (-4 *5 (-13 (-1108) (-29 *4)))))) +(-10 -7 (-15 -4037 ((-108) (-1070))) (-15 -1382 ((-3 (-779 |#2|) "failed") (-562 |#2|) |#2| (-779 |#2|) (-779 |#2|) (-108))) (-15 -4022 ((-3 (-108) "failed") (-883 |#1|) (-1087) (-779 |#2|) (-779 |#2|) (-108))) (-15 -4022 ((-3 (-108) "failed") (-1083 |#2|) (-779 |#2|) (-779 |#2|) (-108)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 89)) (-3458 (((-523) $) 99)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3984 (($ $) NIL)) (-1769 (($ $) 77)) (-3780 (($ $) 65)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1832 (($ $) 56)) (-1387 (((-108) $ $) NIL)) (-1744 (($ $) 75)) (-3711 (($ $) 63)) (-3671 (((-523) $) 116)) (-1793 (($ $) 80)) (-3805 (($ $) 67)) (-2518 (($) NIL T CONST)) (-1258 (($ $) NIL)) (-3517 (((-3 (-523) "failed") $) 115) (((-3 (-383 (-523)) "failed") $) 112)) (-3474 (((-523) $) 113) (((-383 (-523)) $) 110)) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) 92)) (-3193 (((-383 (-523)) $ (-710)) 108) (((-383 (-523)) $ (-710) (-710)) 107)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2685 (((-852)) 29) (((-852) (-852)) NIL (|has| $ (-6 -4235)))) (-2604 (((-108) $) NIL)) (-2820 (($) 39)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL)) (-1640 (((-523) $) 35)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL)) (-3892 (($ $) NIL)) (-4114 (((-108) $) 88)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) 53) (($) 34 (-12 (-3900 (|has| $ (-6 -4227))) (-3900 (|has| $ (-6 -4235)))))) (-2062 (($ $ $) 52) (($) 33 (-12 (-3900 (|has| $ (-6 -4227))) (-3900 (|has| $ (-6 -4235)))))) (-1369 (((-523) $) 27)) (-4121 (($ $) 30)) (-1574 (($ $) 57)) (-2384 (($ $) 62)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-3986 (((-852) (-523)) NIL (|has| $ (-6 -4235)))) (-2783 (((-1034) $) NIL) (((-523) $) 90)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL)) (-3722 (($ $) NIL)) (-4092 (($ (-523) (-523)) NIL) (($ (-523) (-523) (-852)) 100)) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2735 (((-523) $) 28)) (-2094 (($) 38)) (-1811 (($ $) 61)) (-1972 (((-710) $) NIL)) (-4027 (((-1070) (-1070)) 8)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-1617 (((-852)) NIL) (((-852) (-852)) NIL (|has| $ (-6 -4235)))) (-3523 (($ $ (-710)) NIL) (($ $) 93)) (-3134 (((-852) (-523)) NIL (|has| $ (-6 -4235)))) (-1805 (($ $) 78)) (-3816 (($ $) 68)) (-1782 (($ $) 79)) (-3793 (($ $) 66)) (-1757 (($ $) 76)) (-3767 (($ $) 64)) (-3663 (((-355) $) 104) (((-203) $) 101) (((-823 (-355)) $) NIL) (((-499) $) 45)) (-1458 (((-794) $) 42) (($ (-523)) 60) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-523)) 60) (($ (-383 (-523))) NIL)) (-1621 (((-710)) NIL)) (-1886 (($ $) NIL)) (-1329 (((-852)) 32) (((-852) (-852)) NIL (|has| $ (-6 -4235)))) (-3007 (((-852)) 25)) (-1839 (($ $) 83)) (-3847 (($ $) 71) (($ $ $) 109)) (-1704 (((-108) $ $) NIL)) (-1818 (($ $) 81)) (-3828 (($ $) 69)) (-1865 (($ $) 86)) (-1719 (($ $) 74)) (-2914 (($ $) 84)) (-1731 (($ $) 72)) (-1852 (($ $) 85)) (-3859 (($ $) 73)) (-1830 (($ $) 82)) (-3838 (($ $) 70)) (-2619 (($ $) 117)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 36 T CONST)) (-2767 (($) 37 T CONST)) (-3790 (((-1070) $) 19) (((-1070) $ (-108)) 21) (((-1173) (-761) $) 22) (((-1173) (-761) $ (-108)) 23)) (-2033 (($ $) 96)) (-2862 (($ $ (-710)) NIL) (($ $) NIL)) (-3599 (($ $ $) 98)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 54)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 46)) (-4098 (($ $ $) 87) (($ $ (-523)) 55)) (-4087 (($ $) 47) (($ $ $) 49)) (-4075 (($ $ $) 48)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 58) (($ $ (-383 (-523))) 128) (($ $ $) 59)) (* (($ (-852) $) 31) (($ (-710) $) NIL) (($ (-523) $) 51) (($ $ $) 50) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) +(((-203) (-13 (-380) (-211) (-767) (-1108) (-564 (-499)) (-10 -8 (-15 -4098 ($ $ (-523))) (-15 ** ($ $ $)) (-15 -2094 ($)) (-15 -2783 ((-523) $)) (-15 -4121 ($ $)) (-15 -1574 ($ $)) (-15 -3847 ($ $ $)) (-15 -2033 ($ $)) (-15 -3599 ($ $ $)) (-15 -4027 ((-1070) (-1070))) (-15 -3193 ((-383 (-523)) $ (-710))) (-15 -3193 ((-383 (-523)) $ (-710) (-710)))))) (T -203)) +((** (*1 *1 *1 *1) (-5 *1 (-203))) (-4098 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-203)))) (-2094 (*1 *1) (-5 *1 (-203))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-203)))) (-4121 (*1 *1 *1) (-5 *1 (-203))) (-1574 (*1 *1 *1) (-5 *1 (-203))) (-3847 (*1 *1 *1 *1) (-5 *1 (-203))) (-2033 (*1 *1 *1) (-5 *1 (-203))) (-3599 (*1 *1 *1 *1) (-5 *1 (-203))) (-4027 (*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-203)))) (-3193 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-203)))) (-3193 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-203))))) +(-13 (-380) (-211) (-767) (-1108) (-564 (-499)) (-10 -8 (-15 -4098 ($ $ (-523))) (-15 ** ($ $ $)) (-15 -2094 ($)) (-15 -2783 ((-523) $)) (-15 -4121 ($ $)) (-15 -1574 ($ $)) (-15 -3847 ($ $ $)) (-15 -2033 ($ $)) (-15 -3599 ($ $ $)) (-15 -4027 ((-1070) (-1070))) (-15 -3193 ((-383 (-523)) $ (-710))) (-15 -3193 ((-383 (-523)) $ (-710) (-710))))) +((-2789 (((-155 (-203)) (-710) (-155 (-203))) 11) (((-203) (-710) (-203)) 12)) (-2889 (((-155 (-203)) (-155 (-203))) 13) (((-203) (-203)) 14)) (-2775 (((-155 (-203)) (-155 (-203)) (-155 (-203))) 19) (((-203) (-203) (-203)) 22)) (-2710 (((-155 (-203)) (-155 (-203))) 25) (((-203) (-203)) 24)) (-2322 (((-155 (-203)) (-155 (-203)) (-155 (-203))) 43) (((-203) (-203) (-203)) 35)) (-4102 (((-155 (-203)) (-155 (-203)) (-155 (-203))) 48) (((-203) (-203) (-203)) 45)) (-3254 (((-155 (-203)) (-155 (-203)) (-155 (-203))) 15) (((-203) (-203) (-203)) 16)) (-1325 (((-155 (-203)) (-155 (-203)) (-155 (-203))) 17) (((-203) (-203) (-203)) 18)) (-3728 (((-155 (-203)) (-155 (-203))) 60) (((-203) (-203)) 59)) (-2320 (((-203) (-203)) 54) (((-155 (-203)) (-155 (-203))) 58)) (-2033 (((-155 (-203)) (-155 (-203))) 7) (((-203) (-203)) 9)) (-3599 (((-155 (-203)) (-155 (-203)) (-155 (-203))) 30) (((-203) (-203) (-203)) 26))) +(((-204) (-10 -7 (-15 -2033 ((-203) (-203))) (-15 -2033 ((-155 (-203)) (-155 (-203)))) (-15 -3599 ((-203) (-203) (-203))) (-15 -3599 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -2889 ((-203) (-203))) (-15 -2889 ((-155 (-203)) (-155 (-203)))) (-15 -2710 ((-203) (-203))) (-15 -2710 ((-155 (-203)) (-155 (-203)))) (-15 -2789 ((-203) (-710) (-203))) (-15 -2789 ((-155 (-203)) (-710) (-155 (-203)))) (-15 -3254 ((-203) (-203) (-203))) (-15 -3254 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -2322 ((-203) (-203) (-203))) (-15 -2322 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -1325 ((-203) (-203) (-203))) (-15 -1325 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -4102 ((-203) (-203) (-203))) (-15 -4102 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -2320 ((-155 (-203)) (-155 (-203)))) (-15 -2320 ((-203) (-203))) (-15 -3728 ((-203) (-203))) (-15 -3728 ((-155 (-203)) (-155 (-203)))) (-15 -2775 ((-203) (-203) (-203))) (-15 -2775 ((-155 (-203)) (-155 (-203)) (-155 (-203)))))) (T -204)) +((-2775 (*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-2775 (*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-3728 (*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-3728 (*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-2320 (*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-2320 (*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-4102 (*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-4102 (*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-1325 (*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-1325 (*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-2322 (*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-2322 (*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-3254 (*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-3254 (*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-2789 (*1 *2 *3 *2) (-12 (-5 *2 (-155 (-203))) (-5 *3 (-710)) (-5 *1 (-204)))) (-2789 (*1 *2 *3 *2) (-12 (-5 *2 (-203)) (-5 *3 (-710)) (-5 *1 (-204)))) (-2710 (*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-2710 (*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-2889 (*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-2889 (*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-3599 (*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-3599 (*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) (-2033 (*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) (-2033 (*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204))))) +(-10 -7 (-15 -2033 ((-203) (-203))) (-15 -2033 ((-155 (-203)) (-155 (-203)))) (-15 -3599 ((-203) (-203) (-203))) (-15 -3599 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -2889 ((-203) (-203))) (-15 -2889 ((-155 (-203)) (-155 (-203)))) (-15 -2710 ((-203) (-203))) (-15 -2710 ((-155 (-203)) (-155 (-203)))) (-15 -2789 ((-203) (-710) (-203))) (-15 -2789 ((-155 (-203)) (-710) (-155 (-203)))) (-15 -3254 ((-203) (-203) (-203))) (-15 -3254 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -2322 ((-203) (-203) (-203))) (-15 -2322 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -1325 ((-203) (-203) (-203))) (-15 -1325 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -4102 ((-203) (-203) (-203))) (-15 -4102 ((-155 (-203)) (-155 (-203)) (-155 (-203)))) (-15 -2320 ((-155 (-203)) (-155 (-203)))) (-15 -2320 ((-203) (-203))) (-15 -3728 ((-203) (-203))) (-15 -3728 ((-155 (-203)) (-155 (-203)))) (-15 -2775 ((-203) (-203) (-203))) (-15 -2775 ((-155 (-203)) (-155 (-203)) (-155 (-203))))) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2821 (($ (-710) (-710)) NIL)) (-1911 (($ $ $) NIL)) (-4190 (($ (-1168 |#1|)) NIL) (($ $) NIL)) (-3706 (($ |#1| |#1| |#1|) 32)) (-2606 (((-108) $) NIL)) (-2637 (($ $ (-523) (-523)) NIL)) (-3276 (($ $ (-523) (-523)) NIL)) (-2934 (($ $ (-523) (-523) (-523) (-523)) NIL)) (-3858 (($ $) NIL)) (-2651 (((-108) $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1494 (($ $ (-523) (-523) $) NIL)) (-1641 ((|#1| $ (-523) (-523) |#1|) NIL) (($ $ (-589 (-523)) (-589 (-523)) $) NIL)) (-3787 (($ $ (-523) (-1168 |#1|)) NIL)) (-3617 (($ $ (-523) (-1168 |#1|)) NIL)) (-3495 (($ |#1| |#1| |#1|) 31)) (-1421 (($ (-710) |#1|) NIL)) (-2518 (($) NIL T CONST)) (-2445 (($ $) NIL (|has| |#1| (-284)))) (-2031 (((-1168 |#1|) $ (-523)) NIL)) (-3248 (($ |#1|) 30)) (-2078 (($ |#1|) 29)) (-3099 (($ |#1|) 28)) (-1319 (((-710) $) NIL (|has| |#1| (-515)))) (-2863 ((|#1| $ (-523) (-523) |#1|) NIL)) (-2795 ((|#1| $ (-523) (-523)) NIL)) (-1666 (((-589 |#1|) $) NIL)) (-1867 (((-710) $) NIL (|has| |#1| (-515)))) (-3498 (((-589 (-1168 |#1|)) $) NIL (|has| |#1| (-515)))) (-2803 (((-710) $) NIL)) (-3052 (($ (-710) (-710) |#1|) NIL)) (-2813 (((-710) $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-1925 ((|#1| $) NIL (|has| |#1| (-6 (-4246 "*"))))) (-3871 (((-523) $) NIL)) (-1758 (((-523) $) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3338 (((-523) $) NIL)) (-2347 (((-523) $) NIL)) (-3068 (($ (-589 (-589 |#1|))) 10)) (-2852 (($ (-1 |#1| |#1|) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2289 (((-589 (-589 |#1|)) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3698 (((-3 $ "failed") $) NIL (|has| |#1| (-339)))) (-1439 (($) 11)) (-3945 (($ $ $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-4203 (($ $ |#1|) NIL)) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-523) (-523)) NIL) ((|#1| $ (-523) (-523) |#1|) NIL) (($ $ (-589 (-523)) (-589 (-523))) NIL)) (-3739 (($ (-589 |#1|)) NIL) (($ (-589 $)) NIL)) (-3117 (((-108) $) NIL)) (-2310 ((|#1| $) NIL (|has| |#1| (-6 (-4246 "*"))))) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1595 (((-1168 |#1|) $ (-523)) NIL)) (-1458 (($ (-1168 |#1|)) NIL) (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2175 (((-108) $) NIL)) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $ $) NIL) (($ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-523) $) NIL) (((-1168 |#1|) $ (-1168 |#1|)) 14) (((-1168 |#1|) (-1168 |#1|) $) NIL) (((-874 |#1|) $ (-874 |#1|)) 20)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-205 |#1|) (-13 (-627 |#1| (-1168 |#1|) (-1168 |#1|)) (-10 -8 (-15 * ((-874 |#1|) $ (-874 |#1|))) (-15 -1439 ($)) (-15 -3099 ($ |#1|)) (-15 -2078 ($ |#1|)) (-15 -3248 ($ |#1|)) (-15 -3495 ($ |#1| |#1| |#1|)) (-15 -3706 ($ |#1| |#1| |#1|)))) (-13 (-339) (-1108))) (T -205)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108))) (-5 *1 (-205 *3)))) (-1439 (*1 *1) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108))))) (-3099 (*1 *1 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108))))) (-2078 (*1 *1 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108))))) (-3248 (*1 *1 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108))))) (-3495 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108))))) (-3706 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108)))))) +(-13 (-627 |#1| (-1168 |#1|) (-1168 |#1|)) (-10 -8 (-15 * ((-874 |#1|) $ (-874 |#1|))) (-15 -1439 ($)) (-15 -3099 ($ |#1|)) (-15 -2078 ($ |#1|)) (-15 -3248 ($ |#1|)) (-15 -3495 ($ |#1| |#1| |#1|)) (-15 -3706 ($ |#1| |#1| |#1|)))) +((-3387 (($ (-1 (-108) |#2|) $) 16)) (-2249 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 24)) (-3433 (($) NIL) (($ (-589 |#2|)) 11)) (-3983 (((-108) $ $) 22))) +(((-206 |#1| |#2|) (-10 -8 (-15 -3387 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2249 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2249 (|#1| |#2| |#1|)) (-15 -3433 (|#1| (-589 |#2|))) (-15 -3433 (|#1|)) (-15 -3983 ((-108) |#1| |#1|))) (-207 |#2|) (-1016)) (T -206)) +NIL +(-10 -8 (-15 -3387 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2249 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2249 (|#1| |#2| |#1|)) (-15 -3433 (|#1| (-589 |#2|))) (-15 -3433 (|#1|)) (-15 -3983 ((-108) |#1| |#1|))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) 8)) (-3387 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-1773 (($ $) 58 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2249 (($ |#1| $) 47 (|has| $ (-6 -4244))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4244)))) (-2557 (($ |#1| $) 57 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4244)))) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1934 ((|#1| $) 39)) (-3450 (($ |#1| $) 40)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3433 (($) 49) (($ (-589 |#1|)) 48)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 59 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 50)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) 42)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-207 |#1|) (-129) (-1016)) (T -207)) +NIL +(-13 (-213 |t#1|)) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-213 |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) +((-3523 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-710)) 11) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) 19) (($ $ (-710)) NIL) (($ $) 16)) (-2862 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-710)) 14) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL) (($ $ (-710)) NIL) (($ $) NIL))) +(((-208 |#1| |#2|) (-10 -8 (-15 -3523 (|#1| |#1|)) (-15 -2862 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -2862 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -2862 (|#1| |#1| (-1087))) (-15 -2862 (|#1| |#1| (-589 (-1087)))) (-15 -2862 (|#1| |#1| (-1087) (-710))) (-15 -2862 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -2862 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -2862 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|)))) (-209 |#2|) (-973)) (T -208)) +NIL +(-10 -8 (-15 -3523 (|#1| |#1|)) (-15 -2862 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -2862 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -2862 (|#1| |#1| (-1087))) (-15 -2862 (|#1| |#1| (-589 (-1087)))) (-15 -2862 (|#1| |#1| (-1087) (-710))) (-15 -2862 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -2862 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -2862 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3523 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-710)) 51) (($ $ (-589 (-1087)) (-589 (-710))) 44 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 43 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 42 (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) 41 (|has| |#1| (-831 (-1087)))) (($ $ (-710)) 39 (|has| |#1| (-211))) (($ $) 37 (|has| |#1| (-211)))) (-1458 (((-794) $) 11) (($ (-523)) 28)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-710)) 49) (($ $ (-589 (-1087)) (-589 (-710))) 48 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 47 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 46 (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) 45 (|has| |#1| (-831 (-1087)))) (($ $ (-710)) 40 (|has| |#1| (-211))) (($ $) 38 (|has| |#1| (-211)))) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-209 |#1|) (-129) (-973)) (T -209)) +((-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-209 *3)) (-4 *3 (-973)))) (-3523 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-710)) (-4 *1 (-209 *4)) (-4 *4 (-973)))) (-2862 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-209 *3)) (-4 *3 (-973)))) (-2862 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-710)) (-4 *1 (-209 *4)) (-4 *4 (-973))))) +(-13 (-973) (-10 -8 (-15 -3523 ($ $ (-1 |t#1| |t#1|))) (-15 -3523 ($ $ (-1 |t#1| |t#1|) (-710))) (-15 -2862 ($ $ (-1 |t#1| |t#1|))) (-15 -2862 ($ $ (-1 |t#1| |t#1|) (-710))) (IF (|has| |t#1| (-211)) (-6 (-211)) |%noBranch|) (IF (|has| |t#1| (-831 (-1087))) (-6 (-831 (-1087))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-211) |has| |#1| (-211)) ((-591 $) . T) ((-666) . T) ((-831 (-1087)) |has| |#1| (-831 (-1087))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-3523 (($ $) NIL) (($ $ (-710)) 10)) (-2862 (($ $) 8) (($ $ (-710)) 12))) +(((-210 |#1|) (-10 -8 (-15 -2862 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-710))) (-15 -2862 (|#1| |#1|)) (-15 -3523 (|#1| |#1|))) (-211)) (T -210)) +NIL +(-10 -8 (-15 -2862 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-710))) (-15 -2862 (|#1| |#1|)) (-15 -3523 (|#1| |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3523 (($ $) 38) (($ $ (-710)) 36)) (-1458 (((-794) $) 11) (($ (-523)) 28)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $) 37) (($ $ (-710)) 35)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-211) (-129)) (T -211)) +((-3523 (*1 *1 *1) (-4 *1 (-211))) (-2862 (*1 *1 *1) (-4 *1 (-211))) (-3523 (*1 *1 *1 *2) (-12 (-4 *1 (-211)) (-5 *2 (-710)))) (-2862 (*1 *1 *1 *2) (-12 (-4 *1 (-211)) (-5 *2 (-710))))) +(-13 (-973) (-10 -8 (-15 -3523 ($ $)) (-15 -2862 ($ $)) (-15 -3523 ($ $ (-710))) (-15 -2862 ($ $ (-710))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 $) . T) ((-666) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-3433 (($) 12) (($ (-589 |#2|)) NIL)) (-1664 (($ $) 14)) (-1472 (($ (-589 |#2|)) 10)) (-1458 (((-794) $) 21))) +(((-212 |#1| |#2|) (-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -3433 (|#1| (-589 |#2|))) (-15 -3433 (|#1|)) (-15 -1472 (|#1| (-589 |#2|))) (-15 -1664 (|#1| |#1|))) (-213 |#2|) (-1016)) (T -212)) +NIL +(-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -3433 (|#1| (-589 |#2|))) (-15 -3433 (|#1|)) (-15 -1472 (|#1| (-589 |#2|))) (-15 -1664 (|#1| |#1|))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) 8)) (-3387 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-1773 (($ $) 58 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2249 (($ |#1| $) 47 (|has| $ (-6 -4244))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4244)))) (-2557 (($ |#1| $) 57 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4244)))) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1934 ((|#1| $) 39)) (-3450 (($ |#1| $) 40)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3433 (($) 49) (($ (-589 |#1|)) 48)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 59 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 50)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) 42)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-213 |#1|) (-129) (-1016)) (T -213)) +((-3433 (*1 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1016)))) (-3433 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-213 *3)))) (-2249 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4244)) (-4 *1 (-213 *2)) (-4 *2 (-1016)))) (-2249 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4244)) (-4 *1 (-213 *3)) (-4 *3 (-1016)))) (-3387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4244)) (-4 *1 (-213 *3)) (-4 *3 (-1016))))) +(-13 (-102 |t#1|) (-140 |t#1|) (-10 -8 (-15 -3433 ($)) (-15 -3433 ($ (-589 |t#1|))) (IF (|has| $ (-6 -4244)) (PROGN (-15 -2249 ($ |t#1| $)) (-15 -2249 ($ (-1 (-108) |t#1|) $)) (-15 -3387 ($ (-1 (-108) |t#1|) $))) |%noBranch|))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) +((-2179 (((-2 (|:| |varOrder| (-589 (-1087))) (|:| |inhom| (-3 (-589 (-1168 (-710))) "failed")) (|:| |hom| (-589 (-1168 (-710))))) (-271 (-883 (-523)))) 25))) +(((-214) (-10 -7 (-15 -2179 ((-2 (|:| |varOrder| (-589 (-1087))) (|:| |inhom| (-3 (-589 (-1168 (-710))) "failed")) (|:| |hom| (-589 (-1168 (-710))))) (-271 (-883 (-523))))))) (T -214)) +((-2179 (*1 *2 *3) (-12 (-5 *3 (-271 (-883 (-523)))) (-5 *2 (-2 (|:| |varOrder| (-589 (-1087))) (|:| |inhom| (-3 (-589 (-1168 (-710))) "failed")) (|:| |hom| (-589 (-1168 (-710)))))) (-5 *1 (-214))))) +(-10 -7 (-15 -2179 ((-2 (|:| |varOrder| (-589 (-1087))) (|:| |inhom| (-3 (-589 (-1168 (-710))) "failed")) (|:| |hom| (-589 (-1168 (-710))))) (-271 (-883 (-523)))))) +((-1703 (((-710)) 51)) (-2381 (((-2 (|:| -3392 (-629 |#3|)) (|:| |vec| (-1168 |#3|))) (-629 $) (-1168 $)) 49) (((-629 |#3|) (-629 $)) 41) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-629 (-523)) (-629 $)) NIL)) (-3203 (((-126)) 57)) (-3523 (($ $ (-1 |#3| |#3|) (-710)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL) (($ $ (-710)) NIL) (($ $) NIL)) (-1458 (((-1168 |#3|) $) NIL) (($ |#3|) NIL) (((-794) $) NIL) (($ (-523)) 12) (($ (-383 (-523))) NIL)) (-1621 (((-710)) 15)) (-4098 (($ $ |#3|) 54))) +(((-215 |#1| |#2| |#3|) (-10 -8 (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|)) (-15 -1621 ((-710))) (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -1458 (|#1| |#3|)) (-15 -3523 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3523 (|#1| |#1| (-1 |#3| |#3|) (-710))) (-15 -2381 ((-629 |#3|) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#3|)) (|:| |vec| (-1168 |#3|))) (-629 |#1|) (-1168 |#1|))) (-15 -1703 ((-710))) (-15 -4098 (|#1| |#1| |#3|)) (-15 -3203 ((-126))) (-15 -1458 ((-1168 |#3|) |#1|))) (-216 |#2| |#3|) (-710) (-1122)) (T -215)) +((-3203 (*1 *2) (-12 (-14 *4 (-710)) (-4 *5 (-1122)) (-5 *2 (-126)) (-5 *1 (-215 *3 *4 *5)) (-4 *3 (-216 *4 *5)))) (-1703 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1122)) (-5 *2 (-710)) (-5 *1 (-215 *3 *4 *5)) (-4 *3 (-216 *4 *5)))) (-1621 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1122)) (-5 *2 (-710)) (-5 *1 (-215 *3 *4 *5)) (-4 *3 (-216 *4 *5))))) +(-10 -8 (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|)) (-15 -1621 ((-710))) (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -1458 (|#1| |#3|)) (-15 -3523 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3523 (|#1| |#1| (-1 |#3| |#3|) (-710))) (-15 -2381 ((-629 |#3|) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#3|)) (|:| |vec| (-1168 |#3|))) (-629 |#1|) (-1168 |#1|))) (-15 -1703 ((-710))) (-15 -4098 (|#1| |#1| |#3|)) (-15 -3203 ((-126))) (-15 -1458 ((-1168 |#3|) |#1|))) +((-3924 (((-108) $ $) 19 (|has| |#2| (-1016)))) (-2295 (((-108) $) 72 (|has| |#2| (-124)))) (-1890 (($ (-852)) 127 (|has| |#2| (-973)))) (-4207 (((-1173) $ (-523) (-523)) 40 (|has| $ (-6 -4245)))) (-3596 (($ $ $) 123 (|has| |#2| (-732)))) (-3212 (((-3 $ "failed") $ $) 74 (|has| |#2| (-124)))) (-3079 (((-108) $ (-710)) 8)) (-1703 (((-710)) 109 (|has| |#2| (-344)))) (-3671 (((-523) $) 121 (|has| |#2| (-784)))) (-1641 ((|#2| $ (-523) |#2|) 52 (|has| $ (-6 -4245)))) (-2518 (($) 7 T CONST)) (-3517 (((-3 (-523) "failed") $) 67 (-4099 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-3 (-383 (-523)) "failed") $) 64 (-4099 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1016)))) (-3474 (((-523) $) 68 (-4099 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-383 (-523)) $) 65 (-4099 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) ((|#2| $) 60 (|has| |#2| (-1016)))) (-2381 (((-629 (-523)) (-629 $)) 108 (-4099 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 107 (-4099 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) 106 (|has| |#2| (-973))) (((-629 |#2|) (-629 $)) 105 (|has| |#2| (-973)))) (-2121 (((-3 $ "failed") $) 99 (|has| |#2| (-973)))) (-4032 (($) 112 (|has| |#2| (-344)))) (-2863 ((|#2| $ (-523) |#2|) 53 (|has| $ (-6 -4245)))) (-2795 ((|#2| $ (-523)) 51)) (-2604 (((-108) $) 119 (|has| |#2| (-784)))) (-1666 (((-589 |#2|) $) 30 (|has| $ (-6 -4244)))) (-2023 (((-108) $) 102 (|has| |#2| (-973)))) (-4114 (((-108) $) 120 (|has| |#2| (-784)))) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 43 (|has| (-523) (-786)))) (-2454 (($ $ $) 118 (-3262 (|has| |#2| (-784)) (|has| |#2| (-732))))) (-2136 (((-589 |#2|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 44 (|has| (-523) (-786)))) (-2062 (($ $ $) 117 (-3262 (|has| |#2| (-784)) (|has| |#2| (-732))))) (-2852 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#2| |#2|) $) 35)) (-2072 (((-852) $) 111 (|has| |#2| (-344)))) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#2| (-1016)))) (-2412 (((-589 (-523)) $) 46)) (-4135 (((-108) (-523) $) 47)) (-3878 (($ (-852)) 110 (|has| |#2| (-344)))) (-2783 (((-1034) $) 21 (|has| |#2| (-1016)))) (-1738 ((|#2| $) 42 (|has| (-523) (-786)))) (-4203 (($ $ |#2|) 41 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#2|))) 26 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) 25 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) 23 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#2| $ (-523) |#2|) 50) ((|#2| $ (-523)) 49)) (-3269 ((|#2| $ $) 126 (|has| |#2| (-973)))) (-1868 (($ (-1168 |#2|)) 128)) (-3203 (((-126)) 125 (|has| |#2| (-339)))) (-3523 (($ $) 92 (-4099 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) 90 (-4099 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) 88 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) 87 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) 86 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) 85 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) 78 (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-973)))) (-2792 (((-710) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4244))) (((-710) |#2| $) 28 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-1168 |#2|) $) 129) (($ (-523)) 66 (-3262 (-4099 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016))) (|has| |#2| (-973)))) (($ (-383 (-523))) 63 (-4099 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (($ |#2|) 62 (|has| |#2| (-1016))) (((-794) $) 18 (|has| |#2| (-563 (-794))))) (-1621 (((-710)) 104 (|has| |#2| (-973)))) (-2096 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4244)))) (-2619 (($ $) 122 (|has| |#2| (-784)))) (-2364 (($ $ (-710)) 100 (|has| |#2| (-973))) (($ $ (-852)) 96 (|has| |#2| (-973)))) (-2756 (($) 71 (|has| |#2| (-124)) CONST)) (-2767 (($) 103 (|has| |#2| (-973)) CONST)) (-2862 (($ $) 91 (-4099 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) 89 (-4099 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) 84 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) 83 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) 82 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) 81 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) 80 (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-973)))) (-4043 (((-108) $ $) 115 (-3262 (|has| |#2| (-784)) (|has| |#2| (-732))))) (-4019 (((-108) $ $) 114 (-3262 (|has| |#2| (-784)) (|has| |#2| (-732))))) (-3983 (((-108) $ $) 20 (|has| |#2| (-1016)))) (-4030 (((-108) $ $) 116 (-3262 (|has| |#2| (-784)) (|has| |#2| (-732))))) (-4007 (((-108) $ $) 113 (-3262 (|has| |#2| (-784)) (|has| |#2| (-732))))) (-4098 (($ $ |#2|) 124 (|has| |#2| (-339)))) (-4087 (($ $ $) 94 (|has| |#2| (-973))) (($ $) 93 (|has| |#2| (-973)))) (-4075 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-710)) 101 (|has| |#2| (-973))) (($ $ (-852)) 97 (|has| |#2| (-973)))) (* (($ $ $) 98 (|has| |#2| (-973))) (($ (-523) $) 95 (|has| |#2| (-973))) (($ $ |#2|) 76 (|has| |#2| (-666))) (($ |#2| $) 75 (|has| |#2| (-666))) (($ (-710) $) 73 (|has| |#2| (-124))) (($ (-852) $) 70 (|has| |#2| (-25)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-216 |#1| |#2|) (-129) (-710) (-1122)) (T -216)) +((-1868 (*1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-4 *4 (-1122)) (-4 *1 (-216 *3 *4)))) (-1890 (*1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-216 *3 *4)) (-4 *4 (-973)) (-4 *4 (-1122)))) (-3269 (*1 *2 *1 *1) (-12 (-4 *1 (-216 *3 *2)) (-4 *2 (-1122)) (-4 *2 (-973)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-216 *3 *2)) (-4 *2 (-1122)) (-4 *2 (-666)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-216 *3 *2)) (-4 *2 (-1122)) (-4 *2 (-666))))) +(-13 (-556 (-523) |t#2|) (-563 (-1168 |t#2|)) (-10 -8 (-6 -4244) (-15 -1868 ($ (-1168 |t#2|))) (IF (|has| |t#2| (-1016)) (-6 (-387 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-973)) (PROGN (-6 (-107 |t#2| |t#2|)) (-6 (-209 |t#2|)) (-6 (-353 |t#2|)) (-15 -1890 ($ (-852))) (-15 -3269 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-124)) (-6 (-124)) |%noBranch|) (IF (|has| |t#2| (-666)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-344)) (-6 (-344)) |%noBranch|) (IF (|has| |t#2| (-158)) (PROGN (-6 (-37 |t#2|)) (-6 (-158))) |%noBranch|) (IF (|has| |t#2| (-6 -4241)) (-6 -4241) |%noBranch|) (IF (|has| |t#2| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#2| (-732)) (-6 (-732)) |%noBranch|) (IF (|has| |t#2| (-339)) (-6 (-1175 |t#2|)) |%noBranch|))) +(((-21) -3262 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-339)) (|has| |#2| (-158))) ((-23) -3262 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-732)) (|has| |#2| (-339)) (|has| |#2| (-158)) (|has| |#2| (-124))) ((-25) -3262 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-732)) (|has| |#2| (-339)) (|has| |#2| (-158)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-158)) ((-97) -3262 (|has| |#2| (-1016)) (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-732)) (|has| |#2| (-344)) (|has| |#2| (-339)) (|has| |#2| (-158)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-107 |#2| |#2|) -3262 (|has| |#2| (-973)) (|has| |#2| (-339)) (|has| |#2| (-158))) ((-107 $ $) |has| |#2| (-158)) ((-124) -3262 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-732)) (|has| |#2| (-339)) (|has| |#2| (-158)) (|has| |#2| (-124))) ((-563 (-794)) -3262 (|has| |#2| (-1016)) (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-732)) (|has| |#2| (-344)) (|has| |#2| (-339)) (|has| |#2| (-158)) (|has| |#2| (-563 (-794))) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-563 (-1168 |#2|)) . T) ((-158) |has| |#2| (-158)) ((-209 |#2|) |has| |#2| (-973)) ((-211) -12 (|has| |#2| (-211)) (|has| |#2| (-973))) ((-263 #0=(-523) |#2|) . T) ((-265 #0# |#2|) . T) ((-286 |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-344) |has| |#2| (-344)) ((-353 |#2|) |has| |#2| (-973)) ((-387 |#2|) |has| |#2| (-1016)) ((-462 |#2|) . T) ((-556 #0# |#2|) . T) ((-484 |#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-591 |#2|) -3262 (|has| |#2| (-973)) (|has| |#2| (-339)) (|has| |#2| (-158))) ((-591 $) -3262 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-158))) ((-585 (-523)) -12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973))) ((-585 |#2|) |has| |#2| (-973)) ((-657 |#2|) -3262 (|has| |#2| (-339)) (|has| |#2| (-158))) ((-666) -3262 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-158))) ((-730) |has| |#2| (-784)) ((-731) -3262 (|has| |#2| (-784)) (|has| |#2| (-732))) ((-732) |has| |#2| (-732)) ((-733) -3262 (|has| |#2| (-784)) (|has| |#2| (-732))) ((-734) -3262 (|has| |#2| (-784)) (|has| |#2| (-732))) ((-784) |has| |#2| (-784)) ((-786) -3262 (|has| |#2| (-784)) (|has| |#2| (-732))) ((-831 (-1087)) -12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973))) ((-964 (-383 (-523))) -12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016))) ((-964 (-523)) -12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016))) ((-964 |#2|) |has| |#2| (-1016)) ((-979 |#2|) -3262 (|has| |#2| (-973)) (|has| |#2| (-339)) (|has| |#2| (-158))) ((-979 $) |has| |#2| (-158)) ((-973) -3262 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-158))) ((-980) -3262 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-158))) ((-1028) -3262 (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-158))) ((-1016) -3262 (|has| |#2| (-1016)) (|has| |#2| (-973)) (|has| |#2| (-784)) (|has| |#2| (-732)) (|has| |#2| (-344)) (|has| |#2| (-339)) (|has| |#2| (-158)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-1122) . T) ((-1175 |#2|) |has| |#2| (-339))) +((-2837 (((-218 |#1| |#3|) (-1 |#3| |#2| |#3|) (-218 |#1| |#2|) |#3|) 21)) (-2437 ((|#3| (-1 |#3| |#2| |#3|) (-218 |#1| |#2|) |#3|) 23)) (-3612 (((-218 |#1| |#3|) (-1 |#3| |#2|) (-218 |#1| |#2|)) 18))) +(((-217 |#1| |#2| |#3|) (-10 -7 (-15 -2837 ((-218 |#1| |#3|) (-1 |#3| |#2| |#3|) (-218 |#1| |#2|) |#3|)) (-15 -2437 (|#3| (-1 |#3| |#2| |#3|) (-218 |#1| |#2|) |#3|)) (-15 -3612 ((-218 |#1| |#3|) (-1 |#3| |#2|) (-218 |#1| |#2|)))) (-710) (-1122) (-1122)) (T -217)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-218 *5 *6)) (-14 *5 (-710)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-218 *5 *7)) (-5 *1 (-217 *5 *6 *7)))) (-2437 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-218 *5 *6)) (-14 *5 (-710)) (-4 *6 (-1122)) (-4 *2 (-1122)) (-5 *1 (-217 *5 *6 *2)))) (-2837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-218 *6 *7)) (-14 *6 (-710)) (-4 *7 (-1122)) (-4 *5 (-1122)) (-5 *2 (-218 *6 *5)) (-5 *1 (-217 *6 *7 *5))))) +(-10 -7 (-15 -2837 ((-218 |#1| |#3|) (-1 |#3| |#2| |#3|) (-218 |#1| |#2|) |#3|)) (-15 -2437 (|#3| (-1 |#3| |#2| |#3|) (-218 |#1| |#2|) |#3|)) (-15 -3612 ((-218 |#1| |#3|) (-1 |#3| |#2|) (-218 |#1| |#2|)))) +((-3924 (((-108) $ $) NIL (|has| |#2| (-1016)))) (-2295 (((-108) $) NIL (|has| |#2| (-124)))) (-1890 (($ (-852)) 56 (|has| |#2| (-973)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-3596 (($ $ $) 60 (|has| |#2| (-732)))) (-3212 (((-3 $ "failed") $ $) 48 (|has| |#2| (-124)))) (-3079 (((-108) $ (-710)) 17)) (-1703 (((-710)) NIL (|has| |#2| (-344)))) (-3671 (((-523) $) NIL (|has| |#2| (-784)))) (-1641 ((|#2| $ (-523) |#2|) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1016)))) (-3474 (((-523) $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-383 (-523)) $) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) ((|#2| $) 27 (|has| |#2| (-1016)))) (-2381 (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL (|has| |#2| (-973))) (((-629 |#2|) (-629 $)) NIL (|has| |#2| (-973)))) (-2121 (((-3 $ "failed") $) 53 (|has| |#2| (-973)))) (-4032 (($) NIL (|has| |#2| (-344)))) (-2863 ((|#2| $ (-523) |#2|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#2| $ (-523)) 51)) (-2604 (((-108) $) NIL (|has| |#2| (-784)))) (-1666 (((-589 |#2|) $) 15 (|has| $ (-6 -4244)))) (-2023 (((-108) $) NIL (|has| |#2| (-973)))) (-4114 (((-108) $) NIL (|has| |#2| (-784)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) 20 (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-2136 (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3056 (((-523) $) 50 (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-2852 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#2| |#2|) $) 41)) (-2072 (((-852) $) NIL (|has| |#2| (-344)))) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#2| (-1016)))) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-3878 (($ (-852)) NIL (|has| |#2| (-344)))) (-2783 (((-1034) $) NIL (|has| |#2| (-1016)))) (-1738 ((|#2| $) NIL (|has| (-523) (-786)))) (-4203 (($ $ |#2|) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#2|) $) 24 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#2| $ (-523) |#2|) NIL) ((|#2| $ (-523)) 21)) (-3269 ((|#2| $ $) NIL (|has| |#2| (-973)))) (-1868 (($ (-1168 |#2|)) 18)) (-3203 (((-126)) NIL (|has| |#2| (-339)))) (-3523 (($ $) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-973)))) (-2792 (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-1168 |#2|) $) 10) (($ (-523)) NIL (-3262 (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016))) (|has| |#2| (-973)))) (($ (-383 (-523))) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (($ |#2|) 13 (|has| |#2| (-1016))) (((-794) $) NIL (|has| |#2| (-563 (-794))))) (-1621 (((-710)) NIL (|has| |#2| (-973)))) (-2096 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2619 (($ $) NIL (|has| |#2| (-784)))) (-2364 (($ $ (-710)) NIL (|has| |#2| (-973))) (($ $ (-852)) NIL (|has| |#2| (-973)))) (-2756 (($) 35 (|has| |#2| (-124)) CONST)) (-2767 (($) 38 (|has| |#2| (-973)) CONST)) (-2862 (($ $) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-973)))) (-4043 (((-108) $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-4019 (((-108) $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-3983 (((-108) $ $) 26 (|has| |#2| (-1016)))) (-4030 (((-108) $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-4007 (((-108) $ $) 58 (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-4098 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4087 (($ $ $) NIL (|has| |#2| (-973))) (($ $) NIL (|has| |#2| (-973)))) (-4075 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-710)) NIL (|has| |#2| (-973))) (($ $ (-852)) NIL (|has| |#2| (-973)))) (* (($ $ $) 49 (|has| |#2| (-973))) (($ (-523) $) NIL (|has| |#2| (-973))) (($ $ |#2|) 42 (|has| |#2| (-666))) (($ |#2| $) 43 (|has| |#2| (-666))) (($ (-710) $) NIL (|has| |#2| (-124))) (($ (-852) $) NIL (|has| |#2| (-25)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-218 |#1| |#2|) (-216 |#1| |#2|) (-710) (-1122)) (T -218)) +NIL +(-216 |#1| |#2|) +((-4004 (((-523) (-589 (-1070))) 24) (((-523) (-1070)) 19)) (-1672 (((-1173) (-589 (-1070))) 29) (((-1173) (-1070)) 28)) (-3290 (((-1070)) 14)) (-2166 (((-1070) (-523) (-1070)) 16)) (-1288 (((-589 (-1070)) (-589 (-1070)) (-523) (-1070)) 25) (((-1070) (-1070) (-523) (-1070)) 23)) (-1427 (((-589 (-1070)) (-589 (-1070))) 13) (((-589 (-1070)) (-1070)) 11))) +(((-219) (-10 -7 (-15 -1427 ((-589 (-1070)) (-1070))) (-15 -1427 ((-589 (-1070)) (-589 (-1070)))) (-15 -3290 ((-1070))) (-15 -2166 ((-1070) (-523) (-1070))) (-15 -1288 ((-1070) (-1070) (-523) (-1070))) (-15 -1288 ((-589 (-1070)) (-589 (-1070)) (-523) (-1070))) (-15 -1672 ((-1173) (-1070))) (-15 -1672 ((-1173) (-589 (-1070)))) (-15 -4004 ((-523) (-1070))) (-15 -4004 ((-523) (-589 (-1070)))))) (T -219)) +((-4004 (*1 *2 *3) (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-523)) (-5 *1 (-219)))) (-4004 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-523)) (-5 *1 (-219)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1173)) (-5 *1 (-219)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-219)))) (-1288 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-589 (-1070))) (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *1 (-219)))) (-1288 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *3 (-523)) (-5 *1 (-219)))) (-2166 (*1 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *3 (-523)) (-5 *1 (-219)))) (-3290 (*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-219)))) (-1427 (*1 *2 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-219)))) (-1427 (*1 *2 *3) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-219)) (-5 *3 (-1070))))) +(-10 -7 (-15 -1427 ((-589 (-1070)) (-1070))) (-15 -1427 ((-589 (-1070)) (-589 (-1070)))) (-15 -3290 ((-1070))) (-15 -2166 ((-1070) (-523) (-1070))) (-15 -1288 ((-1070) (-1070) (-523) (-1070))) (-15 -1288 ((-589 (-1070)) (-589 (-1070)) (-523) (-1070))) (-15 -1672 ((-1173) (-1070))) (-15 -1672 ((-1173) (-589 (-1070)))) (-15 -4004 ((-523) (-1070))) (-15 -4004 ((-523) (-589 (-1070))))) +((-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 9)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 18)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ (-383 (-523)) $) 25) (($ $ (-383 (-523))) NIL))) +(((-220 |#1|) (-10 -8 (-15 -2364 (|#1| |#1| (-523))) (-15 ** (|#1| |#1| (-523))) (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 ** (|#1| |#1| (-710))) (-15 -2364 (|#1| |#1| (-710))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-852))) (-15 -2364 (|#1| |#1| (-852))) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) (-221)) (T -220)) +NIL +(-10 -8 (-15 -2364 (|#1| |#1| (-523))) (-15 ** (|#1| |#1| (-523))) (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 ** (|#1| |#1| (-710))) (-15 -2364 (|#1| |#1| (-710))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-852))) (-15 -2364 (|#1| |#1| (-852))) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 39)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 44)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 40)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 41)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ (-383 (-523)) $) 43) (($ $ (-383 (-523))) 42))) +(((-221) (-129)) (T -221)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-221)) (-5 *2 (-523)))) (-2364 (*1 *1 *1 *2) (-12 (-4 *1 (-221)) (-5 *2 (-523)))) (-3738 (*1 *1 *1) (-4 *1 (-221)))) +(-13 (-267) (-37 (-383 (-523))) (-10 -8 (-15 ** ($ $ (-523))) (-15 -2364 ($ $ (-523))) (-15 -3738 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-267) . T) ((-591 #0#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-666) . T) ((-979 #0#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1733 ((|#1| $) 48)) (-4039 (($ $) 57)) (-3079 (((-108) $ (-710)) 8)) (-1823 ((|#1| $ |#1|) 39 (|has| $ (-6 -4245)))) (-1963 (($ $ $) 53 (|has| $ (-6 -4245)))) (-4221 (($ $ $) 52 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 41 (|has| $ (-6 -4245)))) (-2518 (($) 7 T CONST)) (-3105 (($ $) 56)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) 50)) (-1238 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-1739 (($ $) 55)) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-2726 (((-589 |#1|) $) 45)) (-3555 (((-108) $) 49)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2579 ((|#1| $) 59)) (-3729 (($ $) 58)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ "value") 47)) (-1549 (((-523) $ $) 44)) (-2524 (((-108) $) 46)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1746 (($ $ $) 54 (|has| $ (-6 -4245)))) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) 51)) (-3653 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-222 |#1|) (-129) (-1122)) (T -222)) +((-2579 (*1 *2 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1122)))) (-3729 (*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1122)))) (-4039 (*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1122)))) (-3105 (*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1122)))) (-1739 (*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1122)))) (-1746 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-222 *2)) (-4 *2 (-1122)))) (-1963 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-222 *2)) (-4 *2 (-1122)))) (-4221 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-222 *2)) (-4 *2 (-1122))))) +(-13 (-938 |t#1|) (-10 -8 (-15 -2579 (|t#1| $)) (-15 -3729 ($ $)) (-15 -4039 ($ $)) (-15 -3105 ($ $)) (-15 -1739 ($ $)) (IF (|has| $ (-6 -4245)) (PROGN (-15 -1746 ($ $ $)) (-15 -1963 ($ $ $)) (-15 -4221 ($ $ $))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-938 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1733 ((|#1| $) NIL)) (-1546 ((|#1| $) NIL)) (-4039 (($ $) NIL)) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-2961 (($ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) $) NIL (|has| |#1| (-786))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-1506 (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3974 (($ $) 10 (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1823 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-2110 (($ $ $) NIL (|has| $ (-6 -4245)))) (-3395 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-3456 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4245))) (($ $ "rest" $) NIL (|has| $ (-6 -4245))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) NIL (|has| $ (-6 -4245)))) (-3387 (($ (-1 (-108) |#1|) $) NIL)) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-1532 ((|#1| $) NIL)) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1751 (($ $) NIL) (($ $ (-710)) NIL)) (-3941 (($ $) NIL (|has| |#1| (-1016)))) (-1773 (($ $) 7 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2249 (($ |#1| $) NIL (|has| |#1| (-1016))) (($ (-1 (-108) |#1|) $) NIL)) (-2557 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2863 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) NIL)) (-1232 (((-108) $) NIL)) (-1479 (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016))) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) (-1 (-108) |#1|) $) NIL)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) NIL)) (-1238 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3052 (($ (-710) |#1|) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2158 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2178 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3992 (($ |#1|) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-2726 (((-589 |#1|) $) NIL)) (-3555 (((-108) $) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2579 ((|#1| $) NIL) (($ $ (-710)) NIL)) (-3450 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2847 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1738 ((|#1| $) NIL) (($ $ (-710)) NIL)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) NIL (|has| $ (-6 -4245)))) (-2402 (((-108) $) NIL)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1135 (-523))) NIL) ((|#1| $ (-523)) NIL) ((|#1| $ (-523) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-710) $ "count") 16)) (-1549 (((-523) $ $) NIL)) (-2753 (($ $ (-1135 (-523))) NIL) (($ $ (-523)) NIL)) (-1469 (($ $ (-1135 (-523))) NIL) (($ $ (-523)) NIL)) (-4143 (($ (-589 |#1|)) 22)) (-2524 (((-108) $) NIL)) (-2732 (($ $) NIL)) (-2363 (($ $) NIL (|has| $ (-6 -4245)))) (-2316 (((-710) $) NIL)) (-3562 (($ $) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) NIL)) (-1746 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2326 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-589 $)) NIL) (($ $ |#1|) NIL)) (-1458 (($ (-589 |#1|)) 17) (((-589 |#1|) $) 18) (((-794) $) 21 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) NIL)) (-3653 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2676 (((-710) $) 14 (|has| $ (-6 -4244))))) +(((-223 |#1|) (-13 (-609 |#1|) (-10 -8 (-15 -1458 ($ (-589 |#1|))) (-15 -1458 ((-589 |#1|) $)) (-15 -4143 ($ (-589 |#1|))) (-15 -3223 ($ $ "unique")) (-15 -3223 ($ $ "sort")) (-15 -3223 ((-710) $ "count")))) (-786)) (T -223)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-223 *3)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-223 *3)) (-4 *3 (-786)))) (-4143 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-223 *3)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-223 *3)) (-4 *3 (-786)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-223 *3)) (-4 *3 (-786)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-710)) (-5 *1 (-223 *4)) (-4 *4 (-786))))) +(-13 (-609 |#1|) (-10 -8 (-15 -1458 ($ (-589 |#1|))) (-15 -1458 ((-589 |#1|) $)) (-15 -4143 ($ (-589 |#1|))) (-15 -3223 ($ $ "unique")) (-15 -3223 ($ $ "sort")) (-15 -3223 ((-710) $ "count")))) +((-2142 (((-3 (-710) "failed") |#1| |#1| (-710)) 27))) +(((-224 |#1|) (-10 -7 (-15 -2142 ((-3 (-710) "failed") |#1| |#1| (-710)))) (-13 (-666) (-344) (-10 -7 (-15 ** (|#1| |#1| (-523)))))) (T -224)) +((-2142 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-710)) (-4 *3 (-13 (-666) (-344) (-10 -7 (-15 ** (*3 *3 (-523)))))) (-5 *1 (-224 *3))))) +(-10 -7 (-15 -2142 ((-3 (-710) "failed") |#1| |#1| (-710)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-796 |#1|)) $) NIL)) (-1786 (((-1083 $) $ (-796 |#1|)) NIL) (((-1083 |#2|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#2| (-515)))) (-3345 (($ $) NIL (|has| |#2| (-515)))) (-3331 (((-108) $) NIL (|has| |#2| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-796 |#1|))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2291 (($ $) NIL (|has| |#2| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#2| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-796 |#1|) "failed") $) NIL)) (-3474 ((|#2| $) NIL) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-796 |#1|) $) NIL)) (-3078 (($ $ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-3806 (($ $ (-589 (-523))) NIL)) (-3810 (($ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#2| (-840)))) (-1284 (($ $ |#2| (-218 (-2676 |#1|) (-710)) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-355))) (|has| |#2| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-523))) (|has| |#2| (-817 (-523)))))) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-1945 (($ (-1083 |#2|) (-796 |#1|)) NIL) (($ (-1083 $) (-796 |#1|)) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#2| (-218 (-2676 |#1|) (-710))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-796 |#1|)) NIL)) (-1575 (((-218 (-2676 |#1|) (-710)) $) NIL) (((-710) $ (-796 |#1|)) NIL) (((-589 (-710)) $ (-589 (-796 |#1|))) NIL)) (-2454 (($ $ $) NIL (|has| |#2| (-786)))) (-2062 (($ $ $) NIL (|has| |#2| (-786)))) (-3782 (($ (-1 (-218 (-2676 |#1|) (-710)) (-218 (-2676 |#1|) (-710))) $) NIL)) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-2520 (((-3 (-796 |#1|) "failed") $) NIL)) (-3774 (($ $) NIL)) (-3786 ((|#2| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-3779 (((-1070) $) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-796 |#1|)) (|:| -2735 (-710))) "failed") $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 ((|#2| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#2| (-840)))) (-3746 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-515)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-796 |#1|) |#2|) NIL) (($ $ (-589 (-796 |#1|)) (-589 |#2|)) NIL) (($ $ (-796 |#1|) $) NIL) (($ $ (-589 (-796 |#1|)) (-589 $)) NIL)) (-3549 (($ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-3523 (($ $ (-796 |#1|)) NIL) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-2299 (((-218 (-2676 |#1|) (-710)) $) NIL) (((-710) $ (-796 |#1|)) NIL) (((-589 (-710)) $ (-589 (-796 |#1|))) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-796 |#1|) (-564 (-499))) (|has| |#2| (-564 (-499)))))) (-2438 ((|#2| $) NIL (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#2| (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) NIL) (($ (-796 |#1|)) NIL) (($ (-383 (-523))) NIL (-3262 (|has| |#2| (-37 (-383 (-523)))) (|has| |#2| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#2| (-515)))) (-1251 (((-589 |#2|) $) NIL)) (-2365 ((|#2| $ (-218 (-2676 |#1|) (-710))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#2| (-840))) (|has| |#2| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#2| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#2| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-796 |#1|)) NIL) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-4043 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4098 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#2| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#2| (-37 (-383 (-523))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-225 |#1| |#2|) (-13 (-880 |#2| (-218 (-2676 |#1|) (-710)) (-796 |#1|)) (-10 -8 (-15 -3806 ($ $ (-589 (-523)))))) (-589 (-1087)) (-973)) (T -225)) +((-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-225 *3 *4)) (-14 *3 (-589 (-1087))) (-4 *4 (-973))))) +(-13 (-880 |#2| (-218 (-2676 |#1|) (-710)) (-796 |#1|)) (-10 -8 (-15 -3806 ($ $ (-589 (-523)))))) +((-4198 (((-1173) $) 12)) (-3687 (((-167) $) 9)) (-4109 (($ (-167)) 10)) (-1458 (((-794) $) 7))) +(((-226) (-13 (-563 (-794)) (-10 -8 (-15 -3687 ((-167) $)) (-15 -4109 ($ (-167))) (-15 -4198 ((-1173) $))))) (T -226)) +((-3687 (*1 *2 *1) (-12 (-5 *2 (-167)) (-5 *1 (-226)))) (-4109 (*1 *1 *2) (-12 (-5 *2 (-167)) (-5 *1 (-226)))) (-4198 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-226))))) +(-13 (-563 (-794)) (-10 -8 (-15 -3687 ((-167) $)) (-15 -4109 ($ (-167))) (-15 -4198 ((-1173) $)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1890 (($ (-852)) NIL (|has| |#4| (-973)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-3596 (($ $ $) NIL (|has| |#4| (-732)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1703 (((-710)) NIL (|has| |#4| (-344)))) (-3671 (((-523) $) NIL (|has| |#4| (-784)))) (-1641 ((|#4| $ (-523) |#4|) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1016))) (((-3 (-523) "failed") $) NIL (-12 (|has| |#4| (-964 (-523))) (|has| |#4| (-1016)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| |#4| (-964 (-383 (-523)))) (|has| |#4| (-1016))))) (-3474 ((|#4| $) NIL (|has| |#4| (-1016))) (((-523) $) NIL (-12 (|has| |#4| (-964 (-523))) (|has| |#4| (-1016)))) (((-383 (-523)) $) NIL (-12 (|has| |#4| (-964 (-383 (-523)))) (|has| |#4| (-1016))))) (-2381 (((-2 (|:| -3392 (-629 |#4|)) (|:| |vec| (-1168 |#4|))) (-629 $) (-1168 $)) NIL (|has| |#4| (-973))) (((-629 |#4|) (-629 $)) NIL (|has| |#4| (-973))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (-12 (|has| |#4| (-585 (-523))) (|has| |#4| (-973)))) (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#4| (-585 (-523))) (|has| |#4| (-973))))) (-2121 (((-3 $ "failed") $) NIL (|has| |#4| (-973)))) (-4032 (($) NIL (|has| |#4| (-344)))) (-2863 ((|#4| $ (-523) |#4|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#4| $ (-523)) NIL)) (-2604 (((-108) $) NIL (|has| |#4| (-784)))) (-1666 (((-589 |#4|) $) NIL (|has| $ (-6 -4244)))) (-2023 (((-108) $) NIL (|has| |#4| (-973)))) (-4114 (((-108) $) NIL (|has| |#4| (-784)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (-3262 (|has| |#4| (-732)) (|has| |#4| (-784))))) (-2136 (((-589 |#4|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (-3262 (|has| |#4| (-732)) (|has| |#4| (-784))))) (-2852 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) NIL)) (-2072 (((-852) $) NIL (|has| |#4| (-344)))) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-3878 (($ (-852)) NIL (|has| |#4| (-344)))) (-2783 (((-1034) $) NIL)) (-1738 ((|#4| $) NIL (|has| (-523) (-786)))) (-4203 (($ $ |#4|) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#4|))) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 |#4|) (-589 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-1264 (((-589 |#4|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#4| $ (-523) |#4|) NIL) ((|#4| $ (-523)) 12)) (-3269 ((|#4| $ $) NIL (|has| |#4| (-973)))) (-1868 (($ (-1168 |#4|)) NIL)) (-3203 (((-126)) NIL (|has| |#4| (-339)))) (-3523 (($ $ (-1 |#4| |#4|) (-710)) NIL (|has| |#4| (-973))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-973))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#4| (-211)) (|has| |#4| (-973)))) (($ $) NIL (-12 (|has| |#4| (-211)) (|has| |#4| (-973))))) (-2792 (((-710) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244))) (((-710) |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-1168 |#4|) $) NIL) (((-794) $) NIL) (($ |#4|) NIL (|has| |#4| (-1016))) (($ (-523)) NIL (-3262 (-12 (|has| |#4| (-964 (-523))) (|has| |#4| (-1016))) (|has| |#4| (-973)))) (($ (-383 (-523))) NIL (-12 (|has| |#4| (-964 (-383 (-523)))) (|has| |#4| (-1016))))) (-1621 (((-710)) NIL (|has| |#4| (-973)))) (-2096 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-2619 (($ $) NIL (|has| |#4| (-784)))) (-2364 (($ $ (-710)) NIL (|has| |#4| (-973))) (($ $ (-852)) NIL (|has| |#4| (-973)))) (-2756 (($) NIL T CONST)) (-2767 (($) NIL (|has| |#4| (-973)) CONST)) (-2862 (($ $ (-1 |#4| |#4|) (-710)) NIL (|has| |#4| (-973))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-973))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#4| (-831 (-1087))) (|has| |#4| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#4| (-211)) (|has| |#4| (-973)))) (($ $) NIL (-12 (|has| |#4| (-211)) (|has| |#4| (-973))))) (-4043 (((-108) $ $) NIL (-3262 (|has| |#4| (-732)) (|has| |#4| (-784))))) (-4019 (((-108) $ $) NIL (-3262 (|has| |#4| (-732)) (|has| |#4| (-784))))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (-3262 (|has| |#4| (-732)) (|has| |#4| (-784))))) (-4007 (((-108) $ $) NIL (-3262 (|has| |#4| (-732)) (|has| |#4| (-784))))) (-4098 (($ $ |#4|) NIL (|has| |#4| (-339)))) (-4087 (($ $ $) NIL) (($ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-710)) NIL (|has| |#4| (-973))) (($ $ (-852)) NIL (|has| |#4| (-973)))) (* (($ |#2| $) 14) (($ (-523) $) NIL) (($ (-710) $) NIL) (($ (-852) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-666))) (($ |#4| $) NIL (|has| |#4| (-666))) (($ $ $) NIL (|has| |#4| (-973)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-227 |#1| |#2| |#3| |#4|) (-13 (-216 |#1| |#4|) (-591 |#2|) (-591 |#3|)) (-852) (-973) (-1037 |#1| |#2| (-218 |#1| |#2|) (-218 |#1| |#2|)) (-591 |#2|)) (T -227)) +NIL +(-13 (-216 |#1| |#4|) (-591 |#2|) (-591 |#3|)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1890 (($ (-852)) NIL (|has| |#3| (-973)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-3596 (($ $ $) NIL (|has| |#3| (-732)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1703 (((-710)) NIL (|has| |#3| (-344)))) (-3671 (((-523) $) NIL (|has| |#3| (-784)))) (-1641 ((|#3| $ (-523) |#3|) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1016))) (((-3 (-523) "failed") $) NIL (-12 (|has| |#3| (-964 (-523))) (|has| |#3| (-1016)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| |#3| (-964 (-383 (-523)))) (|has| |#3| (-1016))))) (-3474 ((|#3| $) NIL (|has| |#3| (-1016))) (((-523) $) NIL (-12 (|has| |#3| (-964 (-523))) (|has| |#3| (-1016)))) (((-383 (-523)) $) NIL (-12 (|has| |#3| (-964 (-383 (-523)))) (|has| |#3| (-1016))))) (-2381 (((-2 (|:| -3392 (-629 |#3|)) (|:| |vec| (-1168 |#3|))) (-629 $) (-1168 $)) NIL (|has| |#3| (-973))) (((-629 |#3|) (-629 $)) NIL (|has| |#3| (-973))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (-12 (|has| |#3| (-585 (-523))) (|has| |#3| (-973)))) (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#3| (-585 (-523))) (|has| |#3| (-973))))) (-2121 (((-3 $ "failed") $) NIL (|has| |#3| (-973)))) (-4032 (($) NIL (|has| |#3| (-344)))) (-2863 ((|#3| $ (-523) |#3|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#3| $ (-523)) NIL)) (-2604 (((-108) $) NIL (|has| |#3| (-784)))) (-1666 (((-589 |#3|) $) NIL (|has| $ (-6 -4244)))) (-2023 (((-108) $) NIL (|has| |#3| (-973)))) (-4114 (((-108) $) NIL (|has| |#3| (-784)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-2136 (((-589 |#3|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#3| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-2852 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#3| |#3|) $) NIL)) (-2072 (((-852) $) NIL (|has| |#3| (-344)))) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-3878 (($ (-852)) NIL (|has| |#3| (-344)))) (-2783 (((-1034) $) NIL)) (-1738 ((|#3| $) NIL (|has| (-523) (-786)))) (-4203 (($ $ |#3|) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#3|))) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-271 |#3|)) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-589 |#3|) (-589 |#3|)) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#3| (-1016))))) (-1264 (((-589 |#3|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#3| $ (-523) |#3|) NIL) ((|#3| $ (-523)) 11)) (-3269 ((|#3| $ $) NIL (|has| |#3| (-973)))) (-1868 (($ (-1168 |#3|)) NIL)) (-3203 (((-126)) NIL (|has| |#3| (-339)))) (-3523 (($ $ (-1 |#3| |#3|) (-710)) NIL (|has| |#3| (-973))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-973))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973)))) (($ $) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973))))) (-2792 (((-710) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4244))) (((-710) |#3| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#3| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-1168 |#3|) $) NIL) (((-794) $) NIL) (($ |#3|) NIL (|has| |#3| (-1016))) (($ (-523)) NIL (-3262 (-12 (|has| |#3| (-964 (-523))) (|has| |#3| (-1016))) (|has| |#3| (-973)))) (($ (-383 (-523))) NIL (-12 (|has| |#3| (-964 (-383 (-523)))) (|has| |#3| (-1016))))) (-1621 (((-710)) NIL (|has| |#3| (-973)))) (-2096 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4244)))) (-2619 (($ $) NIL (|has| |#3| (-784)))) (-2364 (($ $ (-710)) NIL (|has| |#3| (-973))) (($ $ (-852)) NIL (|has| |#3| (-973)))) (-2756 (($) NIL T CONST)) (-2767 (($) NIL (|has| |#3| (-973)) CONST)) (-2862 (($ $ (-1 |#3| |#3|) (-710)) NIL (|has| |#3| (-973))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-973))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973)))) (($ $) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973))))) (-4043 (((-108) $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-4019 (((-108) $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-4007 (((-108) $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-4098 (($ $ |#3|) NIL (|has| |#3| (-339)))) (-4087 (($ $ $) NIL) (($ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-710)) NIL (|has| |#3| (-973))) (($ $ (-852)) NIL (|has| |#3| (-973)))) (* (($ |#2| $) 13) (($ (-523) $) NIL) (($ (-710) $) NIL) (($ (-852) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-666))) (($ |#3| $) NIL (|has| |#3| (-666))) (($ $ $) NIL (|has| |#3| (-973)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-228 |#1| |#2| |#3|) (-13 (-216 |#1| |#3|) (-591 |#2|)) (-710) (-973) (-591 |#2|)) (T -228)) +NIL +(-13 (-216 |#1| |#3|) (-591 |#2|)) +((-1854 (((-589 (-710)) $) 47) (((-589 (-710)) $ |#3|) 50)) (-2656 (((-710) $) 49) (((-710) $ |#3|) 52)) (-1413 (($ $) 65)) (-3517 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 (-523) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-1640 (((-710) $ |#3|) 39) (((-710) $) 36)) (-3178 (((-1 $ (-710)) |#3|) 15) (((-1 $ (-710)) $) 77)) (-3415 ((|#4| $) 58)) (-1453 (((-108) $) 56)) (-3197 (($ $) 64)) (-2679 (($ $ (-589 (-271 $))) 96) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-589 |#4|) (-589 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-589 |#4|) (-589 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-589 |#3|) (-589 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-589 |#3|) (-589 |#2|)) 84)) (-3523 (($ $ |#4|) NIL) (($ $ (-589 |#4|)) NIL) (($ $ |#4| (-710)) NIL) (($ $ (-589 |#4|) (-589 (-710))) NIL) (($ $) NIL) (($ $ (-710)) NIL) (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1748 (((-589 |#3|) $) 75)) (-2299 ((|#5| $) NIL) (((-710) $ |#4|) NIL) (((-589 (-710)) $ (-589 |#4|)) NIL) (((-710) $ |#3|) 44)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-383 (-523))) NIL) (($ $) NIL))) +(((-229 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1458 (|#1| |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -2679 (|#1| |#1| (-589 |#3|) (-589 |#2|))) (-15 -2679 (|#1| |#1| |#3| |#2|)) (-15 -2679 (|#1| |#1| (-589 |#3|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#3| |#1|)) (-15 -3178 ((-1 |#1| (-710)) |#1|)) (-15 -1413 (|#1| |#1|)) (-15 -3197 (|#1| |#1|)) (-15 -3415 (|#4| |#1|)) (-15 -1453 ((-108) |#1|)) (-15 -2656 ((-710) |#1| |#3|)) (-15 -1854 ((-589 (-710)) |#1| |#3|)) (-15 -2656 ((-710) |#1|)) (-15 -1854 ((-589 (-710)) |#1|)) (-15 -2299 ((-710) |#1| |#3|)) (-15 -1640 ((-710) |#1|)) (-15 -1640 ((-710) |#1| |#3|)) (-15 -1748 ((-589 |#3|) |#1|)) (-15 -3178 ((-1 |#1| (-710)) |#3|)) (-15 -3517 ((-3 |#3| "failed") |#1|)) (-15 -1458 (|#1| |#3|)) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1|)) (-15 -2299 ((-589 (-710)) |#1| (-589 |#4|))) (-15 -2299 ((-710) |#1| |#4|)) (-15 -3517 ((-3 |#4| "failed") |#1|)) (-15 -1458 (|#1| |#4|)) (-15 -2679 (|#1| |#1| (-589 |#4|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#4| |#1|)) (-15 -2679 (|#1| |#1| (-589 |#4|) (-589 |#2|))) (-15 -2679 (|#1| |#1| |#4| |#2|)) (-15 -2679 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-271 |#1|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2299 (|#5| |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3523 (|#1| |#1| (-589 |#4|) (-589 (-710)))) (-15 -3523 (|#1| |#1| |#4| (-710))) (-15 -3523 (|#1| |#1| (-589 |#4|))) (-15 -3523 (|#1| |#1| |#4|)) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) (-230 |#2| |#3| |#4| |#5|) (-973) (-786) (-243 |#3|) (-732)) (T -229)) +NIL +(-10 -8 (-15 -1458 (|#1| |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -2679 (|#1| |#1| (-589 |#3|) (-589 |#2|))) (-15 -2679 (|#1| |#1| |#3| |#2|)) (-15 -2679 (|#1| |#1| (-589 |#3|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#3| |#1|)) (-15 -3178 ((-1 |#1| (-710)) |#1|)) (-15 -1413 (|#1| |#1|)) (-15 -3197 (|#1| |#1|)) (-15 -3415 (|#4| |#1|)) (-15 -1453 ((-108) |#1|)) (-15 -2656 ((-710) |#1| |#3|)) (-15 -1854 ((-589 (-710)) |#1| |#3|)) (-15 -2656 ((-710) |#1|)) (-15 -1854 ((-589 (-710)) |#1|)) (-15 -2299 ((-710) |#1| |#3|)) (-15 -1640 ((-710) |#1|)) (-15 -1640 ((-710) |#1| |#3|)) (-15 -1748 ((-589 |#3|) |#1|)) (-15 -3178 ((-1 |#1| (-710)) |#3|)) (-15 -3517 ((-3 |#3| "failed") |#1|)) (-15 -1458 (|#1| |#3|)) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1|)) (-15 -2299 ((-589 (-710)) |#1| (-589 |#4|))) (-15 -2299 ((-710) |#1| |#4|)) (-15 -3517 ((-3 |#4| "failed") |#1|)) (-15 -1458 (|#1| |#4|)) (-15 -2679 (|#1| |#1| (-589 |#4|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#4| |#1|)) (-15 -2679 (|#1| |#1| (-589 |#4|) (-589 |#2|))) (-15 -2679 (|#1| |#1| |#4| |#2|)) (-15 -2679 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-271 |#1|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2299 (|#5| |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3523 (|#1| |#1| (-589 |#4|) (-589 (-710)))) (-15 -3523 (|#1| |#1| |#4| (-710))) (-15 -3523 (|#1| |#1| (-589 |#4|))) (-15 -3523 (|#1| |#1| |#4|)) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1854 (((-589 (-710)) $) 214) (((-589 (-710)) $ |#2|) 212)) (-2656 (((-710) $) 213) (((-710) $ |#2|) 211)) (-1957 (((-589 |#3|) $) 110)) (-1786 (((-1083 $) $ |#3|) 125) (((-1083 |#1|) $) 124)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 87 (|has| |#1| (-515)))) (-3345 (($ $) 88 (|has| |#1| (-515)))) (-3331 (((-108) $) 90 (|has| |#1| (-515)))) (-3893 (((-710) $) 112) (((-710) $ (-589 |#3|)) 111)) (-3212 (((-3 $ "failed") $ $) 19)) (-3156 (((-394 (-1083 $)) (-1083 $)) 100 (|has| |#1| (-840)))) (-2291 (($ $) 98 (|has| |#1| (-427)))) (-3614 (((-394 $) $) 97 (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 103 (|has| |#1| (-840)))) (-1413 (($ $) 207)) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#1| "failed") $) 164) (((-3 (-383 (-523)) "failed") $) 162 (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) 160 (|has| |#1| (-964 (-523)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-3474 ((|#1| $) 165) (((-383 (-523)) $) 161 (|has| |#1| (-964 (-383 (-523))))) (((-523) $) 159 (|has| |#1| (-964 (-523)))) ((|#3| $) 135) ((|#2| $) 220)) (-3078 (($ $ $ |#3|) 108 (|has| |#1| (-158)))) (-3810 (($ $) 154)) (-2381 (((-629 (-523)) (-629 $)) 134 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 133 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 132) (((-629 |#1|) (-629 $)) 131)) (-2121 (((-3 $ "failed") $) 34)) (-2528 (($ $) 176 (|has| |#1| (-427))) (($ $ |#3|) 105 (|has| |#1| (-427)))) (-3799 (((-589 $) $) 109)) (-2657 (((-108) $) 96 (|has| |#1| (-840)))) (-1284 (($ $ |#1| |#4| $) 172)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 84 (-12 (|has| |#3| (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 83 (-12 (|has| |#3| (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-1640 (((-710) $ |#2|) 217) (((-710) $) 216)) (-2023 (((-108) $) 31)) (-3554 (((-710) $) 169)) (-1945 (($ (-1083 |#1|) |#3|) 117) (($ (-1083 $) |#3|) 116)) (-3679 (((-589 $) $) 126)) (-2620 (((-108) $) 152)) (-1933 (($ |#1| |#4|) 153) (($ $ |#3| (-710)) 119) (($ $ (-589 |#3|) (-589 (-710))) 118)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ |#3|) 120)) (-1575 ((|#4| $) 170) (((-710) $ |#3|) 122) (((-589 (-710)) $ (-589 |#3|)) 121)) (-2454 (($ $ $) 79 (|has| |#1| (-786)))) (-2062 (($ $ $) 78 (|has| |#1| (-786)))) (-3782 (($ (-1 |#4| |#4|) $) 171)) (-3612 (($ (-1 |#1| |#1|) $) 151)) (-3178 (((-1 $ (-710)) |#2|) 219) (((-1 $ (-710)) $) 206 (|has| |#1| (-211)))) (-2520 (((-3 |#3| "failed") $) 123)) (-3774 (($ $) 149)) (-3786 ((|#1| $) 148)) (-3415 ((|#3| $) 209)) (-3244 (($ (-589 $)) 94 (|has| |#1| (-427))) (($ $ $) 93 (|has| |#1| (-427)))) (-3779 (((-1070) $) 9)) (-1453 (((-108) $) 210)) (-3226 (((-3 (-589 $) "failed") $) 114)) (-4006 (((-3 (-589 $) "failed") $) 115)) (-2630 (((-3 (-2 (|:| |var| |#3|) (|:| -2735 (-710))) "failed") $) 113)) (-3197 (($ $) 208)) (-2783 (((-1034) $) 10)) (-3749 (((-108) $) 166)) (-3760 ((|#1| $) 167)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 95 (|has| |#1| (-427)))) (-3278 (($ (-589 $)) 92 (|has| |#1| (-427))) (($ $ $) 91 (|has| |#1| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) 102 (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) 101 (|has| |#1| (-840)))) (-1820 (((-394 $) $) 99 (|has| |#1| (-840)))) (-3746 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-515))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-515)))) (-2679 (($ $ (-589 (-271 $))) 145) (($ $ (-271 $)) 144) (($ $ $ $) 143) (($ $ (-589 $) (-589 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-589 |#3|) (-589 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-589 |#3|) (-589 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-211))) (($ $ (-589 |#2|) (-589 $)) 204 (|has| |#1| (-211))) (($ $ |#2| |#1|) 203 (|has| |#1| (-211))) (($ $ (-589 |#2|) (-589 |#1|)) 202 (|has| |#1| (-211)))) (-3549 (($ $ |#3|) 107 (|has| |#1| (-158)))) (-3523 (($ $ |#3|) 42) (($ $ (-589 |#3|)) 41) (($ $ |#3| (-710)) 40) (($ $ (-589 |#3|) (-589 (-710))) 39) (($ $) 238 (|has| |#1| (-211))) (($ $ (-710)) 236 (|has| |#1| (-211))) (($ $ (-1087)) 234 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 233 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 232 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 231 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-1748 (((-589 |#2|) $) 218)) (-2299 ((|#4| $) 150) (((-710) $ |#3|) 130) (((-589 (-710)) $ (-589 |#3|)) 129) (((-710) $ |#2|) 215)) (-3663 (((-823 (-355)) $) 82 (-12 (|has| |#3| (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) 81 (-12 (|has| |#3| (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) 80 (-12 (|has| |#3| (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-2438 ((|#1| $) 175 (|has| |#1| (-427))) (($ $ |#3|) 106 (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 104 (-4099 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-383 (-523))) 72 (-3262 (|has| |#1| (-964 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))))) (($ $) 85 (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) 168)) (-2365 ((|#1| $ |#4|) 155) (($ $ |#3| (-710)) 128) (($ $ (-589 |#3|) (-589 (-710))) 127)) (-3901 (((-3 $ "failed") $) 73 (-3262 (-4099 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) 29)) (-2276 (($ $ $ (-710)) 173 (|has| |#1| (-158)))) (-1704 (((-108) $ $) 89 (|has| |#1| (-515)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ |#3|) 38) (($ $ (-589 |#3|)) 37) (($ $ |#3| (-710)) 36) (($ $ (-589 |#3|) (-589 (-710))) 35) (($ $) 237 (|has| |#1| (-211))) (($ $ (-710)) 235 (|has| |#1| (-211))) (($ $ (-1087)) 230 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 229 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 228 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 227 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-4043 (((-108) $ $) 76 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 75 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 77 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 74 (|has| |#1| (-786)))) (-4098 (($ $ |#1|) 156 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 158 (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) 157 (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-230 |#1| |#2| |#3| |#4|) (-129) (-973) (-786) (-243 |t#2|) (-732)) (T -230)) +((-3178 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *3 (-786)) (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-1 *1 (-710))) (-4 *1 (-230 *4 *3 *5 *6)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-589 *4)))) (-1640 (*1 *2 *1 *3) (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-710)))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-710)))) (-2299 (*1 *2 *1 *3) (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-710)))) (-1854 (*1 *2 *1) (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-589 (-710))))) (-2656 (*1 *2 *1) (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-710)))) (-1854 (*1 *2 *1 *3) (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-589 (-710))))) (-2656 (*1 *2 *1 *3) (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-710)))) (-1453 (*1 *2 *1) (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-108)))) (-3415 (*1 *2 *1) (-12 (-4 *1 (-230 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-732)) (-4 *2 (-243 *4)))) (-3197 (*1 *1 *1) (-12 (-4 *1 (-230 *2 *3 *4 *5)) (-4 *2 (-973)) (-4 *3 (-786)) (-4 *4 (-243 *3)) (-4 *5 (-732)))) (-1413 (*1 *1 *1) (-12 (-4 *1 (-230 *2 *3 *4 *5)) (-4 *2 (-973)) (-4 *3 (-786)) (-4 *4 (-243 *3)) (-4 *5 (-732)))) (-3178 (*1 *2 *1) (-12 (-4 *3 (-211)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-1 *1 (-710))) (-4 *1 (-230 *3 *4 *5 *6))))) +(-13 (-880 |t#1| |t#4| |t#3|) (-209 |t#1|) (-964 |t#2|) (-10 -8 (-15 -3178 ((-1 $ (-710)) |t#2|)) (-15 -1748 ((-589 |t#2|) $)) (-15 -1640 ((-710) $ |t#2|)) (-15 -1640 ((-710) $)) (-15 -2299 ((-710) $ |t#2|)) (-15 -1854 ((-589 (-710)) $)) (-15 -2656 ((-710) $)) (-15 -1854 ((-589 (-710)) $ |t#2|)) (-15 -2656 ((-710) $ |t#2|)) (-15 -1453 ((-108) $)) (-15 -3415 (|t#3| $)) (-15 -3197 ($ $)) (-15 -1413 ($ $)) (IF (|has| |t#1| (-211)) (PROGN (-6 (-484 |t#2| |t#1|)) (-6 (-484 |t#2| $)) (-6 (-286 $)) (-15 -3178 ((-1 $ (-710)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-564 (-499)) -12 (|has| |#1| (-564 (-499))) (|has| |#3| (-564 (-499)))) ((-564 (-823 (-355))) -12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#3| (-564 (-823 (-355))))) ((-564 (-823 (-523))) -12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#3| (-564 (-823 (-523))))) ((-209 |#1|) . T) ((-211) |has| |#1| (-211)) ((-267) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-286 $) . T) ((-302 |#1| |#4|) . T) ((-353 |#1|) . T) ((-387 |#1|) . T) ((-427) -3262 (|has| |#1| (-840)) (|has| |#1| (-427))) ((-484 |#2| |#1|) |has| |#1| (-211)) ((-484 |#2| $) |has| |#1| (-211)) ((-484 |#3| |#1|) . T) ((-484 |#3| $) . T) ((-484 $ $) . T) ((-515) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-591 #0#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #0#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-666) . T) ((-786) |has| |#1| (-786)) ((-831 (-1087)) |has| |#1| (-831 (-1087))) ((-831 |#3|) . T) ((-817 (-355)) -12 (|has| |#1| (-817 (-355))) (|has| |#3| (-817 (-355)))) ((-817 (-523)) -12 (|has| |#1| (-817 (-523))) (|has| |#3| (-817 (-523)))) ((-880 |#1| |#4| |#3|) . T) ((-840) |has| |#1| (-840)) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-964 |#2|) . T) ((-964 |#3|) . T) ((-979 #0#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) |has| |#1| (-840))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-2292 ((|#1| $) 54)) (-3125 ((|#1| $) 44)) (-3079 (((-108) $ (-710)) 8)) (-2518 (($) 7 T CONST)) (-3152 (($ $) 60)) (-2867 (($ $) 48)) (-3845 ((|#1| |#1| $) 46)) (-2085 ((|#1| $) 45)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-2996 (((-710) $) 61)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1934 ((|#1| $) 39)) (-1598 ((|#1| |#1| $) 52)) (-2544 ((|#1| |#1| $) 51)) (-3450 (($ |#1| $) 40)) (-2510 (((-710) $) 55)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1592 ((|#1| $) 62)) (-1352 ((|#1| $) 50)) (-2395 ((|#1| $) 49)) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1651 ((|#1| |#1| $) 58)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-1234 ((|#1| $) 59)) (-3047 (($) 57) (($ (-589 |#1|)) 56)) (-1583 (((-710) $) 43)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-4040 ((|#1| $) 53)) (-2401 (($ (-589 |#1|)) 42)) (-1348 ((|#1| $) 63)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-231 |#1|) (-129) (-1122)) (T -231)) +((-3047 (*1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122)))) (-3047 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-4 *1 (-231 *3)))) (-2510 (*1 *2 *1) (-12 (-4 *1 (-231 *3)) (-4 *3 (-1122)) (-5 *2 (-710)))) (-2292 (*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122)))) (-4040 (*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122)))) (-1598 (*1 *2 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122)))) (-2544 (*1 *2 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122)))) (-1352 (*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122)))) (-2867 (*1 *1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122))))) +(-13 (-1035 |t#1|) (-923 |t#1|) (-10 -8 (-15 -3047 ($)) (-15 -3047 ($ (-589 |t#1|))) (-15 -2510 ((-710) $)) (-15 -2292 (|t#1| $)) (-15 -4040 (|t#1| $)) (-15 -1598 (|t#1| |t#1| $)) (-15 -2544 (|t#1| |t#1| $)) (-15 -1352 (|t#1| $)) (-15 -2395 (|t#1| $)) (-15 -2867 ($ $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-923 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1035 |#1|) . T) ((-1122) . T)) +((-2189 (((-1 (-874 (-203)) (-203) (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1 (-203) (-203) (-203) (-203))) 139)) (-2916 (((-1047 (-203)) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355))) 160) (((-1047 (-203)) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)) (-589 (-240))) 158) (((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355))) 163) (((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240))) 159) (((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355))) 150) (((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240))) 149) (((-1047 (-203)) (-1 (-874 (-203)) (-203)) (-1011 (-355))) 129) (((-1047 (-203)) (-1 (-874 (-203)) (-203)) (-1011 (-355)) (-589 (-240))) 127) (((-1047 (-203)) (-810 (-1 (-203) (-203))) (-1011 (-355))) 128) (((-1047 (-203)) (-810 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240))) 125)) (-2879 (((-1170) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355))) 162) (((-1170) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)) (-589 (-240))) 161) (((-1170) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355))) 165) (((-1170) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240))) 164) (((-1170) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355))) 152) (((-1170) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240))) 151) (((-1170) (-1 (-874 (-203)) (-203)) (-1011 (-355))) 135) (((-1170) (-1 (-874 (-203)) (-203)) (-1011 (-355)) (-589 (-240))) 134) (((-1170) (-810 (-1 (-203) (-203))) (-1011 (-355))) 133) (((-1170) (-810 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240))) 132) (((-1169) (-808 (-1 (-203) (-203))) (-1011 (-355))) 99) (((-1169) (-808 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240))) 98) (((-1169) (-1 (-203) (-203)) (-1011 (-355))) 95) (((-1169) (-1 (-203) (-203)) (-1011 (-355)) (-589 (-240))) 94))) +(((-232) (-10 -7 (-15 -2879 ((-1169) (-1 (-203) (-203)) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1169) (-1 (-203) (-203)) (-1011 (-355)))) (-15 -2879 ((-1169) (-808 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1169) (-808 (-1 (-203) (-203))) (-1011 (-355)))) (-15 -2879 ((-1170) (-810 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-810 (-1 (-203) (-203))) (-1011 (-355)))) (-15 -2879 ((-1170) (-1 (-874 (-203)) (-203)) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-1 (-874 (-203)) (-203)) (-1011 (-355)))) (-15 -2916 ((-1047 (-203)) (-810 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-810 (-1 (-203) (-203))) (-1011 (-355)))) (-15 -2916 ((-1047 (-203)) (-1 (-874 (-203)) (-203)) (-1011 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-1 (-874 (-203)) (-203)) (-1011 (-355)))) (-15 -2879 ((-1170) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -2916 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -2879 ((-1170) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -2916 ((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -2879 ((-1170) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)))) (-15 -2916 ((-1047 (-203)) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)))) (-15 -2189 ((-1 (-874 (-203)) (-203) (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1 (-203) (-203) (-203) (-203)))))) (T -232)) +((-2189 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-874 (-203)) (-203) (-203))) (-5 *3 (-1 (-203) (-203) (-203) (-203))) (-5 *1 (-232)))) (-2916 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-2916 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-2916 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-2916 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-2916 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-2916 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-2916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-2916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-808 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *2 (-1169)) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-808 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1169)) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *2 (-1169)) (-5 *1 (-232)))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-203) (-203))) (-5 *4 (-1011 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1169)) (-5 *1 (-232))))) +(-10 -7 (-15 -2879 ((-1169) (-1 (-203) (-203)) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1169) (-1 (-203) (-203)) (-1011 (-355)))) (-15 -2879 ((-1169) (-808 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1169) (-808 (-1 (-203) (-203))) (-1011 (-355)))) (-15 -2879 ((-1170) (-810 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-810 (-1 (-203) (-203))) (-1011 (-355)))) (-15 -2879 ((-1170) (-1 (-874 (-203)) (-203)) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-1 (-874 (-203)) (-203)) (-1011 (-355)))) (-15 -2916 ((-1047 (-203)) (-810 (-1 (-203) (-203))) (-1011 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-810 (-1 (-203) (-203))) (-1011 (-355)))) (-15 -2916 ((-1047 (-203)) (-1 (-874 (-203)) (-203)) (-1011 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-1 (-874 (-203)) (-203)) (-1011 (-355)))) (-15 -2879 ((-1170) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -2916 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -2879 ((-1170) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -2916 ((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-355)) (-1011 (-355)))) (-15 -2879 ((-1170) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)))) (-15 -2916 ((-1047 (-203)) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-813 (-1 (-203) (-203) (-203))) (-1011 (-355)) (-1011 (-355)))) (-15 -2189 ((-1 (-874 (-203)) (-203) (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1 (-203) (-203) (-203) (-203))))) +((-2879 (((-1169) (-271 |#2|) (-1087) (-1087) (-589 (-240))) 93))) +(((-233 |#1| |#2|) (-10 -7 (-15 -2879 ((-1169) (-271 |#2|) (-1087) (-1087) (-589 (-240))))) (-13 (-515) (-786) (-964 (-523))) (-406 |#1|)) (T -233)) +((-2879 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-271 *7)) (-5 *4 (-1087)) (-5 *5 (-589 (-240))) (-4 *7 (-406 *6)) (-4 *6 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-1169)) (-5 *1 (-233 *6 *7))))) +(-10 -7 (-15 -2879 ((-1169) (-271 |#2|) (-1087) (-1087) (-589 (-240))))) +((-1657 (((-523) (-523)) 50)) (-3110 (((-523) (-523)) 51)) (-4005 (((-203) (-203)) 52)) (-2880 (((-1170) (-1 (-155 (-203)) (-155 (-203))) (-1011 (-203)) (-1011 (-203))) 49)) (-2400 (((-1170) (-1 (-155 (-203)) (-155 (-203))) (-1011 (-203)) (-1011 (-203)) (-108)) 47))) +(((-234) (-10 -7 (-15 -2400 ((-1170) (-1 (-155 (-203)) (-155 (-203))) (-1011 (-203)) (-1011 (-203)) (-108))) (-15 -2880 ((-1170) (-1 (-155 (-203)) (-155 (-203))) (-1011 (-203)) (-1011 (-203)))) (-15 -1657 ((-523) (-523))) (-15 -3110 ((-523) (-523))) (-15 -4005 ((-203) (-203))))) (T -234)) +((-4005 (*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-234)))) (-3110 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-234)))) (-1657 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-234)))) (-2880 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-155 (-203)) (-155 (-203)))) (-5 *4 (-1011 (-203))) (-5 *2 (-1170)) (-5 *1 (-234)))) (-2400 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-155 (-203)) (-155 (-203)))) (-5 *4 (-1011 (-203))) (-5 *5 (-108)) (-5 *2 (-1170)) (-5 *1 (-234))))) +(-10 -7 (-15 -2400 ((-1170) (-1 (-155 (-203)) (-155 (-203))) (-1011 (-203)) (-1011 (-203)) (-108))) (-15 -2880 ((-1170) (-1 (-155 (-203)) (-155 (-203))) (-1011 (-203)) (-1011 (-203)))) (-15 -1657 ((-523) (-523))) (-15 -3110 ((-523) (-523))) (-15 -4005 ((-203) (-203)))) +((-1458 (((-1009 (-355)) (-1009 (-292 |#1|))) 16))) +(((-235 |#1|) (-10 -7 (-15 -1458 ((-1009 (-355)) (-1009 (-292 |#1|))))) (-13 (-786) (-515) (-564 (-355)))) (T -235)) +((-1458 (*1 *2 *3) (-12 (-5 *3 (-1009 (-292 *4))) (-4 *4 (-13 (-786) (-515) (-564 (-355)))) (-5 *2 (-1009 (-355))) (-5 *1 (-235 *4))))) +(-10 -7 (-15 -1458 ((-1009 (-355)) (-1009 (-292 |#1|))))) +((-2916 (((-1047 (-203)) (-813 |#1|) (-1009 (-355)) (-1009 (-355))) 69) (((-1047 (-203)) (-813 |#1|) (-1009 (-355)) (-1009 (-355)) (-589 (-240))) 68) (((-1047 (-203)) |#1| (-1009 (-355)) (-1009 (-355))) 59) (((-1047 (-203)) |#1| (-1009 (-355)) (-1009 (-355)) (-589 (-240))) 58) (((-1047 (-203)) (-810 |#1|) (-1009 (-355))) 50) (((-1047 (-203)) (-810 |#1|) (-1009 (-355)) (-589 (-240))) 49)) (-2879 (((-1170) (-813 |#1|) (-1009 (-355)) (-1009 (-355))) 72) (((-1170) (-813 |#1|) (-1009 (-355)) (-1009 (-355)) (-589 (-240))) 71) (((-1170) |#1| (-1009 (-355)) (-1009 (-355))) 62) (((-1170) |#1| (-1009 (-355)) (-1009 (-355)) (-589 (-240))) 61) (((-1170) (-810 |#1|) (-1009 (-355))) 54) (((-1170) (-810 |#1|) (-1009 (-355)) (-589 (-240))) 53) (((-1169) (-808 |#1|) (-1009 (-355))) 41) (((-1169) (-808 |#1|) (-1009 (-355)) (-589 (-240))) 40) (((-1169) |#1| (-1009 (-355))) 33) (((-1169) |#1| (-1009 (-355)) (-589 (-240))) 32))) +(((-236 |#1|) (-10 -7 (-15 -2879 ((-1169) |#1| (-1009 (-355)) (-589 (-240)))) (-15 -2879 ((-1169) |#1| (-1009 (-355)))) (-15 -2879 ((-1169) (-808 |#1|) (-1009 (-355)) (-589 (-240)))) (-15 -2879 ((-1169) (-808 |#1|) (-1009 (-355)))) (-15 -2879 ((-1170) (-810 |#1|) (-1009 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-810 |#1|) (-1009 (-355)))) (-15 -2916 ((-1047 (-203)) (-810 |#1|) (-1009 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-810 |#1|) (-1009 (-355)))) (-15 -2879 ((-1170) |#1| (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) |#1| (-1009 (-355)) (-1009 (-355)))) (-15 -2916 ((-1047 (-203)) |#1| (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) |#1| (-1009 (-355)) (-1009 (-355)))) (-15 -2879 ((-1170) (-813 |#1|) (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-813 |#1|) (-1009 (-355)) (-1009 (-355)))) (-15 -2916 ((-1047 (-203)) (-813 |#1|) (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-813 |#1|) (-1009 (-355)) (-1009 (-355))))) (-13 (-564 (-499)) (-1016))) (T -236)) +((-2916 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-813 *5)) (-5 *4 (-1009 (-355))) (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) (-5 *1 (-236 *5)))) (-2916 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-813 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) (-5 *1 (-236 *6)))) (-2879 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-813 *5)) (-5 *4 (-1009 (-355))) (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1170)) (-5 *1 (-236 *5)))) (-2879 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-813 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1170)) (-5 *1 (-236 *6)))) (-2916 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1009 (-355))) (-5 *2 (-1047 (-203))) (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016))))) (-2916 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016))))) (-2879 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1009 (-355))) (-5 *2 (-1170)) (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016))))) (-2879 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016))))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-810 *5)) (-5 *4 (-1009 (-355))) (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) (-5 *1 (-236 *5)))) (-2916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-810 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) (-5 *1 (-236 *6)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-810 *5)) (-5 *4 (-1009 (-355))) (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1170)) (-5 *1 (-236 *5)))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-810 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1170)) (-5 *1 (-236 *6)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-808 *5)) (-5 *4 (-1009 (-355))) (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1169)) (-5 *1 (-236 *5)))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-808 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1169)) (-5 *1 (-236 *6)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *4 (-1009 (-355))) (-5 *2 (-1169)) (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016))))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1169)) (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016)))))) +(-10 -7 (-15 -2879 ((-1169) |#1| (-1009 (-355)) (-589 (-240)))) (-15 -2879 ((-1169) |#1| (-1009 (-355)))) (-15 -2879 ((-1169) (-808 |#1|) (-1009 (-355)) (-589 (-240)))) (-15 -2879 ((-1169) (-808 |#1|) (-1009 (-355)))) (-15 -2879 ((-1170) (-810 |#1|) (-1009 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-810 |#1|) (-1009 (-355)))) (-15 -2916 ((-1047 (-203)) (-810 |#1|) (-1009 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-810 |#1|) (-1009 (-355)))) (-15 -2879 ((-1170) |#1| (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) |#1| (-1009 (-355)) (-1009 (-355)))) (-15 -2916 ((-1047 (-203)) |#1| (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) |#1| (-1009 (-355)) (-1009 (-355)))) (-15 -2879 ((-1170) (-813 |#1|) (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -2879 ((-1170) (-813 |#1|) (-1009 (-355)) (-1009 (-355)))) (-15 -2916 ((-1047 (-203)) (-813 |#1|) (-1009 (-355)) (-1009 (-355)) (-589 (-240)))) (-15 -2916 ((-1047 (-203)) (-813 |#1|) (-1009 (-355)) (-1009 (-355))))) +((-2879 (((-1170) (-589 (-203)) (-589 (-203)) (-589 (-203)) (-589 (-240))) 21) (((-1170) (-589 (-203)) (-589 (-203)) (-589 (-203))) 22) (((-1169) (-589 (-874 (-203))) (-589 (-240))) 13) (((-1169) (-589 (-874 (-203)))) 14) (((-1169) (-589 (-203)) (-589 (-203)) (-589 (-240))) 18) (((-1169) (-589 (-203)) (-589 (-203))) 19))) +(((-237) (-10 -7 (-15 -2879 ((-1169) (-589 (-203)) (-589 (-203)))) (-15 -2879 ((-1169) (-589 (-203)) (-589 (-203)) (-589 (-240)))) (-15 -2879 ((-1169) (-589 (-874 (-203))))) (-15 -2879 ((-1169) (-589 (-874 (-203))) (-589 (-240)))) (-15 -2879 ((-1170) (-589 (-203)) (-589 (-203)) (-589 (-203)))) (-15 -2879 ((-1170) (-589 (-203)) (-589 (-203)) (-589 (-203)) (-589 (-240)))))) (T -237)) +((-2879 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-589 (-203))) (-5 *4 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-237)))) (-2879 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-589 (-203))) (-5 *2 (-1170)) (-5 *1 (-237)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-874 (-203)))) (-5 *4 (-589 (-240))) (-5 *2 (-1169)) (-5 *1 (-237)))) (-2879 (*1 *2 *3) (-12 (-5 *3 (-589 (-874 (-203)))) (-5 *2 (-1169)) (-5 *1 (-237)))) (-2879 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-589 (-203))) (-5 *4 (-589 (-240))) (-5 *2 (-1169)) (-5 *1 (-237)))) (-2879 (*1 *2 *3 *3) (-12 (-5 *3 (-589 (-203))) (-5 *2 (-1169)) (-5 *1 (-237))))) +(-10 -7 (-15 -2879 ((-1169) (-589 (-203)) (-589 (-203)))) (-15 -2879 ((-1169) (-589 (-203)) (-589 (-203)) (-589 (-240)))) (-15 -2879 ((-1169) (-589 (-874 (-203))))) (-15 -2879 ((-1169) (-589 (-874 (-203))) (-589 (-240)))) (-15 -2879 ((-1170) (-589 (-203)) (-589 (-203)) (-589 (-203)))) (-15 -2879 ((-1170) (-589 (-203)) (-589 (-203)) (-589 (-203)) (-589 (-240))))) +((-3087 (((-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))) (-589 (-240)) (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) 24)) (-1665 (((-852) (-589 (-240)) (-852)) 49)) (-3380 (((-852) (-589 (-240)) (-852)) 48)) (-3142 (((-589 (-355)) (-589 (-240)) (-589 (-355))) 65)) (-3026 (((-355) (-589 (-240)) (-355)) 55)) (-2027 (((-852) (-589 (-240)) (-852)) 50)) (-3935 (((-108) (-589 (-240)) (-108)) 26)) (-2331 (((-1070) (-589 (-240)) (-1070)) 19)) (-1775 (((-1070) (-589 (-240)) (-1070)) 25)) (-2992 (((-1047 (-203)) (-589 (-240))) 43)) (-4051 (((-589 (-1011 (-355))) (-589 (-240)) (-589 (-1011 (-355)))) 37)) (-3427 (((-805) (-589 (-240)) (-805)) 31)) (-3451 (((-805) (-589 (-240)) (-805)) 32)) (-2013 (((-1 (-874 (-203)) (-874 (-203))) (-589 (-240)) (-1 (-874 (-203)) (-874 (-203)))) 60)) (-1636 (((-108) (-589 (-240)) (-108)) 15)) (-2386 (((-108) (-589 (-240)) (-108)) 14))) +(((-238) (-10 -7 (-15 -2386 ((-108) (-589 (-240)) (-108))) (-15 -1636 ((-108) (-589 (-240)) (-108))) (-15 -3087 ((-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))) (-589 (-240)) (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))))) (-15 -2331 ((-1070) (-589 (-240)) (-1070))) (-15 -1775 ((-1070) (-589 (-240)) (-1070))) (-15 -3935 ((-108) (-589 (-240)) (-108))) (-15 -3427 ((-805) (-589 (-240)) (-805))) (-15 -3451 ((-805) (-589 (-240)) (-805))) (-15 -4051 ((-589 (-1011 (-355))) (-589 (-240)) (-589 (-1011 (-355))))) (-15 -3380 ((-852) (-589 (-240)) (-852))) (-15 -1665 ((-852) (-589 (-240)) (-852))) (-15 -2992 ((-1047 (-203)) (-589 (-240)))) (-15 -2027 ((-852) (-589 (-240)) (-852))) (-15 -3026 ((-355) (-589 (-240)) (-355))) (-15 -2013 ((-1 (-874 (-203)) (-874 (-203))) (-589 (-240)) (-1 (-874 (-203)) (-874 (-203))))) (-15 -3142 ((-589 (-355)) (-589 (-240)) (-589 (-355)))))) (T -238)) +((-3142 (*1 *2 *3 *2) (-12 (-5 *2 (-589 (-355))) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-2013 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-874 (-203)) (-874 (-203)))) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-3026 (*1 *2 *3 *2) (-12 (-5 *2 (-355)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-2027 (*1 *2 *3 *2) (-12 (-5 *2 (-852)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-2992 (*1 *2 *3) (-12 (-5 *3 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-238)))) (-1665 (*1 *2 *3 *2) (-12 (-5 *2 (-852)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-3380 (*1 *2 *3 *2) (-12 (-5 *2 (-852)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-4051 (*1 *2 *3 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-3451 (*1 *2 *3 *2) (-12 (-5 *2 (-805)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-3427 (*1 *2 *3 *2) (-12 (-5 *2 (-805)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-3935 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-1775 (*1 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-2331 (*1 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-3087 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-1636 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) (-2386 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-589 (-240))) (-5 *1 (-238))))) +(-10 -7 (-15 -2386 ((-108) (-589 (-240)) (-108))) (-15 -1636 ((-108) (-589 (-240)) (-108))) (-15 -3087 ((-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))) (-589 (-240)) (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))))) (-15 -2331 ((-1070) (-589 (-240)) (-1070))) (-15 -1775 ((-1070) (-589 (-240)) (-1070))) (-15 -3935 ((-108) (-589 (-240)) (-108))) (-15 -3427 ((-805) (-589 (-240)) (-805))) (-15 -3451 ((-805) (-589 (-240)) (-805))) (-15 -4051 ((-589 (-1011 (-355))) (-589 (-240)) (-589 (-1011 (-355))))) (-15 -3380 ((-852) (-589 (-240)) (-852))) (-15 -1665 ((-852) (-589 (-240)) (-852))) (-15 -2992 ((-1047 (-203)) (-589 (-240)))) (-15 -2027 ((-852) (-589 (-240)) (-852))) (-15 -3026 ((-355) (-589 (-240)) (-355))) (-15 -2013 ((-1 (-874 (-203)) (-874 (-203))) (-589 (-240)) (-1 (-874 (-203)) (-874 (-203))))) (-15 -3142 ((-589 (-355)) (-589 (-240)) (-589 (-355))))) +((-2385 (((-3 |#1| "failed") (-589 (-240)) (-1087)) 17))) +(((-239 |#1|) (-10 -7 (-15 -2385 ((-3 |#1| "failed") (-589 (-240)) (-1087)))) (-1122)) (T -239)) +((-2385 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-589 (-240))) (-5 *4 (-1087)) (-5 *1 (-239 *2)) (-4 *2 (-1122))))) +(-10 -7 (-15 -2385 ((-3 |#1| "failed") (-589 (-240)) (-1087)))) +((-3924 (((-108) $ $) NIL)) (-3087 (($ (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) 14)) (-1665 (($ (-852)) 70)) (-3380 (($ (-852)) 69)) (-3819 (($ (-589 (-355))) 76)) (-3026 (($ (-355)) 55)) (-2027 (($ (-852)) 71)) (-3935 (($ (-108)) 22)) (-2331 (($ (-1070)) 17)) (-1775 (($ (-1070)) 18)) (-2992 (($ (-1047 (-203))) 65)) (-4051 (($ (-589 (-1011 (-355)))) 61)) (-3499 (($ (-589 (-1011 (-355)))) 56) (($ (-589 (-1011 (-383 (-523))))) 60)) (-2905 (($ (-355)) 28) (($ (-805)) 32)) (-1826 (((-108) (-589 $) (-1087)) 85)) (-2385 (((-3 (-51) "failed") (-589 $) (-1087)) 87)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2393 (($ (-355)) 33) (($ (-805)) 34)) (-2966 (($ (-1 (-874 (-203)) (-874 (-203)))) 54)) (-2013 (($ (-1 (-874 (-203)) (-874 (-203)))) 72)) (-1796 (($ (-1 (-203) (-203))) 38) (($ (-1 (-203) (-203) (-203))) 42) (($ (-1 (-203) (-203) (-203) (-203))) 46)) (-1458 (((-794) $) 81)) (-1520 (($ (-108)) 23) (($ (-589 (-1011 (-355)))) 50)) (-2386 (($ (-108)) 24)) (-3983 (((-108) $ $) 83))) +(((-240) (-13 (-1016) (-10 -8 (-15 -2386 ($ (-108))) (-15 -1520 ($ (-108))) (-15 -3087 ($ (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))))) (-15 -2331 ($ (-1070))) (-15 -1775 ($ (-1070))) (-15 -3935 ($ (-108))) (-15 -1520 ($ (-589 (-1011 (-355))))) (-15 -2966 ($ (-1 (-874 (-203)) (-874 (-203))))) (-15 -2905 ($ (-355))) (-15 -2905 ($ (-805))) (-15 -2393 ($ (-355))) (-15 -2393 ($ (-805))) (-15 -1796 ($ (-1 (-203) (-203)))) (-15 -1796 ($ (-1 (-203) (-203) (-203)))) (-15 -1796 ($ (-1 (-203) (-203) (-203) (-203)))) (-15 -3026 ($ (-355))) (-15 -3499 ($ (-589 (-1011 (-355))))) (-15 -3499 ($ (-589 (-1011 (-383 (-523)))))) (-15 -4051 ($ (-589 (-1011 (-355))))) (-15 -2992 ($ (-1047 (-203)))) (-15 -3380 ($ (-852))) (-15 -1665 ($ (-852))) (-15 -2027 ($ (-852))) (-15 -2013 ($ (-1 (-874 (-203)) (-874 (-203))))) (-15 -3819 ($ (-589 (-355)))) (-15 -2385 ((-3 (-51) "failed") (-589 $) (-1087))) (-15 -1826 ((-108) (-589 $) (-1087)))))) (T -240)) +((-2386 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-240)))) (-1520 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-240)))) (-3087 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) (-5 *1 (-240)))) (-2331 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-240)))) (-1775 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-240)))) (-3935 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-240)))) (-1520 (*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-240)))) (-2966 (*1 *1 *2) (-12 (-5 *2 (-1 (-874 (-203)) (-874 (-203)))) (-5 *1 (-240)))) (-2905 (*1 *1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-240)))) (-2905 (*1 *1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-240)))) (-2393 (*1 *1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-240)))) (-2393 (*1 *1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-240)))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *1 (-240)))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-1 (-203) (-203) (-203))) (-5 *1 (-240)))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-1 (-203) (-203) (-203) (-203))) (-5 *1 (-240)))) (-3026 (*1 *1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-240)))) (-3499 (*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-240)))) (-3499 (*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-383 (-523))))) (-5 *1 (-240)))) (-4051 (*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-240)))) (-2992 (*1 *1 *2) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-240)))) (-3380 (*1 *1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-240)))) (-1665 (*1 *1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-240)))) (-2027 (*1 *1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-240)))) (-2013 (*1 *1 *2) (-12 (-5 *2 (-1 (-874 (-203)) (-874 (-203)))) (-5 *1 (-240)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-589 (-355))) (-5 *1 (-240)))) (-2385 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-589 (-240))) (-5 *4 (-1087)) (-5 *2 (-51)) (-5 *1 (-240)))) (-1826 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-240))) (-5 *4 (-1087)) (-5 *2 (-108)) (-5 *1 (-240))))) +(-13 (-1016) (-10 -8 (-15 -2386 ($ (-108))) (-15 -1520 ($ (-108))) (-15 -3087 ($ (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))))) (-15 -2331 ($ (-1070))) (-15 -1775 ($ (-1070))) (-15 -3935 ($ (-108))) (-15 -1520 ($ (-589 (-1011 (-355))))) (-15 -2966 ($ (-1 (-874 (-203)) (-874 (-203))))) (-15 -2905 ($ (-355))) (-15 -2905 ($ (-805))) (-15 -2393 ($ (-355))) (-15 -2393 ($ (-805))) (-15 -1796 ($ (-1 (-203) (-203)))) (-15 -1796 ($ (-1 (-203) (-203) (-203)))) (-15 -1796 ($ (-1 (-203) (-203) (-203) (-203)))) (-15 -3026 ($ (-355))) (-15 -3499 ($ (-589 (-1011 (-355))))) (-15 -3499 ($ (-589 (-1011 (-383 (-523)))))) (-15 -4051 ($ (-589 (-1011 (-355))))) (-15 -2992 ($ (-1047 (-203)))) (-15 -3380 ($ (-852))) (-15 -1665 ($ (-852))) (-15 -2027 ($ (-852))) (-15 -2013 ($ (-1 (-874 (-203)) (-874 (-203))))) (-15 -3819 ($ (-589 (-355)))) (-15 -2385 ((-3 (-51) "failed") (-589 $) (-1087))) (-15 -1826 ((-108) (-589 $) (-1087))))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1854 (((-589 (-710)) $) NIL) (((-589 (-710)) $ |#2|) NIL)) (-2656 (((-710) $) NIL) (((-710) $ |#2|) NIL)) (-1957 (((-589 |#3|) $) NIL)) (-1786 (((-1083 $) $ |#3|) NIL) (((-1083 |#1|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 |#3|)) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2291 (($ $) NIL (|has| |#1| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1413 (($ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1039 |#1| |#2|) "failed") $) 20)) (-3474 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1039 |#1| |#2|) $) NIL)) (-3078 (($ $ $ |#3|) NIL (|has| |#1| (-158)))) (-3810 (($ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#1| (-427))) (($ $ |#3|) NIL (|has| |#1| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#1| (-840)))) (-1284 (($ $ |#1| (-495 |#3|) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| |#1| (-817 (-355))) (|has| |#3| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| |#1| (-817 (-523))) (|has| |#3| (-817 (-523)))))) (-1640 (((-710) $ |#2|) NIL) (((-710) $) 10)) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-1945 (($ (-1083 |#1|) |#3|) NIL) (($ (-1083 $) |#3|) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-495 |#3|)) NIL) (($ $ |#3| (-710)) NIL) (($ $ (-589 |#3|) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ |#3|) NIL)) (-1575 (((-495 |#3|) $) NIL) (((-710) $ |#3|) NIL) (((-589 (-710)) $ (-589 |#3|)) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3782 (($ (-1 (-495 |#3|) (-495 |#3|)) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-3178 (((-1 $ (-710)) |#2|) NIL) (((-1 $ (-710)) $) NIL (|has| |#1| (-211)))) (-2520 (((-3 |#3| "failed") $) NIL)) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3415 ((|#3| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-3779 (((-1070) $) NIL)) (-1453 (((-108) $) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| |#3|) (|:| -2735 (-710))) "failed") $) NIL)) (-3197 (($ $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 ((|#1| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-840)))) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-589 |#3|) (-589 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-589 |#3|) (-589 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-211))) (($ $ (-589 |#2|) (-589 $)) NIL (|has| |#1| (-211))) (($ $ |#2| |#1|) NIL (|has| |#1| (-211))) (($ $ (-589 |#2|) (-589 |#1|)) NIL (|has| |#1| (-211)))) (-3549 (($ $ |#3|) NIL (|has| |#1| (-158)))) (-3523 (($ $ |#3|) NIL) (($ $ (-589 |#3|)) NIL) (($ $ |#3| (-710)) NIL) (($ $ (-589 |#3|) (-589 (-710))) NIL) (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1748 (((-589 |#2|) $) NIL)) (-2299 (((-495 |#3|) $) NIL) (((-710) $ |#3|) NIL) (((-589 (-710)) $ (-589 |#3|)) NIL) (((-710) $ |#2|) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#3| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#3| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| |#1| (-564 (-499))) (|has| |#3| (-564 (-499)))))) (-2438 ((|#1| $) NIL (|has| |#1| (-427))) (($ $ |#3|) NIL (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1039 |#1| |#2|)) 28) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-495 |#3|)) NIL) (($ $ |#3| (-710)) NIL) (($ $ (-589 |#3|) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ |#3|) NIL) (($ $ (-589 |#3|)) NIL) (($ $ |#3| (-710)) NIL) (($ $ (-589 |#3|) (-589 (-710))) NIL) (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-241 |#1| |#2| |#3|) (-13 (-230 |#1| |#2| |#3| (-495 |#3|)) (-964 (-1039 |#1| |#2|))) (-973) (-786) (-243 |#2|)) (T -241)) +NIL +(-13 (-230 |#1| |#2| |#3| (-495 |#3|)) (-964 (-1039 |#1| |#2|))) +((-2656 (((-710) $) 30)) (-3517 (((-3 |#2| "failed") $) 17)) (-3474 ((|#2| $) 27)) (-3523 (($ $) 12) (($ $ (-710)) 15)) (-1458 (((-794) $) 26) (($ |#2|) 10)) (-3983 (((-108) $ $) 20)) (-4007 (((-108) $ $) 29))) +(((-242 |#1| |#2|) (-10 -8 (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1|)) (-15 -2656 ((-710) |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -4007 ((-108) |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) (-243 |#2|) (-786)) (T -242)) +NIL +(-10 -8 (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1|)) (-15 -2656 ((-710) |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -4007 ((-108) |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) +((-3924 (((-108) $ $) 7)) (-2656 (((-710) $) 22)) (-2700 ((|#1| $) 23)) (-3517 (((-3 |#1| "failed") $) 27)) (-3474 ((|#1| $) 26)) (-1640 (((-710) $) 24)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3178 (($ |#1| (-710)) 25)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3523 (($ $) 21) (($ $ (-710)) 20)) (-1458 (((-794) $) 11) (($ |#1|) 28)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18))) +(((-243 |#1|) (-129) (-786)) (T -243)) +((-1458 (*1 *1 *2) (-12 (-4 *1 (-243 *2)) (-4 *2 (-786)))) (-3178 (*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-243 *2)) (-4 *2 (-786)))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-243 *3)) (-4 *3 (-786)) (-5 *2 (-710)))) (-2700 (*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-786)))) (-2656 (*1 *2 *1) (-12 (-4 *1 (-243 *3)) (-4 *3 (-786)) (-5 *2 (-710)))) (-3523 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-786)))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-243 *3)) (-4 *3 (-786))))) +(-13 (-786) (-964 |t#1|) (-10 -8 (-15 -3178 ($ |t#1| (-710))) (-15 -1640 ((-710) $)) (-15 -2700 (|t#1| $)) (-15 -2656 ((-710) $)) (-15 -3523 ($ $)) (-15 -3523 ($ $ (-710))) (-15 -1458 ($ |t#1|)))) +(((-97) . T) ((-563 (-794)) . T) ((-786) . T) ((-964 |#1|) . T) ((-1016) . T)) +((-1957 (((-589 (-1087)) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) 40)) (-2061 (((-589 (-1087)) (-292 (-203)) (-710)) 79)) (-4108 (((-3 (-292 (-203)) "failed") (-292 (-203))) 50)) (-2251 (((-292 (-203)) (-292 (-203))) 65)) (-1732 (((-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 26)) (-3174 (((-108) (-589 (-292 (-203)))) 83)) (-1965 (((-108) (-292 (-203))) 24)) (-1539 (((-589 (-1070)) (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))))) 105)) (-2334 (((-589 (-292 (-203))) (-589 (-292 (-203)))) 87)) (-2045 (((-589 (-292 (-203))) (-589 (-292 (-203)))) 85)) (-1250 (((-629 (-203)) (-589 (-292 (-203))) (-710)) 94)) (-2715 (((-108) (-292 (-203))) 20) (((-108) (-589 (-292 (-203)))) 84)) (-3390 (((-589 (-203)) (-589 (-779 (-203))) (-203)) 14)) (-2258 (((-355) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) 100)) (-2746 (((-962) (-1087) (-962)) 33))) +(((-244) (-10 -7 (-15 -3390 ((-589 (-203)) (-589 (-779 (-203))) (-203))) (-15 -1732 ((-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))))) (-15 -4108 ((-3 (-292 (-203)) "failed") (-292 (-203)))) (-15 -2251 ((-292 (-203)) (-292 (-203)))) (-15 -3174 ((-108) (-589 (-292 (-203))))) (-15 -2715 ((-108) (-589 (-292 (-203))))) (-15 -2715 ((-108) (-292 (-203)))) (-15 -1250 ((-629 (-203)) (-589 (-292 (-203))) (-710))) (-15 -2045 ((-589 (-292 (-203))) (-589 (-292 (-203))))) (-15 -2334 ((-589 (-292 (-203))) (-589 (-292 (-203))))) (-15 -1965 ((-108) (-292 (-203)))) (-15 -1957 ((-589 (-1087)) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) (-15 -2061 ((-589 (-1087)) (-292 (-203)) (-710))) (-15 -2746 ((-962) (-1087) (-962))) (-15 -2258 ((-355) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) (-15 -1539 ((-589 (-1070)) (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))))))) (T -244)) +((-1539 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))))) (-5 *2 (-589 (-1070))) (-5 *1 (-244)))) (-2258 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) (-5 *2 (-355)) (-5 *1 (-244)))) (-2746 (*1 *2 *3 *2) (-12 (-5 *2 (-962)) (-5 *3 (-1087)) (-5 *1 (-244)))) (-2061 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-203))) (-5 *4 (-710)) (-5 *2 (-589 (-1087))) (-5 *1 (-244)))) (-1957 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) (-5 *2 (-589 (-1087))) (-5 *1 (-244)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-108)) (-5 *1 (-244)))) (-2334 (*1 *2 *2) (-12 (-5 *2 (-589 (-292 (-203)))) (-5 *1 (-244)))) (-2045 (*1 *2 *2) (-12 (-5 *2 (-589 (-292 (-203)))) (-5 *1 (-244)))) (-1250 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-292 (-203)))) (-5 *4 (-710)) (-5 *2 (-629 (-203))) (-5 *1 (-244)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-108)) (-5 *1 (-244)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-589 (-292 (-203)))) (-5 *2 (-108)) (-5 *1 (-244)))) (-3174 (*1 *2 *3) (-12 (-5 *3 (-589 (-292 (-203)))) (-5 *2 (-108)) (-5 *1 (-244)))) (-2251 (*1 *2 *2) (-12 (-5 *2 (-292 (-203))) (-5 *1 (-244)))) (-4108 (*1 *2 *2) (|partial| -12 (-5 *2 (-292 (-203))) (-5 *1 (-244)))) (-1732 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (-5 *1 (-244)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-779 (-203)))) (-5 *4 (-203)) (-5 *2 (-589 *4)) (-5 *1 (-244))))) +(-10 -7 (-15 -3390 ((-589 (-203)) (-589 (-779 (-203))) (-203))) (-15 -1732 ((-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))))) (-15 -4108 ((-3 (-292 (-203)) "failed") (-292 (-203)))) (-15 -2251 ((-292 (-203)) (-292 (-203)))) (-15 -3174 ((-108) (-589 (-292 (-203))))) (-15 -2715 ((-108) (-589 (-292 (-203))))) (-15 -2715 ((-108) (-292 (-203)))) (-15 -1250 ((-629 (-203)) (-589 (-292 (-203))) (-710))) (-15 -2045 ((-589 (-292 (-203))) (-589 (-292 (-203))))) (-15 -2334 ((-589 (-292 (-203))) (-589 (-292 (-203))))) (-15 -1965 ((-108) (-292 (-203)))) (-15 -1957 ((-589 (-1087)) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) (-15 -2061 ((-589 (-1087)) (-292 (-203)) (-710))) (-15 -2746 ((-962) (-1087) (-962))) (-15 -2258 ((-355) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) (-15 -1539 ((-589 (-1070)) (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))))))) +((-3924 (((-108) $ $) NIL)) (-2699 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) NIL) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 39)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 20) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +(((-245) (-775)) (T -245)) +NIL +(-775) +((-3924 (((-108) $ $) NIL)) (-2699 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) 54) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 49)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 29) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) 31)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +(((-246) (-775)) (T -246)) +NIL +(-775) +((-3924 (((-108) $ $) NIL)) (-2699 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) 73) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 69)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 40) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) 51)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +(((-247) (-775)) (T -247)) +NIL +(-775) +((-3924 (((-108) $ $) NIL)) (-2699 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) NIL) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 48)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 27) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +(((-248) (-775)) (T -248)) +NIL +(-775) +((-3924 (((-108) $ $) NIL)) (-2699 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) NIL) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 48)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 23) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +(((-249) (-775)) (T -249)) +NIL +(-775) +((-3924 (((-108) $ $) NIL)) (-2699 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) NIL) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 69)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 23) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +(((-250) (-775)) (T -250)) +NIL +(-775) +((-3924 (((-108) $ $) NIL)) (-2699 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) NIL) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 73)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 19) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-3983 (((-108) $ $) NIL))) +(((-251) (-775)) (T -251)) +NIL +(-775) +((-3924 (((-108) $ $) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1876 (((-589 (-523)) $) 17)) (-2299 (((-710) $) 15)) (-1458 (((-794) $) 21) (($ (-589 (-523))) 13)) (-1836 (($ (-710)) 18)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 9)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 11))) +(((-252) (-13 (-786) (-10 -8 (-15 -1458 ($ (-589 (-523)))) (-15 -2299 ((-710) $)) (-15 -1876 ((-589 (-523)) $)) (-15 -1836 ($ (-710)))))) (T -252)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-252)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-252)))) (-1876 (*1 *2 *1) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-252)))) (-1836 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-252))))) +(-13 (-786) (-10 -8 (-15 -1458 ($ (-589 (-523)))) (-15 -2299 ((-710) $)) (-15 -1876 ((-589 (-523)) $)) (-15 -1836 ($ (-710))))) +((-1769 ((|#2| |#2|) 77)) (-3780 ((|#2| |#2|) 65)) (-3060 (((-3 |#2| "failed") |#2| (-589 (-2 (|:| |func| |#2|) (|:| |pole| (-108))))) 116)) (-1744 ((|#2| |#2|) 75)) (-3711 ((|#2| |#2|) 63)) (-1793 ((|#2| |#2|) 79)) (-3805 ((|#2| |#2|) 67)) (-2820 ((|#2|) 46)) (-1403 (((-110) (-110)) 95)) (-2384 ((|#2| |#2|) 61)) (-1927 (((-108) |#2|) 134)) (-3627 ((|#2| |#2|) 180)) (-2050 ((|#2| |#2|) 156)) (-1424 ((|#2|) 59)) (-2116 ((|#2|) 58)) (-2141 ((|#2| |#2|) 176)) (-2327 ((|#2| |#2|) 152)) (-1816 ((|#2| |#2|) 184)) (-1784 ((|#2| |#2|) 160)) (-1389 ((|#2| |#2|) 148)) (-3051 ((|#2| |#2|) 150)) (-3856 ((|#2| |#2|) 186)) (-3273 ((|#2| |#2|) 162)) (-3758 ((|#2| |#2|) 182)) (-1526 ((|#2| |#2|) 158)) (-3937 ((|#2| |#2|) 178)) (-3412 ((|#2| |#2|) 154)) (-4132 ((|#2| |#2|) 192)) (-4064 ((|#2| |#2|) 168)) (-4154 ((|#2| |#2|) 188)) (-1599 ((|#2| |#2|) 164)) (-2549 ((|#2| |#2|) 196)) (-1210 ((|#2| |#2|) 172)) (-1559 ((|#2| |#2|) 198)) (-3541 ((|#2| |#2|) 174)) (-1245 ((|#2| |#2|) 194)) (-4076 ((|#2| |#2|) 170)) (-2008 ((|#2| |#2|) 190)) (-2171 ((|#2| |#2|) 166)) (-1811 ((|#2| |#2|) 62)) (-1805 ((|#2| |#2|) 80)) (-3816 ((|#2| |#2|) 68)) (-1782 ((|#2| |#2|) 78)) (-3793 ((|#2| |#2|) 66)) (-1757 ((|#2| |#2|) 76)) (-3767 ((|#2| |#2|) 64)) (-1950 (((-108) (-110)) 93)) (-1839 ((|#2| |#2|) 83)) (-3847 ((|#2| |#2|) 71)) (-1818 ((|#2| |#2|) 81)) (-3828 ((|#2| |#2|) 69)) (-1865 ((|#2| |#2|) 85)) (-1719 ((|#2| |#2|) 73)) (-2914 ((|#2| |#2|) 86)) (-1731 ((|#2| |#2|) 74)) (-1852 ((|#2| |#2|) 84)) (-3859 ((|#2| |#2|) 72)) (-1830 ((|#2| |#2|) 82)) (-3838 ((|#2| |#2|) 70))) +(((-253 |#1| |#2|) (-10 -7 (-15 -1811 (|#2| |#2|)) (-15 -2384 (|#2| |#2|)) (-15 -3711 (|#2| |#2|)) (-15 -3767 (|#2| |#2|)) (-15 -3780 (|#2| |#2|)) (-15 -3793 (|#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -3816 (|#2| |#2|)) (-15 -3828 (|#2| |#2|)) (-15 -3838 (|#2| |#2|)) (-15 -3847 (|#2| |#2|)) (-15 -3859 (|#2| |#2|)) (-15 -1719 (|#2| |#2|)) (-15 -1731 (|#2| |#2|)) (-15 -1744 (|#2| |#2|)) (-15 -1757 (|#2| |#2|)) (-15 -1769 (|#2| |#2|)) (-15 -1782 (|#2| |#2|)) (-15 -1793 (|#2| |#2|)) (-15 -1805 (|#2| |#2|)) (-15 -1818 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -1839 (|#2| |#2|)) (-15 -1852 (|#2| |#2|)) (-15 -1865 (|#2| |#2|)) (-15 -2914 (|#2| |#2|)) (-15 -2820 (|#2|)) (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 -2116 (|#2|)) (-15 -1424 (|#2|)) (-15 -3051 (|#2| |#2|)) (-15 -1389 (|#2| |#2|)) (-15 -2327 (|#2| |#2|)) (-15 -3412 (|#2| |#2|)) (-15 -2050 (|#2| |#2|)) (-15 -1526 (|#2| |#2|)) (-15 -1784 (|#2| |#2|)) (-15 -3273 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -2171 (|#2| |#2|)) (-15 -4064 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -1210 (|#2| |#2|)) (-15 -3541 (|#2| |#2|)) (-15 -2141 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3627 (|#2| |#2|)) (-15 -3758 (|#2| |#2|)) (-15 -1816 (|#2| |#2|)) (-15 -3856 (|#2| |#2|)) (-15 -4154 (|#2| |#2|)) (-15 -2008 (|#2| |#2|)) (-15 -4132 (|#2| |#2|)) (-15 -1245 (|#2| |#2|)) (-15 -2549 (|#2| |#2|)) (-15 -1559 (|#2| |#2|)) (-15 -3060 ((-3 |#2| "failed") |#2| (-589 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -1927 ((-108) |#2|))) (-13 (-786) (-515)) (-13 (-406 |#1|) (-930))) (T -253)) +((-1927 (*1 *2 *3) (-12 (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) (-5 *1 (-253 *4 *3)) (-4 *3 (-13 (-406 *4) (-930))))) (-3060 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-589 (-2 (|:| |func| *2) (|:| |pole| (-108))))) (-4 *2 (-13 (-406 *4) (-930))) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-253 *4 *2)))) (-1559 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2549 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1245 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-4132 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2008 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-4154 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3856 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1816 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3758 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3627 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2141 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3541 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1210 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-4064 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2171 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3273 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1784 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1526 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2050 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3412 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2327 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1389 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3051 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1424 (*1 *2) (-12 (-4 *2 (-13 (-406 *3) (-930))) (-5 *1 (-253 *3 *2)) (-4 *3 (-13 (-786) (-515))))) (-2116 (*1 *2) (-12 (-4 *2 (-13 (-406 *3) (-930))) (-5 *1 (-253 *3 *2)) (-4 *3 (-13 (-786) (-515))))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *4)) (-4 *4 (-13 (-406 *3) (-930))))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) (-5 *1 (-253 *4 *5)) (-4 *5 (-13 (-406 *4) (-930))))) (-2820 (*1 *2) (-12 (-4 *2 (-13 (-406 *3) (-930))) (-5 *1 (-253 *3 *2)) (-4 *3 (-13 (-786) (-515))))) (-2914 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1865 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1852 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1818 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1805 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1793 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1782 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1769 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1757 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1744 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1731 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1719 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3859 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3828 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3816 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3793 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3780 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3767 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-3711 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-2384 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930))))) (-1811 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-406 *3) (-930)))))) +(-10 -7 (-15 -1811 (|#2| |#2|)) (-15 -2384 (|#2| |#2|)) (-15 -3711 (|#2| |#2|)) (-15 -3767 (|#2| |#2|)) (-15 -3780 (|#2| |#2|)) (-15 -3793 (|#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -3816 (|#2| |#2|)) (-15 -3828 (|#2| |#2|)) (-15 -3838 (|#2| |#2|)) (-15 -3847 (|#2| |#2|)) (-15 -3859 (|#2| |#2|)) (-15 -1719 (|#2| |#2|)) (-15 -1731 (|#2| |#2|)) (-15 -1744 (|#2| |#2|)) (-15 -1757 (|#2| |#2|)) (-15 -1769 (|#2| |#2|)) (-15 -1782 (|#2| |#2|)) (-15 -1793 (|#2| |#2|)) (-15 -1805 (|#2| |#2|)) (-15 -1818 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -1839 (|#2| |#2|)) (-15 -1852 (|#2| |#2|)) (-15 -1865 (|#2| |#2|)) (-15 -2914 (|#2| |#2|)) (-15 -2820 (|#2|)) (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 -2116 (|#2|)) (-15 -1424 (|#2|)) (-15 -3051 (|#2| |#2|)) (-15 -1389 (|#2| |#2|)) (-15 -2327 (|#2| |#2|)) (-15 -3412 (|#2| |#2|)) (-15 -2050 (|#2| |#2|)) (-15 -1526 (|#2| |#2|)) (-15 -1784 (|#2| |#2|)) (-15 -3273 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -2171 (|#2| |#2|)) (-15 -4064 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -1210 (|#2| |#2|)) (-15 -3541 (|#2| |#2|)) (-15 -2141 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3627 (|#2| |#2|)) (-15 -3758 (|#2| |#2|)) (-15 -1816 (|#2| |#2|)) (-15 -3856 (|#2| |#2|)) (-15 -4154 (|#2| |#2|)) (-15 -2008 (|#2| |#2|)) (-15 -4132 (|#2| |#2|)) (-15 -1245 (|#2| |#2|)) (-15 -2549 (|#2| |#2|)) (-15 -1559 (|#2| |#2|)) (-15 -3060 ((-3 |#2| "failed") |#2| (-589 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -1927 ((-108) |#2|))) +((-2403 (((-3 |#2| "failed") (-589 (-562 |#2|)) |#2| (-1087)) 133)) (-1356 ((|#2| (-383 (-523)) |#2|) 50)) (-3502 ((|#2| |#2| (-562 |#2|)) 126)) (-3323 (((-2 (|:| |func| |#2|) (|:| |kers| (-589 (-562 |#2|))) (|:| |vals| (-589 |#2|))) |#2| (-1087)) 125)) (-3626 ((|#2| |#2| (-1087)) 19) ((|#2| |#2|) 22)) (-2018 ((|#2| |#2| (-1087)) 139) ((|#2| |#2|) 137))) +(((-254 |#1| |#2|) (-10 -7 (-15 -2018 (|#2| |#2|)) (-15 -2018 (|#2| |#2| (-1087))) (-15 -3323 ((-2 (|:| |func| |#2|) (|:| |kers| (-589 (-562 |#2|))) (|:| |vals| (-589 |#2|))) |#2| (-1087))) (-15 -3626 (|#2| |#2|)) (-15 -3626 (|#2| |#2| (-1087))) (-15 -2403 ((-3 |#2| "failed") (-589 (-562 |#2|)) |#2| (-1087))) (-15 -3502 (|#2| |#2| (-562 |#2|))) (-15 -1356 (|#2| (-383 (-523)) |#2|))) (-13 (-515) (-786) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1108) (-406 |#1|))) (T -254)) +((-1356 (*1 *2 *3 *2) (-12 (-5 *3 (-383 (-523))) (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-254 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4))))) (-3502 (*1 *2 *2 *3) (-12 (-5 *3 (-562 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4))) (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-254 *4 *2)))) (-2403 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-589 (-562 *2))) (-5 *4 (-1087)) (-4 *2 (-13 (-27) (-1108) (-406 *5))) (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-254 *5 *2)))) (-3626 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-254 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4))))) (-3626 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-254 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3))))) (-3323 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-589 (-562 *3))) (|:| |vals| (-589 *3)))) (-5 *1 (-254 *5 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))))) (-2018 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-254 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4))))) (-2018 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-254 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3)))))) +(-10 -7 (-15 -2018 (|#2| |#2|)) (-15 -2018 (|#2| |#2| (-1087))) (-15 -3323 ((-2 (|:| |func| |#2|) (|:| |kers| (-589 (-562 |#2|))) (|:| |vals| (-589 |#2|))) |#2| (-1087))) (-15 -3626 (|#2| |#2|)) (-15 -3626 (|#2| |#2| (-1087))) (-15 -2403 ((-3 |#2| "failed") (-589 (-562 |#2|)) |#2| (-1087))) (-15 -3502 (|#2| |#2| (-562 |#2|))) (-15 -1356 (|#2| (-383 (-523)) |#2|))) +((-2977 (((-3 |#3| "failed") |#3|) 110)) (-1769 ((|#3| |#3|) 131)) (-1434 (((-3 |#3| "failed") |#3|) 82)) (-3780 ((|#3| |#3|) 121)) (-1742 (((-3 |#3| "failed") |#3|) 58)) (-1744 ((|#3| |#3|) 129)) (-2409 (((-3 |#3| "failed") |#3|) 46)) (-3711 ((|#3| |#3|) 119)) (-1542 (((-3 |#3| "failed") |#3|) 112)) (-1793 ((|#3| |#3|) 133)) (-3443 (((-3 |#3| "failed") |#3|) 84)) (-3805 ((|#3| |#3|) 123)) (-2054 (((-3 |#3| "failed") |#3| (-710)) 36)) (-4214 (((-3 |#3| "failed") |#3|) 74)) (-2384 ((|#3| |#3|) 118)) (-3214 (((-3 |#3| "failed") |#3|) 44)) (-1811 ((|#3| |#3|) 117)) (-2601 (((-3 |#3| "failed") |#3|) 113)) (-1805 ((|#3| |#3|) 134)) (-1378 (((-3 |#3| "failed") |#3|) 85)) (-3816 ((|#3| |#3|) 124)) (-3143 (((-3 |#3| "failed") |#3|) 111)) (-1782 ((|#3| |#3|) 132)) (-2838 (((-3 |#3| "failed") |#3|) 83)) (-3793 ((|#3| |#3|) 122)) (-2313 (((-3 |#3| "failed") |#3|) 60)) (-1757 ((|#3| |#3|) 130)) (-1591 (((-3 |#3| "failed") |#3|) 48)) (-3767 ((|#3| |#3|) 120)) (-1837 (((-3 |#3| "failed") |#3|) 66)) (-1839 ((|#3| |#3|) 137)) (-1947 (((-3 |#3| "failed") |#3|) 104)) (-3847 ((|#3| |#3|) 142)) (-1648 (((-3 |#3| "failed") |#3|) 62)) (-1818 ((|#3| |#3|) 135)) (-1908 (((-3 |#3| "failed") |#3|) 50)) (-3828 ((|#3| |#3|) 125)) (-2355 (((-3 |#3| "failed") |#3|) 70)) (-1865 ((|#3| |#3|) 139)) (-2609 (((-3 |#3| "failed") |#3|) 54)) (-1719 ((|#3| |#3|) 127)) (-3170 (((-3 |#3| "failed") |#3|) 72)) (-2914 ((|#3| |#3|) 140)) (-2107 (((-3 |#3| "failed") |#3|) 56)) (-1731 ((|#3| |#3|) 128)) (-1716 (((-3 |#3| "failed") |#3|) 68)) (-1852 ((|#3| |#3|) 138)) (-2718 (((-3 |#3| "failed") |#3|) 107)) (-3859 ((|#3| |#3|) 143)) (-1588 (((-3 |#3| "failed") |#3|) 64)) (-1830 ((|#3| |#3|) 136)) (-1955 (((-3 |#3| "failed") |#3|) 52)) (-3838 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-383 (-523))) 40 (|has| |#1| (-339))))) +(((-255 |#1| |#2| |#3|) (-13 (-912 |#3|) (-10 -7 (IF (|has| |#1| (-339)) (-15 ** (|#3| |#3| (-383 (-523)))) |%noBranch|) (-15 -1811 (|#3| |#3|)) (-15 -2384 (|#3| |#3|)) (-15 -3711 (|#3| |#3|)) (-15 -3767 (|#3| |#3|)) (-15 -3780 (|#3| |#3|)) (-15 -3793 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)) (-15 -3816 (|#3| |#3|)) (-15 -3828 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3859 (|#3| |#3|)) (-15 -1719 (|#3| |#3|)) (-15 -1731 (|#3| |#3|)) (-15 -1744 (|#3| |#3|)) (-15 -1757 (|#3| |#3|)) (-15 -1769 (|#3| |#3|)) (-15 -1782 (|#3| |#3|)) (-15 -1793 (|#3| |#3|)) (-15 -1805 (|#3| |#3|)) (-15 -1818 (|#3| |#3|)) (-15 -1830 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1852 (|#3| |#3|)) (-15 -1865 (|#3| |#3|)) (-15 -2914 (|#3| |#3|)))) (-37 (-383 (-523))) (-1159 |#1|) (-1130 |#1| |#2|)) (T -255)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-383 (-523))) (-4 *4 (-339)) (-4 *4 (-37 *3)) (-4 *5 (-1159 *4)) (-5 *1 (-255 *4 *5 *2)) (-4 *2 (-1130 *4 *5)))) (-1811 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-2384 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-3711 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-3767 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-3780 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-3793 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-3816 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-3828 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-3859 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1719 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1731 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1744 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1757 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1769 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1782 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1793 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1805 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1818 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1852 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-1865 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) (-2914 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4))))) +(-13 (-912 |#3|) (-10 -7 (IF (|has| |#1| (-339)) (-15 ** (|#3| |#3| (-383 (-523)))) |%noBranch|) (-15 -1811 (|#3| |#3|)) (-15 -2384 (|#3| |#3|)) (-15 -3711 (|#3| |#3|)) (-15 -3767 (|#3| |#3|)) (-15 -3780 (|#3| |#3|)) (-15 -3793 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)) (-15 -3816 (|#3| |#3|)) (-15 -3828 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3859 (|#3| |#3|)) (-15 -1719 (|#3| |#3|)) (-15 -1731 (|#3| |#3|)) (-15 -1744 (|#3| |#3|)) (-15 -1757 (|#3| |#3|)) (-15 -1769 (|#3| |#3|)) (-15 -1782 (|#3| |#3|)) (-15 -1793 (|#3| |#3|)) (-15 -1805 (|#3| |#3|)) (-15 -1818 (|#3| |#3|)) (-15 -1830 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1852 (|#3| |#3|)) (-15 -1865 (|#3| |#3|)) (-15 -2914 (|#3| |#3|)))) +((-2977 (((-3 |#3| "failed") |#3|) 66)) (-1769 ((|#3| |#3|) 133)) (-1434 (((-3 |#3| "failed") |#3|) 50)) (-3780 ((|#3| |#3|) 121)) (-1742 (((-3 |#3| "failed") |#3|) 62)) (-1744 ((|#3| |#3|) 131)) (-2409 (((-3 |#3| "failed") |#3|) 46)) (-3711 ((|#3| |#3|) 119)) (-1542 (((-3 |#3| "failed") |#3|) 70)) (-1793 ((|#3| |#3|) 135)) (-3443 (((-3 |#3| "failed") |#3|) 54)) (-3805 ((|#3| |#3|) 123)) (-2054 (((-3 |#3| "failed") |#3| (-710)) 35)) (-4214 (((-3 |#3| "failed") |#3|) 44)) (-2384 ((|#3| |#3|) 112)) (-3214 (((-3 |#3| "failed") |#3|) 42)) (-1811 ((|#3| |#3|) 118)) (-2601 (((-3 |#3| "failed") |#3|) 72)) (-1805 ((|#3| |#3|) 136)) (-1378 (((-3 |#3| "failed") |#3|) 56)) (-3816 ((|#3| |#3|) 124)) (-3143 (((-3 |#3| "failed") |#3|) 68)) (-1782 ((|#3| |#3|) 134)) (-2838 (((-3 |#3| "failed") |#3|) 52)) (-3793 ((|#3| |#3|) 122)) (-2313 (((-3 |#3| "failed") |#3|) 64)) (-1757 ((|#3| |#3|) 132)) (-1591 (((-3 |#3| "failed") |#3|) 48)) (-3767 ((|#3| |#3|) 120)) (-1837 (((-3 |#3| "failed") |#3|) 78)) (-1839 ((|#3| |#3|) 139)) (-1947 (((-3 |#3| "failed") |#3|) 58)) (-3847 ((|#3| |#3|) 127)) (-1648 (((-3 |#3| "failed") |#3|) 74)) (-1818 ((|#3| |#3|) 137)) (-1908 (((-3 |#3| "failed") |#3|) 102)) (-3828 ((|#3| |#3|) 125)) (-2355 (((-3 |#3| "failed") |#3|) 82)) (-1865 ((|#3| |#3|) 141)) (-2609 (((-3 |#3| "failed") |#3|) 109)) (-1719 ((|#3| |#3|) 129)) (-3170 (((-3 |#3| "failed") |#3|) 84)) (-2914 ((|#3| |#3|) 142)) (-2107 (((-3 |#3| "failed") |#3|) 111)) (-1731 ((|#3| |#3|) 130)) (-1716 (((-3 |#3| "failed") |#3|) 80)) (-1852 ((|#3| |#3|) 140)) (-2718 (((-3 |#3| "failed") |#3|) 60)) (-3859 ((|#3| |#3|) 128)) (-1588 (((-3 |#3| "failed") |#3|) 76)) (-1830 ((|#3| |#3|) 138)) (-1955 (((-3 |#3| "failed") |#3|) 105)) (-3838 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-383 (-523))) 40 (|has| |#1| (-339))))) +(((-256 |#1| |#2| |#3| |#4|) (-13 (-912 |#3|) (-10 -7 (IF (|has| |#1| (-339)) (-15 ** (|#3| |#3| (-383 (-523)))) |%noBranch|) (-15 -1811 (|#3| |#3|)) (-15 -2384 (|#3| |#3|)) (-15 -3711 (|#3| |#3|)) (-15 -3767 (|#3| |#3|)) (-15 -3780 (|#3| |#3|)) (-15 -3793 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)) (-15 -3816 (|#3| |#3|)) (-15 -3828 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3859 (|#3| |#3|)) (-15 -1719 (|#3| |#3|)) (-15 -1731 (|#3| |#3|)) (-15 -1744 (|#3| |#3|)) (-15 -1757 (|#3| |#3|)) (-15 -1769 (|#3| |#3|)) (-15 -1782 (|#3| |#3|)) (-15 -1793 (|#3| |#3|)) (-15 -1805 (|#3| |#3|)) (-15 -1818 (|#3| |#3|)) (-15 -1830 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1852 (|#3| |#3|)) (-15 -1865 (|#3| |#3|)) (-15 -2914 (|#3| |#3|)))) (-37 (-383 (-523))) (-1128 |#1|) (-1151 |#1| |#2|) (-912 |#2|)) (T -256)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-383 (-523))) (-4 *4 (-339)) (-4 *4 (-37 *3)) (-4 *5 (-1128 *4)) (-5 *1 (-256 *4 *5 *2 *6)) (-4 *2 (-1151 *4 *5)) (-4 *6 (-912 *5)))) (-1811 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-2384 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-3711 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-3767 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-3780 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-3793 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-3816 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-3828 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-3859 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1719 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1731 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1744 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1757 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1769 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1782 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1793 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1805 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1818 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1852 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-1865 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) (-2914 (*1 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4))))) +(-13 (-912 |#3|) (-10 -7 (IF (|has| |#1| (-339)) (-15 ** (|#3| |#3| (-383 (-523)))) |%noBranch|) (-15 -1811 (|#3| |#3|)) (-15 -2384 (|#3| |#3|)) (-15 -3711 (|#3| |#3|)) (-15 -3767 (|#3| |#3|)) (-15 -3780 (|#3| |#3|)) (-15 -3793 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)) (-15 -3816 (|#3| |#3|)) (-15 -3828 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3859 (|#3| |#3|)) (-15 -1719 (|#3| |#3|)) (-15 -1731 (|#3| |#3|)) (-15 -1744 (|#3| |#3|)) (-15 -1757 (|#3| |#3|)) (-15 -1769 (|#3| |#3|)) (-15 -1782 (|#3| |#3|)) (-15 -1793 (|#3| |#3|)) (-15 -1805 (|#3| |#3|)) (-15 -1818 (|#3| |#3|)) (-15 -1830 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1852 (|#3| |#3|)) (-15 -1865 (|#3| |#3|)) (-15 -2914 (|#3| |#3|)))) +((-3677 (((-108) $) 18)) (-3773 (((-167) $) 7)) (-4139 (((-3 (-1087) "failed") $) 13)) (-2936 (((-3 (-589 $) "failed") $) NIL)) (-1838 (((-3 (-1087) "failed") $) 21)) (-3693 (((-3 (-1020) "failed") $) 16)) (-1869 (((-108) $) 14)) (-1458 (((-794) $) NIL)) (-2223 (((-108) $) 9))) +(((-257) (-13 (-563 (-794)) (-10 -8 (-15 -3773 ((-167) $)) (-15 -1869 ((-108) $)) (-15 -3693 ((-3 (-1020) "failed") $)) (-15 -3677 ((-108) $)) (-15 -1838 ((-3 (-1087) "failed") $)) (-15 -2223 ((-108) $)) (-15 -4139 ((-3 (-1087) "failed") $)) (-15 -2936 ((-3 (-589 $) "failed") $))))) (T -257)) +((-3773 (*1 *2 *1) (-12 (-5 *2 (-167)) (-5 *1 (-257)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-257)))) (-3693 (*1 *2 *1) (|partial| -12 (-5 *2 (-1020)) (-5 *1 (-257)))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-257)))) (-1838 (*1 *2 *1) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-257)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-257)))) (-4139 (*1 *2 *1) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-257)))) (-2936 (*1 *2 *1) (|partial| -12 (-5 *2 (-589 (-257))) (-5 *1 (-257))))) +(-13 (-563 (-794)) (-10 -8 (-15 -3773 ((-167) $)) (-15 -1869 ((-108) $)) (-15 -3693 ((-3 (-1020) "failed") $)) (-15 -3677 ((-108) $)) (-15 -1838 ((-3 (-1087) "failed") $)) (-15 -2223 ((-108) $)) (-15 -4139 ((-3 (-1087) "failed") $)) (-15 -2936 ((-3 (-589 $) "failed") $)))) +((-3724 (($ (-1 (-108) |#2|) $) 23)) (-1773 (($ $) 36)) (-2249 (($ (-1 (-108) |#2|) $) NIL) (($ |#2| $) 34)) (-2557 (($ |#2| $) 31) (($ (-1 (-108) |#2|) $) 17)) (-2158 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2847 (($ |#2| $ (-523)) 19) (($ $ $ (-523)) 21)) (-1469 (($ $ (-523)) 11) (($ $ (-1135 (-523))) 14)) (-1746 (($ $ |#2|) 29) (($ $ $) NIL)) (-2326 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-589 $)) NIL))) +(((-258 |#1| |#2|) (-10 -8 (-15 -2158 (|#1| |#1| |#1|)) (-15 -2249 (|#1| |#2| |#1|)) (-15 -2158 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2249 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1746 (|#1| |#1| |#1|)) (-15 -1746 (|#1| |#1| |#2|)) (-15 -2847 (|#1| |#1| |#1| (-523))) (-15 -2847 (|#1| |#2| |#1| (-523))) (-15 -1469 (|#1| |#1| (-1135 (-523)))) (-15 -1469 (|#1| |#1| (-523))) (-15 -2326 (|#1| (-589 |#1|))) (-15 -2326 (|#1| |#1| |#1|)) (-15 -2326 (|#1| |#2| |#1|)) (-15 -2326 (|#1| |#1| |#2|)) (-15 -2557 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3724 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2557 (|#1| |#2| |#1|)) (-15 -1773 (|#1| |#1|))) (-259 |#2|) (-1122)) (T -258)) +NIL +(-10 -8 (-15 -2158 (|#1| |#1| |#1|)) (-15 -2249 (|#1| |#2| |#1|)) (-15 -2158 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2249 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1746 (|#1| |#1| |#1|)) (-15 -1746 (|#1| |#1| |#2|)) (-15 -2847 (|#1| |#1| |#1| (-523))) (-15 -2847 (|#1| |#2| |#1| (-523))) (-15 -1469 (|#1| |#1| (-1135 (-523)))) (-15 -1469 (|#1| |#1| (-523))) (-15 -2326 (|#1| (-589 |#1|))) (-15 -2326 (|#1| |#1| |#1|)) (-15 -2326 (|#1| |#2| |#1|)) (-15 -2326 (|#1| |#1| |#2|)) (-15 -2557 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3724 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2557 (|#1| |#2| |#1|)) (-15 -1773 (|#1| |#1|))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-4207 (((-1173) $ (-523) (-523)) 40 (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) 8)) (-1641 ((|#1| $ (-523) |#1|) 52 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) 58 (|has| $ (-6 -4245)))) (-3387 (($ (-1 (-108) |#1|) $) 85)) (-3724 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-3941 (($ $) 83 (|has| |#1| (-1016)))) (-1773 (($ $) 78 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2249 (($ (-1 (-108) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1016)))) (-2557 (($ |#1| $) 77 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) 53 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 51)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-3052 (($ (-710) |#1|) 69)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 43 (|has| (-523) (-786)))) (-2158 (($ (-1 (-108) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 44 (|has| (-523) (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-3450 (($ |#1| $ (-523)) 88) (($ $ $ (-523)) 87)) (-2847 (($ |#1| $ (-523)) 60) (($ $ $ (-523)) 59)) (-2412 (((-589 (-523)) $) 46)) (-4135 (((-108) (-523) $) 47)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1738 ((|#1| $) 42 (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-4203 (($ $ |#1|) 41 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ (-523) |#1|) 50) ((|#1| $ (-523)) 49) (($ $ (-1135 (-523))) 63)) (-2753 (($ $ (-523)) 91) (($ $ (-1135 (-523))) 90)) (-1469 (($ $ (-523)) 62) (($ $ (-1135 (-523))) 61)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 79 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 70)) (-1746 (($ $ |#1|) 93) (($ $ $) 92)) (-2326 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-259 |#1|) (-129) (-1122)) (T -259)) +((-1746 (*1 *1 *1 *2) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1122)))) (-1746 (*1 *1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1122)))) (-2753 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-259 *3)) (-4 *3 (-1122)))) (-2753 (*1 *1 *1 *2) (-12 (-5 *2 (-1135 (-523))) (-4 *1 (-259 *3)) (-4 *3 (-1122)))) (-2249 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-259 *3)) (-4 *3 (-1122)))) (-3450 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-259 *2)) (-4 *2 (-1122)))) (-3450 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-259 *3)) (-4 *3 (-1122)))) (-2158 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-259 *3)) (-4 *3 (-1122)))) (-3387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-259 *3)) (-4 *3 (-1122)))) (-2249 (*1 *1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1122)) (-4 *2 (-1016)))) (-3941 (*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1122)) (-4 *2 (-1016)))) (-2158 (*1 *1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1122)) (-4 *2 (-786))))) +(-13 (-594 |t#1|) (-10 -8 (-6 -4245) (-15 -1746 ($ $ |t#1|)) (-15 -1746 ($ $ $)) (-15 -2753 ($ $ (-523))) (-15 -2753 ($ $ (-1135 (-523)))) (-15 -2249 ($ (-1 (-108) |t#1|) $)) (-15 -3450 ($ |t#1| $ (-523))) (-15 -3450 ($ $ $ (-523))) (-15 -2158 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -3387 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1016)) (PROGN (-15 -2249 ($ |t#1| $)) (-15 -3941 ($ $))) |%noBranch|) (IF (|has| |t#1| (-786)) (-15 -2158 ($ $ $)) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) ((** (($ $ $) 10))) -(((-259 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-260)) (T -259)) +(((-260 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-261)) (T -260)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-1238 (($ $) 6)) (-3357 (($ $) 7)) (** (($ $ $) 8))) -(((-260) (-1197)) (T -260)) -((** (*1 *1 *1 *1) (-4 *1 (-260))) (-3357 (*1 *1 *1) (-4 *1 (-260))) (-1238 (*1 *1 *1) (-4 *1 (-260)))) -(-13 (-10 -8 (-15 -1238 ($ $)) (-15 -3357 ($ $)) (-15 ** ($ $ $)))) -((-3330 (((-588 (-1066 |#1|)) (-1066 |#1|) |#1|) 35)) (-3084 ((|#2| |#2| |#1|) 38)) (-3747 ((|#2| |#2| |#1|) 40)) (-2770 ((|#2| |#2| |#1|) 39))) -(((-261 |#1| |#2|) (-10 -7 (-15 -3084 (|#2| |#2| |#1|)) (-15 -2770 (|#2| |#2| |#1|)) (-15 -3747 (|#2| |#2| |#1|)) (-15 -3330 ((-588 (-1066 |#1|)) (-1066 |#1|) |#1|))) (-338) (-1157 |#1|)) (T -261)) -((-3330 (*1 *2 *3 *4) (-12 (-4 *4 (-338)) (-5 *2 (-588 (-1066 *4))) (-5 *1 (-261 *4 *5)) (-5 *3 (-1066 *4)) (-4 *5 (-1157 *4)))) (-3747 (*1 *2 *2 *3) (-12 (-4 *3 (-338)) (-5 *1 (-261 *3 *2)) (-4 *2 (-1157 *3)))) (-2770 (*1 *2 *2 *3) (-12 (-4 *3 (-338)) (-5 *1 (-261 *3 *2)) (-4 *2 (-1157 *3)))) (-3084 (*1 *2 *2 *3) (-12 (-4 *3 (-338)) (-5 *1 (-261 *3 *2)) (-4 *2 (-1157 *3))))) -(-10 -7 (-15 -3084 (|#2| |#2| |#1|)) (-15 -2770 (|#2| |#2| |#1|)) (-15 -3747 (|#2| |#2| |#1|)) (-15 -3330 ((-588 (-1066 |#1|)) (-1066 |#1|) |#1|))) -((-2683 ((|#2| $ |#1|) 6))) -(((-262 |#1| |#2|) (-1197) (-1014) (-1120)) (T -262)) -((-2683 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1120))))) -(-13 (-10 -8 (-15 -2683 (|t#2| $ |t#1|)))) -((-2411 ((|#3| $ |#2| |#3|) 12)) (-2186 ((|#3| $ |#2|) 10))) -(((-263 |#1| |#2| |#3|) (-10 -8 (-15 -2411 (|#3| |#1| |#2| |#3|)) (-15 -2186 (|#3| |#1| |#2|))) (-264 |#2| |#3|) (-1014) (-1120)) (T -263)) -NIL -(-10 -8 (-15 -2411 (|#3| |#1| |#2| |#3|)) (-15 -2186 (|#3| |#1| |#2|))) -((-2437 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4239)))) (-2411 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4239)))) (-2186 ((|#2| $ |#1|) 11)) (-2683 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-264 |#1| |#2|) (-1197) (-1014) (-1120)) (T -264)) -((-2683 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-264 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1120)))) (-2186 (*1 *2 *1 *3) (-12 (-4 *1 (-264 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1120)))) (-2437 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-264 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1120)))) (-2411 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-264 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1120))))) -(-13 (-262 |t#1| |t#2|) (-10 -8 (-15 -2683 (|t#2| $ |t#1| |t#2|)) (-15 -2186 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4239)) (PROGN (-15 -2437 (|t#2| $ |t#1| |t#2|)) (-15 -2411 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-262 |#1| |#2|) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 35)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 40)) (-2298 (($ $) 38)) (-3007 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-2805 (((-108) $ $) NIL)) (-3367 (($) NIL T CONST)) (-2333 (($ $ $) 33)) (-2153 (($ |#2| |#3|) 19)) (-3920 (((-3 $ "failed") $) NIL)) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2859 (((-108) $) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1246 ((|#3| $) NIL)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) 20)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1466 (((-3 $ "failed") $ $) NIL)) (-4031 (((-708) $) 34)) (-2683 ((|#2| $ |#2|) 42)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 24)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2742 (((-708)) NIL)) (-1407 (((-108) $ $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 29 T CONST)) (-3709 (($) 36 T CONST)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 37))) -(((-265 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-283) (-10 -8 (-15 -1246 (|#3| $)) (-15 -2217 (|#2| $)) (-15 -2153 ($ |#2| |#3|)) (-15 -1466 ((-3 $ "failed") $ $)) (-15 -3920 ((-3 $ "failed") $)) (-15 -3193 ($ $)) (-15 -2683 (|#2| $ |#2|)))) (-157) (-1142 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -265)) -((-3920 (*1 *1 *1) (|partial| -12 (-4 *2 (-157)) (-5 *1 (-265 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1142 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1246 (*1 *2 *1) (-12 (-4 *3 (-157)) (-4 *2 (-23)) (-5 *1 (-265 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1142 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2217 (*1 *2 *1) (-12 (-4 *2 (-1142 *3)) (-5 *1 (-265 *3 *2 *4 *5 *6 *7)) (-4 *3 (-157)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2153 (*1 *1 *2 *3) (-12 (-4 *4 (-157)) (-5 *1 (-265 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1142 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1466 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-157)) (-5 *1 (-265 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1142 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3193 (*1 *1 *1) (-12 (-4 *2 (-157)) (-5 *1 (-265 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1142 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2683 (*1 *2 *1 *2) (-12 (-4 *3 (-157)) (-5 *1 (-265 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1142 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) -(-13 (-283) (-10 -8 (-15 -1246 (|#3| $)) (-15 -2217 (|#2| $)) (-15 -2153 ($ |#2| |#3|)) (-15 -1466 ((-3 $ "failed") $ $)) (-15 -3920 ((-3 $ "failed") $)) (-15 -3193 ($ $)) (-15 -2683 (|#2| $ |#2|)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3920 (((-3 $ "failed") $) 34)) (-2859 (((-108) $) 31)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11) (($ (-522)) 28)) (-2742 (((-708)) 29)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-266) (-1197)) (T -266)) -NIL -(-13 (-971) (-107 $ $) (-10 -7 (-6 -4231))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 $) . T) ((-664) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-2450 (($ (-1085) (-1085) (-1018) $) 15)) (-2198 (($ (-1085) (-588 (-893)) $) 19)) (-1964 (((-588 (-1001)) $) 8)) (-3581 (((-3 (-1018) "failed") (-1085) (-1085) $) 14)) (-2456 (((-3 (-588 (-893)) "failed") (-1085) $) 17)) (-3298 (($) 6)) (-4053 (($) 20)) (-2217 (((-792) $) 24)) (-4088 (($) 21))) -(((-267) (-13 (-562 (-792)) (-10 -8 (-15 -3298 ($)) (-15 -1964 ((-588 (-1001)) $)) (-15 -3581 ((-3 (-1018) "failed") (-1085) (-1085) $)) (-15 -2450 ($ (-1085) (-1085) (-1018) $)) (-15 -2456 ((-3 (-588 (-893)) "failed") (-1085) $)) (-15 -2198 ($ (-1085) (-588 (-893)) $)) (-15 -4053 ($)) (-15 -4088 ($))))) (T -267)) -((-3298 (*1 *1) (-5 *1 (-267))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-588 (-1001))) (-5 *1 (-267)))) (-3581 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-1018)) (-5 *1 (-267)))) (-2450 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1085)) (-5 *3 (-1018)) (-5 *1 (-267)))) (-2456 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-588 (-893))) (-5 *1 (-267)))) (-2198 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-893))) (-5 *1 (-267)))) (-4053 (*1 *1) (-5 *1 (-267))) (-4088 (*1 *1) (-5 *1 (-267)))) -(-13 (-562 (-792)) (-10 -8 (-15 -3298 ($)) (-15 -1964 ((-588 (-1001)) $)) (-15 -3581 ((-3 (-1018) "failed") (-1085) (-1085) $)) (-15 -2450 ($ (-1085) (-1085) (-1018) $)) (-15 -2456 ((-3 (-588 (-893)) "failed") (-1085) $)) (-15 -2198 ($ (-1085) (-588 (-893)) $)) (-15 -4053 ($)) (-15 -4088 ($)))) -((-3959 (((-588 (-2 (|:| |eigval| (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (|:| |geneigvec| (-588 (-628 (-382 (-881 |#1|))))))) (-628 (-382 (-881 |#1|)))) 84)) (-3440 (((-588 (-628 (-382 (-881 |#1|)))) (-2 (|:| |eigval| (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (|:| |eigmult| (-708)) (|:| |eigvec| (-588 (-628 (-382 (-881 |#1|)))))) (-628 (-382 (-881 |#1|)))) 79) (((-588 (-628 (-382 (-881 |#1|)))) (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|))) (-628 (-382 (-881 |#1|))) (-708) (-708)) 37)) (-1747 (((-588 (-2 (|:| |eigval| (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (|:| |eigmult| (-708)) (|:| |eigvec| (-588 (-628 (-382 (-881 |#1|))))))) (-628 (-382 (-881 |#1|)))) 81)) (-2740 (((-588 (-628 (-382 (-881 |#1|)))) (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|))) (-628 (-382 (-881 |#1|)))) 61)) (-2420 (((-588 (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (-628 (-382 (-881 |#1|)))) 60)) (-2645 (((-881 |#1|) (-628 (-382 (-881 |#1|)))) 48) (((-881 |#1|) (-628 (-382 (-881 |#1|))) (-1085)) 49))) -(((-268 |#1|) (-10 -7 (-15 -2645 ((-881 |#1|) (-628 (-382 (-881 |#1|))) (-1085))) (-15 -2645 ((-881 |#1|) (-628 (-382 (-881 |#1|))))) (-15 -2420 ((-588 (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (-628 (-382 (-881 |#1|))))) (-15 -2740 ((-588 (-628 (-382 (-881 |#1|)))) (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|))) (-628 (-382 (-881 |#1|))))) (-15 -3440 ((-588 (-628 (-382 (-881 |#1|)))) (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|))) (-628 (-382 (-881 |#1|))) (-708) (-708))) (-15 -3440 ((-588 (-628 (-382 (-881 |#1|)))) (-2 (|:| |eigval| (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (|:| |eigmult| (-708)) (|:| |eigvec| (-588 (-628 (-382 (-881 |#1|)))))) (-628 (-382 (-881 |#1|))))) (-15 -3959 ((-588 (-2 (|:| |eigval| (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (|:| |geneigvec| (-588 (-628 (-382 (-881 |#1|))))))) (-628 (-382 (-881 |#1|))))) (-15 -1747 ((-588 (-2 (|:| |eigval| (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (|:| |eigmult| (-708)) (|:| |eigvec| (-588 (-628 (-382 (-881 |#1|))))))) (-628 (-382 (-881 |#1|)))))) (-426)) (T -268)) -((-1747 (*1 *2 *3) (-12 (-4 *4 (-426)) (-5 *2 (-588 (-2 (|:| |eigval| (-3 (-382 (-881 *4)) (-1075 (-1085) (-881 *4)))) (|:| |eigmult| (-708)) (|:| |eigvec| (-588 (-628 (-382 (-881 *4)))))))) (-5 *1 (-268 *4)) (-5 *3 (-628 (-382 (-881 *4)))))) (-3959 (*1 *2 *3) (-12 (-4 *4 (-426)) (-5 *2 (-588 (-2 (|:| |eigval| (-3 (-382 (-881 *4)) (-1075 (-1085) (-881 *4)))) (|:| |geneigvec| (-588 (-628 (-382 (-881 *4)))))))) (-5 *1 (-268 *4)) (-5 *3 (-628 (-382 (-881 *4)))))) (-3440 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-382 (-881 *5)) (-1075 (-1085) (-881 *5)))) (|:| |eigmult| (-708)) (|:| |eigvec| (-588 *4)))) (-4 *5 (-426)) (-5 *2 (-588 (-628 (-382 (-881 *5))))) (-5 *1 (-268 *5)) (-5 *4 (-628 (-382 (-881 *5)))))) (-3440 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-382 (-881 *6)) (-1075 (-1085) (-881 *6)))) (-5 *5 (-708)) (-4 *6 (-426)) (-5 *2 (-588 (-628 (-382 (-881 *6))))) (-5 *1 (-268 *6)) (-5 *4 (-628 (-382 (-881 *6)))))) (-2740 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-382 (-881 *5)) (-1075 (-1085) (-881 *5)))) (-4 *5 (-426)) (-5 *2 (-588 (-628 (-382 (-881 *5))))) (-5 *1 (-268 *5)) (-5 *4 (-628 (-382 (-881 *5)))))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-628 (-382 (-881 *4)))) (-4 *4 (-426)) (-5 *2 (-588 (-3 (-382 (-881 *4)) (-1075 (-1085) (-881 *4))))) (-5 *1 (-268 *4)))) (-2645 (*1 *2 *3) (-12 (-5 *3 (-628 (-382 (-881 *4)))) (-5 *2 (-881 *4)) (-5 *1 (-268 *4)) (-4 *4 (-426)))) (-2645 (*1 *2 *3 *4) (-12 (-5 *3 (-628 (-382 (-881 *5)))) (-5 *4 (-1085)) (-5 *2 (-881 *5)) (-5 *1 (-268 *5)) (-4 *5 (-426))))) -(-10 -7 (-15 -2645 ((-881 |#1|) (-628 (-382 (-881 |#1|))) (-1085))) (-15 -2645 ((-881 |#1|) (-628 (-382 (-881 |#1|))))) (-15 -2420 ((-588 (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (-628 (-382 (-881 |#1|))))) (-15 -2740 ((-588 (-628 (-382 (-881 |#1|)))) (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|))) (-628 (-382 (-881 |#1|))))) (-15 -3440 ((-588 (-628 (-382 (-881 |#1|)))) (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|))) (-628 (-382 (-881 |#1|))) (-708) (-708))) (-15 -3440 ((-588 (-628 (-382 (-881 |#1|)))) (-2 (|:| |eigval| (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (|:| |eigmult| (-708)) (|:| |eigvec| (-588 (-628 (-382 (-881 |#1|)))))) (-628 (-382 (-881 |#1|))))) (-15 -3959 ((-588 (-2 (|:| |eigval| (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (|:| |geneigvec| (-588 (-628 (-382 (-881 |#1|))))))) (-628 (-382 (-881 |#1|))))) (-15 -1747 ((-588 (-2 (|:| |eigval| (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (|:| |eigmult| (-708)) (|:| |eigvec| (-588 (-628 (-382 (-881 |#1|))))))) (-628 (-382 (-881 |#1|)))))) -((-3810 (((-270 |#2|) (-1 |#2| |#1|) (-270 |#1|)) 14))) -(((-269 |#1| |#2|) (-10 -7 (-15 -3810 ((-270 |#2|) (-1 |#2| |#1|) (-270 |#1|)))) (-1120) (-1120)) (T -269)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-270 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-270 *6)) (-5 *1 (-269 *5 *6))))) -(-10 -7 (-15 -3810 ((-270 |#2|) (-1 |#2| |#1|) (-270 |#1|)))) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2944 (((-108) $) NIL (|has| |#1| (-21)))) (-2000 (($ $) 22)) (-2265 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1847 (($ $ $) 93 (|has| |#1| (-278)))) (-3367 (($) NIL (-3844 (|has| |#1| (-21)) (|has| |#1| (-664))) CONST)) (-1449 (($ $) 8 (|has| |#1| (-21)))) (-1966 (((-3 $ "failed") $) 68 (|has| |#1| (-664)))) (-3728 ((|#1| $) 21)) (-3920 (((-3 $ "failed") $) 66 (|has| |#1| (-664)))) (-2859 (((-108) $) NIL (|has| |#1| (-664)))) (-3810 (($ (-1 |#1| |#1|) $) 24)) (-3717 ((|#1| $) 9)) (-2525 (($ $) 57 (|has| |#1| (-21)))) (-2749 (((-3 $ "failed") $) 67 (|has| |#1| (-664)))) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-3193 (($ $) 70 (-3844 (|has| |#1| (-338)) (|has| |#1| (-447))))) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-4205 (((-588 $) $) 19 (|has| |#1| (-514)))) (-2330 (($ $ $) 34 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 $)) 37 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-1085) |#1|) 27 (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) 31 (|has| |#1| (-483 (-1085) |#1|)))) (-1656 (($ |#1| |#1|) 17)) (-3222 (((-126)) 88 (|has| |#1| (-338)))) (-2731 (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085)) 85 (|has| |#1| (-829 (-1085))))) (-2983 (($ $ $) NIL (|has| |#1| (-447)))) (-1596 (($ $ $) NIL (|has| |#1| (-447)))) (-2217 (($ (-522)) NIL (|has| |#1| (-971))) (((-108) $) 45 (|has| |#1| (-1014))) (((-792) $) 44 (|has| |#1| (-1014)))) (-2742 (((-708)) 73 (|has| |#1| (-971)))) (-3622 (($ $ (-522)) NIL (|has| |#1| (-447))) (($ $ (-708)) NIL (|has| |#1| (-664))) (($ $ (-850)) NIL (|has| |#1| (-1026)))) (-3697 (($) 55 (|has| |#1| (-21)) CONST)) (-3709 (($) 63 (|has| |#1| (-664)) CONST)) (-2252 (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085))))) (-1562 (($ |#1| |#1|) 20) (((-108) $ $) 40 (|has| |#1| (-1014)))) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338))) (($ $ $) 90 (-3844 (|has| |#1| (-338)) (|has| |#1| (-447))))) (-1672 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-1661 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-522)) NIL (|has| |#1| (-447))) (($ $ (-708)) NIL (|has| |#1| (-664))) (($ $ (-850)) NIL (|has| |#1| (-1026)))) (* (($ $ |#1|) 61 (|has| |#1| (-1026))) (($ |#1| $) 60 (|has| |#1| (-1026))) (($ $ $) 59 (|has| |#1| (-1026))) (($ (-522) $) 76 (|has| |#1| (-21))) (($ (-708) $) NIL (|has| |#1| (-21))) (($ (-850) $) NIL (|has| |#1| (-25))))) -(((-270 |#1|) (-13 (-1120) (-10 -8 (-15 -1562 ($ |#1| |#1|)) (-15 -1656 ($ |#1| |#1|)) (-15 -2000 ($ $)) (-15 -3717 (|#1| $)) (-15 -3728 (|#1| $)) (-15 -3810 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-483 (-1085) |#1|)) (-6 (-483 (-1085) |#1|)) |%noBranch|) (IF (|has| |#1| (-1014)) (PROGN (-6 (-1014)) (-6 (-562 (-108))) (IF (|has| |#1| (-285 |#1|)) (PROGN (-15 -2330 ($ $ $)) (-15 -2330 ($ $ (-588 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1661 ($ |#1| $)) (-15 -1661 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2525 ($ $)) (-15 -1449 ($ $)) (-15 -1672 ($ |#1| $)) (-15 -1672 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1026)) (PROGN (-6 (-1026)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-664)) (PROGN (-6 (-664)) (-15 -2749 ((-3 $ "failed") $)) (-15 -1966 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-447)) (PROGN (-6 (-447)) (-15 -2749 ((-3 $ "failed") $)) (-15 -1966 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-971)) (PROGN (-6 (-971)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-655 |#1|)) |%noBranch|) (IF (|has| |#1| (-514)) (-15 -4205 ((-588 $) $)) |%noBranch|) (IF (|has| |#1| (-829 (-1085))) (-6 (-829 (-1085))) |%noBranch|) (IF (|has| |#1| (-338)) (PROGN (-6 (-1173 |#1|)) (-15 -1682 ($ $ $)) (-15 -3193 ($ $))) |%noBranch|) (IF (|has| |#1| (-278)) (-15 -1847 ($ $ $)) |%noBranch|))) (-1120)) (T -270)) -((-1562 (*1 *1 *2 *2) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1120)))) (-1656 (*1 *1 *2 *2) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1120)))) (-2000 (*1 *1 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1120)))) (-3717 (*1 *2 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1120)))) (-3728 (*1 *2 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1120)))) (-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-270 *3)))) (-2330 (*1 *1 *1 *1) (-12 (-4 *2 (-285 *2)) (-4 *2 (-1014)) (-4 *2 (-1120)) (-5 *1 (-270 *2)))) (-2330 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-270 *3))) (-4 *3 (-285 *3)) (-4 *3 (-1014)) (-4 *3 (-1120)) (-5 *1 (-270 *3)))) (-1661 (*1 *1 *2 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-25)) (-4 *2 (-1120)))) (-1661 (*1 *1 *1 *2) (-12 (-5 *1 (-270 *2)) (-4 *2 (-25)) (-4 *2 (-1120)))) (-2525 (*1 *1 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-21)) (-4 *2 (-1120)))) (-1449 (*1 *1 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-21)) (-4 *2 (-1120)))) (-1672 (*1 *1 *2 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-21)) (-4 *2 (-1120)))) (-1672 (*1 *1 *1 *2) (-12 (-5 *1 (-270 *2)) (-4 *2 (-21)) (-4 *2 (-1120)))) (-2749 (*1 *1 *1) (|partial| -12 (-5 *1 (-270 *2)) (-4 *2 (-664)) (-4 *2 (-1120)))) (-1966 (*1 *1 *1) (|partial| -12 (-5 *1 (-270 *2)) (-4 *2 (-664)) (-4 *2 (-1120)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-588 (-270 *3))) (-5 *1 (-270 *3)) (-4 *3 (-514)) (-4 *3 (-1120)))) (-1847 (*1 *1 *1 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-278)) (-4 *2 (-1120)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1026)) (-4 *2 (-1120)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1026)) (-4 *2 (-1120)))) (-1682 (*1 *1 *1 *1) (-3844 (-12 (-5 *1 (-270 *2)) (-4 *2 (-338)) (-4 *2 (-1120))) (-12 (-5 *1 (-270 *2)) (-4 *2 (-447)) (-4 *2 (-1120))))) (-3193 (*1 *1 *1) (-3844 (-12 (-5 *1 (-270 *2)) (-4 *2 (-338)) (-4 *2 (-1120))) (-12 (-5 *1 (-270 *2)) (-4 *2 (-447)) (-4 *2 (-1120)))))) -(-13 (-1120) (-10 -8 (-15 -1562 ($ |#1| |#1|)) (-15 -1656 ($ |#1| |#1|)) (-15 -2000 ($ $)) (-15 -3717 (|#1| $)) (-15 -3728 (|#1| $)) (-15 -3810 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-483 (-1085) |#1|)) (-6 (-483 (-1085) |#1|)) |%noBranch|) (IF (|has| |#1| (-1014)) (PROGN (-6 (-1014)) (-6 (-562 (-108))) (IF (|has| |#1| (-285 |#1|)) (PROGN (-15 -2330 ($ $ $)) (-15 -2330 ($ $ (-588 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1661 ($ |#1| $)) (-15 -1661 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2525 ($ $)) (-15 -1449 ($ $)) (-15 -1672 ($ |#1| $)) (-15 -1672 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1026)) (PROGN (-6 (-1026)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-664)) (PROGN (-6 (-664)) (-15 -2749 ((-3 $ "failed") $)) (-15 -1966 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-447)) (PROGN (-6 (-447)) (-15 -2749 ((-3 $ "failed") $)) (-15 -1966 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-971)) (PROGN (-6 (-971)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-655 |#1|)) |%noBranch|) (IF (|has| |#1| (-514)) (-15 -4205 ((-588 $) $)) |%noBranch|) (IF (|has| |#1| (-829 (-1085))) (-6 (-829 (-1085))) |%noBranch|) (IF (|has| |#1| (-338)) (PROGN (-6 (-1173 |#1|)) (-15 -1682 ($ $ $)) (-15 -3193 ($ $))) |%noBranch|) (IF (|has| |#1| (-278)) (-15 -1847 ($ $ $)) |%noBranch|))) -((-1419 (((-108) $ $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-1883 (($) NIL) (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-3883 (((-1171) $ |#1| |#1|) NIL (|has| $ (-6 -4239)))) (-2717 (((-108) $ (-708)) NIL)) (-2437 ((|#2| $ |#1| |#2|) NIL)) (-1213 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-4011 (((-3 |#2| "failed") |#1| $) NIL)) (-3367 (($) NIL T CONST)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))))) (-1700 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-3 |#2| "failed") |#1| $) NIL)) (-1424 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2153 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2411 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#2| $ |#1|) NIL)) (-2395 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) NIL)) (-3496 ((|#1| $) NIL (|has| |#1| (-784)))) (-4084 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2201 ((|#1| $) NIL (|has| |#1| (-784)))) (-2397 (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4239))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2562 (((-588 |#1|) $) NIL)) (-2241 (((-108) |#1| $) NIL)) (-1431 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-3365 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-2130 (((-588 |#1|) $) NIL)) (-2103 (((-108) |#1| $) NIL)) (-4174 (((-1032) $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2337 ((|#2| $) NIL (|has| |#1| (-784)))) (-2187 (((-3 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) "failed") (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL)) (-1972 (($ $ |#2|) NIL (|has| $ (-6 -4239)))) (-3295 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-3487 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1973 (((-588 |#2|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3546 (($) NIL) (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-4187 (((-708) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014)))) (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-563 (-498))))) (-2227 (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-2217 (((-792) $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-562 (-792))) (|has| |#2| (-562 (-792)))))) (-2501 (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-1381 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-271 |#1| |#2|) (-13 (-1097 |#1| |#2|) (-10 -7 (-6 -4238))) (-1014) (-1014)) (T -271)) -NIL -(-13 (-1097 |#1| |#2|) (-10 -7 (-6 -4238))) -((-3106 (((-287) (-1068) (-588 (-1068))) 16) (((-287) (-1068) (-1068)) 15) (((-287) (-588 (-1068))) 14) (((-287) (-1068)) 12))) -(((-272) (-10 -7 (-15 -3106 ((-287) (-1068))) (-15 -3106 ((-287) (-588 (-1068)))) (-15 -3106 ((-287) (-1068) (-1068))) (-15 -3106 ((-287) (-1068) (-588 (-1068)))))) (T -272)) -((-3106 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-1068))) (-5 *3 (-1068)) (-5 *2 (-287)) (-5 *1 (-272)))) (-3106 (*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-287)) (-5 *1 (-272)))) (-3106 (*1 *2 *3) (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-287)) (-5 *1 (-272)))) (-3106 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-287)) (-5 *1 (-272))))) -(-10 -7 (-15 -3106 ((-287) (-1068))) (-15 -3106 ((-287) (-588 (-1068)))) (-15 -3106 ((-287) (-1068) (-1068))) (-15 -3106 ((-287) (-1068) (-588 (-1068))))) -((-3810 ((|#2| (-1 |#2| |#1|) (-1068) (-561 |#1|)) 17))) -(((-273 |#1| |#2|) (-10 -7 (-15 -3810 (|#2| (-1 |#2| |#1|) (-1068) (-561 |#1|)))) (-278) (-1120)) (T -273)) -((-3810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1068)) (-5 *5 (-561 *6)) (-4 *6 (-278)) (-4 *2 (-1120)) (-5 *1 (-273 *6 *2))))) -(-10 -7 (-15 -3810 (|#2| (-1 |#2| |#1|) (-1068) (-561 |#1|)))) -((-3810 ((|#2| (-1 |#2| |#1|) (-561 |#1|)) 17))) -(((-274 |#1| |#2|) (-10 -7 (-15 -3810 (|#2| (-1 |#2| |#1|) (-561 |#1|)))) (-278) (-278)) (T -274)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-561 *5)) (-4 *5 (-278)) (-4 *2 (-278)) (-5 *1 (-274 *5 *2))))) -(-10 -7 (-15 -3810 (|#2| (-1 |#2| |#1|) (-561 |#1|)))) -((-3006 (((-108) (-202)) 10))) -(((-275 |#1| |#2|) (-10 -7 (-15 -3006 ((-108) (-202)))) (-202) (-202)) (T -275)) -((-3006 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-108)) (-5 *1 (-275 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -3006 ((-108) (-202)))) -((-3899 (((-1066 (-202)) (-291 (-202)) (-588 (-1085)) (-1009 (-777 (-202)))) 88)) (-2079 (((-1066 (-202)) (-1166 (-291 (-202))) (-588 (-1085)) (-1009 (-777 (-202)))) 103) (((-1066 (-202)) (-291 (-202)) (-588 (-1085)) (-1009 (-777 (-202)))) 58)) (-2484 (((-588 (-1068)) (-1066 (-202))) NIL)) (-3635 (((-588 (-202)) (-291 (-202)) (-1085) (-1009 (-777 (-202)))) 55)) (-3275 (((-588 (-202)) (-881 (-382 (-522))) (-1085) (-1009 (-777 (-202)))) 47)) (-2310 (((-588 (-1068)) (-588 (-202))) NIL)) (-4046 (((-202) (-1009 (-777 (-202)))) 23)) (-4009 (((-202) (-1009 (-777 (-202)))) 24)) (-1357 (((-108) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 51)) (-2743 (((-1068) (-202)) NIL))) -(((-276) (-10 -7 (-15 -4046 ((-202) (-1009 (-777 (-202))))) (-15 -4009 ((-202) (-1009 (-777 (-202))))) (-15 -1357 ((-108) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3635 ((-588 (-202)) (-291 (-202)) (-1085) (-1009 (-777 (-202))))) (-15 -3899 ((-1066 (-202)) (-291 (-202)) (-588 (-1085)) (-1009 (-777 (-202))))) (-15 -2079 ((-1066 (-202)) (-291 (-202)) (-588 (-1085)) (-1009 (-777 (-202))))) (-15 -2079 ((-1066 (-202)) (-1166 (-291 (-202))) (-588 (-1085)) (-1009 (-777 (-202))))) (-15 -3275 ((-588 (-202)) (-881 (-382 (-522))) (-1085) (-1009 (-777 (-202))))) (-15 -2743 ((-1068) (-202))) (-15 -2310 ((-588 (-1068)) (-588 (-202)))) (-15 -2484 ((-588 (-1068)) (-1066 (-202)))))) (T -276)) -((-2484 (*1 *2 *3) (-12 (-5 *3 (-1066 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-276)))) (-2310 (*1 *2 *3) (-12 (-5 *3 (-588 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-276)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1068)) (-5 *1 (-276)))) (-3275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-881 (-382 (-522)))) (-5 *4 (-1085)) (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-588 (-202))) (-5 *1 (-276)))) (-2079 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 (-291 (-202)))) (-5 *4 (-588 (-1085))) (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-1066 (-202))) (-5 *1 (-276)))) (-2079 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-291 (-202))) (-5 *4 (-588 (-1085))) (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-1066 (-202))) (-5 *1 (-276)))) (-3899 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-291 (-202))) (-5 *4 (-588 (-1085))) (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-1066 (-202))) (-5 *1 (-276)))) (-3635 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-291 (-202))) (-5 *4 (-1085)) (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-588 (-202))) (-5 *1 (-276)))) (-1357 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-108)) (-5 *1 (-276)))) (-4009 (*1 *2 *3) (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-276)))) (-4046 (*1 *2 *3) (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-276))))) -(-10 -7 (-15 -4046 ((-202) (-1009 (-777 (-202))))) (-15 -4009 ((-202) (-1009 (-777 (-202))))) (-15 -1357 ((-108) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3635 ((-588 (-202)) (-291 (-202)) (-1085) (-1009 (-777 (-202))))) (-15 -3899 ((-1066 (-202)) (-291 (-202)) (-588 (-1085)) (-1009 (-777 (-202))))) (-15 -2079 ((-1066 (-202)) (-291 (-202)) (-588 (-1085)) (-1009 (-777 (-202))))) (-15 -2079 ((-1066 (-202)) (-1166 (-291 (-202))) (-588 (-1085)) (-1009 (-777 (-202))))) (-15 -3275 ((-588 (-202)) (-881 (-382 (-522))) (-1085) (-1009 (-777 (-202))))) (-15 -2743 ((-1068) (-202))) (-15 -2310 ((-588 (-1068)) (-588 (-202)))) (-15 -2484 ((-588 (-1068)) (-1066 (-202))))) -((-1974 (((-588 (-561 $)) $) 28)) (-1847 (($ $ (-270 $)) 81) (($ $ (-588 (-270 $))) 121) (($ $ (-588 (-561 $)) (-588 $)) NIL)) (-3700 (((-3 (-561 $) "failed") $) 111)) (-1478 (((-561 $) $) 110)) (-2930 (($ $) 19) (($ (-588 $)) 55)) (-2896 (((-588 (-110)) $) 37)) (-1771 (((-110) (-110)) 91)) (-3077 (((-108) $) 129)) (-3810 (($ (-1 $ $) (-561 $)) 89)) (-3562 (((-3 (-561 $) "failed") $) 93)) (-3043 (($ (-110) $) 61) (($ (-110) (-588 $)) 99)) (-2935 (((-108) $ (-110)) 115) (((-108) $ (-1085)) 114)) (-4179 (((-708) $) 45)) (-2368 (((-108) $ $) 59) (((-108) $ (-1085)) 50)) (-2626 (((-108) $) 127)) (-2330 (($ $ (-561 $) $) NIL) (($ $ (-588 (-561 $)) (-588 $)) NIL) (($ $ (-588 (-270 $))) 119) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ $))) 84) (($ $ (-588 (-1085)) (-588 (-1 $ (-588 $)))) NIL) (($ $ (-1085) (-1 $ (-588 $))) 69) (($ $ (-1085) (-1 $ $)) 75) (($ $ (-588 (-110)) (-588 (-1 $ $))) 83) (($ $ (-588 (-110)) (-588 (-1 $ (-588 $)))) 85) (($ $ (-110) (-1 $ (-588 $))) 71) (($ $ (-110) (-1 $ $)) 77)) (-2683 (($ (-110) $) 62) (($ (-110) $ $) 63) (($ (-110) $ $ $) 64) (($ (-110) $ $ $ $) 65) (($ (-110) (-588 $)) 107)) (-3406 (($ $) 52) (($ $ $) 117)) (-3811 (($ $) 17) (($ (-588 $)) 54)) (-4082 (((-108) (-110)) 22))) -(((-277 |#1|) (-10 -8 (-15 -3077 ((-108) |#1|)) (-15 -2626 ((-108) |#1|)) (-15 -2330 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2330 (|#1| |#1| (-110) (-1 |#1| (-588 |#1|)))) (-15 -2330 (|#1| |#1| (-588 (-110)) (-588 (-1 |#1| (-588 |#1|))))) (-15 -2330 (|#1| |#1| (-588 (-110)) (-588 (-1 |#1| |#1|)))) (-15 -2330 (|#1| |#1| (-1085) (-1 |#1| |#1|))) (-15 -2330 (|#1| |#1| (-1085) (-1 |#1| (-588 |#1|)))) (-15 -2330 (|#1| |#1| (-588 (-1085)) (-588 (-1 |#1| (-588 |#1|))))) (-15 -2330 (|#1| |#1| (-588 (-1085)) (-588 (-1 |#1| |#1|)))) (-15 -2368 ((-108) |#1| (-1085))) (-15 -2368 ((-108) |#1| |#1|)) (-15 -3810 (|#1| (-1 |#1| |#1|) (-561 |#1|))) (-15 -3043 (|#1| (-110) (-588 |#1|))) (-15 -3043 (|#1| (-110) |#1|)) (-15 -2935 ((-108) |#1| (-1085))) (-15 -2935 ((-108) |#1| (-110))) (-15 -4082 ((-108) (-110))) (-15 -1771 ((-110) (-110))) (-15 -2896 ((-588 (-110)) |#1|)) (-15 -1974 ((-588 (-561 |#1|)) |#1|)) (-15 -3562 ((-3 (-561 |#1|) "failed") |#1|)) (-15 -4179 ((-708) |#1|)) (-15 -3406 (|#1| |#1| |#1|)) (-15 -3406 (|#1| |#1|)) (-15 -2930 (|#1| (-588 |#1|))) (-15 -2930 (|#1| |#1|)) (-15 -3811 (|#1| (-588 |#1|))) (-15 -3811 (|#1| |#1|)) (-15 -1847 (|#1| |#1| (-588 (-561 |#1|)) (-588 |#1|))) (-15 -1847 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -1847 (|#1| |#1| (-270 |#1|))) (-15 -2683 (|#1| (-110) (-588 |#1|))) (-15 -2683 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2683 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2683 (|#1| (-110) |#1| |#1|)) (-15 -2683 (|#1| (-110) |#1|)) (-15 -2330 (|#1| |#1| (-588 |#1|) (-588 |#1|))) (-15 -2330 (|#1| |#1| |#1| |#1|)) (-15 -2330 (|#1| |#1| (-270 |#1|))) (-15 -2330 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -2330 (|#1| |#1| (-588 (-561 |#1|)) (-588 |#1|))) (-15 -2330 (|#1| |#1| (-561 |#1|) |#1|)) (-15 -1478 ((-561 |#1|) |#1|)) (-15 -3700 ((-3 (-561 |#1|) "failed") |#1|))) (-278)) (T -277)) -((-1771 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-277 *3)) (-4 *3 (-278)))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-277 *4)) (-4 *4 (-278))))) -(-10 -8 (-15 -3077 ((-108) |#1|)) (-15 -2626 ((-108) |#1|)) (-15 -2330 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2330 (|#1| |#1| (-110) (-1 |#1| (-588 |#1|)))) (-15 -2330 (|#1| |#1| (-588 (-110)) (-588 (-1 |#1| (-588 |#1|))))) (-15 -2330 (|#1| |#1| (-588 (-110)) (-588 (-1 |#1| |#1|)))) (-15 -2330 (|#1| |#1| (-1085) (-1 |#1| |#1|))) (-15 -2330 (|#1| |#1| (-1085) (-1 |#1| (-588 |#1|)))) (-15 -2330 (|#1| |#1| (-588 (-1085)) (-588 (-1 |#1| (-588 |#1|))))) (-15 -2330 (|#1| |#1| (-588 (-1085)) (-588 (-1 |#1| |#1|)))) (-15 -2368 ((-108) |#1| (-1085))) (-15 -2368 ((-108) |#1| |#1|)) (-15 -3810 (|#1| (-1 |#1| |#1|) (-561 |#1|))) (-15 -3043 (|#1| (-110) (-588 |#1|))) (-15 -3043 (|#1| (-110) |#1|)) (-15 -2935 ((-108) |#1| (-1085))) (-15 -2935 ((-108) |#1| (-110))) (-15 -4082 ((-108) (-110))) (-15 -1771 ((-110) (-110))) (-15 -2896 ((-588 (-110)) |#1|)) (-15 -1974 ((-588 (-561 |#1|)) |#1|)) (-15 -3562 ((-3 (-561 |#1|) "failed") |#1|)) (-15 -4179 ((-708) |#1|)) (-15 -3406 (|#1| |#1| |#1|)) (-15 -3406 (|#1| |#1|)) (-15 -2930 (|#1| (-588 |#1|))) (-15 -2930 (|#1| |#1|)) (-15 -3811 (|#1| (-588 |#1|))) (-15 -3811 (|#1| |#1|)) (-15 -1847 (|#1| |#1| (-588 (-561 |#1|)) (-588 |#1|))) (-15 -1847 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -1847 (|#1| |#1| (-270 |#1|))) (-15 -2683 (|#1| (-110) (-588 |#1|))) (-15 -2683 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2683 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2683 (|#1| (-110) |#1| |#1|)) (-15 -2683 (|#1| (-110) |#1|)) (-15 -2330 (|#1| |#1| (-588 |#1|) (-588 |#1|))) (-15 -2330 (|#1| |#1| |#1| |#1|)) (-15 -2330 (|#1| |#1| (-270 |#1|))) (-15 -2330 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -2330 (|#1| |#1| (-588 (-561 |#1|)) (-588 |#1|))) (-15 -2330 (|#1| |#1| (-561 |#1|) |#1|)) (-15 -1478 ((-561 |#1|) |#1|)) (-15 -3700 ((-3 (-561 |#1|) "failed") |#1|))) -((-1419 (((-108) $ $) 7)) (-1974 (((-588 (-561 $)) $) 44)) (-1847 (($ $ (-270 $)) 56) (($ $ (-588 (-270 $))) 55) (($ $ (-588 (-561 $)) (-588 $)) 54)) (-3700 (((-3 (-561 $) "failed") $) 69)) (-1478 (((-561 $) $) 68)) (-2930 (($ $) 51) (($ (-588 $)) 50)) (-2896 (((-588 (-110)) $) 43)) (-1771 (((-110) (-110)) 42)) (-3077 (((-108) $) 22 (|has| $ (-962 (-522))))) (-4185 (((-1081 $) (-561 $)) 25 (|has| $ (-971)))) (-1308 (($ $ $) 13)) (-2524 (($ $ $) 14)) (-3810 (($ (-1 $ $) (-561 $)) 36)) (-3562 (((-3 (-561 $) "failed") $) 46)) (-2311 (((-1068) $) 9)) (-1249 (((-588 (-561 $)) $) 45)) (-3043 (($ (-110) $) 38) (($ (-110) (-588 $)) 37)) (-2935 (((-108) $ (-110)) 40) (((-108) $ (-1085)) 39)) (-4179 (((-708) $) 47)) (-4174 (((-1032) $) 10)) (-2368 (((-108) $ $) 35) (((-108) $ (-1085)) 34)) (-2626 (((-108) $) 23 (|has| $ (-962 (-522))))) (-2330 (($ $ (-561 $) $) 67) (($ $ (-588 (-561 $)) (-588 $)) 66) (($ $ (-588 (-270 $))) 65) (($ $ (-270 $)) 64) (($ $ $ $) 63) (($ $ (-588 $) (-588 $)) 62) (($ $ (-588 (-1085)) (-588 (-1 $ $))) 33) (($ $ (-588 (-1085)) (-588 (-1 $ (-588 $)))) 32) (($ $ (-1085) (-1 $ (-588 $))) 31) (($ $ (-1085) (-1 $ $)) 30) (($ $ (-588 (-110)) (-588 (-1 $ $))) 29) (($ $ (-588 (-110)) (-588 (-1 $ (-588 $)))) 28) (($ $ (-110) (-1 $ (-588 $))) 27) (($ $ (-110) (-1 $ $)) 26)) (-2683 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-588 $)) 57)) (-3406 (($ $) 49) (($ $ $) 48)) (-1579 (($ $) 24 (|has| $ (-971)))) (-2217 (((-792) $) 11) (($ (-561 $)) 70)) (-3811 (($ $) 53) (($ (-588 $)) 52)) (-4082 (((-108) (-110)) 41)) (-1623 (((-108) $ $) 16)) (-1597 (((-108) $ $) 17)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 15)) (-1587 (((-108) $ $) 18))) -(((-278) (-1197)) (T -278)) -((-2683 (*1 *1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-110)))) (-2683 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-110)))) (-2683 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-110)))) (-2683 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-110)))) (-2683 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-588 *1)) (-4 *1 (-278)))) (-1847 (*1 *1 *1 *2) (-12 (-5 *2 (-270 *1)) (-4 *1 (-278)))) (-1847 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-270 *1))) (-4 *1 (-278)))) (-1847 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-561 *1))) (-5 *3 (-588 *1)) (-4 *1 (-278)))) (-3811 (*1 *1 *1) (-4 *1 (-278))) (-3811 (*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-278)))) (-2930 (*1 *1 *1) (-4 *1 (-278))) (-2930 (*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-278)))) (-3406 (*1 *1 *1) (-4 *1 (-278))) (-3406 (*1 *1 *1 *1) (-4 *1 (-278))) (-4179 (*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-708)))) (-3562 (*1 *2 *1) (|partial| -12 (-5 *2 (-561 *1)) (-4 *1 (-278)))) (-1249 (*1 *2 *1) (-12 (-5 *2 (-588 (-561 *1))) (-4 *1 (-278)))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-588 (-561 *1))) (-4 *1 (-278)))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-588 (-110))))) (-1771 (*1 *2 *2) (-12 (-4 *1 (-278)) (-5 *2 (-110)))) (-4082 (*1 *2 *3) (-12 (-4 *1 (-278)) (-5 *3 (-110)) (-5 *2 (-108)))) (-2935 (*1 *2 *1 *3) (-12 (-4 *1 (-278)) (-5 *3 (-110)) (-5 *2 (-108)))) (-2935 (*1 *2 *1 *3) (-12 (-4 *1 (-278)) (-5 *3 (-1085)) (-5 *2 (-108)))) (-3043 (*1 *1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-110)))) (-3043 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-588 *1)) (-4 *1 (-278)))) (-3810 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-561 *1)) (-4 *1 (-278)))) (-2368 (*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-108)))) (-2368 (*1 *2 *1 *3) (-12 (-4 *1 (-278)) (-5 *3 (-1085)) (-5 *2 (-108)))) (-2330 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-588 (-1 *1 *1))) (-4 *1 (-278)))) (-2330 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-588 (-1 *1 (-588 *1)))) (-4 *1 (-278)))) (-2330 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1 *1 (-588 *1))) (-4 *1 (-278)))) (-2330 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1 *1 *1)) (-4 *1 (-278)))) (-2330 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-110))) (-5 *3 (-588 (-1 *1 *1))) (-4 *1 (-278)))) (-2330 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-110))) (-5 *3 (-588 (-1 *1 (-588 *1)))) (-4 *1 (-278)))) (-2330 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-588 *1))) (-4 *1 (-278)))) (-2330 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-278)))) (-4185 (*1 *2 *3) (-12 (-5 *3 (-561 *1)) (-4 *1 (-971)) (-4 *1 (-278)) (-5 *2 (-1081 *1)))) (-1579 (*1 *1 *1) (-12 (-4 *1 (-971)) (-4 *1 (-278)))) (-2626 (*1 *2 *1) (-12 (-4 *1 (-962 (-522))) (-4 *1 (-278)) (-5 *2 (-108)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-962 (-522))) (-4 *1 (-278)) (-5 *2 (-108))))) -(-13 (-784) (-962 (-561 $)) (-483 (-561 $) $) (-285 $) (-10 -8 (-15 -2683 ($ (-110) $)) (-15 -2683 ($ (-110) $ $)) (-15 -2683 ($ (-110) $ $ $)) (-15 -2683 ($ (-110) $ $ $ $)) (-15 -2683 ($ (-110) (-588 $))) (-15 -1847 ($ $ (-270 $))) (-15 -1847 ($ $ (-588 (-270 $)))) (-15 -1847 ($ $ (-588 (-561 $)) (-588 $))) (-15 -3811 ($ $)) (-15 -3811 ($ (-588 $))) (-15 -2930 ($ $)) (-15 -2930 ($ (-588 $))) (-15 -3406 ($ $)) (-15 -3406 ($ $ $)) (-15 -4179 ((-708) $)) (-15 -3562 ((-3 (-561 $) "failed") $)) (-15 -1249 ((-588 (-561 $)) $)) (-15 -1974 ((-588 (-561 $)) $)) (-15 -2896 ((-588 (-110)) $)) (-15 -1771 ((-110) (-110))) (-15 -4082 ((-108) (-110))) (-15 -2935 ((-108) $ (-110))) (-15 -2935 ((-108) $ (-1085))) (-15 -3043 ($ (-110) $)) (-15 -3043 ($ (-110) (-588 $))) (-15 -3810 ($ (-1 $ $) (-561 $))) (-15 -2368 ((-108) $ $)) (-15 -2368 ((-108) $ (-1085))) (-15 -2330 ($ $ (-588 (-1085)) (-588 (-1 $ $)))) (-15 -2330 ($ $ (-588 (-1085)) (-588 (-1 $ (-588 $))))) (-15 -2330 ($ $ (-1085) (-1 $ (-588 $)))) (-15 -2330 ($ $ (-1085) (-1 $ $))) (-15 -2330 ($ $ (-588 (-110)) (-588 (-1 $ $)))) (-15 -2330 ($ $ (-588 (-110)) (-588 (-1 $ (-588 $))))) (-15 -2330 ($ $ (-110) (-1 $ (-588 $)))) (-15 -2330 ($ $ (-110) (-1 $ $))) (IF (|has| $ (-971)) (PROGN (-15 -4185 ((-1081 $) (-561 $))) (-15 -1579 ($ $))) |%noBranch|) (IF (|has| $ (-962 (-522))) (PROGN (-15 -2626 ((-108) $)) (-15 -3077 ((-108) $))) |%noBranch|))) -(((-97) . T) ((-562 (-792)) . T) ((-285 $) . T) ((-483 (-561 $) $) . T) ((-483 $ $) . T) ((-784) . T) ((-962 (-561 $)) . T) ((-1014) . T)) -((-4119 (((-588 |#1|) (-588 |#1|)) 10))) -(((-279 |#1|) (-10 -7 (-15 -4119 ((-588 |#1|) (-588 |#1|)))) (-782)) (T -279)) -((-4119 (*1 *2 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-782)) (-5 *1 (-279 *3))))) -(-10 -7 (-15 -4119 ((-588 |#1|) (-588 |#1|)))) -((-3810 (((-628 |#2|) (-1 |#2| |#1|) (-628 |#1|)) 15))) -(((-280 |#1| |#2|) (-10 -7 (-15 -3810 ((-628 |#2|) (-1 |#2| |#1|) (-628 |#1|)))) (-971) (-971)) (T -280)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-628 *5)) (-4 *5 (-971)) (-4 *6 (-971)) (-5 *2 (-628 *6)) (-5 *1 (-280 *5 *6))))) -(-10 -7 (-15 -3810 ((-628 |#2|) (-1 |#2| |#1|) (-628 |#1|)))) -((-4010 (((-1166 (-291 (-354))) (-1166 (-291 (-202)))) 105)) (-2577 (((-1009 (-777 (-202))) (-1009 (-777 (-354)))) 39)) (-2484 (((-588 (-1068)) (-1066 (-202))) 87)) (-2329 (((-291 (-354)) (-881 (-202))) 49)) (-3154 (((-202) (-881 (-202))) 45)) (-1337 (((-1068) (-354)) 167)) (-3475 (((-777 (-202)) (-777 (-354))) 33)) (-2516 (((-2 (|:| |additions| (-522)) (|:| |multiplications| (-522)) (|:| |exponentiations| (-522)) (|:| |functionCalls| (-522))) (-1166 (-291 (-202)))) 142)) (-2203 (((-960) (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960)))) 180) (((-960) (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068))))) 178)) (-2149 (((-628 (-202)) (-588 (-202)) (-708)) 13)) (-2973 (((-1166 (-637)) (-588 (-202))) 94)) (-2310 (((-588 (-1068)) (-588 (-202))) 74)) (-4118 (((-3 (-291 (-202)) "failed") (-291 (-202))) 120)) (-3006 (((-108) (-202) (-1009 (-777 (-202)))) 109)) (-1728 (((-960) (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354)))) 198)) (-4046 (((-202) (-1009 (-777 (-202)))) 107)) (-4009 (((-202) (-1009 (-777 (-202)))) 108)) (-2297 (((-202) (-382 (-522))) 26)) (-4054 (((-1068) (-354)) 72)) (-1937 (((-202) (-354)) 17)) (-2530 (((-354) (-1166 (-291 (-202)))) 153)) (-3118 (((-291 (-202)) (-291 (-354))) 23)) (-1940 (((-382 (-522)) (-291 (-202))) 52)) (-3274 (((-291 (-382 (-522))) (-291 (-202))) 68)) (-1690 (((-291 (-354)) (-291 (-202))) 98)) (-2676 (((-202) (-291 (-202))) 53)) (-3678 (((-588 (-202)) (-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) 63)) (-1859 (((-1009 (-777 (-202))) (-1009 (-777 (-202)))) 60)) (-2743 (((-1068) (-202)) 71)) (-2266 (((-637) (-202)) 90)) (-3433 (((-382 (-522)) (-202)) 54)) (-1634 (((-291 (-354)) (-202)) 48)) (-3873 (((-588 (-1009 (-777 (-202)))) (-588 (-1009 (-777 (-354))))) 42)) (-4170 (((-960) (-588 (-960))) 163) (((-960) (-960) (-960)) 160)) (-2588 (((-960) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194))) -(((-281) (-10 -7 (-15 -1937 ((-202) (-354))) (-15 -3118 ((-291 (-202)) (-291 (-354)))) (-15 -3475 ((-777 (-202)) (-777 (-354)))) (-15 -2577 ((-1009 (-777 (-202))) (-1009 (-777 (-354))))) (-15 -3873 ((-588 (-1009 (-777 (-202)))) (-588 (-1009 (-777 (-354)))))) (-15 -3433 ((-382 (-522)) (-202))) (-15 -1940 ((-382 (-522)) (-291 (-202)))) (-15 -2676 ((-202) (-291 (-202)))) (-15 -4118 ((-3 (-291 (-202)) "failed") (-291 (-202)))) (-15 -2530 ((-354) (-1166 (-291 (-202))))) (-15 -2516 ((-2 (|:| |additions| (-522)) (|:| |multiplications| (-522)) (|:| |exponentiations| (-522)) (|:| |functionCalls| (-522))) (-1166 (-291 (-202))))) (-15 -3274 ((-291 (-382 (-522))) (-291 (-202)))) (-15 -1859 ((-1009 (-777 (-202))) (-1009 (-777 (-202))))) (-15 -3678 ((-588 (-202)) (-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))))) (-15 -2266 ((-637) (-202))) (-15 -2973 ((-1166 (-637)) (-588 (-202)))) (-15 -1690 ((-291 (-354)) (-291 (-202)))) (-15 -4010 ((-1166 (-291 (-354))) (-1166 (-291 (-202))))) (-15 -3006 ((-108) (-202) (-1009 (-777 (-202))))) (-15 -2743 ((-1068) (-202))) (-15 -4054 ((-1068) (-354))) (-15 -2310 ((-588 (-1068)) (-588 (-202)))) (-15 -2484 ((-588 (-1068)) (-1066 (-202)))) (-15 -4046 ((-202) (-1009 (-777 (-202))))) (-15 -4009 ((-202) (-1009 (-777 (-202))))) (-15 -4170 ((-960) (-960) (-960))) (-15 -4170 ((-960) (-588 (-960)))) (-15 -1337 ((-1068) (-354))) (-15 -2203 ((-960) (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068)))))) (-15 -2203 ((-960) (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960))))) (-15 -2588 ((-960) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1728 ((-960) (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354))))) (-15 -2329 ((-291 (-354)) (-881 (-202)))) (-15 -3154 ((-202) (-881 (-202)))) (-15 -1634 ((-291 (-354)) (-202))) (-15 -2297 ((-202) (-382 (-522)))) (-15 -2149 ((-628 (-202)) (-588 (-202)) (-708))))) (T -281)) -((-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-202))) (-5 *4 (-708)) (-5 *2 (-628 (-202))) (-5 *1 (-281)))) (-2297 (*1 *2 *3) (-12 (-5 *3 (-382 (-522))) (-5 *2 (-202)) (-5 *1 (-281)))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-291 (-354))) (-5 *1 (-281)))) (-3154 (*1 *2 *3) (-12 (-5 *3 (-881 (-202))) (-5 *2 (-202)) (-5 *1 (-281)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-881 (-202))) (-5 *2 (-291 (-354))) (-5 *1 (-281)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354)))) (-5 *2 (-960)) (-5 *1 (-281)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-960)) (-5 *1 (-281)))) (-2203 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960)))) (-5 *2 (-960)) (-5 *1 (-281)))) (-2203 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068))))) (-5 *2 (-960)) (-5 *1 (-281)))) (-1337 (*1 *2 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1068)) (-5 *1 (-281)))) (-4170 (*1 *2 *3) (-12 (-5 *3 (-588 (-960))) (-5 *2 (-960)) (-5 *1 (-281)))) (-4170 (*1 *2 *2 *2) (-12 (-5 *2 (-960)) (-5 *1 (-281)))) (-4009 (*1 *2 *3) (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-281)))) (-4046 (*1 *2 *3) (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-281)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-1066 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-281)))) (-2310 (*1 *2 *3) (-12 (-5 *3 (-588 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-281)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1068)) (-5 *1 (-281)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1068)) (-5 *1 (-281)))) (-3006 (*1 *2 *3 *4) (-12 (-5 *4 (-1009 (-777 (-202)))) (-5 *3 (-202)) (-5 *2 (-108)) (-5 *1 (-281)))) (-4010 (*1 *2 *3) (-12 (-5 *3 (-1166 (-291 (-202)))) (-5 *2 (-1166 (-291 (-354)))) (-5 *1 (-281)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-291 (-202))) (-5 *2 (-291 (-354))) (-5 *1 (-281)))) (-2973 (*1 *2 *3) (-12 (-5 *3 (-588 (-202))) (-5 *2 (-1166 (-637))) (-5 *1 (-281)))) (-2266 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-637)) (-5 *1 (-281)))) (-3678 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) (-5 *2 (-588 (-202))) (-5 *1 (-281)))) (-1859 (*1 *2 *2) (-12 (-5 *2 (-1009 (-777 (-202)))) (-5 *1 (-281)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-291 (-202))) (-5 *2 (-291 (-382 (-522)))) (-5 *1 (-281)))) (-2516 (*1 *2 *3) (-12 (-5 *3 (-1166 (-291 (-202)))) (-5 *2 (-2 (|:| |additions| (-522)) (|:| |multiplications| (-522)) (|:| |exponentiations| (-522)) (|:| |functionCalls| (-522)))) (-5 *1 (-281)))) (-2530 (*1 *2 *3) (-12 (-5 *3 (-1166 (-291 (-202)))) (-5 *2 (-354)) (-5 *1 (-281)))) (-4118 (*1 *2 *2) (|partial| -12 (-5 *2 (-291 (-202))) (-5 *1 (-281)))) (-2676 (*1 *2 *3) (-12 (-5 *3 (-291 (-202))) (-5 *2 (-202)) (-5 *1 (-281)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-291 (-202))) (-5 *2 (-382 (-522))) (-5 *1 (-281)))) (-3433 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-382 (-522))) (-5 *1 (-281)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-588 (-1009 (-777 (-354))))) (-5 *2 (-588 (-1009 (-777 (-202))))) (-5 *1 (-281)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-1009 (-777 (-354)))) (-5 *2 (-1009 (-777 (-202)))) (-5 *1 (-281)))) (-3475 (*1 *2 *3) (-12 (-5 *3 (-777 (-354))) (-5 *2 (-777 (-202))) (-5 *1 (-281)))) (-3118 (*1 *2 *3) (-12 (-5 *3 (-291 (-354))) (-5 *2 (-291 (-202))) (-5 *1 (-281)))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-354)) (-5 *2 (-202)) (-5 *1 (-281))))) -(-10 -7 (-15 -1937 ((-202) (-354))) (-15 -3118 ((-291 (-202)) (-291 (-354)))) (-15 -3475 ((-777 (-202)) (-777 (-354)))) (-15 -2577 ((-1009 (-777 (-202))) (-1009 (-777 (-354))))) (-15 -3873 ((-588 (-1009 (-777 (-202)))) (-588 (-1009 (-777 (-354)))))) (-15 -3433 ((-382 (-522)) (-202))) (-15 -1940 ((-382 (-522)) (-291 (-202)))) (-15 -2676 ((-202) (-291 (-202)))) (-15 -4118 ((-3 (-291 (-202)) "failed") (-291 (-202)))) (-15 -2530 ((-354) (-1166 (-291 (-202))))) (-15 -2516 ((-2 (|:| |additions| (-522)) (|:| |multiplications| (-522)) (|:| |exponentiations| (-522)) (|:| |functionCalls| (-522))) (-1166 (-291 (-202))))) (-15 -3274 ((-291 (-382 (-522))) (-291 (-202)))) (-15 -1859 ((-1009 (-777 (-202))) (-1009 (-777 (-202))))) (-15 -3678 ((-588 (-202)) (-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))))) (-15 -2266 ((-637) (-202))) (-15 -2973 ((-1166 (-637)) (-588 (-202)))) (-15 -1690 ((-291 (-354)) (-291 (-202)))) (-15 -4010 ((-1166 (-291 (-354))) (-1166 (-291 (-202))))) (-15 -3006 ((-108) (-202) (-1009 (-777 (-202))))) (-15 -2743 ((-1068) (-202))) (-15 -4054 ((-1068) (-354))) (-15 -2310 ((-588 (-1068)) (-588 (-202)))) (-15 -2484 ((-588 (-1068)) (-1066 (-202)))) (-15 -4046 ((-202) (-1009 (-777 (-202))))) (-15 -4009 ((-202) (-1009 (-777 (-202))))) (-15 -4170 ((-960) (-960) (-960))) (-15 -4170 ((-960) (-588 (-960)))) (-15 -1337 ((-1068) (-354))) (-15 -2203 ((-960) (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068)))))) (-15 -2203 ((-960) (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960))))) (-15 -2588 ((-960) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1728 ((-960) (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354))))) (-15 -2329 ((-291 (-354)) (-881 (-202)))) (-15 -3154 ((-202) (-881 (-202)))) (-15 -1634 ((-291 (-354)) (-202))) (-15 -2297 ((-202) (-382 (-522)))) (-15 -2149 ((-628 (-202)) (-588 (-202)) (-708)))) -((-2805 (((-108) $ $) 11)) (-2333 (($ $ $) 15)) (-2303 (($ $ $) 14)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 44)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 53)) (-2308 (($ $ $) 21) (($ (-588 $)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-2276 (((-3 $ "failed") $ $) 17)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 46))) -(((-282 |#1|) (-10 -8 (-15 -4180 ((-3 (-588 |#1|) "failed") (-588 |#1|) |#1|)) (-15 -1915 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1915 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1368 |#1|)) |#1| |#1|)) (-15 -2333 (|#1| |#1| |#1|)) (-15 -2303 (|#1| |#1| |#1|)) (-15 -2805 ((-108) |#1| |#1|)) (-15 -3716 ((-3 (-588 |#1|) "failed") (-588 |#1|) |#1|)) (-15 -2135 ((-2 (|:| -3112 (-588 |#1|)) (|:| -1368 |#1|)) (-588 |#1|))) (-15 -2308 (|#1| (-588 |#1|))) (-15 -2308 (|#1| |#1| |#1|)) (-15 -2276 ((-3 |#1| "failed") |#1| |#1|))) (-283)) (T -282)) -NIL -(-10 -8 (-15 -4180 ((-3 (-588 |#1|) "failed") (-588 |#1|) |#1|)) (-15 -1915 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1915 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1368 |#1|)) |#1| |#1|)) (-15 -2333 (|#1| |#1| |#1|)) (-15 -2303 (|#1| |#1| |#1|)) (-15 -2805 ((-108) |#1| |#1|)) (-15 -3716 ((-3 (-588 |#1|) "failed") (-588 |#1|) |#1|)) (-15 -2135 ((-2 (|:| -3112 (-588 |#1|)) (|:| -1368 |#1|)) (-588 |#1|))) (-15 -2308 (|#1| (-588 |#1|))) (-15 -2308 (|#1| |#1| |#1|)) (-15 -2276 ((-3 |#1| "failed") |#1| |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2298 (($ $) 40)) (-3007 (((-108) $) 38)) (-2265 (((-3 $ "failed") $ $) 19)) (-2805 (((-108) $ $) 59)) (-3367 (($) 17 T CONST)) (-2333 (($ $ $) 55)) (-3920 (((-3 $ "failed") $) 34)) (-2303 (($ $ $) 56)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 51)) (-2859 (((-108) $) 31)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-2267 (($ $ $) 46) (($ (-588 $)) 45)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2308 (($ $ $) 48) (($ (-588 $)) 47)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2276 (((-3 $ "failed") $ $) 42)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-4031 (((-708) $) 58)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 57)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 43)) (-2742 (((-708)) 29)) (-1407 (((-108) $ $) 39)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-283) (-1197)) (T -283)) -((-2805 (*1 *2 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-108)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-708)))) (-4164 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3450 *1) (|:| -4002 *1))) (-4 *1 (-283)))) (-2303 (*1 *1 *1 *1) (-4 *1 (-283))) (-2333 (*1 *1 *1 *1) (-4 *1 (-283))) (-1915 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1368 *1))) (-4 *1 (-283)))) (-1915 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-283)))) (-4180 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-588 *1)) (-4 *1 (-283))))) -(-13 (-849) (-10 -8 (-15 -2805 ((-108) $ $)) (-15 -4031 ((-708) $)) (-15 -4164 ((-2 (|:| -3450 $) (|:| -4002 $)) $ $)) (-15 -2303 ($ $ $)) (-15 -2333 ($ $ $)) (-15 -1915 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $)) (-15 -1915 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -4180 ((-3 (-588 $) "failed") (-588 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-266) . T) ((-426) . T) ((-514) . T) ((-590 $) . T) ((-655 $) . T) ((-664) . T) ((-849) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-2330 (($ $ (-588 |#2|) (-588 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-270 |#2|)) 11) (($ $ (-588 (-270 |#2|))) NIL))) -(((-284 |#1| |#2|) (-10 -8 (-15 -2330 (|#1| |#1| (-588 (-270 |#2|)))) (-15 -2330 (|#1| |#1| (-270 |#2|))) (-15 -2330 (|#1| |#1| |#2| |#2|)) (-15 -2330 (|#1| |#1| (-588 |#2|) (-588 |#2|)))) (-285 |#2|) (-1014)) (T -284)) -NIL -(-10 -8 (-15 -2330 (|#1| |#1| (-588 (-270 |#2|)))) (-15 -2330 (|#1| |#1| (-270 |#2|))) (-15 -2330 (|#1| |#1| |#2| |#2|)) (-15 -2330 (|#1| |#1| (-588 |#2|) (-588 |#2|)))) -((-2330 (($ $ (-588 |#1|) (-588 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-270 |#1|)) 11) (($ $ (-588 (-270 |#1|))) 10))) -(((-285 |#1|) (-1197) (-1014)) (T -285)) -((-2330 (*1 *1 *1 *2) (-12 (-5 *2 (-270 *3)) (-4 *1 (-285 *3)) (-4 *3 (-1014)))) (-2330 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-270 *3))) (-4 *1 (-285 *3)) (-4 *3 (-1014))))) -(-13 (-483 |t#1| |t#1|) (-10 -8 (-15 -2330 ($ $ (-270 |t#1|))) (-15 -2330 ($ $ (-588 (-270 |t#1|)))))) -(((-483 |#1| |#1|) . T)) -((-2330 ((|#1| (-1 |#1| (-522)) (-1087 (-382 (-522)))) 24))) -(((-286 |#1|) (-10 -7 (-15 -2330 (|#1| (-1 |#1| (-522)) (-1087 (-382 (-522)))))) (-37 (-382 (-522)))) (T -286)) -((-2330 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-522))) (-5 *4 (-1087 (-382 (-522)))) (-5 *1 (-286 *2)) (-4 *2 (-37 (-382 (-522))))))) -(-10 -7 (-15 -2330 (|#1| (-1 |#1| (-522)) (-1087 (-382 (-522)))))) -((-1419 (((-108) $ $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 7)) (-1562 (((-108) $ $) 9))) -(((-287) (-1014)) (T -287)) -NIL -(-1014) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 62)) (-3049 (((-1152 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-283)))) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-838)))) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-838)))) (-2805 (((-108) $ $) NIL)) (-3355 (((-522) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-757)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-1152 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1085) "failed") $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-962 (-1085)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-962 (-522)))) (((-3 (-522) "failed") $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-962 (-522)))) (((-3 (-1151 |#2| |#3| |#4|) "failed") $) 24)) (-1478 (((-1152 |#1| |#2| |#3| |#4|) $) NIL) (((-1085) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-962 (-1085)))) (((-382 (-522)) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-962 (-522)))) (((-522) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-962 (-522)))) (((-1151 |#2| |#3| |#4|) $) NIL)) (-2333 (($ $ $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-584 (-522)))) (((-2 (|:| -2149 (-628 (-1152 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1166 (-1152 |#1| |#2| |#3| |#4|)))) (-628 $) (-1166 $)) NIL) (((-628 (-1152 |#1| |#2| |#3| |#4|)) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3344 (($) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-507)))) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-3603 (((-108) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-757)))) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-815 (-354))))) (-2859 (((-108) $) NIL)) (-1558 (($ $) NIL)) (-2947 (((-1152 |#1| |#2| |#3| |#4|) $) 21)) (-4208 (((-3 $ "failed") $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-1061)))) (-3740 (((-108) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-757)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1308 (($ $ $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-784)))) (-2524 (($ $ $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-784)))) (-3810 (($ (-1 (-1152 |#1| |#2| |#3| |#4|) (-1152 |#1| |#2| |#3| |#4|)) $) NIL)) (-3134 (((-3 (-777 |#2|) "failed") $) 76)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-3937 (($) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-1061)) CONST)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4194 (($ $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-283)))) (-3592 (((-1152 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-507)))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-838)))) (-2006 (((-393 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2330 (($ $ (-588 (-1152 |#1| |#2| |#3| |#4|)) (-588 (-1152 |#1| |#2| |#3| |#4|))) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-285 (-1152 |#1| |#2| |#3| |#4|)))) (($ $ (-1152 |#1| |#2| |#3| |#4|) (-1152 |#1| |#2| |#3| |#4|)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-285 (-1152 |#1| |#2| |#3| |#4|)))) (($ $ (-270 (-1152 |#1| |#2| |#3| |#4|))) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-285 (-1152 |#1| |#2| |#3| |#4|)))) (($ $ (-588 (-270 (-1152 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-285 (-1152 |#1| |#2| |#3| |#4|)))) (($ $ (-588 (-1085)) (-588 (-1152 |#1| |#2| |#3| |#4|))) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-483 (-1085) (-1152 |#1| |#2| |#3| |#4|)))) (($ $ (-1085) (-1152 |#1| |#2| |#3| |#4|)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-483 (-1085) (-1152 |#1| |#2| |#3| |#4|))))) (-4031 (((-708) $) NIL)) (-2683 (($ $ (-1152 |#1| |#2| |#3| |#4|)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-262 (-1152 |#1| |#2| |#3| |#4|) (-1152 |#1| |#2| |#3| |#4|))))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-2731 (($ $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-210))) (($ $ (-708)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-210))) (($ $ (-1085)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-829 (-1085)))) (($ $ (-1 (-1152 |#1| |#2| |#3| |#4|) (-1152 |#1| |#2| |#3| |#4|)) (-708)) NIL) (($ $ (-1 (-1152 |#1| |#2| |#3| |#4|) (-1152 |#1| |#2| |#3| |#4|))) NIL)) (-2762 (($ $) NIL)) (-2959 (((-1152 |#1| |#2| |#3| |#4|) $) 17)) (-3873 (((-821 (-522)) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-563 (-821 (-354))))) (((-498) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-563 (-498)))) (((-354) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-947))) (((-202) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-947)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| (-1152 |#1| |#2| |#3| |#4|) (-838))))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ (-1152 |#1| |#2| |#3| |#4|)) 28) (($ (-1085)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-962 (-1085)))) (($ (-1151 |#2| |#3| |#4|)) 36)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| (-1152 |#1| |#2| |#3| |#4|) (-838))) (|has| (-1152 |#1| |#2| |#3| |#4|) (-133))))) (-2742 (((-708)) NIL)) (-1379 (((-1152 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-507)))) (-1407 (((-108) $ $) NIL)) (-4126 (($ $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-757)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) 41 T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-210))) (($ $ (-708)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-210))) (($ $ (-1085)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-829 (-1085)))) (($ $ (-1 (-1152 |#1| |#2| |#3| |#4|) (-1152 |#1| |#2| |#3| |#4|)) (-708)) NIL) (($ $ (-1 (-1152 |#1| |#2| |#3| |#4|) (-1152 |#1| |#2| |#3| |#4|))) NIL)) (-1623 (((-108) $ $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-784)))) (-1597 (((-108) $ $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-784)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-784)))) (-1587 (((-108) $ $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-784)))) (-1682 (($ $ $) 33) (($ (-1152 |#1| |#2| |#3| |#4|) (-1152 |#1| |#2| |#3| |#4|)) 30)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ (-1152 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1152 |#1| |#2| |#3| |#4|)) NIL))) -(((-288 |#1| |#2| |#3| |#4|) (-13 (-919 (-1152 |#1| |#2| |#3| |#4|)) (-962 (-1151 |#2| |#3| |#4|)) (-10 -8 (-15 -3134 ((-3 (-777 |#2|) "failed") $)) (-15 -2217 ($ (-1151 |#2| |#3| |#4|))))) (-13 (-784) (-962 (-522)) (-584 (-522)) (-426)) (-13 (-27) (-1106) (-405 |#1|)) (-1085) |#2|) (T -288)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1151 *4 *5 *6)) (-4 *4 (-13 (-27) (-1106) (-405 *3))) (-14 *5 (-1085)) (-14 *6 *4) (-4 *3 (-13 (-784) (-962 (-522)) (-584 (-522)) (-426))) (-5 *1 (-288 *3 *4 *5 *6)))) (-3134 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-784) (-962 (-522)) (-584 (-522)) (-426))) (-5 *2 (-777 *4)) (-5 *1 (-288 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1106) (-405 *3))) (-14 *5 (-1085)) (-14 *6 *4)))) -(-13 (-919 (-1152 |#1| |#2| |#3| |#4|)) (-962 (-1151 |#2| |#3| |#4|)) (-10 -8 (-15 -3134 ((-3 (-777 |#2|) "failed") $)) (-15 -2217 ($ (-1151 |#2| |#3| |#4|))))) -((-3810 (((-291 |#2|) (-1 |#2| |#1|) (-291 |#1|)) 13))) -(((-289 |#1| |#2|) (-10 -7 (-15 -3810 ((-291 |#2|) (-1 |#2| |#1|) (-291 |#1|)))) (-784) (-784)) (T -289)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-291 *5)) (-4 *5 (-784)) (-4 *6 (-784)) (-5 *2 (-291 *6)) (-5 *1 (-289 *5 *6))))) -(-10 -7 (-15 -3810 ((-291 |#2|) (-1 |#2| |#1|) (-291 |#1|)))) -((-3162 (((-51) |#2| (-270 |#2|) (-708)) 33) (((-51) |#2| (-270 |#2|)) 24) (((-51) |#2| (-708)) 28) (((-51) |#2|) 25) (((-51) (-1085)) 21)) (-1270 (((-51) |#2| (-270 |#2|) (-382 (-522))) 51) (((-51) |#2| (-270 |#2|)) 48) (((-51) |#2| (-382 (-522))) 50) (((-51) |#2|) 49) (((-51) (-1085)) 47)) (-3178 (((-51) |#2| (-270 |#2|) (-382 (-522))) 46) (((-51) |#2| (-270 |#2|)) 43) (((-51) |#2| (-382 (-522))) 45) (((-51) |#2|) 44) (((-51) (-1085)) 42)) (-3170 (((-51) |#2| (-270 |#2|) (-522)) 39) (((-51) |#2| (-270 |#2|)) 35) (((-51) |#2| (-522)) 38) (((-51) |#2|) 36) (((-51) (-1085)) 34))) -(((-290 |#1| |#2|) (-10 -7 (-15 -3162 ((-51) (-1085))) (-15 -3162 ((-51) |#2|)) (-15 -3162 ((-51) |#2| (-708))) (-15 -3162 ((-51) |#2| (-270 |#2|))) (-15 -3162 ((-51) |#2| (-270 |#2|) (-708))) (-15 -3170 ((-51) (-1085))) (-15 -3170 ((-51) |#2|)) (-15 -3170 ((-51) |#2| (-522))) (-15 -3170 ((-51) |#2| (-270 |#2|))) (-15 -3170 ((-51) |#2| (-270 |#2|) (-522))) (-15 -3178 ((-51) (-1085))) (-15 -3178 ((-51) |#2|)) (-15 -3178 ((-51) |#2| (-382 (-522)))) (-15 -3178 ((-51) |#2| (-270 |#2|))) (-15 -3178 ((-51) |#2| (-270 |#2|) (-382 (-522)))) (-15 -1270 ((-51) (-1085))) (-15 -1270 ((-51) |#2|)) (-15 -1270 ((-51) |#2| (-382 (-522)))) (-15 -1270 ((-51) |#2| (-270 |#2|))) (-15 -1270 ((-51) |#2| (-270 |#2|) (-382 (-522))))) (-13 (-426) (-784) (-962 (-522)) (-584 (-522))) (-13 (-27) (-1106) (-405 |#1|))) (T -290)) -((-1270 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-270 *3)) (-5 *5 (-382 (-522))) (-4 *3 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *6 *3)))) (-1270 (*1 *2 *3 *4) (-12 (-5 *4 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *5 *3)))) (-1270 (*1 *2 *3 *4) (-12 (-5 *4 (-382 (-522))) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))))) (-1270 (*1 *2 *3) (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *4))))) (-1270 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *4 *5)) (-4 *5 (-13 (-27) (-1106) (-405 *4))))) (-3178 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-270 *3)) (-5 *5 (-382 (-522))) (-4 *3 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *6 *3)))) (-3178 (*1 *2 *3 *4) (-12 (-5 *4 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *5 *3)))) (-3178 (*1 *2 *3 *4) (-12 (-5 *4 (-382 (-522))) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))))) (-3178 (*1 *2 *3) (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *4))))) (-3178 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *4 *5)) (-4 *5 (-13 (-27) (-1106) (-405 *4))))) (-3170 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-426) (-784) (-962 *5) (-584 *5))) (-5 *5 (-522)) (-5 *2 (-51)) (-5 *1 (-290 *6 *3)))) (-3170 (*1 *2 *3 *4) (-12 (-5 *4 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *5 *3)))) (-3170 (*1 *2 *3 *4) (-12 (-5 *4 (-522)) (-4 *5 (-13 (-426) (-784) (-962 *4) (-584 *4))) (-5 *2 (-51)) (-5 *1 (-290 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))))) (-3170 (*1 *2 *3) (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *4))))) (-3170 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *4 *5)) (-4 *5 (-13 (-27) (-1106) (-405 *4))))) (-3162 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-270 *3)) (-5 *5 (-708)) (-4 *3 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *6 *3)))) (-3162 (*1 *2 *3 *4) (-12 (-5 *4 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *5 *3)))) (-3162 (*1 *2 *3 *4) (-12 (-5 *4 (-708)) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))))) (-3162 (*1 *2 *3) (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *4))))) (-3162 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *4 *5)) (-4 *5 (-13 (-27) (-1106) (-405 *4)))))) -(-10 -7 (-15 -3162 ((-51) (-1085))) (-15 -3162 ((-51) |#2|)) (-15 -3162 ((-51) |#2| (-708))) (-15 -3162 ((-51) |#2| (-270 |#2|))) (-15 -3162 ((-51) |#2| (-270 |#2|) (-708))) (-15 -3170 ((-51) (-1085))) (-15 -3170 ((-51) |#2|)) (-15 -3170 ((-51) |#2| (-522))) (-15 -3170 ((-51) |#2| (-270 |#2|))) (-15 -3170 ((-51) |#2| (-270 |#2|) (-522))) (-15 -3178 ((-51) (-1085))) (-15 -3178 ((-51) |#2|)) (-15 -3178 ((-51) |#2| (-382 (-522)))) (-15 -3178 ((-51) |#2| (-270 |#2|))) (-15 -3178 ((-51) |#2| (-270 |#2|) (-382 (-522)))) (-15 -1270 ((-51) (-1085))) (-15 -1270 ((-51) |#2|)) (-15 -1270 ((-51) |#2| (-382 (-522)))) (-15 -1270 ((-51) |#2| (-270 |#2|))) (-15 -1270 ((-51) |#2| (-270 |#2|) (-382 (-522))))) -((-1419 (((-108) $ $) NIL)) (-3899 (((-588 $) $ (-1085)) NIL (|has| |#1| (-514))) (((-588 $) $) NIL (|has| |#1| (-514))) (((-588 $) (-1081 $) (-1085)) NIL (|has| |#1| (-514))) (((-588 $) (-1081 $)) NIL (|has| |#1| (-514))) (((-588 $) (-881 $)) NIL (|has| |#1| (-514)))) (-3974 (($ $ (-1085)) NIL (|has| |#1| (-514))) (($ $) NIL (|has| |#1| (-514))) (($ (-1081 $) (-1085)) NIL (|has| |#1| (-514))) (($ (-1081 $)) NIL (|has| |#1| (-514))) (($ (-881 $)) NIL (|has| |#1| (-514)))) (-2944 (((-108) $) 27 (-3844 (|has| |#1| (-25)) (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971)))))) (-3533 (((-588 (-1085)) $) 345)) (-1264 (((-382 (-1081 $)) $ (-561 $)) NIL (|has| |#1| (-514)))) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) NIL (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-1974 (((-588 (-561 $)) $) NIL)) (-3044 (($ $) 154 (|has| |#1| (-514)))) (-2923 (($ $) 130 (|has| |#1| (-514)))) (-1525 (($ $ (-1007 $)) 215 (|has| |#1| (-514))) (($ $ (-1085)) 211 (|has| |#1| (-514)))) (-2265 (((-3 $ "failed") $ $) NIL (-3844 (|has| |#1| (-21)) (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971)))))) (-1847 (($ $ (-270 $)) NIL) (($ $ (-588 (-270 $))) 361) (($ $ (-588 (-561 $)) (-588 $)) 404)) (-3543 (((-393 (-1081 $)) (-1081 $)) 289 (-12 (|has| |#1| (-426)) (|has| |#1| (-514))))) (-2961 (($ $) NIL (|has| |#1| (-514)))) (-3133 (((-393 $) $) NIL (|has| |#1| (-514)))) (-2016 (($ $) NIL (|has| |#1| (-514)))) (-2805 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3023 (($ $) 150 (|has| |#1| (-514)))) (-2906 (($ $) 126 (|has| |#1| (-514)))) (-1934 (($ $ (-522)) 64 (|has| |#1| (-514)))) (-3066 (($ $) 158 (|has| |#1| (-514)))) (-2936 (($ $) 134 (|has| |#1| (-514)))) (-3367 (($) NIL (-3844 (|has| |#1| (-25)) (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) (|has| |#1| (-1026))) CONST)) (-2136 (((-588 $) $ (-1085)) NIL (|has| |#1| (-514))) (((-588 $) $) NIL (|has| |#1| (-514))) (((-588 $) (-1081 $) (-1085)) NIL (|has| |#1| (-514))) (((-588 $) (-1081 $)) NIL (|has| |#1| (-514))) (((-588 $) (-881 $)) NIL (|has| |#1| (-514)))) (-1275 (($ $ (-1085)) NIL (|has| |#1| (-514))) (($ $) NIL (|has| |#1| (-514))) (($ (-1081 $) (-1085)) 117 (|has| |#1| (-514))) (($ (-1081 $)) NIL (|has| |#1| (-514))) (($ (-881 $)) NIL (|has| |#1| (-514)))) (-3700 (((-3 (-561 $) "failed") $) 17) (((-3 (-1085) "failed") $) NIL) (((-3 |#1| "failed") $) 413) (((-3 (-47) "failed") $) 318 (-12 (|has| |#1| (-514)) (|has| |#1| (-962 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-881 |#1|)) "failed") $) NIL (|has| |#1| (-514))) (((-3 (-881 |#1|) "failed") $) NIL (|has| |#1| (-971))) (((-3 (-382 (-522)) "failed") $) 45 (-3844 (-12 (|has| |#1| (-514)) (|has| |#1| (-962 (-522)))) (|has| |#1| (-962 (-382 (-522))))))) (-1478 (((-561 $) $) 11) (((-1085) $) NIL) ((|#1| $) 395) (((-47) $) NIL (-12 (|has| |#1| (-514)) (|has| |#1| (-962 (-522))))) (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-881 |#1|)) $) NIL (|has| |#1| (-514))) (((-881 |#1|) $) NIL (|has| |#1| (-971))) (((-382 (-522)) $) 302 (-3844 (-12 (|has| |#1| (-514)) (|has| |#1| (-962 (-522)))) (|has| |#1| (-962 (-382 (-522))))))) (-2333 (($ $ $) NIL (|has| |#1| (-514)))) (-1226 (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 110 (|has| |#1| (-971))) (((-628 |#1|) (-628 $)) 102 (|has| |#1| (-971))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971)))) (((-628 (-522)) (-628 $)) NIL (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))))) (-2153 (($ $) 84 (|has| |#1| (-514)))) (-3920 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) (|has| |#1| (-1026))))) (-2303 (($ $ $) NIL (|has| |#1| (-514)))) (-3589 (($ $ (-1007 $)) 219 (|has| |#1| (-514))) (($ $ (-1085)) 217 (|has| |#1| (-514)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL (|has| |#1| (-514)))) (-2725 (((-108) $) NIL (|has| |#1| (-514)))) (-3056 (($ $ $) 185 (|has| |#1| (-514)))) (-2980 (($) 120 (|has| |#1| (-514)))) (-2634 (($ $ $) 205 (|has| |#1| (-514)))) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 367 (|has| |#1| (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 373 (|has| |#1| (-815 (-354))))) (-2930 (($ $) NIL) (($ (-588 $)) NIL)) (-2896 (((-588 (-110)) $) NIL)) (-1771 (((-110) (-110)) 260)) (-2859 (((-108) $) 25 (-3844 (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) (|has| |#1| (-1026))))) (-3077 (((-108) $) NIL (|has| $ (-962 (-522))))) (-1558 (($ $) 66 (|has| |#1| (-971)))) (-2947 (((-1037 |#1| (-561 $)) $) 79 (|has| |#1| (-971)))) (-3800 (((-108) $) 46 (|has| |#1| (-514)))) (-1811 (($ $ (-522)) NIL (|has| |#1| (-514)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-514)))) (-4185 (((-1081 $) (-561 $)) 261 (|has| $ (-971)))) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-3810 (($ (-1 $ $) (-561 $)) 400)) (-3562 (((-3 (-561 $) "failed") $) NIL)) (-1238 (($ $) 124 (|has| |#1| (-514)))) (-3335 (($ $) 230 (|has| |#1| (-514)))) (-2267 (($ (-588 $)) NIL (|has| |#1| (-514))) (($ $ $) NIL (|has| |#1| (-514)))) (-2311 (((-1068) $) NIL)) (-1249 (((-588 (-561 $)) $) 48)) (-3043 (($ (-110) $) NIL) (($ (-110) (-588 $)) 405)) (-2760 (((-3 (-588 $) "failed") $) NIL (|has| |#1| (-1026)))) (-3242 (((-3 (-2 (|:| |val| $) (|:| -3858 (-522))) "failed") $) NIL (|has| |#1| (-971)))) (-1919 (((-3 (-588 $) "failed") $) 408 (|has| |#1| (-25)))) (-2367 (((-3 (-2 (|:| -3112 (-522)) (|:| |var| (-561 $))) "failed") $) 412 (|has| |#1| (-25)))) (-2024 (((-3 (-2 (|:| |var| (-561 $)) (|:| -3858 (-522))) "failed") $) NIL (|has| |#1| (-1026))) (((-3 (-2 (|:| |var| (-561 $)) (|:| -3858 (-522))) "failed") $ (-110)) NIL (|has| |#1| (-971))) (((-3 (-2 (|:| |var| (-561 $)) (|:| -3858 (-522))) "failed") $ (-1085)) NIL (|has| |#1| (-971)))) (-2935 (((-108) $ (-110)) NIL) (((-108) $ (-1085)) 52)) (-3193 (($ $) NIL (-3844 (|has| |#1| (-447)) (|has| |#1| (-514))))) (-2093 (($ $ (-1085)) 234 (|has| |#1| (-514))) (($ $ (-1007 $)) 236 (|has| |#1| (-514)))) (-4179 (((-708) $) NIL)) (-4174 (((-1032) $) NIL)) (-3199 (((-108) $) 43)) (-3207 ((|#1| $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 282 (|has| |#1| (-514)))) (-2308 (($ (-588 $)) NIL (|has| |#1| (-514))) (($ $ $) NIL (|has| |#1| (-514)))) (-2368 (((-108) $ $) NIL) (((-108) $ (-1085)) NIL)) (-2183 (($ $ (-1085)) 209 (|has| |#1| (-514))) (($ $) 207 (|has| |#1| (-514)))) (-1274 (($ $) 201 (|has| |#1| (-514)))) (-2313 (((-393 (-1081 $)) (-1081 $)) 287 (-12 (|has| |#1| (-426)) (|has| |#1| (-514))))) (-2006 (((-393 $) $) NIL (|has| |#1| (-514)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-514))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-514)))) (-2276 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-514)))) (-3357 (($ $) 122 (|has| |#1| (-514)))) (-2626 (((-108) $) NIL (|has| $ (-962 (-522))))) (-2330 (($ $ (-561 $) $) NIL) (($ $ (-588 (-561 $)) (-588 $)) 399) (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ $))) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ (-588 $)))) NIL) (($ $ (-1085) (-1 $ (-588 $))) NIL) (($ $ (-1085) (-1 $ $)) NIL) (($ $ (-588 (-110)) (-588 (-1 $ $))) 355) (($ $ (-588 (-110)) (-588 (-1 $ (-588 $)))) NIL) (($ $ (-110) (-1 $ (-588 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1085)) NIL (|has| |#1| (-563 (-498)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-563 (-498)))) (($ $) NIL (|has| |#1| (-563 (-498)))) (($ $ (-110) $ (-1085)) 343 (|has| |#1| (-563 (-498)))) (($ $ (-588 (-110)) (-588 $) (-1085)) 342 (|has| |#1| (-563 (-498)))) (($ $ (-588 (-1085)) (-588 (-708)) (-588 (-1 $ $))) NIL (|has| |#1| (-971))) (($ $ (-588 (-1085)) (-588 (-708)) (-588 (-1 $ (-588 $)))) NIL (|has| |#1| (-971))) (($ $ (-1085) (-708) (-1 $ (-588 $))) NIL (|has| |#1| (-971))) (($ $ (-1085) (-708) (-1 $ $)) NIL (|has| |#1| (-971)))) (-4031 (((-708) $) NIL (|has| |#1| (-514)))) (-2880 (($ $) 222 (|has| |#1| (-514)))) (-2683 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-588 $)) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-514)))) (-3406 (($ $) NIL) (($ $ $) NIL)) (-2900 (($ $) 232 (|has| |#1| (-514)))) (-2852 (($ $) 183 (|has| |#1| (-514)))) (-2731 (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-971))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-971))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-971))) (($ $ (-1085)) NIL (|has| |#1| (-971)))) (-2762 (($ $) 67 (|has| |#1| (-514)))) (-2959 (((-1037 |#1| (-561 $)) $) 81 (|has| |#1| (-514)))) (-1579 (($ $) 300 (|has| $ (-971)))) (-1831 (($ $) 160 (|has| |#1| (-514)))) (-2946 (($ $) 136 (|has| |#1| (-514)))) (-3054 (($ $) 156 (|has| |#1| (-514)))) (-2928 (($ $) 132 (|has| |#1| (-514)))) (-3035 (($ $) 152 (|has| |#1| (-514)))) (-2915 (($ $) 128 (|has| |#1| (-514)))) (-3873 (((-821 (-522)) $) NIL (|has| |#1| (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| |#1| (-563 (-821 (-354))))) (($ (-393 $)) NIL (|has| |#1| (-514))) (((-498) $) 340 (|has| |#1| (-563 (-498))))) (-2983 (($ $ $) NIL (|has| |#1| (-447)))) (-1596 (($ $ $) NIL (|has| |#1| (-447)))) (-2217 (((-792) $) 398) (($ (-561 $)) 389) (($ (-1085)) 357) (($ |#1|) 319) (($ $) NIL (|has| |#1| (-514))) (($ (-47)) 294 (-12 (|has| |#1| (-514)) (|has| |#1| (-962 (-522))))) (($ (-1037 |#1| (-561 $))) 83 (|has| |#1| (-971))) (($ (-382 |#1|)) NIL (|has| |#1| (-514))) (($ (-881 (-382 |#1|))) NIL (|has| |#1| (-514))) (($ (-382 (-881 (-382 |#1|)))) NIL (|has| |#1| (-514))) (($ (-382 (-881 |#1|))) NIL (|has| |#1| (-514))) (($ (-881 |#1|)) NIL (|has| |#1| (-971))) (($ (-382 (-522))) NIL (-3844 (|has| |#1| (-514)) (|has| |#1| (-962 (-382 (-522)))))) (($ (-522)) 34 (-3844 (|has| |#1| (-962 (-522))) (|has| |#1| (-971))))) (-3040 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2742 (((-708)) NIL (|has| |#1| (-971)))) (-3811 (($ $) NIL) (($ (-588 $)) NIL)) (-1591 (($ $ $) 203 (|has| |#1| (-514)))) (-2248 (($ $ $) 189 (|has| |#1| (-514)))) (-1551 (($ $ $) 193 (|has| |#1| (-514)))) (-3047 (($ $ $) 187 (|has| |#1| (-514)))) (-2039 (($ $ $) 191 (|has| |#1| (-514)))) (-4082 (((-108) (-110)) 9)) (-1856 (($ $) 166 (|has| |#1| (-514)))) (-2976 (($ $) 142 (|has| |#1| (-514)))) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1839 (($ $) 162 (|has| |#1| (-514)))) (-2957 (($ $) 138 (|has| |#1| (-514)))) (-1873 (($ $) 170 (|has| |#1| (-514)))) (-3001 (($ $) 146 (|has| |#1| (-514)))) (-1899 (($ (-1085) $) NIL) (($ (-1085) $ $) NIL) (($ (-1085) $ $ $) NIL) (($ (-1085) $ $ $ $) NIL) (($ (-1085) (-588 $)) NIL)) (-3799 (($ $) 197 (|has| |#1| (-514)))) (-2022 (($ $) 195 (|has| |#1| (-514)))) (-2476 (($ $) 172 (|has| |#1| (-514)))) (-3011 (($ $) 148 (|has| |#1| (-514)))) (-1864 (($ $) 168 (|has| |#1| (-514)))) (-2989 (($ $) 144 (|has| |#1| (-514)))) (-1849 (($ $) 164 (|has| |#1| (-514)))) (-2966 (($ $) 140 (|has| |#1| (-514)))) (-4126 (($ $) 175 (|has| |#1| (-514)))) (-3622 (($ $ (-522)) NIL (-3844 (|has| |#1| (-447)) (|has| |#1| (-514)))) (($ $ (-708)) NIL (-3844 (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) (|has| |#1| (-1026)))) (($ $ (-850)) NIL (-3844 (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) (|has| |#1| (-1026))))) (-3697 (($) 20 (-3844 (|has| |#1| (-25)) (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971)))) CONST)) (-3758 (($ $) 226 (|has| |#1| (-514)))) (-3709 (($) 22 (-3844 (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) (|has| |#1| (-1026))) CONST)) (-2245 (($ $) 177 (|has| |#1| (-514))) (($ $ $) 179 (|has| |#1| (-514)))) (-2440 (($ $) 224 (|has| |#1| (-514)))) (-2252 (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-971))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-971))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-971))) (($ $ (-1085)) NIL (|has| |#1| (-971)))) (-2866 (($ $) 228 (|has| |#1| (-514)))) (-2288 (($ $ $) 181 (|has| |#1| (-514)))) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 76)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 75)) (-1682 (($ (-1037 |#1| (-561 $)) (-1037 |#1| (-561 $))) 93 (|has| |#1| (-514))) (($ $ $) 42 (-3844 (|has| |#1| (-447)) (|has| |#1| (-514))))) (-1672 (($ $ $) 40 (-3844 (|has| |#1| (-21)) (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))))) (($ $) 29 (-3844 (|has| |#1| (-21)) (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971)))))) (-1661 (($ $ $) 38 (-3844 (|has| |#1| (-25)) (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971)))))) (** (($ $ $) 61 (|has| |#1| (-514))) (($ $ (-382 (-522))) 297 (|has| |#1| (-514))) (($ $ (-522)) 71 (-3844 (|has| |#1| (-447)) (|has| |#1| (-514)))) (($ $ (-708)) 68 (-3844 (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) (|has| |#1| (-1026)))) (($ $ (-850)) 73 (-3844 (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) (|has| |#1| (-1026))))) (* (($ (-382 (-522)) $) NIL (|has| |#1| (-514))) (($ $ (-382 (-522))) NIL (|has| |#1| (-514))) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157))) (($ $ $) 36 (-3844 (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) (|has| |#1| (-1026)))) (($ (-522) $) 32 (-3844 (|has| |#1| (-21)) (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))))) (($ (-708) $) NIL (-3844 (|has| |#1| (-25)) (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))))) (($ (-850) $) NIL (-3844 (|has| |#1| (-25)) (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))))))) -(((-291 |#1|) (-13 (-405 |#1|) (-10 -8 (IF (|has| |#1| (-514)) (PROGN (-6 (-29 |#1|)) (-6 (-1106)) (-6 (-146)) (-6 (-574)) (-6 (-1049)) (-15 -2153 ($ $)) (-15 -3800 ((-108) $)) (-15 -1934 ($ $ (-522))) (IF (|has| |#1| (-426)) (PROGN (-15 -2313 ((-393 (-1081 $)) (-1081 $))) (-15 -3543 ((-393 (-1081 $)) (-1081 $)))) |%noBranch|) (IF (|has| |#1| (-962 (-522))) (-6 (-962 (-47))) |%noBranch|)) |%noBranch|))) (-784)) (T -291)) -((-2153 (*1 *1 *1) (-12 (-5 *1 (-291 *2)) (-4 *2 (-514)) (-4 *2 (-784)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-291 *3)) (-4 *3 (-514)) (-4 *3 (-784)))) (-1934 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-291 *3)) (-4 *3 (-514)) (-4 *3 (-784)))) (-2313 (*1 *2 *3) (-12 (-5 *2 (-393 (-1081 *1))) (-5 *1 (-291 *4)) (-5 *3 (-1081 *1)) (-4 *4 (-426)) (-4 *4 (-514)) (-4 *4 (-784)))) (-3543 (*1 *2 *3) (-12 (-5 *2 (-393 (-1081 *1))) (-5 *1 (-291 *4)) (-5 *3 (-1081 *1)) (-4 *4 (-426)) (-4 *4 (-514)) (-4 *4 (-784))))) -(-13 (-405 |#1|) (-10 -8 (IF (|has| |#1| (-514)) (PROGN (-6 (-29 |#1|)) (-6 (-1106)) (-6 (-146)) (-6 (-574)) (-6 (-1049)) (-15 -2153 ($ $)) (-15 -3800 ((-108) $)) (-15 -1934 ($ $ (-522))) (IF (|has| |#1| (-426)) (PROGN (-15 -2313 ((-393 (-1081 $)) (-1081 $))) (-15 -3543 ((-393 (-1081 $)) (-1081 $)))) |%noBranch|) (IF (|has| |#1| (-962 (-522))) (-6 (-962 (-47))) |%noBranch|)) |%noBranch|))) -((-4186 (((-51) |#2| (-110) (-270 |#2|) (-588 |#2|)) 86) (((-51) |#2| (-110) (-270 |#2|) (-270 |#2|)) 82) (((-51) |#2| (-110) (-270 |#2|) |#2|) 84) (((-51) (-270 |#2|) (-110) (-270 |#2|) |#2|) 85) (((-51) (-588 |#2|) (-588 (-110)) (-270 |#2|) (-588 (-270 |#2|))) 78) (((-51) (-588 |#2|) (-588 (-110)) (-270 |#2|) (-588 |#2|)) 80) (((-51) (-588 (-270 |#2|)) (-588 (-110)) (-270 |#2|) (-588 |#2|)) 81) (((-51) (-588 (-270 |#2|)) (-588 (-110)) (-270 |#2|) (-588 (-270 |#2|))) 79) (((-51) (-270 |#2|) (-110) (-270 |#2|) (-588 |#2|)) 87) (((-51) (-270 |#2|) (-110) (-270 |#2|) (-270 |#2|)) 83))) -(((-292 |#1| |#2|) (-10 -7 (-15 -4186 ((-51) (-270 |#2|) (-110) (-270 |#2|) (-270 |#2|))) (-15 -4186 ((-51) (-270 |#2|) (-110) (-270 |#2|) (-588 |#2|))) (-15 -4186 ((-51) (-588 (-270 |#2|)) (-588 (-110)) (-270 |#2|) (-588 (-270 |#2|)))) (-15 -4186 ((-51) (-588 (-270 |#2|)) (-588 (-110)) (-270 |#2|) (-588 |#2|))) (-15 -4186 ((-51) (-588 |#2|) (-588 (-110)) (-270 |#2|) (-588 |#2|))) (-15 -4186 ((-51) (-588 |#2|) (-588 (-110)) (-270 |#2|) (-588 (-270 |#2|)))) (-15 -4186 ((-51) (-270 |#2|) (-110) (-270 |#2|) |#2|)) (-15 -4186 ((-51) |#2| (-110) (-270 |#2|) |#2|)) (-15 -4186 ((-51) |#2| (-110) (-270 |#2|) (-270 |#2|))) (-15 -4186 ((-51) |#2| (-110) (-270 |#2|) (-588 |#2|)))) (-13 (-784) (-514) (-563 (-498))) (-405 |#1|)) (T -292)) -((-4186 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-270 *3)) (-5 *6 (-588 *3)) (-4 *3 (-405 *7)) (-4 *7 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) (-5 *1 (-292 *7 *3)))) (-4186 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-270 *3)) (-4 *3 (-405 *6)) (-4 *6 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) (-5 *1 (-292 *6 *3)))) (-4186 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-110)) (-5 *5 (-270 *3)) (-4 *3 (-405 *6)) (-4 *6 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) (-5 *1 (-292 *6 *3)))) (-4186 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-270 *5)) (-5 *4 (-110)) (-4 *5 (-405 *6)) (-4 *6 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) (-5 *1 (-292 *6 *5)))) (-4186 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 (-110))) (-5 *6 (-588 (-270 *8))) (-4 *8 (-405 *7)) (-5 *5 (-270 *8)) (-4 *7 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) (-5 *1 (-292 *7 *8)))) (-4186 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-588 *7)) (-5 *4 (-588 (-110))) (-5 *5 (-270 *7)) (-4 *7 (-405 *6)) (-4 *6 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) (-5 *1 (-292 *6 *7)))) (-4186 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-588 (-270 *8))) (-5 *4 (-588 (-110))) (-5 *5 (-270 *8)) (-5 *6 (-588 *8)) (-4 *8 (-405 *7)) (-4 *7 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) (-5 *1 (-292 *7 *8)))) (-4186 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-588 (-270 *7))) (-5 *4 (-588 (-110))) (-5 *5 (-270 *7)) (-4 *7 (-405 *6)) (-4 *6 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) (-5 *1 (-292 *6 *7)))) (-4186 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-270 *7)) (-5 *4 (-110)) (-5 *5 (-588 *7)) (-4 *7 (-405 *6)) (-4 *6 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) (-5 *1 (-292 *6 *7)))) (-4186 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-270 *6)) (-5 *4 (-110)) (-4 *6 (-405 *5)) (-4 *5 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) (-5 *1 (-292 *5 *6))))) -(-10 -7 (-15 -4186 ((-51) (-270 |#2|) (-110) (-270 |#2|) (-270 |#2|))) (-15 -4186 ((-51) (-270 |#2|) (-110) (-270 |#2|) (-588 |#2|))) (-15 -4186 ((-51) (-588 (-270 |#2|)) (-588 (-110)) (-270 |#2|) (-588 (-270 |#2|)))) (-15 -4186 ((-51) (-588 (-270 |#2|)) (-588 (-110)) (-270 |#2|) (-588 |#2|))) (-15 -4186 ((-51) (-588 |#2|) (-588 (-110)) (-270 |#2|) (-588 |#2|))) (-15 -4186 ((-51) (-588 |#2|) (-588 (-110)) (-270 |#2|) (-588 (-270 |#2|)))) (-15 -4186 ((-51) (-270 |#2|) (-110) (-270 |#2|) |#2|)) (-15 -4186 ((-51) |#2| (-110) (-270 |#2|) |#2|)) (-15 -4186 ((-51) |#2| (-110) (-270 |#2|) (-270 |#2|))) (-15 -4186 ((-51) |#2| (-110) (-270 |#2|) (-588 |#2|)))) -((-2048 (((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-202) (-522) (-1068)) 46) (((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-202) (-522)) 47) (((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-1 (-202) (-202)) (-522) (-1068)) 43) (((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-1 (-202) (-202)) (-522)) 44)) (-2069 (((-1 (-202) (-202)) (-202)) 45))) -(((-293) (-10 -7 (-15 -2069 ((-1 (-202) (-202)) (-202))) (-15 -2048 ((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-1 (-202) (-202)) (-522))) (-15 -2048 ((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-1 (-202) (-202)) (-522) (-1068))) (-15 -2048 ((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-202) (-522))) (-15 -2048 ((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-202) (-522) (-1068))))) (T -293)) -((-2048 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-291 (-522))) (-5 *4 (-1 (-202) (-202))) (-5 *5 (-1009 (-202))) (-5 *6 (-202)) (-5 *7 (-522)) (-5 *8 (-1068)) (-5 *2 (-1116 (-855))) (-5 *1 (-293)))) (-2048 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-291 (-522))) (-5 *4 (-1 (-202) (-202))) (-5 *5 (-1009 (-202))) (-5 *6 (-202)) (-5 *7 (-522)) (-5 *2 (-1116 (-855))) (-5 *1 (-293)))) (-2048 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-291 (-522))) (-5 *4 (-1 (-202) (-202))) (-5 *5 (-1009 (-202))) (-5 *6 (-522)) (-5 *7 (-1068)) (-5 *2 (-1116 (-855))) (-5 *1 (-293)))) (-2048 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-291 (-522))) (-5 *4 (-1 (-202) (-202))) (-5 *5 (-1009 (-202))) (-5 *6 (-522)) (-5 *2 (-1116 (-855))) (-5 *1 (-293)))) (-2069 (*1 *2 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-293)) (-5 *3 (-202))))) -(-10 -7 (-15 -2069 ((-1 (-202) (-202)) (-202))) (-15 -2048 ((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-1 (-202) (-202)) (-522))) (-15 -2048 ((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-1 (-202) (-202)) (-522) (-1068))) (-15 -2048 ((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-202) (-522))) (-15 -2048 ((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-202) (-522) (-1068)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 24)) (-3533 (((-588 (-999)) $) NIL)) (-1660 (((-1085) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) NIL (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-3495 (($ $ (-382 (-522))) NIL) (($ $ (-382 (-522)) (-382 (-522))) NIL)) (-3024 (((-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|))) $) 19)) (-3044 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2923 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL (|has| |#1| (-338)))) (-3133 (((-393 $) $) NIL (|has| |#1| (-338)))) (-2016 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2805 (((-108) $ $) NIL (|has| |#1| (-338)))) (-3023 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2906 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1270 (($ (-708) (-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|)))) NIL)) (-3066 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2936 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3367 (($) NIL T CONST)) (-2333 (($ $ $) NIL (|has| |#1| (-338)))) (-3241 (($ $) 31)) (-3920 (((-3 $ "failed") $) NIL)) (-2303 (($ $ $) NIL (|has| |#1| (-338)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2725 (((-108) $) NIL (|has| |#1| (-338)))) (-3672 (((-108) $) NIL)) (-2980 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3872 (((-382 (-522)) $) NIL) (((-382 (-522)) $ (-382 (-522))) 15)) (-2859 (((-108) $) NIL)) (-1811 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2895 (($ $ (-850)) NIL) (($ $ (-382 (-522))) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-1374 (((-108) $) NIL)) (-3500 (($ |#1| (-382 (-522))) NIL) (($ $ (-999) (-382 (-522))) NIL) (($ $ (-588 (-999)) (-588 (-382 (-522)))) NIL)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-1238 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3216 (($ $) NIL)) (-3224 ((|#1| $) NIL)) (-2267 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL (|has| |#1| (-338)))) (-2611 (($ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) NIL (-3844 (-12 (|has| |#1| (-15 -2611 (|#1| |#1| (-1085)))) (|has| |#1| (-15 -3533 ((-588 (-1085)) |#1|))) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-887)) (|has| |#1| (-1106)))))) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-338)))) (-2308 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-2006 (((-393 $) $) NIL (|has| |#1| (-338)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-338)))) (-3934 (($ $ (-382 (-522))) NIL)) (-2276 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-4041 (((-382 (-522)) $) 16)) (-2643 (($ (-1151 |#1| |#2| |#3|)) 11)) (-3858 (((-1151 |#1| |#2| |#3|) $) 12)) (-3357 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2330 (((-1066 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))))) (-4031 (((-708) $) NIL (|has| |#1| (-338)))) (-2683 ((|#1| $ (-382 (-522))) NIL) (($ $ $) NIL (|has| (-382 (-522)) (-1026)))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-338)))) (-2731 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-2487 (((-382 (-522)) $) NIL)) (-1831 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2946 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3054 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2928 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3035 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2915 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1944 (($ $) 10)) (-2217 (((-792) $) 37) (($ (-522)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $) NIL (|has| |#1| (-514)))) (-1643 ((|#1| $ (-382 (-522))) 29)) (-3040 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2742 (((-708)) NIL)) (-1980 ((|#1| $) NIL)) (-1856 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2976 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1839 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2957 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1873 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3001 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3996 ((|#1| $ (-382 (-522))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))) (|has| |#1| (-15 -2217 (|#1| (-1085))))))) (-2476 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3011 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1864 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2989 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1849 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2966 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 26)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 32)) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))))) -(((-294 |#1| |#2| |#3|) (-13 (-1147 |#1|) (-729) (-10 -8 (-15 -2643 ($ (-1151 |#1| |#2| |#3|))) (-15 -3858 ((-1151 |#1| |#2| |#3|) $)) (-15 -4041 ((-382 (-522)) $)))) (-13 (-338) (-784)) (-1085) |#1|) (T -294)) -((-2643 (*1 *1 *2) (-12 (-5 *2 (-1151 *3 *4 *5)) (-4 *3 (-13 (-338) (-784))) (-14 *4 (-1085)) (-14 *5 *3) (-5 *1 (-294 *3 *4 *5)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-1151 *3 *4 *5)) (-5 *1 (-294 *3 *4 *5)) (-4 *3 (-13 (-338) (-784))) (-14 *4 (-1085)) (-14 *5 *3))) (-4041 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-294 *3 *4 *5)) (-4 *3 (-13 (-338) (-784))) (-14 *4 (-1085)) (-14 *5 *3)))) -(-13 (-1147 |#1|) (-729) (-10 -8 (-15 -2643 ($ (-1151 |#1| |#2| |#3|))) (-15 -3858 ((-1151 |#1| |#2| |#3|) $)) (-15 -4041 ((-382 (-522)) $)))) -((-1811 (((-2 (|:| -3858 (-708)) (|:| -3112 |#1|) (|:| |radicand| (-588 |#1|))) (-393 |#1|) (-708)) 24)) (-1238 (((-588 (-2 (|:| -3112 (-708)) (|:| |logand| |#1|))) (-393 |#1|)) 28))) -(((-295 |#1|) (-10 -7 (-15 -1811 ((-2 (|:| -3858 (-708)) (|:| -3112 |#1|) (|:| |radicand| (-588 |#1|))) (-393 |#1|) (-708))) (-15 -1238 ((-588 (-2 (|:| -3112 (-708)) (|:| |logand| |#1|))) (-393 |#1|)))) (-514)) (T -295)) -((-1238 (*1 *2 *3) (-12 (-5 *3 (-393 *4)) (-4 *4 (-514)) (-5 *2 (-588 (-2 (|:| -3112 (-708)) (|:| |logand| *4)))) (-5 *1 (-295 *4)))) (-1811 (*1 *2 *3 *4) (-12 (-5 *3 (-393 *5)) (-4 *5 (-514)) (-5 *2 (-2 (|:| -3858 (-708)) (|:| -3112 *5) (|:| |radicand| (-588 *5)))) (-5 *1 (-295 *5)) (-5 *4 (-708))))) -(-10 -7 (-15 -1811 ((-2 (|:| -3858 (-708)) (|:| -3112 |#1|) (|:| |radicand| (-588 |#1|))) (-393 |#1|) (-708))) (-15 -1238 ((-588 (-2 (|:| -3112 (-708)) (|:| |logand| |#1|))) (-393 |#1|)))) -((-3533 (((-588 |#2|) (-1081 |#4|)) 43)) (-1906 ((|#3| (-522)) 46)) (-2630 (((-1081 |#4|) (-1081 |#3|)) 30)) (-2813 (((-1081 |#4|) (-1081 |#4|) (-522)) 56)) (-3378 (((-1081 |#3|) (-1081 |#4|)) 21)) (-2487 (((-588 (-708)) (-1081 |#4|) (-588 |#2|)) 40)) (-2835 (((-1081 |#3|) (-1081 |#4|) (-588 |#2|) (-588 |#3|)) 35))) -(((-296 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2835 ((-1081 |#3|) (-1081 |#4|) (-588 |#2|) (-588 |#3|))) (-15 -2487 ((-588 (-708)) (-1081 |#4|) (-588 |#2|))) (-15 -3533 ((-588 |#2|) (-1081 |#4|))) (-15 -3378 ((-1081 |#3|) (-1081 |#4|))) (-15 -2630 ((-1081 |#4|) (-1081 |#3|))) (-15 -2813 ((-1081 |#4|) (-1081 |#4|) (-522))) (-15 -1906 (|#3| (-522)))) (-730) (-784) (-971) (-878 |#3| |#1| |#2|)) (T -296)) -((-1906 (*1 *2 *3) (-12 (-5 *3 (-522)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-971)) (-5 *1 (-296 *4 *5 *2 *6)) (-4 *6 (-878 *2 *4 *5)))) (-2813 (*1 *2 *2 *3) (-12 (-5 *2 (-1081 *7)) (-5 *3 (-522)) (-4 *7 (-878 *6 *4 *5)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) (-5 *1 (-296 *4 *5 *6 *7)))) (-2630 (*1 *2 *3) (-12 (-5 *3 (-1081 *6)) (-4 *6 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-1081 *7)) (-5 *1 (-296 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5)))) (-3378 (*1 *2 *3) (-12 (-5 *3 (-1081 *7)) (-4 *7 (-878 *6 *4 *5)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) (-5 *2 (-1081 *6)) (-5 *1 (-296 *4 *5 *6 *7)))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-1081 *7)) (-4 *7 (-878 *6 *4 *5)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) (-5 *2 (-588 *5)) (-5 *1 (-296 *4 *5 *6 *7)))) (-2487 (*1 *2 *3 *4) (-12 (-5 *3 (-1081 *8)) (-5 *4 (-588 *6)) (-4 *6 (-784)) (-4 *8 (-878 *7 *5 *6)) (-4 *5 (-730)) (-4 *7 (-971)) (-5 *2 (-588 (-708))) (-5 *1 (-296 *5 *6 *7 *8)))) (-2835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1081 *9)) (-5 *4 (-588 *7)) (-5 *5 (-588 *8)) (-4 *7 (-784)) (-4 *8 (-971)) (-4 *9 (-878 *8 *6 *7)) (-4 *6 (-730)) (-5 *2 (-1081 *8)) (-5 *1 (-296 *6 *7 *8 *9))))) -(-10 -7 (-15 -2835 ((-1081 |#3|) (-1081 |#4|) (-588 |#2|) (-588 |#3|))) (-15 -2487 ((-588 (-708)) (-1081 |#4|) (-588 |#2|))) (-15 -3533 ((-588 |#2|) (-1081 |#4|))) (-15 -3378 ((-1081 |#3|) (-1081 |#4|))) (-15 -2630 ((-1081 |#4|) (-1081 |#3|))) (-15 -2813 ((-1081 |#4|) (-1081 |#4|) (-522))) (-15 -1906 (|#3| (-522)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 14)) (-3024 (((-588 (-2 (|:| |gen| |#1|) (|:| -3357 (-522)))) $) 18)) (-2265 (((-3 $ "failed") $ $) NIL)) (-1685 (((-708) $) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) NIL)) (-1478 ((|#1| $) NIL)) (-3108 ((|#1| $ (-522)) NIL)) (-2544 (((-522) $ (-522)) NIL)) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-2007 (($ (-1 |#1| |#1|) $) NIL)) (-3534 (($ (-1 (-522) (-522)) $) 10)) (-2311 (((-1068) $) NIL)) (-3075 (($ $ $) NIL (|has| (-522) (-729)))) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL) (($ |#1|) NIL)) (-1643 (((-522) |#1| $) NIL)) (-3697 (($) 15 T CONST)) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) 21 (|has| |#1| (-784)))) (-1672 (($ $) 11) (($ $ $) 20)) (-1661 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ (-522)) NIL) (($ (-522) |#1|) 19))) -(((-297 |#1|) (-13 (-21) (-655 (-522)) (-298 |#1| (-522)) (-10 -7 (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|))) (-1014)) (T -297)) -NIL -(-13 (-21) (-655 (-522)) (-298 |#1| (-522)) (-10 -7 (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3024 (((-588 (-2 (|:| |gen| |#1|) (|:| -3357 |#2|))) $) 27)) (-2265 (((-3 $ "failed") $ $) 19)) (-1685 (((-708) $) 28)) (-3367 (($) 17 T CONST)) (-3700 (((-3 |#1| "failed") $) 32)) (-1478 ((|#1| $) 31)) (-3108 ((|#1| $ (-522)) 25)) (-2544 ((|#2| $ (-522)) 26)) (-2007 (($ (-1 |#1| |#1|) $) 22)) (-3534 (($ (-1 |#2| |#2|) $) 23)) (-2311 (((-1068) $) 9)) (-3075 (($ $ $) 21 (|has| |#2| (-729)))) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11) (($ |#1|) 33)) (-1643 ((|#2| |#1| $) 24)) (-3697 (($) 18 T CONST)) (-1562 (((-108) $ $) 6)) (-1661 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ |#2| |#1|) 29))) -(((-298 |#1| |#2|) (-1197) (-1014) (-124)) (T -298)) -((-1661 (*1 *1 *2 *1) (-12 (-4 *1 (-298 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-124)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-124)))) (-1685 (*1 *2 *1) (-12 (-4 *1 (-298 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-124)) (-5 *2 (-708)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-298 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-124)) (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3357 *4)))))) (-2544 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-298 *4 *2)) (-4 *4 (-1014)) (-4 *2 (-124)))) (-3108 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-298 *2 *4)) (-4 *4 (-124)) (-4 *2 (-1014)))) (-1643 (*1 *2 *3 *1) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-124)))) (-3534 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-298 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-124)))) (-2007 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-298 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-124)))) (-3075 (*1 *1 *1 *1) (-12 (-4 *1 (-298 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-124)) (-4 *3 (-729))))) -(-13 (-124) (-962 |t#1|) (-10 -8 (-15 -1661 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1685 ((-708) $)) (-15 -3024 ((-588 (-2 (|:| |gen| |t#1|) (|:| -3357 |t#2|))) $)) (-15 -2544 (|t#2| $ (-522))) (-15 -3108 (|t#1| $ (-522))) (-15 -1643 (|t#2| |t#1| $)) (-15 -3534 ($ (-1 |t#2| |t#2|) $)) (-15 -2007 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-729)) (-15 -3075 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-962 |#1|) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3024 (((-588 (-2 (|:| |gen| |#1|) (|:| -3357 (-708)))) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-1685 (((-708) $) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) NIL)) (-1478 ((|#1| $) NIL)) (-3108 ((|#1| $ (-522)) NIL)) (-2544 (((-708) $ (-522)) NIL)) (-2007 (($ (-1 |#1| |#1|) $) NIL)) (-3534 (($ (-1 (-708) (-708)) $) NIL)) (-2311 (((-1068) $) NIL)) (-3075 (($ $ $) NIL (|has| (-708) (-729)))) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL) (($ |#1|) NIL)) (-1643 (((-708) |#1| $) NIL)) (-3697 (($) NIL T CONST)) (-1562 (((-108) $ $) NIL)) (-1661 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-708) |#1|) NIL))) -(((-299 |#1|) (-298 |#1| (-708)) (-1014)) (T -299)) -NIL -(-298 |#1| (-708)) -((-2883 (($ $) 53)) (-3792 (($ $ |#2| |#3| $) 14)) (-1723 (($ (-1 |#3| |#3|) $) 35)) (-3199 (((-108) $) 27)) (-3207 ((|#2| $) 29)) (-2276 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-2988 ((|#2| $) 49)) (-2180 (((-588 |#2|) $) 38)) (-1225 (($ $ $ (-708)) 23)) (-1682 (($ $ |#2|) 42))) -(((-300 |#1| |#2| |#3|) (-10 -8 (-15 -2883 (|#1| |#1|)) (-15 -2988 (|#2| |#1|)) (-15 -2276 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1225 (|#1| |#1| |#1| (-708))) (-15 -3792 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1723 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2180 ((-588 |#2|) |#1|)) (-15 -3207 (|#2| |#1|)) (-15 -3199 ((-108) |#1|)) (-15 -2276 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1682 (|#1| |#1| |#2|))) (-301 |#2| |#3|) (-971) (-729)) (T -300)) -NIL -(-10 -8 (-15 -2883 (|#1| |#1|)) (-15 -2988 (|#2| |#1|)) (-15 -2276 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1225 (|#1| |#1| |#1| (-708))) (-15 -3792 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1723 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2180 ((-588 |#2|) |#1|)) (-15 -3207 (|#2| |#1|)) (-15 -3199 ((-108) |#1|)) (-15 -2276 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1682 (|#1| |#1| |#2|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 51 (|has| |#1| (-514)))) (-2298 (($ $) 52 (|has| |#1| (-514)))) (-3007 (((-108) $) 54 (|has| |#1| (-514)))) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3700 (((-3 (-522) "failed") $) 90 (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) 88 (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 87)) (-1478 (((-522) $) 91 (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) 89 (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) 86)) (-3241 (($ $) 60)) (-3920 (((-3 $ "failed") $) 34)) (-2883 (($ $) 75 (|has| |#1| (-426)))) (-3792 (($ $ |#1| |#2| $) 79)) (-2859 (((-108) $) 31)) (-1391 (((-708) $) 82)) (-1374 (((-108) $) 62)) (-3500 (($ |#1| |#2|) 61)) (-3564 ((|#2| $) 81)) (-1723 (($ (-1 |#2| |#2|) $) 80)) (-3810 (($ (-1 |#1| |#1|) $) 63)) (-3216 (($ $) 65)) (-3224 ((|#1| $) 66)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-3199 (((-108) $) 85)) (-3207 ((|#1| $) 84)) (-2276 (((-3 $ "failed") $ $) 50 (|has| |#1| (-514))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-514)))) (-2487 ((|#2| $) 64)) (-2988 ((|#1| $) 76 (|has| |#1| (-426)))) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 49 (|has| |#1| (-514))) (($ |#1|) 47) (($ (-382 (-522))) 57 (-3844 (|has| |#1| (-962 (-382 (-522)))) (|has| |#1| (-37 (-382 (-522))))))) (-2180 (((-588 |#1|) $) 83)) (-1643 ((|#1| $ |#2|) 59)) (-3040 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-2742 (((-708)) 29)) (-1225 (($ $ $ (-708)) 78 (|has| |#1| (-157)))) (-1407 (((-108) $ $) 53 (|has| |#1| (-514)))) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1682 (($ $ |#1|) 58 (|has| |#1| (-338)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-382 (-522)) $) 56 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 55 (|has| |#1| (-37 (-382 (-522))))))) -(((-301 |#1| |#2|) (-1197) (-971) (-729)) (T -301)) -((-3199 (*1 *2 *1) (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) (-5 *2 (-108)))) (-3207 (*1 *2 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971)))) (-2180 (*1 *2 *1) (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) (-5 *2 (-588 *3)))) (-1391 (*1 *2 *1) (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) (-5 *2 (-708)))) (-3564 (*1 *2 *1) (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729)))) (-1723 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-301 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)))) (-3792 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729)))) (-1225 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-301 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) (-4 *3 (-157)))) (-2276 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-301 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729)) (-4 *2 (-514)))) (-2988 (*1 *2 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971)) (-4 *2 (-426)))) (-2883 (*1 *1 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729)) (-4 *2 (-426))))) -(-13 (-46 |t#1| |t#2|) (-386 |t#1|) (-10 -8 (-15 -3199 ((-108) $)) (-15 -3207 (|t#1| $)) (-15 -2180 ((-588 |t#1|) $)) (-15 -1391 ((-708) $)) (-15 -3564 (|t#2| $)) (-15 -1723 ($ (-1 |t#2| |t#2|) $)) (-15 -3792 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-157)) (-15 -1225 ($ $ $ (-708))) |%noBranch|) (IF (|has| |t#1| (-514)) (-15 -2276 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-426)) (PROGN (-15 -2988 (|t#1| $)) (-15 -2883 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-514)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-382 (-522)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3844 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3844 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-266) |has| |#1| (-514)) ((-386 |#1|) . T) ((-514) |has| |#1| (-514)) ((-590 #0#) |has| |#1| (-37 (-382 (-522)))) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #0#) |has| |#1| (-37 (-382 (-522)))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) |has| |#1| (-514)) ((-664) . T) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T) ((-977 #0#) |has| |#1| (-37 (-382 (-522)))) ((-977 |#1|) . T) ((-977 $) -3844 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3883 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1866 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-2806 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784))))) (-3296 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-2717 (((-108) $ (-708)) NIL)) (-4159 (((-108) (-108)) NIL)) (-2437 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239)))) (-1213 (($ (-1 (-108) |#1|) $) NIL)) (-1696 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3367 (($) NIL T CONST)) (-2465 (($ $) NIL (|has| $ (-6 -4239)))) (-1939 (($ $) NIL)) (-1581 (($ $) NIL (|has| |#1| (-1014)))) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1700 (($ |#1| $) NIL (|has| |#1| (-1014))) (($ (-1 (-108) |#1|) $) NIL)) (-1424 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238)))) (-2411 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-522)) NIL)) (-3314 (((-522) (-1 (-108) |#1|) $) NIL) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014)))) (-3573 (($ $ (-522)) NIL)) (-1803 (((-708) $) NIL)) (-2395 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-1893 (($ (-708) |#1|) NIL)) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) NIL (|has| (-522) (-784)))) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-3557 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3164 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-784)))) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2201 (((-522) $) NIL (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-2397 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-3365 (($ $ $ (-522)) NIL) (($ |#1| $ (-522)) NIL)) (-1731 (($ |#1| $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) NIL)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3706 (($ (-588 |#1|)) NIL)) (-2337 ((|#1| $) NIL (|has| (-522) (-784)))) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1972 (($ $ |#1|) NIL (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#1| $ (-522) |#1|) NIL) ((|#1| $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-3551 (($ $ (-1133 (-522))) NIL) (($ $ (-522)) NIL)) (-3835 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3629 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) NIL)) (-2335 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4170 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-588 $)) NIL)) (-2217 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-302 |#1|) (-13 (-19 |#1|) (-258 |#1|) (-10 -8 (-15 -3706 ($ (-588 |#1|))) (-15 -1803 ((-708) $)) (-15 -3573 ($ $ (-522))) (-15 -4159 ((-108) (-108))))) (-1120)) (T -302)) -((-3706 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-302 *3)))) (-1803 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-302 *3)) (-4 *3 (-1120)))) (-3573 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-302 *3)) (-4 *3 (-1120)))) (-4159 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-302 *3)) (-4 *3 (-1120))))) -(-13 (-19 |#1|) (-258 |#1|) (-10 -8 (-15 -3706 ($ (-588 |#1|))) (-15 -1803 ((-708) $)) (-15 -3573 ($ $ (-522))) (-15 -4159 ((-108) (-108))))) -((-2400 (((-108) $) 42)) (-1593 (((-708)) 22)) (-1945 ((|#2| $) 46) (($ $ (-850)) 103)) (-1685 (((-708)) 97)) (-3225 (($ (-1166 |#2|)) 20)) (-1372 (((-108) $) 115)) (-1269 ((|#2| $) 48) (($ $ (-850)) 101)) (-4199 (((-1081 |#2|) $) NIL) (((-1081 $) $ (-850)) 94)) (-3657 (((-1081 |#2|) $) 83)) (-3723 (((-1081 |#2|) $) 80) (((-3 (-1081 |#2|) "failed") $ $) 77)) (-2259 (($ $ (-1081 |#2|)) 53)) (-1713 (((-770 (-850))) 28) (((-850)) 43)) (-3222 (((-126)) 25)) (-2487 (((-770 (-850)) $) 30) (((-850) $) 116)) (-1705 (($) 109)) (-3510 (((-1166 |#2|) $) NIL) (((-628 |#2|) (-1166 $)) 39)) (-3040 (($ $) NIL) (((-3 $ "failed") $) 86)) (-1711 (((-108) $) 41))) -(((-303 |#1| |#2|) (-10 -8 (-15 -3040 ((-3 |#1| "failed") |#1|)) (-15 -1685 ((-708))) (-15 -3040 (|#1| |#1|)) (-15 -3723 ((-3 (-1081 |#2|) "failed") |#1| |#1|)) (-15 -3723 ((-1081 |#2|) |#1|)) (-15 -3657 ((-1081 |#2|) |#1|)) (-15 -2259 (|#1| |#1| (-1081 |#2|))) (-15 -1372 ((-108) |#1|)) (-15 -1705 (|#1|)) (-15 -1945 (|#1| |#1| (-850))) (-15 -1269 (|#1| |#1| (-850))) (-15 -4199 ((-1081 |#1|) |#1| (-850))) (-15 -1945 (|#2| |#1|)) (-15 -1269 (|#2| |#1|)) (-15 -2487 ((-850) |#1|)) (-15 -1713 ((-850))) (-15 -4199 ((-1081 |#2|) |#1|)) (-15 -3225 (|#1| (-1166 |#2|))) (-15 -3510 ((-628 |#2|) (-1166 |#1|))) (-15 -3510 ((-1166 |#2|) |#1|)) (-15 -1593 ((-708))) (-15 -1713 ((-770 (-850)))) (-15 -2487 ((-770 (-850)) |#1|)) (-15 -2400 ((-108) |#1|)) (-15 -1711 ((-108) |#1|)) (-15 -3222 ((-126)))) (-304 |#2|) (-338)) (T -303)) -((-3222 (*1 *2) (-12 (-4 *4 (-338)) (-5 *2 (-126)) (-5 *1 (-303 *3 *4)) (-4 *3 (-304 *4)))) (-1713 (*1 *2) (-12 (-4 *4 (-338)) (-5 *2 (-770 (-850))) (-5 *1 (-303 *3 *4)) (-4 *3 (-304 *4)))) (-1593 (*1 *2) (-12 (-4 *4 (-338)) (-5 *2 (-708)) (-5 *1 (-303 *3 *4)) (-4 *3 (-304 *4)))) (-1713 (*1 *2) (-12 (-4 *4 (-338)) (-5 *2 (-850)) (-5 *1 (-303 *3 *4)) (-4 *3 (-304 *4)))) (-1685 (*1 *2) (-12 (-4 *4 (-338)) (-5 *2 (-708)) (-5 *1 (-303 *3 *4)) (-4 *3 (-304 *4))))) -(-10 -8 (-15 -3040 ((-3 |#1| "failed") |#1|)) (-15 -1685 ((-708))) (-15 -3040 (|#1| |#1|)) (-15 -3723 ((-3 (-1081 |#2|) "failed") |#1| |#1|)) (-15 -3723 ((-1081 |#2|) |#1|)) (-15 -3657 ((-1081 |#2|) |#1|)) (-15 -2259 (|#1| |#1| (-1081 |#2|))) (-15 -1372 ((-108) |#1|)) (-15 -1705 (|#1|)) (-15 -1945 (|#1| |#1| (-850))) (-15 -1269 (|#1| |#1| (-850))) (-15 -4199 ((-1081 |#1|) |#1| (-850))) (-15 -1945 (|#2| |#1|)) (-15 -1269 (|#2| |#1|)) (-15 -2487 ((-850) |#1|)) (-15 -1713 ((-850))) (-15 -4199 ((-1081 |#2|) |#1|)) (-15 -3225 (|#1| (-1166 |#2|))) (-15 -3510 ((-628 |#2|) (-1166 |#1|))) (-15 -3510 ((-1166 |#2|) |#1|)) (-15 -1593 ((-708))) (-15 -1713 ((-770 (-850)))) (-15 -2487 ((-770 (-850)) |#1|)) (-15 -2400 ((-108) |#1|)) (-15 -1711 ((-108) |#1|)) (-15 -3222 ((-126)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2298 (($ $) 40)) (-3007 (((-108) $) 38)) (-2400 (((-108) $) 94)) (-1593 (((-708)) 90)) (-1945 ((|#1| $) 140) (($ $ (-850)) 137 (|has| |#1| (-343)))) (-3833 (((-1094 (-850) (-708)) (-522)) 122 (|has| |#1| (-343)))) (-2265 (((-3 $ "failed") $ $) 19)) (-2961 (($ $) 73)) (-3133 (((-393 $) $) 72)) (-2805 (((-108) $ $) 59)) (-1685 (((-708)) 112 (|has| |#1| (-343)))) (-3367 (($) 17 T CONST)) (-3700 (((-3 |#1| "failed") $) 101)) (-1478 ((|#1| $) 100)) (-3225 (($ (-1166 |#1|)) 146)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-343)))) (-2333 (($ $ $) 55)) (-3920 (((-3 $ "failed") $) 34)) (-3344 (($) 109 (|has| |#1| (-343)))) (-2303 (($ $ $) 56)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 51)) (-2160 (($) 124 (|has| |#1| (-343)))) (-2087 (((-108) $) 125 (|has| |#1| (-343)))) (-1380 (($ $ (-708)) 87 (-3844 (|has| |#1| (-133)) (|has| |#1| (-343)))) (($ $) 86 (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2725 (((-108) $) 71)) (-3872 (((-850) $) 127 (|has| |#1| (-343))) (((-770 (-850)) $) 84 (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2859 (((-108) $) 31)) (-3768 (($) 135 (|has| |#1| (-343)))) (-1372 (((-108) $) 134 (|has| |#1| (-343)))) (-1269 ((|#1| $) 141) (($ $ (-850)) 138 (|has| |#1| (-343)))) (-4208 (((-3 $ "failed") $) 113 (|has| |#1| (-343)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-4199 (((-1081 |#1|) $) 145) (((-1081 $) $ (-850)) 139 (|has| |#1| (-343)))) (-1475 (((-850) $) 110 (|has| |#1| (-343)))) (-3657 (((-1081 |#1|) $) 131 (|has| |#1| (-343)))) (-3723 (((-1081 |#1|) $) 130 (|has| |#1| (-343))) (((-3 (-1081 |#1|) "failed") $ $) 129 (|has| |#1| (-343)))) (-2259 (($ $ (-1081 |#1|)) 132 (|has| |#1| (-343)))) (-2267 (($ $ $) 46) (($ (-588 $)) 45)) (-2311 (((-1068) $) 9)) (-3193 (($ $) 70)) (-3937 (($) 114 (|has| |#1| (-343)) CONST)) (-2882 (($ (-850)) 111 (|has| |#1| (-343)))) (-2804 (((-108) $) 93)) (-4174 (((-1032) $) 10)) (-1368 (($) 133 (|has| |#1| (-343)))) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2308 (($ $ $) 48) (($ (-588 $)) 47)) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) 121 (|has| |#1| (-343)))) (-2006 (((-393 $) $) 74)) (-1713 (((-770 (-850))) 91) (((-850)) 143)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2276 (((-3 $ "failed") $ $) 42)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-4031 (((-708) $) 58)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 57)) (-1304 (((-708) $) 126 (|has| |#1| (-343))) (((-3 (-708) "failed") $ $) 85 (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-3222 (((-126)) 99)) (-2731 (($ $) 118 (|has| |#1| (-343))) (($ $ (-708)) 116 (|has| |#1| (-343)))) (-2487 (((-770 (-850)) $) 92) (((-850) $) 142)) (-1579 (((-1081 |#1|)) 144)) (-2670 (($) 123 (|has| |#1| (-343)))) (-1705 (($) 136 (|has| |#1| (-343)))) (-3510 (((-1166 |#1|) $) 148) (((-628 |#1|) (-1166 $)) 147)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) 120 (|has| |#1| (-343)))) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-382 (-522))) 65) (($ |#1|) 102)) (-3040 (($ $) 119 (|has| |#1| (-343))) (((-3 $ "failed") $) 83 (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2742 (((-708)) 29)) (-2905 (((-1166 $)) 150) (((-1166 $) (-850)) 149)) (-1407 (((-108) $ $) 39)) (-1711 (((-108) $) 95)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 69)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2938 (($ $) 89 (|has| |#1| (-343))) (($ $ (-708)) 88 (|has| |#1| (-343)))) (-2252 (($ $) 117 (|has| |#1| (-343))) (($ $ (-708)) 115 (|has| |#1| (-343)))) (-1562 (((-108) $ $) 6)) (-1682 (($ $ $) 64) (($ $ |#1|) 98)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 68)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 67) (($ (-382 (-522)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96))) -(((-304 |#1|) (-1197) (-338)) (T -304)) -((-2905 (*1 *2) (-12 (-4 *3 (-338)) (-5 *2 (-1166 *1)) (-4 *1 (-304 *3)))) (-2905 (*1 *2 *3) (-12 (-5 *3 (-850)) (-4 *4 (-338)) (-5 *2 (-1166 *1)) (-4 *1 (-304 *4)))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-5 *2 (-1166 *3)))) (-3510 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-304 *4)) (-4 *4 (-338)) (-5 *2 (-628 *4)))) (-3225 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-338)) (-4 *1 (-304 *3)))) (-4199 (*1 *2 *1) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-5 *2 (-1081 *3)))) (-1579 (*1 *2) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-5 *2 (-1081 *3)))) (-1713 (*1 *2) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-5 *2 (-850)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-5 *2 (-850)))) (-1269 (*1 *2 *1) (-12 (-4 *1 (-304 *2)) (-4 *2 (-338)))) (-1945 (*1 *2 *1) (-12 (-4 *1 (-304 *2)) (-4 *2 (-338)))) (-4199 (*1 *2 *1 *3) (-12 (-5 *3 (-850)) (-4 *4 (-343)) (-4 *4 (-338)) (-5 *2 (-1081 *1)) (-4 *1 (-304 *4)))) (-1269 (*1 *1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343)))) (-1945 (*1 *1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343)))) (-1705 (*1 *1) (-12 (-4 *1 (-304 *2)) (-4 *2 (-343)) (-4 *2 (-338)))) (-3768 (*1 *1) (-12 (-4 *1 (-304 *2)) (-4 *2 (-343)) (-4 *2 (-338)))) (-1372 (*1 *2 *1) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343)) (-5 *2 (-108)))) (-1368 (*1 *1) (-12 (-4 *1 (-304 *2)) (-4 *2 (-343)) (-4 *2 (-338)))) (-2259 (*1 *1 *1 *2) (-12 (-5 *2 (-1081 *3)) (-4 *3 (-343)) (-4 *1 (-304 *3)) (-4 *3 (-338)))) (-3657 (*1 *2 *1) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343)) (-5 *2 (-1081 *3)))) (-3723 (*1 *2 *1) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343)) (-5 *2 (-1081 *3)))) (-3723 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343)) (-5 *2 (-1081 *3))))) -(-13 (-1183 |t#1|) (-962 |t#1|) (-10 -8 (-15 -2905 ((-1166 $))) (-15 -2905 ((-1166 $) (-850))) (-15 -3510 ((-1166 |t#1|) $)) (-15 -3510 ((-628 |t#1|) (-1166 $))) (-15 -3225 ($ (-1166 |t#1|))) (-15 -4199 ((-1081 |t#1|) $)) (-15 -1579 ((-1081 |t#1|))) (-15 -1713 ((-850))) (-15 -2487 ((-850) $)) (-15 -1269 (|t#1| $)) (-15 -1945 (|t#1| $)) (IF (|has| |t#1| (-343)) (PROGN (-6 (-324)) (-15 -4199 ((-1081 $) $ (-850))) (-15 -1269 ($ $ (-850))) (-15 -1945 ($ $ (-850))) (-15 -1705 ($)) (-15 -3768 ($)) (-15 -1372 ((-108) $)) (-15 -1368 ($)) (-15 -2259 ($ $ (-1081 |t#1|))) (-15 -3657 ((-1081 |t#1|) $)) (-15 -3723 ((-1081 |t#1|) $)) (-15 -3723 ((-3 (-1081 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3844 (|has| |#1| (-343)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) . T) ((-210) |has| |#1| (-343)) ((-220) . T) ((-266) . T) ((-283) . T) ((-1183 |#1|) . T) ((-338) . T) ((-377) -3844 (|has| |#1| (-343)) (|has| |#1| (-133))) ((-343) |has| |#1| (-343)) ((-324) |has| |#1| (-343)) ((-426) . T) ((-514) . T) ((-590 #0#) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #0#) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-849) . T) ((-962 |#1|) . T) ((-977 #0#) . T) ((-977 |#1|) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1061) |has| |#1| (-343)) ((-1124) . T) ((-1173 |#1|) . T)) -((-1419 (((-108) $ $) NIL)) (-1446 (($ (-1084) $) 88)) (-2910 (($) 76)) (-3318 (((-1032) (-1032)) 11)) (-4059 (($) 77)) (-1825 (($) 90) (($ (-291 (-637))) 96) (($ (-291 (-639))) 93) (($ (-291 (-632))) 99) (($ (-291 (-354))) 105) (($ (-291 (-522))) 102) (($ (-291 (-154 (-354)))) 108)) (-3897 (($ (-1084) $) 89)) (-1851 (($ (-588 (-792))) 79)) (-2974 (((-1171) $) 73)) (-2720 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-3276 (($ (-1032)) 45)) (-1675 (((-1018) $) 25)) (-1236 (($ (-1007 (-881 (-522))) $) 85) (($ (-1007 (-881 (-522))) (-881 (-522)) $) 86)) (-1334 (($ (-1032)) 87)) (-2744 (($ (-1084) $) 110) (($ (-1084) $ $) 111)) (-2661 (($ (-1085) (-588 (-1085))) 75)) (-1255 (($ (-1068)) 82) (($ (-588 (-1068))) 80)) (-2217 (((-792) $) 113)) (-2077 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1085)) (|:| |arrayIndex| (-588 (-881 (-522)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1610 (-792)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1085)) (|:| |rand| (-792)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1084)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3494 (-108)) (|:| -3526 (-2 (|:| |ints2Floats?| (-108)) (|:| -1610 (-792)))))) (|:| |blockBranch| (-588 $)) (|:| |commentBranch| (-588 (-1068))) (|:| |callBranch| (-1068)) (|:| |forBranch| (-2 (|:| -2321 (-1007 (-881 (-522)))) (|:| |span| (-881 (-522))) (|:| |body| $))) (|:| |labelBranch| (-1032)) (|:| |loopBranch| (-2 (|:| |switch| (-1084)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -3015 (-1085)) (|:| |contents| (-588 (-1085))))) (|:| |printBranch| (-588 (-792)))) $) 37)) (-1911 (($ (-1068)) 182)) (-3251 (($ (-588 $)) 109)) (-3849 (($ (-1085) (-1068)) 115) (($ (-1085) (-291 (-639))) 155) (($ (-1085) (-291 (-637))) 156) (($ (-1085) (-291 (-632))) 157) (($ (-1085) (-628 (-639))) 118) (($ (-1085) (-628 (-637))) 121) (($ (-1085) (-628 (-632))) 124) (($ (-1085) (-1166 (-639))) 127) (($ (-1085) (-1166 (-637))) 130) (($ (-1085) (-1166 (-632))) 133) (($ (-1085) (-628 (-291 (-639)))) 136) (($ (-1085) (-628 (-291 (-637)))) 139) (($ (-1085) (-628 (-291 (-632)))) 142) (($ (-1085) (-1166 (-291 (-639)))) 145) (($ (-1085) (-1166 (-291 (-637)))) 148) (($ (-1085) (-1166 (-291 (-632)))) 151) (($ (-1085) (-588 (-881 (-522))) (-291 (-639))) 152) (($ (-1085) (-588 (-881 (-522))) (-291 (-637))) 153) (($ (-1085) (-588 (-881 (-522))) (-291 (-632))) 154) (($ (-1085) (-291 (-522))) 179) (($ (-1085) (-291 (-354))) 180) (($ (-1085) (-291 (-154 (-354)))) 181) (($ (-1085) (-628 (-291 (-522)))) 160) (($ (-1085) (-628 (-291 (-354)))) 163) (($ (-1085) (-628 (-291 (-154 (-354))))) 166) (($ (-1085) (-1166 (-291 (-522)))) 169) (($ (-1085) (-1166 (-291 (-354)))) 172) (($ (-1085) (-1166 (-291 (-154 (-354))))) 175) (($ (-1085) (-588 (-881 (-522))) (-291 (-522))) 176) (($ (-1085) (-588 (-881 (-522))) (-291 (-354))) 177) (($ (-1085) (-588 (-881 (-522))) (-291 (-154 (-354)))) 178)) (-1562 (((-108) $ $) NIL))) -(((-305) (-13 (-1014) (-10 -8 (-15 -2217 ((-792) $)) (-15 -1236 ($ (-1007 (-881 (-522))) $)) (-15 -1236 ($ (-1007 (-881 (-522))) (-881 (-522)) $)) (-15 -1446 ($ (-1084) $)) (-15 -3897 ($ (-1084) $)) (-15 -3276 ($ (-1032))) (-15 -1334 ($ (-1032))) (-15 -1255 ($ (-1068))) (-15 -1255 ($ (-588 (-1068)))) (-15 -1911 ($ (-1068))) (-15 -1825 ($)) (-15 -1825 ($ (-291 (-637)))) (-15 -1825 ($ (-291 (-639)))) (-15 -1825 ($ (-291 (-632)))) (-15 -1825 ($ (-291 (-354)))) (-15 -1825 ($ (-291 (-522)))) (-15 -1825 ($ (-291 (-154 (-354))))) (-15 -2744 ($ (-1084) $)) (-15 -2744 ($ (-1084) $ $)) (-15 -3849 ($ (-1085) (-1068))) (-15 -3849 ($ (-1085) (-291 (-639)))) (-15 -3849 ($ (-1085) (-291 (-637)))) (-15 -3849 ($ (-1085) (-291 (-632)))) (-15 -3849 ($ (-1085) (-628 (-639)))) (-15 -3849 ($ (-1085) (-628 (-637)))) (-15 -3849 ($ (-1085) (-628 (-632)))) (-15 -3849 ($ (-1085) (-1166 (-639)))) (-15 -3849 ($ (-1085) (-1166 (-637)))) (-15 -3849 ($ (-1085) (-1166 (-632)))) (-15 -3849 ($ (-1085) (-628 (-291 (-639))))) (-15 -3849 ($ (-1085) (-628 (-291 (-637))))) (-15 -3849 ($ (-1085) (-628 (-291 (-632))))) (-15 -3849 ($ (-1085) (-1166 (-291 (-639))))) (-15 -3849 ($ (-1085) (-1166 (-291 (-637))))) (-15 -3849 ($ (-1085) (-1166 (-291 (-632))))) (-15 -3849 ($ (-1085) (-588 (-881 (-522))) (-291 (-639)))) (-15 -3849 ($ (-1085) (-588 (-881 (-522))) (-291 (-637)))) (-15 -3849 ($ (-1085) (-588 (-881 (-522))) (-291 (-632)))) (-15 -3849 ($ (-1085) (-291 (-522)))) (-15 -3849 ($ (-1085) (-291 (-354)))) (-15 -3849 ($ (-1085) (-291 (-154 (-354))))) (-15 -3849 ($ (-1085) (-628 (-291 (-522))))) (-15 -3849 ($ (-1085) (-628 (-291 (-354))))) (-15 -3849 ($ (-1085) (-628 (-291 (-154 (-354)))))) (-15 -3849 ($ (-1085) (-1166 (-291 (-522))))) (-15 -3849 ($ (-1085) (-1166 (-291 (-354))))) (-15 -3849 ($ (-1085) (-1166 (-291 (-154 (-354)))))) (-15 -3849 ($ (-1085) (-588 (-881 (-522))) (-291 (-522)))) (-15 -3849 ($ (-1085) (-588 (-881 (-522))) (-291 (-354)))) (-15 -3849 ($ (-1085) (-588 (-881 (-522))) (-291 (-154 (-354))))) (-15 -3251 ($ (-588 $))) (-15 -2910 ($)) (-15 -4059 ($)) (-15 -1851 ($ (-588 (-792)))) (-15 -2661 ($ (-1085) (-588 (-1085)))) (-15 -2720 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2077 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1085)) (|:| |arrayIndex| (-588 (-881 (-522)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1610 (-792)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1085)) (|:| |rand| (-792)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1084)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3494 (-108)) (|:| -3526 (-2 (|:| |ints2Floats?| (-108)) (|:| -1610 (-792)))))) (|:| |blockBranch| (-588 $)) (|:| |commentBranch| (-588 (-1068))) (|:| |callBranch| (-1068)) (|:| |forBranch| (-2 (|:| -2321 (-1007 (-881 (-522)))) (|:| |span| (-881 (-522))) (|:| |body| $))) (|:| |labelBranch| (-1032)) (|:| |loopBranch| (-2 (|:| |switch| (-1084)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -3015 (-1085)) (|:| |contents| (-588 (-1085))))) (|:| |printBranch| (-588 (-792)))) $)) (-15 -2974 ((-1171) $)) (-15 -1675 ((-1018) $)) (-15 -3318 ((-1032) (-1032)))))) (T -305)) -((-2217 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-305)))) (-1236 (*1 *1 *2 *1) (-12 (-5 *2 (-1007 (-881 (-522)))) (-5 *1 (-305)))) (-1236 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1007 (-881 (-522)))) (-5 *3 (-881 (-522))) (-5 *1 (-305)))) (-1446 (*1 *1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-305)))) (-3897 (*1 *1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-305)))) (-3276 (*1 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-305)))) (-1334 (*1 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-305)))) (-1255 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-305)))) (-1255 (*1 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-305)))) (-1911 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-305)))) (-1825 (*1 *1) (-5 *1 (-305))) (-1825 (*1 *1 *2) (-12 (-5 *2 (-291 (-637))) (-5 *1 (-305)))) (-1825 (*1 *1 *2) (-12 (-5 *2 (-291 (-639))) (-5 *1 (-305)))) (-1825 (*1 *1 *2) (-12 (-5 *2 (-291 (-632))) (-5 *1 (-305)))) (-1825 (*1 *1 *2) (-12 (-5 *2 (-291 (-354))) (-5 *1 (-305)))) (-1825 (*1 *1 *2) (-12 (-5 *2 (-291 (-522))) (-5 *1 (-305)))) (-1825 (*1 *1 *2) (-12 (-5 *2 (-291 (-154 (-354)))) (-5 *1 (-305)))) (-2744 (*1 *1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-305)))) (-2744 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1068)) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-639))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-637))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-632))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-639))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-637))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-632))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-639))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-637))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-632))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-639)))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-637)))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-632)))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-639)))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-637)))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-632)))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522)))) (-5 *4 (-291 (-639))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522)))) (-5 *4 (-291 (-637))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522)))) (-5 *4 (-291 (-632))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-522))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-354))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-154 (-354)))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-522)))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-354)))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-154 (-354))))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-522)))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-354)))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-154 (-354))))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522)))) (-5 *4 (-291 (-522))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522)))) (-5 *4 (-291 (-354))) (-5 *1 (-305)))) (-3849 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522)))) (-5 *4 (-291 (-154 (-354)))) (-5 *1 (-305)))) (-3251 (*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-5 *1 (-305)))) (-2910 (*1 *1) (-5 *1 (-305))) (-4059 (*1 *1) (-5 *1 (-305))) (-1851 (*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-305)))) (-2661 (*1 *1 *2 *3) (-12 (-5 *3 (-588 (-1085))) (-5 *2 (-1085)) (-5 *1 (-305)))) (-2720 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-305)))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1085)) (|:| |arrayIndex| (-588 (-881 (-522)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1610 (-792)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1085)) (|:| |rand| (-792)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1084)) (|:| |thenClause| (-305)) (|:| |elseClause| (-305)))) (|:| |returnBranch| (-2 (|:| -3494 (-108)) (|:| -3526 (-2 (|:| |ints2Floats?| (-108)) (|:| -1610 (-792)))))) (|:| |blockBranch| (-588 (-305))) (|:| |commentBranch| (-588 (-1068))) (|:| |callBranch| (-1068)) (|:| |forBranch| (-2 (|:| -2321 (-1007 (-881 (-522)))) (|:| |span| (-881 (-522))) (|:| |body| (-305)))) (|:| |labelBranch| (-1032)) (|:| |loopBranch| (-2 (|:| |switch| (-1084)) (|:| |body| (-305)))) (|:| |commonBranch| (-2 (|:| -3015 (-1085)) (|:| |contents| (-588 (-1085))))) (|:| |printBranch| (-588 (-792))))) (-5 *1 (-305)))) (-2974 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-305)))) (-1675 (*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-305)))) (-3318 (*1 *2 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-305))))) -(-13 (-1014) (-10 -8 (-15 -2217 ((-792) $)) (-15 -1236 ($ (-1007 (-881 (-522))) $)) (-15 -1236 ($ (-1007 (-881 (-522))) (-881 (-522)) $)) (-15 -1446 ($ (-1084) $)) (-15 -3897 ($ (-1084) $)) (-15 -3276 ($ (-1032))) (-15 -1334 ($ (-1032))) (-15 -1255 ($ (-1068))) (-15 -1255 ($ (-588 (-1068)))) (-15 -1911 ($ (-1068))) (-15 -1825 ($)) (-15 -1825 ($ (-291 (-637)))) (-15 -1825 ($ (-291 (-639)))) (-15 -1825 ($ (-291 (-632)))) (-15 -1825 ($ (-291 (-354)))) (-15 -1825 ($ (-291 (-522)))) (-15 -1825 ($ (-291 (-154 (-354))))) (-15 -2744 ($ (-1084) $)) (-15 -2744 ($ (-1084) $ $)) (-15 -3849 ($ (-1085) (-1068))) (-15 -3849 ($ (-1085) (-291 (-639)))) (-15 -3849 ($ (-1085) (-291 (-637)))) (-15 -3849 ($ (-1085) (-291 (-632)))) (-15 -3849 ($ (-1085) (-628 (-639)))) (-15 -3849 ($ (-1085) (-628 (-637)))) (-15 -3849 ($ (-1085) (-628 (-632)))) (-15 -3849 ($ (-1085) (-1166 (-639)))) (-15 -3849 ($ (-1085) (-1166 (-637)))) (-15 -3849 ($ (-1085) (-1166 (-632)))) (-15 -3849 ($ (-1085) (-628 (-291 (-639))))) (-15 -3849 ($ (-1085) (-628 (-291 (-637))))) (-15 -3849 ($ (-1085) (-628 (-291 (-632))))) (-15 -3849 ($ (-1085) (-1166 (-291 (-639))))) (-15 -3849 ($ (-1085) (-1166 (-291 (-637))))) (-15 -3849 ($ (-1085) (-1166 (-291 (-632))))) (-15 -3849 ($ (-1085) (-588 (-881 (-522))) (-291 (-639)))) (-15 -3849 ($ (-1085) (-588 (-881 (-522))) (-291 (-637)))) (-15 -3849 ($ (-1085) (-588 (-881 (-522))) (-291 (-632)))) (-15 -3849 ($ (-1085) (-291 (-522)))) (-15 -3849 ($ (-1085) (-291 (-354)))) (-15 -3849 ($ (-1085) (-291 (-154 (-354))))) (-15 -3849 ($ (-1085) (-628 (-291 (-522))))) (-15 -3849 ($ (-1085) (-628 (-291 (-354))))) (-15 -3849 ($ (-1085) (-628 (-291 (-154 (-354)))))) (-15 -3849 ($ (-1085) (-1166 (-291 (-522))))) (-15 -3849 ($ (-1085) (-1166 (-291 (-354))))) (-15 -3849 ($ (-1085) (-1166 (-291 (-154 (-354)))))) (-15 -3849 ($ (-1085) (-588 (-881 (-522))) (-291 (-522)))) (-15 -3849 ($ (-1085) (-588 (-881 (-522))) (-291 (-354)))) (-15 -3849 ($ (-1085) (-588 (-881 (-522))) (-291 (-154 (-354))))) (-15 -3251 ($ (-588 $))) (-15 -2910 ($)) (-15 -4059 ($)) (-15 -1851 ($ (-588 (-792)))) (-15 -2661 ($ (-1085) (-588 (-1085)))) (-15 -2720 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2077 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1085)) (|:| |arrayIndex| (-588 (-881 (-522)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1610 (-792)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1085)) (|:| |rand| (-792)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1084)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3494 (-108)) (|:| -3526 (-2 (|:| |ints2Floats?| (-108)) (|:| -1610 (-792)))))) (|:| |blockBranch| (-588 $)) (|:| |commentBranch| (-588 (-1068))) (|:| |callBranch| (-1068)) (|:| |forBranch| (-2 (|:| -2321 (-1007 (-881 (-522)))) (|:| |span| (-881 (-522))) (|:| |body| $))) (|:| |labelBranch| (-1032)) (|:| |loopBranch| (-2 (|:| |switch| (-1084)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -3015 (-1085)) (|:| |contents| (-588 (-1085))))) (|:| |printBranch| (-588 (-792)))) $)) (-15 -2974 ((-1171) $)) (-15 -1675 ((-1018) $)) (-15 -3318 ((-1032) (-1032))))) -((-1419 (((-108) $ $) NIL)) (-3523 (((-108) $) 11)) (-2906 (($ |#1|) 8)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2915 (($ |#1|) 9)) (-2217 (((-792) $) 17)) (-2636 ((|#1| $) 12)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 19))) -(((-306 |#1|) (-13 (-784) (-10 -8 (-15 -2906 ($ |#1|)) (-15 -2915 ($ |#1|)) (-15 -3523 ((-108) $)) (-15 -2636 (|#1| $)))) (-784)) (T -306)) -((-2906 (*1 *1 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-784)))) (-2915 (*1 *1 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-784)))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-306 *3)) (-4 *3 (-784)))) (-2636 (*1 *2 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-784))))) -(-13 (-784) (-10 -8 (-15 -2906 ($ |#1|)) (-15 -2915 ($ |#1|)) (-15 -3523 ((-108) $)) (-15 -2636 (|#1| $)))) -((-3972 (((-305) (-1085) (-881 (-522))) 22)) (-3845 (((-305) (-1085) (-881 (-522))) 26)) (-3233 (((-305) (-1085) (-1007 (-881 (-522))) (-1007 (-881 (-522)))) 25) (((-305) (-1085) (-881 (-522)) (-881 (-522))) 23)) (-3725 (((-305) (-1085) (-881 (-522))) 30))) -(((-307) (-10 -7 (-15 -3972 ((-305) (-1085) (-881 (-522)))) (-15 -3233 ((-305) (-1085) (-881 (-522)) (-881 (-522)))) (-15 -3233 ((-305) (-1085) (-1007 (-881 (-522))) (-1007 (-881 (-522))))) (-15 -3845 ((-305) (-1085) (-881 (-522)))) (-15 -3725 ((-305) (-1085) (-881 (-522)))))) (T -307)) -((-3725 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-881 (-522))) (-5 *2 (-305)) (-5 *1 (-307)))) (-3845 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-881 (-522))) (-5 *2 (-305)) (-5 *1 (-307)))) (-3233 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-1007 (-881 (-522)))) (-5 *2 (-305)) (-5 *1 (-307)))) (-3233 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-881 (-522))) (-5 *2 (-305)) (-5 *1 (-307)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-881 (-522))) (-5 *2 (-305)) (-5 *1 (-307))))) -(-10 -7 (-15 -3972 ((-305) (-1085) (-881 (-522)))) (-15 -3233 ((-305) (-1085) (-881 (-522)) (-881 (-522)))) (-15 -3233 ((-305) (-1085) (-1007 (-881 (-522))) (-1007 (-881 (-522))))) (-15 -3845 ((-305) (-1085) (-881 (-522)))) (-15 -3725 ((-305) (-1085) (-881 (-522))))) -((-3810 (((-311 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-311 |#1| |#2| |#3| |#4|)) 31))) -(((-308 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3810 ((-311 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-311 |#1| |#2| |#3| |#4|)))) (-338) (-1142 |#1|) (-1142 (-382 |#2|)) (-317 |#1| |#2| |#3|) (-338) (-1142 |#5|) (-1142 (-382 |#6|)) (-317 |#5| |#6| |#7|)) (T -308)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-311 *5 *6 *7 *8)) (-4 *5 (-338)) (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6))) (-4 *8 (-317 *5 *6 *7)) (-4 *9 (-338)) (-4 *10 (-1142 *9)) (-4 *11 (-1142 (-382 *10))) (-5 *2 (-311 *9 *10 *11 *12)) (-5 *1 (-308 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-317 *9 *10 *11))))) -(-10 -7 (-15 -3810 ((-311 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-311 |#1| |#2| |#3| |#4|)))) -((-1536 (((-108) $) 14))) -(((-309 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1536 ((-108) |#1|))) (-310 |#2| |#3| |#4| |#5|) (-338) (-1142 |#2|) (-1142 (-382 |#3|)) (-317 |#2| |#3| |#4|)) (T -309)) -NIL -(-10 -8 (-15 -1536 ((-108) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-2153 (($ $) 26)) (-1536 (((-108) $) 25)) (-2311 (((-1068) $) 9)) (-3129 (((-388 |#2| (-382 |#2|) |#3| |#4|) $) 32)) (-4174 (((-1032) $) 10)) (-1368 (((-3 |#4| "failed") $) 24)) (-2416 (($ (-388 |#2| (-382 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-522)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-2327 (((-2 (|:| -1868 (-388 |#2| (-382 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2217 (((-792) $) 11)) (-3697 (($) 18 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20))) -(((-310 |#1| |#2| |#3| |#4|) (-1197) (-338) (-1142 |t#1|) (-1142 (-382 |t#2|)) (-317 |t#1| |t#2| |t#3|)) (T -310)) -((-3129 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5 *6)) (-4 *3 (-338)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 *3 *4 *5)) (-5 *2 (-388 *4 (-382 *4) *5 *6)))) (-2416 (*1 *1 *2) (-12 (-5 *2 (-388 *4 (-382 *4) *5 *6)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 *3 *4 *5)) (-4 *3 (-338)) (-4 *1 (-310 *3 *4 *5 *6)))) (-2416 (*1 *1 *2) (-12 (-4 *3 (-338)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-4 *1 (-310 *3 *4 *5 *2)) (-4 *2 (-317 *3 *4 *5)))) (-2416 (*1 *1 *2 *2) (-12 (-4 *2 (-338)) (-4 *3 (-1142 *2)) (-4 *4 (-1142 (-382 *3))) (-4 *1 (-310 *2 *3 *4 *5)) (-4 *5 (-317 *2 *3 *4)))) (-2416 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-522)) (-4 *2 (-338)) (-4 *4 (-1142 *2)) (-4 *5 (-1142 (-382 *4))) (-4 *1 (-310 *2 *4 *5 *6)) (-4 *6 (-317 *2 *4 *5)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5 *6)) (-4 *3 (-338)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 *3 *4 *5)) (-5 *2 (-2 (|:| -1868 (-388 *4 (-382 *4) *5 *6)) (|:| |principalPart| *6))))) (-2153 (*1 *1 *1) (-12 (-4 *1 (-310 *2 *3 *4 *5)) (-4 *2 (-338)) (-4 *3 (-1142 *2)) (-4 *4 (-1142 (-382 *3))) (-4 *5 (-317 *2 *3 *4)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5 *6)) (-4 *3 (-338)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 *3 *4 *5)) (-5 *2 (-108)))) (-1368 (*1 *2 *1) (|partial| -12 (-4 *1 (-310 *3 *4 *5 *2)) (-4 *3 (-338)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-4 *2 (-317 *3 *4 *5)))) (-2416 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-338)) (-4 *3 (-1142 *4)) (-4 *5 (-1142 (-382 *3))) (-4 *1 (-310 *4 *3 *5 *2)) (-4 *2 (-317 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -3129 ((-388 |t#2| (-382 |t#2|) |t#3| |t#4|) $)) (-15 -2416 ($ (-388 |t#2| (-382 |t#2|) |t#3| |t#4|))) (-15 -2416 ($ |t#4|)) (-15 -2416 ($ |t#1| |t#1|)) (-15 -2416 ($ |t#1| |t#1| (-522))) (-15 -2327 ((-2 (|:| -1868 (-388 |t#2| (-382 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2153 ($ $)) (-15 -1536 ((-108) $)) (-15 -1368 ((-3 |t#4| "failed") $)) (-15 -2416 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-2153 (($ $) 32)) (-1536 (((-108) $) NIL)) (-2311 (((-1068) $) NIL)) (-1718 (((-1166 |#4|) $) 124)) (-3129 (((-388 |#2| (-382 |#2|) |#3| |#4|) $) 30)) (-4174 (((-1032) $) NIL)) (-1368 (((-3 |#4| "failed") $) 35)) (-3545 (((-1166 |#4|) $) 117)) (-2416 (($ (-388 |#2| (-382 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-522)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-2327 (((-2 (|:| -1868 (-388 |#2| (-382 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-2217 (((-792) $) 17)) (-3697 (($) 14 T CONST)) (-1562 (((-108) $ $) 20)) (-1672 (($ $) 27) (($ $ $) NIL)) (-1661 (($ $ $) 25)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 23))) -(((-311 |#1| |#2| |#3| |#4|) (-13 (-310 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3545 ((-1166 |#4|) $)) (-15 -1718 ((-1166 |#4|) $)))) (-338) (-1142 |#1|) (-1142 (-382 |#2|)) (-317 |#1| |#2| |#3|)) (T -311)) -((-3545 (*1 *2 *1) (-12 (-4 *3 (-338)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-1166 *6)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *6 (-317 *3 *4 *5)))) (-1718 (*1 *2 *1) (-12 (-4 *3 (-338)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-1166 *6)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *6 (-317 *3 *4 *5))))) -(-13 (-310 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3545 ((-1166 |#4|) $)) (-15 -1718 ((-1166 |#4|) $)))) -((-2330 (($ $ (-1085) |#2|) NIL) (($ $ (-588 (-1085)) (-588 |#2|)) 18) (($ $ (-588 (-270 |#2|))) 14) (($ $ (-270 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-588 |#2|) (-588 |#2|)) NIL)) (-2683 (($ $ |#2|) 11))) -(((-312 |#1| |#2|) (-10 -8 (-15 -2683 (|#1| |#1| |#2|)) (-15 -2330 (|#1| |#1| (-588 |#2|) (-588 |#2|))) (-15 -2330 (|#1| |#1| |#2| |#2|)) (-15 -2330 (|#1| |#1| (-270 |#2|))) (-15 -2330 (|#1| |#1| (-588 (-270 |#2|)))) (-15 -2330 (|#1| |#1| (-588 (-1085)) (-588 |#2|))) (-15 -2330 (|#1| |#1| (-1085) |#2|))) (-313 |#2|) (-1014)) (T -312)) -NIL -(-10 -8 (-15 -2683 (|#1| |#1| |#2|)) (-15 -2330 (|#1| |#1| (-588 |#2|) (-588 |#2|))) (-15 -2330 (|#1| |#1| |#2| |#2|)) (-15 -2330 (|#1| |#1| (-270 |#2|))) (-15 -2330 (|#1| |#1| (-588 (-270 |#2|)))) (-15 -2330 (|#1| |#1| (-588 (-1085)) (-588 |#2|))) (-15 -2330 (|#1| |#1| (-1085) |#2|))) -((-3810 (($ (-1 |#1| |#1|) $) 6)) (-2330 (($ $ (-1085) |#1|) 17 (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) 16 (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-588 (-270 |#1|))) 15 (|has| |#1| (-285 |#1|))) (($ $ (-270 |#1|)) 14 (|has| |#1| (-285 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-285 |#1|))) (($ $ (-588 |#1|) (-588 |#1|)) 12 (|has| |#1| (-285 |#1|)))) (-2683 (($ $ |#1|) 11 (|has| |#1| (-262 |#1| |#1|))))) -(((-313 |#1|) (-1197) (-1014)) (T -313)) -((-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-313 *3)) (-4 *3 (-1014))))) -(-13 (-10 -8 (-15 -3810 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-262 |t#1| |t#1|)) (-6 (-262 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-285 |t#1|)) (-6 (-285 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-483 (-1085) |t#1|)) (-6 (-483 (-1085) |t#1|)) |%noBranch|))) -(((-262 |#1| $) |has| |#1| (-262 |#1| |#1|)) ((-285 |#1|) |has| |#1| (-285 |#1|)) ((-483 (-1085) |#1|) |has| |#1| (-483 (-1085) |#1|)) ((-483 |#1| |#1|) |has| |#1| (-285 |#1|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3533 (((-588 (-1085)) $) NIL)) (-1616 (((-108)) 88) (((-108) (-108)) 89)) (-1974 (((-588 (-561 $)) $) NIL)) (-3044 (($ $) NIL)) (-2923 (($ $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-1847 (($ $ (-270 $)) NIL) (($ $ (-588 (-270 $))) NIL) (($ $ (-588 (-561 $)) (-588 $)) NIL)) (-2016 (($ $) NIL)) (-3023 (($ $) NIL)) (-2906 (($ $) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-561 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-291 |#3|)) 70) (((-3 $ "failed") (-1085)) 94) (((-3 $ "failed") (-291 (-522))) 57 (|has| |#3| (-962 (-522)))) (((-3 $ "failed") (-382 (-881 (-522)))) 63 (|has| |#3| (-962 (-522)))) (((-3 $ "failed") (-881 (-522))) 58 (|has| |#3| (-962 (-522)))) (((-3 $ "failed") (-291 (-354))) 75 (|has| |#3| (-962 (-354)))) (((-3 $ "failed") (-382 (-881 (-354)))) 81 (|has| |#3| (-962 (-354)))) (((-3 $ "failed") (-881 (-354))) 76 (|has| |#3| (-962 (-354))))) (-1478 (((-561 $) $) NIL) ((|#3| $) NIL) (($ (-291 |#3|)) 71) (($ (-1085)) 95) (($ (-291 (-522))) 59 (|has| |#3| (-962 (-522)))) (($ (-382 (-881 (-522)))) 64 (|has| |#3| (-962 (-522)))) (($ (-881 (-522))) 60 (|has| |#3| (-962 (-522)))) (($ (-291 (-354))) 77 (|has| |#3| (-962 (-354)))) (($ (-382 (-881 (-354)))) 82 (|has| |#3| (-962 (-354)))) (($ (-881 (-354))) 78 (|has| |#3| (-962 (-354))))) (-3920 (((-3 $ "failed") $) NIL)) (-2980 (($) 10)) (-2930 (($ $) NIL) (($ (-588 $)) NIL)) (-2896 (((-588 (-110)) $) NIL)) (-1771 (((-110) (-110)) NIL)) (-2859 (((-108) $) NIL)) (-3077 (((-108) $) NIL (|has| $ (-962 (-522))))) (-4185 (((-1081 $) (-561 $)) NIL (|has| $ (-971)))) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-3810 (($ (-1 $ $) (-561 $)) NIL)) (-3562 (((-3 (-561 $) "failed") $) NIL)) (-3297 (($ $) 91)) (-1238 (($ $) NIL)) (-2311 (((-1068) $) NIL)) (-1249 (((-588 (-561 $)) $) NIL)) (-3043 (($ (-110) $) 90) (($ (-110) (-588 $)) NIL)) (-2935 (((-108) $ (-110)) NIL) (((-108) $ (-1085)) NIL)) (-4179 (((-708) $) NIL)) (-4174 (((-1032) $) NIL)) (-2368 (((-108) $ $) NIL) (((-108) $ (-1085)) NIL)) (-3357 (($ $) NIL)) (-2626 (((-108) $) NIL (|has| $ (-962 (-522))))) (-2330 (($ $ (-561 $) $) NIL) (($ $ (-588 (-561 $)) (-588 $)) NIL) (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ $))) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ (-588 $)))) NIL) (($ $ (-1085) (-1 $ (-588 $))) NIL) (($ $ (-1085) (-1 $ $)) NIL) (($ $ (-588 (-110)) (-588 (-1 $ $))) NIL) (($ $ (-588 (-110)) (-588 (-1 $ (-588 $)))) NIL) (($ $ (-110) (-1 $ (-588 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-2683 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-588 $)) NIL)) (-3406 (($ $) NIL) (($ $ $) NIL)) (-2731 (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085)) NIL)) (-1579 (($ $) NIL (|has| $ (-971)))) (-3035 (($ $) NIL)) (-2915 (($ $) NIL)) (-2217 (((-792) $) NIL) (($ (-561 $)) NIL) (($ |#3|) NIL) (($ (-522)) NIL) (((-291 |#3|) $) 93)) (-2742 (((-708)) NIL)) (-3811 (($ $) NIL) (($ (-588 $)) NIL)) (-4082 (((-108) (-110)) NIL)) (-2976 (($ $) NIL)) (-2957 (($ $) NIL)) (-2966 (($ $) NIL)) (-4126 (($ $) NIL)) (-3622 (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (-3697 (($) 92 T CONST)) (-3709 (($) 22 T CONST)) (-2252 (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085)) NIL)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) NIL)) (-1672 (($ $ $) NIL) (($ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-522) $) NIL) (($ (-708) $) NIL) (($ (-850) $) NIL))) -(((-314 |#1| |#2| |#3|) (-13 (-278) (-37 |#3|) (-962 |#3|) (-829 (-1085)) (-10 -8 (-15 -1478 ($ (-291 |#3|))) (-15 -3700 ((-3 $ "failed") (-291 |#3|))) (-15 -1478 ($ (-1085))) (-15 -3700 ((-3 $ "failed") (-1085))) (-15 -2217 ((-291 |#3|) $)) (IF (|has| |#3| (-962 (-522))) (PROGN (-15 -1478 ($ (-291 (-522)))) (-15 -3700 ((-3 $ "failed") (-291 (-522)))) (-15 -1478 ($ (-382 (-881 (-522))))) (-15 -3700 ((-3 $ "failed") (-382 (-881 (-522))))) (-15 -1478 ($ (-881 (-522)))) (-15 -3700 ((-3 $ "failed") (-881 (-522))))) |%noBranch|) (IF (|has| |#3| (-962 (-354))) (PROGN (-15 -1478 ($ (-291 (-354)))) (-15 -3700 ((-3 $ "failed") (-291 (-354)))) (-15 -1478 ($ (-382 (-881 (-354))))) (-15 -3700 ((-3 $ "failed") (-382 (-881 (-354))))) (-15 -1478 ($ (-881 (-354)))) (-15 -3700 ((-3 $ "failed") (-881 (-354))))) |%noBranch|) (-15 -4126 ($ $)) (-15 -2016 ($ $)) (-15 -3357 ($ $)) (-15 -1238 ($ $)) (-15 -3297 ($ $)) (-15 -2906 ($ $)) (-15 -2915 ($ $)) (-15 -2923 ($ $)) (-15 -2957 ($ $)) (-15 -2966 ($ $)) (-15 -2976 ($ $)) (-15 -3023 ($ $)) (-15 -3035 ($ $)) (-15 -3044 ($ $)) (-15 -2980 ($)) (-15 -3533 ((-588 (-1085)) $)) (-15 -1616 ((-108))) (-15 -1616 ((-108) (-108))))) (-588 (-1085)) (-588 (-1085)) (-362)) (T -314)) -((-1478 (*1 *1 *2) (-12 (-5 *2 (-291 *5)) (-4 *5 (-362)) (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-291 *5)) (-4 *5 (-362)) (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 *2)) (-14 *4 (-588 *2)) (-4 *5 (-362)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 *2)) (-14 *4 (-588 *2)) (-4 *5 (-362)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-291 *5)) (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-291 (-522))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-291 (-522))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-382 (-881 (-522)))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-382 (-881 (-522)))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-881 (-522))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-881 (-522))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-291 (-354))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-291 (-354))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-382 (-881 (-354)))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-382 (-881 (-354)))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-881 (-354))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-881 (-354))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-4126 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-2016 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-3357 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-1238 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-3297 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-2906 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-2915 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-2923 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-2957 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-2966 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-2976 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-3023 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-3035 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-3044 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-2980 (*1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-3533 (*1 *2 *1) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-314 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-362)))) (-1616 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-1616 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362))))) -(-13 (-278) (-37 |#3|) (-962 |#3|) (-829 (-1085)) (-10 -8 (-15 -1478 ($ (-291 |#3|))) (-15 -3700 ((-3 $ "failed") (-291 |#3|))) (-15 -1478 ($ (-1085))) (-15 -3700 ((-3 $ "failed") (-1085))) (-15 -2217 ((-291 |#3|) $)) (IF (|has| |#3| (-962 (-522))) (PROGN (-15 -1478 ($ (-291 (-522)))) (-15 -3700 ((-3 $ "failed") (-291 (-522)))) (-15 -1478 ($ (-382 (-881 (-522))))) (-15 -3700 ((-3 $ "failed") (-382 (-881 (-522))))) (-15 -1478 ($ (-881 (-522)))) (-15 -3700 ((-3 $ "failed") (-881 (-522))))) |%noBranch|) (IF (|has| |#3| (-962 (-354))) (PROGN (-15 -1478 ($ (-291 (-354)))) (-15 -3700 ((-3 $ "failed") (-291 (-354)))) (-15 -1478 ($ (-382 (-881 (-354))))) (-15 -3700 ((-3 $ "failed") (-382 (-881 (-354))))) (-15 -1478 ($ (-881 (-354)))) (-15 -3700 ((-3 $ "failed") (-881 (-354))))) |%noBranch|) (-15 -4126 ($ $)) (-15 -2016 ($ $)) (-15 -3357 ($ $)) (-15 -1238 ($ $)) (-15 -3297 ($ $)) (-15 -2906 ($ $)) (-15 -2915 ($ $)) (-15 -2923 ($ $)) (-15 -2957 ($ $)) (-15 -2966 ($ $)) (-15 -2976 ($ $)) (-15 -3023 ($ $)) (-15 -3035 ($ $)) (-15 -3044 ($ $)) (-15 -2980 ($)) (-15 -3533 ((-588 (-1085)) $)) (-15 -1616 ((-108))) (-15 -1616 ((-108) (-108))))) -((-3810 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-315 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3810 (|#8| (-1 |#5| |#1|) |#4|))) (-1124) (-1142 |#1|) (-1142 (-382 |#2|)) (-317 |#1| |#2| |#3|) (-1124) (-1142 |#5|) (-1142 (-382 |#6|)) (-317 |#5| |#6| |#7|)) (T -315)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1124)) (-4 *8 (-1124)) (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6))) (-4 *9 (-1142 *8)) (-4 *2 (-317 *8 *9 *10)) (-5 *1 (-315 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-317 *5 *6 *7)) (-4 *10 (-1142 (-382 *9)))))) -(-10 -7 (-15 -3810 (|#8| (-1 |#5| |#1|) |#4|))) -((-1228 (((-2 (|:| |num| (-1166 |#3|)) (|:| |den| |#3|)) $) 38)) (-3225 (($ (-1166 (-382 |#3|)) (-1166 $)) NIL) (($ (-1166 (-382 |#3|))) NIL) (($ (-1166 |#3|) |#3|) 159)) (-1315 (((-1166 $) (-1166 $)) 143)) (-2230 (((-588 (-588 |#2|))) 116)) (-2477 (((-108) |#2| |#2|) 72)) (-2883 (($ $) 137)) (-1366 (((-708)) 31)) (-3349 (((-1166 $) (-1166 $)) 196)) (-1742 (((-588 (-881 |#2|)) (-1085)) 109)) (-3142 (((-108) $) 156)) (-2010 (((-108) $) 24) (((-108) $ |#2|) 29) (((-108) $ |#3|) 200)) (-2951 (((-3 |#3| "failed")) 49)) (-1243 (((-708)) 168)) (-2683 ((|#2| $ |#2| |#2|) 130)) (-3223 (((-3 |#3| "failed")) 67)) (-2731 (($ $ (-1 (-382 |#3|) (-382 |#3|)) (-708)) NIL) (($ $ (-1 (-382 |#3|) (-382 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 204) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085)) NIL) (($ $ (-708)) NIL) (($ $) NIL)) (-2200 (((-1166 $) (-1166 $)) 149)) (-3827 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 65)) (-2747 (((-108)) 33))) -(((-316 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2731 (|#1| |#1|)) (-15 -2731 (|#1| |#1| (-708))) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2230 ((-588 (-588 |#2|)))) (-15 -1742 ((-588 (-881 |#2|)) (-1085))) (-15 -3827 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2951 ((-3 |#3| "failed"))) (-15 -3223 ((-3 |#3| "failed"))) (-15 -2683 (|#2| |#1| |#2| |#2|)) (-15 -2883 (|#1| |#1|)) (-15 -3225 (|#1| (-1166 |#3|) |#3|)) (-15 -2731 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2010 ((-108) |#1| |#3|)) (-15 -2010 ((-108) |#1| |#2|)) (-15 -1228 ((-2 (|:| |num| (-1166 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1315 ((-1166 |#1|) (-1166 |#1|))) (-15 -3349 ((-1166 |#1|) (-1166 |#1|))) (-15 -2200 ((-1166 |#1|) (-1166 |#1|))) (-15 -2010 ((-108) |#1|)) (-15 -3142 ((-108) |#1|)) (-15 -2477 ((-108) |#2| |#2|)) (-15 -2747 ((-108))) (-15 -1243 ((-708))) (-15 -1366 ((-708))) (-15 -2731 (|#1| |#1| (-1 (-382 |#3|) (-382 |#3|)))) (-15 -2731 (|#1| |#1| (-1 (-382 |#3|) (-382 |#3|)) (-708))) (-15 -3225 (|#1| (-1166 (-382 |#3|)))) (-15 -3225 (|#1| (-1166 (-382 |#3|)) (-1166 |#1|)))) (-317 |#2| |#3| |#4|) (-1124) (-1142 |#2|) (-1142 (-382 |#3|))) (T -316)) -((-1366 (*1 *2) (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) (-5 *2 (-708)) (-5 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-317 *4 *5 *6)))) (-1243 (*1 *2) (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) (-5 *2 (-708)) (-5 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-317 *4 *5 *6)))) (-2747 (*1 *2) (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) (-5 *2 (-108)) (-5 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-317 *4 *5 *6)))) (-2477 (*1 *2 *3 *3) (-12 (-4 *3 (-1124)) (-4 *5 (-1142 *3)) (-4 *6 (-1142 (-382 *5))) (-5 *2 (-108)) (-5 *1 (-316 *4 *3 *5 *6)) (-4 *4 (-317 *3 *5 *6)))) (-3223 (*1 *2) (|partial| -12 (-4 *4 (-1124)) (-4 *5 (-1142 (-382 *2))) (-4 *2 (-1142 *4)) (-5 *1 (-316 *3 *4 *2 *5)) (-4 *3 (-317 *4 *2 *5)))) (-2951 (*1 *2) (|partial| -12 (-4 *4 (-1124)) (-4 *5 (-1142 (-382 *2))) (-4 *2 (-1142 *4)) (-5 *1 (-316 *3 *4 *2 *5)) (-4 *3 (-317 *4 *2 *5)))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-4 *5 (-1124)) (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6))) (-5 *2 (-588 (-881 *5))) (-5 *1 (-316 *4 *5 *6 *7)) (-4 *4 (-317 *5 *6 *7)))) (-2230 (*1 *2) (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) (-5 *2 (-588 (-588 *4))) (-5 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-317 *4 *5 *6))))) -(-10 -8 (-15 -2731 (|#1| |#1|)) (-15 -2731 (|#1| |#1| (-708))) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2230 ((-588 (-588 |#2|)))) (-15 -1742 ((-588 (-881 |#2|)) (-1085))) (-15 -3827 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2951 ((-3 |#3| "failed"))) (-15 -3223 ((-3 |#3| "failed"))) (-15 -2683 (|#2| |#1| |#2| |#2|)) (-15 -2883 (|#1| |#1|)) (-15 -3225 (|#1| (-1166 |#3|) |#3|)) (-15 -2731 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2010 ((-108) |#1| |#3|)) (-15 -2010 ((-108) |#1| |#2|)) (-15 -1228 ((-2 (|:| |num| (-1166 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1315 ((-1166 |#1|) (-1166 |#1|))) (-15 -3349 ((-1166 |#1|) (-1166 |#1|))) (-15 -2200 ((-1166 |#1|) (-1166 |#1|))) (-15 -2010 ((-108) |#1|)) (-15 -3142 ((-108) |#1|)) (-15 -2477 ((-108) |#2| |#2|)) (-15 -2747 ((-108))) (-15 -1243 ((-708))) (-15 -1366 ((-708))) (-15 -2731 (|#1| |#1| (-1 (-382 |#3|) (-382 |#3|)))) (-15 -2731 (|#1| |#1| (-1 (-382 |#3|) (-382 |#3|)) (-708))) (-15 -3225 (|#1| (-1166 (-382 |#3|)))) (-15 -3225 (|#1| (-1166 (-382 |#3|)) (-1166 |#1|)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-1228 (((-2 (|:| |num| (-1166 |#2|)) (|:| |den| |#2|)) $) 196)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 93 (|has| (-382 |#2|) (-338)))) (-2298 (($ $) 94 (|has| (-382 |#2|) (-338)))) (-3007 (((-108) $) 96 (|has| (-382 |#2|) (-338)))) (-3356 (((-628 (-382 |#2|)) (-1166 $)) 46) (((-628 (-382 |#2|))) 61)) (-1945 (((-382 |#2|) $) 52)) (-3833 (((-1094 (-850) (-708)) (-522)) 147 (|has| (-382 |#2|) (-324)))) (-2265 (((-3 $ "failed") $ $) 19)) (-2961 (($ $) 113 (|has| (-382 |#2|) (-338)))) (-3133 (((-393 $) $) 114 (|has| (-382 |#2|) (-338)))) (-2805 (((-108) $ $) 104 (|has| (-382 |#2|) (-338)))) (-1685 (((-708)) 87 (|has| (-382 |#2|) (-343)))) (-2856 (((-108)) 213)) (-1508 (((-108) |#1|) 212) (((-108) |#2|) 211)) (-3367 (($) 17 T CONST)) (-3700 (((-3 (-522) "failed") $) 169 (|has| (-382 |#2|) (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) 167 (|has| (-382 |#2|) (-962 (-382 (-522))))) (((-3 (-382 |#2|) "failed") $) 166)) (-1478 (((-522) $) 170 (|has| (-382 |#2|) (-962 (-522)))) (((-382 (-522)) $) 168 (|has| (-382 |#2|) (-962 (-382 (-522))))) (((-382 |#2|) $) 165)) (-3225 (($ (-1166 (-382 |#2|)) (-1166 $)) 48) (($ (-1166 (-382 |#2|))) 64) (($ (-1166 |#2|) |#2|) 189)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-382 |#2|) (-324)))) (-2333 (($ $ $) 108 (|has| (-382 |#2|) (-338)))) (-1359 (((-628 (-382 |#2|)) $ (-1166 $)) 53) (((-628 (-382 |#2|)) $) 59)) (-1226 (((-628 (-522)) (-628 $)) 164 (|has| (-382 |#2|) (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 163 (|has| (-382 |#2|) (-584 (-522)))) (((-2 (|:| -2149 (-628 (-382 |#2|))) (|:| |vec| (-1166 (-382 |#2|)))) (-628 $) (-1166 $)) 162) (((-628 (-382 |#2|)) (-628 $)) 161)) (-1315 (((-1166 $) (-1166 $)) 201)) (-2153 (($ |#3|) 158) (((-3 $ "failed") (-382 |#3|)) 155 (|has| (-382 |#2|) (-338)))) (-3920 (((-3 $ "failed") $) 34)) (-2230 (((-588 (-588 |#1|))) 182 (|has| |#1| (-343)))) (-2477 (((-108) |#1| |#1|) 217)) (-1692 (((-850)) 54)) (-3344 (($) 90 (|has| (-382 |#2|) (-343)))) (-3148 (((-108)) 210)) (-2207 (((-108) |#1|) 209) (((-108) |#2|) 208)) (-2303 (($ $ $) 107 (|has| (-382 |#2|) (-338)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 102 (|has| (-382 |#2|) (-338)))) (-2883 (($ $) 188)) (-2160 (($) 149 (|has| (-382 |#2|) (-324)))) (-2087 (((-108) $) 150 (|has| (-382 |#2|) (-324)))) (-1380 (($ $ (-708)) 141 (|has| (-382 |#2|) (-324))) (($ $) 140 (|has| (-382 |#2|) (-324)))) (-2725 (((-108) $) 115 (|has| (-382 |#2|) (-338)))) (-3872 (((-850) $) 152 (|has| (-382 |#2|) (-324))) (((-770 (-850)) $) 138 (|has| (-382 |#2|) (-324)))) (-2859 (((-108) $) 31)) (-1366 (((-708)) 220)) (-3349 (((-1166 $) (-1166 $)) 202)) (-1269 (((-382 |#2|) $) 51)) (-1742 (((-588 (-881 |#1|)) (-1085)) 183 (|has| |#1| (-338)))) (-4208 (((-3 $ "failed") $) 142 (|has| (-382 |#2|) (-324)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 111 (|has| (-382 |#2|) (-338)))) (-4199 ((|#3| $) 44 (|has| (-382 |#2|) (-338)))) (-1475 (((-850) $) 89 (|has| (-382 |#2|) (-343)))) (-2142 ((|#3| $) 156)) (-2267 (($ (-588 $)) 100 (|has| (-382 |#2|) (-338))) (($ $ $) 99 (|has| (-382 |#2|) (-338)))) (-2311 (((-1068) $) 9)) (-2094 (((-628 (-382 |#2|))) 197)) (-1791 (((-628 (-382 |#2|))) 199)) (-3193 (($ $) 116 (|has| (-382 |#2|) (-338)))) (-2464 (($ (-1166 |#2|) |#2|) 194)) (-2286 (((-628 (-382 |#2|))) 198)) (-4203 (((-628 (-382 |#2|))) 200)) (-3385 (((-2 (|:| |num| (-628 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-3146 (((-2 (|:| |num| (-1166 |#2|)) (|:| |den| |#2|)) $) 195)) (-3664 (((-1166 $)) 206)) (-1886 (((-1166 $)) 207)) (-3142 (((-108) $) 205)) (-2010 (((-108) $) 204) (((-108) $ |#1|) 192) (((-108) $ |#2|) 191)) (-3937 (($) 143 (|has| (-382 |#2|) (-324)) CONST)) (-2882 (($ (-850)) 88 (|has| (-382 |#2|) (-343)))) (-2951 (((-3 |#2| "failed")) 185)) (-4174 (((-1032) $) 10)) (-1243 (((-708)) 219)) (-1368 (($) 160)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 101 (|has| (-382 |#2|) (-338)))) (-2308 (($ (-588 $)) 98 (|has| (-382 |#2|) (-338))) (($ $ $) 97 (|has| (-382 |#2|) (-338)))) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) 146 (|has| (-382 |#2|) (-324)))) (-2006 (((-393 $) $) 112 (|has| (-382 |#2|) (-338)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-382 |#2|) (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 109 (|has| (-382 |#2|) (-338)))) (-2276 (((-3 $ "failed") $ $) 92 (|has| (-382 |#2|) (-338)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 103 (|has| (-382 |#2|) (-338)))) (-4031 (((-708) $) 105 (|has| (-382 |#2|) (-338)))) (-2683 ((|#1| $ |#1| |#1|) 187)) (-3223 (((-3 |#2| "failed")) 186)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 106 (|has| (-382 |#2|) (-338)))) (-1615 (((-382 |#2|) (-1166 $)) 47) (((-382 |#2|)) 60)) (-1304 (((-708) $) 151 (|has| (-382 |#2|) (-324))) (((-3 (-708) "failed") $ $) 139 (|has| (-382 |#2|) (-324)))) (-2731 (($ $ (-1 (-382 |#2|) (-382 |#2|)) (-708)) 123 (|has| (-382 |#2|) (-338))) (($ $ (-1 (-382 |#2|) (-382 |#2|))) 122 (|has| (-382 |#2|) (-338))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-588 (-1085)) (-588 (-708))) 130 (-3844 (-4079 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085)))) (-4079 (|has| (-382 |#2|) (-829 (-1085))) (|has| (-382 |#2|) (-338))))) (($ $ (-1085) (-708)) 131 (-3844 (-4079 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085)))) (-4079 (|has| (-382 |#2|) (-829 (-1085))) (|has| (-382 |#2|) (-338))))) (($ $ (-588 (-1085))) 132 (-3844 (-4079 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085)))) (-4079 (|has| (-382 |#2|) (-829 (-1085))) (|has| (-382 |#2|) (-338))))) (($ $ (-1085)) 133 (-3844 (-4079 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085)))) (-4079 (|has| (-382 |#2|) (-829 (-1085))) (|has| (-382 |#2|) (-338))))) (($ $ (-708)) 135 (-3844 (-4079 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-210))) (-4079 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324)))) (($ $) 137 (-3844 (-4079 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-210))) (-4079 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324))))) (-2620 (((-628 (-382 |#2|)) (-1166 $) (-1 (-382 |#2|) (-382 |#2|))) 154 (|has| (-382 |#2|) (-338)))) (-1579 ((|#3|) 159)) (-2670 (($) 148 (|has| (-382 |#2|) (-324)))) (-3510 (((-1166 (-382 |#2|)) $ (-1166 $)) 50) (((-628 (-382 |#2|)) (-1166 $) (-1166 $)) 49) (((-1166 (-382 |#2|)) $) 66) (((-628 (-382 |#2|)) (-1166 $)) 65)) (-3873 (((-1166 (-382 |#2|)) $) 63) (($ (-1166 (-382 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) 145 (|has| (-382 |#2|) (-324)))) (-2200 (((-1166 $) (-1166 $)) 203)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ (-382 |#2|)) 37) (($ (-382 (-522))) 86 (-3844 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-962 (-382 (-522)))))) (($ $) 91 (|has| (-382 |#2|) (-338)))) (-3040 (($ $) 144 (|has| (-382 |#2|) (-324))) (((-3 $ "failed") $) 43 (|has| (-382 |#2|) (-133)))) (-2645 ((|#3| $) 45)) (-2742 (((-708)) 29)) (-2745 (((-108)) 216)) (-2950 (((-108) |#1|) 215) (((-108) |#2|) 214)) (-2905 (((-1166 $)) 67)) (-1407 (((-108) $ $) 95 (|has| (-382 |#2|) (-338)))) (-3827 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-2747 (((-108)) 218)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 117 (|has| (-382 |#2|) (-338)))) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $ (-1 (-382 |#2|) (-382 |#2|)) (-708)) 125 (|has| (-382 |#2|) (-338))) (($ $ (-1 (-382 |#2|) (-382 |#2|))) 124 (|has| (-382 |#2|) (-338))) (($ $ (-588 (-1085)) (-588 (-708))) 126 (-3844 (-4079 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085)))) (-4079 (|has| (-382 |#2|) (-829 (-1085))) (|has| (-382 |#2|) (-338))))) (($ $ (-1085) (-708)) 127 (-3844 (-4079 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085)))) (-4079 (|has| (-382 |#2|) (-829 (-1085))) (|has| (-382 |#2|) (-338))))) (($ $ (-588 (-1085))) 128 (-3844 (-4079 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085)))) (-4079 (|has| (-382 |#2|) (-829 (-1085))) (|has| (-382 |#2|) (-338))))) (($ $ (-1085)) 129 (-3844 (-4079 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085)))) (-4079 (|has| (-382 |#2|) (-829 (-1085))) (|has| (-382 |#2|) (-338))))) (($ $ (-708)) 134 (-3844 (-4079 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-210))) (-4079 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324)))) (($ $) 136 (-3844 (-4079 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-210))) (-4079 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324))))) (-1562 (((-108) $ $) 6)) (-1682 (($ $ $) 121 (|has| (-382 |#2|) (-338)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 118 (|has| (-382 |#2|) (-338)))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 |#2|)) 39) (($ (-382 |#2|) $) 38) (($ (-382 (-522)) $) 120 (|has| (-382 |#2|) (-338))) (($ $ (-382 (-522))) 119 (|has| (-382 |#2|) (-338))))) -(((-317 |#1| |#2| |#3|) (-1197) (-1124) (-1142 |t#1|) (-1142 (-382 |t#2|))) (T -317)) -((-1366 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-708)))) (-1243 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-708)))) (-2747 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-2477 (*1 *2 *3 *3) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-2745 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-2950 (*1 *2 *3) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-2950 (*1 *2 *3) (-12 (-4 *1 (-317 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1142 *4)) (-4 *5 (-1142 (-382 *3))) (-5 *2 (-108)))) (-2856 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-1508 (*1 *2 *3) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-1508 (*1 *2 *3) (-12 (-4 *1 (-317 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1142 *4)) (-4 *5 (-1142 (-382 *3))) (-5 *2 (-108)))) (-3148 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-2207 (*1 *2 *3) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-2207 (*1 *2 *3) (-12 (-4 *1 (-317 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1142 *4)) (-4 *5 (-1142 (-382 *3))) (-5 *2 (-108)))) (-1886 (*1 *2) (-12 (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-1166 *1)) (-4 *1 (-317 *3 *4 *5)))) (-3664 (*1 *2) (-12 (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-1166 *1)) (-4 *1 (-317 *3 *4 *5)))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-2200 (*1 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))))) (-3349 (*1 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))))) (-1315 (*1 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))))) (-4203 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-628 (-382 *4))))) (-1791 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-628 (-382 *4))))) (-2286 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-628 (-382 *4))))) (-2094 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-628 (-382 *4))))) (-1228 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-2 (|:| |num| (-1166 *4)) (|:| |den| *4))))) (-3146 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-2 (|:| |num| (-1166 *4)) (|:| |den| *4))))) (-2464 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1142 *4)) (-4 *4 (-1124)) (-4 *1 (-317 *4 *3 *5)) (-4 *5 (-1142 (-382 *3))))) (-3385 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-317 *4 *5 *6)) (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) (-5 *2 (-2 (|:| |num| (-628 *5)) (|:| |den| *5))))) (-2010 (*1 *2 *1 *3) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-2010 (*1 *2 *1 *3) (-12 (-4 *1 (-317 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1142 *4)) (-4 *5 (-1142 (-382 *3))) (-5 *2 (-108)))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))))) (-3225 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1142 *4)) (-4 *4 (-1124)) (-4 *1 (-317 *4 *3 *5)) (-4 *5 (-1142 (-382 *3))))) (-2883 (*1 *1 *1) (-12 (-4 *1 (-317 *2 *3 *4)) (-4 *2 (-1124)) (-4 *3 (-1142 *2)) (-4 *4 (-1142 (-382 *3))))) (-2683 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-317 *2 *3 *4)) (-4 *2 (-1124)) (-4 *3 (-1142 *2)) (-4 *4 (-1142 (-382 *3))))) (-3223 (*1 *2) (|partial| -12 (-4 *1 (-317 *3 *2 *4)) (-4 *3 (-1124)) (-4 *4 (-1142 (-382 *2))) (-4 *2 (-1142 *3)))) (-2951 (*1 *2) (|partial| -12 (-4 *1 (-317 *3 *2 *4)) (-4 *3 (-1124)) (-4 *4 (-1142 (-382 *2))) (-4 *2 (-1142 *3)))) (-3827 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-1124)) (-4 *6 (-1142 (-382 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-317 *4 *5 *6)))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-4 *1 (-317 *4 *5 *6)) (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) (-4 *4 (-338)) (-5 *2 (-588 (-881 *4))))) (-2230 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-4 *3 (-343)) (-5 *2 (-588 (-588 *3)))))) -(-13 (-662 (-382 |t#2|) |t#3|) (-10 -8 (-15 -1366 ((-708))) (-15 -1243 ((-708))) (-15 -2747 ((-108))) (-15 -2477 ((-108) |t#1| |t#1|)) (-15 -2745 ((-108))) (-15 -2950 ((-108) |t#1|)) (-15 -2950 ((-108) |t#2|)) (-15 -2856 ((-108))) (-15 -1508 ((-108) |t#1|)) (-15 -1508 ((-108) |t#2|)) (-15 -3148 ((-108))) (-15 -2207 ((-108) |t#1|)) (-15 -2207 ((-108) |t#2|)) (-15 -1886 ((-1166 $))) (-15 -3664 ((-1166 $))) (-15 -3142 ((-108) $)) (-15 -2010 ((-108) $)) (-15 -2200 ((-1166 $) (-1166 $))) (-15 -3349 ((-1166 $) (-1166 $))) (-15 -1315 ((-1166 $) (-1166 $))) (-15 -4203 ((-628 (-382 |t#2|)))) (-15 -1791 ((-628 (-382 |t#2|)))) (-15 -2286 ((-628 (-382 |t#2|)))) (-15 -2094 ((-628 (-382 |t#2|)))) (-15 -1228 ((-2 (|:| |num| (-1166 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3225 ($ (-1166 |t#2|) |t#2|)) (-15 -3146 ((-2 (|:| |num| (-1166 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2464 ($ (-1166 |t#2|) |t#2|)) (-15 -3385 ((-2 (|:| |num| (-628 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2010 ((-108) $ |t#1|)) (-15 -2010 ((-108) $ |t#2|)) (-15 -2731 ($ $ (-1 |t#2| |t#2|))) (-15 -3225 ($ (-1166 |t#2|) |t#2|)) (-15 -2883 ($ $)) (-15 -2683 (|t#1| $ |t#1| |t#1|)) (-15 -3223 ((-3 |t#2| "failed"))) (-15 -2951 ((-3 |t#2| "failed"))) (-15 -3827 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-338)) (-15 -1742 ((-588 (-881 |t#1|)) (-1085))) |%noBranch|) (IF (|has| |t#1| (-343)) (-15 -2230 ((-588 (-588 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) -3844 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-37 #1=(-382 |#2|)) . T) ((-37 $) -3844 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-97) . T) ((-107 #0# #0#) -3844 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3844 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-133))) ((-135) |has| (-382 |#2|) (-135)) ((-562 (-792)) . T) ((-157) . T) ((-563 |#3|) . T) ((-208 #1#) |has| (-382 |#2|) (-338)) ((-210) -3844 (|has| (-382 |#2|) (-324)) (-12 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338)))) ((-220) -3844 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-266) -3844 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-283) -3844 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-338) -3844 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-377) |has| (-382 |#2|) (-324)) ((-343) -3844 (|has| (-382 |#2|) (-343)) (|has| (-382 |#2|) (-324))) ((-324) |has| (-382 |#2|) (-324)) ((-345 #1# |#3|) . T) ((-384 #1# |#3|) . T) ((-352 #1#) . T) ((-386 #1#) . T) ((-426) -3844 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-514) -3844 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-590 #0#) -3844 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-590 #1#) . T) ((-590 $) . T) ((-584 #1#) . T) ((-584 (-522)) |has| (-382 |#2|) (-584 (-522))) ((-655 #0#) -3844 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-655 #1#) . T) ((-655 $) -3844 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-662 #1# |#3|) . T) ((-664) . T) ((-829 (-1085)) -12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085)))) ((-849) -3844 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-962 (-382 (-522))) |has| (-382 |#2|) (-962 (-382 (-522)))) ((-962 #1#) . T) ((-962 (-522)) |has| (-382 |#2|) (-962 (-522))) ((-977 #0#) -3844 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-977 #1#) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1061) |has| (-382 |#2|) (-324)) ((-1124) -3844 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2400 (((-108) $) NIL)) (-1593 (((-708)) NIL)) (-1945 (((-839 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-3833 (((-1094 (-850) (-708)) (-522)) NIL (|has| (-839 |#1|) (-343)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2805 (((-108) $ $) NIL)) (-1685 (((-708)) NIL (|has| (-839 |#1|) (-343)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-839 |#1|) "failed") $) NIL)) (-1478 (((-839 |#1|) $) NIL)) (-3225 (($ (-1166 (-839 |#1|))) NIL)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-839 |#1|) (-343)))) (-2333 (($ $ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3344 (($) NIL (|has| (-839 |#1|) (-343)))) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2160 (($) NIL (|has| (-839 |#1|) (-343)))) (-2087 (((-108) $) NIL (|has| (-839 |#1|) (-343)))) (-1380 (($ $ (-708)) NIL (-3844 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343)))) (($ $) NIL (-3844 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-2725 (((-108) $) NIL)) (-3872 (((-850) $) NIL (|has| (-839 |#1|) (-343))) (((-770 (-850)) $) NIL (-3844 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-2859 (((-108) $) NIL)) (-3768 (($) NIL (|has| (-839 |#1|) (-343)))) (-1372 (((-108) $) NIL (|has| (-839 |#1|) (-343)))) (-1269 (((-839 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-4208 (((-3 $ "failed") $) NIL (|has| (-839 |#1|) (-343)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4199 (((-1081 (-839 |#1|)) $) NIL) (((-1081 $) $ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-1475 (((-850) $) NIL (|has| (-839 |#1|) (-343)))) (-3657 (((-1081 (-839 |#1|)) $) NIL (|has| (-839 |#1|) (-343)))) (-3723 (((-1081 (-839 |#1|)) $) NIL (|has| (-839 |#1|) (-343))) (((-3 (-1081 (-839 |#1|)) "failed") $ $) NIL (|has| (-839 |#1|) (-343)))) (-2259 (($ $ (-1081 (-839 |#1|))) NIL (|has| (-839 |#1|) (-343)))) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-3937 (($) NIL (|has| (-839 |#1|) (-343)) CONST)) (-2882 (($ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-2804 (((-108) $) NIL)) (-4174 (((-1032) $) NIL)) (-3128 (((-886 (-1032))) NIL)) (-1368 (($) NIL (|has| (-839 |#1|) (-343)))) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) NIL (|has| (-839 |#1|) (-343)))) (-2006 (((-393 $) $) NIL)) (-1713 (((-770 (-850))) NIL) (((-850)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-1304 (((-708) $) NIL (|has| (-839 |#1|) (-343))) (((-3 (-708) "failed") $ $) NIL (-3844 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-3222 (((-126)) NIL)) (-2731 (($ $) NIL (|has| (-839 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-839 |#1|) (-343)))) (-2487 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-1579 (((-1081 (-839 |#1|))) NIL)) (-2670 (($) NIL (|has| (-839 |#1|) (-343)))) (-1705 (($) NIL (|has| (-839 |#1|) (-343)))) (-3510 (((-1166 (-839 |#1|)) $) NIL) (((-628 (-839 |#1|)) (-1166 $)) NIL)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| (-839 |#1|) (-343)))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ (-839 |#1|)) NIL)) (-3040 (($ $) NIL (|has| (-839 |#1|) (-343))) (((-3 $ "failed") $) NIL (-3844 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-2742 (((-708)) NIL)) (-2905 (((-1166 $)) NIL) (((-1166 $) (-850)) NIL)) (-1407 (((-108) $ $) NIL)) (-1711 (((-108) $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2938 (($ $) NIL (|has| (-839 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-839 |#1|) (-343)))) (-2252 (($ $) NIL (|has| (-839 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-839 |#1|) (-343)))) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ $) NIL) (($ $ (-839 |#1|)) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ $ (-839 |#1|)) NIL) (($ (-839 |#1|) $) NIL))) -(((-318 |#1| |#2|) (-13 (-304 (-839 |#1|)) (-10 -7 (-15 -3128 ((-886 (-1032)))))) (-850) (-850)) (T -318)) -((-3128 (*1 *2) (-12 (-5 *2 (-886 (-1032))) (-5 *1 (-318 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850))))) -(-13 (-304 (-839 |#1|)) (-10 -7 (-15 -3128 ((-886 (-1032)))))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 46)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2400 (((-108) $) NIL)) (-1593 (((-708)) NIL)) (-1945 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-343)))) (-3833 (((-1094 (-850) (-708)) (-522)) 43 (|has| |#1| (-343)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2805 (((-108) $ $) NIL)) (-1685 (((-708)) NIL (|has| |#1| (-343)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) 114)) (-1478 ((|#1| $) 85)) (-3225 (($ (-1166 |#1|)) 103)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) 94 (|has| |#1| (-343)))) (-2333 (($ $ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3344 (($) 97 (|has| |#1| (-343)))) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2160 (($) 129 (|has| |#1| (-343)))) (-2087 (((-108) $) 49 (|has| |#1| (-343)))) (-1380 (($ $ (-708)) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343)))) (($ $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2725 (((-108) $) NIL)) (-3872 (((-850) $) 47 (|has| |#1| (-343))) (((-770 (-850)) $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2859 (((-108) $) NIL)) (-3768 (($) 131 (|has| |#1| (-343)))) (-1372 (((-108) $) NIL (|has| |#1| (-343)))) (-1269 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-343)))) (-4208 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4199 (((-1081 |#1|) $) 89) (((-1081 $) $ (-850)) NIL (|has| |#1| (-343)))) (-1475 (((-850) $) 139 (|has| |#1| (-343)))) (-3657 (((-1081 |#1|) $) NIL (|has| |#1| (-343)))) (-3723 (((-1081 |#1|) $) NIL (|has| |#1| (-343))) (((-3 (-1081 |#1|) "failed") $ $) NIL (|has| |#1| (-343)))) (-2259 (($ $ (-1081 |#1|)) NIL (|has| |#1| (-343)))) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) 146)) (-3937 (($) NIL (|has| |#1| (-343)) CONST)) (-2882 (($ (-850)) 70 (|has| |#1| (-343)))) (-2804 (((-108) $) 117)) (-4174 (((-1032) $) NIL)) (-3128 (((-886 (-1032))) 44)) (-1368 (($) 127 (|has| |#1| (-343)))) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) 92 (|has| |#1| (-343)))) (-2006 (((-393 $) $) NIL)) (-1713 (((-770 (-850))) 67) (((-850)) 68)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-1304 (((-708) $) 130 (|has| |#1| (-343))) (((-3 (-708) "failed") $ $) 124 (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-3222 (((-126)) NIL)) (-2731 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2487 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-1579 (((-1081 |#1|)) 95)) (-2670 (($) 128 (|has| |#1| (-343)))) (-1705 (($) 136 (|has| |#1| (-343)))) (-3510 (((-1166 |#1|) $) 59) (((-628 |#1|) (-1166 $)) NIL)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| |#1| (-343)))) (-2217 (((-792) $) 142) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ |#1|) 74)) (-3040 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2742 (((-708)) 138)) (-2905 (((-1166 $)) 116) (((-1166 $) (-850)) 72)) (-1407 (((-108) $ $) NIL)) (-1711 (((-108) $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) 32 T CONST)) (-3709 (($) 19 T CONST)) (-2938 (($ $) 80 (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2252 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-1562 (((-108) $ $) 48)) (-1682 (($ $ $) 144) (($ $ |#1|) 145)) (-1672 (($ $) 126) (($ $ $) NIL)) (-1661 (($ $ $) 61)) (** (($ $ (-850)) 148) (($ $ (-708)) 149) (($ $ (-522)) 147)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 76) (($ $ $) 75) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143))) -(((-319 |#1| |#2|) (-13 (-304 |#1|) (-10 -7 (-15 -3128 ((-886 (-1032)))))) (-324) (-1081 |#1|)) (T -319)) -((-3128 (*1 *2) (-12 (-5 *2 (-886 (-1032))) (-5 *1 (-319 *3 *4)) (-4 *3 (-324)) (-14 *4 (-1081 *3))))) -(-13 (-304 |#1|) (-10 -7 (-15 -3128 ((-886 (-1032)))))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2400 (((-108) $) NIL)) (-1593 (((-708)) NIL)) (-1945 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-343)))) (-3833 (((-1094 (-850) (-708)) (-522)) NIL (|has| |#1| (-343)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2805 (((-108) $ $) NIL)) (-1685 (((-708)) NIL (|has| |#1| (-343)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) NIL)) (-1478 ((|#1| $) NIL)) (-3225 (($ (-1166 |#1|)) NIL)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-2333 (($ $ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3344 (($) NIL (|has| |#1| (-343)))) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2160 (($) NIL (|has| |#1| (-343)))) (-2087 (((-108) $) NIL (|has| |#1| (-343)))) (-1380 (($ $ (-708)) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343)))) (($ $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2725 (((-108) $) NIL)) (-3872 (((-850) $) NIL (|has| |#1| (-343))) (((-770 (-850)) $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2859 (((-108) $) NIL)) (-3768 (($) NIL (|has| |#1| (-343)))) (-1372 (((-108) $) NIL (|has| |#1| (-343)))) (-1269 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-343)))) (-4208 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4199 (((-1081 |#1|) $) NIL) (((-1081 $) $ (-850)) NIL (|has| |#1| (-343)))) (-1475 (((-850) $) NIL (|has| |#1| (-343)))) (-3657 (((-1081 |#1|) $) NIL (|has| |#1| (-343)))) (-3723 (((-1081 |#1|) $) NIL (|has| |#1| (-343))) (((-3 (-1081 |#1|) "failed") $ $) NIL (|has| |#1| (-343)))) (-2259 (($ $ (-1081 |#1|)) NIL (|has| |#1| (-343)))) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-3937 (($) NIL (|has| |#1| (-343)) CONST)) (-2882 (($ (-850)) NIL (|has| |#1| (-343)))) (-2804 (((-108) $) NIL)) (-4174 (((-1032) $) NIL)) (-3128 (((-886 (-1032))) NIL)) (-1368 (($) NIL (|has| |#1| (-343)))) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) NIL (|has| |#1| (-343)))) (-2006 (((-393 $) $) NIL)) (-1713 (((-770 (-850))) NIL) (((-850)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-1304 (((-708) $) NIL (|has| |#1| (-343))) (((-3 (-708) "failed") $ $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-3222 (((-126)) NIL)) (-2731 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2487 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-1579 (((-1081 |#1|)) NIL)) (-2670 (($) NIL (|has| |#1| (-343)))) (-1705 (($) NIL (|has| |#1| (-343)))) (-3510 (((-1166 |#1|) $) NIL) (((-628 |#1|) (-1166 $)) NIL)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| |#1| (-343)))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ |#1|) NIL)) (-3040 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2742 (((-708)) NIL)) (-2905 (((-1166 $)) NIL) (((-1166 $) (-850)) NIL)) (-1407 (((-108) $ $) NIL)) (-1711 (((-108) $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2938 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2252 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-320 |#1| |#2|) (-13 (-304 |#1|) (-10 -7 (-15 -3128 ((-886 (-1032)))))) (-324) (-850)) (T -320)) -((-3128 (*1 *2) (-12 (-5 *2 (-886 (-1032))) (-5 *1 (-320 *3 *4)) (-4 *3 (-324)) (-14 *4 (-850))))) -(-13 (-304 |#1|) (-10 -7 (-15 -3128 ((-886 (-1032)))))) -((-1671 (((-708) (-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032)))))) 40)) (-1325 (((-886 (-1032)) (-1081 |#1|)) 85)) (-1872 (((-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032))))) (-1081 |#1|)) 78)) (-2431 (((-628 |#1|) (-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032)))))) 86)) (-2754 (((-3 (-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032))))) "failed") (-850)) 10)) (-3250 (((-3 (-1081 |#1|) (-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032)))))) (-850)) 15))) -(((-321 |#1|) (-10 -7 (-15 -1325 ((-886 (-1032)) (-1081 |#1|))) (-15 -1872 ((-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032))))) (-1081 |#1|))) (-15 -2431 ((-628 |#1|) (-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032))))))) (-15 -1671 ((-708) (-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032))))))) (-15 -2754 ((-3 (-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032))))) "failed") (-850))) (-15 -3250 ((-3 (-1081 |#1|) (-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032)))))) (-850)))) (-324)) (T -321)) -((-3250 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-3 (-1081 *4) (-1166 (-588 (-2 (|:| -3526 *4) (|:| -2882 (-1032))))))) (-5 *1 (-321 *4)) (-4 *4 (-324)))) (-2754 (*1 *2 *3) (|partial| -12 (-5 *3 (-850)) (-5 *2 (-1166 (-588 (-2 (|:| -3526 *4) (|:| -2882 (-1032)))))) (-5 *1 (-321 *4)) (-4 *4 (-324)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-1166 (-588 (-2 (|:| -3526 *4) (|:| -2882 (-1032)))))) (-4 *4 (-324)) (-5 *2 (-708)) (-5 *1 (-321 *4)))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-1166 (-588 (-2 (|:| -3526 *4) (|:| -2882 (-1032)))))) (-4 *4 (-324)) (-5 *2 (-628 *4)) (-5 *1 (-321 *4)))) (-1872 (*1 *2 *3) (-12 (-5 *3 (-1081 *4)) (-4 *4 (-324)) (-5 *2 (-1166 (-588 (-2 (|:| -3526 *4) (|:| -2882 (-1032)))))) (-5 *1 (-321 *4)))) (-1325 (*1 *2 *3) (-12 (-5 *3 (-1081 *4)) (-4 *4 (-324)) (-5 *2 (-886 (-1032))) (-5 *1 (-321 *4))))) -(-10 -7 (-15 -1325 ((-886 (-1032)) (-1081 |#1|))) (-15 -1872 ((-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032))))) (-1081 |#1|))) (-15 -2431 ((-628 |#1|) (-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032))))))) (-15 -1671 ((-708) (-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032))))))) (-15 -2754 ((-3 (-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032))))) "failed") (-850))) (-15 -3250 ((-3 (-1081 |#1|) (-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032)))))) (-850)))) -((-2217 ((|#1| |#3|) 84) ((|#3| |#1|) 68))) -(((-322 |#1| |#2| |#3|) (-10 -7 (-15 -2217 (|#3| |#1|)) (-15 -2217 (|#1| |#3|))) (-304 |#2|) (-324) (-304 |#2|)) (T -322)) -((-2217 (*1 *2 *3) (-12 (-4 *4 (-324)) (-4 *2 (-304 *4)) (-5 *1 (-322 *2 *4 *3)) (-4 *3 (-304 *4)))) (-2217 (*1 *2 *3) (-12 (-4 *4 (-324)) (-4 *2 (-304 *4)) (-5 *1 (-322 *3 *4 *2)) (-4 *3 (-304 *4))))) -(-10 -7 (-15 -2217 (|#3| |#1|)) (-15 -2217 (|#1| |#3|))) -((-2087 (((-108) $) 51)) (-3872 (((-770 (-850)) $) 21) (((-850) $) 52)) (-4208 (((-3 $ "failed") $) 16)) (-3937 (($) 9)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 92)) (-1304 (((-3 (-708) "failed") $ $) 71) (((-708) $) 60)) (-2731 (($ $ (-708)) NIL) (($ $) 8)) (-2670 (($) 45)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) 33)) (-3040 (((-3 $ "failed") $) 39) (($ $) 38))) -(((-323 |#1|) (-10 -8 (-15 -3872 ((-850) |#1|)) (-15 -1304 ((-708) |#1|)) (-15 -2087 ((-108) |#1|)) (-15 -2670 (|#1|)) (-15 -2583 ((-3 (-1166 |#1|) "failed") (-628 |#1|))) (-15 -3040 (|#1| |#1|)) (-15 -2731 (|#1| |#1|)) (-15 -2731 (|#1| |#1| (-708))) (-15 -3937 (|#1|)) (-15 -4208 ((-3 |#1| "failed") |#1|)) (-15 -1304 ((-3 (-708) "failed") |#1| |#1|)) (-15 -3872 ((-770 (-850)) |#1|)) (-15 -3040 ((-3 |#1| "failed") |#1|)) (-15 -1789 ((-1081 |#1|) (-1081 |#1|) (-1081 |#1|)))) (-324)) (T -323)) -NIL -(-10 -8 (-15 -3872 ((-850) |#1|)) (-15 -1304 ((-708) |#1|)) (-15 -2087 ((-108) |#1|)) (-15 -2670 (|#1|)) (-15 -2583 ((-3 (-1166 |#1|) "failed") (-628 |#1|))) (-15 -3040 (|#1| |#1|)) (-15 -2731 (|#1| |#1|)) (-15 -2731 (|#1| |#1| (-708))) (-15 -3937 (|#1|)) (-15 -4208 ((-3 |#1| "failed") |#1|)) (-15 -1304 ((-3 (-708) "failed") |#1| |#1|)) (-15 -3872 ((-770 (-850)) |#1|)) (-15 -3040 ((-3 |#1| "failed") |#1|)) (-15 -1789 ((-1081 |#1|) (-1081 |#1|) (-1081 |#1|)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2298 (($ $) 40)) (-3007 (((-108) $) 38)) (-3833 (((-1094 (-850) (-708)) (-522)) 93)) (-2265 (((-3 $ "failed") $ $) 19)) (-2961 (($ $) 73)) (-3133 (((-393 $) $) 72)) (-2805 (((-108) $ $) 59)) (-1685 (((-708)) 103)) (-3367 (($) 17 T CONST)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-2333 (($ $ $) 55)) (-3920 (((-3 $ "failed") $) 34)) (-3344 (($) 106)) (-2303 (($ $ $) 56)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 51)) (-2160 (($) 91)) (-2087 (((-108) $) 90)) (-1380 (($ $) 79) (($ $ (-708)) 78)) (-2725 (((-108) $) 71)) (-3872 (((-770 (-850)) $) 81) (((-850) $) 88)) (-2859 (((-108) $) 31)) (-4208 (((-3 $ "failed") $) 102)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-1475 (((-850) $) 105)) (-2267 (($ $ $) 46) (($ (-588 $)) 45)) (-2311 (((-1068) $) 9)) (-3193 (($ $) 70)) (-3937 (($) 101 T CONST)) (-2882 (($ (-850)) 104)) (-4174 (((-1032) $) 10)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2308 (($ $ $) 48) (($ (-588 $)) 47)) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) 94)) (-2006 (((-393 $) $) 74)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2276 (((-3 $ "failed") $ $) 42)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-4031 (((-708) $) 58)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 57)) (-1304 (((-3 (-708) "failed") $ $) 80) (((-708) $) 89)) (-2731 (($ $ (-708)) 99) (($ $) 97)) (-2670 (($) 92)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) 95)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-382 (-522))) 65)) (-3040 (((-3 $ "failed") $) 82) (($ $) 96)) (-2742 (((-708)) 29)) (-1407 (((-108) $ $) 39)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 69)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $ (-708)) 100) (($ $) 98)) (-1562 (((-108) $ $) 6)) (-1682 (($ $ $) 64)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 68)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 67) (($ (-382 (-522)) $) 66))) -(((-324) (-1197)) (T -324)) -((-3040 (*1 *1 *1) (-4 *1 (-324))) (-2583 (*1 *2 *3) (|partial| -12 (-5 *3 (-628 *1)) (-4 *1 (-324)) (-5 *2 (-1166 *1)))) (-1799 (*1 *2) (-12 (-4 *1 (-324)) (-5 *2 (-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))))) (-3833 (*1 *2 *3) (-12 (-4 *1 (-324)) (-5 *3 (-522)) (-5 *2 (-1094 (-850) (-708))))) (-2670 (*1 *1) (-4 *1 (-324))) (-2160 (*1 *1) (-4 *1 (-324))) (-2087 (*1 *2 *1) (-12 (-4 *1 (-324)) (-5 *2 (-108)))) (-1304 (*1 *2 *1) (-12 (-4 *1 (-324)) (-5 *2 (-708)))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-324)) (-5 *2 (-850)))) (-1576 (*1 *2) (-12 (-4 *1 (-324)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-377) (-343) (-1061) (-210) (-10 -8 (-15 -3040 ($ $)) (-15 -2583 ((-3 (-1166 $) "failed") (-628 $))) (-15 -1799 ((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522)))))) (-15 -3833 ((-1094 (-850) (-708)) (-522))) (-15 -2670 ($)) (-15 -2160 ($)) (-15 -2087 ((-108) $)) (-15 -1304 ((-708) $)) (-15 -3872 ((-850) $)) (-15 -1576 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-133) . T) ((-562 (-792)) . T) ((-157) . T) ((-210) . T) ((-220) . T) ((-266) . T) ((-283) . T) ((-338) . T) ((-377) . T) ((-343) . T) ((-426) . T) ((-514) . T) ((-590 #0#) . T) ((-590 $) . T) ((-655 #0#) . T) ((-655 $) . T) ((-664) . T) ((-849) . T) ((-977 #0#) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1061) . T) ((-1124) . T)) -((-3387 (((-2 (|:| -2905 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))) |#1|) 51)) (-1886 (((-2 (|:| -2905 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|)))) 49))) -(((-325 |#1| |#2| |#3|) (-10 -7 (-15 -1886 ((-2 (|:| -2905 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))))) (-15 -3387 ((-2 (|:| -2905 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))) |#1|))) (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $)))) (-1142 |#1|) (-384 |#1| |#2|)) (T -325)) -((-3387 (*1 *2 *3) (-12 (-4 *3 (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $))))) (-4 *4 (-1142 *3)) (-5 *2 (-2 (|:| -2905 (-628 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-628 *3)))) (-5 *1 (-325 *3 *4 *5)) (-4 *5 (-384 *3 *4)))) (-1886 (*1 *2) (-12 (-4 *3 (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $))))) (-4 *4 (-1142 *3)) (-5 *2 (-2 (|:| -2905 (-628 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-628 *3)))) (-5 *1 (-325 *3 *4 *5)) (-4 *5 (-384 *3 *4))))) -(-10 -7 (-15 -1886 ((-2 (|:| -2905 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))))) (-15 -3387 ((-2 (|:| -2905 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))) |#1|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2400 (((-108) $) NIL)) (-1593 (((-708)) NIL)) (-1945 (((-839 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-3833 (((-1094 (-850) (-708)) (-522)) NIL (|has| (-839 |#1|) (-343)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-1671 (((-708)) NIL)) (-2805 (((-108) $ $) NIL)) (-1685 (((-708)) NIL (|has| (-839 |#1|) (-343)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-839 |#1|) "failed") $) NIL)) (-1478 (((-839 |#1|) $) NIL)) (-3225 (($ (-1166 (-839 |#1|))) NIL)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-839 |#1|) (-343)))) (-2333 (($ $ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3344 (($) NIL (|has| (-839 |#1|) (-343)))) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2160 (($) NIL (|has| (-839 |#1|) (-343)))) (-2087 (((-108) $) NIL (|has| (-839 |#1|) (-343)))) (-1380 (($ $ (-708)) NIL (-3844 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343)))) (($ $) NIL (-3844 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-2725 (((-108) $) NIL)) (-3872 (((-850) $) NIL (|has| (-839 |#1|) (-343))) (((-770 (-850)) $) NIL (-3844 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-2859 (((-108) $) NIL)) (-3768 (($) NIL (|has| (-839 |#1|) (-343)))) (-1372 (((-108) $) NIL (|has| (-839 |#1|) (-343)))) (-1269 (((-839 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-4208 (((-3 $ "failed") $) NIL (|has| (-839 |#1|) (-343)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4199 (((-1081 (-839 |#1|)) $) NIL) (((-1081 $) $ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-1475 (((-850) $) NIL (|has| (-839 |#1|) (-343)))) (-3657 (((-1081 (-839 |#1|)) $) NIL (|has| (-839 |#1|) (-343)))) (-3723 (((-1081 (-839 |#1|)) $) NIL (|has| (-839 |#1|) (-343))) (((-3 (-1081 (-839 |#1|)) "failed") $ $) NIL (|has| (-839 |#1|) (-343)))) (-2259 (($ $ (-1081 (-839 |#1|))) NIL (|has| (-839 |#1|) (-343)))) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-3937 (($) NIL (|has| (-839 |#1|) (-343)) CONST)) (-2882 (($ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-2804 (((-108) $) NIL)) (-4174 (((-1032) $) NIL)) (-3407 (((-1166 (-588 (-2 (|:| -3526 (-839 |#1|)) (|:| -2882 (-1032)))))) NIL)) (-1928 (((-628 (-839 |#1|))) NIL)) (-1368 (($) NIL (|has| (-839 |#1|) (-343)))) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) NIL (|has| (-839 |#1|) (-343)))) (-2006 (((-393 $) $) NIL)) (-1713 (((-770 (-850))) NIL) (((-850)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-1304 (((-708) $) NIL (|has| (-839 |#1|) (-343))) (((-3 (-708) "failed") $ $) NIL (-3844 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-3222 (((-126)) NIL)) (-2731 (($ $) NIL (|has| (-839 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-839 |#1|) (-343)))) (-2487 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-1579 (((-1081 (-839 |#1|))) NIL)) (-2670 (($) NIL (|has| (-839 |#1|) (-343)))) (-1705 (($) NIL (|has| (-839 |#1|) (-343)))) (-3510 (((-1166 (-839 |#1|)) $) NIL) (((-628 (-839 |#1|)) (-1166 $)) NIL)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| (-839 |#1|) (-343)))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ (-839 |#1|)) NIL)) (-3040 (($ $) NIL (|has| (-839 |#1|) (-343))) (((-3 $ "failed") $) NIL (-3844 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-2742 (((-708)) NIL)) (-2905 (((-1166 $)) NIL) (((-1166 $) (-850)) NIL)) (-1407 (((-108) $ $) NIL)) (-1711 (((-108) $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2938 (($ $) NIL (|has| (-839 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-839 |#1|) (-343)))) (-2252 (($ $) NIL (|has| (-839 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-839 |#1|) (-343)))) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ $) NIL) (($ $ (-839 |#1|)) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ $ (-839 |#1|)) NIL) (($ (-839 |#1|) $) NIL))) -(((-326 |#1| |#2|) (-13 (-304 (-839 |#1|)) (-10 -7 (-15 -3407 ((-1166 (-588 (-2 (|:| -3526 (-839 |#1|)) (|:| -2882 (-1032))))))) (-15 -1928 ((-628 (-839 |#1|)))) (-15 -1671 ((-708))))) (-850) (-850)) (T -326)) -((-3407 (*1 *2) (-12 (-5 *2 (-1166 (-588 (-2 (|:| -3526 (-839 *3)) (|:| -2882 (-1032)))))) (-5 *1 (-326 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850)))) (-1928 (*1 *2) (-12 (-5 *2 (-628 (-839 *3))) (-5 *1 (-326 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850)))) (-1671 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-326 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850))))) -(-13 (-304 (-839 |#1|)) (-10 -7 (-15 -3407 ((-1166 (-588 (-2 (|:| -3526 (-839 |#1|)) (|:| -2882 (-1032))))))) (-15 -1928 ((-628 (-839 |#1|)))) (-15 -1671 ((-708))))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 75)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2400 (((-108) $) NIL)) (-1593 (((-708)) NIL)) (-1945 ((|#1| $) 93) (($ $ (-850)) 91 (|has| |#1| (-343)))) (-3833 (((-1094 (-850) (-708)) (-522)) 149 (|has| |#1| (-343)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-1671 (((-708)) 90)) (-2805 (((-108) $ $) NIL)) (-1685 (((-708)) 163 (|has| |#1| (-343)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) 112)) (-1478 ((|#1| $) 92)) (-3225 (($ (-1166 |#1|)) 56)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) 187 (|has| |#1| (-343)))) (-2333 (($ $ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3344 (($) 159 (|has| |#1| (-343)))) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2160 (($) 150 (|has| |#1| (-343)))) (-2087 (((-108) $) NIL (|has| |#1| (-343)))) (-1380 (($ $ (-708)) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343)))) (($ $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2725 (((-108) $) NIL)) (-3872 (((-850) $) NIL (|has| |#1| (-343))) (((-770 (-850)) $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2859 (((-108) $) NIL)) (-3768 (($) 98 (|has| |#1| (-343)))) (-1372 (((-108) $) 176 (|has| |#1| (-343)))) (-1269 ((|#1| $) 95) (($ $ (-850)) 94 (|has| |#1| (-343)))) (-4208 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4199 (((-1081 |#1|) $) 188) (((-1081 $) $ (-850)) NIL (|has| |#1| (-343)))) (-1475 (((-850) $) 134 (|has| |#1| (-343)))) (-3657 (((-1081 |#1|) $) 74 (|has| |#1| (-343)))) (-3723 (((-1081 |#1|) $) 71 (|has| |#1| (-343))) (((-3 (-1081 |#1|) "failed") $ $) 83 (|has| |#1| (-343)))) (-2259 (($ $ (-1081 |#1|)) 70 (|has| |#1| (-343)))) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) 191)) (-3937 (($) NIL (|has| |#1| (-343)) CONST)) (-2882 (($ (-850)) 137 (|has| |#1| (-343)))) (-2804 (((-108) $) 108)) (-4174 (((-1032) $) NIL)) (-3407 (((-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032)))))) 84)) (-1928 (((-628 |#1|)) 88)) (-1368 (($) 97 (|has| |#1| (-343)))) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) 151 (|has| |#1| (-343)))) (-2006 (((-393 $) $) NIL)) (-1713 (((-770 (-850))) NIL) (((-850)) 152)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-1304 (((-708) $) NIL (|has| |#1| (-343))) (((-3 (-708) "failed") $ $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-3222 (((-126)) NIL)) (-2731 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2487 (((-770 (-850)) $) NIL) (((-850) $) 63)) (-1579 (((-1081 |#1|)) 153)) (-2670 (($) 133 (|has| |#1| (-343)))) (-1705 (($) NIL (|has| |#1| (-343)))) (-3510 (((-1166 |#1|) $) 106) (((-628 |#1|) (-1166 $)) NIL)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| |#1| (-343)))) (-2217 (((-792) $) 124) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ |#1|) 55)) (-3040 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2742 (((-708)) 157)) (-2905 (((-1166 $)) 173) (((-1166 $) (-850)) 101)) (-1407 (((-108) $ $) NIL)) (-1711 (((-108) $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) 29 T CONST)) (-3709 (($) 22 T CONST)) (-2938 (($ $) 107 (|has| |#1| (-343))) (($ $ (-708)) 99 (|has| |#1| (-343)))) (-2252 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-1562 (((-108) $ $) 59)) (-1682 (($ $ $) 104) (($ $ |#1|) 105)) (-1672 (($ $) 178) (($ $ $) 182)) (-1661 (($ $ $) 180)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) 138)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 185) (($ $ $) 143) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) -(((-327 |#1| |#2|) (-13 (-304 |#1|) (-10 -7 (-15 -3407 ((-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032))))))) (-15 -1928 ((-628 |#1|))) (-15 -1671 ((-708))))) (-324) (-3 (-1081 |#1|) (-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032))))))) (T -327)) -((-3407 (*1 *2) (-12 (-5 *2 (-1166 (-588 (-2 (|:| -3526 *3) (|:| -2882 (-1032)))))) (-5 *1 (-327 *3 *4)) (-4 *3 (-324)) (-14 *4 (-3 (-1081 *3) *2)))) (-1928 (*1 *2) (-12 (-5 *2 (-628 *3)) (-5 *1 (-327 *3 *4)) (-4 *3 (-324)) (-14 *4 (-3 (-1081 *3) (-1166 (-588 (-2 (|:| -3526 *3) (|:| -2882 (-1032))))))))) (-1671 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-327 *3 *4)) (-4 *3 (-324)) (-14 *4 (-3 (-1081 *3) (-1166 (-588 (-2 (|:| -3526 *3) (|:| -2882 (-1032)))))))))) -(-13 (-304 |#1|) (-10 -7 (-15 -3407 ((-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032))))))) (-15 -1928 ((-628 |#1|))) (-15 -1671 ((-708))))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2400 (((-108) $) NIL)) (-1593 (((-708)) NIL)) (-1945 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-343)))) (-3833 (((-1094 (-850) (-708)) (-522)) NIL (|has| |#1| (-343)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-1671 (((-708)) NIL)) (-2805 (((-108) $ $) NIL)) (-1685 (((-708)) NIL (|has| |#1| (-343)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) NIL)) (-1478 ((|#1| $) NIL)) (-3225 (($ (-1166 |#1|)) NIL)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-2333 (($ $ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3344 (($) NIL (|has| |#1| (-343)))) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2160 (($) NIL (|has| |#1| (-343)))) (-2087 (((-108) $) NIL (|has| |#1| (-343)))) (-1380 (($ $ (-708)) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343)))) (($ $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2725 (((-108) $) NIL)) (-3872 (((-850) $) NIL (|has| |#1| (-343))) (((-770 (-850)) $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2859 (((-108) $) NIL)) (-3768 (($) NIL (|has| |#1| (-343)))) (-1372 (((-108) $) NIL (|has| |#1| (-343)))) (-1269 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-343)))) (-4208 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4199 (((-1081 |#1|) $) NIL) (((-1081 $) $ (-850)) NIL (|has| |#1| (-343)))) (-1475 (((-850) $) NIL (|has| |#1| (-343)))) (-3657 (((-1081 |#1|) $) NIL (|has| |#1| (-343)))) (-3723 (((-1081 |#1|) $) NIL (|has| |#1| (-343))) (((-3 (-1081 |#1|) "failed") $ $) NIL (|has| |#1| (-343)))) (-2259 (($ $ (-1081 |#1|)) NIL (|has| |#1| (-343)))) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-3937 (($) NIL (|has| |#1| (-343)) CONST)) (-2882 (($ (-850)) NIL (|has| |#1| (-343)))) (-2804 (((-108) $) NIL)) (-4174 (((-1032) $) NIL)) (-3407 (((-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032)))))) NIL)) (-1928 (((-628 |#1|)) NIL)) (-1368 (($) NIL (|has| |#1| (-343)))) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) NIL (|has| |#1| (-343)))) (-2006 (((-393 $) $) NIL)) (-1713 (((-770 (-850))) NIL) (((-850)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-1304 (((-708) $) NIL (|has| |#1| (-343))) (((-3 (-708) "failed") $ $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-3222 (((-126)) NIL)) (-2731 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2487 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-1579 (((-1081 |#1|)) NIL)) (-2670 (($) NIL (|has| |#1| (-343)))) (-1705 (($) NIL (|has| |#1| (-343)))) (-3510 (((-1166 |#1|) $) NIL) (((-628 |#1|) (-1166 $)) NIL)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| |#1| (-343)))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ |#1|) NIL)) (-3040 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2742 (((-708)) NIL)) (-2905 (((-1166 $)) NIL) (((-1166 $) (-850)) NIL)) (-1407 (((-108) $ $) NIL)) (-1711 (((-108) $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2938 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2252 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-328 |#1| |#2|) (-13 (-304 |#1|) (-10 -7 (-15 -3407 ((-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032))))))) (-15 -1928 ((-628 |#1|))) (-15 -1671 ((-708))))) (-324) (-850)) (T -328)) -((-3407 (*1 *2) (-12 (-5 *2 (-1166 (-588 (-2 (|:| -3526 *3) (|:| -2882 (-1032)))))) (-5 *1 (-328 *3 *4)) (-4 *3 (-324)) (-14 *4 (-850)))) (-1928 (*1 *2) (-12 (-5 *2 (-628 *3)) (-5 *1 (-328 *3 *4)) (-4 *3 (-324)) (-14 *4 (-850)))) (-1671 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-328 *3 *4)) (-4 *3 (-324)) (-14 *4 (-850))))) -(-13 (-304 |#1|) (-10 -7 (-15 -3407 ((-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032))))))) (-15 -1928 ((-628 |#1|))) (-15 -1671 ((-708))))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2400 (((-108) $) NIL)) (-1593 (((-708)) NIL)) (-1945 (((-839 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-3833 (((-1094 (-850) (-708)) (-522)) NIL (|has| (-839 |#1|) (-343)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2805 (((-108) $ $) NIL)) (-1685 (((-708)) NIL (|has| (-839 |#1|) (-343)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-839 |#1|) "failed") $) NIL)) (-1478 (((-839 |#1|) $) NIL)) (-3225 (($ (-1166 (-839 |#1|))) NIL)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-839 |#1|) (-343)))) (-2333 (($ $ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3344 (($) NIL (|has| (-839 |#1|) (-343)))) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2160 (($) NIL (|has| (-839 |#1|) (-343)))) (-2087 (((-108) $) NIL (|has| (-839 |#1|) (-343)))) (-1380 (($ $ (-708)) NIL (-3844 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343)))) (($ $) NIL (-3844 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-2725 (((-108) $) NIL)) (-3872 (((-850) $) NIL (|has| (-839 |#1|) (-343))) (((-770 (-850)) $) NIL (-3844 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-2859 (((-108) $) NIL)) (-3768 (($) NIL (|has| (-839 |#1|) (-343)))) (-1372 (((-108) $) NIL (|has| (-839 |#1|) (-343)))) (-1269 (((-839 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-4208 (((-3 $ "failed") $) NIL (|has| (-839 |#1|) (-343)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4199 (((-1081 (-839 |#1|)) $) NIL) (((-1081 $) $ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-1475 (((-850) $) NIL (|has| (-839 |#1|) (-343)))) (-3657 (((-1081 (-839 |#1|)) $) NIL (|has| (-839 |#1|) (-343)))) (-3723 (((-1081 (-839 |#1|)) $) NIL (|has| (-839 |#1|) (-343))) (((-3 (-1081 (-839 |#1|)) "failed") $ $) NIL (|has| (-839 |#1|) (-343)))) (-2259 (($ $ (-1081 (-839 |#1|))) NIL (|has| (-839 |#1|) (-343)))) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-3937 (($) NIL (|has| (-839 |#1|) (-343)) CONST)) (-2882 (($ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-2804 (((-108) $) NIL)) (-4174 (((-1032) $) NIL)) (-1368 (($) NIL (|has| (-839 |#1|) (-343)))) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) NIL (|has| (-839 |#1|) (-343)))) (-2006 (((-393 $) $) NIL)) (-1713 (((-770 (-850))) NIL) (((-850)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-1304 (((-708) $) NIL (|has| (-839 |#1|) (-343))) (((-3 (-708) "failed") $ $) NIL (-3844 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-3222 (((-126)) NIL)) (-2731 (($ $) NIL (|has| (-839 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-839 |#1|) (-343)))) (-2487 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-1579 (((-1081 (-839 |#1|))) NIL)) (-2670 (($) NIL (|has| (-839 |#1|) (-343)))) (-1705 (($) NIL (|has| (-839 |#1|) (-343)))) (-3510 (((-1166 (-839 |#1|)) $) NIL) (((-628 (-839 |#1|)) (-1166 $)) NIL)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| (-839 |#1|) (-343)))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ (-839 |#1|)) NIL)) (-3040 (($ $) NIL (|has| (-839 |#1|) (-343))) (((-3 $ "failed") $) NIL (-3844 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-2742 (((-708)) NIL)) (-2905 (((-1166 $)) NIL) (((-1166 $) (-850)) NIL)) (-1407 (((-108) $ $) NIL)) (-1711 (((-108) $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2938 (($ $) NIL (|has| (-839 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-839 |#1|) (-343)))) (-2252 (($ $) NIL (|has| (-839 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-839 |#1|) (-343)))) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ $) NIL) (($ $ (-839 |#1|)) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ $ (-839 |#1|)) NIL) (($ (-839 |#1|) $) NIL))) -(((-329 |#1| |#2|) (-304 (-839 |#1|)) (-850) (-850)) (T -329)) -NIL -(-304 (-839 |#1|)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2400 (((-108) $) NIL)) (-1593 (((-708)) NIL)) (-1945 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-343)))) (-3833 (((-1094 (-850) (-708)) (-522)) 119 (|has| |#1| (-343)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2805 (((-108) $ $) NIL)) (-1685 (((-708)) 139 (|has| |#1| (-343)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) 91)) (-1478 ((|#1| $) 88)) (-3225 (($ (-1166 |#1|)) 83)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) 115 (|has| |#1| (-343)))) (-2333 (($ $ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3344 (($) 80 (|has| |#1| (-343)))) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2160 (($) 39 (|has| |#1| (-343)))) (-2087 (((-108) $) NIL (|has| |#1| (-343)))) (-1380 (($ $ (-708)) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343)))) (($ $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2725 (((-108) $) NIL)) (-3872 (((-850) $) NIL (|has| |#1| (-343))) (((-770 (-850)) $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2859 (((-108) $) NIL)) (-3768 (($) 120 (|has| |#1| (-343)))) (-1372 (((-108) $) 72 (|has| |#1| (-343)))) (-1269 ((|#1| $) 38) (($ $ (-850)) 40 (|has| |#1| (-343)))) (-4208 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4199 (((-1081 |#1|) $) 62) (((-1081 $) $ (-850)) NIL (|has| |#1| (-343)))) (-1475 (((-850) $) 95 (|has| |#1| (-343)))) (-3657 (((-1081 |#1|) $) NIL (|has| |#1| (-343)))) (-3723 (((-1081 |#1|) $) NIL (|has| |#1| (-343))) (((-3 (-1081 |#1|) "failed") $ $) NIL (|has| |#1| (-343)))) (-2259 (($ $ (-1081 |#1|)) NIL (|has| |#1| (-343)))) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-3937 (($) NIL (|has| |#1| (-343)) CONST)) (-2882 (($ (-850)) 93 (|has| |#1| (-343)))) (-2804 (((-108) $) 141)) (-4174 (((-1032) $) NIL)) (-1368 (($) 35 (|has| |#1| (-343)))) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) 113 (|has| |#1| (-343)))) (-2006 (((-393 $) $) NIL)) (-1713 (((-770 (-850))) NIL) (((-850)) 138)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-1304 (((-708) $) NIL (|has| |#1| (-343))) (((-3 (-708) "failed") $ $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-3222 (((-126)) NIL)) (-2731 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2487 (((-770 (-850)) $) NIL) (((-850) $) 56)) (-1579 (((-1081 |#1|)) 86)) (-2670 (($) 125 (|has| |#1| (-343)))) (-1705 (($) NIL (|has| |#1| (-343)))) (-3510 (((-1166 |#1|) $) 50) (((-628 |#1|) (-1166 $)) NIL)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| |#1| (-343)))) (-2217 (((-792) $) 137) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ |#1|) 85)) (-3040 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2742 (((-708)) 143)) (-2905 (((-1166 $)) 107) (((-1166 $) (-850)) 46)) (-1407 (((-108) $ $) NIL)) (-1711 (((-108) $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) 109 T CONST)) (-3709 (($) 31 T CONST)) (-2938 (($ $) 65 (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2252 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-1562 (((-108) $ $) 105)) (-1682 (($ $ $) 97) (($ $ |#1|) 98)) (-1672 (($ $) 78) (($ $ $) 103)) (-1661 (($ $ $) 101)) (** (($ $ (-850)) NIL) (($ $ (-708)) 41) (($ $ (-522)) 129)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 76) (($ $ $) 53) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 74))) -(((-330 |#1| |#2|) (-304 |#1|) (-324) (-1081 |#1|)) (T -330)) -NIL -(-304 |#1|) -((-3855 ((|#1| (-1081 |#2|)) 51))) -(((-331 |#1| |#2|) (-10 -7 (-15 -3855 (|#1| (-1081 |#2|)))) (-13 (-377) (-10 -7 (-15 -2217 (|#1| |#2|)) (-15 -1475 ((-850) |#1|)) (-15 -2905 ((-1166 |#1|) (-850))) (-15 -2938 (|#1| |#1|)))) (-324)) (T -331)) -((-3855 (*1 *2 *3) (-12 (-5 *3 (-1081 *4)) (-4 *4 (-324)) (-4 *2 (-13 (-377) (-10 -7 (-15 -2217 (*2 *4)) (-15 -1475 ((-850) *2)) (-15 -2905 ((-1166 *2) (-850))) (-15 -2938 (*2 *2))))) (-5 *1 (-331 *2 *4))))) -(-10 -7 (-15 -3855 (|#1| (-1081 |#2|)))) -((-1606 (((-886 (-1081 |#1|)) (-1081 |#1|)) 37)) (-3344 (((-1081 |#1|) (-850) (-850)) 110) (((-1081 |#1|) (-850)) 109)) (-2087 (((-108) (-1081 |#1|)) 82)) (-4068 (((-850) (-850)) 72)) (-3285 (((-850) (-850)) 74)) (-4136 (((-850) (-850)) 70)) (-1372 (((-108) (-1081 |#1|)) 86)) (-3834 (((-3 (-1081 |#1|) "failed") (-1081 |#1|)) 98)) (-3857 (((-3 (-1081 |#1|) "failed") (-1081 |#1|)) 101)) (-2036 (((-3 (-1081 |#1|) "failed") (-1081 |#1|)) 100)) (-1573 (((-3 (-1081 |#1|) "failed") (-1081 |#1|)) 99)) (-3765 (((-3 (-1081 |#1|) "failed") (-1081 |#1|)) 95)) (-2110 (((-1081 |#1|) (-1081 |#1|)) 63)) (-2613 (((-1081 |#1|) (-850)) 104)) (-3812 (((-1081 |#1|) (-850)) 107)) (-2789 (((-1081 |#1|) (-850)) 106)) (-1459 (((-1081 |#1|) (-850)) 105)) (-2478 (((-1081 |#1|) (-850)) 102))) -(((-332 |#1|) (-10 -7 (-15 -2087 ((-108) (-1081 |#1|))) (-15 -1372 ((-108) (-1081 |#1|))) (-15 -4136 ((-850) (-850))) (-15 -4068 ((-850) (-850))) (-15 -3285 ((-850) (-850))) (-15 -2478 ((-1081 |#1|) (-850))) (-15 -2613 ((-1081 |#1|) (-850))) (-15 -1459 ((-1081 |#1|) (-850))) (-15 -2789 ((-1081 |#1|) (-850))) (-15 -3812 ((-1081 |#1|) (-850))) (-15 -3765 ((-3 (-1081 |#1|) "failed") (-1081 |#1|))) (-15 -3834 ((-3 (-1081 |#1|) "failed") (-1081 |#1|))) (-15 -1573 ((-3 (-1081 |#1|) "failed") (-1081 |#1|))) (-15 -2036 ((-3 (-1081 |#1|) "failed") (-1081 |#1|))) (-15 -3857 ((-3 (-1081 |#1|) "failed") (-1081 |#1|))) (-15 -3344 ((-1081 |#1|) (-850))) (-15 -3344 ((-1081 |#1|) (-850) (-850))) (-15 -2110 ((-1081 |#1|) (-1081 |#1|))) (-15 -1606 ((-886 (-1081 |#1|)) (-1081 |#1|)))) (-324)) (T -332)) -((-1606 (*1 *2 *3) (-12 (-4 *4 (-324)) (-5 *2 (-886 (-1081 *4))) (-5 *1 (-332 *4)) (-5 *3 (-1081 *4)))) (-2110 (*1 *2 *2) (-12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3)))) (-3344 (*1 *2 *3 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4)) (-4 *4 (-324)))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4)) (-4 *4 (-324)))) (-3857 (*1 *2 *2) (|partial| -12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3)))) (-2036 (*1 *2 *2) (|partial| -12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3)))) (-1573 (*1 *2 *2) (|partial| -12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3)))) (-3834 (*1 *2 *2) (|partial| -12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3)))) (-3765 (*1 *2 *2) (|partial| -12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3)))) (-3812 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4)) (-4 *4 (-324)))) (-2789 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4)) (-4 *4 (-324)))) (-1459 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4)) (-4 *4 (-324)))) (-2613 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4)) (-4 *4 (-324)))) (-2478 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4)) (-4 *4 (-324)))) (-3285 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-332 *3)) (-4 *3 (-324)))) (-4068 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-332 *3)) (-4 *3 (-324)))) (-4136 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-332 *3)) (-4 *3 (-324)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-1081 *4)) (-4 *4 (-324)) (-5 *2 (-108)) (-5 *1 (-332 *4)))) (-2087 (*1 *2 *3) (-12 (-5 *3 (-1081 *4)) (-4 *4 (-324)) (-5 *2 (-108)) (-5 *1 (-332 *4))))) -(-10 -7 (-15 -2087 ((-108) (-1081 |#1|))) (-15 -1372 ((-108) (-1081 |#1|))) (-15 -4136 ((-850) (-850))) (-15 -4068 ((-850) (-850))) (-15 -3285 ((-850) (-850))) (-15 -2478 ((-1081 |#1|) (-850))) (-15 -2613 ((-1081 |#1|) (-850))) (-15 -1459 ((-1081 |#1|) (-850))) (-15 -2789 ((-1081 |#1|) (-850))) (-15 -3812 ((-1081 |#1|) (-850))) (-15 -3765 ((-3 (-1081 |#1|) "failed") (-1081 |#1|))) (-15 -3834 ((-3 (-1081 |#1|) "failed") (-1081 |#1|))) (-15 -1573 ((-3 (-1081 |#1|) "failed") (-1081 |#1|))) (-15 -2036 ((-3 (-1081 |#1|) "failed") (-1081 |#1|))) (-15 -3857 ((-3 (-1081 |#1|) "failed") (-1081 |#1|))) (-15 -3344 ((-1081 |#1|) (-850))) (-15 -3344 ((-1081 |#1|) (-850) (-850))) (-15 -2110 ((-1081 |#1|) (-1081 |#1|))) (-15 -1606 ((-886 (-1081 |#1|)) (-1081 |#1|)))) -((-2800 (((-3 (-588 |#3|) "failed") (-588 |#3|) |#3|) 34))) -(((-333 |#1| |#2| |#3|) (-10 -7 (-15 -2800 ((-3 (-588 |#3|) "failed") (-588 |#3|) |#3|))) (-324) (-1142 |#1|) (-1142 |#2|)) (T -333)) -((-2800 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-588 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-324)) (-5 *1 (-333 *4 *5 *3))))) -(-10 -7 (-15 -2800 ((-3 (-588 |#3|) "failed") (-588 |#3|) |#3|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2400 (((-108) $) NIL)) (-1593 (((-708)) NIL)) (-1945 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-343)))) (-3833 (((-1094 (-850) (-708)) (-522)) NIL (|has| |#1| (-343)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2805 (((-108) $ $) NIL)) (-1685 (((-708)) NIL (|has| |#1| (-343)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) NIL)) (-1478 ((|#1| $) NIL)) (-3225 (($ (-1166 |#1|)) NIL)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-2333 (($ $ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3344 (($) NIL (|has| |#1| (-343)))) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2160 (($) NIL (|has| |#1| (-343)))) (-2087 (((-108) $) NIL (|has| |#1| (-343)))) (-1380 (($ $ (-708)) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343)))) (($ $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2725 (((-108) $) NIL)) (-3872 (((-850) $) NIL (|has| |#1| (-343))) (((-770 (-850)) $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2859 (((-108) $) NIL)) (-3768 (($) NIL (|has| |#1| (-343)))) (-1372 (((-108) $) NIL (|has| |#1| (-343)))) (-1269 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-343)))) (-4208 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4199 (((-1081 |#1|) $) NIL) (((-1081 $) $ (-850)) NIL (|has| |#1| (-343)))) (-1475 (((-850) $) NIL (|has| |#1| (-343)))) (-3657 (((-1081 |#1|) $) NIL (|has| |#1| (-343)))) (-3723 (((-1081 |#1|) $) NIL (|has| |#1| (-343))) (((-3 (-1081 |#1|) "failed") $ $) NIL (|has| |#1| (-343)))) (-2259 (($ $ (-1081 |#1|)) NIL (|has| |#1| (-343)))) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-3937 (($) NIL (|has| |#1| (-343)) CONST)) (-2882 (($ (-850)) NIL (|has| |#1| (-343)))) (-2804 (((-108) $) NIL)) (-4174 (((-1032) $) NIL)) (-1368 (($) NIL (|has| |#1| (-343)))) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) NIL (|has| |#1| (-343)))) (-2006 (((-393 $) $) NIL)) (-1713 (((-770 (-850))) NIL) (((-850)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-1304 (((-708) $) NIL (|has| |#1| (-343))) (((-3 (-708) "failed") $ $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-3222 (((-126)) NIL)) (-2731 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2487 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-1579 (((-1081 |#1|)) NIL)) (-2670 (($) NIL (|has| |#1| (-343)))) (-1705 (($) NIL (|has| |#1| (-343)))) (-3510 (((-1166 |#1|) $) NIL) (((-628 |#1|) (-1166 $)) NIL)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| |#1| (-343)))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ |#1|) NIL)) (-3040 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2742 (((-708)) NIL)) (-2905 (((-1166 $)) NIL) (((-1166 $) (-850)) NIL)) (-1407 (((-108) $ $) NIL)) (-1711 (((-108) $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2938 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2252 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-334 |#1| |#2|) (-304 |#1|) (-324) (-850)) (T -334)) -NIL -(-304 |#1|) -((-2318 (((-108) (-588 (-881 |#1|))) 32)) (-3059 (((-588 (-881 |#1|)) (-588 (-881 |#1|))) 43)) (-2413 (((-3 (-588 (-881 |#1|)) "failed") (-588 (-881 |#1|))) 39))) -(((-335 |#1| |#2|) (-10 -7 (-15 -2318 ((-108) (-588 (-881 |#1|)))) (-15 -2413 ((-3 (-588 (-881 |#1|)) "failed") (-588 (-881 |#1|)))) (-15 -3059 ((-588 (-881 |#1|)) (-588 (-881 |#1|))))) (-426) (-588 (-1085))) (T -335)) -((-3059 (*1 *2 *2) (-12 (-5 *2 (-588 (-881 *3))) (-4 *3 (-426)) (-5 *1 (-335 *3 *4)) (-14 *4 (-588 (-1085))))) (-2413 (*1 *2 *2) (|partial| -12 (-5 *2 (-588 (-881 *3))) (-4 *3 (-426)) (-5 *1 (-335 *3 *4)) (-14 *4 (-588 (-1085))))) (-2318 (*1 *2 *3) (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-426)) (-5 *2 (-108)) (-5 *1 (-335 *4 *5)) (-14 *5 (-588 (-1085)))))) -(-10 -7 (-15 -2318 ((-108) (-588 (-881 |#1|)))) (-15 -2413 ((-3 (-588 (-881 |#1|)) "failed") (-588 (-881 |#1|)))) (-15 -3059 ((-588 (-881 |#1|)) (-588 (-881 |#1|))))) -((-1419 (((-108) $ $) NIL)) (-1685 (((-708) $) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) NIL)) (-1478 ((|#1| $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2859 (((-108) $) 14)) (-3108 ((|#1| $ (-522)) NIL)) (-4213 (((-522) $ (-522)) NIL)) (-2007 (($ (-1 |#1| |#1|) $) 32)) (-1250 (($ (-1 (-522) (-522)) $) 24)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) 26)) (-4174 (((-1032) $) NIL)) (-4045 (((-588 (-2 (|:| |gen| |#1|) (|:| -3357 (-522)))) $) 28)) (-2983 (($ $ $) NIL)) (-1596 (($ $ $) NIL)) (-2217 (((-792) $) 38) (($ |#1|) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3709 (($) 9 T CONST)) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL) (($ |#1| (-522)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) -(((-336 |#1|) (-13 (-447) (-962 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-522))) (-15 -1685 ((-708) $)) (-15 -4213 ((-522) $ (-522))) (-15 -3108 (|#1| $ (-522))) (-15 -1250 ($ (-1 (-522) (-522)) $)) (-15 -2007 ($ (-1 |#1| |#1|) $)) (-15 -4045 ((-588 (-2 (|:| |gen| |#1|) (|:| -3357 (-522)))) $)))) (-1014)) (T -336)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-336 *2)) (-4 *2 (-1014)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-336 *2)) (-4 *2 (-1014)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-336 *2)) (-4 *2 (-1014)))) (-1685 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-336 *3)) (-4 *3 (-1014)))) (-4213 (*1 *2 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-336 *3)) (-4 *3 (-1014)))) (-3108 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *1 (-336 *2)) (-4 *2 (-1014)))) (-1250 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-522) (-522))) (-5 *1 (-336 *3)) (-4 *3 (-1014)))) (-2007 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-336 *3)))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3357 (-522))))) (-5 *1 (-336 *3)) (-4 *3 (-1014))))) -(-13 (-447) (-962 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-522))) (-15 -1685 ((-708) $)) (-15 -4213 ((-522) $ (-522))) (-15 -3108 (|#1| $ (-522))) (-15 -1250 ($ (-1 (-522) (-522)) $)) (-15 -2007 ($ (-1 |#1| |#1|) $)) (-15 -4045 ((-588 (-2 (|:| |gen| |#1|) (|:| -3357 (-522)))) $)))) -((-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 13)) (-2298 (($ $) 14)) (-3133 (((-393 $) $) 30)) (-2725 (((-108) $) 26)) (-3193 (($ $) 19)) (-2308 (($ $ $) 23) (($ (-588 $)) NIL)) (-2006 (((-393 $) $) 31)) (-2276 (((-3 $ "failed") $ $) 22)) (-4031 (((-708) $) 25)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 35)) (-1407 (((-108) $ $) 16)) (-1682 (($ $ $) 33))) -(((-337 |#1|) (-10 -8 (-15 -1682 (|#1| |#1| |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -2725 ((-108) |#1|)) (-15 -3133 ((-393 |#1|) |#1|)) (-15 -2006 ((-393 |#1|) |#1|)) (-15 -4164 ((-2 (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1|)) (-15 -4031 ((-708) |#1|)) (-15 -2308 (|#1| (-588 |#1|))) (-15 -2308 (|#1| |#1| |#1|)) (-15 -1407 ((-108) |#1| |#1|)) (-15 -2298 (|#1| |#1|)) (-15 -3401 ((-2 (|:| -2541 |#1|) (|:| -4225 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2276 ((-3 |#1| "failed") |#1| |#1|))) (-338)) (T -337)) -NIL -(-10 -8 (-15 -1682 (|#1| |#1| |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -2725 ((-108) |#1|)) (-15 -3133 ((-393 |#1|) |#1|)) (-15 -2006 ((-393 |#1|) |#1|)) (-15 -4164 ((-2 (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1|)) (-15 -4031 ((-708) |#1|)) (-15 -2308 (|#1| (-588 |#1|))) (-15 -2308 (|#1| |#1| |#1|)) (-15 -1407 ((-108) |#1| |#1|)) (-15 -2298 (|#1| |#1|)) (-15 -3401 ((-2 (|:| -2541 |#1|) (|:| -4225 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2276 ((-3 |#1| "failed") |#1| |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2298 (($ $) 40)) (-3007 (((-108) $) 38)) (-2265 (((-3 $ "failed") $ $) 19)) (-2961 (($ $) 73)) (-3133 (((-393 $) $) 72)) (-2805 (((-108) $ $) 59)) (-3367 (($) 17 T CONST)) (-2333 (($ $ $) 55)) (-3920 (((-3 $ "failed") $) 34)) (-2303 (($ $ $) 56)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 51)) (-2725 (((-108) $) 71)) (-2859 (((-108) $) 31)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-2267 (($ $ $) 46) (($ (-588 $)) 45)) (-2311 (((-1068) $) 9)) (-3193 (($ $) 70)) (-4174 (((-1032) $) 10)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2308 (($ $ $) 48) (($ (-588 $)) 47)) (-2006 (((-393 $) $) 74)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2276 (((-3 $ "failed") $ $) 42)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-4031 (((-708) $) 58)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 57)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-382 (-522))) 65)) (-2742 (((-708)) 29)) (-1407 (((-108) $ $) 39)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 69)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1682 (($ $ $) 64)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 68)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 67) (($ (-382 (-522)) $) 66))) -(((-338) (-1197)) (T -338)) -((-1682 (*1 *1 *1 *1) (-4 *1 (-338)))) -(-13 (-283) (-1124) (-220) (-10 -8 (-15 -1682 ($ $ $)) (-6 -4236) (-6 -4230))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-220) . T) ((-266) . T) ((-283) . T) ((-426) . T) ((-514) . T) ((-590 #0#) . T) ((-590 $) . T) ((-655 #0#) . T) ((-655 $) . T) ((-664) . T) ((-849) . T) ((-977 #0#) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) . T)) -((-1419 (((-108) $ $) 7)) (-2710 ((|#2| $ |#2|) 13)) (-3813 (($ $ (-1068)) 18)) (-2982 ((|#2| $) 14)) (-1566 (($ |#1|) 20) (($ |#1| (-1068)) 19)) (-3015 ((|#1| $) 16)) (-2311 (((-1068) $) 9)) (-3270 (((-1068) $) 15)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-3116 (($ $) 17)) (-1562 (((-108) $ $) 6))) -(((-339 |#1| |#2|) (-1197) (-1014) (-1014)) (T -339)) -((-1566 (*1 *1 *2) (-12 (-4 *1 (-339 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-1566 (*1 *1 *2 *3) (-12 (-5 *3 (-1068)) (-4 *1 (-339 *2 *4)) (-4 *2 (-1014)) (-4 *4 (-1014)))) (-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1068)) (-4 *1 (-339 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3116 (*1 *1 *1) (-12 (-4 *1 (-339 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3015 (*1 *2 *1) (-12 (-4 *1 (-339 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-3270 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-1068)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-2710 (*1 *2 *1 *2) (-12 (-4 *1 (-339 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))) -(-13 (-1014) (-10 -8 (-15 -1566 ($ |t#1|)) (-15 -1566 ($ |t#1| (-1068))) (-15 -3813 ($ $ (-1068))) (-15 -3116 ($ $)) (-15 -3015 (|t#1| $)) (-15 -3270 ((-1068) $)) (-15 -2982 (|t#2| $)) (-15 -2710 (|t#2| $ |t#2|)))) -(((-97) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-2710 ((|#1| $ |#1|) 29)) (-3813 (($ $ (-1068)) 22)) (-3688 (((-3 |#1| "failed") $) 28)) (-2982 ((|#1| $) 26)) (-1566 (($ (-363)) 21) (($ (-363) (-1068)) 20)) (-3015 (((-363) $) 24)) (-2311 (((-1068) $) NIL)) (-3270 (((-1068) $) 25)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 19)) (-3116 (($ $) 23)) (-1562 (((-108) $ $) 18))) -(((-340 |#1|) (-13 (-339 (-363) |#1|) (-10 -8 (-15 -3688 ((-3 |#1| "failed") $)))) (-1014)) (T -340)) -((-3688 (*1 *2 *1) (|partial| -12 (-5 *1 (-340 *2)) (-4 *2 (-1014))))) -(-13 (-339 (-363) |#1|) (-10 -8 (-15 -3688 ((-3 |#1| "failed") $)))) -((-3690 (((-1166 (-628 |#2|)) (-1166 $)) 61)) (-3531 (((-628 |#2|) (-1166 $)) 119)) (-2046 ((|#2| $) 32)) (-2853 (((-628 |#2|) $ (-1166 $)) 123)) (-1279 (((-3 $ "failed") $) 75)) (-3676 ((|#2| $) 35)) (-4080 (((-1081 |#2|) $) 83)) (-4035 ((|#2| (-1166 $)) 106)) (-3767 (((-1081 |#2|) $) 28)) (-1340 (((-108)) 100)) (-3225 (($ (-1166 |#2|) (-1166 $)) 113)) (-3920 (((-3 $ "failed") $) 79)) (-2287 (((-108)) 95)) (-3702 (((-108)) 90)) (-3868 (((-108)) 53)) (-1521 (((-628 |#2|) (-1166 $)) 117)) (-3411 ((|#2| $) 31)) (-2734 (((-628 |#2|) $ (-1166 $)) 122)) (-3070 (((-3 $ "failed") $) 73)) (-1819 ((|#2| $) 34)) (-1216 (((-1081 |#2|) $) 82)) (-3020 ((|#2| (-1166 $)) 104)) (-2724 (((-1081 |#2|) $) 26)) (-4197 (((-108)) 99)) (-3823 (((-108)) 92)) (-1388 (((-108)) 51)) (-3509 (((-108)) 87)) (-1427 (((-108)) 101)) (-3510 (((-1166 |#2|) $ (-1166 $)) NIL) (((-628 |#2|) (-1166 $) (-1166 $)) 111)) (-3990 (((-108)) 97)) (-1548 (((-588 (-1166 |#2|))) 86)) (-3597 (((-108)) 98)) (-3578 (((-108)) 96)) (-2912 (((-108)) 46)) (-1855 (((-108)) 102))) -(((-341 |#1| |#2|) (-10 -8 (-15 -4080 ((-1081 |#2|) |#1|)) (-15 -1216 ((-1081 |#2|) |#1|)) (-15 -1548 ((-588 (-1166 |#2|)))) (-15 -1279 ((-3 |#1| "failed") |#1|)) (-15 -3070 ((-3 |#1| "failed") |#1|)) (-15 -3920 ((-3 |#1| "failed") |#1|)) (-15 -3702 ((-108))) (-15 -3823 ((-108))) (-15 -2287 ((-108))) (-15 -1388 ((-108))) (-15 -3868 ((-108))) (-15 -3509 ((-108))) (-15 -1855 ((-108))) (-15 -1427 ((-108))) (-15 -1340 ((-108))) (-15 -4197 ((-108))) (-15 -2912 ((-108))) (-15 -3597 ((-108))) (-15 -3578 ((-108))) (-15 -3990 ((-108))) (-15 -3767 ((-1081 |#2|) |#1|)) (-15 -2724 ((-1081 |#2|) |#1|)) (-15 -3531 ((-628 |#2|) (-1166 |#1|))) (-15 -1521 ((-628 |#2|) (-1166 |#1|))) (-15 -4035 (|#2| (-1166 |#1|))) (-15 -3020 (|#2| (-1166 |#1|))) (-15 -3225 (|#1| (-1166 |#2|) (-1166 |#1|))) (-15 -3510 ((-628 |#2|) (-1166 |#1|) (-1166 |#1|))) (-15 -3510 ((-1166 |#2|) |#1| (-1166 |#1|))) (-15 -3676 (|#2| |#1|)) (-15 -1819 (|#2| |#1|)) (-15 -2046 (|#2| |#1|)) (-15 -3411 (|#2| |#1|)) (-15 -2853 ((-628 |#2|) |#1| (-1166 |#1|))) (-15 -2734 ((-628 |#2|) |#1| (-1166 |#1|))) (-15 -3690 ((-1166 (-628 |#2|)) (-1166 |#1|)))) (-342 |#2|) (-157)) (T -341)) -((-3990 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-3578 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-3597 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-2912 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-4197 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-1340 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-1427 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-1855 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-3509 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-3868 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-1388 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-2287 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-3823 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-3702 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-1548 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-588 (-1166 *4))) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4))))) -(-10 -8 (-15 -4080 ((-1081 |#2|) |#1|)) (-15 -1216 ((-1081 |#2|) |#1|)) (-15 -1548 ((-588 (-1166 |#2|)))) (-15 -1279 ((-3 |#1| "failed") |#1|)) (-15 -3070 ((-3 |#1| "failed") |#1|)) (-15 -3920 ((-3 |#1| "failed") |#1|)) (-15 -3702 ((-108))) (-15 -3823 ((-108))) (-15 -2287 ((-108))) (-15 -1388 ((-108))) (-15 -3868 ((-108))) (-15 -3509 ((-108))) (-15 -1855 ((-108))) (-15 -1427 ((-108))) (-15 -1340 ((-108))) (-15 -4197 ((-108))) (-15 -2912 ((-108))) (-15 -3597 ((-108))) (-15 -3578 ((-108))) (-15 -3990 ((-108))) (-15 -3767 ((-1081 |#2|) |#1|)) (-15 -2724 ((-1081 |#2|) |#1|)) (-15 -3531 ((-628 |#2|) (-1166 |#1|))) (-15 -1521 ((-628 |#2|) (-1166 |#1|))) (-15 -4035 (|#2| (-1166 |#1|))) (-15 -3020 (|#2| (-1166 |#1|))) (-15 -3225 (|#1| (-1166 |#2|) (-1166 |#1|))) (-15 -3510 ((-628 |#2|) (-1166 |#1|) (-1166 |#1|))) (-15 -3510 ((-1166 |#2|) |#1| (-1166 |#1|))) (-15 -3676 (|#2| |#1|)) (-15 -1819 (|#2| |#1|)) (-15 -2046 (|#2| |#1|)) (-15 -3411 (|#2| |#1|)) (-15 -2853 ((-628 |#2|) |#1| (-1166 |#1|))) (-15 -2734 ((-628 |#2|) |#1| (-1166 |#1|))) (-15 -3690 ((-1166 (-628 |#2|)) (-1166 |#1|)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2541 (((-3 $ "failed")) 37 (|has| |#1| (-514)))) (-2265 (((-3 $ "failed") $ $) 19)) (-3690 (((-1166 (-628 |#1|)) (-1166 $)) 78)) (-2726 (((-1166 $)) 81)) (-3367 (($) 17 T CONST)) (-2722 (((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed")) 40 (|has| |#1| (-514)))) (-3050 (((-3 $ "failed")) 38 (|has| |#1| (-514)))) (-3531 (((-628 |#1|) (-1166 $)) 65)) (-2046 ((|#1| $) 74)) (-2853 (((-628 |#1|) $ (-1166 $)) 76)) (-1279 (((-3 $ "failed") $) 45 (|has| |#1| (-514)))) (-2698 (($ $ (-850)) 28)) (-3676 ((|#1| $) 72)) (-4080 (((-1081 |#1|) $) 42 (|has| |#1| (-514)))) (-4035 ((|#1| (-1166 $)) 67)) (-3767 (((-1081 |#1|) $) 63)) (-1340 (((-108)) 57)) (-3225 (($ (-1166 |#1|) (-1166 $)) 69)) (-3920 (((-3 $ "failed") $) 47 (|has| |#1| (-514)))) (-1692 (((-850)) 80)) (-2134 (((-108)) 54)) (-2870 (($ $ (-850)) 33)) (-2287 (((-108)) 50)) (-3702 (((-108)) 48)) (-3868 (((-108)) 52)) (-2439 (((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed")) 41 (|has| |#1| (-514)))) (-3351 (((-3 $ "failed")) 39 (|has| |#1| (-514)))) (-1521 (((-628 |#1|) (-1166 $)) 66)) (-3411 ((|#1| $) 75)) (-2734 (((-628 |#1|) $ (-1166 $)) 77)) (-3070 (((-3 $ "failed") $) 46 (|has| |#1| (-514)))) (-1946 (($ $ (-850)) 29)) (-1819 ((|#1| $) 73)) (-1216 (((-1081 |#1|) $) 43 (|has| |#1| (-514)))) (-3020 ((|#1| (-1166 $)) 68)) (-2724 (((-1081 |#1|) $) 64)) (-4197 (((-108)) 58)) (-2311 (((-1068) $) 9)) (-3823 (((-108)) 49)) (-1388 (((-108)) 51)) (-3509 (((-108)) 53)) (-4174 (((-1032) $) 10)) (-1427 (((-108)) 56)) (-3510 (((-1166 |#1|) $ (-1166 $)) 71) (((-628 |#1|) (-1166 $) (-1166 $)) 70)) (-1777 (((-588 (-881 |#1|)) (-1166 $)) 79)) (-1596 (($ $ $) 25)) (-3990 (((-108)) 62)) (-2217 (((-792) $) 11)) (-1548 (((-588 (-1166 |#1|))) 44 (|has| |#1| (-514)))) (-2185 (($ $ $ $) 26)) (-3597 (((-108)) 60)) (-1369 (($ $ $) 24)) (-3578 (((-108)) 61)) (-2912 (((-108)) 59)) (-1855 (((-108)) 55)) (-3697 (($) 18 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 30)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-342 |#1|) (-1197) (-157)) (T -342)) -((-2726 (*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1166 *1)) (-4 *1 (-342 *3)))) (-1692 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-850)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) (-5 *2 (-588 (-881 *4))))) (-3690 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) (-5 *2 (-1166 (-628 *4))))) (-2734 (*1 *2 *1 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) (-5 *2 (-628 *4)))) (-2853 (*1 *2 *1 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) (-5 *2 (-628 *4)))) (-3411 (*1 *2 *1) (-12 (-4 *1 (-342 *2)) (-4 *2 (-157)))) (-2046 (*1 *2 *1) (-12 (-4 *1 (-342 *2)) (-4 *2 (-157)))) (-1819 (*1 *2 *1) (-12 (-4 *1 (-342 *2)) (-4 *2 (-157)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-342 *2)) (-4 *2 (-157)))) (-3510 (*1 *2 *1 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) (-5 *2 (-1166 *4)))) (-3510 (*1 *2 *3 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) (-5 *2 (-628 *4)))) (-3225 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-1166 *1)) (-4 *4 (-157)) (-4 *1 (-342 *4)))) (-3020 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *2)) (-4 *2 (-157)))) (-4035 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *2)) (-4 *2 (-157)))) (-1521 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) (-5 *2 (-628 *4)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) (-5 *2 (-628 *4)))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-1081 *3)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-1081 *3)))) (-3990 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3578 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3597 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2912 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-4197 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1340 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1427 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1855 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2134 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3509 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3868 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1388 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2287 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3823 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3702 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3920 (*1 *1 *1) (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-157)) (-4 *2 (-514)))) (-3070 (*1 *1 *1) (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-157)) (-4 *2 (-514)))) (-1279 (*1 *1 *1) (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-157)) (-4 *2 (-514)))) (-1548 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-4 *3 (-514)) (-5 *2 (-588 (-1166 *3))))) (-1216 (*1 *2 *1) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-4 *3 (-514)) (-5 *2 (-1081 *3)))) (-4080 (*1 *2 *1) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-4 *3 (-514)) (-5 *2 (-1081 *3)))) (-2439 (*1 *2) (|partial| -12 (-4 *3 (-514)) (-4 *3 (-157)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2905 (-588 *1)))) (-4 *1 (-342 *3)))) (-2722 (*1 *2) (|partial| -12 (-4 *3 (-514)) (-4 *3 (-157)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2905 (-588 *1)))) (-4 *1 (-342 *3)))) (-3351 (*1 *1) (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-514)) (-4 *2 (-157)))) (-3050 (*1 *1) (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-514)) (-4 *2 (-157)))) (-2541 (*1 *1) (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-514)) (-4 *2 (-157))))) -(-13 (-682 |t#1|) (-10 -8 (-15 -2726 ((-1166 $))) (-15 -1692 ((-850))) (-15 -1777 ((-588 (-881 |t#1|)) (-1166 $))) (-15 -3690 ((-1166 (-628 |t#1|)) (-1166 $))) (-15 -2734 ((-628 |t#1|) $ (-1166 $))) (-15 -2853 ((-628 |t#1|) $ (-1166 $))) (-15 -3411 (|t#1| $)) (-15 -2046 (|t#1| $)) (-15 -1819 (|t#1| $)) (-15 -3676 (|t#1| $)) (-15 -3510 ((-1166 |t#1|) $ (-1166 $))) (-15 -3510 ((-628 |t#1|) (-1166 $) (-1166 $))) (-15 -3225 ($ (-1166 |t#1|) (-1166 $))) (-15 -3020 (|t#1| (-1166 $))) (-15 -4035 (|t#1| (-1166 $))) (-15 -1521 ((-628 |t#1|) (-1166 $))) (-15 -3531 ((-628 |t#1|) (-1166 $))) (-15 -2724 ((-1081 |t#1|) $)) (-15 -3767 ((-1081 |t#1|) $)) (-15 -3990 ((-108))) (-15 -3578 ((-108))) (-15 -3597 ((-108))) (-15 -2912 ((-108))) (-15 -4197 ((-108))) (-15 -1340 ((-108))) (-15 -1427 ((-108))) (-15 -1855 ((-108))) (-15 -2134 ((-108))) (-15 -3509 ((-108))) (-15 -3868 ((-108))) (-15 -1388 ((-108))) (-15 -2287 ((-108))) (-15 -3823 ((-108))) (-15 -3702 ((-108))) (IF (|has| |t#1| (-514)) (PROGN (-15 -3920 ((-3 $ "failed") $)) (-15 -3070 ((-3 $ "failed") $)) (-15 -1279 ((-3 $ "failed") $)) (-15 -1548 ((-588 (-1166 |t#1|)))) (-15 -1216 ((-1081 |t#1|) $)) (-15 -4080 ((-1081 |t#1|) $)) (-15 -2439 ((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed"))) (-15 -2722 ((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed"))) (-15 -3351 ((-3 $ "failed"))) (-15 -3050 ((-3 $ "failed"))) (-15 -2541 ((-3 $ "failed"))) (-6 -4235)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-682 |#1|) . T) ((-699) . T) ((-977 |#1|) . T) ((-1014) . T)) -((-1419 (((-108) $ $) 7)) (-1685 (((-708)) 16)) (-3344 (($) 13)) (-1475 (((-850) $) 14)) (-2311 (((-1068) $) 9)) (-2882 (($ (-850)) 15)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-1562 (((-108) $ $) 6))) -(((-343) (-1197)) (T -343)) -((-1685 (*1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-708)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-343)))) (-1475 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-850)))) (-3344 (*1 *1) (-4 *1 (-343)))) -(-13 (-1014) (-10 -8 (-15 -1685 ((-708))) (-15 -2882 ($ (-850))) (-15 -1475 ((-850) $)) (-15 -3344 ($)))) -(((-97) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-3356 (((-628 |#2|) (-1166 $)) 40)) (-3225 (($ (-1166 |#2|) (-1166 $)) 35)) (-1359 (((-628 |#2|) $ (-1166 $)) 43)) (-1615 ((|#2| (-1166 $)) 13)) (-3510 (((-1166 |#2|) $ (-1166 $)) NIL) (((-628 |#2|) (-1166 $) (-1166 $)) 25))) -(((-344 |#1| |#2| |#3|) (-10 -8 (-15 -3356 ((-628 |#2|) (-1166 |#1|))) (-15 -1615 (|#2| (-1166 |#1|))) (-15 -3225 (|#1| (-1166 |#2|) (-1166 |#1|))) (-15 -3510 ((-628 |#2|) (-1166 |#1|) (-1166 |#1|))) (-15 -3510 ((-1166 |#2|) |#1| (-1166 |#1|))) (-15 -1359 ((-628 |#2|) |#1| (-1166 |#1|)))) (-345 |#2| |#3|) (-157) (-1142 |#2|)) (T -344)) -NIL -(-10 -8 (-15 -3356 ((-628 |#2|) (-1166 |#1|))) (-15 -1615 (|#2| (-1166 |#1|))) (-15 -3225 (|#1| (-1166 |#2|) (-1166 |#1|))) (-15 -3510 ((-628 |#2|) (-1166 |#1|) (-1166 |#1|))) (-15 -3510 ((-1166 |#2|) |#1| (-1166 |#1|))) (-15 -1359 ((-628 |#2|) |#1| (-1166 |#1|)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3356 (((-628 |#1|) (-1166 $)) 46)) (-1945 ((|#1| $) 52)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3225 (($ (-1166 |#1|) (-1166 $)) 48)) (-1359 (((-628 |#1|) $ (-1166 $)) 53)) (-3920 (((-3 $ "failed") $) 34)) (-1692 (((-850)) 54)) (-2859 (((-108) $) 31)) (-1269 ((|#1| $) 51)) (-4199 ((|#2| $) 44 (|has| |#1| (-338)))) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-1615 ((|#1| (-1166 $)) 47)) (-3510 (((-1166 |#1|) $ (-1166 $)) 50) (((-628 |#1|) (-1166 $) (-1166 $)) 49)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 37)) (-3040 (((-3 $ "failed") $) 43 (|has| |#1| (-133)))) (-2645 ((|#2| $) 45)) (-2742 (((-708)) 29)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) -(((-345 |#1| |#2|) (-1197) (-157) (-1142 |t#1|)) (T -345)) -((-1692 (*1 *2) (-12 (-4 *1 (-345 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1142 *3)) (-5 *2 (-850)))) (-1359 (*1 *2 *1 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-345 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1142 *4)) (-5 *2 (-628 *4)))) (-1945 (*1 *2 *1) (-12 (-4 *1 (-345 *2 *3)) (-4 *3 (-1142 *2)) (-4 *2 (-157)))) (-1269 (*1 *2 *1) (-12 (-4 *1 (-345 *2 *3)) (-4 *3 (-1142 *2)) (-4 *2 (-157)))) (-3510 (*1 *2 *1 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-345 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1142 *4)) (-5 *2 (-1166 *4)))) (-3510 (*1 *2 *3 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-345 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1142 *4)) (-5 *2 (-628 *4)))) (-3225 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-1166 *1)) (-4 *4 (-157)) (-4 *1 (-345 *4 *5)) (-4 *5 (-1142 *4)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-345 *2 *4)) (-4 *4 (-1142 *2)) (-4 *2 (-157)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-345 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1142 *4)) (-5 *2 (-628 *4)))) (-2645 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1142 *3)))) (-4199 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-157)) (-4 *3 (-338)) (-4 *2 (-1142 *3))))) -(-13 (-37 |t#1|) (-10 -8 (-15 -1692 ((-850))) (-15 -1359 ((-628 |t#1|) $ (-1166 $))) (-15 -1945 (|t#1| $)) (-15 -1269 (|t#1| $)) (-15 -3510 ((-1166 |t#1|) $ (-1166 $))) (-15 -3510 ((-628 |t#1|) (-1166 $) (-1166 $))) (-15 -3225 ($ (-1166 |t#1|) (-1166 $))) (-15 -1615 (|t#1| (-1166 $))) (-15 -3356 ((-628 |t#1|) (-1166 $))) (-15 -2645 (|t#2| $)) (IF (|has| |t#1| (-338)) (-15 -4199 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-655 |#1|) . T) ((-664) . T) ((-977 |#1|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-3639 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2153 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-3810 ((|#4| (-1 |#3| |#1|) |#2|) 21))) -(((-346 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3810 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2153 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3639 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1120) (-348 |#1|) (-1120) (-348 |#3|)) (T -346)) -((-3639 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1120)) (-4 *5 (-1120)) (-4 *2 (-348 *5)) (-5 *1 (-346 *6 *4 *5 *2)) (-4 *4 (-348 *6)))) (-2153 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1120)) (-4 *2 (-1120)) (-5 *1 (-346 *5 *4 *2 *6)) (-4 *4 (-348 *5)) (-4 *6 (-348 *2)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-348 *6)) (-5 *1 (-346 *5 *4 *6 *2)) (-4 *4 (-348 *5))))) -(-10 -7 (-15 -3810 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2153 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3639 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1866 (((-108) (-1 (-108) |#2| |#2|) $) NIL) (((-108) $) 18)) (-2806 (($ (-1 (-108) |#2| |#2|) $) NIL) (($ $) 28)) (-3296 (($ (-1 (-108) |#2| |#2|) $) 27) (($ $) 22)) (-1939 (($ $) 25)) (-3314 (((-522) (-1 (-108) |#2|) $) NIL) (((-522) |#2| $) 11) (((-522) |#2| $ (-522)) NIL)) (-3164 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-347 |#1| |#2|) (-10 -8 (-15 -2806 (|#1| |#1|)) (-15 -2806 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1866 ((-108) |#1|)) (-15 -3296 (|#1| |#1|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -3314 ((-522) |#2| |#1| (-522))) (-15 -3314 ((-522) |#2| |#1|)) (-15 -3314 ((-522) (-1 (-108) |#2|) |#1|)) (-15 -1866 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3296 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1939 (|#1| |#1|)) (-15 -3164 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) (-348 |#2|) (-1120)) (T -347)) -NIL -(-10 -8 (-15 -2806 (|#1| |#1|)) (-15 -2806 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1866 ((-108) |#1|)) (-15 -3296 (|#1| |#1|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -3314 ((-522) |#2| |#1| (-522))) (-15 -3314 ((-522) |#2| |#1|)) (-15 -3314 ((-522) (-1 (-108) |#2|) |#1|)) (-15 -1866 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3296 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1939 (|#1| |#1|)) (-15 -3164 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3883 (((-1171) $ (-522) (-522)) 40 (|has| $ (-6 -4239)))) (-1866 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-784)))) (-2806 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4239))) (($ $) 88 (-12 (|has| |#1| (-784)) (|has| $ (-6 -4239))))) (-3296 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-784)))) (-2717 (((-108) $ (-708)) 8)) (-2437 ((|#1| $ (-522) |#1|) 52 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) 58 (|has| $ (-6 -4239)))) (-1696 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4238)))) (-3367 (($) 7 T CONST)) (-2465 (($ $) 90 (|has| $ (-6 -4239)))) (-1939 (($ $) 100)) (-2379 (($ $) 78 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1424 (($ |#1| $) 77 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4238)))) (-2411 ((|#1| $ (-522) |#1|) 53 (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-522)) 51)) (-3314 (((-522) (-1 (-108) |#1|) $) 97) (((-522) |#1| $) 96 (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) 95 (|has| |#1| (-1014)))) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1893 (($ (-708) |#1|) 69)) (-1480 (((-108) $ (-708)) 9)) (-3496 (((-522) $) 43 (|has| (-522) (-784)))) (-1308 (($ $ $) 87 (|has| |#1| (-784)))) (-3164 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-784)))) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2201 (((-522) $) 44 (|has| (-522) (-784)))) (-2524 (($ $ $) 86 (|has| |#1| (-784)))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3309 (((-108) $ (-708)) 10)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1731 (($ |#1| $ (-522)) 60) (($ $ $ (-522)) 59)) (-2130 (((-588 (-522)) $) 46)) (-2103 (((-108) (-522) $) 47)) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2337 ((|#1| $) 42 (|has| (-522) (-784)))) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1972 (($ $ |#1|) 41 (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3434 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) 48)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 ((|#1| $ (-522) |#1|) 50) ((|#1| $ (-522)) 49) (($ $ (-1133 (-522))) 63)) (-3835 (($ $ (-522)) 62) (($ $ (-1133 (-522))) 61)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3629 (($ $ $ (-522)) 91 (|has| $ (-6 -4239)))) (-2463 (($ $) 13)) (-3873 (((-498) $) 79 (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) 70)) (-4170 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-588 $)) 65)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1623 (((-108) $ $) 84 (|has| |#1| (-784)))) (-1597 (((-108) $ $) 83 (|has| |#1| (-784)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-1609 (((-108) $ $) 85 (|has| |#1| (-784)))) (-1587 (((-108) $ $) 82 (|has| |#1| (-784)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-348 |#1|) (-1197) (-1120)) (T -348)) -((-3164 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-348 *3)) (-4 *3 (-1120)))) (-1939 (*1 *1 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-1120)))) (-3296 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-348 *3)) (-4 *3 (-1120)))) (-1866 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-348 *4)) (-4 *4 (-1120)) (-5 *2 (-108)))) (-3314 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-348 *4)) (-4 *4 (-1120)) (-5 *2 (-522)))) (-3314 (*1 *2 *3 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-1120)) (-4 *3 (-1014)) (-5 *2 (-522)))) (-3314 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-348 *3)) (-4 *3 (-1120)) (-4 *3 (-1014)))) (-3164 (*1 *1 *1 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-1120)) (-4 *2 (-784)))) (-3296 (*1 *1 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-1120)) (-4 *2 (-784)))) (-1866 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-1120)) (-4 *3 (-784)) (-5 *2 (-108)))) (-3629 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-522)) (|has| *1 (-6 -4239)) (-4 *1 (-348 *3)) (-4 *3 (-1120)))) (-2465 (*1 *1 *1) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-348 *2)) (-4 *2 (-1120)))) (-2806 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4239)) (-4 *1 (-348 *3)) (-4 *3 (-1120)))) (-2806 (*1 *1 *1) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-348 *2)) (-4 *2 (-1120)) (-4 *2 (-784))))) -(-13 (-593 |t#1|) (-10 -8 (-6 -4238) (-15 -3164 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -1939 ($ $)) (-15 -3296 ($ (-1 (-108) |t#1| |t#1|) $)) (-15 -1866 ((-108) (-1 (-108) |t#1| |t#1|) $)) (-15 -3314 ((-522) (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1014)) (PROGN (-15 -3314 ((-522) |t#1| $)) (-15 -3314 ((-522) |t#1| $ (-522)))) |%noBranch|) (IF (|has| |t#1| (-784)) (PROGN (-6 (-784)) (-15 -3164 ($ $ $)) (-15 -3296 ($ $)) (-15 -1866 ((-108) $))) |%noBranch|) (IF (|has| $ (-6 -4239)) (PROGN (-15 -3629 ($ $ $ (-522))) (-15 -2465 ($ $)) (-15 -2806 ($ (-1 (-108) |t#1| |t#1|) $)) (IF (|has| |t#1| (-784)) (-15 -2806 ($ $)) |%noBranch|)) |%noBranch|))) -(((-33) . T) ((-97) -3844 (|has| |#1| (-1014)) (|has| |#1| (-784))) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-784)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-262 #0=(-522) |#1|) . T) ((-264 #0# |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-555 #0# |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-593 |#1|) . T) ((-784) |has| |#1| (-784)) ((-1014) -3844 (|has| |#1| (-1014)) (|has| |#1| (-784))) ((-1120) . T)) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-4127 (((-588 |#1|) $) 32)) (-3331 (($ $ (-708)) 33)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-1745 (((-1188 |#1| |#2|) (-1188 |#1| |#2|) $) 36)) (-2182 (($ $) 34)) (-4038 (((-1188 |#1| |#2|) (-1188 |#1| |#2|) $) 37)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2330 (($ $ |#1| $) 31) (($ $ (-588 |#1|) (-588 $)) 30)) (-2487 (((-708) $) 38)) (-2227 (($ $ $) 29)) (-2217 (((-792) $) 11) (($ |#1|) 41) (((-1179 |#1| |#2|) $) 40) (((-1188 |#1| |#2|) $) 39)) (-3112 ((|#2| (-1188 |#1| |#2|) $) 42)) (-3697 (($) 18 T CONST)) (-1612 (($ (-613 |#1|)) 35)) (-1562 (((-108) $ $) 6)) (-1682 (($ $ |#2|) 28 (|has| |#2| (-338)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) -(((-349 |#1| |#2|) (-1197) (-784) (-157)) (T -349)) -((-3112 (*1 *2 *3 *1) (-12 (-5 *3 (-1188 *4 *2)) (-4 *1 (-349 *4 *2)) (-4 *4 (-784)) (-4 *2 (-157)))) (-2217 (*1 *1 *2) (-12 (-4 *1 (-349 *2 *3)) (-4 *2 (-784)) (-4 *3 (-157)))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) (-5 *2 (-1179 *3 *4)))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) (-5 *2 (-1188 *3 *4)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) (-5 *2 (-708)))) (-4038 (*1 *2 *2 *1) (-12 (-5 *2 (-1188 *3 *4)) (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)))) (-1745 (*1 *2 *2 *1) (-12 (-5 *2 (-1188 *3 *4)) (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)))) (-1612 (*1 *1 *2) (-12 (-5 *2 (-613 *3)) (-4 *3 (-784)) (-4 *1 (-349 *3 *4)) (-4 *4 (-157)))) (-2182 (*1 *1 *1) (-12 (-4 *1 (-349 *2 *3)) (-4 *2 (-784)) (-4 *3 (-157)))) (-3331 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) (-5 *2 (-588 *3)))) (-2330 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-349 *2 *3)) (-4 *2 (-784)) (-4 *3 (-157)))) (-2330 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 *4)) (-5 *3 (-588 *1)) (-4 *1 (-349 *4 *5)) (-4 *4 (-784)) (-4 *5 (-157))))) -(-13 (-579 |t#2|) (-10 -8 (-15 -3112 (|t#2| (-1188 |t#1| |t#2|) $)) (-15 -2217 ($ |t#1|)) (-15 -2217 ((-1179 |t#1| |t#2|) $)) (-15 -2217 ((-1188 |t#1| |t#2|) $)) (-15 -2487 ((-708) $)) (-15 -4038 ((-1188 |t#1| |t#2|) (-1188 |t#1| |t#2|) $)) (-15 -1745 ((-1188 |t#1| |t#2|) (-1188 |t#1| |t#2|) $)) (-15 -1612 ($ (-613 |t#1|))) (-15 -2182 ($ $)) (-15 -3331 ($ $ (-708))) (-15 -4127 ((-588 |t#1|) $)) (-15 -2330 ($ $ |t#1| $)) (-15 -2330 ($ $ (-588 |t#1|) (-588 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#2|) . T) ((-579 |#2|) . T) ((-655 |#2|) . T) ((-977 |#2|) . T) ((-1014) . T)) -((-2768 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 24)) (-3911 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 12)) (-2696 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 21))) -(((-350 |#1| |#2|) (-10 -7 (-15 -3911 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2696 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2768 (|#2| (-1 (-108) |#1| |#1|) |#2|))) (-1120) (-13 (-348 |#1|) (-10 -7 (-6 -4239)))) (T -350)) -((-2768 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-350 *4 *2)) (-4 *2 (-13 (-348 *4) (-10 -7 (-6 -4239)))))) (-2696 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-350 *4 *2)) (-4 *2 (-13 (-348 *4) (-10 -7 (-6 -4239)))))) (-3911 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-350 *4 *2)) (-4 *2 (-13 (-348 *4) (-10 -7 (-6 -4239))))))) -(-10 -7 (-15 -3911 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2696 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2768 (|#2| (-1 (-108) |#1| |#1|) |#2|))) -((-1226 (((-628 |#2|) (-628 $)) NIL) (((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 19) (((-628 (-522)) (-628 $)) 13))) -(((-351 |#1| |#2|) (-10 -8 (-15 -1226 ((-628 (-522)) (-628 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 |#1|) (-1166 |#1|))) (-15 -1226 ((-628 |#2|) (-628 |#1|)))) (-352 |#2|) (-971)) (T -351)) -NIL -(-10 -8 (-15 -1226 ((-628 (-522)) (-628 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 |#1|) (-1166 |#1|))) (-15 -1226 ((-628 |#2|) (-628 |#1|)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-1226 (((-628 |#1|) (-628 $)) 36) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 35) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 43 (|has| |#1| (-584 (-522)))) (((-628 (-522)) (-628 $)) 42 (|has| |#1| (-584 (-522))))) (-3920 (((-3 $ "failed") $) 34)) (-2859 (((-108) $) 31)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11) (($ (-522)) 28)) (-2742 (((-708)) 29)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-352 |#1|) (-1197) (-971)) (T -352)) -NIL -(-13 (-584 |t#1|) (-10 -7 (IF (|has| |t#1| (-584 (-522))) (-6 (-584 (-522))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 $) . T) ((-584 (-522)) |has| |#1| (-584 (-522))) ((-584 |#1|) . T) ((-664) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-3771 (((-588 (-270 (-881 (-154 |#1|)))) (-270 (-382 (-881 (-154 (-522))))) |#1|) 50) (((-588 (-270 (-881 (-154 |#1|)))) (-382 (-881 (-154 (-522)))) |#1|) 49) (((-588 (-588 (-270 (-881 (-154 |#1|))))) (-588 (-270 (-382 (-881 (-154 (-522)))))) |#1|) 45) (((-588 (-588 (-270 (-881 (-154 |#1|))))) (-588 (-382 (-881 (-154 (-522))))) |#1|) 39)) (-3769 (((-588 (-588 (-154 |#1|))) (-588 (-382 (-881 (-154 (-522))))) (-588 (-1085)) |#1|) 27) (((-588 (-154 |#1|)) (-382 (-881 (-154 (-522)))) |#1|) 15))) -(((-353 |#1|) (-10 -7 (-15 -3771 ((-588 (-588 (-270 (-881 (-154 |#1|))))) (-588 (-382 (-881 (-154 (-522))))) |#1|)) (-15 -3771 ((-588 (-588 (-270 (-881 (-154 |#1|))))) (-588 (-270 (-382 (-881 (-154 (-522)))))) |#1|)) (-15 -3771 ((-588 (-270 (-881 (-154 |#1|)))) (-382 (-881 (-154 (-522)))) |#1|)) (-15 -3771 ((-588 (-270 (-881 (-154 |#1|)))) (-270 (-382 (-881 (-154 (-522))))) |#1|)) (-15 -3769 ((-588 (-154 |#1|)) (-382 (-881 (-154 (-522)))) |#1|)) (-15 -3769 ((-588 (-588 (-154 |#1|))) (-588 (-382 (-881 (-154 (-522))))) (-588 (-1085)) |#1|))) (-13 (-338) (-782))) (T -353)) -((-3769 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-588 (-382 (-881 (-154 (-522)))))) (-5 *4 (-588 (-1085))) (-5 *2 (-588 (-588 (-154 *5)))) (-5 *1 (-353 *5)) (-4 *5 (-13 (-338) (-782))))) (-3769 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 (-154 (-522))))) (-5 *2 (-588 (-154 *4))) (-5 *1 (-353 *4)) (-4 *4 (-13 (-338) (-782))))) (-3771 (*1 *2 *3 *4) (-12 (-5 *3 (-270 (-382 (-881 (-154 (-522)))))) (-5 *2 (-588 (-270 (-881 (-154 *4))))) (-5 *1 (-353 *4)) (-4 *4 (-13 (-338) (-782))))) (-3771 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 (-154 (-522))))) (-5 *2 (-588 (-270 (-881 (-154 *4))))) (-5 *1 (-353 *4)) (-4 *4 (-13 (-338) (-782))))) (-3771 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-270 (-382 (-881 (-154 (-522))))))) (-5 *2 (-588 (-588 (-270 (-881 (-154 *4)))))) (-5 *1 (-353 *4)) (-4 *4 (-13 (-338) (-782))))) (-3771 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-382 (-881 (-154 (-522)))))) (-5 *2 (-588 (-588 (-270 (-881 (-154 *4)))))) (-5 *1 (-353 *4)) (-4 *4 (-13 (-338) (-782)))))) -(-10 -7 (-15 -3771 ((-588 (-588 (-270 (-881 (-154 |#1|))))) (-588 (-382 (-881 (-154 (-522))))) |#1|)) (-15 -3771 ((-588 (-588 (-270 (-881 (-154 |#1|))))) (-588 (-270 (-382 (-881 (-154 (-522)))))) |#1|)) (-15 -3771 ((-588 (-270 (-881 (-154 |#1|)))) (-382 (-881 (-154 (-522)))) |#1|)) (-15 -3771 ((-588 (-270 (-881 (-154 |#1|)))) (-270 (-382 (-881 (-154 (-522))))) |#1|)) (-15 -3769 ((-588 (-154 |#1|)) (-382 (-881 (-154 (-522)))) |#1|)) (-15 -3769 ((-588 (-588 (-154 |#1|))) (-588 (-382 (-881 (-154 (-522))))) (-588 (-1085)) |#1|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 33)) (-3049 (((-522) $) 55)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-3495 (($ $) 110)) (-3044 (($ $) 82)) (-2923 (($ $) 71)) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2016 (($ $) 44)) (-2805 (((-108) $ $) NIL)) (-3023 (($ $) 80)) (-2906 (($ $) 69)) (-3355 (((-522) $) 64)) (-1736 (($ $ (-522)) 62)) (-3066 (($ $) NIL)) (-2936 (($ $) NIL)) (-3367 (($) NIL T CONST)) (-1943 (($ $) 112)) (-3700 (((-3 (-522) "failed") $) 188) (((-3 (-382 (-522)) "failed") $) 184)) (-1478 (((-522) $) 186) (((-382 (-522)) $) 182)) (-2333 (($ $ $) NIL)) (-3583 (((-522) $ $) 102)) (-3920 (((-3 $ "failed") $) 114)) (-2012 (((-382 (-522)) $ (-708)) 189) (((-382 (-522)) $ (-708) (-708)) 181)) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-3684 (((-850)) 73) (((-850) (-850)) 98 (|has| $ (-6 -4229)))) (-3603 (((-108) $) 106)) (-2980 (($) 40)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL)) (-2242 (((-1171) (-708)) 151)) (-4188 (((-1171)) 156) (((-1171) (-708)) 157)) (-1341 (((-1171)) 158) (((-1171) (-708)) 159)) (-3795 (((-1171)) 154) (((-1171) (-708)) 155)) (-3872 (((-522) $) 58)) (-2859 (((-108) $) 104)) (-1811 (($ $ (-522)) NIL)) (-2774 (($ $) 48)) (-1269 (($ $) NIL)) (-3740 (((-108) $) 35)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1308 (($ $ $) NIL) (($) NIL (-12 (-2473 (|has| $ (-6 -4221))) (-2473 (|has| $ (-6 -4229)))))) (-2524 (($ $ $) NIL) (($) 99 (-12 (-2473 (|has| $ (-6 -4221))) (-2473 (|has| $ (-6 -4229)))))) (-3451 (((-522) $) 17)) (-1686 (($) 87) (($ $) 92)) (-3297 (($) 91) (($ $) 93)) (-1238 (($ $) 83)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) 116)) (-1494 (((-850) (-522)) 43 (|has| $ (-6 -4229)))) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4194 (($ $) 53)) (-3592 (($ $) 109)) (-3173 (($ (-522) (-522)) 107) (($ (-522) (-522) (-850)) 108)) (-2006 (((-393 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3858 (((-522) $) 19)) (-3061 (($) 94)) (-3357 (($ $) 79)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-3353 (((-850)) 100) (((-850) (-850)) 101 (|has| $ (-6 -4229)))) (-2731 (($ $ (-708)) NIL) (($ $) 115)) (-1688 (((-850) (-522)) 47 (|has| $ (-6 -4229)))) (-1831 (($ $) NIL)) (-2946 (($ $) NIL)) (-3054 (($ $) NIL)) (-2928 (($ $) NIL)) (-3035 (($ $) 81)) (-2915 (($ $) 70)) (-3873 (((-354) $) 174) (((-202) $) 176) (((-821 (-354)) $) NIL) (((-1068) $) 161) (((-498) $) 172) (($ (-202)) 180)) (-2217 (((-792) $) 163) (($ (-522)) 185) (($ $) NIL) (($ (-382 (-522))) NIL) (($ (-522)) 185) (($ (-382 (-522))) NIL) (((-202) $) 177)) (-2742 (((-708)) NIL)) (-1379 (($ $) 111)) (-2780 (((-850)) 54) (((-850) (-850)) 66 (|has| $ (-6 -4229)))) (-1897 (((-850)) 103)) (-1856 (($ $) 86)) (-2976 (($ $) 46) (($ $ $) 52)) (-1407 (((-108) $ $) NIL)) (-1839 (($ $) 84)) (-2957 (($ $) 37)) (-1873 (($ $) NIL)) (-3001 (($ $) NIL)) (-2476 (($ $) NIL)) (-3011 (($ $) NIL)) (-1864 (($ $) NIL)) (-2989 (($ $) NIL)) (-1849 (($ $) 85)) (-2966 (($ $) 49)) (-4126 (($ $) 51)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) 34 T CONST)) (-3709 (($) 38 T CONST)) (-2810 (((-1068) $) 27) (((-1068) $ (-108)) 29) (((-1171) (-759) $) 30) (((-1171) (-759) $ (-108)) 31)) (-2252 (($ $ (-708)) NIL) (($ $) NIL)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 39)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 42)) (-1682 (($ $ $) 45) (($ $ (-522)) 41)) (-1672 (($ $) 36) (($ $ $) 50)) (-1661 (($ $ $) 61)) (** (($ $ (-850)) 67) (($ $ (-708)) NIL) (($ $ (-522)) 88) (($ $ (-382 (-522))) 125) (($ $ $) 117)) (* (($ (-850) $) 65) (($ (-708) $) NIL) (($ (-522) $) 68) (($ $ $) 60) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL))) -(((-354) (-13 (-379) (-210) (-563 (-1068)) (-765) (-562 (-202)) (-1106) (-563 (-498)) (-10 -8 (-15 -1682 ($ $ (-522))) (-15 ** ($ $ $)) (-15 -2774 ($ $)) (-15 -3583 ((-522) $ $)) (-15 -1736 ($ $ (-522))) (-15 -2012 ((-382 (-522)) $ (-708))) (-15 -2012 ((-382 (-522)) $ (-708) (-708))) (-15 -1686 ($)) (-15 -3297 ($)) (-15 -3061 ($)) (-15 -2976 ($ $ $)) (-15 -1686 ($ $)) (-15 -3297 ($ $)) (-15 -3873 ($ (-202))) (-15 -1341 ((-1171))) (-15 -1341 ((-1171) (-708))) (-15 -3795 ((-1171))) (-15 -3795 ((-1171) (-708))) (-15 -4188 ((-1171))) (-15 -4188 ((-1171) (-708))) (-15 -2242 ((-1171) (-708))) (-6 -4229) (-6 -4221)))) (T -354)) -((** (*1 *1 *1 *1) (-5 *1 (-354))) (-1682 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-354)))) (-2774 (*1 *1 *1) (-5 *1 (-354))) (-3583 (*1 *2 *1 *1) (-12 (-5 *2 (-522)) (-5 *1 (-354)))) (-1736 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-354)))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *2 (-382 (-522))) (-5 *1 (-354)))) (-2012 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-708)) (-5 *2 (-382 (-522))) (-5 *1 (-354)))) (-1686 (*1 *1) (-5 *1 (-354))) (-3297 (*1 *1) (-5 *1 (-354))) (-3061 (*1 *1) (-5 *1 (-354))) (-2976 (*1 *1 *1 *1) (-5 *1 (-354))) (-1686 (*1 *1 *1) (-5 *1 (-354))) (-3297 (*1 *1 *1) (-5 *1 (-354))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-354)))) (-1341 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-354)))) (-1341 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-354)))) (-3795 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-354)))) (-3795 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-354)))) (-4188 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-354)))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-354)))) (-2242 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-354))))) -(-13 (-379) (-210) (-563 (-1068)) (-765) (-562 (-202)) (-1106) (-563 (-498)) (-10 -8 (-15 -1682 ($ $ (-522))) (-15 ** ($ $ $)) (-15 -2774 ($ $)) (-15 -3583 ((-522) $ $)) (-15 -1736 ($ $ (-522))) (-15 -2012 ((-382 (-522)) $ (-708))) (-15 -2012 ((-382 (-522)) $ (-708) (-708))) (-15 -1686 ($)) (-15 -3297 ($)) (-15 -3061 ($)) (-15 -2976 ($ $ $)) (-15 -1686 ($ $)) (-15 -3297 ($ $)) (-15 -3873 ($ (-202))) (-15 -1341 ((-1171))) (-15 -1341 ((-1171) (-708))) (-15 -3795 ((-1171))) (-15 -3795 ((-1171) (-708))) (-15 -4188 ((-1171))) (-15 -4188 ((-1171) (-708))) (-15 -2242 ((-1171) (-708))) (-6 -4229) (-6 -4221))) -((-2925 (((-588 (-270 (-881 |#1|))) (-270 (-382 (-881 (-522)))) |#1|) 46) (((-588 (-270 (-881 |#1|))) (-382 (-881 (-522))) |#1|) 45) (((-588 (-588 (-270 (-881 |#1|)))) (-588 (-270 (-382 (-881 (-522))))) |#1|) 41) (((-588 (-588 (-270 (-881 |#1|)))) (-588 (-382 (-881 (-522)))) |#1|) 35)) (-1281 (((-588 |#1|) (-382 (-881 (-522))) |#1|) 19) (((-588 (-588 |#1|)) (-588 (-382 (-881 (-522)))) (-588 (-1085)) |#1|) 30))) -(((-355 |#1|) (-10 -7 (-15 -2925 ((-588 (-588 (-270 (-881 |#1|)))) (-588 (-382 (-881 (-522)))) |#1|)) (-15 -2925 ((-588 (-588 (-270 (-881 |#1|)))) (-588 (-270 (-382 (-881 (-522))))) |#1|)) (-15 -2925 ((-588 (-270 (-881 |#1|))) (-382 (-881 (-522))) |#1|)) (-15 -2925 ((-588 (-270 (-881 |#1|))) (-270 (-382 (-881 (-522)))) |#1|)) (-15 -1281 ((-588 (-588 |#1|)) (-588 (-382 (-881 (-522)))) (-588 (-1085)) |#1|)) (-15 -1281 ((-588 |#1|) (-382 (-881 (-522))) |#1|))) (-13 (-782) (-338))) (T -355)) -((-1281 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 (-522)))) (-5 *2 (-588 *4)) (-5 *1 (-355 *4)) (-4 *4 (-13 (-782) (-338))))) (-1281 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-588 (-382 (-881 (-522))))) (-5 *4 (-588 (-1085))) (-5 *2 (-588 (-588 *5))) (-5 *1 (-355 *5)) (-4 *5 (-13 (-782) (-338))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-270 (-382 (-881 (-522))))) (-5 *2 (-588 (-270 (-881 *4)))) (-5 *1 (-355 *4)) (-4 *4 (-13 (-782) (-338))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 (-522)))) (-5 *2 (-588 (-270 (-881 *4)))) (-5 *1 (-355 *4)) (-4 *4 (-13 (-782) (-338))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-270 (-382 (-881 (-522)))))) (-5 *2 (-588 (-588 (-270 (-881 *4))))) (-5 *1 (-355 *4)) (-4 *4 (-13 (-782) (-338))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-382 (-881 (-522))))) (-5 *2 (-588 (-588 (-270 (-881 *4))))) (-5 *1 (-355 *4)) (-4 *4 (-13 (-782) (-338)))))) -(-10 -7 (-15 -2925 ((-588 (-588 (-270 (-881 |#1|)))) (-588 (-382 (-881 (-522)))) |#1|)) (-15 -2925 ((-588 (-588 (-270 (-881 |#1|)))) (-588 (-270 (-382 (-881 (-522))))) |#1|)) (-15 -2925 ((-588 (-270 (-881 |#1|))) (-382 (-881 (-522))) |#1|)) (-15 -2925 ((-588 (-270 (-881 |#1|))) (-270 (-382 (-881 (-522)))) |#1|)) (-15 -1281 ((-588 (-588 |#1|)) (-588 (-382 (-881 (-522)))) (-588 (-1085)) |#1|)) (-15 -1281 ((-588 |#1|) (-382 (-881 (-522))) |#1|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#2| "failed") $) 25)) (-1478 ((|#2| $) 27)) (-3241 (($ $) NIL)) (-1391 (((-708) $) 10)) (-3038 (((-588 $) $) 20)) (-1374 (((-108) $) NIL)) (-2623 (($ |#2| |#1|) 18)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-2893 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3216 ((|#2| $) 15)) (-3224 ((|#1| $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 44) (($ |#2|) 26)) (-2180 (((-588 |#1|) $) 17)) (-1643 ((|#1| $ |#2|) 46)) (-3697 (($) 28 T CONST)) (-1738 (((-588 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35))) -(((-356 |#1| |#2|) (-13 (-357 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-971) (-784)) (T -356)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-356 *3 *2)) (-4 *3 (-971)) (-4 *2 (-784))))) -(-13 (-357 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3700 (((-3 |#2| "failed") $) 44)) (-1478 ((|#2| $) 43)) (-3241 (($ $) 30)) (-1391 (((-708) $) 34)) (-3038 (((-588 $) $) 35)) (-1374 (((-108) $) 38)) (-2623 (($ |#2| |#1|) 39)) (-3810 (($ (-1 |#1| |#1|) $) 40)) (-2893 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3216 ((|#2| $) 33)) (-3224 ((|#1| $) 32)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11) (($ |#2|) 45)) (-2180 (((-588 |#1|) $) 36)) (-1643 ((|#1| $ |#2|) 41)) (-3697 (($) 18 T CONST)) (-1738 (((-588 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) -(((-357 |#1| |#2|) (-1197) (-971) (-1014)) (T -357)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-971)) (-4 *3 (-1014)))) (-1643 (*1 *2 *1 *3) (-12 (-4 *1 (-357 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-971)))) (-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014)))) (-2623 (*1 *1 *2 *3) (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1014)))) (-1374 (*1 *2 *1) (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014)) (-5 *2 (-108)))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014)) (-5 *2 (-588 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2180 (*1 *2 *1) (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014)) (-5 *2 (-588 *3)))) (-3038 (*1 *2 *1) (-12 (-4 *3 (-971)) (-4 *4 (-1014)) (-5 *2 (-588 *1)) (-4 *1 (-357 *3 *4)))) (-1391 (*1 *2 *1) (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014)) (-5 *2 (-708)))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1014)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-357 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-971)))) (-2893 (*1 *2 *1) (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3241 (*1 *1 *1) (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-971)) (-4 *3 (-1014))))) -(-13 (-107 |t#1| |t#1|) (-962 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1643 (|t#1| $ |t#2|)) (-15 -3810 ($ (-1 |t#1| |t#1|) $)) (-15 -2623 ($ |t#2| |t#1|)) (-15 -1374 ((-108) $)) (-15 -1738 ((-588 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2180 ((-588 |t#1|) $)) (-15 -3038 ((-588 $) $)) (-15 -1391 ((-708) $)) (-15 -3216 (|t#2| $)) (-15 -3224 (|t#1| $)) (-15 -2893 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3241 ($ $)) (IF (|has| |t#1| (-157)) (-6 (-655 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-655 |#1|) |has| |#1| (-157)) ((-962 |#2|) . T) ((-977 |#1|) . T) ((-1014) . T)) -((-2550 (((-1171) $) 7)) (-2217 (((-792) $) 8) (($ (-628 (-637))) 14) (($ (-588 (-305))) 13) (($ (-305)) 12) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 11))) -(((-358) (-1197)) (T -358)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-628 (-637))) (-4 *1 (-358)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-4 *1 (-358)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-305)) (-4 *1 (-358)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) (-4 *1 (-358))))) -(-13 (-370) (-10 -8 (-15 -2217 ($ (-628 (-637)))) (-15 -2217 ($ (-588 (-305)))) (-15 -2217 ($ (-305))) (-15 -2217 ($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305)))))))) -(((-562 (-792)) . T) ((-370) . T) ((-1120) . T)) -((-3700 (((-3 $ "failed") (-628 (-291 (-354)))) 21) (((-3 $ "failed") (-628 (-291 (-522)))) 19) (((-3 $ "failed") (-628 (-881 (-354)))) 17) (((-3 $ "failed") (-628 (-881 (-522)))) 15) (((-3 $ "failed") (-628 (-382 (-881 (-354))))) 13) (((-3 $ "failed") (-628 (-382 (-881 (-522))))) 11)) (-1478 (($ (-628 (-291 (-354)))) 22) (($ (-628 (-291 (-522)))) 20) (($ (-628 (-881 (-354)))) 18) (($ (-628 (-881 (-522)))) 16) (($ (-628 (-382 (-881 (-354))))) 14) (($ (-628 (-382 (-881 (-522))))) 12)) (-2550 (((-1171) $) 7)) (-2217 (((-792) $) 8) (($ (-588 (-305))) 25) (($ (-305)) 24) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 23))) -(((-359) (-1197)) (T -359)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-4 *1 (-359)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-305)) (-4 *1 (-359)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) (-4 *1 (-359)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-628 (-291 (-354)))) (-4 *1 (-359)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-628 (-291 (-354)))) (-4 *1 (-359)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-628 (-291 (-522)))) (-4 *1 (-359)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-628 (-291 (-522)))) (-4 *1 (-359)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-628 (-881 (-354)))) (-4 *1 (-359)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-628 (-881 (-354)))) (-4 *1 (-359)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-628 (-881 (-522)))) (-4 *1 (-359)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-628 (-881 (-522)))) (-4 *1 (-359)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-628 (-382 (-881 (-354))))) (-4 *1 (-359)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-628 (-382 (-881 (-354))))) (-4 *1 (-359)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-628 (-382 (-881 (-522))))) (-4 *1 (-359)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-628 (-382 (-881 (-522))))) (-4 *1 (-359))))) -(-13 (-370) (-10 -8 (-15 -2217 ($ (-588 (-305)))) (-15 -2217 ($ (-305))) (-15 -2217 ($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305)))))) (-15 -1478 ($ (-628 (-291 (-354))))) (-15 -3700 ((-3 $ "failed") (-628 (-291 (-354))))) (-15 -1478 ($ (-628 (-291 (-522))))) (-15 -3700 ((-3 $ "failed") (-628 (-291 (-522))))) (-15 -1478 ($ (-628 (-881 (-354))))) (-15 -3700 ((-3 $ "failed") (-628 (-881 (-354))))) (-15 -1478 ($ (-628 (-881 (-522))))) (-15 -3700 ((-3 $ "failed") (-628 (-881 (-522))))) (-15 -1478 ($ (-628 (-382 (-881 (-354)))))) (-15 -3700 ((-3 $ "failed") (-628 (-382 (-881 (-354)))))) (-15 -1478 ($ (-628 (-382 (-881 (-522)))))) (-15 -3700 ((-3 $ "failed") (-628 (-382 (-881 (-522)))))))) -(((-562 (-792)) . T) ((-370) . T) ((-1120) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3241 (($ $) NIL)) (-3500 (($ |#1| |#2|) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-1801 ((|#2| $) NIL)) (-3224 ((|#1| $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 28)) (-3697 (($) 12 T CONST)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) -(((-360 |#1| |#2|) (-13 (-107 |#1| |#1|) (-478 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-157)) (-6 (-655 |#1|)) |%noBranch|))) (-971) (-784)) (T -360)) -NIL -(-13 (-107 |#1| |#1|) (-478 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-157)) (-6 (-655 |#1|)) |%noBranch|))) -((-1419 (((-108) $ $) NIL)) (-1685 (((-708) $) 57)) (-3367 (($) NIL T CONST)) (-1745 (((-3 $ "failed") $ $) 59)) (-3700 (((-3 |#1| "failed") $) NIL)) (-1478 ((|#1| $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2496 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2859 (((-108) $) 14)) (-3108 ((|#1| $ (-522)) NIL)) (-4213 (((-708) $ (-522)) NIL)) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-2007 (($ (-1 |#1| |#1|) $) 37)) (-1250 (($ (-1 (-708) (-708)) $) 34)) (-4038 (((-3 $ "failed") $ $) 50)) (-2311 (((-1068) $) NIL)) (-2089 (($ $ $) 25)) (-2629 (($ $ $) 23)) (-4174 (((-1032) $) NIL)) (-4045 (((-588 (-2 (|:| |gen| |#1|) (|:| -3357 (-708)))) $) 31)) (-4164 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-2217 (((-792) $) 21) (($ |#1|) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3709 (($) 9 T CONST)) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) 41)) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) 61 (|has| |#1| (-784)))) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ |#1| (-708)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27))) -(((-361 |#1|) (-13 (-664) (-962 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-708))) (-15 -2629 ($ $ $)) (-15 -2089 ($ $ $)) (-15 -4038 ((-3 $ "failed") $ $)) (-15 -1745 ((-3 $ "failed") $ $)) (-15 -4164 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2496 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1685 ((-708) $)) (-15 -4045 ((-588 (-2 (|:| |gen| |#1|) (|:| -3357 (-708)))) $)) (-15 -4213 ((-708) $ (-522))) (-15 -3108 (|#1| $ (-522))) (-15 -1250 ($ (-1 (-708) (-708)) $)) (-15 -2007 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|))) (-1014)) (T -361)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1014)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1014)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-708)) (-5 *1 (-361 *2)) (-4 *2 (-1014)))) (-2629 (*1 *1 *1 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1014)))) (-2089 (*1 *1 *1 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1014)))) (-4038 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-361 *2)) (-4 *2 (-1014)))) (-1745 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-361 *2)) (-4 *2 (-1014)))) (-4164 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-361 *3)) (|:| |rm| (-361 *3)))) (-5 *1 (-361 *3)) (-4 *3 (-1014)))) (-2496 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-361 *3)) (|:| |mm| (-361 *3)) (|:| |rm| (-361 *3)))) (-5 *1 (-361 *3)) (-4 *3 (-1014)))) (-1685 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-361 *3)) (-4 *3 (-1014)))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3357 (-708))))) (-5 *1 (-361 *3)) (-4 *3 (-1014)))) (-4213 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *2 (-708)) (-5 *1 (-361 *4)) (-4 *4 (-1014)))) (-3108 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *1 (-361 *2)) (-4 *2 (-1014)))) (-1250 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-708) (-708))) (-5 *1 (-361 *3)) (-4 *3 (-1014)))) (-2007 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-361 *3))))) -(-13 (-664) (-962 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-708))) (-15 -2629 ($ $ $)) (-15 -2089 ($ $ $)) (-15 -4038 ((-3 $ "failed") $ $)) (-15 -1745 ((-3 $ "failed") $ $)) (-15 -4164 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2496 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1685 ((-708) $)) (-15 -4045 ((-588 (-2 (|:| |gen| |#1|) (|:| -3357 (-708)))) $)) (-15 -4213 ((-708) $ (-522))) (-15 -3108 (|#1| $ (-522))) (-15 -1250 ($ (-1 (-708) (-708)) $)) (-15 -2007 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2298 (($ $) 40)) (-3007 (((-108) $) 38)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3700 (((-3 (-522) "failed") $) 47)) (-1478 (((-522) $) 46)) (-3920 (((-3 $ "failed") $) 34)) (-2859 (((-108) $) 31)) (-1308 (($ $ $) 54)) (-2524 (($ $ $) 53)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2276 (((-3 $ "failed") $ $) 42)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-522)) 48)) (-2742 (((-708)) 29)) (-1407 (((-108) $ $) 39)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1623 (((-108) $ $) 51)) (-1597 (((-108) $ $) 50)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 52)) (-1587 (((-108) $ $) 49)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-362) (-1197)) (T -362)) -NIL -(-13 (-514) (-784) (-962 (-522))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-266) . T) ((-514) . T) ((-590 $) . T) ((-655 $) . T) ((-664) . T) ((-784) . T) ((-962 (-522)) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-2526 (((-108) $) 20)) (-3952 (((-108) $) 19)) (-1893 (($ (-1068) (-1068) (-1068)) 21)) (-3015 (((-1068) $) 16)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2687 (($ (-1068) (-1068) (-1068)) 14)) (-2028 (((-1068) $) 17)) (-1820 (((-108) $) 18)) (-3211 (((-1068) $) 15)) (-2217 (((-792) $) 12) (($ (-1068)) 13) (((-1068) $) 9)) (-1562 (((-108) $ $) 7))) -(((-363) (-364)) (T -363)) -NIL -(-364) -((-1419 (((-108) $ $) 7)) (-2526 (((-108) $) 14)) (-3952 (((-108) $) 15)) (-1893 (($ (-1068) (-1068) (-1068)) 13)) (-3015 (((-1068) $) 18)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2687 (($ (-1068) (-1068) (-1068)) 20)) (-2028 (((-1068) $) 17)) (-1820 (((-108) $) 16)) (-3211 (((-1068) $) 19)) (-2217 (((-792) $) 11) (($ (-1068)) 22) (((-1068) $) 21)) (-1562 (((-108) $ $) 6))) -(((-364) (-1197)) (T -364)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-4 *1 (-364)))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-1068)))) (-2687 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1068)) (-4 *1 (-364)))) (-3211 (*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-1068)))) (-3015 (*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-1068)))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-1068)))) (-1820 (*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-108)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-108)))) (-2526 (*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-108)))) (-1893 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1068)) (-4 *1 (-364))))) -(-13 (-1014) (-10 -8 (-15 -2217 ($ (-1068))) (-15 -2217 ((-1068) $)) (-15 -2687 ($ (-1068) (-1068) (-1068))) (-15 -3211 ((-1068) $)) (-15 -3015 ((-1068) $)) (-15 -2028 ((-1068) $)) (-15 -1820 ((-108) $)) (-15 -3952 ((-108) $)) (-15 -2526 ((-108) $)) (-15 -1893 ($ (-1068) (-1068) (-1068))))) -(((-97) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3263 (((-792) $) 50)) (-3367 (($) NIL T CONST)) (-2698 (($ $ (-850)) NIL)) (-2870 (($ $ (-850)) NIL)) (-1946 (($ $ (-850)) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-1368 (($ (-708)) 26)) (-3222 (((-708)) 15)) (-3486 (((-792) $) 52)) (-1596 (($ $ $) NIL)) (-2217 (((-792) $) NIL)) (-2185 (($ $ $ $) NIL)) (-1369 (($ $ $) NIL)) (-3697 (($) 20 T CONST)) (-1562 (((-108) $ $) 28)) (-1672 (($ $) 34) (($ $ $) 36)) (-1661 (($ $ $) 37)) (** (($ $ (-850)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) -(((-365 |#1| |#2| |#3|) (-13 (-682 |#3|) (-10 -8 (-15 -3222 ((-708))) (-15 -3486 ((-792) $)) (-15 -3263 ((-792) $)) (-15 -1368 ($ (-708))))) (-708) (-708) (-157)) (T -365)) -((-3222 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-365 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-157)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-365 *3 *4 *5)) (-14 *3 (-708)) (-14 *4 (-708)) (-4 *5 (-157)))) (-3263 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-365 *3 *4 *5)) (-14 *3 (-708)) (-14 *4 (-708)) (-4 *5 (-157)))) (-1368 (*1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-365 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-157))))) -(-13 (-682 |#3|) (-10 -8 (-15 -3222 ((-708))) (-15 -3486 ((-792) $)) (-15 -3263 ((-792) $)) (-15 -1368 ($ (-708))))) -((-1730 (((-1068)) 10)) (-3608 (((-1057 (-1068))) 28)) (-2518 (((-1171) (-1068)) 25) (((-1171) (-363)) 24)) (-2531 (((-1171)) 26)) (-3712 (((-1057 (-1068))) 27))) -(((-366) (-10 -7 (-15 -3712 ((-1057 (-1068)))) (-15 -3608 ((-1057 (-1068)))) (-15 -2531 ((-1171))) (-15 -2518 ((-1171) (-363))) (-15 -2518 ((-1171) (-1068))) (-15 -1730 ((-1068))))) (T -366)) -((-1730 (*1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-366)))) (-2518 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-366)))) (-2518 (*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1171)) (-5 *1 (-366)))) (-2531 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-366)))) (-3608 (*1 *2) (-12 (-5 *2 (-1057 (-1068))) (-5 *1 (-366)))) (-3712 (*1 *2) (-12 (-5 *2 (-1057 (-1068))) (-5 *1 (-366))))) -(-10 -7 (-15 -3712 ((-1057 (-1068)))) (-15 -3608 ((-1057 (-1068)))) (-15 -2531 ((-1171))) (-15 -2518 ((-1171) (-363))) (-15 -2518 ((-1171) (-1068))) (-15 -1730 ((-1068)))) -((-3872 (((-708) (-311 |#1| |#2| |#3| |#4|)) 16))) -(((-367 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3872 ((-708) (-311 |#1| |#2| |#3| |#4|)))) (-13 (-343) (-338)) (-1142 |#1|) (-1142 (-382 |#2|)) (-317 |#1| |#2| |#3|)) (T -367)) -((-3872 (*1 *2 *3) (-12 (-5 *3 (-311 *4 *5 *6 *7)) (-4 *4 (-13 (-343) (-338))) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) (-4 *7 (-317 *4 *5 *6)) (-5 *2 (-708)) (-5 *1 (-367 *4 *5 *6 *7))))) -(-10 -7 (-15 -3872 ((-708) (-311 |#1| |#2| |#3| |#4|)))) -((-2217 (((-369) |#1|) 11))) -(((-368 |#1|) (-10 -7 (-15 -2217 ((-369) |#1|))) (-1014)) (T -368)) -((-2217 (*1 *2 *3) (-12 (-5 *2 (-369)) (-5 *1 (-368 *3)) (-4 *3 (-1014))))) -(-10 -7 (-15 -2217 ((-369) |#1|))) -((-1419 (((-108) $ $) NIL)) (-2716 (((-588 (-1068)) $ (-588 (-1068))) 37)) (-2140 (((-588 (-1068)) $ (-588 (-1068))) 38)) (-2034 (((-588 (-1068)) $ (-588 (-1068))) 39)) (-3506 (((-588 (-1068)) $) 34)) (-1893 (($) 23)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2914 (((-588 (-1068)) $) 35)) (-3359 (((-588 (-1068)) $) 36)) (-1757 (((-1171) $ (-522)) 32) (((-1171) $) 33)) (-3873 (($ (-792) (-522)) 29)) (-2217 (((-792) $) 41) (($ (-792)) 25)) (-1562 (((-108) $ $) NIL))) -(((-369) (-13 (-1014) (-10 -8 (-15 -2217 ($ (-792))) (-15 -3873 ($ (-792) (-522))) (-15 -1757 ((-1171) $ (-522))) (-15 -1757 ((-1171) $)) (-15 -3359 ((-588 (-1068)) $)) (-15 -2914 ((-588 (-1068)) $)) (-15 -1893 ($)) (-15 -3506 ((-588 (-1068)) $)) (-15 -2034 ((-588 (-1068)) $ (-588 (-1068)))) (-15 -2140 ((-588 (-1068)) $ (-588 (-1068)))) (-15 -2716 ((-588 (-1068)) $ (-588 (-1068))))))) (T -369)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-369)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-522)) (-5 *1 (-369)))) (-1757 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-369)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-369)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369)))) (-2914 (*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369)))) (-1893 (*1 *1) (-5 *1 (-369))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369)))) (-2034 (*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369)))) (-2140 (*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369)))) (-2716 (*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369))))) -(-13 (-1014) (-10 -8 (-15 -2217 ($ (-792))) (-15 -3873 ($ (-792) (-522))) (-15 -1757 ((-1171) $ (-522))) (-15 -1757 ((-1171) $)) (-15 -3359 ((-588 (-1068)) $)) (-15 -2914 ((-588 (-1068)) $)) (-15 -1893 ($)) (-15 -3506 ((-588 (-1068)) $)) (-15 -2034 ((-588 (-1068)) $ (-588 (-1068)))) (-15 -2140 ((-588 (-1068)) $ (-588 (-1068)))) (-15 -2716 ((-588 (-1068)) $ (-588 (-1068)))))) -((-2550 (((-1171) $) 7)) (-2217 (((-792) $) 8))) -(((-370) (-1197)) (T -370)) -((-2550 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1171))))) -(-13 (-1120) (-562 (-792)) (-10 -8 (-15 -2550 ((-1171) $)))) -(((-562 (-792)) . T) ((-1120) . T)) -((-3700 (((-3 $ "failed") (-291 (-354))) 21) (((-3 $ "failed") (-291 (-522))) 19) (((-3 $ "failed") (-881 (-354))) 17) (((-3 $ "failed") (-881 (-522))) 15) (((-3 $ "failed") (-382 (-881 (-354)))) 13) (((-3 $ "failed") (-382 (-881 (-522)))) 11)) (-1478 (($ (-291 (-354))) 22) (($ (-291 (-522))) 20) (($ (-881 (-354))) 18) (($ (-881 (-522))) 16) (($ (-382 (-881 (-354)))) 14) (($ (-382 (-881 (-522)))) 12)) (-2550 (((-1171) $) 7)) (-2217 (((-792) $) 8) (($ (-588 (-305))) 25) (($ (-305)) 24) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 23))) -(((-371) (-1197)) (T -371)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-4 *1 (-371)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-305)) (-4 *1 (-371)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) (-4 *1 (-371)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-291 (-354))) (-4 *1 (-371)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-291 (-354))) (-4 *1 (-371)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-291 (-522))) (-4 *1 (-371)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-291 (-522))) (-4 *1 (-371)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-881 (-354))) (-4 *1 (-371)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-881 (-354))) (-4 *1 (-371)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-881 (-522))) (-4 *1 (-371)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-881 (-522))) (-4 *1 (-371)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-382 (-881 (-354)))) (-4 *1 (-371)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-382 (-881 (-354)))) (-4 *1 (-371)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-382 (-881 (-522)))) (-4 *1 (-371)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-382 (-881 (-522)))) (-4 *1 (-371))))) -(-13 (-370) (-10 -8 (-15 -2217 ($ (-588 (-305)))) (-15 -2217 ($ (-305))) (-15 -2217 ($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305)))))) (-15 -1478 ($ (-291 (-354)))) (-15 -3700 ((-3 $ "failed") (-291 (-354)))) (-15 -1478 ($ (-291 (-522)))) (-15 -3700 ((-3 $ "failed") (-291 (-522)))) (-15 -1478 ($ (-881 (-354)))) (-15 -3700 ((-3 $ "failed") (-881 (-354)))) (-15 -1478 ($ (-881 (-522)))) (-15 -3700 ((-3 $ "failed") (-881 (-522)))) (-15 -1478 ($ (-382 (-881 (-354))))) (-15 -3700 ((-3 $ "failed") (-382 (-881 (-354))))) (-15 -1478 ($ (-382 (-881 (-522))))) (-15 -3700 ((-3 $ "failed") (-382 (-881 (-522))))))) -(((-562 (-792)) . T) ((-370) . T) ((-1120) . T)) -((-4207 (((-588 (-1068)) (-588 (-1068))) 8)) (-2550 (((-1171) (-363)) 27)) (-1214 (((-1018) (-1085) (-588 (-1085)) (-1088) (-588 (-1085))) 59) (((-1018) (-1085) (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085)))) (-588 (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085))))) (-588 (-1085)) (-1085)) 35) (((-1018) (-1085) (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085)))) (-588 (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085))))) (-588 (-1085))) 34))) -(((-372) (-10 -7 (-15 -1214 ((-1018) (-1085) (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085)))) (-588 (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085))))) (-588 (-1085)))) (-15 -1214 ((-1018) (-1085) (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085)))) (-588 (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085))))) (-588 (-1085)) (-1085))) (-15 -1214 ((-1018) (-1085) (-588 (-1085)) (-1088) (-588 (-1085)))) (-15 -2550 ((-1171) (-363))) (-15 -4207 ((-588 (-1068)) (-588 (-1068)))))) (T -372)) -((-4207 (*1 *2 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-372)))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1171)) (-5 *1 (-372)))) (-1214 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-588 (-1085))) (-5 *5 (-1088)) (-5 *3 (-1085)) (-5 *2 (-1018)) (-5 *1 (-372)))) (-1214 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-588 (-588 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-588 (-3 (|:| |array| (-588 *3)) (|:| |scalar| (-1085))))) (-5 *6 (-588 (-1085))) (-5 *3 (-1085)) (-5 *2 (-1018)) (-5 *1 (-372)))) (-1214 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-588 (-588 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-588 (-3 (|:| |array| (-588 *3)) (|:| |scalar| (-1085))))) (-5 *6 (-588 (-1085))) (-5 *3 (-1085)) (-5 *2 (-1018)) (-5 *1 (-372))))) -(-10 -7 (-15 -1214 ((-1018) (-1085) (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085)))) (-588 (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085))))) (-588 (-1085)))) (-15 -1214 ((-1018) (-1085) (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085)))) (-588 (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085))))) (-588 (-1085)) (-1085))) (-15 -1214 ((-1018) (-1085) (-588 (-1085)) (-1088) (-588 (-1085)))) (-15 -2550 ((-1171) (-363))) (-15 -4207 ((-588 (-1068)) (-588 (-1068))))) -((-2550 (((-1171) $) 37)) (-2217 (((-792) $) 89) (($ (-305)) 92) (($ (-588 (-305))) 91) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 88) (($ (-291 (-639))) 52) (($ (-291 (-637))) 66) (($ (-291 (-632))) 78) (($ (-270 (-291 (-639)))) 62) (($ (-270 (-291 (-637)))) 74) (($ (-270 (-291 (-632)))) 86) (($ (-291 (-522))) 96) (($ (-291 (-354))) 108) (($ (-291 (-154 (-354)))) 120) (($ (-270 (-291 (-522)))) 104) (($ (-270 (-291 (-354)))) 116) (($ (-270 (-291 (-154 (-354))))) 128))) -(((-373 |#1| |#2| |#3| |#4|) (-13 (-370) (-10 -8 (-15 -2217 ($ (-305))) (-15 -2217 ($ (-588 (-305)))) (-15 -2217 ($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305)))))) (-15 -2217 ($ (-291 (-639)))) (-15 -2217 ($ (-291 (-637)))) (-15 -2217 ($ (-291 (-632)))) (-15 -2217 ($ (-270 (-291 (-639))))) (-15 -2217 ($ (-270 (-291 (-637))))) (-15 -2217 ($ (-270 (-291 (-632))))) (-15 -2217 ($ (-291 (-522)))) (-15 -2217 ($ (-291 (-354)))) (-15 -2217 ($ (-291 (-154 (-354))))) (-15 -2217 ($ (-270 (-291 (-522))))) (-15 -2217 ($ (-270 (-291 (-354))))) (-15 -2217 ($ (-270 (-291 (-154 (-354)))))))) (-1085) (-3 (|:| |fst| (-409)) (|:| -1350 "void")) (-588 (-1085)) (-1089)) (T -373)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-305)) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-291 (-639))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-291 (-637))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-291 (-632))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-270 (-291 (-639)))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-270 (-291 (-637)))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-270 (-291 (-632)))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-291 (-522))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-291 (-354))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-291 (-154 (-354)))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-270 (-291 (-522)))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-270 (-291 (-354)))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-270 (-291 (-154 (-354))))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089))))) -(-13 (-370) (-10 -8 (-15 -2217 ($ (-305))) (-15 -2217 ($ (-588 (-305)))) (-15 -2217 ($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305)))))) (-15 -2217 ($ (-291 (-639)))) (-15 -2217 ($ (-291 (-637)))) (-15 -2217 ($ (-291 (-632)))) (-15 -2217 ($ (-270 (-291 (-639))))) (-15 -2217 ($ (-270 (-291 (-637))))) (-15 -2217 ($ (-270 (-291 (-632))))) (-15 -2217 ($ (-291 (-522)))) (-15 -2217 ($ (-291 (-354)))) (-15 -2217 ($ (-291 (-154 (-354))))) (-15 -2217 ($ (-270 (-291 (-522))))) (-15 -2217 ($ (-270 (-291 (-354))))) (-15 -2217 ($ (-270 (-291 (-154 (-354)))))))) -((-1419 (((-108) $ $) NIL)) (-3389 ((|#2| $) 36)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2444 (($ (-382 |#2|)) 84)) (-1898 (((-588 (-2 (|:| -3858 (-708)) (|:| -1980 |#2|) (|:| |num| |#2|))) $) 37)) (-2731 (($ $) 32) (($ $ (-708)) 34)) (-3873 (((-382 |#2|) $) 46)) (-2227 (($ (-588 (-2 (|:| -3858 (-708)) (|:| -1980 |#2|) (|:| |num| |#2|)))) 31)) (-2217 (((-792) $) 120)) (-2252 (($ $) 33) (($ $ (-708)) 35)) (-1562 (((-108) $ $) NIL)) (-1661 (($ |#2| $) 39))) -(((-374 |#1| |#2|) (-13 (-1014) (-563 (-382 |#2|)) (-10 -8 (-15 -1661 ($ |#2| $)) (-15 -2444 ($ (-382 |#2|))) (-15 -3389 (|#2| $)) (-15 -1898 ((-588 (-2 (|:| -3858 (-708)) (|:| -1980 |#2|) (|:| |num| |#2|))) $)) (-15 -2227 ($ (-588 (-2 (|:| -3858 (-708)) (|:| -1980 |#2|) (|:| |num| |#2|))))) (-15 -2731 ($ $)) (-15 -2252 ($ $)) (-15 -2731 ($ $ (-708))) (-15 -2252 ($ $ (-708))))) (-13 (-338) (-135)) (-1142 |#1|)) (T -374)) -((-1661 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-338) (-135))) (-5 *1 (-374 *3 *2)) (-4 *2 (-1142 *3)))) (-2444 (*1 *1 *2) (-12 (-5 *2 (-382 *4)) (-4 *4 (-1142 *3)) (-4 *3 (-13 (-338) (-135))) (-5 *1 (-374 *3 *4)))) (-3389 (*1 *2 *1) (-12 (-4 *2 (-1142 *3)) (-5 *1 (-374 *3 *2)) (-4 *3 (-13 (-338) (-135))))) (-1898 (*1 *2 *1) (-12 (-4 *3 (-13 (-338) (-135))) (-5 *2 (-588 (-2 (|:| -3858 (-708)) (|:| -1980 *4) (|:| |num| *4)))) (-5 *1 (-374 *3 *4)) (-4 *4 (-1142 *3)))) (-2227 (*1 *1 *2) (-12 (-5 *2 (-588 (-2 (|:| -3858 (-708)) (|:| -1980 *4) (|:| |num| *4)))) (-4 *4 (-1142 *3)) (-4 *3 (-13 (-338) (-135))) (-5 *1 (-374 *3 *4)))) (-2731 (*1 *1 *1) (-12 (-4 *2 (-13 (-338) (-135))) (-5 *1 (-374 *2 *3)) (-4 *3 (-1142 *2)))) (-2252 (*1 *1 *1) (-12 (-4 *2 (-13 (-338) (-135))) (-5 *1 (-374 *2 *3)) (-4 *3 (-1142 *2)))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *3 (-13 (-338) (-135))) (-5 *1 (-374 *3 *4)) (-4 *4 (-1142 *3)))) (-2252 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *3 (-13 (-338) (-135))) (-5 *1 (-374 *3 *4)) (-4 *4 (-1142 *3))))) -(-13 (-1014) (-563 (-382 |#2|)) (-10 -8 (-15 -1661 ($ |#2| $)) (-15 -2444 ($ (-382 |#2|))) (-15 -3389 (|#2| $)) (-15 -1898 ((-588 (-2 (|:| -3858 (-708)) (|:| -1980 |#2|) (|:| |num| |#2|))) $)) (-15 -2227 ($ (-588 (-2 (|:| -3858 (-708)) (|:| -1980 |#2|) (|:| |num| |#2|))))) (-15 -2731 ($ $)) (-15 -2252 ($ $)) (-15 -2731 ($ $ (-708))) (-15 -2252 ($ $ (-708))))) -((-1419 (((-108) $ $) 9 (-3844 (|has| |#1| (-815 (-522))) (|has| |#1| (-815 (-354)))))) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 15 (|has| |#1| (-815 (-354)))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 14 (|has| |#1| (-815 (-522))))) (-2311 (((-1068) $) 13 (-3844 (|has| |#1| (-815 (-522))) (|has| |#1| (-815 (-354)))))) (-4174 (((-1032) $) 12 (-3844 (|has| |#1| (-815 (-522))) (|has| |#1| (-815 (-354)))))) (-2217 (((-792) $) 11 (-3844 (|has| |#1| (-815 (-522))) (|has| |#1| (-815 (-354)))))) (-1562 (((-108) $ $) 10 (-3844 (|has| |#1| (-815 (-522))) (|has| |#1| (-815 (-354))))))) -(((-375 |#1|) (-1197) (-1120)) (T -375)) -NIL -(-13 (-1120) (-10 -7 (IF (|has| |t#1| (-815 (-522))) (-6 (-815 (-522))) |%noBranch|) (IF (|has| |t#1| (-815 (-354))) (-6 (-815 (-354))) |%noBranch|))) -(((-97) -3844 (|has| |#1| (-815 (-522))) (|has| |#1| (-815 (-354)))) ((-562 (-792)) -3844 (|has| |#1| (-815 (-522))) (|has| |#1| (-815 (-354)))) ((-815 (-354)) |has| |#1| (-815 (-354))) ((-815 (-522)) |has| |#1| (-815 (-522))) ((-1014) -3844 (|has| |#1| (-815 (-522))) (|has| |#1| (-815 (-354)))) ((-1120) . T)) -((-1380 (($ $) 10) (($ $ (-708)) 11))) -(((-376 |#1|) (-10 -8 (-15 -1380 (|#1| |#1| (-708))) (-15 -1380 (|#1| |#1|))) (-377)) (T -376)) -NIL -(-10 -8 (-15 -1380 (|#1| |#1| (-708))) (-15 -1380 (|#1| |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2298 (($ $) 40)) (-3007 (((-108) $) 38)) (-2265 (((-3 $ "failed") $ $) 19)) (-2961 (($ $) 73)) (-3133 (((-393 $) $) 72)) (-2805 (((-108) $ $) 59)) (-3367 (($) 17 T CONST)) (-2333 (($ $ $) 55)) (-3920 (((-3 $ "failed") $) 34)) (-2303 (($ $ $) 56)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 51)) (-1380 (($ $) 79) (($ $ (-708)) 78)) (-2725 (((-108) $) 71)) (-3872 (((-770 (-850)) $) 81)) (-2859 (((-108) $) 31)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-2267 (($ $ $) 46) (($ (-588 $)) 45)) (-2311 (((-1068) $) 9)) (-3193 (($ $) 70)) (-4174 (((-1032) $) 10)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2308 (($ $ $) 48) (($ (-588 $)) 47)) (-2006 (((-393 $) $) 74)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2276 (((-3 $ "failed") $ $) 42)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-4031 (((-708) $) 58)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 57)) (-1304 (((-3 (-708) "failed") $ $) 80)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-382 (-522))) 65)) (-3040 (((-3 $ "failed") $) 82)) (-2742 (((-708)) 29)) (-1407 (((-108) $ $) 39)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 69)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1682 (($ $ $) 64)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 68)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 67) (($ (-382 (-522)) $) 66))) -(((-377) (-1197)) (T -377)) -((-3872 (*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-770 (-850))))) (-1304 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-377)) (-5 *2 (-708)))) (-1380 (*1 *1 *1) (-4 *1 (-377))) (-1380 (*1 *1 *1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-708))))) -(-13 (-338) (-133) (-10 -8 (-15 -3872 ((-770 (-850)) $)) (-15 -1304 ((-3 (-708) "failed") $ $)) (-15 -1380 ($ $)) (-15 -1380 ($ $ (-708))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-133) . T) ((-562 (-792)) . T) ((-157) . T) ((-220) . T) ((-266) . T) ((-283) . T) ((-338) . T) ((-426) . T) ((-514) . T) ((-590 #0#) . T) ((-590 $) . T) ((-655 #0#) . T) ((-655 $) . T) ((-664) . T) ((-849) . T) ((-977 #0#) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) . T)) -((-3173 (($ (-522) (-522)) 11) (($ (-522) (-522) (-850)) NIL)) (-3353 (((-850)) 16) (((-850) (-850)) NIL))) -(((-378 |#1|) (-10 -8 (-15 -3353 ((-850) (-850))) (-15 -3353 ((-850))) (-15 -3173 (|#1| (-522) (-522) (-850))) (-15 -3173 (|#1| (-522) (-522)))) (-379)) (T -378)) -((-3353 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-378 *3)) (-4 *3 (-379)))) (-3353 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-378 *3)) (-4 *3 (-379))))) -(-10 -8 (-15 -3353 ((-850) (-850))) (-15 -3353 ((-850))) (-15 -3173 (|#1| (-522) (-522) (-850))) (-15 -3173 (|#1| (-522) (-522)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3049 (((-522) $) 89)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2298 (($ $) 40)) (-3007 (((-108) $) 38)) (-3495 (($ $) 87)) (-2265 (((-3 $ "failed") $ $) 19)) (-2961 (($ $) 73)) (-3133 (((-393 $) $) 72)) (-2016 (($ $) 97)) (-2805 (((-108) $ $) 59)) (-3355 (((-522) $) 114)) (-3367 (($) 17 T CONST)) (-1943 (($ $) 86)) (-3700 (((-3 (-522) "failed") $) 102) (((-3 (-382 (-522)) "failed") $) 99)) (-1478 (((-522) $) 101) (((-382 (-522)) $) 98)) (-2333 (($ $ $) 55)) (-3920 (((-3 $ "failed") $) 34)) (-2303 (($ $ $) 56)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 51)) (-2725 (((-108) $) 71)) (-3684 (((-850)) 130) (((-850) (-850)) 127 (|has| $ (-6 -4229)))) (-3603 (((-108) $) 112)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 93)) (-3872 (((-522) $) 136)) (-2859 (((-108) $) 31)) (-1811 (($ $ (-522)) 96)) (-1269 (($ $) 92)) (-3740 (((-108) $) 113)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-1308 (($ $ $) 111) (($) 124 (-12 (-2473 (|has| $ (-6 -4229))) (-2473 (|has| $ (-6 -4221)))))) (-2524 (($ $ $) 110) (($) 123 (-12 (-2473 (|has| $ (-6 -4229))) (-2473 (|has| $ (-6 -4221)))))) (-3451 (((-522) $) 133)) (-2267 (($ $ $) 46) (($ (-588 $)) 45)) (-2311 (((-1068) $) 9)) (-3193 (($ $) 70)) (-1494 (((-850) (-522)) 126 (|has| $ (-6 -4229)))) (-4174 (((-1032) $) 10)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2308 (($ $ $) 48) (($ (-588 $)) 47)) (-4194 (($ $) 88)) (-3592 (($ $) 90)) (-3173 (($ (-522) (-522)) 138) (($ (-522) (-522) (-850)) 137)) (-2006 (((-393 $) $) 74)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2276 (((-3 $ "failed") $ $) 42)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-3858 (((-522) $) 134)) (-4031 (((-708) $) 58)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 57)) (-3353 (((-850)) 131) (((-850) (-850)) 128 (|has| $ (-6 -4229)))) (-1688 (((-850) (-522)) 125 (|has| $ (-6 -4229)))) (-3873 (((-354) $) 105) (((-202) $) 104) (((-821 (-354)) $) 94)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-382 (-522))) 65) (($ (-522)) 103) (($ (-382 (-522))) 100)) (-2742 (((-708)) 29)) (-1379 (($ $) 91)) (-2780 (((-850)) 132) (((-850) (-850)) 129 (|has| $ (-6 -4229)))) (-1897 (((-850)) 135)) (-1407 (((-108) $ $) 39)) (-4126 (($ $) 115)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 69)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1623 (((-108) $ $) 108)) (-1597 (((-108) $ $) 107)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 109)) (-1587 (((-108) $ $) 106)) (-1682 (($ $ $) 64)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 68) (($ $ (-382 (-522))) 95)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 67) (($ (-382 (-522)) $) 66))) -(((-379) (-1197)) (T -379)) -((-3173 (*1 *1 *2 *2) (-12 (-5 *2 (-522)) (-4 *1 (-379)))) (-3173 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-522)) (-5 *3 (-850)) (-4 *1 (-379)))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-522)))) (-1897 (*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-850)))) (-3858 (*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-522)))) (-3451 (*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-522)))) (-2780 (*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-850)))) (-3353 (*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-850)))) (-3684 (*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-850)))) (-2780 (*1 *2 *2) (-12 (-5 *2 (-850)) (|has| *1 (-6 -4229)) (-4 *1 (-379)))) (-3353 (*1 *2 *2) (-12 (-5 *2 (-850)) (|has| *1 (-6 -4229)) (-4 *1 (-379)))) (-3684 (*1 *2 *2) (-12 (-5 *2 (-850)) (|has| *1 (-6 -4229)) (-4 *1 (-379)))) (-1494 (*1 *2 *3) (-12 (-5 *3 (-522)) (|has| *1 (-6 -4229)) (-4 *1 (-379)) (-5 *2 (-850)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-522)) (|has| *1 (-6 -4229)) (-4 *1 (-379)) (-5 *2 (-850)))) (-1308 (*1 *1) (-12 (-4 *1 (-379)) (-2473 (|has| *1 (-6 -4229))) (-2473 (|has| *1 (-6 -4221))))) (-2524 (*1 *1) (-12 (-4 *1 (-379)) (-2473 (|has| *1 (-6 -4229))) (-2473 (|has| *1 (-6 -4221)))))) -(-13 (-980) (-10 -8 (-6 -3996) (-15 -3173 ($ (-522) (-522))) (-15 -3173 ($ (-522) (-522) (-850))) (-15 -3872 ((-522) $)) (-15 -1897 ((-850))) (-15 -3858 ((-522) $)) (-15 -3451 ((-522) $)) (-15 -2780 ((-850))) (-15 -3353 ((-850))) (-15 -3684 ((-850))) (IF (|has| $ (-6 -4229)) (PROGN (-15 -2780 ((-850) (-850))) (-15 -3353 ((-850) (-850))) (-15 -3684 ((-850) (-850))) (-15 -1494 ((-850) (-522))) (-15 -1688 ((-850) (-522)))) |%noBranch|) (IF (|has| $ (-6 -4221)) |%noBranch| (IF (|has| $ (-6 -4229)) |%noBranch| (PROGN (-15 -1308 ($)) (-15 -2524 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-562 (-792)) . T) ((-157) . T) ((-563 (-202)) . T) ((-563 (-354)) . T) ((-563 (-821 (-354))) . T) ((-220) . T) ((-266) . T) ((-283) . T) ((-338) . T) ((-426) . T) ((-514) . T) ((-590 #0#) . T) ((-590 $) . T) ((-655 #0#) . T) ((-655 $) . T) ((-664) . T) ((-728) . T) ((-729) . T) ((-731) . T) ((-732) . T) ((-782) . T) ((-784) . T) ((-815 (-354)) . T) ((-849) . T) ((-928) . T) ((-947) . T) ((-980) . T) ((-962 (-382 (-522))) . T) ((-962 (-522)) . T) ((-977 #0#) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) . T)) -((-3810 (((-393 |#2|) (-1 |#2| |#1|) (-393 |#1|)) 20))) -(((-380 |#1| |#2|) (-10 -7 (-15 -3810 ((-393 |#2|) (-1 |#2| |#1|) (-393 |#1|)))) (-514) (-514)) (T -380)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-393 *5)) (-4 *5 (-514)) (-4 *6 (-514)) (-5 *2 (-393 *6)) (-5 *1 (-380 *5 *6))))) -(-10 -7 (-15 -3810 ((-393 |#2|) (-1 |#2| |#1|) (-393 |#1|)))) -((-3810 (((-382 |#2|) (-1 |#2| |#1|) (-382 |#1|)) 13))) -(((-381 |#1| |#2|) (-10 -7 (-15 -3810 ((-382 |#2|) (-1 |#2| |#1|) (-382 |#1|)))) (-514) (-514)) (T -381)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-382 *5)) (-4 *5 (-514)) (-4 *6 (-514)) (-5 *2 (-382 *6)) (-5 *1 (-381 *5 *6))))) -(-10 -7 (-15 -3810 ((-382 |#2|) (-1 |#2| |#1|) (-382 |#1|)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 13)) (-3049 ((|#1| $) 21 (|has| |#1| (-283)))) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2805 (((-108) $ $) NIL)) (-3355 (((-522) $) NIL (|has| |#1| (-757)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) 17) (((-3 (-1085) "failed") $) NIL (|has| |#1| (-962 (-1085)))) (((-3 (-382 (-522)) "failed") $) 70 (|has| |#1| (-962 (-522)))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522))))) (-1478 ((|#1| $) 15) (((-1085) $) NIL (|has| |#1| (-962 (-1085)))) (((-382 (-522)) $) 67 (|has| |#1| (-962 (-522)))) (((-522) $) NIL (|has| |#1| (-962 (-522))))) (-2333 (($ $ $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) 50)) (-3344 (($) NIL (|has| |#1| (-507)))) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-3603 (((-108) $) NIL (|has| |#1| (-757)))) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| |#1| (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| |#1| (-815 (-354))))) (-2859 (((-108) $) 64)) (-1558 (($ $) NIL)) (-2947 ((|#1| $) 71)) (-4208 (((-3 $ "failed") $) NIL (|has| |#1| (-1061)))) (-3740 (((-108) $) NIL (|has| |#1| (-757)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-3937 (($) NIL (|has| |#1| (-1061)) CONST)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 97)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4194 (($ $) NIL (|has| |#1| (-283)))) (-3592 ((|#1| $) 28 (|has| |#1| (-507)))) (-4022 (((-393 (-1081 $)) (-1081 $)) 133 (|has| |#1| (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) 129 (|has| |#1| (-838)))) (-2006 (((-393 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2330 (($ $ (-588 |#1|) (-588 |#1|)) NIL (|has| |#1| (-285 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-285 |#1|))) (($ $ (-270 |#1|)) NIL (|has| |#1| (-285 |#1|))) (($ $ (-588 (-270 |#1|))) NIL (|has| |#1| (-285 |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) NIL (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-1085) |#1|) NIL (|has| |#1| (-483 (-1085) |#1|)))) (-4031 (((-708) $) NIL)) (-2683 (($ $ |#1|) NIL (|has| |#1| (-262 |#1| |#1|)))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-2731 (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2762 (($ $) NIL)) (-2959 ((|#1| $) 73)) (-3873 (((-821 (-522)) $) NIL (|has| |#1| (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| |#1| (-563 (-821 (-354))))) (((-498) $) NIL (|has| |#1| (-563 (-498)))) (((-354) $) NIL (|has| |#1| (-947))) (((-202) $) NIL (|has| |#1| (-947)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) 113 (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ |#1|) 10) (($ (-1085)) NIL (|has| |#1| (-962 (-1085))))) (-3040 (((-3 $ "failed") $) 99 (-3844 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2742 (((-708)) 100)) (-1379 ((|#1| $) 26 (|has| |#1| (-507)))) (-1407 (((-108) $ $) NIL)) (-4126 (($ $) NIL (|has| |#1| (-757)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) 22 T CONST)) (-3709 (($) 8 T CONST)) (-2810 (((-1068) $) 43 (-12 (|has| |#1| (-507)) (|has| |#1| (-765)))) (((-1068) $ (-108)) 44 (-12 (|has| |#1| (-507)) (|has| |#1| (-765)))) (((-1171) (-759) $) 45 (-12 (|has| |#1| (-507)) (|has| |#1| (-765)))) (((-1171) (-759) $ (-108)) 46 (-12 (|has| |#1| (-507)) (|has| |#1| (-765))))) (-2252 (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) 56)) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) 24 (|has| |#1| (-784)))) (-1682 (($ $ $) 124) (($ |#1| |#1|) 52)) (-1672 (($ $) 25) (($ $ $) 55)) (-1661 (($ $ $) 53)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) 123)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 60) (($ $ $) 57) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) -(((-382 |#1|) (-13 (-919 |#1|) (-10 -7 (IF (|has| |#1| (-507)) (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4225)) (IF (|has| |#1| (-426)) (IF (|has| |#1| (-6 -4236)) (-6 -4225) |%noBranch|) |%noBranch|) |%noBranch|))) (-514)) (T -382)) -NIL -(-13 (-919 |#1|) (-10 -7 (IF (|has| |#1| (-507)) (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4225)) (IF (|has| |#1| (-426)) (IF (|has| |#1| (-6 -4236)) (-6 -4225) |%noBranch|) |%noBranch|) |%noBranch|))) -((-3356 (((-628 |#2|) (-1166 $)) NIL) (((-628 |#2|)) 18)) (-3225 (($ (-1166 |#2|) (-1166 $)) NIL) (($ (-1166 |#2|)) 26)) (-1359 (((-628 |#2|) $ (-1166 $)) NIL) (((-628 |#2|) $) 22)) (-4199 ((|#3| $) 59)) (-1615 ((|#2| (-1166 $)) NIL) ((|#2|) 20)) (-3510 (((-1166 |#2|) $ (-1166 $)) NIL) (((-628 |#2|) (-1166 $) (-1166 $)) NIL) (((-1166 |#2|) $) NIL) (((-628 |#2|) (-1166 $)) 24)) (-3873 (((-1166 |#2|) $) 11) (($ (-1166 |#2|)) 13)) (-2645 ((|#3| $) 51))) -(((-383 |#1| |#2| |#3|) (-10 -8 (-15 -1359 ((-628 |#2|) |#1|)) (-15 -1615 (|#2|)) (-15 -3356 ((-628 |#2|))) (-15 -3873 (|#1| (-1166 |#2|))) (-15 -3873 ((-1166 |#2|) |#1|)) (-15 -3225 (|#1| (-1166 |#2|))) (-15 -3510 ((-628 |#2|) (-1166 |#1|))) (-15 -3510 ((-1166 |#2|) |#1|)) (-15 -4199 (|#3| |#1|)) (-15 -2645 (|#3| |#1|)) (-15 -3356 ((-628 |#2|) (-1166 |#1|))) (-15 -1615 (|#2| (-1166 |#1|))) (-15 -3225 (|#1| (-1166 |#2|) (-1166 |#1|))) (-15 -3510 ((-628 |#2|) (-1166 |#1|) (-1166 |#1|))) (-15 -3510 ((-1166 |#2|) |#1| (-1166 |#1|))) (-15 -1359 ((-628 |#2|) |#1| (-1166 |#1|)))) (-384 |#2| |#3|) (-157) (-1142 |#2|)) (T -383)) -((-3356 (*1 *2) (-12 (-4 *4 (-157)) (-4 *5 (-1142 *4)) (-5 *2 (-628 *4)) (-5 *1 (-383 *3 *4 *5)) (-4 *3 (-384 *4 *5)))) (-1615 (*1 *2) (-12 (-4 *4 (-1142 *2)) (-4 *2 (-157)) (-5 *1 (-383 *3 *2 *4)) (-4 *3 (-384 *2 *4))))) -(-10 -8 (-15 -1359 ((-628 |#2|) |#1|)) (-15 -1615 (|#2|)) (-15 -3356 ((-628 |#2|))) (-15 -3873 (|#1| (-1166 |#2|))) (-15 -3873 ((-1166 |#2|) |#1|)) (-15 -3225 (|#1| (-1166 |#2|))) (-15 -3510 ((-628 |#2|) (-1166 |#1|))) (-15 -3510 ((-1166 |#2|) |#1|)) (-15 -4199 (|#3| |#1|)) (-15 -2645 (|#3| |#1|)) (-15 -3356 ((-628 |#2|) (-1166 |#1|))) (-15 -1615 (|#2| (-1166 |#1|))) (-15 -3225 (|#1| (-1166 |#2|) (-1166 |#1|))) (-15 -3510 ((-628 |#2|) (-1166 |#1|) (-1166 |#1|))) (-15 -3510 ((-1166 |#2|) |#1| (-1166 |#1|))) (-15 -1359 ((-628 |#2|) |#1| (-1166 |#1|)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3356 (((-628 |#1|) (-1166 $)) 46) (((-628 |#1|)) 61)) (-1945 ((|#1| $) 52)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3225 (($ (-1166 |#1|) (-1166 $)) 48) (($ (-1166 |#1|)) 64)) (-1359 (((-628 |#1|) $ (-1166 $)) 53) (((-628 |#1|) $) 59)) (-3920 (((-3 $ "failed") $) 34)) (-1692 (((-850)) 54)) (-2859 (((-108) $) 31)) (-1269 ((|#1| $) 51)) (-4199 ((|#2| $) 44 (|has| |#1| (-338)))) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-1615 ((|#1| (-1166 $)) 47) ((|#1|) 60)) (-3510 (((-1166 |#1|) $ (-1166 $)) 50) (((-628 |#1|) (-1166 $) (-1166 $)) 49) (((-1166 |#1|) $) 66) (((-628 |#1|) (-1166 $)) 65)) (-3873 (((-1166 |#1|) $) 63) (($ (-1166 |#1|)) 62)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 37)) (-3040 (((-3 $ "failed") $) 43 (|has| |#1| (-133)))) (-2645 ((|#2| $) 45)) (-2742 (((-708)) 29)) (-2905 (((-1166 $)) 67)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) -(((-384 |#1| |#2|) (-1197) (-157) (-1142 |t#1|)) (T -384)) -((-2905 (*1 *2) (-12 (-4 *3 (-157)) (-4 *4 (-1142 *3)) (-5 *2 (-1166 *1)) (-4 *1 (-384 *3 *4)))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1142 *3)) (-5 *2 (-1166 *3)))) (-3510 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-384 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1142 *4)) (-5 *2 (-628 *4)))) (-3225 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-157)) (-4 *1 (-384 *3 *4)) (-4 *4 (-1142 *3)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1142 *3)) (-5 *2 (-1166 *3)))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-157)) (-4 *1 (-384 *3 *4)) (-4 *4 (-1142 *3)))) (-3356 (*1 *2) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1142 *3)) (-5 *2 (-628 *3)))) (-1615 (*1 *2) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1142 *2)) (-4 *2 (-157)))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1142 *3)) (-5 *2 (-628 *3))))) -(-13 (-345 |t#1| |t#2|) (-10 -8 (-15 -2905 ((-1166 $))) (-15 -3510 ((-1166 |t#1|) $)) (-15 -3510 ((-628 |t#1|) (-1166 $))) (-15 -3225 ($ (-1166 |t#1|))) (-15 -3873 ((-1166 |t#1|) $)) (-15 -3873 ($ (-1166 |t#1|))) (-15 -3356 ((-628 |t#1|))) (-15 -1615 (|t#1|)) (-15 -1359 ((-628 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-345 |#1| |#2|) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-655 |#1|) . T) ((-664) . T) ((-977 |#1|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-3700 (((-3 |#2| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) 27) (((-3 (-522) "failed") $) 19)) (-1478 ((|#2| $) NIL) (((-382 (-522)) $) 24) (((-522) $) 14)) (-2217 (($ |#2|) NIL) (($ (-382 (-522))) 22) (($ (-522)) 11))) -(((-385 |#1| |#2|) (-10 -8 (-15 -1478 ((-522) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -2217 (|#1| (-522))) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -2217 (|#1| |#2|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -1478 (|#2| |#1|))) (-386 |#2|) (-1120)) (T -385)) -NIL -(-10 -8 (-15 -1478 ((-522) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -2217 (|#1| (-522))) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -2217 (|#1| |#2|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -1478 (|#2| |#1|))) -((-3700 (((-3 |#1| "failed") $) 7) (((-3 (-382 (-522)) "failed") $) 16 (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) 13 (|has| |#1| (-962 (-522))))) (-1478 ((|#1| $) 8) (((-382 (-522)) $) 15 (|has| |#1| (-962 (-382 (-522))))) (((-522) $) 12 (|has| |#1| (-962 (-522))))) (-2217 (($ |#1|) 6) (($ (-382 (-522))) 17 (|has| |#1| (-962 (-382 (-522))))) (($ (-522)) 14 (|has| |#1| (-962 (-522)))))) -(((-386 |#1|) (-1197) (-1120)) (T -386)) -NIL -(-13 (-962 |t#1|) (-10 -7 (IF (|has| |t#1| (-962 (-522))) (-6 (-962 (-522))) |%noBranch|) (IF (|has| |t#1| (-962 (-382 (-522)))) (-6 (-962 (-382 (-522)))) |%noBranch|))) -(((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T)) -((-3810 (((-388 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-388 |#1| |#2| |#3| |#4|)) 33))) -(((-387 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3810 ((-388 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-388 |#1| |#2| |#3| |#4|)))) (-283) (-919 |#1|) (-1142 |#2|) (-13 (-384 |#2| |#3|) (-962 |#2|)) (-283) (-919 |#5|) (-1142 |#6|) (-13 (-384 |#6| |#7|) (-962 |#6|))) (T -387)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-388 *5 *6 *7 *8)) (-4 *5 (-283)) (-4 *6 (-919 *5)) (-4 *7 (-1142 *6)) (-4 *8 (-13 (-384 *6 *7) (-962 *6))) (-4 *9 (-283)) (-4 *10 (-919 *9)) (-4 *11 (-1142 *10)) (-5 *2 (-388 *9 *10 *11 *12)) (-5 *1 (-387 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-384 *10 *11) (-962 *10)))))) -(-10 -7 (-15 -3810 ((-388 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-388 |#1| |#2| |#3| |#4|)))) -((-1419 (((-108) $ $) NIL)) (-3367 (($) NIL T CONST)) (-3920 (((-3 $ "failed") $) NIL)) (-2147 ((|#4| (-708) (-1166 |#4|)) 55)) (-2859 (((-108) $) NIL)) (-2947 (((-1166 |#4|) $) 17)) (-1269 ((|#2| $) 53)) (-3695 (($ $) 136)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) 98)) (-3129 (($ (-1166 |#4|)) 97)) (-4174 (((-1032) $) NIL)) (-2959 ((|#1| $) 18)) (-2983 (($ $ $) NIL)) (-1596 (($ $ $) NIL)) (-2217 (((-792) $) 131)) (-2905 (((-1166 |#4|) $) 126)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3709 (($) 11 T CONST)) (-1562 (((-108) $ $) 39)) (-1682 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) 119)) (* (($ $ $) 118))) -(((-388 |#1| |#2| |#3| |#4|) (-13 (-447) (-10 -8 (-15 -3129 ($ (-1166 |#4|))) (-15 -2905 ((-1166 |#4|) $)) (-15 -1269 (|#2| $)) (-15 -2947 ((-1166 |#4|) $)) (-15 -2959 (|#1| $)) (-15 -3695 ($ $)) (-15 -2147 (|#4| (-708) (-1166 |#4|))))) (-283) (-919 |#1|) (-1142 |#2|) (-13 (-384 |#2| |#3|) (-962 |#2|))) (T -388)) -((-3129 (*1 *1 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-13 (-384 *4 *5) (-962 *4))) (-4 *4 (-919 *3)) (-4 *5 (-1142 *4)) (-4 *3 (-283)) (-5 *1 (-388 *3 *4 *5 *6)))) (-2905 (*1 *2 *1) (-12 (-4 *3 (-283)) (-4 *4 (-919 *3)) (-4 *5 (-1142 *4)) (-5 *2 (-1166 *6)) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *6 (-13 (-384 *4 *5) (-962 *4))))) (-1269 (*1 *2 *1) (-12 (-4 *4 (-1142 *2)) (-4 *2 (-919 *3)) (-5 *1 (-388 *3 *2 *4 *5)) (-4 *3 (-283)) (-4 *5 (-13 (-384 *2 *4) (-962 *2))))) (-2947 (*1 *2 *1) (-12 (-4 *3 (-283)) (-4 *4 (-919 *3)) (-4 *5 (-1142 *4)) (-5 *2 (-1166 *6)) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *6 (-13 (-384 *4 *5) (-962 *4))))) (-2959 (*1 *2 *1) (-12 (-4 *3 (-919 *2)) (-4 *4 (-1142 *3)) (-4 *2 (-283)) (-5 *1 (-388 *2 *3 *4 *5)) (-4 *5 (-13 (-384 *3 *4) (-962 *3))))) (-3695 (*1 *1 *1) (-12 (-4 *2 (-283)) (-4 *3 (-919 *2)) (-4 *4 (-1142 *3)) (-5 *1 (-388 *2 *3 *4 *5)) (-4 *5 (-13 (-384 *3 *4) (-962 *3))))) (-2147 (*1 *2 *3 *4) (-12 (-5 *3 (-708)) (-5 *4 (-1166 *2)) (-4 *5 (-283)) (-4 *6 (-919 *5)) (-4 *2 (-13 (-384 *6 *7) (-962 *6))) (-5 *1 (-388 *5 *6 *7 *2)) (-4 *7 (-1142 *6))))) -(-13 (-447) (-10 -8 (-15 -3129 ($ (-1166 |#4|))) (-15 -2905 ((-1166 |#4|) $)) (-15 -1269 (|#2| $)) (-15 -2947 ((-1166 |#4|) $)) (-15 -2959 (|#1| $)) (-15 -3695 ($ $)) (-15 -2147 (|#4| (-708) (-1166 |#4|))))) -((-1419 (((-108) $ $) NIL)) (-3367 (($) NIL T CONST)) (-3920 (((-3 $ "failed") $) NIL)) (-2859 (((-108) $) NIL)) (-1269 ((|#2| $) 60)) (-2838 (($ (-1166 |#4|)) 25) (($ (-388 |#1| |#2| |#3| |#4|)) 75 (|has| |#4| (-962 |#2|)))) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 34)) (-2905 (((-1166 |#4|) $) 26)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3709 (($) 23 T CONST)) (-1562 (((-108) $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ $ $) 72))) -(((-389 |#1| |#2| |#3| |#4| |#5|) (-13 (-664) (-10 -8 (-15 -2905 ((-1166 |#4|) $)) (-15 -1269 (|#2| $)) (-15 -2838 ($ (-1166 |#4|))) (IF (|has| |#4| (-962 |#2|)) (-15 -2838 ($ (-388 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-283) (-919 |#1|) (-1142 |#2|) (-384 |#2| |#3|) (-1166 |#4|)) (T -389)) -((-2905 (*1 *2 *1) (-12 (-4 *3 (-283)) (-4 *4 (-919 *3)) (-4 *5 (-1142 *4)) (-5 *2 (-1166 *6)) (-5 *1 (-389 *3 *4 *5 *6 *7)) (-4 *6 (-384 *4 *5)) (-14 *7 *2))) (-1269 (*1 *2 *1) (-12 (-4 *4 (-1142 *2)) (-4 *2 (-919 *3)) (-5 *1 (-389 *3 *2 *4 *5 *6)) (-4 *3 (-283)) (-4 *5 (-384 *2 *4)) (-14 *6 (-1166 *5)))) (-2838 (*1 *1 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-384 *4 *5)) (-4 *4 (-919 *3)) (-4 *5 (-1142 *4)) (-4 *3 (-283)) (-5 *1 (-389 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2838 (*1 *1 *2) (-12 (-5 *2 (-388 *3 *4 *5 *6)) (-4 *6 (-962 *4)) (-4 *3 (-283)) (-4 *4 (-919 *3)) (-4 *5 (-1142 *4)) (-4 *6 (-384 *4 *5)) (-14 *7 (-1166 *6)) (-5 *1 (-389 *3 *4 *5 *6 *7))))) -(-13 (-664) (-10 -8 (-15 -2905 ((-1166 |#4|) $)) (-15 -1269 (|#2| $)) (-15 -2838 ($ (-1166 |#4|))) (IF (|has| |#4| (-962 |#2|)) (-15 -2838 ($ (-388 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-3810 ((|#3| (-1 |#4| |#2|) |#1|) 26))) -(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3810 (|#3| (-1 |#4| |#2|) |#1|))) (-392 |#2|) (-157) (-392 |#4|) (-157)) (T -390)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-4 *2 (-392 *6)) (-5 *1 (-390 *4 *5 *2 *6)) (-4 *4 (-392 *5))))) -(-10 -7 (-15 -3810 (|#3| (-1 |#4| |#2|) |#1|))) -((-2541 (((-3 $ "failed")) 85)) (-3690 (((-1166 (-628 |#2|)) (-1166 $)) NIL) (((-1166 (-628 |#2|))) 90)) (-2722 (((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed")) 84)) (-3050 (((-3 $ "failed")) 83)) (-3531 (((-628 |#2|) (-1166 $)) NIL) (((-628 |#2|)) 101)) (-2853 (((-628 |#2|) $ (-1166 $)) NIL) (((-628 |#2|) $) 109)) (-1662 (((-1081 (-881 |#2|))) 54)) (-4035 ((|#2| (-1166 $)) NIL) ((|#2|) 105)) (-3225 (($ (-1166 |#2|) (-1166 $)) NIL) (($ (-1166 |#2|)) 112)) (-2439 (((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed")) 82)) (-3351 (((-3 $ "failed")) 74)) (-1521 (((-628 |#2|) (-1166 $)) NIL) (((-628 |#2|)) 99)) (-2734 (((-628 |#2|) $ (-1166 $)) NIL) (((-628 |#2|) $) 107)) (-3943 (((-1081 (-881 |#2|))) 53)) (-3020 ((|#2| (-1166 $)) NIL) ((|#2|) 103)) (-3510 (((-1166 |#2|) $ (-1166 $)) NIL) (((-628 |#2|) (-1166 $) (-1166 $)) NIL) (((-1166 |#2|) $) NIL) (((-628 |#2|) (-1166 $)) 111)) (-3873 (((-1166 |#2|) $) 95) (($ (-1166 |#2|)) 97)) (-1777 (((-588 (-881 |#2|)) (-1166 $)) NIL) (((-588 (-881 |#2|))) 93)) (-1664 (($ (-628 |#2|) $) 89))) -(((-391 |#1| |#2|) (-10 -8 (-15 -1664 (|#1| (-628 |#2|) |#1|)) (-15 -1662 ((-1081 (-881 |#2|)))) (-15 -3943 ((-1081 (-881 |#2|)))) (-15 -2853 ((-628 |#2|) |#1|)) (-15 -2734 ((-628 |#2|) |#1|)) (-15 -3531 ((-628 |#2|))) (-15 -1521 ((-628 |#2|))) (-15 -4035 (|#2|)) (-15 -3020 (|#2|)) (-15 -3873 (|#1| (-1166 |#2|))) (-15 -3873 ((-1166 |#2|) |#1|)) (-15 -3225 (|#1| (-1166 |#2|))) (-15 -1777 ((-588 (-881 |#2|)))) (-15 -3690 ((-1166 (-628 |#2|)))) (-15 -3510 ((-628 |#2|) (-1166 |#1|))) (-15 -3510 ((-1166 |#2|) |#1|)) (-15 -2541 ((-3 |#1| "failed"))) (-15 -3050 ((-3 |#1| "failed"))) (-15 -3351 ((-3 |#1| "failed"))) (-15 -2722 ((-3 (-2 (|:| |particular| |#1|) (|:| -2905 (-588 |#1|))) "failed"))) (-15 -2439 ((-3 (-2 (|:| |particular| |#1|) (|:| -2905 (-588 |#1|))) "failed"))) (-15 -3531 ((-628 |#2|) (-1166 |#1|))) (-15 -1521 ((-628 |#2|) (-1166 |#1|))) (-15 -4035 (|#2| (-1166 |#1|))) (-15 -3020 (|#2| (-1166 |#1|))) (-15 -3225 (|#1| (-1166 |#2|) (-1166 |#1|))) (-15 -3510 ((-628 |#2|) (-1166 |#1|) (-1166 |#1|))) (-15 -3510 ((-1166 |#2|) |#1| (-1166 |#1|))) (-15 -2853 ((-628 |#2|) |#1| (-1166 |#1|))) (-15 -2734 ((-628 |#2|) |#1| (-1166 |#1|))) (-15 -3690 ((-1166 (-628 |#2|)) (-1166 |#1|))) (-15 -1777 ((-588 (-881 |#2|)) (-1166 |#1|)))) (-392 |#2|) (-157)) (T -391)) -((-3690 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1166 (-628 *4))) (-5 *1 (-391 *3 *4)) (-4 *3 (-392 *4)))) (-1777 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-588 (-881 *4))) (-5 *1 (-391 *3 *4)) (-4 *3 (-392 *4)))) (-3020 (*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-391 *3 *2)) (-4 *3 (-392 *2)))) (-4035 (*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-391 *3 *2)) (-4 *3 (-392 *2)))) (-1521 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-628 *4)) (-5 *1 (-391 *3 *4)) (-4 *3 (-392 *4)))) (-3531 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-628 *4)) (-5 *1 (-391 *3 *4)) (-4 *3 (-392 *4)))) (-3943 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1081 (-881 *4))) (-5 *1 (-391 *3 *4)) (-4 *3 (-392 *4)))) (-1662 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1081 (-881 *4))) (-5 *1 (-391 *3 *4)) (-4 *3 (-392 *4))))) -(-10 -8 (-15 -1664 (|#1| (-628 |#2|) |#1|)) (-15 -1662 ((-1081 (-881 |#2|)))) (-15 -3943 ((-1081 (-881 |#2|)))) (-15 -2853 ((-628 |#2|) |#1|)) (-15 -2734 ((-628 |#2|) |#1|)) (-15 -3531 ((-628 |#2|))) (-15 -1521 ((-628 |#2|))) (-15 -4035 (|#2|)) (-15 -3020 (|#2|)) (-15 -3873 (|#1| (-1166 |#2|))) (-15 -3873 ((-1166 |#2|) |#1|)) (-15 -3225 (|#1| (-1166 |#2|))) (-15 -1777 ((-588 (-881 |#2|)))) (-15 -3690 ((-1166 (-628 |#2|)))) (-15 -3510 ((-628 |#2|) (-1166 |#1|))) (-15 -3510 ((-1166 |#2|) |#1|)) (-15 -2541 ((-3 |#1| "failed"))) (-15 -3050 ((-3 |#1| "failed"))) (-15 -3351 ((-3 |#1| "failed"))) (-15 -2722 ((-3 (-2 (|:| |particular| |#1|) (|:| -2905 (-588 |#1|))) "failed"))) (-15 -2439 ((-3 (-2 (|:| |particular| |#1|) (|:| -2905 (-588 |#1|))) "failed"))) (-15 -3531 ((-628 |#2|) (-1166 |#1|))) (-15 -1521 ((-628 |#2|) (-1166 |#1|))) (-15 -4035 (|#2| (-1166 |#1|))) (-15 -3020 (|#2| (-1166 |#1|))) (-15 -3225 (|#1| (-1166 |#2|) (-1166 |#1|))) (-15 -3510 ((-628 |#2|) (-1166 |#1|) (-1166 |#1|))) (-15 -3510 ((-1166 |#2|) |#1| (-1166 |#1|))) (-15 -2853 ((-628 |#2|) |#1| (-1166 |#1|))) (-15 -2734 ((-628 |#2|) |#1| (-1166 |#1|))) (-15 -3690 ((-1166 (-628 |#2|)) (-1166 |#1|))) (-15 -1777 ((-588 (-881 |#2|)) (-1166 |#1|)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2541 (((-3 $ "failed")) 37 (|has| |#1| (-514)))) (-2265 (((-3 $ "failed") $ $) 19)) (-3690 (((-1166 (-628 |#1|)) (-1166 $)) 78) (((-1166 (-628 |#1|))) 100)) (-2726 (((-1166 $)) 81)) (-3367 (($) 17 T CONST)) (-2722 (((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed")) 40 (|has| |#1| (-514)))) (-3050 (((-3 $ "failed")) 38 (|has| |#1| (-514)))) (-3531 (((-628 |#1|) (-1166 $)) 65) (((-628 |#1|)) 92)) (-2046 ((|#1| $) 74)) (-2853 (((-628 |#1|) $ (-1166 $)) 76) (((-628 |#1|) $) 90)) (-1279 (((-3 $ "failed") $) 45 (|has| |#1| (-514)))) (-1662 (((-1081 (-881 |#1|))) 88 (|has| |#1| (-338)))) (-2698 (($ $ (-850)) 28)) (-3676 ((|#1| $) 72)) (-4080 (((-1081 |#1|) $) 42 (|has| |#1| (-514)))) (-4035 ((|#1| (-1166 $)) 67) ((|#1|) 94)) (-3767 (((-1081 |#1|) $) 63)) (-1340 (((-108)) 57)) (-3225 (($ (-1166 |#1|) (-1166 $)) 69) (($ (-1166 |#1|)) 98)) (-3920 (((-3 $ "failed") $) 47 (|has| |#1| (-514)))) (-1692 (((-850)) 80)) (-2134 (((-108)) 54)) (-2870 (($ $ (-850)) 33)) (-2287 (((-108)) 50)) (-3702 (((-108)) 48)) (-3868 (((-108)) 52)) (-2439 (((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed")) 41 (|has| |#1| (-514)))) (-3351 (((-3 $ "failed")) 39 (|has| |#1| (-514)))) (-1521 (((-628 |#1|) (-1166 $)) 66) (((-628 |#1|)) 93)) (-3411 ((|#1| $) 75)) (-2734 (((-628 |#1|) $ (-1166 $)) 77) (((-628 |#1|) $) 91)) (-3070 (((-3 $ "failed") $) 46 (|has| |#1| (-514)))) (-3943 (((-1081 (-881 |#1|))) 89 (|has| |#1| (-338)))) (-1946 (($ $ (-850)) 29)) (-1819 ((|#1| $) 73)) (-1216 (((-1081 |#1|) $) 43 (|has| |#1| (-514)))) (-3020 ((|#1| (-1166 $)) 68) ((|#1|) 95)) (-2724 (((-1081 |#1|) $) 64)) (-4197 (((-108)) 58)) (-2311 (((-1068) $) 9)) (-3823 (((-108)) 49)) (-1388 (((-108)) 51)) (-3509 (((-108)) 53)) (-4174 (((-1032) $) 10)) (-1427 (((-108)) 56)) (-2683 ((|#1| $ (-522)) 101)) (-3510 (((-1166 |#1|) $ (-1166 $)) 71) (((-628 |#1|) (-1166 $) (-1166 $)) 70) (((-1166 |#1|) $) 103) (((-628 |#1|) (-1166 $)) 102)) (-3873 (((-1166 |#1|) $) 97) (($ (-1166 |#1|)) 96)) (-1777 (((-588 (-881 |#1|)) (-1166 $)) 79) (((-588 (-881 |#1|))) 99)) (-1596 (($ $ $) 25)) (-3990 (((-108)) 62)) (-2217 (((-792) $) 11)) (-2905 (((-1166 $)) 104)) (-1548 (((-588 (-1166 |#1|))) 44 (|has| |#1| (-514)))) (-2185 (($ $ $ $) 26)) (-3597 (((-108)) 60)) (-1664 (($ (-628 |#1|) $) 87)) (-1369 (($ $ $) 24)) (-3578 (((-108)) 61)) (-2912 (((-108)) 59)) (-1855 (((-108)) 55)) (-3697 (($) 18 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 30)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-392 |#1|) (-1197) (-157)) (T -392)) -((-2905 (*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1166 *1)) (-4 *1 (-392 *3)))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-1166 *3)))) (-3510 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-392 *4)) (-4 *4 (-157)) (-5 *2 (-628 *4)))) (-2683 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-392 *2)) (-4 *2 (-157)))) (-3690 (*1 *2) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-1166 (-628 *3))))) (-1777 (*1 *2) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-588 (-881 *3))))) (-3225 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-157)) (-4 *1 (-392 *3)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-1166 *3)))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-157)) (-4 *1 (-392 *3)))) (-3020 (*1 *2) (-12 (-4 *1 (-392 *2)) (-4 *2 (-157)))) (-4035 (*1 *2) (-12 (-4 *1 (-392 *2)) (-4 *2 (-157)))) (-1521 (*1 *2) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-628 *3)))) (-3531 (*1 *2) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-628 *3)))) (-2734 (*1 *2 *1) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-628 *3)))) (-2853 (*1 *2 *1) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-628 *3)))) (-3943 (*1 *2) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-4 *3 (-338)) (-5 *2 (-1081 (-881 *3))))) (-1662 (*1 *2) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-4 *3 (-338)) (-5 *2 (-1081 (-881 *3))))) (-1664 (*1 *1 *2 *1) (-12 (-5 *2 (-628 *3)) (-4 *1 (-392 *3)) (-4 *3 (-157))))) -(-13 (-342 |t#1|) (-10 -8 (-15 -2905 ((-1166 $))) (-15 -3510 ((-1166 |t#1|) $)) (-15 -3510 ((-628 |t#1|) (-1166 $))) (-15 -2683 (|t#1| $ (-522))) (-15 -3690 ((-1166 (-628 |t#1|)))) (-15 -1777 ((-588 (-881 |t#1|)))) (-15 -3225 ($ (-1166 |t#1|))) (-15 -3873 ((-1166 |t#1|) $)) (-15 -3873 ($ (-1166 |t#1|))) (-15 -3020 (|t#1|)) (-15 -4035 (|t#1|)) (-15 -1521 ((-628 |t#1|))) (-15 -3531 ((-628 |t#1|))) (-15 -2734 ((-628 |t#1|) $)) (-15 -2853 ((-628 |t#1|) $)) (IF (|has| |t#1| (-338)) (PROGN (-15 -3943 ((-1081 (-881 |t#1|)))) (-15 -1662 ((-1081 (-881 |t#1|))))) |%noBranch|) (-15 -1664 ($ (-628 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-342 |#1|) . T) ((-590 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-682 |#1|) . T) ((-699) . T) ((-977 |#1|) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 41)) (-1313 (($ $) 56)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 143)) (-2298 (($ $) NIL)) (-3007 (((-108) $) 35)) (-2541 ((|#1| $) 12)) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL (|has| |#1| (-1124)))) (-3133 (((-393 $) $) NIL (|has| |#1| (-1124)))) (-2884 (($ |#1| (-522)) 30)) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 113)) (-1478 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) 54)) (-3920 (((-3 $ "failed") $) 128)) (-2549 (((-3 (-382 (-522)) "failed") $) 62 (|has| |#1| (-507)))) (-3519 (((-108) $) 58 (|has| |#1| (-507)))) (-1699 (((-382 (-522)) $) 60 (|has| |#1| (-507)))) (-2844 (($ |#1| (-522)) 32)) (-2725 (((-108) $) 149 (|has| |#1| (-1124)))) (-2859 (((-108) $) 42)) (-4152 (((-708) $) 37)) (-3472 (((-3 "nil" "sqfr" "irred" "prime") $ (-522)) 134)) (-3108 ((|#1| $ (-522)) 133)) (-2448 (((-522) $ (-522)) 132)) (-3439 (($ |#1| (-522)) 29)) (-3810 (($ (-1 |#1| |#1|) $) 140)) (-2865 (($ |#1| (-588 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-522))))) 57)) (-2267 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-2311 (((-1068) $) NIL)) (-3574 (($ |#1| (-522)) 31)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-426)))) (-2308 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) 144 (|has| |#1| (-426)))) (-4073 (($ |#1| (-522) (-3 "nil" "sqfr" "irred" "prime")) 28)) (-4045 (((-588 (-2 (|:| -2006 |#1|) (|:| -3858 (-522)))) $) 53)) (-4166 (((-588 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-522)))) $) 11)) (-2006 (((-393 $) $) NIL (|has| |#1| (-1124)))) (-2276 (((-3 $ "failed") $ $) 135)) (-3858 (((-522) $) 129)) (-1663 ((|#1| $) 55)) (-2330 (($ $ (-588 |#1|) (-588 |#1|)) NIL (|has| |#1| (-285 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-285 |#1|))) (($ $ (-270 |#1|)) NIL (|has| |#1| (-285 |#1|))) (($ $ (-588 (-270 |#1|))) 77 (|has| |#1| (-285 |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) 82 (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-1085) |#1|) NIL (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-1085) $) NIL (|has| |#1| (-483 (-1085) $))) (($ $ (-588 (-1085)) (-588 $)) 83 (|has| |#1| (-483 (-1085) $))) (($ $ (-588 (-270 $))) 79 (|has| |#1| (-285 $))) (($ $ (-270 $)) NIL (|has| |#1| (-285 $))) (($ $ $ $) NIL (|has| |#1| (-285 $))) (($ $ (-588 $) (-588 $)) NIL (|has| |#1| (-285 $)))) (-2683 (($ $ |#1|) 69 (|has| |#1| (-262 |#1| |#1|))) (($ $ $) 70 (|has| |#1| (-262 $ $)))) (-2731 (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) 139)) (-3873 (((-498) $) 26 (|has| |#1| (-563 (-498)))) (((-354) $) 89 (|has| |#1| (-947))) (((-202) $) 92 (|has| |#1| (-947)))) (-2217 (((-792) $) 111) (($ (-522)) 45) (($ $) NIL) (($ |#1|) 44) (($ (-382 (-522))) NIL (|has| |#1| (-962 (-382 (-522)))))) (-2742 (((-708)) 47)) (-1407 (((-108) $ $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 39 T CONST)) (-3709 (($) 38 T CONST)) (-2252 (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1562 (((-108) $ $) 93)) (-1672 (($ $) 125) (($ $ $) NIL)) (-1661 (($ $ $) 137)) (** (($ $ (-850)) NIL) (($ $ (-708)) 99)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 49) (($ $ $) 48) (($ |#1| $) 50) (($ $ |#1|) NIL))) -(((-393 |#1|) (-13 (-514) (-208 |#1|) (-37 |#1|) (-313 |#1|) (-386 |#1|) (-10 -8 (-15 -1663 (|#1| $)) (-15 -3858 ((-522) $)) (-15 -2865 ($ |#1| (-588 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-522)))))) (-15 -4166 ((-588 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-522)))) $)) (-15 -3439 ($ |#1| (-522))) (-15 -4045 ((-588 (-2 (|:| -2006 |#1|) (|:| -3858 (-522)))) $)) (-15 -3574 ($ |#1| (-522))) (-15 -2448 ((-522) $ (-522))) (-15 -3108 (|#1| $ (-522))) (-15 -3472 ((-3 "nil" "sqfr" "irred" "prime") $ (-522))) (-15 -4152 ((-708) $)) (-15 -2844 ($ |#1| (-522))) (-15 -2884 ($ |#1| (-522))) (-15 -4073 ($ |#1| (-522) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2541 (|#1| $)) (-15 -1313 ($ $)) (-15 -3810 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-426)) (-6 (-426)) |%noBranch|) (IF (|has| |#1| (-947)) (-6 (-947)) |%noBranch|) (IF (|has| |#1| (-1124)) (-6 (-1124)) |%noBranch|) (IF (|has| |#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) (IF (|has| |#1| (-507)) (PROGN (-15 -3519 ((-108) $)) (-15 -1699 ((-382 (-522)) $)) (-15 -2549 ((-3 (-382 (-522)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-262 $ $)) (-6 (-262 $ $)) |%noBranch|) (IF (|has| |#1| (-285 $)) (-6 (-285 $)) |%noBranch|) (IF (|has| |#1| (-483 (-1085) $)) (-6 (-483 (-1085) $)) |%noBranch|))) (-514)) (T -393)) -((-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-514)) (-5 *1 (-393 *3)))) (-1663 (*1 *2 *1) (-12 (-5 *1 (-393 *2)) (-4 *2 (-514)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-393 *3)) (-4 *3 (-514)))) (-2865 (*1 *1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-522))))) (-4 *2 (-514)) (-5 *1 (-393 *2)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-522))))) (-5 *1 (-393 *3)) (-4 *3 (-514)))) (-3439 (*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-393 *2)) (-4 *2 (-514)))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| -2006 *3) (|:| -3858 (-522))))) (-5 *1 (-393 *3)) (-4 *3 (-514)))) (-3574 (*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-393 *2)) (-4 *2 (-514)))) (-2448 (*1 *2 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-393 *3)) (-4 *3 (-514)))) (-3108 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *1 (-393 *2)) (-4 *2 (-514)))) (-3472 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-393 *4)) (-4 *4 (-514)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-393 *3)) (-4 *3 (-514)))) (-2844 (*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-393 *2)) (-4 *2 (-514)))) (-2884 (*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-393 *2)) (-4 *2 (-514)))) (-4073 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-522)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-393 *2)) (-4 *2 (-514)))) (-2541 (*1 *2 *1) (-12 (-5 *1 (-393 *2)) (-4 *2 (-514)))) (-1313 (*1 *1 *1) (-12 (-5 *1 (-393 *2)) (-4 *2 (-514)))) (-3519 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-393 *3)) (-4 *3 (-507)) (-4 *3 (-514)))) (-1699 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-393 *3)) (-4 *3 (-507)) (-4 *3 (-514)))) (-2549 (*1 *2 *1) (|partial| -12 (-5 *2 (-382 (-522))) (-5 *1 (-393 *3)) (-4 *3 (-507)) (-4 *3 (-514))))) -(-13 (-514) (-208 |#1|) (-37 |#1|) (-313 |#1|) (-386 |#1|) (-10 -8 (-15 -1663 (|#1| $)) (-15 -3858 ((-522) $)) (-15 -2865 ($ |#1| (-588 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-522)))))) (-15 -4166 ((-588 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-522)))) $)) (-15 -3439 ($ |#1| (-522))) (-15 -4045 ((-588 (-2 (|:| -2006 |#1|) (|:| -3858 (-522)))) $)) (-15 -3574 ($ |#1| (-522))) (-15 -2448 ((-522) $ (-522))) (-15 -3108 (|#1| $ (-522))) (-15 -3472 ((-3 "nil" "sqfr" "irred" "prime") $ (-522))) (-15 -4152 ((-708) $)) (-15 -2844 ($ |#1| (-522))) (-15 -2884 ($ |#1| (-522))) (-15 -4073 ($ |#1| (-522) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2541 (|#1| $)) (-15 -1313 ($ $)) (-15 -3810 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-426)) (-6 (-426)) |%noBranch|) (IF (|has| |#1| (-947)) (-6 (-947)) |%noBranch|) (IF (|has| |#1| (-1124)) (-6 (-1124)) |%noBranch|) (IF (|has| |#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) (IF (|has| |#1| (-507)) (PROGN (-15 -3519 ((-108) $)) (-15 -1699 ((-382 (-522)) $)) (-15 -2549 ((-3 (-382 (-522)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-262 $ $)) (-6 (-262 $ $)) |%noBranch|) (IF (|has| |#1| (-285 $)) (-6 (-285 $)) |%noBranch|) (IF (|has| |#1| (-483 (-1085) $)) (-6 (-483 (-1085) $)) |%noBranch|))) -((-1776 (((-393 |#1|) (-393 |#1|) (-1 (-393 |#1|) |#1|)) 20)) (-1399 (((-393 |#1|) (-393 |#1|) (-393 |#1|)) 15))) -(((-394 |#1|) (-10 -7 (-15 -1776 ((-393 |#1|) (-393 |#1|) (-1 (-393 |#1|) |#1|))) (-15 -1399 ((-393 |#1|) (-393 |#1|) (-393 |#1|)))) (-514)) (T -394)) -((-1399 (*1 *2 *2 *2) (-12 (-5 *2 (-393 *3)) (-4 *3 (-514)) (-5 *1 (-394 *3)))) (-1776 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-393 *4) *4)) (-4 *4 (-514)) (-5 *2 (-393 *4)) (-5 *1 (-394 *4))))) -(-10 -7 (-15 -1776 ((-393 |#1|) (-393 |#1|) (-1 (-393 |#1|) |#1|))) (-15 -1399 ((-393 |#1|) (-393 |#1|) (-393 |#1|)))) -((-3062 ((|#2| |#2|) 161)) (-3588 (((-3 (|:| |%expansion| (-288 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068))))) |#2| (-108)) 55))) -(((-395 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3588 ((-3 (|:| |%expansion| (-288 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068))))) |#2| (-108))) (-15 -3062 (|#2| |#2|))) (-13 (-426) (-784) (-962 (-522)) (-584 (-522))) (-13 (-27) (-1106) (-405 |#1|)) (-1085) |#2|) (T -395)) -((-3062 (*1 *2 *2) (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-395 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1106) (-405 *3))) (-14 *4 (-1085)) (-14 *5 *2))) (-3588 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-3 (|:| |%expansion| (-288 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068)))))) (-5 *1 (-395 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1106) (-405 *5))) (-14 *6 (-1085)) (-14 *7 *3)))) -(-10 -7 (-15 -3588 ((-3 (|:| |%expansion| (-288 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068))))) |#2| (-108))) (-15 -3062 (|#2| |#2|))) -((-3810 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-396 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3810 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-971) (-784)) (-405 |#1|) (-13 (-971) (-784)) (-405 |#3|)) (T -396)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-971) (-784))) (-4 *6 (-13 (-971) (-784))) (-4 *2 (-405 *6)) (-5 *1 (-396 *5 *4 *6 *2)) (-4 *4 (-405 *5))))) -(-10 -7 (-15 -3810 (|#4| (-1 |#3| |#1|) |#2|))) -((-3062 ((|#2| |#2|) 88)) (-1909 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068))))) |#2| (-108) (-1068)) 46)) (-1200 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068))))) |#2| (-108) (-1068)) 153))) -(((-397 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1909 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068))))) |#2| (-108) (-1068))) (-15 -1200 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068))))) |#2| (-108) (-1068))) (-15 -3062 (|#2| |#2|))) (-13 (-426) (-784) (-962 (-522)) (-584 (-522))) (-13 (-27) (-1106) (-405 |#1|) (-10 -8 (-15 -2217 ($ |#3|)))) (-782) (-13 (-1144 |#2| |#3|) (-338) (-1106) (-10 -8 (-15 -2731 ($ $)) (-15 -2611 ($ $)))) (-910 |#4|) (-1085)) (T -397)) -((-3062 (*1 *2 *2) (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-4 *2 (-13 (-27) (-1106) (-405 *3) (-10 -8 (-15 -2217 ($ *4))))) (-4 *4 (-782)) (-4 *5 (-13 (-1144 *2 *4) (-338) (-1106) (-10 -8 (-15 -2731 ($ $)) (-15 -2611 ($ $))))) (-5 *1 (-397 *3 *2 *4 *5 *6 *7)) (-4 *6 (-910 *5)) (-14 *7 (-1085)))) (-1200 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-4 *3 (-13 (-27) (-1106) (-405 *6) (-10 -8 (-15 -2217 ($ *7))))) (-4 *7 (-782)) (-4 *8 (-13 (-1144 *3 *7) (-338) (-1106) (-10 -8 (-15 -2731 ($ $)) (-15 -2611 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068)))))) (-5 *1 (-397 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1068)) (-4 *9 (-910 *8)) (-14 *10 (-1085)))) (-1909 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-4 *3 (-13 (-27) (-1106) (-405 *6) (-10 -8 (-15 -2217 ($ *7))))) (-4 *7 (-782)) (-4 *8 (-13 (-1144 *3 *7) (-338) (-1106) (-10 -8 (-15 -2731 ($ $)) (-15 -2611 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068)))))) (-5 *1 (-397 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1068)) (-4 *9 (-910 *8)) (-14 *10 (-1085))))) -(-10 -7 (-15 -1909 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068))))) |#2| (-108) (-1068))) (-15 -1200 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068))))) |#2| (-108) (-1068))) (-15 -3062 (|#2| |#2|))) -((-3639 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2153 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3810 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-398 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3810 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2153 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3639 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1014) (-400 |#1|) (-1014) (-400 |#3|)) (T -398)) -((-3639 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1014)) (-4 *5 (-1014)) (-4 *2 (-400 *5)) (-5 *1 (-398 *6 *4 *5 *2)) (-4 *4 (-400 *6)))) (-2153 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1014)) (-4 *2 (-1014)) (-5 *1 (-398 *5 *4 *2 *6)) (-4 *4 (-400 *5)) (-4 *6 (-400 *2)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-400 *6)) (-5 *1 (-398 *5 *4 *6 *2)) (-4 *4 (-400 *5))))) -(-10 -7 (-15 -3810 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2153 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3639 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-3641 (($) 44)) (-2323 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-4099 (($ $ $) 39)) (-1751 (((-108) $ $) 28)) (-1685 (((-708)) 47)) (-1852 (($ (-588 |#2|)) 20) (($) NIL)) (-3344 (($) 53)) (-1308 ((|#2| $) 61)) (-2524 ((|#2| $) 59)) (-1475 (((-850) $) 55)) (-2251 (($ $ $) 35)) (-2882 (($ (-850)) 50)) (-3962 (($ $ |#2|) NIL) (($ $ $) 38)) (-4187 (((-708) (-1 (-108) |#2|) $) NIL) (((-708) |#2| $) 26)) (-2227 (($ (-588 |#2|)) 24)) (-3201 (($ $) 46)) (-2217 (((-792) $) 33)) (-2847 (((-708) $) 21)) (-3482 (($ (-588 |#2|)) 19) (($) NIL)) (-1562 (((-108) $ $) 16)) (-1587 (((-108) $ $) 13))) -(((-399 |#1| |#2|) (-10 -8 (-15 -1685 ((-708))) (-15 -2882 (|#1| (-850))) (-15 -1475 ((-850) |#1|)) (-15 -3344 (|#1|)) (-15 -1308 (|#2| |#1|)) (-15 -2524 (|#2| |#1|)) (-15 -3641 (|#1|)) (-15 -3201 (|#1| |#1|)) (-15 -2847 ((-708) |#1|)) (-15 -1562 ((-108) |#1| |#1|)) (-15 -2217 ((-792) |#1|)) (-15 -1587 ((-108) |#1| |#1|)) (-15 -3482 (|#1|)) (-15 -3482 (|#1| (-588 |#2|))) (-15 -1852 (|#1|)) (-15 -1852 (|#1| (-588 |#2|))) (-15 -2251 (|#1| |#1| |#1|)) (-15 -3962 (|#1| |#1| |#1|)) (-15 -3962 (|#1| |#1| |#2|)) (-15 -4099 (|#1| |#1| |#1|)) (-15 -1751 ((-108) |#1| |#1|)) (-15 -2323 (|#1| |#1| |#1|)) (-15 -2323 (|#1| |#1| |#2|)) (-15 -2323 (|#1| |#2| |#1|)) (-15 -2227 (|#1| (-588 |#2|))) (-15 -4187 ((-708) |#2| |#1|)) (-15 -4187 ((-708) (-1 (-108) |#2|) |#1|))) (-400 |#2|) (-1014)) (T -399)) -((-1685 (*1 *2) (-12 (-4 *4 (-1014)) (-5 *2 (-708)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4))))) -(-10 -8 (-15 -1685 ((-708))) (-15 -2882 (|#1| (-850))) (-15 -1475 ((-850) |#1|)) (-15 -3344 (|#1|)) (-15 -1308 (|#2| |#1|)) (-15 -2524 (|#2| |#1|)) (-15 -3641 (|#1|)) (-15 -3201 (|#1| |#1|)) (-15 -2847 ((-708) |#1|)) (-15 -1562 ((-108) |#1| |#1|)) (-15 -2217 ((-792) |#1|)) (-15 -1587 ((-108) |#1| |#1|)) (-15 -3482 (|#1|)) (-15 -3482 (|#1| (-588 |#2|))) (-15 -1852 (|#1|)) (-15 -1852 (|#1| (-588 |#2|))) (-15 -2251 (|#1| |#1| |#1|)) (-15 -3962 (|#1| |#1| |#1|)) (-15 -3962 (|#1| |#1| |#2|)) (-15 -4099 (|#1| |#1| |#1|)) (-15 -1751 ((-108) |#1| |#1|)) (-15 -2323 (|#1| |#1| |#1|)) (-15 -2323 (|#1| |#1| |#2|)) (-15 -2323 (|#1| |#2| |#1|)) (-15 -2227 (|#1| (-588 |#2|))) (-15 -4187 ((-708) |#2| |#1|)) (-15 -4187 ((-708) (-1 (-108) |#2|) |#1|))) -((-1419 (((-108) $ $) 19)) (-3641 (($) 67 (|has| |#1| (-343)))) (-2323 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-4099 (($ $ $) 78)) (-1751 (((-108) $ $) 79)) (-2717 (((-108) $ (-708)) 8)) (-1685 (((-708)) 61 (|has| |#1| (-343)))) (-1852 (($ (-588 |#1|)) 74) (($) 73)) (-1213 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4238)))) (-3367 (($) 7 T CONST)) (-2379 (($ $) 58 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1700 (($ |#1| $) 47 (|has| $ (-6 -4238))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4238)))) (-1424 (($ |#1| $) 57 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4238)))) (-3344 (($) 64 (|has| |#1| (-343)))) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) 9)) (-1308 ((|#1| $) 65 (|has| |#1| (-784)))) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2524 ((|#1| $) 66 (|has| |#1| (-784)))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35)) (-1475 (((-850) $) 63 (|has| |#1| (-343)))) (-3309 (((-108) $ (-708)) 10)) (-2311 (((-1068) $) 22)) (-2251 (($ $ $) 75)) (-1431 ((|#1| $) 39)) (-3365 (($ |#1| $) 40)) (-2882 (($ (-850)) 62 (|has| |#1| (-343)))) (-4174 (((-1032) $) 21)) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3295 ((|#1| $) 41)) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-3962 (($ $ |#1|) 77) (($ $ $) 76)) (-3546 (($) 49) (($ (-588 |#1|)) 48)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-3873 (((-498) $) 59 (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) 50)) (-3201 (($ $) 68 (|has| |#1| (-343)))) (-2217 (((-792) $) 18)) (-2847 (((-708) $) 69)) (-3482 (($ (-588 |#1|)) 72) (($) 71)) (-2501 (($ (-588 |#1|)) 42)) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20)) (-1587 (((-108) $ $) 70)) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-400 |#1|) (-1197) (-1014)) (T -400)) -((-2847 (*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-1014)) (-5 *2 (-708)))) (-3201 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-1014)) (-4 *2 (-343)))) (-3641 (*1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-343)) (-4 *2 (-1014)))) (-2524 (*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-1014)) (-4 *2 (-784)))) (-1308 (*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-1014)) (-4 *2 (-784))))) -(-13 (-206 |t#1|) (-1012 |t#1|) (-10 -8 (-6 -4238) (-15 -2847 ((-708) $)) (IF (|has| |t#1| (-343)) (PROGN (-6 (-343)) (-15 -3201 ($ $)) (-15 -3641 ($))) |%noBranch|) (IF (|has| |t#1| (-784)) (PROGN (-15 -2524 (|t#1| $)) (-15 -1308 (|t#1| $))) |%noBranch|))) -(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-562 (-792)) . T) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-206 |#1|) . T) ((-212 |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-343) |has| |#1| (-343)) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1012 |#1|) . T) ((-1014) . T) ((-1120) . T)) -((-1996 (((-539 |#2|) |#2| (-1085)) 35)) (-2919 (((-539 |#2|) |#2| (-1085)) 19)) (-3746 ((|#2| |#2| (-1085)) 24))) -(((-401 |#1| |#2|) (-10 -7 (-15 -2919 ((-539 |#2|) |#2| (-1085))) (-15 -1996 ((-539 |#2|) |#2| (-1085))) (-15 -3746 (|#2| |#2| (-1085)))) (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))) (-13 (-1106) (-29 |#1|))) (T -401)) -((-3746 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *1 (-401 *4 *2)) (-4 *2 (-13 (-1106) (-29 *4))))) (-1996 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-539 *3)) (-5 *1 (-401 *5 *3)) (-4 *3 (-13 (-1106) (-29 *5))))) (-2919 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-539 *3)) (-5 *1 (-401 *5 *3)) (-4 *3 (-13 (-1106) (-29 *5)))))) -(-10 -7 (-15 -2919 ((-539 |#2|) |#2| (-1085))) (-15 -1996 ((-539 |#2|) |#2| (-1085))) (-15 -3746 (|#2| |#2| (-1085)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3920 (((-3 $ "failed") $) NIL)) (-2859 (((-108) $) NIL)) (-1987 (($ |#2| |#1|) 35)) (-1306 (($ |#2| |#1|) 33)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL) (($ (-306 |#2|)) 25)) (-2742 (((-708)) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 10 T CONST)) (-3709 (($) 16 T CONST)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) 34)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-402 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4225)) (IF (|has| |#1| (-6 -4225)) (-6 -4225) |%noBranch|) |%noBranch|) (-15 -2217 ($ |#1|)) (-15 -2217 ($ (-306 |#2|))) (-15 -1987 ($ |#2| |#1|)) (-15 -1306 ($ |#2| |#1|)))) (-13 (-157) (-37 (-382 (-522)))) (-13 (-784) (-21))) (T -402)) -((-2217 (*1 *1 *2) (-12 (-5 *1 (-402 *2 *3)) (-4 *2 (-13 (-157) (-37 (-382 (-522))))) (-4 *3 (-13 (-784) (-21))))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-306 *4)) (-4 *4 (-13 (-784) (-21))) (-5 *1 (-402 *3 *4)) (-4 *3 (-13 (-157) (-37 (-382 (-522))))))) (-1987 (*1 *1 *2 *3) (-12 (-5 *1 (-402 *3 *2)) (-4 *3 (-13 (-157) (-37 (-382 (-522))))) (-4 *2 (-13 (-784) (-21))))) (-1306 (*1 *1 *2 *3) (-12 (-5 *1 (-402 *3 *2)) (-4 *3 (-13 (-157) (-37 (-382 (-522))))) (-4 *2 (-13 (-784) (-21)))))) -(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4225)) (IF (|has| |#1| (-6 -4225)) (-6 -4225) |%noBranch|) |%noBranch|) (-15 -2217 ($ |#1|)) (-15 -2217 ($ (-306 |#2|))) (-15 -1987 ($ |#2| |#1|)) (-15 -1306 ($ |#2| |#1|)))) -((-2611 (((-3 |#2| (-588 |#2|)) |#2| (-1085)) 105))) -(((-403 |#1| |#2|) (-10 -7 (-15 -2611 ((-3 |#2| (-588 |#2|)) |#2| (-1085)))) (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))) (-13 (-1106) (-887) (-29 |#1|))) (T -403)) -((-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-3 *3 (-588 *3))) (-5 *1 (-403 *5 *3)) (-4 *3 (-13 (-1106) (-887) (-29 *5)))))) -(-10 -7 (-15 -2611 ((-3 |#2| (-588 |#2|)) |#2| (-1085)))) -((-3533 (((-588 (-1085)) $) 72)) (-1264 (((-382 (-1081 $)) $ (-561 $)) 269)) (-1847 (($ $ (-270 $)) NIL) (($ $ (-588 (-270 $))) NIL) (($ $ (-588 (-561 $)) (-588 $)) 234)) (-3700 (((-3 (-561 $) "failed") $) NIL) (((-3 (-1085) "failed") $) 75) (((-3 (-522) "failed") $) NIL) (((-3 |#2| "failed") $) 230) (((-3 (-382 (-881 |#2|)) "failed") $) 320) (((-3 (-881 |#2|) "failed") $) 232) (((-3 (-382 (-522)) "failed") $) NIL)) (-1478 (((-561 $) $) NIL) (((-1085) $) 30) (((-522) $) NIL) ((|#2| $) 228) (((-382 (-881 |#2|)) $) 301) (((-881 |#2|) $) 229) (((-382 (-522)) $) NIL)) (-1771 (((-110) (-110)) 47)) (-1558 (($ $) 87)) (-3562 (((-3 (-561 $) "failed") $) 225)) (-1249 (((-588 (-561 $)) $) 226)) (-2760 (((-3 (-588 $) "failed") $) 244)) (-3242 (((-3 (-2 (|:| |val| $) (|:| -3858 (-522))) "failed") $) 251)) (-1919 (((-3 (-588 $) "failed") $) 242)) (-2367 (((-3 (-2 (|:| -3112 (-522)) (|:| |var| (-561 $))) "failed") $) 260)) (-2024 (((-3 (-2 (|:| |var| (-561 $)) (|:| -3858 (-522))) "failed") $) 248) (((-3 (-2 (|:| |var| (-561 $)) (|:| -3858 (-522))) "failed") $ (-110)) 215) (((-3 (-2 (|:| |var| (-561 $)) (|:| -3858 (-522))) "failed") $ (-1085)) 217)) (-3199 (((-108) $) 19)) (-3207 ((|#2| $) 21)) (-2330 (($ $ (-561 $) $) NIL) (($ $ (-588 (-561 $)) (-588 $)) 233) (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ $))) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ (-588 $)))) 96) (($ $ (-1085) (-1 $ (-588 $))) NIL) (($ $ (-1085) (-1 $ $)) NIL) (($ $ (-588 (-110)) (-588 (-1 $ $))) NIL) (($ $ (-588 (-110)) (-588 (-1 $ (-588 $)))) NIL) (($ $ (-110) (-1 $ (-588 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1085)) 57) (($ $ (-588 (-1085))) 237) (($ $) 238) (($ $ (-110) $ (-1085)) 60) (($ $ (-588 (-110)) (-588 $) (-1085)) 67) (($ $ (-588 (-1085)) (-588 (-708)) (-588 (-1 $ $))) 107) (($ $ (-588 (-1085)) (-588 (-708)) (-588 (-1 $ (-588 $)))) 239) (($ $ (-1085) (-708) (-1 $ (-588 $))) 94) (($ $ (-1085) (-708) (-1 $ $)) 93)) (-2683 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-588 $)) 106)) (-2731 (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085)) 235)) (-2762 (($ $) 280)) (-3873 (((-821 (-522)) $) 254) (((-821 (-354)) $) 257) (($ (-393 $)) 316) (((-498) $) NIL)) (-2217 (((-792) $) 236) (($ (-561 $)) 84) (($ (-1085)) 26) (($ |#2|) NIL) (($ (-1037 |#2| (-561 $))) NIL) (($ (-382 |#2|)) 285) (($ (-881 (-382 |#2|))) 325) (($ (-382 (-881 (-382 |#2|)))) 297) (($ (-382 (-881 |#2|))) 291) (($ $) NIL) (($ (-881 |#2|)) 184) (($ (-382 (-522))) 330) (($ (-522)) NIL)) (-2742 (((-708)) 79)) (-4082 (((-108) (-110)) 41)) (-1899 (($ (-1085) $) 33) (($ (-1085) $ $) 34) (($ (-1085) $ $ $) 35) (($ (-1085) $ $ $ $) 36) (($ (-1085) (-588 $)) 39)) (* (($ (-382 (-522)) $) NIL) (($ $ (-382 (-522))) NIL) (($ |#2| $) 262) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-522) $) NIL) (($ (-708) $) NIL) (($ (-850) $) NIL))) -(((-404 |#1| |#2|) (-10 -8 (-15 * (|#1| (-850) |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2742 ((-708))) (-15 -2217 (|#1| (-522))) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -3873 ((-498) |#1|)) (-15 -1478 ((-881 |#2|) |#1|)) (-15 -3700 ((-3 (-881 |#2|) "failed") |#1|)) (-15 -2217 (|#1| (-881 |#2|))) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2217 (|#1| |#1|)) (-15 * (|#1| |#1| (-382 (-522)))) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 -1478 ((-382 (-881 |#2|)) |#1|)) (-15 -3700 ((-3 (-382 (-881 |#2|)) "failed") |#1|)) (-15 -2217 (|#1| (-382 (-881 |#2|)))) (-15 -1264 ((-382 (-1081 |#1|)) |#1| (-561 |#1|))) (-15 -2217 (|#1| (-382 (-881 (-382 |#2|))))) (-15 -2217 (|#1| (-881 (-382 |#2|)))) (-15 -2217 (|#1| (-382 |#2|))) (-15 -2762 (|#1| |#1|)) (-15 -3873 (|#1| (-393 |#1|))) (-15 -2330 (|#1| |#1| (-1085) (-708) (-1 |#1| |#1|))) (-15 -2330 (|#1| |#1| (-1085) (-708) (-1 |#1| (-588 |#1|)))) (-15 -2330 (|#1| |#1| (-588 (-1085)) (-588 (-708)) (-588 (-1 |#1| (-588 |#1|))))) (-15 -2330 (|#1| |#1| (-588 (-1085)) (-588 (-708)) (-588 (-1 |#1| |#1|)))) (-15 -3242 ((-3 (-2 (|:| |val| |#1|) (|:| -3858 (-522))) "failed") |#1|)) (-15 -2024 ((-3 (-2 (|:| |var| (-561 |#1|)) (|:| -3858 (-522))) "failed") |#1| (-1085))) (-15 -2024 ((-3 (-2 (|:| |var| (-561 |#1|)) (|:| -3858 (-522))) "failed") |#1| (-110))) (-15 -1558 (|#1| |#1|)) (-15 -2217 (|#1| (-1037 |#2| (-561 |#1|)))) (-15 -2367 ((-3 (-2 (|:| -3112 (-522)) (|:| |var| (-561 |#1|))) "failed") |#1|)) (-15 -1919 ((-3 (-588 |#1|) "failed") |#1|)) (-15 -2024 ((-3 (-2 (|:| |var| (-561 |#1|)) (|:| -3858 (-522))) "failed") |#1|)) (-15 -2760 ((-3 (-588 |#1|) "failed") |#1|)) (-15 -2330 (|#1| |#1| (-588 (-110)) (-588 |#1|) (-1085))) (-15 -2330 (|#1| |#1| (-110) |#1| (-1085))) (-15 -2330 (|#1| |#1|)) (-15 -2330 (|#1| |#1| (-588 (-1085)))) (-15 -2330 (|#1| |#1| (-1085))) (-15 -1899 (|#1| (-1085) (-588 |#1|))) (-15 -1899 (|#1| (-1085) |#1| |#1| |#1| |#1|)) (-15 -1899 (|#1| (-1085) |#1| |#1| |#1|)) (-15 -1899 (|#1| (-1085) |#1| |#1|)) (-15 -1899 (|#1| (-1085) |#1|)) (-15 -3533 ((-588 (-1085)) |#1|)) (-15 -3207 (|#2| |#1|)) (-15 -3199 ((-108) |#1|)) (-15 -1478 (|#2| |#1|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-522) |#1|)) (-15 -3873 ((-821 (-354)) |#1|)) (-15 -3873 ((-821 (-522)) |#1|)) (-15 -1478 ((-1085) |#1|)) (-15 -3700 ((-3 (-1085) "failed") |#1|)) (-15 -2217 (|#1| (-1085))) (-15 -2330 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2330 (|#1| |#1| (-110) (-1 |#1| (-588 |#1|)))) (-15 -2330 (|#1| |#1| (-588 (-110)) (-588 (-1 |#1| (-588 |#1|))))) (-15 -2330 (|#1| |#1| (-588 (-110)) (-588 (-1 |#1| |#1|)))) (-15 -2330 (|#1| |#1| (-1085) (-1 |#1| |#1|))) (-15 -2330 (|#1| |#1| (-1085) (-1 |#1| (-588 |#1|)))) (-15 -2330 (|#1| |#1| (-588 (-1085)) (-588 (-1 |#1| (-588 |#1|))))) (-15 -2330 (|#1| |#1| (-588 (-1085)) (-588 (-1 |#1| |#1|)))) (-15 -4082 ((-108) (-110))) (-15 -1771 ((-110) (-110))) (-15 -1249 ((-588 (-561 |#1|)) |#1|)) (-15 -3562 ((-3 (-561 |#1|) "failed") |#1|)) (-15 -1847 (|#1| |#1| (-588 (-561 |#1|)) (-588 |#1|))) (-15 -1847 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -1847 (|#1| |#1| (-270 |#1|))) (-15 -2683 (|#1| (-110) (-588 |#1|))) (-15 -2683 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2683 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2683 (|#1| (-110) |#1| |#1|)) (-15 -2683 (|#1| (-110) |#1|)) (-15 -2330 (|#1| |#1| (-588 |#1|) (-588 |#1|))) (-15 -2330 (|#1| |#1| |#1| |#1|)) (-15 -2330 (|#1| |#1| (-270 |#1|))) (-15 -2330 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -2330 (|#1| |#1| (-588 (-561 |#1|)) (-588 |#1|))) (-15 -2330 (|#1| |#1| (-561 |#1|) |#1|)) (-15 -1478 ((-561 |#1|) |#1|)) (-15 -3700 ((-3 (-561 |#1|) "failed") |#1|)) (-15 -2217 (|#1| (-561 |#1|))) (-15 -2217 ((-792) |#1|))) (-405 |#2|) (-784)) (T -404)) -((-1771 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *4 (-784)) (-5 *1 (-404 *3 *4)) (-4 *3 (-405 *4)))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-404 *4 *5)) (-4 *4 (-405 *5)))) (-2742 (*1 *2) (-12 (-4 *4 (-784)) (-5 *2 (-708)) (-5 *1 (-404 *3 *4)) (-4 *3 (-405 *4))))) -(-10 -8 (-15 * (|#1| (-850) |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2742 ((-708))) (-15 -2217 (|#1| (-522))) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -3873 ((-498) |#1|)) (-15 -1478 ((-881 |#2|) |#1|)) (-15 -3700 ((-3 (-881 |#2|) "failed") |#1|)) (-15 -2217 (|#1| (-881 |#2|))) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2217 (|#1| |#1|)) (-15 * (|#1| |#1| (-382 (-522)))) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 -1478 ((-382 (-881 |#2|)) |#1|)) (-15 -3700 ((-3 (-382 (-881 |#2|)) "failed") |#1|)) (-15 -2217 (|#1| (-382 (-881 |#2|)))) (-15 -1264 ((-382 (-1081 |#1|)) |#1| (-561 |#1|))) (-15 -2217 (|#1| (-382 (-881 (-382 |#2|))))) (-15 -2217 (|#1| (-881 (-382 |#2|)))) (-15 -2217 (|#1| (-382 |#2|))) (-15 -2762 (|#1| |#1|)) (-15 -3873 (|#1| (-393 |#1|))) (-15 -2330 (|#1| |#1| (-1085) (-708) (-1 |#1| |#1|))) (-15 -2330 (|#1| |#1| (-1085) (-708) (-1 |#1| (-588 |#1|)))) (-15 -2330 (|#1| |#1| (-588 (-1085)) (-588 (-708)) (-588 (-1 |#1| (-588 |#1|))))) (-15 -2330 (|#1| |#1| (-588 (-1085)) (-588 (-708)) (-588 (-1 |#1| |#1|)))) (-15 -3242 ((-3 (-2 (|:| |val| |#1|) (|:| -3858 (-522))) "failed") |#1|)) (-15 -2024 ((-3 (-2 (|:| |var| (-561 |#1|)) (|:| -3858 (-522))) "failed") |#1| (-1085))) (-15 -2024 ((-3 (-2 (|:| |var| (-561 |#1|)) (|:| -3858 (-522))) "failed") |#1| (-110))) (-15 -1558 (|#1| |#1|)) (-15 -2217 (|#1| (-1037 |#2| (-561 |#1|)))) (-15 -2367 ((-3 (-2 (|:| -3112 (-522)) (|:| |var| (-561 |#1|))) "failed") |#1|)) (-15 -1919 ((-3 (-588 |#1|) "failed") |#1|)) (-15 -2024 ((-3 (-2 (|:| |var| (-561 |#1|)) (|:| -3858 (-522))) "failed") |#1|)) (-15 -2760 ((-3 (-588 |#1|) "failed") |#1|)) (-15 -2330 (|#1| |#1| (-588 (-110)) (-588 |#1|) (-1085))) (-15 -2330 (|#1| |#1| (-110) |#1| (-1085))) (-15 -2330 (|#1| |#1|)) (-15 -2330 (|#1| |#1| (-588 (-1085)))) (-15 -2330 (|#1| |#1| (-1085))) (-15 -1899 (|#1| (-1085) (-588 |#1|))) (-15 -1899 (|#1| (-1085) |#1| |#1| |#1| |#1|)) (-15 -1899 (|#1| (-1085) |#1| |#1| |#1|)) (-15 -1899 (|#1| (-1085) |#1| |#1|)) (-15 -1899 (|#1| (-1085) |#1|)) (-15 -3533 ((-588 (-1085)) |#1|)) (-15 -3207 (|#2| |#1|)) (-15 -3199 ((-108) |#1|)) (-15 -1478 (|#2| |#1|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-522) |#1|)) (-15 -3873 ((-821 (-354)) |#1|)) (-15 -3873 ((-821 (-522)) |#1|)) (-15 -1478 ((-1085) |#1|)) (-15 -3700 ((-3 (-1085) "failed") |#1|)) (-15 -2217 (|#1| (-1085))) (-15 -2330 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2330 (|#1| |#1| (-110) (-1 |#1| (-588 |#1|)))) (-15 -2330 (|#1| |#1| (-588 (-110)) (-588 (-1 |#1| (-588 |#1|))))) (-15 -2330 (|#1| |#1| (-588 (-110)) (-588 (-1 |#1| |#1|)))) (-15 -2330 (|#1| |#1| (-1085) (-1 |#1| |#1|))) (-15 -2330 (|#1| |#1| (-1085) (-1 |#1| (-588 |#1|)))) (-15 -2330 (|#1| |#1| (-588 (-1085)) (-588 (-1 |#1| (-588 |#1|))))) (-15 -2330 (|#1| |#1| (-588 (-1085)) (-588 (-1 |#1| |#1|)))) (-15 -4082 ((-108) (-110))) (-15 -1771 ((-110) (-110))) (-15 -1249 ((-588 (-561 |#1|)) |#1|)) (-15 -3562 ((-3 (-561 |#1|) "failed") |#1|)) (-15 -1847 (|#1| |#1| (-588 (-561 |#1|)) (-588 |#1|))) (-15 -1847 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -1847 (|#1| |#1| (-270 |#1|))) (-15 -2683 (|#1| (-110) (-588 |#1|))) (-15 -2683 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2683 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2683 (|#1| (-110) |#1| |#1|)) (-15 -2683 (|#1| (-110) |#1|)) (-15 -2330 (|#1| |#1| (-588 |#1|) (-588 |#1|))) (-15 -2330 (|#1| |#1| |#1| |#1|)) (-15 -2330 (|#1| |#1| (-270 |#1|))) (-15 -2330 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -2330 (|#1| |#1| (-588 (-561 |#1|)) (-588 |#1|))) (-15 -2330 (|#1| |#1| (-561 |#1|) |#1|)) (-15 -1478 ((-561 |#1|) |#1|)) (-15 -3700 ((-3 (-561 |#1|) "failed") |#1|)) (-15 -2217 (|#1| (-561 |#1|))) (-15 -2217 ((-792) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 116 (|has| |#1| (-25)))) (-3533 (((-588 (-1085)) $) 203)) (-1264 (((-382 (-1081 $)) $ (-561 $)) 171 (|has| |#1| (-514)))) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 143 (|has| |#1| (-514)))) (-2298 (($ $) 144 (|has| |#1| (-514)))) (-3007 (((-108) $) 146 (|has| |#1| (-514)))) (-1974 (((-588 (-561 $)) $) 44)) (-2265 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-1847 (($ $ (-270 $)) 56) (($ $ (-588 (-270 $))) 55) (($ $ (-588 (-561 $)) (-588 $)) 54)) (-2961 (($ $) 163 (|has| |#1| (-514)))) (-3133 (((-393 $) $) 164 (|has| |#1| (-514)))) (-2805 (((-108) $ $) 154 (|has| |#1| (-514)))) (-3367 (($) 102 (-3844 (|has| |#1| (-1026)) (|has| |#1| (-25))) CONST)) (-3700 (((-3 (-561 $) "failed") $) 69) (((-3 (-1085) "failed") $) 216) (((-3 (-522) "failed") $) 209 (|has| |#1| (-962 (-522)))) (((-3 |#1| "failed") $) 207) (((-3 (-382 (-881 |#1|)) "failed") $) 169 (|has| |#1| (-514))) (((-3 (-881 |#1|) "failed") $) 123 (|has| |#1| (-971))) (((-3 (-382 (-522)) "failed") $) 95 (-3844 (-12 (|has| |#1| (-962 (-522))) (|has| |#1| (-514))) (|has| |#1| (-962 (-382 (-522))))))) (-1478 (((-561 $) $) 68) (((-1085) $) 215) (((-522) $) 210 (|has| |#1| (-962 (-522)))) ((|#1| $) 206) (((-382 (-881 |#1|)) $) 168 (|has| |#1| (-514))) (((-881 |#1|) $) 122 (|has| |#1| (-971))) (((-382 (-522)) $) 94 (-3844 (-12 (|has| |#1| (-962 (-522))) (|has| |#1| (-514))) (|has| |#1| (-962 (-382 (-522))))))) (-2333 (($ $ $) 158 (|has| |#1| (-514)))) (-1226 (((-628 (-522)) (-628 $)) 137 (-4079 (|has| |#1| (-584 (-522))) (|has| |#1| (-971)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 136 (-4079 (|has| |#1| (-584 (-522))) (|has| |#1| (-971)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 135 (|has| |#1| (-971))) (((-628 |#1|) (-628 $)) 134 (|has| |#1| (-971)))) (-3920 (((-3 $ "failed") $) 105 (|has| |#1| (-1026)))) (-2303 (($ $ $) 157 (|has| |#1| (-514)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 152 (|has| |#1| (-514)))) (-2725 (((-108) $) 165 (|has| |#1| (-514)))) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 212 (|has| |#1| (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 211 (|has| |#1| (-815 (-354))))) (-2930 (($ $) 51) (($ (-588 $)) 50)) (-2896 (((-588 (-110)) $) 43)) (-1771 (((-110) (-110)) 42)) (-2859 (((-108) $) 103 (|has| |#1| (-1026)))) (-3077 (((-108) $) 22 (|has| $ (-962 (-522))))) (-1558 (($ $) 186 (|has| |#1| (-971)))) (-2947 (((-1037 |#1| (-561 $)) $) 187 (|has| |#1| (-971)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 161 (|has| |#1| (-514)))) (-4185 (((-1081 $) (-561 $)) 25 (|has| $ (-971)))) (-1308 (($ $ $) 13)) (-2524 (($ $ $) 14)) (-3810 (($ (-1 $ $) (-561 $)) 36)) (-3562 (((-3 (-561 $) "failed") $) 46)) (-2267 (($ (-588 $)) 150 (|has| |#1| (-514))) (($ $ $) 149 (|has| |#1| (-514)))) (-2311 (((-1068) $) 9)) (-1249 (((-588 (-561 $)) $) 45)) (-3043 (($ (-110) $) 38) (($ (-110) (-588 $)) 37)) (-2760 (((-3 (-588 $) "failed") $) 192 (|has| |#1| (-1026)))) (-3242 (((-3 (-2 (|:| |val| $) (|:| -3858 (-522))) "failed") $) 183 (|has| |#1| (-971)))) (-1919 (((-3 (-588 $) "failed") $) 190 (|has| |#1| (-25)))) (-2367 (((-3 (-2 (|:| -3112 (-522)) (|:| |var| (-561 $))) "failed") $) 189 (|has| |#1| (-25)))) (-2024 (((-3 (-2 (|:| |var| (-561 $)) (|:| -3858 (-522))) "failed") $) 191 (|has| |#1| (-1026))) (((-3 (-2 (|:| |var| (-561 $)) (|:| -3858 (-522))) "failed") $ (-110)) 185 (|has| |#1| (-971))) (((-3 (-2 (|:| |var| (-561 $)) (|:| -3858 (-522))) "failed") $ (-1085)) 184 (|has| |#1| (-971)))) (-2935 (((-108) $ (-110)) 40) (((-108) $ (-1085)) 39)) (-3193 (($ $) 107 (-3844 (|has| |#1| (-447)) (|has| |#1| (-514))))) (-4179 (((-708) $) 47)) (-4174 (((-1032) $) 10)) (-3199 (((-108) $) 205)) (-3207 ((|#1| $) 204)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 151 (|has| |#1| (-514)))) (-2308 (($ (-588 $)) 148 (|has| |#1| (-514))) (($ $ $) 147 (|has| |#1| (-514)))) (-2368 (((-108) $ $) 35) (((-108) $ (-1085)) 34)) (-2006 (((-393 $) $) 162 (|has| |#1| (-514)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-514))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 159 (|has| |#1| (-514)))) (-2276 (((-3 $ "failed") $ $) 142 (|has| |#1| (-514)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 153 (|has| |#1| (-514)))) (-2626 (((-108) $) 23 (|has| $ (-962 (-522))))) (-2330 (($ $ (-561 $) $) 67) (($ $ (-588 (-561 $)) (-588 $)) 66) (($ $ (-588 (-270 $))) 65) (($ $ (-270 $)) 64) (($ $ $ $) 63) (($ $ (-588 $) (-588 $)) 62) (($ $ (-588 (-1085)) (-588 (-1 $ $))) 33) (($ $ (-588 (-1085)) (-588 (-1 $ (-588 $)))) 32) (($ $ (-1085) (-1 $ (-588 $))) 31) (($ $ (-1085) (-1 $ $)) 30) (($ $ (-588 (-110)) (-588 (-1 $ $))) 29) (($ $ (-588 (-110)) (-588 (-1 $ (-588 $)))) 28) (($ $ (-110) (-1 $ (-588 $))) 27) (($ $ (-110) (-1 $ $)) 26) (($ $ (-1085)) 197 (|has| |#1| (-563 (-498)))) (($ $ (-588 (-1085))) 196 (|has| |#1| (-563 (-498)))) (($ $) 195 (|has| |#1| (-563 (-498)))) (($ $ (-110) $ (-1085)) 194 (|has| |#1| (-563 (-498)))) (($ $ (-588 (-110)) (-588 $) (-1085)) 193 (|has| |#1| (-563 (-498)))) (($ $ (-588 (-1085)) (-588 (-708)) (-588 (-1 $ $))) 182 (|has| |#1| (-971))) (($ $ (-588 (-1085)) (-588 (-708)) (-588 (-1 $ (-588 $)))) 181 (|has| |#1| (-971))) (($ $ (-1085) (-708) (-1 $ (-588 $))) 180 (|has| |#1| (-971))) (($ $ (-1085) (-708) (-1 $ $)) 179 (|has| |#1| (-971)))) (-4031 (((-708) $) 155 (|has| |#1| (-514)))) (-2683 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-588 $)) 57)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 156 (|has| |#1| (-514)))) (-3406 (($ $) 49) (($ $ $) 48)) (-2731 (($ $ (-588 (-1085)) (-588 (-708))) 128 (|has| |#1| (-971))) (($ $ (-1085) (-708)) 127 (|has| |#1| (-971))) (($ $ (-588 (-1085))) 126 (|has| |#1| (-971))) (($ $ (-1085)) 125 (|has| |#1| (-971)))) (-2762 (($ $) 176 (|has| |#1| (-514)))) (-2959 (((-1037 |#1| (-561 $)) $) 177 (|has| |#1| (-514)))) (-1579 (($ $) 24 (|has| $ (-971)))) (-3873 (((-821 (-522)) $) 214 (|has| |#1| (-563 (-821 (-522))))) (((-821 (-354)) $) 213 (|has| |#1| (-563 (-821 (-354))))) (($ (-393 $)) 178 (|has| |#1| (-514))) (((-498) $) 97 (|has| |#1| (-563 (-498))))) (-2983 (($ $ $) 111 (|has| |#1| (-447)))) (-1596 (($ $ $) 112 (|has| |#1| (-447)))) (-2217 (((-792) $) 11) (($ (-561 $)) 70) (($ (-1085)) 217) (($ |#1|) 208) (($ (-1037 |#1| (-561 $))) 188 (|has| |#1| (-971))) (($ (-382 |#1|)) 174 (|has| |#1| (-514))) (($ (-881 (-382 |#1|))) 173 (|has| |#1| (-514))) (($ (-382 (-881 (-382 |#1|)))) 172 (|has| |#1| (-514))) (($ (-382 (-881 |#1|))) 170 (|has| |#1| (-514))) (($ $) 141 (|has| |#1| (-514))) (($ (-881 |#1|)) 124 (|has| |#1| (-971))) (($ (-382 (-522))) 96 (-3844 (|has| |#1| (-514)) (-12 (|has| |#1| (-962 (-522))) (|has| |#1| (-514))) (|has| |#1| (-962 (-382 (-522)))))) (($ (-522)) 93 (-3844 (|has| |#1| (-971)) (|has| |#1| (-962 (-522)))))) (-3040 (((-3 $ "failed") $) 138 (|has| |#1| (-133)))) (-2742 (((-708)) 133 (|has| |#1| (-971)))) (-3811 (($ $) 53) (($ (-588 $)) 52)) (-4082 (((-108) (-110)) 41)) (-1407 (((-108) $ $) 145 (|has| |#1| (-514)))) (-1899 (($ (-1085) $) 202) (($ (-1085) $ $) 201) (($ (-1085) $ $ $) 200) (($ (-1085) $ $ $ $) 199) (($ (-1085) (-588 $)) 198)) (-3622 (($ $ (-522)) 110 (-3844 (|has| |#1| (-447)) (|has| |#1| (-514)))) (($ $ (-708)) 104 (|has| |#1| (-1026))) (($ $ (-850)) 100 (|has| |#1| (-1026)))) (-3697 (($) 115 (|has| |#1| (-25)) CONST)) (-3709 (($) 101 (|has| |#1| (-1026)) CONST)) (-2252 (($ $ (-588 (-1085)) (-588 (-708))) 132 (|has| |#1| (-971))) (($ $ (-1085) (-708)) 131 (|has| |#1| (-971))) (($ $ (-588 (-1085))) 130 (|has| |#1| (-971))) (($ $ (-1085)) 129 (|has| |#1| (-971)))) (-1623 (((-108) $ $) 16)) (-1597 (((-108) $ $) 17)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 15)) (-1587 (((-108) $ $) 18)) (-1682 (($ (-1037 |#1| (-561 $)) (-1037 |#1| (-561 $))) 175 (|has| |#1| (-514))) (($ $ $) 108 (-3844 (|has| |#1| (-447)) (|has| |#1| (-514))))) (-1672 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-1661 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-522)) 109 (-3844 (|has| |#1| (-447)) (|has| |#1| (-514)))) (($ $ (-708)) 106 (|has| |#1| (-1026))) (($ $ (-850)) 99 (|has| |#1| (-1026)))) (* (($ (-382 (-522)) $) 167 (|has| |#1| (-514))) (($ $ (-382 (-522))) 166 (|has| |#1| (-514))) (($ |#1| $) 140 (|has| |#1| (-157))) (($ $ |#1|) 139 (|has| |#1| (-157))) (($ (-522) $) 121 (|has| |#1| (-21))) (($ (-708) $) 117 (|has| |#1| (-25))) (($ (-850) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1026))))) -(((-405 |#1|) (-1197) (-784)) (T -405)) -((-3199 (*1 *2 *1) (-12 (-4 *1 (-405 *3)) (-4 *3 (-784)) (-5 *2 (-108)))) (-3207 (*1 *2 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-784)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-405 *3)) (-4 *3 (-784)) (-5 *2 (-588 (-1085))))) (-1899 (*1 *1 *2 *1) (-12 (-5 *2 (-1085)) (-4 *1 (-405 *3)) (-4 *3 (-784)))) (-1899 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1085)) (-4 *1 (-405 *3)) (-4 *3 (-784)))) (-1899 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1085)) (-4 *1 (-405 *3)) (-4 *3 (-784)))) (-1899 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1085)) (-4 *1 (-405 *3)) (-4 *3 (-784)))) (-1899 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-588 *1)) (-4 *1 (-405 *4)) (-4 *4 (-784)))) (-2330 (*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-4 *1 (-405 *3)) (-4 *3 (-784)) (-4 *3 (-563 (-498))))) (-2330 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-1085))) (-4 *1 (-405 *3)) (-4 *3 (-784)) (-4 *3 (-563 (-498))))) (-2330 (*1 *1 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-784)) (-4 *2 (-563 (-498))))) (-2330 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1085)) (-4 *1 (-405 *4)) (-4 *4 (-784)) (-4 *4 (-563 (-498))))) (-2330 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-588 (-110))) (-5 *3 (-588 *1)) (-5 *4 (-1085)) (-4 *1 (-405 *5)) (-4 *5 (-784)) (-4 *5 (-563 (-498))))) (-2760 (*1 *2 *1) (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-405 *3)))) (-2024 (*1 *2 *1) (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-784)) (-5 *2 (-2 (|:| |var| (-561 *1)) (|:| -3858 (-522)))) (-4 *1 (-405 *3)))) (-1919 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-405 *3)))) (-2367 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-784)) (-5 *2 (-2 (|:| -3112 (-522)) (|:| |var| (-561 *1)))) (-4 *1 (-405 *3)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1037 *3 (-561 *1))) (-4 *3 (-971)) (-4 *3 (-784)) (-4 *1 (-405 *3)))) (-2947 (*1 *2 *1) (-12 (-4 *3 (-971)) (-4 *3 (-784)) (-5 *2 (-1037 *3 (-561 *1))) (-4 *1 (-405 *3)))) (-1558 (*1 *1 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-784)) (-4 *2 (-971)))) (-2024 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-4 *4 (-971)) (-4 *4 (-784)) (-5 *2 (-2 (|:| |var| (-561 *1)) (|:| -3858 (-522)))) (-4 *1 (-405 *4)))) (-2024 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1085)) (-4 *4 (-971)) (-4 *4 (-784)) (-5 *2 (-2 (|:| |var| (-561 *1)) (|:| -3858 (-522)))) (-4 *1 (-405 *4)))) (-3242 (*1 *2 *1) (|partial| -12 (-4 *3 (-971)) (-4 *3 (-784)) (-5 *2 (-2 (|:| |val| *1) (|:| -3858 (-522)))) (-4 *1 (-405 *3)))) (-2330 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-588 (-708))) (-5 *4 (-588 (-1 *1 *1))) (-4 *1 (-405 *5)) (-4 *5 (-784)) (-4 *5 (-971)))) (-2330 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-588 (-708))) (-5 *4 (-588 (-1 *1 (-588 *1)))) (-4 *1 (-405 *5)) (-4 *5 (-784)) (-4 *5 (-971)))) (-2330 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1085)) (-5 *3 (-708)) (-5 *4 (-1 *1 (-588 *1))) (-4 *1 (-405 *5)) (-4 *5 (-784)) (-4 *5 (-971)))) (-2330 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1085)) (-5 *3 (-708)) (-5 *4 (-1 *1 *1)) (-4 *1 (-405 *5)) (-4 *5 (-784)) (-4 *5 (-971)))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-393 *1)) (-4 *1 (-405 *3)) (-4 *3 (-514)) (-4 *3 (-784)))) (-2959 (*1 *2 *1) (-12 (-4 *3 (-514)) (-4 *3 (-784)) (-5 *2 (-1037 *3 (-561 *1))) (-4 *1 (-405 *3)))) (-2762 (*1 *1 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-784)) (-4 *2 (-514)))) (-1682 (*1 *1 *2 *2) (-12 (-5 *2 (-1037 *3 (-561 *1))) (-4 *3 (-514)) (-4 *3 (-784)) (-4 *1 (-405 *3)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-382 *3)) (-4 *3 (-514)) (-4 *3 (-784)) (-4 *1 (-405 *3)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-881 (-382 *3))) (-4 *3 (-514)) (-4 *3 (-784)) (-4 *1 (-405 *3)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-382 (-881 (-382 *3)))) (-4 *3 (-514)) (-4 *3 (-784)) (-4 *1 (-405 *3)))) (-1264 (*1 *2 *1 *3) (-12 (-5 *3 (-561 *1)) (-4 *1 (-405 *4)) (-4 *4 (-784)) (-4 *4 (-514)) (-5 *2 (-382 (-1081 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-405 *3)) (-4 *3 (-784)) (-4 *3 (-1026))))) -(-13 (-278) (-962 (-1085)) (-813 |t#1|) (-375 |t#1|) (-386 |t#1|) (-10 -8 (-15 -3199 ((-108) $)) (-15 -3207 (|t#1| $)) (-15 -3533 ((-588 (-1085)) $)) (-15 -1899 ($ (-1085) $)) (-15 -1899 ($ (-1085) $ $)) (-15 -1899 ($ (-1085) $ $ $)) (-15 -1899 ($ (-1085) $ $ $ $)) (-15 -1899 ($ (-1085) (-588 $))) (IF (|has| |t#1| (-563 (-498))) (PROGN (-6 (-563 (-498))) (-15 -2330 ($ $ (-1085))) (-15 -2330 ($ $ (-588 (-1085)))) (-15 -2330 ($ $)) (-15 -2330 ($ $ (-110) $ (-1085))) (-15 -2330 ($ $ (-588 (-110)) (-588 $) (-1085)))) |%noBranch|) (IF (|has| |t#1| (-1026)) (PROGN (-6 (-664)) (-15 ** ($ $ (-708))) (-15 -2760 ((-3 (-588 $) "failed") $)) (-15 -2024 ((-3 (-2 (|:| |var| (-561 $)) (|:| -3858 (-522))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-447)) (-6 (-447)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1919 ((-3 (-588 $) "failed") $)) (-15 -2367 ((-3 (-2 (|:| -3112 (-522)) (|:| |var| (-561 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-971)) (PROGN (-6 (-971)) (-6 (-962 (-881 |t#1|))) (-6 (-829 (-1085))) (-6 (-352 |t#1|)) (-15 -2217 ($ (-1037 |t#1| (-561 $)))) (-15 -2947 ((-1037 |t#1| (-561 $)) $)) (-15 -1558 ($ $)) (-15 -2024 ((-3 (-2 (|:| |var| (-561 $)) (|:| -3858 (-522))) "failed") $ (-110))) (-15 -2024 ((-3 (-2 (|:| |var| (-561 $)) (|:| -3858 (-522))) "failed") $ (-1085))) (-15 -3242 ((-3 (-2 (|:| |val| $) (|:| -3858 (-522))) "failed") $)) (-15 -2330 ($ $ (-588 (-1085)) (-588 (-708)) (-588 (-1 $ $)))) (-15 -2330 ($ $ (-588 (-1085)) (-588 (-708)) (-588 (-1 $ (-588 $))))) (-15 -2330 ($ $ (-1085) (-708) (-1 $ (-588 $)))) (-15 -2330 ($ $ (-1085) (-708) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-514)) (PROGN (-6 (-338)) (-6 (-962 (-382 (-881 |t#1|)))) (-15 -3873 ($ (-393 $))) (-15 -2959 ((-1037 |t#1| (-561 $)) $)) (-15 -2762 ($ $)) (-15 -1682 ($ (-1037 |t#1| (-561 $)) (-1037 |t#1| (-561 $)))) (-15 -2217 ($ (-382 |t#1|))) (-15 -2217 ($ (-881 (-382 |t#1|)))) (-15 -2217 ($ (-382 (-881 (-382 |t#1|))))) (-15 -1264 ((-382 (-1081 $)) $ (-561 $))) (IF (|has| |t#1| (-962 (-522))) (-6 (-962 (-382 (-522)))) |%noBranch|)) |%noBranch|))) -(((-21) -3844 (|has| |#1| (-971)) (|has| |#1| (-514)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-21))) ((-23) -3844 (|has| |#1| (-971)) (|has| |#1| (-514)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3844 (|has| |#1| (-971)) (|has| |#1| (-514)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-382 (-522))) |has| |#1| (-514)) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-514)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-514)) ((-107 |#1| |#1|) |has| |#1| (-157)) ((-107 $ $) |has| |#1| (-514)) ((-124) -3844 (|has| |#1| (-971)) (|has| |#1| (-514)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-21))) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) |has| |#1| (-514)) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-563 (-821 (-354))) |has| |#1| (-563 (-821 (-354)))) ((-563 (-821 (-522))) |has| |#1| (-563 (-821 (-522)))) ((-220) |has| |#1| (-514)) ((-266) |has| |#1| (-514)) ((-283) |has| |#1| (-514)) ((-285 $) . T) ((-278) . T) ((-338) |has| |#1| (-514)) ((-352 |#1|) |has| |#1| (-971)) ((-375 |#1|) . T) ((-386 |#1|) . T) ((-426) |has| |#1| (-514)) ((-447) |has| |#1| (-447)) ((-483 (-561 $) $) . T) ((-483 $ $) . T) ((-514) |has| |#1| (-514)) ((-590 #0#) |has| |#1| (-514)) ((-590 |#1|) |has| |#1| (-157)) ((-590 $) -3844 (|has| |#1| (-971)) (|has| |#1| (-514)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-584 (-522)) -12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) ((-584 |#1|) |has| |#1| (-971)) ((-655 #0#) |has| |#1| (-514)) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) |has| |#1| (-514)) ((-664) -3844 (|has| |#1| (-1026)) (|has| |#1| (-971)) (|has| |#1| (-514)) (|has| |#1| (-447)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-784) . T) ((-829 (-1085)) |has| |#1| (-971)) ((-815 (-354)) |has| |#1| (-815 (-354))) ((-815 (-522)) |has| |#1| (-815 (-522))) ((-813 |#1|) . T) ((-849) |has| |#1| (-514)) ((-962 (-382 (-522))) -3844 (|has| |#1| (-962 (-382 (-522)))) (-12 (|has| |#1| (-514)) (|has| |#1| (-962 (-522))))) ((-962 (-382 (-881 |#1|))) |has| |#1| (-514)) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 (-561 $)) . T) ((-962 (-881 |#1|)) |has| |#1| (-971)) ((-962 (-1085)) . T) ((-962 |#1|) . T) ((-977 #0#) |has| |#1| (-514)) ((-977 |#1|) |has| |#1| (-157)) ((-977 $) |has| |#1| (-514)) ((-971) -3844 (|has| |#1| (-971)) (|has| |#1| (-514)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-978) -3844 (|has| |#1| (-971)) (|has| |#1| (-514)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-1026) -3844 (|has| |#1| (-1026)) (|has| |#1| (-971)) (|has| |#1| (-514)) (|has| |#1| (-447)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-1014) . T) ((-1120) . T) ((-1124) |has| |#1| (-514))) -((-3056 ((|#2| |#2| |#2|) 33)) (-1771 (((-110) (-110)) 44)) (-3210 ((|#2| |#2|) 66)) (-3171 ((|#2| |#2|) 69)) (-2852 ((|#2| |#2|) 32)) (-2248 ((|#2| |#2| |#2|) 35)) (-1551 ((|#2| |#2| |#2|) 37)) (-3047 ((|#2| |#2| |#2|) 34)) (-2039 ((|#2| |#2| |#2|) 36)) (-4082 (((-108) (-110)) 42)) (-3799 ((|#2| |#2|) 39)) (-2022 ((|#2| |#2|) 38)) (-4126 ((|#2| |#2|) 27)) (-2245 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-2288 ((|#2| |#2| |#2|) 31))) -(((-406 |#1| |#2|) (-10 -7 (-15 -4082 ((-108) (-110))) (-15 -1771 ((-110) (-110))) (-15 -4126 (|#2| |#2|)) (-15 -2245 (|#2| |#2|)) (-15 -2245 (|#2| |#2| |#2|)) (-15 -2288 (|#2| |#2| |#2|)) (-15 -2852 (|#2| |#2|)) (-15 -3056 (|#2| |#2| |#2|)) (-15 -3047 (|#2| |#2| |#2|)) (-15 -2248 (|#2| |#2| |#2|)) (-15 -2039 (|#2| |#2| |#2|)) (-15 -1551 (|#2| |#2| |#2|)) (-15 -2022 (|#2| |#2|)) (-15 -3799 (|#2| |#2|)) (-15 -3171 (|#2| |#2|)) (-15 -3210 (|#2| |#2|))) (-13 (-784) (-514)) (-405 |#1|)) (T -406)) -((-3210 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-3171 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-3799 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-2022 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-1551 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-2039 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-2248 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-3047 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-3056 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-2852 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-2288 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-2245 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-2245 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-4126 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-1771 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *4)) (-4 *4 (-405 *3)))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108)) (-5 *1 (-406 *4 *5)) (-4 *5 (-405 *4))))) -(-10 -7 (-15 -4082 ((-108) (-110))) (-15 -1771 ((-110) (-110))) (-15 -4126 (|#2| |#2|)) (-15 -2245 (|#2| |#2|)) (-15 -2245 (|#2| |#2| |#2|)) (-15 -2288 (|#2| |#2| |#2|)) (-15 -2852 (|#2| |#2|)) (-15 -3056 (|#2| |#2| |#2|)) (-15 -3047 (|#2| |#2| |#2|)) (-15 -2248 (|#2| |#2| |#2|)) (-15 -2039 (|#2| |#2| |#2|)) (-15 -1551 (|#2| |#2| |#2|)) (-15 -2022 (|#2| |#2|)) (-15 -3799 (|#2| |#2|)) (-15 -3171 (|#2| |#2|)) (-15 -3210 (|#2| |#2|))) -((-2160 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1081 |#2|)) (|:| |pol2| (-1081 |#2|)) (|:| |prim| (-1081 |#2|))) |#2| |#2|) 94 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-588 (-1081 |#2|))) (|:| |prim| (-1081 |#2|))) (-588 |#2|)) 58))) -(((-407 |#1| |#2|) (-10 -7 (-15 -2160 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-588 (-1081 |#2|))) (|:| |prim| (-1081 |#2|))) (-588 |#2|))) (IF (|has| |#2| (-27)) (-15 -2160 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1081 |#2|)) (|:| |pol2| (-1081 |#2|)) (|:| |prim| (-1081 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-514) (-784) (-135)) (-405 |#1|)) (T -407)) -((-2160 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-514) (-784) (-135))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1081 *3)) (|:| |pol2| (-1081 *3)) (|:| |prim| (-1081 *3)))) (-5 *1 (-407 *4 *3)) (-4 *3 (-27)) (-4 *3 (-405 *4)))) (-2160 (*1 *2 *3) (-12 (-5 *3 (-588 *5)) (-4 *5 (-405 *4)) (-4 *4 (-13 (-514) (-784) (-135))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-588 (-1081 *5))) (|:| |prim| (-1081 *5)))) (-5 *1 (-407 *4 *5))))) -(-10 -7 (-15 -2160 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-588 (-1081 |#2|))) (|:| |prim| (-1081 |#2|))) (-588 |#2|))) (IF (|has| |#2| (-27)) (-15 -2160 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1081 |#2|)) (|:| |pol2| (-1081 |#2|)) (|:| |prim| (-1081 |#2|))) |#2| |#2|)) |%noBranch|)) -((-2589 (((-1171)) 18)) (-1724 (((-1081 (-382 (-522))) |#2| (-561 |#2|)) 40) (((-382 (-522)) |#2|) 23))) -(((-408 |#1| |#2|) (-10 -7 (-15 -1724 ((-382 (-522)) |#2|)) (-15 -1724 ((-1081 (-382 (-522))) |#2| (-561 |#2|))) (-15 -2589 ((-1171)))) (-13 (-784) (-514) (-962 (-522))) (-405 |#1|)) (T -408)) -((-2589 (*1 *2) (-12 (-4 *3 (-13 (-784) (-514) (-962 (-522)))) (-5 *2 (-1171)) (-5 *1 (-408 *3 *4)) (-4 *4 (-405 *3)))) (-1724 (*1 *2 *3 *4) (-12 (-5 *4 (-561 *3)) (-4 *3 (-405 *5)) (-4 *5 (-13 (-784) (-514) (-962 (-522)))) (-5 *2 (-1081 (-382 (-522)))) (-5 *1 (-408 *5 *3)))) (-1724 (*1 *2 *3) (-12 (-4 *4 (-13 (-784) (-514) (-962 (-522)))) (-5 *2 (-382 (-522))) (-5 *1 (-408 *4 *3)) (-4 *3 (-405 *4))))) -(-10 -7 (-15 -1724 ((-382 (-522)) |#2|)) (-15 -1724 ((-1081 (-382 (-522))) |#2| (-561 |#2|))) (-15 -2589 ((-1171)))) -((-1408 (((-108) $) 28)) (-1695 (((-108) $) 30)) (-3871 (((-108) $) 31)) (-3396 (((-108) $) 34)) (-3923 (((-108) $) 29)) (-1491 (((-108) $) 33)) (-2217 (((-792) $) 18) (($ (-1068)) 27) (($ (-1085)) 23) (((-1085) $) 22) (((-1018) $) 21)) (-2097 (((-108) $) 32)) (-1562 (((-108) $ $) 15))) -(((-409) (-13 (-562 (-792)) (-10 -8 (-15 -2217 ($ (-1068))) (-15 -2217 ($ (-1085))) (-15 -2217 ((-1085) $)) (-15 -2217 ((-1018) $)) (-15 -1408 ((-108) $)) (-15 -3923 ((-108) $)) (-15 -3871 ((-108) $)) (-15 -1491 ((-108) $)) (-15 -3396 ((-108) $)) (-15 -2097 ((-108) $)) (-15 -1695 ((-108) $)) (-15 -1562 ((-108) $ $))))) (T -409)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-409)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-409)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-409)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-409)))) (-1408 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))) (-3923 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))) (-3396 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))) (-2097 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))) (-1695 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))) (-1562 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409))))) -(-13 (-562 (-792)) (-10 -8 (-15 -2217 ($ (-1068))) (-15 -2217 ($ (-1085))) (-15 -2217 ((-1085) $)) (-15 -2217 ((-1018) $)) (-15 -1408 ((-108) $)) (-15 -3923 ((-108) $)) (-15 -3871 ((-108) $)) (-15 -1491 ((-108) $)) (-15 -3396 ((-108) $)) (-15 -2097 ((-108) $)) (-15 -1695 ((-108) $)) (-15 -1562 ((-108) $ $)))) -((-1921 (((-3 (-393 (-1081 (-382 (-522)))) "failed") |#3|) 69)) (-2763 (((-393 |#3|) |#3|) 33)) (-2263 (((-3 (-393 (-1081 (-47))) "failed") |#3|) 27 (|has| |#2| (-962 (-47))))) (-3938 (((-3 (|:| |overq| (-1081 (-382 (-522)))) (|:| |overan| (-1081 (-47))) (|:| -3181 (-108))) |#3|) 35))) -(((-410 |#1| |#2| |#3|) (-10 -7 (-15 -2763 ((-393 |#3|) |#3|)) (-15 -1921 ((-3 (-393 (-1081 (-382 (-522)))) "failed") |#3|)) (-15 -3938 ((-3 (|:| |overq| (-1081 (-382 (-522)))) (|:| |overan| (-1081 (-47))) (|:| -3181 (-108))) |#3|)) (IF (|has| |#2| (-962 (-47))) (-15 -2263 ((-3 (-393 (-1081 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-514) (-784) (-962 (-522))) (-405 |#1|) (-1142 |#2|)) (T -410)) -((-2263 (*1 *2 *3) (|partial| -12 (-4 *5 (-962 (-47))) (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-4 *5 (-405 *4)) (-5 *2 (-393 (-1081 (-47)))) (-5 *1 (-410 *4 *5 *3)) (-4 *3 (-1142 *5)))) (-3938 (*1 *2 *3) (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-4 *5 (-405 *4)) (-5 *2 (-3 (|:| |overq| (-1081 (-382 (-522)))) (|:| |overan| (-1081 (-47))) (|:| -3181 (-108)))) (-5 *1 (-410 *4 *5 *3)) (-4 *3 (-1142 *5)))) (-1921 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-4 *5 (-405 *4)) (-5 *2 (-393 (-1081 (-382 (-522))))) (-5 *1 (-410 *4 *5 *3)) (-4 *3 (-1142 *5)))) (-2763 (*1 *2 *3) (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-4 *5 (-405 *4)) (-5 *2 (-393 *3)) (-5 *1 (-410 *4 *5 *3)) (-4 *3 (-1142 *5))))) -(-10 -7 (-15 -2763 ((-393 |#3|) |#3|)) (-15 -1921 ((-3 (-393 (-1081 (-382 (-522)))) "failed") |#3|)) (-15 -3938 ((-3 (|:| |overq| (-1081 (-382 (-522)))) (|:| |overan| (-1081 (-47))) (|:| -3181 (-108))) |#3|)) (IF (|has| |#2| (-962 (-47))) (-15 -2263 ((-3 (-393 (-1081 (-47))) "failed") |#3|)) |%noBranch|)) -((-1419 (((-108) $ $) NIL)) (-2710 (((-1068) $ (-1068)) NIL)) (-3813 (($ $ (-1068)) NIL)) (-2982 (((-1068) $) NIL)) (-4108 (((-363) (-363) (-363)) 17) (((-363) (-363)) 15)) (-1566 (($ (-363)) NIL) (($ (-363) (-1068)) NIL)) (-3015 (((-363) $) NIL)) (-2311 (((-1068) $) NIL)) (-3270 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-3524 (((-1171) (-1068)) 9)) (-1534 (((-1171) (-1068)) 10)) (-1725 (((-1171)) 11)) (-2217 (((-792) $) NIL)) (-3116 (($ $) 35)) (-1562 (((-108) $ $) NIL))) -(((-411) (-13 (-339 (-363) (-1068)) (-10 -7 (-15 -4108 ((-363) (-363) (-363))) (-15 -4108 ((-363) (-363))) (-15 -3524 ((-1171) (-1068))) (-15 -1534 ((-1171) (-1068))) (-15 -1725 ((-1171)))))) (T -411)) -((-4108 (*1 *2 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-411)))) (-4108 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-411)))) (-3524 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-411)))) (-1534 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-411)))) (-1725 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-411))))) -(-13 (-339 (-363) (-1068)) (-10 -7 (-15 -4108 ((-363) (-363) (-363))) (-15 -4108 ((-363) (-363))) (-15 -3524 ((-1171) (-1068))) (-15 -1534 ((-1171) (-1068))) (-15 -1725 ((-1171))))) -((-1419 (((-108) $ $) NIL)) (-2099 (((-3 (|:| |fst| (-409)) (|:| -1350 "void")) $) 10)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2681 (($) 31)) (-2545 (($) 37)) (-1697 (($) 33)) (-2344 (($) 35)) (-2383 (($) 32)) (-2414 (($) 34)) (-3311 (($) 36)) (-2305 (((-108) $) 8)) (-2878 (((-588 (-881 (-522))) $) 16)) (-2227 (($ (-3 (|:| |fst| (-409)) (|:| -1350 "void")) (-588 (-1085)) (-108)) 25) (($ (-3 (|:| |fst| (-409)) (|:| -1350 "void")) (-588 (-881 (-522))) (-108)) 26)) (-2217 (((-792) $) 21) (($ (-409)) 28)) (-1562 (((-108) $ $) NIL))) -(((-412) (-13 (-1014) (-10 -8 (-15 -2217 ((-792) $)) (-15 -2217 ($ (-409))) (-15 -2099 ((-3 (|:| |fst| (-409)) (|:| -1350 "void")) $)) (-15 -2878 ((-588 (-881 (-522))) $)) (-15 -2305 ((-108) $)) (-15 -2227 ($ (-3 (|:| |fst| (-409)) (|:| -1350 "void")) (-588 (-1085)) (-108))) (-15 -2227 ($ (-3 (|:| |fst| (-409)) (|:| -1350 "void")) (-588 (-881 (-522))) (-108))) (-15 -2681 ($)) (-15 -2383 ($)) (-15 -1697 ($)) (-15 -2545 ($)) (-15 -2414 ($)) (-15 -2344 ($)) (-15 -3311 ($))))) (T -412)) -((-2217 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-412)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-409)) (-5 *1 (-412)))) (-2099 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-5 *1 (-412)))) (-2878 (*1 *2 *1) (-12 (-5 *2 (-588 (-881 (-522)))) (-5 *1 (-412)))) (-2305 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-2227 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-5 *3 (-588 (-1085))) (-5 *4 (-108)) (-5 *1 (-412)))) (-2227 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-5 *3 (-588 (-881 (-522)))) (-5 *4 (-108)) (-5 *1 (-412)))) (-2681 (*1 *1) (-5 *1 (-412))) (-2383 (*1 *1) (-5 *1 (-412))) (-1697 (*1 *1) (-5 *1 (-412))) (-2545 (*1 *1) (-5 *1 (-412))) (-2414 (*1 *1) (-5 *1 (-412))) (-2344 (*1 *1) (-5 *1 (-412))) (-3311 (*1 *1) (-5 *1 (-412)))) -(-13 (-1014) (-10 -8 (-15 -2217 ((-792) $)) (-15 -2217 ($ (-409))) (-15 -2099 ((-3 (|:| |fst| (-409)) (|:| -1350 "void")) $)) (-15 -2878 ((-588 (-881 (-522))) $)) (-15 -2305 ((-108) $)) (-15 -2227 ($ (-3 (|:| |fst| (-409)) (|:| -1350 "void")) (-588 (-1085)) (-108))) (-15 -2227 ($ (-3 (|:| |fst| (-409)) (|:| -1350 "void")) (-588 (-881 (-522))) (-108))) (-15 -2681 ($)) (-15 -2383 ($)) (-15 -1697 ($)) (-15 -2545 ($)) (-15 -2414 ($)) (-15 -2344 ($)) (-15 -3311 ($)))) -((-1419 (((-108) $ $) NIL)) (-3015 (((-1085) $) 8)) (-2311 (((-1068) $) 16)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 11)) (-1562 (((-108) $ $) 13))) -(((-413 |#1|) (-13 (-1014) (-10 -8 (-15 -3015 ((-1085) $)))) (-1085)) (T -413)) -((-3015 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-413 *3)) (-14 *3 *2)))) -(-13 (-1014) (-10 -8 (-15 -3015 ((-1085) $)))) -((-2550 (((-1171) $) 7)) (-2217 (((-792) $) 8) (($ (-1166 (-637))) 14) (($ (-588 (-305))) 13) (($ (-305)) 12) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 11))) -(((-414) (-1197)) (T -414)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1166 (-637))) (-4 *1 (-414)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-4 *1 (-414)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-305)) (-4 *1 (-414)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) (-4 *1 (-414))))) -(-13 (-370) (-10 -8 (-15 -2217 ($ (-1166 (-637)))) (-15 -2217 ($ (-588 (-305)))) (-15 -2217 ($ (-305))) (-15 -2217 ($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305)))))))) -(((-562 (-792)) . T) ((-370) . T) ((-1120) . T)) -((-3700 (((-3 $ "failed") (-1166 (-291 (-354)))) 21) (((-3 $ "failed") (-1166 (-291 (-522)))) 19) (((-3 $ "failed") (-1166 (-881 (-354)))) 17) (((-3 $ "failed") (-1166 (-881 (-522)))) 15) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 13) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 11)) (-1478 (($ (-1166 (-291 (-354)))) 22) (($ (-1166 (-291 (-522)))) 20) (($ (-1166 (-881 (-354)))) 18) (($ (-1166 (-881 (-522)))) 16) (($ (-1166 (-382 (-881 (-354))))) 14) (($ (-1166 (-382 (-881 (-522))))) 12)) (-2550 (((-1171) $) 7)) (-2217 (((-792) $) 8) (($ (-588 (-305))) 25) (($ (-305)) 24) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) 23))) -(((-415) (-1197)) (T -415)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-4 *1 (-415)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-305)) (-4 *1 (-415)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) (-4 *1 (-415)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-1166 (-291 (-354)))) (-4 *1 (-415)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166 (-291 (-354)))) (-4 *1 (-415)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-1166 (-291 (-522)))) (-4 *1 (-415)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166 (-291 (-522)))) (-4 *1 (-415)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-1166 (-881 (-354)))) (-4 *1 (-415)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166 (-881 (-354)))) (-4 *1 (-415)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-1166 (-881 (-522)))) (-4 *1 (-415)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166 (-881 (-522)))) (-4 *1 (-415)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-1166 (-382 (-881 (-354))))) (-4 *1 (-415)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166 (-382 (-881 (-354))))) (-4 *1 (-415)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-1166 (-382 (-881 (-522))))) (-4 *1 (-415)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166 (-382 (-881 (-522))))) (-4 *1 (-415))))) -(-13 (-370) (-10 -8 (-15 -2217 ($ (-588 (-305)))) (-15 -2217 ($ (-305))) (-15 -2217 ($ (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305)))))) (-15 -1478 ($ (-1166 (-291 (-354))))) (-15 -3700 ((-3 $ "failed") (-1166 (-291 (-354))))) (-15 -1478 ($ (-1166 (-291 (-522))))) (-15 -3700 ((-3 $ "failed") (-1166 (-291 (-522))))) (-15 -1478 ($ (-1166 (-881 (-354))))) (-15 -3700 ((-3 $ "failed") (-1166 (-881 (-354))))) (-15 -1478 ($ (-1166 (-881 (-522))))) (-15 -3700 ((-3 $ "failed") (-1166 (-881 (-522))))) (-15 -1478 ($ (-1166 (-382 (-881 (-354)))))) (-15 -3700 ((-3 $ "failed") (-1166 (-382 (-881 (-354)))))) (-15 -1478 ($ (-1166 (-382 (-881 (-522)))))) (-15 -3700 ((-3 $ "failed") (-1166 (-382 (-881 (-522)))))))) -(((-562 (-792)) . T) ((-370) . T) ((-1120) . T)) -((-3582 (((-108)) 17)) (-3751 (((-108) (-108)) 18)) (-2479 (((-108)) 13)) (-1260 (((-108) (-108)) 14)) (-3590 (((-108)) 15)) (-1394 (((-108) (-108)) 16)) (-1618 (((-850) (-850)) 21) (((-850)) 20)) (-4152 (((-708) (-588 (-2 (|:| -2006 |#1|) (|:| -2487 (-522))))) 42)) (-2218 (((-850) (-850)) 23) (((-850)) 22)) (-2757 (((-2 (|:| -3909 (-522)) (|:| -4045 (-588 |#1|))) |#1|) 62)) (-2865 (((-393 |#1|) (-2 (|:| |contp| (-522)) (|:| -4045 (-588 (-2 (|:| |irr| |#1|) (|:| -4160 (-522))))))) 124)) (-3306 (((-2 (|:| |contp| (-522)) (|:| -4045 (-588 (-2 (|:| |irr| |#1|) (|:| -4160 (-522)))))) |#1| (-108)) 150)) (-3903 (((-393 |#1|) |#1| (-708) (-708)) 163) (((-393 |#1|) |#1| (-588 (-708)) (-708)) 160) (((-393 |#1|) |#1| (-588 (-708))) 162) (((-393 |#1|) |#1| (-708)) 161) (((-393 |#1|) |#1|) 159)) (-2839 (((-3 |#1| "failed") (-850) |#1| (-588 (-708)) (-708) (-108)) 165) (((-3 |#1| "failed") (-850) |#1| (-588 (-708)) (-708)) 166) (((-3 |#1| "failed") (-850) |#1| (-588 (-708))) 168) (((-3 |#1| "failed") (-850) |#1| (-708)) 167) (((-3 |#1| "failed") (-850) |#1|) 169)) (-2006 (((-393 |#1|) |#1| (-708) (-708)) 158) (((-393 |#1|) |#1| (-588 (-708)) (-708)) 154) (((-393 |#1|) |#1| (-588 (-708))) 156) (((-393 |#1|) |#1| (-708)) 155) (((-393 |#1|) |#1|) 153)) (-2582 (((-108) |#1|) 37)) (-3644 (((-675 (-708)) (-588 (-2 (|:| -2006 |#1|) (|:| -2487 (-522))))) 67)) (-1914 (((-2 (|:| |contp| (-522)) (|:| -4045 (-588 (-2 (|:| |irr| |#1|) (|:| -4160 (-522)))))) |#1| (-108) (-1016 (-708)) (-708)) 152))) -(((-416 |#1|) (-10 -7 (-15 -2865 ((-393 |#1|) (-2 (|:| |contp| (-522)) (|:| -4045 (-588 (-2 (|:| |irr| |#1|) (|:| -4160 (-522)))))))) (-15 -3644 ((-675 (-708)) (-588 (-2 (|:| -2006 |#1|) (|:| -2487 (-522)))))) (-15 -2218 ((-850))) (-15 -2218 ((-850) (-850))) (-15 -1618 ((-850))) (-15 -1618 ((-850) (-850))) (-15 -4152 ((-708) (-588 (-2 (|:| -2006 |#1|) (|:| -2487 (-522)))))) (-15 -2757 ((-2 (|:| -3909 (-522)) (|:| -4045 (-588 |#1|))) |#1|)) (-15 -3582 ((-108))) (-15 -3751 ((-108) (-108))) (-15 -2479 ((-108))) (-15 -1260 ((-108) (-108))) (-15 -2582 ((-108) |#1|)) (-15 -3590 ((-108))) (-15 -1394 ((-108) (-108))) (-15 -2006 ((-393 |#1|) |#1|)) (-15 -2006 ((-393 |#1|) |#1| (-708))) (-15 -2006 ((-393 |#1|) |#1| (-588 (-708)))) (-15 -2006 ((-393 |#1|) |#1| (-588 (-708)) (-708))) (-15 -2006 ((-393 |#1|) |#1| (-708) (-708))) (-15 -3903 ((-393 |#1|) |#1|)) (-15 -3903 ((-393 |#1|) |#1| (-708))) (-15 -3903 ((-393 |#1|) |#1| (-588 (-708)))) (-15 -3903 ((-393 |#1|) |#1| (-588 (-708)) (-708))) (-15 -3903 ((-393 |#1|) |#1| (-708) (-708))) (-15 -2839 ((-3 |#1| "failed") (-850) |#1|)) (-15 -2839 ((-3 |#1| "failed") (-850) |#1| (-708))) (-15 -2839 ((-3 |#1| "failed") (-850) |#1| (-588 (-708)))) (-15 -2839 ((-3 |#1| "failed") (-850) |#1| (-588 (-708)) (-708))) (-15 -2839 ((-3 |#1| "failed") (-850) |#1| (-588 (-708)) (-708) (-108))) (-15 -3306 ((-2 (|:| |contp| (-522)) (|:| -4045 (-588 (-2 (|:| |irr| |#1|) (|:| -4160 (-522)))))) |#1| (-108))) (-15 -1914 ((-2 (|:| |contp| (-522)) (|:| -4045 (-588 (-2 (|:| |irr| |#1|) (|:| -4160 (-522)))))) |#1| (-108) (-1016 (-708)) (-708)))) (-1142 (-522))) (T -416)) -((-1914 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-108)) (-5 *5 (-1016 (-708))) (-5 *6 (-708)) (-5 *2 (-2 (|:| |contp| (-522)) (|:| -4045 (-588 (-2 (|:| |irr| *3) (|:| -4160 (-522))))))) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-3306 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-522)) (|:| -4045 (-588 (-2 (|:| |irr| *3) (|:| -4160 (-522))))))) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2839 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-850)) (-5 *4 (-588 (-708))) (-5 *5 (-708)) (-5 *6 (-108)) (-5 *1 (-416 *2)) (-4 *2 (-1142 (-522))))) (-2839 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-850)) (-5 *4 (-588 (-708))) (-5 *5 (-708)) (-5 *1 (-416 *2)) (-4 *2 (-1142 (-522))))) (-2839 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-850)) (-5 *4 (-588 (-708))) (-5 *1 (-416 *2)) (-4 *2 (-1142 (-522))))) (-2839 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-850)) (-5 *4 (-708)) (-5 *1 (-416 *2)) (-4 *2 (-1142 (-522))))) (-2839 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-850)) (-5 *1 (-416 *2)) (-4 *2 (-1142 (-522))))) (-3903 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-708)) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-3903 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-588 (-708))) (-5 *5 (-708)) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-3903 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-708))) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-3903 (*1 *2 *3 *4) (-12 (-5 *4 (-708)) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-3903 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2006 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-708)) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2006 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-588 (-708))) (-5 *5 (-708)) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2006 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-708))) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2006 (*1 *2 *3 *4) (-12 (-5 *4 (-708)) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2006 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-3590 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2582 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-1260 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2479 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-3751 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-3582 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2757 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3909 (-522)) (|:| -4045 (-588 *3)))) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| -2006 *4) (|:| -2487 (-522))))) (-4 *4 (-1142 (-522))) (-5 *2 (-708)) (-5 *1 (-416 *4)))) (-1618 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-1618 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2218 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2218 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| -2006 *4) (|:| -2487 (-522))))) (-4 *4 (-1142 (-522))) (-5 *2 (-675 (-708))) (-5 *1 (-416 *4)))) (-2865 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-522)) (|:| -4045 (-588 (-2 (|:| |irr| *4) (|:| -4160 (-522))))))) (-4 *4 (-1142 (-522))) (-5 *2 (-393 *4)) (-5 *1 (-416 *4))))) -(-10 -7 (-15 -2865 ((-393 |#1|) (-2 (|:| |contp| (-522)) (|:| -4045 (-588 (-2 (|:| |irr| |#1|) (|:| -4160 (-522)))))))) (-15 -3644 ((-675 (-708)) (-588 (-2 (|:| -2006 |#1|) (|:| -2487 (-522)))))) (-15 -2218 ((-850))) (-15 -2218 ((-850) (-850))) (-15 -1618 ((-850))) (-15 -1618 ((-850) (-850))) (-15 -4152 ((-708) (-588 (-2 (|:| -2006 |#1|) (|:| -2487 (-522)))))) (-15 -2757 ((-2 (|:| -3909 (-522)) (|:| -4045 (-588 |#1|))) |#1|)) (-15 -3582 ((-108))) (-15 -3751 ((-108) (-108))) (-15 -2479 ((-108))) (-15 -1260 ((-108) (-108))) (-15 -2582 ((-108) |#1|)) (-15 -3590 ((-108))) (-15 -1394 ((-108) (-108))) (-15 -2006 ((-393 |#1|) |#1|)) (-15 -2006 ((-393 |#1|) |#1| (-708))) (-15 -2006 ((-393 |#1|) |#1| (-588 (-708)))) (-15 -2006 ((-393 |#1|) |#1| (-588 (-708)) (-708))) (-15 -2006 ((-393 |#1|) |#1| (-708) (-708))) (-15 -3903 ((-393 |#1|) |#1|)) (-15 -3903 ((-393 |#1|) |#1| (-708))) (-15 -3903 ((-393 |#1|) |#1| (-588 (-708)))) (-15 -3903 ((-393 |#1|) |#1| (-588 (-708)) (-708))) (-15 -3903 ((-393 |#1|) |#1| (-708) (-708))) (-15 -2839 ((-3 |#1| "failed") (-850) |#1|)) (-15 -2839 ((-3 |#1| "failed") (-850) |#1| (-708))) (-15 -2839 ((-3 |#1| "failed") (-850) |#1| (-588 (-708)))) (-15 -2839 ((-3 |#1| "failed") (-850) |#1| (-588 (-708)) (-708))) (-15 -2839 ((-3 |#1| "failed") (-850) |#1| (-588 (-708)) (-708) (-108))) (-15 -3306 ((-2 (|:| |contp| (-522)) (|:| -4045 (-588 (-2 (|:| |irr| |#1|) (|:| -4160 (-522)))))) |#1| (-108))) (-15 -1914 ((-2 (|:| |contp| (-522)) (|:| -4045 (-588 (-2 (|:| |irr| |#1|) (|:| -4160 (-522)))))) |#1| (-108) (-1016 (-708)) (-708)))) -((-1929 (((-522) |#2|) 48) (((-522) |#2| (-708)) 47)) (-3731 (((-522) |#2|) 55)) (-2821 ((|#3| |#2|) 25)) (-1269 ((|#3| |#2| (-850)) 14)) (-4030 ((|#3| |#2|) 15)) (-1526 ((|#3| |#2|) 9)) (-4179 ((|#3| |#2|) 10)) (-2384 ((|#3| |#2| (-850)) 62) ((|#3| |#2|) 30)) (-3696 (((-522) |#2|) 57))) -(((-417 |#1| |#2| |#3|) (-10 -7 (-15 -3696 ((-522) |#2|)) (-15 -2384 (|#3| |#2|)) (-15 -2384 (|#3| |#2| (-850))) (-15 -3731 ((-522) |#2|)) (-15 -1929 ((-522) |#2| (-708))) (-15 -1929 ((-522) |#2|)) (-15 -1269 (|#3| |#2| (-850))) (-15 -2821 (|#3| |#2|)) (-15 -1526 (|#3| |#2|)) (-15 -4179 (|#3| |#2|)) (-15 -4030 (|#3| |#2|))) (-971) (-1142 |#1|) (-13 (-379) (-962 |#1|) (-338) (-1106) (-260))) (T -417)) -((-4030 (*1 *2 *3) (-12 (-4 *4 (-971)) (-4 *2 (-13 (-379) (-962 *4) (-338) (-1106) (-260))) (-5 *1 (-417 *4 *3 *2)) (-4 *3 (-1142 *4)))) (-4179 (*1 *2 *3) (-12 (-4 *4 (-971)) (-4 *2 (-13 (-379) (-962 *4) (-338) (-1106) (-260))) (-5 *1 (-417 *4 *3 *2)) (-4 *3 (-1142 *4)))) (-1526 (*1 *2 *3) (-12 (-4 *4 (-971)) (-4 *2 (-13 (-379) (-962 *4) (-338) (-1106) (-260))) (-5 *1 (-417 *4 *3 *2)) (-4 *3 (-1142 *4)))) (-2821 (*1 *2 *3) (-12 (-4 *4 (-971)) (-4 *2 (-13 (-379) (-962 *4) (-338) (-1106) (-260))) (-5 *1 (-417 *4 *3 *2)) (-4 *3 (-1142 *4)))) (-1269 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-4 *5 (-971)) (-4 *2 (-13 (-379) (-962 *5) (-338) (-1106) (-260))) (-5 *1 (-417 *5 *3 *2)) (-4 *3 (-1142 *5)))) (-1929 (*1 *2 *3) (-12 (-4 *4 (-971)) (-5 *2 (-522)) (-5 *1 (-417 *4 *3 *5)) (-4 *3 (-1142 *4)) (-4 *5 (-13 (-379) (-962 *4) (-338) (-1106) (-260))))) (-1929 (*1 *2 *3 *4) (-12 (-5 *4 (-708)) (-4 *5 (-971)) (-5 *2 (-522)) (-5 *1 (-417 *5 *3 *6)) (-4 *3 (-1142 *5)) (-4 *6 (-13 (-379) (-962 *5) (-338) (-1106) (-260))))) (-3731 (*1 *2 *3) (-12 (-4 *4 (-971)) (-5 *2 (-522)) (-5 *1 (-417 *4 *3 *5)) (-4 *3 (-1142 *4)) (-4 *5 (-13 (-379) (-962 *4) (-338) (-1106) (-260))))) (-2384 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-4 *5 (-971)) (-4 *2 (-13 (-379) (-962 *5) (-338) (-1106) (-260))) (-5 *1 (-417 *5 *3 *2)) (-4 *3 (-1142 *5)))) (-2384 (*1 *2 *3) (-12 (-4 *4 (-971)) (-4 *2 (-13 (-379) (-962 *4) (-338) (-1106) (-260))) (-5 *1 (-417 *4 *3 *2)) (-4 *3 (-1142 *4)))) (-3696 (*1 *2 *3) (-12 (-4 *4 (-971)) (-5 *2 (-522)) (-5 *1 (-417 *4 *3 *5)) (-4 *3 (-1142 *4)) (-4 *5 (-13 (-379) (-962 *4) (-338) (-1106) (-260)))))) -(-10 -7 (-15 -3696 ((-522) |#2|)) (-15 -2384 (|#3| |#2|)) (-15 -2384 (|#3| |#2| (-850))) (-15 -3731 ((-522) |#2|)) (-15 -1929 ((-522) |#2| (-708))) (-15 -1929 ((-522) |#2|)) (-15 -1269 (|#3| |#2| (-850))) (-15 -2821 (|#3| |#2|)) (-15 -1526 (|#3| |#2|)) (-15 -4179 (|#3| |#2|)) (-15 -4030 (|#3| |#2|))) -((-2030 ((|#2| (-1166 |#1|)) 36)) (-4173 ((|#2| |#2| |#1|) 49)) (-2461 ((|#2| |#2| |#1|) 41)) (-1939 ((|#2| |#2|) 38)) (-1257 (((-108) |#2|) 30)) (-3291 (((-588 |#2|) (-850) (-393 |#2|)) 16)) (-2839 ((|#2| (-850) (-393 |#2|)) 21)) (-3644 (((-675 (-708)) (-393 |#2|)) 25))) -(((-418 |#1| |#2|) (-10 -7 (-15 -1257 ((-108) |#2|)) (-15 -2030 (|#2| (-1166 |#1|))) (-15 -1939 (|#2| |#2|)) (-15 -2461 (|#2| |#2| |#1|)) (-15 -4173 (|#2| |#2| |#1|)) (-15 -3644 ((-675 (-708)) (-393 |#2|))) (-15 -2839 (|#2| (-850) (-393 |#2|))) (-15 -3291 ((-588 |#2|) (-850) (-393 |#2|)))) (-971) (-1142 |#1|)) (T -418)) -((-3291 (*1 *2 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-393 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-971)) (-5 *2 (-588 *6)) (-5 *1 (-418 *5 *6)))) (-2839 (*1 *2 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-393 *2)) (-4 *2 (-1142 *5)) (-5 *1 (-418 *5 *2)) (-4 *5 (-971)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-393 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-971)) (-5 *2 (-675 (-708))) (-5 *1 (-418 *4 *5)))) (-4173 (*1 *2 *2 *3) (-12 (-4 *3 (-971)) (-5 *1 (-418 *3 *2)) (-4 *2 (-1142 *3)))) (-2461 (*1 *2 *2 *3) (-12 (-4 *3 (-971)) (-5 *1 (-418 *3 *2)) (-4 *2 (-1142 *3)))) (-1939 (*1 *2 *2) (-12 (-4 *3 (-971)) (-5 *1 (-418 *3 *2)) (-4 *2 (-1142 *3)))) (-2030 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-971)) (-4 *2 (-1142 *4)) (-5 *1 (-418 *4 *2)))) (-1257 (*1 *2 *3) (-12 (-4 *4 (-971)) (-5 *2 (-108)) (-5 *1 (-418 *4 *3)) (-4 *3 (-1142 *4))))) -(-10 -7 (-15 -1257 ((-108) |#2|)) (-15 -2030 (|#2| (-1166 |#1|))) (-15 -1939 (|#2| |#2|)) (-15 -2461 (|#2| |#2| |#1|)) (-15 -4173 (|#2| |#2| |#1|)) (-15 -3644 ((-675 (-708)) (-393 |#2|))) (-15 -2839 (|#2| (-850) (-393 |#2|))) (-15 -3291 ((-588 |#2|) (-850) (-393 |#2|)))) -((-1267 (((-708)) 41)) (-3615 (((-708)) 23 (|has| |#1| (-379))) (((-708) (-708)) 22 (|has| |#1| (-379)))) (-1624 (((-522) |#1|) 18 (|has| |#1| (-379)))) (-4104 (((-522) |#1|) 20 (|has| |#1| (-379)))) (-3280 (((-708)) 40) (((-708) (-708)) 39)) (-2602 ((|#1| (-708) (-522)) 29)) (-1683 (((-1171)) 43))) -(((-419 |#1|) (-10 -7 (-15 -2602 (|#1| (-708) (-522))) (-15 -3280 ((-708) (-708))) (-15 -3280 ((-708))) (-15 -1267 ((-708))) (-15 -1683 ((-1171))) (IF (|has| |#1| (-379)) (PROGN (-15 -4104 ((-522) |#1|)) (-15 -1624 ((-522) |#1|)) (-15 -3615 ((-708) (-708))) (-15 -3615 ((-708)))) |%noBranch|)) (-971)) (T -419)) -((-3615 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-419 *3)) (-4 *3 (-379)) (-4 *3 (-971)))) (-3615 (*1 *2 *2) (-12 (-5 *2 (-708)) (-5 *1 (-419 *3)) (-4 *3 (-379)) (-4 *3 (-971)))) (-1624 (*1 *2 *3) (-12 (-5 *2 (-522)) (-5 *1 (-419 *3)) (-4 *3 (-379)) (-4 *3 (-971)))) (-4104 (*1 *2 *3) (-12 (-5 *2 (-522)) (-5 *1 (-419 *3)) (-4 *3 (-379)) (-4 *3 (-971)))) (-1683 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-419 *3)) (-4 *3 (-971)))) (-1267 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-419 *3)) (-4 *3 (-971)))) (-3280 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-419 *3)) (-4 *3 (-971)))) (-3280 (*1 *2 *2) (-12 (-5 *2 (-708)) (-5 *1 (-419 *3)) (-4 *3 (-971)))) (-2602 (*1 *2 *3 *4) (-12 (-5 *3 (-708)) (-5 *4 (-522)) (-5 *1 (-419 *2)) (-4 *2 (-971))))) -(-10 -7 (-15 -2602 (|#1| (-708) (-522))) (-15 -3280 ((-708) (-708))) (-15 -3280 ((-708))) (-15 -1267 ((-708))) (-15 -1683 ((-1171))) (IF (|has| |#1| (-379)) (PROGN (-15 -4104 ((-522) |#1|)) (-15 -1624 ((-522) |#1|)) (-15 -3615 ((-708) (-708))) (-15 -3615 ((-708)))) |%noBranch|)) -((-2605 (((-588 (-522)) (-522)) 59)) (-2725 (((-108) (-154 (-522))) 63)) (-2006 (((-393 (-154 (-522))) (-154 (-522))) 58))) -(((-420) (-10 -7 (-15 -2006 ((-393 (-154 (-522))) (-154 (-522)))) (-15 -2605 ((-588 (-522)) (-522))) (-15 -2725 ((-108) (-154 (-522)))))) (T -420)) -((-2725 (*1 *2 *3) (-12 (-5 *3 (-154 (-522))) (-5 *2 (-108)) (-5 *1 (-420)))) (-2605 (*1 *2 *3) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-420)) (-5 *3 (-522)))) (-2006 (*1 *2 *3) (-12 (-5 *2 (-393 (-154 (-522)))) (-5 *1 (-420)) (-5 *3 (-154 (-522)))))) -(-10 -7 (-15 -2006 ((-393 (-154 (-522))) (-154 (-522)))) (-15 -2605 ((-588 (-522)) (-522))) (-15 -2725 ((-108) (-154 (-522))))) -((-2197 ((|#4| |#4| (-588 |#4|)) 59)) (-2792 (((-588 |#4|) (-588 |#4|) (-1068) (-1068)) 17) (((-588 |#4|) (-588 |#4|) (-1068)) 16) (((-588 |#4|) (-588 |#4|)) 11))) -(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2197 (|#4| |#4| (-588 |#4|))) (-15 -2792 ((-588 |#4|) (-588 |#4|))) (-15 -2792 ((-588 |#4|) (-588 |#4|) (-1068))) (-15 -2792 ((-588 |#4|) (-588 |#4|) (-1068) (-1068)))) (-283) (-730) (-784) (-878 |#1| |#2| |#3|)) (T -421)) -((-2792 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-588 *7)) (-5 *3 (-1068)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-283)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-421 *4 *5 *6 *7)))) (-2792 (*1 *2 *2 *3) (-12 (-5 *2 (-588 *7)) (-5 *3 (-1068)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-283)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-421 *4 *5 *6 *7)))) (-2792 (*1 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-283)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-421 *3 *4 *5 *6)))) (-2197 (*1 *2 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-283)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-421 *4 *5 *6 *2))))) -(-10 -7 (-15 -2197 (|#4| |#4| (-588 |#4|))) (-15 -2792 ((-588 |#4|) (-588 |#4|))) (-15 -2792 ((-588 |#4|) (-588 |#4|) (-1068))) (-15 -2792 ((-588 |#4|) (-588 |#4|) (-1068) (-1068)))) -((-3204 (((-588 (-588 |#4|)) (-588 |#4|) (-108)) 71) (((-588 (-588 |#4|)) (-588 |#4|)) 70) (((-588 (-588 |#4|)) (-588 |#4|) (-588 |#4|) (-108)) 64) (((-588 (-588 |#4|)) (-588 |#4|) (-588 |#4|)) 65)) (-1792 (((-588 (-588 |#4|)) (-588 |#4|) (-108)) 41) (((-588 (-588 |#4|)) (-588 |#4|)) 61))) -(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1792 ((-588 (-588 |#4|)) (-588 |#4|))) (-15 -1792 ((-588 (-588 |#4|)) (-588 |#4|) (-108))) (-15 -3204 ((-588 (-588 |#4|)) (-588 |#4|) (-588 |#4|))) (-15 -3204 ((-588 (-588 |#4|)) (-588 |#4|) (-588 |#4|) (-108))) (-15 -3204 ((-588 (-588 |#4|)) (-588 |#4|))) (-15 -3204 ((-588 (-588 |#4|)) (-588 |#4|) (-108)))) (-13 (-283) (-135)) (-730) (-784) (-878 |#1| |#2| |#3|)) (T -422)) -((-3204 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-588 (-588 *8))) (-5 *1 (-422 *5 *6 *7 *8)) (-5 *3 (-588 *8)))) (-3204 (*1 *2 *3) (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-588 (-588 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-5 *3 (-588 *7)))) (-3204 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-588 (-588 *8))) (-5 *1 (-422 *5 *6 *7 *8)) (-5 *3 (-588 *8)))) (-3204 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-588 (-588 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-5 *3 (-588 *7)))) (-1792 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-588 (-588 *8))) (-5 *1 (-422 *5 *6 *7 *8)) (-5 *3 (-588 *8)))) (-1792 (*1 *2 *3) (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-588 (-588 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-5 *3 (-588 *7))))) -(-10 -7 (-15 -1792 ((-588 (-588 |#4|)) (-588 |#4|))) (-15 -1792 ((-588 (-588 |#4|)) (-588 |#4|) (-108))) (-15 -3204 ((-588 (-588 |#4|)) (-588 |#4|) (-588 |#4|))) (-15 -3204 ((-588 (-588 |#4|)) (-588 |#4|) (-588 |#4|) (-108))) (-15 -3204 ((-588 (-588 |#4|)) (-588 |#4|))) (-15 -3204 ((-588 (-588 |#4|)) (-588 |#4|) (-108)))) -((-2610 (((-708) |#4|) 12)) (-2345 (((-588 (-2 (|:| |totdeg| (-708)) (|:| -1976 |#4|))) |#4| (-708) (-588 (-2 (|:| |totdeg| (-708)) (|:| -1976 |#4|)))) 31)) (-2921 (((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-2728 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1741 ((|#4| |#4| (-588 |#4|)) 40)) (-2422 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-588 |#4|)) 69)) (-3782 (((-1171) |#4|) 42)) (-2246 (((-1171) (-588 |#4|)) 51)) (-4192 (((-522) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-522) (-522) (-522)) 48)) (-4142 (((-1171) (-522)) 77)) (-3775 (((-588 |#4|) (-588 |#4|)) 75)) (-4151 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-708)) (|:| -1976 |#4|)) |#4| (-708)) 25)) (-2943 (((-522) |#4|) 76)) (-1323 ((|#4| |#4|) 29)) (-3218 (((-588 |#4|) (-588 |#4|) (-522) (-522)) 55)) (-1680 (((-522) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-522) (-522) (-522) (-522)) 87)) (-2861 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-1206 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-4153 (((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-3420 (((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3460 (((-108) |#2| |#2|) 56)) (-3113 (((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-4198 (((-108) |#2| |#2| |#2| |#2|) 59)) (-3249 ((|#4| |#4| (-588 |#4|)) 70))) -(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3249 (|#4| |#4| (-588 |#4|))) (-15 -1741 (|#4| |#4| (-588 |#4|))) (-15 -3218 ((-588 |#4|) (-588 |#4|) (-522) (-522))) (-15 -1206 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3460 ((-108) |#2| |#2|)) (-15 -4198 ((-108) |#2| |#2| |#2| |#2|)) (-15 -3113 ((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3420 ((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4153 ((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2422 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-588 |#4|))) (-15 -1323 (|#4| |#4|)) (-15 -2345 ((-588 (-2 (|:| |totdeg| (-708)) (|:| -1976 |#4|))) |#4| (-708) (-588 (-2 (|:| |totdeg| (-708)) (|:| -1976 |#4|))))) (-15 -2728 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2921 ((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3775 ((-588 |#4|) (-588 |#4|))) (-15 -2943 ((-522) |#4|)) (-15 -3782 ((-1171) |#4|)) (-15 -4192 ((-522) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-522) (-522) (-522))) (-15 -1680 ((-522) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-522) (-522) (-522) (-522))) (-15 -2246 ((-1171) (-588 |#4|))) (-15 -4142 ((-1171) (-522))) (-15 -2861 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4151 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-708)) (|:| -1976 |#4|)) |#4| (-708))) (-15 -2610 ((-708) |#4|))) (-426) (-730) (-784) (-878 |#1| |#2| |#3|)) (T -423)) -((-2610 (*1 *2 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-708)) (-5 *1 (-423 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))) (-4151 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-708)) (|:| -1976 *4))) (-5 *5 (-708)) (-4 *4 (-878 *6 *7 *8)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-423 *6 *7 *8 *4)))) (-2861 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-708)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-730)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-423 *4 *5 *6 *7)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-522)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-1171)) (-5 *1 (-423 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6)))) (-2246 (*1 *2 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-1171)) (-5 *1 (-423 *4 *5 *6 *7)))) (-1680 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-708)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-730)) (-4 *4 (-878 *5 *6 *7)) (-4 *5 (-426)) (-4 *7 (-784)) (-5 *1 (-423 *5 *6 *7 *4)))) (-4192 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-708)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-730)) (-4 *4 (-878 *5 *6 *7)) (-4 *5 (-426)) (-4 *7 (-784)) (-5 *1 (-423 *5 *6 *7 *4)))) (-3782 (*1 *2 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-1171)) (-5 *1 (-423 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))) (-2943 (*1 *2 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-522)) (-5 *1 (-423 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))) (-3775 (*1 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-423 *3 *4 *5 *6)))) (-2921 (*1 *2 *2 *2) (-12 (-5 *2 (-588 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-708)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-730)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-426)) (-4 *5 (-784)) (-5 *1 (-423 *3 *4 *5 *6)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-708)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-730)) (-4 *2 (-878 *4 *5 *6)) (-5 *1 (-423 *4 *5 *6 *2)) (-4 *4 (-426)) (-4 *6 (-784)))) (-2345 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-588 (-2 (|:| |totdeg| (-708)) (|:| -1976 *3)))) (-5 *4 (-708)) (-4 *3 (-878 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-423 *5 *6 *7 *3)))) (-1323 (*1 *2 *2) (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-423 *3 *4 *5 *2)) (-4 *2 (-878 *3 *4 *5)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *4 (-588 *3)) (-4 *3 (-878 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-423 *5 *6 *7 *3)))) (-4153 (*1 *2 *3 *2) (-12 (-5 *2 (-588 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-708)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-730)) (-4 *6 (-878 *4 *3 *5)) (-4 *4 (-426)) (-4 *5 (-784)) (-5 *1 (-423 *4 *3 *5 *6)))) (-3420 (*1 *2 *2) (-12 (-5 *2 (-588 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-708)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-730)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-426)) (-4 *5 (-784)) (-5 *1 (-423 *3 *4 *5 *6)))) (-3113 (*1 *2 *3 *2) (-12 (-5 *2 (-588 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-708)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-730)) (-4 *3 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *6 (-784)) (-5 *1 (-423 *4 *5 *6 *3)))) (-4198 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-426)) (-4 *3 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-423 *4 *3 *5 *6)) (-4 *6 (-878 *4 *3 *5)))) (-3460 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *3 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-423 *4 *3 *5 *6)) (-4 *6 (-878 *4 *3 *5)))) (-1206 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-708)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-730)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-423 *4 *5 *6 *7)))) (-3218 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-588 *7)) (-5 *3 (-522)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-423 *4 *5 *6 *7)))) (-1741 (*1 *2 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-423 *4 *5 *6 *2)))) (-3249 (*1 *2 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-423 *4 *5 *6 *2))))) -(-10 -7 (-15 -3249 (|#4| |#4| (-588 |#4|))) (-15 -1741 (|#4| |#4| (-588 |#4|))) (-15 -3218 ((-588 |#4|) (-588 |#4|) (-522) (-522))) (-15 -1206 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3460 ((-108) |#2| |#2|)) (-15 -4198 ((-108) |#2| |#2| |#2| |#2|)) (-15 -3113 ((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3420 ((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4153 ((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2422 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-588 |#4|))) (-15 -1323 (|#4| |#4|)) (-15 -2345 ((-588 (-2 (|:| |totdeg| (-708)) (|:| -1976 |#4|))) |#4| (-708) (-588 (-2 (|:| |totdeg| (-708)) (|:| -1976 |#4|))))) (-15 -2728 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2921 ((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3775 ((-588 |#4|) (-588 |#4|))) (-15 -2943 ((-522) |#4|)) (-15 -3782 ((-1171) |#4|)) (-15 -4192 ((-522) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-522) (-522) (-522))) (-15 -1680 ((-522) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-522) (-522) (-522) (-522))) (-15 -2246 ((-1171) (-588 |#4|))) (-15 -4142 ((-1171) (-522))) (-15 -2861 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4151 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-708)) (|:| -1976 |#4|)) |#4| (-708))) (-15 -2610 ((-708) |#4|))) -((-2068 ((|#4| |#4| (-588 |#4|)) 22 (|has| |#1| (-338)))) (-3059 (((-588 |#4|) (-588 |#4|) (-1068) (-1068)) 42) (((-588 |#4|) (-588 |#4|) (-1068)) 41) (((-588 |#4|) (-588 |#4|)) 36))) -(((-424 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3059 ((-588 |#4|) (-588 |#4|))) (-15 -3059 ((-588 |#4|) (-588 |#4|) (-1068))) (-15 -3059 ((-588 |#4|) (-588 |#4|) (-1068) (-1068))) (IF (|has| |#1| (-338)) (-15 -2068 (|#4| |#4| (-588 |#4|))) |%noBranch|)) (-426) (-730) (-784) (-878 |#1| |#2| |#3|)) (T -424)) -((-2068 (*1 *2 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-338)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-424 *4 *5 *6 *2)))) (-3059 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-588 *7)) (-5 *3 (-1068)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-424 *4 *5 *6 *7)))) (-3059 (*1 *2 *2 *3) (-12 (-5 *2 (-588 *7)) (-5 *3 (-1068)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-424 *4 *5 *6 *7)))) (-3059 (*1 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-424 *3 *4 *5 *6))))) -(-10 -7 (-15 -3059 ((-588 |#4|) (-588 |#4|))) (-15 -3059 ((-588 |#4|) (-588 |#4|) (-1068))) (-15 -3059 ((-588 |#4|) (-588 |#4|) (-1068) (-1068))) (IF (|has| |#1| (-338)) (-15 -2068 (|#4| |#4| (-588 |#4|))) |%noBranch|)) -((-2267 (($ $ $) 14) (($ (-588 $)) 21)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 41)) (-2308 (($ $ $) NIL) (($ (-588 $)) 22))) -(((-425 |#1|) (-10 -8 (-15 -1789 ((-1081 |#1|) (-1081 |#1|) (-1081 |#1|))) (-15 -2267 (|#1| (-588 |#1|))) (-15 -2267 (|#1| |#1| |#1|)) (-15 -2308 (|#1| (-588 |#1|))) (-15 -2308 (|#1| |#1| |#1|))) (-426)) (T -425)) -NIL -(-10 -8 (-15 -1789 ((-1081 |#1|) (-1081 |#1|) (-1081 |#1|))) (-15 -2267 (|#1| (-588 |#1|))) (-15 -2267 (|#1| |#1| |#1|)) (-15 -2308 (|#1| (-588 |#1|))) (-15 -2308 (|#1| |#1| |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2298 (($ $) 40)) (-3007 (((-108) $) 38)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3920 (((-3 $ "failed") $) 34)) (-2859 (((-108) $) 31)) (-2267 (($ $ $) 46) (($ (-588 $)) 45)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2308 (($ $ $) 48) (($ (-588 $)) 47)) (-2276 (((-3 $ "failed") $ $) 42)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 43)) (-2742 (((-708)) 29)) (-1407 (((-108) $ $) 39)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-426) (-1197)) (T -426)) -((-2308 (*1 *1 *1 *1) (-4 *1 (-426))) (-2308 (*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-426)))) (-2267 (*1 *1 *1 *1) (-4 *1 (-426))) (-2267 (*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-426)))) (-1789 (*1 *2 *2 *2) (-12 (-5 *2 (-1081 *1)) (-4 *1 (-426))))) -(-13 (-514) (-10 -8 (-15 -2308 ($ $ $)) (-15 -2308 ($ (-588 $))) (-15 -2267 ($ $ $)) (-15 -2267 ($ (-588 $))) (-15 -1789 ((-1081 $) (-1081 $) (-1081 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-266) . T) ((-514) . T) ((-590 $) . T) ((-655 $) . T) ((-664) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2541 (((-3 $ "failed")) NIL (|has| (-382 (-881 |#1|)) (-514)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-3690 (((-1166 (-628 (-382 (-881 |#1|)))) (-1166 $)) NIL) (((-1166 (-628 (-382 (-881 |#1|))))) NIL)) (-2726 (((-1166 $)) NIL)) (-3367 (($) NIL T CONST)) (-2722 (((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed")) NIL)) (-3050 (((-3 $ "failed")) NIL (|has| (-382 (-881 |#1|)) (-514)))) (-3531 (((-628 (-382 (-881 |#1|))) (-1166 $)) NIL) (((-628 (-382 (-881 |#1|)))) NIL)) (-2046 (((-382 (-881 |#1|)) $) NIL)) (-2853 (((-628 (-382 (-881 |#1|))) $ (-1166 $)) NIL) (((-628 (-382 (-881 |#1|))) $) NIL)) (-1279 (((-3 $ "failed") $) NIL (|has| (-382 (-881 |#1|)) (-514)))) (-1662 (((-1081 (-881 (-382 (-881 |#1|))))) NIL (|has| (-382 (-881 |#1|)) (-338))) (((-1081 (-382 (-881 |#1|)))) 79 (|has| |#1| (-514)))) (-2698 (($ $ (-850)) NIL)) (-3676 (((-382 (-881 |#1|)) $) NIL)) (-4080 (((-1081 (-382 (-881 |#1|))) $) 77 (|has| (-382 (-881 |#1|)) (-514)))) (-4035 (((-382 (-881 |#1|)) (-1166 $)) NIL) (((-382 (-881 |#1|))) NIL)) (-3767 (((-1081 (-382 (-881 |#1|))) $) NIL)) (-1340 (((-108)) NIL)) (-3225 (($ (-1166 (-382 (-881 |#1|))) (-1166 $)) 97) (($ (-1166 (-382 (-881 |#1|)))) NIL)) (-3920 (((-3 $ "failed") $) NIL (|has| (-382 (-881 |#1|)) (-514)))) (-1692 (((-850)) NIL)) (-2134 (((-108)) NIL)) (-2870 (($ $ (-850)) NIL)) (-2287 (((-108)) NIL)) (-3702 (((-108)) NIL)) (-3868 (((-108)) NIL)) (-2439 (((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed")) NIL)) (-3351 (((-3 $ "failed")) NIL (|has| (-382 (-881 |#1|)) (-514)))) (-1521 (((-628 (-382 (-881 |#1|))) (-1166 $)) NIL) (((-628 (-382 (-881 |#1|)))) NIL)) (-3411 (((-382 (-881 |#1|)) $) NIL)) (-2734 (((-628 (-382 (-881 |#1|))) $ (-1166 $)) NIL) (((-628 (-382 (-881 |#1|))) $) NIL)) (-3070 (((-3 $ "failed") $) NIL (|has| (-382 (-881 |#1|)) (-514)))) (-3943 (((-1081 (-881 (-382 (-881 |#1|))))) NIL (|has| (-382 (-881 |#1|)) (-338))) (((-1081 (-382 (-881 |#1|)))) 78 (|has| |#1| (-514)))) (-1946 (($ $ (-850)) NIL)) (-1819 (((-382 (-881 |#1|)) $) NIL)) (-1216 (((-1081 (-382 (-881 |#1|))) $) 72 (|has| (-382 (-881 |#1|)) (-514)))) (-3020 (((-382 (-881 |#1|)) (-1166 $)) NIL) (((-382 (-881 |#1|))) NIL)) (-2724 (((-1081 (-382 (-881 |#1|))) $) NIL)) (-4197 (((-108)) NIL)) (-2311 (((-1068) $) NIL)) (-3823 (((-108)) NIL)) (-1388 (((-108)) NIL)) (-3509 (((-108)) NIL)) (-4174 (((-1032) $) NIL)) (-2633 (((-382 (-881 |#1|)) $ $) 66 (|has| |#1| (-514)))) (-1983 (((-382 (-881 |#1|)) $) 65 (|has| |#1| (-514)))) (-3632 (((-382 (-881 |#1|)) $) 89 (|has| |#1| (-514)))) (-3742 (((-1081 (-382 (-881 |#1|))) $) 83 (|has| |#1| (-514)))) (-1935 (((-382 (-881 |#1|))) 67 (|has| |#1| (-514)))) (-3553 (((-382 (-881 |#1|)) $ $) 54 (|has| |#1| (-514)))) (-1784 (((-382 (-881 |#1|)) $) 53 (|has| |#1| (-514)))) (-1362 (((-382 (-881 |#1|)) $) 88 (|has| |#1| (-514)))) (-1552 (((-1081 (-382 (-881 |#1|))) $) 82 (|has| |#1| (-514)))) (-3627 (((-382 (-881 |#1|))) 64 (|has| |#1| (-514)))) (-2667 (($) 95) (($ (-1085)) 101) (($ (-1166 (-1085))) 100) (($ (-1166 $)) 90) (($ (-1085) (-1166 $)) 99) (($ (-1166 (-1085)) (-1166 $)) 98)) (-1427 (((-108)) NIL)) (-2683 (((-382 (-881 |#1|)) $ (-522)) NIL)) (-3510 (((-1166 (-382 (-881 |#1|))) $ (-1166 $)) 92) (((-628 (-382 (-881 |#1|))) (-1166 $) (-1166 $)) NIL) (((-1166 (-382 (-881 |#1|))) $) 37) (((-628 (-382 (-881 |#1|))) (-1166 $)) NIL)) (-3873 (((-1166 (-382 (-881 |#1|))) $) NIL) (($ (-1166 (-382 (-881 |#1|)))) 34)) (-1777 (((-588 (-881 (-382 (-881 |#1|)))) (-1166 $)) NIL) (((-588 (-881 (-382 (-881 |#1|))))) NIL) (((-588 (-881 |#1|)) (-1166 $)) 93 (|has| |#1| (-514))) (((-588 (-881 |#1|))) 94 (|has| |#1| (-514)))) (-1596 (($ $ $) NIL)) (-3990 (((-108)) NIL)) (-2217 (((-792) $) NIL) (($ (-1166 (-382 (-881 |#1|)))) NIL)) (-2905 (((-1166 $)) 56)) (-1548 (((-588 (-1166 (-382 (-881 |#1|))))) NIL (|has| (-382 (-881 |#1|)) (-514)))) (-2185 (($ $ $ $) NIL)) (-3597 (((-108)) NIL)) (-1664 (($ (-628 (-382 (-881 |#1|))) $) NIL)) (-1369 (($ $ $) NIL)) (-3578 (((-108)) NIL)) (-2912 (((-108)) NIL)) (-1855 (((-108)) NIL)) (-3697 (($) NIL T CONST)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) 91)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 52) (($ $ (-382 (-881 |#1|))) NIL) (($ (-382 (-881 |#1|)) $) NIL) (($ (-1052 |#2| (-382 (-881 |#1|))) $) NIL))) -(((-427 |#1| |#2| |#3| |#4|) (-13 (-392 (-382 (-881 |#1|))) (-590 (-1052 |#2| (-382 (-881 |#1|)))) (-10 -8 (-15 -2217 ($ (-1166 (-382 (-881 |#1|))))) (-15 -2439 ((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed"))) (-15 -2722 ((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed"))) (-15 -2667 ($)) (-15 -2667 ($ (-1085))) (-15 -2667 ($ (-1166 (-1085)))) (-15 -2667 ($ (-1166 $))) (-15 -2667 ($ (-1085) (-1166 $))) (-15 -2667 ($ (-1166 (-1085)) (-1166 $))) (IF (|has| |#1| (-514)) (PROGN (-15 -3943 ((-1081 (-382 (-881 |#1|))))) (-15 -1552 ((-1081 (-382 (-881 |#1|))) $)) (-15 -1784 ((-382 (-881 |#1|)) $)) (-15 -1362 ((-382 (-881 |#1|)) $)) (-15 -1662 ((-1081 (-382 (-881 |#1|))))) (-15 -3742 ((-1081 (-382 (-881 |#1|))) $)) (-15 -1983 ((-382 (-881 |#1|)) $)) (-15 -3632 ((-382 (-881 |#1|)) $)) (-15 -3553 ((-382 (-881 |#1|)) $ $)) (-15 -3627 ((-382 (-881 |#1|)))) (-15 -2633 ((-382 (-881 |#1|)) $ $)) (-15 -1935 ((-382 (-881 |#1|)))) (-15 -1777 ((-588 (-881 |#1|)) (-1166 $))) (-15 -1777 ((-588 (-881 |#1|))))) |%noBranch|))) (-157) (-850) (-588 (-1085)) (-1166 (-628 |#1|))) (T -427)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1166 (-382 (-881 *3)))) (-4 *3 (-157)) (-14 *6 (-1166 (-628 *3))) (-5 *1 (-427 *3 *4 *5 *6)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))))) (-2439 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-427 *3 *4 *5 *6)) (|:| -2905 (-588 (-427 *3 *4 *5 *6))))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-2722 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-427 *3 *4 *5 *6)) (|:| -2905 (-588 (-427 *3 *4 *5 *6))))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-2667 (*1 *1) (-12 (-5 *1 (-427 *2 *3 *4 *5)) (-4 *2 (-157)) (-14 *3 (-850)) (-14 *4 (-588 (-1085))) (-14 *5 (-1166 (-628 *2))))) (-2667 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 *2)) (-14 *6 (-1166 (-628 *3))))) (-2667 (*1 *1 *2) (-12 (-5 *2 (-1166 (-1085))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-2667 (*1 *1 *2) (-12 (-5 *2 (-1166 (-427 *3 *4 *5 *6))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-2667 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-427 *4 *5 *6 *7))) (-5 *1 (-427 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-850)) (-14 *6 (-588 *2)) (-14 *7 (-1166 (-628 *4))))) (-2667 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 (-1085))) (-5 *3 (-1166 (-427 *4 *5 *6 *7))) (-5 *1 (-427 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-850)) (-14 *6 (-588 (-1085))) (-14 *7 (-1166 (-628 *4))))) (-3943 (*1 *2) (-12 (-5 *2 (-1081 (-382 (-881 *3)))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-1552 (*1 *2 *1) (-12 (-5 *2 (-1081 (-382 (-881 *3)))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-1662 (*1 *2) (-12 (-5 *2 (-1081 (-382 (-881 *3)))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-1081 (-382 (-881 *3)))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-1983 (*1 *2 *1) (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-3632 (*1 *2 *1) (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-3553 (*1 *2 *1 *1) (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-3627 (*1 *2) (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-2633 (*1 *2 *1 *1) (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-1935 (*1 *2) (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-1166 (-427 *4 *5 *6 *7))) (-5 *2 (-588 (-881 *4))) (-5 *1 (-427 *4 *5 *6 *7)) (-4 *4 (-514)) (-4 *4 (-157)) (-14 *5 (-850)) (-14 *6 (-588 (-1085))) (-14 *7 (-1166 (-628 *4))))) (-1777 (*1 *2) (-12 (-5 *2 (-588 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3)))))) -(-13 (-392 (-382 (-881 |#1|))) (-590 (-1052 |#2| (-382 (-881 |#1|)))) (-10 -8 (-15 -2217 ($ (-1166 (-382 (-881 |#1|))))) (-15 -2439 ((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed"))) (-15 -2722 ((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed"))) (-15 -2667 ($)) (-15 -2667 ($ (-1085))) (-15 -2667 ($ (-1166 (-1085)))) (-15 -2667 ($ (-1166 $))) (-15 -2667 ($ (-1085) (-1166 $))) (-15 -2667 ($ (-1166 (-1085)) (-1166 $))) (IF (|has| |#1| (-514)) (PROGN (-15 -3943 ((-1081 (-382 (-881 |#1|))))) (-15 -1552 ((-1081 (-382 (-881 |#1|))) $)) (-15 -1784 ((-382 (-881 |#1|)) $)) (-15 -1362 ((-382 (-881 |#1|)) $)) (-15 -1662 ((-1081 (-382 (-881 |#1|))))) (-15 -3742 ((-1081 (-382 (-881 |#1|))) $)) (-15 -1983 ((-382 (-881 |#1|)) $)) (-15 -3632 ((-382 (-881 |#1|)) $)) (-15 -3553 ((-382 (-881 |#1|)) $ $)) (-15 -3627 ((-382 (-881 |#1|)))) (-15 -2633 ((-382 (-881 |#1|)) $ $)) (-15 -1935 ((-382 (-881 |#1|)))) (-15 -1777 ((-588 (-881 |#1|)) (-1166 $))) (-15 -1777 ((-588 (-881 |#1|))))) |%noBranch|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 13)) (-3533 (((-588 (-794 |#1|)) $) 74)) (-1264 (((-1081 $) $ (-794 |#1|)) 46) (((-1081 |#2|) $) 116)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#2| (-514)))) (-2298 (($ $) NIL (|has| |#2| (-514)))) (-3007 (((-108) $) NIL (|has| |#2| (-514)))) (-3358 (((-708) $) 21) (((-708) $ (-588 (-794 |#1|))) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-2961 (($ $) NIL (|has| |#2| (-426)))) (-3133 (((-393 $) $) NIL (|has| |#2| (-426)))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#2| "failed") $) 44) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#2| (-962 (-522)))) (((-3 (-794 |#1|) "failed") $) NIL)) (-1478 ((|#2| $) 42) (((-382 (-522)) $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#2| (-962 (-522)))) (((-794 |#1|) $) NIL)) (-2908 (($ $ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-2354 (($ $ (-588 (-522))) 79)) (-3241 (($ $) 68)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL) (((-628 |#2|) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2883 (($ $) NIL (|has| |#2| (-426))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-426)))) (-3232 (((-588 $) $) NIL)) (-2725 (((-108) $) NIL (|has| |#2| (-838)))) (-3792 (($ $ |#2| |#3| $) NIL)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-354))) (|has| |#2| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-522))) (|has| |#2| (-815 (-522)))))) (-2859 (((-108) $) NIL)) (-1391 (((-708) $) 58)) (-3520 (($ (-1081 |#2|) (-794 |#1|)) 121) (($ (-1081 $) (-794 |#1|)) 52)) (-3038 (((-588 $) $) NIL)) (-1374 (((-108) $) 59)) (-3500 (($ |#2| |#3|) 28) (($ $ (-794 |#1|) (-708)) 30) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-3058 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $ (-794 |#1|)) NIL)) (-3564 ((|#3| $) NIL) (((-708) $ (-794 |#1|)) 50) (((-588 (-708)) $ (-588 (-794 |#1|))) 57)) (-1308 (($ $ $) NIL (|has| |#2| (-784)))) (-2524 (($ $ $) NIL (|has| |#2| (-784)))) (-1723 (($ (-1 |#3| |#3|) $) NIL)) (-3810 (($ (-1 |#2| |#2|) $) NIL)) (-3155 (((-3 (-794 |#1|) "failed") $) 39)) (-3216 (($ $) NIL)) (-3224 ((|#2| $) 41)) (-2267 (($ (-588 $)) NIL (|has| |#2| (-426))) (($ $ $) NIL (|has| |#2| (-426)))) (-2311 (((-1068) $) NIL)) (-2760 (((-3 (-588 $) "failed") $) NIL)) (-1919 (((-3 (-588 $) "failed") $) NIL)) (-2024 (((-3 (-2 (|:| |var| (-794 |#1|)) (|:| -3858 (-708))) "failed") $) NIL)) (-4174 (((-1032) $) NIL)) (-3199 (((-108) $) 40)) (-3207 ((|#2| $) 114)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#2| (-426)))) (-2308 (($ (-588 $)) NIL (|has| |#2| (-426))) (($ $ $) 126 (|has| |#2| (-426)))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-2006 (((-393 $) $) NIL (|has| |#2| (-838)))) (-2276 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-514))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-514)))) (-2330 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-794 |#1|) |#2|) 86) (($ $ (-588 (-794 |#1|)) (-588 |#2|)) 89) (($ $ (-794 |#1|) $) 84) (($ $ (-588 (-794 |#1|)) (-588 $)) 105)) (-1615 (($ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-2731 (($ $ (-794 |#1|)) 53) (($ $ (-588 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-2487 ((|#3| $) 67) (((-708) $ (-794 |#1|)) 37) (((-588 (-708)) $ (-588 (-794 |#1|))) 56)) (-3873 (((-821 (-354)) $) NIL (-12 (|has| (-794 |#1|) (-563 (-821 (-354)))) (|has| |#2| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-794 |#1|) (-563 (-821 (-522)))) (|has| |#2| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-794 |#1|) (-563 (-498))) (|has| |#2| (-563 (-498)))))) (-2988 ((|#2| $) 123 (|has| |#2| (-426))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-426)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-838))))) (-2217 (((-792) $) 142) (($ (-522)) NIL) (($ |#2|) 85) (($ (-794 |#1|)) 31) (($ (-382 (-522))) NIL (-3844 (|has| |#2| (-37 (-382 (-522)))) (|has| |#2| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#2| (-514)))) (-2180 (((-588 |#2|) $) NIL)) (-1643 ((|#2| $ |#3|) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| |#2| (-838))) (|has| |#2| (-133))))) (-2742 (((-708)) NIL)) (-1225 (($ $ $ (-708)) NIL (|has| |#2| (-157)))) (-1407 (((-108) $ $) NIL (|has| |#2| (-514)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 16 T CONST)) (-3709 (($) 25 T CONST)) (-2252 (($ $ (-794 |#1|)) NIL) (($ $ (-588 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-1623 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1682 (($ $ |#2|) 64 (|has| |#2| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) 110)) (** (($ $ (-850)) NIL) (($ $ (-708)) 108)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 29) (($ $ (-382 (-522))) NIL (|has| |#2| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#2| (-37 (-382 (-522))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) -(((-428 |#1| |#2| |#3|) (-13 (-878 |#2| |#3| (-794 |#1|)) (-10 -8 (-15 -2354 ($ $ (-588 (-522)))))) (-588 (-1085)) (-971) (-215 (-3591 |#1|) (-708))) (T -428)) -((-2354 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-14 *3 (-588 (-1085))) (-5 *1 (-428 *3 *4 *5)) (-4 *4 (-971)) (-4 *5 (-215 (-3591 *3) (-708)))))) -(-13 (-878 |#2| |#3| (-794 |#1|)) (-10 -8 (-15 -2354 ($ $ (-588 (-522)))))) -((-1462 (((-108) |#1| (-588 |#2|)) 66)) (-3449 (((-3 (-1166 (-588 |#2|)) "failed") (-708) |#1| (-588 |#2|)) 75)) (-2551 (((-3 (-588 |#2|) "failed") |#2| |#1| (-1166 (-588 |#2|))) 77)) (-3004 ((|#2| |#2| |#1|) 28)) (-3516 (((-708) |#2| (-588 |#2|)) 20))) -(((-429 |#1| |#2|) (-10 -7 (-15 -3004 (|#2| |#2| |#1|)) (-15 -3516 ((-708) |#2| (-588 |#2|))) (-15 -3449 ((-3 (-1166 (-588 |#2|)) "failed") (-708) |#1| (-588 |#2|))) (-15 -2551 ((-3 (-588 |#2|) "failed") |#2| |#1| (-1166 (-588 |#2|)))) (-15 -1462 ((-108) |#1| (-588 |#2|)))) (-283) (-1142 |#1|)) (T -429)) -((-1462 (*1 *2 *3 *4) (-12 (-5 *4 (-588 *5)) (-4 *5 (-1142 *3)) (-4 *3 (-283)) (-5 *2 (-108)) (-5 *1 (-429 *3 *5)))) (-2551 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1166 (-588 *3))) (-4 *4 (-283)) (-5 *2 (-588 *3)) (-5 *1 (-429 *4 *3)) (-4 *3 (-1142 *4)))) (-3449 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-708)) (-4 *4 (-283)) (-4 *6 (-1142 *4)) (-5 *2 (-1166 (-588 *6))) (-5 *1 (-429 *4 *6)) (-5 *5 (-588 *6)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *4 (-588 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-283)) (-5 *2 (-708)) (-5 *1 (-429 *5 *3)))) (-3004 (*1 *2 *2 *3) (-12 (-4 *3 (-283)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1142 *3))))) -(-10 -7 (-15 -3004 (|#2| |#2| |#1|)) (-15 -3516 ((-708) |#2| (-588 |#2|))) (-15 -3449 ((-3 (-1166 (-588 |#2|)) "failed") (-708) |#1| (-588 |#2|))) (-15 -2551 ((-3 (-588 |#2|) "failed") |#2| |#1| (-1166 (-588 |#2|)))) (-15 -1462 ((-108) |#1| (-588 |#2|)))) -((-2006 (((-393 |#5|) |#5|) 24))) -(((-430 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2006 ((-393 |#5|) |#5|))) (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $)) (-15 -1660 ((-3 $ "failed") (-1085))))) (-730) (-514) (-514) (-878 |#4| |#2| |#1|)) (T -430)) -((-2006 (*1 *2 *3) (-12 (-4 *4 (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $)) (-15 -1660 ((-3 $ "failed") (-1085)))))) (-4 *5 (-730)) (-4 *7 (-514)) (-5 *2 (-393 *3)) (-5 *1 (-430 *4 *5 *6 *7 *3)) (-4 *6 (-514)) (-4 *3 (-878 *7 *5 *4))))) -(-10 -7 (-15 -2006 ((-393 |#5|) |#5|))) -((-4028 ((|#3|) 36)) (-1789 (((-1081 |#4|) (-1081 |#4|) (-1081 |#4|)) 32))) -(((-431 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1789 ((-1081 |#4|) (-1081 |#4|) (-1081 |#4|))) (-15 -4028 (|#3|))) (-730) (-784) (-838) (-878 |#3| |#1| |#2|)) (T -431)) -((-4028 (*1 *2) (-12 (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-838)) (-5 *1 (-431 *3 *4 *2 *5)) (-4 *5 (-878 *2 *3 *4)))) (-1789 (*1 *2 *2 *2) (-12 (-5 *2 (-1081 *6)) (-4 *6 (-878 *5 *3 *4)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *5 (-838)) (-5 *1 (-431 *3 *4 *5 *6))))) -(-10 -7 (-15 -1789 ((-1081 |#4|) (-1081 |#4|) (-1081 |#4|))) (-15 -4028 (|#3|))) -((-2006 (((-393 (-1081 |#1|)) (-1081 |#1|)) 41))) -(((-432 |#1|) (-10 -7 (-15 -2006 ((-393 (-1081 |#1|)) (-1081 |#1|)))) (-283)) (T -432)) -((-2006 (*1 *2 *3) (-12 (-4 *4 (-283)) (-5 *2 (-393 (-1081 *4))) (-5 *1 (-432 *4)) (-5 *3 (-1081 *4))))) -(-10 -7 (-15 -2006 ((-393 (-1081 |#1|)) (-1081 |#1|)))) -((-3162 (((-51) |#2| (-1085) (-270 |#2|) (-1133 (-708))) 42) (((-51) (-1 |#2| (-522)) (-270 |#2|) (-1133 (-708))) 41) (((-51) |#2| (-1085) (-270 |#2|)) 35) (((-51) (-1 |#2| (-522)) (-270 |#2|)) 27)) (-1270 (((-51) |#2| (-1085) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522))) 80) (((-51) (-1 |#2| (-382 (-522))) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522))) 79) (((-51) |#2| (-1085) (-270 |#2|) (-1133 (-522))) 78) (((-51) (-1 |#2| (-522)) (-270 |#2|) (-1133 (-522))) 77) (((-51) |#2| (-1085) (-270 |#2|)) 72) (((-51) (-1 |#2| (-522)) (-270 |#2|)) 71)) (-3178 (((-51) |#2| (-1085) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522))) 66) (((-51) (-1 |#2| (-382 (-522))) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522))) 64)) (-3170 (((-51) |#2| (-1085) (-270 |#2|) (-1133 (-522))) 48) (((-51) (-1 |#2| (-522)) (-270 |#2|) (-1133 (-522))) 47))) -(((-433 |#1| |#2|) (-10 -7 (-15 -3162 ((-51) (-1 |#2| (-522)) (-270 |#2|))) (-15 -3162 ((-51) |#2| (-1085) (-270 |#2|))) (-15 -3162 ((-51) (-1 |#2| (-522)) (-270 |#2|) (-1133 (-708)))) (-15 -3162 ((-51) |#2| (-1085) (-270 |#2|) (-1133 (-708)))) (-15 -3170 ((-51) (-1 |#2| (-522)) (-270 |#2|) (-1133 (-522)))) (-15 -3170 ((-51) |#2| (-1085) (-270 |#2|) (-1133 (-522)))) (-15 -3178 ((-51) (-1 |#2| (-382 (-522))) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522)))) (-15 -3178 ((-51) |#2| (-1085) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522)))) (-15 -1270 ((-51) (-1 |#2| (-522)) (-270 |#2|))) (-15 -1270 ((-51) |#2| (-1085) (-270 |#2|))) (-15 -1270 ((-51) (-1 |#2| (-522)) (-270 |#2|) (-1133 (-522)))) (-15 -1270 ((-51) |#2| (-1085) (-270 |#2|) (-1133 (-522)))) (-15 -1270 ((-51) (-1 |#2| (-382 (-522))) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522)))) (-15 -1270 ((-51) |#2| (-1085) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522))))) (-13 (-514) (-784) (-962 (-522)) (-584 (-522))) (-13 (-27) (-1106) (-405 |#1|))) (T -433)) -((-1270 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-5 *6 (-1133 (-382 (-522)))) (-5 *7 (-382 (-522))) (-4 *3 (-13 (-27) (-1106) (-405 *8))) (-4 *8 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *8 *3)))) (-1270 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-382 (-522)))) (-5 *4 (-270 *8)) (-5 *5 (-1133 (-382 (-522)))) (-5 *6 (-382 (-522))) (-4 *8 (-13 (-27) (-1106) (-405 *7))) (-4 *7 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *7 *8)))) (-1270 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-5 *6 (-1133 (-522))) (-4 *3 (-13 (-27) (-1106) (-405 *7))) (-4 *7 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *7 *3)))) (-1270 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-522))) (-5 *4 (-270 *7)) (-5 *5 (-1133 (-522))) (-4 *7 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *6 *7)))) (-1270 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *6 *3)))) (-1270 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-522))) (-5 *4 (-270 *6)) (-4 *6 (-13 (-27) (-1106) (-405 *5))) (-4 *5 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *5 *6)))) (-3178 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-5 *6 (-1133 (-382 (-522)))) (-5 *7 (-382 (-522))) (-4 *3 (-13 (-27) (-1106) (-405 *8))) (-4 *8 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *8 *3)))) (-3178 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-382 (-522)))) (-5 *4 (-270 *8)) (-5 *5 (-1133 (-382 (-522)))) (-5 *6 (-382 (-522))) (-4 *8 (-13 (-27) (-1106) (-405 *7))) (-4 *7 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *7 *8)))) (-3170 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-5 *6 (-1133 (-522))) (-4 *3 (-13 (-27) (-1106) (-405 *7))) (-4 *7 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *7 *3)))) (-3170 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-522))) (-5 *4 (-270 *7)) (-5 *5 (-1133 (-522))) (-4 *7 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *6 *7)))) (-3162 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-5 *6 (-1133 (-708))) (-4 *3 (-13 (-27) (-1106) (-405 *7))) (-4 *7 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *7 *3)))) (-3162 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-522))) (-5 *4 (-270 *7)) (-5 *5 (-1133 (-708))) (-4 *7 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *6 *7)))) (-3162 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *6 *3)))) (-3162 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-522))) (-5 *4 (-270 *6)) (-4 *6 (-13 (-27) (-1106) (-405 *5))) (-4 *5 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *5 *6))))) -(-10 -7 (-15 -3162 ((-51) (-1 |#2| (-522)) (-270 |#2|))) (-15 -3162 ((-51) |#2| (-1085) (-270 |#2|))) (-15 -3162 ((-51) (-1 |#2| (-522)) (-270 |#2|) (-1133 (-708)))) (-15 -3162 ((-51) |#2| (-1085) (-270 |#2|) (-1133 (-708)))) (-15 -3170 ((-51) (-1 |#2| (-522)) (-270 |#2|) (-1133 (-522)))) (-15 -3170 ((-51) |#2| (-1085) (-270 |#2|) (-1133 (-522)))) (-15 -3178 ((-51) (-1 |#2| (-382 (-522))) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522)))) (-15 -3178 ((-51) |#2| (-1085) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522)))) (-15 -1270 ((-51) (-1 |#2| (-522)) (-270 |#2|))) (-15 -1270 ((-51) |#2| (-1085) (-270 |#2|))) (-15 -1270 ((-51) (-1 |#2| (-522)) (-270 |#2|) (-1133 (-522)))) (-15 -1270 ((-51) |#2| (-1085) (-270 |#2|) (-1133 (-522)))) (-15 -1270 ((-51) (-1 |#2| (-382 (-522))) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522)))) (-15 -1270 ((-51) |#2| (-1085) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522))))) -((-3004 ((|#2| |#2| |#1|) 15)) (-3254 (((-588 |#2|) |#2| (-588 |#2|) |#1| (-850)) 69)) (-2148 (((-2 (|:| |plist| (-588 |#2|)) (|:| |modulo| |#1|)) |#2| (-588 |#2|) |#1| (-850)) 60))) -(((-434 |#1| |#2|) (-10 -7 (-15 -2148 ((-2 (|:| |plist| (-588 |#2|)) (|:| |modulo| |#1|)) |#2| (-588 |#2|) |#1| (-850))) (-15 -3254 ((-588 |#2|) |#2| (-588 |#2|) |#1| (-850))) (-15 -3004 (|#2| |#2| |#1|))) (-283) (-1142 |#1|)) (T -434)) -((-3004 (*1 *2 *2 *3) (-12 (-4 *3 (-283)) (-5 *1 (-434 *3 *2)) (-4 *2 (-1142 *3)))) (-3254 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-588 *3)) (-5 *5 (-850)) (-4 *3 (-1142 *4)) (-4 *4 (-283)) (-5 *1 (-434 *4 *3)))) (-2148 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-850)) (-4 *5 (-283)) (-4 *3 (-1142 *5)) (-5 *2 (-2 (|:| |plist| (-588 *3)) (|:| |modulo| *5))) (-5 *1 (-434 *5 *3)) (-5 *4 (-588 *3))))) -(-10 -7 (-15 -2148 ((-2 (|:| |plist| (-588 |#2|)) (|:| |modulo| |#1|)) |#2| (-588 |#2|) |#1| (-850))) (-15 -3254 ((-588 |#2|) |#2| (-588 |#2|) |#1| (-850))) (-15 -3004 (|#2| |#2| |#1|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 28)) (-2826 (($ |#3|) 25)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3241 (($ $) 32)) (-3448 (($ |#2| |#4| $) 33)) (-3500 (($ |#2| (-651 |#3| |#4| |#5|)) 24)) (-3216 (((-651 |#3| |#4| |#5|) $) 15)) (-2727 ((|#3| $) 19)) (-4114 ((|#4| $) 17)) (-3224 ((|#2| $) 29)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-1780 (($ |#2| |#3| |#4|) 26)) (-3697 (($) 36 T CONST)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) 34)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-435 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-655 |#6|) (-655 |#2|) (-10 -8 (-15 -3224 (|#2| $)) (-15 -3216 ((-651 |#3| |#4| |#5|) $)) (-15 -4114 (|#4| $)) (-15 -2727 (|#3| $)) (-15 -3241 ($ $)) (-15 -3500 ($ |#2| (-651 |#3| |#4| |#5|))) (-15 -2826 ($ |#3|)) (-15 -1780 ($ |#2| |#3| |#4|)) (-15 -3448 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-588 (-1085)) (-157) (-784) (-215 (-3591 |#1|) (-708)) (-1 (-108) (-2 (|:| -2882 |#3|) (|:| -3858 |#4|)) (-2 (|:| -2882 |#3|) (|:| -3858 |#4|))) (-878 |#2| |#4| (-794 |#1|))) (T -435)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-588 (-1085))) (-4 *4 (-157)) (-4 *6 (-215 (-3591 *3) (-708))) (-14 *7 (-1 (-108) (-2 (|:| -2882 *5) (|:| -3858 *6)) (-2 (|:| -2882 *5) (|:| -3858 *6)))) (-5 *1 (-435 *3 *4 *5 *6 *7 *2)) (-4 *5 (-784)) (-4 *2 (-878 *4 *6 (-794 *3))))) (-3224 (*1 *2 *1) (-12 (-14 *3 (-588 (-1085))) (-4 *5 (-215 (-3591 *3) (-708))) (-14 *6 (-1 (-108) (-2 (|:| -2882 *4) (|:| -3858 *5)) (-2 (|:| -2882 *4) (|:| -3858 *5)))) (-4 *2 (-157)) (-5 *1 (-435 *3 *2 *4 *5 *6 *7)) (-4 *4 (-784)) (-4 *7 (-878 *2 *5 (-794 *3))))) (-3216 (*1 *2 *1) (-12 (-14 *3 (-588 (-1085))) (-4 *4 (-157)) (-4 *6 (-215 (-3591 *3) (-708))) (-14 *7 (-1 (-108) (-2 (|:| -2882 *5) (|:| -3858 *6)) (-2 (|:| -2882 *5) (|:| -3858 *6)))) (-5 *2 (-651 *5 *6 *7)) (-5 *1 (-435 *3 *4 *5 *6 *7 *8)) (-4 *5 (-784)) (-4 *8 (-878 *4 *6 (-794 *3))))) (-4114 (*1 *2 *1) (-12 (-14 *3 (-588 (-1085))) (-4 *4 (-157)) (-14 *6 (-1 (-108) (-2 (|:| -2882 *5) (|:| -3858 *2)) (-2 (|:| -2882 *5) (|:| -3858 *2)))) (-4 *2 (-215 (-3591 *3) (-708))) (-5 *1 (-435 *3 *4 *5 *2 *6 *7)) (-4 *5 (-784)) (-4 *7 (-878 *4 *2 (-794 *3))))) (-2727 (*1 *2 *1) (-12 (-14 *3 (-588 (-1085))) (-4 *4 (-157)) (-4 *5 (-215 (-3591 *3) (-708))) (-14 *6 (-1 (-108) (-2 (|:| -2882 *2) (|:| -3858 *5)) (-2 (|:| -2882 *2) (|:| -3858 *5)))) (-4 *2 (-784)) (-5 *1 (-435 *3 *4 *2 *5 *6 *7)) (-4 *7 (-878 *4 *5 (-794 *3))))) (-3241 (*1 *1 *1) (-12 (-14 *2 (-588 (-1085))) (-4 *3 (-157)) (-4 *5 (-215 (-3591 *2) (-708))) (-14 *6 (-1 (-108) (-2 (|:| -2882 *4) (|:| -3858 *5)) (-2 (|:| -2882 *4) (|:| -3858 *5)))) (-5 *1 (-435 *2 *3 *4 *5 *6 *7)) (-4 *4 (-784)) (-4 *7 (-878 *3 *5 (-794 *2))))) (-3500 (*1 *1 *2 *3) (-12 (-5 *3 (-651 *5 *6 *7)) (-4 *5 (-784)) (-4 *6 (-215 (-3591 *4) (-708))) (-14 *7 (-1 (-108) (-2 (|:| -2882 *5) (|:| -3858 *6)) (-2 (|:| -2882 *5) (|:| -3858 *6)))) (-14 *4 (-588 (-1085))) (-4 *2 (-157)) (-5 *1 (-435 *4 *2 *5 *6 *7 *8)) (-4 *8 (-878 *2 *6 (-794 *4))))) (-2826 (*1 *1 *2) (-12 (-14 *3 (-588 (-1085))) (-4 *4 (-157)) (-4 *5 (-215 (-3591 *3) (-708))) (-14 *6 (-1 (-108) (-2 (|:| -2882 *2) (|:| -3858 *5)) (-2 (|:| -2882 *2) (|:| -3858 *5)))) (-5 *1 (-435 *3 *4 *2 *5 *6 *7)) (-4 *2 (-784)) (-4 *7 (-878 *4 *5 (-794 *3))))) (-1780 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-588 (-1085))) (-4 *2 (-157)) (-4 *4 (-215 (-3591 *5) (-708))) (-14 *6 (-1 (-108) (-2 (|:| -2882 *3) (|:| -3858 *4)) (-2 (|:| -2882 *3) (|:| -3858 *4)))) (-5 *1 (-435 *5 *2 *3 *4 *6 *7)) (-4 *3 (-784)) (-4 *7 (-878 *2 *4 (-794 *5))))) (-3448 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-588 (-1085))) (-4 *2 (-157)) (-4 *3 (-215 (-3591 *4) (-708))) (-14 *6 (-1 (-108) (-2 (|:| -2882 *5) (|:| -3858 *3)) (-2 (|:| -2882 *5) (|:| -3858 *3)))) (-5 *1 (-435 *4 *2 *5 *3 *6 *7)) (-4 *5 (-784)) (-4 *7 (-878 *2 *3 (-794 *4)))))) -(-13 (-655 |#6|) (-655 |#2|) (-10 -8 (-15 -3224 (|#2| $)) (-15 -3216 ((-651 |#3| |#4| |#5|) $)) (-15 -4114 (|#4| $)) (-15 -2727 (|#3| $)) (-15 -3241 ($ $)) (-15 -3500 ($ |#2| (-651 |#3| |#4| |#5|))) (-15 -2826 ($ |#3|)) (-15 -1780 ($ |#2| |#3| |#4|)) (-15 -3448 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-3337 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35))) -(((-436 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3337 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-730) (-784) (-514) (-878 |#3| |#1| |#2|) (-13 (-962 (-382 (-522))) (-338) (-10 -8 (-15 -2217 ($ |#4|)) (-15 -2947 (|#4| $)) (-15 -2959 (|#4| $))))) (T -436)) -((-3337 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-784)) (-4 *5 (-730)) (-4 *6 (-514)) (-4 *7 (-878 *6 *5 *3)) (-5 *1 (-436 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-962 (-382 (-522))) (-338) (-10 -8 (-15 -2217 ($ *7)) (-15 -2947 (*7 $)) (-15 -2959 (*7 $)))))))) -(-10 -7 (-15 -3337 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-1419 (((-108) $ $) NIL)) (-3533 (((-588 |#3|) $) 41)) (-2161 (((-108) $) NIL)) (-2702 (((-108) $) NIL (|has| |#1| (-514)))) (-3296 (((-2 (|:| |under| $) (|:| -3592 $) (|:| |upper| $)) $ |#3|) NIL)) (-2717 (((-108) $ (-708)) NIL)) (-1696 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-3367 (($) NIL T CONST)) (-1298 (((-108) $) NIL (|has| |#1| (-514)))) (-1657 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3598 (((-108) $ $) NIL (|has| |#1| (-514)))) (-2818 (((-108) $) NIL (|has| |#1| (-514)))) (-3461 (((-588 |#4|) (-588 |#4|) $) NIL (|has| |#1| (-514)))) (-3668 (((-588 |#4|) (-588 |#4|) $) NIL (|has| |#1| (-514)))) (-3700 (((-3 $ "failed") (-588 |#4|)) 47)) (-1478 (($ (-588 |#4|)) NIL)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-1424 (($ |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-4002 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-514)))) (-2153 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4238)))) (-2395 (((-588 |#4|) $) 18 (|has| $ (-6 -4238)))) (-1933 ((|#3| $) 45)) (-1480 (((-108) $ (-708)) NIL)) (-4084 (((-588 |#4|) $) 14 (|has| $ (-6 -4238)))) (-4176 (((-108) |#4| $) 26 (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-2397 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#4| |#4|) $) 21)) (-2714 (((-588 |#3|) $) NIL)) (-3826 (((-108) |#3| $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL)) (-2507 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-514)))) (-4174 (((-1032) $) NIL)) (-2187 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3487 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 |#4|) (-588 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) 39)) (-3298 (($) 17)) (-4187 (((-708) |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) (((-708) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2463 (($ $) 16)) (-3873 (((-498) $) NIL (|has| |#4| (-563 (-498)))) (($ (-588 |#4|)) 49)) (-2227 (($ (-588 |#4|)) 13)) (-2271 (($ $ |#3|) NIL)) (-2154 (($ $ |#3|) NIL)) (-2773 (($ $ |#3|) NIL)) (-2217 (((-792) $) 38) (((-588 |#4|) $) 48)) (-1381 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 30)) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-437 |#1| |#2| |#3| |#4|) (-13 (-903 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3873 ($ (-588 |#4|))) (-6 -4238) (-6 -4239))) (-971) (-730) (-784) (-985 |#1| |#2| |#3|)) (T -437)) -((-3873 (*1 *1 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-437 *3 *4 *5 *6))))) -(-13 (-903 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3873 ($ (-588 |#4|))) (-6 -4238) (-6 -4239))) -((-3697 (($) 11)) (-3709 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-438 |#1| |#2| |#3|) (-10 -8 (-15 -3709 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3697 (|#1|))) (-439 |#2| |#3|) (-157) (-23)) (T -438)) -NIL -(-10 -8 (-15 -3709 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3697 (|#1|))) -((-1419 (((-108) $ $) 7)) (-3700 (((-3 |#1| "failed") $) 26)) (-1478 ((|#1| $) 25)) (-3589 (($ $ $) 23)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2487 ((|#2| $) 19)) (-2217 (((-792) $) 11) (($ |#1|) 27)) (-3697 (($) 18 T CONST)) (-3709 (($) 24 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 15) (($ $ $) 13)) (-1661 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-439 |#1| |#2|) (-1197) (-157) (-23)) (T -439)) -((-3709 (*1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-3589 (*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))) -(-13 (-444 |t#1| |t#2|) (-962 |t#1|) (-10 -8 (-15 (-3709) ($) -2855) (-15 -3589 ($ $ $)))) -(((-97) . T) ((-562 (-792)) . T) ((-444 |#1| |#2|) . T) ((-962 |#1|) . T) ((-1014) . T)) -((-3457 (((-1166 (-1166 (-522))) (-1166 (-1166 (-522))) (-850)) 18)) (-1991 (((-1166 (-1166 (-522))) (-850)) 16))) -(((-440) (-10 -7 (-15 -3457 ((-1166 (-1166 (-522))) (-1166 (-1166 (-522))) (-850))) (-15 -1991 ((-1166 (-1166 (-522))) (-850))))) (T -440)) -((-1991 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1166 (-1166 (-522)))) (-5 *1 (-440)))) (-3457 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-1166 (-522)))) (-5 *3 (-850)) (-5 *1 (-440))))) -(-10 -7 (-15 -3457 ((-1166 (-1166 (-522))) (-1166 (-1166 (-522))) (-850))) (-15 -1991 ((-1166 (-1166 (-522))) (-850)))) -((-3791 (((-522) (-522)) 30) (((-522)) 22)) (-2481 (((-522) (-522)) 26) (((-522)) 18)) (-3258 (((-522) (-522)) 28) (((-522)) 20)) (-2777 (((-108) (-108)) 12) (((-108)) 10)) (-3009 (((-108) (-108)) 11) (((-108)) 9)) (-1768 (((-108) (-108)) 24) (((-108)) 15))) -(((-441) (-10 -7 (-15 -3009 ((-108))) (-15 -2777 ((-108))) (-15 -3009 ((-108) (-108))) (-15 -2777 ((-108) (-108))) (-15 -1768 ((-108))) (-15 -3258 ((-522))) (-15 -2481 ((-522))) (-15 -3791 ((-522))) (-15 -1768 ((-108) (-108))) (-15 -3258 ((-522) (-522))) (-15 -2481 ((-522) (-522))) (-15 -3791 ((-522) (-522))))) (T -441)) -((-3791 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441)))) (-2481 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441)))) (-3258 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441)))) (-1768 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441)))) (-3791 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441)))) (-2481 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441)))) (-3258 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441)))) (-1768 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441)))) (-2777 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441)))) (-3009 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441)))) (-2777 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441)))) (-3009 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441))))) -(-10 -7 (-15 -3009 ((-108))) (-15 -2777 ((-108))) (-15 -3009 ((-108) (-108))) (-15 -2777 ((-108) (-108))) (-15 -1768 ((-108))) (-15 -3258 ((-522))) (-15 -2481 ((-522))) (-15 -3791 ((-522))) (-15 -1768 ((-108) (-108))) (-15 -3258 ((-522) (-522))) (-15 -2481 ((-522) (-522))) (-15 -3791 ((-522) (-522)))) -((-1419 (((-108) $ $) NIL)) (-2035 (((-588 (-354)) $) 27) (((-588 (-354)) $ (-588 (-354))) 91)) (-3753 (((-588 (-1009 (-354))) $) 14) (((-588 (-1009 (-354))) $ (-588 (-1009 (-354)))) 88)) (-1387 (((-588 (-588 (-872 (-202)))) (-588 (-588 (-872 (-202)))) (-588 (-803))) 42)) (-1222 (((-588 (-588 (-872 (-202)))) $) 84)) (-1239 (((-1171) $ (-872 (-202)) (-803)) 104)) (-3362 (($ $) 83) (($ (-588 (-588 (-872 (-202))))) 94) (($ (-588 (-588 (-872 (-202)))) (-588 (-803)) (-588 (-803)) (-588 (-850))) 93) (($ (-588 (-588 (-872 (-202)))) (-588 (-803)) (-588 (-803)) (-588 (-850)) (-588 (-239))) 95)) (-2311 (((-1068) $) NIL)) (-2644 (((-522) $) 66)) (-4174 (((-1032) $) NIL)) (-2273 (($) 92)) (-2650 (((-588 (-202)) (-588 (-588 (-872 (-202))))) 52)) (-1302 (((-1171) $ (-588 (-872 (-202))) (-803) (-803) (-850)) 98) (((-1171) $ (-872 (-202))) 100) (((-1171) $ (-872 (-202)) (-803) (-803) (-850)) 99)) (-2217 (((-792) $) 110) (($ (-588 (-588 (-872 (-202))))) 105)) (-3080 (((-1171) $ (-872 (-202))) 103)) (-1562 (((-108) $ $) NIL))) -(((-442) (-13 (-1014) (-10 -8 (-15 -2273 ($)) (-15 -3362 ($ $)) (-15 -3362 ($ (-588 (-588 (-872 (-202)))))) (-15 -3362 ($ (-588 (-588 (-872 (-202)))) (-588 (-803)) (-588 (-803)) (-588 (-850)))) (-15 -3362 ($ (-588 (-588 (-872 (-202)))) (-588 (-803)) (-588 (-803)) (-588 (-850)) (-588 (-239)))) (-15 -1222 ((-588 (-588 (-872 (-202)))) $)) (-15 -2644 ((-522) $)) (-15 -3753 ((-588 (-1009 (-354))) $)) (-15 -3753 ((-588 (-1009 (-354))) $ (-588 (-1009 (-354))))) (-15 -2035 ((-588 (-354)) $)) (-15 -2035 ((-588 (-354)) $ (-588 (-354)))) (-15 -1302 ((-1171) $ (-588 (-872 (-202))) (-803) (-803) (-850))) (-15 -1302 ((-1171) $ (-872 (-202)))) (-15 -1302 ((-1171) $ (-872 (-202)) (-803) (-803) (-850))) (-15 -3080 ((-1171) $ (-872 (-202)))) (-15 -1239 ((-1171) $ (-872 (-202)) (-803))) (-15 -2217 ($ (-588 (-588 (-872 (-202)))))) (-15 -2217 ((-792) $)) (-15 -1387 ((-588 (-588 (-872 (-202)))) (-588 (-588 (-872 (-202)))) (-588 (-803)))) (-15 -2650 ((-588 (-202)) (-588 (-588 (-872 (-202))))))))) (T -442)) -((-2217 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-442)))) (-2273 (*1 *1) (-5 *1 (-442))) (-3362 (*1 *1 *1) (-5 *1 (-442))) (-3362 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *1 (-442)))) (-3362 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *3 (-588 (-803))) (-5 *4 (-588 (-850))) (-5 *1 (-442)))) (-3362 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *3 (-588 (-803))) (-5 *4 (-588 (-850))) (-5 *5 (-588 (-239))) (-5 *1 (-442)))) (-1222 (*1 *2 *1) (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *1 (-442)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-442)))) (-3753 (*1 *2 *1) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *1 (-442)))) (-3753 (*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *1 (-442)))) (-2035 (*1 *2 *1) (-12 (-5 *2 (-588 (-354))) (-5 *1 (-442)))) (-2035 (*1 *2 *1 *2) (-12 (-5 *2 (-588 (-354))) (-5 *1 (-442)))) (-1302 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-588 (-872 (-202)))) (-5 *4 (-803)) (-5 *5 (-850)) (-5 *2 (-1171)) (-5 *1 (-442)))) (-1302 (*1 *2 *1 *3) (-12 (-5 *3 (-872 (-202))) (-5 *2 (-1171)) (-5 *1 (-442)))) (-1302 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-872 (-202))) (-5 *4 (-803)) (-5 *5 (-850)) (-5 *2 (-1171)) (-5 *1 (-442)))) (-3080 (*1 *2 *1 *3) (-12 (-5 *3 (-872 (-202))) (-5 *2 (-1171)) (-5 *1 (-442)))) (-1239 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-872 (-202))) (-5 *4 (-803)) (-5 *2 (-1171)) (-5 *1 (-442)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *1 (-442)))) (-1387 (*1 *2 *2 *3) (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *3 (-588 (-803))) (-5 *1 (-442)))) (-2650 (*1 *2 *3) (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *2 (-588 (-202))) (-5 *1 (-442))))) -(-13 (-1014) (-10 -8 (-15 -2273 ($)) (-15 -3362 ($ $)) (-15 -3362 ($ (-588 (-588 (-872 (-202)))))) (-15 -3362 ($ (-588 (-588 (-872 (-202)))) (-588 (-803)) (-588 (-803)) (-588 (-850)))) (-15 -3362 ($ (-588 (-588 (-872 (-202)))) (-588 (-803)) (-588 (-803)) (-588 (-850)) (-588 (-239)))) (-15 -1222 ((-588 (-588 (-872 (-202)))) $)) (-15 -2644 ((-522) $)) (-15 -3753 ((-588 (-1009 (-354))) $)) (-15 -3753 ((-588 (-1009 (-354))) $ (-588 (-1009 (-354))))) (-15 -2035 ((-588 (-354)) $)) (-15 -2035 ((-588 (-354)) $ (-588 (-354)))) (-15 -1302 ((-1171) $ (-588 (-872 (-202))) (-803) (-803) (-850))) (-15 -1302 ((-1171) $ (-872 (-202)))) (-15 -1302 ((-1171) $ (-872 (-202)) (-803) (-803) (-850))) (-15 -3080 ((-1171) $ (-872 (-202)))) (-15 -1239 ((-1171) $ (-872 (-202)) (-803))) (-15 -2217 ($ (-588 (-588 (-872 (-202)))))) (-15 -2217 ((-792) $)) (-15 -1387 ((-588 (-588 (-872 (-202)))) (-588 (-588 (-872 (-202)))) (-588 (-803)))) (-15 -2650 ((-588 (-202)) (-588 (-588 (-872 (-202)))))))) -((-1672 (($ $) NIL) (($ $ $) 11))) -(((-443 |#1| |#2| |#3|) (-10 -8 (-15 -1672 (|#1| |#1| |#1|)) (-15 -1672 (|#1| |#1|))) (-444 |#2| |#3|) (-157) (-23)) (T -443)) -NIL -(-10 -8 (-15 -1672 (|#1| |#1| |#1|)) (-15 -1672 (|#1| |#1|))) -((-1419 (((-108) $ $) 7)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2487 ((|#2| $) 19)) (-2217 (((-792) $) 11)) (-3697 (($) 18 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 15) (($ $ $) 13)) (-1661 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-444 |#1| |#2|) (-1197) (-157) (-23)) (T -444)) -((-2487 (*1 *2 *1) (-12 (-4 *1 (-444 *3 *2)) (-4 *3 (-157)) (-4 *2 (-23)))) (-3697 (*1 *1) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-1672 (*1 *1 *1) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-1661 (*1 *1 *1 *1) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-1672 (*1 *1 *1 *1) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))) -(-13 (-1014) (-10 -8 (-15 -2487 (|t#2| $)) (-15 (-3697) ($) -2855) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1672 ($ $)) (-15 -1661 ($ $ $)) (-15 -1672 ($ $ $)))) -(((-97) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-4040 (((-3 (-588 (-454 |#1| |#2|)) "failed") (-588 (-454 |#1| |#2|)) (-588 (-794 |#1|))) 90)) (-3343 (((-588 (-588 (-224 |#1| |#2|))) (-588 (-224 |#1| |#2|)) (-588 (-794 |#1|))) 88)) (-2011 (((-2 (|:| |dpolys| (-588 (-224 |#1| |#2|))) (|:| |coords| (-588 (-522)))) (-588 (-224 |#1| |#2|)) (-588 (-794 |#1|))) 58))) -(((-445 |#1| |#2| |#3|) (-10 -7 (-15 -3343 ((-588 (-588 (-224 |#1| |#2|))) (-588 (-224 |#1| |#2|)) (-588 (-794 |#1|)))) (-15 -4040 ((-3 (-588 (-454 |#1| |#2|)) "failed") (-588 (-454 |#1| |#2|)) (-588 (-794 |#1|)))) (-15 -2011 ((-2 (|:| |dpolys| (-588 (-224 |#1| |#2|))) (|:| |coords| (-588 (-522)))) (-588 (-224 |#1| |#2|)) (-588 (-794 |#1|))))) (-588 (-1085)) (-426) (-426)) (T -445)) -((-2011 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-794 *5))) (-14 *5 (-588 (-1085))) (-4 *6 (-426)) (-5 *2 (-2 (|:| |dpolys| (-588 (-224 *5 *6))) (|:| |coords| (-588 (-522))))) (-5 *1 (-445 *5 *6 *7)) (-5 *3 (-588 (-224 *5 *6))) (-4 *7 (-426)))) (-4040 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-588 (-454 *4 *5))) (-5 *3 (-588 (-794 *4))) (-14 *4 (-588 (-1085))) (-4 *5 (-426)) (-5 *1 (-445 *4 *5 *6)) (-4 *6 (-426)))) (-3343 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-794 *5))) (-14 *5 (-588 (-1085))) (-4 *6 (-426)) (-5 *2 (-588 (-588 (-224 *5 *6)))) (-5 *1 (-445 *5 *6 *7)) (-5 *3 (-588 (-224 *5 *6))) (-4 *7 (-426))))) -(-10 -7 (-15 -3343 ((-588 (-588 (-224 |#1| |#2|))) (-588 (-224 |#1| |#2|)) (-588 (-794 |#1|)))) (-15 -4040 ((-3 (-588 (-454 |#1| |#2|)) "failed") (-588 (-454 |#1| |#2|)) (-588 (-794 |#1|)))) (-15 -2011 ((-2 (|:| |dpolys| (-588 (-224 |#1| |#2|))) (|:| |coords| (-588 (-522)))) (-588 (-224 |#1| |#2|)) (-588 (-794 |#1|))))) -((-3920 (((-3 $ "failed") $) 11)) (-2983 (($ $ $) 20)) (-1596 (($ $ $) 21)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) 14)) (-1682 (($ $ $) 9)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) 19))) -(((-446 |#1|) (-10 -8 (-15 -1596 (|#1| |#1| |#1|)) (-15 -2983 (|#1| |#1| |#1|)) (-15 -3622 (|#1| |#1| (-522))) (-15 ** (|#1| |#1| (-522))) (-15 -1682 (|#1| |#1| |#1|)) (-15 -3920 ((-3 |#1| "failed") |#1|)) (-15 -3622 (|#1| |#1| (-708))) (-15 ** (|#1| |#1| (-708))) (-15 -3622 (|#1| |#1| (-850))) (-15 ** (|#1| |#1| (-850)))) (-447)) (T -446)) -NIL -(-10 -8 (-15 -1596 (|#1| |#1| |#1|)) (-15 -2983 (|#1| |#1| |#1|)) (-15 -3622 (|#1| |#1| (-522))) (-15 ** (|#1| |#1| (-522))) (-15 -1682 (|#1| |#1| |#1|)) (-15 -3920 ((-3 |#1| "failed") |#1|)) (-15 -3622 (|#1| |#1| (-708))) (-15 ** (|#1| |#1| (-708))) (-15 -3622 (|#1| |#1| (-850))) (-15 ** (|#1| |#1| (-850)))) -((-1419 (((-108) $ $) 7)) (-3367 (($) 20 T CONST)) (-3920 (((-3 $ "failed") $) 16)) (-2859 (((-108) $) 19)) (-2311 (((-1068) $) 9)) (-3193 (($ $) 27)) (-4174 (((-1032) $) 10)) (-2983 (($ $ $) 23)) (-1596 (($ $ $) 22)) (-2217 (((-792) $) 11)) (-3622 (($ $ (-850)) 13) (($ $ (-708)) 17) (($ $ (-522)) 24)) (-3709 (($) 21 T CONST)) (-1562 (((-108) $ $) 6)) (-1682 (($ $ $) 26)) (** (($ $ (-850)) 14) (($ $ (-708)) 18) (($ $ (-522)) 25)) (* (($ $ $) 15))) -(((-447) (-1197)) (T -447)) -((-3193 (*1 *1 *1) (-4 *1 (-447))) (-1682 (*1 *1 *1 *1) (-4 *1 (-447))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-447)) (-5 *2 (-522)))) (-3622 (*1 *1 *1 *2) (-12 (-4 *1 (-447)) (-5 *2 (-522)))) (-2983 (*1 *1 *1 *1) (-4 *1 (-447))) (-1596 (*1 *1 *1 *1) (-4 *1 (-447)))) -(-13 (-664) (-10 -8 (-15 -3193 ($ $)) (-15 -1682 ($ $ $)) (-15 ** ($ $ (-522))) (-15 -3622 ($ $ (-522))) (-6 -4235) (-15 -2983 ($ $ $)) (-15 -1596 ($ $ $)))) -(((-97) . T) ((-562 (-792)) . T) ((-664) . T) ((-1026) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3533 (((-588 (-999)) $) NIL)) (-1660 (((-1085) $) 17)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) NIL (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-3495 (($ $ (-382 (-522))) NIL) (($ $ (-382 (-522)) (-382 (-522))) NIL)) (-3024 (((-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|))) $) NIL)) (-3044 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2923 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL (|has| |#1| (-338)))) (-3133 (((-393 $) $) NIL (|has| |#1| (-338)))) (-2016 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2805 (((-108) $ $) NIL (|has| |#1| (-338)))) (-3023 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2906 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1270 (($ (-708) (-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|)))) NIL)) (-3066 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2936 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3367 (($) NIL T CONST)) (-2333 (($ $ $) NIL (|has| |#1| (-338)))) (-3241 (($ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2303 (($ $ $) NIL (|has| |#1| (-338)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2725 (((-108) $) NIL (|has| |#1| (-338)))) (-3672 (((-108) $) NIL)) (-2980 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3872 (((-382 (-522)) $) NIL) (((-382 (-522)) $ (-382 (-522))) NIL)) (-2859 (((-108) $) NIL)) (-1811 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2895 (($ $ (-850)) NIL) (($ $ (-382 (-522))) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-1374 (((-108) $) NIL)) (-3500 (($ |#1| (-382 (-522))) NIL) (($ $ (-999) (-382 (-522))) NIL) (($ $ (-588 (-999)) (-588 (-382 (-522)))) NIL)) (-3810 (($ (-1 |#1| |#1|) $) 22)) (-1238 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3216 (($ $) NIL)) (-3224 ((|#1| $) NIL)) (-2267 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL (|has| |#1| (-338)))) (-2611 (($ $) 26 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) 33 (-3844 (-12 (|has| |#1| (-15 -2611 (|#1| |#1| (-1085)))) (|has| |#1| (-15 -3533 ((-588 (-1085)) |#1|))) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-887)) (|has| |#1| (-1106))))) (($ $ (-1162 |#2|)) 27 (|has| |#1| (-37 (-382 (-522)))))) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-338)))) (-2308 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-2006 (((-393 $) $) NIL (|has| |#1| (-338)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-338)))) (-3934 (($ $ (-382 (-522))) NIL)) (-2276 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3357 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2330 (((-1066 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))))) (-4031 (((-708) $) NIL (|has| |#1| (-338)))) (-2683 ((|#1| $ (-382 (-522))) NIL) (($ $ $) NIL (|has| (-382 (-522)) (-1026)))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-338)))) (-2731 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) 25 (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $ (-1162 |#2|)) 15)) (-2487 (((-382 (-522)) $) NIL)) (-1831 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2946 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3054 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2928 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3035 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2915 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1944 (($ $) NIL)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1162 |#2|)) NIL) (($ (-1151 |#1| |#2| |#3|)) 9) (($ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $) NIL (|has| |#1| (-514)))) (-1643 ((|#1| $ (-382 (-522))) NIL)) (-3040 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2742 (((-708)) NIL)) (-1980 ((|#1| $) 18)) (-1856 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2976 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1839 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2957 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1873 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3001 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3996 ((|#1| $ (-382 (-522))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))) (|has| |#1| (-15 -2217 (|#1| (-1085))))))) (-2476 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3011 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1864 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2989 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1849 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2966 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-1672 (($ $) NIL) (($ $ $) 24)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))))) -(((-448 |#1| |#2| |#3|) (-13 (-1147 |#1|) (-10 -8 (-15 -2217 ($ (-1162 |#2|))) (-15 -2217 ($ (-1151 |#1| |#2| |#3|))) (-15 -2731 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -2611 ($ $ (-1162 |#2|))) |%noBranch|))) (-971) (-1085) |#1|) (T -448)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-448 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1151 *3 *4 *5)) (-4 *3 (-971)) (-14 *4 (-1085)) (-14 *5 *3) (-5 *1 (-448 *3 *4 *5)))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-448 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-2611 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-448 *3 *4 *5)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3)))) -(-13 (-1147 |#1|) (-10 -8 (-15 -2217 ($ (-1162 |#2|))) (-15 -2217 ($ (-1151 |#1| |#2| |#3|))) (-15 -2731 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -2611 ($ $ (-1162 |#2|))) |%noBranch|))) -((-1419 (((-108) $ $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-1883 (($) NIL) (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-3883 (((-1171) $ |#1| |#1|) NIL (|has| $ (-6 -4239)))) (-2717 (((-108) $ (-708)) NIL)) (-2437 ((|#2| $ |#1| |#2|) 18)) (-1213 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-4011 (((-3 |#2| "failed") |#1| $) 19)) (-3367 (($) NIL T CONST)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))))) (-1700 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-3 |#2| "failed") |#1| $) 16)) (-1424 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2153 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2411 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#2| $ |#1|) NIL)) (-2395 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) NIL)) (-3496 ((|#1| $) NIL (|has| |#1| (-784)))) (-4084 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2201 ((|#1| $) NIL (|has| |#1| (-784)))) (-2397 (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4239))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2562 (((-588 |#1|) $) NIL)) (-2241 (((-108) |#1| $) NIL)) (-1431 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-3365 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-2130 (((-588 |#1|) $) NIL)) (-2103 (((-108) |#1| $) NIL)) (-4174 (((-1032) $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2337 ((|#2| $) NIL (|has| |#1| (-784)))) (-2187 (((-3 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) "failed") (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL)) (-1972 (($ $ |#2|) NIL (|has| $ (-6 -4239)))) (-3295 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-3487 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1973 (((-588 |#2|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3546 (($) NIL) (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-4187 (((-708) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014)))) (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-563 (-498))))) (-2227 (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-2217 (((-792) $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-562 (-792))) (|has| |#2| (-562 (-792)))))) (-2501 (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-1381 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-449 |#1| |#2| |#3| |#4|) (-1097 |#1| |#2|) (-1014) (-1014) (-1097 |#1| |#2|) |#2|) (T -449)) -NIL -(-1097 |#1| |#2|) -((-1419 (((-108) $ $) NIL)) (-3829 (((-588 (-2 (|:| -1720 $) (|:| -1566 (-588 |#4|)))) (-588 |#4|)) NIL)) (-2510 (((-588 $) (-588 |#4|)) NIL)) (-3533 (((-588 |#3|) $) NIL)) (-2161 (((-108) $) NIL)) (-2702 (((-108) $) NIL (|has| |#1| (-514)))) (-1900 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2163 ((|#4| |#4| $) NIL)) (-3296 (((-2 (|:| |under| $) (|:| -3592 $) (|:| |upper| $)) $ |#3|) NIL)) (-2717 (((-108) $ (-708)) NIL)) (-1696 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3367 (($) NIL T CONST)) (-1298 (((-108) $) 26 (|has| |#1| (-514)))) (-1657 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3598 (((-108) $ $) NIL (|has| |#1| (-514)))) (-2818 (((-108) $) NIL (|has| |#1| (-514)))) (-3090 (((-588 |#4|) (-588 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3461 (((-588 |#4|) (-588 |#4|) $) NIL (|has| |#1| (-514)))) (-3668 (((-588 |#4|) (-588 |#4|) $) NIL (|has| |#1| (-514)))) (-3700 (((-3 $ "failed") (-588 |#4|)) NIL)) (-1478 (($ (-588 |#4|)) NIL)) (-2352 (((-3 $ "failed") $) 39)) (-2625 ((|#4| |#4| $) NIL)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-1424 (($ |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-4002 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-514)))) (-1426 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2918 ((|#4| |#4| $) NIL)) (-2153 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4238))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1199 (((-2 (|:| -1720 (-588 |#4|)) (|:| -1566 (-588 |#4|))) $) NIL)) (-2395 (((-588 |#4|) $) 16 (|has| $ (-6 -4238)))) (-1384 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1933 ((|#3| $) 33)) (-1480 (((-108) $ (-708)) NIL)) (-4084 (((-588 |#4|) $) 17 (|has| $ (-6 -4238)))) (-4176 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-2397 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#4| |#4|) $) 21)) (-2714 (((-588 |#3|) $) NIL)) (-3826 (((-108) |#3| $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL)) (-1442 (((-3 |#4| "failed") $) 37)) (-4138 (((-588 |#4|) $) NIL)) (-3864 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2556 ((|#4| |#4| $) NIL)) (-1517 (((-108) $ $) NIL)) (-2507 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-514)))) (-3060 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3896 ((|#4| |#4| $) NIL)) (-4174 (((-1032) $) NIL)) (-2337 (((-3 |#4| "failed") $) 35)) (-2187 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-4078 (((-3 $ "failed") $ |#4|) 47)) (-3934 (($ $ |#4|) NIL)) (-3487 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 |#4|) (-588 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) 15)) (-3298 (($) 13)) (-2487 (((-708) $) NIL)) (-4187 (((-708) |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) (((-708) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2463 (($ $) 12)) (-3873 (((-498) $) NIL (|has| |#4| (-563 (-498))))) (-2227 (($ (-588 |#4|)) 20)) (-2271 (($ $ |#3|) 42)) (-2154 (($ $ |#3|) 44)) (-1524 (($ $) NIL)) (-2773 (($ $ |#3|) NIL)) (-2217 (((-792) $) 31) (((-588 |#4|) $) 40)) (-3111 (((-708) $) NIL (|has| |#3| (-343)))) (-3538 (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2102 (((-108) $ (-1 (-108) |#4| (-588 |#4|))) NIL)) (-1381 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-1982 (((-588 |#3|) $) NIL)) (-1711 (((-108) |#3| $) NIL)) (-1562 (((-108) $ $) NIL)) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-450 |#1| |#2| |#3| |#4|) (-1114 |#1| |#2| |#3| |#4|) (-514) (-730) (-784) (-985 |#1| |#2| |#3|)) (T -450)) -NIL -(-1114 |#1| |#2| |#3| |#4|) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2805 (((-108) $ $) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL)) (-1478 (((-522) $) NIL) (((-382 (-522)) $) NIL)) (-2333 (($ $ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-2980 (($) 18)) (-2859 (((-108) $) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2006 (((-393 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-3873 (((-354) $) 22) (((-202) $) 25) (((-382 (-1081 (-522))) $) 19) (((-498) $) 53)) (-2217 (((-792) $) 51) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (((-202) $) 24) (((-354) $) 21)) (-2742 (((-708)) NIL)) (-1407 (((-108) $ $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) 36 T CONST)) (-3709 (($) 11 T CONST)) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL))) -(((-451) (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))) (-947) (-562 (-202)) (-562 (-354)) (-563 (-382 (-1081 (-522)))) (-563 (-498)) (-10 -8 (-15 -2980 ($))))) (T -451)) -((-2980 (*1 *1) (-5 *1 (-451)))) -(-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))) (-947) (-562 (-202)) (-562 (-354)) (-563 (-382 (-1081 (-522)))) (-563 (-498)) (-10 -8 (-15 -2980 ($)))) -((-1419 (((-108) $ $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-1883 (($) NIL) (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-3883 (((-1171) $ |#1| |#1|) NIL (|has| $ (-6 -4239)))) (-2717 (((-108) $ (-708)) NIL)) (-2437 ((|#2| $ |#1| |#2|) 16)) (-1213 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-4011 (((-3 |#2| "failed") |#1| $) 20)) (-3367 (($) NIL T CONST)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))))) (-1700 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-3 |#2| "failed") |#1| $) 18)) (-1424 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2153 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2411 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#2| $ |#1|) NIL)) (-2395 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) NIL)) (-3496 ((|#1| $) NIL (|has| |#1| (-784)))) (-4084 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2201 ((|#1| $) NIL (|has| |#1| (-784)))) (-2397 (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4239))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2562 (((-588 |#1|) $) 13)) (-2241 (((-108) |#1| $) NIL)) (-1431 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-3365 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-2130 (((-588 |#1|) $) NIL)) (-2103 (((-108) |#1| $) NIL)) (-4174 (((-1032) $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2337 ((|#2| $) NIL (|has| |#1| (-784)))) (-2187 (((-3 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) "failed") (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL)) (-1972 (($ $ |#2|) NIL (|has| $ (-6 -4239)))) (-3295 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-3487 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1973 (((-588 |#2|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) 19)) (-2683 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3546 (($) NIL) (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-4187 (((-708) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014)))) (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-563 (-498))))) (-2227 (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-2217 (((-792) $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-562 (-792))) (|has| |#2| (-562 (-792)))))) (-2501 (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-1381 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 11 (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-3591 (((-708) $) 15 (|has| $ (-6 -4238))))) -(((-452 |#1| |#2| |#3|) (-13 (-1097 |#1| |#2|) (-10 -7 (-6 -4238))) (-1014) (-1014) (-1068)) (T -452)) -NIL -(-13 (-1097 |#1| |#2|) (-10 -7 (-6 -4238))) -((-1598 (((-522) (-522) (-522)) 7)) (-2098 (((-108) (-522) (-522) (-522) (-522)) 11)) (-1626 (((-1166 (-588 (-522))) (-708) (-708)) 23))) -(((-453) (-10 -7 (-15 -1598 ((-522) (-522) (-522))) (-15 -2098 ((-108) (-522) (-522) (-522) (-522))) (-15 -1626 ((-1166 (-588 (-522))) (-708) (-708))))) (T -453)) -((-1626 (*1 *2 *3 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1166 (-588 (-522)))) (-5 *1 (-453)))) (-2098 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-522)) (-5 *2 (-108)) (-5 *1 (-453)))) (-1598 (*1 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-453))))) -(-10 -7 (-15 -1598 ((-522) (-522) (-522))) (-15 -2098 ((-108) (-522) (-522) (-522) (-522))) (-15 -1626 ((-1166 (-588 (-522))) (-708) (-708)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3533 (((-588 (-794 |#1|)) $) NIL)) (-1264 (((-1081 $) $ (-794 |#1|)) NIL) (((-1081 |#2|) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#2| (-514)))) (-2298 (($ $) NIL (|has| |#2| (-514)))) (-3007 (((-108) $) NIL (|has| |#2| (-514)))) (-3358 (((-708) $) NIL) (((-708) $ (-588 (-794 |#1|))) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-2961 (($ $) NIL (|has| |#2| (-426)))) (-3133 (((-393 $) $) NIL (|has| |#2| (-426)))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#2| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#2| (-962 (-522)))) (((-3 (-794 |#1|) "failed") $) NIL)) (-1478 ((|#2| $) NIL) (((-382 (-522)) $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#2| (-962 (-522)))) (((-794 |#1|) $) NIL)) (-2908 (($ $ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-2354 (($ $ (-588 (-522))) NIL)) (-3241 (($ $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL) (((-628 |#2|) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2883 (($ $) NIL (|has| |#2| (-426))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-426)))) (-3232 (((-588 $) $) NIL)) (-2725 (((-108) $) NIL (|has| |#2| (-838)))) (-3792 (($ $ |#2| (-455 (-3591 |#1|) (-708)) $) NIL)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-354))) (|has| |#2| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-522))) (|has| |#2| (-815 (-522)))))) (-2859 (((-108) $) NIL)) (-1391 (((-708) $) NIL)) (-3520 (($ (-1081 |#2|) (-794 |#1|)) NIL) (($ (-1081 $) (-794 |#1|)) NIL)) (-3038 (((-588 $) $) NIL)) (-1374 (((-108) $) NIL)) (-3500 (($ |#2| (-455 (-3591 |#1|) (-708))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-3058 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $ (-794 |#1|)) NIL)) (-3564 (((-455 (-3591 |#1|) (-708)) $) NIL) (((-708) $ (-794 |#1|)) NIL) (((-588 (-708)) $ (-588 (-794 |#1|))) NIL)) (-1308 (($ $ $) NIL (|has| |#2| (-784)))) (-2524 (($ $ $) NIL (|has| |#2| (-784)))) (-1723 (($ (-1 (-455 (-3591 |#1|) (-708)) (-455 (-3591 |#1|) (-708))) $) NIL)) (-3810 (($ (-1 |#2| |#2|) $) NIL)) (-3155 (((-3 (-794 |#1|) "failed") $) NIL)) (-3216 (($ $) NIL)) (-3224 ((|#2| $) NIL)) (-2267 (($ (-588 $)) NIL (|has| |#2| (-426))) (($ $ $) NIL (|has| |#2| (-426)))) (-2311 (((-1068) $) NIL)) (-2760 (((-3 (-588 $) "failed") $) NIL)) (-1919 (((-3 (-588 $) "failed") $) NIL)) (-2024 (((-3 (-2 (|:| |var| (-794 |#1|)) (|:| -3858 (-708))) "failed") $) NIL)) (-4174 (((-1032) $) NIL)) (-3199 (((-108) $) NIL)) (-3207 ((|#2| $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#2| (-426)))) (-2308 (($ (-588 $)) NIL (|has| |#2| (-426))) (($ $ $) NIL (|has| |#2| (-426)))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-2006 (((-393 $) $) NIL (|has| |#2| (-838)))) (-2276 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-514))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-514)))) (-2330 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-794 |#1|) |#2|) NIL) (($ $ (-588 (-794 |#1|)) (-588 |#2|)) NIL) (($ $ (-794 |#1|) $) NIL) (($ $ (-588 (-794 |#1|)) (-588 $)) NIL)) (-1615 (($ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-2731 (($ $ (-794 |#1|)) NIL) (($ $ (-588 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-2487 (((-455 (-3591 |#1|) (-708)) $) NIL) (((-708) $ (-794 |#1|)) NIL) (((-588 (-708)) $ (-588 (-794 |#1|))) NIL)) (-3873 (((-821 (-354)) $) NIL (-12 (|has| (-794 |#1|) (-563 (-821 (-354)))) (|has| |#2| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-794 |#1|) (-563 (-821 (-522)))) (|has| |#2| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-794 |#1|) (-563 (-498))) (|has| |#2| (-563 (-498)))))) (-2988 ((|#2| $) NIL (|has| |#2| (-426))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-426)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-838))))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#2|) NIL) (($ (-794 |#1|)) NIL) (($ (-382 (-522))) NIL (-3844 (|has| |#2| (-37 (-382 (-522)))) (|has| |#2| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#2| (-514)))) (-2180 (((-588 |#2|) $) NIL)) (-1643 ((|#2| $ (-455 (-3591 |#1|) (-708))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| |#2| (-838))) (|has| |#2| (-133))))) (-2742 (((-708)) NIL)) (-1225 (($ $ $ (-708)) NIL (|has| |#2| (-157)))) (-1407 (((-108) $ $) NIL (|has| |#2| (-514)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $ (-794 |#1|)) NIL) (($ $ (-588 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-1623 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1682 (($ $ |#2|) NIL (|has| |#2| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL (|has| |#2| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#2| (-37 (-382 (-522))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-454 |#1| |#2|) (-13 (-878 |#2| (-455 (-3591 |#1|) (-708)) (-794 |#1|)) (-10 -8 (-15 -2354 ($ $ (-588 (-522)))))) (-588 (-1085)) (-971)) (T -454)) -((-2354 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-454 *3 *4)) (-14 *3 (-588 (-1085))) (-4 *4 (-971))))) -(-13 (-878 |#2| (-455 (-3591 |#1|) (-708)) (-794 |#1|)) (-10 -8 (-15 -2354 ($ $ (-588 (-522)))))) -((-1419 (((-108) $ $) NIL (|has| |#2| (-1014)))) (-2944 (((-108) $) NIL (|has| |#2| (-124)))) (-2826 (($ (-850)) NIL (|has| |#2| (-971)))) (-3883 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1827 (($ $ $) NIL (|has| |#2| (-730)))) (-2265 (((-3 $ "failed") $ $) NIL (|has| |#2| (-124)))) (-2717 (((-108) $ (-708)) NIL)) (-1685 (((-708)) NIL (|has| |#2| (-343)))) (-3355 (((-522) $) NIL (|has| |#2| (-782)))) (-2437 ((|#2| $ (-522) |#2|) NIL (|has| $ (-6 -4239)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) NIL (-12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014)))) (((-3 (-382 (-522)) "failed") $) NIL (-12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1014)))) (-1478 (((-522) $) NIL (-12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014)))) (((-382 (-522)) $) NIL (-12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) ((|#2| $) NIL (|has| |#2| (-1014)))) (-1226 (((-628 (-522)) (-628 $)) NIL (-12 (|has| |#2| (-584 (-522))) (|has| |#2| (-971)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (-12 (|has| |#2| (-584 (-522))) (|has| |#2| (-971)))) (((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL (|has| |#2| (-971))) (((-628 |#2|) (-628 $)) NIL (|has| |#2| (-971)))) (-3920 (((-3 $ "failed") $) NIL (|has| |#2| (-971)))) (-3344 (($) NIL (|has| |#2| (-343)))) (-2411 ((|#2| $ (-522) |#2|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#2| $ (-522)) 11)) (-3603 (((-108) $) NIL (|has| |#2| (-782)))) (-2395 (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-2859 (((-108) $) NIL (|has| |#2| (-971)))) (-3740 (((-108) $) NIL (|has| |#2| (-782)))) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) NIL (|has| (-522) (-784)))) (-1308 (($ $ $) NIL (-3844 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-4084 (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2201 (((-522) $) NIL (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (-3844 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-2397 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#2| |#2|) $) NIL)) (-1475 (((-850) $) NIL (|has| |#2| (-343)))) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (|has| |#2| (-1014)))) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) NIL)) (-2882 (($ (-850)) NIL (|has| |#2| (-343)))) (-4174 (((-1032) $) NIL (|has| |#2| (-1014)))) (-2337 ((|#2| $) NIL (|has| (-522) (-784)))) (-1972 (($ $ |#2|) NIL (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1973 (((-588 |#2|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#2| $ (-522) |#2|) NIL) ((|#2| $ (-522)) NIL)) (-4024 ((|#2| $ $) NIL (|has| |#2| (-971)))) (-2041 (($ (-1166 |#2|)) NIL)) (-3222 (((-126)) NIL (|has| |#2| (-338)))) (-2731 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1 |#2| |#2|) (-708)) NIL (|has| |#2| (-971))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-971)))) (-4187 (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2463 (($ $) NIL)) (-2217 (((-1166 |#2|) $) NIL) (($ (-522)) NIL (-3844 (-12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014))) (|has| |#2| (-971)))) (($ (-382 (-522))) NIL (-12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) (($ |#2|) NIL (|has| |#2| (-1014))) (((-792) $) NIL (|has| |#2| (-562 (-792))))) (-2742 (((-708)) NIL (|has| |#2| (-971)))) (-1381 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-4126 (($ $) NIL (|has| |#2| (-782)))) (-3622 (($ $ (-708)) NIL (|has| |#2| (-971))) (($ $ (-850)) NIL (|has| |#2| (-971)))) (-3697 (($) NIL (|has| |#2| (-124)) CONST)) (-3709 (($) NIL (|has| |#2| (-971)) CONST)) (-2252 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1 |#2| |#2|) (-708)) NIL (|has| |#2| (-971))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-971)))) (-1623 (((-108) $ $) NIL (-3844 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1597 (((-108) $ $) NIL (-3844 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1562 (((-108) $ $) NIL (|has| |#2| (-1014)))) (-1609 (((-108) $ $) NIL (-3844 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1587 (((-108) $ $) 15 (-3844 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1682 (($ $ |#2|) NIL (|has| |#2| (-338)))) (-1672 (($ $ $) NIL (|has| |#2| (-971))) (($ $) NIL (|has| |#2| (-971)))) (-1661 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-708)) NIL (|has| |#2| (-971))) (($ $ (-850)) NIL (|has| |#2| (-971)))) (* (($ $ $) NIL (|has| |#2| (-971))) (($ (-522) $) NIL (|has| |#2| (-971))) (($ $ |#2|) NIL (|has| |#2| (-664))) (($ |#2| $) NIL (|has| |#2| (-664))) (($ (-708) $) NIL (|has| |#2| (-124))) (($ (-850) $) NIL (|has| |#2| (-25)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-455 |#1| |#2|) (-215 |#1| |#2|) (-708) (-730)) (T -455)) -NIL -(-215 |#1| |#2|) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2717 (((-108) $ (-708)) NIL)) (-3367 (($) NIL T CONST)) (-2395 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) NIL)) (-3557 (($ $ $) 32)) (-3164 (($ $ $) 31)) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2524 ((|#1| $) 26)) (-2397 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1431 ((|#1| $) 27)) (-3365 (($ |#1| $) 10)) (-3924 (($ (-588 |#1|)) 12)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3295 ((|#1| $) 23)) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) 9)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) NIL)) (-2217 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-2501 (($ (-588 |#1|)) 29)) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3591 (((-708) $) 21 (|has| $ (-6 -4238))))) -(((-456 |#1|) (-13 (-896 |#1|) (-10 -8 (-15 -3924 ($ (-588 |#1|))))) (-784)) (T -456)) -((-3924 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-456 *3))))) -(-13 (-896 |#1|) (-10 -8 (-15 -3924 ($ (-588 |#1|))))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-2153 (($ $) 69)) (-1536 (((-108) $) NIL)) (-2311 (((-1068) $) NIL)) (-3129 (((-388 |#2| (-382 |#2|) |#3| |#4|) $) 43)) (-4174 (((-1032) $) NIL)) (-1368 (((-3 |#4| "failed") $) 105)) (-2416 (($ (-388 |#2| (-382 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 113) (($ |#1| |#1| (-522)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 125)) (-2327 (((-2 (|:| -1868 (-388 |#2| (-382 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-2217 (((-792) $) 100)) (-3697 (($) 33 T CONST)) (-1562 (((-108) $ $) 107)) (-1672 (($ $) 72) (($ $ $) NIL)) (-1661 (($ $ $) 70)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 73))) -(((-457 |#1| |#2| |#3| |#4|) (-310 |#1| |#2| |#3| |#4|) (-338) (-1142 |#1|) (-1142 (-382 |#2|)) (-317 |#1| |#2| |#3|)) (T -457)) -NIL -(-310 |#1| |#2| |#3| |#4|) -((-3926 (((-522) (-588 (-522))) 30)) (-2811 ((|#1| (-588 |#1|)) 56)) (-2542 (((-588 |#1|) (-588 |#1|)) 57)) (-3784 (((-588 |#1|) (-588 |#1|)) 59)) (-2308 ((|#1| (-588 |#1|)) 58)) (-2988 (((-588 (-522)) (-588 |#1|)) 33))) -(((-458 |#1|) (-10 -7 (-15 -2308 (|#1| (-588 |#1|))) (-15 -2811 (|#1| (-588 |#1|))) (-15 -3784 ((-588 |#1|) (-588 |#1|))) (-15 -2542 ((-588 |#1|) (-588 |#1|))) (-15 -2988 ((-588 (-522)) (-588 |#1|))) (-15 -3926 ((-522) (-588 (-522))))) (-1142 (-522))) (T -458)) -((-3926 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-522)) (-5 *1 (-458 *4)) (-4 *4 (-1142 *2)))) (-2988 (*1 *2 *3) (-12 (-5 *3 (-588 *4)) (-4 *4 (-1142 (-522))) (-5 *2 (-588 (-522))) (-5 *1 (-458 *4)))) (-2542 (*1 *2 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1142 (-522))) (-5 *1 (-458 *3)))) (-3784 (*1 *2 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1142 (-522))) (-5 *1 (-458 *3)))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-5 *1 (-458 *2)) (-4 *2 (-1142 (-522))))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-5 *1 (-458 *2)) (-4 *2 (-1142 (-522)))))) -(-10 -7 (-15 -2308 (|#1| (-588 |#1|))) (-15 -2811 (|#1| (-588 |#1|))) (-15 -3784 ((-588 |#1|) (-588 |#1|))) (-15 -2542 ((-588 |#1|) (-588 |#1|))) (-15 -2988 ((-588 (-522)) (-588 |#1|))) (-15 -3926 ((-522) (-588 (-522))))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3049 (((-522) $) NIL (|has| (-522) (-283)))) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-2805 (((-108) $ $) NIL)) (-3355 (((-522) $) NIL (|has| (-522) (-757)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) NIL) (((-3 (-1085) "failed") $) NIL (|has| (-522) (-962 (-1085)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| (-522) (-962 (-522)))) (((-3 (-522) "failed") $) NIL (|has| (-522) (-962 (-522))))) (-1478 (((-522) $) NIL) (((-1085) $) NIL (|has| (-522) (-962 (-1085)))) (((-382 (-522)) $) NIL (|has| (-522) (-962 (-522)))) (((-522) $) NIL (|has| (-522) (-962 (-522))))) (-2333 (($ $ $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| (-522) (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| (-522) (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-628 (-522)) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3344 (($) NIL (|has| (-522) (-507)))) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-3603 (((-108) $) NIL (|has| (-522) (-757)))) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| (-522) (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| (-522) (-815 (-354))))) (-2859 (((-108) $) NIL)) (-1558 (($ $) NIL)) (-2947 (((-522) $) NIL)) (-4208 (((-3 $ "failed") $) NIL (|has| (-522) (-1061)))) (-3740 (((-108) $) NIL (|has| (-522) (-757)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1308 (($ $ $) NIL (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (|has| (-522) (-784)))) (-3810 (($ (-1 (-522) (-522)) $) NIL)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-3937 (($) NIL (|has| (-522) (-1061)) CONST)) (-1217 (($ (-382 (-522))) 8)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4194 (($ $) NIL (|has| (-522) (-283))) (((-382 (-522)) $) NIL)) (-3592 (((-522) $) NIL (|has| (-522) (-507)))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-2006 (((-393 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2330 (($ $ (-588 (-522)) (-588 (-522))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-522) (-522)) NIL (|has| (-522) (-285 (-522)))) (($ $ (-270 (-522))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-588 (-270 (-522)))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-588 (-1085)) (-588 (-522))) NIL (|has| (-522) (-483 (-1085) (-522)))) (($ $ (-1085) (-522)) NIL (|has| (-522) (-483 (-1085) (-522))))) (-4031 (((-708) $) NIL)) (-2683 (($ $ (-522)) NIL (|has| (-522) (-262 (-522) (-522))))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-2731 (($ $) NIL (|has| (-522) (-210))) (($ $ (-708)) NIL (|has| (-522) (-210))) (($ $ (-1085)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1 (-522) (-522)) (-708)) NIL) (($ $ (-1 (-522) (-522))) NIL)) (-2762 (($ $) NIL)) (-2959 (((-522) $) NIL)) (-3873 (((-821 (-522)) $) NIL (|has| (-522) (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| (-522) (-563 (-821 (-354))))) (((-498) $) NIL (|has| (-522) (-563 (-498)))) (((-354) $) NIL (|has| (-522) (-947))) (((-202) $) NIL (|has| (-522) (-947)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| (-522) (-838))))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) 7) (($ (-522)) NIL) (($ (-1085)) NIL (|has| (-522) (-962 (-1085)))) (((-382 (-522)) $) NIL) (((-930 16) $) 9)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| (-522) (-838))) (|has| (-522) (-133))))) (-2742 (((-708)) NIL)) (-1379 (((-522) $) NIL (|has| (-522) (-507)))) (-1407 (((-108) $ $) NIL)) (-4126 (($ $) NIL (|has| (-522) (-757)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $) NIL (|has| (-522) (-210))) (($ $ (-708)) NIL (|has| (-522) (-210))) (($ $ (-1085)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1 (-522) (-522)) (-708)) NIL) (($ $ (-1 (-522) (-522))) NIL)) (-1623 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1597 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1587 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1682 (($ $ $) NIL) (($ (-522) (-522)) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ (-522) $) NIL) (($ $ (-522)) NIL))) -(((-459) (-13 (-919 (-522)) (-10 -8 (-15 -2217 ((-382 (-522)) $)) (-15 -2217 ((-930 16) $)) (-15 -4194 ((-382 (-522)) $)) (-15 -1217 ($ (-382 (-522))))))) (T -459)) -((-2217 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-459)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-930 16)) (-5 *1 (-459)))) (-4194 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-459)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-459))))) -(-13 (-919 (-522)) (-10 -8 (-15 -2217 ((-382 (-522)) $)) (-15 -2217 ((-930 16) $)) (-15 -4194 ((-382 (-522)) $)) (-15 -1217 ($ (-382 (-522)))))) -((-4084 (((-588 |#2|) $) 22)) (-4176 (((-108) |#2| $) 27)) (-3487 (((-108) (-1 (-108) |#2|) $) 20)) (-2330 (($ $ (-588 (-270 |#2|))) 12) (($ $ (-270 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-588 |#2|) (-588 |#2|)) NIL)) (-4187 (((-708) (-1 (-108) |#2|) $) 21) (((-708) |#2| $) 25)) (-2217 (((-792) $) 36)) (-1381 (((-108) (-1 (-108) |#2|) $) 19)) (-1562 (((-108) $ $) 30)) (-3591 (((-708) $) 16))) -(((-460 |#1| |#2|) (-10 -8 (-15 -2217 ((-792) |#1|)) (-15 -1562 ((-108) |#1| |#1|)) (-15 -2330 (|#1| |#1| (-588 |#2|) (-588 |#2|))) (-15 -2330 (|#1| |#1| |#2| |#2|)) (-15 -2330 (|#1| |#1| (-270 |#2|))) (-15 -2330 (|#1| |#1| (-588 (-270 |#2|)))) (-15 -4176 ((-108) |#2| |#1|)) (-15 -4187 ((-708) |#2| |#1|)) (-15 -4084 ((-588 |#2|) |#1|)) (-15 -4187 ((-708) (-1 (-108) |#2|) |#1|)) (-15 -3487 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1381 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3591 ((-708) |#1|))) (-461 |#2|) (-1120)) (T -460)) -NIL -(-10 -8 (-15 -2217 ((-792) |#1|)) (-15 -1562 ((-108) |#1| |#1|)) (-15 -2330 (|#1| |#1| (-588 |#2|) (-588 |#2|))) (-15 -2330 (|#1| |#1| |#2| |#2|)) (-15 -2330 (|#1| |#1| (-270 |#2|))) (-15 -2330 (|#1| |#1| (-588 (-270 |#2|)))) (-15 -4176 ((-108) |#2| |#1|)) (-15 -4187 ((-708) |#2| |#1|)) (-15 -4084 ((-588 |#2|) |#1|)) (-15 -4187 ((-708) (-1 (-108) |#2|) |#1|)) (-15 -3487 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1381 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3591 ((-708) |#1|))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-2717 (((-108) $ (-708)) 8)) (-3367 (($) 7 T CONST)) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) 9)) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35)) (-3309 (((-108) $ (-708)) 10)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-461 |#1|) (-1197) (-1120)) (T -461)) -((-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-461 *3)) (-4 *3 (-1120)))) (-2397 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4239)) (-4 *1 (-461 *3)) (-4 *3 (-1120)))) (-1381 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4238)) (-4 *1 (-461 *4)) (-4 *4 (-1120)) (-5 *2 (-108)))) (-3487 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4238)) (-4 *1 (-461 *4)) (-4 *4 (-1120)) (-5 *2 (-108)))) (-4187 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4238)) (-4 *1 (-461 *4)) (-4 *4 (-1120)) (-5 *2 (-708)))) (-2395 (*1 *2 *1) (-12 (|has| *1 (-6 -4238)) (-4 *1 (-461 *3)) (-4 *3 (-1120)) (-5 *2 (-588 *3)))) (-4084 (*1 *2 *1) (-12 (|has| *1 (-6 -4238)) (-4 *1 (-461 *3)) (-4 *3 (-1120)) (-5 *2 (-588 *3)))) (-4187 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4238)) (-4 *1 (-461 *3)) (-4 *3 (-1120)) (-4 *3 (-1014)) (-5 *2 (-708)))) (-4176 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4238)) (-4 *1 (-461 *3)) (-4 *3 (-1120)) (-4 *3 (-1014)) (-5 *2 (-108))))) -(-13 (-33) (-10 -8 (IF (|has| |t#1| (-562 (-792))) (-6 (-562 (-792))) |%noBranch|) (IF (|has| |t#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |t#1| (-1014)) (IF (|has| |t#1| (-285 |t#1|)) (-6 (-285 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3810 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4239)) (-15 -2397 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4238)) (PROGN (-15 -1381 ((-108) (-1 (-108) |t#1|) $)) (-15 -3487 ((-108) (-1 (-108) |t#1|) $)) (-15 -4187 ((-708) (-1 (-108) |t#1|) $)) (-15 -2395 ((-588 |t#1|) $)) (-15 -4084 ((-588 |t#1|) $)) (IF (|has| |t#1| (-1014)) (PROGN (-15 -4187 ((-708) |t#1| $)) (-15 -4176 ((-108) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T)) -((-3044 (($ $) 15)) (-3023 (($ $) 24)) (-3066 (($ $) 12)) (-1831 (($ $) 10)) (-3054 (($ $) 17)) (-3035 (($ $) 22))) -(((-462 |#1|) (-10 -8 (-15 -3035 (|#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 -1831 (|#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -3044 (|#1| |#1|))) (-463)) (T -462)) -NIL -(-10 -8 (-15 -3035 (|#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 -1831 (|#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -3044 (|#1| |#1|))) -((-3044 (($ $) 11)) (-3023 (($ $) 10)) (-3066 (($ $) 9)) (-1831 (($ $) 8)) (-3054 (($ $) 7)) (-3035 (($ $) 6))) -(((-463) (-1197)) (T -463)) -((-3044 (*1 *1 *1) (-4 *1 (-463))) (-3023 (*1 *1 *1) (-4 *1 (-463))) (-3066 (*1 *1 *1) (-4 *1 (-463))) (-1831 (*1 *1 *1) (-4 *1 (-463))) (-3054 (*1 *1 *1) (-4 *1 (-463))) (-3035 (*1 *1 *1) (-4 *1 (-463)))) -(-13 (-10 -8 (-15 -3035 ($ $)) (-15 -3054 ($ $)) (-15 -1831 ($ $)) (-15 -3066 ($ $)) (-15 -3023 ($ $)) (-15 -3044 ($ $)))) -((-2006 (((-393 |#4|) |#4| (-1 (-393 |#2|) |#2|)) 42))) -(((-464 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2006 ((-393 |#4|) |#4| (-1 (-393 |#2|) |#2|)))) (-338) (-1142 |#1|) (-13 (-338) (-135) (-662 |#1| |#2|)) (-1142 |#3|)) (T -464)) -((-2006 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-393 *6) *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338)) (-4 *7 (-13 (-338) (-135) (-662 *5 *6))) (-5 *2 (-393 *3)) (-5 *1 (-464 *5 *6 *7 *3)) (-4 *3 (-1142 *7))))) -(-10 -7 (-15 -2006 ((-393 |#4|) |#4| (-1 (-393 |#2|) |#2|)))) -((-1419 (((-108) $ $) NIL)) (-3899 (((-588 $) (-1081 $) (-1085)) NIL) (((-588 $) (-1081 $)) NIL) (((-588 $) (-881 $)) NIL)) (-3974 (($ (-1081 $) (-1085)) NIL) (($ (-1081 $)) NIL) (($ (-881 $)) NIL)) (-2944 (((-108) $) 37)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-3561 (((-108) $ $) 63)) (-1974 (((-588 (-561 $)) $) 47)) (-2265 (((-3 $ "failed") $ $) NIL)) (-1847 (($ $ (-270 $)) NIL) (($ $ (-588 (-270 $))) NIL) (($ $ (-588 (-561 $)) (-588 $)) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2016 (($ $) NIL)) (-2805 (((-108) $ $) NIL)) (-3367 (($) NIL T CONST)) (-2136 (((-588 $) (-1081 $) (-1085)) NIL) (((-588 $) (-1081 $)) NIL) (((-588 $) (-881 $)) NIL)) (-1275 (($ (-1081 $) (-1085)) NIL) (($ (-1081 $)) NIL) (($ (-881 $)) NIL)) (-3700 (((-3 (-561 $) "failed") $) NIL) (((-3 (-522) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL)) (-1478 (((-561 $) $) NIL) (((-522) $) NIL) (((-382 (-522)) $) 49)) (-2333 (($ $ $) NIL)) (-1226 (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-628 (-522)) (-628 $)) NIL) (((-2 (|:| -2149 (-628 (-382 (-522)))) (|:| |vec| (-1166 (-382 (-522))))) (-628 $) (-1166 $)) NIL) (((-628 (-382 (-522))) (-628 $)) NIL)) (-2153 (($ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-2930 (($ $) NIL) (($ (-588 $)) NIL)) (-2896 (((-588 (-110)) $) NIL)) (-1771 (((-110) (-110)) NIL)) (-2859 (((-108) $) 40)) (-3077 (((-108) $) NIL (|has| $ (-962 (-522))))) (-2947 (((-1037 (-522) (-561 $)) $) 35)) (-1811 (($ $ (-522)) NIL)) (-1269 (((-1081 $) (-1081 $) (-561 $)) 78) (((-1081 $) (-1081 $) (-588 (-561 $))) 54) (($ $ (-561 $)) 67) (($ $ (-588 (-561 $))) 68)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4185 (((-1081 $) (-561 $)) 65 (|has| $ (-971)))) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-3810 (($ (-1 $ $) (-561 $)) NIL)) (-3562 (((-3 (-561 $) "failed") $) NIL)) (-2267 (($ (-588 $)) NIL) (($ $ $) NIL)) (-2311 (((-1068) $) NIL)) (-1249 (((-588 (-561 $)) $) NIL)) (-3043 (($ (-110) $) NIL) (($ (-110) (-588 $)) NIL)) (-2935 (((-108) $ (-110)) NIL) (((-108) $ (-1085)) NIL)) (-3193 (($ $) NIL)) (-4179 (((-708) $) NIL)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ (-588 $)) NIL) (($ $ $) NIL)) (-2368 (((-108) $ $) NIL) (((-108) $ (-1085)) NIL)) (-2006 (((-393 $) $) NIL)) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2626 (((-108) $) NIL (|has| $ (-962 (-522))))) (-2330 (($ $ (-561 $) $) NIL) (($ $ (-588 (-561 $)) (-588 $)) NIL) (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ $))) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ (-588 $)))) NIL) (($ $ (-1085) (-1 $ (-588 $))) NIL) (($ $ (-1085) (-1 $ $)) NIL) (($ $ (-588 (-110)) (-588 (-1 $ $))) NIL) (($ $ (-588 (-110)) (-588 (-1 $ (-588 $)))) NIL) (($ $ (-110) (-1 $ (-588 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-4031 (((-708) $) NIL)) (-2683 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-588 $)) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-3406 (($ $) NIL) (($ $ $) NIL)) (-2731 (($ $ (-708)) NIL) (($ $) 34)) (-2959 (((-1037 (-522) (-561 $)) $) 18)) (-1579 (($ $) NIL (|has| $ (-971)))) (-3873 (((-354) $) 92) (((-202) $) 100) (((-154 (-354)) $) 108)) (-2217 (((-792) $) NIL) (($ (-561 $)) NIL) (($ (-382 (-522))) NIL) (($ $) NIL) (($ (-522)) NIL) (($ (-1037 (-522) (-561 $))) 19)) (-2742 (((-708)) NIL)) (-3811 (($ $) NIL) (($ (-588 $)) NIL)) (-4082 (((-108) (-110)) 84)) (-1407 (((-108) $ $) NIL)) (-3622 (($ $ (-522)) NIL) (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (-3697 (($) 9 T CONST)) (-3709 (($) 20 T CONST)) (-2252 (($ $ (-708)) NIL) (($ $) NIL)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 22)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) NIL)) (-1682 (($ $ $) 42)) (-1672 (($ $ $) NIL) (($ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-382 (-522))) NIL) (($ $ (-522)) 45) (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (* (($ (-382 (-522)) $) NIL) (($ $ (-382 (-522))) NIL) (($ $ $) 25) (($ (-522) $) NIL) (($ (-708) $) NIL) (($ (-850) $) NIL))) -(((-465) (-13 (-278) (-27) (-962 (-522)) (-962 (-382 (-522))) (-584 (-522)) (-947) (-584 (-382 (-522))) (-135) (-563 (-154 (-354))) (-210) (-10 -8 (-15 -2217 ($ (-1037 (-522) (-561 $)))) (-15 -2947 ((-1037 (-522) (-561 $)) $)) (-15 -2959 ((-1037 (-522) (-561 $)) $)) (-15 -2153 ($ $)) (-15 -3561 ((-108) $ $)) (-15 -1269 ((-1081 $) (-1081 $) (-561 $))) (-15 -1269 ((-1081 $) (-1081 $) (-588 (-561 $)))) (-15 -1269 ($ $ (-561 $))) (-15 -1269 ($ $ (-588 (-561 $))))))) (T -465)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1037 (-522) (-561 (-465)))) (-5 *1 (-465)))) (-2947 (*1 *2 *1) (-12 (-5 *2 (-1037 (-522) (-561 (-465)))) (-5 *1 (-465)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-1037 (-522) (-561 (-465)))) (-5 *1 (-465)))) (-2153 (*1 *1 *1) (-5 *1 (-465))) (-3561 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-465)))) (-1269 (*1 *2 *2 *3) (-12 (-5 *2 (-1081 (-465))) (-5 *3 (-561 (-465))) (-5 *1 (-465)))) (-1269 (*1 *2 *2 *3) (-12 (-5 *2 (-1081 (-465))) (-5 *3 (-588 (-561 (-465)))) (-5 *1 (-465)))) (-1269 (*1 *1 *1 *2) (-12 (-5 *2 (-561 (-465))) (-5 *1 (-465)))) (-1269 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-561 (-465)))) (-5 *1 (-465))))) -(-13 (-278) (-27) (-962 (-522)) (-962 (-382 (-522))) (-584 (-522)) (-947) (-584 (-382 (-522))) (-135) (-563 (-154 (-354))) (-210) (-10 -8 (-15 -2217 ($ (-1037 (-522) (-561 $)))) (-15 -2947 ((-1037 (-522) (-561 $)) $)) (-15 -2959 ((-1037 (-522) (-561 $)) $)) (-15 -2153 ($ $)) (-15 -3561 ((-108) $ $)) (-15 -1269 ((-1081 $) (-1081 $) (-561 $))) (-15 -1269 ((-1081 $) (-1081 $) (-588 (-561 $)))) (-15 -1269 ($ $ (-561 $))) (-15 -1269 ($ $ (-588 (-561 $)))))) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3883 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1866 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-2806 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784))))) (-3296 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-2717 (((-108) $ (-708)) NIL)) (-2437 ((|#1| $ (-522) |#1|) 25 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239)))) (-1696 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3367 (($) NIL T CONST)) (-2465 (($ $) NIL (|has| $ (-6 -4239)))) (-1939 (($ $) NIL)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1424 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238)))) (-2411 ((|#1| $ (-522) |#1|) 22 (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-522)) 21)) (-3314 (((-522) (-1 (-108) |#1|) $) NIL) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014)))) (-2395 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-1893 (($ (-708) |#1|) 14)) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) 12 (|has| (-522) (-784)))) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-3164 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-784)))) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2201 (((-522) $) 23 (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-2397 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1731 (($ |#1| $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) NIL)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2337 ((|#1| $) NIL (|has| (-522) (-784)))) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1972 (($ $ |#1|) 10 (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) 13)) (-2683 ((|#1| $ (-522) |#1|) NIL) ((|#1| $ (-522)) 24) (($ $ (-1133 (-522))) NIL)) (-3835 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3629 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) NIL)) (-4170 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-588 $)) NIL)) (-2217 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3591 (((-708) $) 9 (|has| $ (-6 -4238))))) -(((-466 |#1| |#2|) (-19 |#1|) (-1120) (-522)) (T -466)) +((-2384 (($ $) 6)) (-1811 (($ $) 7)) (** (($ $ $) 8))) +(((-261) (-129)) (T -261)) +((** (*1 *1 *1 *1) (-4 *1 (-261))) (-1811 (*1 *1 *1) (-4 *1 (-261))) (-2384 (*1 *1 *1) (-4 *1 (-261)))) +(-13 (-10 -8 (-15 -2384 ($ $)) (-15 -1811 ($ $)) (-15 ** ($ $ $)))) +((-3179 (((-589 (-1068 |#1|)) (-1068 |#1|) |#1|) 35)) (-3966 ((|#2| |#2| |#1|) 38)) (-1635 ((|#2| |#2| |#1|) 40)) (-2952 ((|#2| |#2| |#1|) 39))) +(((-262 |#1| |#2|) (-10 -7 (-15 -3966 (|#2| |#2| |#1|)) (-15 -2952 (|#2| |#2| |#1|)) (-15 -1635 (|#2| |#2| |#1|)) (-15 -3179 ((-589 (-1068 |#1|)) (-1068 |#1|) |#1|))) (-339) (-1159 |#1|)) (T -262)) +((-3179 (*1 *2 *3 *4) (-12 (-4 *4 (-339)) (-5 *2 (-589 (-1068 *4))) (-5 *1 (-262 *4 *5)) (-5 *3 (-1068 *4)) (-4 *5 (-1159 *4)))) (-1635 (*1 *2 *2 *3) (-12 (-4 *3 (-339)) (-5 *1 (-262 *3 *2)) (-4 *2 (-1159 *3)))) (-2952 (*1 *2 *2 *3) (-12 (-4 *3 (-339)) (-5 *1 (-262 *3 *2)) (-4 *2 (-1159 *3)))) (-3966 (*1 *2 *2 *3) (-12 (-4 *3 (-339)) (-5 *1 (-262 *3 *2)) (-4 *2 (-1159 *3))))) +(-10 -7 (-15 -3966 (|#2| |#2| |#1|)) (-15 -2952 (|#2| |#2| |#1|)) (-15 -1635 (|#2| |#2| |#1|)) (-15 -3179 ((-589 (-1068 |#1|)) (-1068 |#1|) |#1|))) +((-3223 ((|#2| $ |#1|) 6))) +(((-263 |#1| |#2|) (-129) (-1016) (-1122)) (T -263)) +((-3223 (*1 *2 *1 *3) (-12 (-4 *1 (-263 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1122))))) +(-13 (-10 -8 (-15 -3223 (|t#2| $ |t#1|)))) +((-2863 ((|#3| $ |#2| |#3|) 12)) (-2795 ((|#3| $ |#2|) 10))) +(((-264 |#1| |#2| |#3|) (-10 -8 (-15 -2863 (|#3| |#1| |#2| |#3|)) (-15 -2795 (|#3| |#1| |#2|))) (-265 |#2| |#3|) (-1016) (-1122)) (T -264)) +NIL +(-10 -8 (-15 -2863 (|#3| |#1| |#2| |#3|)) (-15 -2795 (|#3| |#1| |#2|))) +((-1641 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4245)))) (-2863 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) 11)) (-3223 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-265 |#1| |#2|) (-129) (-1016) (-1122)) (T -265)) +((-3223 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1122)))) (-2795 (*1 *2 *1 *3) (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1122)))) (-1641 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1122)))) (-2863 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1122))))) +(-13 (-263 |t#1| |t#2|) (-10 -8 (-15 -3223 (|t#2| $ |t#1| |t#2|)) (-15 -2795 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4245)) (PROGN (-15 -1641 (|t#2| $ |t#1| |t#2|)) (-15 -2863 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-263 |#1| |#2|) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 35)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 40)) (-3345 (($ $) 38)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1387 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-3796 (($ $ $) 33)) (-2437 (($ |#2| |#3|) 19)) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2023 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3507 ((|#3| $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 20)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3620 (((-3 $ "failed") $ $) NIL)) (-1972 (((-710) $) 34)) (-3223 ((|#2| $ |#2|) 42)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 24)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1621 (((-710)) NIL)) (-1704 (((-108) $ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 29 T CONST)) (-2767 (($) 36 T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 37))) +(((-266 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-284) (-10 -8 (-15 -3507 (|#3| $)) (-15 -1458 (|#2| $)) (-15 -2437 ($ |#2| |#3|)) (-15 -3620 ((-3 $ "failed") $ $)) (-15 -2121 ((-3 $ "failed") $)) (-15 -3738 ($ $)) (-15 -3223 (|#2| $ |#2|)))) (-158) (-1144 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -266)) +((-2121 (*1 *1 *1) (|partial| -12 (-4 *2 (-158)) (-5 *1 (-266 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1144 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3507 (*1 *2 *1) (-12 (-4 *3 (-158)) (-4 *2 (-23)) (-5 *1 (-266 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1144 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-1458 (*1 *2 *1) (-12 (-4 *2 (-1144 *3)) (-5 *1 (-266 *3 *2 *4 *5 *6 *7)) (-4 *3 (-158)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2437 (*1 *1 *2 *3) (-12 (-4 *4 (-158)) (-5 *1 (-266 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1144 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3620 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-158)) (-5 *1 (-266 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1144 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3738 (*1 *1 *1) (-12 (-4 *2 (-158)) (-5 *1 (-266 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1144 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3223 (*1 *2 *1 *2) (-12 (-4 *3 (-158)) (-5 *1 (-266 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1144 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) +(-13 (-284) (-10 -8 (-15 -3507 (|#3| $)) (-15 -1458 (|#2| $)) (-15 -2437 ($ |#2| |#3|)) (-15 -3620 ((-3 $ "failed") $ $)) (-15 -2121 ((-3 $ "failed") $)) (-15 -3738 ($ $)) (-15 -3223 (|#2| $ |#2|)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-267) (-129)) (T -267)) +NIL +(-13 (-973) (-107 $ $) (-10 -7 (-6 -4237))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 $) . T) ((-666) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-3946 (($ (-1087) (-1087) (-1020) $) 15)) (-3885 (($ (-1087) (-589 (-895)) $) 19)) (-2750 (((-589 (-1003)) $) 8)) (-1766 (((-3 (-1020) "failed") (-1087) (-1087) $) 14)) (-3342 (((-3 (-589 (-895)) "failed") (-1087) $) 17)) (-3988 (($) 6)) (-3221 (($) 20)) (-1458 (((-794) $) 24)) (-3319 (($) 21))) +(((-268) (-13 (-563 (-794)) (-10 -8 (-15 -3988 ($)) (-15 -2750 ((-589 (-1003)) $)) (-15 -1766 ((-3 (-1020) "failed") (-1087) (-1087) $)) (-15 -3946 ($ (-1087) (-1087) (-1020) $)) (-15 -3342 ((-3 (-589 (-895)) "failed") (-1087) $)) (-15 -3885 ($ (-1087) (-589 (-895)) $)) (-15 -3221 ($)) (-15 -3319 ($))))) (T -268)) +((-3988 (*1 *1) (-5 *1 (-268))) (-2750 (*1 *2 *1) (-12 (-5 *2 (-589 (-1003))) (-5 *1 (-268)))) (-1766 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-1020)) (-5 *1 (-268)))) (-3946 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1087)) (-5 *3 (-1020)) (-5 *1 (-268)))) (-3342 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-589 (-895))) (-5 *1 (-268)))) (-3885 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-895))) (-5 *1 (-268)))) (-3221 (*1 *1) (-5 *1 (-268))) (-3319 (*1 *1) (-5 *1 (-268)))) +(-13 (-563 (-794)) (-10 -8 (-15 -3988 ($)) (-15 -2750 ((-589 (-1003)) $)) (-15 -1766 ((-3 (-1020) "failed") (-1087) (-1087) $)) (-15 -3946 ($ (-1087) (-1087) (-1020) $)) (-15 -3342 ((-3 (-589 (-895)) "failed") (-1087) $)) (-15 -3885 ($ (-1087) (-589 (-895)) $)) (-15 -3221 ($)) (-15 -3319 ($)))) +((-1629 (((-589 (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |geneigvec| (-589 (-629 (-383 (-883 |#1|))))))) (-629 (-383 (-883 |#1|)))) 84)) (-3794 (((-589 (-629 (-383 (-883 |#1|)))) (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 (-629 (-383 (-883 |#1|)))))) (-629 (-383 (-883 |#1|)))) 79) (((-589 (-629 (-383 (-883 |#1|)))) (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|))) (-629 (-383 (-883 |#1|))) (-710) (-710)) 37)) (-3118 (((-589 (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 (-629 (-383 (-883 |#1|))))))) (-629 (-383 (-883 |#1|)))) 81)) (-1441 (((-589 (-629 (-383 (-883 |#1|)))) (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|))) (-629 (-383 (-883 |#1|)))) 61)) (-3619 (((-589 (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (-629 (-383 (-883 |#1|)))) 60)) (-1807 (((-883 |#1|) (-629 (-383 (-883 |#1|)))) 48) (((-883 |#1|) (-629 (-383 (-883 |#1|))) (-1087)) 49))) +(((-269 |#1|) (-10 -7 (-15 -1807 ((-883 |#1|) (-629 (-383 (-883 |#1|))) (-1087))) (-15 -1807 ((-883 |#1|) (-629 (-383 (-883 |#1|))))) (-15 -3619 ((-589 (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (-629 (-383 (-883 |#1|))))) (-15 -1441 ((-589 (-629 (-383 (-883 |#1|)))) (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|))) (-629 (-383 (-883 |#1|))))) (-15 -3794 ((-589 (-629 (-383 (-883 |#1|)))) (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|))) (-629 (-383 (-883 |#1|))) (-710) (-710))) (-15 -3794 ((-589 (-629 (-383 (-883 |#1|)))) (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 (-629 (-383 (-883 |#1|)))))) (-629 (-383 (-883 |#1|))))) (-15 -1629 ((-589 (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |geneigvec| (-589 (-629 (-383 (-883 |#1|))))))) (-629 (-383 (-883 |#1|))))) (-15 -3118 ((-589 (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 (-629 (-383 (-883 |#1|))))))) (-629 (-383 (-883 |#1|)))))) (-427)) (T -269)) +((-3118 (*1 *2 *3) (-12 (-4 *4 (-427)) (-5 *2 (-589 (-2 (|:| |eigval| (-3 (-383 (-883 *4)) (-1077 (-1087) (-883 *4)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 (-629 (-383 (-883 *4)))))))) (-5 *1 (-269 *4)) (-5 *3 (-629 (-383 (-883 *4)))))) (-1629 (*1 *2 *3) (-12 (-4 *4 (-427)) (-5 *2 (-589 (-2 (|:| |eigval| (-3 (-383 (-883 *4)) (-1077 (-1087) (-883 *4)))) (|:| |geneigvec| (-589 (-629 (-383 (-883 *4)))))))) (-5 *1 (-269 *4)) (-5 *3 (-629 (-383 (-883 *4)))))) (-3794 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-383 (-883 *5)) (-1077 (-1087) (-883 *5)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 *4)))) (-4 *5 (-427)) (-5 *2 (-589 (-629 (-383 (-883 *5))))) (-5 *1 (-269 *5)) (-5 *4 (-629 (-383 (-883 *5)))))) (-3794 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-383 (-883 *6)) (-1077 (-1087) (-883 *6)))) (-5 *5 (-710)) (-4 *6 (-427)) (-5 *2 (-589 (-629 (-383 (-883 *6))))) (-5 *1 (-269 *6)) (-5 *4 (-629 (-383 (-883 *6)))))) (-1441 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-383 (-883 *5)) (-1077 (-1087) (-883 *5)))) (-4 *5 (-427)) (-5 *2 (-589 (-629 (-383 (-883 *5))))) (-5 *1 (-269 *5)) (-5 *4 (-629 (-383 (-883 *5)))))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-629 (-383 (-883 *4)))) (-4 *4 (-427)) (-5 *2 (-589 (-3 (-383 (-883 *4)) (-1077 (-1087) (-883 *4))))) (-5 *1 (-269 *4)))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-629 (-383 (-883 *4)))) (-5 *2 (-883 *4)) (-5 *1 (-269 *4)) (-4 *4 (-427)))) (-1807 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-383 (-883 *5)))) (-5 *4 (-1087)) (-5 *2 (-883 *5)) (-5 *1 (-269 *5)) (-4 *5 (-427))))) +(-10 -7 (-15 -1807 ((-883 |#1|) (-629 (-383 (-883 |#1|))) (-1087))) (-15 -1807 ((-883 |#1|) (-629 (-383 (-883 |#1|))))) (-15 -3619 ((-589 (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (-629 (-383 (-883 |#1|))))) (-15 -1441 ((-589 (-629 (-383 (-883 |#1|)))) (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|))) (-629 (-383 (-883 |#1|))))) (-15 -3794 ((-589 (-629 (-383 (-883 |#1|)))) (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|))) (-629 (-383 (-883 |#1|))) (-710) (-710))) (-15 -3794 ((-589 (-629 (-383 (-883 |#1|)))) (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 (-629 (-383 (-883 |#1|)))))) (-629 (-383 (-883 |#1|))))) (-15 -1629 ((-589 (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |geneigvec| (-589 (-629 (-383 (-883 |#1|))))))) (-629 (-383 (-883 |#1|))))) (-15 -3118 ((-589 (-2 (|:| |eigval| (-3 (-383 (-883 |#1|)) (-1077 (-1087) (-883 |#1|)))) (|:| |eigmult| (-710)) (|:| |eigvec| (-589 (-629 (-383 (-883 |#1|))))))) (-629 (-383 (-883 |#1|)))))) +((-3612 (((-271 |#2|) (-1 |#2| |#1|) (-271 |#1|)) 14))) +(((-270 |#1| |#2|) (-10 -7 (-15 -3612 ((-271 |#2|) (-1 |#2| |#1|) (-271 |#1|)))) (-1122) (-1122)) (T -270)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-271 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-271 *6)) (-5 *1 (-270 *5 *6))))) +(-10 -7 (-15 -3612 ((-271 |#2|) (-1 |#2| |#1|) (-271 |#1|)))) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2295 (((-108) $) NIL (|has| |#1| (-21)))) (-1828 (($ $) 22)) (-3212 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2955 (($ $ $) 93 (|has| |#1| (-279)))) (-2518 (($) NIL (-3262 (|has| |#1| (-21)) (|has| |#1| (-666))) CONST)) (-4018 (($ $) 8 (|has| |#1| (-21)))) (-2959 (((-3 $ "failed") $) 68 (|has| |#1| (-666)))) (-1797 ((|#1| $) 21)) (-2121 (((-3 $ "failed") $) 66 (|has| |#1| (-666)))) (-2023 (((-108) $) NIL (|has| |#1| (-666)))) (-3612 (($ (-1 |#1| |#1|) $) 24)) (-1787 ((|#1| $) 9)) (-2923 (($ $) 57 (|has| |#1| (-21)))) (-1497 (((-3 $ "failed") $) 67 (|has| |#1| (-666)))) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3738 (($ $) 70 (-3262 (|has| |#1| (-339)) (|has| |#1| (-448))))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3775 (((-589 $) $) 19 (|has| |#1| (-515)))) (-2679 (($ $ $) 34 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 $)) 37 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-1087) |#1|) 27 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) 31 (|has| |#1| (-484 (-1087) |#1|)))) (-1915 (($ |#1| |#1|) 17)) (-3203 (((-126)) 88 (|has| |#1| (-339)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) 85 (|has| |#1| (-831 (-1087))))) (-3208 (($ $ $) NIL (|has| |#1| (-448)))) (-1714 (($ $ $) NIL (|has| |#1| (-448)))) (-1458 (($ (-523)) NIL (|has| |#1| (-973))) (((-108) $) 45 (|has| |#1| (-1016))) (((-794) $) 44 (|has| |#1| (-1016)))) (-1621 (((-710)) 73 (|has| |#1| (-973)))) (-2364 (($ $ (-523)) NIL (|has| |#1| (-448))) (($ $ (-710)) NIL (|has| |#1| (-666))) (($ $ (-852)) NIL (|has| |#1| (-1028)))) (-2756 (($) 55 (|has| |#1| (-21)) CONST)) (-2767 (($) 63 (|has| |#1| (-666)) CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087))))) (-3983 (($ |#1| |#1|) 20) (((-108) $ $) 40 (|has| |#1| (-1016)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) 90 (-3262 (|has| |#1| (-339)) (|has| |#1| (-448))))) (-4087 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-4075 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-523)) NIL (|has| |#1| (-448))) (($ $ (-710)) NIL (|has| |#1| (-666))) (($ $ (-852)) NIL (|has| |#1| (-1028)))) (* (($ $ |#1|) 61 (|has| |#1| (-1028))) (($ |#1| $) 60 (|has| |#1| (-1028))) (($ $ $) 59 (|has| |#1| (-1028))) (($ (-523) $) 76 (|has| |#1| (-21))) (($ (-710) $) NIL (|has| |#1| (-21))) (($ (-852) $) NIL (|has| |#1| (-25))))) +(((-271 |#1|) (-13 (-1122) (-10 -8 (-15 -3983 ($ |#1| |#1|)) (-15 -1915 ($ |#1| |#1|)) (-15 -1828 ($ $)) (-15 -1787 (|#1| $)) (-15 -1797 (|#1| $)) (-15 -3612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-484 (-1087) |#1|)) (-6 (-484 (-1087) |#1|)) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-6 (-1016)) (-6 (-563 (-108))) (IF (|has| |#1| (-286 |#1|)) (PROGN (-15 -2679 ($ $ $)) (-15 -2679 ($ $ (-589 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4075 ($ |#1| $)) (-15 -4075 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2923 ($ $)) (-15 -4018 ($ $)) (-15 -4087 ($ |#1| $)) (-15 -4087 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1028)) (PROGN (-6 (-1028)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-666)) (PROGN (-6 (-666)) (-15 -1497 ((-3 $ "failed") $)) (-15 -2959 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-448)) (PROGN (-6 (-448)) (-15 -1497 ((-3 $ "failed") $)) (-15 -2959 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-973)) (PROGN (-6 (-973)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-158)) (-6 (-657 |#1|)) |%noBranch|) (IF (|has| |#1| (-515)) (-15 -3775 ((-589 $) $)) |%noBranch|) (IF (|has| |#1| (-831 (-1087))) (-6 (-831 (-1087))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-6 (-1175 |#1|)) (-15 -4098 ($ $ $)) (-15 -3738 ($ $))) |%noBranch|) (IF (|has| |#1| (-279)) (-15 -2955 ($ $ $)) |%noBranch|))) (-1122)) (T -271)) +((-3983 (*1 *1 *2 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1122)))) (-1915 (*1 *1 *2 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1122)))) (-1828 (*1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1122)))) (-1787 (*1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1122)))) (-1797 (*1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1122)))) (-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-271 *3)))) (-2679 (*1 *1 *1 *1) (-12 (-4 *2 (-286 *2)) (-4 *2 (-1016)) (-4 *2 (-1122)) (-5 *1 (-271 *2)))) (-2679 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-271 *3))) (-4 *3 (-286 *3)) (-4 *3 (-1016)) (-4 *3 (-1122)) (-5 *1 (-271 *3)))) (-4075 (*1 *1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-25)) (-4 *2 (-1122)))) (-4075 (*1 *1 *1 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-25)) (-4 *2 (-1122)))) (-2923 (*1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1122)))) (-4018 (*1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1122)))) (-4087 (*1 *1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1122)))) (-4087 (*1 *1 *1 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1122)))) (-1497 (*1 *1 *1) (|partial| -12 (-5 *1 (-271 *2)) (-4 *2 (-666)) (-4 *2 (-1122)))) (-2959 (*1 *1 *1) (|partial| -12 (-5 *1 (-271 *2)) (-4 *2 (-666)) (-4 *2 (-1122)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-589 (-271 *3))) (-5 *1 (-271 *3)) (-4 *3 (-515)) (-4 *3 (-1122)))) (-2955 (*1 *1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-279)) (-4 *2 (-1122)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1028)) (-4 *2 (-1122)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1028)) (-4 *2 (-1122)))) (-4098 (*1 *1 *1 *1) (-3262 (-12 (-5 *1 (-271 *2)) (-4 *2 (-339)) (-4 *2 (-1122))) (-12 (-5 *1 (-271 *2)) (-4 *2 (-448)) (-4 *2 (-1122))))) (-3738 (*1 *1 *1) (-3262 (-12 (-5 *1 (-271 *2)) (-4 *2 (-339)) (-4 *2 (-1122))) (-12 (-5 *1 (-271 *2)) (-4 *2 (-448)) (-4 *2 (-1122)))))) +(-13 (-1122) (-10 -8 (-15 -3983 ($ |#1| |#1|)) (-15 -1915 ($ |#1| |#1|)) (-15 -1828 ($ $)) (-15 -1787 (|#1| $)) (-15 -1797 (|#1| $)) (-15 -3612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-484 (-1087) |#1|)) (-6 (-484 (-1087) |#1|)) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-6 (-1016)) (-6 (-563 (-108))) (IF (|has| |#1| (-286 |#1|)) (PROGN (-15 -2679 ($ $ $)) (-15 -2679 ($ $ (-589 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4075 ($ |#1| $)) (-15 -4075 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2923 ($ $)) (-15 -4018 ($ $)) (-15 -4087 ($ |#1| $)) (-15 -4087 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1028)) (PROGN (-6 (-1028)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-666)) (PROGN (-6 (-666)) (-15 -1497 ((-3 $ "failed") $)) (-15 -2959 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-448)) (PROGN (-6 (-448)) (-15 -1497 ((-3 $ "failed") $)) (-15 -2959 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-973)) (PROGN (-6 (-973)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-158)) (-6 (-657 |#1|)) |%noBranch|) (IF (|has| |#1| (-515)) (-15 -3775 ((-589 $) $)) |%noBranch|) (IF (|has| |#1| (-831 (-1087))) (-6 (-831 (-1087))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-6 (-1175 |#1|)) (-15 -4098 ($ $ $)) (-15 -3738 ($ $))) |%noBranch|) (IF (|has| |#1| (-279)) (-15 -2955 ($ $ $)) |%noBranch|))) +((-3924 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-4207 (((-1173) $ |#1| |#1|) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#2| $ |#1| |#2|) NIL)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2243 (((-3 |#2| "failed") |#1| $) NIL)) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-2249 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-3 |#2| "failed") |#1| $) NIL)) (-2557 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) NIL)) (-1666 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 ((|#1| $) NIL (|has| |#1| (-786)))) (-2136 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3056 ((|#1| $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4245))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1330 (((-589 |#1|) $) NIL)) (-2777 (((-108) |#1| $) NIL)) (-1934 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-3450 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-2412 (((-589 |#1|) $) NIL)) (-4135 (((-108) |#1| $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1738 ((|#2| $) NIL (|has| |#1| (-786)))) (-2114 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL)) (-4203 (($ $ |#2|) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3433 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016)))) (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-1458 (((-794) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794)))))) (-2401 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-272 |#1| |#2|) (-13 (-1099 |#1| |#2|) (-10 -7 (-6 -4244))) (-1016) (-1016)) (T -272)) +NIL +(-13 (-1099 |#1| |#2|) (-10 -7 (-6 -4244))) +((-3314 (((-288) (-1070) (-589 (-1070))) 16) (((-288) (-1070) (-1070)) 15) (((-288) (-589 (-1070))) 14) (((-288) (-1070)) 12))) +(((-273) (-10 -7 (-15 -3314 ((-288) (-1070))) (-15 -3314 ((-288) (-589 (-1070)))) (-15 -3314 ((-288) (-1070) (-1070))) (-15 -3314 ((-288) (-1070) (-589 (-1070)))))) (T -273)) +((-3314 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-1070))) (-5 *3 (-1070)) (-5 *2 (-288)) (-5 *1 (-273)))) (-3314 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-288)) (-5 *1 (-273)))) (-3314 (*1 *2 *3) (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-288)) (-5 *1 (-273)))) (-3314 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-288)) (-5 *1 (-273))))) +(-10 -7 (-15 -3314 ((-288) (-1070))) (-15 -3314 ((-288) (-589 (-1070)))) (-15 -3314 ((-288) (-1070) (-1070))) (-15 -3314 ((-288) (-1070) (-589 (-1070))))) +((-3612 ((|#2| (-1 |#2| |#1|) (-1070) (-562 |#1|)) 17))) +(((-274 |#1| |#2|) (-10 -7 (-15 -3612 (|#2| (-1 |#2| |#1|) (-1070) (-562 |#1|)))) (-279) (-1122)) (T -274)) +((-3612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1070)) (-5 *5 (-562 *6)) (-4 *6 (-279)) (-4 *2 (-1122)) (-5 *1 (-274 *6 *2))))) +(-10 -7 (-15 -3612 (|#2| (-1 |#2| |#1|) (-1070) (-562 |#1|)))) +((-3612 ((|#2| (-1 |#2| |#1|) (-562 |#1|)) 17))) +(((-275 |#1| |#2|) (-10 -7 (-15 -3612 (|#2| (-1 |#2| |#1|) (-562 |#1|)))) (-279) (-279)) (T -275)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-562 *5)) (-4 *5 (-279)) (-4 *2 (-279)) (-5 *1 (-275 *5 *2))))) +(-10 -7 (-15 -3612 (|#2| (-1 |#2| |#1|) (-562 |#1|)))) +((-3224 (((-108) (-203)) 10))) +(((-276 |#1| |#2|) (-10 -7 (-15 -3224 ((-108) (-203)))) (-203) (-203)) (T -276)) +((-3224 (*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-108)) (-5 *1 (-276 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -3224 ((-108) (-203)))) +((-1728 (((-1068 (-203)) (-292 (-203)) (-589 (-1087)) (-1011 (-779 (-203)))) 88)) (-2582 (((-1068 (-203)) (-1168 (-292 (-203))) (-589 (-1087)) (-1011 (-779 (-203)))) 103) (((-1068 (-203)) (-292 (-203)) (-589 (-1087)) (-1011 (-779 (-203)))) 58)) (-1975 (((-589 (-1070)) (-1068 (-203))) NIL)) (-3593 (((-589 (-203)) (-292 (-203)) (-1087) (-1011 (-779 (-203)))) 55)) (-2420 (((-589 (-203)) (-883 (-383 (-523))) (-1087) (-1011 (-779 (-203)))) 47)) (-1863 (((-589 (-1070)) (-589 (-203))) NIL)) (-2074 (((-203) (-1011 (-779 (-203)))) 23)) (-2728 (((-203) (-1011 (-779 (-203)))) 24)) (-3905 (((-108) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 51)) (-1729 (((-1070) (-203)) NIL))) +(((-277) (-10 -7 (-15 -2074 ((-203) (-1011 (-779 (-203))))) (-15 -2728 ((-203) (-1011 (-779 (-203))))) (-15 -3905 ((-108) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3593 ((-589 (-203)) (-292 (-203)) (-1087) (-1011 (-779 (-203))))) (-15 -1728 ((-1068 (-203)) (-292 (-203)) (-589 (-1087)) (-1011 (-779 (-203))))) (-15 -2582 ((-1068 (-203)) (-292 (-203)) (-589 (-1087)) (-1011 (-779 (-203))))) (-15 -2582 ((-1068 (-203)) (-1168 (-292 (-203))) (-589 (-1087)) (-1011 (-779 (-203))))) (-15 -2420 ((-589 (-203)) (-883 (-383 (-523))) (-1087) (-1011 (-779 (-203))))) (-15 -1729 ((-1070) (-203))) (-15 -1863 ((-589 (-1070)) (-589 (-203)))) (-15 -1975 ((-589 (-1070)) (-1068 (-203)))))) (T -277)) +((-1975 (*1 *2 *3) (-12 (-5 *3 (-1068 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-277)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-589 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-277)))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1070)) (-5 *1 (-277)))) (-2420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-883 (-383 (-523)))) (-5 *4 (-1087)) (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-589 (-203))) (-5 *1 (-277)))) (-2582 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1168 (-292 (-203)))) (-5 *4 (-589 (-1087))) (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-1068 (-203))) (-5 *1 (-277)))) (-2582 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-292 (-203))) (-5 *4 (-589 (-1087))) (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-1068 (-203))) (-5 *1 (-277)))) (-1728 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-292 (-203))) (-5 *4 (-589 (-1087))) (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-1068 (-203))) (-5 *1 (-277)))) (-3593 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-292 (-203))) (-5 *4 (-1087)) (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-589 (-203))) (-5 *1 (-277)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-108)) (-5 *1 (-277)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-277)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-277))))) +(-10 -7 (-15 -2074 ((-203) (-1011 (-779 (-203))))) (-15 -2728 ((-203) (-1011 (-779 (-203))))) (-15 -3905 ((-108) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3593 ((-589 (-203)) (-292 (-203)) (-1087) (-1011 (-779 (-203))))) (-15 -1728 ((-1068 (-203)) (-292 (-203)) (-589 (-1087)) (-1011 (-779 (-203))))) (-15 -2582 ((-1068 (-203)) (-292 (-203)) (-589 (-1087)) (-1011 (-779 (-203))))) (-15 -2582 ((-1068 (-203)) (-1168 (-292 (-203))) (-589 (-1087)) (-1011 (-779 (-203))))) (-15 -2420 ((-589 (-203)) (-883 (-383 (-523))) (-1087) (-1011 (-779 (-203))))) (-15 -1729 ((-1070) (-203))) (-15 -1863 ((-589 (-1070)) (-589 (-203)))) (-15 -1975 ((-589 (-1070)) (-1068 (-203))))) +((-3072 (((-589 (-562 $)) $) 28)) (-2955 (($ $ (-271 $)) 81) (($ $ (-589 (-271 $))) 121) (($ $ (-589 (-562 $)) (-589 $)) NIL)) (-3517 (((-3 (-562 $) "failed") $) 111)) (-3474 (((-562 $) $) 110)) (-2361 (($ $) 19) (($ (-589 $)) 55)) (-1444 (((-589 (-110)) $) 37)) (-1403 (((-110) (-110)) 91)) (-1557 (((-108) $) 129)) (-3612 (($ (-1 $ $) (-562 $)) 89)) (-1363 (((-3 (-562 $) "failed") $) 93)) (-2868 (($ (-110) $) 61) (($ (-110) (-589 $)) 99)) (-3259 (((-108) $ (-110)) 115) (((-108) $ (-1087)) 114)) (-2510 (((-710) $) 45)) (-2585 (((-108) $ $) 59) (((-108) $ (-1087)) 50)) (-4104 (((-108) $) 127)) (-2679 (($ $ (-562 $) $) NIL) (($ $ (-589 (-562 $)) (-589 $)) NIL) (($ $ (-589 (-271 $))) 119) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ $))) 84) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-1087) (-1 $ (-589 $))) 69) (($ $ (-1087) (-1 $ $)) 75) (($ $ (-589 (-110)) (-589 (-1 $ $))) 83) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) 85) (($ $ (-110) (-1 $ (-589 $))) 71) (($ $ (-110) (-1 $ $)) 77)) (-3223 (($ (-110) $) 62) (($ (-110) $ $) 63) (($ (-110) $ $ $) 64) (($ (-110) $ $ $ $) 65) (($ (-110) (-589 $)) 107)) (-3957 (($ $) 52) (($ $ $) 117)) (-3822 (($ $) 17) (($ (-589 $)) 54)) (-1950 (((-108) (-110)) 22))) +(((-278 |#1|) (-10 -8 (-15 -1557 ((-108) |#1|)) (-15 -4104 ((-108) |#1|)) (-15 -2679 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-110) (-1 |#1| (-589 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2679 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| |#1|)))) (-15 -2679 (|#1| |#1| (-1087) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-1087) (-1 |#1| (-589 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| |#1|)))) (-15 -2585 ((-108) |#1| (-1087))) (-15 -2585 ((-108) |#1| |#1|)) (-15 -3612 (|#1| (-1 |#1| |#1|) (-562 |#1|))) (-15 -2868 (|#1| (-110) (-589 |#1|))) (-15 -2868 (|#1| (-110) |#1|)) (-15 -3259 ((-108) |#1| (-1087))) (-15 -3259 ((-108) |#1| (-110))) (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 -1444 ((-589 (-110)) |#1|)) (-15 -3072 ((-589 (-562 |#1|)) |#1|)) (-15 -1363 ((-3 (-562 |#1|) "failed") |#1|)) (-15 -2510 ((-710) |#1|)) (-15 -3957 (|#1| |#1| |#1|)) (-15 -3957 (|#1| |#1|)) (-15 -2361 (|#1| (-589 |#1|))) (-15 -2361 (|#1| |#1|)) (-15 -3822 (|#1| (-589 |#1|))) (-15 -3822 (|#1| |#1|)) (-15 -2955 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -2955 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2955 (|#1| |#1| (-271 |#1|))) (-15 -3223 (|#1| (-110) (-589 |#1|))) (-15 -3223 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1|)) (-15 -2679 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-271 |#1|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -2679 (|#1| |#1| (-562 |#1|) |#1|)) (-15 -3474 ((-562 |#1|) |#1|)) (-15 -3517 ((-3 (-562 |#1|) "failed") |#1|))) (-279)) (T -278)) +((-1403 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-278 *3)) (-4 *3 (-279)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-278 *4)) (-4 *4 (-279))))) +(-10 -8 (-15 -1557 ((-108) |#1|)) (-15 -4104 ((-108) |#1|)) (-15 -2679 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-110) (-1 |#1| (-589 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2679 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| |#1|)))) (-15 -2679 (|#1| |#1| (-1087) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-1087) (-1 |#1| (-589 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| |#1|)))) (-15 -2585 ((-108) |#1| (-1087))) (-15 -2585 ((-108) |#1| |#1|)) (-15 -3612 (|#1| (-1 |#1| |#1|) (-562 |#1|))) (-15 -2868 (|#1| (-110) (-589 |#1|))) (-15 -2868 (|#1| (-110) |#1|)) (-15 -3259 ((-108) |#1| (-1087))) (-15 -3259 ((-108) |#1| (-110))) (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 -1444 ((-589 (-110)) |#1|)) (-15 -3072 ((-589 (-562 |#1|)) |#1|)) (-15 -1363 ((-3 (-562 |#1|) "failed") |#1|)) (-15 -2510 ((-710) |#1|)) (-15 -3957 (|#1| |#1| |#1|)) (-15 -3957 (|#1| |#1|)) (-15 -2361 (|#1| (-589 |#1|))) (-15 -2361 (|#1| |#1|)) (-15 -3822 (|#1| (-589 |#1|))) (-15 -3822 (|#1| |#1|)) (-15 -2955 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -2955 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2955 (|#1| |#1| (-271 |#1|))) (-15 -3223 (|#1| (-110) (-589 |#1|))) (-15 -3223 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1|)) (-15 -2679 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-271 |#1|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -2679 (|#1| |#1| (-562 |#1|) |#1|)) (-15 -3474 ((-562 |#1|) |#1|)) (-15 -3517 ((-3 (-562 |#1|) "failed") |#1|))) +((-3924 (((-108) $ $) 7)) (-3072 (((-589 (-562 $)) $) 44)) (-2955 (($ $ (-271 $)) 56) (($ $ (-589 (-271 $))) 55) (($ $ (-589 (-562 $)) (-589 $)) 54)) (-3517 (((-3 (-562 $) "failed") $) 69)) (-3474 (((-562 $) $) 68)) (-2361 (($ $) 51) (($ (-589 $)) 50)) (-1444 (((-589 (-110)) $) 43)) (-1403 (((-110) (-110)) 42)) (-1557 (((-108) $) 22 (|has| $ (-964 (-523))))) (-1483 (((-1083 $) (-562 $)) 25 (|has| $ (-973)))) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3612 (($ (-1 $ $) (-562 $)) 36)) (-1363 (((-3 (-562 $) "failed") $) 46)) (-3779 (((-1070) $) 9)) (-1771 (((-589 (-562 $)) $) 45)) (-2868 (($ (-110) $) 38) (($ (-110) (-589 $)) 37)) (-3259 (((-108) $ (-110)) 40) (((-108) $ (-1087)) 39)) (-2510 (((-710) $) 47)) (-2783 (((-1034) $) 10)) (-2585 (((-108) $ $) 35) (((-108) $ (-1087)) 34)) (-4104 (((-108) $) 23 (|has| $ (-964 (-523))))) (-2679 (($ $ (-562 $) $) 67) (($ $ (-589 (-562 $)) (-589 $)) 66) (($ $ (-589 (-271 $))) 65) (($ $ (-271 $)) 64) (($ $ $ $) 63) (($ $ (-589 $) (-589 $)) 62) (($ $ (-589 (-1087)) (-589 (-1 $ $))) 33) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) 32) (($ $ (-1087) (-1 $ (-589 $))) 31) (($ $ (-1087) (-1 $ $)) 30) (($ $ (-589 (-110)) (-589 (-1 $ $))) 29) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) 28) (($ $ (-110) (-1 $ (-589 $))) 27) (($ $ (-110) (-1 $ $)) 26)) (-3223 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-589 $)) 57)) (-3957 (($ $) 49) (($ $ $) 48)) (-3727 (($ $) 24 (|has| $ (-973)))) (-1458 (((-794) $) 11) (($ (-562 $)) 70)) (-3822 (($ $) 53) (($ (-589 $)) 52)) (-1950 (((-108) (-110)) 41)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18))) +(((-279) (-129)) (T -279)) +((-3223 (*1 *1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) (-3223 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) (-3223 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) (-3223 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) (-3223 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-589 *1)) (-4 *1 (-279)))) (-2955 (*1 *1 *1 *2) (-12 (-5 *2 (-271 *1)) (-4 *1 (-279)))) (-2955 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-271 *1))) (-4 *1 (-279)))) (-2955 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-562 *1))) (-5 *3 (-589 *1)) (-4 *1 (-279)))) (-3822 (*1 *1 *1) (-4 *1 (-279))) (-3822 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-279)))) (-2361 (*1 *1 *1) (-4 *1 (-279))) (-2361 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-279)))) (-3957 (*1 *1 *1) (-4 *1 (-279))) (-3957 (*1 *1 *1 *1) (-4 *1 (-279))) (-2510 (*1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-710)))) (-1363 (*1 *2 *1) (|partial| -12 (-5 *2 (-562 *1)) (-4 *1 (-279)))) (-1771 (*1 *2 *1) (-12 (-5 *2 (-589 (-562 *1))) (-4 *1 (-279)))) (-3072 (*1 *2 *1) (-12 (-5 *2 (-589 (-562 *1))) (-4 *1 (-279)))) (-1444 (*1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-589 (-110))))) (-1403 (*1 *2 *2) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) (-1950 (*1 *2 *3) (-12 (-4 *1 (-279)) (-5 *3 (-110)) (-5 *2 (-108)))) (-3259 (*1 *2 *1 *3) (-12 (-4 *1 (-279)) (-5 *3 (-110)) (-5 *2 (-108)))) (-3259 (*1 *2 *1 *3) (-12 (-4 *1 (-279)) (-5 *3 (-1087)) (-5 *2 (-108)))) (-2868 (*1 *1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) (-2868 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-589 *1)) (-4 *1 (-279)))) (-3612 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-562 *1)) (-4 *1 (-279)))) (-2585 (*1 *2 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-108)))) (-2585 (*1 *2 *1 *3) (-12 (-4 *1 (-279)) (-5 *3 (-1087)) (-5 *2 (-108)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-589 (-1 *1 *1))) (-4 *1 (-279)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-589 (-1 *1 (-589 *1)))) (-4 *1 (-279)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1 *1 (-589 *1))) (-4 *1 (-279)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1 *1 *1)) (-4 *1 (-279)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-110))) (-5 *3 (-589 (-1 *1 *1))) (-4 *1 (-279)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-110))) (-5 *3 (-589 (-1 *1 (-589 *1)))) (-4 *1 (-279)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-589 *1))) (-4 *1 (-279)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-279)))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-562 *1)) (-4 *1 (-973)) (-4 *1 (-279)) (-5 *2 (-1083 *1)))) (-3727 (*1 *1 *1) (-12 (-4 *1 (-973)) (-4 *1 (-279)))) (-4104 (*1 *2 *1) (-12 (-4 *1 (-964 (-523))) (-4 *1 (-279)) (-5 *2 (-108)))) (-1557 (*1 *2 *1) (-12 (-4 *1 (-964 (-523))) (-4 *1 (-279)) (-5 *2 (-108))))) +(-13 (-786) (-964 (-562 $)) (-484 (-562 $) $) (-286 $) (-10 -8 (-15 -3223 ($ (-110) $)) (-15 -3223 ($ (-110) $ $)) (-15 -3223 ($ (-110) $ $ $)) (-15 -3223 ($ (-110) $ $ $ $)) (-15 -3223 ($ (-110) (-589 $))) (-15 -2955 ($ $ (-271 $))) (-15 -2955 ($ $ (-589 (-271 $)))) (-15 -2955 ($ $ (-589 (-562 $)) (-589 $))) (-15 -3822 ($ $)) (-15 -3822 ($ (-589 $))) (-15 -2361 ($ $)) (-15 -2361 ($ (-589 $))) (-15 -3957 ($ $)) (-15 -3957 ($ $ $)) (-15 -2510 ((-710) $)) (-15 -1363 ((-3 (-562 $) "failed") $)) (-15 -1771 ((-589 (-562 $)) $)) (-15 -3072 ((-589 (-562 $)) $)) (-15 -1444 ((-589 (-110)) $)) (-15 -1403 ((-110) (-110))) (-15 -1950 ((-108) (-110))) (-15 -3259 ((-108) $ (-110))) (-15 -3259 ((-108) $ (-1087))) (-15 -2868 ($ (-110) $)) (-15 -2868 ($ (-110) (-589 $))) (-15 -3612 ($ (-1 $ $) (-562 $))) (-15 -2585 ((-108) $ $)) (-15 -2585 ((-108) $ (-1087))) (-15 -2679 ($ $ (-589 (-1087)) (-589 (-1 $ $)))) (-15 -2679 ($ $ (-589 (-1087)) (-589 (-1 $ (-589 $))))) (-15 -2679 ($ $ (-1087) (-1 $ (-589 $)))) (-15 -2679 ($ $ (-1087) (-1 $ $))) (-15 -2679 ($ $ (-589 (-110)) (-589 (-1 $ $)))) (-15 -2679 ($ $ (-589 (-110)) (-589 (-1 $ (-589 $))))) (-15 -2679 ($ $ (-110) (-1 $ (-589 $)))) (-15 -2679 ($ $ (-110) (-1 $ $))) (IF (|has| $ (-973)) (PROGN (-15 -1483 ((-1083 $) (-562 $))) (-15 -3727 ($ $))) |%noBranch|) (IF (|has| $ (-964 (-523))) (PROGN (-15 -4104 ((-108) $)) (-15 -1557 ((-108) $))) |%noBranch|))) +(((-97) . T) ((-563 (-794)) . T) ((-286 $) . T) ((-484 (-562 $) $) . T) ((-484 $ $) . T) ((-786) . T) ((-964 (-562 $)) . T) ((-1016) . T)) +((-3140 (((-589 |#1|) (-589 |#1|)) 10))) +(((-280 |#1|) (-10 -7 (-15 -3140 ((-589 |#1|) (-589 |#1|)))) (-784)) (T -280)) +((-3140 (*1 *2 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-784)) (-5 *1 (-280 *3))))) +(-10 -7 (-15 -3140 ((-589 |#1|) (-589 |#1|)))) +((-3612 (((-629 |#2|) (-1 |#2| |#1|) (-629 |#1|)) 15))) +(((-281 |#1| |#2|) (-10 -7 (-15 -3612 ((-629 |#2|) (-1 |#2| |#1|) (-629 |#1|)))) (-973) (-973)) (T -281)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-629 *5)) (-4 *5 (-973)) (-4 *6 (-973)) (-5 *2 (-629 *6)) (-5 *1 (-281 *5 *6))))) +(-10 -7 (-15 -3612 ((-629 |#2|) (-1 |#2| |#1|) (-629 |#1|)))) +((-2835 (((-1168 (-292 (-355))) (-1168 (-292 (-203)))) 105)) (-3934 (((-1011 (-779 (-203))) (-1011 (-779 (-355)))) 39)) (-1975 (((-589 (-1070)) (-1068 (-203))) 87)) (-2567 (((-292 (-355)) (-883 (-203))) 49)) (-3550 (((-203) (-883 (-203))) 45)) (-2989 (((-1070) (-355)) 167)) (-2814 (((-779 (-203)) (-779 (-355))) 33)) (-3330 (((-2 (|:| |additions| (-523)) (|:| |multiplications| (-523)) (|:| |exponentiations| (-523)) (|:| |functionCalls| (-523))) (-1168 (-292 (-203)))) 142)) (-3266 (((-962) (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962)))) 180) (((-962) (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))))) 178)) (-3392 (((-629 (-203)) (-589 (-203)) (-710)) 13)) (-3713 (((-1168 (-638)) (-589 (-203))) 94)) (-1863 (((-589 (-1070)) (-589 (-203))) 74)) (-2463 (((-3 (-292 (-203)) "failed") (-292 (-203))) 120)) (-3224 (((-108) (-203) (-1011 (-779 (-203)))) 109)) (-3086 (((-962) (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355)))) 198)) (-2074 (((-203) (-1011 (-779 (-203)))) 107)) (-2728 (((-203) (-1011 (-779 (-203)))) 108)) (-3251 (((-203) (-383 (-523))) 26)) (-1391 (((-1070) (-355)) 72)) (-2080 (((-203) (-355)) 17)) (-2258 (((-355) (-1168 (-292 (-203)))) 153)) (-1802 (((-292 (-203)) (-292 (-355))) 23)) (-2263 (((-383 (-523)) (-292 (-203))) 52)) (-2321 (((-292 (-383 (-523))) (-292 (-203))) 68)) (-3321 (((-292 (-355)) (-292 (-203))) 98)) (-2822 (((-203) (-292 (-203))) 53)) (-1392 (((-589 (-203)) (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) 63)) (-2360 (((-1011 (-779 (-203))) (-1011 (-779 (-203)))) 60)) (-1729 (((-1070) (-203)) 71)) (-3318 (((-638) (-203)) 90)) (-1272 (((-383 (-523)) (-203)) 54)) (-2790 (((-292 (-355)) (-203)) 48)) (-3663 (((-589 (-1011 (-779 (-203)))) (-589 (-1011 (-779 (-355))))) 42)) (-2326 (((-962) (-589 (-962))) 163) (((-962) (-962) (-962)) 160)) (-2761 (((-962) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194))) +(((-282) (-10 -7 (-15 -2080 ((-203) (-355))) (-15 -1802 ((-292 (-203)) (-292 (-355)))) (-15 -2814 ((-779 (-203)) (-779 (-355)))) (-15 -3934 ((-1011 (-779 (-203))) (-1011 (-779 (-355))))) (-15 -3663 ((-589 (-1011 (-779 (-203)))) (-589 (-1011 (-779 (-355)))))) (-15 -1272 ((-383 (-523)) (-203))) (-15 -2263 ((-383 (-523)) (-292 (-203)))) (-15 -2822 ((-203) (-292 (-203)))) (-15 -2463 ((-3 (-292 (-203)) "failed") (-292 (-203)))) (-15 -2258 ((-355) (-1168 (-292 (-203))))) (-15 -3330 ((-2 (|:| |additions| (-523)) (|:| |multiplications| (-523)) (|:| |exponentiations| (-523)) (|:| |functionCalls| (-523))) (-1168 (-292 (-203))))) (-15 -2321 ((-292 (-383 (-523))) (-292 (-203)))) (-15 -2360 ((-1011 (-779 (-203))) (-1011 (-779 (-203))))) (-15 -1392 ((-589 (-203)) (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))))) (-15 -3318 ((-638) (-203))) (-15 -3713 ((-1168 (-638)) (-589 (-203)))) (-15 -3321 ((-292 (-355)) (-292 (-203)))) (-15 -2835 ((-1168 (-292 (-355))) (-1168 (-292 (-203))))) (-15 -3224 ((-108) (-203) (-1011 (-779 (-203))))) (-15 -1729 ((-1070) (-203))) (-15 -1391 ((-1070) (-355))) (-15 -1863 ((-589 (-1070)) (-589 (-203)))) (-15 -1975 ((-589 (-1070)) (-1068 (-203)))) (-15 -2074 ((-203) (-1011 (-779 (-203))))) (-15 -2728 ((-203) (-1011 (-779 (-203))))) (-15 -2326 ((-962) (-962) (-962))) (-15 -2326 ((-962) (-589 (-962)))) (-15 -2989 ((-1070) (-355))) (-15 -3266 ((-962) (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))))) (-15 -3266 ((-962) (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))))) (-15 -2761 ((-962) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3086 ((-962) (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))))) (-15 -2567 ((-292 (-355)) (-883 (-203)))) (-15 -3550 ((-203) (-883 (-203)))) (-15 -2790 ((-292 (-355)) (-203))) (-15 -3251 ((-203) (-383 (-523)))) (-15 -3392 ((-629 (-203)) (-589 (-203)) (-710))))) (T -282)) +((-3392 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-203))) (-5 *4 (-710)) (-5 *2 (-629 (-203))) (-5 *1 (-282)))) (-3251 (*1 *2 *3) (-12 (-5 *3 (-383 (-523))) (-5 *2 (-203)) (-5 *1 (-282)))) (-2790 (*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-292 (-355))) (-5 *1 (-282)))) (-3550 (*1 *2 *3) (-12 (-5 *3 (-883 (-203))) (-5 *2 (-203)) (-5 *1 (-282)))) (-2567 (*1 *2 *3) (-12 (-5 *3 (-883 (-203))) (-5 *2 (-292 (-355))) (-5 *1 (-282)))) (-3086 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355)))) (-5 *2 (-962)) (-5 *1 (-282)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-962)) (-5 *1 (-282)))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962)))) (-5 *2 (-962)) (-5 *1 (-282)))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))))) (-5 *2 (-962)) (-5 *1 (-282)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1070)) (-5 *1 (-282)))) (-2326 (*1 *2 *3) (-12 (-5 *3 (-589 (-962))) (-5 *2 (-962)) (-5 *1 (-282)))) (-2326 (*1 *2 *2 *2) (-12 (-5 *2 (-962)) (-5 *1 (-282)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-282)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-282)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-1068 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-282)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-589 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-282)))) (-1391 (*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1070)) (-5 *1 (-282)))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1070)) (-5 *1 (-282)))) (-3224 (*1 *2 *3 *4) (-12 (-5 *4 (-1011 (-779 (-203)))) (-5 *3 (-203)) (-5 *2 (-108)) (-5 *1 (-282)))) (-2835 (*1 *2 *3) (-12 (-5 *3 (-1168 (-292 (-203)))) (-5 *2 (-1168 (-292 (-355)))) (-5 *1 (-282)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-292 (-355))) (-5 *1 (-282)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-589 (-203))) (-5 *2 (-1168 (-638))) (-5 *1 (-282)))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-638)) (-5 *1 (-282)))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-5 *2 (-589 (-203))) (-5 *1 (-282)))) (-2360 (*1 *2 *2) (-12 (-5 *2 (-1011 (-779 (-203)))) (-5 *1 (-282)))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-292 (-383 (-523)))) (-5 *1 (-282)))) (-3330 (*1 *2 *3) (-12 (-5 *3 (-1168 (-292 (-203)))) (-5 *2 (-2 (|:| |additions| (-523)) (|:| |multiplications| (-523)) (|:| |exponentiations| (-523)) (|:| |functionCalls| (-523)))) (-5 *1 (-282)))) (-2258 (*1 *2 *3) (-12 (-5 *3 (-1168 (-292 (-203)))) (-5 *2 (-355)) (-5 *1 (-282)))) (-2463 (*1 *2 *2) (|partial| -12 (-5 *2 (-292 (-203))) (-5 *1 (-282)))) (-2822 (*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-203)) (-5 *1 (-282)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-383 (-523))) (-5 *1 (-282)))) (-1272 (*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-383 (-523))) (-5 *1 (-282)))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-589 (-1011 (-779 (-355))))) (-5 *2 (-589 (-1011 (-779 (-203))))) (-5 *1 (-282)))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-1011 (-779 (-355)))) (-5 *2 (-1011 (-779 (-203)))) (-5 *1 (-282)))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-779 (-355))) (-5 *2 (-779 (-203))) (-5 *1 (-282)))) (-1802 (*1 *2 *3) (-12 (-5 *3 (-292 (-355))) (-5 *2 (-292 (-203))) (-5 *1 (-282)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-203)) (-5 *1 (-282))))) +(-10 -7 (-15 -2080 ((-203) (-355))) (-15 -1802 ((-292 (-203)) (-292 (-355)))) (-15 -2814 ((-779 (-203)) (-779 (-355)))) (-15 -3934 ((-1011 (-779 (-203))) (-1011 (-779 (-355))))) (-15 -3663 ((-589 (-1011 (-779 (-203)))) (-589 (-1011 (-779 (-355)))))) (-15 -1272 ((-383 (-523)) (-203))) (-15 -2263 ((-383 (-523)) (-292 (-203)))) (-15 -2822 ((-203) (-292 (-203)))) (-15 -2463 ((-3 (-292 (-203)) "failed") (-292 (-203)))) (-15 -2258 ((-355) (-1168 (-292 (-203))))) (-15 -3330 ((-2 (|:| |additions| (-523)) (|:| |multiplications| (-523)) (|:| |exponentiations| (-523)) (|:| |functionCalls| (-523))) (-1168 (-292 (-203))))) (-15 -2321 ((-292 (-383 (-523))) (-292 (-203)))) (-15 -2360 ((-1011 (-779 (-203))) (-1011 (-779 (-203))))) (-15 -1392 ((-589 (-203)) (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))))) (-15 -3318 ((-638) (-203))) (-15 -3713 ((-1168 (-638)) (-589 (-203)))) (-15 -3321 ((-292 (-355)) (-292 (-203)))) (-15 -2835 ((-1168 (-292 (-355))) (-1168 (-292 (-203))))) (-15 -3224 ((-108) (-203) (-1011 (-779 (-203))))) (-15 -1729 ((-1070) (-203))) (-15 -1391 ((-1070) (-355))) (-15 -1863 ((-589 (-1070)) (-589 (-203)))) (-15 -1975 ((-589 (-1070)) (-1068 (-203)))) (-15 -2074 ((-203) (-1011 (-779 (-203))))) (-15 -2728 ((-203) (-1011 (-779 (-203))))) (-15 -2326 ((-962) (-962) (-962))) (-15 -2326 ((-962) (-589 (-962)))) (-15 -2989 ((-1070) (-355))) (-15 -3266 ((-962) (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))))) (-15 -3266 ((-962) (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))))) (-15 -2761 ((-962) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3086 ((-962) (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))))) (-15 -2567 ((-292 (-355)) (-883 (-203)))) (-15 -3550 ((-203) (-883 (-203)))) (-15 -2790 ((-292 (-355)) (-203))) (-15 -3251 ((-203) (-383 (-523)))) (-15 -3392 ((-629 (-203)) (-589 (-203)) (-710)))) +((-1387 (((-108) $ $) 11)) (-3796 (($ $ $) 15)) (-3769 (($ $ $) 14)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 44)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 53)) (-3278 (($ $ $) 21) (($ (-589 $)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3746 (((-3 $ "failed") $ $) 17)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 46))) +(((-283 |#1|) (-10 -8 (-15 -2270 ((-3 (-589 |#1|) "failed") (-589 |#1|) |#1|)) (-15 -1760 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1760 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3441 |#1|)) |#1| |#1|)) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3769 (|#1| |#1| |#1|)) (-15 -1387 ((-108) |#1| |#1|)) (-15 -3312 ((-3 (-589 |#1|) "failed") (-589 |#1|) |#1|)) (-15 -1590 ((-2 (|:| -2935 (-589 |#1|)) (|:| -3441 |#1|)) (-589 |#1|))) (-15 -3278 (|#1| (-589 |#1|))) (-15 -3278 (|#1| |#1| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|))) (-284)) (T -283)) +NIL +(-10 -8 (-15 -2270 ((-3 (-589 |#1|) "failed") (-589 |#1|) |#1|)) (-15 -1760 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1760 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3441 |#1|)) |#1| |#1|)) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3769 (|#1| |#1| |#1|)) (-15 -1387 ((-108) |#1| |#1|)) (-15 -3312 ((-3 (-589 |#1|) "failed") (-589 |#1|) |#1|)) (-15 -1590 ((-2 (|:| -2935 (-589 |#1|)) (|:| -3441 |#1|)) (-589 |#1|))) (-15 -3278 (|#1| (-589 |#1|))) (-15 -3278 (|#1| |#1| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-1387 (((-108) $ $) 59)) (-2518 (($) 17 T CONST)) (-3796 (($ $ $) 55)) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-2023 (((-108) $) 31)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1972 (((-710) $) 58)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-284) (-129)) (T -284)) +((-1387 (*1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-108)))) (-1972 (*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-710)))) (-3462 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-284)))) (-3769 (*1 *1 *1 *1) (-4 *1 (-284))) (-3796 (*1 *1 *1 *1) (-4 *1 (-284))) (-1760 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3441 *1))) (-4 *1 (-284)))) (-1760 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-284)))) (-2270 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-589 *1)) (-4 *1 (-284))))) +(-13 (-851) (-10 -8 (-15 -1387 ((-108) $ $)) (-15 -1972 ((-710) $)) (-15 -3462 ((-2 (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -3769 ($ $ $)) (-15 -3796 ($ $ $)) (-15 -1760 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $)) (-15 -1760 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2270 ((-3 (-589 $) "failed") (-589 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-267) . T) ((-427) . T) ((-515) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-2679 (($ $ (-589 |#2|) (-589 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-271 |#2|)) 11) (($ $ (-589 (-271 |#2|))) NIL))) +(((-285 |#1| |#2|) (-10 -8 (-15 -2679 (|#1| |#1| (-589 (-271 |#2|)))) (-15 -2679 (|#1| |#1| (-271 |#2|))) (-15 -2679 (|#1| |#1| |#2| |#2|)) (-15 -2679 (|#1| |#1| (-589 |#2|) (-589 |#2|)))) (-286 |#2|) (-1016)) (T -285)) +NIL +(-10 -8 (-15 -2679 (|#1| |#1| (-589 (-271 |#2|)))) (-15 -2679 (|#1| |#1| (-271 |#2|))) (-15 -2679 (|#1| |#1| |#2| |#2|)) (-15 -2679 (|#1| |#1| (-589 |#2|) (-589 |#2|)))) +((-2679 (($ $ (-589 |#1|) (-589 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-271 |#1|)) 11) (($ $ (-589 (-271 |#1|))) 10))) +(((-286 |#1|) (-129) (-1016)) (T -286)) +((-2679 (*1 *1 *1 *2) (-12 (-5 *2 (-271 *3)) (-4 *1 (-286 *3)) (-4 *3 (-1016)))) (-2679 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-271 *3))) (-4 *1 (-286 *3)) (-4 *3 (-1016))))) +(-13 (-484 |t#1| |t#1|) (-10 -8 (-15 -2679 ($ $ (-271 |t#1|))) (-15 -2679 ($ $ (-589 (-271 |t#1|)))))) +(((-484 |#1| |#1|) . T)) +((-2679 ((|#1| (-1 |#1| (-523)) (-1089 (-383 (-523)))) 24))) +(((-287 |#1|) (-10 -7 (-15 -2679 (|#1| (-1 |#1| (-523)) (-1089 (-383 (-523)))))) (-37 (-383 (-523)))) (T -287)) +((-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-523))) (-5 *4 (-1089 (-383 (-523)))) (-5 *1 (-287 *2)) (-4 *2 (-37 (-383 (-523))))))) +(-10 -7 (-15 -2679 (|#1| (-1 |#1| (-523)) (-1089 (-383 (-523)))))) +((-3924 (((-108) $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 7)) (-3983 (((-108) $ $) 9))) +(((-288) (-1016)) (T -288)) +NIL +(-1016) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 62)) (-3458 (((-1154 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-284)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-840)))) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-840)))) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-759)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-1154 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-964 (-523)))) (((-3 (-1153 |#2| |#3| |#4|) "failed") $) 24)) (-3474 (((-1154 |#1| |#2| |#3| |#4|) $) NIL) (((-1087) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-964 (-523)))) (((-523) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-964 (-523)))) (((-1153 |#2| |#3| |#4|) $) NIL)) (-3796 (($ $ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-1154 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1168 (-1154 |#1| |#2| |#3| |#4|)))) (-629 $) (-1168 $)) NIL) (((-629 (-1154 |#1| |#2| |#3| |#4|)) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-508)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2604 (((-108) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-759)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-817 (-355))))) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL)) (-2785 (((-1154 |#1| |#2| |#3| |#4|) $) 21)) (-4058 (((-3 $ "failed") $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-1063)))) (-4114 (((-108) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-759)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-786)))) (-2062 (($ $ $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-786)))) (-3612 (($ (-1 (-1154 |#1| |#2| |#3| |#4|) (-1154 |#1| |#2| |#3| |#4|)) $) NIL)) (-3684 (((-3 (-779 |#2|) "failed") $) 76)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-284)))) (-3722 (((-1154 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-508)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-840)))) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2679 (($ $ (-589 (-1154 |#1| |#2| |#3| |#4|)) (-589 (-1154 |#1| |#2| |#3| |#4|))) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-286 (-1154 |#1| |#2| |#3| |#4|)))) (($ $ (-1154 |#1| |#2| |#3| |#4|) (-1154 |#1| |#2| |#3| |#4|)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-286 (-1154 |#1| |#2| |#3| |#4|)))) (($ $ (-271 (-1154 |#1| |#2| |#3| |#4|))) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-286 (-1154 |#1| |#2| |#3| |#4|)))) (($ $ (-589 (-271 (-1154 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-286 (-1154 |#1| |#2| |#3| |#4|)))) (($ $ (-589 (-1087)) (-589 (-1154 |#1| |#2| |#3| |#4|))) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-484 (-1087) (-1154 |#1| |#2| |#3| |#4|)))) (($ $ (-1087) (-1154 |#1| |#2| |#3| |#4|)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-484 (-1087) (-1154 |#1| |#2| |#3| |#4|))))) (-1972 (((-710) $) NIL)) (-3223 (($ $ (-1154 |#1| |#2| |#3| |#4|)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-263 (-1154 |#1| |#2| |#3| |#4|) (-1154 |#1| |#2| |#3| |#4|))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-211))) (($ $ (-710)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-211))) (($ $ (-1087)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-1 (-1154 |#1| |#2| |#3| |#4|) (-1154 |#1| |#2| |#3| |#4|)) (-710)) NIL) (($ $ (-1 (-1154 |#1| |#2| |#3| |#4|) (-1154 |#1| |#2| |#3| |#4|))) NIL)) (-3414 (($ $) NIL)) (-2797 (((-1154 |#1| |#2| |#3| |#4|) $) 17)) (-3663 (((-823 (-523)) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-564 (-823 (-355))))) (((-499) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-564 (-499)))) (((-355) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-949))) (((-203) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-949)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-1154 |#1| |#2| |#3| |#4|) (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-1154 |#1| |#2| |#3| |#4|)) 28) (($ (-1087)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-964 (-1087)))) (($ (-1153 |#2| |#3| |#4|)) 36)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| (-1154 |#1| |#2| |#3| |#4|) (-840))) (|has| (-1154 |#1| |#2| |#3| |#4|) (-134))))) (-1621 (((-710)) NIL)) (-1886 (((-1154 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-508)))) (-1704 (((-108) $ $) NIL)) (-2619 (($ $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-759)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 41 T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-211))) (($ $ (-710)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-211))) (($ $ (-1087)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-831 (-1087)))) (($ $ (-1 (-1154 |#1| |#2| |#3| |#4|) (-1154 |#1| |#2| |#3| |#4|)) (-710)) NIL) (($ $ (-1 (-1154 |#1| |#2| |#3| |#4|) (-1154 |#1| |#2| |#3| |#4|))) NIL)) (-4043 (((-108) $ $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-786)))) (-4019 (((-108) $ $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-786)))) (-4007 (((-108) $ $) NIL (|has| (-1154 |#1| |#2| |#3| |#4|) (-786)))) (-4098 (($ $ $) 33) (($ (-1154 |#1| |#2| |#3| |#4|) (-1154 |#1| |#2| |#3| |#4|)) 30)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ (-1154 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1154 |#1| |#2| |#3| |#4|)) NIL))) +(((-289 |#1| |#2| |#3| |#4|) (-13 (-921 (-1154 |#1| |#2| |#3| |#4|)) (-964 (-1153 |#2| |#3| |#4|)) (-10 -8 (-15 -3684 ((-3 (-779 |#2|) "failed") $)) (-15 -1458 ($ (-1153 |#2| |#3| |#4|))))) (-13 (-786) (-964 (-523)) (-585 (-523)) (-427)) (-13 (-27) (-1108) (-406 |#1|)) (-1087) |#2|) (T -289)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1153 *4 *5 *6)) (-4 *4 (-13 (-27) (-1108) (-406 *3))) (-14 *5 (-1087)) (-14 *6 *4) (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) (-5 *1 (-289 *3 *4 *5 *6)))) (-3684 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) (-5 *2 (-779 *4)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1108) (-406 *3))) (-14 *5 (-1087)) (-14 *6 *4)))) +(-13 (-921 (-1154 |#1| |#2| |#3| |#4|)) (-964 (-1153 |#2| |#3| |#4|)) (-10 -8 (-15 -3684 ((-3 (-779 |#2|) "failed") $)) (-15 -1458 ($ (-1153 |#2| |#3| |#4|))))) +((-3612 (((-292 |#2|) (-1 |#2| |#1|) (-292 |#1|)) 13))) +(((-290 |#1| |#2|) (-10 -7 (-15 -3612 ((-292 |#2|) (-1 |#2| |#1|) (-292 |#1|)))) (-786) (-786)) (T -290)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-292 *5)) (-4 *5 (-786)) (-4 *6 (-786)) (-5 *2 (-292 *6)) (-5 *1 (-290 *5 *6))))) +(-10 -7 (-15 -3612 ((-292 |#2|) (-1 |#2| |#1|) (-292 |#1|)))) +((-2015 (((-51) |#2| (-271 |#2|) (-710)) 33) (((-51) |#2| (-271 |#2|)) 24) (((-51) |#2| (-710)) 28) (((-51) |#2|) 25) (((-51) (-1087)) 21)) (-2417 (((-51) |#2| (-271 |#2|) (-383 (-523))) 51) (((-51) |#2| (-271 |#2|)) 48) (((-51) |#2| (-383 (-523))) 50) (((-51) |#2|) 49) (((-51) (-1087)) 47)) (-3717 (((-51) |#2| (-271 |#2|) (-383 (-523))) 46) (((-51) |#2| (-271 |#2|)) 43) (((-51) |#2| (-383 (-523))) 45) (((-51) |#2|) 44) (((-51) (-1087)) 42)) (-2028 (((-51) |#2| (-271 |#2|) (-523)) 39) (((-51) |#2| (-271 |#2|)) 35) (((-51) |#2| (-523)) 38) (((-51) |#2|) 36) (((-51) (-1087)) 34))) +(((-291 |#1| |#2|) (-10 -7 (-15 -2015 ((-51) (-1087))) (-15 -2015 ((-51) |#2|)) (-15 -2015 ((-51) |#2| (-710))) (-15 -2015 ((-51) |#2| (-271 |#2|))) (-15 -2015 ((-51) |#2| (-271 |#2|) (-710))) (-15 -2028 ((-51) (-1087))) (-15 -2028 ((-51) |#2|)) (-15 -2028 ((-51) |#2| (-523))) (-15 -2028 ((-51) |#2| (-271 |#2|))) (-15 -2028 ((-51) |#2| (-271 |#2|) (-523))) (-15 -3717 ((-51) (-1087))) (-15 -3717 ((-51) |#2|)) (-15 -3717 ((-51) |#2| (-383 (-523)))) (-15 -3717 ((-51) |#2| (-271 |#2|))) (-15 -3717 ((-51) |#2| (-271 |#2|) (-383 (-523)))) (-15 -2417 ((-51) (-1087))) (-15 -2417 ((-51) |#2|)) (-15 -2417 ((-51) |#2| (-383 (-523)))) (-15 -2417 ((-51) |#2| (-271 |#2|))) (-15 -2417 ((-51) |#2| (-271 |#2|) (-383 (-523))))) (-13 (-427) (-786) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1108) (-406 |#1|))) (T -291)) +((-2417 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-271 *3)) (-5 *5 (-383 (-523))) (-4 *3 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *4 (-383 (-523))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))))) (-2417 (*1 *2 *3) (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *4))))) (-2417 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) (-4 *5 (-13 (-27) (-1108) (-406 *4))))) (-3717 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-271 *3)) (-5 *5 (-383 (-523))) (-4 *3 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *4 (-383 (-523))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))))) (-3717 (*1 *2 *3) (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *4))))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) (-4 *5 (-13 (-27) (-1108) (-406 *4))))) (-2028 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-427) (-786) (-964 *5) (-585 *5))) (-5 *5 (-523)) (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) (-2028 (*1 *2 *3 *4) (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) (-2028 (*1 *2 *3 *4) (-12 (-5 *4 (-523)) (-4 *5 (-13 (-427) (-786) (-964 *4) (-585 *4))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))))) (-2028 (*1 *2 *3) (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *4))))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) (-4 *5 (-13 (-27) (-1108) (-406 *4))))) (-2015 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-271 *3)) (-5 *5 (-710)) (-4 *3 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) (-2015 (*1 *2 *3 *4) (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) (-2015 (*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))))) (-2015 (*1 *2 *3) (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *4))))) (-2015 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) (-4 *5 (-13 (-27) (-1108) (-406 *4)))))) +(-10 -7 (-15 -2015 ((-51) (-1087))) (-15 -2015 ((-51) |#2|)) (-15 -2015 ((-51) |#2| (-710))) (-15 -2015 ((-51) |#2| (-271 |#2|))) (-15 -2015 ((-51) |#2| (-271 |#2|) (-710))) (-15 -2028 ((-51) (-1087))) (-15 -2028 ((-51) |#2|)) (-15 -2028 ((-51) |#2| (-523))) (-15 -2028 ((-51) |#2| (-271 |#2|))) (-15 -2028 ((-51) |#2| (-271 |#2|) (-523))) (-15 -3717 ((-51) (-1087))) (-15 -3717 ((-51) |#2|)) (-15 -3717 ((-51) |#2| (-383 (-523)))) (-15 -3717 ((-51) |#2| (-271 |#2|))) (-15 -3717 ((-51) |#2| (-271 |#2|) (-383 (-523)))) (-15 -2417 ((-51) (-1087))) (-15 -2417 ((-51) |#2|)) (-15 -2417 ((-51) |#2| (-383 (-523)))) (-15 -2417 ((-51) |#2| (-271 |#2|))) (-15 -2417 ((-51) |#2| (-271 |#2|) (-383 (-523))))) +((-3924 (((-108) $ $) NIL)) (-1728 (((-589 $) $ (-1087)) NIL (|has| |#1| (-515))) (((-589 $) $) NIL (|has| |#1| (-515))) (((-589 $) (-1083 $) (-1087)) NIL (|has| |#1| (-515))) (((-589 $) (-1083 $)) NIL (|has| |#1| (-515))) (((-589 $) (-883 $)) NIL (|has| |#1| (-515)))) (-2488 (($ $ (-1087)) NIL (|has| |#1| (-515))) (($ $) NIL (|has| |#1| (-515))) (($ (-1083 $) (-1087)) NIL (|has| |#1| (-515))) (($ (-1083 $)) NIL (|has| |#1| (-515))) (($ (-883 $)) NIL (|has| |#1| (-515)))) (-2295 (((-108) $) 27 (-3262 (|has| |#1| (-25)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))))) (-1957 (((-589 (-1087)) $) 345)) (-1786 (((-383 (-1083 $)) $ (-562 $)) NIL (|has| |#1| (-515)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3072 (((-589 (-562 $)) $) NIL)) (-1769 (($ $) 154 (|has| |#1| (-515)))) (-3780 (($ $) 130 (|has| |#1| (-515)))) (-1815 (($ $ (-1009 $)) 215 (|has| |#1| (-515))) (($ $ (-1087)) 211 (|has| |#1| (-515)))) (-3212 (((-3 $ "failed") $ $) NIL (-3262 (|has| |#1| (-21)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))))) (-2955 (($ $ (-271 $)) NIL) (($ $ (-589 (-271 $))) 361) (($ $ (-589 (-562 $)) (-589 $)) 404)) (-3156 (((-394 (-1083 $)) (-1083 $)) 289 (-12 (|has| |#1| (-427)) (|has| |#1| (-515))))) (-2291 (($ $) NIL (|has| |#1| (-515)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-515)))) (-1832 (($ $) NIL (|has| |#1| (-515)))) (-1387 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1744 (($ $) 150 (|has| |#1| (-515)))) (-3711 (($ $) 126 (|has| |#1| (-515)))) (-1764 (($ $ (-523)) 64 (|has| |#1| (-515)))) (-1793 (($ $) 158 (|has| |#1| (-515)))) (-3805 (($ $) 134 (|has| |#1| (-515)))) (-2518 (($) NIL (-3262 (|has| |#1| (-25)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028))) CONST)) (-1694 (((-589 $) $ (-1087)) NIL (|has| |#1| (-515))) (((-589 $) $) NIL (|has| |#1| (-515))) (((-589 $) (-1083 $) (-1087)) NIL (|has| |#1| (-515))) (((-589 $) (-1083 $)) NIL (|has| |#1| (-515))) (((-589 $) (-883 $)) NIL (|has| |#1| (-515)))) (-3313 (($ $ (-1087)) NIL (|has| |#1| (-515))) (($ $) NIL (|has| |#1| (-515))) (($ (-1083 $) (-1087)) 117 (|has| |#1| (-515))) (($ (-1083 $)) NIL (|has| |#1| (-515))) (($ (-883 $)) NIL (|has| |#1| (-515)))) (-3517 (((-3 (-562 $) "failed") $) 17) (((-3 (-1087) "failed") $) NIL) (((-3 |#1| "failed") $) 413) (((-3 (-47) "failed") $) 318 (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-883 |#1|)) "failed") $) NIL (|has| |#1| (-515))) (((-3 (-883 |#1|) "failed") $) NIL (|has| |#1| (-973))) (((-3 (-383 (-523)) "failed") $) 45 (-3262 (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-3474 (((-562 $) $) 11) (((-1087) $) NIL) ((|#1| $) 395) (((-47) $) NIL (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-883 |#1|)) $) NIL (|has| |#1| (-515))) (((-883 |#1|) $) NIL (|has| |#1| (-973))) (((-383 (-523)) $) 302 (-3262 (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-3796 (($ $ $) NIL (|has| |#1| (-515)))) (-2381 (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 110 (|has| |#1| (-973))) (((-629 |#1|) (-629 $)) 102 (|has| |#1| (-973))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))) (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))))) (-2437 (($ $) 84 (|has| |#1| (-515)))) (-2121 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028))))) (-3769 (($ $ $) NIL (|has| |#1| (-515)))) (-1656 (($ $ (-1009 $)) 219 (|has| |#1| (-515))) (($ $ (-1087)) 217 (|has| |#1| (-515)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-515)))) (-2657 (((-108) $) NIL (|has| |#1| (-515)))) (-2789 (($ $ $) 185 (|has| |#1| (-515)))) (-2820 (($) 120 (|has| |#1| (-515)))) (-3654 (($ $ $) 205 (|has| |#1| (-515)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 367 (|has| |#1| (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 373 (|has| |#1| (-817 (-355))))) (-2361 (($ $) NIL) (($ (-589 $)) NIL)) (-1444 (((-589 (-110)) $) NIL)) (-1403 (((-110) (-110)) 260)) (-2023 (((-108) $) 25 (-3262 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028))))) (-1557 (((-108) $) NIL (|has| $ (-964 (-523))))) (-2531 (($ $) 66 (|has| |#1| (-973)))) (-2785 (((-1039 |#1| (-562 $)) $) 79 (|has| |#1| (-973)))) (-3831 (((-108) $) 46 (|has| |#1| (-515)))) (-1420 (($ $ (-523)) NIL (|has| |#1| (-515)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-515)))) (-1483 (((-1083 $) (-562 $)) 261 (|has| $ (-973)))) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3612 (($ (-1 $ $) (-562 $)) 400)) (-1363 (((-3 (-562 $) "failed") $) NIL)) (-2384 (($ $) 124 (|has| |#1| (-515)))) (-3825 (($ $) 230 (|has| |#1| (-515)))) (-3244 (($ (-589 $)) NIL (|has| |#1| (-515))) (($ $ $) NIL (|has| |#1| (-515)))) (-3779 (((-1070) $) NIL)) (-1771 (((-589 (-562 $)) $) 48)) (-2868 (($ (-110) $) NIL) (($ (-110) (-589 $)) 405)) (-3226 (((-3 (-589 $) "failed") $) NIL (|has| |#1| (-1028)))) (-1295 (((-3 (-2 (|:| |val| $) (|:| -2735 (-523))) "failed") $) NIL (|has| |#1| (-973)))) (-4006 (((-3 (-589 $) "failed") $) 408 (|has| |#1| (-25)))) (-2492 (((-3 (-2 (|:| -2935 (-523)) (|:| |var| (-562 $))) "failed") $) 412 (|has| |#1| (-25)))) (-2630 (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $) NIL (|has| |#1| (-1028))) (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $ (-110)) NIL (|has| |#1| (-973))) (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $ (-1087)) NIL (|has| |#1| (-973)))) (-3259 (((-108) $ (-110)) NIL) (((-108) $ (-1087)) 52)) (-3738 (($ $) NIL (-3262 (|has| |#1| (-448)) (|has| |#1| (-515))))) (-1373 (($ $ (-1087)) 234 (|has| |#1| (-515))) (($ $ (-1009 $)) 236 (|has| |#1| (-515)))) (-2510 (((-710) $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) 43)) (-3760 ((|#1| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 282 (|has| |#1| (-515)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-515))) (($ $ $) NIL (|has| |#1| (-515)))) (-2585 (((-108) $ $) NIL) (((-108) $ (-1087)) NIL)) (-2988 (($ $ (-1087)) 209 (|has| |#1| (-515))) (($ $) 207 (|has| |#1| (-515)))) (-3217 (($ $) 201 (|has| |#1| (-515)))) (-3967 (((-394 (-1083 $)) (-1083 $)) 287 (-12 (|has| |#1| (-427)) (|has| |#1| (-515))))) (-1820 (((-394 $) $) NIL (|has| |#1| (-515)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-515))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-515)))) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-515)))) (-1811 (($ $) 122 (|has| |#1| (-515)))) (-4104 (((-108) $) NIL (|has| $ (-964 (-523))))) (-2679 (($ $ (-562 $) $) NIL) (($ $ (-589 (-562 $)) (-589 $)) 399) (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-1087) (-1 $ (-589 $))) NIL) (($ $ (-1087) (-1 $ $)) NIL) (($ $ (-589 (-110)) (-589 (-1 $ $))) 355) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-110) (-1 $ (-589 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1087)) NIL (|has| |#1| (-564 (-499)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-564 (-499)))) (($ $) NIL (|has| |#1| (-564 (-499)))) (($ $ (-110) $ (-1087)) 343 (|has| |#1| (-564 (-499)))) (($ $ (-589 (-110)) (-589 $) (-1087)) 342 (|has| |#1| (-564 (-499)))) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ $))) NIL (|has| |#1| (-973))) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ (-589 $)))) NIL (|has| |#1| (-973))) (($ $ (-1087) (-710) (-1 $ (-589 $))) NIL (|has| |#1| (-973))) (($ $ (-1087) (-710) (-1 $ $)) NIL (|has| |#1| (-973)))) (-1972 (((-710) $) NIL (|has| |#1| (-515)))) (-3084 (($ $) 222 (|has| |#1| (-515)))) (-3223 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-589 $)) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-515)))) (-3957 (($ $) NIL) (($ $ $) NIL)) (-3694 (($ $) 232 (|has| |#1| (-515)))) (-2710 (($ $) 183 (|has| |#1| (-515)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-973))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-973))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-973))) (($ $ (-1087)) NIL (|has| |#1| (-973)))) (-3414 (($ $) 67 (|has| |#1| (-515)))) (-2797 (((-1039 |#1| (-562 $)) $) 81 (|has| |#1| (-515)))) (-3727 (($ $) 300 (|has| $ (-973)))) (-1805 (($ $) 160 (|has| |#1| (-515)))) (-3816 (($ $) 136 (|has| |#1| (-515)))) (-1782 (($ $) 156 (|has| |#1| (-515)))) (-3793 (($ $) 132 (|has| |#1| (-515)))) (-1757 (($ $) 152 (|has| |#1| (-515)))) (-3767 (($ $) 128 (|has| |#1| (-515)))) (-3663 (((-823 (-523)) $) NIL (|has| |#1| (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| |#1| (-564 (-823 (-355))))) (($ (-394 $)) NIL (|has| |#1| (-515))) (((-499) $) 340 (|has| |#1| (-564 (-499))))) (-3208 (($ $ $) NIL (|has| |#1| (-448)))) (-1714 (($ $ $) NIL (|has| |#1| (-448)))) (-1458 (((-794) $) 398) (($ (-562 $)) 389) (($ (-1087)) 357) (($ |#1|) 319) (($ $) NIL (|has| |#1| (-515))) (($ (-47)) 294 (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523))))) (($ (-1039 |#1| (-562 $))) 83 (|has| |#1| (-973))) (($ (-383 |#1|)) NIL (|has| |#1| (-515))) (($ (-883 (-383 |#1|))) NIL (|has| |#1| (-515))) (($ (-383 (-883 (-383 |#1|)))) NIL (|has| |#1| (-515))) (($ (-383 (-883 |#1|))) NIL (|has| |#1| (-515))) (($ (-883 |#1|)) NIL (|has| |#1| (-973))) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-515)) (|has| |#1| (-964 (-383 (-523)))))) (($ (-523)) 34 (-3262 (|has| |#1| (-964 (-523))) (|has| |#1| (-973))))) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL (|has| |#1| (-973)))) (-3822 (($ $) NIL) (($ (-589 $)) NIL)) (-2574 (($ $ $) 203 (|has| |#1| (-515)))) (-2322 (($ $ $) 189 (|has| |#1| (-515)))) (-4102 (($ $ $) 193 (|has| |#1| (-515)))) (-3254 (($ $ $) 187 (|has| |#1| (-515)))) (-1325 (($ $ $) 191 (|has| |#1| (-515)))) (-1950 (((-108) (-110)) 9)) (-1839 (($ $) 166 (|has| |#1| (-515)))) (-3847 (($ $) 142 (|has| |#1| (-515)))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) 162 (|has| |#1| (-515)))) (-3828 (($ $) 138 (|has| |#1| (-515)))) (-1865 (($ $) 170 (|has| |#1| (-515)))) (-1719 (($ $) 146 (|has| |#1| (-515)))) (-2523 (($ (-1087) $) NIL) (($ (-1087) $ $) NIL) (($ (-1087) $ $ $) NIL) (($ (-1087) $ $ $ $) NIL) (($ (-1087) (-589 $)) NIL)) (-3728 (($ $) 197 (|has| |#1| (-515)))) (-2320 (($ $) 195 (|has| |#1| (-515)))) (-2914 (($ $) 172 (|has| |#1| (-515)))) (-1731 (($ $) 148 (|has| |#1| (-515)))) (-1852 (($ $) 168 (|has| |#1| (-515)))) (-3859 (($ $) 144 (|has| |#1| (-515)))) (-1830 (($ $) 164 (|has| |#1| (-515)))) (-3838 (($ $) 140 (|has| |#1| (-515)))) (-2619 (($ $) 175 (|has| |#1| (-515)))) (-2364 (($ $ (-523)) NIL (-3262 (|has| |#1| (-448)) (|has| |#1| (-515)))) (($ $ (-710)) NIL (-3262 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028)))) (($ $ (-852)) NIL (-3262 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028))))) (-2756 (($) 20 (-3262 (|has| |#1| (-25)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))) CONST)) (-3334 (($ $) 226 (|has| |#1| (-515)))) (-2767 (($) 22 (-3262 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028))) CONST)) (-2033 (($ $) 177 (|has| |#1| (-515))) (($ $ $) 179 (|has| |#1| (-515)))) (-2440 (($ $) 224 (|has| |#1| (-515)))) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-973))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-973))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-973))) (($ $ (-1087)) NIL (|has| |#1| (-973)))) (-1527 (($ $) 228 (|has| |#1| (-515)))) (-3599 (($ $ $) 181 (|has| |#1| (-515)))) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 76)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 75)) (-4098 (($ (-1039 |#1| (-562 $)) (-1039 |#1| (-562 $))) 93 (|has| |#1| (-515))) (($ $ $) 42 (-3262 (|has| |#1| (-448)) (|has| |#1| (-515))))) (-4087 (($ $ $) 40 (-3262 (|has| |#1| (-21)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))))) (($ $) 29 (-3262 (|has| |#1| (-21)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))))) (-4075 (($ $ $) 38 (-3262 (|has| |#1| (-25)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))))) (** (($ $ $) 61 (|has| |#1| (-515))) (($ $ (-383 (-523))) 297 (|has| |#1| (-515))) (($ $ (-523)) 71 (-3262 (|has| |#1| (-448)) (|has| |#1| (-515)))) (($ $ (-710)) 68 (-3262 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028)))) (($ $ (-852)) 73 (-3262 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028))))) (* (($ (-383 (-523)) $) NIL (|has| |#1| (-515))) (($ $ (-383 (-523))) NIL (|has| |#1| (-515))) (($ |#1| $) NIL (|has| |#1| (-158))) (($ $ |#1|) NIL (|has| |#1| (-158))) (($ $ $) 36 (-3262 (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) (|has| |#1| (-1028)))) (($ (-523) $) 32 (-3262 (|has| |#1| (-21)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))))) (($ (-710) $) NIL (-3262 (|has| |#1| (-25)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))))) (($ (-852) $) NIL (-3262 (|has| |#1| (-25)) (-12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))))))) +(((-292 |#1|) (-13 (-406 |#1|) (-10 -8 (IF (|has| |#1| (-515)) (PROGN (-6 (-29 |#1|)) (-6 (-1108)) (-6 (-147)) (-6 (-575)) (-6 (-1051)) (-15 -2437 ($ $)) (-15 -3831 ((-108) $)) (-15 -1764 ($ $ (-523))) (IF (|has| |#1| (-427)) (PROGN (-15 -3967 ((-394 (-1083 $)) (-1083 $))) (-15 -3156 ((-394 (-1083 $)) (-1083 $)))) |%noBranch|) (IF (|has| |#1| (-964 (-523))) (-6 (-964 (-47))) |%noBranch|)) |%noBranch|))) (-786)) (T -292)) +((-2437 (*1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-515)) (-4 *2 (-786)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-292 *3)) (-4 *3 (-515)) (-4 *3 (-786)))) (-1764 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-292 *3)) (-4 *3 (-515)) (-4 *3 (-786)))) (-3967 (*1 *2 *3) (-12 (-5 *2 (-394 (-1083 *1))) (-5 *1 (-292 *4)) (-5 *3 (-1083 *1)) (-4 *4 (-427)) (-4 *4 (-515)) (-4 *4 (-786)))) (-3156 (*1 *2 *3) (-12 (-5 *2 (-394 (-1083 *1))) (-5 *1 (-292 *4)) (-5 *3 (-1083 *1)) (-4 *4 (-427)) (-4 *4 (-515)) (-4 *4 (-786))))) +(-13 (-406 |#1|) (-10 -8 (IF (|has| |#1| (-515)) (PROGN (-6 (-29 |#1|)) (-6 (-1108)) (-6 (-147)) (-6 (-575)) (-6 (-1051)) (-15 -2437 ($ $)) (-15 -3831 ((-108) $)) (-15 -1764 ($ $ (-523))) (IF (|has| |#1| (-427)) (PROGN (-15 -3967 ((-394 (-1083 $)) (-1083 $))) (-15 -3156 ((-394 (-1083 $)) (-1083 $)))) |%noBranch|) (IF (|has| |#1| (-964 (-523))) (-6 (-964 (-47))) |%noBranch|)) |%noBranch|))) +((-1586 (((-51) |#2| (-110) (-271 |#2|) (-589 |#2|)) 86) (((-51) |#2| (-110) (-271 |#2|) (-271 |#2|)) 82) (((-51) |#2| (-110) (-271 |#2|) |#2|) 84) (((-51) (-271 |#2|) (-110) (-271 |#2|) |#2|) 85) (((-51) (-589 |#2|) (-589 (-110)) (-271 |#2|) (-589 (-271 |#2|))) 78) (((-51) (-589 |#2|) (-589 (-110)) (-271 |#2|) (-589 |#2|)) 80) (((-51) (-589 (-271 |#2|)) (-589 (-110)) (-271 |#2|) (-589 |#2|)) 81) (((-51) (-589 (-271 |#2|)) (-589 (-110)) (-271 |#2|) (-589 (-271 |#2|))) 79) (((-51) (-271 |#2|) (-110) (-271 |#2|) (-589 |#2|)) 87) (((-51) (-271 |#2|) (-110) (-271 |#2|) (-271 |#2|)) 83))) +(((-293 |#1| |#2|) (-10 -7 (-15 -1586 ((-51) (-271 |#2|) (-110) (-271 |#2|) (-271 |#2|))) (-15 -1586 ((-51) (-271 |#2|) (-110) (-271 |#2|) (-589 |#2|))) (-15 -1586 ((-51) (-589 (-271 |#2|)) (-589 (-110)) (-271 |#2|) (-589 (-271 |#2|)))) (-15 -1586 ((-51) (-589 (-271 |#2|)) (-589 (-110)) (-271 |#2|) (-589 |#2|))) (-15 -1586 ((-51) (-589 |#2|) (-589 (-110)) (-271 |#2|) (-589 |#2|))) (-15 -1586 ((-51) (-589 |#2|) (-589 (-110)) (-271 |#2|) (-589 (-271 |#2|)))) (-15 -1586 ((-51) (-271 |#2|) (-110) (-271 |#2|) |#2|)) (-15 -1586 ((-51) |#2| (-110) (-271 |#2|) |#2|)) (-15 -1586 ((-51) |#2| (-110) (-271 |#2|) (-271 |#2|))) (-15 -1586 ((-51) |#2| (-110) (-271 |#2|) (-589 |#2|)))) (-13 (-786) (-515) (-564 (-499))) (-406 |#1|)) (T -293)) +((-1586 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-271 *3)) (-5 *6 (-589 *3)) (-4 *3 (-406 *7)) (-4 *7 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *7 *3)))) (-1586 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-271 *3)) (-4 *3 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-1586 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-110)) (-5 *5 (-271 *3)) (-4 *3 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-1586 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-271 *5)) (-5 *4 (-110)) (-4 *5 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *5)))) (-1586 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 (-110))) (-5 *6 (-589 (-271 *8))) (-4 *8 (-406 *7)) (-5 *5 (-271 *8)) (-4 *7 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *7 *8)))) (-1586 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-589 *7)) (-5 *4 (-589 (-110))) (-5 *5 (-271 *7)) (-4 *7 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *7)))) (-1586 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-589 (-271 *8))) (-5 *4 (-589 (-110))) (-5 *5 (-271 *8)) (-5 *6 (-589 *8)) (-4 *8 (-406 *7)) (-4 *7 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *7 *8)))) (-1586 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-589 (-271 *7))) (-5 *4 (-589 (-110))) (-5 *5 (-271 *7)) (-4 *7 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *7)))) (-1586 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-271 *7)) (-5 *4 (-110)) (-5 *5 (-589 *7)) (-4 *7 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *7)))) (-1586 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-271 *6)) (-5 *4 (-110)) (-4 *6 (-406 *5)) (-4 *5 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *6))))) +(-10 -7 (-15 -1586 ((-51) (-271 |#2|) (-110) (-271 |#2|) (-271 |#2|))) (-15 -1586 ((-51) (-271 |#2|) (-110) (-271 |#2|) (-589 |#2|))) (-15 -1586 ((-51) (-589 (-271 |#2|)) (-589 (-110)) (-271 |#2|) (-589 (-271 |#2|)))) (-15 -1586 ((-51) (-589 (-271 |#2|)) (-589 (-110)) (-271 |#2|) (-589 |#2|))) (-15 -1586 ((-51) (-589 |#2|) (-589 (-110)) (-271 |#2|) (-589 |#2|))) (-15 -1586 ((-51) (-589 |#2|) (-589 (-110)) (-271 |#2|) (-589 (-271 |#2|)))) (-15 -1586 ((-51) (-271 |#2|) (-110) (-271 |#2|) |#2|)) (-15 -1586 ((-51) |#2| (-110) (-271 |#2|) |#2|)) (-15 -1586 ((-51) |#2| (-110) (-271 |#2|) (-271 |#2|))) (-15 -1586 ((-51) |#2| (-110) (-271 |#2|) (-589 |#2|)))) +((-3939 (((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-203) (-523) (-1070)) 46) (((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-203) (-523)) 47) (((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-1 (-203) (-203)) (-523) (-1070)) 43) (((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-1 (-203) (-203)) (-523)) 44)) (-4167 (((-1 (-203) (-203)) (-203)) 45))) +(((-294) (-10 -7 (-15 -4167 ((-1 (-203) (-203)) (-203))) (-15 -3939 ((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-1 (-203) (-203)) (-523))) (-15 -3939 ((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-1 (-203) (-203)) (-523) (-1070))) (-15 -3939 ((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-203) (-523))) (-15 -3939 ((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-203) (-523) (-1070))))) (T -294)) +((-3939 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) (-5 *5 (-1011 (-203))) (-5 *6 (-203)) (-5 *7 (-523)) (-5 *8 (-1070)) (-5 *2 (-1118 (-857))) (-5 *1 (-294)))) (-3939 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) (-5 *5 (-1011 (-203))) (-5 *6 (-203)) (-5 *7 (-523)) (-5 *2 (-1118 (-857))) (-5 *1 (-294)))) (-3939 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) (-5 *5 (-1011 (-203))) (-5 *6 (-523)) (-5 *7 (-1070)) (-5 *2 (-1118 (-857))) (-5 *1 (-294)))) (-3939 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) (-5 *5 (-1011 (-203))) (-5 *6 (-523)) (-5 *2 (-1118 (-857))) (-5 *1 (-294)))) (-4167 (*1 *2 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *1 (-294)) (-5 *3 (-203))))) +(-10 -7 (-15 -4167 ((-1 (-203) (-203)) (-203))) (-15 -3939 ((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-1 (-203) (-203)) (-523))) (-15 -3939 ((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-1 (-203) (-203)) (-523) (-1070))) (-15 -3939 ((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-203) (-523))) (-15 -3939 ((-1118 (-857)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-203) (-523) (-1070)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 24)) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3984 (($ $ (-383 (-523))) NIL) (($ $ (-383 (-523)) (-383 (-523))) NIL)) (-2133 (((-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|))) $) 19)) (-1769 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-339)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1744 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|)))) NIL)) (-1793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) 31)) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2657 (((-108) $) NIL (|has| |#1| (-339)))) (-2003 (((-108) $) NIL)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-383 (-523)) $) NIL) (((-383 (-523)) $ (-383 (-523))) 15)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1349 (($ $ (-852)) NIL) (($ $ (-383 (-523))) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-383 (-523))) NIL) (($ $ (-1001) (-383 (-523))) NIL) (($ $ (-589 (-1001)) (-589 (-383 (-523)))) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2384 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| |#1| (-339)))) (-3417 (($ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1108)))))) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-4097 (($ $ (-383 (-523))) NIL)) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2885 (((-383 (-523)) $) 16)) (-1708 (($ (-1153 |#1| |#2| |#3|)) 11)) (-2735 (((-1153 |#1| |#2| |#3|) $) 12)) (-1811 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))))) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ (-383 (-523))) NIL) (($ $ $) NIL (|has| (-383 (-523)) (-1028)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-2299 (((-383 (-523)) $) NIL)) (-1805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) 10)) (-1458 (((-794) $) 37) (($ (-523)) NIL) (($ |#1|) NIL (|has| |#1| (-158))) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515)))) (-2365 ((|#1| $ (-383 (-523))) 29)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-1288 ((|#1| $) NIL)) (-1839 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-383 (-523))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 26)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 32)) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-295 |#1| |#2| |#3|) (-13 (-1149 |#1|) (-731) (-10 -8 (-15 -1708 ($ (-1153 |#1| |#2| |#3|))) (-15 -2735 ((-1153 |#1| |#2| |#3|) $)) (-15 -2885 ((-383 (-523)) $)))) (-13 (-339) (-786)) (-1087) |#1|) (T -295)) +((-1708 (*1 *1 *2) (-12 (-5 *2 (-1153 *3 *4 *5)) (-4 *3 (-13 (-339) (-786))) (-14 *4 (-1087)) (-14 *5 *3) (-5 *1 (-295 *3 *4 *5)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-1153 *3 *4 *5)) (-5 *1 (-295 *3 *4 *5)) (-4 *3 (-13 (-339) (-786))) (-14 *4 (-1087)) (-14 *5 *3))) (-2885 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-295 *3 *4 *5)) (-4 *3 (-13 (-339) (-786))) (-14 *4 (-1087)) (-14 *5 *3)))) +(-13 (-1149 |#1|) (-731) (-10 -8 (-15 -1708 ($ (-1153 |#1| |#2| |#3|))) (-15 -2735 ((-1153 |#1| |#2| |#3|) $)) (-15 -2885 ((-383 (-523)) $)))) +((-1420 (((-2 (|:| -2735 (-710)) (|:| -2935 |#1|) (|:| |radicand| (-589 |#1|))) (-394 |#1|) (-710)) 24)) (-2384 (((-589 (-2 (|:| -2935 (-710)) (|:| |logand| |#1|))) (-394 |#1|)) 28))) +(((-296 |#1|) (-10 -7 (-15 -1420 ((-2 (|:| -2735 (-710)) (|:| -2935 |#1|) (|:| |radicand| (-589 |#1|))) (-394 |#1|) (-710))) (-15 -2384 ((-589 (-2 (|:| -2935 (-710)) (|:| |logand| |#1|))) (-394 |#1|)))) (-515)) (T -296)) +((-2384 (*1 *2 *3) (-12 (-5 *3 (-394 *4)) (-4 *4 (-515)) (-5 *2 (-589 (-2 (|:| -2935 (-710)) (|:| |logand| *4)))) (-5 *1 (-296 *4)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-394 *5)) (-4 *5 (-515)) (-5 *2 (-2 (|:| -2735 (-710)) (|:| -2935 *5) (|:| |radicand| (-589 *5)))) (-5 *1 (-296 *5)) (-5 *4 (-710))))) +(-10 -7 (-15 -1420 ((-2 (|:| -2735 (-710)) (|:| -2935 |#1|) (|:| |radicand| (-589 |#1|))) (-394 |#1|) (-710))) (-15 -2384 ((-589 (-2 (|:| -2935 (-710)) (|:| |logand| |#1|))) (-394 |#1|)))) +((-1957 (((-589 |#2|) (-1083 |#4|)) 43)) (-2144 ((|#3| (-523)) 46)) (-3300 (((-1083 |#4|) (-1083 |#3|)) 30)) (-4128 (((-1083 |#4|) (-1083 |#4|) (-523)) 56)) (-1221 (((-1083 |#3|) (-1083 |#4|)) 21)) (-2299 (((-589 (-710)) (-1083 |#4|) (-589 |#2|)) 40)) (-1604 (((-1083 |#3|) (-1083 |#4|) (-589 |#2|) (-589 |#3|)) 35))) +(((-297 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1604 ((-1083 |#3|) (-1083 |#4|) (-589 |#2|) (-589 |#3|))) (-15 -2299 ((-589 (-710)) (-1083 |#4|) (-589 |#2|))) (-15 -1957 ((-589 |#2|) (-1083 |#4|))) (-15 -1221 ((-1083 |#3|) (-1083 |#4|))) (-15 -3300 ((-1083 |#4|) (-1083 |#3|))) (-15 -4128 ((-1083 |#4|) (-1083 |#4|) (-523))) (-15 -2144 (|#3| (-523)))) (-732) (-786) (-973) (-880 |#3| |#1| |#2|)) (T -297)) +((-2144 (*1 *2 *3) (-12 (-5 *3 (-523)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-973)) (-5 *1 (-297 *4 *5 *2 *6)) (-4 *6 (-880 *2 *4 *5)))) (-4128 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 *7)) (-5 *3 (-523)) (-4 *7 (-880 *6 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-5 *1 (-297 *4 *5 *6 *7)))) (-3300 (*1 *2 *3) (-12 (-5 *3 (-1083 *6)) (-4 *6 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-1083 *7)) (-5 *1 (-297 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5)))) (-1221 (*1 *2 *3) (-12 (-5 *3 (-1083 *7)) (-4 *7 (-880 *6 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-5 *2 (-1083 *6)) (-5 *1 (-297 *4 *5 *6 *7)))) (-1957 (*1 *2 *3) (-12 (-5 *3 (-1083 *7)) (-4 *7 (-880 *6 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-5 *2 (-589 *5)) (-5 *1 (-297 *4 *5 *6 *7)))) (-2299 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *8)) (-5 *4 (-589 *6)) (-4 *6 (-786)) (-4 *8 (-880 *7 *5 *6)) (-4 *5 (-732)) (-4 *7 (-973)) (-5 *2 (-589 (-710))) (-5 *1 (-297 *5 *6 *7 *8)))) (-1604 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1083 *9)) (-5 *4 (-589 *7)) (-5 *5 (-589 *8)) (-4 *7 (-786)) (-4 *8 (-973)) (-4 *9 (-880 *8 *6 *7)) (-4 *6 (-732)) (-5 *2 (-1083 *8)) (-5 *1 (-297 *6 *7 *8 *9))))) +(-10 -7 (-15 -1604 ((-1083 |#3|) (-1083 |#4|) (-589 |#2|) (-589 |#3|))) (-15 -2299 ((-589 (-710)) (-1083 |#4|) (-589 |#2|))) (-15 -1957 ((-589 |#2|) (-1083 |#4|))) (-15 -1221 ((-1083 |#3|) (-1083 |#4|))) (-15 -3300 ((-1083 |#4|) (-1083 |#3|))) (-15 -4128 ((-1083 |#4|) (-1083 |#4|) (-523))) (-15 -2144 (|#3| (-523)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 14)) (-2133 (((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-523)))) $) 18)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1703 (((-710) $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-2378 ((|#1| $ (-523)) NIL)) (-4126 (((-523) $ (-523)) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-4093 (($ (-1 |#1| |#1|) $) NIL)) (-1620 (($ (-1 (-523) (-523)) $) 10)) (-3779 (((-1070) $) NIL)) (-3887 (($ $ $) NIL (|has| (-523) (-731)))) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL) (($ |#1|) NIL)) (-2365 (((-523) |#1| $) NIL)) (-2756 (($) 15 T CONST)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) 21 (|has| |#1| (-786)))) (-4087 (($ $) 11) (($ $ $) 20)) (-4075 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ (-523)) NIL) (($ (-523) |#1|) 19))) +(((-298 |#1|) (-13 (-21) (-657 (-523)) (-299 |#1| (-523)) (-10 -7 (IF (|has| |#1| (-786)) (-6 (-786)) |%noBranch|))) (-1016)) (T -298)) +NIL +(-13 (-21) (-657 (-523)) (-299 |#1| (-523)) (-10 -7 (IF (|has| |#1| (-786)) (-6 (-786)) |%noBranch|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-2133 (((-589 (-2 (|:| |gen| |#1|) (|:| -1811 |#2|))) $) 27)) (-3212 (((-3 $ "failed") $ $) 19)) (-1703 (((-710) $) 28)) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#1| "failed") $) 32)) (-3474 ((|#1| $) 31)) (-2378 ((|#1| $ (-523)) 25)) (-4126 ((|#2| $ (-523)) 26)) (-4093 (($ (-1 |#1| |#1|) $) 22)) (-1620 (($ (-1 |#2| |#2|) $) 23)) (-3779 (((-1070) $) 9)) (-3887 (($ $ $) 21 (|has| |#2| (-731)))) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ |#1|) 33)) (-2365 ((|#2| |#1| $) 24)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4075 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ |#2| |#1|) 29))) +(((-299 |#1| |#2|) (-129) (-1016) (-124)) (T -299)) +((-4075 (*1 *1 *2 *1) (-12 (-4 *1 (-299 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-124)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-124)))) (-1703 (*1 *2 *1) (-12 (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-124)) (-5 *2 (-710)))) (-2133 (*1 *2 *1) (-12 (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-124)) (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 *4)))))) (-4126 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-299 *4 *2)) (-4 *4 (-1016)) (-4 *2 (-124)))) (-2378 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-299 *2 *4)) (-4 *4 (-124)) (-4 *2 (-1016)))) (-2365 (*1 *2 *3 *1) (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-124)))) (-1620 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-124)))) (-4093 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-124)))) (-3887 (*1 *1 *1 *1) (-12 (-4 *1 (-299 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-124)) (-4 *3 (-731))))) +(-13 (-124) (-964 |t#1|) (-10 -8 (-15 -4075 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1703 ((-710) $)) (-15 -2133 ((-589 (-2 (|:| |gen| |t#1|) (|:| -1811 |t#2|))) $)) (-15 -4126 (|t#2| $ (-523))) (-15 -2378 (|t#1| $ (-523))) (-15 -2365 (|t#2| |t#1| $)) (-15 -1620 ($ (-1 |t#2| |t#2|) $)) (-15 -4093 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-731)) (-15 -3887 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-964 |#1|) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2133 (((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-710)))) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1703 (((-710) $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-2378 ((|#1| $ (-523)) NIL)) (-4126 (((-710) $ (-523)) NIL)) (-4093 (($ (-1 |#1| |#1|) $) NIL)) (-1620 (($ (-1 (-710) (-710)) $) NIL)) (-3779 (((-1070) $) NIL)) (-3887 (($ $ $) NIL (|has| (-710) (-731)))) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL) (($ |#1|) NIL)) (-2365 (((-710) |#1| $) NIL)) (-2756 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-710) |#1|) NIL))) +(((-300 |#1|) (-299 |#1| (-710)) (-1016)) (T -300)) +NIL +(-299 |#1| (-710)) +((-2528 (($ $) 53)) (-1284 (($ $ |#2| |#3| $) 14)) (-3782 (($ (-1 |#3| |#3|) $) 35)) (-3749 (((-108) $) 27)) (-3760 ((|#2| $) 29)) (-3746 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-2438 ((|#2| $) 49)) (-1251 (((-589 |#2|) $) 38)) (-2276 (($ $ $ (-710)) 23)) (-4098 (($ $ |#2|) 42))) +(((-301 |#1| |#2| |#3|) (-10 -8 (-15 -2528 (|#1| |#1|)) (-15 -2438 (|#2| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2276 (|#1| |#1| |#1| (-710))) (-15 -1284 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3782 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1251 ((-589 |#2|) |#1|)) (-15 -3760 (|#2| |#1|)) (-15 -3749 ((-108) |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4098 (|#1| |#1| |#2|))) (-302 |#2| |#3|) (-973) (-731)) (T -301)) +NIL +(-10 -8 (-15 -2528 (|#1| |#1|)) (-15 -2438 (|#2| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2276 (|#1| |#1| |#1| (-710))) (-15 -1284 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3782 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1251 ((-589 |#2|) |#1|)) (-15 -3760 (|#2| |#1|)) (-15 -3749 ((-108) |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4098 (|#1| |#1| |#2|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3345 (($ $) 52 (|has| |#1| (-515)))) (-3331 (((-108) $) 54 (|has| |#1| (-515)))) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3517 (((-3 (-523) "failed") $) 90 (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 88 (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 87)) (-3474 (((-523) $) 91 (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) 89 (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 86)) (-3810 (($ $) 60)) (-2121 (((-3 $ "failed") $) 34)) (-2528 (($ $) 75 (|has| |#1| (-427)))) (-1284 (($ $ |#1| |#2| $) 79)) (-2023 (((-108) $) 31)) (-3554 (((-710) $) 82)) (-2620 (((-108) $) 62)) (-1933 (($ |#1| |#2|) 61)) (-1575 ((|#2| $) 81)) (-3782 (($ (-1 |#2| |#2|) $) 80)) (-3612 (($ (-1 |#1| |#1|) $) 63)) (-3774 (($ $) 65)) (-3786 ((|#1| $) 66)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3749 (((-108) $) 85)) (-3760 ((|#1| $) 84)) (-3746 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-515)))) (-2299 ((|#2| $) 64)) (-2438 ((|#1| $) 76 (|has| |#1| (-427)))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 49 (|has| |#1| (-515))) (($ |#1|) 47) (($ (-383 (-523))) 57 (-3262 (|has| |#1| (-964 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523))))))) (-1251 (((-589 |#1|) $) 83)) (-2365 ((|#1| $ |#2|) 59)) (-3901 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-2276 (($ $ $ (-710)) 78 (|has| |#1| (-158)))) (-1704 (((-108) $ $) 53 (|has| |#1| (-515)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 58 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) +(((-302 |#1| |#2|) (-129) (-973) (-731)) (T -302)) +((-3749 (*1 *2 *1) (-12 (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (-5 *2 (-108)))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-302 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) (-1251 (*1 *2 *1) (-12 (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (-5 *2 (-589 *3)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (-5 *2 (-710)))) (-1575 (*1 *2 *1) (-12 (-4 *1 (-302 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) (-3782 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)))) (-1284 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-302 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)))) (-2276 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (-4 *3 (-158)))) (-3746 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-302 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)) (-4 *2 (-515)))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-302 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)) (-4 *2 (-427)))) (-2528 (*1 *1 *1) (-12 (-4 *1 (-302 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)) (-4 *2 (-427))))) +(-13 (-46 |t#1| |t#2|) (-387 |t#1|) (-10 -8 (-15 -3749 ((-108) $)) (-15 -3760 (|t#1| $)) (-15 -1251 ((-589 |t#1|) $)) (-15 -3554 ((-710) $)) (-15 -1575 (|t#2| $)) (-15 -3782 ($ (-1 |t#2| |t#2|) $)) (-15 -1284 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-158)) (-15 -2276 ($ $ $ (-710))) |%noBranch|) (IF (|has| |t#1| (-515)) (-15 -3746 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-427)) (PROGN (-15 -2438 (|t#1| $)) (-15 -2528 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) |has| |#1| (-515)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-267) |has| |#1| (-515)) ((-387 |#1|) . T) ((-515) |has| |#1| (-515)) ((-591 #0#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #0#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) |has| |#1| (-515)) ((-666) . T) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-979 #0#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-4159 (((-108) (-108)) NIL)) (-1641 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245)))) (-3387 (($ (-1 (-108) |#1|) $) NIL)) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-3941 (($ $) NIL (|has| |#1| (-1016)))) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2249 (($ |#1| $) NIL (|has| |#1| (-1016))) (($ (-1 (-108) |#1|) $) NIL)) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) NIL)) (-1479 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-2277 (($ $ (-523)) NIL)) (-2128 (((-710) $) NIL)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-3052 (($ (-710) |#1|) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2158 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3450 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2847 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3837 (($ (-589 |#1|)) NIL)) (-1738 ((|#1| $) NIL (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2753 (($ $ (-1135 (-523))) NIL) (($ $ (-523)) NIL)) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) NIL)) (-1746 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2326 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-303 |#1|) (-13 (-19 |#1|) (-259 |#1|) (-10 -8 (-15 -3837 ($ (-589 |#1|))) (-15 -2128 ((-710) $)) (-15 -2277 ($ $ (-523))) (-15 -4159 ((-108) (-108))))) (-1122)) (T -303)) +((-3837 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-303 *3)))) (-2128 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-303 *3)) (-4 *3 (-1122)))) (-2277 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-303 *3)) (-4 *3 (-1122)))) (-4159 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-303 *3)) (-4 *3 (-1122))))) +(-13 (-19 |#1|) (-259 |#1|) (-10 -8 (-15 -3837 ($ (-589 |#1|))) (-15 -2128 ((-710) $)) (-15 -2277 ($ $ (-523))) (-15 -4159 ((-108) (-108))))) +((-2318 (((-108) $) 42)) (-2654 (((-710)) 22)) (-4187 ((|#2| $) 46) (($ $ (-852)) 103)) (-1703 (((-710)) 97)) (-3409 (($ (-1168 |#2|)) 20)) (-2307 (((-108) $) 115)) (-3892 ((|#2| $) 48) (($ $ (-852)) 101)) (-1397 (((-1083 |#2|) $) NIL) (((-1083 $) $ (-852)) 94)) (-3943 (((-1083 |#2|) $) 83)) (-2122 (((-1083 |#2|) $) 80) (((-3 (-1083 |#2|) "failed") $ $) 77)) (-3865 (($ $ (-1083 |#2|)) 53)) (-4124 (((-772 (-852))) 28) (((-852)) 43)) (-3203 (((-126)) 25)) (-2299 (((-772 (-852)) $) 30) (((-852) $) 116)) (-2749 (($) 109)) (-2966 (((-1168 |#2|) $) NIL) (((-629 |#2|) (-1168 $)) 39)) (-3901 (($ $) NIL) (((-3 $ "failed") $) 86)) (-2153 (((-108) $) 41))) +(((-304 |#1| |#2|) (-10 -8 (-15 -3901 ((-3 |#1| "failed") |#1|)) (-15 -1703 ((-710))) (-15 -3901 (|#1| |#1|)) (-15 -2122 ((-3 (-1083 |#2|) "failed") |#1| |#1|)) (-15 -2122 ((-1083 |#2|) |#1|)) (-15 -3943 ((-1083 |#2|) |#1|)) (-15 -3865 (|#1| |#1| (-1083 |#2|))) (-15 -2307 ((-108) |#1|)) (-15 -2749 (|#1|)) (-15 -4187 (|#1| |#1| (-852))) (-15 -3892 (|#1| |#1| (-852))) (-15 -1397 ((-1083 |#1|) |#1| (-852))) (-15 -4187 (|#2| |#1|)) (-15 -3892 (|#2| |#1|)) (-15 -2299 ((-852) |#1|)) (-15 -4124 ((-852))) (-15 -1397 ((-1083 |#2|) |#1|)) (-15 -3409 (|#1| (-1168 |#2|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1|)) (-15 -2654 ((-710))) (-15 -4124 ((-772 (-852)))) (-15 -2299 ((-772 (-852)) |#1|)) (-15 -2318 ((-108) |#1|)) (-15 -2153 ((-108) |#1|)) (-15 -3203 ((-126)))) (-305 |#2|) (-339)) (T -304)) +((-3203 (*1 *2) (-12 (-4 *4 (-339)) (-5 *2 (-126)) (-5 *1 (-304 *3 *4)) (-4 *3 (-305 *4)))) (-4124 (*1 *2) (-12 (-4 *4 (-339)) (-5 *2 (-772 (-852))) (-5 *1 (-304 *3 *4)) (-4 *3 (-305 *4)))) (-2654 (*1 *2) (-12 (-4 *4 (-339)) (-5 *2 (-710)) (-5 *1 (-304 *3 *4)) (-4 *3 (-305 *4)))) (-4124 (*1 *2) (-12 (-4 *4 (-339)) (-5 *2 (-852)) (-5 *1 (-304 *3 *4)) (-4 *3 (-305 *4)))) (-1703 (*1 *2) (-12 (-4 *4 (-339)) (-5 *2 (-710)) (-5 *1 (-304 *3 *4)) (-4 *3 (-305 *4))))) +(-10 -8 (-15 -3901 ((-3 |#1| "failed") |#1|)) (-15 -1703 ((-710))) (-15 -3901 (|#1| |#1|)) (-15 -2122 ((-3 (-1083 |#2|) "failed") |#1| |#1|)) (-15 -2122 ((-1083 |#2|) |#1|)) (-15 -3943 ((-1083 |#2|) |#1|)) (-15 -3865 (|#1| |#1| (-1083 |#2|))) (-15 -2307 ((-108) |#1|)) (-15 -2749 (|#1|)) (-15 -4187 (|#1| |#1| (-852))) (-15 -3892 (|#1| |#1| (-852))) (-15 -1397 ((-1083 |#1|) |#1| (-852))) (-15 -4187 (|#2| |#1|)) (-15 -3892 (|#2| |#1|)) (-15 -2299 ((-852) |#1|)) (-15 -4124 ((-852))) (-15 -1397 ((-1083 |#2|) |#1|)) (-15 -3409 (|#1| (-1168 |#2|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1|)) (-15 -2654 ((-710))) (-15 -4124 ((-772 (-852)))) (-15 -2299 ((-772 (-852)) |#1|)) (-15 -2318 ((-108) |#1|)) (-15 -2153 ((-108) |#1|)) (-15 -3203 ((-126)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-2318 (((-108) $) 94)) (-2654 (((-710)) 90)) (-4187 ((|#1| $) 140) (($ $ (-852)) 137 (|has| |#1| (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) 122 (|has| |#1| (-344)))) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 73)) (-3614 (((-394 $) $) 72)) (-1387 (((-108) $ $) 59)) (-1703 (((-710)) 112 (|has| |#1| (-344)))) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#1| "failed") $) 101)) (-3474 ((|#1| $) 100)) (-3409 (($ (-1168 |#1|)) 146)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-344)))) (-3796 (($ $ $) 55)) (-2121 (((-3 $ "failed") $) 34)) (-4032 (($) 109 (|has| |#1| (-344)))) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-1996 (($) 124 (|has| |#1| (-344)))) (-2155 (((-108) $) 125 (|has| |#1| (-344)))) (-1991 (($ $ (-710)) 87 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) 86 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2657 (((-108) $) 71)) (-1640 (((-852) $) 127 (|has| |#1| (-344))) (((-772 (-852)) $) 84 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2023 (((-108) $) 31)) (-1881 (($) 135 (|has| |#1| (-344)))) (-2307 (((-108) $) 134 (|has| |#1| (-344)))) (-3892 ((|#1| $) 141) (($ $ (-852)) 138 (|has| |#1| (-344)))) (-4058 (((-3 $ "failed") $) 113 (|has| |#1| (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-1397 (((-1083 |#1|) $) 145) (((-1083 $) $ (-852)) 139 (|has| |#1| (-344)))) (-2072 (((-852) $) 110 (|has| |#1| (-344)))) (-3943 (((-1083 |#1|) $) 131 (|has| |#1| (-344)))) (-2122 (((-1083 |#1|) $) 130 (|has| |#1| (-344))) (((-3 (-1083 |#1|) "failed") $ $) 129 (|has| |#1| (-344)))) (-3865 (($ $ (-1083 |#1|)) 132 (|has| |#1| (-344)))) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 70)) (-2262 (($) 114 (|has| |#1| (-344)) CONST)) (-3878 (($ (-852)) 111 (|has| |#1| (-344)))) (-1290 (((-108) $) 93)) (-2783 (((-1034) $) 10)) (-3441 (($) 133 (|has| |#1| (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) 121 (|has| |#1| (-344)))) (-1820 (((-394 $) $) 74)) (-4124 (((-772 (-852))) 91) (((-852)) 143)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1972 (((-710) $) 58)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-2974 (((-710) $) 126 (|has| |#1| (-344))) (((-3 (-710) "failed") $ $) 85 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3203 (((-126)) 99)) (-3523 (($ $) 118 (|has| |#1| (-344))) (($ $ (-710)) 116 (|has| |#1| (-344)))) (-2299 (((-772 (-852)) $) 92) (((-852) $) 142)) (-3727 (((-1083 |#1|)) 144)) (-3425 (($) 123 (|has| |#1| (-344)))) (-2749 (($) 136 (|has| |#1| (-344)))) (-2966 (((-1168 |#1|) $) 148) (((-629 |#1|) (-1168 $)) 147)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 120 (|has| |#1| (-344)))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65) (($ |#1|) 102)) (-3901 (($ $) 119 (|has| |#1| (-344))) (((-3 $ "failed") $) 83 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-1621 (((-710)) 29)) (-4041 (((-1168 $)) 150) (((-1168 $) (-852)) 149)) (-1704 (((-108) $ $) 39)) (-2153 (((-108) $) 95)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3454 (($ $) 89 (|has| |#1| (-344))) (($ $ (-710)) 88 (|has| |#1| (-344)))) (-2862 (($ $) 117 (|has| |#1| (-344))) (($ $ (-710)) 115 (|has| |#1| (-344)))) (-3983 (((-108) $ $) 6)) (-4098 (($ $ $) 64) (($ $ |#1|) 98)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96))) +(((-305 |#1|) (-129) (-339)) (T -305)) +((-4041 (*1 *2) (-12 (-4 *3 (-339)) (-5 *2 (-1168 *1)) (-4 *1 (-305 *3)))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-852)) (-4 *4 (-339)) (-5 *2 (-1168 *1)) (-4 *1 (-305 *4)))) (-2966 (*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-1168 *3)))) (-2966 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-305 *4)) (-4 *4 (-339)) (-5 *2 (-629 *4)))) (-3409 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-339)) (-4 *1 (-305 *3)))) (-1397 (*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-1083 *3)))) (-3727 (*1 *2) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-1083 *3)))) (-4124 (*1 *2) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-852)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-852)))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-339)))) (-4187 (*1 *2 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-339)))) (-1397 (*1 *2 *1 *3) (-12 (-5 *3 (-852)) (-4 *4 (-344)) (-4 *4 (-339)) (-5 *2 (-1083 *1)) (-4 *1 (-305 *4)))) (-3892 (*1 *1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)))) (-4187 (*1 *1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)))) (-2749 (*1 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-344)) (-4 *2 (-339)))) (-1881 (*1 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-344)) (-4 *2 (-339)))) (-2307 (*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) (-5 *2 (-108)))) (-3441 (*1 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-344)) (-4 *2 (-339)))) (-3865 (*1 *1 *1 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-344)) (-4 *1 (-305 *3)) (-4 *3 (-339)))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) (-5 *2 (-1083 *3)))) (-2122 (*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) (-5 *2 (-1083 *3)))) (-2122 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) (-5 *2 (-1083 *3))))) +(-13 (-1185 |t#1|) (-964 |t#1|) (-10 -8 (-15 -4041 ((-1168 $))) (-15 -4041 ((-1168 $) (-852))) (-15 -2966 ((-1168 |t#1|) $)) (-15 -2966 ((-629 |t#1|) (-1168 $))) (-15 -3409 ($ (-1168 |t#1|))) (-15 -1397 ((-1083 |t#1|) $)) (-15 -3727 ((-1083 |t#1|))) (-15 -4124 ((-852))) (-15 -2299 ((-852) $)) (-15 -3892 (|t#1| $)) (-15 -4187 (|t#1| $)) (IF (|has| |t#1| (-344)) (PROGN (-6 (-325)) (-15 -1397 ((-1083 $) $ (-852))) (-15 -3892 ($ $ (-852))) (-15 -4187 ($ $ (-852))) (-15 -2749 ($)) (-15 -1881 ($)) (-15 -2307 ((-108) $)) (-15 -3441 ($)) (-15 -3865 ($ $ (-1083 |t#1|))) (-15 -3943 ((-1083 |t#1|) $)) (-15 -2122 ((-1083 |t#1|) $)) (-15 -2122 ((-3 (-1083 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-134) -3262 (|has| |#1| (-344)) (|has| |#1| (-134))) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) . T) ((-211) |has| |#1| (-344)) ((-221) . T) ((-267) . T) ((-284) . T) ((-1185 |#1|) . T) ((-339) . T) ((-378) -3262 (|has| |#1| (-344)) (|has| |#1| (-134))) ((-344) |has| |#1| (-344)) ((-325) |has| |#1| (-344)) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-964 |#1|) . T) ((-979 #0#) . T) ((-979 |#1|) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) |has| |#1| (-344)) ((-1126) . T) ((-1175 |#1|) . T)) +((-3924 (((-108) $ $) NIL)) (-3690 (($ (-1086) $) 88)) (-3628 (($) 76)) (-1265 (((-1034) (-1034)) 11)) (-2943 (($) 77)) (-3423 (($) 90) (($ (-292 (-638))) 96) (($ (-292 (-640))) 93) (($ (-292 (-633))) 99) (($ (-292 (-355))) 105) (($ (-292 (-523))) 102) (($ (-292 (-155 (-355)))) 108)) (-1495 (($ (-1086) $) 89)) (-1872 (($ (-589 (-794))) 79)) (-3817 (((-1173) $) 73)) (-3464 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1242 (($ (-1034)) 45)) (-1541 (((-1020) $) 25)) (-3813 (($ (-1009 (-883 (-523))) $) 85) (($ (-1009 (-883 (-523))) (-883 (-523)) $) 86)) (-3136 (($ (-1034)) 87)) (-3649 (($ (-1086) $) 110) (($ (-1086) $ $) 111)) (-2337 (($ (-1087) (-589 (-1087))) 75)) (-3953 (($ (-1070)) 82) (($ (-589 (-1070))) 80)) (-1458 (((-794) $) 113)) (-3189 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1087)) (|:| |arrayIndex| (-589 (-883 (-523)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2659 (-794)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1087)) (|:| |rand| (-794)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1086)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3883 (-108)) (|:| -1733 (-2 (|:| |ints2Floats?| (-108)) (|:| -2659 (-794)))))) (|:| |blockBranch| (-589 $)) (|:| |commentBranch| (-589 (-1070))) (|:| |callBranch| (-1070)) (|:| |forBranch| (-2 (|:| -3499 (-1009 (-883 (-523)))) (|:| |span| (-883 (-523))) (|:| -3913 $))) (|:| |labelBranch| (-1034)) (|:| |loopBranch| (-2 (|:| |switch| (-1086)) (|:| -3913 $))) (|:| |commonBranch| (-2 (|:| -4038 (-1087)) (|:| |contents| (-589 (-1087))))) (|:| |printBranch| (-589 (-794)))) $) 37)) (-2547 (($ (-1070)) 182)) (-3890 (($ (-589 $)) 109)) (-3122 (($ (-1087) (-1070)) 115) (($ (-1087) (-292 (-640))) 155) (($ (-1087) (-292 (-638))) 156) (($ (-1087) (-292 (-633))) 157) (($ (-1087) (-629 (-640))) 118) (($ (-1087) (-629 (-638))) 121) (($ (-1087) (-629 (-633))) 124) (($ (-1087) (-1168 (-640))) 127) (($ (-1087) (-1168 (-638))) 130) (($ (-1087) (-1168 (-633))) 133) (($ (-1087) (-629 (-292 (-640)))) 136) (($ (-1087) (-629 (-292 (-638)))) 139) (($ (-1087) (-629 (-292 (-633)))) 142) (($ (-1087) (-1168 (-292 (-640)))) 145) (($ (-1087) (-1168 (-292 (-638)))) 148) (($ (-1087) (-1168 (-292 (-633)))) 151) (($ (-1087) (-589 (-883 (-523))) (-292 (-640))) 152) (($ (-1087) (-589 (-883 (-523))) (-292 (-638))) 153) (($ (-1087) (-589 (-883 (-523))) (-292 (-633))) 154) (($ (-1087) (-292 (-523))) 179) (($ (-1087) (-292 (-355))) 180) (($ (-1087) (-292 (-155 (-355)))) 181) (($ (-1087) (-629 (-292 (-523)))) 160) (($ (-1087) (-629 (-292 (-355)))) 163) (($ (-1087) (-629 (-292 (-155 (-355))))) 166) (($ (-1087) (-1168 (-292 (-523)))) 169) (($ (-1087) (-1168 (-292 (-355)))) 172) (($ (-1087) (-1168 (-292 (-155 (-355))))) 175) (($ (-1087) (-589 (-883 (-523))) (-292 (-523))) 176) (($ (-1087) (-589 (-883 (-523))) (-292 (-355))) 177) (($ (-1087) (-589 (-883 (-523))) (-292 (-155 (-355)))) 178)) (-3983 (((-108) $ $) NIL))) +(((-306) (-13 (-1016) (-10 -8 (-15 -1458 ((-794) $)) (-15 -3813 ($ (-1009 (-883 (-523))) $)) (-15 -3813 ($ (-1009 (-883 (-523))) (-883 (-523)) $)) (-15 -3690 ($ (-1086) $)) (-15 -1495 ($ (-1086) $)) (-15 -1242 ($ (-1034))) (-15 -3136 ($ (-1034))) (-15 -3953 ($ (-1070))) (-15 -3953 ($ (-589 (-1070)))) (-15 -2547 ($ (-1070))) (-15 -3423 ($)) (-15 -3423 ($ (-292 (-638)))) (-15 -3423 ($ (-292 (-640)))) (-15 -3423 ($ (-292 (-633)))) (-15 -3423 ($ (-292 (-355)))) (-15 -3423 ($ (-292 (-523)))) (-15 -3423 ($ (-292 (-155 (-355))))) (-15 -3649 ($ (-1086) $)) (-15 -3649 ($ (-1086) $ $)) (-15 -3122 ($ (-1087) (-1070))) (-15 -3122 ($ (-1087) (-292 (-640)))) (-15 -3122 ($ (-1087) (-292 (-638)))) (-15 -3122 ($ (-1087) (-292 (-633)))) (-15 -3122 ($ (-1087) (-629 (-640)))) (-15 -3122 ($ (-1087) (-629 (-638)))) (-15 -3122 ($ (-1087) (-629 (-633)))) (-15 -3122 ($ (-1087) (-1168 (-640)))) (-15 -3122 ($ (-1087) (-1168 (-638)))) (-15 -3122 ($ (-1087) (-1168 (-633)))) (-15 -3122 ($ (-1087) (-629 (-292 (-640))))) (-15 -3122 ($ (-1087) (-629 (-292 (-638))))) (-15 -3122 ($ (-1087) (-629 (-292 (-633))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-640))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-638))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-633))))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-640)))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-638)))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-633)))) (-15 -3122 ($ (-1087) (-292 (-523)))) (-15 -3122 ($ (-1087) (-292 (-355)))) (-15 -3122 ($ (-1087) (-292 (-155 (-355))))) (-15 -3122 ($ (-1087) (-629 (-292 (-523))))) (-15 -3122 ($ (-1087) (-629 (-292 (-355))))) (-15 -3122 ($ (-1087) (-629 (-292 (-155 (-355)))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-523))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-355))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-155 (-355)))))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-523)))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-355)))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-155 (-355))))) (-15 -3890 ($ (-589 $))) (-15 -3628 ($)) (-15 -2943 ($)) (-15 -1872 ($ (-589 (-794)))) (-15 -2337 ($ (-1087) (-589 (-1087)))) (-15 -3464 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3189 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1087)) (|:| |arrayIndex| (-589 (-883 (-523)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2659 (-794)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1087)) (|:| |rand| (-794)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1086)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3883 (-108)) (|:| -1733 (-2 (|:| |ints2Floats?| (-108)) (|:| -2659 (-794)))))) (|:| |blockBranch| (-589 $)) (|:| |commentBranch| (-589 (-1070))) (|:| |callBranch| (-1070)) (|:| |forBranch| (-2 (|:| -3499 (-1009 (-883 (-523)))) (|:| |span| (-883 (-523))) (|:| -3913 $))) (|:| |labelBranch| (-1034)) (|:| |loopBranch| (-2 (|:| |switch| (-1086)) (|:| -3913 $))) (|:| |commonBranch| (-2 (|:| -4038 (-1087)) (|:| |contents| (-589 (-1087))))) (|:| |printBranch| (-589 (-794)))) $)) (-15 -3817 ((-1173) $)) (-15 -1541 ((-1020) $)) (-15 -1265 ((-1034) (-1034)))))) (T -306)) +((-1458 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-306)))) (-3813 (*1 *1 *2 *1) (-12 (-5 *2 (-1009 (-883 (-523)))) (-5 *1 (-306)))) (-3813 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1009 (-883 (-523)))) (-5 *3 (-883 (-523))) (-5 *1 (-306)))) (-3690 (*1 *1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306)))) (-1495 (*1 *1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306)))) (-1242 (*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-306)))) (-3136 (*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-306)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-306)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-306)))) (-2547 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-306)))) (-3423 (*1 *1) (-5 *1 (-306))) (-3423 (*1 *1 *2) (-12 (-5 *2 (-292 (-638))) (-5 *1 (-306)))) (-3423 (*1 *1 *2) (-12 (-5 *2 (-292 (-640))) (-5 *1 (-306)))) (-3423 (*1 *1 *2) (-12 (-5 *2 (-292 (-633))) (-5 *1 (-306)))) (-3423 (*1 *1 *2) (-12 (-5 *2 (-292 (-355))) (-5 *1 (-306)))) (-3423 (*1 *1 *2) (-12 (-5 *2 (-292 (-523))) (-5 *1 (-306)))) (-3423 (*1 *1 *2) (-12 (-5 *2 (-292 (-155 (-355)))) (-5 *1 (-306)))) (-3649 (*1 *1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306)))) (-3649 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1070)) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-640))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-638))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-633))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-640))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-638))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-633))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-640))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-638))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-633))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-640)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-638)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-633)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-640)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-638)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-633)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-292 (-640))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-292 (-638))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-292 (-633))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-523))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-355))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-155 (-355)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-523)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-355)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-155 (-355))))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-523)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-355)))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-155 (-355))))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-292 (-523))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-292 (-355))) (-5 *1 (-306)))) (-3122 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-292 (-155 (-355)))) (-5 *1 (-306)))) (-3890 (*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-5 *1 (-306)))) (-3628 (*1 *1) (-5 *1 (-306))) (-2943 (*1 *1) (-5 *1 (-306))) (-1872 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-306)))) (-2337 (*1 *1 *2 *3) (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1087)) (-5 *1 (-306)))) (-3464 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-306)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1087)) (|:| |arrayIndex| (-589 (-883 (-523)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2659 (-794)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1087)) (|:| |rand| (-794)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1086)) (|:| |thenClause| (-306)) (|:| |elseClause| (-306)))) (|:| |returnBranch| (-2 (|:| -3883 (-108)) (|:| -1733 (-2 (|:| |ints2Floats?| (-108)) (|:| -2659 (-794)))))) (|:| |blockBranch| (-589 (-306))) (|:| |commentBranch| (-589 (-1070))) (|:| |callBranch| (-1070)) (|:| |forBranch| (-2 (|:| -3499 (-1009 (-883 (-523)))) (|:| |span| (-883 (-523))) (|:| -3913 (-306)))) (|:| |labelBranch| (-1034)) (|:| |loopBranch| (-2 (|:| |switch| (-1086)) (|:| -3913 (-306)))) (|:| |commonBranch| (-2 (|:| -4038 (-1087)) (|:| |contents| (-589 (-1087))))) (|:| |printBranch| (-589 (-794))))) (-5 *1 (-306)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-306)))) (-1541 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-306)))) (-1265 (*1 *2 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-306))))) +(-13 (-1016) (-10 -8 (-15 -1458 ((-794) $)) (-15 -3813 ($ (-1009 (-883 (-523))) $)) (-15 -3813 ($ (-1009 (-883 (-523))) (-883 (-523)) $)) (-15 -3690 ($ (-1086) $)) (-15 -1495 ($ (-1086) $)) (-15 -1242 ($ (-1034))) (-15 -3136 ($ (-1034))) (-15 -3953 ($ (-1070))) (-15 -3953 ($ (-589 (-1070)))) (-15 -2547 ($ (-1070))) (-15 -3423 ($)) (-15 -3423 ($ (-292 (-638)))) (-15 -3423 ($ (-292 (-640)))) (-15 -3423 ($ (-292 (-633)))) (-15 -3423 ($ (-292 (-355)))) (-15 -3423 ($ (-292 (-523)))) (-15 -3423 ($ (-292 (-155 (-355))))) (-15 -3649 ($ (-1086) $)) (-15 -3649 ($ (-1086) $ $)) (-15 -3122 ($ (-1087) (-1070))) (-15 -3122 ($ (-1087) (-292 (-640)))) (-15 -3122 ($ (-1087) (-292 (-638)))) (-15 -3122 ($ (-1087) (-292 (-633)))) (-15 -3122 ($ (-1087) (-629 (-640)))) (-15 -3122 ($ (-1087) (-629 (-638)))) (-15 -3122 ($ (-1087) (-629 (-633)))) (-15 -3122 ($ (-1087) (-1168 (-640)))) (-15 -3122 ($ (-1087) (-1168 (-638)))) (-15 -3122 ($ (-1087) (-1168 (-633)))) (-15 -3122 ($ (-1087) (-629 (-292 (-640))))) (-15 -3122 ($ (-1087) (-629 (-292 (-638))))) (-15 -3122 ($ (-1087) (-629 (-292 (-633))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-640))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-638))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-633))))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-640)))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-638)))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-633)))) (-15 -3122 ($ (-1087) (-292 (-523)))) (-15 -3122 ($ (-1087) (-292 (-355)))) (-15 -3122 ($ (-1087) (-292 (-155 (-355))))) (-15 -3122 ($ (-1087) (-629 (-292 (-523))))) (-15 -3122 ($ (-1087) (-629 (-292 (-355))))) (-15 -3122 ($ (-1087) (-629 (-292 (-155 (-355)))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-523))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-355))))) (-15 -3122 ($ (-1087) (-1168 (-292 (-155 (-355)))))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-523)))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-355)))) (-15 -3122 ($ (-1087) (-589 (-883 (-523))) (-292 (-155 (-355))))) (-15 -3890 ($ (-589 $))) (-15 -3628 ($)) (-15 -2943 ($)) (-15 -1872 ($ (-589 (-794)))) (-15 -2337 ($ (-1087) (-589 (-1087)))) (-15 -3464 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3189 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1087)) (|:| |arrayIndex| (-589 (-883 (-523)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2659 (-794)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1087)) (|:| |rand| (-794)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1086)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3883 (-108)) (|:| -1733 (-2 (|:| |ints2Floats?| (-108)) (|:| -2659 (-794)))))) (|:| |blockBranch| (-589 $)) (|:| |commentBranch| (-589 (-1070))) (|:| |callBranch| (-1070)) (|:| |forBranch| (-2 (|:| -3499 (-1009 (-883 (-523)))) (|:| |span| (-883 (-523))) (|:| -3913 $))) (|:| |labelBranch| (-1034)) (|:| |loopBranch| (-2 (|:| |switch| (-1086)) (|:| -3913 $))) (|:| |commonBranch| (-2 (|:| -4038 (-1087)) (|:| |contents| (-589 (-1087))))) (|:| |printBranch| (-589 (-794)))) $)) (-15 -3817 ((-1173) $)) (-15 -1541 ((-1020) $)) (-15 -1265 ((-1034) (-1034))))) +((-3924 (((-108) $ $) NIL)) (-2207 (((-108) $) 11)) (-3711 (($ |#1|) 8)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3767 (($ |#1|) 9)) (-1458 (((-794) $) 17)) (-2135 ((|#1| $) 12)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 19))) +(((-307 |#1|) (-13 (-786) (-10 -8 (-15 -3711 ($ |#1|)) (-15 -3767 ($ |#1|)) (-15 -2207 ((-108) $)) (-15 -2135 (|#1| $)))) (-786)) (T -307)) +((-3711 (*1 *1 *2) (-12 (-5 *1 (-307 *2)) (-4 *2 (-786)))) (-3767 (*1 *1 *2) (-12 (-5 *1 (-307 *2)) (-4 *2 (-786)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-307 *3)) (-4 *3 (-786)))) (-2135 (*1 *2 *1) (-12 (-5 *1 (-307 *2)) (-4 *2 (-786))))) +(-13 (-786) (-10 -8 (-15 -3711 ($ |#1|)) (-15 -3767 ($ |#1|)) (-15 -2207 ((-108) $)) (-15 -2135 (|#1| $)))) +((-3420 (((-306) (-1087) (-883 (-523))) 22)) (-3928 (((-306) (-1087) (-883 (-523))) 26)) (-1785 (((-306) (-1087) (-1009 (-883 (-523))) (-1009 (-883 (-523)))) 25) (((-306) (-1087) (-883 (-523)) (-883 (-523))) 23)) (-2469 (((-306) (-1087) (-883 (-523))) 30))) +(((-308) (-10 -7 (-15 -3420 ((-306) (-1087) (-883 (-523)))) (-15 -1785 ((-306) (-1087) (-883 (-523)) (-883 (-523)))) (-15 -1785 ((-306) (-1087) (-1009 (-883 (-523))) (-1009 (-883 (-523))))) (-15 -3928 ((-306) (-1087) (-883 (-523)))) (-15 -2469 ((-306) (-1087) (-883 (-523)))))) (T -308)) +((-2469 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) (-5 *1 (-308)))) (-3928 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) (-5 *1 (-308)))) (-1785 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-1009 (-883 (-523)))) (-5 *2 (-306)) (-5 *1 (-308)))) (-1785 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) (-5 *1 (-308)))) (-3420 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) (-5 *1 (-308))))) +(-10 -7 (-15 -3420 ((-306) (-1087) (-883 (-523)))) (-15 -1785 ((-306) (-1087) (-883 (-523)) (-883 (-523)))) (-15 -1785 ((-306) (-1087) (-1009 (-883 (-523))) (-1009 (-883 (-523))))) (-15 -3928 ((-306) (-1087) (-883 (-523)))) (-15 -2469 ((-306) (-1087) (-883 (-523))))) +((-3612 (((-312 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-312 |#1| |#2| |#3| |#4|)) 31))) +(((-309 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3612 ((-312 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-312 |#1| |#2| |#3| |#4|)))) (-339) (-1144 |#1|) (-1144 (-383 |#2|)) (-318 |#1| |#2| |#3|) (-339) (-1144 |#5|) (-1144 (-383 |#6|)) (-318 |#5| |#6| |#7|)) (T -309)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-312 *5 *6 *7 *8)) (-4 *5 (-339)) (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) (-4 *8 (-318 *5 *6 *7)) (-4 *9 (-339)) (-4 *10 (-1144 *9)) (-4 *11 (-1144 (-383 *10))) (-5 *2 (-312 *9 *10 *11 *12)) (-5 *1 (-309 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-318 *9 *10 *11))))) +(-10 -7 (-15 -3612 ((-312 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-312 |#1| |#2| |#3| |#4|)))) +((-1894 (((-108) $) 14))) +(((-310 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1894 ((-108) |#1|))) (-311 |#2| |#3| |#4| |#5|) (-339) (-1144 |#2|) (-1144 (-383 |#3|)) (-318 |#2| |#3| |#4|)) (T -310)) +NIL +(-10 -8 (-15 -1894 ((-108) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2437 (($ $) 26)) (-1894 (((-108) $) 25)) (-3779 (((-1070) $) 9)) (-1485 (((-389 |#2| (-383 |#2|) |#3| |#4|) $) 32)) (-2783 (((-1034) $) 10)) (-3441 (((-3 |#4| "failed") $) 24)) (-3219 (($ (-389 |#2| (-383 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-523)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-2274 (((-2 (|:| -3024 (-389 |#2| (-383 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20))) +(((-311 |#1| |#2| |#3| |#4|) (-129) (-339) (-1144 |t#1|) (-1144 (-383 |t#2|)) (-318 |t#1| |t#2| |t#3|)) (T -311)) +((-1485 (*1 *2 *1) (-12 (-4 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-339)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) (-5 *2 (-389 *4 (-383 *4) *5 *6)))) (-3219 (*1 *1 *2) (-12 (-5 *2 (-389 *4 (-383 *4) *5 *6)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) (-4 *3 (-339)) (-4 *1 (-311 *3 *4 *5 *6)))) (-3219 (*1 *1 *2) (-12 (-4 *3 (-339)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-4 *1 (-311 *3 *4 *5 *2)) (-4 *2 (-318 *3 *4 *5)))) (-3219 (*1 *1 *2 *2) (-12 (-4 *2 (-339)) (-4 *3 (-1144 *2)) (-4 *4 (-1144 (-383 *3))) (-4 *1 (-311 *2 *3 *4 *5)) (-4 *5 (-318 *2 *3 *4)))) (-3219 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-523)) (-4 *2 (-339)) (-4 *4 (-1144 *2)) (-4 *5 (-1144 (-383 *4))) (-4 *1 (-311 *2 *4 *5 *6)) (-4 *6 (-318 *2 *4 *5)))) (-2274 (*1 *2 *1) (-12 (-4 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-339)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) (-5 *2 (-2 (|:| -3024 (-389 *4 (-383 *4) *5 *6)) (|:| |principalPart| *6))))) (-2437 (*1 *1 *1) (-12 (-4 *1 (-311 *2 *3 *4 *5)) (-4 *2 (-339)) (-4 *3 (-1144 *2)) (-4 *4 (-1144 (-383 *3))) (-4 *5 (-318 *2 *3 *4)))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-339)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) (-5 *2 (-108)))) (-3441 (*1 *2 *1) (|partial| -12 (-4 *1 (-311 *3 *4 *5 *2)) (-4 *3 (-339)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-4 *2 (-318 *3 *4 *5)))) (-3219 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-339)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 (-383 *3))) (-4 *1 (-311 *4 *3 *5 *2)) (-4 *2 (-318 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -1485 ((-389 |t#2| (-383 |t#2|) |t#3| |t#4|) $)) (-15 -3219 ($ (-389 |t#2| (-383 |t#2|) |t#3| |t#4|))) (-15 -3219 ($ |t#4|)) (-15 -3219 ($ |t#1| |t#1|)) (-15 -3219 ($ |t#1| |t#1| (-523))) (-15 -2274 ((-2 (|:| -3024 (-389 |t#2| (-383 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2437 ($ $)) (-15 -1894 ((-108) $)) (-15 -3441 ((-3 |t#4| "failed") $)) (-15 -3219 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2437 (($ $) 32)) (-1894 (((-108) $) NIL)) (-3779 (((-1070) $) NIL)) (-1558 (((-1168 |#4|) $) 124)) (-1485 (((-389 |#2| (-383 |#2|) |#3| |#4|) $) 30)) (-2783 (((-1034) $) NIL)) (-3441 (((-3 |#4| "failed") $) 35)) (-3352 (((-1168 |#4|) $) 117)) (-3219 (($ (-389 |#2| (-383 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-523)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-2274 (((-2 (|:| -3024 (-389 |#2| (-383 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-1458 (((-794) $) 17)) (-2756 (($) 14 T CONST)) (-3983 (((-108) $ $) 20)) (-4087 (($ $) 27) (($ $ $) NIL)) (-4075 (($ $ $) 25)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 23))) +(((-312 |#1| |#2| |#3| |#4|) (-13 (-311 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3352 ((-1168 |#4|) $)) (-15 -1558 ((-1168 |#4|) $)))) (-339) (-1144 |#1|) (-1144 (-383 |#2|)) (-318 |#1| |#2| |#3|)) (T -312)) +((-3352 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-1168 *6)) (-5 *1 (-312 *3 *4 *5 *6)) (-4 *6 (-318 *3 *4 *5)))) (-1558 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-1168 *6)) (-5 *1 (-312 *3 *4 *5 *6)) (-4 *6 (-318 *3 *4 *5))))) +(-13 (-311 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3352 ((-1168 |#4|) $)) (-15 -1558 ((-1168 |#4|) $)))) +((-2679 (($ $ (-1087) |#2|) NIL) (($ $ (-589 (-1087)) (-589 |#2|)) 18) (($ $ (-589 (-271 |#2|))) 14) (($ $ (-271 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-589 |#2|) (-589 |#2|)) NIL)) (-3223 (($ $ |#2|) 11))) +(((-313 |#1| |#2|) (-10 -8 (-15 -3223 (|#1| |#1| |#2|)) (-15 -2679 (|#1| |#1| (-589 |#2|) (-589 |#2|))) (-15 -2679 (|#1| |#1| |#2| |#2|)) (-15 -2679 (|#1| |#1| (-271 |#2|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#2|)))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 |#2|))) (-15 -2679 (|#1| |#1| (-1087) |#2|))) (-314 |#2|) (-1016)) (T -313)) +NIL +(-10 -8 (-15 -3223 (|#1| |#1| |#2|)) (-15 -2679 (|#1| |#1| (-589 |#2|) (-589 |#2|))) (-15 -2679 (|#1| |#1| |#2| |#2|)) (-15 -2679 (|#1| |#1| (-271 |#2|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#2|)))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 |#2|))) (-15 -2679 (|#1| |#1| (-1087) |#2|))) +((-3612 (($ (-1 |#1| |#1|) $) 6)) (-2679 (($ $ (-1087) |#1|) 17 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) 16 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-589 (-271 |#1|))) 15 (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) 14 (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-286 |#1|))) (($ $ (-589 |#1|) (-589 |#1|)) 12 (|has| |#1| (-286 |#1|)))) (-3223 (($ $ |#1|) 11 (|has| |#1| (-263 |#1| |#1|))))) +(((-314 |#1|) (-129) (-1016)) (T -314)) +((-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-314 *3)) (-4 *3 (-1016))))) +(-13 (-10 -8 (-15 -3612 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-263 |t#1| |t#1|)) (-6 (-263 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-286 |t#1|)) (-6 (-286 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-484 (-1087) |t#1|)) (-6 (-484 (-1087) |t#1|)) |%noBranch|))) +(((-263 |#1| $) |has| |#1| (-263 |#1| |#1|)) ((-286 |#1|) |has| |#1| (-286 |#1|)) ((-484 (-1087) |#1|) |has| |#1| (-484 (-1087) |#1|)) ((-484 |#1| |#1|) |has| |#1| (-286 |#1|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-1087)) $) NIL)) (-3639 (((-108)) 88) (((-108) (-108)) 89)) (-3072 (((-589 (-562 $)) $) NIL)) (-1769 (($ $) NIL)) (-3780 (($ $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2955 (($ $ (-271 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-589 (-562 $)) (-589 $)) NIL)) (-1832 (($ $) NIL)) (-1744 (($ $) NIL)) (-3711 (($ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-562 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-292 |#3|)) 70) (((-3 $ "failed") (-1087)) 94) (((-3 $ "failed") (-292 (-523))) 57 (|has| |#3| (-964 (-523)))) (((-3 $ "failed") (-383 (-883 (-523)))) 63 (|has| |#3| (-964 (-523)))) (((-3 $ "failed") (-883 (-523))) 58 (|has| |#3| (-964 (-523)))) (((-3 $ "failed") (-292 (-355))) 75 (|has| |#3| (-964 (-355)))) (((-3 $ "failed") (-383 (-883 (-355)))) 81 (|has| |#3| (-964 (-355)))) (((-3 $ "failed") (-883 (-355))) 76 (|has| |#3| (-964 (-355))))) (-3474 (((-562 $) $) NIL) ((|#3| $) NIL) (($ (-292 |#3|)) 71) (($ (-1087)) 95) (($ (-292 (-523))) 59 (|has| |#3| (-964 (-523)))) (($ (-383 (-883 (-523)))) 64 (|has| |#3| (-964 (-523)))) (($ (-883 (-523))) 60 (|has| |#3| (-964 (-523)))) (($ (-292 (-355))) 77 (|has| |#3| (-964 (-355)))) (($ (-383 (-883 (-355)))) 82 (|has| |#3| (-964 (-355)))) (($ (-883 (-355))) 78 (|has| |#3| (-964 (-355))))) (-2121 (((-3 $ "failed") $) NIL)) (-2820 (($) 10)) (-2361 (($ $) NIL) (($ (-589 $)) NIL)) (-1444 (((-589 (-110)) $) NIL)) (-1403 (((-110) (-110)) NIL)) (-2023 (((-108) $) NIL)) (-1557 (((-108) $) NIL (|has| $ (-964 (-523))))) (-1483 (((-1083 $) (-562 $)) NIL (|has| $ (-973)))) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3612 (($ (-1 $ $) (-562 $)) NIL)) (-1363 (((-3 (-562 $) "failed") $) NIL)) (-1574 (($ $) 91)) (-2384 (($ $) NIL)) (-3779 (((-1070) $) NIL)) (-1771 (((-589 (-562 $)) $) NIL)) (-2868 (($ (-110) $) 90) (($ (-110) (-589 $)) NIL)) (-3259 (((-108) $ (-110)) NIL) (((-108) $ (-1087)) NIL)) (-2510 (((-710) $) NIL)) (-2783 (((-1034) $) NIL)) (-2585 (((-108) $ $) NIL) (((-108) $ (-1087)) NIL)) (-1811 (($ $) NIL)) (-4104 (((-108) $) NIL (|has| $ (-964 (-523))))) (-2679 (($ $ (-562 $) $) NIL) (($ $ (-589 (-562 $)) (-589 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-1087) (-1 $ (-589 $))) NIL) (($ $ (-1087) (-1 $ $)) NIL) (($ $ (-589 (-110)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-110) (-1 $ (-589 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-3223 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-589 $)) NIL)) (-3957 (($ $) NIL) (($ $ $) NIL)) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL)) (-3727 (($ $) NIL (|has| $ (-973)))) (-1757 (($ $) NIL)) (-3767 (($ $) NIL)) (-1458 (((-794) $) NIL) (($ (-562 $)) NIL) (($ |#3|) NIL) (($ (-523)) NIL) (((-292 |#3|) $) 93)) (-1621 (((-710)) NIL)) (-3822 (($ $) NIL) (($ (-589 $)) NIL)) (-1950 (((-108) (-110)) NIL)) (-3847 (($ $) NIL)) (-3828 (($ $) NIL)) (-3838 (($ $) NIL)) (-2619 (($ $) NIL)) (-2364 (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-2756 (($) 92 T CONST)) (-2767 (($) 22 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-4087 (($ $ $) NIL) (($ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-523) $) NIL) (($ (-710) $) NIL) (($ (-852) $) NIL))) +(((-315 |#1| |#2| |#3|) (-13 (-279) (-37 |#3|) (-964 |#3|) (-831 (-1087)) (-10 -8 (-15 -3474 ($ (-292 |#3|))) (-15 -3517 ((-3 $ "failed") (-292 |#3|))) (-15 -3474 ($ (-1087))) (-15 -3517 ((-3 $ "failed") (-1087))) (-15 -1458 ((-292 |#3|) $)) (IF (|has| |#3| (-964 (-523))) (PROGN (-15 -3474 ($ (-292 (-523)))) (-15 -3517 ((-3 $ "failed") (-292 (-523)))) (-15 -3474 ($ (-383 (-883 (-523))))) (-15 -3517 ((-3 $ "failed") (-383 (-883 (-523))))) (-15 -3474 ($ (-883 (-523)))) (-15 -3517 ((-3 $ "failed") (-883 (-523))))) |%noBranch|) (IF (|has| |#3| (-964 (-355))) (PROGN (-15 -3474 ($ (-292 (-355)))) (-15 -3517 ((-3 $ "failed") (-292 (-355)))) (-15 -3474 ($ (-383 (-883 (-355))))) (-15 -3517 ((-3 $ "failed") (-383 (-883 (-355))))) (-15 -3474 ($ (-883 (-355)))) (-15 -3517 ((-3 $ "failed") (-883 (-355))))) |%noBranch|) (-15 -2619 ($ $)) (-15 -1832 ($ $)) (-15 -1811 ($ $)) (-15 -2384 ($ $)) (-15 -1574 ($ $)) (-15 -3711 ($ $)) (-15 -3767 ($ $)) (-15 -3780 ($ $)) (-15 -3828 ($ $)) (-15 -3838 ($ $)) (-15 -3847 ($ $)) (-15 -1744 ($ $)) (-15 -1757 ($ $)) (-15 -1769 ($ $)) (-15 -2820 ($)) (-15 -1957 ((-589 (-1087)) $)) (-15 -3639 ((-108))) (-15 -3639 ((-108) (-108))))) (-589 (-1087)) (-589 (-1087)) (-363)) (T -315)) +((-3474 (*1 *1 *2) (-12 (-5 *2 (-292 *5)) (-4 *5 (-363)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-292 *5)) (-4 *5 (-363)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 *2)) (-14 *4 (-589 *2)) (-4 *5 (-363)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 *2)) (-14 *4 (-589 *2)) (-4 *5 (-363)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-292 *5)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-292 (-523))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-292 (-523))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-383 (-883 (-523)))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-383 (-883 (-523)))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-883 (-523))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-883 (-523))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-292 (-355))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-292 (-355))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-383 (-883 (-355)))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-383 (-883 (-355)))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-883 (-355))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-883 (-355))) (-5 *1 (-315 *3 *4 *5)) (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-2619 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1832 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1811 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-2384 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1574 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-3711 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-3767 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-3780 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-3828 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-3838 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-3847 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1744 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1757 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1769 (*1 *1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-2820 (*1 *1) (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) (-1957 (*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-315 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-363)))) (-3639 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363))))) +(-13 (-279) (-37 |#3|) (-964 |#3|) (-831 (-1087)) (-10 -8 (-15 -3474 ($ (-292 |#3|))) (-15 -3517 ((-3 $ "failed") (-292 |#3|))) (-15 -3474 ($ (-1087))) (-15 -3517 ((-3 $ "failed") (-1087))) (-15 -1458 ((-292 |#3|) $)) (IF (|has| |#3| (-964 (-523))) (PROGN (-15 -3474 ($ (-292 (-523)))) (-15 -3517 ((-3 $ "failed") (-292 (-523)))) (-15 -3474 ($ (-383 (-883 (-523))))) (-15 -3517 ((-3 $ "failed") (-383 (-883 (-523))))) (-15 -3474 ($ (-883 (-523)))) (-15 -3517 ((-3 $ "failed") (-883 (-523))))) |%noBranch|) (IF (|has| |#3| (-964 (-355))) (PROGN (-15 -3474 ($ (-292 (-355)))) (-15 -3517 ((-3 $ "failed") (-292 (-355)))) (-15 -3474 ($ (-383 (-883 (-355))))) (-15 -3517 ((-3 $ "failed") (-383 (-883 (-355))))) (-15 -3474 ($ (-883 (-355)))) (-15 -3517 ((-3 $ "failed") (-883 (-355))))) |%noBranch|) (-15 -2619 ($ $)) (-15 -1832 ($ $)) (-15 -1811 ($ $)) (-15 -2384 ($ $)) (-15 -1574 ($ $)) (-15 -3711 ($ $)) (-15 -3767 ($ $)) (-15 -3780 ($ $)) (-15 -3828 ($ $)) (-15 -3838 ($ $)) (-15 -3847 ($ $)) (-15 -1744 ($ $)) (-15 -1757 ($ $)) (-15 -1769 ($ $)) (-15 -2820 ($)) (-15 -1957 ((-589 (-1087)) $)) (-15 -3639 ((-108))) (-15 -3639 ((-108) (-108))))) +((-3612 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-316 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3612 (|#8| (-1 |#5| |#1|) |#4|))) (-1126) (-1144 |#1|) (-1144 (-383 |#2|)) (-318 |#1| |#2| |#3|) (-1126) (-1144 |#5|) (-1144 (-383 |#6|)) (-318 |#5| |#6| |#7|)) (T -316)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1126)) (-4 *8 (-1126)) (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) (-4 *9 (-1144 *8)) (-4 *2 (-318 *8 *9 *10)) (-5 *1 (-316 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-318 *5 *6 *7)) (-4 *10 (-1144 (-383 *9)))))) +(-10 -7 (-15 -3612 (|#8| (-1 |#5| |#1|) |#4|))) +((-1207 (((-2 (|:| |num| (-1168 |#3|)) (|:| |den| |#3|)) $) 38)) (-3409 (($ (-1168 (-383 |#3|)) (-1168 $)) NIL) (($ (-1168 (-383 |#3|))) NIL) (($ (-1168 |#3|) |#3|) 159)) (-2851 (((-1168 $) (-1168 $)) 143)) (-4072 (((-589 (-589 |#2|))) 116)) (-1374 (((-108) |#2| |#2|) 72)) (-2528 (($ $) 137)) (-3552 (((-710)) 31)) (-1215 (((-1168 $) (-1168 $)) 196)) (-3844 (((-589 (-883 |#2|)) (-1087)) 109)) (-3613 (((-108) $) 156)) (-4181 (((-108) $) 24) (((-108) $ |#2|) 29) (((-108) $ |#3|) 200)) (-2779 (((-3 |#3| "failed")) 49)) (-3204 (((-710)) 168)) (-3223 ((|#2| $ |#2| |#2|) 130)) (-3308 (((-3 |#3| "failed")) 67)) (-3523 (($ $ (-1 (-383 |#3|) (-383 |#3|)) (-710)) NIL) (($ $ (-1 (-383 |#3|) (-383 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 204) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL) (($ $ (-710)) NIL) (($ $) NIL)) (-4110 (((-1168 $) (-1168 $)) 149)) (-1451 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 65)) (-1323 (((-108)) 33))) +(((-317 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -4072 ((-589 (-589 |#2|)))) (-15 -3844 ((-589 (-883 |#2|)) (-1087))) (-15 -1451 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2779 ((-3 |#3| "failed"))) (-15 -3308 ((-3 |#3| "failed"))) (-15 -3223 (|#2| |#1| |#2| |#2|)) (-15 -2528 (|#1| |#1|)) (-15 -3409 (|#1| (-1168 |#3|) |#3|)) (-15 -3523 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4181 ((-108) |#1| |#3|)) (-15 -4181 ((-108) |#1| |#2|)) (-15 -1207 ((-2 (|:| |num| (-1168 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2851 ((-1168 |#1|) (-1168 |#1|))) (-15 -1215 ((-1168 |#1|) (-1168 |#1|))) (-15 -4110 ((-1168 |#1|) (-1168 |#1|))) (-15 -4181 ((-108) |#1|)) (-15 -3613 ((-108) |#1|)) (-15 -1374 ((-108) |#2| |#2|)) (-15 -1323 ((-108))) (-15 -3204 ((-710))) (-15 -3552 ((-710))) (-15 -3523 (|#1| |#1| (-1 (-383 |#3|) (-383 |#3|)))) (-15 -3523 (|#1| |#1| (-1 (-383 |#3|) (-383 |#3|)) (-710))) (-15 -3409 (|#1| (-1168 (-383 |#3|)))) (-15 -3409 (|#1| (-1168 (-383 |#3|)) (-1168 |#1|)))) (-318 |#2| |#3| |#4|) (-1126) (-1144 |#2|) (-1144 (-383 |#3|))) (T -317)) +((-3552 (*1 *2) (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) (-5 *2 (-710)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-318 *4 *5 *6)))) (-3204 (*1 *2) (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) (-5 *2 (-710)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-318 *4 *5 *6)))) (-1323 (*1 *2) (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-318 *4 *5 *6)))) (-1374 (*1 *2 *3 *3) (-12 (-4 *3 (-1126)) (-4 *5 (-1144 *3)) (-4 *6 (-1144 (-383 *5))) (-5 *2 (-108)) (-5 *1 (-317 *4 *3 *5 *6)) (-4 *4 (-318 *3 *5 *6)))) (-3308 (*1 *2) (|partial| -12 (-4 *4 (-1126)) (-4 *5 (-1144 (-383 *2))) (-4 *2 (-1144 *4)) (-5 *1 (-317 *3 *4 *2 *5)) (-4 *3 (-318 *4 *2 *5)))) (-2779 (*1 *2) (|partial| -12 (-4 *4 (-1126)) (-4 *5 (-1144 (-383 *2))) (-4 *2 (-1144 *4)) (-5 *1 (-317 *3 *4 *2 *5)) (-4 *3 (-318 *4 *2 *5)))) (-3844 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-4 *5 (-1126)) (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) (-5 *2 (-589 (-883 *5))) (-5 *1 (-317 *4 *5 *6 *7)) (-4 *4 (-318 *5 *6 *7)))) (-4072 (*1 *2) (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) (-5 *2 (-589 (-589 *4))) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-318 *4 *5 *6))))) +(-10 -8 (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -4072 ((-589 (-589 |#2|)))) (-15 -3844 ((-589 (-883 |#2|)) (-1087))) (-15 -1451 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2779 ((-3 |#3| "failed"))) (-15 -3308 ((-3 |#3| "failed"))) (-15 -3223 (|#2| |#1| |#2| |#2|)) (-15 -2528 (|#1| |#1|)) (-15 -3409 (|#1| (-1168 |#3|) |#3|)) (-15 -3523 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4181 ((-108) |#1| |#3|)) (-15 -4181 ((-108) |#1| |#2|)) (-15 -1207 ((-2 (|:| |num| (-1168 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2851 ((-1168 |#1|) (-1168 |#1|))) (-15 -1215 ((-1168 |#1|) (-1168 |#1|))) (-15 -4110 ((-1168 |#1|) (-1168 |#1|))) (-15 -4181 ((-108) |#1|)) (-15 -3613 ((-108) |#1|)) (-15 -1374 ((-108) |#2| |#2|)) (-15 -1323 ((-108))) (-15 -3204 ((-710))) (-15 -3552 ((-710))) (-15 -3523 (|#1| |#1| (-1 (-383 |#3|) (-383 |#3|)))) (-15 -3523 (|#1| |#1| (-1 (-383 |#3|) (-383 |#3|)) (-710))) (-15 -3409 (|#1| (-1168 (-383 |#3|)))) (-15 -3409 (|#1| (-1168 (-383 |#3|)) (-1168 |#1|)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1207 (((-2 (|:| |num| (-1168 |#2|)) (|:| |den| |#2|)) $) 196)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 93 (|has| (-383 |#2|) (-339)))) (-3345 (($ $) 94 (|has| (-383 |#2|) (-339)))) (-3331 (((-108) $) 96 (|has| (-383 |#2|) (-339)))) (-3750 (((-629 (-383 |#2|)) (-1168 $)) 46) (((-629 (-383 |#2|))) 61)) (-4187 (((-383 |#2|) $) 52)) (-2430 (((-1096 (-852) (-710)) (-523)) 147 (|has| (-383 |#2|) (-325)))) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 113 (|has| (-383 |#2|) (-339)))) (-3614 (((-394 $) $) 114 (|has| (-383 |#2|) (-339)))) (-1387 (((-108) $ $) 104 (|has| (-383 |#2|) (-339)))) (-1703 (((-710)) 87 (|has| (-383 |#2|) (-344)))) (-2957 (((-108)) 213)) (-2898 (((-108) |#1|) 212) (((-108) |#2|) 211)) (-2518 (($) 17 T CONST)) (-3517 (((-3 (-523) "failed") $) 169 (|has| (-383 |#2|) (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 167 (|has| (-383 |#2|) (-964 (-383 (-523))))) (((-3 (-383 |#2|) "failed") $) 166)) (-3474 (((-523) $) 170 (|has| (-383 |#2|) (-964 (-523)))) (((-383 (-523)) $) 168 (|has| (-383 |#2|) (-964 (-383 (-523))))) (((-383 |#2|) $) 165)) (-3409 (($ (-1168 (-383 |#2|)) (-1168 $)) 48) (($ (-1168 (-383 |#2|))) 64) (($ (-1168 |#2|) |#2|) 189)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-383 |#2|) (-325)))) (-3796 (($ $ $) 108 (|has| (-383 |#2|) (-339)))) (-4079 (((-629 (-383 |#2|)) $ (-1168 $)) 53) (((-629 (-383 |#2|)) $) 59)) (-2381 (((-629 (-523)) (-629 $)) 164 (|has| (-383 |#2|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 163 (|has| (-383 |#2|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-383 |#2|))) (|:| |vec| (-1168 (-383 |#2|)))) (-629 $) (-1168 $)) 162) (((-629 (-383 |#2|)) (-629 $)) 161)) (-2851 (((-1168 $) (-1168 $)) 201)) (-2437 (($ |#3|) 158) (((-3 $ "failed") (-383 |#3|)) 155 (|has| (-383 |#2|) (-339)))) (-2121 (((-3 $ "failed") $) 34)) (-4072 (((-589 (-589 |#1|))) 182 (|has| |#1| (-344)))) (-1374 (((-108) |#1| |#1|) 217)) (-1319 (((-852)) 54)) (-4032 (($) 90 (|has| (-383 |#2|) (-344)))) (-4189 (((-108)) 210)) (-2539 (((-108) |#1|) 209) (((-108) |#2|) 208)) (-3769 (($ $ $) 107 (|has| (-383 |#2|) (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 102 (|has| (-383 |#2|) (-339)))) (-2528 (($ $) 188)) (-1996 (($) 149 (|has| (-383 |#2|) (-325)))) (-2155 (((-108) $) 150 (|has| (-383 |#2|) (-325)))) (-1991 (($ $ (-710)) 141 (|has| (-383 |#2|) (-325))) (($ $) 140 (|has| (-383 |#2|) (-325)))) (-2657 (((-108) $) 115 (|has| (-383 |#2|) (-339)))) (-1640 (((-852) $) 152 (|has| (-383 |#2|) (-325))) (((-772 (-852)) $) 138 (|has| (-383 |#2|) (-325)))) (-2023 (((-108) $) 31)) (-3552 (((-710)) 220)) (-1215 (((-1168 $) (-1168 $)) 202)) (-3892 (((-383 |#2|) $) 51)) (-3844 (((-589 (-883 |#1|)) (-1087)) 183 (|has| |#1| (-339)))) (-4058 (((-3 $ "failed") $) 142 (|has| (-383 |#2|) (-325)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 111 (|has| (-383 |#2|) (-339)))) (-1397 ((|#3| $) 44 (|has| (-383 |#2|) (-339)))) (-2072 (((-852) $) 89 (|has| (-383 |#2|) (-344)))) (-2428 ((|#3| $) 156)) (-3244 (($ (-589 $)) 100 (|has| (-383 |#2|) (-339))) (($ $ $) 99 (|has| (-383 |#2|) (-339)))) (-3779 (((-1070) $) 9)) (-1467 (((-629 (-383 |#2|))) 197)) (-2860 (((-629 (-383 |#2|))) 199)) (-3738 (($ $) 116 (|has| (-383 |#2|) (-339)))) (-2764 (($ (-1168 |#2|) |#2|) 194)) (-1535 (((-629 (-383 |#2|))) 198)) (-3603 (((-629 (-383 |#2|))) 200)) (-3807 (((-2 (|:| |num| (-629 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-4077 (((-2 (|:| |num| (-1168 |#2|)) (|:| |den| |#2|)) $) 195)) (-3496 (((-1168 $)) 206)) (-4158 (((-1168 $)) 207)) (-3613 (((-108) $) 205)) (-4181 (((-108) $) 204) (((-108) $ |#1|) 192) (((-108) $ |#2|) 191)) (-2262 (($) 143 (|has| (-383 |#2|) (-325)) CONST)) (-3878 (($ (-852)) 88 (|has| (-383 |#2|) (-344)))) (-2779 (((-3 |#2| "failed")) 185)) (-2783 (((-1034) $) 10)) (-3204 (((-710)) 219)) (-3441 (($) 160)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 101 (|has| (-383 |#2|) (-339)))) (-3278 (($ (-589 $)) 98 (|has| (-383 |#2|) (-339))) (($ $ $) 97 (|has| (-383 |#2|) (-339)))) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) 146 (|has| (-383 |#2|) (-325)))) (-1820 (((-394 $) $) 112 (|has| (-383 |#2|) (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-383 |#2|) (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 109 (|has| (-383 |#2|) (-339)))) (-3746 (((-3 $ "failed") $ $) 92 (|has| (-383 |#2|) (-339)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 103 (|has| (-383 |#2|) (-339)))) (-1972 (((-710) $) 105 (|has| (-383 |#2|) (-339)))) (-3223 ((|#1| $ |#1| |#1|) 187)) (-3308 (((-3 |#2| "failed")) 186)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 106 (|has| (-383 |#2|) (-339)))) (-3549 (((-383 |#2|) (-1168 $)) 47) (((-383 |#2|)) 60)) (-2974 (((-710) $) 151 (|has| (-383 |#2|) (-325))) (((-3 (-710) "failed") $ $) 139 (|has| (-383 |#2|) (-325)))) (-3523 (($ $ (-1 (-383 |#2|) (-383 |#2|)) (-710)) 123 (|has| (-383 |#2|) (-339))) (($ $ (-1 (-383 |#2|) (-383 |#2|))) 122 (|has| (-383 |#2|) (-339))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-589 (-1087)) (-589 (-710))) 130 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-4099 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-1087) (-710)) 131 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-4099 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-589 (-1087))) 132 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-4099 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-1087)) 133 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-4099 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-710)) 135 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-211))) (-4099 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325)))) (($ $) 137 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-211))) (-4099 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325))))) (-1976 (((-629 (-383 |#2|)) (-1168 $) (-1 (-383 |#2|) (-383 |#2|))) 154 (|has| (-383 |#2|) (-339)))) (-3727 ((|#3|) 159)) (-3425 (($) 148 (|has| (-383 |#2|) (-325)))) (-2966 (((-1168 (-383 |#2|)) $ (-1168 $)) 50) (((-629 (-383 |#2|)) (-1168 $) (-1168 $)) 49) (((-1168 (-383 |#2|)) $) 66) (((-629 (-383 |#2|)) (-1168 $)) 65)) (-3663 (((-1168 (-383 |#2|)) $) 63) (($ (-1168 (-383 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 145 (|has| (-383 |#2|) (-325)))) (-4110 (((-1168 $) (-1168 $)) 203)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ (-383 |#2|)) 37) (($ (-383 (-523))) 86 (-3262 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-964 (-383 (-523)))))) (($ $) 91 (|has| (-383 |#2|) (-339)))) (-3901 (($ $) 144 (|has| (-383 |#2|) (-325))) (((-3 $ "failed") $) 43 (|has| (-383 |#2|) (-134)))) (-1807 ((|#3| $) 45)) (-1621 (((-710)) 29)) (-2423 (((-108)) 216)) (-2691 (((-108) |#1|) 215) (((-108) |#2|) 214)) (-4041 (((-1168 $)) 67)) (-1704 (((-108) $ $) 95 (|has| (-383 |#2|) (-339)))) (-1451 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-1323 (((-108)) 218)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 117 (|has| (-383 |#2|) (-339)))) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-1 (-383 |#2|) (-383 |#2|)) (-710)) 125 (|has| (-383 |#2|) (-339))) (($ $ (-1 (-383 |#2|) (-383 |#2|))) 124 (|has| (-383 |#2|) (-339))) (($ $ (-589 (-1087)) (-589 (-710))) 126 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-4099 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-1087) (-710)) 127 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-4099 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-589 (-1087))) 128 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-4099 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-1087)) 129 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) (-4099 (|has| (-383 |#2|) (-831 (-1087))) (|has| (-383 |#2|) (-339))))) (($ $ (-710)) 134 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-211))) (-4099 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325)))) (($ $) 136 (-3262 (-4099 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-211))) (-4099 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325))))) (-3983 (((-108) $ $) 6)) (-4098 (($ $ $) 121 (|has| (-383 |#2|) (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 118 (|has| (-383 |#2|) (-339)))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 |#2|)) 39) (($ (-383 |#2|) $) 38) (($ (-383 (-523)) $) 120 (|has| (-383 |#2|) (-339))) (($ $ (-383 (-523))) 119 (|has| (-383 |#2|) (-339))))) +(((-318 |#1| |#2| |#3|) (-129) (-1126) (-1144 |t#1|) (-1144 (-383 |t#2|))) (T -318)) +((-3552 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-710)))) (-3204 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-710)))) (-1323 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-1374 (*1 *2 *3 *3) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-2423 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-2691 (*1 *2 *3) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-2691 (*1 *2 *3) (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1126)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 (-383 *3))) (-5 *2 (-108)))) (-2957 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-2898 (*1 *2 *3) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-2898 (*1 *2 *3) (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1126)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 (-383 *3))) (-5 *2 (-108)))) (-4189 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-2539 (*1 *2 *3) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-2539 (*1 *2 *3) (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1126)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 (-383 *3))) (-5 *2 (-108)))) (-4158 (*1 *2) (-12 (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-1168 *1)) (-4 *1 (-318 *3 *4 *5)))) (-3496 (*1 *2) (-12 (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-1168 *1)) (-4 *1 (-318 *3 *4 *5)))) (-3613 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-4181 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-4110 (*1 *2 *2) (-12 (-5 *2 (-1168 *1)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))))) (-1215 (*1 *2 *2) (-12 (-5 *2 (-1168 *1)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))))) (-2851 (*1 *2 *2) (-12 (-5 *2 (-1168 *1)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))))) (-3603 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-629 (-383 *4))))) (-2860 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-629 (-383 *4))))) (-1535 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-629 (-383 *4))))) (-1467 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-629 (-383 *4))))) (-1207 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-2 (|:| |num| (-1168 *4)) (|:| |den| *4))))) (-4077 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-2 (|:| |num| (-1168 *4)) (|:| |den| *4))))) (-2764 (*1 *1 *2 *3) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1144 *4)) (-4 *4 (-1126)) (-4 *1 (-318 *4 *3 *5)) (-4 *5 (-1144 (-383 *3))))) (-3807 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-318 *4 *5 *6)) (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) (-5 *2 (-2 (|:| |num| (-629 *5)) (|:| |den| *5))))) (-4181 (*1 *2 *1 *3) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) (-4181 (*1 *2 *1 *3) (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1126)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 (-383 *3))) (-5 *2 (-108)))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))))) (-3409 (*1 *1 *2 *3) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1144 *4)) (-4 *4 (-1126)) (-4 *1 (-318 *4 *3 *5)) (-4 *5 (-1144 (-383 *3))))) (-2528 (*1 *1 *1) (-12 (-4 *1 (-318 *2 *3 *4)) (-4 *2 (-1126)) (-4 *3 (-1144 *2)) (-4 *4 (-1144 (-383 *3))))) (-3223 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-318 *2 *3 *4)) (-4 *2 (-1126)) (-4 *3 (-1144 *2)) (-4 *4 (-1144 (-383 *3))))) (-3308 (*1 *2) (|partial| -12 (-4 *1 (-318 *3 *2 *4)) (-4 *3 (-1126)) (-4 *4 (-1144 (-383 *2))) (-4 *2 (-1144 *3)))) (-2779 (*1 *2) (|partial| -12 (-4 *1 (-318 *3 *2 *4)) (-4 *3 (-1126)) (-4 *4 (-1144 (-383 *2))) (-4 *2 (-1144 *3)))) (-1451 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-1126)) (-4 *6 (-1144 (-383 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-318 *4 *5 *6)))) (-3844 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-4 *1 (-318 *4 *5 *6)) (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) (-4 *4 (-339)) (-5 *2 (-589 (-883 *4))))) (-4072 (*1 *2) (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) (-4 *3 (-344)) (-5 *2 (-589 (-589 *3)))))) +(-13 (-664 (-383 |t#2|) |t#3|) (-10 -8 (-15 -3552 ((-710))) (-15 -3204 ((-710))) (-15 -1323 ((-108))) (-15 -1374 ((-108) |t#1| |t#1|)) (-15 -2423 ((-108))) (-15 -2691 ((-108) |t#1|)) (-15 -2691 ((-108) |t#2|)) (-15 -2957 ((-108))) (-15 -2898 ((-108) |t#1|)) (-15 -2898 ((-108) |t#2|)) (-15 -4189 ((-108))) (-15 -2539 ((-108) |t#1|)) (-15 -2539 ((-108) |t#2|)) (-15 -4158 ((-1168 $))) (-15 -3496 ((-1168 $))) (-15 -3613 ((-108) $)) (-15 -4181 ((-108) $)) (-15 -4110 ((-1168 $) (-1168 $))) (-15 -1215 ((-1168 $) (-1168 $))) (-15 -2851 ((-1168 $) (-1168 $))) (-15 -3603 ((-629 (-383 |t#2|)))) (-15 -2860 ((-629 (-383 |t#2|)))) (-15 -1535 ((-629 (-383 |t#2|)))) (-15 -1467 ((-629 (-383 |t#2|)))) (-15 -1207 ((-2 (|:| |num| (-1168 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3409 ($ (-1168 |t#2|) |t#2|)) (-15 -4077 ((-2 (|:| |num| (-1168 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2764 ($ (-1168 |t#2|) |t#2|)) (-15 -3807 ((-2 (|:| |num| (-629 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -4181 ((-108) $ |t#1|)) (-15 -4181 ((-108) $ |t#2|)) (-15 -3523 ($ $ (-1 |t#2| |t#2|))) (-15 -3409 ($ (-1168 |t#2|) |t#2|)) (-15 -2528 ($ $)) (-15 -3223 (|t#1| $ |t#1| |t#1|)) (-15 -3308 ((-3 |t#2| "failed"))) (-15 -2779 ((-3 |t#2| "failed"))) (-15 -1451 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-339)) (-15 -3844 ((-589 (-883 |t#1|)) (-1087))) |%noBranch|) (IF (|has| |t#1| (-344)) (-15 -4072 ((-589 (-589 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-37 #1=(-383 |#2|)) . T) ((-37 $) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-97) . T) ((-107 #0# #0#) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-124) . T) ((-134) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-134))) ((-136) |has| (-383 |#2|) (-136)) ((-563 (-794)) . T) ((-158) . T) ((-564 |#3|) . T) ((-209 #1#) |has| (-383 |#2|) (-339)) ((-211) -3262 (|has| (-383 |#2|) (-325)) (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339)))) ((-221) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-267) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-284) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-339) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-378) |has| (-383 |#2|) (-325)) ((-344) -3262 (|has| (-383 |#2|) (-344)) (|has| (-383 |#2|) (-325))) ((-325) |has| (-383 |#2|) (-325)) ((-346 #1# |#3|) . T) ((-385 #1# |#3|) . T) ((-353 #1#) . T) ((-387 #1#) . T) ((-427) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-515) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-591 #0#) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-591 #1#) . T) ((-591 $) . T) ((-585 #1#) . T) ((-585 (-523)) |has| (-383 |#2|) (-585 (-523))) ((-657 #0#) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-657 #1#) . T) ((-657 $) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-664 #1# |#3|) . T) ((-666) . T) ((-831 (-1087)) -12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087)))) ((-851) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-964 (-383 (-523))) |has| (-383 |#2|) (-964 (-383 (-523)))) ((-964 #1#) . T) ((-964 (-523)) |has| (-383 |#2|) (-964 (-523))) ((-979 #0#) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339))) ((-979 #1#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) |has| (-383 |#2|) (-325)) ((-1126) -3262 (|has| (-383 |#2|) (-325)) (|has| (-383 |#2|) (-339)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 (((-841 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| (-841 |#1|) (-344)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) NIL (|has| (-841 |#1|) (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-841 |#1|) "failed") $) NIL)) (-3474 (((-841 |#1|) $) NIL)) (-3409 (($ (-1168 (-841 |#1|))) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-841 |#1|) (-344)))) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-841 |#1|) (-344)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) NIL (|has| (-841 |#1|) (-344)))) (-2155 (((-108) $) NIL (|has| (-841 |#1|) (-344)))) (-1991 (($ $ (-710)) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344)))) (($ $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-2657 (((-108) $) NIL)) (-1640 (((-852) $) NIL (|has| (-841 |#1|) (-344))) (((-772 (-852)) $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-2023 (((-108) $) NIL)) (-1881 (($) NIL (|has| (-841 |#1|) (-344)))) (-2307 (((-108) $) NIL (|has| (-841 |#1|) (-344)))) (-3892 (((-841 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-4058 (((-3 $ "failed") $) NIL (|has| (-841 |#1|) (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 (-841 |#1|)) $) NIL) (((-1083 $) $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-2072 (((-852) $) NIL (|has| (-841 |#1|) (-344)))) (-3943 (((-1083 (-841 |#1|)) $) NIL (|has| (-841 |#1|) (-344)))) (-2122 (((-1083 (-841 |#1|)) $) NIL (|has| (-841 |#1|) (-344))) (((-3 (-1083 (-841 |#1|)) "failed") $ $) NIL (|has| (-841 |#1|) (-344)))) (-3865 (($ $ (-1083 (-841 |#1|))) NIL (|has| (-841 |#1|) (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-841 |#1|) (-344)) CONST)) (-3878 (($ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-1290 (((-108) $) NIL)) (-2783 (((-1034) $) NIL)) (-1365 (((-888 (-1034))) NIL)) (-3441 (($) NIL (|has| (-841 |#1|) (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| (-841 |#1|) (-344)))) (-1820 (((-394 $) $) NIL)) (-4124 (((-772 (-852))) NIL) (((-852)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-710) $) NIL (|has| (-841 |#1|) (-344))) (((-3 (-710) "failed") $ $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-3203 (((-126)) NIL)) (-3523 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-2299 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-3727 (((-1083 (-841 |#1|))) NIL)) (-3425 (($) NIL (|has| (-841 |#1|) (-344)))) (-2749 (($) NIL (|has| (-841 |#1|) (-344)))) (-2966 (((-1168 (-841 |#1|)) $) NIL) (((-629 (-841 |#1|)) (-1168 $)) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| (-841 |#1|) (-344)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-841 |#1|)) NIL)) (-3901 (($ $) NIL (|has| (-841 |#1|) (-344))) (((-3 $ "failed") $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-1621 (((-710)) NIL)) (-4041 (((-1168 $)) NIL) (((-1168 $) (-852)) NIL)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3454 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-2862 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL) (($ $ (-841 |#1|)) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ (-841 |#1|)) NIL) (($ (-841 |#1|) $) NIL))) +(((-319 |#1| |#2|) (-13 (-305 (-841 |#1|)) (-10 -7 (-15 -1365 ((-888 (-1034)))))) (-852) (-852)) (T -319)) +((-1365 (*1 *2) (-12 (-5 *2 (-888 (-1034))) (-5 *1 (-319 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852))))) +(-13 (-305 (-841 |#1|)) (-10 -7 (-15 -1365 ((-888 (-1034)))))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 46)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) 43 (|has| |#1| (-344)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) NIL (|has| |#1| (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) 114)) (-3474 ((|#1| $) 85)) (-3409 (($ (-1168 |#1|)) 103)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) 94 (|has| |#1| (-344)))) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) 97 (|has| |#1| (-344)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) 129 (|has| |#1| (-344)))) (-2155 (((-108) $) 49 (|has| |#1| (-344)))) (-1991 (($ $ (-710)) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2657 (((-108) $) NIL)) (-1640 (((-852) $) 47 (|has| |#1| (-344))) (((-772 (-852)) $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2023 (((-108) $) NIL)) (-1881 (($) 131 (|has| |#1| (-344)))) (-2307 (((-108) $) NIL (|has| |#1| (-344)))) (-3892 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 |#1|) $) 89) (((-1083 $) $ (-852)) NIL (|has| |#1| (-344)))) (-2072 (((-852) $) 139 (|has| |#1| (-344)))) (-3943 (((-1083 |#1|) $) NIL (|has| |#1| (-344)))) (-2122 (((-1083 |#1|) $) NIL (|has| |#1| (-344))) (((-3 (-1083 |#1|) "failed") $ $) NIL (|has| |#1| (-344)))) (-3865 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 146)) (-2262 (($) NIL (|has| |#1| (-344)) CONST)) (-3878 (($ (-852)) 70 (|has| |#1| (-344)))) (-1290 (((-108) $) 117)) (-2783 (((-1034) $) NIL)) (-1365 (((-888 (-1034))) 44)) (-3441 (($) 127 (|has| |#1| (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) 92 (|has| |#1| (-344)))) (-1820 (((-394 $) $) NIL)) (-4124 (((-772 (-852))) 67) (((-852)) 68)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-710) $) 130 (|has| |#1| (-344))) (((-3 (-710) "failed") $ $) 124 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3203 (((-126)) NIL)) (-3523 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2299 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-3727 (((-1083 |#1|)) 95)) (-3425 (($) 128 (|has| |#1| (-344)))) (-2749 (($) 136 (|has| |#1| (-344)))) (-2966 (((-1168 |#1|) $) 59) (((-629 |#1|) (-1168 $)) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| |#1| (-344)))) (-1458 (((-794) $) 142) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) 74)) (-3901 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-1621 (((-710)) 138)) (-4041 (((-1168 $)) 116) (((-1168 $) (-852)) 72)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 32 T CONST)) (-2767 (($) 19 T CONST)) (-3454 (($ $) 80 (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2862 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-3983 (((-108) $ $) 48)) (-4098 (($ $ $) 144) (($ $ |#1|) 145)) (-4087 (($ $) 126) (($ $ $) NIL)) (-4075 (($ $ $) 61)) (** (($ $ (-852)) 148) (($ $ (-710)) 149) (($ $ (-523)) 147)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 76) (($ $ $) 75) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143))) +(((-320 |#1| |#2|) (-13 (-305 |#1|) (-10 -7 (-15 -1365 ((-888 (-1034)))))) (-325) (-1083 |#1|)) (T -320)) +((-1365 (*1 *2) (-12 (-5 *2 (-888 (-1034))) (-5 *1 (-320 *3 *4)) (-4 *3 (-325)) (-14 *4 (-1083 *3))))) +(-13 (-305 |#1|) (-10 -7 (-15 -1365 ((-888 (-1034)))))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| |#1| (-344)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) NIL (|has| |#1| (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-3409 (($ (-1168 |#1|)) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-344)))) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| |#1| (-344)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) NIL (|has| |#1| (-344)))) (-2155 (((-108) $) NIL (|has| |#1| (-344)))) (-1991 (($ $ (-710)) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2657 (((-108) $) NIL)) (-1640 (((-852) $) NIL (|has| |#1| (-344))) (((-772 (-852)) $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2023 (((-108) $) NIL)) (-1881 (($) NIL (|has| |#1| (-344)))) (-2307 (((-108) $) NIL (|has| |#1| (-344)))) (-3892 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 |#1|) $) NIL) (((-1083 $) $ (-852)) NIL (|has| |#1| (-344)))) (-2072 (((-852) $) NIL (|has| |#1| (-344)))) (-3943 (((-1083 |#1|) $) NIL (|has| |#1| (-344)))) (-2122 (((-1083 |#1|) $) NIL (|has| |#1| (-344))) (((-3 (-1083 |#1|) "failed") $ $) NIL (|has| |#1| (-344)))) (-3865 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| |#1| (-344)) CONST)) (-3878 (($ (-852)) NIL (|has| |#1| (-344)))) (-1290 (((-108) $) NIL)) (-2783 (((-1034) $) NIL)) (-1365 (((-888 (-1034))) NIL)) (-3441 (($) NIL (|has| |#1| (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| |#1| (-344)))) (-1820 (((-394 $) $) NIL)) (-4124 (((-772 (-852))) NIL) (((-852)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-710) $) NIL (|has| |#1| (-344))) (((-3 (-710) "failed") $ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3203 (((-126)) NIL)) (-3523 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2299 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-3727 (((-1083 |#1|)) NIL)) (-3425 (($) NIL (|has| |#1| (-344)))) (-2749 (($) NIL (|has| |#1| (-344)))) (-2966 (((-1168 |#1|) $) NIL) (((-629 |#1|) (-1168 $)) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| |#1| (-344)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) NIL)) (-3901 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-1621 (((-710)) NIL)) (-4041 (((-1168 $)) NIL) (((-1168 $) (-852)) NIL)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3454 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2862 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-321 |#1| |#2|) (-13 (-305 |#1|) (-10 -7 (-15 -1365 ((-888 (-1034)))))) (-325) (-852)) (T -321)) +((-1365 (*1 *2) (-12 (-5 *2 (-888 (-1034))) (-5 *1 (-321 *3 *4)) (-4 *3 (-325)) (-14 *4 (-852))))) +(-13 (-305 |#1|) (-10 -7 (-15 -1365 ((-888 (-1034)))))) +((-1367 (((-710) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034)))))) 40)) (-1360 (((-888 (-1034)) (-1083 |#1|)) 85)) (-2394 (((-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))) (-1083 |#1|)) 78)) (-2373 (((-629 |#1|) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034)))))) 86)) (-3834 (((-3 (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))) "failed") (-852)) 10)) (-3783 (((-3 (-1083 |#1|) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034)))))) (-852)) 15))) +(((-322 |#1|) (-10 -7 (-15 -1360 ((-888 (-1034)) (-1083 |#1|))) (-15 -2394 ((-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))) (-1083 |#1|))) (-15 -2373 ((-629 |#1|) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))))) (-15 -1367 ((-710) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))))) (-15 -3834 ((-3 (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))) "failed") (-852))) (-15 -3783 ((-3 (-1083 |#1|) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034)))))) (-852)))) (-325)) (T -322)) +((-3783 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-3 (-1083 *4) (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034))))))) (-5 *1 (-322 *4)) (-4 *4 (-325)))) (-3834 (*1 *2 *3) (|partial| -12 (-5 *3 (-852)) (-5 *2 (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034)))))) (-5 *1 (-322 *4)) (-4 *4 (-325)))) (-1367 (*1 *2 *3) (-12 (-5 *3 (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034)))))) (-4 *4 (-325)) (-5 *2 (-710)) (-5 *1 (-322 *4)))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034)))))) (-4 *4 (-325)) (-5 *2 (-629 *4)) (-5 *1 (-322 *4)))) (-2394 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-5 *2 (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034)))))) (-5 *1 (-322 *4)))) (-1360 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-5 *2 (-888 (-1034))) (-5 *1 (-322 *4))))) +(-10 -7 (-15 -1360 ((-888 (-1034)) (-1083 |#1|))) (-15 -2394 ((-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))) (-1083 |#1|))) (-15 -2373 ((-629 |#1|) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))))) (-15 -1367 ((-710) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))))) (-15 -3834 ((-3 (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))) "failed") (-852))) (-15 -3783 ((-3 (-1083 |#1|) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034)))))) (-852)))) +((-1458 ((|#1| |#3|) 84) ((|#3| |#1|) 68))) +(((-323 |#1| |#2| |#3|) (-10 -7 (-15 -1458 (|#3| |#1|)) (-15 -1458 (|#1| |#3|))) (-305 |#2|) (-325) (-305 |#2|)) (T -323)) +((-1458 (*1 *2 *3) (-12 (-4 *4 (-325)) (-4 *2 (-305 *4)) (-5 *1 (-323 *2 *4 *3)) (-4 *3 (-305 *4)))) (-1458 (*1 *2 *3) (-12 (-4 *4 (-325)) (-4 *2 (-305 *4)) (-5 *1 (-323 *3 *4 *2)) (-4 *3 (-305 *4))))) +(-10 -7 (-15 -1458 (|#3| |#1|)) (-15 -1458 (|#1| |#3|))) +((-2155 (((-108) $) 51)) (-1640 (((-772 (-852)) $) 21) (((-852) $) 52)) (-4058 (((-3 $ "failed") $) 16)) (-2262 (($) 9)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 92)) (-2974 (((-3 (-710) "failed") $ $) 71) (((-710) $) 60)) (-3523 (($ $ (-710)) NIL) (($ $) 8)) (-3425 (($) 45)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 33)) (-3901 (((-3 $ "failed") $) 39) (($ $) 38))) +(((-324 |#1|) (-10 -8 (-15 -1640 ((-852) |#1|)) (-15 -2974 ((-710) |#1|)) (-15 -2155 ((-108) |#1|)) (-15 -3425 (|#1|)) (-15 -3391 ((-3 (-1168 |#1|) "failed") (-629 |#1|))) (-15 -3901 (|#1| |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -2262 (|#1|)) (-15 -4058 ((-3 |#1| "failed") |#1|)) (-15 -2974 ((-3 (-710) "failed") |#1| |#1|)) (-15 -1640 ((-772 (-852)) |#1|)) (-15 -3901 ((-3 |#1| "failed") |#1|)) (-15 -2667 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)))) (-325)) (T -324)) +NIL +(-10 -8 (-15 -1640 ((-852) |#1|)) (-15 -2974 ((-710) |#1|)) (-15 -2155 ((-108) |#1|)) (-15 -3425 (|#1|)) (-15 -3391 ((-3 (-1168 |#1|) "failed") (-629 |#1|))) (-15 -3901 (|#1| |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -2262 (|#1|)) (-15 -4058 ((-3 |#1| "failed") |#1|)) (-15 -2974 ((-3 (-710) "failed") |#1| |#1|)) (-15 -1640 ((-772 (-852)) |#1|)) (-15 -3901 ((-3 |#1| "failed") |#1|)) (-15 -2667 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-2430 (((-1096 (-852) (-710)) (-523)) 93)) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 73)) (-3614 (((-394 $) $) 72)) (-1387 (((-108) $ $) 59)) (-1703 (((-710)) 103)) (-2518 (($) 17 T CONST)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-3796 (($ $ $) 55)) (-2121 (((-3 $ "failed") $) 34)) (-4032 (($) 106)) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-1996 (($) 91)) (-2155 (((-108) $) 90)) (-1991 (($ $) 79) (($ $ (-710)) 78)) (-2657 (((-108) $) 71)) (-1640 (((-772 (-852)) $) 81) (((-852) $) 88)) (-2023 (((-108) $) 31)) (-4058 (((-3 $ "failed") $) 102)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-2072 (((-852) $) 105)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 70)) (-2262 (($) 101 T CONST)) (-3878 (($ (-852)) 104)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) 94)) (-1820 (((-394 $) $) 74)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1972 (((-710) $) 58)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-2974 (((-3 (-710) "failed") $ $) 80) (((-710) $) 89)) (-3523 (($ $ (-710)) 99) (($ $) 97)) (-3425 (($) 92)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 95)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65)) (-3901 (((-3 $ "failed") $) 82) (($ $) 96)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-710)) 100) (($ $) 98)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ $) 64)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66))) +(((-325) (-129)) (T -325)) +((-3901 (*1 *1 *1) (-4 *1 (-325))) (-3391 (*1 *2 *3) (|partial| -12 (-5 *3 (-629 *1)) (-4 *1 (-325)) (-5 *2 (-1168 *1)))) (-3044 (*1 *2) (-12 (-4 *1 (-325)) (-5 *2 (-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))))) (-2430 (*1 *2 *3) (-12 (-4 *1 (-325)) (-5 *3 (-523)) (-5 *2 (-1096 (-852) (-710))))) (-3425 (*1 *1) (-4 *1 (-325))) (-1996 (*1 *1) (-4 *1 (-325))) (-2155 (*1 *2 *1) (-12 (-4 *1 (-325)) (-5 *2 (-108)))) (-2974 (*1 *2 *1) (-12 (-4 *1 (-325)) (-5 *2 (-710)))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-325)) (-5 *2 (-852)))) (-1572 (*1 *2) (-12 (-4 *1 (-325)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-378) (-344) (-1063) (-211) (-10 -8 (-15 -3901 ($ $)) (-15 -3391 ((-3 (-1168 $) "failed") (-629 $))) (-15 -3044 ((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523)))))) (-15 -2430 ((-1096 (-852) (-710)) (-523))) (-15 -3425 ($)) (-15 -1996 ($)) (-15 -2155 ((-108) $)) (-15 -2974 ((-710) $)) (-15 -1640 ((-852) $)) (-15 -1572 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-134) . T) ((-563 (-794)) . T) ((-158) . T) ((-211) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-339) . T) ((-378) . T) ((-344) . T) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-979 #0#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) . T) ((-1126) . T)) +((-4029 (((-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) |#1|) 51)) (-4158 (((-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|)))) 49))) +(((-326 |#1| |#2| |#3|) (-10 -7 (-15 -4158 ((-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))))) (-15 -4029 ((-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) |#1|))) (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $)))) (-1144 |#1|) (-385 |#1| |#2|)) (T -326)) +((-4029 (*1 *2 *3) (-12 (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) (-4 *4 (-1144 *3)) (-5 *2 (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-5 *1 (-326 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) (-4158 (*1 *2) (-12 (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) (-4 *4 (-1144 *3)) (-5 *2 (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-5 *1 (-326 *3 *4 *5)) (-4 *5 (-385 *3 *4))))) +(-10 -7 (-15 -4158 ((-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))))) (-15 -4029 ((-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) |#1|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 (((-841 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| (-841 |#1|) (-344)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1367 (((-710)) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) NIL (|has| (-841 |#1|) (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-841 |#1|) "failed") $) NIL)) (-3474 (((-841 |#1|) $) NIL)) (-3409 (($ (-1168 (-841 |#1|))) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-841 |#1|) (-344)))) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-841 |#1|) (-344)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) NIL (|has| (-841 |#1|) (-344)))) (-2155 (((-108) $) NIL (|has| (-841 |#1|) (-344)))) (-1991 (($ $ (-710)) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344)))) (($ $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-2657 (((-108) $) NIL)) (-1640 (((-852) $) NIL (|has| (-841 |#1|) (-344))) (((-772 (-852)) $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-2023 (((-108) $) NIL)) (-1881 (($) NIL (|has| (-841 |#1|) (-344)))) (-2307 (((-108) $) NIL (|has| (-841 |#1|) (-344)))) (-3892 (((-841 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-4058 (((-3 $ "failed") $) NIL (|has| (-841 |#1|) (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 (-841 |#1|)) $) NIL) (((-1083 $) $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-2072 (((-852) $) NIL (|has| (-841 |#1|) (-344)))) (-3943 (((-1083 (-841 |#1|)) $) NIL (|has| (-841 |#1|) (-344)))) (-2122 (((-1083 (-841 |#1|)) $) NIL (|has| (-841 |#1|) (-344))) (((-3 (-1083 (-841 |#1|)) "failed") $ $) NIL (|has| (-841 |#1|) (-344)))) (-3865 (($ $ (-1083 (-841 |#1|))) NIL (|has| (-841 |#1|) (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-841 |#1|) (-344)) CONST)) (-3878 (($ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-1290 (((-108) $) NIL)) (-2783 (((-1034) $) NIL)) (-4049 (((-1168 (-589 (-2 (|:| -1733 (-841 |#1|)) (|:| -3878 (-1034)))))) NIL)) (-3494 (((-629 (-841 |#1|))) NIL)) (-3441 (($) NIL (|has| (-841 |#1|) (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| (-841 |#1|) (-344)))) (-1820 (((-394 $) $) NIL)) (-4124 (((-772 (-852))) NIL) (((-852)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-710) $) NIL (|has| (-841 |#1|) (-344))) (((-3 (-710) "failed") $ $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-3203 (((-126)) NIL)) (-3523 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-2299 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-3727 (((-1083 (-841 |#1|))) NIL)) (-3425 (($) NIL (|has| (-841 |#1|) (-344)))) (-2749 (($) NIL (|has| (-841 |#1|) (-344)))) (-2966 (((-1168 (-841 |#1|)) $) NIL) (((-629 (-841 |#1|)) (-1168 $)) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| (-841 |#1|) (-344)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-841 |#1|)) NIL)) (-3901 (($ $) NIL (|has| (-841 |#1|) (-344))) (((-3 $ "failed") $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-1621 (((-710)) NIL)) (-4041 (((-1168 $)) NIL) (((-1168 $) (-852)) NIL)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3454 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-2862 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL) (($ $ (-841 |#1|)) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ (-841 |#1|)) NIL) (($ (-841 |#1|) $) NIL))) +(((-327 |#1| |#2|) (-13 (-305 (-841 |#1|)) (-10 -7 (-15 -4049 ((-1168 (-589 (-2 (|:| -1733 (-841 |#1|)) (|:| -3878 (-1034))))))) (-15 -3494 ((-629 (-841 |#1|)))) (-15 -1367 ((-710))))) (-852) (-852)) (T -327)) +((-4049 (*1 *2) (-12 (-5 *2 (-1168 (-589 (-2 (|:| -1733 (-841 *3)) (|:| -3878 (-1034)))))) (-5 *1 (-327 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852)))) (-3494 (*1 *2) (-12 (-5 *2 (-629 (-841 *3))) (-5 *1 (-327 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852)))) (-1367 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-327 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852))))) +(-13 (-305 (-841 |#1|)) (-10 -7 (-15 -4049 ((-1168 (-589 (-2 (|:| -1733 (-841 |#1|)) (|:| -3878 (-1034))))))) (-15 -3494 ((-629 (-841 |#1|)))) (-15 -1367 ((-710))))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 75)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 ((|#1| $) 93) (($ $ (-852)) 91 (|has| |#1| (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) 149 (|has| |#1| (-344)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1367 (((-710)) 90)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) 163 (|has| |#1| (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) 112)) (-3474 ((|#1| $) 92)) (-3409 (($ (-1168 |#1|)) 56)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) 187 (|has| |#1| (-344)))) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) 159 (|has| |#1| (-344)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) 150 (|has| |#1| (-344)))) (-2155 (((-108) $) NIL (|has| |#1| (-344)))) (-1991 (($ $ (-710)) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2657 (((-108) $) NIL)) (-1640 (((-852) $) NIL (|has| |#1| (-344))) (((-772 (-852)) $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2023 (((-108) $) NIL)) (-1881 (($) 98 (|has| |#1| (-344)))) (-2307 (((-108) $) 176 (|has| |#1| (-344)))) (-3892 ((|#1| $) 95) (($ $ (-852)) 94 (|has| |#1| (-344)))) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 |#1|) $) 188) (((-1083 $) $ (-852)) NIL (|has| |#1| (-344)))) (-2072 (((-852) $) 134 (|has| |#1| (-344)))) (-3943 (((-1083 |#1|) $) 74 (|has| |#1| (-344)))) (-2122 (((-1083 |#1|) $) 71 (|has| |#1| (-344))) (((-3 (-1083 |#1|) "failed") $ $) 83 (|has| |#1| (-344)))) (-3865 (($ $ (-1083 |#1|)) 70 (|has| |#1| (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 191)) (-2262 (($) NIL (|has| |#1| (-344)) CONST)) (-3878 (($ (-852)) 137 (|has| |#1| (-344)))) (-1290 (((-108) $) 108)) (-2783 (((-1034) $) NIL)) (-4049 (((-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034)))))) 84)) (-3494 (((-629 |#1|)) 88)) (-3441 (($) 97 (|has| |#1| (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) 151 (|has| |#1| (-344)))) (-1820 (((-394 $) $) NIL)) (-4124 (((-772 (-852))) NIL) (((-852)) 152)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-710) $) NIL (|has| |#1| (-344))) (((-3 (-710) "failed") $ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3203 (((-126)) NIL)) (-3523 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2299 (((-772 (-852)) $) NIL) (((-852) $) 63)) (-3727 (((-1083 |#1|)) 153)) (-3425 (($) 133 (|has| |#1| (-344)))) (-2749 (($) NIL (|has| |#1| (-344)))) (-2966 (((-1168 |#1|) $) 106) (((-629 |#1|) (-1168 $)) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| |#1| (-344)))) (-1458 (((-794) $) 124) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) 55)) (-3901 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-1621 (((-710)) 157)) (-4041 (((-1168 $)) 173) (((-1168 $) (-852)) 101)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 29 T CONST)) (-2767 (($) 22 T CONST)) (-3454 (($ $) 107 (|has| |#1| (-344))) (($ $ (-710)) 99 (|has| |#1| (-344)))) (-2862 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-3983 (((-108) $ $) 59)) (-4098 (($ $ $) 104) (($ $ |#1|) 105)) (-4087 (($ $) 178) (($ $ $) 182)) (-4075 (($ $ $) 180)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 138)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 185) (($ $ $) 143) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) +(((-328 |#1| |#2|) (-13 (-305 |#1|) (-10 -7 (-15 -4049 ((-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))))) (-15 -3494 ((-629 |#1|))) (-15 -1367 ((-710))))) (-325) (-3 (-1083 |#1|) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))))) (T -328)) +((-4049 (*1 *2) (-12 (-5 *2 (-1168 (-589 (-2 (|:| -1733 *3) (|:| -3878 (-1034)))))) (-5 *1 (-328 *3 *4)) (-4 *3 (-325)) (-14 *4 (-3 (-1083 *3) *2)))) (-3494 (*1 *2) (-12 (-5 *2 (-629 *3)) (-5 *1 (-328 *3 *4)) (-4 *3 (-325)) (-14 *4 (-3 (-1083 *3) (-1168 (-589 (-2 (|:| -1733 *3) (|:| -3878 (-1034))))))))) (-1367 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-328 *3 *4)) (-4 *3 (-325)) (-14 *4 (-3 (-1083 *3) (-1168 (-589 (-2 (|:| -1733 *3) (|:| -3878 (-1034)))))))))) +(-13 (-305 |#1|) (-10 -7 (-15 -4049 ((-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))))) (-15 -3494 ((-629 |#1|))) (-15 -1367 ((-710))))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| |#1| (-344)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1367 (((-710)) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) NIL (|has| |#1| (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-3409 (($ (-1168 |#1|)) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-344)))) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| |#1| (-344)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) NIL (|has| |#1| (-344)))) (-2155 (((-108) $) NIL (|has| |#1| (-344)))) (-1991 (($ $ (-710)) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2657 (((-108) $) NIL)) (-1640 (((-852) $) NIL (|has| |#1| (-344))) (((-772 (-852)) $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2023 (((-108) $) NIL)) (-1881 (($) NIL (|has| |#1| (-344)))) (-2307 (((-108) $) NIL (|has| |#1| (-344)))) (-3892 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 |#1|) $) NIL) (((-1083 $) $ (-852)) NIL (|has| |#1| (-344)))) (-2072 (((-852) $) NIL (|has| |#1| (-344)))) (-3943 (((-1083 |#1|) $) NIL (|has| |#1| (-344)))) (-2122 (((-1083 |#1|) $) NIL (|has| |#1| (-344))) (((-3 (-1083 |#1|) "failed") $ $) NIL (|has| |#1| (-344)))) (-3865 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| |#1| (-344)) CONST)) (-3878 (($ (-852)) NIL (|has| |#1| (-344)))) (-1290 (((-108) $) NIL)) (-2783 (((-1034) $) NIL)) (-4049 (((-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034)))))) NIL)) (-3494 (((-629 |#1|)) NIL)) (-3441 (($) NIL (|has| |#1| (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| |#1| (-344)))) (-1820 (((-394 $) $) NIL)) (-4124 (((-772 (-852))) NIL) (((-852)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-710) $) NIL (|has| |#1| (-344))) (((-3 (-710) "failed") $ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3203 (((-126)) NIL)) (-3523 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2299 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-3727 (((-1083 |#1|)) NIL)) (-3425 (($) NIL (|has| |#1| (-344)))) (-2749 (($) NIL (|has| |#1| (-344)))) (-2966 (((-1168 |#1|) $) NIL) (((-629 |#1|) (-1168 $)) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| |#1| (-344)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) NIL)) (-3901 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-1621 (((-710)) NIL)) (-4041 (((-1168 $)) NIL) (((-1168 $) (-852)) NIL)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3454 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2862 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-329 |#1| |#2|) (-13 (-305 |#1|) (-10 -7 (-15 -4049 ((-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))))) (-15 -3494 ((-629 |#1|))) (-15 -1367 ((-710))))) (-325) (-852)) (T -329)) +((-4049 (*1 *2) (-12 (-5 *2 (-1168 (-589 (-2 (|:| -1733 *3) (|:| -3878 (-1034)))))) (-5 *1 (-329 *3 *4)) (-4 *3 (-325)) (-14 *4 (-852)))) (-3494 (*1 *2) (-12 (-5 *2 (-629 *3)) (-5 *1 (-329 *3 *4)) (-4 *3 (-325)) (-14 *4 (-852)))) (-1367 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-329 *3 *4)) (-4 *3 (-325)) (-14 *4 (-852))))) +(-13 (-305 |#1|) (-10 -7 (-15 -4049 ((-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))))) (-15 -3494 ((-629 |#1|))) (-15 -1367 ((-710))))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 (((-841 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| (-841 |#1|) (-344)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) NIL (|has| (-841 |#1|) (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-841 |#1|) "failed") $) NIL)) (-3474 (((-841 |#1|) $) NIL)) (-3409 (($ (-1168 (-841 |#1|))) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-841 |#1|) (-344)))) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-841 |#1|) (-344)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) NIL (|has| (-841 |#1|) (-344)))) (-2155 (((-108) $) NIL (|has| (-841 |#1|) (-344)))) (-1991 (($ $ (-710)) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344)))) (($ $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-2657 (((-108) $) NIL)) (-1640 (((-852) $) NIL (|has| (-841 |#1|) (-344))) (((-772 (-852)) $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-2023 (((-108) $) NIL)) (-1881 (($) NIL (|has| (-841 |#1|) (-344)))) (-2307 (((-108) $) NIL (|has| (-841 |#1|) (-344)))) (-3892 (((-841 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-4058 (((-3 $ "failed") $) NIL (|has| (-841 |#1|) (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 (-841 |#1|)) $) NIL) (((-1083 $) $ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-2072 (((-852) $) NIL (|has| (-841 |#1|) (-344)))) (-3943 (((-1083 (-841 |#1|)) $) NIL (|has| (-841 |#1|) (-344)))) (-2122 (((-1083 (-841 |#1|)) $) NIL (|has| (-841 |#1|) (-344))) (((-3 (-1083 (-841 |#1|)) "failed") $ $) NIL (|has| (-841 |#1|) (-344)))) (-3865 (($ $ (-1083 (-841 |#1|))) NIL (|has| (-841 |#1|) (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-841 |#1|) (-344)) CONST)) (-3878 (($ (-852)) NIL (|has| (-841 |#1|) (-344)))) (-1290 (((-108) $) NIL)) (-2783 (((-1034) $) NIL)) (-3441 (($) NIL (|has| (-841 |#1|) (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| (-841 |#1|) (-344)))) (-1820 (((-394 $) $) NIL)) (-4124 (((-772 (-852))) NIL) (((-852)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-710) $) NIL (|has| (-841 |#1|) (-344))) (((-3 (-710) "failed") $ $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-3203 (((-126)) NIL)) (-3523 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-2299 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-3727 (((-1083 (-841 |#1|))) NIL)) (-3425 (($) NIL (|has| (-841 |#1|) (-344)))) (-2749 (($) NIL (|has| (-841 |#1|) (-344)))) (-2966 (((-1168 (-841 |#1|)) $) NIL) (((-629 (-841 |#1|)) (-1168 $)) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| (-841 |#1|) (-344)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-841 |#1|)) NIL)) (-3901 (($ $) NIL (|has| (-841 |#1|) (-344))) (((-3 $ "failed") $) NIL (-3262 (|has| (-841 |#1|) (-134)) (|has| (-841 |#1|) (-344))))) (-1621 (((-710)) NIL)) (-4041 (((-1168 $)) NIL) (((-1168 $) (-852)) NIL)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3454 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-2862 (($ $) NIL (|has| (-841 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-841 |#1|) (-344)))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL) (($ $ (-841 |#1|)) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ (-841 |#1|)) NIL) (($ (-841 |#1|) $) NIL))) +(((-330 |#1| |#2|) (-305 (-841 |#1|)) (-852) (-852)) (T -330)) +NIL +(-305 (-841 |#1|)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) 119 (|has| |#1| (-344)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) 139 (|has| |#1| (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) 91)) (-3474 ((|#1| $) 88)) (-3409 (($ (-1168 |#1|)) 83)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) 115 (|has| |#1| (-344)))) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) 80 (|has| |#1| (-344)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) 39 (|has| |#1| (-344)))) (-2155 (((-108) $) NIL (|has| |#1| (-344)))) (-1991 (($ $ (-710)) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2657 (((-108) $) NIL)) (-1640 (((-852) $) NIL (|has| |#1| (-344))) (((-772 (-852)) $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2023 (((-108) $) NIL)) (-1881 (($) 120 (|has| |#1| (-344)))) (-2307 (((-108) $) 72 (|has| |#1| (-344)))) (-3892 ((|#1| $) 38) (($ $ (-852)) 40 (|has| |#1| (-344)))) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 |#1|) $) 62) (((-1083 $) $ (-852)) NIL (|has| |#1| (-344)))) (-2072 (((-852) $) 95 (|has| |#1| (-344)))) (-3943 (((-1083 |#1|) $) NIL (|has| |#1| (-344)))) (-2122 (((-1083 |#1|) $) NIL (|has| |#1| (-344))) (((-3 (-1083 |#1|) "failed") $ $) NIL (|has| |#1| (-344)))) (-3865 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| |#1| (-344)) CONST)) (-3878 (($ (-852)) 93 (|has| |#1| (-344)))) (-1290 (((-108) $) 141)) (-2783 (((-1034) $) NIL)) (-3441 (($) 35 (|has| |#1| (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) 113 (|has| |#1| (-344)))) (-1820 (((-394 $) $) NIL)) (-4124 (((-772 (-852))) NIL) (((-852)) 138)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-710) $) NIL (|has| |#1| (-344))) (((-3 (-710) "failed") $ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3203 (((-126)) NIL)) (-3523 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2299 (((-772 (-852)) $) NIL) (((-852) $) 56)) (-3727 (((-1083 |#1|)) 86)) (-3425 (($) 125 (|has| |#1| (-344)))) (-2749 (($) NIL (|has| |#1| (-344)))) (-2966 (((-1168 |#1|) $) 50) (((-629 |#1|) (-1168 $)) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| |#1| (-344)))) (-1458 (((-794) $) 137) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) 85)) (-3901 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-1621 (((-710)) 143)) (-4041 (((-1168 $)) 107) (((-1168 $) (-852)) 46)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 109 T CONST)) (-2767 (($) 31 T CONST)) (-3454 (($ $) 65 (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2862 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-3983 (((-108) $ $) 105)) (-4098 (($ $ $) 97) (($ $ |#1|) 98)) (-4087 (($ $) 78) (($ $ $) 103)) (-4075 (($ $ $) 101)) (** (($ $ (-852)) NIL) (($ $ (-710)) 41) (($ $ (-523)) 129)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 76) (($ $ $) 53) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 74))) +(((-331 |#1| |#2|) (-305 |#1|) (-325) (-1083 |#1|)) (T -331)) +NIL +(-305 |#1|) +((-2551 ((|#1| (-1083 |#2|)) 51))) +(((-332 |#1| |#2|) (-10 -7 (-15 -2551 (|#1| (-1083 |#2|)))) (-13 (-378) (-10 -7 (-15 -1458 (|#1| |#2|)) (-15 -2072 ((-852) |#1|)) (-15 -4041 ((-1168 |#1|) (-852))) (-15 -3454 (|#1| |#1|)))) (-325)) (T -332)) +((-2551 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-4 *2 (-13 (-378) (-10 -7 (-15 -1458 (*2 *4)) (-15 -2072 ((-852) *2)) (-15 -4041 ((-1168 *2) (-852))) (-15 -3454 (*2 *2))))) (-5 *1 (-332 *2 *4))))) +(-10 -7 (-15 -2551 (|#1| (-1083 |#2|)))) +((-1206 (((-888 (-1083 |#1|)) (-1083 |#1|)) 37)) (-4032 (((-1083 |#1|) (-852) (-852)) 110) (((-1083 |#1|) (-852)) 109)) (-2155 (((-108) (-1083 |#1|)) 82)) (-3196 (((-852) (-852)) 72)) (-2205 (((-852) (-852)) 74)) (-2184 (((-852) (-852)) 70)) (-2307 (((-108) (-1083 |#1|)) 86)) (-1243 (((-3 (-1083 |#1|) "failed") (-1083 |#1|)) 98)) (-2634 (((-3 (-1083 |#1|) "failed") (-1083 |#1|)) 101)) (-2314 (((-3 (-1083 |#1|) "failed") (-1083 |#1|)) 100)) (-1350 (((-3 (-1083 |#1|) "failed") (-1083 |#1|)) 99)) (-2834 (((-3 (-1083 |#1|) "failed") (-1083 |#1|)) 95)) (-2545 (((-1083 |#1|) (-1083 |#1|)) 63)) (-2475 (((-1083 |#1|) (-852)) 104)) (-2554 (((-1083 |#1|) (-852)) 107)) (-2046 (((-1083 |#1|) (-852)) 106)) (-2534 (((-1083 |#1|) (-852)) 105)) (-1457 (((-1083 |#1|) (-852)) 102))) +(((-333 |#1|) (-10 -7 (-15 -2155 ((-108) (-1083 |#1|))) (-15 -2307 ((-108) (-1083 |#1|))) (-15 -2184 ((-852) (-852))) (-15 -3196 ((-852) (-852))) (-15 -2205 ((-852) (-852))) (-15 -1457 ((-1083 |#1|) (-852))) (-15 -2475 ((-1083 |#1|) (-852))) (-15 -2534 ((-1083 |#1|) (-852))) (-15 -2046 ((-1083 |#1|) (-852))) (-15 -2554 ((-1083 |#1|) (-852))) (-15 -2834 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -1243 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -1350 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -2314 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -2634 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -4032 ((-1083 |#1|) (-852))) (-15 -4032 ((-1083 |#1|) (-852) (-852))) (-15 -2545 ((-1083 |#1|) (-1083 |#1|))) (-15 -1206 ((-888 (-1083 |#1|)) (-1083 |#1|)))) (-325)) (T -333)) +((-1206 (*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-888 (-1083 *4))) (-5 *1 (-333 *4)) (-5 *3 (-1083 *4)))) (-2545 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3)))) (-4032 (*1 *2 *3 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) (-4 *4 (-325)))) (-4032 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) (-4 *4 (-325)))) (-2634 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3)))) (-2314 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3)))) (-1350 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3)))) (-1243 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3)))) (-2834 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3)))) (-2554 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) (-4 *4 (-325)))) (-2046 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) (-4 *4 (-325)))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) (-4 *4 (-325)))) (-2475 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) (-4 *4 (-325)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) (-4 *4 (-325)))) (-2205 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-333 *3)) (-4 *3 (-325)))) (-3196 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-333 *3)) (-4 *3 (-325)))) (-2184 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-333 *3)) (-4 *3 (-325)))) (-2307 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-5 *2 (-108)) (-5 *1 (-333 *4)))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-5 *2 (-108)) (-5 *1 (-333 *4))))) +(-10 -7 (-15 -2155 ((-108) (-1083 |#1|))) (-15 -2307 ((-108) (-1083 |#1|))) (-15 -2184 ((-852) (-852))) (-15 -3196 ((-852) (-852))) (-15 -2205 ((-852) (-852))) (-15 -1457 ((-1083 |#1|) (-852))) (-15 -2475 ((-1083 |#1|) (-852))) (-15 -2534 ((-1083 |#1|) (-852))) (-15 -2046 ((-1083 |#1|) (-852))) (-15 -2554 ((-1083 |#1|) (-852))) (-15 -2834 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -1243 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -1350 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -2314 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -2634 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -4032 ((-1083 |#1|) (-852))) (-15 -4032 ((-1083 |#1|) (-852) (-852))) (-15 -2545 ((-1083 |#1|) (-1083 |#1|))) (-15 -1206 ((-888 (-1083 |#1|)) (-1083 |#1|)))) +((-3652 (((-3 (-589 |#3|) "failed") (-589 |#3|) |#3|) 34))) +(((-334 |#1| |#2| |#3|) (-10 -7 (-15 -3652 ((-3 (-589 |#3|) "failed") (-589 |#3|) |#3|))) (-325) (-1144 |#1|) (-1144 |#2|)) (T -334)) +((-3652 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-325)) (-5 *1 (-334 *4 *5 *3))))) +(-10 -7 (-15 -3652 ((-3 (-589 |#3|) "failed") (-589 |#3|) |#3|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| |#1| (-344)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) NIL (|has| |#1| (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-3409 (($ (-1168 |#1|)) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-344)))) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| |#1| (-344)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) NIL (|has| |#1| (-344)))) (-2155 (((-108) $) NIL (|has| |#1| (-344)))) (-1991 (($ $ (-710)) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2657 (((-108) $) NIL)) (-1640 (((-852) $) NIL (|has| |#1| (-344))) (((-772 (-852)) $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2023 (((-108) $) NIL)) (-1881 (($) NIL (|has| |#1| (-344)))) (-2307 (((-108) $) NIL (|has| |#1| (-344)))) (-3892 ((|#1| $) NIL) (($ $ (-852)) NIL (|has| |#1| (-344)))) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 |#1|) $) NIL) (((-1083 $) $ (-852)) NIL (|has| |#1| (-344)))) (-2072 (((-852) $) NIL (|has| |#1| (-344)))) (-3943 (((-1083 |#1|) $) NIL (|has| |#1| (-344)))) (-2122 (((-1083 |#1|) $) NIL (|has| |#1| (-344))) (((-3 (-1083 |#1|) "failed") $ $) NIL (|has| |#1| (-344)))) (-3865 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| |#1| (-344)) CONST)) (-3878 (($ (-852)) NIL (|has| |#1| (-344)))) (-1290 (((-108) $) NIL)) (-2783 (((-1034) $) NIL)) (-3441 (($) NIL (|has| |#1| (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| |#1| (-344)))) (-1820 (((-394 $) $) NIL)) (-4124 (((-772 (-852))) NIL) (((-852)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-710) $) NIL (|has| |#1| (-344))) (((-3 (-710) "failed") $ $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3203 (((-126)) NIL)) (-3523 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2299 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-3727 (((-1083 |#1|)) NIL)) (-3425 (($) NIL (|has| |#1| (-344)))) (-2749 (($) NIL (|has| |#1| (-344)))) (-2966 (((-1168 |#1|) $) NIL) (((-629 |#1|) (-1168 $)) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| |#1| (-344)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) NIL)) (-3901 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-1621 (((-710)) NIL)) (-4041 (((-1168 $)) NIL) (((-1168 $) (-852)) NIL)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3454 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-2862 (($ $) NIL (|has| |#1| (-344))) (($ $ (-710)) NIL (|has| |#1| (-344)))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-335 |#1| |#2|) (-305 |#1|) (-325) (-852)) (T -335)) +NIL +(-305 |#1|) +((-3249 (((-108) (-589 (-883 |#1|))) 32)) (-1896 (((-589 (-883 |#1|)) (-589 (-883 |#1|))) 43)) (-4095 (((-3 (-589 (-883 |#1|)) "failed") (-589 (-883 |#1|))) 39))) +(((-336 |#1| |#2|) (-10 -7 (-15 -3249 ((-108) (-589 (-883 |#1|)))) (-15 -4095 ((-3 (-589 (-883 |#1|)) "failed") (-589 (-883 |#1|)))) (-15 -1896 ((-589 (-883 |#1|)) (-589 (-883 |#1|))))) (-427) (-589 (-1087))) (T -336)) +((-1896 (*1 *2 *2) (-12 (-5 *2 (-589 (-883 *3))) (-4 *3 (-427)) (-5 *1 (-336 *3 *4)) (-14 *4 (-589 (-1087))))) (-4095 (*1 *2 *2) (|partial| -12 (-5 *2 (-589 (-883 *3))) (-4 *3 (-427)) (-5 *1 (-336 *3 *4)) (-14 *4 (-589 (-1087))))) (-3249 (*1 *2 *3) (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-427)) (-5 *2 (-108)) (-5 *1 (-336 *4 *5)) (-14 *5 (-589 (-1087)))))) +(-10 -7 (-15 -3249 ((-108) (-589 (-883 |#1|)))) (-15 -4095 ((-3 (-589 (-883 |#1|)) "failed") (-589 (-883 |#1|)))) (-15 -1896 ((-589 (-883 |#1|)) (-589 (-883 |#1|))))) +((-3924 (((-108) $ $) NIL)) (-1703 (((-710) $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) 14)) (-2378 ((|#1| $ (-523)) NIL)) (-3731 (((-523) $ (-523)) NIL)) (-4093 (($ (-1 |#1| |#1|) $) 32)) (-2682 (($ (-1 (-523) (-523)) $) 24)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 26)) (-2783 (((-1034) $) NIL)) (-1979 (((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-523)))) $) 28)) (-3208 (($ $ $) NIL)) (-1714 (($ $ $) NIL)) (-1458 (((-794) $) 38) (($ |#1|) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2767 (($) 9 T CONST)) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL) (($ |#1| (-523)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) +(((-337 |#1|) (-13 (-448) (-964 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-523))) (-15 -1703 ((-710) $)) (-15 -3731 ((-523) $ (-523))) (-15 -2378 (|#1| $ (-523))) (-15 -2682 ($ (-1 (-523) (-523)) $)) (-15 -4093 ($ (-1 |#1| |#1|) $)) (-15 -1979 ((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-523)))) $)))) (-1016)) (T -337)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-337 *2)) (-4 *2 (-1016)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-337 *2)) (-4 *2 (-1016)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-337 *2)) (-4 *2 (-1016)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-337 *3)) (-4 *3 (-1016)))) (-3731 (*1 *2 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-337 *3)) (-4 *3 (-1016)))) (-2378 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-337 *2)) (-4 *2 (-1016)))) (-2682 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-523) (-523))) (-5 *1 (-337 *3)) (-4 *3 (-1016)))) (-4093 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-337 *3)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 (-523))))) (-5 *1 (-337 *3)) (-4 *3 (-1016))))) +(-13 (-448) (-964 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-523))) (-15 -1703 ((-710) $)) (-15 -3731 ((-523) $ (-523))) (-15 -2378 (|#1| $ (-523))) (-15 -2682 ($ (-1 (-523) (-523)) $)) (-15 -4093 ($ (-1 |#1| |#1|) $)) (-15 -1979 ((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-523)))) $)))) +((-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 13)) (-3345 (($ $) 14)) (-3614 (((-394 $) $) 30)) (-2657 (((-108) $) 26)) (-3738 (($ $) 19)) (-3278 (($ $ $) 23) (($ (-589 $)) NIL)) (-1820 (((-394 $) $) 31)) (-3746 (((-3 $ "failed") $ $) 22)) (-1972 (((-710) $) 25)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 35)) (-1704 (((-108) $ $) 16)) (-4098 (($ $ $) 33))) +(((-338 |#1|) (-10 -8 (-15 -4098 (|#1| |#1| |#1|)) (-15 -3738 (|#1| |#1|)) (-15 -2657 ((-108) |#1|)) (-15 -3614 ((-394 |#1|) |#1|)) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3462 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -1972 ((-710) |#1|)) (-15 -3278 (|#1| (-589 |#1|))) (-15 -3278 (|#1| |#1| |#1|)) (-15 -1704 ((-108) |#1| |#1|)) (-15 -3345 (|#1| |#1|)) (-15 -1669 ((-2 (|:| -3819 |#1|) (|:| -4231 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|))) (-339)) (T -338)) +NIL +(-10 -8 (-15 -4098 (|#1| |#1| |#1|)) (-15 -3738 (|#1| |#1|)) (-15 -2657 ((-108) |#1|)) (-15 -3614 ((-394 |#1|) |#1|)) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3462 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -1972 ((-710) |#1|)) (-15 -3278 (|#1| (-589 |#1|))) (-15 -3278 (|#1| |#1| |#1|)) (-15 -1704 ((-108) |#1| |#1|)) (-15 -3345 (|#1| |#1|)) (-15 -1669 ((-2 (|:| -3819 |#1|) (|:| -4231 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 73)) (-3614 (((-394 $) $) 72)) (-1387 (((-108) $ $) 59)) (-2518 (($) 17 T CONST)) (-3796 (($ $ $) 55)) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-2657 (((-108) $) 71)) (-2023 (((-108) $) 31)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 70)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-1820 (((-394 $) $) 74)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1972 (((-710) $) 58)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ $) 64)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66))) +(((-339) (-129)) (T -339)) +((-4098 (*1 *1 *1 *1) (-4 *1 (-339)))) +(-13 (-284) (-1126) (-221) (-10 -8 (-15 -4098 ($ $ $)) (-6 -4242) (-6 -4236))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-979 #0#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) . T)) +((-3924 (((-108) $ $) 7)) (-3715 ((|#2| $ |#2|) 13)) (-2647 (($ $ (-1070)) 18)) (-3114 ((|#2| $) 14)) (-2625 (($ |#1|) 20) (($ |#1| (-1070)) 19)) (-4038 ((|#1| $) 16)) (-3779 (((-1070) $) 9)) (-1998 (((-1070) $) 15)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-1685 (($ $) 17)) (-3983 (((-108) $ $) 6))) +(((-340 |#1| |#2|) (-129) (-1016) (-1016)) (T -340)) +((-2625 (*1 *1 *2) (-12 (-4 *1 (-340 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-2625 (*1 *1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *1 (-340 *2 *4)) (-4 *2 (-1016)) (-4 *4 (-1016)))) (-2647 (*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-340 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-1685 (*1 *1 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1016)) (-4 *2 (-1016)))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-5 *2 (-1070)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016)))) (-3715 (*1 *2 *1 *2) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016))))) +(-13 (-1016) (-10 -8 (-15 -2625 ($ |t#1|)) (-15 -2625 ($ |t#1| (-1070))) (-15 -2647 ($ $ (-1070))) (-15 -1685 ($ $)) (-15 -4038 (|t#1| $)) (-15 -1998 ((-1070) $)) (-15 -3114 (|t#2| $)) (-15 -3715 (|t#2| $ |t#2|)))) +(((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-3715 ((|#1| $ |#1|) 29)) (-2647 (($ $ (-1070)) 22)) (-4096 (((-3 |#1| "failed") $) 28)) (-3114 ((|#1| $) 26)) (-2625 (($ (-364)) 21) (($ (-364) (-1070)) 20)) (-4038 (((-364) $) 24)) (-3779 (((-1070) $) NIL)) (-1998 (((-1070) $) 25)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 19)) (-1685 (($ $) 23)) (-3983 (((-108) $ $) 18))) +(((-341 |#1|) (-13 (-340 (-364) |#1|) (-10 -8 (-15 -4096 ((-3 |#1| "failed") $)))) (-1016)) (T -341)) +((-4096 (*1 *2 *1) (|partial| -12 (-5 *1 (-341 *2)) (-4 *2 (-1016))))) +(-13 (-340 (-364) |#1|) (-10 -8 (-15 -4096 ((-3 |#1| "failed") $)))) +((-3115 (((-1168 (-629 |#2|)) (-1168 $)) 61)) (-1431 (((-629 |#2|) (-1168 $)) 119)) (-3744 ((|#2| $) 32)) (-2788 (((-629 |#2|) $ (-1168 $)) 123)) (-2532 (((-3 $ "failed") $) 75)) (-4212 ((|#2| $) 35)) (-1726 (((-1083 |#2|) $) 83)) (-2284 ((|#2| (-1168 $)) 106)) (-1778 (((-1083 |#2|) $) 28)) (-2117 (((-108)) 100)) (-3409 (($ (-1168 |#2|) (-1168 $)) 113)) (-2121 (((-3 $ "failed") $) 79)) (-1649 (((-108)) 95)) (-2956 (((-108)) 90)) (-2491 (((-108)) 53)) (-1504 (((-629 |#2|) (-1168 $)) 117)) (-3237 ((|#2| $) 31)) (-2139 (((-629 |#2|) $ (-1168 $)) 122)) (-1579 (((-3 $ "failed") $) 73)) (-4050 ((|#2| $) 34)) (-2553 (((-1083 |#2|) $) 82)) (-3002 ((|#2| (-1168 $)) 104)) (-2565 (((-1083 |#2|) $) 26)) (-1216 (((-108)) 99)) (-2345 (((-108)) 92)) (-1510 (((-108)) 51)) (-2871 (((-108)) 87)) (-2751 (((-108)) 101)) (-2966 (((-1168 |#2|) $ (-1168 $)) NIL) (((-629 |#2|) (-1168 $) (-1168 $)) 111)) (-1673 (((-108)) 97)) (-3751 (((-589 (-1168 |#2|))) 86)) (-3120 (((-108)) 98)) (-1462 (((-108)) 96)) (-3366 (((-108)) 46)) (-2071 (((-108)) 102))) +(((-342 |#1| |#2|) (-10 -8 (-15 -1726 ((-1083 |#2|) |#1|)) (-15 -2553 ((-1083 |#2|) |#1|)) (-15 -3751 ((-589 (-1168 |#2|)))) (-15 -2532 ((-3 |#1| "failed") |#1|)) (-15 -1579 ((-3 |#1| "failed") |#1|)) (-15 -2121 ((-3 |#1| "failed") |#1|)) (-15 -2956 ((-108))) (-15 -2345 ((-108))) (-15 -1649 ((-108))) (-15 -1510 ((-108))) (-15 -2491 ((-108))) (-15 -2871 ((-108))) (-15 -2071 ((-108))) (-15 -2751 ((-108))) (-15 -2117 ((-108))) (-15 -1216 ((-108))) (-15 -3366 ((-108))) (-15 -3120 ((-108))) (-15 -1462 ((-108))) (-15 -1673 ((-108))) (-15 -1778 ((-1083 |#2|) |#1|)) (-15 -2565 ((-1083 |#2|) |#1|)) (-15 -1431 ((-629 |#2|) (-1168 |#1|))) (-15 -1504 ((-629 |#2|) (-1168 |#1|))) (-15 -2284 (|#2| (-1168 |#1|))) (-15 -3002 (|#2| (-1168 |#1|))) (-15 -3409 (|#1| (-1168 |#2|) (-1168 |#1|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -4212 (|#2| |#1|)) (-15 -4050 (|#2| |#1|)) (-15 -3744 (|#2| |#1|)) (-15 -3237 (|#2| |#1|)) (-15 -2788 ((-629 |#2|) |#1| (-1168 |#1|))) (-15 -2139 ((-629 |#2|) |#1| (-1168 |#1|))) (-15 -3115 ((-1168 (-629 |#2|)) (-1168 |#1|)))) (-343 |#2|) (-158)) (T -342)) +((-1673 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-1462 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-3120 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-3366 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-1216 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-2117 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-2751 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-2071 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-2871 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-2491 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-1510 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-1649 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-2345 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-2956 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4)))) (-3751 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-589 (-1168 *4))) (-5 *1 (-342 *3 *4)) (-4 *3 (-343 *4))))) +(-10 -8 (-15 -1726 ((-1083 |#2|) |#1|)) (-15 -2553 ((-1083 |#2|) |#1|)) (-15 -3751 ((-589 (-1168 |#2|)))) (-15 -2532 ((-3 |#1| "failed") |#1|)) (-15 -1579 ((-3 |#1| "failed") |#1|)) (-15 -2121 ((-3 |#1| "failed") |#1|)) (-15 -2956 ((-108))) (-15 -2345 ((-108))) (-15 -1649 ((-108))) (-15 -1510 ((-108))) (-15 -2491 ((-108))) (-15 -2871 ((-108))) (-15 -2071 ((-108))) (-15 -2751 ((-108))) (-15 -2117 ((-108))) (-15 -1216 ((-108))) (-15 -3366 ((-108))) (-15 -3120 ((-108))) (-15 -1462 ((-108))) (-15 -1673 ((-108))) (-15 -1778 ((-1083 |#2|) |#1|)) (-15 -2565 ((-1083 |#2|) |#1|)) (-15 -1431 ((-629 |#2|) (-1168 |#1|))) (-15 -1504 ((-629 |#2|) (-1168 |#1|))) (-15 -2284 (|#2| (-1168 |#1|))) (-15 -3002 (|#2| (-1168 |#1|))) (-15 -3409 (|#1| (-1168 |#2|) (-1168 |#1|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -4212 (|#2| |#1|)) (-15 -4050 (|#2| |#1|)) (-15 -3744 (|#2| |#1|)) (-15 -3237 (|#2| |#1|)) (-15 -2788 ((-629 |#2|) |#1| (-1168 |#1|))) (-15 -2139 ((-629 |#2|) |#1| (-1168 |#1|))) (-15 -3115 ((-1168 (-629 |#2|)) (-1168 |#1|)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3819 (((-3 $ "failed")) 37 (|has| |#1| (-515)))) (-3212 (((-3 $ "failed") $ $) 19)) (-3115 (((-1168 (-629 |#1|)) (-1168 $)) 78)) (-2738 (((-1168 $)) 81)) (-2518 (($) 17 T CONST)) (-3486 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) 40 (|has| |#1| (-515)))) (-3545 (((-3 $ "failed")) 38 (|has| |#1| (-515)))) (-1431 (((-629 |#1|) (-1168 $)) 65)) (-3744 ((|#1| $) 74)) (-2788 (((-629 |#1|) $ (-1168 $)) 76)) (-2532 (((-3 $ "failed") $) 45 (|has| |#1| (-515)))) (-1970 (($ $ (-852)) 28)) (-4212 ((|#1| $) 72)) (-1726 (((-1083 |#1|) $) 42 (|has| |#1| (-515)))) (-2284 ((|#1| (-1168 $)) 67)) (-1778 (((-1083 |#1|) $) 63)) (-2117 (((-108)) 57)) (-3409 (($ (-1168 |#1|) (-1168 $)) 69)) (-2121 (((-3 $ "failed") $) 47 (|has| |#1| (-515)))) (-1319 (((-852)) 80)) (-1487 (((-108)) 54)) (-3650 (($ $ (-852)) 33)) (-1649 (((-108)) 50)) (-2956 (((-108)) 48)) (-2491 (((-108)) 52)) (-2362 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) 41 (|has| |#1| (-515)))) (-1386 (((-3 $ "failed")) 39 (|has| |#1| (-515)))) (-1504 (((-629 |#1|) (-1168 $)) 66)) (-3237 ((|#1| $) 75)) (-2139 (((-629 |#1|) $ (-1168 $)) 77)) (-1579 (((-3 $ "failed") $) 46 (|has| |#1| (-515)))) (-1448 (($ $ (-852)) 29)) (-4050 ((|#1| $) 73)) (-2553 (((-1083 |#1|) $) 43 (|has| |#1| (-515)))) (-3002 ((|#1| (-1168 $)) 68)) (-2565 (((-1083 |#1|) $) 64)) (-1216 (((-108)) 58)) (-3779 (((-1070) $) 9)) (-2345 (((-108)) 49)) (-1510 (((-108)) 51)) (-2871 (((-108)) 53)) (-2783 (((-1034) $) 10)) (-2751 (((-108)) 56)) (-2966 (((-1168 |#1|) $ (-1168 $)) 71) (((-629 |#1|) (-1168 $) (-1168 $)) 70)) (-3863 (((-589 (-883 |#1|)) (-1168 $)) 79)) (-1714 (($ $ $) 25)) (-1673 (((-108)) 62)) (-1458 (((-794) $) 11)) (-3751 (((-589 (-1168 |#1|))) 44 (|has| |#1| (-515)))) (-2022 (($ $ $ $) 26)) (-3120 (((-108)) 60)) (-1995 (($ $ $) 24)) (-1462 (((-108)) 61)) (-3366 (((-108)) 59)) (-2071 (((-108)) 55)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 30)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-343 |#1|) (-129) (-158)) (T -343)) +((-2738 (*1 *2) (-12 (-4 *3 (-158)) (-5 *2 (-1168 *1)) (-4 *1 (-343 *3)))) (-1319 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-852)))) (-3863 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-589 (-883 *4))))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-1168 (-629 *4))))) (-2139 (*1 *2 *1 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-629 *4)))) (-2788 (*1 *2 *1 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-629 *4)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158)))) (-3744 (*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158)))) (-4212 (*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158)))) (-2966 (*1 *2 *1 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-1168 *4)))) (-2966 (*1 *2 *3 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-629 *4)))) (-3409 (*1 *1 *2 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1168 *1)) (-4 *4 (-158)) (-4 *1 (-343 *4)))) (-3002 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *2)) (-4 *2 (-158)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *2)) (-4 *2 (-158)))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-629 *4)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) (-5 *2 (-629 *4)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-1083 *3)))) (-1778 (*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-1083 *3)))) (-1673 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-1462 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-3120 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-3366 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-1216 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-2117 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-2751 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-2071 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-1487 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-2871 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-2491 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-1510 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-1649 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-2345 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-2956 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108)))) (-2121 (*1 *1 *1) (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) (-1579 (*1 *1 *1) (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) (-2532 (*1 *1 *1) (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) (-3751 (*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-4 *3 (-515)) (-5 *2 (-589 (-1168 *3))))) (-2553 (*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-4 *3 (-515)) (-5 *2 (-1083 *3)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-4 *3 (-515)) (-5 *2 (-1083 *3)))) (-2362 (*1 *2) (|partial| -12 (-4 *3 (-515)) (-4 *3 (-158)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4041 (-589 *1)))) (-4 *1 (-343 *3)))) (-3486 (*1 *2) (|partial| -12 (-4 *3 (-515)) (-4 *3 (-158)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4041 (-589 *1)))) (-4 *1 (-343 *3)))) (-1386 (*1 *1) (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-515)) (-4 *2 (-158)))) (-3545 (*1 *1) (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-515)) (-4 *2 (-158)))) (-3819 (*1 *1) (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-515)) (-4 *2 (-158))))) +(-13 (-684 |t#1|) (-10 -8 (-15 -2738 ((-1168 $))) (-15 -1319 ((-852))) (-15 -3863 ((-589 (-883 |t#1|)) (-1168 $))) (-15 -3115 ((-1168 (-629 |t#1|)) (-1168 $))) (-15 -2139 ((-629 |t#1|) $ (-1168 $))) (-15 -2788 ((-629 |t#1|) $ (-1168 $))) (-15 -3237 (|t#1| $)) (-15 -3744 (|t#1| $)) (-15 -4050 (|t#1| $)) (-15 -4212 (|t#1| $)) (-15 -2966 ((-1168 |t#1|) $ (-1168 $))) (-15 -2966 ((-629 |t#1|) (-1168 $) (-1168 $))) (-15 -3409 ($ (-1168 |t#1|) (-1168 $))) (-15 -3002 (|t#1| (-1168 $))) (-15 -2284 (|t#1| (-1168 $))) (-15 -1504 ((-629 |t#1|) (-1168 $))) (-15 -1431 ((-629 |t#1|) (-1168 $))) (-15 -2565 ((-1083 |t#1|) $)) (-15 -1778 ((-1083 |t#1|) $)) (-15 -1673 ((-108))) (-15 -1462 ((-108))) (-15 -3120 ((-108))) (-15 -3366 ((-108))) (-15 -1216 ((-108))) (-15 -2117 ((-108))) (-15 -2751 ((-108))) (-15 -2071 ((-108))) (-15 -1487 ((-108))) (-15 -2871 ((-108))) (-15 -2491 ((-108))) (-15 -1510 ((-108))) (-15 -1649 ((-108))) (-15 -2345 ((-108))) (-15 -2956 ((-108))) (IF (|has| |t#1| (-515)) (PROGN (-15 -2121 ((-3 $ "failed") $)) (-15 -1579 ((-3 $ "failed") $)) (-15 -2532 ((-3 $ "failed") $)) (-15 -3751 ((-589 (-1168 |t#1|)))) (-15 -2553 ((-1083 |t#1|) $)) (-15 -1726 ((-1083 |t#1|) $)) (-15 -2362 ((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed"))) (-15 -3486 ((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed"))) (-15 -1386 ((-3 $ "failed"))) (-15 -3545 ((-3 $ "failed"))) (-15 -3819 ((-3 $ "failed"))) (-6 -4241)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-657 |#1|) . T) ((-660) . T) ((-684 |#1|) . T) ((-701) . T) ((-979 |#1|) . T) ((-1016) . T)) +((-3924 (((-108) $ $) 7)) (-1703 (((-710)) 16)) (-4032 (($) 13)) (-2072 (((-852) $) 14)) (-3779 (((-1070) $) 9)) (-3878 (($ (-852)) 15)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 6))) +(((-344) (-129)) (T -344)) +((-1703 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-710)))) (-3878 (*1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-344)))) (-2072 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-852)))) (-4032 (*1 *1) (-4 *1 (-344)))) +(-13 (-1016) (-10 -8 (-15 -1703 ((-710))) (-15 -3878 ($ (-852))) (-15 -2072 ((-852) $)) (-15 -4032 ($)))) +(((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-3750 (((-629 |#2|) (-1168 $)) 40)) (-3409 (($ (-1168 |#2|) (-1168 $)) 35)) (-4079 (((-629 |#2|) $ (-1168 $)) 43)) (-3549 ((|#2| (-1168 $)) 13)) (-2966 (((-1168 |#2|) $ (-1168 $)) NIL) (((-629 |#2|) (-1168 $) (-1168 $)) 25))) +(((-345 |#1| |#2| |#3|) (-10 -8 (-15 -3750 ((-629 |#2|) (-1168 |#1|))) (-15 -3549 (|#2| (-1168 |#1|))) (-15 -3409 (|#1| (-1168 |#2|) (-1168 |#1|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -4079 ((-629 |#2|) |#1| (-1168 |#1|)))) (-346 |#2| |#3|) (-158) (-1144 |#2|)) (T -345)) +NIL +(-10 -8 (-15 -3750 ((-629 |#2|) (-1168 |#1|))) (-15 -3549 (|#2| (-1168 |#1|))) (-15 -3409 (|#1| (-1168 |#2|) (-1168 |#1|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -4079 ((-629 |#2|) |#1| (-1168 |#1|)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3750 (((-629 |#1|) (-1168 $)) 46)) (-4187 ((|#1| $) 52)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3409 (($ (-1168 |#1|) (-1168 $)) 48)) (-4079 (((-629 |#1|) $ (-1168 $)) 53)) (-2121 (((-3 $ "failed") $) 34)) (-1319 (((-852)) 54)) (-2023 (((-108) $) 31)) (-3892 ((|#1| $) 51)) (-1397 ((|#2| $) 44 (|has| |#1| (-339)))) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3549 ((|#1| (-1168 $)) 47)) (-2966 (((-1168 |#1|) $ (-1168 $)) 50) (((-629 |#1|) (-1168 $) (-1168 $)) 49)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 37)) (-3901 (((-3 $ "failed") $) 43 (|has| |#1| (-134)))) (-1807 ((|#2| $) 45)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) +(((-346 |#1| |#2|) (-129) (-158) (-1144 |t#1|)) (T -346)) +((-1319 (*1 *2) (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1144 *3)) (-5 *2 (-852)))) (-4079 (*1 *2 *1 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) (-4 *5 (-1144 *4)) (-5 *2 (-629 *4)))) (-4187 (*1 *2 *1) (-12 (-4 *1 (-346 *2 *3)) (-4 *3 (-1144 *2)) (-4 *2 (-158)))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-346 *2 *3)) (-4 *3 (-1144 *2)) (-4 *2 (-158)))) (-2966 (*1 *2 *1 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) (-4 *5 (-1144 *4)) (-5 *2 (-1168 *4)))) (-2966 (*1 *2 *3 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) (-4 *5 (-1144 *4)) (-5 *2 (-629 *4)))) (-3409 (*1 *1 *2 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1168 *1)) (-4 *4 (-158)) (-4 *1 (-346 *4 *5)) (-4 *5 (-1144 *4)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *2 *4)) (-4 *4 (-1144 *2)) (-4 *2 (-158)))) (-3750 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) (-4 *5 (-1144 *4)) (-5 *2 (-629 *4)))) (-1807 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *2)) (-4 *3 (-158)) (-4 *2 (-1144 *3)))) (-1397 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *2)) (-4 *3 (-158)) (-4 *3 (-339)) (-4 *2 (-1144 *3))))) +(-13 (-37 |t#1|) (-10 -8 (-15 -1319 ((-852))) (-15 -4079 ((-629 |t#1|) $ (-1168 $))) (-15 -4187 (|t#1| $)) (-15 -3892 (|t#1| $)) (-15 -2966 ((-1168 |t#1|) $ (-1168 $))) (-15 -2966 ((-629 |t#1|) (-1168 $) (-1168 $))) (-15 -3409 ($ (-1168 |t#1|) (-1168 $))) (-15 -3549 (|t#1| (-1168 $))) (-15 -3750 ((-629 |t#1|) (-1168 $))) (-15 -1807 (|t#2| $)) (IF (|has| |t#1| (-339)) (-15 -1397 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-657 |#1|) . T) ((-666) . T) ((-979 |#1|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-2837 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2437 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-3612 ((|#4| (-1 |#3| |#1|) |#2|) 21))) +(((-347 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2437 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2837 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1122) (-349 |#1|) (-1122) (-349 |#3|)) (T -347)) +((-2837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1122)) (-4 *5 (-1122)) (-4 *2 (-349 *5)) (-5 *1 (-347 *6 *4 *5 *2)) (-4 *4 (-349 *6)))) (-2437 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1122)) (-4 *2 (-1122)) (-5 *1 (-347 *5 *4 *2 *6)) (-4 *4 (-349 *5)) (-4 *6 (-349 *2)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-349 *6)) (-5 *1 (-347 *5 *4 *6 *2)) (-4 *4 (-349 *5))))) +(-10 -7 (-15 -3612 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2437 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2837 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-1964 (((-108) (-1 (-108) |#2| |#2|) $) NIL) (((-108) $) 18)) (-1506 (($ (-1 (-108) |#2| |#2|) $) NIL) (($ $) 28)) (-3974 (($ (-1 (-108) |#2| |#2|) $) 27) (($ $) 22)) (-3631 (($ $) 25)) (-1479 (((-523) (-1 (-108) |#2|) $) NIL) (((-523) |#2| $) 11) (((-523) |#2| $ (-523)) NIL)) (-2178 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-348 |#1| |#2|) (-10 -8 (-15 -1506 (|#1| |#1|)) (-15 -1506 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1964 ((-108) |#1|)) (-15 -3974 (|#1| |#1|)) (-15 -2178 (|#1| |#1| |#1|)) (-15 -1479 ((-523) |#2| |#1| (-523))) (-15 -1479 ((-523) |#2| |#1|)) (-15 -1479 ((-523) (-1 (-108) |#2|) |#1|)) (-15 -1964 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3974 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -2178 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) (-349 |#2|) (-1122)) (T -348)) +NIL +(-10 -8 (-15 -1506 (|#1| |#1|)) (-15 -1506 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1964 ((-108) |#1|)) (-15 -3974 (|#1| |#1|)) (-15 -2178 (|#1| |#1| |#1|)) (-15 -1479 ((-523) |#2| |#1| (-523))) (-15 -1479 ((-523) |#2| |#1|)) (-15 -1479 ((-523) (-1 (-108) |#2|) |#1|)) (-15 -1964 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3974 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -2178 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-4207 (((-1173) $ (-523) (-523)) 40 (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4245))) (($ $) 88 (-12 (|has| |#1| (-786)) (|has| $ (-6 -4245))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) 8)) (-1641 ((|#1| $ (-523) |#1|) 52 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) 58 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-2867 (($ $) 90 (|has| $ (-6 -4245)))) (-3631 (($ $) 100)) (-1773 (($ $) 78 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#1| $) 77 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) 53 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 51)) (-1479 (((-523) (-1 (-108) |#1|) $) 97) (((-523) |#1| $) 96 (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) 95 (|has| |#1| (-1016)))) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-3052 (($ (-710) |#1|) 69)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 43 (|has| (-523) (-786)))) (-2454 (($ $ $) 87 (|has| |#1| (-786)))) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 44 (|has| (-523) (-786)))) (-2062 (($ $ $) 86 (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) 60) (($ $ $ (-523)) 59)) (-2412 (((-589 (-523)) $) 46)) (-4135 (((-108) (-523) $) 47)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1738 ((|#1| $) 42 (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-4203 (($ $ |#1|) 41 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ (-523) |#1|) 50) ((|#1| $ (-523)) 49) (($ $ (-1135 (-523))) 63)) (-1469 (($ $ (-523)) 62) (($ $ (-1135 (-523))) 61)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3160 (($ $ $ (-523)) 91 (|has| $ (-6 -4245)))) (-1664 (($ $) 13)) (-3663 (((-499) $) 79 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 70)) (-2326 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) 84 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 83 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-4030 (((-108) $ $) 85 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 82 (|has| |#1| (-786)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-349 |#1|) (-129) (-1122)) (T -349)) +((-2178 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1122)))) (-3631 (*1 *1 *1) (-12 (-4 *1 (-349 *2)) (-4 *2 (-1122)))) (-3974 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1122)))) (-1964 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-349 *4)) (-4 *4 (-1122)) (-5 *2 (-108)))) (-1479 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-349 *4)) (-4 *4 (-1122)) (-5 *2 (-523)))) (-1479 (*1 *2 *3 *1) (-12 (-4 *1 (-349 *3)) (-4 *3 (-1122)) (-4 *3 (-1016)) (-5 *2 (-523)))) (-1479 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-349 *3)) (-4 *3 (-1122)) (-4 *3 (-1016)))) (-2178 (*1 *1 *1 *1) (-12 (-4 *1 (-349 *2)) (-4 *2 (-1122)) (-4 *2 (-786)))) (-3974 (*1 *1 *1) (-12 (-4 *1 (-349 *2)) (-4 *2 (-1122)) (-4 *2 (-786)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-349 *3)) (-4 *3 (-1122)) (-4 *3 (-786)) (-5 *2 (-108)))) (-3160 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-523)) (|has| *1 (-6 -4245)) (-4 *1 (-349 *3)) (-4 *3 (-1122)))) (-2867 (*1 *1 *1) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-349 *2)) (-4 *2 (-1122)))) (-1506 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4245)) (-4 *1 (-349 *3)) (-4 *3 (-1122)))) (-1506 (*1 *1 *1) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-349 *2)) (-4 *2 (-1122)) (-4 *2 (-786))))) +(-13 (-594 |t#1|) (-10 -8 (-6 -4244) (-15 -2178 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -3631 ($ $)) (-15 -3974 ($ (-1 (-108) |t#1| |t#1|) $)) (-15 -1964 ((-108) (-1 (-108) |t#1| |t#1|) $)) (-15 -1479 ((-523) (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1016)) (PROGN (-15 -1479 ((-523) |t#1| $)) (-15 -1479 ((-523) |t#1| $ (-523)))) |%noBranch|) (IF (|has| |t#1| (-786)) (PROGN (-6 (-786)) (-15 -2178 ($ $ $)) (-15 -3974 ($ $)) (-15 -1964 ((-108) $))) |%noBranch|) (IF (|has| $ (-6 -4245)) (PROGN (-15 -3160 ($ $ $ (-523))) (-15 -2867 ($ $)) (-15 -1506 ($ (-1 (-108) |t#1| |t#1|) $)) (IF (|has| |t#1| (-786)) (-15 -1506 ($ $)) |%noBranch|)) |%noBranch|))) +(((-33) . T) ((-97) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-786) |has| |#1| (-786)) ((-1016) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-1122) . T)) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-2061 (((-589 |#1|) $) 32)) (-3296 (($ $ (-710)) 33)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-4111 (((-1190 |#1| |#2|) (-1190 |#1| |#2|) $) 36)) (-1419 (($ $) 34)) (-2701 (((-1190 |#1| |#2|) (-1190 |#1| |#2|) $) 37)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2679 (($ $ |#1| $) 31) (($ $ (-589 |#1|) (-589 $)) 30)) (-2299 (((-710) $) 38)) (-1472 (($ $ $) 29)) (-1458 (((-794) $) 11) (($ |#1|) 41) (((-1181 |#1| |#2|) $) 40) (((-1190 |#1| |#2|) $) 39)) (-2935 ((|#2| (-1190 |#1| |#2|) $) 42)) (-2756 (($) 18 T CONST)) (-1484 (($ (-614 |#1|)) 35)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#2|) 28 (|has| |#2| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) +(((-350 |#1| |#2|) (-129) (-786) (-158)) (T -350)) +((-2935 (*1 *2 *3 *1) (-12 (-5 *3 (-1190 *4 *2)) (-4 *1 (-350 *4 *2)) (-4 *4 (-786)) (-4 *2 (-158)))) (-1458 (*1 *1 *2) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-786)) (-4 *3 (-158)))) (-1458 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) (-5 *2 (-1181 *3 *4)))) (-1458 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) (-5 *2 (-1190 *3 *4)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) (-5 *2 (-710)))) (-2701 (*1 *2 *2 *1) (-12 (-5 *2 (-1190 *3 *4)) (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) (-4111 (*1 *2 *2 *1) (-12 (-5 *2 (-1190 *3 *4)) (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-786)) (-4 *1 (-350 *3 *4)) (-4 *4 (-158)))) (-1419 (*1 *1 *1) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-786)) (-4 *3 (-158)))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) (-2061 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) (-5 *2 (-589 *3)))) (-2679 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-786)) (-4 *3 (-158)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *4)) (-5 *3 (-589 *1)) (-4 *1 (-350 *4 *5)) (-4 *4 (-786)) (-4 *5 (-158))))) +(-13 (-580 |t#2|) (-10 -8 (-15 -2935 (|t#2| (-1190 |t#1| |t#2|) $)) (-15 -1458 ($ |t#1|)) (-15 -1458 ((-1181 |t#1| |t#2|) $)) (-15 -1458 ((-1190 |t#1| |t#2|) $)) (-15 -2299 ((-710) $)) (-15 -2701 ((-1190 |t#1| |t#2|) (-1190 |t#1| |t#2|) $)) (-15 -4111 ((-1190 |t#1| |t#2|) (-1190 |t#1| |t#2|) $)) (-15 -1484 ($ (-614 |t#1|))) (-15 -1419 ($ $)) (-15 -3296 ($ $ (-710))) (-15 -2061 ((-589 |t#1|) $)) (-15 -2679 ($ $ |t#1| $)) (-15 -2679 ($ $ (-589 |t#1|) (-589 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#2|) . T) ((-580 |#2|) . T) ((-657 |#2|) . T) ((-979 |#2|) . T) ((-1016) . T)) +((-2725 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 24)) (-3489 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 12)) (-2960 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 21))) +(((-351 |#1| |#2|) (-10 -7 (-15 -3489 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2960 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2725 (|#2| (-1 (-108) |#1| |#1|) |#2|))) (-1122) (-13 (-349 |#1|) (-10 -7 (-6 -4245)))) (T -351)) +((-2725 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1122)) (-5 *1 (-351 *4 *2)) (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4245)))))) (-2960 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1122)) (-5 *1 (-351 *4 *2)) (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4245)))))) (-3489 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1122)) (-5 *1 (-351 *4 *2)) (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4245))))))) +(-10 -7 (-15 -3489 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2960 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2725 (|#2| (-1 (-108) |#1| |#1|) |#2|))) +((-2381 (((-629 |#2|) (-629 $)) NIL) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 19) (((-629 (-523)) (-629 $)) 13))) +(((-352 |#1| |#2|) (-10 -8 (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-629 |#2|) (-629 |#1|)))) (-353 |#2|) (-973)) (T -352)) +NIL +(-10 -8 (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-629 |#2|) (-629 |#1|)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2381 (((-629 |#1|) (-629 $)) 36) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 35) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 43 (|has| |#1| (-585 (-523)))) (((-629 (-523)) (-629 $)) 42 (|has| |#1| (-585 (-523))))) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-353 |#1|) (-129) (-973)) (T -353)) +NIL +(-13 (-585 |t#1|) (-10 -7 (IF (|has| |t#1| (-585 (-523))) (-6 (-585 (-523))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-666) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-4178 (((-589 (-271 (-883 (-155 |#1|)))) (-271 (-383 (-883 (-155 (-523))))) |#1|) 50) (((-589 (-271 (-883 (-155 |#1|)))) (-383 (-883 (-155 (-523)))) |#1|) 49) (((-589 (-589 (-271 (-883 (-155 |#1|))))) (-589 (-271 (-383 (-883 (-155 (-523)))))) |#1|) 45) (((-589 (-589 (-271 (-883 (-155 |#1|))))) (-589 (-383 (-883 (-155 (-523))))) |#1|) 39)) (-1986 (((-589 (-589 (-155 |#1|))) (-589 (-383 (-883 (-155 (-523))))) (-589 (-1087)) |#1|) 27) (((-589 (-155 |#1|)) (-383 (-883 (-155 (-523)))) |#1|) 15))) +(((-354 |#1|) (-10 -7 (-15 -4178 ((-589 (-589 (-271 (-883 (-155 |#1|))))) (-589 (-383 (-883 (-155 (-523))))) |#1|)) (-15 -4178 ((-589 (-589 (-271 (-883 (-155 |#1|))))) (-589 (-271 (-383 (-883 (-155 (-523)))))) |#1|)) (-15 -4178 ((-589 (-271 (-883 (-155 |#1|)))) (-383 (-883 (-155 (-523)))) |#1|)) (-15 -4178 ((-589 (-271 (-883 (-155 |#1|)))) (-271 (-383 (-883 (-155 (-523))))) |#1|)) (-15 -1986 ((-589 (-155 |#1|)) (-383 (-883 (-155 (-523)))) |#1|)) (-15 -1986 ((-589 (-589 (-155 |#1|))) (-589 (-383 (-883 (-155 (-523))))) (-589 (-1087)) |#1|))) (-13 (-339) (-784))) (T -354)) +((-1986 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 (-383 (-883 (-155 (-523)))))) (-5 *4 (-589 (-1087))) (-5 *2 (-589 (-589 (-155 *5)))) (-5 *1 (-354 *5)) (-4 *5 (-13 (-339) (-784))))) (-1986 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 (-155 (-523))))) (-5 *2 (-589 (-155 *4))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-339) (-784))))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-271 (-383 (-883 (-155 (-523)))))) (-5 *2 (-589 (-271 (-883 (-155 *4))))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-339) (-784))))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 (-155 (-523))))) (-5 *2 (-589 (-271 (-883 (-155 *4))))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-339) (-784))))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-271 (-383 (-883 (-155 (-523))))))) (-5 *2 (-589 (-589 (-271 (-883 (-155 *4)))))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-339) (-784))))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-383 (-883 (-155 (-523)))))) (-5 *2 (-589 (-589 (-271 (-883 (-155 *4)))))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-339) (-784)))))) +(-10 -7 (-15 -4178 ((-589 (-589 (-271 (-883 (-155 |#1|))))) (-589 (-383 (-883 (-155 (-523))))) |#1|)) (-15 -4178 ((-589 (-589 (-271 (-883 (-155 |#1|))))) (-589 (-271 (-383 (-883 (-155 (-523)))))) |#1|)) (-15 -4178 ((-589 (-271 (-883 (-155 |#1|)))) (-383 (-883 (-155 (-523)))) |#1|)) (-15 -4178 ((-589 (-271 (-883 (-155 |#1|)))) (-271 (-383 (-883 (-155 (-523))))) |#1|)) (-15 -1986 ((-589 (-155 |#1|)) (-383 (-883 (-155 (-523)))) |#1|)) (-15 -1986 ((-589 (-589 (-155 |#1|))) (-589 (-383 (-883 (-155 (-523))))) (-589 (-1087)) |#1|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 33)) (-3458 (((-523) $) 55)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3984 (($ $) 110)) (-1769 (($ $) 82)) (-3780 (($ $) 71)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1832 (($ $) 44)) (-1387 (((-108) $ $) NIL)) (-1744 (($ $) 80)) (-3711 (($ $) 69)) (-3671 (((-523) $) 64)) (-2041 (($ $ (-523)) 62)) (-1793 (($ $) NIL)) (-3805 (($ $) NIL)) (-2518 (($) NIL T CONST)) (-1258 (($ $) 112)) (-3517 (((-3 (-523) "failed") $) 188) (((-3 (-383 (-523)) "failed") $) 184)) (-3474 (((-523) $) 186) (((-383 (-523)) $) 182)) (-3796 (($ $ $) NIL)) (-2298 (((-523) $ $) 102)) (-2121 (((-3 $ "failed") $) 114)) (-3193 (((-383 (-523)) $ (-710)) 189) (((-383 (-523)) $ (-710) (-710)) 181)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2685 (((-852)) 73) (((-852) (-852)) 98 (|has| $ (-6 -4235)))) (-2604 (((-108) $) 106)) (-2820 (($) 40)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL)) (-2872 (((-1173) (-710)) 151)) (-1698 (((-1173)) 156) (((-1173) (-710)) 157)) (-2208 (((-1173)) 158) (((-1173) (-710)) 159)) (-1584 (((-1173)) 154) (((-1173) (-710)) 155)) (-1640 (((-523) $) 58)) (-2023 (((-108) $) 104)) (-1420 (($ $ (-523)) NIL)) (-2018 (($ $) 48)) (-3892 (($ $) NIL)) (-4114 (((-108) $) 35)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL) (($) NIL (-12 (-3900 (|has| $ (-6 -4227))) (-3900 (|has| $ (-6 -4235)))))) (-2062 (($ $ $) NIL) (($) 99 (-12 (-3900 (|has| $ (-6 -4227))) (-3900 (|has| $ (-6 -4235)))))) (-1369 (((-523) $) 17)) (-4121 (($) 87) (($ $) 92)) (-1574 (($) 91) (($ $) 93)) (-2384 (($ $) 83)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 116)) (-3986 (((-852) (-523)) 43 (|has| $ (-6 -4235)))) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) 53)) (-3722 (($ $) 109)) (-4092 (($ (-523) (-523)) 107) (($ (-523) (-523) (-852)) 108)) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2735 (((-523) $) 19)) (-2094 (($) 94)) (-1811 (($ $) 79)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-1617 (((-852)) 100) (((-852) (-852)) 101 (|has| $ (-6 -4235)))) (-3523 (($ $ (-710)) NIL) (($ $) 115)) (-3134 (((-852) (-523)) 47 (|has| $ (-6 -4235)))) (-1805 (($ $) NIL)) (-3816 (($ $) NIL)) (-1782 (($ $) NIL)) (-3793 (($ $) NIL)) (-1757 (($ $) 81)) (-3767 (($ $) 70)) (-3663 (((-355) $) 174) (((-203) $) 176) (((-823 (-355)) $) NIL) (((-1070) $) 161) (((-499) $) 172) (($ (-203)) 180)) (-1458 (((-794) $) 163) (($ (-523)) 185) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-523)) 185) (($ (-383 (-523))) NIL) (((-203) $) 177)) (-1621 (((-710)) NIL)) (-1886 (($ $) 111)) (-1329 (((-852)) 54) (((-852) (-852)) 66 (|has| $ (-6 -4235)))) (-3007 (((-852)) 103)) (-1839 (($ $) 86)) (-3847 (($ $) 46) (($ $ $) 52)) (-1704 (((-108) $ $) NIL)) (-1818 (($ $) 84)) (-3828 (($ $) 37)) (-1865 (($ $) NIL)) (-1719 (($ $) NIL)) (-2914 (($ $) NIL)) (-1731 (($ $) NIL)) (-1852 (($ $) NIL)) (-3859 (($ $) NIL)) (-1830 (($ $) 85)) (-3838 (($ $) 49)) (-2619 (($ $) 51)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 34 T CONST)) (-2767 (($) 38 T CONST)) (-3790 (((-1070) $) 27) (((-1070) $ (-108)) 29) (((-1173) (-761) $) 30) (((-1173) (-761) $ (-108)) 31)) (-2862 (($ $ (-710)) NIL) (($ $) NIL)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 39)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 42)) (-4098 (($ $ $) 45) (($ $ (-523)) 41)) (-4087 (($ $) 36) (($ $ $) 50)) (-4075 (($ $ $) 61)) (** (($ $ (-852)) 67) (($ $ (-710)) NIL) (($ $ (-523)) 88) (($ $ (-383 (-523))) 125) (($ $ $) 117)) (* (($ (-852) $) 65) (($ (-710) $) NIL) (($ (-523) $) 68) (($ $ $) 60) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) +(((-355) (-13 (-380) (-211) (-564 (-1070)) (-767) (-563 (-203)) (-1108) (-564 (-499)) (-10 -8 (-15 -4098 ($ $ (-523))) (-15 ** ($ $ $)) (-15 -2018 ($ $)) (-15 -2298 ((-523) $ $)) (-15 -2041 ($ $ (-523))) (-15 -3193 ((-383 (-523)) $ (-710))) (-15 -3193 ((-383 (-523)) $ (-710) (-710))) (-15 -4121 ($)) (-15 -1574 ($)) (-15 -2094 ($)) (-15 -3847 ($ $ $)) (-15 -4121 ($ $)) (-15 -1574 ($ $)) (-15 -3663 ($ (-203))) (-15 -2208 ((-1173))) (-15 -2208 ((-1173) (-710))) (-15 -1584 ((-1173))) (-15 -1584 ((-1173) (-710))) (-15 -1698 ((-1173))) (-15 -1698 ((-1173) (-710))) (-15 -2872 ((-1173) (-710))) (-6 -4235) (-6 -4227)))) (T -355)) +((** (*1 *1 *1 *1) (-5 *1 (-355))) (-4098 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-355)))) (-2018 (*1 *1 *1) (-5 *1 (-355))) (-2298 (*1 *2 *1 *1) (-12 (-5 *2 (-523)) (-5 *1 (-355)))) (-2041 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-355)))) (-3193 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-355)))) (-3193 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-355)))) (-4121 (*1 *1) (-5 *1 (-355))) (-1574 (*1 *1) (-5 *1 (-355))) (-2094 (*1 *1) (-5 *1 (-355))) (-3847 (*1 *1 *1 *1) (-5 *1 (-355))) (-4121 (*1 *1 *1) (-5 *1 (-355))) (-1574 (*1 *1 *1) (-5 *1 (-355))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-355)))) (-2208 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-355)))) (-2208 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-355)))) (-1584 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-355)))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-355)))) (-1698 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-355)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-355)))) (-2872 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-355))))) +(-13 (-380) (-211) (-564 (-1070)) (-767) (-563 (-203)) (-1108) (-564 (-499)) (-10 -8 (-15 -4098 ($ $ (-523))) (-15 ** ($ $ $)) (-15 -2018 ($ $)) (-15 -2298 ((-523) $ $)) (-15 -2041 ($ $ (-523))) (-15 -3193 ((-383 (-523)) $ (-710))) (-15 -3193 ((-383 (-523)) $ (-710) (-710))) (-15 -4121 ($)) (-15 -1574 ($)) (-15 -2094 ($)) (-15 -3847 ($ $ $)) (-15 -4121 ($ $)) (-15 -1574 ($ $)) (-15 -3663 ($ (-203))) (-15 -2208 ((-1173))) (-15 -2208 ((-1173) (-710))) (-15 -1584 ((-1173))) (-15 -1584 ((-1173) (-710))) (-15 -1698 ((-1173))) (-15 -1698 ((-1173) (-710))) (-15 -2872 ((-1173) (-710))) (-6 -4235) (-6 -4227))) +((-1940 (((-589 (-271 (-883 |#1|))) (-271 (-383 (-883 (-523)))) |#1|) 46) (((-589 (-271 (-883 |#1|))) (-383 (-883 (-523))) |#1|) 45) (((-589 (-589 (-271 (-883 |#1|)))) (-589 (-271 (-383 (-883 (-523))))) |#1|) 41) (((-589 (-589 (-271 (-883 |#1|)))) (-589 (-383 (-883 (-523)))) |#1|) 35)) (-2626 (((-589 |#1|) (-383 (-883 (-523))) |#1|) 19) (((-589 (-589 |#1|)) (-589 (-383 (-883 (-523)))) (-589 (-1087)) |#1|) 30))) +(((-356 |#1|) (-10 -7 (-15 -1940 ((-589 (-589 (-271 (-883 |#1|)))) (-589 (-383 (-883 (-523)))) |#1|)) (-15 -1940 ((-589 (-589 (-271 (-883 |#1|)))) (-589 (-271 (-383 (-883 (-523))))) |#1|)) (-15 -1940 ((-589 (-271 (-883 |#1|))) (-383 (-883 (-523))) |#1|)) (-15 -1940 ((-589 (-271 (-883 |#1|))) (-271 (-383 (-883 (-523)))) |#1|)) (-15 -2626 ((-589 (-589 |#1|)) (-589 (-383 (-883 (-523)))) (-589 (-1087)) |#1|)) (-15 -2626 ((-589 |#1|) (-383 (-883 (-523))) |#1|))) (-13 (-784) (-339))) (T -356)) +((-2626 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 (-523)))) (-5 *2 (-589 *4)) (-5 *1 (-356 *4)) (-4 *4 (-13 (-784) (-339))))) (-2626 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 (-383 (-883 (-523))))) (-5 *4 (-589 (-1087))) (-5 *2 (-589 (-589 *5))) (-5 *1 (-356 *5)) (-4 *5 (-13 (-784) (-339))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-271 (-383 (-883 (-523))))) (-5 *2 (-589 (-271 (-883 *4)))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-784) (-339))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 (-523)))) (-5 *2 (-589 (-271 (-883 *4)))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-784) (-339))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-271 (-383 (-883 (-523)))))) (-5 *2 (-589 (-589 (-271 (-883 *4))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-784) (-339))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-383 (-883 (-523))))) (-5 *2 (-589 (-589 (-271 (-883 *4))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-784) (-339)))))) +(-10 -7 (-15 -1940 ((-589 (-589 (-271 (-883 |#1|)))) (-589 (-383 (-883 (-523)))) |#1|)) (-15 -1940 ((-589 (-589 (-271 (-883 |#1|)))) (-589 (-271 (-383 (-883 (-523))))) |#1|)) (-15 -1940 ((-589 (-271 (-883 |#1|))) (-383 (-883 (-523))) |#1|)) (-15 -1940 ((-589 (-271 (-883 |#1|))) (-271 (-383 (-883 (-523)))) |#1|)) (-15 -2626 ((-589 (-589 |#1|)) (-589 (-383 (-883 (-523)))) (-589 (-1087)) |#1|)) (-15 -2626 ((-589 |#1|) (-383 (-883 (-523))) |#1|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) 25)) (-3474 ((|#2| $) 27)) (-3810 (($ $) NIL)) (-3554 (((-710) $) 10)) (-3679 (((-589 $) $) 20)) (-2620 (((-108) $) NIL)) (-2302 (($ |#2| |#1|) 18)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-4184 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3774 ((|#2| $) 15)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 44) (($ |#2|) 26)) (-1251 (((-589 |#1|) $) 17)) (-2365 ((|#1| $ |#2|) 46)) (-2756 (($) 28 T CONST)) (-1643 (((-589 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35))) +(((-357 |#1| |#2|) (-13 (-358 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-973) (-786)) (T -357)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-357 *3 *2)) (-4 *3 (-973)) (-4 *2 (-786))))) +(-13 (-358 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#2| "failed") $) 44)) (-3474 ((|#2| $) 43)) (-3810 (($ $) 30)) (-3554 (((-710) $) 34)) (-3679 (((-589 $) $) 35)) (-2620 (((-108) $) 38)) (-2302 (($ |#2| |#1|) 39)) (-3612 (($ (-1 |#1| |#1|) $) 40)) (-4184 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3774 ((|#2| $) 33)) (-3786 ((|#1| $) 32)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ |#2|) 45)) (-1251 (((-589 |#1|) $) 36)) (-2365 ((|#1| $ |#2|) 41)) (-2756 (($) 18 T CONST)) (-1643 (((-589 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) +(((-358 |#1| |#2|) (-129) (-973) (-1016)) (T -358)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-973)) (-4 *3 (-1016)))) (-2365 (*1 *2 *1 *3) (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1016)) (-4 *2 (-973)))) (-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)))) (-2302 (*1 *1 *2 *3) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1016)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) (-5 *2 (-108)))) (-1643 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) (-5 *2 (-589 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1251 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) (-5 *2 (-589 *3)))) (-3679 (*1 *2 *1) (-12 (-4 *3 (-973)) (-4 *4 (-1016)) (-5 *2 (-589 *1)) (-4 *1 (-358 *3 *4)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) (-5 *2 (-710)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1016)))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1016)) (-4 *2 (-973)))) (-4184 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-973)) (-4 *3 (-1016))))) +(-13 (-107 |t#1| |t#1|) (-964 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2365 (|t#1| $ |t#2|)) (-15 -3612 ($ (-1 |t#1| |t#1|) $)) (-15 -2302 ($ |t#2| |t#1|)) (-15 -2620 ((-108) $)) (-15 -1643 ((-589 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1251 ((-589 |t#1|) $)) (-15 -3679 ((-589 $) $)) (-15 -3554 ((-710) $)) (-15 -3774 (|t#2| $)) (-15 -3786 (|t#1| $)) (-15 -4184 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3810 ($ $)) (IF (|has| |t#1| (-158)) (-6 (-657 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-657 |#1|) |has| |#1| (-158)) ((-964 |#2|) . T) ((-979 |#1|) . T) ((-1016) . T)) +((-3394 (((-1173) $) 7)) (-1458 (((-794) $) 8) (($ (-629 (-638))) 14) (($ (-589 (-306))) 13) (($ (-306)) 12) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 11))) +(((-359) (-129)) (T -359)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-629 (-638))) (-4 *1 (-359)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-359)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-359)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) (-4 *1 (-359))))) +(-13 (-371) (-10 -8 (-15 -1458 ($ (-629 (-638)))) (-15 -1458 ($ (-589 (-306)))) (-15 -1458 ($ (-306))) (-15 -1458 ($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306)))))))) +(((-563 (-794)) . T) ((-371) . T) ((-1122) . T)) +((-3517 (((-3 $ "failed") (-629 (-292 (-355)))) 21) (((-3 $ "failed") (-629 (-292 (-523)))) 19) (((-3 $ "failed") (-629 (-883 (-355)))) 17) (((-3 $ "failed") (-629 (-883 (-523)))) 15) (((-3 $ "failed") (-629 (-383 (-883 (-355))))) 13) (((-3 $ "failed") (-629 (-383 (-883 (-523))))) 11)) (-3474 (($ (-629 (-292 (-355)))) 22) (($ (-629 (-292 (-523)))) 20) (($ (-629 (-883 (-355)))) 18) (($ (-629 (-883 (-523)))) 16) (($ (-629 (-383 (-883 (-355))))) 14) (($ (-629 (-383 (-883 (-523))))) 12)) (-3394 (((-1173) $) 7)) (-1458 (((-794) $) 8) (($ (-589 (-306))) 25) (($ (-306)) 24) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 23))) +(((-360) (-129)) (T -360)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-360)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-360)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) (-4 *1 (-360)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-629 (-292 (-355)))) (-4 *1 (-360)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-629 (-292 (-355)))) (-4 *1 (-360)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-629 (-292 (-523)))) (-4 *1 (-360)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-629 (-292 (-523)))) (-4 *1 (-360)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-629 (-883 (-355)))) (-4 *1 (-360)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-629 (-883 (-355)))) (-4 *1 (-360)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-629 (-883 (-523)))) (-4 *1 (-360)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-629 (-883 (-523)))) (-4 *1 (-360)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-629 (-383 (-883 (-355))))) (-4 *1 (-360)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-629 (-383 (-883 (-355))))) (-4 *1 (-360)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-629 (-383 (-883 (-523))))) (-4 *1 (-360)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-629 (-383 (-883 (-523))))) (-4 *1 (-360))))) +(-13 (-371) (-10 -8 (-15 -1458 ($ (-589 (-306)))) (-15 -1458 ($ (-306))) (-15 -1458 ($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306)))))) (-15 -3474 ($ (-629 (-292 (-355))))) (-15 -3517 ((-3 $ "failed") (-629 (-292 (-355))))) (-15 -3474 ($ (-629 (-292 (-523))))) (-15 -3517 ((-3 $ "failed") (-629 (-292 (-523))))) (-15 -3474 ($ (-629 (-883 (-355))))) (-15 -3517 ((-3 $ "failed") (-629 (-883 (-355))))) (-15 -3474 ($ (-629 (-883 (-523))))) (-15 -3517 ((-3 $ "failed") (-629 (-883 (-523))))) (-15 -3474 ($ (-629 (-383 (-883 (-355)))))) (-15 -3517 ((-3 $ "failed") (-629 (-383 (-883 (-355)))))) (-15 -3474 ($ (-629 (-383 (-883 (-523)))))) (-15 -3517 ((-3 $ "failed") (-629 (-383 (-883 (-523)))))))) +(((-563 (-794)) . T) ((-371) . T) ((-1122) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3810 (($ $) NIL)) (-1933 (($ |#1| |#2|) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-1953 ((|#2| $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 28)) (-2756 (($) 12 T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) +(((-361 |#1| |#2|) (-13 (-107 |#1| |#1|) (-479 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-158)) (-6 (-657 |#1|)) |%noBranch|))) (-973) (-786)) (T -361)) +NIL +(-13 (-107 |#1| |#1|) (-479 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-158)) (-6 (-657 |#1|)) |%noBranch|))) +((-3924 (((-108) $ $) NIL)) (-1703 (((-710) $) 57)) (-2518 (($) NIL T CONST)) (-4111 (((-3 $ "failed") $ $) 59)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-1655 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2023 (((-108) $) 14)) (-2378 ((|#1| $ (-523)) NIL)) (-3731 (((-710) $ (-523)) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-4093 (($ (-1 |#1| |#1|) $) 37)) (-2682 (($ (-1 (-710) (-710)) $) 34)) (-2701 (((-3 $ "failed") $ $) 50)) (-3779 (((-1070) $) NIL)) (-2259 (($ $ $) 25)) (-3206 (($ $ $) 23)) (-2783 (((-1034) $) NIL)) (-1979 (((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-710)))) $) 31)) (-3462 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-1458 (((-794) $) 21) (($ |#1|) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2767 (($) 9 T CONST)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) 41)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) 61 (|has| |#1| (-786)))) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ |#1| (-710)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27))) +(((-362 |#1|) (-13 (-666) (-964 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-710))) (-15 -3206 ($ $ $)) (-15 -2259 ($ $ $)) (-15 -2701 ((-3 $ "failed") $ $)) (-15 -4111 ((-3 $ "failed") $ $)) (-15 -3462 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1655 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1703 ((-710) $)) (-15 -1979 ((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-710)))) $)) (-15 -3731 ((-710) $ (-523))) (-15 -2378 (|#1| $ (-523))) (-15 -2682 ($ (-1 (-710) (-710)) $)) (-15 -4093 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-786)) (-6 (-786)) |%noBranch|))) (-1016)) (T -362)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (-3206 (*1 *1 *1 *1) (-12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (-2259 (*1 *1 *1 *1) (-12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (-2701 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (-4111 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (-3462 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-362 *3)) (|:| |rm| (-362 *3)))) (-5 *1 (-362 *3)) (-4 *3 (-1016)))) (-1655 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-362 *3)) (|:| |mm| (-362 *3)) (|:| |rm| (-362 *3)))) (-5 *1 (-362 *3)) (-4 *3 (-1016)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-362 *3)) (-4 *3 (-1016)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 (-710))))) (-5 *1 (-362 *3)) (-4 *3 (-1016)))) (-3731 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-710)) (-5 *1 (-362 *4)) (-4 *4 (-1016)))) (-2378 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-362 *2)) (-4 *2 (-1016)))) (-2682 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-710) (-710))) (-5 *1 (-362 *3)) (-4 *3 (-1016)))) (-4093 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-362 *3))))) +(-13 (-666) (-964 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-710))) (-15 -3206 ($ $ $)) (-15 -2259 ($ $ $)) (-15 -2701 ((-3 $ "failed") $ $)) (-15 -4111 ((-3 $ "failed") $ $)) (-15 -3462 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1655 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1703 ((-710) $)) (-15 -1979 ((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-710)))) $)) (-15 -3731 ((-710) $ (-523))) (-15 -2378 (|#1| $ (-523))) (-15 -2682 ($ (-1 (-710) (-710)) $)) (-15 -4093 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-786)) (-6 (-786)) |%noBranch|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3517 (((-3 (-523) "failed") $) 47)) (-3474 (((-523) $) 46)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-2454 (($ $ $) 54)) (-2062 (($ $ $) 53)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3746 (((-3 $ "failed") $ $) 42)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-523)) 48)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-4043 (((-108) $ $) 51)) (-4019 (((-108) $ $) 50)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 52)) (-4007 (((-108) $ $) 49)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-363) (-129)) (T -363)) +NIL +(-13 (-515) (-786) (-964 (-523))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-267) . T) ((-515) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-786) . T) ((-964 (-523)) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-3001 (((-108) $) 20)) (-2095 (((-108) $) 19)) (-3052 (($ (-1070) (-1070) (-1070)) 21)) (-4038 (((-1070) $) 16)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3680 (($ (-1070) (-1070) (-1070)) 14)) (-1683 (((-1070) $) 17)) (-4131 (((-108) $) 18)) (-2982 (((-1070) $) 15)) (-1458 (((-794) $) 12) (($ (-1070)) 13) (((-1070) $) 9)) (-3983 (((-108) $ $) 7))) +(((-364) (-365)) (T -364)) +NIL +(-365) +((-3924 (((-108) $ $) 7)) (-3001 (((-108) $) 14)) (-2095 (((-108) $) 15)) (-3052 (($ (-1070) (-1070) (-1070)) 13)) (-4038 (((-1070) $) 18)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3680 (($ (-1070) (-1070) (-1070)) 20)) (-1683 (((-1070) $) 17)) (-4131 (((-108) $) 16)) (-2982 (((-1070) $) 19)) (-1458 (((-794) $) 11) (($ (-1070)) 22) (((-1070) $) 21)) (-3983 (((-108) $ $) 6))) +(((-365) (-129)) (T -365)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-365)))) (-1458 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070)))) (-3680 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-365)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070)))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-108)))) (-2095 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-108)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-108)))) (-3052 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-365))))) +(-13 (-1016) (-10 -8 (-15 -1458 ($ (-1070))) (-15 -1458 ((-1070) $)) (-15 -3680 ($ (-1070) (-1070) (-1070))) (-15 -2982 ((-1070) $)) (-15 -4038 ((-1070) $)) (-15 -1683 ((-1070) $)) (-15 -4131 ((-108) $)) (-15 -2095 ((-108) $)) (-15 -3001 ((-108) $)) (-15 -3052 ($ (-1070) (-1070) (-1070))))) +(((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2493 (((-794) $) 50)) (-2518 (($) NIL T CONST)) (-1970 (($ $ (-852)) NIL)) (-3650 (($ $ (-852)) NIL)) (-1448 (($ $ (-852)) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3441 (($ (-710)) 26)) (-3203 (((-710)) 15)) (-1231 (((-794) $) 52)) (-1714 (($ $ $) NIL)) (-1458 (((-794) $) NIL)) (-2022 (($ $ $ $) NIL)) (-1995 (($ $ $) NIL)) (-2756 (($) 20 T CONST)) (-3983 (((-108) $ $) 28)) (-4087 (($ $) 34) (($ $ $) 36)) (-4075 (($ $ $) 37)) (** (($ $ (-852)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) +(((-366 |#1| |#2| |#3|) (-13 (-684 |#3|) (-10 -8 (-15 -3203 ((-710))) (-15 -1231 ((-794) $)) (-15 -2493 ((-794) $)) (-15 -3441 ($ (-710))))) (-710) (-710) (-158)) (T -366)) +((-3203 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-158)))) (-1231 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 (-710)) (-14 *4 (-710)) (-4 *5 (-158)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 (-710)) (-14 *4 (-710)) (-4 *5 (-158)))) (-3441 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-158))))) +(-13 (-684 |#3|) (-10 -8 (-15 -3203 ((-710))) (-15 -1231 ((-794) $)) (-15 -2493 ((-794) $)) (-15 -3441 ($ (-710))))) +((-3260 (((-1070)) 10)) (-3011 (((-1059 (-1070))) 28)) (-3371 (((-1173) (-1070)) 25) (((-1173) (-364)) 24)) (-3384 (((-1173)) 26)) (-4192 (((-1059 (-1070))) 27))) +(((-367) (-10 -7 (-15 -4192 ((-1059 (-1070)))) (-15 -3011 ((-1059 (-1070)))) (-15 -3384 ((-1173))) (-15 -3371 ((-1173) (-364))) (-15 -3371 ((-1173) (-1070))) (-15 -3260 ((-1070))))) (T -367)) +((-3260 (*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-367)))) (-3371 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-367)))) (-3371 (*1 *2 *3) (-12 (-5 *3 (-364)) (-5 *2 (-1173)) (-5 *1 (-367)))) (-3384 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-367)))) (-3011 (*1 *2) (-12 (-5 *2 (-1059 (-1070))) (-5 *1 (-367)))) (-4192 (*1 *2) (-12 (-5 *2 (-1059 (-1070))) (-5 *1 (-367))))) +(-10 -7 (-15 -4192 ((-1059 (-1070)))) (-15 -3011 ((-1059 (-1070)))) (-15 -3384 ((-1173))) (-15 -3371 ((-1173) (-364))) (-15 -3371 ((-1173) (-1070))) (-15 -3260 ((-1070)))) +((-1640 (((-710) (-312 |#1| |#2| |#3| |#4|)) 16))) +(((-368 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1640 ((-710) (-312 |#1| |#2| |#3| |#4|)))) (-13 (-344) (-339)) (-1144 |#1|) (-1144 (-383 |#2|)) (-318 |#1| |#2| |#3|)) (T -368)) +((-1640 (*1 *2 *3) (-12 (-5 *3 (-312 *4 *5 *6 *7)) (-4 *4 (-13 (-344) (-339))) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) (-4 *7 (-318 *4 *5 *6)) (-5 *2 (-710)) (-5 *1 (-368 *4 *5 *6 *7))))) +(-10 -7 (-15 -1640 ((-710) (-312 |#1| |#2| |#3| |#4|)))) +((-1458 (((-370) |#1|) 11))) +(((-369 |#1|) (-10 -7 (-15 -1458 ((-370) |#1|))) (-1016)) (T -369)) +((-1458 (*1 *2 *3) (-12 (-5 *2 (-370)) (-5 *1 (-369 *3)) (-4 *3 (-1016))))) +(-10 -7 (-15 -1458 ((-370) |#1|))) +((-3924 (((-108) $ $) NIL)) (-4155 (((-589 (-1070)) $ (-589 (-1070))) 37)) (-3814 (((-589 (-1070)) $ (-589 (-1070))) 38)) (-2210 (((-589 (-1070)) $ (-589 (-1070))) 39)) (-2600 (((-589 (-1070)) $) 34)) (-3052 (($) 23)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2759 (((-589 (-1070)) $) 35)) (-3987 (((-589 (-1070)) $) 36)) (-3973 (((-1173) $ (-523)) 32) (((-1173) $) 33)) (-3663 (($ (-794) (-523)) 29)) (-1458 (((-794) $) 41) (($ (-794)) 25)) (-3983 (((-108) $ $) NIL))) +(((-370) (-13 (-1016) (-10 -8 (-15 -1458 ($ (-794))) (-15 -3663 ($ (-794) (-523))) (-15 -3973 ((-1173) $ (-523))) (-15 -3973 ((-1173) $)) (-15 -3987 ((-589 (-1070)) $)) (-15 -2759 ((-589 (-1070)) $)) (-15 -3052 ($)) (-15 -2600 ((-589 (-1070)) $)) (-15 -2210 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -3814 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -4155 ((-589 (-1070)) $ (-589 (-1070))))))) (T -370)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-794)) (-5 *1 (-370)))) (-3663 (*1 *1 *2 *3) (-12 (-5 *2 (-794)) (-5 *3 (-523)) (-5 *1 (-370)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-370)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-370)))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) (-2759 (*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) (-3052 (*1 *1) (-5 *1 (-370))) (-2600 (*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) (-2210 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) (-3814 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) (-4155 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370))))) +(-13 (-1016) (-10 -8 (-15 -1458 ($ (-794))) (-15 -3663 ($ (-794) (-523))) (-15 -3973 ((-1173) $ (-523))) (-15 -3973 ((-1173) $)) (-15 -3987 ((-589 (-1070)) $)) (-15 -2759 ((-589 (-1070)) $)) (-15 -3052 ($)) (-15 -2600 ((-589 (-1070)) $)) (-15 -2210 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -3814 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -4155 ((-589 (-1070)) $ (-589 (-1070)))))) +((-3394 (((-1173) $) 7)) (-1458 (((-794) $) 8))) +(((-371) (-129)) (T -371)) +((-3394 (*1 *2 *1) (-12 (-4 *1 (-371)) (-5 *2 (-1173))))) +(-13 (-1122) (-563 (-794)) (-10 -8 (-15 -3394 ((-1173) $)))) +(((-563 (-794)) . T) ((-1122) . T)) +((-3517 (((-3 $ "failed") (-292 (-355))) 21) (((-3 $ "failed") (-292 (-523))) 19) (((-3 $ "failed") (-883 (-355))) 17) (((-3 $ "failed") (-883 (-523))) 15) (((-3 $ "failed") (-383 (-883 (-355)))) 13) (((-3 $ "failed") (-383 (-883 (-523)))) 11)) (-3474 (($ (-292 (-355))) 22) (($ (-292 (-523))) 20) (($ (-883 (-355))) 18) (($ (-883 (-523))) 16) (($ (-383 (-883 (-355)))) 14) (($ (-383 (-883 (-523)))) 12)) (-3394 (((-1173) $) 7)) (-1458 (((-794) $) 8) (($ (-589 (-306))) 25) (($ (-306)) 24) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 23))) +(((-372) (-129)) (T -372)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-372)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-372)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) (-4 *1 (-372)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-292 (-355))) (-4 *1 (-372)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-292 (-355))) (-4 *1 (-372)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-292 (-523))) (-4 *1 (-372)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-292 (-523))) (-4 *1 (-372)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-883 (-355))) (-4 *1 (-372)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-883 (-355))) (-4 *1 (-372)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-883 (-523))) (-4 *1 (-372)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-883 (-523))) (-4 *1 (-372)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-383 (-883 (-355)))) (-4 *1 (-372)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-383 (-883 (-355)))) (-4 *1 (-372)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-383 (-883 (-523)))) (-4 *1 (-372)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-383 (-883 (-523)))) (-4 *1 (-372))))) +(-13 (-371) (-10 -8 (-15 -1458 ($ (-589 (-306)))) (-15 -1458 ($ (-306))) (-15 -1458 ($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306)))))) (-15 -3474 ($ (-292 (-355)))) (-15 -3517 ((-3 $ "failed") (-292 (-355)))) (-15 -3474 ($ (-292 (-523)))) (-15 -3517 ((-3 $ "failed") (-292 (-523)))) (-15 -3474 ($ (-883 (-355)))) (-15 -3517 ((-3 $ "failed") (-883 (-355)))) (-15 -3474 ($ (-883 (-523)))) (-15 -3517 ((-3 $ "failed") (-883 (-523)))) (-15 -3474 ($ (-383 (-883 (-355))))) (-15 -3517 ((-3 $ "failed") (-383 (-883 (-355))))) (-15 -3474 ($ (-383 (-883 (-523))))) (-15 -3517 ((-3 $ "failed") (-383 (-883 (-523))))))) +(((-563 (-794)) . T) ((-371) . T) ((-1122) . T)) +((-3964 (((-589 (-1070)) (-589 (-1070))) 8)) (-3394 (((-1173) (-364)) 27)) (-3485 (((-1020) (-1087) (-589 (-1087)) (-1090) (-589 (-1087))) 59) (((-1020) (-1087) (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087)))) (-589 (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087))))) (-589 (-1087)) (-1087)) 35) (((-1020) (-1087) (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087)))) (-589 (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087))))) (-589 (-1087))) 34))) +(((-373) (-10 -7 (-15 -3485 ((-1020) (-1087) (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087)))) (-589 (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087))))) (-589 (-1087)))) (-15 -3485 ((-1020) (-1087) (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087)))) (-589 (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087))))) (-589 (-1087)) (-1087))) (-15 -3485 ((-1020) (-1087) (-589 (-1087)) (-1090) (-589 (-1087)))) (-15 -3394 ((-1173) (-364))) (-15 -3964 ((-589 (-1070)) (-589 (-1070)))))) (T -373)) +((-3964 (*1 *2 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-373)))) (-3394 (*1 *2 *3) (-12 (-5 *3 (-364)) (-5 *2 (-1173)) (-5 *1 (-373)))) (-3485 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-589 (-1087))) (-5 *5 (-1090)) (-5 *3 (-1087)) (-5 *2 (-1020)) (-5 *1 (-373)))) (-3485 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-589 (-589 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-589 (-3 (|:| |array| (-589 *3)) (|:| |scalar| (-1087))))) (-5 *6 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1020)) (-5 *1 (-373)))) (-3485 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-589 (-589 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-589 (-3 (|:| |array| (-589 *3)) (|:| |scalar| (-1087))))) (-5 *6 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1020)) (-5 *1 (-373))))) +(-10 -7 (-15 -3485 ((-1020) (-1087) (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087)))) (-589 (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087))))) (-589 (-1087)))) (-15 -3485 ((-1020) (-1087) (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087)))) (-589 (-589 (-3 (|:| |array| (-589 (-1087))) (|:| |scalar| (-1087))))) (-589 (-1087)) (-1087))) (-15 -3485 ((-1020) (-1087) (-589 (-1087)) (-1090) (-589 (-1087)))) (-15 -3394 ((-1173) (-364))) (-15 -3964 ((-589 (-1070)) (-589 (-1070))))) +((-3394 (((-1173) $) 37)) (-1458 (((-794) $) 89) (($ (-306)) 92) (($ (-589 (-306))) 91) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 88) (($ (-292 (-640))) 52) (($ (-292 (-638))) 66) (($ (-292 (-633))) 78) (($ (-271 (-292 (-640)))) 62) (($ (-271 (-292 (-638)))) 74) (($ (-271 (-292 (-633)))) 86) (($ (-292 (-523))) 96) (($ (-292 (-355))) 108) (($ (-292 (-155 (-355)))) 120) (($ (-271 (-292 (-523)))) 104) (($ (-271 (-292 (-355)))) 116) (($ (-271 (-292 (-155 (-355))))) 128))) +(((-374 |#1| |#2| |#3| |#4|) (-13 (-371) (-10 -8 (-15 -1458 ($ (-306))) (-15 -1458 ($ (-589 (-306)))) (-15 -1458 ($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306)))))) (-15 -1458 ($ (-292 (-640)))) (-15 -1458 ($ (-292 (-638)))) (-15 -1458 ($ (-292 (-633)))) (-15 -1458 ($ (-271 (-292 (-640))))) (-15 -1458 ($ (-271 (-292 (-638))))) (-15 -1458 ($ (-271 (-292 (-633))))) (-15 -1458 ($ (-292 (-523)))) (-15 -1458 ($ (-292 (-355)))) (-15 -1458 ($ (-292 (-155 (-355))))) (-15 -1458 ($ (-271 (-292 (-523))))) (-15 -1458 ($ (-271 (-292 (-355))))) (-15 -1458 ($ (-271 (-292 (-155 (-355)))))))) (-1087) (-3 (|:| |fst| (-410)) (|:| -3853 "void")) (-589 (-1087)) (-1091)) (T -374)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-306)) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-292 (-640))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-292 (-638))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-292 (-633))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-640)))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-638)))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-633)))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-292 (-523))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-292 (-355))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-292 (-155 (-355)))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-523)))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-355)))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-271 (-292 (-155 (-355))))) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-14 *5 (-589 (-1087))) (-14 *6 (-1091))))) +(-13 (-371) (-10 -8 (-15 -1458 ($ (-306))) (-15 -1458 ($ (-589 (-306)))) (-15 -1458 ($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306)))))) (-15 -1458 ($ (-292 (-640)))) (-15 -1458 ($ (-292 (-638)))) (-15 -1458 ($ (-292 (-633)))) (-15 -1458 ($ (-271 (-292 (-640))))) (-15 -1458 ($ (-271 (-292 (-638))))) (-15 -1458 ($ (-271 (-292 (-633))))) (-15 -1458 ($ (-292 (-523)))) (-15 -1458 ($ (-292 (-355)))) (-15 -1458 ($ (-292 (-155 (-355))))) (-15 -1458 ($ (-271 (-292 (-523))))) (-15 -1458 ($ (-271 (-292 (-355))))) (-15 -1458 ($ (-271 (-292 (-155 (-355)))))))) +((-3924 (((-108) $ $) NIL)) (-3062 ((|#2| $) 36)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1543 (($ (-383 |#2|)) 84)) (-2591 (((-589 (-2 (|:| -2735 (-710)) (|:| -1288 |#2|) (|:| |num| |#2|))) $) 37)) (-3523 (($ $) 32) (($ $ (-710)) 34)) (-3663 (((-383 |#2|) $) 46)) (-1472 (($ (-589 (-2 (|:| -2735 (-710)) (|:| -1288 |#2|) (|:| |num| |#2|)))) 31)) (-1458 (((-794) $) 120)) (-2862 (($ $) 33) (($ $ (-710)) 35)) (-3983 (((-108) $ $) NIL)) (-4075 (($ |#2| $) 39))) +(((-375 |#1| |#2|) (-13 (-1016) (-564 (-383 |#2|)) (-10 -8 (-15 -4075 ($ |#2| $)) (-15 -1543 ($ (-383 |#2|))) (-15 -3062 (|#2| $)) (-15 -2591 ((-589 (-2 (|:| -2735 (-710)) (|:| -1288 |#2|) (|:| |num| |#2|))) $)) (-15 -1472 ($ (-589 (-2 (|:| -2735 (-710)) (|:| -1288 |#2|) (|:| |num| |#2|))))) (-15 -3523 ($ $)) (-15 -2862 ($ $)) (-15 -3523 ($ $ (-710))) (-15 -2862 ($ $ (-710))))) (-13 (-339) (-136)) (-1144 |#1|)) (T -375)) +((-4075 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *2)) (-4 *2 (-1144 *3)))) (-1543 (*1 *1 *2) (-12 (-5 *2 (-383 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *4)))) (-3062 (*1 *2 *1) (-12 (-4 *2 (-1144 *3)) (-5 *1 (-375 *3 *2)) (-4 *3 (-13 (-339) (-136))))) (-2591 (*1 *2 *1) (-12 (-4 *3 (-13 (-339) (-136))) (-5 *2 (-589 (-2 (|:| -2735 (-710)) (|:| -1288 *4) (|:| |num| *4)))) (-5 *1 (-375 *3 *4)) (-4 *4 (-1144 *3)))) (-1472 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| -2735 (-710)) (|:| -1288 *4) (|:| |num| *4)))) (-4 *4 (-1144 *3)) (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *4)))) (-3523 (*1 *1 *1) (-12 (-4 *2 (-13 (-339) (-136))) (-5 *1 (-375 *2 *3)) (-4 *3 (-1144 *2)))) (-2862 (*1 *1 *1) (-12 (-4 *2 (-13 (-339) (-136))) (-5 *1 (-375 *2 *3)) (-4 *3 (-1144 *2)))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *4)) (-4 *4 (-1144 *3)))) (-2862 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *4)) (-4 *4 (-1144 *3))))) +(-13 (-1016) (-564 (-383 |#2|)) (-10 -8 (-15 -4075 ($ |#2| $)) (-15 -1543 ($ (-383 |#2|))) (-15 -3062 (|#2| $)) (-15 -2591 ((-589 (-2 (|:| -2735 (-710)) (|:| -1288 |#2|) (|:| |num| |#2|))) $)) (-15 -1472 ($ (-589 (-2 (|:| -2735 (-710)) (|:| -1288 |#2|) (|:| |num| |#2|))))) (-15 -3523 ($ $)) (-15 -2862 ($ $)) (-15 -3523 ($ $ (-710))) (-15 -2862 ($ $ (-710))))) +((-3924 (((-108) $ $) 9 (-3262 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355)))))) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 15 (|has| |#1| (-817 (-355)))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 14 (|has| |#1| (-817 (-523))))) (-3779 (((-1070) $) 13 (-3262 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355)))))) (-2783 (((-1034) $) 12 (-3262 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355)))))) (-1458 (((-794) $) 11 (-3262 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355)))))) (-3983 (((-108) $ $) 10 (-3262 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355))))))) +(((-376 |#1|) (-129) (-1122)) (T -376)) +NIL +(-13 (-1122) (-10 -7 (IF (|has| |t#1| (-817 (-523))) (-6 (-817 (-523))) |%noBranch|) (IF (|has| |t#1| (-817 (-355))) (-6 (-817 (-355))) |%noBranch|))) +(((-97) -3262 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355)))) ((-563 (-794)) -3262 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355)))) ((-817 (-355)) |has| |#1| (-817 (-355))) ((-817 (-523)) |has| |#1| (-817 (-523))) ((-1016) -3262 (|has| |#1| (-817 (-523))) (|has| |#1| (-817 (-355)))) ((-1122) . T)) +((-1991 (($ $) 10) (($ $ (-710)) 11))) +(((-377 |#1|) (-10 -8 (-15 -1991 (|#1| |#1| (-710))) (-15 -1991 (|#1| |#1|))) (-378)) (T -377)) +NIL +(-10 -8 (-15 -1991 (|#1| |#1| (-710))) (-15 -1991 (|#1| |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 73)) (-3614 (((-394 $) $) 72)) (-1387 (((-108) $ $) 59)) (-2518 (($) 17 T CONST)) (-3796 (($ $ $) 55)) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-1991 (($ $) 79) (($ $ (-710)) 78)) (-2657 (((-108) $) 71)) (-1640 (((-772 (-852)) $) 81)) (-2023 (((-108) $) 31)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 70)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-1820 (((-394 $) $) 74)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1972 (((-710) $) 58)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-2974 (((-3 (-710) "failed") $ $) 80)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65)) (-3901 (((-3 $ "failed") $) 82)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ $) 64)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66))) +(((-378) (-129)) (T -378)) +((-1640 (*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-772 (-852))))) (-2974 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-378)) (-5 *2 (-710)))) (-1991 (*1 *1 *1) (-4 *1 (-378))) (-1991 (*1 *1 *1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-710))))) +(-13 (-339) (-134) (-10 -8 (-15 -1640 ((-772 (-852)) $)) (-15 -2974 ((-3 (-710) "failed") $ $)) (-15 -1991 ($ $)) (-15 -1991 ($ $ (-710))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-134) . T) ((-563 (-794)) . T) ((-158) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-339) . T) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-979 #0#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) . T)) +((-4092 (($ (-523) (-523)) 11) (($ (-523) (-523) (-852)) NIL)) (-1617 (((-852)) 16) (((-852) (-852)) NIL))) +(((-379 |#1|) (-10 -8 (-15 -1617 ((-852) (-852))) (-15 -1617 ((-852))) (-15 -4092 (|#1| (-523) (-523) (-852))) (-15 -4092 (|#1| (-523) (-523)))) (-380)) (T -379)) +((-1617 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-379 *3)) (-4 *3 (-380)))) (-1617 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-379 *3)) (-4 *3 (-380))))) +(-10 -8 (-15 -1617 ((-852) (-852))) (-15 -1617 ((-852))) (-15 -4092 (|#1| (-523) (-523) (-852))) (-15 -4092 (|#1| (-523) (-523)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3458 (((-523) $) 89)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3984 (($ $) 87)) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 73)) (-3614 (((-394 $) $) 72)) (-1832 (($ $) 97)) (-1387 (((-108) $ $) 59)) (-3671 (((-523) $) 114)) (-2518 (($) 17 T CONST)) (-1258 (($ $) 86)) (-3517 (((-3 (-523) "failed") $) 102) (((-3 (-383 (-523)) "failed") $) 99)) (-3474 (((-523) $) 101) (((-383 (-523)) $) 98)) (-3796 (($ $ $) 55)) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-2657 (((-108) $) 71)) (-2685 (((-852)) 130) (((-852) (-852)) 127 (|has| $ (-6 -4235)))) (-2604 (((-108) $) 112)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 93)) (-1640 (((-523) $) 136)) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 96)) (-3892 (($ $) 92)) (-4114 (((-108) $) 113)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-2454 (($ $ $) 111) (($) 124 (-12 (-3900 (|has| $ (-6 -4235))) (-3900 (|has| $ (-6 -4227)))))) (-2062 (($ $ $) 110) (($) 123 (-12 (-3900 (|has| $ (-6 -4235))) (-3900 (|has| $ (-6 -4227)))))) (-1369 (((-523) $) 133)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 70)) (-3986 (((-852) (-523)) 126 (|has| $ (-6 -4235)))) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-2206 (($ $) 88)) (-3722 (($ $) 90)) (-4092 (($ (-523) (-523)) 138) (($ (-523) (-523) (-852)) 137)) (-1820 (((-394 $) $) 74)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-2735 (((-523) $) 134)) (-1972 (((-710) $) 58)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-1617 (((-852)) 131) (((-852) (-852)) 128 (|has| $ (-6 -4235)))) (-3134 (((-852) (-523)) 125 (|has| $ (-6 -4235)))) (-3663 (((-355) $) 105) (((-203) $) 104) (((-823 (-355)) $) 94)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65) (($ (-523)) 103) (($ (-383 (-523))) 100)) (-1621 (((-710)) 29)) (-1886 (($ $) 91)) (-1329 (((-852)) 132) (((-852) (-852)) 129 (|has| $ (-6 -4235)))) (-3007 (((-852)) 135)) (-1704 (((-108) $ $) 39)) (-2619 (($ $) 115)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-4043 (((-108) $ $) 108)) (-4019 (((-108) $ $) 107)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 109)) (-4007 (((-108) $ $) 106)) (-4098 (($ $ $) 64)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68) (($ $ (-383 (-523))) 95)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66))) +(((-380) (-129)) (T -380)) +((-4092 (*1 *1 *2 *2) (-12 (-5 *2 (-523)) (-4 *1 (-380)))) (-4092 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-523)) (-5 *3 (-852)) (-4 *1 (-380)))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-523)))) (-3007 (*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852)))) (-2735 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-523)))) (-1369 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-523)))) (-1329 (*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852)))) (-1617 (*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852)))) (-2685 (*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852)))) (-1329 (*1 *2 *2) (-12 (-5 *2 (-852)) (|has| *1 (-6 -4235)) (-4 *1 (-380)))) (-1617 (*1 *2 *2) (-12 (-5 *2 (-852)) (|has| *1 (-6 -4235)) (-4 *1 (-380)))) (-2685 (*1 *2 *2) (-12 (-5 *2 (-852)) (|has| *1 (-6 -4235)) (-4 *1 (-380)))) (-3986 (*1 *2 *3) (-12 (-5 *3 (-523)) (|has| *1 (-6 -4235)) (-4 *1 (-380)) (-5 *2 (-852)))) (-3134 (*1 *2 *3) (-12 (-5 *3 (-523)) (|has| *1 (-6 -4235)) (-4 *1 (-380)) (-5 *2 (-852)))) (-2454 (*1 *1) (-12 (-4 *1 (-380)) (-3900 (|has| *1 (-6 -4235))) (-3900 (|has| *1 (-6 -4227))))) (-2062 (*1 *1) (-12 (-4 *1 (-380)) (-3900 (|has| *1 (-6 -4235))) (-3900 (|has| *1 (-6 -4227)))))) +(-13 (-982) (-10 -8 (-6 -2562) (-15 -4092 ($ (-523) (-523))) (-15 -4092 ($ (-523) (-523) (-852))) (-15 -1640 ((-523) $)) (-15 -3007 ((-852))) (-15 -2735 ((-523) $)) (-15 -1369 ((-523) $)) (-15 -1329 ((-852))) (-15 -1617 ((-852))) (-15 -2685 ((-852))) (IF (|has| $ (-6 -4235)) (PROGN (-15 -1329 ((-852) (-852))) (-15 -1617 ((-852) (-852))) (-15 -2685 ((-852) (-852))) (-15 -3986 ((-852) (-523))) (-15 -3134 ((-852) (-523)))) |%noBranch|) (IF (|has| $ (-6 -4227)) |%noBranch| (IF (|has| $ (-6 -4235)) |%noBranch| (PROGN (-15 -2454 ($)) (-15 -2062 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-136) . T) ((-563 (-794)) . T) ((-158) . T) ((-564 (-203)) . T) ((-564 (-355)) . T) ((-564 (-823 (-355))) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-339) . T) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-666) . T) ((-730) . T) ((-731) . T) ((-733) . T) ((-734) . T) ((-784) . T) ((-786) . T) ((-817 (-355)) . T) ((-851) . T) ((-930) . T) ((-949) . T) ((-982) . T) ((-964 (-383 (-523))) . T) ((-964 (-523)) . T) ((-979 #0#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) . T)) +((-3612 (((-394 |#2|) (-1 |#2| |#1|) (-394 |#1|)) 20))) +(((-381 |#1| |#2|) (-10 -7 (-15 -3612 ((-394 |#2|) (-1 |#2| |#1|) (-394 |#1|)))) (-515) (-515)) (T -381)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-394 *5)) (-4 *5 (-515)) (-4 *6 (-515)) (-5 *2 (-394 *6)) (-5 *1 (-381 *5 *6))))) +(-10 -7 (-15 -3612 ((-394 |#2|) (-1 |#2| |#1|) (-394 |#1|)))) +((-3612 (((-383 |#2|) (-1 |#2| |#1|) (-383 |#1|)) 13))) +(((-382 |#1| |#2|) (-10 -7 (-15 -3612 ((-383 |#2|) (-1 |#2| |#1|) (-383 |#1|)))) (-515) (-515)) (T -382)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-383 *5)) (-4 *5 (-515)) (-4 *6 (-515)) (-5 *2 (-383 *6)) (-5 *1 (-382 *5 *6))))) +(-10 -7 (-15 -3612 ((-383 |#2|) (-1 |#2| |#1|) (-383 |#1|)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 13)) (-3458 ((|#1| $) 21 (|has| |#1| (-284)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL (|has| |#1| (-759)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) 17) (((-3 (-1087) "failed") $) NIL (|has| |#1| (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) 70 (|has| |#1| (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523))))) (-3474 ((|#1| $) 15) (((-1087) $) NIL (|has| |#1| (-964 (-1087)))) (((-383 (-523)) $) 67 (|has| |#1| (-964 (-523)))) (((-523) $) NIL (|has| |#1| (-964 (-523))))) (-3796 (($ $ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) 50)) (-4032 (($) NIL (|has| |#1| (-508)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2604 (((-108) $) NIL (|has| |#1| (-759)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| |#1| (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| |#1| (-817 (-355))))) (-2023 (((-108) $) 64)) (-2531 (($ $) NIL)) (-2785 ((|#1| $) 71)) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-1063)))) (-4114 (((-108) $) NIL (|has| |#1| (-759)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| |#1| (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 97)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL (|has| |#1| (-284)))) (-3722 ((|#1| $) 28 (|has| |#1| (-508)))) (-1219 (((-394 (-1083 $)) (-1083 $)) 133 (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) 129 (|has| |#1| (-840)))) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2679 (($ $ (-589 |#1|) (-589 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) NIL (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-484 (-1087) |#1|)))) (-1972 (((-710) $) NIL)) (-3223 (($ $ |#1|) NIL (|has| |#1| (-263 |#1| |#1|)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3414 (($ $) NIL)) (-2797 ((|#1| $) 73)) (-3663 (((-823 (-523)) $) NIL (|has| |#1| (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| |#1| (-564 (-823 (-355))))) (((-499) $) NIL (|has| |#1| (-564 (-499)))) (((-355) $) NIL (|has| |#1| (-949))) (((-203) $) NIL (|has| |#1| (-949)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 113 (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) 10) (($ (-1087)) NIL (|has| |#1| (-964 (-1087))))) (-3901 (((-3 $ "failed") $) 99 (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) 100)) (-1886 ((|#1| $) 26 (|has| |#1| (-508)))) (-1704 (((-108) $ $) NIL)) (-2619 (($ $) NIL (|has| |#1| (-759)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 22 T CONST)) (-2767 (($) 8 T CONST)) (-3790 (((-1070) $) 43 (-12 (|has| |#1| (-508)) (|has| |#1| (-767)))) (((-1070) $ (-108)) 44 (-12 (|has| |#1| (-508)) (|has| |#1| (-767)))) (((-1173) (-761) $) 45 (-12 (|has| |#1| (-508)) (|has| |#1| (-767)))) (((-1173) (-761) $ (-108)) 46 (-12 (|has| |#1| (-508)) (|has| |#1| (-767))))) (-2862 (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) 56)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) 24 (|has| |#1| (-786)))) (-4098 (($ $ $) 124) (($ |#1| |#1|) 52)) (-4087 (($ $) 25) (($ $ $) 55)) (-4075 (($ $ $) 53)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 123)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 60) (($ $ $) 57) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) +(((-383 |#1|) (-13 (-921 |#1|) (-10 -7 (IF (|has| |#1| (-508)) (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4231)) (IF (|has| |#1| (-427)) (IF (|has| |#1| (-6 -4242)) (-6 -4231) |%noBranch|) |%noBranch|) |%noBranch|))) (-515)) (T -383)) +NIL +(-13 (-921 |#1|) (-10 -7 (IF (|has| |#1| (-508)) (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4231)) (IF (|has| |#1| (-427)) (IF (|has| |#1| (-6 -4242)) (-6 -4231) |%noBranch|) |%noBranch|) |%noBranch|))) +((-3750 (((-629 |#2|) (-1168 $)) NIL) (((-629 |#2|)) 18)) (-3409 (($ (-1168 |#2|) (-1168 $)) NIL) (($ (-1168 |#2|)) 26)) (-4079 (((-629 |#2|) $ (-1168 $)) NIL) (((-629 |#2|) $) 22)) (-1397 ((|#3| $) 59)) (-3549 ((|#2| (-1168 $)) NIL) ((|#2|) 20)) (-2966 (((-1168 |#2|) $ (-1168 $)) NIL) (((-629 |#2|) (-1168 $) (-1168 $)) NIL) (((-1168 |#2|) $) NIL) (((-629 |#2|) (-1168 $)) 24)) (-3663 (((-1168 |#2|) $) 11) (($ (-1168 |#2|)) 13)) (-1807 ((|#3| $) 51))) +(((-384 |#1| |#2| |#3|) (-10 -8 (-15 -4079 ((-629 |#2|) |#1|)) (-15 -3549 (|#2|)) (-15 -3750 ((-629 |#2|))) (-15 -3663 (|#1| (-1168 |#2|))) (-15 -3663 ((-1168 |#2|) |#1|)) (-15 -3409 (|#1| (-1168 |#2|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1|)) (-15 -1397 (|#3| |#1|)) (-15 -1807 (|#3| |#1|)) (-15 -3750 ((-629 |#2|) (-1168 |#1|))) (-15 -3549 (|#2| (-1168 |#1|))) (-15 -3409 (|#1| (-1168 |#2|) (-1168 |#1|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -4079 ((-629 |#2|) |#1| (-1168 |#1|)))) (-385 |#2| |#3|) (-158) (-1144 |#2|)) (T -384)) +((-3750 (*1 *2) (-12 (-4 *4 (-158)) (-4 *5 (-1144 *4)) (-5 *2 (-629 *4)) (-5 *1 (-384 *3 *4 *5)) (-4 *3 (-385 *4 *5)))) (-3549 (*1 *2) (-12 (-4 *4 (-1144 *2)) (-4 *2 (-158)) (-5 *1 (-384 *3 *2 *4)) (-4 *3 (-385 *2 *4))))) +(-10 -8 (-15 -4079 ((-629 |#2|) |#1|)) (-15 -3549 (|#2|)) (-15 -3750 ((-629 |#2|))) (-15 -3663 (|#1| (-1168 |#2|))) (-15 -3663 ((-1168 |#2|) |#1|)) (-15 -3409 (|#1| (-1168 |#2|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1|)) (-15 -1397 (|#3| |#1|)) (-15 -1807 (|#3| |#1|)) (-15 -3750 ((-629 |#2|) (-1168 |#1|))) (-15 -3549 (|#2| (-1168 |#1|))) (-15 -3409 (|#1| (-1168 |#2|) (-1168 |#1|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -4079 ((-629 |#2|) |#1| (-1168 |#1|)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3750 (((-629 |#1|) (-1168 $)) 46) (((-629 |#1|)) 61)) (-4187 ((|#1| $) 52)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3409 (($ (-1168 |#1|) (-1168 $)) 48) (($ (-1168 |#1|)) 64)) (-4079 (((-629 |#1|) $ (-1168 $)) 53) (((-629 |#1|) $) 59)) (-2121 (((-3 $ "failed") $) 34)) (-1319 (((-852)) 54)) (-2023 (((-108) $) 31)) (-3892 ((|#1| $) 51)) (-1397 ((|#2| $) 44 (|has| |#1| (-339)))) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3549 ((|#1| (-1168 $)) 47) ((|#1|) 60)) (-2966 (((-1168 |#1|) $ (-1168 $)) 50) (((-629 |#1|) (-1168 $) (-1168 $)) 49) (((-1168 |#1|) $) 66) (((-629 |#1|) (-1168 $)) 65)) (-3663 (((-1168 |#1|) $) 63) (($ (-1168 |#1|)) 62)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 37)) (-3901 (((-3 $ "failed") $) 43 (|has| |#1| (-134)))) (-1807 ((|#2| $) 45)) (-1621 (((-710)) 29)) (-4041 (((-1168 $)) 67)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) +(((-385 |#1| |#2|) (-129) (-158) (-1144 |t#1|)) (T -385)) +((-4041 (*1 *2) (-12 (-4 *3 (-158)) (-4 *4 (-1144 *3)) (-5 *2 (-1168 *1)) (-4 *1 (-385 *3 *4)))) (-2966 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1144 *3)) (-5 *2 (-1168 *3)))) (-2966 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-385 *4 *5)) (-4 *4 (-158)) (-4 *5 (-1144 *4)) (-5 *2 (-629 *4)))) (-3409 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-158)) (-4 *1 (-385 *3 *4)) (-4 *4 (-1144 *3)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1144 *3)) (-5 *2 (-1168 *3)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-158)) (-4 *1 (-385 *3 *4)) (-4 *4 (-1144 *3)))) (-3750 (*1 *2) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1144 *3)) (-5 *2 (-629 *3)))) (-3549 (*1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *3 (-1144 *2)) (-4 *2 (-158)))) (-4079 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1144 *3)) (-5 *2 (-629 *3))))) +(-13 (-346 |t#1| |t#2|) (-10 -8 (-15 -4041 ((-1168 $))) (-15 -2966 ((-1168 |t#1|) $)) (-15 -2966 ((-629 |t#1|) (-1168 $))) (-15 -3409 ($ (-1168 |t#1|))) (-15 -3663 ((-1168 |t#1|) $)) (-15 -3663 ($ (-1168 |t#1|))) (-15 -3750 ((-629 |t#1|))) (-15 -3549 (|t#1|)) (-15 -4079 ((-629 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-346 |#1| |#2|) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-657 |#1|) . T) ((-666) . T) ((-979 |#1|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-3517 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) 27) (((-3 (-523) "failed") $) 19)) (-3474 ((|#2| $) NIL) (((-383 (-523)) $) 24) (((-523) $) 14)) (-1458 (($ |#2|) NIL) (($ (-383 (-523))) 22) (($ (-523)) 11))) +(((-386 |#1| |#2|) (-10 -8 (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -1458 (|#1| (-523))) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| |#2|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3474 (|#2| |#1|))) (-387 |#2|) (-1122)) (T -386)) +NIL +(-10 -8 (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -1458 (|#1| (-523))) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| |#2|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3474 (|#2| |#1|))) +((-3517 (((-3 |#1| "failed") $) 7) (((-3 (-383 (-523)) "failed") $) 16 (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) 13 (|has| |#1| (-964 (-523))))) (-3474 ((|#1| $) 8) (((-383 (-523)) $) 15 (|has| |#1| (-964 (-383 (-523))))) (((-523) $) 12 (|has| |#1| (-964 (-523))))) (-1458 (($ |#1|) 6) (($ (-383 (-523))) 17 (|has| |#1| (-964 (-383 (-523))))) (($ (-523)) 14 (|has| |#1| (-964 (-523)))))) +(((-387 |#1|) (-129) (-1122)) (T -387)) +NIL +(-13 (-964 |t#1|) (-10 -7 (IF (|has| |t#1| (-964 (-523))) (-6 (-964 (-523))) |%noBranch|) (IF (|has| |t#1| (-964 (-383 (-523)))) (-6 (-964 (-383 (-523)))) |%noBranch|))) +(((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T)) +((-3612 (((-389 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-389 |#1| |#2| |#3| |#4|)) 33))) +(((-388 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3612 ((-389 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-389 |#1| |#2| |#3| |#4|)))) (-284) (-921 |#1|) (-1144 |#2|) (-13 (-385 |#2| |#3|) (-964 |#2|)) (-284) (-921 |#5|) (-1144 |#6|) (-13 (-385 |#6| |#7|) (-964 |#6|))) (T -388)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-389 *5 *6 *7 *8)) (-4 *5 (-284)) (-4 *6 (-921 *5)) (-4 *7 (-1144 *6)) (-4 *8 (-13 (-385 *6 *7) (-964 *6))) (-4 *9 (-284)) (-4 *10 (-921 *9)) (-4 *11 (-1144 *10)) (-5 *2 (-389 *9 *10 *11 *12)) (-5 *1 (-388 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-385 *10 *11) (-964 *10)))))) +(-10 -7 (-15 -3612 ((-389 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-389 |#1| |#2| |#3| |#4|)))) +((-3924 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL)) (-3205 ((|#4| (-710) (-1168 |#4|)) 55)) (-2023 (((-108) $) NIL)) (-2785 (((-1168 |#4|) $) 17)) (-3892 ((|#2| $) 53)) (-2484 (($ $) 136)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 98)) (-1485 (($ (-1168 |#4|)) 97)) (-2783 (((-1034) $) NIL)) (-2797 ((|#1| $) 18)) (-3208 (($ $ $) NIL)) (-1714 (($ $ $) NIL)) (-1458 (((-794) $) 131)) (-4041 (((-1168 |#4|) $) 126)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2767 (($) 11 T CONST)) (-3983 (((-108) $ $) 39)) (-4098 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 119)) (* (($ $ $) 118))) +(((-389 |#1| |#2| |#3| |#4|) (-13 (-448) (-10 -8 (-15 -1485 ($ (-1168 |#4|))) (-15 -4041 ((-1168 |#4|) $)) (-15 -3892 (|#2| $)) (-15 -2785 ((-1168 |#4|) $)) (-15 -2797 (|#1| $)) (-15 -2484 ($ $)) (-15 -3205 (|#4| (-710) (-1168 |#4|))))) (-284) (-921 |#1|) (-1144 |#2|) (-13 (-385 |#2| |#3|) (-964 |#2|))) (T -389)) +((-1485 (*1 *1 *2) (-12 (-5 *2 (-1168 *6)) (-4 *6 (-13 (-385 *4 *5) (-964 *4))) (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) (-4 *3 (-284)) (-5 *1 (-389 *3 *4 *5 *6)))) (-4041 (*1 *2 *1) (-12 (-4 *3 (-284)) (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) (-5 *2 (-1168 *6)) (-5 *1 (-389 *3 *4 *5 *6)) (-4 *6 (-13 (-385 *4 *5) (-964 *4))))) (-3892 (*1 *2 *1) (-12 (-4 *4 (-1144 *2)) (-4 *2 (-921 *3)) (-5 *1 (-389 *3 *2 *4 *5)) (-4 *3 (-284)) (-4 *5 (-13 (-385 *2 *4) (-964 *2))))) (-2785 (*1 *2 *1) (-12 (-4 *3 (-284)) (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) (-5 *2 (-1168 *6)) (-5 *1 (-389 *3 *4 *5 *6)) (-4 *6 (-13 (-385 *4 *5) (-964 *4))))) (-2797 (*1 *2 *1) (-12 (-4 *3 (-921 *2)) (-4 *4 (-1144 *3)) (-4 *2 (-284)) (-5 *1 (-389 *2 *3 *4 *5)) (-4 *5 (-13 (-385 *3 *4) (-964 *3))))) (-2484 (*1 *1 *1) (-12 (-4 *2 (-284)) (-4 *3 (-921 *2)) (-4 *4 (-1144 *3)) (-5 *1 (-389 *2 *3 *4 *5)) (-4 *5 (-13 (-385 *3 *4) (-964 *3))))) (-3205 (*1 *2 *3 *4) (-12 (-5 *3 (-710)) (-5 *4 (-1168 *2)) (-4 *5 (-284)) (-4 *6 (-921 *5)) (-4 *2 (-13 (-385 *6 *7) (-964 *6))) (-5 *1 (-389 *5 *6 *7 *2)) (-4 *7 (-1144 *6))))) +(-13 (-448) (-10 -8 (-15 -1485 ($ (-1168 |#4|))) (-15 -4041 ((-1168 |#4|) $)) (-15 -3892 (|#2| $)) (-15 -2785 ((-1168 |#4|) $)) (-15 -2797 (|#1| $)) (-15 -2484 ($ $)) (-15 -3205 (|#4| (-710) (-1168 |#4|))))) +((-3924 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-3892 ((|#2| $) 60)) (-3759 (($ (-1168 |#4|)) 25) (($ (-389 |#1| |#2| |#3| |#4|)) 75 (|has| |#4| (-964 |#2|)))) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 34)) (-4041 (((-1168 |#4|) $) 26)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2767 (($) 23 T CONST)) (-3983 (((-108) $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ $ $) 72))) +(((-390 |#1| |#2| |#3| |#4| |#5|) (-13 (-666) (-10 -8 (-15 -4041 ((-1168 |#4|) $)) (-15 -3892 (|#2| $)) (-15 -3759 ($ (-1168 |#4|))) (IF (|has| |#4| (-964 |#2|)) (-15 -3759 ($ (-389 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-284) (-921 |#1|) (-1144 |#2|) (-385 |#2| |#3|) (-1168 |#4|)) (T -390)) +((-4041 (*1 *2 *1) (-12 (-4 *3 (-284)) (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) (-5 *2 (-1168 *6)) (-5 *1 (-390 *3 *4 *5 *6 *7)) (-4 *6 (-385 *4 *5)) (-14 *7 *2))) (-3892 (*1 *2 *1) (-12 (-4 *4 (-1144 *2)) (-4 *2 (-921 *3)) (-5 *1 (-390 *3 *2 *4 *5 *6)) (-4 *3 (-284)) (-4 *5 (-385 *2 *4)) (-14 *6 (-1168 *5)))) (-3759 (*1 *1 *2) (-12 (-5 *2 (-1168 *6)) (-4 *6 (-385 *4 *5)) (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) (-4 *3 (-284)) (-5 *1 (-390 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3759 (*1 *1 *2) (-12 (-5 *2 (-389 *3 *4 *5 *6)) (-4 *6 (-964 *4)) (-4 *3 (-284)) (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) (-4 *6 (-385 *4 *5)) (-14 *7 (-1168 *6)) (-5 *1 (-390 *3 *4 *5 *6 *7))))) +(-13 (-666) (-10 -8 (-15 -4041 ((-1168 |#4|) $)) (-15 -3892 (|#2| $)) (-15 -3759 ($ (-1168 |#4|))) (IF (|has| |#4| (-964 |#2|)) (-15 -3759 ($ (-389 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-3612 ((|#3| (-1 |#4| |#2|) |#1|) 26))) +(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 (|#3| (-1 |#4| |#2|) |#1|))) (-393 |#2|) (-158) (-393 |#4|) (-158)) (T -391)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-158)) (-4 *6 (-158)) (-4 *2 (-393 *6)) (-5 *1 (-391 *4 *5 *2 *6)) (-4 *4 (-393 *5))))) +(-10 -7 (-15 -3612 (|#3| (-1 |#4| |#2|) |#1|))) +((-3819 (((-3 $ "failed")) 85)) (-3115 (((-1168 (-629 |#2|)) (-1168 $)) NIL) (((-1168 (-629 |#2|))) 90)) (-3486 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) 84)) (-3545 (((-3 $ "failed")) 83)) (-1431 (((-629 |#2|) (-1168 $)) NIL) (((-629 |#2|)) 101)) (-2788 (((-629 |#2|) $ (-1168 $)) NIL) (((-629 |#2|) $) 109)) (-3138 (((-1083 (-883 |#2|))) 54)) (-2284 ((|#2| (-1168 $)) NIL) ((|#2|) 105)) (-3409 (($ (-1168 |#2|) (-1168 $)) NIL) (($ (-1168 |#2|)) 112)) (-2362 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) 82)) (-1386 (((-3 $ "failed")) 74)) (-1504 (((-629 |#2|) (-1168 $)) NIL) (((-629 |#2|)) 99)) (-2139 (((-629 |#2|) $ (-1168 $)) NIL) (((-629 |#2|) $) 107)) (-2525 (((-1083 (-883 |#2|))) 53)) (-3002 ((|#2| (-1168 $)) NIL) ((|#2|) 103)) (-2966 (((-1168 |#2|) $ (-1168 $)) NIL) (((-629 |#2|) (-1168 $) (-1168 $)) NIL) (((-1168 |#2|) $) NIL) (((-629 |#2|) (-1168 $)) 111)) (-3663 (((-1168 |#2|) $) 95) (($ (-1168 |#2|)) 97)) (-3863 (((-589 (-883 |#2|)) (-1168 $)) NIL) (((-589 (-883 |#2|))) 93)) (-1677 (($ (-629 |#2|) $) 89))) +(((-392 |#1| |#2|) (-10 -8 (-15 -1677 (|#1| (-629 |#2|) |#1|)) (-15 -3138 ((-1083 (-883 |#2|)))) (-15 -2525 ((-1083 (-883 |#2|)))) (-15 -2788 ((-629 |#2|) |#1|)) (-15 -2139 ((-629 |#2|) |#1|)) (-15 -1431 ((-629 |#2|))) (-15 -1504 ((-629 |#2|))) (-15 -2284 (|#2|)) (-15 -3002 (|#2|)) (-15 -3663 (|#1| (-1168 |#2|))) (-15 -3663 ((-1168 |#2|) |#1|)) (-15 -3409 (|#1| (-1168 |#2|))) (-15 -3863 ((-589 (-883 |#2|)))) (-15 -3115 ((-1168 (-629 |#2|)))) (-15 -2966 ((-629 |#2|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1|)) (-15 -3819 ((-3 |#1| "failed"))) (-15 -3545 ((-3 |#1| "failed"))) (-15 -1386 ((-3 |#1| "failed"))) (-15 -3486 ((-3 (-2 (|:| |particular| |#1|) (|:| -4041 (-589 |#1|))) "failed"))) (-15 -2362 ((-3 (-2 (|:| |particular| |#1|) (|:| -4041 (-589 |#1|))) "failed"))) (-15 -1431 ((-629 |#2|) (-1168 |#1|))) (-15 -1504 ((-629 |#2|) (-1168 |#1|))) (-15 -2284 (|#2| (-1168 |#1|))) (-15 -3002 (|#2| (-1168 |#1|))) (-15 -3409 (|#1| (-1168 |#2|) (-1168 |#1|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -2788 ((-629 |#2|) |#1| (-1168 |#1|))) (-15 -2139 ((-629 |#2|) |#1| (-1168 |#1|))) (-15 -3115 ((-1168 (-629 |#2|)) (-1168 |#1|))) (-15 -3863 ((-589 (-883 |#2|)) (-1168 |#1|)))) (-393 |#2|) (-158)) (T -392)) +((-3115 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-1168 (-629 *4))) (-5 *1 (-392 *3 *4)) (-4 *3 (-393 *4)))) (-3863 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-589 (-883 *4))) (-5 *1 (-392 *3 *4)) (-4 *3 (-393 *4)))) (-3002 (*1 *2) (-12 (-4 *2 (-158)) (-5 *1 (-392 *3 *2)) (-4 *3 (-393 *2)))) (-2284 (*1 *2) (-12 (-4 *2 (-158)) (-5 *1 (-392 *3 *2)) (-4 *3 (-393 *2)))) (-1504 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-629 *4)) (-5 *1 (-392 *3 *4)) (-4 *3 (-393 *4)))) (-1431 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-629 *4)) (-5 *1 (-392 *3 *4)) (-4 *3 (-393 *4)))) (-2525 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-1083 (-883 *4))) (-5 *1 (-392 *3 *4)) (-4 *3 (-393 *4)))) (-3138 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-1083 (-883 *4))) (-5 *1 (-392 *3 *4)) (-4 *3 (-393 *4))))) +(-10 -8 (-15 -1677 (|#1| (-629 |#2|) |#1|)) (-15 -3138 ((-1083 (-883 |#2|)))) (-15 -2525 ((-1083 (-883 |#2|)))) (-15 -2788 ((-629 |#2|) |#1|)) (-15 -2139 ((-629 |#2|) |#1|)) (-15 -1431 ((-629 |#2|))) (-15 -1504 ((-629 |#2|))) (-15 -2284 (|#2|)) (-15 -3002 (|#2|)) (-15 -3663 (|#1| (-1168 |#2|))) (-15 -3663 ((-1168 |#2|) |#1|)) (-15 -3409 (|#1| (-1168 |#2|))) (-15 -3863 ((-589 (-883 |#2|)))) (-15 -3115 ((-1168 (-629 |#2|)))) (-15 -2966 ((-629 |#2|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1|)) (-15 -3819 ((-3 |#1| "failed"))) (-15 -3545 ((-3 |#1| "failed"))) (-15 -1386 ((-3 |#1| "failed"))) (-15 -3486 ((-3 (-2 (|:| |particular| |#1|) (|:| -4041 (-589 |#1|))) "failed"))) (-15 -2362 ((-3 (-2 (|:| |particular| |#1|) (|:| -4041 (-589 |#1|))) "failed"))) (-15 -1431 ((-629 |#2|) (-1168 |#1|))) (-15 -1504 ((-629 |#2|) (-1168 |#1|))) (-15 -2284 (|#2| (-1168 |#1|))) (-15 -3002 (|#2| (-1168 |#1|))) (-15 -3409 (|#1| (-1168 |#2|) (-1168 |#1|))) (-15 -2966 ((-629 |#2|) (-1168 |#1|) (-1168 |#1|))) (-15 -2966 ((-1168 |#2|) |#1| (-1168 |#1|))) (-15 -2788 ((-629 |#2|) |#1| (-1168 |#1|))) (-15 -2139 ((-629 |#2|) |#1| (-1168 |#1|))) (-15 -3115 ((-1168 (-629 |#2|)) (-1168 |#1|))) (-15 -3863 ((-589 (-883 |#2|)) (-1168 |#1|)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3819 (((-3 $ "failed")) 37 (|has| |#1| (-515)))) (-3212 (((-3 $ "failed") $ $) 19)) (-3115 (((-1168 (-629 |#1|)) (-1168 $)) 78) (((-1168 (-629 |#1|))) 100)) (-2738 (((-1168 $)) 81)) (-2518 (($) 17 T CONST)) (-3486 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) 40 (|has| |#1| (-515)))) (-3545 (((-3 $ "failed")) 38 (|has| |#1| (-515)))) (-1431 (((-629 |#1|) (-1168 $)) 65) (((-629 |#1|)) 92)) (-3744 ((|#1| $) 74)) (-2788 (((-629 |#1|) $ (-1168 $)) 76) (((-629 |#1|) $) 90)) (-2532 (((-3 $ "failed") $) 45 (|has| |#1| (-515)))) (-3138 (((-1083 (-883 |#1|))) 88 (|has| |#1| (-339)))) (-1970 (($ $ (-852)) 28)) (-4212 ((|#1| $) 72)) (-1726 (((-1083 |#1|) $) 42 (|has| |#1| (-515)))) (-2284 ((|#1| (-1168 $)) 67) ((|#1|) 94)) (-1778 (((-1083 |#1|) $) 63)) (-2117 (((-108)) 57)) (-3409 (($ (-1168 |#1|) (-1168 $)) 69) (($ (-1168 |#1|)) 98)) (-2121 (((-3 $ "failed") $) 47 (|has| |#1| (-515)))) (-1319 (((-852)) 80)) (-1487 (((-108)) 54)) (-3650 (($ $ (-852)) 33)) (-1649 (((-108)) 50)) (-2956 (((-108)) 48)) (-2491 (((-108)) 52)) (-2362 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) 41 (|has| |#1| (-515)))) (-1386 (((-3 $ "failed")) 39 (|has| |#1| (-515)))) (-1504 (((-629 |#1|) (-1168 $)) 66) (((-629 |#1|)) 93)) (-3237 ((|#1| $) 75)) (-2139 (((-629 |#1|) $ (-1168 $)) 77) (((-629 |#1|) $) 91)) (-1579 (((-3 $ "failed") $) 46 (|has| |#1| (-515)))) (-2525 (((-1083 (-883 |#1|))) 89 (|has| |#1| (-339)))) (-1448 (($ $ (-852)) 29)) (-4050 ((|#1| $) 73)) (-2553 (((-1083 |#1|) $) 43 (|has| |#1| (-515)))) (-3002 ((|#1| (-1168 $)) 68) ((|#1|) 95)) (-2565 (((-1083 |#1|) $) 64)) (-1216 (((-108)) 58)) (-3779 (((-1070) $) 9)) (-2345 (((-108)) 49)) (-1510 (((-108)) 51)) (-2871 (((-108)) 53)) (-2783 (((-1034) $) 10)) (-2751 (((-108)) 56)) (-3223 ((|#1| $ (-523)) 101)) (-2966 (((-1168 |#1|) $ (-1168 $)) 71) (((-629 |#1|) (-1168 $) (-1168 $)) 70) (((-1168 |#1|) $) 103) (((-629 |#1|) (-1168 $)) 102)) (-3663 (((-1168 |#1|) $) 97) (($ (-1168 |#1|)) 96)) (-3863 (((-589 (-883 |#1|)) (-1168 $)) 79) (((-589 (-883 |#1|))) 99)) (-1714 (($ $ $) 25)) (-1673 (((-108)) 62)) (-1458 (((-794) $) 11)) (-4041 (((-1168 $)) 104)) (-3751 (((-589 (-1168 |#1|))) 44 (|has| |#1| (-515)))) (-2022 (($ $ $ $) 26)) (-3120 (((-108)) 60)) (-1677 (($ (-629 |#1|) $) 87)) (-1995 (($ $ $) 24)) (-1462 (((-108)) 61)) (-3366 (((-108)) 59)) (-2071 (((-108)) 55)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 30)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-393 |#1|) (-129) (-158)) (T -393)) +((-4041 (*1 *2) (-12 (-4 *3 (-158)) (-5 *2 (-1168 *1)) (-4 *1 (-393 *3)))) (-2966 (*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-1168 *3)))) (-2966 (*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-393 *4)) (-4 *4 (-158)) (-5 *2 (-629 *4)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-393 *2)) (-4 *2 (-158)))) (-3115 (*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-1168 (-629 *3))))) (-3863 (*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-589 (-883 *3))))) (-3409 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-158)) (-4 *1 (-393 *3)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-1168 *3)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-158)) (-4 *1 (-393 *3)))) (-3002 (*1 *2) (-12 (-4 *1 (-393 *2)) (-4 *2 (-158)))) (-2284 (*1 *2) (-12 (-4 *1 (-393 *2)) (-4 *2 (-158)))) (-1504 (*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3)))) (-1431 (*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3)))) (-2139 (*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3)))) (-2788 (*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3)))) (-2525 (*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-4 *3 (-339)) (-5 *2 (-1083 (-883 *3))))) (-3138 (*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-4 *3 (-339)) (-5 *2 (-1083 (-883 *3))))) (-1677 (*1 *1 *2 *1) (-12 (-5 *2 (-629 *3)) (-4 *1 (-393 *3)) (-4 *3 (-158))))) +(-13 (-343 |t#1|) (-10 -8 (-15 -4041 ((-1168 $))) (-15 -2966 ((-1168 |t#1|) $)) (-15 -2966 ((-629 |t#1|) (-1168 $))) (-15 -3223 (|t#1| $ (-523))) (-15 -3115 ((-1168 (-629 |t#1|)))) (-15 -3863 ((-589 (-883 |t#1|)))) (-15 -3409 ($ (-1168 |t#1|))) (-15 -3663 ((-1168 |t#1|) $)) (-15 -3663 ($ (-1168 |t#1|))) (-15 -3002 (|t#1|)) (-15 -2284 (|t#1|)) (-15 -1504 ((-629 |t#1|))) (-15 -1431 ((-629 |t#1|))) (-15 -2139 ((-629 |t#1|) $)) (-15 -2788 ((-629 |t#1|) $)) (IF (|has| |t#1| (-339)) (PROGN (-15 -2525 ((-1083 (-883 |t#1|)))) (-15 -3138 ((-1083 (-883 |t#1|))))) |%noBranch|) (-15 -1677 ($ (-629 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-343 |#1|) . T) ((-591 |#1|) . T) ((-657 |#1|) . T) ((-660) . T) ((-684 |#1|) . T) ((-701) . T) ((-979 |#1|) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 41)) (-2640 (($ $) 56)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 143)) (-3345 (($ $) NIL)) (-3331 (((-108) $) 35)) (-3819 ((|#1| $) 12)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-1126)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-1126)))) (-2592 (($ |#1| (-523)) 30)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 113)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 54)) (-2121 (((-3 $ "failed") $) 128)) (-3346 (((-3 (-383 (-523)) "failed") $) 62 (|has| |#1| (-508)))) (-1292 (((-108) $) 58 (|has| |#1| (-508)))) (-2146 (((-383 (-523)) $) 60 (|has| |#1| (-508)))) (-3116 (($ |#1| (-523)) 32)) (-2657 (((-108) $) 149 (|has| |#1| (-1126)))) (-2023 (((-108) $) 42)) (-1767 (((-710) $) 37)) (-2519 (((-3 "nil" "sqfr" "irred" "prime") $ (-523)) 134)) (-2378 ((|#1| $ (-523)) 133)) (-3742 (((-523) $ (-523)) 132)) (-3700 (($ |#1| (-523)) 29)) (-3612 (($ (-1 |#1| |#1|) $) 140)) (-1396 (($ |#1| (-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-523))))) 57)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-3779 (((-1070) $) NIL)) (-2371 (($ |#1| (-523)) 31)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) 144 (|has| |#1| (-427)))) (-2429 (($ |#1| (-523) (-3 "nil" "sqfr" "irred" "prime")) 28)) (-1979 (((-589 (-2 (|:| -1820 |#1|) (|:| -2735 (-523)))) $) 53)) (-3624 (((-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-523)))) $) 11)) (-1820 (((-394 $) $) NIL (|has| |#1| (-1126)))) (-3746 (((-3 $ "failed") $ $) 135)) (-2735 (((-523) $) 129)) (-3686 ((|#1| $) 55)) (-2679 (($ $ (-589 |#1|) (-589 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) 77 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) 82 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) $) NIL (|has| |#1| (-484 (-1087) $))) (($ $ (-589 (-1087)) (-589 $)) 83 (|has| |#1| (-484 (-1087) $))) (($ $ (-589 (-271 $))) 79 (|has| |#1| (-286 $))) (($ $ (-271 $)) NIL (|has| |#1| (-286 $))) (($ $ $ $) NIL (|has| |#1| (-286 $))) (($ $ (-589 $) (-589 $)) NIL (|has| |#1| (-286 $)))) (-3223 (($ $ |#1|) 69 (|has| |#1| (-263 |#1| |#1|))) (($ $ $) 70 (|has| |#1| (-263 $ $)))) (-3523 (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) 139)) (-3663 (((-499) $) 26 (|has| |#1| (-564 (-499)))) (((-355) $) 89 (|has| |#1| (-949))) (((-203) $) 92 (|has| |#1| (-949)))) (-1458 (((-794) $) 111) (($ (-523)) 45) (($ $) NIL) (($ |#1|) 44) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523)))))) (-1621 (((-710)) 47)) (-1704 (((-108) $ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 39 T CONST)) (-2767 (($) 38 T CONST)) (-2862 (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3983 (((-108) $ $) 93)) (-4087 (($ $) 125) (($ $ $) NIL)) (-4075 (($ $ $) 137)) (** (($ $ (-852)) NIL) (($ $ (-710)) 99)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 49) (($ $ $) 48) (($ |#1| $) 50) (($ $ |#1|) NIL))) +(((-394 |#1|) (-13 (-515) (-209 |#1|) (-37 |#1|) (-314 |#1|) (-387 |#1|) (-10 -8 (-15 -3686 (|#1| $)) (-15 -2735 ((-523) $)) (-15 -1396 ($ |#1| (-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-523)))))) (-15 -3624 ((-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-523)))) $)) (-15 -3700 ($ |#1| (-523))) (-15 -1979 ((-589 (-2 (|:| -1820 |#1|) (|:| -2735 (-523)))) $)) (-15 -2371 ($ |#1| (-523))) (-15 -3742 ((-523) $ (-523))) (-15 -2378 (|#1| $ (-523))) (-15 -2519 ((-3 "nil" "sqfr" "irred" "prime") $ (-523))) (-15 -1767 ((-710) $)) (-15 -3116 ($ |#1| (-523))) (-15 -2592 ($ |#1| (-523))) (-15 -2429 ($ |#1| (-523) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3819 (|#1| $)) (-15 -2640 ($ $)) (-15 -3612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-427)) (-6 (-427)) |%noBranch|) (IF (|has| |#1| (-949)) (-6 (-949)) |%noBranch|) (IF (|has| |#1| (-1126)) (-6 (-1126)) |%noBranch|) (IF (|has| |#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -1292 ((-108) $)) (-15 -2146 ((-383 (-523)) $)) (-15 -3346 ((-3 (-383 (-523)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-263 $ $)) (-6 (-263 $ $)) |%noBranch|) (IF (|has| |#1| (-286 $)) (-6 (-286 $)) |%noBranch|) (IF (|has| |#1| (-484 (-1087) $)) (-6 (-484 (-1087) $)) |%noBranch|))) (-515)) (T -394)) +((-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-515)) (-5 *1 (-394 *3)))) (-3686 (*1 *2 *1) (-12 (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-394 *3)) (-4 *3 (-515)))) (-1396 (*1 *1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-523))))) (-4 *2 (-515)) (-5 *1 (-394 *2)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-523))))) (-5 *1 (-394 *3)) (-4 *3 (-515)))) (-3700 (*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| -1820 *3) (|:| -2735 (-523))))) (-5 *1 (-394 *3)) (-4 *3 (-515)))) (-2371 (*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-3742 (*1 *2 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-394 *3)) (-4 *3 (-515)))) (-2378 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-2519 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-394 *4)) (-4 *4 (-515)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-394 *3)) (-4 *3 (-515)))) (-3116 (*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-2592 (*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-2429 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-523)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-3819 (*1 *2 *1) (-12 (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-2640 (*1 *1 *1) (-12 (-5 *1 (-394 *2)) (-4 *2 (-515)))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-394 *3)) (-4 *3 (-508)) (-4 *3 (-515)))) (-2146 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-394 *3)) (-4 *3 (-508)) (-4 *3 (-515)))) (-3346 (*1 *2 *1) (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-394 *3)) (-4 *3 (-508)) (-4 *3 (-515))))) +(-13 (-515) (-209 |#1|) (-37 |#1|) (-314 |#1|) (-387 |#1|) (-10 -8 (-15 -3686 (|#1| $)) (-15 -2735 ((-523) $)) (-15 -1396 ($ |#1| (-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-523)))))) (-15 -3624 ((-589 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-523)))) $)) (-15 -3700 ($ |#1| (-523))) (-15 -1979 ((-589 (-2 (|:| -1820 |#1|) (|:| -2735 (-523)))) $)) (-15 -2371 ($ |#1| (-523))) (-15 -3742 ((-523) $ (-523))) (-15 -2378 (|#1| $ (-523))) (-15 -2519 ((-3 "nil" "sqfr" "irred" "prime") $ (-523))) (-15 -1767 ((-710) $)) (-15 -3116 ($ |#1| (-523))) (-15 -2592 ($ |#1| (-523))) (-15 -2429 ($ |#1| (-523) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3819 (|#1| $)) (-15 -2640 ($ $)) (-15 -3612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-427)) (-6 (-427)) |%noBranch|) (IF (|has| |#1| (-949)) (-6 (-949)) |%noBranch|) (IF (|has| |#1| (-1126)) (-6 (-1126)) |%noBranch|) (IF (|has| |#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -1292 ((-108) $)) (-15 -2146 ((-383 (-523)) $)) (-15 -3346 ((-3 (-383 (-523)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-263 $ $)) (-6 (-263 $ $)) |%noBranch|) (IF (|has| |#1| (-286 $)) (-6 (-286 $)) |%noBranch|) (IF (|has| |#1| (-484 (-1087) $)) (-6 (-484 (-1087) $)) |%noBranch|))) +((-3747 (((-394 |#1|) (-394 |#1|) (-1 (-394 |#1|) |#1|)) 20)) (-2217 (((-394 |#1|) (-394 |#1|) (-394 |#1|)) 15))) +(((-395 |#1|) (-10 -7 (-15 -3747 ((-394 |#1|) (-394 |#1|) (-1 (-394 |#1|) |#1|))) (-15 -2217 ((-394 |#1|) (-394 |#1|) (-394 |#1|)))) (-515)) (T -395)) +((-2217 (*1 *2 *2 *2) (-12 (-5 *2 (-394 *3)) (-4 *3 (-515)) (-5 *1 (-395 *3)))) (-3747 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-394 *4) *4)) (-4 *4 (-515)) (-5 *2 (-394 *4)) (-5 *1 (-395 *4))))) +(-10 -7 (-15 -3747 ((-394 |#1|) (-394 |#1|) (-1 (-394 |#1|) |#1|))) (-15 -2217 ((-394 |#1|) (-394 |#1|) (-394 |#1|)))) +((-2219 ((|#2| |#2|) 161)) (-1554 (((-3 (|:| |%expansion| (-289 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108)) 55))) +(((-396 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1554 ((-3 (|:| |%expansion| (-289 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108))) (-15 -2219 (|#2| |#2|))) (-13 (-427) (-786) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1108) (-406 |#1|)) (-1087) |#2|) (T -396)) +((-2219 (*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-396 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1108) (-406 *3))) (-14 *4 (-1087)) (-14 *5 *2))) (-1554 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (|:| |%expansion| (-289 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070)))))) (-5 *1 (-396 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1108) (-406 *5))) (-14 *6 (-1087)) (-14 *7 *3)))) +(-10 -7 (-15 -1554 ((-3 (|:| |%expansion| (-289 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108))) (-15 -2219 (|#2| |#2|))) +((-3612 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-397 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-973) (-786)) (-406 |#1|) (-13 (-973) (-786)) (-406 |#3|)) (T -397)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-973) (-786))) (-4 *6 (-13 (-973) (-786))) (-4 *2 (-406 *6)) (-5 *1 (-397 *5 *4 *6 *2)) (-4 *4 (-406 *5))))) +(-10 -7 (-15 -3612 (|#4| (-1 |#3| |#1|) |#2|))) +((-2219 ((|#2| |#2|) 88)) (-1213 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108) (-1070)) 46)) (-3851 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108) (-1070)) 153))) +(((-398 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1213 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108) (-1070))) (-15 -3851 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108) (-1070))) (-15 -2219 (|#2| |#2|))) (-13 (-427) (-786) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1108) (-406 |#1|) (-10 -8 (-15 -1458 ($ |#3|)))) (-784) (-13 (-1146 |#2| |#3|) (-339) (-1108) (-10 -8 (-15 -3523 ($ $)) (-15 -3417 ($ $)))) (-912 |#4|) (-1087)) (T -398)) +((-2219 (*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-4 *2 (-13 (-27) (-1108) (-406 *3) (-10 -8 (-15 -1458 ($ *4))))) (-4 *4 (-784)) (-4 *5 (-13 (-1146 *2 *4) (-339) (-1108) (-10 -8 (-15 -3523 ($ $)) (-15 -3417 ($ $))))) (-5 *1 (-398 *3 *2 *4 *5 *6 *7)) (-4 *6 (-912 *5)) (-14 *7 (-1087)))) (-3851 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-4 *3 (-13 (-27) (-1108) (-406 *6) (-10 -8 (-15 -1458 ($ *7))))) (-4 *7 (-784)) (-4 *8 (-13 (-1146 *3 *7) (-339) (-1108) (-10 -8 (-15 -3523 ($ $)) (-15 -3417 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070)))))) (-5 *1 (-398 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1070)) (-4 *9 (-912 *8)) (-14 *10 (-1087)))) (-1213 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-4 *3 (-13 (-27) (-1108) (-406 *6) (-10 -8 (-15 -1458 ($ *7))))) (-4 *7 (-784)) (-4 *8 (-13 (-1146 *3 *7) (-339) (-1108) (-10 -8 (-15 -3523 ($ $)) (-15 -3417 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070)))))) (-5 *1 (-398 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1070)) (-4 *9 (-912 *8)) (-14 *10 (-1087))))) +(-10 -7 (-15 -1213 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108) (-1070))) (-15 -3851 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070))))) |#2| (-108) (-1070))) (-15 -2219 (|#2| |#2|))) +((-2837 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2437 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3612 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-399 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2437 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2837 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1016) (-401 |#1|) (-1016) (-401 |#3|)) (T -399)) +((-2837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1016)) (-4 *5 (-1016)) (-4 *2 (-401 *5)) (-5 *1 (-399 *6 *4 *5 *2)) (-4 *4 (-401 *6)))) (-2437 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1016)) (-4 *2 (-1016)) (-5 *1 (-399 *5 *4 *2 *6)) (-4 *4 (-401 *5)) (-4 *6 (-401 *2)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-401 *6)) (-5 *1 (-399 *5 *4 *6 *2)) (-4 *4 (-401 *5))))) +(-10 -7 (-15 -3612 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2437 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2837 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2919 (($) 44)) (-3288 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-1922 (($ $ $) 39)) (-3471 (((-108) $ $) 28)) (-1703 (((-710)) 47)) (-4086 (($ (-589 |#2|)) 20) (($) NIL)) (-4032 (($) 53)) (-2454 ((|#2| $) 61)) (-2062 ((|#2| $) 59)) (-2072 (((-852) $) 55)) (-1309 (($ $ $) 35)) (-3878 (($ (-852)) 50)) (-3682 (($ $ |#2|) NIL) (($ $ $) 38)) (-2792 (((-710) (-1 (-108) |#2|) $) NIL) (((-710) |#2| $) 26)) (-1472 (($ (-589 |#2|)) 24)) (-2059 (($ $) 46)) (-1458 (((-794) $) 33)) (-3398 (((-710) $) 21)) (-1684 (($ (-589 |#2|)) 19) (($) NIL)) (-3983 (((-108) $ $) 16)) (-4007 (((-108) $ $) 13))) +(((-400 |#1| |#2|) (-10 -8 (-15 -1703 ((-710))) (-15 -3878 (|#1| (-852))) (-15 -2072 ((-852) |#1|)) (-15 -4032 (|#1|)) (-15 -2454 (|#2| |#1|)) (-15 -2062 (|#2| |#1|)) (-15 -2919 (|#1|)) (-15 -2059 (|#1| |#1|)) (-15 -3398 ((-710) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -4007 ((-108) |#1| |#1|)) (-15 -1684 (|#1|)) (-15 -1684 (|#1| (-589 |#2|))) (-15 -4086 (|#1|)) (-15 -4086 (|#1| (-589 |#2|))) (-15 -1309 (|#1| |#1| |#1|)) (-15 -3682 (|#1| |#1| |#1|)) (-15 -3682 (|#1| |#1| |#2|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -3471 ((-108) |#1| |#1|)) (-15 -3288 (|#1| |#1| |#1|)) (-15 -3288 (|#1| |#1| |#2|)) (-15 -3288 (|#1| |#2| |#1|)) (-15 -1472 (|#1| (-589 |#2|))) (-15 -2792 ((-710) |#2| |#1|)) (-15 -2792 ((-710) (-1 (-108) |#2|) |#1|))) (-401 |#2|) (-1016)) (T -400)) +((-1703 (*1 *2) (-12 (-4 *4 (-1016)) (-5 *2 (-710)) (-5 *1 (-400 *3 *4)) (-4 *3 (-401 *4))))) +(-10 -8 (-15 -1703 ((-710))) (-15 -3878 (|#1| (-852))) (-15 -2072 ((-852) |#1|)) (-15 -4032 (|#1|)) (-15 -2454 (|#2| |#1|)) (-15 -2062 (|#2| |#1|)) (-15 -2919 (|#1|)) (-15 -2059 (|#1| |#1|)) (-15 -3398 ((-710) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -4007 ((-108) |#1| |#1|)) (-15 -1684 (|#1|)) (-15 -1684 (|#1| (-589 |#2|))) (-15 -4086 (|#1|)) (-15 -4086 (|#1| (-589 |#2|))) (-15 -1309 (|#1| |#1| |#1|)) (-15 -3682 (|#1| |#1| |#1|)) (-15 -3682 (|#1| |#1| |#2|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -3471 ((-108) |#1| |#1|)) (-15 -3288 (|#1| |#1| |#1|)) (-15 -3288 (|#1| |#1| |#2|)) (-15 -3288 (|#1| |#2| |#1|)) (-15 -1472 (|#1| (-589 |#2|))) (-15 -2792 ((-710) |#2| |#1|)) (-15 -2792 ((-710) (-1 (-108) |#2|) |#1|))) +((-3924 (((-108) $ $) 19)) (-2919 (($) 67 (|has| |#1| (-344)))) (-3288 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-1922 (($ $ $) 78)) (-3471 (((-108) $ $) 79)) (-3079 (((-108) $ (-710)) 8)) (-1703 (((-710)) 61 (|has| |#1| (-344)))) (-4086 (($ (-589 |#1|)) 74) (($) 73)) (-3387 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-1773 (($ $) 58 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2249 (($ |#1| $) 47 (|has| $ (-6 -4244))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4244)))) (-2557 (($ |#1| $) 57 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4244)))) (-4032 (($) 64 (|has| |#1| (-344)))) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2454 ((|#1| $) 65 (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2062 ((|#1| $) 66 (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2072 (((-852) $) 63 (|has| |#1| (-344)))) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22)) (-1309 (($ $ $) 75)) (-1934 ((|#1| $) 39)) (-3450 (($ |#1| $) 40)) (-3878 (($ (-852)) 62 (|has| |#1| (-344)))) (-2783 (((-1034) $) 21)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3682 (($ $ |#1|) 77) (($ $ $) 76)) (-3433 (($) 49) (($ (-589 |#1|)) 48)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 59 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 50)) (-2059 (($ $) 68 (|has| |#1| (-344)))) (-1458 (((-794) $) 18)) (-3398 (((-710) $) 69)) (-1684 (($ (-589 |#1|)) 72) (($) 71)) (-2401 (($ (-589 |#1|)) 42)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20)) (-4007 (((-108) $ $) 70)) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-401 |#1|) (-129) (-1016)) (T -401)) +((-3398 (*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-1016)) (-5 *2 (-710)))) (-2059 (*1 *1 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-1016)) (-4 *2 (-344)))) (-2919 (*1 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-344)) (-4 *2 (-1016)))) (-2062 (*1 *2 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-1016)) (-4 *2 (-786)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-1016)) (-4 *2 (-786))))) +(-13 (-207 |t#1|) (-1014 |t#1|) (-10 -8 (-6 -4244) (-15 -3398 ((-710) $)) (IF (|has| |t#1| (-344)) (PROGN (-6 (-344)) (-15 -2059 ($ $)) (-15 -2919 ($))) |%noBranch|) (IF (|has| |t#1| (-786)) (PROGN (-15 -2062 (|t#1| $)) (-15 -2454 (|t#1| $))) |%noBranch|))) +(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-563 (-794)) . T) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-207 |#1|) . T) ((-213 |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-344) |has| |#1| (-344)) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1014 |#1|) . T) ((-1016) . T) ((-1122) . T)) +((-1432 (((-540 |#2|) |#2| (-1087)) 35)) (-2737 (((-540 |#2|) |#2| (-1087)) 19)) (-1533 ((|#2| |#2| (-1087)) 24))) +(((-402 |#1| |#2|) (-10 -7 (-15 -2737 ((-540 |#2|) |#2| (-1087))) (-15 -1432 ((-540 |#2|) |#2| (-1087))) (-15 -1533 (|#2| |#2| (-1087)))) (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-1108) (-29 |#1|))) (T -402)) +((-1533 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *1 (-402 *4 *2)) (-4 *2 (-13 (-1108) (-29 *4))))) (-1432 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-540 *3)) (-5 *1 (-402 *5 *3)) (-4 *3 (-13 (-1108) (-29 *5))))) (-2737 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-540 *3)) (-5 *1 (-402 *5 *3)) (-4 *3 (-13 (-1108) (-29 *5)))))) +(-10 -7 (-15 -2737 ((-540 |#2|) |#2| (-1087))) (-15 -1432 ((-540 |#2|) |#2| (-1087))) (-15 -1533 (|#2| |#2| (-1087)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-3198 (($ |#2| |#1|) 35)) (-3162 (($ |#2| |#1|) 33)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-307 |#2|)) 25)) (-1621 (((-710)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 10 T CONST)) (-2767 (($) 16 T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 34)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-403 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4231)) (IF (|has| |#1| (-6 -4231)) (-6 -4231) |%noBranch|) |%noBranch|) (-15 -1458 ($ |#1|)) (-15 -1458 ($ (-307 |#2|))) (-15 -3198 ($ |#2| |#1|)) (-15 -3162 ($ |#2| |#1|)))) (-13 (-158) (-37 (-383 (-523)))) (-13 (-786) (-21))) (T -403)) +((-1458 (*1 *1 *2) (-12 (-5 *1 (-403 *2 *3)) (-4 *2 (-13 (-158) (-37 (-383 (-523))))) (-4 *3 (-13 (-786) (-21))))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-307 *4)) (-4 *4 (-13 (-786) (-21))) (-5 *1 (-403 *3 *4)) (-4 *3 (-13 (-158) (-37 (-383 (-523))))))) (-3198 (*1 *1 *2 *3) (-12 (-5 *1 (-403 *3 *2)) (-4 *3 (-13 (-158) (-37 (-383 (-523))))) (-4 *2 (-13 (-786) (-21))))) (-3162 (*1 *1 *2 *3) (-12 (-5 *1 (-403 *3 *2)) (-4 *3 (-13 (-158) (-37 (-383 (-523))))) (-4 *2 (-13 (-786) (-21)))))) +(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4231)) (IF (|has| |#1| (-6 -4231)) (-6 -4231) |%noBranch|) |%noBranch|) (-15 -1458 ($ |#1|)) (-15 -1458 ($ (-307 |#2|))) (-15 -3198 ($ |#2| |#1|)) (-15 -3162 ($ |#2| |#1|)))) +((-3417 (((-3 |#2| (-589 |#2|)) |#2| (-1087)) 105))) +(((-404 |#1| |#2|) (-10 -7 (-15 -3417 ((-3 |#2| (-589 |#2|)) |#2| (-1087)))) (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-1108) (-889) (-29 |#1|))) (T -404)) +((-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 *3 (-589 *3))) (-5 *1 (-404 *5 *3)) (-4 *3 (-13 (-1108) (-889) (-29 *5)))))) +(-10 -7 (-15 -3417 ((-3 |#2| (-589 |#2|)) |#2| (-1087)))) +((-1957 (((-589 (-1087)) $) 72)) (-1786 (((-383 (-1083 $)) $ (-562 $)) 269)) (-2955 (($ $ (-271 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-589 (-562 $)) (-589 $)) 234)) (-3517 (((-3 (-562 $) "failed") $) NIL) (((-3 (-1087) "failed") $) 75) (((-3 (-523) "failed") $) NIL) (((-3 |#2| "failed") $) 230) (((-3 (-383 (-883 |#2|)) "failed") $) 320) (((-3 (-883 |#2|) "failed") $) 232) (((-3 (-383 (-523)) "failed") $) NIL)) (-3474 (((-562 $) $) NIL) (((-1087) $) 30) (((-523) $) NIL) ((|#2| $) 228) (((-383 (-883 |#2|)) $) 301) (((-883 |#2|) $) 229) (((-383 (-523)) $) NIL)) (-1403 (((-110) (-110)) 47)) (-2531 (($ $) 87)) (-1363 (((-3 (-562 $) "failed") $) 225)) (-1771 (((-589 (-562 $)) $) 226)) (-3226 (((-3 (-589 $) "failed") $) 244)) (-1295 (((-3 (-2 (|:| |val| $) (|:| -2735 (-523))) "failed") $) 251)) (-4006 (((-3 (-589 $) "failed") $) 242)) (-2492 (((-3 (-2 (|:| -2935 (-523)) (|:| |var| (-562 $))) "failed") $) 260)) (-2630 (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $) 248) (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $ (-110)) 215) (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $ (-1087)) 217)) (-3749 (((-108) $) 19)) (-3760 ((|#2| $) 21)) (-2679 (($ $ (-562 $) $) NIL) (($ $ (-589 (-562 $)) (-589 $)) 233) (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) 96) (($ $ (-1087) (-1 $ (-589 $))) NIL) (($ $ (-1087) (-1 $ $)) NIL) (($ $ (-589 (-110)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-110) (-1 $ (-589 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1087)) 57) (($ $ (-589 (-1087))) 237) (($ $) 238) (($ $ (-110) $ (-1087)) 60) (($ $ (-589 (-110)) (-589 $) (-1087)) 67) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ $))) 107) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ (-589 $)))) 239) (($ $ (-1087) (-710) (-1 $ (-589 $))) 94) (($ $ (-1087) (-710) (-1 $ $)) 93)) (-3223 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-589 $)) 106)) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) 235)) (-3414 (($ $) 280)) (-3663 (((-823 (-523)) $) 254) (((-823 (-355)) $) 257) (($ (-394 $)) 316) (((-499) $) NIL)) (-1458 (((-794) $) 236) (($ (-562 $)) 84) (($ (-1087)) 26) (($ |#2|) NIL) (($ (-1039 |#2| (-562 $))) NIL) (($ (-383 |#2|)) 285) (($ (-883 (-383 |#2|))) 325) (($ (-383 (-883 (-383 |#2|)))) 297) (($ (-383 (-883 |#2|))) 291) (($ $) NIL) (($ (-883 |#2|)) 184) (($ (-383 (-523))) 330) (($ (-523)) NIL)) (-1621 (((-710)) 79)) (-1950 (((-108) (-110)) 41)) (-2523 (($ (-1087) $) 33) (($ (-1087) $ $) 34) (($ (-1087) $ $ $) 35) (($ (-1087) $ $ $ $) 36) (($ (-1087) (-589 $)) 39)) (* (($ (-383 (-523)) $) NIL) (($ $ (-383 (-523))) NIL) (($ |#2| $) 262) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-523) $) NIL) (($ (-710) $) NIL) (($ (-852) $) NIL))) +(((-405 |#1| |#2|) (-10 -8 (-15 * (|#1| (-852) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1621 ((-710))) (-15 -1458 (|#1| (-523))) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -3663 ((-499) |#1|)) (-15 -3474 ((-883 |#2|) |#1|)) (-15 -3517 ((-3 (-883 |#2|) "failed") |#1|)) (-15 -1458 (|#1| (-883 |#2|))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1458 (|#1| |#1|)) (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -3474 ((-383 (-883 |#2|)) |#1|)) (-15 -3517 ((-3 (-383 (-883 |#2|)) "failed") |#1|)) (-15 -1458 (|#1| (-383 (-883 |#2|)))) (-15 -1786 ((-383 (-1083 |#1|)) |#1| (-562 |#1|))) (-15 -1458 (|#1| (-383 (-883 (-383 |#2|))))) (-15 -1458 (|#1| (-883 (-383 |#2|)))) (-15 -1458 (|#1| (-383 |#2|))) (-15 -3414 (|#1| |#1|)) (-15 -3663 (|#1| (-394 |#1|))) (-15 -2679 (|#1| |#1| (-1087) (-710) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-1087) (-710) (-1 |#1| (-589 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-710)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-710)) (-589 (-1 |#1| |#1|)))) (-15 -1295 ((-3 (-2 (|:| |val| |#1|) (|:| -2735 (-523))) "failed") |#1|)) (-15 -2630 ((-3 (-2 (|:| |var| (-562 |#1|)) (|:| -2735 (-523))) "failed") |#1| (-1087))) (-15 -2630 ((-3 (-2 (|:| |var| (-562 |#1|)) (|:| -2735 (-523))) "failed") |#1| (-110))) (-15 -2531 (|#1| |#1|)) (-15 -1458 (|#1| (-1039 |#2| (-562 |#1|)))) (-15 -2492 ((-3 (-2 (|:| -2935 (-523)) (|:| |var| (-562 |#1|))) "failed") |#1|)) (-15 -4006 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -2630 ((-3 (-2 (|:| |var| (-562 |#1|)) (|:| -2735 (-523))) "failed") |#1|)) (-15 -3226 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -2679 (|#1| |#1| (-589 (-110)) (-589 |#1|) (-1087))) (-15 -2679 (|#1| |#1| (-110) |#1| (-1087))) (-15 -2679 (|#1| |#1|)) (-15 -2679 (|#1| |#1| (-589 (-1087)))) (-15 -2679 (|#1| |#1| (-1087))) (-15 -2523 (|#1| (-1087) (-589 |#1|))) (-15 -2523 (|#1| (-1087) |#1| |#1| |#1| |#1|)) (-15 -2523 (|#1| (-1087) |#1| |#1| |#1|)) (-15 -2523 (|#1| (-1087) |#1| |#1|)) (-15 -2523 (|#1| (-1087) |#1|)) (-15 -1957 ((-589 (-1087)) |#1|)) (-15 -3760 (|#2| |#1|)) (-15 -3749 ((-108) |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -3474 ((-1087) |#1|)) (-15 -3517 ((-3 (-1087) "failed") |#1|)) (-15 -1458 (|#1| (-1087))) (-15 -2679 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-110) (-1 |#1| (-589 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2679 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| |#1|)))) (-15 -2679 (|#1| |#1| (-1087) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-1087) (-1 |#1| (-589 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| |#1|)))) (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 -1771 ((-589 (-562 |#1|)) |#1|)) (-15 -1363 ((-3 (-562 |#1|) "failed") |#1|)) (-15 -2955 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -2955 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2955 (|#1| |#1| (-271 |#1|))) (-15 -3223 (|#1| (-110) (-589 |#1|))) (-15 -3223 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1|)) (-15 -2679 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-271 |#1|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -2679 (|#1| |#1| (-562 |#1|) |#1|)) (-15 -3474 ((-562 |#1|) |#1|)) (-15 -3517 ((-3 (-562 |#1|) "failed") |#1|)) (-15 -1458 (|#1| (-562 |#1|))) (-15 -1458 ((-794) |#1|))) (-406 |#2|) (-786)) (T -405)) +((-1403 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *4 (-786)) (-5 *1 (-405 *3 *4)) (-4 *3 (-406 *4)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-405 *4 *5)) (-4 *4 (-406 *5)))) (-1621 (*1 *2) (-12 (-4 *4 (-786)) (-5 *2 (-710)) (-5 *1 (-405 *3 *4)) (-4 *3 (-406 *4))))) +(-10 -8 (-15 * (|#1| (-852) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1621 ((-710))) (-15 -1458 (|#1| (-523))) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -3663 ((-499) |#1|)) (-15 -3474 ((-883 |#2|) |#1|)) (-15 -3517 ((-3 (-883 |#2|) "failed") |#1|)) (-15 -1458 (|#1| (-883 |#2|))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1458 (|#1| |#1|)) (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -3474 ((-383 (-883 |#2|)) |#1|)) (-15 -3517 ((-3 (-383 (-883 |#2|)) "failed") |#1|)) (-15 -1458 (|#1| (-383 (-883 |#2|)))) (-15 -1786 ((-383 (-1083 |#1|)) |#1| (-562 |#1|))) (-15 -1458 (|#1| (-383 (-883 (-383 |#2|))))) (-15 -1458 (|#1| (-883 (-383 |#2|)))) (-15 -1458 (|#1| (-383 |#2|))) (-15 -3414 (|#1| |#1|)) (-15 -3663 (|#1| (-394 |#1|))) (-15 -2679 (|#1| |#1| (-1087) (-710) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-1087) (-710) (-1 |#1| (-589 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-710)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-710)) (-589 (-1 |#1| |#1|)))) (-15 -1295 ((-3 (-2 (|:| |val| |#1|) (|:| -2735 (-523))) "failed") |#1|)) (-15 -2630 ((-3 (-2 (|:| |var| (-562 |#1|)) (|:| -2735 (-523))) "failed") |#1| (-1087))) (-15 -2630 ((-3 (-2 (|:| |var| (-562 |#1|)) (|:| -2735 (-523))) "failed") |#1| (-110))) (-15 -2531 (|#1| |#1|)) (-15 -1458 (|#1| (-1039 |#2| (-562 |#1|)))) (-15 -2492 ((-3 (-2 (|:| -2935 (-523)) (|:| |var| (-562 |#1|))) "failed") |#1|)) (-15 -4006 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -2630 ((-3 (-2 (|:| |var| (-562 |#1|)) (|:| -2735 (-523))) "failed") |#1|)) (-15 -3226 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -2679 (|#1| |#1| (-589 (-110)) (-589 |#1|) (-1087))) (-15 -2679 (|#1| |#1| (-110) |#1| (-1087))) (-15 -2679 (|#1| |#1|)) (-15 -2679 (|#1| |#1| (-589 (-1087)))) (-15 -2679 (|#1| |#1| (-1087))) (-15 -2523 (|#1| (-1087) (-589 |#1|))) (-15 -2523 (|#1| (-1087) |#1| |#1| |#1| |#1|)) (-15 -2523 (|#1| (-1087) |#1| |#1| |#1|)) (-15 -2523 (|#1| (-1087) |#1| |#1|)) (-15 -2523 (|#1| (-1087) |#1|)) (-15 -1957 ((-589 (-1087)) |#1|)) (-15 -3760 (|#2| |#1|)) (-15 -3749 ((-108) |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -3474 ((-1087) |#1|)) (-15 -3517 ((-3 (-1087) "failed") |#1|)) (-15 -1458 (|#1| (-1087))) (-15 -2679 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-110) (-1 |#1| (-589 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2679 (|#1| |#1| (-589 (-110)) (-589 (-1 |#1| |#1|)))) (-15 -2679 (|#1| |#1| (-1087) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-1087) (-1 |#1| (-589 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| (-589 |#1|))))) (-15 -2679 (|#1| |#1| (-589 (-1087)) (-589 (-1 |#1| |#1|)))) (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 -1771 ((-589 (-562 |#1|)) |#1|)) (-15 -1363 ((-3 (-562 |#1|) "failed") |#1|)) (-15 -2955 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -2955 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2955 (|#1| |#1| (-271 |#1|))) (-15 -3223 (|#1| (-110) (-589 |#1|))) (-15 -3223 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1| |#1|)) (-15 -3223 (|#1| (-110) |#1|)) (-15 -2679 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-271 |#1|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2679 (|#1| |#1| (-589 (-562 |#1|)) (-589 |#1|))) (-15 -2679 (|#1| |#1| (-562 |#1|) |#1|)) (-15 -3474 ((-562 |#1|) |#1|)) (-15 -3517 ((-3 (-562 |#1|) "failed") |#1|)) (-15 -1458 (|#1| (-562 |#1|))) (-15 -1458 ((-794) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 116 (|has| |#1| (-25)))) (-1957 (((-589 (-1087)) $) 203)) (-1786 (((-383 (-1083 $)) $ (-562 $)) 171 (|has| |#1| (-515)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 143 (|has| |#1| (-515)))) (-3345 (($ $) 144 (|has| |#1| (-515)))) (-3331 (((-108) $) 146 (|has| |#1| (-515)))) (-3072 (((-589 (-562 $)) $) 44)) (-3212 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-2955 (($ $ (-271 $)) 56) (($ $ (-589 (-271 $))) 55) (($ $ (-589 (-562 $)) (-589 $)) 54)) (-2291 (($ $) 163 (|has| |#1| (-515)))) (-3614 (((-394 $) $) 164 (|has| |#1| (-515)))) (-1387 (((-108) $ $) 154 (|has| |#1| (-515)))) (-2518 (($) 102 (-3262 (|has| |#1| (-1028)) (|has| |#1| (-25))) CONST)) (-3517 (((-3 (-562 $) "failed") $) 69) (((-3 (-1087) "failed") $) 216) (((-3 (-523) "failed") $) 209 (|has| |#1| (-964 (-523)))) (((-3 |#1| "failed") $) 207) (((-3 (-383 (-883 |#1|)) "failed") $) 169 (|has| |#1| (-515))) (((-3 (-883 |#1|) "failed") $) 123 (|has| |#1| (-973))) (((-3 (-383 (-523)) "failed") $) 95 (-3262 (-12 (|has| |#1| (-964 (-523))) (|has| |#1| (-515))) (|has| |#1| (-964 (-383 (-523))))))) (-3474 (((-562 $) $) 68) (((-1087) $) 215) (((-523) $) 210 (|has| |#1| (-964 (-523)))) ((|#1| $) 206) (((-383 (-883 |#1|)) $) 168 (|has| |#1| (-515))) (((-883 |#1|) $) 122 (|has| |#1| (-973))) (((-383 (-523)) $) 94 (-3262 (-12 (|has| |#1| (-964 (-523))) (|has| |#1| (-515))) (|has| |#1| (-964 (-383 (-523))))))) (-3796 (($ $ $) 158 (|has| |#1| (-515)))) (-2381 (((-629 (-523)) (-629 $)) 137 (-4099 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 136 (-4099 (|has| |#1| (-585 (-523))) (|has| |#1| (-973)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 135 (|has| |#1| (-973))) (((-629 |#1|) (-629 $)) 134 (|has| |#1| (-973)))) (-2121 (((-3 $ "failed") $) 105 (|has| |#1| (-1028)))) (-3769 (($ $ $) 157 (|has| |#1| (-515)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 152 (|has| |#1| (-515)))) (-2657 (((-108) $) 165 (|has| |#1| (-515)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 212 (|has| |#1| (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 211 (|has| |#1| (-817 (-355))))) (-2361 (($ $) 51) (($ (-589 $)) 50)) (-1444 (((-589 (-110)) $) 43)) (-1403 (((-110) (-110)) 42)) (-2023 (((-108) $) 103 (|has| |#1| (-1028)))) (-1557 (((-108) $) 22 (|has| $ (-964 (-523))))) (-2531 (($ $) 186 (|has| |#1| (-973)))) (-2785 (((-1039 |#1| (-562 $)) $) 187 (|has| |#1| (-973)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 161 (|has| |#1| (-515)))) (-1483 (((-1083 $) (-562 $)) 25 (|has| $ (-973)))) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3612 (($ (-1 $ $) (-562 $)) 36)) (-1363 (((-3 (-562 $) "failed") $) 46)) (-3244 (($ (-589 $)) 150 (|has| |#1| (-515))) (($ $ $) 149 (|has| |#1| (-515)))) (-3779 (((-1070) $) 9)) (-1771 (((-589 (-562 $)) $) 45)) (-2868 (($ (-110) $) 38) (($ (-110) (-589 $)) 37)) (-3226 (((-3 (-589 $) "failed") $) 192 (|has| |#1| (-1028)))) (-1295 (((-3 (-2 (|:| |val| $) (|:| -2735 (-523))) "failed") $) 183 (|has| |#1| (-973)))) (-4006 (((-3 (-589 $) "failed") $) 190 (|has| |#1| (-25)))) (-2492 (((-3 (-2 (|:| -2935 (-523)) (|:| |var| (-562 $))) "failed") $) 189 (|has| |#1| (-25)))) (-2630 (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $) 191 (|has| |#1| (-1028))) (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $ (-110)) 185 (|has| |#1| (-973))) (((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $ (-1087)) 184 (|has| |#1| (-973)))) (-3259 (((-108) $ (-110)) 40) (((-108) $ (-1087)) 39)) (-3738 (($ $) 107 (-3262 (|has| |#1| (-448)) (|has| |#1| (-515))))) (-2510 (((-710) $) 47)) (-2783 (((-1034) $) 10)) (-3749 (((-108) $) 205)) (-3760 ((|#1| $) 204)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 151 (|has| |#1| (-515)))) (-3278 (($ (-589 $)) 148 (|has| |#1| (-515))) (($ $ $) 147 (|has| |#1| (-515)))) (-2585 (((-108) $ $) 35) (((-108) $ (-1087)) 34)) (-1820 (((-394 $) $) 162 (|has| |#1| (-515)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-515))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 159 (|has| |#1| (-515)))) (-3746 (((-3 $ "failed") $ $) 142 (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 153 (|has| |#1| (-515)))) (-4104 (((-108) $) 23 (|has| $ (-964 (-523))))) (-2679 (($ $ (-562 $) $) 67) (($ $ (-589 (-562 $)) (-589 $)) 66) (($ $ (-589 (-271 $))) 65) (($ $ (-271 $)) 64) (($ $ $ $) 63) (($ $ (-589 $) (-589 $)) 62) (($ $ (-589 (-1087)) (-589 (-1 $ $))) 33) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) 32) (($ $ (-1087) (-1 $ (-589 $))) 31) (($ $ (-1087) (-1 $ $)) 30) (($ $ (-589 (-110)) (-589 (-1 $ $))) 29) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) 28) (($ $ (-110) (-1 $ (-589 $))) 27) (($ $ (-110) (-1 $ $)) 26) (($ $ (-1087)) 197 (|has| |#1| (-564 (-499)))) (($ $ (-589 (-1087))) 196 (|has| |#1| (-564 (-499)))) (($ $) 195 (|has| |#1| (-564 (-499)))) (($ $ (-110) $ (-1087)) 194 (|has| |#1| (-564 (-499)))) (($ $ (-589 (-110)) (-589 $) (-1087)) 193 (|has| |#1| (-564 (-499)))) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ $))) 182 (|has| |#1| (-973))) (($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ (-589 $)))) 181 (|has| |#1| (-973))) (($ $ (-1087) (-710) (-1 $ (-589 $))) 180 (|has| |#1| (-973))) (($ $ (-1087) (-710) (-1 $ $)) 179 (|has| |#1| (-973)))) (-1972 (((-710) $) 155 (|has| |#1| (-515)))) (-3223 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-589 $)) 57)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 156 (|has| |#1| (-515)))) (-3957 (($ $) 49) (($ $ $) 48)) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) 128 (|has| |#1| (-973))) (($ $ (-1087) (-710)) 127 (|has| |#1| (-973))) (($ $ (-589 (-1087))) 126 (|has| |#1| (-973))) (($ $ (-1087)) 125 (|has| |#1| (-973)))) (-3414 (($ $) 176 (|has| |#1| (-515)))) (-2797 (((-1039 |#1| (-562 $)) $) 177 (|has| |#1| (-515)))) (-3727 (($ $) 24 (|has| $ (-973)))) (-3663 (((-823 (-523)) $) 214 (|has| |#1| (-564 (-823 (-523))))) (((-823 (-355)) $) 213 (|has| |#1| (-564 (-823 (-355))))) (($ (-394 $)) 178 (|has| |#1| (-515))) (((-499) $) 97 (|has| |#1| (-564 (-499))))) (-3208 (($ $ $) 111 (|has| |#1| (-448)))) (-1714 (($ $ $) 112 (|has| |#1| (-448)))) (-1458 (((-794) $) 11) (($ (-562 $)) 70) (($ (-1087)) 217) (($ |#1|) 208) (($ (-1039 |#1| (-562 $))) 188 (|has| |#1| (-973))) (($ (-383 |#1|)) 174 (|has| |#1| (-515))) (($ (-883 (-383 |#1|))) 173 (|has| |#1| (-515))) (($ (-383 (-883 (-383 |#1|)))) 172 (|has| |#1| (-515))) (($ (-383 (-883 |#1|))) 170 (|has| |#1| (-515))) (($ $) 141 (|has| |#1| (-515))) (($ (-883 |#1|)) 124 (|has| |#1| (-973))) (($ (-383 (-523))) 96 (-3262 (|has| |#1| (-515)) (-12 (|has| |#1| (-964 (-523))) (|has| |#1| (-515))) (|has| |#1| (-964 (-383 (-523)))))) (($ (-523)) 93 (-3262 (|has| |#1| (-973)) (|has| |#1| (-964 (-523)))))) (-3901 (((-3 $ "failed") $) 138 (|has| |#1| (-134)))) (-1621 (((-710)) 133 (|has| |#1| (-973)))) (-3822 (($ $) 53) (($ (-589 $)) 52)) (-1950 (((-108) (-110)) 41)) (-1704 (((-108) $ $) 145 (|has| |#1| (-515)))) (-2523 (($ (-1087) $) 202) (($ (-1087) $ $) 201) (($ (-1087) $ $ $) 200) (($ (-1087) $ $ $ $) 199) (($ (-1087) (-589 $)) 198)) (-2364 (($ $ (-523)) 110 (-3262 (|has| |#1| (-448)) (|has| |#1| (-515)))) (($ $ (-710)) 104 (|has| |#1| (-1028))) (($ $ (-852)) 100 (|has| |#1| (-1028)))) (-2756 (($) 115 (|has| |#1| (-25)) CONST)) (-2767 (($) 101 (|has| |#1| (-1028)) CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) 132 (|has| |#1| (-973))) (($ $ (-1087) (-710)) 131 (|has| |#1| (-973))) (($ $ (-589 (-1087))) 130 (|has| |#1| (-973))) (($ $ (-1087)) 129 (|has| |#1| (-973)))) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18)) (-4098 (($ (-1039 |#1| (-562 $)) (-1039 |#1| (-562 $))) 175 (|has| |#1| (-515))) (($ $ $) 108 (-3262 (|has| |#1| (-448)) (|has| |#1| (-515))))) (-4087 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-4075 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-523)) 109 (-3262 (|has| |#1| (-448)) (|has| |#1| (-515)))) (($ $ (-710)) 106 (|has| |#1| (-1028))) (($ $ (-852)) 99 (|has| |#1| (-1028)))) (* (($ (-383 (-523)) $) 167 (|has| |#1| (-515))) (($ $ (-383 (-523))) 166 (|has| |#1| (-515))) (($ |#1| $) 140 (|has| |#1| (-158))) (($ $ |#1|) 139 (|has| |#1| (-158))) (($ (-523) $) 121 (|has| |#1| (-21))) (($ (-710) $) 117 (|has| |#1| (-25))) (($ (-852) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1028))))) +(((-406 |#1|) (-129) (-786)) (T -406)) +((-3749 (*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-786)) (-5 *2 (-108)))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-786)))) (-1957 (*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-786)) (-5 *2 (-589 (-1087))))) (-2523 (*1 *1 *2 *1) (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)))) (-2523 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)))) (-2523 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)))) (-2523 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)))) (-2523 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-589 *1)) (-4 *1 (-406 *4)) (-4 *4 (-786)))) (-2679 (*1 *1 *1 *2) (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)) (-4 *3 (-564 (-499))))) (-2679 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-1087))) (-4 *1 (-406 *3)) (-4 *3 (-786)) (-4 *3 (-564 (-499))))) (-2679 (*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-786)) (-4 *2 (-564 (-499))))) (-2679 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1087)) (-4 *1 (-406 *4)) (-4 *4 (-786)) (-4 *4 (-564 (-499))))) (-2679 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-589 (-110))) (-5 *3 (-589 *1)) (-5 *4 (-1087)) (-4 *1 (-406 *5)) (-4 *5 (-786)) (-4 *5 (-564 (-499))))) (-3226 (*1 *2 *1) (|partial| -12 (-4 *3 (-1028)) (-4 *3 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-406 *3)))) (-2630 (*1 *2 *1) (|partial| -12 (-4 *3 (-1028)) (-4 *3 (-786)) (-5 *2 (-2 (|:| |var| (-562 *1)) (|:| -2735 (-523)))) (-4 *1 (-406 *3)))) (-4006 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-406 *3)))) (-2492 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-786)) (-5 *2 (-2 (|:| -2935 (-523)) (|:| |var| (-562 *1)))) (-4 *1 (-406 *3)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1039 *3 (-562 *1))) (-4 *3 (-973)) (-4 *3 (-786)) (-4 *1 (-406 *3)))) (-2785 (*1 *2 *1) (-12 (-4 *3 (-973)) (-4 *3 (-786)) (-5 *2 (-1039 *3 (-562 *1))) (-4 *1 (-406 *3)))) (-2531 (*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-786)) (-4 *2 (-973)))) (-2630 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-4 *4 (-973)) (-4 *4 (-786)) (-5 *2 (-2 (|:| |var| (-562 *1)) (|:| -2735 (-523)))) (-4 *1 (-406 *4)))) (-2630 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1087)) (-4 *4 (-973)) (-4 *4 (-786)) (-5 *2 (-2 (|:| |var| (-562 *1)) (|:| -2735 (-523)))) (-4 *1 (-406 *4)))) (-1295 (*1 *2 *1) (|partial| -12 (-4 *3 (-973)) (-4 *3 (-786)) (-5 *2 (-2 (|:| |val| *1) (|:| -2735 (-523)))) (-4 *1 (-406 *3)))) (-2679 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-589 (-710))) (-5 *4 (-589 (-1 *1 *1))) (-4 *1 (-406 *5)) (-4 *5 (-786)) (-4 *5 (-973)))) (-2679 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-589 (-710))) (-5 *4 (-589 (-1 *1 (-589 *1)))) (-4 *1 (-406 *5)) (-4 *5 (-786)) (-4 *5 (-973)))) (-2679 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-710)) (-5 *4 (-1 *1 (-589 *1))) (-4 *1 (-406 *5)) (-4 *5 (-786)) (-4 *5 (-973)))) (-2679 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-710)) (-5 *4 (-1 *1 *1)) (-4 *1 (-406 *5)) (-4 *5 (-786)) (-4 *5 (-973)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-394 *1)) (-4 *1 (-406 *3)) (-4 *3 (-515)) (-4 *3 (-786)))) (-2797 (*1 *2 *1) (-12 (-4 *3 (-515)) (-4 *3 (-786)) (-5 *2 (-1039 *3 (-562 *1))) (-4 *1 (-406 *3)))) (-3414 (*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-786)) (-4 *2 (-515)))) (-4098 (*1 *1 *2 *2) (-12 (-5 *2 (-1039 *3 (-562 *1))) (-4 *3 (-515)) (-4 *3 (-786)) (-4 *1 (-406 *3)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-383 *3)) (-4 *3 (-515)) (-4 *3 (-786)) (-4 *1 (-406 *3)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-883 (-383 *3))) (-4 *3 (-515)) (-4 *3 (-786)) (-4 *1 (-406 *3)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-383 (-883 (-383 *3)))) (-4 *3 (-515)) (-4 *3 (-786)) (-4 *1 (-406 *3)))) (-1786 (*1 *2 *1 *3) (-12 (-5 *3 (-562 *1)) (-4 *1 (-406 *4)) (-4 *4 (-786)) (-4 *4 (-515)) (-5 *2 (-383 (-1083 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-406 *3)) (-4 *3 (-786)) (-4 *3 (-1028))))) +(-13 (-279) (-964 (-1087)) (-815 |t#1|) (-376 |t#1|) (-387 |t#1|) (-10 -8 (-15 -3749 ((-108) $)) (-15 -3760 (|t#1| $)) (-15 -1957 ((-589 (-1087)) $)) (-15 -2523 ($ (-1087) $)) (-15 -2523 ($ (-1087) $ $)) (-15 -2523 ($ (-1087) $ $ $)) (-15 -2523 ($ (-1087) $ $ $ $)) (-15 -2523 ($ (-1087) (-589 $))) (IF (|has| |t#1| (-564 (-499))) (PROGN (-6 (-564 (-499))) (-15 -2679 ($ $ (-1087))) (-15 -2679 ($ $ (-589 (-1087)))) (-15 -2679 ($ $)) (-15 -2679 ($ $ (-110) $ (-1087))) (-15 -2679 ($ $ (-589 (-110)) (-589 $) (-1087)))) |%noBranch|) (IF (|has| |t#1| (-1028)) (PROGN (-6 (-666)) (-15 ** ($ $ (-710))) (-15 -3226 ((-3 (-589 $) "failed") $)) (-15 -2630 ((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-448)) (-6 (-448)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -4006 ((-3 (-589 $) "failed") $)) (-15 -2492 ((-3 (-2 (|:| -2935 (-523)) (|:| |var| (-562 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-973)) (PROGN (-6 (-973)) (-6 (-964 (-883 |t#1|))) (-6 (-831 (-1087))) (-6 (-353 |t#1|)) (-15 -1458 ($ (-1039 |t#1| (-562 $)))) (-15 -2785 ((-1039 |t#1| (-562 $)) $)) (-15 -2531 ($ $)) (-15 -2630 ((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $ (-110))) (-15 -2630 ((-3 (-2 (|:| |var| (-562 $)) (|:| -2735 (-523))) "failed") $ (-1087))) (-15 -1295 ((-3 (-2 (|:| |val| $) (|:| -2735 (-523))) "failed") $)) (-15 -2679 ($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ $)))) (-15 -2679 ($ $ (-589 (-1087)) (-589 (-710)) (-589 (-1 $ (-589 $))))) (-15 -2679 ($ $ (-1087) (-710) (-1 $ (-589 $)))) (-15 -2679 ($ $ (-1087) (-710) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-158)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-6 (-339)) (-6 (-964 (-383 (-883 |t#1|)))) (-15 -3663 ($ (-394 $))) (-15 -2797 ((-1039 |t#1| (-562 $)) $)) (-15 -3414 ($ $)) (-15 -4098 ($ (-1039 |t#1| (-562 $)) (-1039 |t#1| (-562 $)))) (-15 -1458 ($ (-383 |t#1|))) (-15 -1458 ($ (-883 (-383 |t#1|)))) (-15 -1458 ($ (-383 (-883 (-383 |t#1|))))) (-15 -1786 ((-383 (-1083 $)) $ (-562 $))) (IF (|has| |t#1| (-964 (-523))) (-6 (-964 (-383 (-523)))) |%noBranch|)) |%noBranch|))) +(((-21) -3262 (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134)) (|has| |#1| (-21))) ((-23) -3262 (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3262 (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-383 (-523))) |has| |#1| (-515)) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) |has| |#1| (-515)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-515)) ((-107 |#1| |#1|) |has| |#1| (-158)) ((-107 $ $) |has| |#1| (-515)) ((-124) -3262 (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134)) (|has| |#1| (-21))) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) |has| |#1| (-515)) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-564 (-823 (-355))) |has| |#1| (-564 (-823 (-355)))) ((-564 (-823 (-523))) |has| |#1| (-564 (-823 (-523)))) ((-221) |has| |#1| (-515)) ((-267) |has| |#1| (-515)) ((-284) |has| |#1| (-515)) ((-286 $) . T) ((-279) . T) ((-339) |has| |#1| (-515)) ((-353 |#1|) |has| |#1| (-973)) ((-376 |#1|) . T) ((-387 |#1|) . T) ((-427) |has| |#1| (-515)) ((-448) |has| |#1| (-448)) ((-484 (-562 $) $) . T) ((-484 $ $) . T) ((-515) |has| |#1| (-515)) ((-591 #0#) |has| |#1| (-515)) ((-591 |#1|) |has| |#1| (-158)) ((-591 $) -3262 (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134))) ((-585 (-523)) -12 (|has| |#1| (-585 (-523))) (|has| |#1| (-973))) ((-585 |#1|) |has| |#1| (-973)) ((-657 #0#) |has| |#1| (-515)) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) |has| |#1| (-515)) ((-666) -3262 (|has| |#1| (-1028)) (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-448)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134))) ((-786) . T) ((-831 (-1087)) |has| |#1| (-973)) ((-817 (-355)) |has| |#1| (-817 (-355))) ((-817 (-523)) |has| |#1| (-817 (-523))) ((-815 |#1|) . T) ((-851) |has| |#1| (-515)) ((-964 (-383 (-523))) -3262 (|has| |#1| (-964 (-383 (-523)))) (-12 (|has| |#1| (-515)) (|has| |#1| (-964 (-523))))) ((-964 (-383 (-883 |#1|))) |has| |#1| (-515)) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 (-562 $)) . T) ((-964 (-883 |#1|)) |has| |#1| (-973)) ((-964 (-1087)) . T) ((-964 |#1|) . T) ((-979 #0#) |has| |#1| (-515)) ((-979 |#1|) |has| |#1| (-158)) ((-979 $) |has| |#1| (-515)) ((-973) -3262 (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134))) ((-980) -3262 (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134))) ((-1028) -3262 (|has| |#1| (-1028)) (|has| |#1| (-973)) (|has| |#1| (-515)) (|has| |#1| (-448)) (|has| |#1| (-158)) (|has| |#1| (-136)) (|has| |#1| (-134))) ((-1016) . T) ((-1122) . T) ((-1126) |has| |#1| (-515))) +((-2789 ((|#2| |#2| |#2|) 33)) (-1403 (((-110) (-110)) 44)) (-1587 ((|#2| |#2|) 66)) (-1445 ((|#2| |#2|) 69)) (-2710 ((|#2| |#2|) 32)) (-2322 ((|#2| |#2| |#2|) 35)) (-4102 ((|#2| |#2| |#2|) 37)) (-3254 ((|#2| |#2| |#2|) 34)) (-1325 ((|#2| |#2| |#2|) 36)) (-1950 (((-108) (-110)) 42)) (-3728 ((|#2| |#2|) 39)) (-2320 ((|#2| |#2|) 38)) (-2619 ((|#2| |#2|) 27)) (-2033 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3599 ((|#2| |#2| |#2|) 31))) +(((-407 |#1| |#2|) (-10 -7 (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 -2619 (|#2| |#2|)) (-15 -2033 (|#2| |#2|)) (-15 -2033 (|#2| |#2| |#2|)) (-15 -3599 (|#2| |#2| |#2|)) (-15 -2710 (|#2| |#2|)) (-15 -2789 (|#2| |#2| |#2|)) (-15 -3254 (|#2| |#2| |#2|)) (-15 -2322 (|#2| |#2| |#2|)) (-15 -1325 (|#2| |#2| |#2|)) (-15 -4102 (|#2| |#2| |#2|)) (-15 -2320 (|#2| |#2|)) (-15 -3728 (|#2| |#2|)) (-15 -1445 (|#2| |#2|)) (-15 -1587 (|#2| |#2|))) (-13 (-786) (-515)) (-406 |#1|)) (T -407)) +((-1587 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-1445 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-3728 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2320 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-4102 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-1325 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2322 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-3254 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2789 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2710 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-3599 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2033 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2033 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-2619 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) (-4 *2 (-406 *3)))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *4)) (-4 *4 (-406 *3)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) (-5 *1 (-407 *4 *5)) (-4 *5 (-406 *4))))) +(-10 -7 (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 -2619 (|#2| |#2|)) (-15 -2033 (|#2| |#2|)) (-15 -2033 (|#2| |#2| |#2|)) (-15 -3599 (|#2| |#2| |#2|)) (-15 -2710 (|#2| |#2|)) (-15 -2789 (|#2| |#2| |#2|)) (-15 -3254 (|#2| |#2| |#2|)) (-15 -2322 (|#2| |#2| |#2|)) (-15 -1325 (|#2| |#2| |#2|)) (-15 -4102 (|#2| |#2| |#2|)) (-15 -2320 (|#2| |#2|)) (-15 -3728 (|#2| |#2|)) (-15 -1445 (|#2| |#2|)) (-15 -1587 (|#2| |#2|))) +((-1996 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1083 |#2|)) (|:| |pol2| (-1083 |#2|)) (|:| |prim| (-1083 |#2|))) |#2| |#2|) 94 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-589 (-1083 |#2|))) (|:| |prim| (-1083 |#2|))) (-589 |#2|)) 58))) +(((-408 |#1| |#2|) (-10 -7 (-15 -1996 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-589 (-1083 |#2|))) (|:| |prim| (-1083 |#2|))) (-589 |#2|))) (IF (|has| |#2| (-27)) (-15 -1996 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1083 |#2|)) (|:| |pol2| (-1083 |#2|)) (|:| |prim| (-1083 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-515) (-786) (-136)) (-406 |#1|)) (T -408)) +((-1996 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-515) (-786) (-136))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1083 *3)) (|:| |pol2| (-1083 *3)) (|:| |prim| (-1083 *3)))) (-5 *1 (-408 *4 *3)) (-4 *3 (-27)) (-4 *3 (-406 *4)))) (-1996 (*1 *2 *3) (-12 (-5 *3 (-589 *5)) (-4 *5 (-406 *4)) (-4 *4 (-13 (-515) (-786) (-136))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-589 (-1083 *5))) (|:| |prim| (-1083 *5)))) (-5 *1 (-408 *4 *5))))) +(-10 -7 (-15 -1996 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-589 (-1083 |#2|))) (|:| |prim| (-1083 |#2|))) (-589 |#2|))) (IF (|has| |#2| (-27)) (-15 -1996 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1083 |#2|)) (|:| |pol2| (-1083 |#2|)) (|:| |prim| (-1083 |#2|))) |#2| |#2|)) |%noBranch|)) +((-2875 (((-1173)) 18)) (-3880 (((-1083 (-383 (-523))) |#2| (-562 |#2|)) 40) (((-383 (-523)) |#2|) 23))) +(((-409 |#1| |#2|) (-10 -7 (-15 -3880 ((-383 (-523)) |#2|)) (-15 -3880 ((-1083 (-383 (-523))) |#2| (-562 |#2|))) (-15 -2875 ((-1173)))) (-13 (-786) (-515) (-964 (-523))) (-406 |#1|)) (T -409)) +((-2875 (*1 *2) (-12 (-4 *3 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-1173)) (-5 *1 (-409 *3 *4)) (-4 *4 (-406 *3)))) (-3880 (*1 *2 *3 *4) (-12 (-5 *4 (-562 *3)) (-4 *3 (-406 *5)) (-4 *5 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-409 *5 *3)))) (-3880 (*1 *2 *3) (-12 (-4 *4 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-383 (-523))) (-5 *1 (-409 *4 *3)) (-4 *3 (-406 *4))))) +(-10 -7 (-15 -3880 ((-383 (-523)) |#2|)) (-15 -3880 ((-1083 (-383 (-523))) |#2| (-562 |#2|))) (-15 -2875 ((-1173)))) +((-3623 (((-108) $) 28)) (-1936 (((-108) $) 30)) (-1538 (((-108) $) 31)) (-2607 (((-108) $) 34)) (-2434 (((-108) $) 29)) (-3800 (((-108) $) 33)) (-1458 (((-794) $) 18) (($ (-1070)) 27) (($ (-1087)) 23) (((-1087) $) 22) (((-1020) $) 21)) (-1788 (((-108) $) 32)) (-3983 (((-108) $ $) 15))) +(((-410) (-13 (-563 (-794)) (-10 -8 (-15 -1458 ($ (-1070))) (-15 -1458 ($ (-1087))) (-15 -1458 ((-1087) $)) (-15 -1458 ((-1020) $)) (-15 -3623 ((-108) $)) (-15 -2434 ((-108) $)) (-15 -1538 ((-108) $)) (-15 -3800 ((-108) $)) (-15 -2607 ((-108) $)) (-15 -1788 ((-108) $)) (-15 -1936 ((-108) $)) (-15 -3983 ((-108) $ $))))) (T -410)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-410)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-410)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-410)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-410)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-2434 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-1538 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-1936 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-3983 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410))))) +(-13 (-563 (-794)) (-10 -8 (-15 -1458 ($ (-1070))) (-15 -1458 ($ (-1087))) (-15 -1458 ((-1087) $)) (-15 -1458 ((-1020) $)) (-15 -3623 ((-108) $)) (-15 -2434 ((-108) $)) (-15 -1538 ((-108) $)) (-15 -3800 ((-108) $)) (-15 -2607 ((-108) $)) (-15 -1788 ((-108) $)) (-15 -1936 ((-108) $)) (-15 -3983 ((-108) $ $)))) +((-4204 (((-3 (-394 (-1083 (-383 (-523)))) "failed") |#3|) 69)) (-3491 (((-394 |#3|) |#3|) 33)) (-3036 (((-3 (-394 (-1083 (-47))) "failed") |#3|) 27 (|has| |#2| (-964 (-47))))) (-3210 (((-3 (|:| |overq| (-1083 (-383 (-523)))) (|:| |overan| (-1083 (-47))) (|:| -2494 (-108))) |#3|) 35))) +(((-411 |#1| |#2| |#3|) (-10 -7 (-15 -3491 ((-394 |#3|) |#3|)) (-15 -4204 ((-3 (-394 (-1083 (-383 (-523)))) "failed") |#3|)) (-15 -3210 ((-3 (|:| |overq| (-1083 (-383 (-523)))) (|:| |overan| (-1083 (-47))) (|:| -2494 (-108))) |#3|)) (IF (|has| |#2| (-964 (-47))) (-15 -3036 ((-3 (-394 (-1083 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-515) (-786) (-964 (-523))) (-406 |#1|) (-1144 |#2|)) (T -411)) +((-3036 (*1 *2 *3) (|partial| -12 (-4 *5 (-964 (-47))) (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) (-5 *2 (-394 (-1083 (-47)))) (-5 *1 (-411 *4 *5 *3)) (-4 *3 (-1144 *5)))) (-3210 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) (-5 *2 (-3 (|:| |overq| (-1083 (-383 (-523)))) (|:| |overan| (-1083 (-47))) (|:| -2494 (-108)))) (-5 *1 (-411 *4 *5 *3)) (-4 *3 (-1144 *5)))) (-4204 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) (-5 *2 (-394 (-1083 (-383 (-523))))) (-5 *1 (-411 *4 *5 *3)) (-4 *3 (-1144 *5)))) (-3491 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) (-5 *2 (-394 *3)) (-5 *1 (-411 *4 *5 *3)) (-4 *3 (-1144 *5))))) +(-10 -7 (-15 -3491 ((-394 |#3|) |#3|)) (-15 -4204 ((-3 (-394 (-1083 (-383 (-523)))) "failed") |#3|)) (-15 -3210 ((-3 (|:| |overq| (-1083 (-383 (-523)))) (|:| |overan| (-1083 (-47))) (|:| -2494 (-108))) |#3|)) (IF (|has| |#2| (-964 (-47))) (-15 -3036 ((-3 (-394 (-1083 (-47))) "failed") |#3|)) |%noBranch|)) +((-3924 (((-108) $ $) NIL)) (-3715 (((-1070) $ (-1070)) NIL)) (-2647 (($ $ (-1070)) NIL)) (-3114 (((-1070) $) NIL)) (-1446 (((-364) (-364) (-364)) 17) (((-364) (-364)) 15)) (-2625 (($ (-364)) NIL) (($ (-364) (-1070)) NIL)) (-4038 (((-364) $) NIL)) (-3779 (((-1070) $) NIL)) (-1998 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2300 (((-1173) (-1070)) 9)) (-2908 (((-1173) (-1070)) 10)) (-3968 (((-1173)) 11)) (-1458 (((-794) $) NIL)) (-1685 (($ $) 35)) (-3983 (((-108) $ $) NIL))) +(((-412) (-13 (-340 (-364) (-1070)) (-10 -7 (-15 -1446 ((-364) (-364) (-364))) (-15 -1446 ((-364) (-364))) (-15 -2300 ((-1173) (-1070))) (-15 -2908 ((-1173) (-1070))) (-15 -3968 ((-1173)))))) (T -412)) +((-1446 (*1 *2 *2 *2) (-12 (-5 *2 (-364)) (-5 *1 (-412)))) (-1446 (*1 *2 *2) (-12 (-5 *2 (-364)) (-5 *1 (-412)))) (-2300 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-412)))) (-2908 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-412)))) (-3968 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-412))))) +(-13 (-340 (-364) (-1070)) (-10 -7 (-15 -1446 ((-364) (-364) (-364))) (-15 -1446 ((-364) (-364))) (-15 -2300 ((-1173) (-1070))) (-15 -2908 ((-1173) (-1070))) (-15 -3968 ((-1173))))) +((-3924 (((-108) $ $) NIL)) (-3820 (((-3 (|:| |fst| (-410)) (|:| -3853 "void")) $) 10)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-4088 (($) 31)) (-4223 (($) 37)) (-2043 (($) 33)) (-1204 (($) 35)) (-3401 (($) 32)) (-4186 (($) 34)) (-1870 (($) 36)) (-2809 (((-108) $) 8)) (-3339 (((-589 (-883 (-523))) $) 16)) (-1472 (($ (-3 (|:| |fst| (-410)) (|:| -3853 "void")) (-589 (-1087)) (-108)) 25) (($ (-3 (|:| |fst| (-410)) (|:| -3853 "void")) (-589 (-883 (-523))) (-108)) 26)) (-1458 (((-794) $) 21) (($ (-410)) 28)) (-3983 (((-108) $ $) NIL))) +(((-413) (-13 (-1016) (-10 -8 (-15 -1458 ((-794) $)) (-15 -1458 ($ (-410))) (-15 -3820 ((-3 (|:| |fst| (-410)) (|:| -3853 "void")) $)) (-15 -3339 ((-589 (-883 (-523))) $)) (-15 -2809 ((-108) $)) (-15 -1472 ($ (-3 (|:| |fst| (-410)) (|:| -3853 "void")) (-589 (-1087)) (-108))) (-15 -1472 ($ (-3 (|:| |fst| (-410)) (|:| -3853 "void")) (-589 (-883 (-523))) (-108))) (-15 -4088 ($)) (-15 -3401 ($)) (-15 -2043 ($)) (-15 -4223 ($)) (-15 -4186 ($)) (-15 -1204 ($)) (-15 -1870 ($))))) (T -413)) +((-1458 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-413)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-410)) (-5 *1 (-413)))) (-3820 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-5 *1 (-413)))) (-3339 (*1 *2 *1) (-12 (-5 *2 (-589 (-883 (-523)))) (-5 *1 (-413)))) (-2809 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-413)))) (-1472 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-5 *3 (-589 (-1087))) (-5 *4 (-108)) (-5 *1 (-413)))) (-1472 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-108)) (-5 *1 (-413)))) (-4088 (*1 *1) (-5 *1 (-413))) (-3401 (*1 *1) (-5 *1 (-413))) (-2043 (*1 *1) (-5 *1 (-413))) (-4223 (*1 *1) (-5 *1 (-413))) (-4186 (*1 *1) (-5 *1 (-413))) (-1204 (*1 *1) (-5 *1 (-413))) (-1870 (*1 *1) (-5 *1 (-413)))) +(-13 (-1016) (-10 -8 (-15 -1458 ((-794) $)) (-15 -1458 ($ (-410))) (-15 -3820 ((-3 (|:| |fst| (-410)) (|:| -3853 "void")) $)) (-15 -3339 ((-589 (-883 (-523))) $)) (-15 -2809 ((-108) $)) (-15 -1472 ($ (-3 (|:| |fst| (-410)) (|:| -3853 "void")) (-589 (-1087)) (-108))) (-15 -1472 ($ (-3 (|:| |fst| (-410)) (|:| -3853 "void")) (-589 (-883 (-523))) (-108))) (-15 -4088 ($)) (-15 -3401 ($)) (-15 -2043 ($)) (-15 -4223 ($)) (-15 -4186 ($)) (-15 -1204 ($)) (-15 -1870 ($)))) +((-3924 (((-108) $ $) NIL)) (-4038 (((-1087) $) 8)) (-3779 (((-1070) $) 16)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 13))) +(((-414 |#1|) (-13 (-1016) (-10 -8 (-15 -4038 ((-1087) $)))) (-1087)) (T -414)) +((-4038 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-414 *3)) (-14 *3 *2)))) +(-13 (-1016) (-10 -8 (-15 -4038 ((-1087) $)))) +((-3394 (((-1173) $) 7)) (-1458 (((-794) $) 8) (($ (-1168 (-638))) 14) (($ (-589 (-306))) 13) (($ (-306)) 12) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 11))) +(((-415) (-129)) (T -415)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-638))) (-4 *1 (-415)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-415)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-415)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) (-4 *1 (-415))))) +(-13 (-371) (-10 -8 (-15 -1458 ($ (-1168 (-638)))) (-15 -1458 ($ (-589 (-306)))) (-15 -1458 ($ (-306))) (-15 -1458 ($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306)))))))) +(((-563 (-794)) . T) ((-371) . T) ((-1122) . T)) +((-3517 (((-3 $ "failed") (-1168 (-292 (-355)))) 21) (((-3 $ "failed") (-1168 (-292 (-523)))) 19) (((-3 $ "failed") (-1168 (-883 (-355)))) 17) (((-3 $ "failed") (-1168 (-883 (-523)))) 15) (((-3 $ "failed") (-1168 (-383 (-883 (-355))))) 13) (((-3 $ "failed") (-1168 (-383 (-883 (-523))))) 11)) (-3474 (($ (-1168 (-292 (-355)))) 22) (($ (-1168 (-292 (-523)))) 20) (($ (-1168 (-883 (-355)))) 18) (($ (-1168 (-883 (-523)))) 16) (($ (-1168 (-383 (-883 (-355))))) 14) (($ (-1168 (-383 (-883 (-523))))) 12)) (-3394 (((-1173) $) 7)) (-1458 (((-794) $) 8) (($ (-589 (-306))) 25) (($ (-306)) 24) (($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) 23))) +(((-416) (-129)) (T -416)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-416)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-416)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) (-4 *1 (-416)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-1168 (-292 (-355)))) (-4 *1 (-416)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-1168 (-292 (-355)))) (-4 *1 (-416)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-1168 (-292 (-523)))) (-4 *1 (-416)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-1168 (-292 (-523)))) (-4 *1 (-416)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-1168 (-883 (-355)))) (-4 *1 (-416)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-1168 (-883 (-355)))) (-4 *1 (-416)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-1168 (-883 (-523)))) (-4 *1 (-416)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-1168 (-883 (-523)))) (-4 *1 (-416)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-1168 (-383 (-883 (-355))))) (-4 *1 (-416)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-1168 (-383 (-883 (-355))))) (-4 *1 (-416)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-1168 (-383 (-883 (-523))))) (-4 *1 (-416)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-1168 (-383 (-883 (-523))))) (-4 *1 (-416))))) +(-13 (-371) (-10 -8 (-15 -1458 ($ (-589 (-306)))) (-15 -1458 ($ (-306))) (-15 -1458 ($ (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306)))))) (-15 -3474 ($ (-1168 (-292 (-355))))) (-15 -3517 ((-3 $ "failed") (-1168 (-292 (-355))))) (-15 -3474 ($ (-1168 (-292 (-523))))) (-15 -3517 ((-3 $ "failed") (-1168 (-292 (-523))))) (-15 -3474 ($ (-1168 (-883 (-355))))) (-15 -3517 ((-3 $ "failed") (-1168 (-883 (-355))))) (-15 -3474 ($ (-1168 (-883 (-523))))) (-15 -3517 ((-3 $ "failed") (-1168 (-883 (-523))))) (-15 -3474 ($ (-1168 (-383 (-883 (-355)))))) (-15 -3517 ((-3 $ "failed") (-1168 (-383 (-883 (-355)))))) (-15 -3474 ($ (-1168 (-383 (-883 (-523)))))) (-15 -3517 ((-3 $ "failed") (-1168 (-383 (-883 (-523)))))))) +(((-563 (-794)) . T) ((-371) . T) ((-1122) . T)) +((-2182 (((-108)) 17)) (-3860 (((-108) (-108)) 18)) (-1562 (((-108)) 13)) (-2453 (((-108) (-108)) 14)) (-1779 (((-108)) 15)) (-3839 (((-108) (-108)) 16)) (-3875 (((-852) (-852)) 21) (((-852)) 20)) (-1767 (((-710) (-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523))))) 42)) (-2317 (((-852) (-852)) 23) (((-852)) 22)) (-4103 (((-2 (|:| -3287 (-523)) (|:| -1979 (-589 |#1|))) |#1|) 62)) (-1396 (((-394 |#1|) (-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523))))))) 124)) (-2550 (((-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))) |#1| (-108)) 150)) (-3906 (((-394 |#1|) |#1| (-710) (-710)) 163) (((-394 |#1|) |#1| (-589 (-710)) (-710)) 160) (((-394 |#1|) |#1| (-589 (-710))) 162) (((-394 |#1|) |#1| (-710)) 161) (((-394 |#1|) |#1|) 159)) (-3872 (((-3 |#1| "failed") (-852) |#1| (-589 (-710)) (-710) (-108)) 165) (((-3 |#1| "failed") (-852) |#1| (-589 (-710)) (-710)) 166) (((-3 |#1| "failed") (-852) |#1| (-589 (-710))) 168) (((-3 |#1| "failed") (-852) |#1| (-710)) 167) (((-3 |#1| "failed") (-852) |#1|) 169)) (-1820 (((-394 |#1|) |#1| (-710) (-710)) 158) (((-394 |#1|) |#1| (-589 (-710)) (-710)) 154) (((-394 |#1|) |#1| (-589 (-710))) 156) (((-394 |#1|) |#1| (-710)) 155) (((-394 |#1|) |#1|) 153)) (-3286 (((-108) |#1|) 37)) (-1966 (((-677 (-710)) (-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523))))) 67)) (-1637 (((-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))) |#1| (-108) (-1018 (-710)) (-710)) 152))) +(((-417 |#1|) (-10 -7 (-15 -1396 ((-394 |#1|) (-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))))) (-15 -1966 ((-677 (-710)) (-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523)))))) (-15 -2317 ((-852))) (-15 -2317 ((-852) (-852))) (-15 -3875 ((-852))) (-15 -3875 ((-852) (-852))) (-15 -1767 ((-710) (-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523)))))) (-15 -4103 ((-2 (|:| -3287 (-523)) (|:| -1979 (-589 |#1|))) |#1|)) (-15 -2182 ((-108))) (-15 -3860 ((-108) (-108))) (-15 -1562 ((-108))) (-15 -2453 ((-108) (-108))) (-15 -3286 ((-108) |#1|)) (-15 -1779 ((-108))) (-15 -3839 ((-108) (-108))) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -1820 ((-394 |#1|) |#1| (-710))) (-15 -1820 ((-394 |#1|) |#1| (-589 (-710)))) (-15 -1820 ((-394 |#1|) |#1| (-589 (-710)) (-710))) (-15 -1820 ((-394 |#1|) |#1| (-710) (-710))) (-15 -3906 ((-394 |#1|) |#1|)) (-15 -3906 ((-394 |#1|) |#1| (-710))) (-15 -3906 ((-394 |#1|) |#1| (-589 (-710)))) (-15 -3906 ((-394 |#1|) |#1| (-589 (-710)) (-710))) (-15 -3906 ((-394 |#1|) |#1| (-710) (-710))) (-15 -3872 ((-3 |#1| "failed") (-852) |#1|)) (-15 -3872 ((-3 |#1| "failed") (-852) |#1| (-710))) (-15 -3872 ((-3 |#1| "failed") (-852) |#1| (-589 (-710)))) (-15 -3872 ((-3 |#1| "failed") (-852) |#1| (-589 (-710)) (-710))) (-15 -3872 ((-3 |#1| "failed") (-852) |#1| (-589 (-710)) (-710) (-108))) (-15 -2550 ((-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))) |#1| (-108))) (-15 -1637 ((-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))) |#1| (-108) (-1018 (-710)) (-710)))) (-1144 (-523))) (T -417)) +((-1637 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-108)) (-5 *5 (-1018 (-710))) (-5 *6 (-710)) (-5 *2 (-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| *3) (|:| -1227 (-523))))))) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-2550 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| *3) (|:| -1227 (-523))))))) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-3872 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-852)) (-5 *4 (-589 (-710))) (-5 *5 (-710)) (-5 *6 (-108)) (-5 *1 (-417 *2)) (-4 *2 (-1144 (-523))))) (-3872 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-852)) (-5 *4 (-589 (-710))) (-5 *5 (-710)) (-5 *1 (-417 *2)) (-4 *2 (-1144 (-523))))) (-3872 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-852)) (-5 *4 (-589 (-710))) (-5 *1 (-417 *2)) (-4 *2 (-1144 (-523))))) (-3872 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-852)) (-5 *4 (-710)) (-5 *1 (-417 *2)) (-4 *2 (-1144 (-523))))) (-3872 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-852)) (-5 *1 (-417 *2)) (-4 *2 (-1144 (-523))))) (-3906 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-3906 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-589 (-710))) (-5 *5 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-3906 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-710))) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-3906 (*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-3906 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-1820 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-1820 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-589 (-710))) (-5 *5 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-1820 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-710))) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-1820 (*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-1820 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-3839 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-1779 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-3286 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-2453 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-1562 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-3860 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-2182 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-4103 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3287 (-523)) (|:| -1979 (-589 *3)))) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-1767 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -1820 *4) (|:| -2299 (-523))))) (-4 *4 (-1144 (-523))) (-5 *2 (-710)) (-5 *1 (-417 *4)))) (-3875 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-3875 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-2317 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-2317 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -1820 *4) (|:| -2299 (-523))))) (-4 *4 (-1144 (-523))) (-5 *2 (-677 (-710))) (-5 *1 (-417 *4)))) (-1396 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| *4) (|:| -1227 (-523))))))) (-4 *4 (-1144 (-523))) (-5 *2 (-394 *4)) (-5 *1 (-417 *4))))) +(-10 -7 (-15 -1396 ((-394 |#1|) (-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))))) (-15 -1966 ((-677 (-710)) (-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523)))))) (-15 -2317 ((-852))) (-15 -2317 ((-852) (-852))) (-15 -3875 ((-852))) (-15 -3875 ((-852) (-852))) (-15 -1767 ((-710) (-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523)))))) (-15 -4103 ((-2 (|:| -3287 (-523)) (|:| -1979 (-589 |#1|))) |#1|)) (-15 -2182 ((-108))) (-15 -3860 ((-108) (-108))) (-15 -1562 ((-108))) (-15 -2453 ((-108) (-108))) (-15 -3286 ((-108) |#1|)) (-15 -1779 ((-108))) (-15 -3839 ((-108) (-108))) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -1820 ((-394 |#1|) |#1| (-710))) (-15 -1820 ((-394 |#1|) |#1| (-589 (-710)))) (-15 -1820 ((-394 |#1|) |#1| (-589 (-710)) (-710))) (-15 -1820 ((-394 |#1|) |#1| (-710) (-710))) (-15 -3906 ((-394 |#1|) |#1|)) (-15 -3906 ((-394 |#1|) |#1| (-710))) (-15 -3906 ((-394 |#1|) |#1| (-589 (-710)))) (-15 -3906 ((-394 |#1|) |#1| (-589 (-710)) (-710))) (-15 -3906 ((-394 |#1|) |#1| (-710) (-710))) (-15 -3872 ((-3 |#1| "failed") (-852) |#1|)) (-15 -3872 ((-3 |#1| "failed") (-852) |#1| (-710))) (-15 -3872 ((-3 |#1| "failed") (-852) |#1| (-589 (-710)))) (-15 -3872 ((-3 |#1| "failed") (-852) |#1| (-589 (-710)) (-710))) (-15 -3872 ((-3 |#1| "failed") (-852) |#1| (-589 (-710)) (-710) (-108))) (-15 -2550 ((-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))) |#1| (-108))) (-15 -1637 ((-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))) |#1| (-108) (-1018 (-710)) (-710)))) +((-3585 (((-523) |#2|) 48) (((-523) |#2| (-710)) 47)) (-2827 (((-523) |#2|) 55)) (-2559 ((|#3| |#2|) 25)) (-3892 ((|#3| |#2| (-852)) 14)) (-2996 ((|#3| |#2|) 15)) (-1913 ((|#3| |#2|) 9)) (-2510 ((|#3| |#2|) 10)) (-3480 ((|#3| |#2| (-852)) 62) ((|#3| |#2|) 30)) (-2564 (((-523) |#2|) 57))) +(((-418 |#1| |#2| |#3|) (-10 -7 (-15 -2564 ((-523) |#2|)) (-15 -3480 (|#3| |#2|)) (-15 -3480 (|#3| |#2| (-852))) (-15 -2827 ((-523) |#2|)) (-15 -3585 ((-523) |#2| (-710))) (-15 -3585 ((-523) |#2|)) (-15 -3892 (|#3| |#2| (-852))) (-15 -2559 (|#3| |#2|)) (-15 -1913 (|#3| |#2|)) (-15 -2510 (|#3| |#2|)) (-15 -2996 (|#3| |#2|))) (-973) (-1144 |#1|) (-13 (-380) (-964 |#1|) (-339) (-1108) (-261))) (T -418)) +((-2996 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *2 (-13 (-380) (-964 *4) (-339) (-1108) (-261))) (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1144 *4)))) (-2510 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *2 (-13 (-380) (-964 *4) (-339) (-1108) (-261))) (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1144 *4)))) (-1913 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *2 (-13 (-380) (-964 *4) (-339) (-1108) (-261))) (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1144 *4)))) (-2559 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *2 (-13 (-380) (-964 *4) (-339) (-1108) (-261))) (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1144 *4)))) (-3892 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-4 *5 (-973)) (-4 *2 (-13 (-380) (-964 *5) (-339) (-1108) (-261))) (-5 *1 (-418 *5 *3 *2)) (-4 *3 (-1144 *5)))) (-3585 (*1 *2 *3) (-12 (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-418 *4 *3 *5)) (-4 *3 (-1144 *4)) (-4 *5 (-13 (-380) (-964 *4) (-339) (-1108) (-261))))) (-3585 (*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-973)) (-5 *2 (-523)) (-5 *1 (-418 *5 *3 *6)) (-4 *3 (-1144 *5)) (-4 *6 (-13 (-380) (-964 *5) (-339) (-1108) (-261))))) (-2827 (*1 *2 *3) (-12 (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-418 *4 *3 *5)) (-4 *3 (-1144 *4)) (-4 *5 (-13 (-380) (-964 *4) (-339) (-1108) (-261))))) (-3480 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-4 *5 (-973)) (-4 *2 (-13 (-380) (-964 *5) (-339) (-1108) (-261))) (-5 *1 (-418 *5 *3 *2)) (-4 *3 (-1144 *5)))) (-3480 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *2 (-13 (-380) (-964 *4) (-339) (-1108) (-261))) (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1144 *4)))) (-2564 (*1 *2 *3) (-12 (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-418 *4 *3 *5)) (-4 *3 (-1144 *4)) (-4 *5 (-13 (-380) (-964 *4) (-339) (-1108) (-261)))))) +(-10 -7 (-15 -2564 ((-523) |#2|)) (-15 -3480 (|#3| |#2|)) (-15 -3480 (|#3| |#2| (-852))) (-15 -2827 ((-523) |#2|)) (-15 -3585 ((-523) |#2| (-710))) (-15 -3585 ((-523) |#2|)) (-15 -3892 (|#3| |#2| (-852))) (-15 -2559 (|#3| |#2|)) (-15 -1913 (|#3| |#2|)) (-15 -2510 (|#3| |#2|)) (-15 -2996 (|#3| |#2|))) +((-1898 ((|#2| (-1168 |#1|)) 36)) (-2962 ((|#2| |#2| |#1|) 49)) (-2572 ((|#2| |#2| |#1|) 41)) (-3631 ((|#2| |#2|) 38)) (-2132 (((-108) |#2|) 30)) (-1474 (((-589 |#2|) (-852) (-394 |#2|)) 16)) (-3872 ((|#2| (-852) (-394 |#2|)) 21)) (-1966 (((-677 (-710)) (-394 |#2|)) 25))) +(((-419 |#1| |#2|) (-10 -7 (-15 -2132 ((-108) |#2|)) (-15 -1898 (|#2| (-1168 |#1|))) (-15 -3631 (|#2| |#2|)) (-15 -2572 (|#2| |#2| |#1|)) (-15 -2962 (|#2| |#2| |#1|)) (-15 -1966 ((-677 (-710)) (-394 |#2|))) (-15 -3872 (|#2| (-852) (-394 |#2|))) (-15 -1474 ((-589 |#2|) (-852) (-394 |#2|)))) (-973) (-1144 |#1|)) (T -419)) +((-1474 (*1 *2 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-394 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-973)) (-5 *2 (-589 *6)) (-5 *1 (-419 *5 *6)))) (-3872 (*1 *2 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-394 *2)) (-4 *2 (-1144 *5)) (-5 *1 (-419 *5 *2)) (-4 *5 (-973)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-394 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-973)) (-5 *2 (-677 (-710))) (-5 *1 (-419 *4 *5)))) (-2962 (*1 *2 *2 *3) (-12 (-4 *3 (-973)) (-5 *1 (-419 *3 *2)) (-4 *2 (-1144 *3)))) (-2572 (*1 *2 *2 *3) (-12 (-4 *3 (-973)) (-5 *1 (-419 *3 *2)) (-4 *2 (-1144 *3)))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-973)) (-5 *1 (-419 *3 *2)) (-4 *2 (-1144 *3)))) (-1898 (*1 *2 *3) (-12 (-5 *3 (-1168 *4)) (-4 *4 (-973)) (-4 *2 (-1144 *4)) (-5 *1 (-419 *4 *2)))) (-2132 (*1 *2 *3) (-12 (-4 *4 (-973)) (-5 *2 (-108)) (-5 *1 (-419 *4 *3)) (-4 *3 (-1144 *4))))) +(-10 -7 (-15 -2132 ((-108) |#2|)) (-15 -1898 (|#2| (-1168 |#1|))) (-15 -3631 (|#2| |#2|)) (-15 -2572 (|#2| |#2| |#1|)) (-15 -2962 (|#2| |#2| |#1|)) (-15 -1966 ((-677 (-710)) (-394 |#2|))) (-15 -3872 (|#2| (-852) (-394 |#2|))) (-15 -1474 ((-589 |#2|) (-852) (-394 |#2|)))) +((-3669 (((-710)) 41)) (-1317 (((-710)) 23 (|has| |#1| (-380))) (((-710) (-710)) 22 (|has| |#1| (-380)))) (-3222 (((-523) |#1|) 18 (|has| |#1| (-380)))) (-2328 (((-523) |#1|) 20 (|has| |#1| (-380)))) (-1803 (((-710)) 40) (((-710) (-710)) 39)) (-3646 ((|#1| (-710) (-523)) 29)) (-4024 (((-1173)) 43))) +(((-420 |#1|) (-10 -7 (-15 -3646 (|#1| (-710) (-523))) (-15 -1803 ((-710) (-710))) (-15 -1803 ((-710))) (-15 -3669 ((-710))) (-15 -4024 ((-1173))) (IF (|has| |#1| (-380)) (PROGN (-15 -2328 ((-523) |#1|)) (-15 -3222 ((-523) |#1|)) (-15 -1317 ((-710) (-710))) (-15 -1317 ((-710)))) |%noBranch|)) (-973)) (T -420)) +((-1317 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973)))) (-1317 (*1 *2 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973)))) (-3222 (*1 *2 *3) (-12 (-5 *2 (-523)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973)))) (-2328 (*1 *2 *3) (-12 (-5 *2 (-523)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973)))) (-4024 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-420 *3)) (-4 *3 (-973)))) (-3669 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-973)))) (-1803 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-973)))) (-1803 (*1 *2 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-973)))) (-3646 (*1 *2 *3 *4) (-12 (-5 *3 (-710)) (-5 *4 (-523)) (-5 *1 (-420 *2)) (-4 *2 (-973))))) +(-10 -7 (-15 -3646 (|#1| (-710) (-523))) (-15 -1803 ((-710) (-710))) (-15 -1803 ((-710))) (-15 -3669 ((-710))) (-15 -4024 ((-1173))) (IF (|has| |#1| (-380)) (PROGN (-15 -2328 ((-523) |#1|)) (-15 -3222 ((-523) |#1|)) (-15 -1317 ((-710) (-710))) (-15 -1317 ((-710)))) |%noBranch|)) +((-3970 (((-589 (-523)) (-523)) 59)) (-2657 (((-108) (-155 (-523))) 63)) (-1820 (((-394 (-155 (-523))) (-155 (-523))) 58))) +(((-421) (-10 -7 (-15 -1820 ((-394 (-155 (-523))) (-155 (-523)))) (-15 -3970 ((-589 (-523)) (-523))) (-15 -2657 ((-108) (-155 (-523)))))) (T -421)) +((-2657 (*1 *2 *3) (-12 (-5 *3 (-155 (-523))) (-5 *2 (-108)) (-5 *1 (-421)))) (-3970 (*1 *2 *3) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-421)) (-5 *3 (-523)))) (-1820 (*1 *2 *3) (-12 (-5 *2 (-394 (-155 (-523)))) (-5 *1 (-421)) (-5 *3 (-155 (-523)))))) +(-10 -7 (-15 -1820 ((-394 (-155 (-523))) (-155 (-523)))) (-15 -3970 ((-589 (-523)) (-523))) (-15 -2657 ((-108) (-155 (-523))))) +((-3777 ((|#4| |#4| (-589 |#4|)) 59)) (-2343 (((-589 |#4|) (-589 |#4|) (-1070) (-1070)) 17) (((-589 |#4|) (-589 |#4|) (-1070)) 16) (((-589 |#4|) (-589 |#4|)) 11))) +(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3777 (|#4| |#4| (-589 |#4|))) (-15 -2343 ((-589 |#4|) (-589 |#4|))) (-15 -2343 ((-589 |#4|) (-589 |#4|) (-1070))) (-15 -2343 ((-589 |#4|) (-589 |#4|) (-1070) (-1070)))) (-284) (-732) (-786) (-880 |#1| |#2| |#3|)) (T -422)) +((-2343 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-284)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-422 *4 *5 *6 *7)))) (-2343 (*1 *2 *2 *3) (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-284)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-422 *4 *5 *6 *7)))) (-2343 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-284)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-422 *3 *4 *5 *6)))) (-3777 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-284)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-422 *4 *5 *6 *2))))) +(-10 -7 (-15 -3777 (|#4| |#4| (-589 |#4|))) (-15 -2343 ((-589 |#4|) (-589 |#4|))) (-15 -2343 ((-589 |#4|) (-589 |#4|) (-1070))) (-15 -2343 ((-589 |#4|) (-589 |#4|) (-1070) (-1070)))) +((-2242 (((-589 (-589 |#4|)) (-589 |#4|) (-108)) 71) (((-589 (-589 |#4|)) (-589 |#4|)) 70) (((-589 (-589 |#4|)) (-589 |#4|) (-589 |#4|) (-108)) 64) (((-589 (-589 |#4|)) (-589 |#4|) (-589 |#4|)) 65)) (-2938 (((-589 (-589 |#4|)) (-589 |#4|) (-108)) 41) (((-589 (-589 |#4|)) (-589 |#4|)) 61))) +(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2938 ((-589 (-589 |#4|)) (-589 |#4|))) (-15 -2938 ((-589 (-589 |#4|)) (-589 |#4|) (-108))) (-15 -2242 ((-589 (-589 |#4|)) (-589 |#4|) (-589 |#4|))) (-15 -2242 ((-589 (-589 |#4|)) (-589 |#4|) (-589 |#4|) (-108))) (-15 -2242 ((-589 (-589 |#4|)) (-589 |#4|))) (-15 -2242 ((-589 (-589 |#4|)) (-589 |#4|) (-108)))) (-13 (-284) (-136)) (-732) (-786) (-880 |#1| |#2| |#3|)) (T -423)) +((-2242 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-589 (-589 *8))) (-5 *1 (-423 *5 *6 *7 *8)) (-5 *3 (-589 *8)))) (-2242 (*1 *2 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-589 (-589 *7))) (-5 *1 (-423 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-2242 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-589 (-589 *8))) (-5 *1 (-423 *5 *6 *7 *8)) (-5 *3 (-589 *8)))) (-2242 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-589 (-589 *7))) (-5 *1 (-423 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-2938 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-589 (-589 *8))) (-5 *1 (-423 *5 *6 *7 *8)) (-5 *3 (-589 *8)))) (-2938 (*1 *2 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-589 (-589 *7))) (-5 *1 (-423 *4 *5 *6 *7)) (-5 *3 (-589 *7))))) +(-10 -7 (-15 -2938 ((-589 (-589 |#4|)) (-589 |#4|))) (-15 -2938 ((-589 (-589 |#4|)) (-589 |#4|) (-108))) (-15 -2242 ((-589 (-589 |#4|)) (-589 |#4|) (-589 |#4|))) (-15 -2242 ((-589 (-589 |#4|)) (-589 |#4|) (-589 |#4|) (-108))) (-15 -2242 ((-589 (-589 |#4|)) (-589 |#4|))) (-15 -2242 ((-589 (-589 |#4|)) (-589 |#4|) (-108)))) +((-3315 (((-710) |#4|) 12)) (-1282 (((-589 (-2 (|:| |totdeg| (-710)) (|:| -1480 |#4|))) |#4| (-710) (-589 (-2 (|:| |totdeg| (-710)) (|:| -1480 |#4|)))) 31)) (-2846 (((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-2920 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-3740 ((|#4| |#4| (-589 |#4|)) 40)) (-2677 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-589 |#4|)) 69)) (-2772 (((-1173) |#4|) 42)) (-2102 (((-1173) (-589 |#4|)) 51)) (-1999 (((-523) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-523) (-523) (-523)) 48)) (-1488 (((-1173) (-523)) 77)) (-3361 (((-589 |#4|) (-589 |#4|)) 75)) (-1658 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-710)) (|:| -1480 |#4|)) |#4| (-710)) 25)) (-2190 (((-523) |#4|) 76)) (-4195 ((|#4| |#4|) 29)) (-3954 (((-589 |#4|) (-589 |#4|) (-523) (-523)) 55)) (-3857 (((-523) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-523) (-523) (-523) (-523)) 87)) (-2185 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-3306 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-3670 (((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-2487 (((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3866 (((-108) |#2| |#2|) 56)) (-1493 (((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1300 (((-108) |#2| |#2| |#2| |#2|) 59)) (-3667 ((|#4| |#4| (-589 |#4|)) 70))) +(((-424 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3667 (|#4| |#4| (-589 |#4|))) (-15 -3740 (|#4| |#4| (-589 |#4|))) (-15 -3954 ((-589 |#4|) (-589 |#4|) (-523) (-523))) (-15 -3306 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3866 ((-108) |#2| |#2|)) (-15 -1300 ((-108) |#2| |#2| |#2| |#2|)) (-15 -1493 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2487 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3670 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2677 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-589 |#4|))) (-15 -4195 (|#4| |#4|)) (-15 -1282 ((-589 (-2 (|:| |totdeg| (-710)) (|:| -1480 |#4|))) |#4| (-710) (-589 (-2 (|:| |totdeg| (-710)) (|:| -1480 |#4|))))) (-15 -2920 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2846 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3361 ((-589 |#4|) (-589 |#4|))) (-15 -2190 ((-523) |#4|)) (-15 -2772 ((-1173) |#4|)) (-15 -1999 ((-523) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-523) (-523) (-523))) (-15 -3857 ((-523) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-523) (-523) (-523) (-523))) (-15 -2102 ((-1173) (-589 |#4|))) (-15 -1488 ((-1173) (-523))) (-15 -2185 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1658 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-710)) (|:| -1480 |#4|)) |#4| (-710))) (-15 -3315 ((-710) |#4|))) (-427) (-732) (-786) (-880 |#1| |#2| |#3|)) (T -424)) +((-3315 (*1 *2 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-710)) (-5 *1 (-424 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6)))) (-1658 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-710)) (|:| -1480 *4))) (-5 *5 (-710)) (-4 *4 (-880 *6 *7 *8)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-424 *6 *7 *8 *4)))) (-2185 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-732)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-424 *4 *5 *6 *7)))) (-1488 (*1 *2 *3) (-12 (-5 *3 (-523)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1173)) (-5 *1 (-424 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6)))) (-2102 (*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1173)) (-5 *1 (-424 *4 *5 *6 *7)))) (-3857 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-710)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-732)) (-4 *4 (-880 *5 *6 *7)) (-4 *5 (-427)) (-4 *7 (-786)) (-5 *1 (-424 *5 *6 *7 *4)))) (-1999 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-710)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-732)) (-4 *4 (-880 *5 *6 *7)) (-4 *5 (-427)) (-4 *7 (-786)) (-5 *1 (-424 *5 *6 *7 *4)))) (-2772 (*1 *2 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1173)) (-5 *1 (-424 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6)))) (-2190 (*1 *2 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-523)) (-5 *1 (-424 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6)))) (-3361 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-424 *3 *4 *5 *6)))) (-2846 (*1 *2 *2 *2) (-12 (-5 *2 (-589 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-710)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-732)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) (-4 *5 (-786)) (-5 *1 (-424 *3 *4 *5 *6)))) (-2920 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-732)) (-4 *2 (-880 *4 *5 *6)) (-5 *1 (-424 *4 *5 *6 *2)) (-4 *4 (-427)) (-4 *6 (-786)))) (-1282 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-589 (-2 (|:| |totdeg| (-710)) (|:| -1480 *3)))) (-5 *4 (-710)) (-4 *3 (-880 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-424 *5 *6 *7 *3)))) (-4195 (*1 *2 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-424 *3 *4 *5 *2)) (-4 *2 (-880 *3 *4 *5)))) (-2677 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *3)) (-4 *3 (-880 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-424 *5 *6 *7 *3)))) (-3670 (*1 *2 *3 *2) (-12 (-5 *2 (-589 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-710)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-732)) (-4 *6 (-880 *4 *3 *5)) (-4 *4 (-427)) (-4 *5 (-786)) (-5 *1 (-424 *4 *3 *5 *6)))) (-2487 (*1 *2 *2) (-12 (-5 *2 (-589 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-710)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-732)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) (-4 *5 (-786)) (-5 *1 (-424 *3 *4 *5 *6)))) (-1493 (*1 *2 *3 *2) (-12 (-5 *2 (-589 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-732)) (-4 *3 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *6 (-786)) (-5 *1 (-424 *4 *5 *6 *3)))) (-1300 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-427)) (-4 *3 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-424 *4 *3 *5 *6)) (-4 *6 (-880 *4 *3 *5)))) (-3866 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *3 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-424 *4 *3 *5 *6)) (-4 *6 (-880 *4 *3 *5)))) (-3306 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-732)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-424 *4 *5 *6 *7)))) (-3954 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-589 *7)) (-5 *3 (-523)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-424 *4 *5 *6 *7)))) (-3740 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-424 *4 *5 *6 *2)))) (-3667 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-424 *4 *5 *6 *2))))) +(-10 -7 (-15 -3667 (|#4| |#4| (-589 |#4|))) (-15 -3740 (|#4| |#4| (-589 |#4|))) (-15 -3954 ((-589 |#4|) (-589 |#4|) (-523) (-523))) (-15 -3306 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3866 ((-108) |#2| |#2|)) (-15 -1300 ((-108) |#2| |#2| |#2| |#2|)) (-15 -1493 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2487 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3670 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2677 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-589 |#4|))) (-15 -4195 (|#4| |#4|)) (-15 -1282 ((-589 (-2 (|:| |totdeg| (-710)) (|:| -1480 |#4|))) |#4| (-710) (-589 (-2 (|:| |totdeg| (-710)) (|:| -1480 |#4|))))) (-15 -2920 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2846 ((-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-589 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3361 ((-589 |#4|) (-589 |#4|))) (-15 -2190 ((-523) |#4|)) (-15 -2772 ((-1173) |#4|)) (-15 -1999 ((-523) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-523) (-523) (-523))) (-15 -3857 ((-523) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-523) (-523) (-523) (-523))) (-15 -2102 ((-1173) (-589 |#4|))) (-15 -1488 ((-1173) (-523))) (-15 -2185 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1658 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-710)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-710)) (|:| -1480 |#4|)) |#4| (-710))) (-15 -3315 ((-710) |#4|))) +((-4078 ((|#4| |#4| (-589 |#4|)) 22 (|has| |#1| (-339)))) (-1896 (((-589 |#4|) (-589 |#4|) (-1070) (-1070)) 42) (((-589 |#4|) (-589 |#4|) (-1070)) 41) (((-589 |#4|) (-589 |#4|)) 36))) +(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1896 ((-589 |#4|) (-589 |#4|))) (-15 -1896 ((-589 |#4|) (-589 |#4|) (-1070))) (-15 -1896 ((-589 |#4|) (-589 |#4|) (-1070) (-1070))) (IF (|has| |#1| (-339)) (-15 -4078 (|#4| |#4| (-589 |#4|))) |%noBranch|)) (-427) (-732) (-786) (-880 |#1| |#2| |#3|)) (T -425)) +((-4078 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-339)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-425 *4 *5 *6 *2)))) (-1896 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-425 *4 *5 *6 *7)))) (-1896 (*1 *2 *2 *3) (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-425 *4 *5 *6 *7)))) (-1896 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-425 *3 *4 *5 *6))))) +(-10 -7 (-15 -1896 ((-589 |#4|) (-589 |#4|))) (-15 -1896 ((-589 |#4|) (-589 |#4|) (-1070))) (-15 -1896 ((-589 |#4|) (-589 |#4|) (-1070) (-1070))) (IF (|has| |#1| (-339)) (-15 -4078 (|#4| |#4| (-589 |#4|))) |%noBranch|)) +((-3244 (($ $ $) 14) (($ (-589 $)) 21)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 41)) (-3278 (($ $ $) NIL) (($ (-589 $)) 22))) +(((-426 |#1|) (-10 -8 (-15 -2667 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3244 (|#1| (-589 |#1|))) (-15 -3244 (|#1| |#1| |#1|)) (-15 -3278 (|#1| (-589 |#1|))) (-15 -3278 (|#1| |#1| |#1|))) (-427)) (T -426)) +NIL +(-10 -8 (-15 -2667 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3244 (|#1| (-589 |#1|))) (-15 -3244 (|#1| |#1| |#1|)) (-15 -3278 (|#1| (-589 |#1|))) (-15 -3278 (|#1| |#1| |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-3746 (((-3 $ "failed") $ $) 42)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-427) (-129)) (T -427)) +((-3278 (*1 *1 *1 *1) (-4 *1 (-427))) (-3278 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-427)))) (-3244 (*1 *1 *1 *1) (-4 *1 (-427))) (-3244 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-427)))) (-2667 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-427))))) +(-13 (-515) (-10 -8 (-15 -3278 ($ $ $)) (-15 -3278 ($ (-589 $))) (-15 -3244 ($ $ $)) (-15 -3244 ($ (-589 $))) (-15 -2667 ((-1083 $) (-1083 $) (-1083 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-267) . T) ((-515) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3819 (((-3 $ "failed")) NIL (|has| (-383 (-883 |#1|)) (-515)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3115 (((-1168 (-629 (-383 (-883 |#1|)))) (-1168 $)) NIL) (((-1168 (-629 (-383 (-883 |#1|))))) NIL)) (-2738 (((-1168 $)) NIL)) (-2518 (($) NIL T CONST)) (-3486 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) NIL)) (-3545 (((-3 $ "failed")) NIL (|has| (-383 (-883 |#1|)) (-515)))) (-1431 (((-629 (-383 (-883 |#1|))) (-1168 $)) NIL) (((-629 (-383 (-883 |#1|)))) NIL)) (-3744 (((-383 (-883 |#1|)) $) NIL)) (-2788 (((-629 (-383 (-883 |#1|))) $ (-1168 $)) NIL) (((-629 (-383 (-883 |#1|))) $) NIL)) (-2532 (((-3 $ "failed") $) NIL (|has| (-383 (-883 |#1|)) (-515)))) (-3138 (((-1083 (-883 (-383 (-883 |#1|))))) NIL (|has| (-383 (-883 |#1|)) (-339))) (((-1083 (-383 (-883 |#1|)))) 79 (|has| |#1| (-515)))) (-1970 (($ $ (-852)) NIL)) (-4212 (((-383 (-883 |#1|)) $) NIL)) (-1726 (((-1083 (-383 (-883 |#1|))) $) 77 (|has| (-383 (-883 |#1|)) (-515)))) (-2284 (((-383 (-883 |#1|)) (-1168 $)) NIL) (((-383 (-883 |#1|))) NIL)) (-1778 (((-1083 (-383 (-883 |#1|))) $) NIL)) (-2117 (((-108)) NIL)) (-3409 (($ (-1168 (-383 (-883 |#1|))) (-1168 $)) 97) (($ (-1168 (-383 (-883 |#1|)))) NIL)) (-2121 (((-3 $ "failed") $) NIL (|has| (-383 (-883 |#1|)) (-515)))) (-1319 (((-852)) NIL)) (-1487 (((-108)) NIL)) (-3650 (($ $ (-852)) NIL)) (-1649 (((-108)) NIL)) (-2956 (((-108)) NIL)) (-2491 (((-108)) NIL)) (-2362 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) NIL)) (-1386 (((-3 $ "failed")) NIL (|has| (-383 (-883 |#1|)) (-515)))) (-1504 (((-629 (-383 (-883 |#1|))) (-1168 $)) NIL) (((-629 (-383 (-883 |#1|)))) NIL)) (-3237 (((-383 (-883 |#1|)) $) NIL)) (-2139 (((-629 (-383 (-883 |#1|))) $ (-1168 $)) NIL) (((-629 (-383 (-883 |#1|))) $) NIL)) (-1579 (((-3 $ "failed") $) NIL (|has| (-383 (-883 |#1|)) (-515)))) (-2525 (((-1083 (-883 (-383 (-883 |#1|))))) NIL (|has| (-383 (-883 |#1|)) (-339))) (((-1083 (-383 (-883 |#1|)))) 78 (|has| |#1| (-515)))) (-1448 (($ $ (-852)) NIL)) (-4050 (((-383 (-883 |#1|)) $) NIL)) (-2553 (((-1083 (-383 (-883 |#1|))) $) 72 (|has| (-383 (-883 |#1|)) (-515)))) (-3002 (((-383 (-883 |#1|)) (-1168 $)) NIL) (((-383 (-883 |#1|))) NIL)) (-2565 (((-1083 (-383 (-883 |#1|))) $) NIL)) (-1216 (((-108)) NIL)) (-3779 (((-1070) $) NIL)) (-2345 (((-108)) NIL)) (-1510 (((-108)) NIL)) (-2871 (((-108)) NIL)) (-2783 (((-1034) $) NIL)) (-3571 (((-383 (-883 |#1|)) $ $) 66 (|has| |#1| (-515)))) (-3960 (((-383 (-883 |#1|)) $) 65 (|has| |#1| (-515)))) (-3327 (((-383 (-883 |#1|)) $) 89 (|has| |#1| (-515)))) (-1254 (((-1083 (-383 (-883 |#1|))) $) 83 (|has| |#1| (-515)))) (-1873 (((-383 (-883 |#1|))) 67 (|has| |#1| (-515)))) (-2942 (((-383 (-883 |#1|)) $ $) 54 (|has| |#1| (-515)))) (-3418 (((-383 (-883 |#1|)) $) 53 (|has| |#1| (-515)))) (-3183 (((-383 (-883 |#1|)) $) 88 (|has| |#1| (-515)))) (-3048 (((-1083 (-383 (-883 |#1|))) $) 82 (|has| |#1| (-515)))) (-3070 (((-383 (-883 |#1|))) 64 (|has| |#1| (-515)))) (-3147 (($) 95) (($ (-1087)) 101) (($ (-1168 (-1087))) 100) (($ (-1168 $)) 90) (($ (-1087) (-1168 $)) 99) (($ (-1168 (-1087)) (-1168 $)) 98)) (-2751 (((-108)) NIL)) (-3223 (((-383 (-883 |#1|)) $ (-523)) NIL)) (-2966 (((-1168 (-383 (-883 |#1|))) $ (-1168 $)) 92) (((-629 (-383 (-883 |#1|))) (-1168 $) (-1168 $)) NIL) (((-1168 (-383 (-883 |#1|))) $) 37) (((-629 (-383 (-883 |#1|))) (-1168 $)) NIL)) (-3663 (((-1168 (-383 (-883 |#1|))) $) NIL) (($ (-1168 (-383 (-883 |#1|)))) 34)) (-3863 (((-589 (-883 (-383 (-883 |#1|)))) (-1168 $)) NIL) (((-589 (-883 (-383 (-883 |#1|))))) NIL) (((-589 (-883 |#1|)) (-1168 $)) 93 (|has| |#1| (-515))) (((-589 (-883 |#1|))) 94 (|has| |#1| (-515)))) (-1714 (($ $ $) NIL)) (-1673 (((-108)) NIL)) (-1458 (((-794) $) NIL) (($ (-1168 (-383 (-883 |#1|)))) NIL)) (-4041 (((-1168 $)) 56)) (-3751 (((-589 (-1168 (-383 (-883 |#1|))))) NIL (|has| (-383 (-883 |#1|)) (-515)))) (-2022 (($ $ $ $) NIL)) (-3120 (((-108)) NIL)) (-1677 (($ (-629 (-383 (-883 |#1|))) $) NIL)) (-1995 (($ $ $) NIL)) (-1462 (((-108)) NIL)) (-3366 (((-108)) NIL)) (-2071 (((-108)) NIL)) (-2756 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) 91)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 52) (($ $ (-383 (-883 |#1|))) NIL) (($ (-383 (-883 |#1|)) $) NIL) (($ (-1054 |#2| (-383 (-883 |#1|))) $) NIL))) +(((-428 |#1| |#2| |#3| |#4|) (-13 (-393 (-383 (-883 |#1|))) (-591 (-1054 |#2| (-383 (-883 |#1|)))) (-10 -8 (-15 -1458 ($ (-1168 (-383 (-883 |#1|))))) (-15 -2362 ((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed"))) (-15 -3486 ((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed"))) (-15 -3147 ($)) (-15 -3147 ($ (-1087))) (-15 -3147 ($ (-1168 (-1087)))) (-15 -3147 ($ (-1168 $))) (-15 -3147 ($ (-1087) (-1168 $))) (-15 -3147 ($ (-1168 (-1087)) (-1168 $))) (IF (|has| |#1| (-515)) (PROGN (-15 -2525 ((-1083 (-383 (-883 |#1|))))) (-15 -3048 ((-1083 (-383 (-883 |#1|))) $)) (-15 -3418 ((-383 (-883 |#1|)) $)) (-15 -3183 ((-383 (-883 |#1|)) $)) (-15 -3138 ((-1083 (-383 (-883 |#1|))))) (-15 -1254 ((-1083 (-383 (-883 |#1|))) $)) (-15 -3960 ((-383 (-883 |#1|)) $)) (-15 -3327 ((-383 (-883 |#1|)) $)) (-15 -2942 ((-383 (-883 |#1|)) $ $)) (-15 -3070 ((-383 (-883 |#1|)))) (-15 -3571 ((-383 (-883 |#1|)) $ $)) (-15 -1873 ((-383 (-883 |#1|)))) (-15 -3863 ((-589 (-883 |#1|)) (-1168 $))) (-15 -3863 ((-589 (-883 |#1|))))) |%noBranch|))) (-158) (-852) (-589 (-1087)) (-1168 (-629 |#1|))) (T -428)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1168 (-383 (-883 *3)))) (-4 *3 (-158)) (-14 *6 (-1168 (-629 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))))) (-2362 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-428 *3 *4 *5 *6)) (|:| -4041 (-589 (-428 *3 *4 *5 *6))))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3486 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-428 *3 *4 *5 *6)) (|:| -4041 (-589 (-428 *3 *4 *5 *6))))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3147 (*1 *1) (-12 (-5 *1 (-428 *2 *3 *4 *5)) (-4 *2 (-158)) (-14 *3 (-852)) (-14 *4 (-589 (-1087))) (-14 *5 (-1168 (-629 *2))))) (-3147 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 *2)) (-14 *6 (-1168 (-629 *3))))) (-3147 (*1 *1 *2) (-12 (-5 *2 (-1168 (-1087))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3147 (*1 *1 *2) (-12 (-5 *2 (-1168 (-428 *3 *4 *5 *6))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3147 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-428 *4 *5 *6 *7))) (-5 *1 (-428 *4 *5 *6 *7)) (-4 *4 (-158)) (-14 *5 (-852)) (-14 *6 (-589 *2)) (-14 *7 (-1168 (-629 *4))))) (-3147 (*1 *1 *2 *3) (-12 (-5 *2 (-1168 (-1087))) (-5 *3 (-1168 (-428 *4 *5 *6 *7))) (-5 *1 (-428 *4 *5 *6 *7)) (-4 *4 (-158)) (-14 *5 (-852)) (-14 *6 (-589 (-1087))) (-14 *7 (-1168 (-629 *4))))) (-2525 (*1 *2) (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3048 (*1 *2 *1) (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3418 (*1 *2 *1) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3183 (*1 *2 *1) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3138 (*1 *2) (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-1254 (*1 *2 *1) (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3327 (*1 *2 *1) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-2942 (*1 *2 *1 *1) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3070 (*1 *2) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3571 (*1 *2 *1 *1) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-1873 (*1 *2) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) (-3863 (*1 *2 *3) (-12 (-5 *3 (-1168 (-428 *4 *5 *6 *7))) (-5 *2 (-589 (-883 *4))) (-5 *1 (-428 *4 *5 *6 *7)) (-4 *4 (-515)) (-4 *4 (-158)) (-14 *5 (-852)) (-14 *6 (-589 (-1087))) (-14 *7 (-1168 (-629 *4))))) (-3863 (*1 *2) (-12 (-5 *2 (-589 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) +(-13 (-393 (-383 (-883 |#1|))) (-591 (-1054 |#2| (-383 (-883 |#1|)))) (-10 -8 (-15 -1458 ($ (-1168 (-383 (-883 |#1|))))) (-15 -2362 ((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed"))) (-15 -3486 ((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed"))) (-15 -3147 ($)) (-15 -3147 ($ (-1087))) (-15 -3147 ($ (-1168 (-1087)))) (-15 -3147 ($ (-1168 $))) (-15 -3147 ($ (-1087) (-1168 $))) (-15 -3147 ($ (-1168 (-1087)) (-1168 $))) (IF (|has| |#1| (-515)) (PROGN (-15 -2525 ((-1083 (-383 (-883 |#1|))))) (-15 -3048 ((-1083 (-383 (-883 |#1|))) $)) (-15 -3418 ((-383 (-883 |#1|)) $)) (-15 -3183 ((-383 (-883 |#1|)) $)) (-15 -3138 ((-1083 (-383 (-883 |#1|))))) (-15 -1254 ((-1083 (-383 (-883 |#1|))) $)) (-15 -3960 ((-383 (-883 |#1|)) $)) (-15 -3327 ((-383 (-883 |#1|)) $)) (-15 -2942 ((-383 (-883 |#1|)) $ $)) (-15 -3070 ((-383 (-883 |#1|)))) (-15 -3571 ((-383 (-883 |#1|)) $ $)) (-15 -1873 ((-383 (-883 |#1|)))) (-15 -3863 ((-589 (-883 |#1|)) (-1168 $))) (-15 -3863 ((-589 (-883 |#1|))))) |%noBranch|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 13)) (-1957 (((-589 (-796 |#1|)) $) 74)) (-1786 (((-1083 $) $ (-796 |#1|)) 46) (((-1083 |#2|) $) 116)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#2| (-515)))) (-3345 (($ $) NIL (|has| |#2| (-515)))) (-3331 (((-108) $) NIL (|has| |#2| (-515)))) (-3893 (((-710) $) 21) (((-710) $ (-589 (-796 |#1|))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2291 (($ $) NIL (|has| |#2| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#2| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) 44) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-796 |#1|) "failed") $) NIL)) (-3474 ((|#2| $) 42) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-796 |#1|) $) NIL)) (-3078 (($ $ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-3806 (($ $ (-589 (-523))) 79)) (-3810 (($ $) 68)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#2| (-840)))) (-1284 (($ $ |#2| |#3| $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-355))) (|has| |#2| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-523))) (|has| |#2| (-817 (-523)))))) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) 58)) (-1945 (($ (-1083 |#2|) (-796 |#1|)) 121) (($ (-1083 $) (-796 |#1|)) 52)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) 59)) (-1933 (($ |#2| |#3|) 28) (($ $ (-796 |#1|) (-710)) 30) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-796 |#1|)) NIL)) (-1575 ((|#3| $) NIL) (((-710) $ (-796 |#1|)) 50) (((-589 (-710)) $ (-589 (-796 |#1|))) 57)) (-2454 (($ $ $) NIL (|has| |#2| (-786)))) (-2062 (($ $ $) NIL (|has| |#2| (-786)))) (-3782 (($ (-1 |#3| |#3|) $) NIL)) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-2520 (((-3 (-796 |#1|) "failed") $) 39)) (-3774 (($ $) NIL)) (-3786 ((|#2| $) 41)) (-3244 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-3779 (((-1070) $) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-796 |#1|)) (|:| -2735 (-710))) "failed") $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) 40)) (-3760 ((|#2| $) 114)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) 126 (|has| |#2| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#2| (-840)))) (-3746 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-515)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-796 |#1|) |#2|) 86) (($ $ (-589 (-796 |#1|)) (-589 |#2|)) 89) (($ $ (-796 |#1|) $) 84) (($ $ (-589 (-796 |#1|)) (-589 $)) 105)) (-3549 (($ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-3523 (($ $ (-796 |#1|)) 53) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-2299 ((|#3| $) 67) (((-710) $ (-796 |#1|)) 37) (((-589 (-710)) $ (-589 (-796 |#1|))) 56)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-796 |#1|) (-564 (-499))) (|has| |#2| (-564 (-499)))))) (-2438 ((|#2| $) 123 (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#2| (-840))))) (-1458 (((-794) $) 142) (($ (-523)) NIL) (($ |#2|) 85) (($ (-796 |#1|)) 31) (($ (-383 (-523))) NIL (-3262 (|has| |#2| (-37 (-383 (-523)))) (|has| |#2| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#2| (-515)))) (-1251 (((-589 |#2|) $) NIL)) (-2365 ((|#2| $ |#3|) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#2| (-840))) (|has| |#2| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#2| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#2| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 16 T CONST)) (-2767 (($) 25 T CONST)) (-2862 (($ $ (-796 |#1|)) NIL) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-4043 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4098 (($ $ |#2|) 64 (|has| |#2| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 110)) (** (($ $ (-852)) NIL) (($ $ (-710)) 108)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 29) (($ $ (-383 (-523))) NIL (|has| |#2| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#2| (-37 (-383 (-523))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) +(((-429 |#1| |#2| |#3|) (-13 (-880 |#2| |#3| (-796 |#1|)) (-10 -8 (-15 -3806 ($ $ (-589 (-523)))))) (-589 (-1087)) (-973) (-216 (-2676 |#1|) (-710))) (T -429)) +((-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-14 *3 (-589 (-1087))) (-5 *1 (-429 *3 *4 *5)) (-4 *4 (-973)) (-4 *5 (-216 (-2676 *3) (-710)))))) +(-13 (-880 |#2| |#3| (-796 |#1|)) (-10 -8 (-15 -3806 ($ $ (-589 (-523)))))) +((-2810 (((-108) |#1| (-589 |#2|)) 66)) (-3365 (((-3 (-1168 (-589 |#2|)) "failed") (-710) |#1| (-589 |#2|)) 75)) (-3428 (((-3 (-589 |#2|) "failed") |#2| |#1| (-1168 (-589 |#2|))) 77)) (-2227 ((|#2| |#2| |#1|) 28)) (-2382 (((-710) |#2| (-589 |#2|)) 20))) +(((-430 |#1| |#2|) (-10 -7 (-15 -2227 (|#2| |#2| |#1|)) (-15 -2382 ((-710) |#2| (-589 |#2|))) (-15 -3365 ((-3 (-1168 (-589 |#2|)) "failed") (-710) |#1| (-589 |#2|))) (-15 -3428 ((-3 (-589 |#2|) "failed") |#2| |#1| (-1168 (-589 |#2|)))) (-15 -2810 ((-108) |#1| (-589 |#2|)))) (-284) (-1144 |#1|)) (T -430)) +((-2810 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *5)) (-4 *5 (-1144 *3)) (-4 *3 (-284)) (-5 *2 (-108)) (-5 *1 (-430 *3 *5)))) (-3428 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1168 (-589 *3))) (-4 *4 (-284)) (-5 *2 (-589 *3)) (-5 *1 (-430 *4 *3)) (-4 *3 (-1144 *4)))) (-3365 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-710)) (-4 *4 (-284)) (-4 *6 (-1144 *4)) (-5 *2 (-1168 (-589 *6))) (-5 *1 (-430 *4 *6)) (-5 *5 (-589 *6)))) (-2382 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-284)) (-5 *2 (-710)) (-5 *1 (-430 *5 *3)))) (-2227 (*1 *2 *2 *3) (-12 (-4 *3 (-284)) (-5 *1 (-430 *3 *2)) (-4 *2 (-1144 *3))))) +(-10 -7 (-15 -2227 (|#2| |#2| |#1|)) (-15 -2382 ((-710) |#2| (-589 |#2|))) (-15 -3365 ((-3 (-1168 (-589 |#2|)) "failed") (-710) |#1| (-589 |#2|))) (-15 -3428 ((-3 (-589 |#2|) "failed") |#2| |#1| (-1168 (-589 |#2|)))) (-15 -2810 ((-108) |#1| (-589 |#2|)))) +((-1820 (((-394 |#5|) |#5|) 24))) +(((-431 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1820 ((-394 |#5|) |#5|))) (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)) (-15 -2700 ((-3 $ "failed") (-1087))))) (-732) (-515) (-515) (-880 |#4| |#2| |#1|)) (T -431)) +((-1820 (*1 *2 *3) (-12 (-4 *4 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)) (-15 -2700 ((-3 $ "failed") (-1087)))))) (-4 *5 (-732)) (-4 *7 (-515)) (-5 *2 (-394 *3)) (-5 *1 (-431 *4 *5 *6 *7 *3)) (-4 *6 (-515)) (-4 *3 (-880 *7 *5 *4))))) +(-10 -7 (-15 -1820 ((-394 |#5|) |#5|))) +((-3625 ((|#3|) 36)) (-2667 (((-1083 |#4|) (-1083 |#4|) (-1083 |#4|)) 32))) +(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2667 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -3625 (|#3|))) (-732) (-786) (-840) (-880 |#3| |#1| |#2|)) (T -432)) +((-3625 (*1 *2) (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-840)) (-5 *1 (-432 *3 *4 *2 *5)) (-4 *5 (-880 *2 *3 *4)))) (-2667 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *6)) (-4 *6 (-880 *5 *3 *4)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-840)) (-5 *1 (-432 *3 *4 *5 *6))))) +(-10 -7 (-15 -2667 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -3625 (|#3|))) +((-1820 (((-394 (-1083 |#1|)) (-1083 |#1|)) 41))) +(((-433 |#1|) (-10 -7 (-15 -1820 ((-394 (-1083 |#1|)) (-1083 |#1|)))) (-284)) (T -433)) +((-1820 (*1 *2 *3) (-12 (-4 *4 (-284)) (-5 *2 (-394 (-1083 *4))) (-5 *1 (-433 *4)) (-5 *3 (-1083 *4))))) +(-10 -7 (-15 -1820 ((-394 (-1083 |#1|)) (-1083 |#1|)))) +((-2015 (((-51) |#2| (-1087) (-271 |#2|) (-1135 (-710))) 42) (((-51) (-1 |#2| (-523)) (-271 |#2|) (-1135 (-710))) 41) (((-51) |#2| (-1087) (-271 |#2|)) 35) (((-51) (-1 |#2| (-523)) (-271 |#2|)) 27)) (-2417 (((-51) |#2| (-1087) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523))) 80) (((-51) (-1 |#2| (-383 (-523))) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523))) 79) (((-51) |#2| (-1087) (-271 |#2|) (-1135 (-523))) 78) (((-51) (-1 |#2| (-523)) (-271 |#2|) (-1135 (-523))) 77) (((-51) |#2| (-1087) (-271 |#2|)) 72) (((-51) (-1 |#2| (-523)) (-271 |#2|)) 71)) (-3717 (((-51) |#2| (-1087) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523))) 66) (((-51) (-1 |#2| (-383 (-523))) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523))) 64)) (-2028 (((-51) |#2| (-1087) (-271 |#2|) (-1135 (-523))) 48) (((-51) (-1 |#2| (-523)) (-271 |#2|) (-1135 (-523))) 47))) +(((-434 |#1| |#2|) (-10 -7 (-15 -2015 ((-51) (-1 |#2| (-523)) (-271 |#2|))) (-15 -2015 ((-51) |#2| (-1087) (-271 |#2|))) (-15 -2015 ((-51) (-1 |#2| (-523)) (-271 |#2|) (-1135 (-710)))) (-15 -2015 ((-51) |#2| (-1087) (-271 |#2|) (-1135 (-710)))) (-15 -2028 ((-51) (-1 |#2| (-523)) (-271 |#2|) (-1135 (-523)))) (-15 -2028 ((-51) |#2| (-1087) (-271 |#2|) (-1135 (-523)))) (-15 -3717 ((-51) (-1 |#2| (-383 (-523))) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523)))) (-15 -3717 ((-51) |#2| (-1087) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523)))) (-15 -2417 ((-51) (-1 |#2| (-523)) (-271 |#2|))) (-15 -2417 ((-51) |#2| (-1087) (-271 |#2|))) (-15 -2417 ((-51) (-1 |#2| (-523)) (-271 |#2|) (-1135 (-523)))) (-15 -2417 ((-51) |#2| (-1087) (-271 |#2|) (-1135 (-523)))) (-15 -2417 ((-51) (-1 |#2| (-383 (-523))) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523)))) (-15 -2417 ((-51) |#2| (-1087) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523))))) (-13 (-515) (-786) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1108) (-406 |#1|))) (T -434)) +((-2417 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1135 (-383 (-523)))) (-5 *7 (-383 (-523))) (-4 *3 (-13 (-27) (-1108) (-406 *8))) (-4 *8 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *8 *3)))) (-2417 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-383 (-523)))) (-5 *4 (-271 *8)) (-5 *5 (-1135 (-383 (-523)))) (-5 *6 (-383 (-523))) (-4 *8 (-13 (-27) (-1108) (-406 *7))) (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *7 *8)))) (-2417 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1135 (-523))) (-4 *3 (-13 (-27) (-1108) (-406 *7))) (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *7 *3)))) (-2417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-523))) (-5 *4 (-271 *7)) (-5 *5 (-1135 (-523))) (-4 *7 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *6 *7)))) (-2417 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *6 *3)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-523))) (-5 *4 (-271 *6)) (-4 *6 (-13 (-27) (-1108) (-406 *5))) (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *5 *6)))) (-3717 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1135 (-383 (-523)))) (-5 *7 (-383 (-523))) (-4 *3 (-13 (-27) (-1108) (-406 *8))) (-4 *8 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *8 *3)))) (-3717 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-383 (-523)))) (-5 *4 (-271 *8)) (-5 *5 (-1135 (-383 (-523)))) (-5 *6 (-383 (-523))) (-4 *8 (-13 (-27) (-1108) (-406 *7))) (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *7 *8)))) (-2028 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1135 (-523))) (-4 *3 (-13 (-27) (-1108) (-406 *7))) (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *7 *3)))) (-2028 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-523))) (-5 *4 (-271 *7)) (-5 *5 (-1135 (-523))) (-4 *7 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *6 *7)))) (-2015 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1135 (-710))) (-4 *3 (-13 (-27) (-1108) (-406 *7))) (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *7 *3)))) (-2015 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-523))) (-5 *4 (-271 *7)) (-5 *5 (-1135 (-710))) (-4 *7 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *6 *7)))) (-2015 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *6 *3)))) (-2015 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-523))) (-5 *4 (-271 *6)) (-4 *6 (-13 (-27) (-1108) (-406 *5))) (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-51)) (-5 *1 (-434 *5 *6))))) +(-10 -7 (-15 -2015 ((-51) (-1 |#2| (-523)) (-271 |#2|))) (-15 -2015 ((-51) |#2| (-1087) (-271 |#2|))) (-15 -2015 ((-51) (-1 |#2| (-523)) (-271 |#2|) (-1135 (-710)))) (-15 -2015 ((-51) |#2| (-1087) (-271 |#2|) (-1135 (-710)))) (-15 -2028 ((-51) (-1 |#2| (-523)) (-271 |#2|) (-1135 (-523)))) (-15 -2028 ((-51) |#2| (-1087) (-271 |#2|) (-1135 (-523)))) (-15 -3717 ((-51) (-1 |#2| (-383 (-523))) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523)))) (-15 -3717 ((-51) |#2| (-1087) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523)))) (-15 -2417 ((-51) (-1 |#2| (-523)) (-271 |#2|))) (-15 -2417 ((-51) |#2| (-1087) (-271 |#2|))) (-15 -2417 ((-51) (-1 |#2| (-523)) (-271 |#2|) (-1135 (-523)))) (-15 -2417 ((-51) |#2| (-1087) (-271 |#2|) (-1135 (-523)))) (-15 -2417 ((-51) (-1 |#2| (-383 (-523))) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523)))) (-15 -2417 ((-51) |#2| (-1087) (-271 |#2|) (-1135 (-383 (-523))) (-383 (-523))))) +((-2227 ((|#2| |#2| |#1|) 15)) (-4106 (((-589 |#2|) |#2| (-589 |#2|) |#1| (-852)) 69)) (-3302 (((-2 (|:| |plist| (-589 |#2|)) (|:| |modulo| |#1|)) |#2| (-589 |#2|) |#1| (-852)) 60))) +(((-435 |#1| |#2|) (-10 -7 (-15 -3302 ((-2 (|:| |plist| (-589 |#2|)) (|:| |modulo| |#1|)) |#2| (-589 |#2|) |#1| (-852))) (-15 -4106 ((-589 |#2|) |#2| (-589 |#2|) |#1| (-852))) (-15 -2227 (|#2| |#2| |#1|))) (-284) (-1144 |#1|)) (T -435)) +((-2227 (*1 *2 *2 *3) (-12 (-4 *3 (-284)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1144 *3)))) (-4106 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-589 *3)) (-5 *5 (-852)) (-4 *3 (-1144 *4)) (-4 *4 (-284)) (-5 *1 (-435 *4 *3)))) (-3302 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-852)) (-4 *5 (-284)) (-4 *3 (-1144 *5)) (-5 *2 (-2 (|:| |plist| (-589 *3)) (|:| |modulo| *5))) (-5 *1 (-435 *5 *3)) (-5 *4 (-589 *3))))) +(-10 -7 (-15 -3302 ((-2 (|:| |plist| (-589 |#2|)) (|:| |modulo| |#1|)) |#2| (-589 |#2|) |#1| (-852))) (-15 -4106 ((-589 |#2|) |#2| (-589 |#2|) |#1| (-852))) (-15 -2227 (|#2| |#2| |#1|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 28)) (-1890 (($ |#3|) 25)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3810 (($ $) 32)) (-3270 (($ |#2| |#4| $) 33)) (-1933 (($ |#2| (-653 |#3| |#4| |#5|)) 24)) (-3774 (((-653 |#3| |#4| |#5|) $) 15)) (-2836 ((|#3| $) 19)) (-3891 ((|#4| $) 17)) (-3786 ((|#2| $) 29)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-4174 (($ |#2| |#3| |#4|) 26)) (-2756 (($) 36 T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 34)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-436 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-657 |#6|) (-657 |#2|) (-10 -8 (-15 -3786 (|#2| $)) (-15 -3774 ((-653 |#3| |#4| |#5|) $)) (-15 -3891 (|#4| $)) (-15 -2836 (|#3| $)) (-15 -3810 ($ $)) (-15 -1933 ($ |#2| (-653 |#3| |#4| |#5|))) (-15 -1890 ($ |#3|)) (-15 -4174 ($ |#2| |#3| |#4|)) (-15 -3270 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-589 (-1087)) (-158) (-786) (-216 (-2676 |#1|) (-710)) (-1 (-108) (-2 (|:| -3878 |#3|) (|:| -2735 |#4|)) (-2 (|:| -3878 |#3|) (|:| -2735 |#4|))) (-880 |#2| |#4| (-796 |#1|))) (T -436)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) (-4 *6 (-216 (-2676 *3) (-710))) (-14 *7 (-1 (-108) (-2 (|:| -3878 *5) (|:| -2735 *6)) (-2 (|:| -3878 *5) (|:| -2735 *6)))) (-5 *1 (-436 *3 *4 *5 *6 *7 *2)) (-4 *5 (-786)) (-4 *2 (-880 *4 *6 (-796 *3))))) (-3786 (*1 *2 *1) (-12 (-14 *3 (-589 (-1087))) (-4 *5 (-216 (-2676 *3) (-710))) (-14 *6 (-1 (-108) (-2 (|:| -3878 *4) (|:| -2735 *5)) (-2 (|:| -3878 *4) (|:| -2735 *5)))) (-4 *2 (-158)) (-5 *1 (-436 *3 *2 *4 *5 *6 *7)) (-4 *4 (-786)) (-4 *7 (-880 *2 *5 (-796 *3))))) (-3774 (*1 *2 *1) (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) (-4 *6 (-216 (-2676 *3) (-710))) (-14 *7 (-1 (-108) (-2 (|:| -3878 *5) (|:| -2735 *6)) (-2 (|:| -3878 *5) (|:| -2735 *6)))) (-5 *2 (-653 *5 *6 *7)) (-5 *1 (-436 *3 *4 *5 *6 *7 *8)) (-4 *5 (-786)) (-4 *8 (-880 *4 *6 (-796 *3))))) (-3891 (*1 *2 *1) (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) (-14 *6 (-1 (-108) (-2 (|:| -3878 *5) (|:| -2735 *2)) (-2 (|:| -3878 *5) (|:| -2735 *2)))) (-4 *2 (-216 (-2676 *3) (-710))) (-5 *1 (-436 *3 *4 *5 *2 *6 *7)) (-4 *5 (-786)) (-4 *7 (-880 *4 *2 (-796 *3))))) (-2836 (*1 *2 *1) (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) (-4 *5 (-216 (-2676 *3) (-710))) (-14 *6 (-1 (-108) (-2 (|:| -3878 *2) (|:| -2735 *5)) (-2 (|:| -3878 *2) (|:| -2735 *5)))) (-4 *2 (-786)) (-5 *1 (-436 *3 *4 *2 *5 *6 *7)) (-4 *7 (-880 *4 *5 (-796 *3))))) (-3810 (*1 *1 *1) (-12 (-14 *2 (-589 (-1087))) (-4 *3 (-158)) (-4 *5 (-216 (-2676 *2) (-710))) (-14 *6 (-1 (-108) (-2 (|:| -3878 *4) (|:| -2735 *5)) (-2 (|:| -3878 *4) (|:| -2735 *5)))) (-5 *1 (-436 *2 *3 *4 *5 *6 *7)) (-4 *4 (-786)) (-4 *7 (-880 *3 *5 (-796 *2))))) (-1933 (*1 *1 *2 *3) (-12 (-5 *3 (-653 *5 *6 *7)) (-4 *5 (-786)) (-4 *6 (-216 (-2676 *4) (-710))) (-14 *7 (-1 (-108) (-2 (|:| -3878 *5) (|:| -2735 *6)) (-2 (|:| -3878 *5) (|:| -2735 *6)))) (-14 *4 (-589 (-1087))) (-4 *2 (-158)) (-5 *1 (-436 *4 *2 *5 *6 *7 *8)) (-4 *8 (-880 *2 *6 (-796 *4))))) (-1890 (*1 *1 *2) (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) (-4 *5 (-216 (-2676 *3) (-710))) (-14 *6 (-1 (-108) (-2 (|:| -3878 *2) (|:| -2735 *5)) (-2 (|:| -3878 *2) (|:| -2735 *5)))) (-5 *1 (-436 *3 *4 *2 *5 *6 *7)) (-4 *2 (-786)) (-4 *7 (-880 *4 *5 (-796 *3))))) (-4174 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-589 (-1087))) (-4 *2 (-158)) (-4 *4 (-216 (-2676 *5) (-710))) (-14 *6 (-1 (-108) (-2 (|:| -3878 *3) (|:| -2735 *4)) (-2 (|:| -3878 *3) (|:| -2735 *4)))) (-5 *1 (-436 *5 *2 *3 *4 *6 *7)) (-4 *3 (-786)) (-4 *7 (-880 *2 *4 (-796 *5))))) (-3270 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-589 (-1087))) (-4 *2 (-158)) (-4 *3 (-216 (-2676 *4) (-710))) (-14 *6 (-1 (-108) (-2 (|:| -3878 *5) (|:| -2735 *3)) (-2 (|:| -3878 *5) (|:| -2735 *3)))) (-5 *1 (-436 *4 *2 *5 *3 *6 *7)) (-4 *5 (-786)) (-4 *7 (-880 *2 *3 (-796 *4)))))) +(-13 (-657 |#6|) (-657 |#2|) (-10 -8 (-15 -3786 (|#2| $)) (-15 -3774 ((-653 |#3| |#4| |#5|) $)) (-15 -3891 (|#4| $)) (-15 -2836 (|#3| $)) (-15 -3810 ($ $)) (-15 -1933 ($ |#2| (-653 |#3| |#4| |#5|))) (-15 -1890 ($ |#3|)) (-15 -4174 ($ |#2| |#3| |#4|)) (-15 -3270 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-2597 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35))) +(((-437 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2597 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-732) (-786) (-515) (-880 |#3| |#1| |#2|) (-13 (-964 (-383 (-523))) (-339) (-10 -8 (-15 -1458 ($ |#4|)) (-15 -2785 (|#4| $)) (-15 -2797 (|#4| $))))) (T -437)) +((-2597 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-786)) (-4 *5 (-732)) (-4 *6 (-515)) (-4 *7 (-880 *6 *5 *3)) (-5 *1 (-437 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-964 (-383 (-523))) (-339) (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $)))))))) +(-10 -7 (-15 -2597 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-3924 (((-108) $ $) NIL)) (-1957 (((-589 |#3|) $) 41)) (-2100 (((-108) $) NIL)) (-2376 (((-108) $) NIL (|has| |#1| (-515)))) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-3724 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-3595 (((-108) $) NIL (|has| |#1| (-515)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3225 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3393 (((-108) $) NIL (|has| |#1| (-515)))) (-3956 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) 47)) (-3474 (($ (-589 |#4|)) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-2557 (($ |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4244)))) (-1666 (((-589 |#4|) $) 18 (|has| $ (-6 -4244)))) (-2907 ((|#3| $) 45)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#4|) $) 14 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) 26 (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-2852 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) 21)) (-4055 (((-589 |#3|) $) NIL)) (-1357 (((-108) |#3| $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-2783 (((-1034) $) NIL)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-1327 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 39)) (-3988 (($) 17)) (-2792 (((-710) |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) (((-710) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) 16)) (-3663 (((-499) $) NIL (|has| |#4| (-564 (-499)))) (($ (-589 |#4|)) 49)) (-1472 (($ (-589 |#4|)) 13)) (-2621 (($ $ |#3|) NIL)) (-2624 (($ $ |#3|) NIL)) (-3076 (($ $ |#3|) NIL)) (-1458 (((-794) $) 38) (((-589 |#4|) $) 48)) (-2096 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 30)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-438 |#1| |#2| |#3| |#4|) (-13 (-905 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3663 ($ (-589 |#4|))) (-6 -4244) (-6 -4245))) (-973) (-732) (-786) (-987 |#1| |#2| |#3|)) (T -438)) +((-3663 (*1 *1 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-438 *3 *4 *5 *6))))) +(-13 (-905 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3663 ($ (-589 |#4|))) (-6 -4244) (-6 -4245))) +((-2756 (($) 11)) (-2767 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-439 |#1| |#2| |#3|) (-10 -8 (-15 -2767 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2756 (|#1|))) (-440 |#2| |#3|) (-158) (-23)) (T -439)) +NIL +(-10 -8 (-15 -2767 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2756 (|#1|))) +((-3924 (((-108) $ $) 7)) (-3517 (((-3 |#1| "failed") $) 26)) (-3474 ((|#1| $) 25)) (-1656 (($ $ $) 23)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2299 ((|#2| $) 19)) (-1458 (((-794) $) 11) (($ |#1|) 27)) (-2756 (($) 18 T CONST)) (-2767 (($) 24 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 15) (($ $ $) 13)) (-4075 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-440 |#1| |#2|) (-129) (-158) (-23)) (T -440)) +((-2767 (*1 *1) (-12 (-4 *1 (-440 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) (-1656 (*1 *1 *1 *1) (-12 (-4 *1 (-440 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23))))) +(-13 (-445 |t#1| |t#2|) (-964 |t#1|) (-10 -8 (-15 (-2767) ($) -3059) (-15 -1656 ($ $ $)))) +(((-97) . T) ((-563 (-794)) . T) ((-445 |#1| |#2|) . T) ((-964 |#1|) . T) ((-1016) . T)) +((-2754 (((-1168 (-1168 (-523))) (-1168 (-1168 (-523))) (-852)) 18)) (-2466 (((-1168 (-1168 (-523))) (-852)) 16))) +(((-441) (-10 -7 (-15 -2754 ((-1168 (-1168 (-523))) (-1168 (-1168 (-523))) (-852))) (-15 -2466 ((-1168 (-1168 (-523))) (-852))))) (T -441)) +((-2466 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1168 (-1168 (-523)))) (-5 *1 (-441)))) (-2754 (*1 *2 *2 *3) (-12 (-5 *2 (-1168 (-1168 (-523)))) (-5 *3 (-852)) (-5 *1 (-441))))) +(-10 -7 (-15 -2754 ((-1168 (-1168 (-523))) (-1168 (-1168 (-523))) (-852))) (-15 -2466 ((-1168 (-1168 (-523))) (-852)))) +((-1214 (((-523) (-523)) 30) (((-523)) 22)) (-1790 (((-523) (-523)) 26) (((-523)) 18)) (-3229 (((-523) (-523)) 28) (((-523)) 20)) (-2319 (((-108) (-108)) 12) (((-108)) 10)) (-3497 (((-108) (-108)) 11) (((-108)) 9)) (-2386 (((-108) (-108)) 24) (((-108)) 15))) +(((-442) (-10 -7 (-15 -3497 ((-108))) (-15 -2319 ((-108))) (-15 -3497 ((-108) (-108))) (-15 -2319 ((-108) (-108))) (-15 -2386 ((-108))) (-15 -3229 ((-523))) (-15 -1790 ((-523))) (-15 -1214 ((-523))) (-15 -2386 ((-108) (-108))) (-15 -3229 ((-523) (-523))) (-15 -1790 ((-523) (-523))) (-15 -1214 ((-523) (-523))))) (T -442)) +((-1214 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) (-1790 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) (-3229 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) (-2386 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) (-1214 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) (-1790 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) (-3229 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) (-2386 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) (-2319 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) (-2319 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) (-3497 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442))))) +(-10 -7 (-15 -3497 ((-108))) (-15 -2319 ((-108))) (-15 -3497 ((-108) (-108))) (-15 -2319 ((-108) (-108))) (-15 -2386 ((-108))) (-15 -3229 ((-523))) (-15 -1790 ((-523))) (-15 -1214 ((-523))) (-15 -2386 ((-108) (-108))) (-15 -3229 ((-523) (-523))) (-15 -1790 ((-523) (-523))) (-15 -1214 ((-523) (-523)))) +((-3924 (((-108) $ $) NIL)) (-3142 (((-589 (-355)) $) 27) (((-589 (-355)) $ (-589 (-355))) 91)) (-4051 (((-589 (-1011 (-355))) $) 14) (((-589 (-1011 (-355))) $ (-589 (-1011 (-355)))) 88)) (-1411 (((-589 (-589 (-874 (-203)))) (-589 (-589 (-874 (-203)))) (-589 (-805))) 42)) (-1951 (((-589 (-589 (-874 (-203)))) $) 84)) (-2388 (((-1173) $ (-874 (-203)) (-805)) 104)) (-3119 (($ $) 83) (($ (-589 (-589 (-874 (-203))))) 94) (($ (-589 (-589 (-874 (-203)))) (-589 (-805)) (-589 (-805)) (-589 (-852))) 93) (($ (-589 (-589 (-874 (-203)))) (-589 (-805)) (-589 (-805)) (-589 (-852)) (-589 (-240))) 95)) (-3779 (((-1070) $) NIL)) (-1853 (((-523) $) 66)) (-2783 (((-1034) $) NIL)) (-2702 (($) 92)) (-4105 (((-589 (-203)) (-589 (-589 (-874 (-203))))) 52)) (-3914 (((-1173) $ (-589 (-874 (-203))) (-805) (-805) (-852)) 98) (((-1173) $ (-874 (-203))) 100) (((-1173) $ (-874 (-203)) (-805) (-805) (-852)) 99)) (-1458 (((-794) $) 110) (($ (-589 (-589 (-874 (-203))))) 105)) (-3681 (((-1173) $ (-874 (-203))) 103)) (-3983 (((-108) $ $) NIL))) +(((-443) (-13 (-1016) (-10 -8 (-15 -2702 ($)) (-15 -3119 ($ $)) (-15 -3119 ($ (-589 (-589 (-874 (-203)))))) (-15 -3119 ($ (-589 (-589 (-874 (-203)))) (-589 (-805)) (-589 (-805)) (-589 (-852)))) (-15 -3119 ($ (-589 (-589 (-874 (-203)))) (-589 (-805)) (-589 (-805)) (-589 (-852)) (-589 (-240)))) (-15 -1951 ((-589 (-589 (-874 (-203)))) $)) (-15 -1853 ((-523) $)) (-15 -4051 ((-589 (-1011 (-355))) $)) (-15 -4051 ((-589 (-1011 (-355))) $ (-589 (-1011 (-355))))) (-15 -3142 ((-589 (-355)) $)) (-15 -3142 ((-589 (-355)) $ (-589 (-355)))) (-15 -3914 ((-1173) $ (-589 (-874 (-203))) (-805) (-805) (-852))) (-15 -3914 ((-1173) $ (-874 (-203)))) (-15 -3914 ((-1173) $ (-874 (-203)) (-805) (-805) (-852))) (-15 -3681 ((-1173) $ (-874 (-203)))) (-15 -2388 ((-1173) $ (-874 (-203)) (-805))) (-15 -1458 ($ (-589 (-589 (-874 (-203)))))) (-15 -1458 ((-794) $)) (-15 -1411 ((-589 (-589 (-874 (-203)))) (-589 (-589 (-874 (-203)))) (-589 (-805)))) (-15 -4105 ((-589 (-203)) (-589 (-589 (-874 (-203))))))))) (T -443)) +((-1458 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-443)))) (-2702 (*1 *1) (-5 *1 (-443))) (-3119 (*1 *1 *1) (-5 *1 (-443))) (-3119 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-443)))) (-3119 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *3 (-589 (-805))) (-5 *4 (-589 (-852))) (-5 *1 (-443)))) (-3119 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *3 (-589 (-805))) (-5 *4 (-589 (-852))) (-5 *5 (-589 (-240))) (-5 *1 (-443)))) (-1951 (*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-443)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-443)))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-443)))) (-4051 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-443)))) (-3142 (*1 *2 *1) (-12 (-5 *2 (-589 (-355))) (-5 *1 (-443)))) (-3142 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-355))) (-5 *1 (-443)))) (-3914 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-589 (-874 (-203)))) (-5 *4 (-805)) (-5 *5 (-852)) (-5 *2 (-1173)) (-5 *1 (-443)))) (-3914 (*1 *2 *1 *3) (-12 (-5 *3 (-874 (-203))) (-5 *2 (-1173)) (-5 *1 (-443)))) (-3914 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-874 (-203))) (-5 *4 (-805)) (-5 *5 (-852)) (-5 *2 (-1173)) (-5 *1 (-443)))) (-3681 (*1 *2 *1 *3) (-12 (-5 *3 (-874 (-203))) (-5 *2 (-1173)) (-5 *1 (-443)))) (-2388 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-874 (-203))) (-5 *4 (-805)) (-5 *2 (-1173)) (-5 *1 (-443)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-443)))) (-1411 (*1 *2 *2 *3) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *3 (-589 (-805))) (-5 *1 (-443)))) (-4105 (*1 *2 *3) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *2 (-589 (-203))) (-5 *1 (-443))))) +(-13 (-1016) (-10 -8 (-15 -2702 ($)) (-15 -3119 ($ $)) (-15 -3119 ($ (-589 (-589 (-874 (-203)))))) (-15 -3119 ($ (-589 (-589 (-874 (-203)))) (-589 (-805)) (-589 (-805)) (-589 (-852)))) (-15 -3119 ($ (-589 (-589 (-874 (-203)))) (-589 (-805)) (-589 (-805)) (-589 (-852)) (-589 (-240)))) (-15 -1951 ((-589 (-589 (-874 (-203)))) $)) (-15 -1853 ((-523) $)) (-15 -4051 ((-589 (-1011 (-355))) $)) (-15 -4051 ((-589 (-1011 (-355))) $ (-589 (-1011 (-355))))) (-15 -3142 ((-589 (-355)) $)) (-15 -3142 ((-589 (-355)) $ (-589 (-355)))) (-15 -3914 ((-1173) $ (-589 (-874 (-203))) (-805) (-805) (-852))) (-15 -3914 ((-1173) $ (-874 (-203)))) (-15 -3914 ((-1173) $ (-874 (-203)) (-805) (-805) (-852))) (-15 -3681 ((-1173) $ (-874 (-203)))) (-15 -2388 ((-1173) $ (-874 (-203)) (-805))) (-15 -1458 ($ (-589 (-589 (-874 (-203)))))) (-15 -1458 ((-794) $)) (-15 -1411 ((-589 (-589 (-874 (-203)))) (-589 (-589 (-874 (-203)))) (-589 (-805)))) (-15 -4105 ((-589 (-203)) (-589 (-589 (-874 (-203)))))))) +((-4087 (($ $) NIL) (($ $ $) 11))) +(((-444 |#1| |#2| |#3|) (-10 -8 (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|))) (-445 |#2| |#3|) (-158) (-23)) (T -444)) +NIL +(-10 -8 (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|))) +((-3924 (((-108) $ $) 7)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2299 ((|#2| $) 19)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 15) (($ $ $) 13)) (-4075 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-445 |#1| |#2|) (-129) (-158) (-23)) (T -445)) +((-2299 (*1 *2 *1) (-12 (-4 *1 (-445 *3 *2)) (-4 *3 (-158)) (-4 *2 (-23)))) (-2756 (*1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) (-4087 (*1 *1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) (-4075 (*1 *1 *1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) (-4087 (*1 *1 *1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23))))) +(-13 (-1016) (-10 -8 (-15 -2299 (|t#2| $)) (-15 (-2756) ($) -3059) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4087 ($ $)) (-15 -4075 ($ $ $)) (-15 -4087 ($ $ $)))) +(((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-2791 (((-3 (-589 (-455 |#1| |#2|)) "failed") (-589 (-455 |#1| |#2|)) (-589 (-796 |#1|))) 90)) (-2020 (((-589 (-589 (-225 |#1| |#2|))) (-589 (-225 |#1| |#2|)) (-589 (-796 |#1|))) 88)) (-3102 (((-2 (|:| |dpolys| (-589 (-225 |#1| |#2|))) (|:| |coords| (-589 (-523)))) (-589 (-225 |#1| |#2|)) (-589 (-796 |#1|))) 58))) +(((-446 |#1| |#2| |#3|) (-10 -7 (-15 -2020 ((-589 (-589 (-225 |#1| |#2|))) (-589 (-225 |#1| |#2|)) (-589 (-796 |#1|)))) (-15 -2791 ((-3 (-589 (-455 |#1| |#2|)) "failed") (-589 (-455 |#1| |#2|)) (-589 (-796 |#1|)))) (-15 -3102 ((-2 (|:| |dpolys| (-589 (-225 |#1| |#2|))) (|:| |coords| (-589 (-523)))) (-589 (-225 |#1| |#2|)) (-589 (-796 |#1|))))) (-589 (-1087)) (-427) (-427)) (T -446)) +((-3102 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-796 *5))) (-14 *5 (-589 (-1087))) (-4 *6 (-427)) (-5 *2 (-2 (|:| |dpolys| (-589 (-225 *5 *6))) (|:| |coords| (-589 (-523))))) (-5 *1 (-446 *5 *6 *7)) (-5 *3 (-589 (-225 *5 *6))) (-4 *7 (-427)))) (-2791 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 (-455 *4 *5))) (-5 *3 (-589 (-796 *4))) (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *1 (-446 *4 *5 *6)) (-4 *6 (-427)))) (-2020 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-796 *5))) (-14 *5 (-589 (-1087))) (-4 *6 (-427)) (-5 *2 (-589 (-589 (-225 *5 *6)))) (-5 *1 (-446 *5 *6 *7)) (-5 *3 (-589 (-225 *5 *6))) (-4 *7 (-427))))) +(-10 -7 (-15 -2020 ((-589 (-589 (-225 |#1| |#2|))) (-589 (-225 |#1| |#2|)) (-589 (-796 |#1|)))) (-15 -2791 ((-3 (-589 (-455 |#1| |#2|)) "failed") (-589 (-455 |#1| |#2|)) (-589 (-796 |#1|)))) (-15 -3102 ((-2 (|:| |dpolys| (-589 (-225 |#1| |#2|))) (|:| |coords| (-589 (-523)))) (-589 (-225 |#1| |#2|)) (-589 (-796 |#1|))))) +((-2121 (((-3 $ "failed") $) 11)) (-3208 (($ $ $) 20)) (-1714 (($ $ $) 21)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 14)) (-4098 (($ $ $) 9)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 19))) +(((-447 |#1|) (-10 -8 (-15 -1714 (|#1| |#1| |#1|)) (-15 -3208 (|#1| |#1| |#1|)) (-15 -2364 (|#1| |#1| (-523))) (-15 ** (|#1| |#1| (-523))) (-15 -4098 (|#1| |#1| |#1|)) (-15 -2121 ((-3 |#1| "failed") |#1|)) (-15 -2364 (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-710))) (-15 -2364 (|#1| |#1| (-852))) (-15 ** (|#1| |#1| (-852)))) (-448)) (T -447)) +NIL +(-10 -8 (-15 -1714 (|#1| |#1| |#1|)) (-15 -3208 (|#1| |#1| |#1|)) (-15 -2364 (|#1| |#1| (-523))) (-15 ** (|#1| |#1| (-523))) (-15 -4098 (|#1| |#1| |#1|)) (-15 -2121 ((-3 |#1| "failed") |#1|)) (-15 -2364 (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-710))) (-15 -2364 (|#1| |#1| (-852))) (-15 ** (|#1| |#1| (-852)))) +((-3924 (((-108) $ $) 7)) (-2518 (($) 20 T CONST)) (-2121 (((-3 $ "failed") $) 16)) (-2023 (((-108) $) 19)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 27)) (-2783 (((-1034) $) 10)) (-3208 (($ $ $) 23)) (-1714 (($ $ $) 22)) (-1458 (((-794) $) 11)) (-2364 (($ $ (-852)) 13) (($ $ (-710)) 17) (($ $ (-523)) 24)) (-2767 (($) 21 T CONST)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ $) 26)) (** (($ $ (-852)) 14) (($ $ (-710)) 18) (($ $ (-523)) 25)) (* (($ $ $) 15))) +(((-448) (-129)) (T -448)) +((-3738 (*1 *1 *1) (-4 *1 (-448))) (-4098 (*1 *1 *1 *1) (-4 *1 (-448))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-448)) (-5 *2 (-523)))) (-2364 (*1 *1 *1 *2) (-12 (-4 *1 (-448)) (-5 *2 (-523)))) (-3208 (*1 *1 *1 *1) (-4 *1 (-448))) (-1714 (*1 *1 *1 *1) (-4 *1 (-448)))) +(-13 (-666) (-10 -8 (-15 -3738 ($ $)) (-15 -4098 ($ $ $)) (-15 ** ($ $ (-523))) (-15 -2364 ($ $ (-523))) (-6 -4241) (-15 -3208 ($ $ $)) (-15 -1714 ($ $ $)))) +(((-97) . T) ((-563 (-794)) . T) ((-666) . T) ((-1028) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) 17)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3984 (($ $ (-383 (-523))) NIL) (($ $ (-383 (-523)) (-383 (-523))) NIL)) (-2133 (((-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|))) $) NIL)) (-1769 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-339)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1744 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|)))) NIL)) (-1793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2657 (((-108) $) NIL (|has| |#1| (-339)))) (-2003 (((-108) $) NIL)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-383 (-523)) $) NIL) (((-383 (-523)) $ (-383 (-523))) NIL)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1349 (($ $ (-852)) NIL) (($ $ (-383 (-523))) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-383 (-523))) NIL) (($ $ (-1001) (-383 (-523))) NIL) (($ $ (-589 (-1001)) (-589 (-383 (-523)))) NIL)) (-3612 (($ (-1 |#1| |#1|) $) 22)) (-2384 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| |#1| (-339)))) (-3417 (($ $) 26 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 33 (-3262 (-12 (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1108))))) (($ $ (-1164 |#2|)) 27 (|has| |#1| (-37 (-383 (-523)))))) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-4097 (($ $ (-383 (-523))) NIL)) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-1811 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))))) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ (-383 (-523))) NIL) (($ $ $) NIL (|has| (-383 (-523)) (-1028)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) 25 (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $ (-1164 |#2|)) 15)) (-2299 (((-383 (-523)) $) NIL)) (-1805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL (|has| |#1| (-158))) (($ (-1164 |#2|)) NIL) (($ (-1153 |#1| |#2| |#3|)) 9) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515)))) (-2365 ((|#1| $ (-383 (-523))) NIL)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-1288 ((|#1| $) 18)) (-1839 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-383 (-523))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) 24)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-449 |#1| |#2| |#3|) (-13 (-1149 |#1|) (-10 -8 (-15 -1458 ($ (-1164 |#2|))) (-15 -1458 ($ (-1153 |#1| |#2| |#3|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) (-973) (-1087) |#1|) (T -449)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-449 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1153 *3 *4 *5)) (-4 *3 (-973)) (-14 *4 (-1087)) (-14 *5 *3) (-5 *1 (-449 *3 *4 *5)))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-449 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3417 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-449 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) +(-13 (-1149 |#1|) (-10 -8 (-15 -1458 ($ (-1164 |#2|))) (-15 -1458 ($ (-1153 |#1| |#2| |#3|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) +((-3924 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-4207 (((-1173) $ |#1| |#1|) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#2| $ |#1| |#2|) 18)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2243 (((-3 |#2| "failed") |#1| $) 19)) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-2249 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-3 |#2| "failed") |#1| $) 16)) (-2557 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) NIL)) (-1666 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 ((|#1| $) NIL (|has| |#1| (-786)))) (-2136 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3056 ((|#1| $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4245))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1330 (((-589 |#1|) $) NIL)) (-2777 (((-108) |#1| $) NIL)) (-1934 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-3450 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-2412 (((-589 |#1|) $) NIL)) (-4135 (((-108) |#1| $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1738 ((|#2| $) NIL (|has| |#1| (-786)))) (-2114 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL)) (-4203 (($ $ |#2|) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3433 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016)))) (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-1458 (((-794) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794)))))) (-2401 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-450 |#1| |#2| |#3| |#4|) (-1099 |#1| |#2|) (-1016) (-1016) (-1099 |#1| |#2|) |#2|) (T -450)) +NIL +(-1099 |#1| |#2|) +((-3924 (((-108) $ $) NIL)) (-1633 (((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 |#4|)))) (-589 |#4|)) NIL)) (-3846 (((-589 $) (-589 |#4|)) NIL)) (-1957 (((-589 |#3|) $) NIL)) (-2100 (((-108) $) NIL)) (-2376 (((-108) $) NIL (|has| |#1| (-515)))) (-2694 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2308 ((|#4| |#4| $) NIL)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-3724 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2518 (($) NIL T CONST)) (-3595 (((-108) $) 26 (|has| |#1| (-515)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3225 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3393 (((-108) $) NIL (|has| |#1| (-515)))) (-3375 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3956 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) NIL)) (-3474 (($ (-589 |#4|)) NIL)) (-1751 (((-3 $ "failed") $) 39)) (-4014 ((|#4| |#4| $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-2557 (($ |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-2663 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2636 ((|#4| |#4| $) NIL)) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4244))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3737 (((-2 (|:| -3952 (-589 |#4|)) (|:| -2625 (-589 |#4|))) $) NIL)) (-1666 (((-589 |#4|) $) 16 (|has| $ (-6 -4244)))) (-4172 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2907 ((|#3| $) 33)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#4|) $) 17 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-2852 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) 21)) (-4055 (((-589 |#3|) $) NIL)) (-1357 (((-108) |#3| $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-2579 (((-3 |#4| "failed") $) 37)) (-2404 (((-589 |#4|) $) NIL)) (-2112 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2648 ((|#4| |#4| $) NIL)) (-2391 (((-108) $ $) NIL)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-2001 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1398 ((|#4| |#4| $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 (((-3 |#4| "failed") $) 35)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2890 (((-3 $ "failed") $ |#4|) 47)) (-4097 (($ $ |#4|) NIL)) (-1327 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 15)) (-3988 (($) 13)) (-2299 (((-710) $) NIL)) (-2792 (((-710) |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) (((-710) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) 12)) (-3663 (((-499) $) NIL (|has| |#4| (-564 (-499))))) (-1472 (($ (-589 |#4|)) 20)) (-2621 (($ $ |#3|) 42)) (-2624 (($ $ |#3|) 44)) (-1824 (($ $) NIL)) (-3076 (($ $ |#3|) NIL)) (-1458 (((-794) $) 31) (((-589 |#4|) $) 40)) (-1395 (((-710) $) NIL (|has| |#3| (-344)))) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4031 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) NIL)) (-2096 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-3862 (((-589 |#3|) $) NIL)) (-2153 (((-108) |#3| $) NIL)) (-3983 (((-108) $ $) NIL)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-451 |#1| |#2| |#3| |#4|) (-1116 |#1| |#2| |#3| |#4|) (-515) (-732) (-786) (-987 |#1| |#2| |#3|)) (T -451)) +NIL +(-1116 |#1| |#2| |#3| |#4|) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL)) (-3474 (((-523) $) NIL) (((-383 (-523)) $) NIL)) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2820 (($) 18)) (-2023 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3663 (((-355) $) 22) (((-203) $) 25) (((-383 (-1083 (-523))) $) 19) (((-499) $) 53)) (-1458 (((-794) $) 51) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (((-203) $) 24) (((-355) $) 21)) (-1621 (((-710)) NIL)) (-1704 (((-108) $ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 36 T CONST)) (-2767 (($) 11 T CONST)) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) +(((-452) (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))) (-949) (-563 (-203)) (-563 (-355)) (-564 (-383 (-1083 (-523)))) (-564 (-499)) (-10 -8 (-15 -2820 ($))))) (T -452)) +((-2820 (*1 *1) (-5 *1 (-452)))) +(-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))) (-949) (-563 (-203)) (-563 (-355)) (-564 (-383 (-1083 (-523)))) (-564 (-499)) (-10 -8 (-15 -2820 ($)))) +((-3924 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-4207 (((-1173) $ |#1| |#1|) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#2| $ |#1| |#2|) 16)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2243 (((-3 |#2| "failed") |#1| $) 20)) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-2249 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-3 |#2| "failed") |#1| $) 18)) (-2557 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) NIL)) (-1666 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 ((|#1| $) NIL (|has| |#1| (-786)))) (-2136 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3056 ((|#1| $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4245))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1330 (((-589 |#1|) $) 13)) (-2777 (((-108) |#1| $) NIL)) (-1934 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-3450 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-2412 (((-589 |#1|) $) NIL)) (-4135 (((-108) |#1| $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1738 ((|#2| $) NIL (|has| |#1| (-786)))) (-2114 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL)) (-4203 (($ $ |#2|) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) 19)) (-3223 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3433 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016)))) (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-1458 (((-794) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794)))))) (-2401 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 11 (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2676 (((-710) $) 15 (|has| $ (-6 -4244))))) +(((-453 |#1| |#2| |#3|) (-13 (-1099 |#1| |#2|) (-10 -7 (-6 -4244))) (-1016) (-1016) (-1070)) (T -453)) +NIL +(-13 (-1099 |#1| |#2|) (-10 -7 (-6 -4244))) +((-1801 (((-523) (-523) (-523)) 7)) (-3702 (((-108) (-523) (-523) (-523) (-523)) 11)) (-3655 (((-1168 (-589 (-523))) (-710) (-710)) 23))) +(((-454) (-10 -7 (-15 -1801 ((-523) (-523) (-523))) (-15 -3702 ((-108) (-523) (-523) (-523) (-523))) (-15 -3655 ((-1168 (-589 (-523))) (-710) (-710))))) (T -454)) +((-3655 (*1 *2 *3 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1168 (-589 (-523)))) (-5 *1 (-454)))) (-3702 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-523)) (-5 *2 (-108)) (-5 *1 (-454)))) (-1801 (*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-454))))) +(-10 -7 (-15 -1801 ((-523) (-523) (-523))) (-15 -3702 ((-108) (-523) (-523) (-523) (-523))) (-15 -3655 ((-1168 (-589 (-523))) (-710) (-710)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-796 |#1|)) $) NIL)) (-1786 (((-1083 $) $ (-796 |#1|)) NIL) (((-1083 |#2|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#2| (-515)))) (-3345 (($ $) NIL (|has| |#2| (-515)))) (-3331 (((-108) $) NIL (|has| |#2| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-796 |#1|))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2291 (($ $) NIL (|has| |#2| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#2| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-796 |#1|) "failed") $) NIL)) (-3474 ((|#2| $) NIL) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-796 |#1|) $) NIL)) (-3078 (($ $ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-3806 (($ $ (-589 (-523))) NIL)) (-3810 (($ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#2| (-840)))) (-1284 (($ $ |#2| (-456 (-2676 |#1|) (-710)) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-355))) (|has| |#2| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-523))) (|has| |#2| (-817 (-523)))))) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-1945 (($ (-1083 |#2|) (-796 |#1|)) NIL) (($ (-1083 $) (-796 |#1|)) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#2| (-456 (-2676 |#1|) (-710))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-796 |#1|)) NIL)) (-1575 (((-456 (-2676 |#1|) (-710)) $) NIL) (((-710) $ (-796 |#1|)) NIL) (((-589 (-710)) $ (-589 (-796 |#1|))) NIL)) (-2454 (($ $ $) NIL (|has| |#2| (-786)))) (-2062 (($ $ $) NIL (|has| |#2| (-786)))) (-3782 (($ (-1 (-456 (-2676 |#1|) (-710)) (-456 (-2676 |#1|) (-710))) $) NIL)) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-2520 (((-3 (-796 |#1|) "failed") $) NIL)) (-3774 (($ $) NIL)) (-3786 ((|#2| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-3779 (((-1070) $) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-796 |#1|)) (|:| -2735 (-710))) "failed") $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 ((|#2| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#2| (-840)))) (-3746 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-515)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-796 |#1|) |#2|) NIL) (($ $ (-589 (-796 |#1|)) (-589 |#2|)) NIL) (($ $ (-796 |#1|) $) NIL) (($ $ (-589 (-796 |#1|)) (-589 $)) NIL)) (-3549 (($ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-3523 (($ $ (-796 |#1|)) NIL) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-2299 (((-456 (-2676 |#1|) (-710)) $) NIL) (((-710) $ (-796 |#1|)) NIL) (((-589 (-710)) $ (-589 (-796 |#1|))) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-796 |#1|) (-564 (-499))) (|has| |#2| (-564 (-499)))))) (-2438 ((|#2| $) NIL (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#2| (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) NIL) (($ (-796 |#1|)) NIL) (($ (-383 (-523))) NIL (-3262 (|has| |#2| (-37 (-383 (-523)))) (|has| |#2| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#2| (-515)))) (-1251 (((-589 |#2|) $) NIL)) (-2365 ((|#2| $ (-456 (-2676 |#1|) (-710))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#2| (-840))) (|has| |#2| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#2| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#2| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-796 |#1|)) NIL) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-4043 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4098 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#2| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#2| (-37 (-383 (-523))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-455 |#1| |#2|) (-13 (-880 |#2| (-456 (-2676 |#1|) (-710)) (-796 |#1|)) (-10 -8 (-15 -3806 ($ $ (-589 (-523)))))) (-589 (-1087)) (-973)) (T -455)) +((-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-455 *3 *4)) (-14 *3 (-589 (-1087))) (-4 *4 (-973))))) +(-13 (-880 |#2| (-456 (-2676 |#1|) (-710)) (-796 |#1|)) (-10 -8 (-15 -3806 ($ $ (-589 (-523)))))) +((-3924 (((-108) $ $) NIL (|has| |#2| (-1016)))) (-2295 (((-108) $) NIL (|has| |#2| (-124)))) (-1890 (($ (-852)) NIL (|has| |#2| (-973)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-3596 (($ $ $) NIL (|has| |#2| (-732)))) (-3212 (((-3 $ "failed") $ $) NIL (|has| |#2| (-124)))) (-3079 (((-108) $ (-710)) NIL)) (-1703 (((-710)) NIL (|has| |#2| (-344)))) (-3671 (((-523) $) NIL (|has| |#2| (-784)))) (-1641 ((|#2| $ (-523) |#2|) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1016)))) (-3474 (((-523) $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-383 (-523)) $) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) ((|#2| $) NIL (|has| |#2| (-1016)))) (-2381 (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL (|has| |#2| (-973))) (((-629 |#2|) (-629 $)) NIL (|has| |#2| (-973)))) (-2121 (((-3 $ "failed") $) NIL (|has| |#2| (-973)))) (-4032 (($) NIL (|has| |#2| (-344)))) (-2863 ((|#2| $ (-523) |#2|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#2| $ (-523)) 11)) (-2604 (((-108) $) NIL (|has| |#2| (-784)))) (-1666 (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-2023 (((-108) $) NIL (|has| |#2| (-973)))) (-4114 (((-108) $) NIL (|has| |#2| (-784)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-2136 (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-2852 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-2072 (((-852) $) NIL (|has| |#2| (-344)))) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#2| (-1016)))) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-3878 (($ (-852)) NIL (|has| |#2| (-344)))) (-2783 (((-1034) $) NIL (|has| |#2| (-1016)))) (-1738 ((|#2| $) NIL (|has| (-523) (-786)))) (-4203 (($ $ |#2|) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#2| $ (-523) |#2|) NIL) ((|#2| $ (-523)) NIL)) (-3269 ((|#2| $ $) NIL (|has| |#2| (-973)))) (-1868 (($ (-1168 |#2|)) NIL)) (-3203 (((-126)) NIL (|has| |#2| (-339)))) (-3523 (($ $) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-973)))) (-2792 (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-1168 |#2|) $) NIL) (($ (-523)) NIL (-3262 (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016))) (|has| |#2| (-973)))) (($ (-383 (-523))) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (($ |#2|) NIL (|has| |#2| (-1016))) (((-794) $) NIL (|has| |#2| (-563 (-794))))) (-1621 (((-710)) NIL (|has| |#2| (-973)))) (-2096 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2619 (($ $) NIL (|has| |#2| (-784)))) (-2364 (($ $ (-710)) NIL (|has| |#2| (-973))) (($ $ (-852)) NIL (|has| |#2| (-973)))) (-2756 (($) NIL (|has| |#2| (-124)) CONST)) (-2767 (($) NIL (|has| |#2| (-973)) CONST)) (-2862 (($ $) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-973)))) (-4043 (((-108) $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-4019 (((-108) $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-3983 (((-108) $ $) NIL (|has| |#2| (-1016)))) (-4030 (((-108) $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-4007 (((-108) $ $) 15 (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-4098 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4087 (($ $ $) NIL (|has| |#2| (-973))) (($ $) NIL (|has| |#2| (-973)))) (-4075 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-710)) NIL (|has| |#2| (-973))) (($ $ (-852)) NIL (|has| |#2| (-973)))) (* (($ $ $) NIL (|has| |#2| (-973))) (($ (-523) $) NIL (|has| |#2| (-973))) (($ $ |#2|) NIL (|has| |#2| (-666))) (($ |#2| $) NIL (|has| |#2| (-666))) (($ (-710) $) NIL (|has| |#2| (-124))) (($ (-852) $) NIL (|has| |#2| (-25)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-456 |#1| |#2|) (-216 |#1| |#2|) (-710) (-732)) (T -456)) +NIL +(-216 |#1| |#2|) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) NIL)) (-2518 (($) NIL T CONST)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-2158 (($ $ $) 32)) (-2178 (($ $ $) 31)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2062 ((|#1| $) 26)) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1934 ((|#1| $) 27)) (-3450 (($ |#1| $) 10)) (-1274 (($ (-589 |#1|)) 12)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3761 ((|#1| $) 23)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) 9)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) 29)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2676 (((-710) $) 21 (|has| $ (-6 -4244))))) +(((-457 |#1|) (-13 (-898 |#1|) (-10 -8 (-15 -1274 ($ (-589 |#1|))))) (-786)) (T -457)) +((-1274 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-457 *3))))) +(-13 (-898 |#1|) (-10 -8 (-15 -1274 ($ (-589 |#1|))))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2437 (($ $) 69)) (-1894 (((-108) $) NIL)) (-3779 (((-1070) $) NIL)) (-1485 (((-389 |#2| (-383 |#2|) |#3| |#4|) $) 43)) (-2783 (((-1034) $) NIL)) (-3441 (((-3 |#4| "failed") $) 105)) (-3219 (($ (-389 |#2| (-383 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 113) (($ |#1| |#1| (-523)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 125)) (-2274 (((-2 (|:| -3024 (-389 |#2| (-383 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-1458 (((-794) $) 100)) (-2756 (($) 33 T CONST)) (-3983 (((-108) $ $) 107)) (-4087 (($ $) 72) (($ $ $) NIL)) (-4075 (($ $ $) 70)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 73))) +(((-458 |#1| |#2| |#3| |#4|) (-311 |#1| |#2| |#3| |#4|) (-339) (-1144 |#1|) (-1144 (-383 |#2|)) (-318 |#1| |#2| |#3|)) (T -458)) +NIL +(-311 |#1| |#2| |#3| |#4|) +((-1491 (((-523) (-589 (-523))) 30)) (-3894 ((|#1| (-589 |#1|)) 56)) (-3912 (((-589 |#1|) (-589 |#1|)) 57)) (-2967 (((-589 |#1|) (-589 |#1|)) 59)) (-3278 ((|#1| (-589 |#1|)) 58)) (-2438 (((-589 (-523)) (-589 |#1|)) 33))) +(((-459 |#1|) (-10 -7 (-15 -3278 (|#1| (-589 |#1|))) (-15 -3894 (|#1| (-589 |#1|))) (-15 -2967 ((-589 |#1|) (-589 |#1|))) (-15 -3912 ((-589 |#1|) (-589 |#1|))) (-15 -2438 ((-589 (-523)) (-589 |#1|))) (-15 -1491 ((-523) (-589 (-523))))) (-1144 (-523))) (T -459)) +((-1491 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-523)) (-5 *1 (-459 *4)) (-4 *4 (-1144 *2)))) (-2438 (*1 *2 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-1144 (-523))) (-5 *2 (-589 (-523))) (-5 *1 (-459 *4)))) (-3912 (*1 *2 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1144 (-523))) (-5 *1 (-459 *3)))) (-2967 (*1 *2 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1144 (-523))) (-5 *1 (-459 *3)))) (-3894 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-5 *1 (-459 *2)) (-4 *2 (-1144 (-523))))) (-3278 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-5 *1 (-459 *2)) (-4 *2 (-1144 (-523)))))) +(-10 -7 (-15 -3278 (|#1| (-589 |#1|))) (-15 -3894 (|#1| (-589 |#1|))) (-15 -2967 ((-589 |#1|) (-589 |#1|))) (-15 -3912 ((-589 |#1|) (-589 |#1|))) (-15 -2438 ((-589 (-523)) (-589 |#1|))) (-15 -1491 ((-523) (-589 (-523))))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3458 (((-523) $) NIL (|has| (-523) (-284)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL (|has| (-523) (-759)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (|has| (-523) (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-523) (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| (-523) (-964 (-523))))) (-3474 (((-523) $) NIL) (((-1087) $) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| (-523) (-964 (-523)))) (((-523) $) NIL (|has| (-523) (-964 (-523))))) (-3796 (($ $ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-629 (-523)) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-523) (-508)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2604 (((-108) $) NIL (|has| (-523) (-759)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-523) (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-523) (-817 (-355))))) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL)) (-2785 (((-523) $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| (-523) (-1063)))) (-4114 (((-108) $) NIL (|has| (-523) (-759)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| (-523) (-786)))) (-3612 (($ (-1 (-523) (-523)) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-523) (-1063)) CONST)) (-2646 (($ (-383 (-523))) 8)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL (|has| (-523) (-284))) (((-383 (-523)) $) NIL)) (-3722 (((-523) $) NIL (|has| (-523) (-508)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2679 (($ $ (-589 (-523)) (-589 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-523) (-523)) NIL (|has| (-523) (-286 (-523)))) (($ $ (-271 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-271 (-523)))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-1087)) (-589 (-523))) NIL (|has| (-523) (-484 (-1087) (-523)))) (($ $ (-1087) (-523)) NIL (|has| (-523) (-484 (-1087) (-523))))) (-1972 (((-710) $) NIL)) (-3223 (($ $ (-523)) NIL (|has| (-523) (-263 (-523) (-523))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $) NIL (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-3414 (($ $) NIL)) (-2797 (((-523) $) NIL)) (-3663 (((-823 (-523)) $) NIL (|has| (-523) (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| (-523) (-564 (-823 (-355))))) (((-499) $) NIL (|has| (-523) (-564 (-499)))) (((-355) $) NIL (|has| (-523) (-949))) (((-203) $) NIL (|has| (-523) (-949)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-523) (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) 7) (($ (-523)) NIL) (($ (-1087)) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) NIL) (((-932 16) $) 9)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| (-523) (-840))) (|has| (-523) (-134))))) (-1621 (((-710)) NIL)) (-1886 (((-523) $) NIL (|has| (-523) (-508)))) (-1704 (((-108) $ $) NIL)) (-2619 (($ $) NIL (|has| (-523) (-759)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $) NIL (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-4043 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4019 (((-108) $ $) NIL (|has| (-523) (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4007 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4098 (($ $ $) NIL) (($ (-523) (-523)) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ (-523) $) NIL) (($ $ (-523)) NIL))) +(((-460) (-13 (-921 (-523)) (-10 -8 (-15 -1458 ((-383 (-523)) $)) (-15 -1458 ((-932 16) $)) (-15 -2206 ((-383 (-523)) $)) (-15 -2646 ($ (-383 (-523))))))) (T -460)) +((-1458 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-460)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-932 16)) (-5 *1 (-460)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-460)))) (-2646 (*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-460))))) +(-13 (-921 (-523)) (-10 -8 (-15 -1458 ((-383 (-523)) $)) (-15 -1458 ((-932 16) $)) (-15 -2206 ((-383 (-523)) $)) (-15 -2646 ($ (-383 (-523)))))) +((-2136 (((-589 |#2|) $) 22)) (-1973 (((-108) |#2| $) 27)) (-1327 (((-108) (-1 (-108) |#2|) $) 20)) (-2679 (($ $ (-589 (-271 |#2|))) 12) (($ $ (-271 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-589 |#2|) (-589 |#2|)) NIL)) (-2792 (((-710) (-1 (-108) |#2|) $) 21) (((-710) |#2| $) 25)) (-1458 (((-794) $) 36)) (-2096 (((-108) (-1 (-108) |#2|) $) 19)) (-3983 (((-108) $ $) 30)) (-2676 (((-710) $) 16))) +(((-461 |#1| |#2|) (-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -2679 (|#1| |#1| (-589 |#2|) (-589 |#2|))) (-15 -2679 (|#1| |#1| |#2| |#2|)) (-15 -2679 (|#1| |#1| (-271 |#2|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#2|)))) (-15 -1973 ((-108) |#2| |#1|)) (-15 -2792 ((-710) |#2| |#1|)) (-15 -2136 ((-589 |#2|) |#1|)) (-15 -2792 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -1327 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2676 ((-710) |#1|))) (-462 |#2|) (-1122)) (T -461)) +NIL +(-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -2679 (|#1| |#1| (-589 |#2|) (-589 |#2|))) (-15 -2679 (|#1| |#1| |#2| |#2|)) (-15 -2679 (|#1| |#1| (-271 |#2|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#2|)))) (-15 -1973 ((-108) |#2| |#1|)) (-15 -2792 ((-710) |#2| |#1|)) (-15 -2136 ((-589 |#2|) |#1|)) (-15 -2792 ((-710) (-1 (-108) |#2|) |#1|)) (-15 -1327 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2676 ((-710) |#1|))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) 8)) (-2518 (($) 7 T CONST)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-462 |#1|) (-129) (-1122)) (T -462)) +((-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-462 *3)) (-4 *3 (-1122)))) (-2852 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4245)) (-4 *1 (-462 *3)) (-4 *3 (-1122)))) (-2096 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4244)) (-4 *1 (-462 *4)) (-4 *4 (-1122)) (-5 *2 (-108)))) (-1327 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4244)) (-4 *1 (-462 *4)) (-4 *4 (-1122)) (-5 *2 (-108)))) (-2792 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4244)) (-4 *1 (-462 *4)) (-4 *4 (-1122)) (-5 *2 (-710)))) (-1666 (*1 *2 *1) (-12 (|has| *1 (-6 -4244)) (-4 *1 (-462 *3)) (-4 *3 (-1122)) (-5 *2 (-589 *3)))) (-2136 (*1 *2 *1) (-12 (|has| *1 (-6 -4244)) (-4 *1 (-462 *3)) (-4 *3 (-1122)) (-5 *2 (-589 *3)))) (-2792 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4244)) (-4 *1 (-462 *3)) (-4 *3 (-1122)) (-4 *3 (-1016)) (-5 *2 (-710)))) (-1973 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4244)) (-4 *1 (-462 *3)) (-4 *3 (-1122)) (-4 *3 (-1016)) (-5 *2 (-108))))) +(-13 (-33) (-10 -8 (IF (|has| |t#1| (-563 (-794))) (-6 (-563 (-794))) |%noBranch|) (IF (|has| |t#1| (-1016)) (-6 (-1016)) |%noBranch|) (IF (|has| |t#1| (-1016)) (IF (|has| |t#1| (-286 |t#1|)) (-6 (-286 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3612 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4245)) (-15 -2852 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4244)) (PROGN (-15 -2096 ((-108) (-1 (-108) |t#1|) $)) (-15 -1327 ((-108) (-1 (-108) |t#1|) $)) (-15 -2792 ((-710) (-1 (-108) |t#1|) $)) (-15 -1666 ((-589 |t#1|) $)) (-15 -2136 ((-589 |t#1|) $)) (IF (|has| |t#1| (-1016)) (PROGN (-15 -2792 ((-710) |t#1| $)) (-15 -1973 ((-108) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) +((-1769 (($ $) 15)) (-1744 (($ $) 24)) (-1793 (($ $) 12)) (-1805 (($ $) 10)) (-1782 (($ $) 17)) (-1757 (($ $) 22))) +(((-463 |#1|) (-10 -8 (-15 -1757 (|#1| |#1|)) (-15 -1782 (|#1| |#1|)) (-15 -1805 (|#1| |#1|)) (-15 -1793 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1769 (|#1| |#1|))) (-464)) (T -463)) +NIL +(-10 -8 (-15 -1757 (|#1| |#1|)) (-15 -1782 (|#1| |#1|)) (-15 -1805 (|#1| |#1|)) (-15 -1793 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1769 (|#1| |#1|))) +((-1769 (($ $) 11)) (-1744 (($ $) 10)) (-1793 (($ $) 9)) (-1805 (($ $) 8)) (-1782 (($ $) 7)) (-1757 (($ $) 6))) +(((-464) (-129)) (T -464)) +((-1769 (*1 *1 *1) (-4 *1 (-464))) (-1744 (*1 *1 *1) (-4 *1 (-464))) (-1793 (*1 *1 *1) (-4 *1 (-464))) (-1805 (*1 *1 *1) (-4 *1 (-464))) (-1782 (*1 *1 *1) (-4 *1 (-464))) (-1757 (*1 *1 *1) (-4 *1 (-464)))) +(-13 (-10 -8 (-15 -1757 ($ $)) (-15 -1782 ($ $)) (-15 -1805 ($ $)) (-15 -1793 ($ $)) (-15 -1744 ($ $)) (-15 -1769 ($ $)))) +((-1820 (((-394 |#4|) |#4| (-1 (-394 |#2|) |#2|)) 42))) +(((-465 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1820 ((-394 |#4|) |#4| (-1 (-394 |#2|) |#2|)))) (-339) (-1144 |#1|) (-13 (-339) (-136) (-664 |#1| |#2|)) (-1144 |#3|)) (T -465)) +((-1820 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) (-4 *7 (-13 (-339) (-136) (-664 *5 *6))) (-5 *2 (-394 *3)) (-5 *1 (-465 *5 *6 *7 *3)) (-4 *3 (-1144 *7))))) +(-10 -7 (-15 -1820 ((-394 |#4|) |#4| (-1 (-394 |#2|) |#2|)))) +((-3924 (((-108) $ $) NIL)) (-1728 (((-589 $) (-1083 $) (-1087)) NIL) (((-589 $) (-1083 $)) NIL) (((-589 $) (-883 $)) NIL)) (-2488 (($ (-1083 $) (-1087)) NIL) (($ (-1083 $)) NIL) (($ (-883 $)) NIL)) (-2295 (((-108) $) 37)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2521 (((-108) $ $) 63)) (-3072 (((-589 (-562 $)) $) 47)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2955 (($ $ (-271 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-589 (-562 $)) (-589 $)) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1832 (($ $) NIL)) (-1387 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-1694 (((-589 $) (-1083 $) (-1087)) NIL) (((-589 $) (-1083 $)) NIL) (((-589 $) (-883 $)) NIL)) (-3313 (($ (-1083 $) (-1087)) NIL) (($ (-1083 $)) NIL) (($ (-883 $)) NIL)) (-3517 (((-3 (-562 $) "failed") $) NIL) (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL)) (-3474 (((-562 $) $) NIL) (((-523) $) NIL) (((-383 (-523)) $) 49)) (-3796 (($ $ $) NIL)) (-2381 (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-629 (-523)) (-629 $)) NIL) (((-2 (|:| -3392 (-629 (-383 (-523)))) (|:| |vec| (-1168 (-383 (-523))))) (-629 $) (-1168 $)) NIL) (((-629 (-383 (-523))) (-629 $)) NIL)) (-2437 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2361 (($ $) NIL) (($ (-589 $)) NIL)) (-1444 (((-589 (-110)) $) NIL)) (-1403 (((-110) (-110)) NIL)) (-2023 (((-108) $) 40)) (-1557 (((-108) $) NIL (|has| $ (-964 (-523))))) (-2785 (((-1039 (-523) (-562 $)) $) 35)) (-1420 (($ $ (-523)) NIL)) (-3892 (((-1083 $) (-1083 $) (-562 $)) 78) (((-1083 $) (-1083 $) (-589 (-562 $))) 54) (($ $ (-562 $)) 67) (($ $ (-589 (-562 $))) 68)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1483 (((-1083 $) (-562 $)) 65 (|has| $ (-973)))) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3612 (($ (-1 $ $) (-562 $)) NIL)) (-1363 (((-3 (-562 $) "failed") $) NIL)) (-3244 (($ (-589 $)) NIL) (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-1771 (((-589 (-562 $)) $) NIL)) (-2868 (($ (-110) $) NIL) (($ (-110) (-589 $)) NIL)) (-3259 (((-108) $ (-110)) NIL) (((-108) $ (-1087)) NIL)) (-3738 (($ $) NIL)) (-2510 (((-710) $) NIL)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ (-589 $)) NIL) (($ $ $) NIL)) (-2585 (((-108) $ $) NIL) (((-108) $ (-1087)) NIL)) (-1820 (((-394 $) $) NIL)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4104 (((-108) $) NIL (|has| $ (-964 (-523))))) (-2679 (($ $ (-562 $) $) NIL) (($ $ (-589 (-562 $)) (-589 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-1087)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-1087) (-1 $ (-589 $))) NIL) (($ $ (-1087) (-1 $ $)) NIL) (($ $ (-589 (-110)) (-589 (-1 $ $))) NIL) (($ $ (-589 (-110)) (-589 (-1 $ (-589 $)))) NIL) (($ $ (-110) (-1 $ (-589 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-1972 (((-710) $) NIL)) (-3223 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-589 $)) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3957 (($ $) NIL) (($ $ $) NIL)) (-3523 (($ $ (-710)) NIL) (($ $) 34)) (-2797 (((-1039 (-523) (-562 $)) $) 18)) (-3727 (($ $) NIL (|has| $ (-973)))) (-3663 (((-355) $) 92) (((-203) $) 100) (((-155 (-355)) $) 108)) (-1458 (((-794) $) NIL) (($ (-562 $)) NIL) (($ (-383 (-523))) NIL) (($ $) NIL) (($ (-523)) NIL) (($ (-1039 (-523) (-562 $))) 19)) (-1621 (((-710)) NIL)) (-3822 (($ $) NIL) (($ (-589 $)) NIL)) (-1950 (((-108) (-110)) 84)) (-1704 (((-108) $ $) NIL)) (-2364 (($ $ (-523)) NIL) (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-2756 (($) 9 T CONST)) (-2767 (($) 20 T CONST)) (-2862 (($ $ (-710)) NIL) (($ $) NIL)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 22)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-4098 (($ $ $) 42)) (-4087 (($ $ $) NIL) (($ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-383 (-523))) NIL) (($ $ (-523)) 45) (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (* (($ (-383 (-523)) $) NIL) (($ $ (-383 (-523))) NIL) (($ $ $) 25) (($ (-523) $) NIL) (($ (-710) $) NIL) (($ (-852) $) NIL))) +(((-466) (-13 (-279) (-27) (-964 (-523)) (-964 (-383 (-523))) (-585 (-523)) (-949) (-585 (-383 (-523))) (-136) (-564 (-155 (-355))) (-211) (-10 -8 (-15 -1458 ($ (-1039 (-523) (-562 $)))) (-15 -2785 ((-1039 (-523) (-562 $)) $)) (-15 -2797 ((-1039 (-523) (-562 $)) $)) (-15 -2437 ($ $)) (-15 -2521 ((-108) $ $)) (-15 -3892 ((-1083 $) (-1083 $) (-562 $))) (-15 -3892 ((-1083 $) (-1083 $) (-589 (-562 $)))) (-15 -3892 ($ $ (-562 $))) (-15 -3892 ($ $ (-589 (-562 $))))))) (T -466)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1039 (-523) (-562 (-466)))) (-5 *1 (-466)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-466)))) (-5 *1 (-466)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-466)))) (-5 *1 (-466)))) (-2437 (*1 *1 *1) (-5 *1 (-466))) (-2521 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-466)))) (-3892 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-466))) (-5 *3 (-562 (-466))) (-5 *1 (-466)))) (-3892 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-466))) (-5 *3 (-589 (-562 (-466)))) (-5 *1 (-466)))) (-3892 (*1 *1 *1 *2) (-12 (-5 *2 (-562 (-466))) (-5 *1 (-466)))) (-3892 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-562 (-466)))) (-5 *1 (-466))))) +(-13 (-279) (-27) (-964 (-523)) (-964 (-383 (-523))) (-585 (-523)) (-949) (-585 (-383 (-523))) (-136) (-564 (-155 (-355))) (-211) (-10 -8 (-15 -1458 ($ (-1039 (-523) (-562 $)))) (-15 -2785 ((-1039 (-523) (-562 $)) $)) (-15 -2797 ((-1039 (-523) (-562 $)) $)) (-15 -2437 ($ $)) (-15 -2521 ((-108) $ $)) (-15 -3892 ((-1083 $) (-1083 $) (-562 $))) (-15 -3892 ((-1083 $) (-1083 $) (-589 (-562 $)))) (-15 -3892 ($ $ (-562 $))) (-15 -3892 ($ $ (-589 (-562 $)))))) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-523) |#1|) 25 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) 22 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 21)) (-1479 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-3052 (($ (-710) |#1|) 14)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) 12 (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) 23 (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1738 ((|#1| $) NIL (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) 10 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) 13)) (-3223 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) 24) (($ $ (-1135 (-523))) NIL)) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) NIL)) (-2326 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2676 (((-710) $) 9 (|has| $ (-6 -4244))))) +(((-467 |#1| |#2|) (-19 |#1|) (-1122) (-523)) (T -467)) NIL (-19 |#1|) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2717 (((-108) $ (-708)) NIL)) (-2437 ((|#1| $ (-522) (-522) |#1|) NIL)) (-3074 (($ $ (-522) (-466 |#1| |#3|)) NIL)) (-4060 (($ $ (-522) (-466 |#1| |#2|)) NIL)) (-3367 (($) NIL T CONST)) (-2635 (((-466 |#1| |#3|) $ (-522)) NIL)) (-2411 ((|#1| $ (-522) (-522) |#1|) NIL)) (-2186 ((|#1| $ (-522) (-522)) NIL)) (-2395 (((-588 |#1|) $) NIL)) (-2949 (((-708) $) NIL)) (-1893 (($ (-708) (-708) |#1|) NIL)) (-2960 (((-708) $) NIL)) (-1480 (((-108) $ (-708)) NIL)) (-2604 (((-522) $) NIL)) (-4042 (((-522) $) NIL)) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1925 (((-522) $) NIL)) (-2595 (((-522) $) NIL)) (-2397 (($ (-1 |#1| |#1|) $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-1972 (($ $ |#1|) NIL)) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#1| $ (-522) (-522)) NIL) ((|#1| $ (-522) (-522) |#1|) NIL)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) NIL)) (-2223 (((-466 |#1| |#2|) $ (-522)) NIL)) (-2217 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-467 |#1| |#2| |#3|) (-55 |#1| (-466 |#1| |#3|) (-466 |#1| |#2|)) (-1120) (-522) (-522)) (T -467)) -NIL -(-55 |#1| (-466 |#1| |#3|) (-466 |#1| |#2|)) -((-2640 (((-588 (-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|)))) (-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) (-708) (-708)) 27)) (-4166 (((-588 (-1081 |#1|)) |#1| (-708) (-708) (-708)) 34)) (-2546 (((-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) (-588 |#3|) (-588 (-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|)))) (-708)) 84))) -(((-468 |#1| |#2| |#3|) (-10 -7 (-15 -4166 ((-588 (-1081 |#1|)) |#1| (-708) (-708) (-708))) (-15 -2640 ((-588 (-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|)))) (-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) (-708) (-708))) (-15 -2546 ((-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) (-588 |#3|) (-588 (-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|)))) (-708)))) (-324) (-1142 |#1|) (-1142 |#2|)) (T -468)) -((-2546 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 (-2 (|:| -2905 (-628 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-628 *7))))) (-5 *5 (-708)) (-4 *8 (-1142 *7)) (-4 *7 (-1142 *6)) (-4 *6 (-324)) (-5 *2 (-2 (|:| -2905 (-628 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-628 *7)))) (-5 *1 (-468 *6 *7 *8)))) (-2640 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-708)) (-4 *5 (-324)) (-4 *6 (-1142 *5)) (-5 *2 (-588 (-2 (|:| -2905 (-628 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-628 *6))))) (-5 *1 (-468 *5 *6 *7)) (-5 *3 (-2 (|:| -2905 (-628 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-628 *6)))) (-4 *7 (-1142 *6)))) (-4166 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-708)) (-4 *3 (-324)) (-4 *5 (-1142 *3)) (-5 *2 (-588 (-1081 *3))) (-5 *1 (-468 *3 *5 *6)) (-4 *6 (-1142 *5))))) -(-10 -7 (-15 -4166 ((-588 (-1081 |#1|)) |#1| (-708) (-708) (-708))) (-15 -2640 ((-588 (-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|)))) (-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) (-708) (-708))) (-15 -2546 ((-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) (-588 |#3|) (-588 (-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|)))) (-708)))) -((-1619 (((-2 (|:| -2905 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))) (-2 (|:| -2905 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))) (-2 (|:| -2905 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|)))) 60)) (-4075 ((|#1| (-628 |#1|) |#1| (-708)) 25)) (-1282 (((-708) (-708) (-708)) 30)) (-2443 (((-628 |#1|) (-628 |#1|) (-628 |#1|)) 42)) (-1601 (((-628 |#1|) (-628 |#1|) (-628 |#1|) |#1|) 50) (((-628 |#1|) (-628 |#1|) (-628 |#1|)) 47)) (-2157 ((|#1| (-628 |#1|) (-628 |#1|) |#1| (-522)) 29)) (-4147 ((|#1| (-628 |#1|)) 18))) -(((-469 |#1| |#2| |#3|) (-10 -7 (-15 -4147 (|#1| (-628 |#1|))) (-15 -4075 (|#1| (-628 |#1|) |#1| (-708))) (-15 -2157 (|#1| (-628 |#1|) (-628 |#1|) |#1| (-522))) (-15 -1282 ((-708) (-708) (-708))) (-15 -1601 ((-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -1601 ((-628 |#1|) (-628 |#1|) (-628 |#1|) |#1|)) (-15 -2443 ((-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -1619 ((-2 (|:| -2905 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))) (-2 (|:| -2905 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))) (-2 (|:| -2905 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|)))))) (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $)))) (-1142 |#1|) (-384 |#1| |#2|)) (T -469)) -((-1619 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2905 (-628 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-628 *3)))) (-4 *3 (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $))))) (-4 *4 (-1142 *3)) (-5 *1 (-469 *3 *4 *5)) (-4 *5 (-384 *3 *4)))) (-2443 (*1 *2 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $))))) (-4 *4 (-1142 *3)) (-5 *1 (-469 *3 *4 *5)) (-4 *5 (-384 *3 *4)))) (-1601 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-628 *3)) (-4 *3 (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $))))) (-4 *4 (-1142 *3)) (-5 *1 (-469 *3 *4 *5)) (-4 *5 (-384 *3 *4)))) (-1601 (*1 *2 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $))))) (-4 *4 (-1142 *3)) (-5 *1 (-469 *3 *4 *5)) (-4 *5 (-384 *3 *4)))) (-1282 (*1 *2 *2 *2) (-12 (-5 *2 (-708)) (-4 *3 (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $))))) (-4 *4 (-1142 *3)) (-5 *1 (-469 *3 *4 *5)) (-4 *5 (-384 *3 *4)))) (-2157 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-628 *2)) (-5 *4 (-522)) (-4 *2 (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $))))) (-4 *5 (-1142 *2)) (-5 *1 (-469 *2 *5 *6)) (-4 *6 (-384 *2 *5)))) (-4075 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-628 *2)) (-5 *4 (-708)) (-4 *2 (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $))))) (-4 *5 (-1142 *2)) (-5 *1 (-469 *2 *5 *6)) (-4 *6 (-384 *2 *5)))) (-4147 (*1 *2 *3) (-12 (-5 *3 (-628 *2)) (-4 *4 (-1142 *2)) (-4 *2 (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $))))) (-5 *1 (-469 *2 *4 *5)) (-4 *5 (-384 *2 *4))))) -(-10 -7 (-15 -4147 (|#1| (-628 |#1|))) (-15 -4075 (|#1| (-628 |#1|) |#1| (-708))) (-15 -2157 (|#1| (-628 |#1|) (-628 |#1|) |#1| (-522))) (-15 -1282 ((-708) (-708) (-708))) (-15 -1601 ((-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -1601 ((-628 |#1|) (-628 |#1|) (-628 |#1|) |#1|)) (-15 -2443 ((-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -1619 ((-2 (|:| -2905 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))) (-2 (|:| -2905 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))) (-2 (|:| -2905 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|)))))) -((-1419 (((-108) $ $) NIL)) (-1504 (($ $) NIL)) (-3454 (($ $ $) 35)) (-3883 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1866 (((-108) $) NIL (|has| (-108) (-784))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-2806 (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| (-108) (-784)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4239)))) (-3296 (($ $) NIL (|has| (-108) (-784))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-2717 (((-108) $ (-708)) NIL)) (-2437 (((-108) $ (-1133 (-522)) (-108)) NIL (|has| $ (-6 -4239))) (((-108) $ (-522) (-108)) 36 (|has| $ (-6 -4239)))) (-1696 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4238)))) (-3367 (($) NIL T CONST)) (-2465 (($ $) NIL (|has| $ (-6 -4239)))) (-1939 (($ $) NIL)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-1424 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4238))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-2153 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-2411 (((-108) $ (-522) (-108)) NIL (|has| $ (-6 -4239)))) (-2186 (((-108) $ (-522)) NIL)) (-3314 (((-522) (-108) $ (-522)) NIL (|has| (-108) (-1014))) (((-522) (-108) $) NIL (|has| (-108) (-1014))) (((-522) (-1 (-108) (-108)) $) NIL)) (-2395 (((-588 (-108)) $) NIL (|has| $ (-6 -4238)))) (-4070 (($ $ $) 33)) (-2473 (($ $) NIL)) (-1588 (($ $ $) NIL)) (-1893 (($ (-708) (-108)) 23)) (-1309 (($ $ $) NIL)) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) 8 (|has| (-522) (-784)))) (-1308 (($ $ $) NIL)) (-3164 (($ $ $) NIL (|has| (-108) (-784))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-4084 (((-588 (-108)) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-2201 (((-522) $) NIL (|has| (-522) (-784)))) (-2524 (($ $ $) NIL)) (-2397 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-108) (-108) (-108)) $ $) 30) (($ (-1 (-108) (-108)) $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL)) (-1731 (($ $ $ (-522)) NIL) (($ (-108) $ (-522)) NIL)) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) NIL)) (-4174 (((-1032) $) NIL)) (-2337 (((-108) $) NIL (|has| (-522) (-784)))) (-2187 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-1972 (($ $ (-108)) NIL (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-108)) (-588 (-108))) NIL (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014)))) (($ $ (-270 (-108))) NIL (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014)))) (($ $ (-588 (-270 (-108)))) NIL (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-1973 (((-588 (-108)) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) 24)) (-2683 (($ $ (-1133 (-522))) NIL) (((-108) $ (-522)) 18) (((-108) $ (-522) (-108)) NIL)) (-3835 (($ $ (-1133 (-522))) NIL) (($ $ (-522)) NIL)) (-4187 (((-708) (-108) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014)))) (((-708) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4238)))) (-3629 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2463 (($ $) 25)) (-3873 (((-498) $) NIL (|has| (-108) (-563 (-498))))) (-2227 (($ (-588 (-108))) NIL)) (-4170 (($ (-588 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-2217 (((-792) $) 22)) (-1381 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4238)))) (-4079 (($ $ $) 31)) (-3622 (($ $) NIL)) (-2920 (($ $ $) NIL)) (-3616 (($ $ $) 39)) (-3628 (($ $) 37)) (-3604 (($ $ $) 38)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 26)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 27)) (-2388 (($ $ $) NIL)) (-3591 (((-708) $) 10 (|has| $ (-6 -4238))))) -(((-470 |#1|) (-13 (-119) (-10 -8 (-15 -3628 ($ $)) (-15 -3616 ($ $ $)) (-15 -3604 ($ $ $)))) (-522)) (T -470)) -((-3628 (*1 *1 *1) (-12 (-5 *1 (-470 *2)) (-14 *2 (-522)))) (-3616 (*1 *1 *1 *1) (-12 (-5 *1 (-470 *2)) (-14 *2 (-522)))) (-3604 (*1 *1 *1 *1) (-12 (-5 *1 (-470 *2)) (-14 *2 (-522))))) -(-13 (-119) (-10 -8 (-15 -3628 ($ $)) (-15 -3616 ($ $ $)) (-15 -3604 ($ $ $)))) -((-4214 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1081 |#4|)) 35)) (-1781 (((-1081 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1081 |#4|)) 22)) (-4101 (((-3 (-628 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-628 (-1081 |#4|))) 46)) (-4181 (((-1081 (-1081 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-471 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1781 (|#2| (-1 |#1| |#4|) (-1081 |#4|))) (-15 -1781 ((-1081 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4214 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1081 |#4|))) (-15 -4101 ((-3 (-628 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-628 (-1081 |#4|)))) (-15 -4181 ((-1081 (-1081 |#4|)) (-1 |#4| |#1|) |#3|))) (-971) (-1142 |#1|) (-1142 |#2|) (-971)) (T -471)) -((-4181 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-971)) (-4 *7 (-971)) (-4 *6 (-1142 *5)) (-5 *2 (-1081 (-1081 *7))) (-5 *1 (-471 *5 *6 *4 *7)) (-4 *4 (-1142 *6)))) (-4101 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-628 (-1081 *8))) (-4 *5 (-971)) (-4 *8 (-971)) (-4 *6 (-1142 *5)) (-5 *2 (-628 *6)) (-5 *1 (-471 *5 *6 *7 *8)) (-4 *7 (-1142 *6)))) (-4214 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1081 *7)) (-4 *5 (-971)) (-4 *7 (-971)) (-4 *2 (-1142 *5)) (-5 *1 (-471 *5 *2 *6 *7)) (-4 *6 (-1142 *2)))) (-1781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-971)) (-4 *7 (-971)) (-4 *4 (-1142 *5)) (-5 *2 (-1081 *7)) (-5 *1 (-471 *5 *4 *6 *7)) (-4 *6 (-1142 *4)))) (-1781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1081 *7)) (-4 *5 (-971)) (-4 *7 (-971)) (-4 *2 (-1142 *5)) (-5 *1 (-471 *5 *2 *6 *7)) (-4 *6 (-1142 *2))))) -(-10 -7 (-15 -1781 (|#2| (-1 |#1| |#4|) (-1081 |#4|))) (-15 -1781 ((-1081 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4214 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1081 |#4|))) (-15 -4101 ((-3 (-628 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-628 (-1081 |#4|)))) (-15 -4181 ((-1081 (-1081 |#4|)) (-1 |#4| |#1|) |#3|))) -((-1419 (((-108) $ $) NIL)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2113 (((-1171) $) 18)) (-2683 (((-1068) $ (-1085)) 22)) (-1757 (((-1171) $) 14)) (-2217 (((-792) $) 20) (($ (-1068)) 19)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 8)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 7))) -(((-472) (-13 (-784) (-10 -8 (-15 -2683 ((-1068) $ (-1085))) (-15 -1757 ((-1171) $)) (-15 -2113 ((-1171) $)) (-15 -2217 ($ (-1068)))))) (T -472)) -((-2683 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1068)) (-5 *1 (-472)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-472)))) (-2113 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-472)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-472))))) -(-13 (-784) (-10 -8 (-15 -2683 ((-1068) $ (-1085))) (-15 -1757 ((-1171) $)) (-15 -2113 ((-1171) $)) (-15 -2217 ($ (-1068))))) -((-2567 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2460 ((|#1| |#4|) 10)) (-2508 ((|#3| |#4|) 17))) -(((-473 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2460 (|#1| |#4|)) (-15 -2508 (|#3| |#4|)) (-15 -2567 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-514) (-919 |#1|) (-348 |#1|) (-348 |#2|)) (T -473)) -((-2567 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-919 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-473 *4 *5 *6 *3)) (-4 *6 (-348 *4)) (-4 *3 (-348 *5)))) (-2508 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-919 *4)) (-4 *2 (-348 *4)) (-5 *1 (-473 *4 *5 *2 *3)) (-4 *3 (-348 *5)))) (-2460 (*1 *2 *3) (-12 (-4 *4 (-919 *2)) (-4 *2 (-514)) (-5 *1 (-473 *2 *4 *5 *3)) (-4 *5 (-348 *2)) (-4 *3 (-348 *4))))) -(-10 -7 (-15 -2460 (|#1| |#4|)) (-15 -2508 (|#3| |#4|)) (-15 -2567 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-1419 (((-108) $ $) NIL)) (-3212 (((-108) $ (-588 |#3|)) 103) (((-108) $) 104)) (-2944 (((-108) $) 146)) (-1547 (($ $ |#4|) 95) (($ $ |#4| (-588 |#3|)) 99)) (-2916 (((-1075 (-588 (-881 |#1|)) (-588 (-270 (-881 |#1|)))) (-588 |#4|)) 139 (|has| |#3| (-563 (-1085))))) (-3450 (($ $ $) 89) (($ $ |#4|) 87)) (-2859 (((-108) $) 145)) (-2425 (($ $) 107)) (-2311 (((-1068) $) NIL)) (-2251 (($ $ $) 81) (($ (-588 $)) 83)) (-3132 (((-108) |#4| $) 106)) (-3006 (((-108) $ $) 70)) (-3129 (($ (-588 |#4|)) 88)) (-4174 (((-1032) $) NIL)) (-4201 (($ (-588 |#4|)) 143)) (-1333 (((-108) $) 144)) (-3059 (($ $) 72)) (-3915 (((-588 |#4|) $) 56)) (-2898 (((-2 (|:| |mval| (-628 |#1|)) (|:| |invmval| (-628 |#1|)) (|:| |genIdeal| $)) $ (-588 |#3|)) NIL)) (-3071 (((-108) |#4| $) 75)) (-3222 (((-522) $ (-588 |#3|)) 108) (((-522) $) 109)) (-2217 (((-792) $) 142) (($ (-588 |#4|)) 84)) (-2964 (($ (-2 (|:| |mval| (-628 |#1|)) (|:| |invmval| (-628 |#1|)) (|:| |genIdeal| $))) NIL)) (-1562 (((-108) $ $) 71)) (-1661 (($ $ $) 91)) (** (($ $ (-708)) 94)) (* (($ $ $) 93))) -(((-474 |#1| |#2| |#3| |#4|) (-13 (-1014) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-708))) (-15 -1661 ($ $ $)) (-15 -2859 ((-108) $)) (-15 -2944 ((-108) $)) (-15 -3071 ((-108) |#4| $)) (-15 -3006 ((-108) $ $)) (-15 -3132 ((-108) |#4| $)) (-15 -3212 ((-108) $ (-588 |#3|))) (-15 -3212 ((-108) $)) (-15 -2251 ($ $ $)) (-15 -2251 ($ (-588 $))) (-15 -3450 ($ $ $)) (-15 -3450 ($ $ |#4|)) (-15 -3059 ($ $)) (-15 -2898 ((-2 (|:| |mval| (-628 |#1|)) (|:| |invmval| (-628 |#1|)) (|:| |genIdeal| $)) $ (-588 |#3|))) (-15 -2964 ($ (-2 (|:| |mval| (-628 |#1|)) (|:| |invmval| (-628 |#1|)) (|:| |genIdeal| $)))) (-15 -3222 ((-522) $ (-588 |#3|))) (-15 -3222 ((-522) $)) (-15 -2425 ($ $)) (-15 -3129 ($ (-588 |#4|))) (-15 -4201 ($ (-588 |#4|))) (-15 -1333 ((-108) $)) (-15 -3915 ((-588 |#4|) $)) (-15 -2217 ($ (-588 |#4|))) (-15 -1547 ($ $ |#4|)) (-15 -1547 ($ $ |#4| (-588 |#3|))) (IF (|has| |#3| (-563 (-1085))) (-15 -2916 ((-1075 (-588 (-881 |#1|)) (-588 (-270 (-881 |#1|)))) (-588 |#4|))) |%noBranch|))) (-338) (-730) (-784) (-878 |#1| |#2| |#3|)) (T -474)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784)) (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-1661 (*1 *1 *1 *1) (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784)) (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) (-2859 (*1 *2 *1) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-2944 (*1 *2 *1) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-3071 (*1 *2 *3 *1) (-12 (-4 *4 (-338)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-474 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))) (-3006 (*1 *2 *1 *1) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-3132 (*1 *2 *3 *1) (-12 (-4 *4 (-338)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-474 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))) (-3212 (*1 *2 *1 *3) (-12 (-5 *3 (-588 *6)) (-4 *6 (-784)) (-4 *4 (-338)) (-4 *5 (-730)) (-5 *2 (-108)) (-5 *1 (-474 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6)))) (-3212 (*1 *2 *1) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-2251 (*1 *1 *1 *1) (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784)) (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) (-2251 (*1 *1 *2) (-12 (-5 *2 (-588 (-474 *3 *4 *5 *6))) (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-3450 (*1 *1 *1 *1) (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784)) (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) (-3450 (*1 *1 *1 *2) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-878 *3 *4 *5)))) (-3059 (*1 *1 *1) (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784)) (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) (-2898 (*1 *2 *1 *3) (-12 (-5 *3 (-588 *6)) (-4 *6 (-784)) (-4 *4 (-338)) (-4 *5 (-730)) (-5 *2 (-2 (|:| |mval| (-628 *4)) (|:| |invmval| (-628 *4)) (|:| |genIdeal| (-474 *4 *5 *6 *7)))) (-5 *1 (-474 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6)))) (-2964 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-628 *3)) (|:| |invmval| (-628 *3)) (|:| |genIdeal| (-474 *3 *4 *5 *6)))) (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-3222 (*1 *2 *1 *3) (-12 (-5 *3 (-588 *6)) (-4 *6 (-784)) (-4 *4 (-338)) (-4 *5 (-730)) (-5 *2 (-522)) (-5 *1 (-474 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6)))) (-3222 (*1 *2 *1) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-522)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-2425 (*1 *1 *1) (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784)) (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) (-3129 (*1 *1 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *6)))) (-4201 (*1 *1 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *6)))) (-1333 (*1 *2 *1) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-3915 (*1 *2 *1) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *6)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *6)))) (-1547 (*1 *1 *1 *2) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-878 *3 *4 *5)))) (-1547 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-588 *6)) (-4 *6 (-784)) (-4 *4 (-338)) (-4 *5 (-730)) (-5 *1 (-474 *4 *5 *6 *2)) (-4 *2 (-878 *4 *5 *6)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-878 *4 *5 *6)) (-4 *6 (-563 (-1085))) (-4 *4 (-338)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-1075 (-588 (-881 *4)) (-588 (-270 (-881 *4))))) (-5 *1 (-474 *4 *5 *6 *7))))) -(-13 (-1014) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-708))) (-15 -1661 ($ $ $)) (-15 -2859 ((-108) $)) (-15 -2944 ((-108) $)) (-15 -3071 ((-108) |#4| $)) (-15 -3006 ((-108) $ $)) (-15 -3132 ((-108) |#4| $)) (-15 -3212 ((-108) $ (-588 |#3|))) (-15 -3212 ((-108) $)) (-15 -2251 ($ $ $)) (-15 -2251 ($ (-588 $))) (-15 -3450 ($ $ $)) (-15 -3450 ($ $ |#4|)) (-15 -3059 ($ $)) (-15 -2898 ((-2 (|:| |mval| (-628 |#1|)) (|:| |invmval| (-628 |#1|)) (|:| |genIdeal| $)) $ (-588 |#3|))) (-15 -2964 ($ (-2 (|:| |mval| (-628 |#1|)) (|:| |invmval| (-628 |#1|)) (|:| |genIdeal| $)))) (-15 -3222 ((-522) $ (-588 |#3|))) (-15 -3222 ((-522) $)) (-15 -2425 ($ $)) (-15 -3129 ($ (-588 |#4|))) (-15 -4201 ($ (-588 |#4|))) (-15 -1333 ((-108) $)) (-15 -3915 ((-588 |#4|) $)) (-15 -2217 ($ (-588 |#4|))) (-15 -1547 ($ $ |#4|)) (-15 -1547 ($ $ |#4| (-588 |#3|))) (IF (|has| |#3| (-563 (-1085))) (-15 -2916 ((-1075 (-588 (-881 |#1|)) (-588 (-270 (-881 |#1|)))) (-588 |#4|))) |%noBranch|))) -((-3301 (((-108) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522))))) 146)) (-3947 (((-108) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522))))) 147)) (-3904 (((-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522))))) 105)) (-2725 (((-108) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522))))) NIL)) (-3953 (((-588 (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522))))) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522))))) 149)) (-1208 (((-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))) (-588 (-794 |#1|))) 161))) -(((-475 |#1| |#2|) (-10 -7 (-15 -3301 ((-108) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))))) (-15 -3947 ((-108) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))))) (-15 -2725 ((-108) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))))) (-15 -3904 ((-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))))) (-15 -3953 ((-588 (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522))))) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))))) (-15 -1208 ((-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))) (-588 (-794 |#1|))))) (-588 (-1085)) (-708)) (T -475)) -((-1208 (*1 *2 *2 *3) (-12 (-5 *2 (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4) (-224 *4 (-382 (-522))))) (-5 *3 (-588 (-794 *4))) (-14 *4 (-588 (-1085))) (-14 *5 (-708)) (-5 *1 (-475 *4 *5)))) (-3953 (*1 *2 *3) (-12 (-14 *4 (-588 (-1085))) (-14 *5 (-708)) (-5 *2 (-588 (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4) (-224 *4 (-382 (-522)))))) (-5 *1 (-475 *4 *5)) (-5 *3 (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4) (-224 *4 (-382 (-522))))))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-474 (-382 (-522)) (-217 *4 (-708)) (-794 *3) (-224 *3 (-382 (-522))))) (-14 *3 (-588 (-1085))) (-14 *4 (-708)) (-5 *1 (-475 *3 *4)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4) (-224 *4 (-382 (-522))))) (-14 *4 (-588 (-1085))) (-14 *5 (-708)) (-5 *2 (-108)) (-5 *1 (-475 *4 *5)))) (-3947 (*1 *2 *3) (-12 (-5 *3 (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4) (-224 *4 (-382 (-522))))) (-14 *4 (-588 (-1085))) (-14 *5 (-708)) (-5 *2 (-108)) (-5 *1 (-475 *4 *5)))) (-3301 (*1 *2 *3) (-12 (-5 *3 (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4) (-224 *4 (-382 (-522))))) (-14 *4 (-588 (-1085))) (-14 *5 (-708)) (-5 *2 (-108)) (-5 *1 (-475 *4 *5))))) -(-10 -7 (-15 -3301 ((-108) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))))) (-15 -3947 ((-108) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))))) (-15 -2725 ((-108) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))))) (-15 -3904 ((-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))))) (-15 -3953 ((-588 (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522))))) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))))) (-15 -1208 ((-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))) (-588 (-794 |#1|))))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3241 (($ $) NIL)) (-3500 (($ |#1| |#2|) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-1801 ((|#2| $) NIL)) (-3224 ((|#1| $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-3697 (($) 12 T CONST)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) 11) (($ $ $) 24)) (-1661 (($ $ $) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 19))) -(((-476 |#1| |#2|) (-13 (-21) (-478 |#1| |#2|)) (-21) (-784)) (T -476)) -NIL -(-13 (-21) (-478 |#1| |#2|)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 12)) (-3367 (($) NIL T CONST)) (-3241 (($ $) 27)) (-3500 (($ |#1| |#2|) 24)) (-3810 (($ (-1 |#1| |#1|) $) 26)) (-1801 ((|#2| $) NIL)) (-3224 ((|#1| $) 28)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-3697 (($) 10 T CONST)) (-1562 (((-108) $ $) NIL)) (-1661 (($ $ $) 18)) (* (($ (-850) $) NIL) (($ (-708) $) 23))) -(((-477 |#1| |#2|) (-13 (-23) (-478 |#1| |#2|)) (-23) (-784)) (T -477)) -NIL -(-13 (-23) (-478 |#1| |#2|)) -((-1419 (((-108) $ $) 7)) (-3241 (($ $) 13)) (-3500 (($ |#1| |#2|) 16)) (-3810 (($ (-1 |#1| |#1|) $) 17)) (-1801 ((|#2| $) 14)) (-3224 ((|#1| $) 15)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-1562 (((-108) $ $) 6))) -(((-478 |#1| |#2|) (-1197) (-1014) (-784)) (T -478)) -((-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-478 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-784)))) (-3500 (*1 *1 *2 *3) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-784)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *3 (-784)) (-4 *2 (-1014)))) (-1801 (*1 *2 *1) (-12 (-4 *1 (-478 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-784)))) (-3241 (*1 *1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-784))))) -(-13 (-1014) (-10 -8 (-15 -3810 ($ (-1 |t#1| |t#1|) $)) (-15 -3500 ($ |t#1| |t#2|)) (-15 -3224 (|t#1| $)) (-15 -1801 (|t#2| $)) (-15 -3241 ($ $)))) -(((-97) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3367 (($) NIL T CONST)) (-3241 (($ $) NIL)) (-3500 (($ |#1| |#2|) NIL)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-1801 ((|#2| $) NIL)) (-3224 ((|#1| $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-3697 (($) NIL T CONST)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 13)) (-1661 (($ $ $) NIL)) (* (($ (-708) $) NIL) (($ (-850) $) NIL))) -(((-479 |#1| |#2|) (-13 (-729) (-478 |#1| |#2|)) (-729) (-784)) (T -479)) -NIL -(-13 (-729) (-478 |#1| |#2|)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-1827 (($ $ $) 16)) (-2265 (((-3 $ "failed") $ $) 13)) (-3367 (($) NIL T CONST)) (-3241 (($ $) NIL)) (-3500 (($ |#1| |#2|) NIL)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-1801 ((|#2| $) NIL)) (-3224 ((|#1| $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL)) (-3697 (($) NIL T CONST)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) NIL)) (-1661 (($ $ $) NIL)) (* (($ (-708) $) NIL) (($ (-850) $) NIL))) -(((-480 |#1| |#2|) (-13 (-730) (-478 |#1| |#2|)) (-730) (-784)) (T -480)) -NIL -(-13 (-730) (-478 |#1| |#2|)) -((-1419 (((-108) $ $) NIL)) (-3241 (($ $) 25)) (-3500 (($ |#1| |#2|) 22)) (-3810 (($ (-1 |#1| |#1|) $) 24)) (-1801 ((|#2| $) 27)) (-3224 ((|#1| $) 26)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 21)) (-1562 (((-108) $ $) 14))) -(((-481 |#1| |#2|) (-478 |#1| |#2|) (-1014) (-784)) (T -481)) -NIL -(-478 |#1| |#2|) -((-2330 (($ $ (-588 |#2|) (-588 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-482 |#1| |#2| |#3|) (-10 -8 (-15 -2330 (|#1| |#1| |#2| |#3|)) (-15 -2330 (|#1| |#1| (-588 |#2|) (-588 |#3|)))) (-483 |#2| |#3|) (-1014) (-1120)) (T -482)) -NIL -(-10 -8 (-15 -2330 (|#1| |#1| |#2| |#3|)) (-15 -2330 (|#1| |#1| (-588 |#2|) (-588 |#3|)))) -((-2330 (($ $ (-588 |#1|) (-588 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-483 |#1| |#2|) (-1197) (-1014) (-1120)) (T -483)) -((-2330 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 *4)) (-5 *3 (-588 *5)) (-4 *1 (-483 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1120)))) (-2330 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1120))))) -(-13 (-10 -8 (-15 -2330 ($ $ |t#1| |t#2|)) (-15 -2330 ($ $ (-588 |t#1|) (-588 |t#2|))))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 16)) (-3024 (((-588 (-2 (|:| |gen| |#1|) (|:| -3357 |#2|))) $) 18)) (-2265 (((-3 $ "failed") $ $) NIL)) (-1685 (((-708) $) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) NIL)) (-1478 ((|#1| $) NIL)) (-3108 ((|#1| $ (-522)) 23)) (-2544 ((|#2| $ (-522)) 21)) (-2007 (($ (-1 |#1| |#1|) $) 46)) (-3534 (($ (-1 |#2| |#2|) $) 43)) (-2311 (((-1068) $) NIL)) (-3075 (($ $ $) 53 (|has| |#2| (-729)))) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 42) (($ |#1|) NIL)) (-1643 ((|#2| |#1| $) 49)) (-3697 (($) 11 T CONST)) (-1562 (((-108) $ $) 29)) (-1661 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-850) $) NIL) (($ (-708) $) 36) (($ |#2| |#1|) 31))) -(((-484 |#1| |#2| |#3|) (-298 |#1| |#2|) (-1014) (-124) |#2|) (T -484)) -NIL -(-298 |#1| |#2|) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3883 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1866 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-2806 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784))))) (-3296 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-2717 (((-108) $ (-708)) NIL)) (-4159 (((-108) (-108)) 24)) (-2437 ((|#1| $ (-522) |#1|) 27 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239)))) (-1213 (($ (-1 (-108) |#1|) $) 51)) (-1696 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3367 (($) NIL T CONST)) (-2465 (($ $) NIL (|has| $ (-6 -4239)))) (-1939 (($ $) NIL)) (-1581 (($ $) 55 (|has| |#1| (-1014)))) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1700 (($ |#1| $) NIL (|has| |#1| (-1014))) (($ (-1 (-108) |#1|) $) 43)) (-1424 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238)))) (-2411 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-522)) NIL)) (-3314 (((-522) (-1 (-108) |#1|) $) NIL) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014)))) (-3573 (($ $ (-522)) 13)) (-1803 (((-708) $) 11)) (-2395 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-1893 (($ (-708) |#1|) 22)) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) 20 (|has| (-522) (-784)))) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-3557 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) 34)) (-3164 (($ (-1 (-108) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-784)))) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2201 (((-522) $) 19 (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-2397 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-3365 (($ $ $ (-522)) 50) (($ |#1| $ (-522)) 36)) (-1731 (($ |#1| $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) NIL)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3706 (($ (-588 |#1|)) 28)) (-2337 ((|#1| $) NIL (|has| (-522) (-784)))) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1972 (($ $ |#1|) 18 (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 39)) (-3434 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) 14)) (-2683 ((|#1| $ (-522) |#1|) NIL) ((|#1| $ (-522)) 32) (($ $ (-1133 (-522))) NIL)) (-3551 (($ $ (-1133 (-522))) 49) (($ $ (-522)) 44)) (-3835 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3629 (($ $ $ (-522)) 40 (|has| $ (-6 -4239)))) (-2463 (($ $) 31)) (-3873 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) NIL)) (-2335 (($ $ $) 41) (($ $ |#1|) 38)) (-4170 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-588 $)) NIL)) (-2217 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3591 (((-708) $) 15 (|has| $ (-6 -4238))))) -(((-485 |#1| |#2|) (-13 (-19 |#1|) (-258 |#1|) (-10 -8 (-15 -3706 ($ (-588 |#1|))) (-15 -1803 ((-708) $)) (-15 -3573 ($ $ (-522))) (-15 -4159 ((-108) (-108))))) (-1120) (-522)) (T -485)) -((-3706 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-485 *3 *4)) (-14 *4 (-522)))) (-1803 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-485 *3 *4)) (-4 *3 (-1120)) (-14 *4 (-522)))) (-3573 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-485 *3 *4)) (-4 *3 (-1120)) (-14 *4 *2))) (-4159 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-485 *3 *4)) (-4 *3 (-1120)) (-14 *4 (-522))))) -(-13 (-19 |#1|) (-258 |#1|) (-10 -8 (-15 -3706 ($ (-588 |#1|))) (-15 -1803 ((-708) $)) (-15 -3573 ($ $ (-522))) (-15 -4159 ((-108) (-108))))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2400 (((-108) $) NIL)) (-1593 (((-708)) NIL)) (-1945 (((-535 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-535 |#1|) (-343)))) (-3833 (((-1094 (-850) (-708)) (-522)) NIL (|has| (-535 |#1|) (-343)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2805 (((-108) $ $) NIL)) (-1685 (((-708)) NIL (|has| (-535 |#1|) (-343)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-535 |#1|) "failed") $) NIL)) (-1478 (((-535 |#1|) $) NIL)) (-3225 (($ (-1166 (-535 |#1|))) NIL)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-535 |#1|) (-343)))) (-2333 (($ $ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3344 (($) NIL (|has| (-535 |#1|) (-343)))) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2160 (($) NIL (|has| (-535 |#1|) (-343)))) (-2087 (((-108) $) NIL (|has| (-535 |#1|) (-343)))) (-1380 (($ $ (-708)) NIL (-3844 (|has| (-535 |#1|) (-133)) (|has| (-535 |#1|) (-343)))) (($ $) NIL (-3844 (|has| (-535 |#1|) (-133)) (|has| (-535 |#1|) (-343))))) (-2725 (((-108) $) NIL)) (-3872 (((-850) $) NIL (|has| (-535 |#1|) (-343))) (((-770 (-850)) $) NIL (-3844 (|has| (-535 |#1|) (-133)) (|has| (-535 |#1|) (-343))))) (-2859 (((-108) $) NIL)) (-3768 (($) NIL (|has| (-535 |#1|) (-343)))) (-1372 (((-108) $) NIL (|has| (-535 |#1|) (-343)))) (-1269 (((-535 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-535 |#1|) (-343)))) (-4208 (((-3 $ "failed") $) NIL (|has| (-535 |#1|) (-343)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4199 (((-1081 (-535 |#1|)) $) NIL) (((-1081 $) $ (-850)) NIL (|has| (-535 |#1|) (-343)))) (-1475 (((-850) $) NIL (|has| (-535 |#1|) (-343)))) (-3657 (((-1081 (-535 |#1|)) $) NIL (|has| (-535 |#1|) (-343)))) (-3723 (((-1081 (-535 |#1|)) $) NIL (|has| (-535 |#1|) (-343))) (((-3 (-1081 (-535 |#1|)) "failed") $ $) NIL (|has| (-535 |#1|) (-343)))) (-2259 (($ $ (-1081 (-535 |#1|))) NIL (|has| (-535 |#1|) (-343)))) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-3937 (($) NIL (|has| (-535 |#1|) (-343)) CONST)) (-2882 (($ (-850)) NIL (|has| (-535 |#1|) (-343)))) (-2804 (((-108) $) NIL)) (-4174 (((-1032) $) NIL)) (-1368 (($) NIL (|has| (-535 |#1|) (-343)))) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) NIL (|has| (-535 |#1|) (-343)))) (-2006 (((-393 $) $) NIL)) (-1713 (((-770 (-850))) NIL) (((-850)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-1304 (((-708) $) NIL (|has| (-535 |#1|) (-343))) (((-3 (-708) "failed") $ $) NIL (-3844 (|has| (-535 |#1|) (-133)) (|has| (-535 |#1|) (-343))))) (-3222 (((-126)) NIL)) (-2731 (($ $) NIL (|has| (-535 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-535 |#1|) (-343)))) (-2487 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-1579 (((-1081 (-535 |#1|))) NIL)) (-2670 (($) NIL (|has| (-535 |#1|) (-343)))) (-1705 (($) NIL (|has| (-535 |#1|) (-343)))) (-3510 (((-1166 (-535 |#1|)) $) NIL) (((-628 (-535 |#1|)) (-1166 $)) NIL)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| (-535 |#1|) (-343)))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ (-535 |#1|)) NIL)) (-3040 (($ $) NIL (|has| (-535 |#1|) (-343))) (((-3 $ "failed") $) NIL (-3844 (|has| (-535 |#1|) (-133)) (|has| (-535 |#1|) (-343))))) (-2742 (((-708)) NIL)) (-2905 (((-1166 $)) NIL) (((-1166 $) (-850)) NIL)) (-1407 (((-108) $ $) NIL)) (-1711 (((-108) $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2938 (($ $) NIL (|has| (-535 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-535 |#1|) (-343)))) (-2252 (($ $) NIL (|has| (-535 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-535 |#1|) (-343)))) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ $) NIL) (($ $ (-535 |#1|)) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ $ (-535 |#1|)) NIL) (($ (-535 |#1|) $) NIL))) -(((-486 |#1| |#2|) (-304 (-535 |#1|)) (-850) (-850)) (T -486)) -NIL -(-304 (-535 |#1|)) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2717 (((-108) $ (-708)) NIL)) (-2437 ((|#1| $ (-522) (-522) |#1|) 33)) (-3074 (($ $ (-522) |#4|) NIL)) (-4060 (($ $ (-522) |#5|) NIL)) (-3367 (($) NIL T CONST)) (-2635 ((|#4| $ (-522)) NIL)) (-2411 ((|#1| $ (-522) (-522) |#1|) 32)) (-2186 ((|#1| $ (-522) (-522)) 30)) (-2395 (((-588 |#1|) $) NIL)) (-2949 (((-708) $) 26)) (-1893 (($ (-708) (-708) |#1|) 23)) (-2960 (((-708) $) 28)) (-1480 (((-108) $ (-708)) NIL)) (-2604 (((-522) $) 24)) (-4042 (((-522) $) 25)) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1925 (((-522) $) 27)) (-2595 (((-522) $) 29)) (-2397 (($ (-1 |#1| |#1|) $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) 36 (|has| |#1| (-1014)))) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-1972 (($ $ |#1|) NIL)) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) 14)) (-3298 (($) 15)) (-2683 ((|#1| $ (-522) (-522)) 31) ((|#1| $ (-522) (-522) |#1|) NIL)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) NIL)) (-2223 ((|#5| $ (-522)) NIL)) (-2217 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-487 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1120) (-522) (-522) (-348 |#1|) (-348 |#1|)) (T -487)) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-523) (-523) |#1|) NIL)) (-3787 (($ $ (-523) (-467 |#1| |#3|)) NIL)) (-3617 (($ $ (-523) (-467 |#1| |#2|)) NIL)) (-2518 (($) NIL T CONST)) (-2031 (((-467 |#1| |#3|) $ (-523)) NIL)) (-2863 ((|#1| $ (-523) (-523) |#1|) NIL)) (-2795 ((|#1| $ (-523) (-523)) NIL)) (-1666 (((-589 |#1|) $) NIL)) (-2803 (((-710) $) NIL)) (-3052 (($ (-710) (-710) |#1|) NIL)) (-2813 (((-710) $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-3871 (((-523) $) NIL)) (-1758 (((-523) $) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3338 (((-523) $) NIL)) (-2347 (((-523) $) NIL)) (-2852 (($ (-1 |#1| |#1|) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-4203 (($ $ |#1|) NIL)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-523) (-523)) NIL) ((|#1| $ (-523) (-523) |#1|) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1595 (((-467 |#1| |#2|) $ (-523)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-468 |#1| |#2| |#3|) (-55 |#1| (-467 |#1| |#3|) (-467 |#1| |#2|)) (-1122) (-523) (-523)) (T -468)) +NIL +(-55 |#1| (-467 |#1| |#3|) (-467 |#1| |#2|)) +((-2639 (((-589 (-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-710) (-710)) 27)) (-3624 (((-589 (-1083 |#1|)) |#1| (-710) (-710) (-710)) 34)) (-3169 (((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-589 |#3|) (-589 (-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-710)) 84))) +(((-469 |#1| |#2| |#3|) (-10 -7 (-15 -3624 ((-589 (-1083 |#1|)) |#1| (-710) (-710) (-710))) (-15 -2639 ((-589 (-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-710) (-710))) (-15 -3169 ((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-589 |#3|) (-589 (-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-710)))) (-325) (-1144 |#1|) (-1144 |#2|)) (T -469)) +((-3169 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 (-2 (|:| -4041 (-629 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-629 *7))))) (-5 *5 (-710)) (-4 *8 (-1144 *7)) (-4 *7 (-1144 *6)) (-4 *6 (-325)) (-5 *2 (-2 (|:| -4041 (-629 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-629 *7)))) (-5 *1 (-469 *6 *7 *8)))) (-2639 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-710)) (-4 *5 (-325)) (-4 *6 (-1144 *5)) (-5 *2 (-589 (-2 (|:| -4041 (-629 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-629 *6))))) (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-2 (|:| -4041 (-629 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-629 *6)))) (-4 *7 (-1144 *6)))) (-3624 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-710)) (-4 *3 (-325)) (-4 *5 (-1144 *3)) (-5 *2 (-589 (-1083 *3))) (-5 *1 (-469 *3 *5 *6)) (-4 *6 (-1144 *5))))) +(-10 -7 (-15 -3624 ((-589 (-1083 |#1|)) |#1| (-710) (-710) (-710))) (-15 -2639 ((-589 (-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-710) (-710))) (-15 -3169 ((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-589 |#3|) (-589 (-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-710)))) +((-3963 (((-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|)))) 60)) (-2596 ((|#1| (-629 |#1|) |#1| (-710)) 25)) (-2707 (((-710) (-710) (-710)) 30)) (-1442 (((-629 |#1|) (-629 |#1|) (-629 |#1|)) 42)) (-2091 (((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|) 50) (((-629 |#1|) (-629 |#1|) (-629 |#1|)) 47)) (-2906 ((|#1| (-629 |#1|) (-629 |#1|) |#1| (-523)) 29)) (-3804 ((|#1| (-629 |#1|)) 18))) +(((-470 |#1| |#2| |#3|) (-10 -7 (-15 -3804 (|#1| (-629 |#1|))) (-15 -2596 (|#1| (-629 |#1|) |#1| (-710))) (-15 -2906 (|#1| (-629 |#1|) (-629 |#1|) |#1| (-523))) (-15 -2707 ((-710) (-710) (-710))) (-15 -2091 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -2091 ((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|)) (-15 -1442 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3963 ((-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|)))))) (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $)))) (-1144 |#1|) (-385 |#1| |#2|)) (T -470)) +((-3963 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) (-4 *4 (-1144 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) (-1442 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) (-4 *4 (-1144 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) (-2091 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) (-4 *4 (-1144 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) (-2091 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) (-4 *4 (-1144 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) (-2707 (*1 *2 *2 *2) (-12 (-5 *2 (-710)) (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) (-4 *4 (-1144 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) (-2906 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-629 *2)) (-5 *4 (-523)) (-4 *2 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) (-4 *5 (-1144 *2)) (-5 *1 (-470 *2 *5 *6)) (-4 *6 (-385 *2 *5)))) (-2596 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-629 *2)) (-5 *4 (-710)) (-4 *2 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) (-4 *5 (-1144 *2)) (-5 *1 (-470 *2 *5 *6)) (-4 *6 (-385 *2 *5)))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *4 (-1144 *2)) (-4 *2 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) (-5 *1 (-470 *2 *4 *5)) (-4 *5 (-385 *2 *4))))) +(-10 -7 (-15 -3804 (|#1| (-629 |#1|))) (-15 -2596 (|#1| (-629 |#1|) |#1| (-710))) (-15 -2906 (|#1| (-629 |#1|) (-629 |#1|) |#1| (-523))) (-15 -2707 ((-710) (-710) (-710))) (-15 -2091 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -2091 ((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|)) (-15 -1442 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3963 ((-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -4041 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|)))))) +((-3924 (((-108) $ $) NIL)) (-2573 (($ $) NIL)) (-1983 (($ $ $) 35)) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) $) NIL (|has| (-108) (-786))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-1506 (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| (-108) (-786)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4245)))) (-3974 (($ $) NIL (|has| (-108) (-786))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1641 (((-108) $ (-1135 (-523)) (-108)) NIL (|has| $ (-6 -4245))) (((-108) $ (-523) (-108)) 36 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-2557 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4244))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-2437 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-2863 (((-108) $ (-523) (-108)) NIL (|has| $ (-6 -4245)))) (-2795 (((-108) $ (-523)) NIL)) (-1479 (((-523) (-108) $ (-523)) NIL (|has| (-108) (-1016))) (((-523) (-108) $) NIL (|has| (-108) (-1016))) (((-523) (-1 (-108) (-108)) $) NIL)) (-1666 (((-589 (-108)) $) NIL (|has| $ (-6 -4244)))) (-4090 (($ $ $) 33)) (-3900 (($ $) NIL)) (-3368 (($ $ $) NIL)) (-3052 (($ (-710) (-108)) 23)) (-3370 (($ $ $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) 8 (|has| (-523) (-786)))) (-2454 (($ $ $) NIL)) (-2178 (($ $ $) NIL (|has| (-108) (-786))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-2136 (((-589 (-108)) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL)) (-2852 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-108) (-108) (-108)) $ $) 30) (($ (-1 (-108) (-108)) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-2847 (($ $ $ (-523)) NIL) (($ (-108) $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 (((-108) $) NIL (|has| (-523) (-786)))) (-2114 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-4203 (($ $ (-108)) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-108)) (-589 (-108))) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-271 (-108))) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016)))) (($ $ (-589 (-271 (-108)))) NIL (-12 (|has| (-108) (-286 (-108))) (|has| (-108) (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016))))) (-1264 (((-589 (-108)) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) 24)) (-3223 (($ $ (-1135 (-523))) NIL) (((-108) $ (-523)) 18) (((-108) $ (-523) (-108)) NIL)) (-1469 (($ $ (-1135 (-523))) NIL) (($ $ (-523)) NIL)) (-2792 (((-710) (-108) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-108) (-1016)))) (((-710) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4244)))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) 25)) (-3663 (((-499) $) NIL (|has| (-108) (-564 (-499))))) (-1472 (($ (-589 (-108))) NIL)) (-2326 (($ (-589 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-1458 (((-794) $) 22)) (-2096 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4244)))) (-4099 (($ $ $) 31)) (-2364 (($ $) NIL)) (-3651 (($ $ $) NIL)) (-2856 (($ $ $) 39)) (-1628 (($ $) 37)) (-2844 (($ $ $) 38)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 26)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 27)) (-3640 (($ $ $) NIL)) (-2676 (((-710) $) 10 (|has| $ (-6 -4244))))) +(((-471 |#1|) (-13 (-119) (-10 -8 (-15 -1628 ($ $)) (-15 -2856 ($ $ $)) (-15 -2844 ($ $ $)))) (-523)) (T -471)) +((-1628 (*1 *1 *1) (-12 (-5 *1 (-471 *2)) (-14 *2 (-523)))) (-2856 (*1 *1 *1 *1) (-12 (-5 *1 (-471 *2)) (-14 *2 (-523)))) (-2844 (*1 *1 *1 *1) (-12 (-5 *1 (-471 *2)) (-14 *2 (-523))))) +(-13 (-119) (-10 -8 (-15 -1628 ($ $)) (-15 -2856 ($ $ $)) (-15 -2844 ($ $ $)))) +((-3867 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1083 |#4|)) 35)) (-3106 (((-1083 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1083 |#4|)) 22)) (-2120 (((-3 (-629 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-629 (-1083 |#4|))) 46)) (-2368 (((-1083 (-1083 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-472 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3106 (|#2| (-1 |#1| |#4|) (-1083 |#4|))) (-15 -3106 ((-1083 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3867 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1083 |#4|))) (-15 -2120 ((-3 (-629 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-629 (-1083 |#4|)))) (-15 -2368 ((-1083 (-1083 |#4|)) (-1 |#4| |#1|) |#3|))) (-973) (-1144 |#1|) (-1144 |#2|) (-973)) (T -472)) +((-2368 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-973)) (-4 *7 (-973)) (-4 *6 (-1144 *5)) (-5 *2 (-1083 (-1083 *7))) (-5 *1 (-472 *5 *6 *4 *7)) (-4 *4 (-1144 *6)))) (-2120 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-629 (-1083 *8))) (-4 *5 (-973)) (-4 *8 (-973)) (-4 *6 (-1144 *5)) (-5 *2 (-629 *6)) (-5 *1 (-472 *5 *6 *7 *8)) (-4 *7 (-1144 *6)))) (-3867 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1083 *7)) (-4 *5 (-973)) (-4 *7 (-973)) (-4 *2 (-1144 *5)) (-5 *1 (-472 *5 *2 *6 *7)) (-4 *6 (-1144 *2)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-973)) (-4 *7 (-973)) (-4 *4 (-1144 *5)) (-5 *2 (-1083 *7)) (-5 *1 (-472 *5 *4 *6 *7)) (-4 *6 (-1144 *4)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1083 *7)) (-4 *5 (-973)) (-4 *7 (-973)) (-4 *2 (-1144 *5)) (-5 *1 (-472 *5 *2 *6 *7)) (-4 *6 (-1144 *2))))) +(-10 -7 (-15 -3106 (|#2| (-1 |#1| |#4|) (-1083 |#4|))) (-15 -3106 ((-1083 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3867 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1083 |#4|))) (-15 -2120 ((-3 (-629 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-629 (-1083 |#4|)))) (-15 -2368 ((-1083 (-1083 |#4|)) (-1 |#4| |#1|) |#3|))) +((-3924 (((-108) $ $) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2823 (((-1173) $) 18)) (-3223 (((-1070) $ (-1087)) 22)) (-3973 (((-1173) $) 14)) (-1458 (((-794) $) 20) (($ (-1070)) 19)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 8)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 7))) +(((-473) (-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) (-15 -2823 ((-1173) $)) (-15 -1458 ($ (-1070)))))) (T -473)) +((-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1070)) (-5 *1 (-473)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-473)))) (-2823 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-473)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-473))))) +(-13 (-786) (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) (-15 -2823 ((-1173) $)) (-15 -1458 ($ (-1070))))) +((-1199 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3616 ((|#1| |#4|) 10)) (-3604 ((|#3| |#4|) 17))) +(((-474 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3616 (|#1| |#4|)) (-15 -3604 (|#3| |#4|)) (-15 -1199 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-515) (-921 |#1|) (-349 |#1|) (-349 |#2|)) (T -474)) +((-1199 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-474 *4 *5 *6 *3)) (-4 *6 (-349 *4)) (-4 *3 (-349 *5)))) (-3604 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) (-4 *2 (-349 *4)) (-5 *1 (-474 *4 *5 *2 *3)) (-4 *3 (-349 *5)))) (-3616 (*1 *2 *3) (-12 (-4 *4 (-921 *2)) (-4 *2 (-515)) (-5 *1 (-474 *2 *4 *5 *3)) (-4 *5 (-349 *2)) (-4 *3 (-349 *4))))) +(-10 -7 (-15 -3616 (|#1| |#4|)) (-15 -3604 (|#3| |#4|)) (-15 -1199 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-3924 (((-108) $ $) NIL)) (-3537 (((-108) $ (-589 |#3|)) 103) (((-108) $) 104)) (-2295 (((-108) $) 146)) (-3629 (($ $ |#4|) 95) (($ $ |#4| (-589 |#3|)) 99)) (-2439 (((-1077 (-589 (-883 |#1|)) (-589 (-271 (-883 |#1|)))) (-589 |#4|)) 139 (|has| |#3| (-564 (-1087))))) (-3445 (($ $ $) 89) (($ $ |#4|) 87)) (-2023 (((-108) $) 145)) (-2946 (($ $) 107)) (-3779 (((-1070) $) NIL)) (-1309 (($ $ $) 81) (($ (-589 $)) 83)) (-1679 (((-108) |#4| $) 106)) (-3224 (((-108) $ $) 70)) (-1485 (($ (-589 |#4|)) 88)) (-2783 (((-1034) $) NIL)) (-1577 (($ (-589 |#4|)) 143)) (-3850 (((-108) $) 144)) (-1896 (($ $) 72)) (-2773 (((-589 |#4|) $) 56)) (-1686 (((-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $)) $ (-589 |#3|)) NIL)) (-1681 (((-108) |#4| $) 75)) (-3203 (((-523) $ (-589 |#3|)) 108) (((-523) $) 109)) (-1458 (((-794) $) 142) (($ (-589 |#4|)) 84)) (-1293 (($ (-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $))) NIL)) (-3983 (((-108) $ $) 71)) (-4075 (($ $ $) 91)) (** (($ $ (-710)) 94)) (* (($ $ $) 93))) +(((-475 |#1| |#2| |#3| |#4|) (-13 (-1016) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-710))) (-15 -4075 ($ $ $)) (-15 -2023 ((-108) $)) (-15 -2295 ((-108) $)) (-15 -1681 ((-108) |#4| $)) (-15 -3224 ((-108) $ $)) (-15 -1679 ((-108) |#4| $)) (-15 -3537 ((-108) $ (-589 |#3|))) (-15 -3537 ((-108) $)) (-15 -1309 ($ $ $)) (-15 -1309 ($ (-589 $))) (-15 -3445 ($ $ $)) (-15 -3445 ($ $ |#4|)) (-15 -1896 ($ $)) (-15 -1686 ((-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $)) $ (-589 |#3|))) (-15 -1293 ($ (-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $)))) (-15 -3203 ((-523) $ (-589 |#3|))) (-15 -3203 ((-523) $)) (-15 -2946 ($ $)) (-15 -1485 ($ (-589 |#4|))) (-15 -1577 ($ (-589 |#4|))) (-15 -3850 ((-108) $)) (-15 -2773 ((-589 |#4|) $)) (-15 -1458 ($ (-589 |#4|))) (-15 -3629 ($ $ |#4|)) (-15 -3629 ($ $ |#4| (-589 |#3|))) (IF (|has| |#3| (-564 (-1087))) (-15 -2439 ((-1077 (-589 (-883 |#1|)) (-589 (-271 (-883 |#1|)))) (-589 |#4|))) |%noBranch|))) (-339) (-732) (-786) (-880 |#1| |#2| |#3|)) (T -475)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-4075 (*1 *1 *1 *1) (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) (-2023 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-2295 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-1681 (*1 *2 *3 *1) (-12 (-4 *4 (-339)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-475 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6)))) (-3224 (*1 *2 *1 *1) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-1679 (*1 *2 *3 *1) (-12 (-4 *4 (-339)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-475 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6)))) (-3537 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) (-5 *2 (-108)) (-5 *1 (-475 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6)))) (-3537 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-1309 (*1 *1 *1 *1) (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) (-1309 (*1 *1 *2) (-12 (-5 *2 (-589 (-475 *3 *4 *5 *6))) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-3445 (*1 *1 *1 *1) (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) (-3445 (*1 *1 *1 *2) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *2)) (-4 *2 (-880 *3 *4 *5)))) (-1896 (*1 *1 *1) (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) (-1686 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) (-5 *2 (-2 (|:| |mval| (-629 *4)) (|:| |invmval| (-629 *4)) (|:| |genIdeal| (-475 *4 *5 *6 *7)))) (-5 *1 (-475 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6)))) (-1293 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-629 *3)) (|:| |invmval| (-629 *3)) (|:| |genIdeal| (-475 *3 *4 *5 *6)))) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-3203 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) (-5 *2 (-523)) (-5 *1 (-475 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6)))) (-3203 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-523)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-2946 (*1 *1 *1) (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) (-1485 (*1 *1 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)))) (-1577 (*1 *1 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)))) (-3850 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-2773 (*1 *2 *1) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *6)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)))) (-3629 (*1 *1 *1 *2) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *2)) (-4 *2 (-880 *3 *4 *5)))) (-3629 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) (-5 *1 (-475 *4 *5 *6 *2)) (-4 *2 (-880 *4 *5 *6)))) (-2439 (*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *5 *6)) (-4 *6 (-564 (-1087))) (-4 *4 (-339)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1077 (-589 (-883 *4)) (-589 (-271 (-883 *4))))) (-5 *1 (-475 *4 *5 *6 *7))))) +(-13 (-1016) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-710))) (-15 -4075 ($ $ $)) (-15 -2023 ((-108) $)) (-15 -2295 ((-108) $)) (-15 -1681 ((-108) |#4| $)) (-15 -3224 ((-108) $ $)) (-15 -1679 ((-108) |#4| $)) (-15 -3537 ((-108) $ (-589 |#3|))) (-15 -3537 ((-108) $)) (-15 -1309 ($ $ $)) (-15 -1309 ($ (-589 $))) (-15 -3445 ($ $ $)) (-15 -3445 ($ $ |#4|)) (-15 -1896 ($ $)) (-15 -1686 ((-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $)) $ (-589 |#3|))) (-15 -1293 ($ (-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $)))) (-15 -3203 ((-523) $ (-589 |#3|))) (-15 -3203 ((-523) $)) (-15 -2946 ($ $)) (-15 -1485 ($ (-589 |#4|))) (-15 -1577 ($ (-589 |#4|))) (-15 -3850 ((-108) $)) (-15 -2773 ((-589 |#4|) $)) (-15 -1458 ($ (-589 |#4|))) (-15 -3629 ($ $ |#4|)) (-15 -3629 ($ $ |#4| (-589 |#3|))) (IF (|has| |#3| (-564 (-1087))) (-15 -2439 ((-1077 (-589 (-883 |#1|)) (-589 (-271 (-883 |#1|)))) (-589 |#4|))) |%noBranch|))) +((-3153 (((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) 146)) (-2892 (((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) 147)) (-3243 (((-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) 105)) (-2657 (((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) NIL)) (-2196 (((-589 (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) 149)) (-3503 (((-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-589 (-796 |#1|))) 161))) +(((-476 |#1| |#2|) (-10 -7 (-15 -3153 ((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -2892 ((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -2657 ((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -3243 ((-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -2196 ((-589 (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -3503 ((-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-589 (-796 |#1|))))) (-589 (-1087)) (-710)) (T -476)) +((-3503 (*1 *2 *2 *3) (-12 (-5 *2 (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) (-225 *4 (-383 (-523))))) (-5 *3 (-589 (-796 *4))) (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *1 (-476 *4 *5)))) (-2196 (*1 *2 *3) (-12 (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *2 (-589 (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) (-225 *4 (-383 (-523)))))) (-5 *1 (-476 *4 *5)) (-5 *3 (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) (-225 *4 (-383 (-523))))))) (-3243 (*1 *2 *2) (-12 (-5 *2 (-475 (-383 (-523)) (-218 *4 (-710)) (-796 *3) (-225 *3 (-383 (-523))))) (-14 *3 (-589 (-1087))) (-14 *4 (-710)) (-5 *1 (-476 *3 *4)))) (-2657 (*1 *2 *3) (-12 (-5 *3 (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) (-225 *4 (-383 (-523))))) (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *2 (-108)) (-5 *1 (-476 *4 *5)))) (-2892 (*1 *2 *3) (-12 (-5 *3 (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) (-225 *4 (-383 (-523))))) (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *2 (-108)) (-5 *1 (-476 *4 *5)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) (-225 *4 (-383 (-523))))) (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *2 (-108)) (-5 *1 (-476 *4 *5))))) +(-10 -7 (-15 -3153 ((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -2892 ((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -2657 ((-108) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -3243 ((-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -2196 ((-589 (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523))))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))))) (-15 -3503 ((-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-475 (-383 (-523)) (-218 |#2| (-710)) (-796 |#1|) (-225 |#1| (-383 (-523)))) (-589 (-796 |#1|))))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3810 (($ $) NIL)) (-1933 (($ |#1| |#2|) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-1953 ((|#2| $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-2756 (($) 12 T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) 11) (($ $ $) 24)) (-4075 (($ $ $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 19))) +(((-477 |#1| |#2|) (-13 (-21) (-479 |#1| |#2|)) (-21) (-786)) (T -477)) +NIL +(-13 (-21) (-479 |#1| |#2|)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 12)) (-2518 (($) NIL T CONST)) (-3810 (($ $) 27)) (-1933 (($ |#1| |#2|) 24)) (-3612 (($ (-1 |#1| |#1|) $) 26)) (-1953 ((|#2| $) NIL)) (-3786 ((|#1| $) 28)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-2756 (($) 10 T CONST)) (-3983 (((-108) $ $) NIL)) (-4075 (($ $ $) 18)) (* (($ (-852) $) NIL) (($ (-710) $) 23))) +(((-478 |#1| |#2|) (-13 (-23) (-479 |#1| |#2|)) (-23) (-786)) (T -478)) +NIL +(-13 (-23) (-479 |#1| |#2|)) +((-3924 (((-108) $ $) 7)) (-3810 (($ $) 13)) (-1933 (($ |#1| |#2|) 16)) (-3612 (($ (-1 |#1| |#1|) $) 17)) (-1953 ((|#2| $) 14)) (-3786 ((|#1| $) 15)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 6))) +(((-479 |#1| |#2|) (-129) (-1016) (-786)) (T -479)) +((-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-479 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-786)))) (-1933 (*1 *1 *2 *3) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-786)))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1016)))) (-1953 (*1 *2 *1) (-12 (-4 *1 (-479 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-786)))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-786))))) +(-13 (-1016) (-10 -8 (-15 -3612 ($ (-1 |t#1| |t#1|) $)) (-15 -1933 ($ |t#1| |t#2|)) (-15 -3786 (|t#1| $)) (-15 -1953 (|t#2| $)) (-15 -3810 ($ $)))) +(((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2518 (($) NIL T CONST)) (-3810 (($ $) NIL)) (-1933 (($ |#1| |#2|) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-1953 ((|#2| $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-2756 (($) NIL T CONST)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 13)) (-4075 (($ $ $) NIL)) (* (($ (-710) $) NIL) (($ (-852) $) NIL))) +(((-480 |#1| |#2|) (-13 (-731) (-479 |#1| |#2|)) (-731) (-786)) (T -480)) +NIL +(-13 (-731) (-479 |#1| |#2|)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3596 (($ $ $) 16)) (-3212 (((-3 $ "failed") $ $) 13)) (-2518 (($) NIL T CONST)) (-3810 (($ $) NIL)) (-1933 (($ |#1| |#2|) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-1953 ((|#2| $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL)) (-2756 (($) NIL T CONST)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL)) (* (($ (-710) $) NIL) (($ (-852) $) NIL))) +(((-481 |#1| |#2|) (-13 (-732) (-479 |#1| |#2|)) (-732) (-786)) (T -481)) +NIL +(-13 (-732) (-479 |#1| |#2|)) +((-3924 (((-108) $ $) NIL)) (-3810 (($ $) 25)) (-1933 (($ |#1| |#2|) 22)) (-3612 (($ (-1 |#1| |#1|) $) 24)) (-1953 ((|#2| $) 27)) (-3786 ((|#1| $) 26)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 21)) (-3983 (((-108) $ $) 14))) +(((-482 |#1| |#2|) (-479 |#1| |#2|) (-1016) (-786)) (T -482)) +NIL +(-479 |#1| |#2|) +((-2679 (($ $ (-589 |#2|) (-589 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-483 |#1| |#2| |#3|) (-10 -8 (-15 -2679 (|#1| |#1| |#2| |#3|)) (-15 -2679 (|#1| |#1| (-589 |#2|) (-589 |#3|)))) (-484 |#2| |#3|) (-1016) (-1122)) (T -483)) +NIL +(-10 -8 (-15 -2679 (|#1| |#1| |#2| |#3|)) (-15 -2679 (|#1| |#1| (-589 |#2|) (-589 |#3|)))) +((-2679 (($ $ (-589 |#1|) (-589 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-484 |#1| |#2|) (-129) (-1016) (-1122)) (T -484)) +((-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *4)) (-5 *3 (-589 *5)) (-4 *1 (-484 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-1122)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1122))))) +(-13 (-10 -8 (-15 -2679 ($ $ |t#1| |t#2|)) (-15 -2679 ($ $ (-589 |t#1|) (-589 |t#2|))))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 16)) (-2133 (((-589 (-2 (|:| |gen| |#1|) (|:| -1811 |#2|))) $) 18)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1703 (((-710) $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-2378 ((|#1| $ (-523)) 23)) (-4126 ((|#2| $ (-523)) 21)) (-4093 (($ (-1 |#1| |#1|) $) 46)) (-1620 (($ (-1 |#2| |#2|) $) 43)) (-3779 (((-1070) $) NIL)) (-3887 (($ $ $) 53 (|has| |#2| (-731)))) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 42) (($ |#1|) NIL)) (-2365 ((|#2| |#1| $) 49)) (-2756 (($) 11 T CONST)) (-3983 (((-108) $ $) 29)) (-4075 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-852) $) NIL) (($ (-710) $) 36) (($ |#2| |#1|) 31))) +(((-485 |#1| |#2| |#3|) (-299 |#1| |#2|) (-1016) (-124) |#2|) (T -485)) +NIL +(-299 |#1| |#2|) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-4159 (((-108) (-108)) 24)) (-1641 ((|#1| $ (-523) |#1|) 27 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245)))) (-3387 (($ (-1 (-108) |#1|) $) 51)) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-3941 (($ $) 55 (|has| |#1| (-1016)))) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2249 (($ |#1| $) NIL (|has| |#1| (-1016))) (($ (-1 (-108) |#1|) $) 43)) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) NIL)) (-1479 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-2277 (($ $ (-523)) 13)) (-2128 (((-710) $) 11)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-3052 (($ (-710) |#1|) 22)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) 20 (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2158 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) 34)) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) 19 (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3450 (($ $ $ (-523)) 50) (($ |#1| $ (-523)) 36)) (-2847 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3837 (($ (-589 |#1|)) 28)) (-1738 ((|#1| $) NIL (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) 18 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 39)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) 14)) (-3223 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) 32) (($ $ (-1135 (-523))) NIL)) (-2753 (($ $ (-1135 (-523))) 49) (($ $ (-523)) 44)) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) 40 (|has| $ (-6 -4245)))) (-1664 (($ $) 31)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) NIL)) (-1746 (($ $ $) 41) (($ $ |#1|) 38)) (-2326 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2676 (((-710) $) 15 (|has| $ (-6 -4244))))) +(((-486 |#1| |#2|) (-13 (-19 |#1|) (-259 |#1|) (-10 -8 (-15 -3837 ($ (-589 |#1|))) (-15 -2128 ((-710) $)) (-15 -2277 ($ $ (-523))) (-15 -4159 ((-108) (-108))))) (-1122) (-523)) (T -486)) +((-3837 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-486 *3 *4)) (-14 *4 (-523)))) (-2128 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-486 *3 *4)) (-4 *3 (-1122)) (-14 *4 (-523)))) (-2277 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-486 *3 *4)) (-4 *3 (-1122)) (-14 *4 *2))) (-4159 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-486 *3 *4)) (-4 *3 (-1122)) (-14 *4 (-523))))) +(-13 (-19 |#1|) (-259 |#1|) (-10 -8 (-15 -3837 ($ (-589 |#1|))) (-15 -2128 ((-710) $)) (-15 -2277 ($ $ (-523))) (-15 -4159 ((-108) (-108))))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 (((-536 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-536 |#1|) (-344)))) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| (-536 |#1|) (-344)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) NIL (|has| (-536 |#1|) (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-536 |#1|) "failed") $) NIL)) (-3474 (((-536 |#1|) $) NIL)) (-3409 (($ (-1168 (-536 |#1|))) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-536 |#1|) (-344)))) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-536 |#1|) (-344)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) NIL (|has| (-536 |#1|) (-344)))) (-2155 (((-108) $) NIL (|has| (-536 |#1|) (-344)))) (-1991 (($ $ (-710)) NIL (-3262 (|has| (-536 |#1|) (-134)) (|has| (-536 |#1|) (-344)))) (($ $) NIL (-3262 (|has| (-536 |#1|) (-134)) (|has| (-536 |#1|) (-344))))) (-2657 (((-108) $) NIL)) (-1640 (((-852) $) NIL (|has| (-536 |#1|) (-344))) (((-772 (-852)) $) NIL (-3262 (|has| (-536 |#1|) (-134)) (|has| (-536 |#1|) (-344))))) (-2023 (((-108) $) NIL)) (-1881 (($) NIL (|has| (-536 |#1|) (-344)))) (-2307 (((-108) $) NIL (|has| (-536 |#1|) (-344)))) (-3892 (((-536 |#1|) $) NIL) (($ $ (-852)) NIL (|has| (-536 |#1|) (-344)))) (-4058 (((-3 $ "failed") $) NIL (|has| (-536 |#1|) (-344)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 (-536 |#1|)) $) NIL) (((-1083 $) $ (-852)) NIL (|has| (-536 |#1|) (-344)))) (-2072 (((-852) $) NIL (|has| (-536 |#1|) (-344)))) (-3943 (((-1083 (-536 |#1|)) $) NIL (|has| (-536 |#1|) (-344)))) (-2122 (((-1083 (-536 |#1|)) $) NIL (|has| (-536 |#1|) (-344))) (((-3 (-1083 (-536 |#1|)) "failed") $ $) NIL (|has| (-536 |#1|) (-344)))) (-3865 (($ $ (-1083 (-536 |#1|))) NIL (|has| (-536 |#1|) (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-536 |#1|) (-344)) CONST)) (-3878 (($ (-852)) NIL (|has| (-536 |#1|) (-344)))) (-1290 (((-108) $) NIL)) (-2783 (((-1034) $) NIL)) (-3441 (($) NIL (|has| (-536 |#1|) (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| (-536 |#1|) (-344)))) (-1820 (((-394 $) $) NIL)) (-4124 (((-772 (-852))) NIL) (((-852)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-710) $) NIL (|has| (-536 |#1|) (-344))) (((-3 (-710) "failed") $ $) NIL (-3262 (|has| (-536 |#1|) (-134)) (|has| (-536 |#1|) (-344))))) (-3203 (((-126)) NIL)) (-3523 (($ $) NIL (|has| (-536 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-536 |#1|) (-344)))) (-2299 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-3727 (((-1083 (-536 |#1|))) NIL)) (-3425 (($) NIL (|has| (-536 |#1|) (-344)))) (-2749 (($) NIL (|has| (-536 |#1|) (-344)))) (-2966 (((-1168 (-536 |#1|)) $) NIL) (((-629 (-536 |#1|)) (-1168 $)) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| (-536 |#1|) (-344)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-536 |#1|)) NIL)) (-3901 (($ $) NIL (|has| (-536 |#1|) (-344))) (((-3 $ "failed") $) NIL (-3262 (|has| (-536 |#1|) (-134)) (|has| (-536 |#1|) (-344))))) (-1621 (((-710)) NIL)) (-4041 (((-1168 $)) NIL) (((-1168 $) (-852)) NIL)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3454 (($ $) NIL (|has| (-536 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-536 |#1|) (-344)))) (-2862 (($ $) NIL (|has| (-536 |#1|) (-344))) (($ $ (-710)) NIL (|has| (-536 |#1|) (-344)))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL) (($ $ (-536 |#1|)) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ $ (-536 |#1|)) NIL) (($ (-536 |#1|) $) NIL))) +(((-487 |#1| |#2|) (-305 (-536 |#1|)) (-852) (-852)) (T -487)) +NIL +(-305 (-536 |#1|)) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-523) (-523) |#1|) 33)) (-3787 (($ $ (-523) |#4|) NIL)) (-3617 (($ $ (-523) |#5|) NIL)) (-2518 (($) NIL T CONST)) (-2031 ((|#4| $ (-523)) NIL)) (-2863 ((|#1| $ (-523) (-523) |#1|) 32)) (-2795 ((|#1| $ (-523) (-523)) 30)) (-1666 (((-589 |#1|) $) NIL)) (-2803 (((-710) $) 26)) (-3052 (($ (-710) (-710) |#1|) 23)) (-2813 (((-710) $) 28)) (-2346 (((-108) $ (-710)) NIL)) (-3871 (((-523) $) 24)) (-1758 (((-523) $) 25)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3338 (((-523) $) 27)) (-2347 (((-523) $) 29)) (-2852 (($ (-1 |#1| |#1|) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) 36 (|has| |#1| (-1016)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-4203 (($ $ |#1|) NIL)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 14)) (-3988 (($) 15)) (-3223 ((|#1| $ (-523) (-523)) 31) ((|#1| $ (-523) (-523) |#1|) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1595 ((|#5| $ (-523)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-488 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1122) (-523) (-523) (-349 |#1|) (-349 |#1|)) (T -488)) NIL (-55 |#1| |#4| |#5|) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3526 ((|#1| $) NIL)) (-2126 ((|#1| $) NIL)) (-3961 (($ $) NIL)) (-3883 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-2211 (($ $ (-522)) 58 (|has| $ (-6 -4239)))) (-1866 (((-108) $) NIL (|has| |#1| (-784))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-2806 (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784)))) (($ (-1 (-108) |#1| |#1|) $) 56 (|has| $ (-6 -4239)))) (-3296 (($ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-2717 (((-108) $ (-708)) NIL)) (-1198 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-2398 (($ $ $) 23 (|has| $ (-6 -4239)))) (-2631 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-3393 ((|#1| $ |#1|) 21 (|has| $ (-6 -4239)))) (-2437 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4239))) (($ $ "rest" $) 24 (|has| $ (-6 -4239))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-2684 (($ $ (-588 $)) NIL (|has| $ (-6 -4239)))) (-1213 (($ (-1 (-108) |#1|) $) NIL)) (-1696 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2116 ((|#1| $) NIL)) (-3367 (($) NIL T CONST)) (-2465 (($ $) 28 (|has| $ (-6 -4239)))) (-1939 (($ $) 29)) (-2352 (($ $) 18) (($ $ (-708)) 32)) (-1581 (($ $) 54 (|has| |#1| (-1014)))) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1700 (($ |#1| $) NIL (|has| |#1| (-1014))) (($ (-1 (-108) |#1|) $) NIL)) (-1424 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2411 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-522)) NIL)) (-3614 (((-108) $) NIL)) (-3314 (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014))) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) (-1 (-108) |#1|) $) NIL)) (-2395 (((-588 |#1|) $) 27 (|has| $ (-6 -4238)))) (-2674 (((-588 $) $) NIL)) (-2402 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1893 (($ (-708) |#1|) NIL)) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) 31 (|has| (-522) (-784)))) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-3557 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) 57)) (-3164 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 52 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2201 (((-522) $) NIL (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-2397 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1614 (($ |#1|) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2548 (((-588 |#1|) $) NIL)) (-3394 (((-108) $) NIL)) (-2311 (((-1068) $) 51 (|has| |#1| (-1014)))) (-1442 ((|#1| $) NIL) (($ $ (-708)) NIL)) (-3365 (($ $ $ (-522)) NIL) (($ |#1| $ (-522)) NIL)) (-1731 (($ $ $ (-522)) NIL) (($ |#1| $ (-522)) NIL)) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) NIL)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2337 ((|#1| $) 13) (($ $ (-708)) NIL)) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1972 (($ $ |#1|) NIL (|has| $ (-6 -4239)))) (-4196 (((-108) $) NIL)) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 12)) (-3434 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) NIL)) (-3494 (((-108) $) 17)) (-3298 (($) 16)) (-2683 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1133 (-522))) NIL) ((|#1| $ (-522)) NIL) ((|#1| $ (-522) |#1|) NIL)) (-3381 (((-522) $ $) NIL)) (-3551 (($ $ (-1133 (-522))) NIL) (($ $ (-522)) NIL)) (-3835 (($ $ (-1133 (-522))) NIL) (($ $ (-522)) NIL)) (-3395 (((-108) $) 34)) (-2885 (($ $) NIL)) (-1668 (($ $) NIL (|has| $ (-6 -4239)))) (-1321 (((-708) $) NIL)) (-1502 (($ $) 36)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3629 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2463 (($ $) 35)) (-3873 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) 26)) (-2335 (($ $ $) 53) (($ $ |#1|) NIL)) (-4170 (($ $ $) NIL) (($ |#1| $) 10) (($ (-588 $)) NIL) (($ $ |#1|) NIL)) (-2217 (((-792) $) 46 (|has| |#1| (-562 (-792))))) (-1515 (((-588 $) $) NIL)) (-3294 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) 48 (|has| |#1| (-1014)))) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3591 (((-708) $) 9 (|has| $ (-6 -4238))))) -(((-488 |#1| |#2|) (-608 |#1|) (-1120) (-522)) (T -488)) -NIL -(-608 |#1|) -((-2091 ((|#4| |#4|) 26)) (-1692 (((-708) |#4|) 31)) (-2336 (((-708) |#4|) 32)) (-2819 (((-588 |#3|) |#4|) 38 (|has| |#3| (-6 -4239)))) (-3073 (((-3 |#4| "failed") |#4|) 48)) (-1673 ((|#4| |#4|) 41)) (-2500 ((|#1| |#4|) 40))) -(((-489 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2091 (|#4| |#4|)) (-15 -1692 ((-708) |#4|)) (-15 -2336 ((-708) |#4|)) (IF (|has| |#3| (-6 -4239)) (-15 -2819 ((-588 |#3|) |#4|)) |%noBranch|) (-15 -2500 (|#1| |#4|)) (-15 -1673 (|#4| |#4|)) (-15 -3073 ((-3 |#4| "failed") |#4|))) (-338) (-348 |#1|) (-348 |#1|) (-626 |#1| |#2| |#3|)) (T -489)) -((-3073 (*1 *2 *2) (|partial| -12 (-4 *3 (-338)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-489 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-1673 (*1 *2 *2) (-12 (-4 *3 (-338)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-489 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-2500 (*1 *2 *3) (-12 (-4 *4 (-348 *2)) (-4 *5 (-348 *2)) (-4 *2 (-338)) (-5 *1 (-489 *2 *4 *5 *3)) (-4 *3 (-626 *2 *4 *5)))) (-2819 (*1 *2 *3) (-12 (|has| *6 (-6 -4239)) (-4 *4 (-338)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-5 *2 (-588 *6)) (-5 *1 (-489 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-2336 (*1 *2 *3) (-12 (-4 *4 (-338)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-5 *2 (-708)) (-5 *1 (-489 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-1692 (*1 *2 *3) (-12 (-4 *4 (-338)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-5 *2 (-708)) (-5 *1 (-489 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-2091 (*1 *2 *2) (-12 (-4 *3 (-338)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-489 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5))))) -(-10 -7 (-15 -2091 (|#4| |#4|)) (-15 -1692 ((-708) |#4|)) (-15 -2336 ((-708) |#4|)) (IF (|has| |#3| (-6 -4239)) (-15 -2819 ((-588 |#3|) |#4|)) |%noBranch|) (-15 -2500 (|#1| |#4|)) (-15 -1673 (|#4| |#4|)) (-15 -3073 ((-3 |#4| "failed") |#4|))) -((-2091 ((|#8| |#4|) 20)) (-2819 (((-588 |#3|) |#4|) 29 (|has| |#7| (-6 -4239)))) (-3073 (((-3 |#8| "failed") |#4|) 23))) -(((-490 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2091 (|#8| |#4|)) (-15 -3073 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4239)) (-15 -2819 ((-588 |#3|) |#4|)) |%noBranch|)) (-514) (-348 |#1|) (-348 |#1|) (-626 |#1| |#2| |#3|) (-919 |#1|) (-348 |#5|) (-348 |#5|) (-626 |#5| |#6| |#7|)) (T -490)) -((-2819 (*1 *2 *3) (-12 (|has| *9 (-6 -4239)) (-4 *4 (-514)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-4 *7 (-919 *4)) (-4 *8 (-348 *7)) (-4 *9 (-348 *7)) (-5 *2 (-588 *6)) (-5 *1 (-490 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-626 *4 *5 *6)) (-4 *10 (-626 *7 *8 *9)))) (-3073 (*1 *2 *3) (|partial| -12 (-4 *4 (-514)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-4 *7 (-919 *4)) (-4 *2 (-626 *7 *8 *9)) (-5 *1 (-490 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-626 *4 *5 *6)) (-4 *8 (-348 *7)) (-4 *9 (-348 *7)))) (-2091 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-4 *7 (-919 *4)) (-4 *2 (-626 *7 *8 *9)) (-5 *1 (-490 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-626 *4 *5 *6)) (-4 *8 (-348 *7)) (-4 *9 (-348 *7))))) -(-10 -7 (-15 -2091 (|#8| |#4|)) (-15 -3073 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4239)) (-15 -2819 ((-588 |#3|) |#4|)) |%noBranch|)) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1785 (($ (-708) (-708)) NIL)) (-3021 (($ $ $) NIL)) (-2682 (($ (-553 |#1| |#3|)) NIL) (($ $) NIL)) (-3455 (((-108) $) NIL)) (-3637 (($ $ (-522) (-522)) 12)) (-1957 (($ $ (-522) (-522)) NIL)) (-1834 (($ $ (-522) (-522) (-522) (-522)) NIL)) (-2449 (($ $) NIL)) (-2208 (((-108) $) NIL)) (-2717 (((-108) $ (-708)) NIL)) (-3352 (($ $ (-522) (-522) $) NIL)) (-2437 ((|#1| $ (-522) (-522) |#1|) NIL) (($ $ (-588 (-522)) (-588 (-522)) $) NIL)) (-3074 (($ $ (-522) (-553 |#1| |#3|)) NIL)) (-4060 (($ $ (-522) (-553 |#1| |#2|)) NIL)) (-1348 (($ (-708) |#1|) NIL)) (-3367 (($) NIL T CONST)) (-2091 (($ $) 19 (|has| |#1| (-283)))) (-2635 (((-553 |#1| |#3|) $ (-522)) NIL)) (-1692 (((-708) $) 22 (|has| |#1| (-514)))) (-2411 ((|#1| $ (-522) (-522) |#1|) NIL)) (-2186 ((|#1| $ (-522) (-522)) NIL)) (-2395 (((-588 |#1|) $) NIL)) (-2336 (((-708) $) 24 (|has| |#1| (-514)))) (-2819 (((-588 (-553 |#1| |#2|)) $) 27 (|has| |#1| (-514)))) (-2949 (((-708) $) NIL)) (-1893 (($ (-708) (-708) |#1|) NIL)) (-2960 (((-708) $) NIL)) (-1480 (((-108) $ (-708)) NIL)) (-3721 ((|#1| $) 17 (|has| |#1| (-6 (-4240 "*"))))) (-2604 (((-522) $) 10)) (-4042 (((-522) $) NIL)) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1925 (((-522) $) 11)) (-2595 (((-522) $) NIL)) (-1347 (($ (-588 (-588 |#1|))) NIL)) (-2397 (($ (-1 |#1| |#1|) $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2862 (((-588 (-588 |#1|)) $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-3073 (((-3 $ "failed") $) 31 (|has| |#1| (-338)))) (-3594 (($ $ $) NIL)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-1972 (($ $ |#1|) NIL)) (-2276 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514)))) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#1| $ (-522) (-522)) NIL) ((|#1| $ (-522) (-522) |#1|) NIL) (($ $ (-588 (-522)) (-588 (-522))) NIL)) (-3215 (($ (-588 |#1|)) NIL) (($ (-588 $)) NIL)) (-3498 (((-108) $) NIL)) (-2500 ((|#1| $) 15 (|has| |#1| (-6 (-4240 "*"))))) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) NIL)) (-2223 (((-553 |#1| |#2|) $ (-522)) NIL)) (-2217 (($ (-553 |#1| |#2|)) NIL) (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-4047 (((-108) $) NIL)) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1672 (($ $ $) NIL) (($ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-522) $) NIL) (((-553 |#1| |#2|) $ (-553 |#1| |#2|)) NIL) (((-553 |#1| |#3|) (-553 |#1| |#3|) $) NIL)) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-491 |#1| |#2| |#3|) (-626 |#1| (-553 |#1| |#3|) (-553 |#1| |#2|)) (-971) (-522) (-522)) (T -491)) -NIL -(-626 |#1| (-553 |#1| |#3|) (-553 |#1| |#2|)) -((-3410 (((-1081 |#1|) (-708)) 75)) (-1945 (((-1166 |#1|) (-1166 |#1|) (-850)) 68)) (-2167 (((-1171) (-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032))))) |#1|) 83)) (-3317 (((-1166 |#1|) (-1166 |#1|) (-708)) 36)) (-3344 (((-1166 |#1|) (-850)) 70)) (-1779 (((-1166 |#1|) (-1166 |#1|) (-522)) 24)) (-1976 (((-1081 |#1|) (-1166 |#1|)) 76)) (-3768 (((-1166 |#1|) (-850)) 94)) (-1372 (((-108) (-1166 |#1|)) 79)) (-1269 (((-1166 |#1|) (-1166 |#1|) (-850)) 61)) (-4199 (((-1081 |#1|) (-1166 |#1|)) 88)) (-1475 (((-850) (-1166 |#1|)) 58)) (-3193 (((-1166 |#1|) (-1166 |#1|)) 30)) (-2882 (((-1166 |#1|) (-850) (-850)) 96)) (-3427 (((-1166 |#1|) (-1166 |#1|) (-1032) (-1032)) 23)) (-1743 (((-1166 |#1|) (-1166 |#1|) (-708) (-1032)) 37)) (-2905 (((-1166 (-1166 |#1|)) (-850)) 93)) (-1682 (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 80)) (** (((-1166 |#1|) (-1166 |#1|) (-522)) 45)) (* (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 25))) -(((-492 |#1|) (-10 -7 (-15 -2167 ((-1171) (-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032))))) |#1|)) (-15 -3344 ((-1166 |#1|) (-850))) (-15 -2882 ((-1166 |#1|) (-850) (-850))) (-15 -1976 ((-1081 |#1|) (-1166 |#1|))) (-15 -3410 ((-1081 |#1|) (-708))) (-15 -1743 ((-1166 |#1|) (-1166 |#1|) (-708) (-1032))) (-15 -3317 ((-1166 |#1|) (-1166 |#1|) (-708))) (-15 -3427 ((-1166 |#1|) (-1166 |#1|) (-1032) (-1032))) (-15 -1779 ((-1166 |#1|) (-1166 |#1|) (-522))) (-15 ** ((-1166 |#1|) (-1166 |#1|) (-522))) (-15 * ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -1682 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -1269 ((-1166 |#1|) (-1166 |#1|) (-850))) (-15 -1945 ((-1166 |#1|) (-1166 |#1|) (-850))) (-15 -3193 ((-1166 |#1|) (-1166 |#1|))) (-15 -1475 ((-850) (-1166 |#1|))) (-15 -1372 ((-108) (-1166 |#1|))) (-15 -2905 ((-1166 (-1166 |#1|)) (-850))) (-15 -3768 ((-1166 |#1|) (-850))) (-15 -4199 ((-1081 |#1|) (-1166 |#1|)))) (-324)) (T -492)) -((-4199 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-324)) (-5 *2 (-1081 *4)) (-5 *1 (-492 *4)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1166 *4)) (-5 *1 (-492 *4)) (-4 *4 (-324)))) (-2905 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1166 (-1166 *4))) (-5 *1 (-492 *4)) (-4 *4 (-324)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-324)) (-5 *2 (-108)) (-5 *1 (-492 *4)))) (-1475 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-324)) (-5 *2 (-850)) (-5 *1 (-492 *4)))) (-3193 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-324)) (-5 *1 (-492 *3)))) (-1945 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-850)) (-4 *4 (-324)) (-5 *1 (-492 *4)))) (-1269 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-850)) (-4 *4 (-324)) (-5 *1 (-492 *4)))) (-1682 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-324)) (-5 *1 (-492 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-324)) (-5 *1 (-492 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-522)) (-4 *4 (-324)) (-5 *1 (-492 *4)))) (-1779 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-522)) (-4 *4 (-324)) (-5 *1 (-492 *4)))) (-3427 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-1032)) (-4 *4 (-324)) (-5 *1 (-492 *4)))) (-3317 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-708)) (-4 *4 (-324)) (-5 *1 (-492 *4)))) (-1743 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1166 *5)) (-5 *3 (-708)) (-5 *4 (-1032)) (-4 *5 (-324)) (-5 *1 (-492 *5)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1081 *4)) (-5 *1 (-492 *4)) (-4 *4 (-324)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-324)) (-5 *2 (-1081 *4)) (-5 *1 (-492 *4)))) (-2882 (*1 *2 *3 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1166 *4)) (-5 *1 (-492 *4)) (-4 *4 (-324)))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1166 *4)) (-5 *1 (-492 *4)) (-4 *4 (-324)))) (-2167 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 (-588 (-2 (|:| -3526 *4) (|:| -2882 (-1032)))))) (-4 *4 (-324)) (-5 *2 (-1171)) (-5 *1 (-492 *4))))) -(-10 -7 (-15 -2167 ((-1171) (-1166 (-588 (-2 (|:| -3526 |#1|) (|:| -2882 (-1032))))) |#1|)) (-15 -3344 ((-1166 |#1|) (-850))) (-15 -2882 ((-1166 |#1|) (-850) (-850))) (-15 -1976 ((-1081 |#1|) (-1166 |#1|))) (-15 -3410 ((-1081 |#1|) (-708))) (-15 -1743 ((-1166 |#1|) (-1166 |#1|) (-708) (-1032))) (-15 -3317 ((-1166 |#1|) (-1166 |#1|) (-708))) (-15 -3427 ((-1166 |#1|) (-1166 |#1|) (-1032) (-1032))) (-15 -1779 ((-1166 |#1|) (-1166 |#1|) (-522))) (-15 ** ((-1166 |#1|) (-1166 |#1|) (-522))) (-15 * ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -1682 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -1269 ((-1166 |#1|) (-1166 |#1|) (-850))) (-15 -1945 ((-1166 |#1|) (-1166 |#1|) (-850))) (-15 -3193 ((-1166 |#1|) (-1166 |#1|))) (-15 -1475 ((-850) (-1166 |#1|))) (-15 -1372 ((-108) (-1166 |#1|))) (-15 -2905 ((-1166 (-1166 |#1|)) (-850))) (-15 -3768 ((-1166 |#1|) (-850))) (-15 -4199 ((-1081 |#1|) (-1166 |#1|)))) -((-1648 (((-1 |#1| |#1|) |#1|) 11)) (-2107 (((-1 |#1| |#1|)) 10))) -(((-493 |#1|) (-10 -7 (-15 -2107 ((-1 |#1| |#1|))) (-15 -1648 ((-1 |#1| |#1|) |#1|))) (-13 (-664) (-25))) (T -493)) -((-1648 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-493 *3)) (-4 *3 (-13 (-664) (-25))))) (-2107 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-493 *3)) (-4 *3 (-13 (-664) (-25)))))) -(-10 -7 (-15 -2107 ((-1 |#1| |#1|))) (-15 -1648 ((-1 |#1| |#1|) |#1|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-1827 (($ $ $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3241 (($ $) NIL)) (-3500 (($ (-708) |#1|) NIL)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-3810 (($ (-1 (-708) (-708)) $) NIL)) (-1801 ((|#1| $) NIL)) (-3224 (((-708) $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 20)) (-3697 (($) NIL T CONST)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) NIL)) (-1661 (($ $ $) NIL)) (* (($ (-708) $) NIL) (($ (-850) $) NIL))) -(((-494 |#1|) (-13 (-730) (-478 (-708) |#1|)) (-784)) (T -494)) -NIL -(-13 (-730) (-478 (-708) |#1|)) -((-2029 (((-588 |#2|) (-1081 |#1|) |#3|) 83)) (-4131 (((-588 (-2 (|:| |outval| |#2|) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 |#2|))))) (-628 |#1|) |#3| (-1 (-393 (-1081 |#1|)) (-1081 |#1|))) 99)) (-4206 (((-1081 |#1|) (-628 |#1|)) 95))) -(((-495 |#1| |#2| |#3|) (-10 -7 (-15 -4206 ((-1081 |#1|) (-628 |#1|))) (-15 -2029 ((-588 |#2|) (-1081 |#1|) |#3|)) (-15 -4131 ((-588 (-2 (|:| |outval| |#2|) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 |#2|))))) (-628 |#1|) |#3| (-1 (-393 (-1081 |#1|)) (-1081 |#1|))))) (-338) (-338) (-13 (-338) (-782))) (T -495)) -((-4131 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-628 *6)) (-5 *5 (-1 (-393 (-1081 *6)) (-1081 *6))) (-4 *6 (-338)) (-5 *2 (-588 (-2 (|:| |outval| *7) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 *7)))))) (-5 *1 (-495 *6 *7 *4)) (-4 *7 (-338)) (-4 *4 (-13 (-338) (-782))))) (-2029 (*1 *2 *3 *4) (-12 (-5 *3 (-1081 *5)) (-4 *5 (-338)) (-5 *2 (-588 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-338)) (-4 *4 (-13 (-338) (-782))))) (-4206 (*1 *2 *3) (-12 (-5 *3 (-628 *4)) (-4 *4 (-338)) (-5 *2 (-1081 *4)) (-5 *1 (-495 *4 *5 *6)) (-4 *5 (-338)) (-4 *6 (-13 (-338) (-782)))))) -(-10 -7 (-15 -4206 ((-1081 |#1|) (-628 |#1|))) (-15 -2029 ((-588 |#2|) (-1081 |#1|) |#3|)) (-15 -4131 ((-588 (-2 (|:| |outval| |#2|) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 |#2|))))) (-628 |#1|) |#3| (-1 (-393 (-1081 |#1|)) (-1081 |#1|))))) -((-3012 (((-777 (-522))) 11)) (-3025 (((-777 (-522))) 13)) (-2990 (((-770 (-522))) 8))) -(((-496) (-10 -7 (-15 -2990 ((-770 (-522)))) (-15 -3012 ((-777 (-522)))) (-15 -3025 ((-777 (-522)))))) (T -496)) -((-3025 (*1 *2) (-12 (-5 *2 (-777 (-522))) (-5 *1 (-496)))) (-3012 (*1 *2) (-12 (-5 *2 (-777 (-522))) (-5 *1 (-496)))) (-2990 (*1 *2) (-12 (-5 *2 (-770 (-522))) (-5 *1 (-496))))) -(-10 -7 (-15 -2990 ((-770 (-522)))) (-15 -3012 ((-777 (-522)))) (-15 -3025 ((-777 (-522))))) -((-2639 (((-498) (-1085)) 15)) (-1602 ((|#1| (-498)) 20))) -(((-497 |#1|) (-10 -7 (-15 -2639 ((-498) (-1085))) (-15 -1602 (|#1| (-498)))) (-1120)) (T -497)) -((-1602 (*1 *2 *3) (-12 (-5 *3 (-498)) (-5 *1 (-497 *2)) (-4 *2 (-1120)))) (-2639 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-498)) (-5 *1 (-497 *4)) (-4 *4 (-1120))))) -(-10 -7 (-15 -2639 ((-498) (-1085))) (-15 -1602 (|#1| (-498)))) -((-1419 (((-108) $ $) NIL)) (-1258 (((-1068) $) 46)) (-2415 (((-108) $) 43)) (-1488 (((-1085) $) 44)) (-1355 (((-108) $) 41)) (-1513 (((-1068) $) 42)) (-1430 (((-108) $) NIL)) (-2591 (((-108) $) NIL)) (-3037 (((-108) $) NIL)) (-2311 (((-1068) $) NIL)) (-2840 (($ $ (-588 (-1085))) 20)) (-1602 (((-51) $) 22)) (-3871 (((-108) $) NIL)) (-1516 (((-522) $) NIL)) (-4174 (((-1032) $) NIL)) (-2138 (($ $ (-588 (-1085)) (-1085)) 58)) (-3186 (((-108) $) NIL)) (-3173 (((-202) $) NIL)) (-3982 (($ $) 38)) (-1610 (((-792) $) NIL)) (-3277 (((-108) $ $) NIL)) (-2683 (($ $ (-522)) NIL) (($ $ (-588 (-522))) NIL)) (-2058 (((-588 $) $) 28)) (-1227 (((-1085) (-588 $)) 47)) (-3873 (($ (-588 $)) 51) (($ (-1068)) NIL) (($ (-1085)) 18) (($ (-522)) 8) (($ (-202)) 25) (($ (-792)) NIL) (((-1018) $) 11) (($ (-1018)) 12)) (-1876 (((-1085) (-1085) (-588 $)) 50)) (-2217 (((-792) $) NIL)) (-3281 (($ $) 49)) (-3271 (($ $) 48)) (-2155 (($ $ (-588 $)) 55)) (-1519 (((-108) $) 27)) (-3697 (($) 9 T CONST)) (-3709 (($) 10 T CONST)) (-1562 (((-108) $ $) 59)) (-1682 (($ $ $) 64)) (-1661 (($ $ $) 60)) (** (($ $ (-708)) 63) (($ $ (-522)) 62)) (* (($ $ $) 61)) (-3591 (((-522) $) NIL))) -(((-498) (-13 (-1017 (-1068) (-1085) (-522) (-202) (-792)) (-563 (-1018)) (-10 -8 (-15 -1602 ((-51) $)) (-15 -3873 ($ (-1018))) (-15 -2155 ($ $ (-588 $))) (-15 -2138 ($ $ (-588 (-1085)) (-1085))) (-15 -2840 ($ $ (-588 (-1085)))) (-15 -1661 ($ $ $)) (-15 * ($ $ $)) (-15 -1682 ($ $ $)) (-15 ** ($ $ (-708))) (-15 ** ($ $ (-522))) (-15 0 ($) -2855) (-15 1 ($) -2855) (-15 -3982 ($ $)) (-15 -1258 ((-1068) $)) (-15 -1227 ((-1085) (-588 $))) (-15 -1876 ((-1085) (-1085) (-588 $)))))) (T -498)) -((-1602 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-498)))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-498)))) (-2155 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-498))) (-5 *1 (-498)))) (-2138 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-1085)) (-5 *1 (-498)))) (-2840 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-498)))) (-1661 (*1 *1 *1 *1) (-5 *1 (-498))) (* (*1 *1 *1 *1) (-5 *1 (-498))) (-1682 (*1 *1 *1 *1) (-5 *1 (-498))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-498)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-498)))) (-3697 (*1 *1) (-5 *1 (-498))) (-3709 (*1 *1) (-5 *1 (-498))) (-3982 (*1 *1 *1) (-5 *1 (-498))) (-1258 (*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-498)))) (-1227 (*1 *2 *3) (-12 (-5 *3 (-588 (-498))) (-5 *2 (-1085)) (-5 *1 (-498)))) (-1876 (*1 *2 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-498))) (-5 *1 (-498))))) -(-13 (-1017 (-1068) (-1085) (-522) (-202) (-792)) (-563 (-1018)) (-10 -8 (-15 -1602 ((-51) $)) (-15 -3873 ($ (-1018))) (-15 -2155 ($ $ (-588 $))) (-15 -2138 ($ $ (-588 (-1085)) (-1085))) (-15 -2840 ($ $ (-588 (-1085)))) (-15 -1661 ($ $ $)) (-15 * ($ $ $)) (-15 -1682 ($ $ $)) (-15 ** ($ $ (-708))) (-15 ** ($ $ (-522))) (-15 (-3697) ($) -2855) (-15 (-3709) ($) -2855) (-15 -3982 ($ $)) (-15 -1258 ((-1068) $)) (-15 -1227 ((-1085) (-588 $))) (-15 -1876 ((-1085) (-1085) (-588 $))))) -((-2202 ((|#2| |#2|) 17)) (-1484 ((|#2| |#2|) 13)) (-3586 ((|#2| |#2| (-522) (-522)) 20)) (-2404 ((|#2| |#2|) 15))) -(((-499 |#1| |#2|) (-10 -7 (-15 -1484 (|#2| |#2|)) (-15 -2404 (|#2| |#2|)) (-15 -2202 (|#2| |#2|)) (-15 -3586 (|#2| |#2| (-522) (-522)))) (-13 (-514) (-135)) (-1157 |#1|)) (T -499)) -((-3586 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-522)) (-4 *4 (-13 (-514) (-135))) (-5 *1 (-499 *4 *2)) (-4 *2 (-1157 *4)))) (-2202 (*1 *2 *2) (-12 (-4 *3 (-13 (-514) (-135))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1157 *3)))) (-2404 (*1 *2 *2) (-12 (-4 *3 (-13 (-514) (-135))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1157 *3)))) (-1484 (*1 *2 *2) (-12 (-4 *3 (-13 (-514) (-135))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1157 *3))))) -(-10 -7 (-15 -1484 (|#2| |#2|)) (-15 -2404 (|#2| |#2|)) (-15 -2202 (|#2| |#2|)) (-15 -3586 (|#2| |#2| (-522) (-522)))) -((-2561 (((-588 (-270 (-881 |#2|))) (-588 |#2|) (-588 (-1085))) 32)) (-1848 (((-588 |#2|) (-881 |#1|) |#3|) 53) (((-588 |#2|) (-1081 |#1|) |#3|) 52)) (-4216 (((-588 (-588 |#2|)) (-588 (-881 |#1|)) (-588 (-881 |#1|)) (-588 (-1085)) |#3|) 87))) -(((-500 |#1| |#2| |#3|) (-10 -7 (-15 -1848 ((-588 |#2|) (-1081 |#1|) |#3|)) (-15 -1848 ((-588 |#2|) (-881 |#1|) |#3|)) (-15 -4216 ((-588 (-588 |#2|)) (-588 (-881 |#1|)) (-588 (-881 |#1|)) (-588 (-1085)) |#3|)) (-15 -2561 ((-588 (-270 (-881 |#2|))) (-588 |#2|) (-588 (-1085))))) (-426) (-338) (-13 (-338) (-782))) (T -500)) -((-2561 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *6)) (-5 *4 (-588 (-1085))) (-4 *6 (-338)) (-5 *2 (-588 (-270 (-881 *6)))) (-5 *1 (-500 *5 *6 *7)) (-4 *5 (-426)) (-4 *7 (-13 (-338) (-782))))) (-4216 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-588 (-881 *6))) (-5 *4 (-588 (-1085))) (-4 *6 (-426)) (-5 *2 (-588 (-588 *7))) (-5 *1 (-500 *6 *7 *5)) (-4 *7 (-338)) (-4 *5 (-13 (-338) (-782))))) (-1848 (*1 *2 *3 *4) (-12 (-5 *3 (-881 *5)) (-4 *5 (-426)) (-5 *2 (-588 *6)) (-5 *1 (-500 *5 *6 *4)) (-4 *6 (-338)) (-4 *4 (-13 (-338) (-782))))) (-1848 (*1 *2 *3 *4) (-12 (-5 *3 (-1081 *5)) (-4 *5 (-426)) (-5 *2 (-588 *6)) (-5 *1 (-500 *5 *6 *4)) (-4 *6 (-338)) (-4 *4 (-13 (-338) (-782)))))) -(-10 -7 (-15 -1848 ((-588 |#2|) (-1081 |#1|) |#3|)) (-15 -1848 ((-588 |#2|) (-881 |#1|) |#3|)) (-15 -4216 ((-588 (-588 |#2|)) (-588 (-881 |#1|)) (-588 (-881 |#1|)) (-588 (-1085)) |#3|)) (-15 -2561 ((-588 (-270 (-881 |#2|))) (-588 |#2|) (-588 (-1085))))) -((-3004 ((|#2| |#2| |#1|) 17)) (-2370 ((|#2| (-588 |#2|)) 27)) (-2872 ((|#2| (-588 |#2|)) 46))) -(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2370 (|#2| (-588 |#2|))) (-15 -2872 (|#2| (-588 |#2|))) (-15 -3004 (|#2| |#2| |#1|))) (-283) (-1142 |#1|) |#1| (-1 |#1| |#1| (-708))) (T -501)) -((-3004 (*1 *2 *2 *3) (-12 (-4 *3 (-283)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-708))) (-5 *1 (-501 *3 *2 *4 *5)) (-4 *2 (-1142 *3)))) (-2872 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-501 *4 *2 *5 *6)) (-4 *4 (-283)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-708))))) (-2370 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-501 *4 *2 *5 *6)) (-4 *4 (-283)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-708)))))) -(-10 -7 (-15 -2370 (|#2| (-588 |#2|))) (-15 -2872 (|#2| (-588 |#2|))) (-15 -3004 (|#2| |#2| |#1|))) -((-2006 (((-393 (-1081 |#4|)) (-1081 |#4|) (-1 (-393 (-1081 |#3|)) (-1081 |#3|))) 79) (((-393 |#4|) |#4| (-1 (-393 (-1081 |#3|)) (-1081 |#3|))) 166))) -(((-502 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2006 ((-393 |#4|) |#4| (-1 (-393 (-1081 |#3|)) (-1081 |#3|)))) (-15 -2006 ((-393 (-1081 |#4|)) (-1081 |#4|) (-1 (-393 (-1081 |#3|)) (-1081 |#3|))))) (-784) (-730) (-13 (-283) (-135)) (-878 |#3| |#2| |#1|)) (T -502)) -((-2006 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-393 (-1081 *7)) (-1081 *7))) (-4 *7 (-13 (-283) (-135))) (-4 *5 (-784)) (-4 *6 (-730)) (-4 *8 (-878 *7 *6 *5)) (-5 *2 (-393 (-1081 *8))) (-5 *1 (-502 *5 *6 *7 *8)) (-5 *3 (-1081 *8)))) (-2006 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-393 (-1081 *7)) (-1081 *7))) (-4 *7 (-13 (-283) (-135))) (-4 *5 (-784)) (-4 *6 (-730)) (-5 *2 (-393 *3)) (-5 *1 (-502 *5 *6 *7 *3)) (-4 *3 (-878 *7 *6 *5))))) -(-10 -7 (-15 -2006 ((-393 |#4|) |#4| (-1 (-393 (-1081 |#3|)) (-1081 |#3|)))) (-15 -2006 ((-393 (-1081 |#4|)) (-1081 |#4|) (-1 (-393 (-1081 |#3|)) (-1081 |#3|))))) -((-2202 ((|#4| |#4|) 74)) (-1484 ((|#4| |#4|) 70)) (-3586 ((|#4| |#4| (-522) (-522)) 76)) (-2404 ((|#4| |#4|) 72))) -(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1484 (|#4| |#4|)) (-15 -2404 (|#4| |#4|)) (-15 -2202 (|#4| |#4|)) (-15 -3586 (|#4| |#4| (-522) (-522)))) (-13 (-338) (-343) (-563 (-522))) (-1142 |#1|) (-662 |#1| |#2|) (-1157 |#3|)) (T -503)) -((-3586 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-522)) (-4 *4 (-13 (-338) (-343) (-563 *3))) (-4 *5 (-1142 *4)) (-4 *6 (-662 *4 *5)) (-5 *1 (-503 *4 *5 *6 *2)) (-4 *2 (-1157 *6)))) (-2202 (*1 *2 *2) (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-4 *4 (-1142 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-1157 *5)))) (-2404 (*1 *2 *2) (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-4 *4 (-1142 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-1157 *5)))) (-1484 (*1 *2 *2) (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-4 *4 (-1142 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-1157 *5))))) -(-10 -7 (-15 -1484 (|#4| |#4|)) (-15 -2404 (|#4| |#4|)) (-15 -2202 (|#4| |#4|)) (-15 -3586 (|#4| |#4| (-522) (-522)))) -((-2202 ((|#2| |#2|) 27)) (-1484 ((|#2| |#2|) 23)) (-3586 ((|#2| |#2| (-522) (-522)) 29)) (-2404 ((|#2| |#2|) 25))) -(((-504 |#1| |#2|) (-10 -7 (-15 -1484 (|#2| |#2|)) (-15 -2404 (|#2| |#2|)) (-15 -2202 (|#2| |#2|)) (-15 -3586 (|#2| |#2| (-522) (-522)))) (-13 (-338) (-343) (-563 (-522))) (-1157 |#1|)) (T -504)) -((-3586 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-522)) (-4 *4 (-13 (-338) (-343) (-563 *3))) (-5 *1 (-504 *4 *2)) (-4 *2 (-1157 *4)))) (-2202 (*1 *2 *2) (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-5 *1 (-504 *3 *2)) (-4 *2 (-1157 *3)))) (-2404 (*1 *2 *2) (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-5 *1 (-504 *3 *2)) (-4 *2 (-1157 *3)))) (-1484 (*1 *2 *2) (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-5 *1 (-504 *3 *2)) (-4 *2 (-1157 *3))))) -(-10 -7 (-15 -1484 (|#2| |#2|)) (-15 -2404 (|#2| |#2|)) (-15 -2202 (|#2| |#2|)) (-15 -3586 (|#2| |#2| (-522) (-522)))) -((-3339 (((-3 (-522) "failed") |#2| |#1| (-1 (-3 (-522) "failed") |#1|)) 14) (((-3 (-522) "failed") |#2| |#1| (-522) (-1 (-3 (-522) "failed") |#1|)) 13) (((-3 (-522) "failed") |#2| (-522) (-1 (-3 (-522) "failed") |#1|)) 26))) -(((-505 |#1| |#2|) (-10 -7 (-15 -3339 ((-3 (-522) "failed") |#2| (-522) (-1 (-3 (-522) "failed") |#1|))) (-15 -3339 ((-3 (-522) "failed") |#2| |#1| (-522) (-1 (-3 (-522) "failed") |#1|))) (-15 -3339 ((-3 (-522) "failed") |#2| |#1| (-1 (-3 (-522) "failed") |#1|)))) (-971) (-1142 |#1|)) (T -505)) -((-3339 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-522) "failed") *4)) (-4 *4 (-971)) (-5 *2 (-522)) (-5 *1 (-505 *4 *3)) (-4 *3 (-1142 *4)))) (-3339 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-522) "failed") *4)) (-4 *4 (-971)) (-5 *2 (-522)) (-5 *1 (-505 *4 *3)) (-4 *3 (-1142 *4)))) (-3339 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-522) "failed") *5)) (-4 *5 (-971)) (-5 *2 (-522)) (-5 *1 (-505 *5 *3)) (-4 *3 (-1142 *5))))) -(-10 -7 (-15 -3339 ((-3 (-522) "failed") |#2| (-522) (-1 (-3 (-522) "failed") |#1|))) (-15 -3339 ((-3 (-522) "failed") |#2| |#1| (-522) (-1 (-3 (-522) "failed") |#1|))) (-15 -3339 ((-3 (-522) "failed") |#2| |#1| (-1 (-3 (-522) "failed") |#1|)))) -((-1805 (($ $ $) 79)) (-3133 (((-393 $) $) 47)) (-3700 (((-3 (-522) "failed") $) 59)) (-1478 (((-522) $) 37)) (-2549 (((-3 (-382 (-522)) "failed") $) 74)) (-3519 (((-108) $) 24)) (-1699 (((-382 (-522)) $) 72)) (-2725 (((-108) $) 50)) (-3859 (($ $ $ $) 86)) (-3603 (((-108) $) 16)) (-2634 (($ $ $) 57)) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 69)) (-4208 (((-3 $ "failed") $) 64)) (-4000 (($ $) 23)) (-1988 (($ $ $) 84)) (-3937 (($) 60)) (-1274 (($ $) 53)) (-2006 (((-393 $) $) 45)) (-2626 (((-108) $) 14)) (-4031 (((-708) $) 28)) (-2731 (($ $ (-708)) NIL) (($ $) 10)) (-2463 (($ $) 17)) (-3873 (((-522) $) NIL) (((-498) $) 36) (((-821 (-522)) $) 40) (((-354) $) 31) (((-202) $) 33)) (-2742 (((-708)) 8)) (-1763 (((-108) $ $) 20)) (-1591 (($ $ $) 55))) -(((-506 |#1|) (-10 -8 (-15 -1988 (|#1| |#1| |#1|)) (-15 -3859 (|#1| |#1| |#1| |#1|)) (-15 -4000 (|#1| |#1|)) (-15 -2463 (|#1| |#1|)) (-15 -2549 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1699 ((-382 (-522)) |#1|)) (-15 -3519 ((-108) |#1|)) (-15 -1805 (|#1| |#1| |#1|)) (-15 -1763 ((-108) |#1| |#1|)) (-15 -2626 ((-108) |#1|)) (-15 -3937 (|#1|)) (-15 -4208 ((-3 |#1| "failed") |#1|)) (-15 -3873 ((-202) |#1|)) (-15 -3873 ((-354) |#1|)) (-15 -2634 (|#1| |#1| |#1|)) (-15 -1274 (|#1| |#1|)) (-15 -1591 (|#1| |#1| |#1|)) (-15 -3738 ((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|))) (-15 -3873 ((-821 (-522)) |#1|)) (-15 -3873 ((-498) |#1|)) (-15 -1478 ((-522) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -3873 ((-522) |#1|)) (-15 -2731 (|#1| |#1|)) (-15 -2731 (|#1| |#1| (-708))) (-15 -3603 ((-108) |#1|)) (-15 -4031 ((-708) |#1|)) (-15 -2006 ((-393 |#1|) |#1|)) (-15 -3133 ((-393 |#1|) |#1|)) (-15 -2725 ((-108) |#1|)) (-15 -2742 ((-708)))) (-507)) (T -506)) -((-2742 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-506 *3)) (-4 *3 (-507))))) -(-10 -8 (-15 -1988 (|#1| |#1| |#1|)) (-15 -3859 (|#1| |#1| |#1| |#1|)) (-15 -4000 (|#1| |#1|)) (-15 -2463 (|#1| |#1|)) (-15 -2549 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1699 ((-382 (-522)) |#1|)) (-15 -3519 ((-108) |#1|)) (-15 -1805 (|#1| |#1| |#1|)) (-15 -1763 ((-108) |#1| |#1|)) (-15 -2626 ((-108) |#1|)) (-15 -3937 (|#1|)) (-15 -4208 ((-3 |#1| "failed") |#1|)) (-15 -3873 ((-202) |#1|)) (-15 -3873 ((-354) |#1|)) (-15 -2634 (|#1| |#1| |#1|)) (-15 -1274 (|#1| |#1|)) (-15 -1591 (|#1| |#1| |#1|)) (-15 -3738 ((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|))) (-15 -3873 ((-821 (-522)) |#1|)) (-15 -3873 ((-498) |#1|)) (-15 -1478 ((-522) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -3873 ((-522) |#1|)) (-15 -2731 (|#1| |#1|)) (-15 -2731 (|#1| |#1| (-708))) (-15 -3603 ((-108) |#1|)) (-15 -4031 ((-708) |#1|)) (-15 -2006 ((-393 |#1|) |#1|)) (-15 -3133 ((-393 |#1|) |#1|)) (-15 -2725 ((-108) |#1|)) (-15 -2742 ((-708)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2298 (($ $) 40)) (-3007 (((-108) $) 38)) (-1805 (($ $ $) 85)) (-2265 (((-3 $ "failed") $ $) 19)) (-3372 (($ $ $ $) 73)) (-2961 (($ $) 51)) (-3133 (((-393 $) $) 52)) (-2805 (((-108) $ $) 125)) (-3355 (((-522) $) 114)) (-1736 (($ $ $) 88)) (-3367 (($) 17 T CONST)) (-3700 (((-3 (-522) "failed") $) 106)) (-1478 (((-522) $) 105)) (-2333 (($ $ $) 129)) (-1226 (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 104) (((-628 (-522)) (-628 $)) 103)) (-3920 (((-3 $ "failed") $) 34)) (-2549 (((-3 (-382 (-522)) "failed") $) 82)) (-3519 (((-108) $) 84)) (-1699 (((-382 (-522)) $) 83)) (-3344 (($) 81) (($ $) 80)) (-2303 (($ $ $) 128)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 123)) (-2725 (((-108) $) 53)) (-3859 (($ $ $ $) 71)) (-1968 (($ $ $) 86)) (-3603 (((-108) $) 116)) (-2634 (($ $ $) 97)) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 100)) (-2859 (((-108) $) 31)) (-3077 (((-108) $) 92)) (-4208 (((-3 $ "failed") $) 94)) (-3740 (((-108) $) 115)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 132)) (-2037 (($ $ $ $) 72)) (-1308 (($ $ $) 117)) (-2524 (($ $ $) 118)) (-4000 (($ $) 75)) (-4030 (($ $) 89)) (-2267 (($ $ $) 46) (($ (-588 $)) 45)) (-2311 (((-1068) $) 9)) (-1988 (($ $ $) 70)) (-3937 (($) 93 T CONST)) (-3092 (($ $) 77)) (-4174 (((-1032) $) 10) (($ $) 79)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2308 (($ $ $) 48) (($ (-588 $)) 47)) (-1274 (($ $) 98)) (-2006 (((-393 $) $) 50)) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 130)) (-2276 (((-3 $ "failed") $ $) 42)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 124)) (-2626 (((-108) $) 91)) (-4031 (((-708) $) 126)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 127)) (-2731 (($ $ (-708)) 111) (($ $) 109)) (-3518 (($ $) 76)) (-2463 (($ $) 78)) (-3873 (((-522) $) 108) (((-498) $) 102) (((-821 (-522)) $) 101) (((-354) $) 96) (((-202) $) 95)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-522)) 107)) (-2742 (((-708)) 29)) (-1763 (((-108) $ $) 87)) (-1591 (($ $ $) 99)) (-1897 (($) 90)) (-1407 (((-108) $ $) 39)) (-3673 (($ $ $ $) 74)) (-4126 (($ $) 113)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $ (-708)) 112) (($ $) 110)) (-1623 (((-108) $ $) 120)) (-1597 (((-108) $ $) 121)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 119)) (-1587 (((-108) $ $) 122)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-507) (-1197)) (T -507)) -((-3077 (*1 *2 *1) (-12 (-4 *1 (-507)) (-5 *2 (-108)))) (-2626 (*1 *2 *1) (-12 (-4 *1 (-507)) (-5 *2 (-108)))) (-1897 (*1 *1) (-4 *1 (-507))) (-4030 (*1 *1 *1) (-4 *1 (-507))) (-1736 (*1 *1 *1 *1) (-4 *1 (-507))) (-1763 (*1 *2 *1 *1) (-12 (-4 *1 (-507)) (-5 *2 (-108)))) (-1968 (*1 *1 *1 *1) (-4 *1 (-507))) (-1805 (*1 *1 *1 *1) (-4 *1 (-507))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-507)) (-5 *2 (-108)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-507)) (-5 *2 (-382 (-522))))) (-2549 (*1 *2 *1) (|partial| -12 (-4 *1 (-507)) (-5 *2 (-382 (-522))))) (-3344 (*1 *1) (-4 *1 (-507))) (-3344 (*1 *1 *1) (-4 *1 (-507))) (-4174 (*1 *1 *1) (-4 *1 (-507))) (-2463 (*1 *1 *1) (-4 *1 (-507))) (-3092 (*1 *1 *1) (-4 *1 (-507))) (-3518 (*1 *1 *1) (-4 *1 (-507))) (-4000 (*1 *1 *1) (-4 *1 (-507))) (-3673 (*1 *1 *1 *1 *1) (-4 *1 (-507))) (-3372 (*1 *1 *1 *1 *1) (-4 *1 (-507))) (-2037 (*1 *1 *1 *1 *1) (-4 *1 (-507))) (-3859 (*1 *1 *1 *1 *1) (-4 *1 (-507))) (-1988 (*1 *1 *1 *1) (-4 *1 (-507)))) -(-13 (-1124) (-283) (-757) (-210) (-563 (-522)) (-962 (-522)) (-584 (-522)) (-563 (-498)) (-563 (-821 (-522))) (-815 (-522)) (-131) (-947) (-135) (-1061) (-10 -8 (-15 -3077 ((-108) $)) (-15 -2626 ((-108) $)) (-6 -4237) (-15 -1897 ($)) (-15 -4030 ($ $)) (-15 -1736 ($ $ $)) (-15 -1763 ((-108) $ $)) (-15 -1968 ($ $ $)) (-15 -1805 ($ $ $)) (-15 -3519 ((-108) $)) (-15 -1699 ((-382 (-522)) $)) (-15 -2549 ((-3 (-382 (-522)) "failed") $)) (-15 -3344 ($)) (-15 -3344 ($ $)) (-15 -4174 ($ $)) (-15 -2463 ($ $)) (-15 -3092 ($ $)) (-15 -3518 ($ $)) (-15 -4000 ($ $)) (-15 -3673 ($ $ $ $)) (-15 -3372 ($ $ $ $)) (-15 -2037 ($ $ $ $)) (-15 -3859 ($ $ $ $)) (-15 -1988 ($ $ $)) (-6 -4236))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-562 (-792)) . T) ((-131) . T) ((-157) . T) ((-563 (-202)) . T) ((-563 (-354)) . T) ((-563 (-498)) . T) ((-563 (-522)) . T) ((-563 (-821 (-522))) . T) ((-210) . T) ((-266) . T) ((-283) . T) ((-426) . T) ((-514) . T) ((-590 $) . T) ((-584 (-522)) . T) ((-655 $) . T) ((-664) . T) ((-728) . T) ((-729) . T) ((-731) . T) ((-732) . T) ((-757) . T) ((-782) . T) ((-784) . T) ((-815 (-522)) . T) ((-849) . T) ((-947) . T) ((-962 (-522)) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1061) . T) ((-1124) . T)) -((-1419 (((-108) $ $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-1883 (($) NIL) (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-3883 (((-1171) $ |#1| |#1|) NIL (|has| $ (-6 -4239)))) (-2717 (((-108) $ (-708)) NIL)) (-2437 ((|#2| $ |#1| |#2|) NIL)) (-1213 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-4011 (((-3 |#2| "failed") |#1| $) NIL)) (-3367 (($) NIL T CONST)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))))) (-1700 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-3 |#2| "failed") |#1| $) NIL)) (-1424 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2153 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2411 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#2| $ |#1|) NIL)) (-2395 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) NIL)) (-3496 ((|#1| $) NIL (|has| |#1| (-784)))) (-4084 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2201 ((|#1| $) NIL (|has| |#1| (-784)))) (-2397 (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4239))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2562 (((-588 |#1|) $) NIL)) (-2241 (((-108) |#1| $) NIL)) (-1431 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-3365 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-2130 (((-588 |#1|) $) NIL)) (-2103 (((-108) |#1| $) NIL)) (-4174 (((-1032) $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2337 ((|#2| $) NIL (|has| |#1| (-784)))) (-2187 (((-3 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) "failed") (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL)) (-1972 (($ $ |#2|) NIL (|has| $ (-6 -4239)))) (-3295 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-3487 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1973 (((-588 |#2|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3546 (($) NIL) (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-4187 (((-708) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014)))) (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-563 (-498))))) (-2227 (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-2217 (((-792) $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-562 (-792))) (|has| |#2| (-562 (-792)))))) (-2501 (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-1381 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-508 |#1| |#2| |#3|) (-13 (-1097 |#1| |#2|) (-10 -7 (-6 -4238))) (-1014) (-1014) (-13 (-1097 |#1| |#2|) (-10 -7 (-6 -4238)))) (T -508)) -NIL -(-13 (-1097 |#1| |#2|) (-10 -7 (-6 -4238))) -((-3081 (((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|) (-1 (-1081 |#2|) (-1081 |#2|))) 49))) -(((-509 |#1| |#2|) (-10 -7 (-15 -3081 ((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|) (-1 (-1081 |#2|) (-1081 |#2|))))) (-13 (-784) (-514)) (-13 (-27) (-405 |#1|))) (T -509)) -((-3081 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-561 *3)) (-5 *5 (-1 (-1081 *3) (-1081 *3))) (-4 *3 (-13 (-27) (-405 *6))) (-4 *6 (-13 (-784) (-514))) (-5 *2 (-539 *3)) (-5 *1 (-509 *6 *3))))) -(-10 -7 (-15 -3081 ((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|) (-1 (-1081 |#2|) (-1081 |#2|))))) -((-1729 (((-539 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-3593 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-1375 (((-539 |#5|) |#5| (-1 |#3| |#3|)) 198))) -(((-510 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1375 ((-539 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1729 ((-539 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3593 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-784) (-514) (-962 (-522))) (-13 (-27) (-405 |#1|)) (-1142 |#2|) (-1142 (-382 |#3|)) (-317 |#2| |#3| |#4|)) (T -510)) -((-3593 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-13 (-27) (-405 *4))) (-4 *4 (-13 (-784) (-514) (-962 (-522)))) (-4 *7 (-1142 (-382 *6))) (-5 *1 (-510 *4 *5 *6 *7 *2)) (-4 *2 (-317 *5 *6 *7)))) (-1729 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1142 *6)) (-4 *6 (-13 (-27) (-405 *5))) (-4 *5 (-13 (-784) (-514) (-962 (-522)))) (-4 *8 (-1142 (-382 *7))) (-5 *2 (-539 *3)) (-5 *1 (-510 *5 *6 *7 *8 *3)) (-4 *3 (-317 *6 *7 *8)))) (-1375 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1142 *6)) (-4 *6 (-13 (-27) (-405 *5))) (-4 *5 (-13 (-784) (-514) (-962 (-522)))) (-4 *8 (-1142 (-382 *7))) (-5 *2 (-539 *3)) (-5 *1 (-510 *5 *6 *7 *8 *3)) (-4 *3 (-317 *6 *7 *8))))) -(-10 -7 (-15 -1375 ((-539 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1729 ((-539 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3593 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-3875 (((-108) (-522) (-522)) 10)) (-1569 (((-522) (-522)) 7)) (-3958 (((-522) (-522) (-522)) 8))) -(((-511) (-10 -7 (-15 -1569 ((-522) (-522))) (-15 -3958 ((-522) (-522) (-522))) (-15 -3875 ((-108) (-522) (-522))))) (T -511)) -((-3875 (*1 *2 *3 *3) (-12 (-5 *3 (-522)) (-5 *2 (-108)) (-5 *1 (-511)))) (-3958 (*1 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-511)))) (-1569 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-511))))) -(-10 -7 (-15 -1569 ((-522) (-522))) (-15 -3958 ((-522) (-522) (-522))) (-15 -3875 ((-108) (-522) (-522)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2815 ((|#1| $) 61)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2298 (($ $) 40)) (-3007 (((-108) $) 38)) (-3044 (($ $) 91)) (-2923 (($ $) 74)) (-1827 ((|#1| $) 62)) (-2265 (((-3 $ "failed") $ $) 19)) (-2016 (($ $) 73)) (-3023 (($ $) 90)) (-2906 (($ $) 75)) (-3066 (($ $) 89)) (-2936 (($ $) 76)) (-3367 (($) 17 T CONST)) (-3700 (((-3 (-522) "failed") $) 69)) (-1478 (((-522) $) 68)) (-3920 (((-3 $ "failed") $) 34)) (-3122 (($ |#1| |#1|) 66)) (-3603 (((-108) $) 60)) (-2980 (($) 101)) (-2859 (((-108) $) 31)) (-1811 (($ $ (-522)) 72)) (-3740 (((-108) $) 59)) (-1308 (($ $ $) 107)) (-2524 (($ $ $) 106)) (-1238 (($ $) 98)) (-2267 (($ $ $) 46) (($ (-588 $)) 45)) (-2311 (((-1068) $) 9)) (-1869 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-382 (-522))) 64)) (-3099 ((|#1| $) 63)) (-4174 (((-1032) $) 10)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2308 (($ $ $) 48) (($ (-588 $)) 47)) (-2276 (((-3 $ "failed") $ $) 42)) (-3357 (($ $) 99)) (-1831 (($ $) 88)) (-2946 (($ $) 77)) (-3054 (($ $) 87)) (-2928 (($ $) 78)) (-3035 (($ $) 86)) (-2915 (($ $) 79)) (-1311 (((-108) $ |#1|) 58)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-522)) 70)) (-2742 (((-708)) 29)) (-1856 (($ $) 97)) (-2976 (($ $) 85)) (-1407 (((-108) $ $) 39)) (-1839 (($ $) 96)) (-2957 (($ $) 84)) (-1873 (($ $) 95)) (-3001 (($ $) 83)) (-2476 (($ $) 94)) (-3011 (($ $) 82)) (-1864 (($ $) 93)) (-2989 (($ $) 81)) (-1849 (($ $) 92)) (-2966 (($ $) 80)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1623 (((-108) $ $) 104)) (-1597 (((-108) $ $) 103)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 105)) (-1587 (((-108) $ $) 102)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ $) 100) (($ $ (-382 (-522))) 71)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-512 |#1|) (-1197) (-13 (-379) (-1106))) (T -512)) -((-1869 (*1 *1 *2 *2) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106))))) (-3122 (*1 *1 *2 *2) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106))))) (-1869 (*1 *1 *2) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106))))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-4 *1 (-512 *3)) (-4 *3 (-13 (-379) (-1106))))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106))))) (-1827 (*1 *2 *1) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106))))) (-2815 (*1 *2 *1) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106))))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-512 *3)) (-4 *3 (-13 (-379) (-1106))) (-5 *2 (-108)))) (-3740 (*1 *2 *1) (-12 (-4 *1 (-512 *3)) (-4 *3 (-13 (-379) (-1106))) (-5 *2 (-108)))) (-1311 (*1 *2 *1 *3) (-12 (-4 *1 (-512 *3)) (-4 *3 (-13 (-379) (-1106))) (-5 *2 (-108))))) -(-13 (-426) (-784) (-1106) (-928) (-962 (-522)) (-10 -8 (-6 -3996) (-15 -1869 ($ |t#1| |t#1|)) (-15 -3122 ($ |t#1| |t#1|)) (-15 -1869 ($ |t#1|)) (-15 -1869 ($ (-382 (-522)))) (-15 -3099 (|t#1| $)) (-15 -1827 (|t#1| $)) (-15 -2815 (|t#1| $)) (-15 -3603 ((-108) $)) (-15 -3740 ((-108) $)) (-15 -1311 ((-108) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-260) . T) ((-266) . T) ((-426) . T) ((-463) . T) ((-514) . T) ((-590 $) . T) ((-655 $) . T) ((-664) . T) ((-784) . T) ((-928) . T) ((-962 (-522)) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1106) . T) ((-1109) . T)) -((-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 9)) (-2298 (($ $) 11)) (-3007 (((-108) $) 18)) (-3920 (((-3 $ "failed") $) 16)) (-1407 (((-108) $ $) 20))) -(((-513 |#1|) (-10 -8 (-15 -3007 ((-108) |#1|)) (-15 -1407 ((-108) |#1| |#1|)) (-15 -2298 (|#1| |#1|)) (-15 -3401 ((-2 (|:| -2541 |#1|) (|:| -4225 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3920 ((-3 |#1| "failed") |#1|))) (-514)) (T -513)) -NIL -(-10 -8 (-15 -3007 ((-108) |#1|)) (-15 -1407 ((-108) |#1| |#1|)) (-15 -2298 (|#1| |#1|)) (-15 -3401 ((-2 (|:| -2541 |#1|) (|:| -4225 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3920 ((-3 |#1| "failed") |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2298 (($ $) 40)) (-3007 (((-108) $) 38)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3920 (((-3 $ "failed") $) 34)) (-2859 (((-108) $) 31)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2276 (((-3 $ "failed") $ $) 42)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 43)) (-2742 (((-708)) 29)) (-1407 (((-108) $ $) 39)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-514) (-1197)) (T -514)) -((-2276 (*1 *1 *1 *1) (|partial| -4 *1 (-514))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2541 *1) (|:| -4225 *1) (|:| |associate| *1))) (-4 *1 (-514)))) (-2298 (*1 *1 *1) (-4 *1 (-514))) (-1407 (*1 *2 *1 *1) (-12 (-4 *1 (-514)) (-5 *2 (-108)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-514)) (-5 *2 (-108))))) -(-13 (-157) (-37 $) (-266) (-10 -8 (-15 -2276 ((-3 $ "failed") $ $)) (-15 -3401 ((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $)) (-15 -2298 ($ $)) (-15 -1407 ((-108) $ $)) (-15 -3007 ((-108) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-266) . T) ((-590 $) . T) ((-655 $) . T) ((-664) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-2120 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1085) (-588 |#2|)) 35)) (-3817 (((-539 |#2|) |#2| (-1085)) 58)) (-3312 (((-3 |#2| "failed") |#2| (-1085)) 149)) (-3912 (((-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1085) (-561 |#2|) (-588 (-561 |#2|))) 152)) (-2192 (((-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1085) |#2|) 38))) -(((-515 |#1| |#2|) (-10 -7 (-15 -2192 ((-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1085) |#2|)) (-15 -2120 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1085) (-588 |#2|))) (-15 -3312 ((-3 |#2| "failed") |#2| (-1085))) (-15 -3817 ((-539 |#2|) |#2| (-1085))) (-15 -3912 ((-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1085) (-561 |#2|) (-588 (-561 |#2|))))) (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522))) (-13 (-27) (-1106) (-405 |#1|))) (T -515)) -((-3912 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1085)) (-5 *6 (-588 (-561 *3))) (-5 *5 (-561 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *7))) (-4 *7 (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-2 (|:| -2585 *3) (|:| |coeff| *3))) (-5 *1 (-515 *7 *3)))) (-3817 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-539 *3)) (-5 *1 (-515 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))))) (-3312 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1085)) (-4 *4 (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *1 (-515 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4))))) (-2120 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-588 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-515 *6 *3)))) (-2192 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1085)) (-4 *5 (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-2 (|:| -2585 *3) (|:| |coeff| *3))) (-5 *1 (-515 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5)))))) -(-10 -7 (-15 -2192 ((-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1085) |#2|)) (-15 -2120 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1085) (-588 |#2|))) (-15 -3312 ((-3 |#2| "failed") |#2| (-1085))) (-15 -3817 ((-539 |#2|) |#2| (-1085))) (-15 -3912 ((-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1085) (-561 |#2|) (-588 (-561 |#2|))))) -((-3133 (((-393 |#1|) |#1|) 18)) (-2006 (((-393 |#1|) |#1|) 33)) (-2913 (((-3 |#1| "failed") |#1|) 44)) (-3863 (((-393 |#1|) |#1|) 51))) -(((-516 |#1|) (-10 -7 (-15 -2006 ((-393 |#1|) |#1|)) (-15 -3133 ((-393 |#1|) |#1|)) (-15 -3863 ((-393 |#1|) |#1|)) (-15 -2913 ((-3 |#1| "failed") |#1|))) (-507)) (T -516)) -((-2913 (*1 *2 *2) (|partial| -12 (-5 *1 (-516 *2)) (-4 *2 (-507)))) (-3863 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-516 *3)) (-4 *3 (-507)))) (-3133 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-516 *3)) (-4 *3 (-507)))) (-2006 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-516 *3)) (-4 *3 (-507))))) -(-10 -7 (-15 -2006 ((-393 |#1|) |#1|)) (-15 -3133 ((-393 |#1|) |#1|)) (-15 -3863 ((-393 |#1|) |#1|)) (-15 -2913 ((-3 |#1| "failed") |#1|))) -((-2355 (($) 9)) (-1299 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 29)) (-2562 (((-588 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $) 26)) (-3365 (($ (-2 (|:| -2644 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3149 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-3101 (($ (-588 (-2 (|:| -2644 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3149 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-3149 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 33)) (-1973 (((-588 (-2 (|:| -2644 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3149 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-1447 (((-1171)) 12))) -(((-517) (-10 -8 (-15 -2355 ($)) (-15 -1447 ((-1171))) (-15 -2562 ((-588 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $)) (-15 -3101 ($ (-588 (-2 (|:| -2644 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3149 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3365 ($ (-2 (|:| -2644 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3149 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1299 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1973 ((-588 (-2 (|:| -2644 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3149 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3149 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (T -517)) -((-3149 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-517)))) (-1973 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| -2644 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3149 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-517)))) (-1299 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-517)))) (-3365 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2644 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3149 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-517)))) (-3101 (*1 *1 *2) (-12 (-5 *2 (-588 (-2 (|:| -2644 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3149 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-517)))) (-2562 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-5 *1 (-517)))) (-1447 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-517)))) (-2355 (*1 *1) (-5 *1 (-517)))) -(-10 -8 (-15 -2355 ($)) (-15 -1447 ((-1171))) (-15 -2562 ((-588 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $)) (-15 -3101 ($ (-588 (-2 (|:| -2644 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3149 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3365 ($ (-2 (|:| -2644 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3149 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1299 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1973 ((-588 (-2 (|:| -2644 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3149 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3149 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2321 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) -((-1264 (((-1081 (-382 (-1081 |#2|))) |#2| (-561 |#2|) (-561 |#2|) (-1081 |#2|)) 28)) (-2765 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-561 |#2|) (-561 |#2|) (-588 |#2|) (-561 |#2|) |#2| (-382 (-1081 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-561 |#2|) (-561 |#2|) (-588 |#2|) |#2| (-1081 |#2|)) 106)) (-3785 (((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|) (-561 |#2|) |#2| (-382 (-1081 |#2|))) 78) (((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|) |#2| (-1081 |#2|)) 50)) (-3308 (((-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-561 |#2|) (-561 |#2|) |#2| (-561 |#2|) |#2| (-382 (-1081 |#2|))) 85) (((-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-561 |#2|) (-561 |#2|) |#2| |#2| (-1081 |#2|)) 105)) (-1794 (((-3 |#2| "failed") |#2| |#2| (-561 |#2|) (-561 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1085)) (-561 |#2|) |#2| (-382 (-1081 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-561 |#2|) (-561 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1085)) |#2| (-1081 |#2|)) 107)) (-2374 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2905 (-588 |#2|))) |#3| |#2| (-561 |#2|) (-561 |#2|) (-561 |#2|) |#2| (-382 (-1081 |#2|))) 124 (|has| |#3| (-598 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2905 (-588 |#2|))) |#3| |#2| (-561 |#2|) (-561 |#2|) |#2| (-1081 |#2|)) 123 (|has| |#3| (-598 |#2|)))) (-3520 ((|#2| (-1081 (-382 (-1081 |#2|))) (-561 |#2|) |#2|) 48)) (-2142 (((-1081 (-382 (-1081 |#2|))) (-1081 |#2|) (-561 |#2|)) 27))) -(((-518 |#1| |#2| |#3|) (-10 -7 (-15 -3785 ((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|) |#2| (-1081 |#2|))) (-15 -3785 ((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|) (-561 |#2|) |#2| (-382 (-1081 |#2|)))) (-15 -3308 ((-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-561 |#2|) (-561 |#2|) |#2| |#2| (-1081 |#2|))) (-15 -3308 ((-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-561 |#2|) (-561 |#2|) |#2| (-561 |#2|) |#2| (-382 (-1081 |#2|)))) (-15 -2765 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-561 |#2|) (-561 |#2|) (-588 |#2|) |#2| (-1081 |#2|))) (-15 -2765 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-561 |#2|) (-561 |#2|) (-588 |#2|) (-561 |#2|) |#2| (-382 (-1081 |#2|)))) (-15 -1794 ((-3 |#2| "failed") |#2| |#2| (-561 |#2|) (-561 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1085)) |#2| (-1081 |#2|))) (-15 -1794 ((-3 |#2| "failed") |#2| |#2| (-561 |#2|) (-561 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1085)) (-561 |#2|) |#2| (-382 (-1081 |#2|)))) (-15 -1264 ((-1081 (-382 (-1081 |#2|))) |#2| (-561 |#2|) (-561 |#2|) (-1081 |#2|))) (-15 -3520 (|#2| (-1081 (-382 (-1081 |#2|))) (-561 |#2|) |#2|)) (-15 -2142 ((-1081 (-382 (-1081 |#2|))) (-1081 |#2|) (-561 |#2|))) (IF (|has| |#3| (-598 |#2|)) (PROGN (-15 -2374 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2905 (-588 |#2|))) |#3| |#2| (-561 |#2|) (-561 |#2|) |#2| (-1081 |#2|))) (-15 -2374 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2905 (-588 |#2|))) |#3| |#2| (-561 |#2|) (-561 |#2|) (-561 |#2|) |#2| (-382 (-1081 |#2|))))) |%noBranch|)) (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))) (-13 (-405 |#1|) (-27) (-1106)) (-1014)) (T -518)) -((-2374 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-561 *4)) (-5 *6 (-382 (-1081 *4))) (-4 *4 (-13 (-405 *7) (-27) (-1106))) (-4 *7 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2905 (-588 *4)))) (-5 *1 (-518 *7 *4 *3)) (-4 *3 (-598 *4)) (-4 *3 (-1014)))) (-2374 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-561 *4)) (-5 *6 (-1081 *4)) (-4 *4 (-13 (-405 *7) (-27) (-1106))) (-4 *7 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2905 (-588 *4)))) (-5 *1 (-518 *7 *4 *3)) (-4 *3 (-598 *4)) (-4 *3 (-1014)))) (-2142 (*1 *2 *3 *4) (-12 (-5 *4 (-561 *6)) (-4 *6 (-13 (-405 *5) (-27) (-1106))) (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-1081 (-382 (-1081 *6)))) (-5 *1 (-518 *5 *6 *7)) (-5 *3 (-1081 *6)) (-4 *7 (-1014)))) (-3520 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1081 (-382 (-1081 *2)))) (-5 *4 (-561 *2)) (-4 *2 (-13 (-405 *5) (-27) (-1106))) (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *1 (-518 *5 *2 *6)) (-4 *6 (-1014)))) (-1264 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-561 *3)) (-4 *3 (-13 (-405 *6) (-27) (-1106))) (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-1081 (-382 (-1081 *3)))) (-5 *1 (-518 *6 *3 *7)) (-5 *5 (-1081 *3)) (-4 *7 (-1014)))) (-1794 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-561 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1085))) (-5 *5 (-382 (-1081 *2))) (-4 *2 (-13 (-405 *6) (-27) (-1106))) (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *1 (-518 *6 *2 *7)) (-4 *7 (-1014)))) (-1794 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-561 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1085))) (-5 *5 (-1081 *2)) (-4 *2 (-13 (-405 *6) (-27) (-1106))) (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *1 (-518 *6 *2 *7)) (-4 *7 (-1014)))) (-2765 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-561 *3)) (-5 *5 (-588 *3)) (-5 *6 (-382 (-1081 *3))) (-4 *3 (-13 (-405 *7) (-27) (-1106))) (-4 *7 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-518 *7 *3 *8)) (-4 *8 (-1014)))) (-2765 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-561 *3)) (-5 *5 (-588 *3)) (-5 *6 (-1081 *3)) (-4 *3 (-13 (-405 *7) (-27) (-1106))) (-4 *7 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-518 *7 *3 *8)) (-4 *8 (-1014)))) (-3308 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-561 *3)) (-5 *5 (-382 (-1081 *3))) (-4 *3 (-13 (-405 *6) (-27) (-1106))) (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-2 (|:| -2585 *3) (|:| |coeff| *3))) (-5 *1 (-518 *6 *3 *7)) (-4 *7 (-1014)))) (-3308 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-561 *3)) (-5 *5 (-1081 *3)) (-4 *3 (-13 (-405 *6) (-27) (-1106))) (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-2 (|:| -2585 *3) (|:| |coeff| *3))) (-5 *1 (-518 *6 *3 *7)) (-4 *7 (-1014)))) (-3785 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-561 *3)) (-5 *5 (-382 (-1081 *3))) (-4 *3 (-13 (-405 *6) (-27) (-1106))) (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-539 *3)) (-5 *1 (-518 *6 *3 *7)) (-4 *7 (-1014)))) (-3785 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-561 *3)) (-5 *5 (-1081 *3)) (-4 *3 (-13 (-405 *6) (-27) (-1106))) (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-539 *3)) (-5 *1 (-518 *6 *3 *7)) (-4 *7 (-1014))))) -(-10 -7 (-15 -3785 ((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|) |#2| (-1081 |#2|))) (-15 -3785 ((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|) (-561 |#2|) |#2| (-382 (-1081 |#2|)))) (-15 -3308 ((-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-561 |#2|) (-561 |#2|) |#2| |#2| (-1081 |#2|))) (-15 -3308 ((-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-561 |#2|) (-561 |#2|) |#2| (-561 |#2|) |#2| (-382 (-1081 |#2|)))) (-15 -2765 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-561 |#2|) (-561 |#2|) (-588 |#2|) |#2| (-1081 |#2|))) (-15 -2765 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-561 |#2|) (-561 |#2|) (-588 |#2|) (-561 |#2|) |#2| (-382 (-1081 |#2|)))) (-15 -1794 ((-3 |#2| "failed") |#2| |#2| (-561 |#2|) (-561 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1085)) |#2| (-1081 |#2|))) (-15 -1794 ((-3 |#2| "failed") |#2| |#2| (-561 |#2|) (-561 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1085)) (-561 |#2|) |#2| (-382 (-1081 |#2|)))) (-15 -1264 ((-1081 (-382 (-1081 |#2|))) |#2| (-561 |#2|) (-561 |#2|) (-1081 |#2|))) (-15 -3520 (|#2| (-1081 (-382 (-1081 |#2|))) (-561 |#2|) |#2|)) (-15 -2142 ((-1081 (-382 (-1081 |#2|))) (-1081 |#2|) (-561 |#2|))) (IF (|has| |#3| (-598 |#2|)) (PROGN (-15 -2374 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2905 (-588 |#2|))) |#3| |#2| (-561 |#2|) (-561 |#2|) |#2| (-1081 |#2|))) (-15 -2374 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2905 (-588 |#2|))) |#3| |#2| (-561 |#2|) (-561 |#2|) (-561 |#2|) |#2| (-382 (-1081 |#2|))))) |%noBranch|)) -((-2001 (((-522) (-522) (-708)) 66)) (-2841 (((-522) (-522)) 65)) (-3205 (((-522) (-522)) 64)) (-3334 (((-522) (-522)) 69)) (-2963 (((-522) (-522) (-522)) 49)) (-2240 (((-522) (-522) (-522)) 46)) (-2031 (((-382 (-522)) (-522)) 20)) (-1644 (((-522) (-522)) 21)) (-3014 (((-522) (-522)) 58)) (-3322 (((-522) (-522)) 32)) (-2027 (((-588 (-522)) (-522)) 63)) (-2546 (((-522) (-522) (-522) (-522) (-522)) 44)) (-3469 (((-382 (-522)) (-522)) 41))) -(((-519) (-10 -7 (-15 -3469 ((-382 (-522)) (-522))) (-15 -2546 ((-522) (-522) (-522) (-522) (-522))) (-15 -2027 ((-588 (-522)) (-522))) (-15 -3322 ((-522) (-522))) (-15 -3014 ((-522) (-522))) (-15 -1644 ((-522) (-522))) (-15 -2031 ((-382 (-522)) (-522))) (-15 -2240 ((-522) (-522) (-522))) (-15 -2963 ((-522) (-522) (-522))) (-15 -3334 ((-522) (-522))) (-15 -3205 ((-522) (-522))) (-15 -2841 ((-522) (-522))) (-15 -2001 ((-522) (-522) (-708))))) (T -519)) -((-2001 (*1 *2 *2 *3) (-12 (-5 *2 (-522)) (-5 *3 (-708)) (-5 *1 (-519)))) (-2841 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))) (-3205 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))) (-3334 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))) (-2963 (*1 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))) (-2240 (*1 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))) (-2031 (*1 *2 *3) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-519)) (-5 *3 (-522)))) (-1644 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))) (-3014 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))) (-3322 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))) (-2027 (*1 *2 *3) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-519)) (-5 *3 (-522)))) (-2546 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))) (-3469 (*1 *2 *3) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-519)) (-5 *3 (-522))))) -(-10 -7 (-15 -3469 ((-382 (-522)) (-522))) (-15 -2546 ((-522) (-522) (-522) (-522) (-522))) (-15 -2027 ((-588 (-522)) (-522))) (-15 -3322 ((-522) (-522))) (-15 -3014 ((-522) (-522))) (-15 -1644 ((-522) (-522))) (-15 -2031 ((-382 (-522)) (-522))) (-15 -2240 ((-522) (-522) (-522))) (-15 -2963 ((-522) (-522) (-522))) (-15 -3334 ((-522) (-522))) (-15 -3205 ((-522) (-522))) (-15 -2841 ((-522) (-522))) (-15 -2001 ((-522) (-522) (-708)))) -((-3566 (((-2 (|:| |answer| |#4|) (|:| -3002 |#4|)) |#4| (-1 |#2| |#2|)) 52))) -(((-520 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3566 ((-2 (|:| |answer| |#4|) (|:| -3002 |#4|)) |#4| (-1 |#2| |#2|)))) (-338) (-1142 |#1|) (-1142 (-382 |#2|)) (-317 |#1| |#2| |#3|)) (T -520)) -((-3566 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338)) (-4 *7 (-1142 (-382 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3002 *3))) (-5 *1 (-520 *5 *6 *7 *3)) (-4 *3 (-317 *5 *6 *7))))) -(-10 -7 (-15 -3566 ((-2 (|:| |answer| |#4|) (|:| -3002 |#4|)) |#4| (-1 |#2| |#2|)))) -((-3566 (((-2 (|:| |answer| (-382 |#2|)) (|:| -3002 (-382 |#2|)) (|:| |specpart| (-382 |#2|)) (|:| |polypart| |#2|)) (-382 |#2|) (-1 |#2| |#2|)) 18))) -(((-521 |#1| |#2|) (-10 -7 (-15 -3566 ((-2 (|:| |answer| (-382 |#2|)) (|:| -3002 (-382 |#2|)) (|:| |specpart| (-382 |#2|)) (|:| |polypart| |#2|)) (-382 |#2|) (-1 |#2| |#2|)))) (-338) (-1142 |#1|)) (T -521)) -((-3566 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338)) (-5 *2 (-2 (|:| |answer| (-382 *6)) (|:| -3002 (-382 *6)) (|:| |specpart| (-382 *6)) (|:| |polypart| *6))) (-5 *1 (-521 *5 *6)) (-5 *3 (-382 *6))))) -(-10 -7 (-15 -3566 ((-2 (|:| |answer| (-382 |#2|)) (|:| -3002 (-382 |#2|)) (|:| |specpart| (-382 |#2|)) (|:| |polypart| |#2|)) (-382 |#2|) (-1 |#2| |#2|)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 25)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 86)) (-2298 (($ $) 87)) (-3007 (((-108) $) NIL)) (-1805 (($ $ $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3372 (($ $ $ $) 42)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2805 (((-108) $ $) NIL)) (-3355 (((-522) $) NIL)) (-1736 (($ $ $) 80)) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) NIL)) (-1478 (((-522) $) NIL)) (-2333 (($ $ $) 79)) (-1226 (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 60) (((-628 (-522)) (-628 $)) 57)) (-3920 (((-3 $ "failed") $) 83)) (-2549 (((-3 (-382 (-522)) "failed") $) NIL)) (-3519 (((-108) $) NIL)) (-1699 (((-382 (-522)) $) NIL)) (-3344 (($) 62) (($ $) 63)) (-2303 (($ $ $) 78)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-3859 (($ $ $ $) NIL)) (-1968 (($ $ $) 54)) (-3603 (((-108) $) NIL)) (-2634 (($ $ $) NIL)) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL)) (-2859 (((-108) $) 26)) (-3077 (((-108) $) 73)) (-4208 (((-3 $ "failed") $) NIL)) (-3740 (((-108) $) 34)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2037 (($ $ $ $) 43)) (-1308 (($ $ $) 75)) (-2524 (($ $ $) 74)) (-4000 (($ $) NIL)) (-4030 (($ $) 40)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) 53)) (-1988 (($ $ $) NIL)) (-3937 (($) NIL T CONST)) (-3092 (($ $) 31)) (-4174 (((-1032) $) NIL) (($ $) 33)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 117)) (-2308 (($ $ $) 84) (($ (-588 $)) NIL)) (-1274 (($ $) NIL)) (-2006 (((-393 $) $) 103)) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL)) (-2276 (((-3 $ "failed") $ $) 82)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2626 (((-108) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 77)) (-2731 (($ $ (-708)) NIL) (($ $) NIL)) (-3518 (($ $) 32)) (-2463 (($ $) 30)) (-3873 (((-522) $) 39) (((-498) $) 51) (((-821 (-522)) $) NIL) (((-354) $) 46) (((-202) $) 48) (((-1068) $) 52)) (-2217 (((-792) $) 37) (($ (-522)) 38) (($ $) NIL) (($ (-522)) 38)) (-2742 (((-708)) NIL)) (-1763 (((-108) $ $) NIL)) (-1591 (($ $ $) NIL)) (-1897 (($) 29)) (-1407 (((-108) $ $) NIL)) (-3673 (($ $ $ $) 41)) (-4126 (($ $) 61)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 27 T CONST)) (-3709 (($) 28 T CONST)) (-2810 (((-1068) $) 20) (((-1068) $ (-108)) 22) (((-1171) (-759) $) 23) (((-1171) (-759) $ (-108)) 24)) (-2252 (($ $ (-708)) NIL) (($ $) NIL)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 64)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 65)) (-1672 (($ $) 66) (($ $ $) 68)) (-1661 (($ $ $) 67)) (** (($ $ (-850)) NIL) (($ $ (-708)) 72)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 70) (($ $ $) 69))) -(((-522) (-13 (-507) (-563 (-1068)) (-765) (-10 -8 (-15 -3344 ($ $)) (-6 -4225) (-6 -4230) (-6 -4226) (-6 -4220)))) (T -522)) -((-3344 (*1 *1 *1) (-5 *1 (-522)))) -(-13 (-507) (-563 (-1068)) (-765) (-10 -8 (-15 -3344 ($ $)) (-6 -4225) (-6 -4230) (-6 -4226) (-6 -4220))) -((-1361 (((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960))) (-706) (-983)) 103) (((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960))) (-706)) 105)) (-2611 (((-3 (-960) "failed") (-291 (-354)) (-1007 (-777 (-354))) (-1085)) 168) (((-3 (-960) "failed") (-291 (-354)) (-1007 (-777 (-354))) (-1068)) 167) (((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))) (-354) (-354) (-983)) 173) (((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))) (-354) (-354)) 174) (((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))) (-354)) 175) (((-960) (-291 (-354)) (-588 (-1009 (-777 (-354))))) 176) (((-960) (-291 (-354)) (-1009 (-777 (-354)))) 163) (((-960) (-291 (-354)) (-1009 (-777 (-354))) (-354)) 162) (((-960) (-291 (-354)) (-1009 (-777 (-354))) (-354) (-354)) 158) (((-960) (-706)) 150) (((-960) (-291 (-354)) (-1009 (-777 (-354))) (-354) (-354) (-983)) 157))) -(((-523) (-10 -7 (-15 -2611 ((-960) (-291 (-354)) (-1009 (-777 (-354))) (-354) (-354) (-983))) (-15 -2611 ((-960) (-706))) (-15 -2611 ((-960) (-291 (-354)) (-1009 (-777 (-354))) (-354) (-354))) (-15 -2611 ((-960) (-291 (-354)) (-1009 (-777 (-354))) (-354))) (-15 -2611 ((-960) (-291 (-354)) (-1009 (-777 (-354))))) (-15 -2611 ((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))))) (-15 -2611 ((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))) (-354))) (-15 -2611 ((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))) (-354) (-354))) (-15 -2611 ((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))) (-354) (-354) (-983))) (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960))) (-706))) (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960))) (-706) (-983))) (-15 -2611 ((-3 (-960) "failed") (-291 (-354)) (-1007 (-777 (-354))) (-1068))) (-15 -2611 ((-3 (-960) "failed") (-291 (-354)) (-1007 (-777 (-354))) (-1085))))) (T -523)) -((-2611 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-291 (-354))) (-5 *4 (-1007 (-777 (-354)))) (-5 *5 (-1085)) (-5 *2 (-960)) (-5 *1 (-523)))) (-2611 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-291 (-354))) (-5 *4 (-1007 (-777 (-354)))) (-5 *5 (-1068)) (-5 *2 (-960)) (-5 *1 (-523)))) (-1361 (*1 *2 *3 *4) (-12 (-5 *3 (-706)) (-5 *4 (-983)) (-5 *2 (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960)))) (-5 *1 (-523)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960)))) (-5 *1 (-523)))) (-2611 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-1009 (-777 (-354))))) (-5 *5 (-354)) (-5 *6 (-983)) (-5 *2 (-960)) (-5 *1 (-523)))) (-2611 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-1009 (-777 (-354))))) (-5 *5 (-354)) (-5 *2 (-960)) (-5 *1 (-523)))) (-2611 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-1009 (-777 (-354))))) (-5 *5 (-354)) (-5 *2 (-960)) (-5 *1 (-523)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-1009 (-777 (-354))))) (-5 *2 (-960)) (-5 *1 (-523)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *3 (-291 (-354))) (-5 *4 (-1009 (-777 (-354)))) (-5 *2 (-960)) (-5 *1 (-523)))) (-2611 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-291 (-354))) (-5 *4 (-1009 (-777 (-354)))) (-5 *5 (-354)) (-5 *2 (-960)) (-5 *1 (-523)))) (-2611 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-291 (-354))) (-5 *4 (-1009 (-777 (-354)))) (-5 *5 (-354)) (-5 *2 (-960)) (-5 *1 (-523)))) (-2611 (*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-960)) (-5 *1 (-523)))) (-2611 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-291 (-354))) (-5 *4 (-1009 (-777 (-354)))) (-5 *5 (-354)) (-5 *6 (-983)) (-5 *2 (-960)) (-5 *1 (-523))))) -(-10 -7 (-15 -2611 ((-960) (-291 (-354)) (-1009 (-777 (-354))) (-354) (-354) (-983))) (-15 -2611 ((-960) (-706))) (-15 -2611 ((-960) (-291 (-354)) (-1009 (-777 (-354))) (-354) (-354))) (-15 -2611 ((-960) (-291 (-354)) (-1009 (-777 (-354))) (-354))) (-15 -2611 ((-960) (-291 (-354)) (-1009 (-777 (-354))))) (-15 -2611 ((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))))) (-15 -2611 ((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))) (-354))) (-15 -2611 ((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))) (-354) (-354))) (-15 -2611 ((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))) (-354) (-354) (-983))) (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960))) (-706))) (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960))) (-706) (-983))) (-15 -2611 ((-3 (-960) "failed") (-291 (-354)) (-1007 (-777 (-354))) (-1068))) (-15 -2611 ((-3 (-960) "failed") (-291 (-354)) (-1007 (-777 (-354))) (-1085)))) -((-3804 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-561 |#2|) (-561 |#2|) (-588 |#2|)) 181)) (-1874 (((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|)) 99)) (-2842 (((-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-561 |#2|) (-561 |#2|) |#2|) 177)) (-3051 (((-3 |#2| "failed") |#2| |#2| |#2| (-561 |#2|) (-561 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1085))) 186)) (-3302 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2905 (-588 |#2|))) |#3| |#2| (-561 |#2|) (-561 |#2|) (-1085)) 194 (|has| |#3| (-598 |#2|))))) -(((-524 |#1| |#2| |#3|) (-10 -7 (-15 -1874 ((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|))) (-15 -2842 ((-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-561 |#2|) (-561 |#2|) |#2|)) (-15 -3804 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-561 |#2|) (-561 |#2|) (-588 |#2|))) (-15 -3051 ((-3 |#2| "failed") |#2| |#2| |#2| (-561 |#2|) (-561 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1085)))) (IF (|has| |#3| (-598 |#2|)) (-15 -3302 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2905 (-588 |#2|))) |#3| |#2| (-561 |#2|) (-561 |#2|) (-1085))) |%noBranch|)) (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))) (-13 (-405 |#1|) (-27) (-1106)) (-1014)) (T -524)) -((-3302 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-561 *4)) (-5 *6 (-1085)) (-4 *4 (-13 (-405 *7) (-27) (-1106))) (-4 *7 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2905 (-588 *4)))) (-5 *1 (-524 *7 *4 *3)) (-4 *3 (-598 *4)) (-4 *3 (-1014)))) (-3051 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-561 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1085))) (-4 *2 (-13 (-405 *5) (-27) (-1106))) (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *1 (-524 *5 *2 *6)) (-4 *6 (-1014)))) (-3804 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-561 *3)) (-5 *5 (-588 *3)) (-4 *3 (-13 (-405 *6) (-27) (-1106))) (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-524 *6 *3 *7)) (-4 *7 (-1014)))) (-2842 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-561 *3)) (-4 *3 (-13 (-405 *5) (-27) (-1106))) (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-2 (|:| -2585 *3) (|:| |coeff| *3))) (-5 *1 (-524 *5 *3 *6)) (-4 *6 (-1014)))) (-1874 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-561 *3)) (-4 *3 (-13 (-405 *5) (-27) (-1106))) (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-539 *3)) (-5 *1 (-524 *5 *3 *6)) (-4 *6 (-1014))))) -(-10 -7 (-15 -1874 ((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|))) (-15 -2842 ((-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-561 |#2|) (-561 |#2|) |#2|)) (-15 -3804 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-561 |#2|) (-561 |#2|) (-588 |#2|))) (-15 -3051 ((-3 |#2| "failed") |#2| |#2| |#2| (-561 |#2|) (-561 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1085)))) (IF (|has| |#3| (-598 |#2|)) (-15 -3302 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2905 (-588 |#2|))) |#3| |#2| (-561 |#2|) (-561 |#2|) (-1085))) |%noBranch|)) -((-4191 (((-2 (|:| -2441 |#2|) (|:| |nconst| |#2|)) |#2| (-1085)) 62)) (-2519 (((-3 |#2| "failed") |#2| (-1085) (-777 |#2|) (-777 |#2|)) 159 (-12 (|has| |#2| (-1049)) (|has| |#1| (-563 (-821 (-522)))) (|has| |#1| (-815 (-522))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1085)) 133 (-12 (|has| |#2| (-574)) (|has| |#1| (-563 (-821 (-522)))) (|has| |#1| (-815 (-522)))))) (-3624 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1085)) 142 (-12 (|has| |#2| (-574)) (|has| |#1| (-563 (-821 (-522)))) (|has| |#1| (-815 (-522))))))) -(((-525 |#1| |#2|) (-10 -7 (-15 -4191 ((-2 (|:| -2441 |#2|) (|:| |nconst| |#2|)) |#2| (-1085))) (IF (|has| |#1| (-563 (-821 (-522)))) (IF (|has| |#1| (-815 (-522))) (PROGN (IF (|has| |#2| (-574)) (PROGN (-15 -3624 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1085))) (-15 -2519 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1085)))) |%noBranch|) (IF (|has| |#2| (-1049)) (-15 -2519 ((-3 |#2| "failed") |#2| (-1085) (-777 |#2|) (-777 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-784) (-962 (-522)) (-426) (-584 (-522))) (-13 (-27) (-1106) (-405 |#1|))) (T -525)) -((-2519 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1085)) (-5 *4 (-777 *2)) (-4 *2 (-1049)) (-4 *2 (-13 (-27) (-1106) (-405 *5))) (-4 *5 (-563 (-821 (-522)))) (-4 *5 (-815 (-522))) (-4 *5 (-13 (-784) (-962 (-522)) (-426) (-584 (-522)))) (-5 *1 (-525 *5 *2)))) (-2519 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1085)) (-4 *5 (-563 (-821 (-522)))) (-4 *5 (-815 (-522))) (-4 *5 (-13 (-784) (-962 (-522)) (-426) (-584 (-522)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-525 *5 *3)) (-4 *3 (-574)) (-4 *3 (-13 (-27) (-1106) (-405 *5))))) (-3624 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1085)) (-4 *5 (-563 (-821 (-522)))) (-4 *5 (-815 (-522))) (-4 *5 (-13 (-784) (-962 (-522)) (-426) (-584 (-522)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-525 *5 *3)) (-4 *3 (-574)) (-4 *3 (-13 (-27) (-1106) (-405 *5))))) (-4191 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-784) (-962 (-522)) (-426) (-584 (-522)))) (-5 *2 (-2 (|:| -2441 *3) (|:| |nconst| *3))) (-5 *1 (-525 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5)))))) -(-10 -7 (-15 -4191 ((-2 (|:| -2441 |#2|) (|:| |nconst| |#2|)) |#2| (-1085))) (IF (|has| |#1| (-563 (-821 (-522)))) (IF (|has| |#1| (-815 (-522))) (PROGN (IF (|has| |#2| (-574)) (PROGN (-15 -3624 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1085))) (-15 -2519 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1085)))) |%noBranch|) (IF (|has| |#2| (-1049)) (-15 -2519 ((-3 |#2| "failed") |#2| (-1085) (-777 |#2|) (-777 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2489 (((-3 (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|)))))) "failed") (-382 |#2|) (-588 (-382 |#2|))) 39)) (-2611 (((-539 (-382 |#2|)) (-382 |#2|)) 27)) (-2941 (((-3 (-382 |#2|) "failed") (-382 |#2|)) 16)) (-4120 (((-3 (-2 (|:| -2585 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-382 |#2|)) 46))) -(((-526 |#1| |#2|) (-10 -7 (-15 -2611 ((-539 (-382 |#2|)) (-382 |#2|))) (-15 -2941 ((-3 (-382 |#2|) "failed") (-382 |#2|))) (-15 -4120 ((-3 (-2 (|:| -2585 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-382 |#2|))) (-15 -2489 ((-3 (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|)))))) "failed") (-382 |#2|) (-588 (-382 |#2|))))) (-13 (-338) (-135) (-962 (-522))) (-1142 |#1|)) (T -526)) -((-2489 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-588 (-382 *6))) (-5 *3 (-382 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-13 (-338) (-135) (-962 (-522)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-526 *5 *6)))) (-4120 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-338) (-135) (-962 (-522)))) (-4 *5 (-1142 *4)) (-5 *2 (-2 (|:| -2585 (-382 *5)) (|:| |coeff| (-382 *5)))) (-5 *1 (-526 *4 *5)) (-5 *3 (-382 *5)))) (-2941 (*1 *2 *2) (|partial| -12 (-5 *2 (-382 *4)) (-4 *4 (-1142 *3)) (-4 *3 (-13 (-338) (-135) (-962 (-522)))) (-5 *1 (-526 *3 *4)))) (-2611 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-135) (-962 (-522)))) (-4 *5 (-1142 *4)) (-5 *2 (-539 (-382 *5))) (-5 *1 (-526 *4 *5)) (-5 *3 (-382 *5))))) -(-10 -7 (-15 -2611 ((-539 (-382 |#2|)) (-382 |#2|))) (-15 -2941 ((-3 (-382 |#2|) "failed") (-382 |#2|))) (-15 -4120 ((-3 (-2 (|:| -2585 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-382 |#2|))) (-15 -2489 ((-3 (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|)))))) "failed") (-382 |#2|) (-588 (-382 |#2|))))) -((-3611 (((-3 (-522) "failed") |#1|) 14)) (-3871 (((-108) |#1|) 13)) (-1516 (((-522) |#1|) 9))) -(((-527 |#1|) (-10 -7 (-15 -1516 ((-522) |#1|)) (-15 -3871 ((-108) |#1|)) (-15 -3611 ((-3 (-522) "failed") |#1|))) (-962 (-522))) (T -527)) -((-3611 (*1 *2 *3) (|partial| -12 (-5 *2 (-522)) (-5 *1 (-527 *3)) (-4 *3 (-962 *2)))) (-3871 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-527 *3)) (-4 *3 (-962 (-522))))) (-1516 (*1 *2 *3) (-12 (-5 *2 (-522)) (-5 *1 (-527 *3)) (-4 *3 (-962 *2))))) -(-10 -7 (-15 -1516 ((-522) |#1|)) (-15 -3871 ((-108) |#1|)) (-15 -3611 ((-3 (-522) "failed") |#1|))) -((-2206 (((-3 (-2 (|:| |mainpart| (-382 (-881 |#1|))) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 (-881 |#1|))) (|:| |logand| (-382 (-881 |#1|))))))) "failed") (-382 (-881 |#1|)) (-1085) (-588 (-382 (-881 |#1|)))) 43)) (-2919 (((-539 (-382 (-881 |#1|))) (-382 (-881 |#1|)) (-1085)) 25)) (-3842 (((-3 (-382 (-881 |#1|)) "failed") (-382 (-881 |#1|)) (-1085)) 20)) (-1628 (((-3 (-2 (|:| -2585 (-382 (-881 |#1|))) (|:| |coeff| (-382 (-881 |#1|)))) "failed") (-382 (-881 |#1|)) (-1085) (-382 (-881 |#1|))) 32))) -(((-528 |#1|) (-10 -7 (-15 -2919 ((-539 (-382 (-881 |#1|))) (-382 (-881 |#1|)) (-1085))) (-15 -3842 ((-3 (-382 (-881 |#1|)) "failed") (-382 (-881 |#1|)) (-1085))) (-15 -2206 ((-3 (-2 (|:| |mainpart| (-382 (-881 |#1|))) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 (-881 |#1|))) (|:| |logand| (-382 (-881 |#1|))))))) "failed") (-382 (-881 |#1|)) (-1085) (-588 (-382 (-881 |#1|))))) (-15 -1628 ((-3 (-2 (|:| -2585 (-382 (-881 |#1|))) (|:| |coeff| (-382 (-881 |#1|)))) "failed") (-382 (-881 |#1|)) (-1085) (-382 (-881 |#1|))))) (-13 (-514) (-962 (-522)) (-135))) (T -528)) -((-1628 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1085)) (-4 *5 (-13 (-514) (-962 (-522)) (-135))) (-5 *2 (-2 (|:| -2585 (-382 (-881 *5))) (|:| |coeff| (-382 (-881 *5))))) (-5 *1 (-528 *5)) (-5 *3 (-382 (-881 *5))))) (-2206 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-588 (-382 (-881 *6)))) (-5 *3 (-382 (-881 *6))) (-4 *6 (-13 (-514) (-962 (-522)) (-135))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-528 *6)))) (-3842 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-382 (-881 *4))) (-5 *3 (-1085)) (-4 *4 (-13 (-514) (-962 (-522)) (-135))) (-5 *1 (-528 *4)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-514) (-962 (-522)) (-135))) (-5 *2 (-539 (-382 (-881 *5)))) (-5 *1 (-528 *5)) (-5 *3 (-382 (-881 *5)))))) -(-10 -7 (-15 -2919 ((-539 (-382 (-881 |#1|))) (-382 (-881 |#1|)) (-1085))) (-15 -3842 ((-3 (-382 (-881 |#1|)) "failed") (-382 (-881 |#1|)) (-1085))) (-15 -2206 ((-3 (-2 (|:| |mainpart| (-382 (-881 |#1|))) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 (-881 |#1|))) (|:| |logand| (-382 (-881 |#1|))))))) "failed") (-382 (-881 |#1|)) (-1085) (-588 (-382 (-881 |#1|))))) (-15 -1628 ((-3 (-2 (|:| -2585 (-382 (-881 |#1|))) (|:| |coeff| (-382 (-881 |#1|)))) "failed") (-382 (-881 |#1|)) (-1085) (-382 (-881 |#1|))))) -((-1419 (((-108) $ $) 59)) (-2944 (((-108) $) 36)) (-2815 ((|#1| $) 30)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) 63)) (-3044 (($ $) 123)) (-2923 (($ $) 103)) (-1827 ((|#1| $) 28)) (-2265 (((-3 $ "failed") $ $) NIL)) (-2016 (($ $) NIL)) (-3023 (($ $) 125)) (-2906 (($ $) 99)) (-3066 (($ $) 127)) (-2936 (($ $) 107)) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) 78)) (-1478 (((-522) $) 80)) (-3920 (((-3 $ "failed") $) 62)) (-3122 (($ |#1| |#1|) 26)) (-3603 (((-108) $) 33)) (-2980 (($) 89)) (-2859 (((-108) $) 43)) (-1811 (($ $ (-522)) NIL)) (-3740 (((-108) $) 34)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-1238 (($ $) 91)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-1869 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-382 (-522))) 77)) (-3099 ((|#1| $) 27)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) 65) (($ (-588 $)) NIL)) (-2276 (((-3 $ "failed") $ $) 64)) (-3357 (($ $) 93)) (-1831 (($ $) 131)) (-2946 (($ $) 105)) (-3054 (($ $) 133)) (-2928 (($ $) 109)) (-3035 (($ $) 129)) (-2915 (($ $) 101)) (-1311 (((-108) $ |#1|) 31)) (-2217 (((-792) $) 85) (($ (-522)) 67) (($ $) NIL) (($ (-522)) 67)) (-2742 (((-708)) 87)) (-1856 (($ $) 145)) (-2976 (($ $) 115)) (-1407 (((-108) $ $) NIL)) (-1839 (($ $) 143)) (-2957 (($ $) 111)) (-1873 (($ $) 141)) (-3001 (($ $) 121)) (-2476 (($ $) 139)) (-3011 (($ $) 119)) (-1864 (($ $) 137)) (-2989 (($ $) 117)) (-1849 (($ $) 135)) (-2966 (($ $) 113)) (-3622 (($ $ (-850)) 55) (($ $ (-708)) NIL)) (-3697 (($) 21 T CONST)) (-3709 (($) 10 T CONST)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 37)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 35)) (-1672 (($ $) 41) (($ $ $) 42)) (-1661 (($ $ $) 40)) (** (($ $ (-850)) 54) (($ $ (-708)) NIL) (($ $ $) 95) (($ $ (-382 (-522))) 147)) (* (($ (-850) $) 51) (($ (-708) $) NIL) (($ (-522) $) 50) (($ $ $) 48))) -(((-529 |#1|) (-512 |#1|) (-13 (-379) (-1106))) (T -529)) -NIL -(-512 |#1|) -((-2800 (((-3 (-588 (-1081 (-522))) "failed") (-588 (-1081 (-522))) (-1081 (-522))) 24))) -(((-530) (-10 -7 (-15 -2800 ((-3 (-588 (-1081 (-522))) "failed") (-588 (-1081 (-522))) (-1081 (-522)))))) (T -530)) -((-2800 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-588 (-1081 (-522)))) (-5 *3 (-1081 (-522))) (-5 *1 (-530))))) -(-10 -7 (-15 -2800 ((-3 (-588 (-1081 (-522))) "failed") (-588 (-1081 (-522))) (-1081 (-522))))) -((-3502 (((-588 (-561 |#2|)) (-588 (-561 |#2|)) (-1085)) 18)) (-4144 (((-588 (-561 |#2|)) (-588 |#2|) (-1085)) 23)) (-2323 (((-588 (-561 |#2|)) (-588 (-561 |#2|)) (-588 (-561 |#2|))) 10)) (-2349 ((|#2| |#2| (-1085)) 52 (|has| |#1| (-514)))) (-1286 ((|#2| |#2| (-1085)) 77 (-12 (|has| |#2| (-260)) (|has| |#1| (-426))))) (-3677 (((-561 |#2|) (-561 |#2|) (-588 (-561 |#2|)) (-1085)) 25)) (-1273 (((-561 |#2|) (-588 (-561 |#2|))) 24)) (-2131 (((-539 |#2|) |#2| (-1085) (-1 (-539 |#2|) |#2| (-1085)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1085))) 101 (-12 (|has| |#2| (-260)) (|has| |#2| (-574)) (|has| |#2| (-962 (-1085))) (|has| |#1| (-563 (-821 (-522)))) (|has| |#1| (-426)) (|has| |#1| (-815 (-522))))))) -(((-531 |#1| |#2|) (-10 -7 (-15 -3502 ((-588 (-561 |#2|)) (-588 (-561 |#2|)) (-1085))) (-15 -1273 ((-561 |#2|) (-588 (-561 |#2|)))) (-15 -3677 ((-561 |#2|) (-561 |#2|) (-588 (-561 |#2|)) (-1085))) (-15 -2323 ((-588 (-561 |#2|)) (-588 (-561 |#2|)) (-588 (-561 |#2|)))) (-15 -4144 ((-588 (-561 |#2|)) (-588 |#2|) (-1085))) (IF (|has| |#1| (-514)) (-15 -2349 (|#2| |#2| (-1085))) |%noBranch|) (IF (|has| |#1| (-426)) (IF (|has| |#2| (-260)) (PROGN (-15 -1286 (|#2| |#2| (-1085))) (IF (|has| |#1| (-563 (-821 (-522)))) (IF (|has| |#1| (-815 (-522))) (IF (|has| |#2| (-574)) (IF (|has| |#2| (-962 (-1085))) (-15 -2131 ((-539 |#2|) |#2| (-1085) (-1 (-539 |#2|) |#2| (-1085)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1085)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-784) (-405 |#1|)) (T -531)) -((-2131 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-539 *3) *3 (-1085))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1085))) (-4 *3 (-260)) (-4 *3 (-574)) (-4 *3 (-962 *4)) (-4 *3 (-405 *7)) (-5 *4 (-1085)) (-4 *7 (-563 (-821 (-522)))) (-4 *7 (-426)) (-4 *7 (-815 (-522))) (-4 *7 (-784)) (-5 *2 (-539 *3)) (-5 *1 (-531 *7 *3)))) (-1286 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-426)) (-4 *4 (-784)) (-5 *1 (-531 *4 *2)) (-4 *2 (-260)) (-4 *2 (-405 *4)))) (-2349 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-514)) (-4 *4 (-784)) (-5 *1 (-531 *4 *2)) (-4 *2 (-405 *4)))) (-4144 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *6)) (-5 *4 (-1085)) (-4 *6 (-405 *5)) (-4 *5 (-784)) (-5 *2 (-588 (-561 *6))) (-5 *1 (-531 *5 *6)))) (-2323 (*1 *2 *2 *2) (-12 (-5 *2 (-588 (-561 *4))) (-4 *4 (-405 *3)) (-4 *3 (-784)) (-5 *1 (-531 *3 *4)))) (-3677 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-588 (-561 *6))) (-5 *4 (-1085)) (-5 *2 (-561 *6)) (-4 *6 (-405 *5)) (-4 *5 (-784)) (-5 *1 (-531 *5 *6)))) (-1273 (*1 *2 *3) (-12 (-5 *3 (-588 (-561 *5))) (-4 *4 (-784)) (-5 *2 (-561 *5)) (-5 *1 (-531 *4 *5)) (-4 *5 (-405 *4)))) (-3502 (*1 *2 *2 *3) (-12 (-5 *2 (-588 (-561 *5))) (-5 *3 (-1085)) (-4 *5 (-405 *4)) (-4 *4 (-784)) (-5 *1 (-531 *4 *5))))) -(-10 -7 (-15 -3502 ((-588 (-561 |#2|)) (-588 (-561 |#2|)) (-1085))) (-15 -1273 ((-561 |#2|) (-588 (-561 |#2|)))) (-15 -3677 ((-561 |#2|) (-561 |#2|) (-588 (-561 |#2|)) (-1085))) (-15 -2323 ((-588 (-561 |#2|)) (-588 (-561 |#2|)) (-588 (-561 |#2|)))) (-15 -4144 ((-588 (-561 |#2|)) (-588 |#2|) (-1085))) (IF (|has| |#1| (-514)) (-15 -2349 (|#2| |#2| (-1085))) |%noBranch|) (IF (|has| |#1| (-426)) (IF (|has| |#2| (-260)) (PROGN (-15 -1286 (|#2| |#2| (-1085))) (IF (|has| |#1| (-563 (-821 (-522)))) (IF (|has| |#1| (-815 (-522))) (IF (|has| |#2| (-574)) (IF (|has| |#2| (-962 (-1085))) (-15 -2131 ((-539 |#2|) |#2| (-1085) (-1 (-539 |#2|) |#2| (-1085)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1085)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2797 (((-2 (|:| |answer| (-539 (-382 |#2|))) (|:| |a0| |#1|)) (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-588 |#1|) "failed") (-522) |#1| |#1|)) 168)) (-2331 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|))))))) (|:| |a0| |#1|)) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2585 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-588 (-382 |#2|))) 144)) (-2109 (((-3 (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|)))))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-588 (-382 |#2|))) 141)) (-3786 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2585 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 130)) (-4134 (((-2 (|:| |answer| (-539 (-382 |#2|))) (|:| |a0| |#1|)) (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2585 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 154)) (-1268 (((-3 (-2 (|:| -2585 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-382 |#2|)) 171)) (-3190 (((-3 (-2 (|:| |answer| (-382 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2585 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2585 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-382 |#2|)) 174)) (-1553 (((-2 (|:| |ir| (-539 (-382 |#2|))) (|:| |specpart| (-382 |#2|)) (|:| |polypart| |#2|)) (-382 |#2|) (-1 |#2| |#2|)) 82)) (-2361 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 89)) (-1938 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|))))))) (|:| |a0| |#1|)) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2002 |#1|) (|:| |sol?| (-108))) (-522) |#1|) (-588 (-382 |#2|))) 148)) (-1404 (((-3 (-569 |#1| |#2|) "failed") (-569 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2002 |#1|) (|:| |sol?| (-108))) (-522) |#1|)) 134)) (-1278 (((-2 (|:| |answer| (-539 (-382 |#2|))) (|:| |a0| |#1|)) (-382 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2002 |#1|) (|:| |sol?| (-108))) (-522) |#1|)) 158)) (-3272 (((-3 (-2 (|:| |answer| (-382 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2585 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2002 |#1|) (|:| |sol?| (-108))) (-522) |#1|) (-382 |#2|)) 179))) -(((-532 |#1| |#2|) (-10 -7 (-15 -4134 ((-2 (|:| |answer| (-539 (-382 |#2|))) (|:| |a0| |#1|)) (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2585 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1278 ((-2 (|:| |answer| (-539 (-382 |#2|))) (|:| |a0| |#1|)) (-382 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2002 |#1|) (|:| |sol?| (-108))) (-522) |#1|))) (-15 -2797 ((-2 (|:| |answer| (-539 (-382 |#2|))) (|:| |a0| |#1|)) (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-588 |#1|) "failed") (-522) |#1| |#1|))) (-15 -3190 ((-3 (-2 (|:| |answer| (-382 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2585 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2585 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-382 |#2|))) (-15 -3272 ((-3 (-2 (|:| |answer| (-382 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2585 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2002 |#1|) (|:| |sol?| (-108))) (-522) |#1|) (-382 |#2|))) (-15 -2331 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|))))))) (|:| |a0| |#1|)) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2585 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-588 (-382 |#2|)))) (-15 -1938 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|))))))) (|:| |a0| |#1|)) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2002 |#1|) (|:| |sol?| (-108))) (-522) |#1|) (-588 (-382 |#2|)))) (-15 -1268 ((-3 (-2 (|:| -2585 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-382 |#2|))) (-15 -2109 ((-3 (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|)))))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-588 (-382 |#2|)))) (-15 -3786 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2585 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1404 ((-3 (-569 |#1| |#2|) "failed") (-569 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2002 |#1|) (|:| |sol?| (-108))) (-522) |#1|))) (-15 -1553 ((-2 (|:| |ir| (-539 (-382 |#2|))) (|:| |specpart| (-382 |#2|)) (|:| |polypart| |#2|)) (-382 |#2|) (-1 |#2| |#2|))) (-15 -2361 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-338) (-1142 |#1|)) (T -532)) -((-2361 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-338)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-532 *5 *3)))) (-1553 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338)) (-5 *2 (-2 (|:| |ir| (-539 (-382 *6))) (|:| |specpart| (-382 *6)) (|:| |polypart| *6))) (-5 *1 (-532 *5 *6)) (-5 *3 (-382 *6)))) (-1404 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-569 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -2002 *4) (|:| |sol?| (-108))) (-522) *4)) (-4 *4 (-338)) (-4 *5 (-1142 *4)) (-5 *1 (-532 *4 *5)))) (-3786 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2585 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-338)) (-5 *1 (-532 *4 *2)) (-4 *2 (-1142 *4)))) (-2109 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-588 (-382 *7))) (-4 *7 (-1142 *6)) (-5 *3 (-382 *7)) (-4 *6 (-338)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-532 *6 *7)))) (-1268 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338)) (-5 *2 (-2 (|:| -2585 (-382 *6)) (|:| |coeff| (-382 *6)))) (-5 *1 (-532 *5 *6)) (-5 *3 (-382 *6)))) (-1938 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -2002 *7) (|:| |sol?| (-108))) (-522) *7)) (-5 *6 (-588 (-382 *8))) (-4 *7 (-338)) (-4 *8 (-1142 *7)) (-5 *3 (-382 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-532 *7 *8)))) (-2331 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2585 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-588 (-382 *8))) (-4 *7 (-338)) (-4 *8 (-1142 *7)) (-5 *3 (-382 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-532 *7 *8)))) (-3272 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2002 *6) (|:| |sol?| (-108))) (-522) *6)) (-4 *6 (-338)) (-4 *7 (-1142 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-382 *7)) (|:| |a0| *6)) (-2 (|:| -2585 (-382 *7)) (|:| |coeff| (-382 *7))) "failed")) (-5 *1 (-532 *6 *7)) (-5 *3 (-382 *7)))) (-3190 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2585 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-338)) (-4 *7 (-1142 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-382 *7)) (|:| |a0| *6)) (-2 (|:| -2585 (-382 *7)) (|:| |coeff| (-382 *7))) "failed")) (-5 *1 (-532 *6 *7)) (-5 *3 (-382 *7)))) (-2797 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-588 *6) "failed") (-522) *6 *6)) (-4 *6 (-338)) (-4 *7 (-1142 *6)) (-5 *2 (-2 (|:| |answer| (-539 (-382 *7))) (|:| |a0| *6))) (-5 *1 (-532 *6 *7)) (-5 *3 (-382 *7)))) (-1278 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2002 *6) (|:| |sol?| (-108))) (-522) *6)) (-4 *6 (-338)) (-4 *7 (-1142 *6)) (-5 *2 (-2 (|:| |answer| (-539 (-382 *7))) (|:| |a0| *6))) (-5 *1 (-532 *6 *7)) (-5 *3 (-382 *7)))) (-4134 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2585 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-338)) (-4 *7 (-1142 *6)) (-5 *2 (-2 (|:| |answer| (-539 (-382 *7))) (|:| |a0| *6))) (-5 *1 (-532 *6 *7)) (-5 *3 (-382 *7))))) -(-10 -7 (-15 -4134 ((-2 (|:| |answer| (-539 (-382 |#2|))) (|:| |a0| |#1|)) (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2585 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1278 ((-2 (|:| |answer| (-539 (-382 |#2|))) (|:| |a0| |#1|)) (-382 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2002 |#1|) (|:| |sol?| (-108))) (-522) |#1|))) (-15 -2797 ((-2 (|:| |answer| (-539 (-382 |#2|))) (|:| |a0| |#1|)) (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-588 |#1|) "failed") (-522) |#1| |#1|))) (-15 -3190 ((-3 (-2 (|:| |answer| (-382 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2585 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2585 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-382 |#2|))) (-15 -3272 ((-3 (-2 (|:| |answer| (-382 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2585 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2002 |#1|) (|:| |sol?| (-108))) (-522) |#1|) (-382 |#2|))) (-15 -2331 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|))))))) (|:| |a0| |#1|)) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2585 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-588 (-382 |#2|)))) (-15 -1938 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|))))))) (|:| |a0| |#1|)) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2002 |#1|) (|:| |sol?| (-108))) (-522) |#1|) (-588 (-382 |#2|)))) (-15 -1268 ((-3 (-2 (|:| -2585 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-382 |#2|))) (-15 -2109 ((-3 (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|)))))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-588 (-382 |#2|)))) (-15 -3786 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2585 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1404 ((-3 (-569 |#1| |#2|) "failed") (-569 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2002 |#1|) (|:| |sol?| (-108))) (-522) |#1|))) (-15 -1553 ((-2 (|:| |ir| (-539 (-382 |#2|))) (|:| |specpart| (-382 |#2|)) (|:| |polypart| |#2|)) (-382 |#2|) (-1 |#2| |#2|))) (-15 -2361 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-2005 (((-3 |#2| "failed") |#2| (-1085) (-1085)) 10))) -(((-533 |#1| |#2|) (-10 -7 (-15 -2005 ((-3 |#2| "failed") |#2| (-1085) (-1085)))) (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))) (-13 (-1106) (-887) (-1049) (-29 |#1|))) (T -533)) -((-2005 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1085)) (-4 *4 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *1 (-533 *4 *2)) (-4 *2 (-13 (-1106) (-887) (-1049) (-29 *4)))))) -(-10 -7 (-15 -2005 ((-3 |#2| "failed") |#2| (-1085) (-1085)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-2016 (($ $ (-522)) 65)) (-2805 (((-108) $ $) NIL)) (-3367 (($) NIL T CONST)) (-3763 (($ (-1081 (-522)) (-522)) 71)) (-2333 (($ $ $) NIL)) (-3920 (((-3 $ "failed") $) 57)) (-3606 (($ $) 33)) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-3872 (((-708) $) 15)) (-2859 (((-108) $) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1246 (((-522)) 27)) (-3316 (((-522) $) 31)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3934 (($ $ (-522)) 21)) (-2276 (((-3 $ "failed") $ $) 58)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4031 (((-708) $) 16)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 60)) (-3353 (((-1066 (-522)) $) 18)) (-1944 (($ $) 23)) (-2217 (((-792) $) 86) (($ (-522)) 51) (($ $) NIL)) (-2742 (((-708)) 14)) (-1407 (((-108) $ $) NIL)) (-3996 (((-522) $ (-522)) 35)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 34 T CONST)) (-3709 (($) 19 T CONST)) (-1562 (((-108) $ $) 38)) (-1672 (($ $) 50) (($ $ $) 36)) (-1661 (($ $ $) 49)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 53) (($ $ $) 54))) -(((-534 |#1| |#2|) (-798 |#1|) (-522) (-108)) (T -534)) -NIL -(-798 |#1|) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 18)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2400 (((-108) $) NIL)) (-1593 (((-708)) NIL)) (-1945 (($ $ (-850)) NIL (|has| $ (-343))) (($ $) NIL)) (-3833 (((-1094 (-850) (-708)) (-522)) 47)) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2805 (((-108) $ $) NIL)) (-1685 (((-708)) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 $ "failed") $) 75)) (-1478 (($ $) 74)) (-3225 (($ (-1166 $)) 73)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-2333 (($ $ $) NIL)) (-3920 (((-3 $ "failed") $) 30)) (-3344 (($) NIL)) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2160 (($) 49)) (-2087 (((-108) $) NIL)) (-1380 (($ $) NIL) (($ $ (-708)) NIL)) (-2725 (((-108) $) NIL)) (-3872 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-2859 (((-108) $) NIL)) (-3768 (($) 35 (|has| $ (-343)))) (-1372 (((-108) $) NIL (|has| $ (-343)))) (-1269 (($ $ (-850)) NIL (|has| $ (-343))) (($ $) NIL)) (-4208 (((-3 $ "failed") $) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4199 (((-1081 $) $ (-850)) NIL (|has| $ (-343))) (((-1081 $) $) 83)) (-1475 (((-850) $) 55)) (-3657 (((-1081 $) $) NIL (|has| $ (-343)))) (-3723 (((-3 (-1081 $) "failed") $ $) NIL (|has| $ (-343))) (((-1081 $) $) NIL (|has| $ (-343)))) (-2259 (($ $ (-1081 $)) NIL (|has| $ (-343)))) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-3937 (($) NIL T CONST)) (-2882 (($ (-850)) 48)) (-2804 (((-108) $) 67)) (-4174 (((-1032) $) NIL)) (-1368 (($) 16 (|has| $ (-343)))) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) 40)) (-2006 (((-393 $) $) NIL)) (-1713 (((-850)) 66) (((-770 (-850))) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-1304 (((-3 (-708) "failed") $ $) NIL) (((-708) $) NIL)) (-3222 (((-126)) NIL)) (-2731 (($ $ (-708)) NIL) (($ $) NIL)) (-2487 (((-850) $) 65) (((-770 (-850)) $) NIL)) (-1579 (((-1081 $)) 82)) (-2670 (($) 54)) (-1705 (($) 36 (|has| $ (-343)))) (-3510 (((-628 $) (-1166 $)) NIL) (((-1166 $) $) 71)) (-3873 (((-522) $) 26)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL)) (-2217 (((-792) $) NIL) (($ (-522)) 28) (($ $) NIL) (($ (-382 (-522))) NIL)) (-3040 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2742 (((-708)) 37)) (-2905 (((-1166 $) (-850)) 77) (((-1166 $)) 76)) (-1407 (((-108) $ $) NIL)) (-1711 (((-108) $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) 19 T CONST)) (-3709 (($) 15 T CONST)) (-2938 (($ $ (-708)) NIL (|has| $ (-343))) (($ $) NIL (|has| $ (-343)))) (-2252 (($ $ (-708)) NIL) (($ $) NIL)) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) 24)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 61) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL))) -(((-535 |#1|) (-13 (-324) (-304 $) (-563 (-522))) (-850)) (T -535)) -NIL -(-13 (-324) (-304 $) (-563 (-522))) -((-1816 (((-1171) (-1068)) 10))) -(((-536) (-10 -7 (-15 -1816 ((-1171) (-1068))))) (T -536)) -((-1816 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-536))))) -(-10 -7 (-15 -1816 ((-1171) (-1068)))) -((-3428 (((-539 |#2|) (-539 |#2|)) 38)) (-1663 (((-588 |#2|) (-539 |#2|)) 40)) (-1838 ((|#2| (-539 |#2|)) 47))) -(((-537 |#1| |#2|) (-10 -7 (-15 -3428 ((-539 |#2|) (-539 |#2|))) (-15 -1663 ((-588 |#2|) (-539 |#2|))) (-15 -1838 (|#2| (-539 |#2|)))) (-13 (-426) (-962 (-522)) (-784) (-584 (-522))) (-13 (-29 |#1|) (-1106))) (T -537)) -((-1838 (*1 *2 *3) (-12 (-5 *3 (-539 *2)) (-4 *2 (-13 (-29 *4) (-1106))) (-5 *1 (-537 *4 *2)) (-4 *4 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-539 *5)) (-4 *5 (-13 (-29 *4) (-1106))) (-4 *4 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) (-5 *2 (-588 *5)) (-5 *1 (-537 *4 *5)))) (-3428 (*1 *2 *2) (-12 (-5 *2 (-539 *4)) (-4 *4 (-13 (-29 *3) (-1106))) (-4 *3 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) (-5 *1 (-537 *3 *4))))) -(-10 -7 (-15 -3428 ((-539 |#2|) (-539 |#2|))) (-15 -1663 ((-588 |#2|) (-539 |#2|))) (-15 -1838 (|#2| (-539 |#2|)))) -((-3810 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2585 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-539 |#2|) (-1 |#2| |#1|) (-539 |#1|)) 26))) -(((-538 |#1| |#2|) (-10 -7 (-15 -3810 ((-539 |#2|) (-1 |#2| |#1|) (-539 |#1|))) (-15 -3810 ((-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2585 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3810 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3810 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-338) (-338)) (T -538)) -((-3810 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-338)) (-4 *6 (-338)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-538 *5 *6)))) (-3810 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-338)) (-4 *2 (-338)) (-5 *1 (-538 *5 *2)))) (-3810 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2585 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-338)) (-4 *6 (-338)) (-5 *2 (-2 (|:| -2585 *6) (|:| |coeff| *6))) (-5 *1 (-538 *5 *6)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-539 *5)) (-4 *5 (-338)) (-4 *6 (-338)) (-5 *2 (-539 *6)) (-5 *1 (-538 *5 *6))))) -(-10 -7 (-15 -3810 ((-539 |#2|) (-1 |#2| |#1|) (-539 |#1|))) (-15 -3810 ((-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2585 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3810 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3810 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) 69)) (-1478 ((|#1| $) NIL)) (-2585 ((|#1| $) 24)) (-2502 (((-588 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-3749 (($ |#1| (-588 (-2 (|:| |scalar| (-382 (-522))) (|:| |coeff| (-1081 |#1|)) (|:| |logand| (-1081 |#1|)))) (-588 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-3002 (((-588 (-2 (|:| |scalar| (-382 (-522))) (|:| |coeff| (-1081 |#1|)) (|:| |logand| (-1081 |#1|)))) $) 25)) (-2311 (((-1068) $) NIL)) (-2093 (($ |#1| |#1|) 32) (($ |#1| (-1085)) 43 (|has| |#1| (-962 (-1085))))) (-4174 (((-1032) $) NIL)) (-3966 (((-108) $) 28)) (-2731 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1085)) 82 (|has| |#1| (-829 (-1085))))) (-2217 (((-792) $) 96) (($ |#1|) 23)) (-3697 (($) 16 T CONST)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) 15) (($ $ $) NIL)) (-1661 (($ $ $) 78)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 14) (($ (-382 (-522)) $) 35) (($ $ (-382 (-522))) NIL))) -(((-539 |#1|) (-13 (-655 (-382 (-522))) (-962 |#1|) (-10 -8 (-15 -3749 ($ |#1| (-588 (-2 (|:| |scalar| (-382 (-522))) (|:| |coeff| (-1081 |#1|)) (|:| |logand| (-1081 |#1|)))) (-588 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2585 (|#1| $)) (-15 -3002 ((-588 (-2 (|:| |scalar| (-382 (-522))) (|:| |coeff| (-1081 |#1|)) (|:| |logand| (-1081 |#1|)))) $)) (-15 -2502 ((-588 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3966 ((-108) $)) (-15 -2093 ($ |#1| |#1|)) (-15 -2731 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-829 (-1085))) (-15 -2731 (|#1| $ (-1085))) |%noBranch|) (IF (|has| |#1| (-962 (-1085))) (-15 -2093 ($ |#1| (-1085))) |%noBranch|))) (-338)) (T -539)) -((-3749 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-588 (-2 (|:| |scalar| (-382 (-522))) (|:| |coeff| (-1081 *2)) (|:| |logand| (-1081 *2))))) (-5 *4 (-588 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-338)) (-5 *1 (-539 *2)))) (-2585 (*1 *2 *1) (-12 (-5 *1 (-539 *2)) (-4 *2 (-338)))) (-3002 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |scalar| (-382 (-522))) (|:| |coeff| (-1081 *3)) (|:| |logand| (-1081 *3))))) (-5 *1 (-539 *3)) (-4 *3 (-338)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-539 *3)) (-4 *3 (-338)))) (-3966 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-539 *3)) (-4 *3 (-338)))) (-2093 (*1 *1 *2 *2) (-12 (-5 *1 (-539 *2)) (-4 *2 (-338)))) (-2731 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-539 *2)) (-4 *2 (-338)))) (-2731 (*1 *2 *1 *3) (-12 (-4 *2 (-338)) (-4 *2 (-829 *3)) (-5 *1 (-539 *2)) (-5 *3 (-1085)))) (-2093 (*1 *1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *1 (-539 *2)) (-4 *2 (-962 *3)) (-4 *2 (-338))))) -(-13 (-655 (-382 (-522))) (-962 |#1|) (-10 -8 (-15 -3749 ($ |#1| (-588 (-2 (|:| |scalar| (-382 (-522))) (|:| |coeff| (-1081 |#1|)) (|:| |logand| (-1081 |#1|)))) (-588 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2585 (|#1| $)) (-15 -3002 ((-588 (-2 (|:| |scalar| (-382 (-522))) (|:| |coeff| (-1081 |#1|)) (|:| |logand| (-1081 |#1|)))) $)) (-15 -2502 ((-588 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3966 ((-108) $)) (-15 -2093 ($ |#1| |#1|)) (-15 -2731 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-829 (-1085))) (-15 -2731 (|#1| $ (-1085))) |%noBranch|) (IF (|has| |#1| (-962 (-1085))) (-15 -2093 ($ |#1| (-1085))) |%noBranch|))) -((-1501 (((-108) |#1|) 16)) (-3936 (((-3 |#1| "failed") |#1|) 14)) (-4215 (((-2 (|:| -1897 |#1|) (|:| -3858 (-708))) |#1|) 31) (((-3 |#1| "failed") |#1| (-708)) 18)) (-2179 (((-108) |#1| (-708)) 19)) (-3503 ((|#1| |#1|) 32)) (-4003 ((|#1| |#1| (-708)) 34))) -(((-540 |#1|) (-10 -7 (-15 -2179 ((-108) |#1| (-708))) (-15 -4215 ((-3 |#1| "failed") |#1| (-708))) (-15 -4215 ((-2 (|:| -1897 |#1|) (|:| -3858 (-708))) |#1|)) (-15 -4003 (|#1| |#1| (-708))) (-15 -1501 ((-108) |#1|)) (-15 -3936 ((-3 |#1| "failed") |#1|)) (-15 -3503 (|#1| |#1|))) (-507)) (T -540)) -((-3503 (*1 *2 *2) (-12 (-5 *1 (-540 *2)) (-4 *2 (-507)))) (-3936 (*1 *2 *2) (|partial| -12 (-5 *1 (-540 *2)) (-4 *2 (-507)))) (-1501 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-540 *3)) (-4 *3 (-507)))) (-4003 (*1 *2 *2 *3) (-12 (-5 *3 (-708)) (-5 *1 (-540 *2)) (-4 *2 (-507)))) (-4215 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1897 *3) (|:| -3858 (-708)))) (-5 *1 (-540 *3)) (-4 *3 (-507)))) (-4215 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-708)) (-5 *1 (-540 *2)) (-4 *2 (-507)))) (-2179 (*1 *2 *3 *4) (-12 (-5 *4 (-708)) (-5 *2 (-108)) (-5 *1 (-540 *3)) (-4 *3 (-507))))) -(-10 -7 (-15 -2179 ((-108) |#1| (-708))) (-15 -4215 ((-3 |#1| "failed") |#1| (-708))) (-15 -4215 ((-2 (|:| -1897 |#1|) (|:| -3858 (-708))) |#1|)) (-15 -4003 (|#1| |#1| (-708))) (-15 -1501 ((-108) |#1|)) (-15 -3936 ((-3 |#1| "failed") |#1|)) (-15 -3503 (|#1| |#1|))) -((-1871 (((-1081 |#1|) (-850)) 27))) -(((-541 |#1|) (-10 -7 (-15 -1871 ((-1081 |#1|) (-850)))) (-324)) (T -541)) -((-1871 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-541 *4)) (-4 *4 (-324))))) -(-10 -7 (-15 -1871 ((-1081 |#1|) (-850)))) -((-3428 (((-539 (-382 (-881 |#1|))) (-539 (-382 (-881 |#1|)))) 26)) (-2611 (((-3 (-291 |#1|) (-588 (-291 |#1|))) (-382 (-881 |#1|)) (-1085)) 32 (|has| |#1| (-135)))) (-1663 (((-588 (-291 |#1|)) (-539 (-382 (-881 |#1|)))) 18)) (-3746 (((-291 |#1|) (-382 (-881 |#1|)) (-1085)) 30 (|has| |#1| (-135)))) (-1838 (((-291 |#1|) (-539 (-382 (-881 |#1|)))) 20))) -(((-542 |#1|) (-10 -7 (-15 -3428 ((-539 (-382 (-881 |#1|))) (-539 (-382 (-881 |#1|))))) (-15 -1663 ((-588 (-291 |#1|)) (-539 (-382 (-881 |#1|))))) (-15 -1838 ((-291 |#1|) (-539 (-382 (-881 |#1|))))) (IF (|has| |#1| (-135)) (PROGN (-15 -2611 ((-3 (-291 |#1|) (-588 (-291 |#1|))) (-382 (-881 |#1|)) (-1085))) (-15 -3746 ((-291 |#1|) (-382 (-881 |#1|)) (-1085)))) |%noBranch|)) (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) (T -542)) -((-3746 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085)) (-4 *5 (-135)) (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) (-5 *2 (-291 *5)) (-5 *1 (-542 *5)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085)) (-4 *5 (-135)) (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) (-5 *2 (-3 (-291 *5) (-588 (-291 *5)))) (-5 *1 (-542 *5)))) (-1838 (*1 *2 *3) (-12 (-5 *3 (-539 (-382 (-881 *4)))) (-4 *4 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) (-5 *2 (-291 *4)) (-5 *1 (-542 *4)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-539 (-382 (-881 *4)))) (-4 *4 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) (-5 *2 (-588 (-291 *4))) (-5 *1 (-542 *4)))) (-3428 (*1 *2 *2) (-12 (-5 *2 (-539 (-382 (-881 *3)))) (-4 *3 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) (-5 *1 (-542 *3))))) -(-10 -7 (-15 -3428 ((-539 (-382 (-881 |#1|))) (-539 (-382 (-881 |#1|))))) (-15 -1663 ((-588 (-291 |#1|)) (-539 (-382 (-881 |#1|))))) (-15 -1838 ((-291 |#1|) (-539 (-382 (-881 |#1|))))) (IF (|has| |#1| (-135)) (PROGN (-15 -2611 ((-3 (-291 |#1|) (-588 (-291 |#1|))) (-382 (-881 |#1|)) (-1085))) (-15 -3746 ((-291 |#1|) (-382 (-881 |#1|)) (-1085)))) |%noBranch|)) -((-2691 (((-588 (-628 (-522))) (-588 (-522)) (-588 (-834 (-522)))) 46) (((-588 (-628 (-522))) (-588 (-522))) 47) (((-628 (-522)) (-588 (-522)) (-834 (-522))) 42)) (-2446 (((-708) (-588 (-522))) 40))) -(((-543) (-10 -7 (-15 -2446 ((-708) (-588 (-522)))) (-15 -2691 ((-628 (-522)) (-588 (-522)) (-834 (-522)))) (-15 -2691 ((-588 (-628 (-522))) (-588 (-522)))) (-15 -2691 ((-588 (-628 (-522))) (-588 (-522)) (-588 (-834 (-522))))))) (T -543)) -((-2691 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-522))) (-5 *4 (-588 (-834 (-522)))) (-5 *2 (-588 (-628 (-522)))) (-5 *1 (-543)))) (-2691 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-588 (-628 (-522)))) (-5 *1 (-543)))) (-2691 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-522))) (-5 *4 (-834 (-522))) (-5 *2 (-628 (-522))) (-5 *1 (-543)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-708)) (-5 *1 (-543))))) -(-10 -7 (-15 -2446 ((-708) (-588 (-522)))) (-15 -2691 ((-628 (-522)) (-588 (-522)) (-834 (-522)))) (-15 -2691 ((-588 (-628 (-522))) (-588 (-522)))) (-15 -2691 ((-588 (-628 (-522))) (-588 (-522)) (-588 (-834 (-522)))))) -((-3452 (((-588 |#5|) |#5| (-108)) 73)) (-1326 (((-108) |#5| (-588 |#5|)) 30))) -(((-544 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3452 ((-588 |#5|) |#5| (-108))) (-15 -1326 ((-108) |#5| (-588 |#5|)))) (-13 (-283) (-135)) (-730) (-784) (-985 |#1| |#2| |#3|) (-1023 |#1| |#2| |#3| |#4|)) (T -544)) -((-1326 (*1 *2 *3 *4) (-12 (-5 *4 (-588 *3)) (-4 *3 (-1023 *5 *6 *7 *8)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-544 *5 *6 *7 *8 *3)))) (-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7)) (-5 *2 (-588 *3)) (-5 *1 (-544 *5 *6 *7 *8 *3)) (-4 *3 (-1023 *5 *6 *7 *8))))) -(-10 -7 (-15 -3452 ((-588 |#5|) |#5| (-108))) (-15 -1326 ((-108) |#5| (-588 |#5|)))) -((-1419 (((-108) $ $) NIL (|has| (-132) (-1014)))) (-2828 (($ $) 34)) (-4140 (($ $) NIL)) (-2334 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-3883 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-3900 (((-108) $ $) 51)) (-3876 (((-108) $ $ (-522)) 46)) (-3428 (((-588 $) $ (-132)) 60) (((-588 $) $ (-129)) 61)) (-1866 (((-108) (-1 (-108) (-132) (-132)) $) NIL) (((-108) $) NIL (|has| (-132) (-784)))) (-2806 (($ (-1 (-108) (-132) (-132)) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| (-132) (-784))))) (-3296 (($ (-1 (-108) (-132) (-132)) $) NIL) (($ $) NIL (|has| (-132) (-784)))) (-2717 (((-108) $ (-708)) NIL)) (-2437 (((-132) $ (-522) (-132)) 45 (|has| $ (-6 -4239))) (((-132) $ (-1133 (-522)) (-132)) NIL (|has| $ (-6 -4239)))) (-1696 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-3367 (($) NIL T CONST)) (-2979 (($ $ (-132)) 64) (($ $ (-129)) 65)) (-2465 (($ $) NIL (|has| $ (-6 -4239)))) (-1939 (($ $) NIL)) (-4029 (($ $ (-1133 (-522)) $) 44)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-1424 (($ (-132) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014)))) (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-2153 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) NIL (|has| $ (-6 -4238))) (((-132) (-1 (-132) (-132) (-132)) $) NIL (|has| $ (-6 -4238)))) (-2411 (((-132) $ (-522) (-132)) NIL (|has| $ (-6 -4239)))) (-2186 (((-132) $ (-522)) NIL)) (-3928 (((-108) $ $) 71)) (-3314 (((-522) (-1 (-108) (-132)) $) NIL) (((-522) (-132) $) NIL (|has| (-132) (-1014))) (((-522) (-132) $ (-522)) 48 (|has| (-132) (-1014))) (((-522) $ $ (-522)) 47) (((-522) (-129) $ (-522)) 50)) (-2395 (((-588 (-132)) $) NIL (|has| $ (-6 -4238)))) (-1893 (($ (-708) (-132)) 9)) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) 28 (|has| (-522) (-784)))) (-1308 (($ $ $) NIL (|has| (-132) (-784)))) (-3164 (($ (-1 (-108) (-132) (-132)) $ $) NIL) (($ $ $) NIL (|has| (-132) (-784)))) (-4084 (((-588 (-132)) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-2201 (((-522) $) 42 (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (|has| (-132) (-784)))) (-1445 (((-108) $ $ (-132)) 72)) (-4171 (((-708) $ $ (-132)) 70)) (-2397 (($ (-1 (-132) (-132)) $) 33 (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-132) (-132)) $) NIL) (($ (-1 (-132) (-132) (-132)) $ $) NIL)) (-1219 (($ $) 37)) (-2369 (($ $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2992 (($ $ (-132)) 62) (($ $ (-129)) 63)) (-2311 (((-1068) $) 38 (|has| (-132) (-1014)))) (-1731 (($ (-132) $ (-522)) NIL) (($ $ $ (-522)) 23)) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) NIL)) (-4174 (((-522) $) 69) (((-1032) $) NIL (|has| (-132) (-1014)))) (-2337 (((-132) $) NIL (|has| (-522) (-784)))) (-2187 (((-3 (-132) "failed") (-1 (-108) (-132)) $) NIL)) (-1972 (($ $ (-132)) NIL (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 (-132)))) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-270 (-132))) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-132) (-132)) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-588 (-132)) (-588 (-132))) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-1973 (((-588 (-132)) $) NIL)) (-3494 (((-108) $) 12)) (-3298 (($) 10)) (-2683 (((-132) $ (-522) (-132)) NIL) (((-132) $ (-522)) 52) (($ $ (-1133 (-522))) 21) (($ $ $) NIL)) (-3835 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-4187 (((-708) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238))) (((-708) (-132) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-3629 (($ $ $ (-522)) 66 (|has| $ (-6 -4239)))) (-2463 (($ $) 17)) (-3873 (((-498) $) NIL (|has| (-132) (-563 (-498))))) (-2227 (($ (-588 (-132))) NIL)) (-4170 (($ $ (-132)) NIL) (($ (-132) $) NIL) (($ $ $) 16) (($ (-588 $)) 67)) (-2217 (($ (-132)) NIL) (((-792) $) 27 (|has| (-132) (-562 (-792))))) (-1381 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-1623 (((-108) $ $) NIL (|has| (-132) (-784)))) (-1597 (((-108) $ $) NIL (|has| (-132) (-784)))) (-1562 (((-108) $ $) 14 (|has| (-132) (-1014)))) (-1609 (((-108) $ $) NIL (|has| (-132) (-784)))) (-1587 (((-108) $ $) 15 (|has| (-132) (-784)))) (-3591 (((-708) $) 13 (|has| $ (-6 -4238))))) -(((-545 |#1|) (-13 (-1054) (-10 -8 (-15 -4174 ((-522) $)))) (-522)) (T -545)) -((-4174 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-545 *3)) (-14 *3 *2)))) -(-13 (-1054) (-10 -8 (-15 -4174 ((-522) $)))) -((-3640 (((-2 (|:| |num| |#4|) (|:| |den| (-522))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-522))) |#4| |#2| (-1009 |#4|)) 32))) -(((-546 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3640 ((-2 (|:| |num| |#4|) (|:| |den| (-522))) |#4| |#2| (-1009 |#4|))) (-15 -3640 ((-2 (|:| |num| |#4|) (|:| |den| (-522))) |#4| |#2|))) (-730) (-784) (-514) (-878 |#3| |#1| |#2|)) (T -546)) -((-3640 (*1 *2 *3 *4) (-12 (-4 *5 (-730)) (-4 *4 (-784)) (-4 *6 (-514)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-522)))) (-5 *1 (-546 *5 *4 *6 *3)) (-4 *3 (-878 *6 *5 *4)))) (-3640 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1009 *3)) (-4 *3 (-878 *7 *6 *4)) (-4 *6 (-730)) (-4 *4 (-784)) (-4 *7 (-514)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-522)))) (-5 *1 (-546 *6 *4 *7 *3))))) -(-10 -7 (-15 -3640 ((-2 (|:| |num| |#4|) (|:| |den| (-522))) |#4| |#2| (-1009 |#4|))) (-15 -3640 ((-2 (|:| |num| |#4|) (|:| |den| (-522))) |#4| |#2|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 63)) (-3533 (((-588 (-999)) $) NIL)) (-1660 (((-1085) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) NIL (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-3495 (($ $ (-522)) 54) (($ $ (-522) (-522)) 55)) (-3024 (((-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) $) 60)) (-2504 (($ $) 100)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3892 (((-792) (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) (-951 (-777 (-522))) (-1085) |#1| (-382 (-522))) 215)) (-1270 (($ (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|)))) 34)) (-3367 (($) NIL T CONST)) (-3241 (($ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3672 (((-108) $) NIL)) (-3872 (((-522) $) 58) (((-522) $ (-522)) 59)) (-2859 (((-108) $) NIL)) (-2895 (($ $ (-850)) 76)) (-1332 (($ (-1 |#1| (-522)) $) 73)) (-1374 (((-108) $) 25)) (-3500 (($ |#1| (-522)) 22) (($ $ (-999) (-522)) NIL) (($ $ (-588 (-999)) (-588 (-522))) NIL)) (-3810 (($ (-1 |#1| |#1|) $) 67)) (-2188 (($ (-951 (-777 (-522))) (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|)))) 11)) (-3216 (($ $) NIL)) (-3224 ((|#1| $) NIL)) (-2311 (((-1068) $) NIL)) (-2611 (($ $) 112 (|has| |#1| (-37 (-382 (-522)))))) (-2232 (((-3 $ "failed") $ $ (-108)) 99)) (-3078 (($ $ $) 108)) (-4174 (((-1032) $) NIL)) (-1613 (((-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) $) 13)) (-1288 (((-951 (-777 (-522))) $) 12)) (-3934 (($ $ (-522)) 45)) (-2276 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-2330 (((-1066 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-522)))))) (-2683 ((|#1| $ (-522)) 57) (($ $ $) NIL (|has| (-522) (-1026)))) (-2731 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-522) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (-2487 (((-522) $) NIL)) (-1944 (($ $) 46)) (-2217 (((-792) $) NIL) (($ (-522)) 28) (($ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $) NIL (|has| |#1| (-514))) (($ |#1|) 27 (|has| |#1| (-157)))) (-1643 ((|#1| $ (-522)) 56)) (-3040 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2742 (((-708)) 37)) (-1980 ((|#1| $) NIL)) (-1970 (($ $) 180 (|has| |#1| (-37 (-382 (-522)))))) (-2470 (($ $) 156 (|has| |#1| (-37 (-382 (-522)))))) (-2268 (($ $) 177 (|has| |#1| (-37 (-382 (-522)))))) (-1498 (($ $) 153 (|has| |#1| (-37 (-382 (-522)))))) (-1570 (($ $) 182 (|has| |#1| (-37 (-382 (-522)))))) (-3837 (($ $) 159 (|has| |#1| (-37 (-382 (-522)))))) (-1345 (($ $ (-382 (-522))) 146 (|has| |#1| (-37 (-382 (-522)))))) (-2679 (($ $ |#1|) 121 (|has| |#1| (-37 (-382 (-522)))))) (-3514 (($ $) 150 (|has| |#1| (-37 (-382 (-522)))))) (-2166 (($ $) 148 (|has| |#1| (-37 (-382 (-522)))))) (-1438 (($ $) 183 (|has| |#1| (-37 (-382 (-522)))))) (-3761 (($ $) 160 (|has| |#1| (-37 (-382 (-522)))))) (-3085 (($ $) 181 (|has| |#1| (-37 (-382 (-522)))))) (-1977 (($ $) 158 (|has| |#1| (-37 (-382 (-522)))))) (-3194 (($ $) 178 (|has| |#1| (-37 (-382 (-522)))))) (-4122 (($ $) 154 (|has| |#1| (-37 (-382 (-522)))))) (-2603 (($ $) 188 (|has| |#1| (-37 (-382 (-522)))))) (-3986 (($ $) 168 (|has| |#1| (-37 (-382 (-522)))))) (-3680 (($ $) 185 (|has| |#1| (-37 (-382 (-522)))))) (-3093 (($ $) 163 (|has| |#1| (-37 (-382 (-522)))))) (-1499 (($ $) 192 (|has| |#1| (-37 (-382 (-522)))))) (-3552 (($ $) 172 (|has| |#1| (-37 (-382 (-522)))))) (-2771 (($ $) 194 (|has| |#1| (-37 (-382 (-522)))))) (-2873 (($ $) 174 (|has| |#1| (-37 (-382 (-522)))))) (-3691 (($ $) 190 (|has| |#1| (-37 (-382 (-522)))))) (-2324 (($ $) 170 (|has| |#1| (-37 (-382 (-522)))))) (-3797 (($ $) 187 (|has| |#1| (-37 (-382 (-522)))))) (-2156 (($ $) 166 (|has| |#1| (-37 (-382 (-522)))))) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3996 ((|#1| $ (-522)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-522)))) (|has| |#1| (-15 -2217 (|#1| (-1085))))))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 29 T CONST)) (-3709 (($) 38 T CONST)) (-2252 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-522) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (-1562 (((-108) $ $) 65)) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1672 (($ $) 84) (($ $ $) 64)) (-1661 (($ $ $) 81)) (** (($ $ (-850)) NIL) (($ $ (-708)) 103)) (* (($ (-850) $) 89) (($ (-708) $) 87) (($ (-522) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))))) -(((-547 |#1|) (-13 (-1144 |#1| (-522)) (-10 -8 (-15 -2188 ($ (-951 (-777 (-522))) (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))))) (-15 -1288 ((-951 (-777 (-522))) $)) (-15 -1613 ((-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) $)) (-15 -1270 ($ (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))))) (-15 -1374 ((-108) $)) (-15 -1332 ($ (-1 |#1| (-522)) $)) (-15 -2232 ((-3 $ "failed") $ $ (-108))) (-15 -2504 ($ $)) (-15 -3078 ($ $ $)) (-15 -3892 ((-792) (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) (-951 (-777 (-522))) (-1085) |#1| (-382 (-522)))) (IF (|has| |#1| (-37 (-382 (-522)))) (PROGN (-15 -2611 ($ $)) (-15 -2679 ($ $ |#1|)) (-15 -1345 ($ $ (-382 (-522)))) (-15 -2166 ($ $)) (-15 -3514 ($ $)) (-15 -1498 ($ $)) (-15 -4122 ($ $)) (-15 -2470 ($ $)) (-15 -1977 ($ $)) (-15 -3837 ($ $)) (-15 -3761 ($ $)) (-15 -3093 ($ $)) (-15 -2156 ($ $)) (-15 -3986 ($ $)) (-15 -2324 ($ $)) (-15 -3552 ($ $)) (-15 -2873 ($ $)) (-15 -2268 ($ $)) (-15 -3194 ($ $)) (-15 -1970 ($ $)) (-15 -3085 ($ $)) (-15 -1570 ($ $)) (-15 -1438 ($ $)) (-15 -3680 ($ $)) (-15 -3797 ($ $)) (-15 -2603 ($ $)) (-15 -3691 ($ $)) (-15 -1499 ($ $)) (-15 -2771 ($ $))) |%noBranch|))) (-971)) (T -547)) -((-1374 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-547 *3)) (-4 *3 (-971)))) (-2188 (*1 *1 *2 *3) (-12 (-5 *2 (-951 (-777 (-522)))) (-5 *3 (-1066 (-2 (|:| |k| (-522)) (|:| |c| *4)))) (-4 *4 (-971)) (-5 *1 (-547 *4)))) (-1288 (*1 *2 *1) (-12 (-5 *2 (-951 (-777 (-522)))) (-5 *1 (-547 *3)) (-4 *3 (-971)))) (-1613 (*1 *2 *1) (-12 (-5 *2 (-1066 (-2 (|:| |k| (-522)) (|:| |c| *3)))) (-5 *1 (-547 *3)) (-4 *3 (-971)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-1066 (-2 (|:| |k| (-522)) (|:| |c| *3)))) (-4 *3 (-971)) (-5 *1 (-547 *3)))) (-1332 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-522))) (-4 *3 (-971)) (-5 *1 (-547 *3)))) (-2232 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-547 *3)) (-4 *3 (-971)))) (-2504 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-971)))) (-3078 (*1 *1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-971)))) (-3892 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1066 (-2 (|:| |k| (-522)) (|:| |c| *6)))) (-5 *4 (-951 (-777 (-522)))) (-5 *5 (-1085)) (-5 *7 (-382 (-522))) (-4 *6 (-971)) (-5 *2 (-792)) (-5 *1 (-547 *6)))) (-2611 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-2679 (*1 *1 *1 *2) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-1345 (*1 *1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-547 *3)) (-4 *3 (-37 *2)) (-4 *3 (-971)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-3514 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-1498 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-4122 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-2470 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-1977 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-3837 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-3761 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-3093 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-3986 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-2324 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-3552 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-2873 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-2268 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-3194 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-1970 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-3085 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-1570 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-1438 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-3680 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-3797 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-2603 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-3691 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-1499 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-2771 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(-13 (-1144 |#1| (-522)) (-10 -8 (-15 -2188 ($ (-951 (-777 (-522))) (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))))) (-15 -1288 ((-951 (-777 (-522))) $)) (-15 -1613 ((-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) $)) (-15 -1270 ($ (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))))) (-15 -1374 ((-108) $)) (-15 -1332 ($ (-1 |#1| (-522)) $)) (-15 -2232 ((-3 $ "failed") $ $ (-108))) (-15 -2504 ($ $)) (-15 -3078 ($ $ $)) (-15 -3892 ((-792) (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) (-951 (-777 (-522))) (-1085) |#1| (-382 (-522)))) (IF (|has| |#1| (-37 (-382 (-522)))) (PROGN (-15 -2611 ($ $)) (-15 -2679 ($ $ |#1|)) (-15 -1345 ($ $ (-382 (-522)))) (-15 -2166 ($ $)) (-15 -3514 ($ $)) (-15 -1498 ($ $)) (-15 -4122 ($ $)) (-15 -2470 ($ $)) (-15 -1977 ($ $)) (-15 -3837 ($ $)) (-15 -3761 ($ $)) (-15 -3093 ($ $)) (-15 -2156 ($ $)) (-15 -3986 ($ $)) (-15 -2324 ($ $)) (-15 -3552 ($ $)) (-15 -2873 ($ $)) (-15 -2268 ($ $)) (-15 -3194 ($ $)) (-15 -1970 ($ $)) (-15 -3085 ($ $)) (-15 -1570 ($ $)) (-15 -1438 ($ $)) (-15 -3680 ($ $)) (-15 -3797 ($ $)) (-15 -2603 ($ $)) (-15 -3691 ($ $)) (-15 -1499 ($ $)) (-15 -2771 ($ $))) |%noBranch|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) NIL (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-1270 (($ (-1066 |#1|)) 9)) (-3367 (($) NIL T CONST)) (-3920 (((-3 $ "failed") $) 42)) (-3672 (((-108) $) 52)) (-3872 (((-708) $) 55) (((-708) $ (-708)) 54)) (-2859 (((-108) $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2276 (((-3 $ "failed") $ $) 44 (|has| |#1| (-514)))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL (|has| |#1| (-514)))) (-2180 (((-1066 |#1|) $) 23)) (-2742 (((-708)) 51)) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 10 T CONST)) (-3709 (($) 14 T CONST)) (-1562 (((-108) $ $) 22)) (-1672 (($ $) 30) (($ $ $) 16)) (-1661 (($ $ $) 25)) (** (($ $ (-850)) NIL) (($ $ (-708)) 49)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-522)) 36))) -(((-548 |#1|) (-13 (-971) (-10 -8 (-15 -2180 ((-1066 |#1|) $)) (-15 -1270 ($ (-1066 |#1|))) (-15 -3672 ((-108) $)) (-15 -3872 ((-708) $)) (-15 -3872 ((-708) $ (-708))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-522))) (IF (|has| |#1| (-514)) (-6 (-514)) |%noBranch|))) (-971)) (T -548)) -((-2180 (*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-548 *3)) (-4 *3 (-971)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-548 *3)))) (-3672 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-548 *3)) (-4 *3 (-971)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-548 *3)) (-4 *3 (-971)))) (-3872 (*1 *2 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-548 *3)) (-4 *3 (-971)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-971)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-548 *2)) (-4 *2 (-971)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-548 *3)) (-4 *3 (-971))))) -(-13 (-971) (-10 -8 (-15 -2180 ((-1066 |#1|) $)) (-15 -1270 ($ (-1066 |#1|))) (-15 -3672 ((-108) $)) (-15 -3872 ((-708) $)) (-15 -3872 ((-708) $ (-708))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-522))) (IF (|has| |#1| (-514)) (-6 (-514)) |%noBranch|))) -((-3810 (((-552 |#2|) (-1 |#2| |#1|) (-552 |#1|)) 15))) -(((-549 |#1| |#2|) (-10 -7 (-15 -3810 ((-552 |#2|) (-1 |#2| |#1|) (-552 |#1|)))) (-1120) (-1120)) (T -549)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-552 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-552 *6)) (-5 *1 (-549 *5 *6))))) -(-10 -7 (-15 -3810 ((-552 |#2|) (-1 |#2| |#1|) (-552 |#1|)))) -((-3810 (((-1066 |#3|) (-1 |#3| |#1| |#2|) (-552 |#1|) (-1066 |#2|)) 20) (((-1066 |#3|) (-1 |#3| |#1| |#2|) (-1066 |#1|) (-552 |#2|)) 19) (((-552 |#3|) (-1 |#3| |#1| |#2|) (-552 |#1|) (-552 |#2|)) 18))) -(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -3810 ((-552 |#3|) (-1 |#3| |#1| |#2|) (-552 |#1|) (-552 |#2|))) (-15 -3810 ((-1066 |#3|) (-1 |#3| |#1| |#2|) (-1066 |#1|) (-552 |#2|))) (-15 -3810 ((-1066 |#3|) (-1 |#3| |#1| |#2|) (-552 |#1|) (-1066 |#2|)))) (-1120) (-1120) (-1120)) (T -550)) -((-3810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-552 *6)) (-5 *5 (-1066 *7)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-1066 *8)) (-5 *1 (-550 *6 *7 *8)))) (-3810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1066 *6)) (-5 *5 (-552 *7)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-1066 *8)) (-5 *1 (-550 *6 *7 *8)))) (-3810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-552 *6)) (-5 *5 (-552 *7)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-552 *8)) (-5 *1 (-550 *6 *7 *8))))) -(-10 -7 (-15 -3810 ((-552 |#3|) (-1 |#3| |#1| |#2|) (-552 |#1|) (-552 |#2|))) (-15 -3810 ((-1066 |#3|) (-1 |#3| |#1| |#2|) (-1066 |#1|) (-552 |#2|))) (-15 -3810 ((-1066 |#3|) (-1 |#3| |#1| |#2|) (-552 |#1|) (-1066 |#2|)))) -((-2776 ((|#3| |#3| (-588 (-561 |#3|)) (-588 (-1085))) 55)) (-1708 (((-154 |#2|) |#3|) 116)) (-2421 ((|#3| (-154 |#2|)) 43)) (-3255 ((|#2| |#3|) 19)) (-1956 ((|#3| |#2|) 32))) -(((-551 |#1| |#2| |#3|) (-10 -7 (-15 -2421 (|#3| (-154 |#2|))) (-15 -3255 (|#2| |#3|)) (-15 -1956 (|#3| |#2|)) (-15 -1708 ((-154 |#2|) |#3|)) (-15 -2776 (|#3| |#3| (-588 (-561 |#3|)) (-588 (-1085))))) (-13 (-514) (-784)) (-13 (-405 |#1|) (-928) (-1106)) (-13 (-405 (-154 |#1|)) (-928) (-1106))) (T -551)) -((-2776 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-588 (-561 *2))) (-5 *4 (-588 (-1085))) (-4 *2 (-13 (-405 (-154 *5)) (-928) (-1106))) (-4 *5 (-13 (-514) (-784))) (-5 *1 (-551 *5 *6 *2)) (-4 *6 (-13 (-405 *5) (-928) (-1106))))) (-1708 (*1 *2 *3) (-12 (-4 *4 (-13 (-514) (-784))) (-5 *2 (-154 *5)) (-5 *1 (-551 *4 *5 *3)) (-4 *5 (-13 (-405 *4) (-928) (-1106))) (-4 *3 (-13 (-405 (-154 *4)) (-928) (-1106))))) (-1956 (*1 *2 *3) (-12 (-4 *4 (-13 (-514) (-784))) (-4 *2 (-13 (-405 (-154 *4)) (-928) (-1106))) (-5 *1 (-551 *4 *3 *2)) (-4 *3 (-13 (-405 *4) (-928) (-1106))))) (-3255 (*1 *2 *3) (-12 (-4 *4 (-13 (-514) (-784))) (-4 *2 (-13 (-405 *4) (-928) (-1106))) (-5 *1 (-551 *4 *2 *3)) (-4 *3 (-13 (-405 (-154 *4)) (-928) (-1106))))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-154 *5)) (-4 *5 (-13 (-405 *4) (-928) (-1106))) (-4 *4 (-13 (-514) (-784))) (-4 *2 (-13 (-405 (-154 *4)) (-928) (-1106))) (-5 *1 (-551 *4 *5 *2))))) -(-10 -7 (-15 -2421 (|#3| (-154 |#2|))) (-15 -3255 (|#2| |#3|)) (-15 -1956 (|#3| |#2|)) (-15 -1708 ((-154 |#2|) |#3|)) (-15 -2776 (|#3| |#3| (-588 (-561 |#3|)) (-588 (-1085))))) -((-1696 (($ (-1 (-108) |#1|) $) 16)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-1626 (($ (-1 |#1| |#1|) |#1|) 9)) (-1674 (($ (-1 (-108) |#1|) $) 12)) (-1684 (($ (-1 (-108) |#1|) $) 14)) (-2227 (((-1066 |#1|) $) 17)) (-2217 (((-792) $) NIL))) -(((-552 |#1|) (-13 (-562 (-792)) (-10 -8 (-15 -3810 ($ (-1 |#1| |#1|) $)) (-15 -1674 ($ (-1 (-108) |#1|) $)) (-15 -1684 ($ (-1 (-108) |#1|) $)) (-15 -1696 ($ (-1 (-108) |#1|) $)) (-15 -1626 ($ (-1 |#1| |#1|) |#1|)) (-15 -2227 ((-1066 |#1|) $)))) (-1120)) (T -552)) -((-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-552 *3)))) (-1674 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1120)) (-5 *1 (-552 *3)))) (-1684 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1120)) (-5 *1 (-552 *3)))) (-1696 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1120)) (-5 *1 (-552 *3)))) (-1626 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-552 *3)))) (-2227 (*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-552 *3)) (-4 *3 (-1120))))) -(-13 (-562 (-792)) (-10 -8 (-15 -3810 ($ (-1 |#1| |#1|) $)) (-15 -1674 ($ (-1 (-108) |#1|) $)) (-15 -1684 ($ (-1 (-108) |#1|) $)) (-15 -1696 ($ (-1 (-108) |#1|) $)) (-15 -1626 ($ (-1 |#1| |#1|) |#1|)) (-15 -2227 ((-1066 |#1|) $)))) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1785 (($ (-708)) NIL (|has| |#1| (-23)))) (-3883 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1866 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-2806 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784))))) (-3296 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-2717 (((-108) $ (-708)) NIL)) (-2437 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239)))) (-1696 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3367 (($) NIL T CONST)) (-2465 (($ $) NIL (|has| $ (-6 -4239)))) (-1939 (($ $) NIL)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1424 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238)))) (-2411 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-522)) NIL)) (-3314 (((-522) (-1 (-108) |#1|) $) NIL) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014)))) (-2395 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4043 (((-628 |#1|) $ $) NIL (|has| |#1| (-971)))) (-1893 (($ (-708) |#1|) NIL)) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) NIL (|has| (-522) (-784)))) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-3164 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-784)))) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2201 (((-522) $) NIL (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-2397 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4113 ((|#1| $) NIL (-12 (|has| |#1| (-928)) (|has| |#1| (-971))))) (-3309 (((-108) $ (-708)) NIL)) (-4030 ((|#1| $) NIL (-12 (|has| |#1| (-928)) (|has| |#1| (-971))))) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1731 (($ |#1| $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) NIL)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2337 ((|#1| $) NIL (|has| (-522) (-784)))) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1972 (($ $ |#1|) NIL (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#1| $ (-522) |#1|) NIL) ((|#1| $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-4024 ((|#1| $ $) NIL (|has| |#1| (-971)))) (-3835 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-2791 (($ $ $) NIL (|has| |#1| (-971)))) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3629 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) NIL)) (-4170 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-588 $)) NIL)) (-2217 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1672 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1661 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-522) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-664))) (($ $ |#1|) NIL (|has| |#1| (-664)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-553 |#1| |#2|) (-1164 |#1|) (-1120) (-522)) (T -553)) -NIL -(-1164 |#1|) -((-3883 (((-1171) $ |#2| |#2|) 36)) (-3496 ((|#2| $) 23)) (-2201 ((|#2| $) 21)) (-2397 (($ (-1 |#3| |#3|) $) 32)) (-3810 (($ (-1 |#3| |#3|) $) 30)) (-2337 ((|#3| $) 26)) (-1972 (($ $ |#3|) 33)) (-3434 (((-108) |#3| $) 17)) (-1973 (((-588 |#3|) $) 15)) (-2683 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-554 |#1| |#2| |#3|) (-10 -8 (-15 -3883 ((-1171) |#1| |#2| |#2|)) (-15 -1972 (|#1| |#1| |#3|)) (-15 -2337 (|#3| |#1|)) (-15 -3496 (|#2| |#1|)) (-15 -2201 (|#2| |#1|)) (-15 -3434 ((-108) |#3| |#1|)) (-15 -1973 ((-588 |#3|) |#1|)) (-15 -2683 (|#3| |#1| |#2|)) (-15 -2683 (|#3| |#1| |#2| |#3|)) (-15 -2397 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3810 (|#1| (-1 |#3| |#3|) |#1|))) (-555 |#2| |#3|) (-1014) (-1120)) (T -554)) -NIL -(-10 -8 (-15 -3883 ((-1171) |#1| |#2| |#2|)) (-15 -1972 (|#1| |#1| |#3|)) (-15 -2337 (|#3| |#1|)) (-15 -3496 (|#2| |#1|)) (-15 -2201 (|#2| |#1|)) (-15 -3434 ((-108) |#3| |#1|)) (-15 -1973 ((-588 |#3|) |#1|)) (-15 -2683 (|#3| |#1| |#2|)) (-15 -2683 (|#3| |#1| |#2| |#3|)) (-15 -2397 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3810 (|#1| (-1 |#3| |#3|) |#1|))) -((-1419 (((-108) $ $) 19 (|has| |#2| (-1014)))) (-3883 (((-1171) $ |#1| |#1|) 40 (|has| $ (-6 -4239)))) (-2717 (((-108) $ (-708)) 8)) (-2437 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4239)))) (-3367 (($) 7 T CONST)) (-2411 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4239)))) (-2186 ((|#2| $ |#1|) 51)) (-2395 (((-588 |#2|) $) 30 (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) 9)) (-3496 ((|#1| $) 43 (|has| |#1| (-784)))) (-4084 (((-588 |#2|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1014)) (|has| $ (-6 -4238))))) (-2201 ((|#1| $) 44 (|has| |#1| (-784)))) (-2397 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#2| |#2|) $) 35)) (-3309 (((-108) $ (-708)) 10)) (-2311 (((-1068) $) 22 (|has| |#2| (-1014)))) (-2130 (((-588 |#1|) $) 46)) (-2103 (((-108) |#1| $) 47)) (-4174 (((-1032) $) 21 (|has| |#2| (-1014)))) (-2337 ((|#2| $) 42 (|has| |#1| (-784)))) (-1972 (($ $ |#2|) 41 (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#2|))) 26 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) 25 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) 23 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-2065 (((-108) $ $) 14)) (-3434 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1973 (((-588 |#2|) $) 48)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-4187 (((-708) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4238))) (((-708) |#2| $) 28 (-12 (|has| |#2| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-2217 (((-792) $) 18 (|has| |#2| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| |#2| (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-555 |#1| |#2|) (-1197) (-1014) (-1120)) (T -555)) -((-1973 (*1 *2 *1) (-12 (-4 *1 (-555 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1120)) (-5 *2 (-588 *4)))) (-2103 (*1 *2 *3 *1) (-12 (-4 *1 (-555 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1120)) (-5 *2 (-108)))) (-2130 (*1 *2 *1) (-12 (-4 *1 (-555 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1120)) (-5 *2 (-588 *3)))) (-3434 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4238)) (-4 *1 (-555 *4 *3)) (-4 *4 (-1014)) (-4 *3 (-1120)) (-4 *3 (-1014)) (-5 *2 (-108)))) (-2201 (*1 *2 *1) (-12 (-4 *1 (-555 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1014)) (-4 *2 (-784)))) (-3496 (*1 *2 *1) (-12 (-4 *1 (-555 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1014)) (-4 *2 (-784)))) (-2337 (*1 *2 *1) (-12 (-4 *1 (-555 *3 *2)) (-4 *3 (-1014)) (-4 *3 (-784)) (-4 *2 (-1120)))) (-1972 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-555 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1120)))) (-3883 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-555 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1120)) (-5 *2 (-1171))))) -(-13 (-461 |t#2|) (-264 |t#1| |t#2|) (-10 -8 (-15 -1973 ((-588 |t#2|) $)) (-15 -2103 ((-108) |t#1| $)) (-15 -2130 ((-588 |t#1|) $)) (IF (|has| |t#2| (-1014)) (IF (|has| $ (-6 -4238)) (-15 -3434 ((-108) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-784)) (PROGN (-15 -2201 (|t#1| $)) (-15 -3496 (|t#1| $)) (-15 -2337 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4239)) (PROGN (-15 -1972 ($ $ |t#2|)) (-15 -3883 ((-1171) $ |t#1| |t#1|))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#2| (-1014)) ((-562 (-792)) -3844 (|has| |#2| (-1014)) (|has| |#2| (-562 (-792)))) ((-262 |#1| |#2|) . T) ((-264 |#1| |#2|) . T) ((-285 |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((-461 |#2|) . T) ((-483 |#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((-1014) |has| |#2| (-1014)) ((-1120) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2541 (((-3 $ "failed")) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-2265 (((-3 $ "failed") $ $) NIL)) (-3690 (((-1166 (-628 |#1|))) NIL (|has| |#2| (-392 |#1|))) (((-1166 (-628 |#1|)) (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-2726 (((-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-3367 (($) NIL T CONST)) (-2722 (((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed")) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-3050 (((-3 $ "failed")) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-3531 (((-628 |#1|)) NIL (|has| |#2| (-392 |#1|))) (((-628 |#1|) (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-2046 ((|#1| $) NIL (|has| |#2| (-342 |#1|)))) (-2853 (((-628 |#1|) $) NIL (|has| |#2| (-392 |#1|))) (((-628 |#1|) $ (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-1279 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-1662 (((-1081 (-881 |#1|))) NIL (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-338))))) (-2698 (($ $ (-850)) NIL)) (-3676 ((|#1| $) NIL (|has| |#2| (-342 |#1|)))) (-4080 (((-1081 |#1|) $) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-4035 ((|#1|) NIL (|has| |#2| (-392 |#1|))) ((|#1| (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-3767 (((-1081 |#1|) $) NIL (|has| |#2| (-342 |#1|)))) (-1340 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3225 (($ (-1166 |#1|)) NIL (|has| |#2| (-392 |#1|))) (($ (-1166 |#1|) (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-3920 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-1692 (((-850)) NIL (|has| |#2| (-342 |#1|)))) (-2134 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2870 (($ $ (-850)) NIL)) (-2287 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3702 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3868 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2439 (((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed")) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-3351 (((-3 $ "failed")) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-1521 (((-628 |#1|)) NIL (|has| |#2| (-392 |#1|))) (((-628 |#1|) (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-3411 ((|#1| $) NIL (|has| |#2| (-342 |#1|)))) (-2734 (((-628 |#1|) $) NIL (|has| |#2| (-392 |#1|))) (((-628 |#1|) $ (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-3070 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-3943 (((-1081 (-881 |#1|))) NIL (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-338))))) (-1946 (($ $ (-850)) NIL)) (-1819 ((|#1| $) NIL (|has| |#2| (-342 |#1|)))) (-1216 (((-1081 |#1|) $) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-3020 ((|#1|) NIL (|has| |#2| (-392 |#1|))) ((|#1| (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-2724 (((-1081 |#1|) $) NIL (|has| |#2| (-342 |#1|)))) (-4197 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2311 (((-1068) $) NIL)) (-3823 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-1388 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3509 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-4174 (((-1032) $) NIL)) (-1427 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2683 ((|#1| $ (-522)) NIL (|has| |#2| (-392 |#1|)))) (-3510 (((-628 |#1|) (-1166 $)) NIL (|has| |#2| (-392 |#1|))) (((-1166 |#1|) $) NIL (|has| |#2| (-392 |#1|))) (((-628 |#1|) (-1166 $) (-1166 $)) NIL (|has| |#2| (-342 |#1|))) (((-1166 |#1|) $ (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-3873 (($ (-1166 |#1|)) NIL (|has| |#2| (-392 |#1|))) (((-1166 |#1|) $) NIL (|has| |#2| (-392 |#1|)))) (-1777 (((-588 (-881 |#1|))) NIL (|has| |#2| (-392 |#1|))) (((-588 (-881 |#1|)) (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-1596 (($ $ $) NIL)) (-3990 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2217 (((-792) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2905 (((-1166 $)) NIL (|has| |#2| (-392 |#1|)))) (-1548 (((-588 (-1166 |#1|))) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-2185 (($ $ $ $) NIL)) (-3597 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-1664 (($ (-628 |#1|) $) NIL (|has| |#2| (-392 |#1|)))) (-1369 (($ $ $) NIL)) (-3578 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2912 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-1855 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3697 (($) NIL T CONST)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) 24)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-556 |#1| |#2|) (-13 (-682 |#1|) (-562 |#2|) (-10 -8 (-15 -2217 ($ |#2|)) (IF (|has| |#2| (-392 |#1|)) (-6 (-392 |#1|)) |%noBranch|) (IF (|has| |#2| (-342 |#1|)) (-6 (-342 |#1|)) |%noBranch|))) (-157) (-682 |#1|)) (T -556)) -((-2217 (*1 *1 *2) (-12 (-4 *3 (-157)) (-5 *1 (-556 *3 *2)) (-4 *2 (-682 *3))))) -(-13 (-682 |#1|) (-562 |#2|) (-10 -8 (-15 -2217 ($ |#2|)) (IF (|has| |#2| (-392 |#1|)) (-6 (-392 |#1|)) |%noBranch|) (IF (|has| |#2| (-342 |#1|)) (-6 (-342 |#1|)) |%noBranch|))) -((-1419 (((-108) $ $) NIL)) (-2710 (((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) $ (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) 32)) (-1883 (($ (-588 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)))) NIL) (($) NIL)) (-3883 (((-1171) $ (-1068) (-1068)) NIL (|has| $ (-6 -4239)))) (-2717 (((-108) $ (-708)) NIL)) (-2437 ((|#1| $ (-1068) |#1|) 42)) (-1213 (($ (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-4011 (((-3 |#1| "failed") (-1068) $) 45)) (-3367 (($) NIL T CONST)) (-3813 (($ $ (-1068)) 24)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014))))) (-1700 (((-3 |#1| "failed") (-1068) $) 46) (($ (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4238))) (($ (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) $) NIL (|has| $ (-6 -4238)))) (-1424 (($ (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4238))) (($ (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014))))) (-2153 (((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $ (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $ (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014))))) (-2982 (((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) $) 31)) (-2411 ((|#1| $ (-1068) |#1|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-1068)) NIL)) (-2395 (((-588 |#1|) $) NIL (|has| $ (-6 -4238))) (((-588 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-2922 (($ $) 47)) (-1566 (($ (-363)) 22) (($ (-363) (-1068)) 21)) (-3015 (((-363) $) 33)) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-1068) $) NIL (|has| (-1068) (-784)))) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238))) (((-588 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (((-108) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014))))) (-2201 (((-1068) $) NIL (|has| (-1068) (-784)))) (-2397 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239))) (($ (-1 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL)) (-2562 (((-588 (-1068)) $) 38)) (-2241 (((-108) (-1068) $) NIL)) (-3270 (((-1068) $) 34)) (-1431 (((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) $) NIL)) (-3365 (($ (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) $) NIL)) (-2130 (((-588 (-1068)) $) NIL)) (-2103 (((-108) (-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2337 ((|#1| $) NIL (|has| (-1068) (-784)))) (-2187 (((-3 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) "failed") (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL)) (-1972 (($ $ |#1|) NIL (|has| $ (-6 -4239)))) (-3295 (((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) $) NIL)) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) (-588 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)))) NIL (-12 (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-285 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)))) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014)))) (($ $ (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) NIL (-12 (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-285 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)))) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014)))) (($ $ (-270 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)))) NIL (-12 (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-285 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)))) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014)))) (($ $ (-588 (-270 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))))) NIL (-12 (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-285 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)))) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) 36)) (-2683 ((|#1| $ (-1068) |#1|) NIL) ((|#1| $ (-1068)) 41)) (-3546 (($ (-588 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)))) NIL) (($) NIL)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (((-708) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014)))) (((-708) (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-563 (-498))))) (-2227 (($ (-588 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)))) NIL)) (-2217 (((-792) $) 20)) (-3116 (($ $) 25)) (-2501 (($ (-588 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)))) NIL)) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 19)) (-3591 (((-708) $) 40 (|has| $ (-6 -4238))))) -(((-557 |#1|) (-13 (-339 (-363) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) (-1097 (-1068) |#1|) (-10 -8 (-6 -4238) (-15 -2922 ($ $)))) (-1014)) (T -557)) -((-2922 (*1 *1 *1) (-12 (-5 *1 (-557 *2)) (-4 *2 (-1014))))) -(-13 (-339 (-363) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) (-1097 (-1068) |#1|) (-10 -8 (-6 -4238) (-15 -2922 ($ $)))) -((-4176 (((-108) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) $) 15)) (-2562 (((-588 |#2|) $) 19)) (-2241 (((-108) |#2| $) 12))) -(((-558 |#1| |#2| |#3|) (-10 -8 (-15 -2562 ((-588 |#2|) |#1|)) (-15 -2241 ((-108) |#2| |#1|)) (-15 -4176 ((-108) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) |#1|))) (-559 |#2| |#3|) (-1014) (-1014)) (T -558)) -NIL -(-10 -8 (-15 -2562 ((-588 |#2|) |#1|)) (-15 -2241 ((-108) |#2| |#1|)) (-15 -4176 ((-108) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) |#1|))) -((-1419 (((-108) $ $) 19 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (-2717 (((-108) $ (-708)) 8)) (-1213 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 45 (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 55 (|has| $ (-6 -4238)))) (-4011 (((-3 |#2| "failed") |#1| $) 61)) (-3367 (($) 7 T CONST)) (-2379 (($ $) 58 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| $ (-6 -4238))))) (-1700 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 47 (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 46 (|has| $ (-6 -4238))) (((-3 |#2| "failed") |#1| $) 62)) (-1424 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 54 (|has| $ (-6 -4238)))) (-2153 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 56 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 53 (|has| $ (-6 -4238))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 52 (|has| $ (-6 -4238)))) (-2395 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 30 (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) 9)) (-4084 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 35)) (-3309 (((-108) $ (-708)) 10)) (-2311 (((-1068) $) 22 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (-2562 (((-588 |#1|) $) 63)) (-2241 (((-108) |#1| $) 64)) (-1431 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 39)) (-3365 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 40)) (-4174 (((-1032) $) 21 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (-2187 (((-3 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) "failed") (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 51)) (-3295 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 41)) (-3487 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) 26 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) 25 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 24 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) 23 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))))) (-2065 (((-108) $ $) 14)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-3546 (($) 49) (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) 48)) (-4187 (((-708) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 31 (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-3873 (((-498) $) 59 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-563 (-498))))) (-2227 (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) 50)) (-2217 (((-792) $) 18 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-562 (-792))))) (-2501 (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) 42)) (-1381 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-559 |#1| |#2|) (-1197) (-1014) (-1014)) (T -559)) -((-2241 (*1 *2 *3 *1) (-12 (-4 *1 (-559 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-108)))) (-2562 (*1 *2 *1) (-12 (-4 *1 (-559 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-588 *3)))) (-1700 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-559 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-4011 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-559 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))) -(-13 (-206 (-2 (|:| -2644 |t#1|) (|:| -3149 |t#2|))) (-10 -8 (-15 -2241 ((-108) |t#1| $)) (-15 -2562 ((-588 |t#1|) $)) (-15 -1700 ((-3 |t#2| "failed") |t#1| $)) (-15 -4011 ((-3 |t#2| "failed") |t#1| $)))) -(((-33) . T) ((-102 #0=(-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T) ((-97) |has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) ((-562 (-792)) -3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-562 (-792)))) ((-139 #0#) . T) ((-563 (-498)) |has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-563 (-498))) ((-206 #0#) . T) ((-212 #0#) . T) ((-285 #0#) -12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))) ((-461 #0#) . T) ((-483 #0# #0#) -12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))) ((-1014) |has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) ((-1120) . T)) -((-1994 (((-561 |#2|) |#1|) 15)) (-1932 (((-3 |#1| "failed") (-561 |#2|)) 19))) -(((-560 |#1| |#2|) (-10 -7 (-15 -1994 ((-561 |#2|) |#1|)) (-15 -1932 ((-3 |#1| "failed") (-561 |#2|)))) (-784) (-784)) (T -560)) -((-1932 (*1 *2 *3) (|partial| -12 (-5 *3 (-561 *4)) (-4 *4 (-784)) (-4 *2 (-784)) (-5 *1 (-560 *2 *4)))) (-1994 (*1 *2 *3) (-12 (-5 *2 (-561 *4)) (-5 *1 (-560 *3 *4)) (-4 *3 (-784)) (-4 *4 (-784))))) -(-10 -7 (-15 -1994 ((-561 |#2|) |#1|)) (-15 -1932 ((-3 |#1| "failed") (-561 |#2|)))) -((-1419 (((-108) $ $) NIL)) (-1641 (((-3 (-1085) "failed") $) 36)) (-2648 (((-1171) $ (-708)) 26)) (-3314 (((-708) $) 25)) (-1771 (((-110) $) 12)) (-3015 (((-1085) $) 20)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-2311 (((-1068) $) NIL)) (-3043 (($ (-110) (-588 |#1|) (-708)) 30) (($ (-1085)) 31)) (-2935 (((-108) $ (-110)) 18) (((-108) $ (-1085)) 16)) (-4179 (((-708) $) 22)) (-4174 (((-1032) $) NIL)) (-3873 (((-821 (-522)) $) 69 (|has| |#1| (-563 (-821 (-522))))) (((-821 (-354)) $) 75 (|has| |#1| (-563 (-821 (-354))))) (((-498) $) 62 (|has| |#1| (-563 (-498))))) (-2217 (((-792) $) 51)) (-2636 (((-588 |#1|) $) 24)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 39)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 40))) -(((-561 |#1|) (-13 (-125) (-813 |#1|) (-10 -8 (-15 -3015 ((-1085) $)) (-15 -1771 ((-110) $)) (-15 -2636 ((-588 |#1|) $)) (-15 -4179 ((-708) $)) (-15 -3043 ($ (-110) (-588 |#1|) (-708))) (-15 -3043 ($ (-1085))) (-15 -1641 ((-3 (-1085) "failed") $)) (-15 -2935 ((-108) $ (-110))) (-15 -2935 ((-108) $ (-1085))) (IF (|has| |#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|))) (-784)) (T -561)) -((-3015 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-561 *3)) (-4 *3 (-784)))) (-1771 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-561 *3)) (-4 *3 (-784)))) (-2636 (*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-561 *3)) (-4 *3 (-784)))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-561 *3)) (-4 *3 (-784)))) (-3043 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-110)) (-5 *3 (-588 *5)) (-5 *4 (-708)) (-4 *5 (-784)) (-5 *1 (-561 *5)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-561 *3)) (-4 *3 (-784)))) (-1641 (*1 *2 *1) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-561 *3)) (-4 *3 (-784)))) (-2935 (*1 *2 *1 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-561 *4)) (-4 *4 (-784)))) (-2935 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-108)) (-5 *1 (-561 *4)) (-4 *4 (-784))))) -(-13 (-125) (-813 |#1|) (-10 -8 (-15 -3015 ((-1085) $)) (-15 -1771 ((-110) $)) (-15 -2636 ((-588 |#1|) $)) (-15 -4179 ((-708) $)) (-15 -3043 ($ (-110) (-588 |#1|) (-708))) (-15 -3043 ($ (-1085))) (-15 -1641 ((-3 (-1085) "failed") $)) (-15 -2935 ((-108) $ (-110))) (-15 -2935 ((-108) $ (-1085))) (IF (|has| |#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|))) -((-2217 ((|#1| $) 6))) -(((-562 |#1|) (-1197) (-1120)) (T -562)) -((-2217 (*1 *2 *1) (-12 (-4 *1 (-562 *2)) (-4 *2 (-1120))))) -(-13 (-10 -8 (-15 -2217 (|t#1| $)))) -((-3873 ((|#1| $) 6))) -(((-563 |#1|) (-1197) (-1120)) (T -563)) -((-3873 (*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-1120))))) -(-13 (-10 -8 (-15 -3873 (|t#1| $)))) -((-4132 (((-3 (-1081 (-382 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|) (-1 (-393 |#2|) |#2|)) 13) (((-3 (-1081 (-382 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|)) 14))) -(((-564 |#1| |#2|) (-10 -7 (-15 -4132 ((-3 (-1081 (-382 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|))) (-15 -4132 ((-3 (-1081 (-382 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|) (-1 (-393 |#2|) |#2|)))) (-13 (-135) (-27) (-962 (-522)) (-962 (-382 (-522)))) (-1142 |#1|)) (T -564)) -((-4132 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-393 *6) *6)) (-4 *6 (-1142 *5)) (-4 *5 (-13 (-135) (-27) (-962 (-522)) (-962 (-382 (-522))))) (-5 *2 (-1081 (-382 *6))) (-5 *1 (-564 *5 *6)) (-5 *3 (-382 *6)))) (-4132 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-135) (-27) (-962 (-522)) (-962 (-382 (-522))))) (-4 *5 (-1142 *4)) (-5 *2 (-1081 (-382 *5))) (-5 *1 (-564 *4 *5)) (-5 *3 (-382 *5))))) -(-10 -7 (-15 -4132 ((-3 (-1081 (-382 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|))) (-15 -4132 ((-3 (-1081 (-382 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|) (-1 (-393 |#2|) |#2|)))) -((-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#2|) 10))) -(((-565 |#1| |#2|) (-10 -8 (-15 -2217 (|#1| |#2|)) (-15 -2217 (|#1| (-522))) (-15 -2217 ((-792) |#1|))) (-566 |#2|) (-971)) (T -565)) -NIL -(-10 -8 (-15 -2217 (|#1| |#2|)) (-15 -2217 (|#1| (-522))) (-15 -2217 ((-792) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3920 (((-3 $ "failed") $) 34)) (-2859 (((-108) $) 31)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 36)) (-2742 (((-708)) 29)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ |#1| $) 37))) -(((-566 |#1|) (-1197) (-971)) (T -566)) -((-2217 (*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-971))))) -(-13 (-971) (-590 |t#1|) (-10 -8 (-15 -2217 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-664) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3355 (((-522) $) NIL (|has| |#1| (-782)))) (-3367 (($) NIL T CONST)) (-3920 (((-3 $ "failed") $) NIL)) (-3603 (((-108) $) NIL (|has| |#1| (-782)))) (-2859 (((-108) $) NIL)) (-2947 ((|#1| $) 13)) (-3740 (((-108) $) NIL (|has| |#1| (-782)))) (-1308 (($ $ $) NIL (|has| |#1| (-782)))) (-2524 (($ $ $) NIL (|has| |#1| (-782)))) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2959 ((|#3| $) 15)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#2|) NIL)) (-2742 (((-708)) 20)) (-4126 (($ $) NIL (|has| |#1| (-782)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) 12 T CONST)) (-1623 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1682 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-567 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (-15 -1682 ($ $ |#3|)) (-15 -1682 ($ |#1| |#3|)) (-15 -2947 (|#1| $)) (-15 -2959 (|#3| $)))) (-37 |#2|) (-157) (|SubsetCategory| (-664) |#2|)) (T -567)) -((-1682 (*1 *1 *1 *2) (-12 (-4 *4 (-157)) (-5 *1 (-567 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-664) *4)))) (-1682 (*1 *1 *2 *3) (-12 (-4 *4 (-157)) (-5 *1 (-567 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-664) *4)))) (-2947 (*1 *2 *1) (-12 (-4 *3 (-157)) (-4 *2 (-37 *3)) (-5 *1 (-567 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-664) *3)))) (-2959 (*1 *2 *1) (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-664) *4)) (-5 *1 (-567 *3 *4 *2)) (-4 *3 (-37 *4))))) -(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (-15 -1682 ($ $ |#3|)) (-15 -1682 ($ |#1| |#3|)) (-15 -2947 (|#1| $)) (-15 -2959 (|#3| $)))) -((-3220 ((|#2| |#2| (-1085) (-1085)) 18))) -(((-568 |#1| |#2|) (-10 -7 (-15 -3220 (|#2| |#2| (-1085) (-1085)))) (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))) (-13 (-1106) (-887) (-29 |#1|))) (T -568)) -((-3220 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *1 (-568 *4 *2)) (-4 *2 (-13 (-1106) (-887) (-29 *4)))))) -(-10 -7 (-15 -3220 (|#2| |#2| (-1085) (-1085)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 52)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2529 ((|#1| $) 49)) (-2265 (((-3 $ "failed") $ $) NIL)) (-2805 (((-108) $ $) NIL (|has| |#1| (-338)))) (-2458 (((-2 (|:| -3389 $) (|:| -1898 (-382 |#2|))) (-382 |#2|)) 97 (|has| |#1| (-338)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 82)) (-1478 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2333 (($ $ $) NIL (|has| |#1| (-338)))) (-3241 (($ $) 24)) (-3920 (((-3 $ "failed") $) 76)) (-2303 (($ $ $) NIL (|has| |#1| (-338)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-3872 (((-522) $) 19)) (-2859 (((-108) $) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-1374 (((-108) $) 36)) (-3500 (($ |#1| (-522)) 21)) (-3224 ((|#1| $) 51)) (-2267 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-338)))) (-2308 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) 87 (|has| |#1| (-338)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-338)))) (-2276 (((-3 $ "failed") $ $) 80)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-4031 (((-708) $) 99 (|has| |#1| (-338)))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 98 (|has| |#1| (-338)))) (-2731 (($ $ (-1 |#2| |#2|)) 67) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-708)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-2487 (((-522) $) 34)) (-3873 (((-382 |#2|) $) 42)) (-2217 (((-792) $) 63) (($ (-522)) 32) (($ $) NIL) (($ (-382 (-522))) NIL (|has| |#1| (-962 (-382 (-522))))) (($ |#1|) 31) (($ |#2|) 22)) (-1643 ((|#1| $ (-522)) 64)) (-3040 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2742 (((-708)) 29)) (-1407 (((-108) $ $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 9 T CONST)) (-3709 (($) 12 T CONST)) (-2252 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-708)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-1562 (((-108) $ $) 17)) (-1672 (($ $) 46) (($ $ $) NIL)) (-1661 (($ $ $) 77)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 26) (($ $ $) 44))) -(((-569 |#1| |#2|) (-13 (-208 |#2|) (-514) (-563 (-382 |#2|)) (-386 |#1|) (-962 |#2|) (-10 -8 (-15 -1374 ((-108) $)) (-15 -2487 ((-522) $)) (-15 -3872 ((-522) $)) (-15 -3241 ($ $)) (-15 -3224 (|#1| $)) (-15 -2529 (|#1| $)) (-15 -1643 (|#1| $ (-522))) (-15 -3500 ($ |#1| (-522))) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-338)) (PROGN (-6 (-283)) (-15 -2458 ((-2 (|:| -3389 $) (|:| -1898 (-382 |#2|))) (-382 |#2|)))) |%noBranch|))) (-514) (-1142 |#1|)) (T -569)) -((-1374 (*1 *2 *1) (-12 (-4 *3 (-514)) (-5 *2 (-108)) (-5 *1 (-569 *3 *4)) (-4 *4 (-1142 *3)))) (-2487 (*1 *2 *1) (-12 (-4 *3 (-514)) (-5 *2 (-522)) (-5 *1 (-569 *3 *4)) (-4 *4 (-1142 *3)))) (-3872 (*1 *2 *1) (-12 (-4 *3 (-514)) (-5 *2 (-522)) (-5 *1 (-569 *3 *4)) (-4 *4 (-1142 *3)))) (-3241 (*1 *1 *1) (-12 (-4 *2 (-514)) (-5 *1 (-569 *2 *3)) (-4 *3 (-1142 *2)))) (-3224 (*1 *2 *1) (-12 (-4 *2 (-514)) (-5 *1 (-569 *2 *3)) (-4 *3 (-1142 *2)))) (-2529 (*1 *2 *1) (-12 (-4 *2 (-514)) (-5 *1 (-569 *2 *3)) (-4 *3 (-1142 *2)))) (-1643 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *2 (-514)) (-5 *1 (-569 *2 *4)) (-4 *4 (-1142 *2)))) (-3500 (*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-4 *2 (-514)) (-5 *1 (-569 *2 *4)) (-4 *4 (-1142 *2)))) (-2458 (*1 *2 *3) (-12 (-4 *4 (-338)) (-4 *4 (-514)) (-4 *5 (-1142 *4)) (-5 *2 (-2 (|:| -3389 (-569 *4 *5)) (|:| -1898 (-382 *5)))) (-5 *1 (-569 *4 *5)) (-5 *3 (-382 *5))))) -(-13 (-208 |#2|) (-514) (-563 (-382 |#2|)) (-386 |#1|) (-962 |#2|) (-10 -8 (-15 -1374 ((-108) $)) (-15 -2487 ((-522) $)) (-15 -3872 ((-522) $)) (-15 -3241 ($ $)) (-15 -3224 (|#1| $)) (-15 -2529 (|#1| $)) (-15 -1643 (|#1| $ (-522))) (-15 -3500 ($ |#1| (-522))) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-338)) (PROGN (-6 (-283)) (-15 -2458 ((-2 (|:| -3389 $) (|:| -1898 (-382 |#2|))) (-382 |#2|)))) |%noBranch|))) -((-2510 (((-588 |#6|) (-588 |#4|) (-108)) 47)) (-2195 ((|#6| |#6|) 40))) -(((-570 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2195 (|#6| |#6|)) (-15 -2510 ((-588 |#6|) (-588 |#4|) (-108)))) (-426) (-730) (-784) (-985 |#1| |#2| |#3|) (-990 |#1| |#2| |#3| |#4|) (-1023 |#1| |#2| |#3| |#4|)) (T -570)) -((-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 *10)) (-5 *1 (-570 *5 *6 *7 *8 *9 *10)) (-4 *9 (-990 *5 *6 *7 *8)) (-4 *10 (-1023 *5 *6 *7 *8)))) (-2195 (*1 *2 *2) (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *1 (-570 *3 *4 *5 *6 *7 *2)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *2 (-1023 *3 *4 *5 *6))))) -(-10 -7 (-15 -2195 (|#6| |#6|)) (-15 -2510 ((-588 |#6|) (-588 |#4|) (-108)))) -((-3579 (((-108) |#3| (-708) (-588 |#3|)) 23)) (-3419 (((-3 (-2 (|:| |polfac| (-588 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-588 (-1081 |#3|)))) "failed") |#3| (-588 (-1081 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4045 (-588 (-2 (|:| |irr| |#4|) (|:| -4160 (-522)))))) (-588 |#3|) (-588 |#1|) (-588 |#3|)) 52))) -(((-571 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3579 ((-108) |#3| (-708) (-588 |#3|))) (-15 -3419 ((-3 (-2 (|:| |polfac| (-588 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-588 (-1081 |#3|)))) "failed") |#3| (-588 (-1081 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4045 (-588 (-2 (|:| |irr| |#4|) (|:| -4160 (-522)))))) (-588 |#3|) (-588 |#1|) (-588 |#3|)))) (-784) (-730) (-283) (-878 |#3| |#2| |#1|)) (T -571)) -((-3419 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -4045 (-588 (-2 (|:| |irr| *10) (|:| -4160 (-522))))))) (-5 *6 (-588 *3)) (-5 *7 (-588 *8)) (-4 *8 (-784)) (-4 *3 (-283)) (-4 *10 (-878 *3 *9 *8)) (-4 *9 (-730)) (-5 *2 (-2 (|:| |polfac| (-588 *10)) (|:| |correct| *3) (|:| |corrfact| (-588 (-1081 *3))))) (-5 *1 (-571 *8 *9 *3 *10)) (-5 *4 (-588 (-1081 *3))))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-708)) (-5 *5 (-588 *3)) (-4 *3 (-283)) (-4 *6 (-784)) (-4 *7 (-730)) (-5 *2 (-108)) (-5 *1 (-571 *6 *7 *3 *8)) (-4 *8 (-878 *3 *7 *6))))) -(-10 -7 (-15 -3579 ((-108) |#3| (-708) (-588 |#3|))) (-15 -3419 ((-3 (-2 (|:| |polfac| (-588 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-588 (-1081 |#3|)))) "failed") |#3| (-588 (-1081 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4045 (-588 (-2 (|:| |irr| |#4|) (|:| -4160 (-522)))))) (-588 |#3|) (-588 |#1|) (-588 |#3|)))) -((-1419 (((-108) $ $) NIL)) (-4127 (((-588 |#1|) $) NIL)) (-3367 (($) NIL T CONST)) (-3920 (((-3 $ "failed") $) NIL)) (-2859 (((-108) $) NIL)) (-2182 (($ $) 67)) (-1238 (((-606 |#1| |#2|) $) 52)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) 70)) (-2372 (((-588 (-270 |#2|)) $ $) 33)) (-4174 (((-1032) $) NIL)) (-3357 (($ (-606 |#1| |#2|)) 48)) (-2983 (($ $ $) NIL)) (-1596 (($ $ $) NIL)) (-2217 (((-792) $) 58) (((-1179 |#1| |#2|) $) NIL) (((-1184 |#1| |#2|) $) 66)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3709 (($) 53 T CONST)) (-3944 (((-588 (-2 (|:| |k| (-613 |#1|)) (|:| |c| |#2|))) $) 31)) (-2767 (((-588 (-606 |#1| |#2|)) (-588 |#1|)) 65)) (-1738 (((-588 (-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|))) $) 36)) (-1562 (((-108) $ $) 54)) (-1682 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ $ $) 44))) -(((-572 |#1| |#2| |#3|) (-13 (-447) (-10 -8 (-15 -3357 ($ (-606 |#1| |#2|))) (-15 -1238 ((-606 |#1| |#2|) $)) (-15 -1738 ((-588 (-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|))) $)) (-15 -2217 ((-1179 |#1| |#2|) $)) (-15 -2217 ((-1184 |#1| |#2|) $)) (-15 -2182 ($ $)) (-15 -4127 ((-588 |#1|) $)) (-15 -2767 ((-588 (-606 |#1| |#2|)) (-588 |#1|))) (-15 -3944 ((-588 (-2 (|:| |k| (-613 |#1|)) (|:| |c| |#2|))) $)) (-15 -2372 ((-588 (-270 |#2|)) $ $)))) (-784) (-13 (-157) (-655 (-382 (-522)))) (-850)) (T -572)) -((-3357 (*1 *1 *2) (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-5 *1 (-572 *3 *4 *5)) (-14 *5 (-850)))) (-1238 (*1 *2 *1) (-12 (-5 *2 (-606 *3 *4)) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850)))) (-1738 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |k| (-822 *3)) (|:| |c| *4)))) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-1179 *3 *4)) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-1184 *3 *4)) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850)))) (-2182 (*1 *1 *1) (-12 (-5 *1 (-572 *2 *3 *4)) (-4 *2 (-784)) (-4 *3 (-13 (-157) (-655 (-382 (-522))))) (-14 *4 (-850)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850)))) (-2767 (*1 *2 *3) (-12 (-5 *3 (-588 *4)) (-4 *4 (-784)) (-5 *2 (-588 (-606 *4 *5))) (-5 *1 (-572 *4 *5 *6)) (-4 *5 (-13 (-157) (-655 (-382 (-522))))) (-14 *6 (-850)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |k| (-613 *3)) (|:| |c| *4)))) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850)))) (-2372 (*1 *2 *1 *1) (-12 (-5 *2 (-588 (-270 *4))) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850))))) -(-13 (-447) (-10 -8 (-15 -3357 ($ (-606 |#1| |#2|))) (-15 -1238 ((-606 |#1| |#2|) $)) (-15 -1738 ((-588 (-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|))) $)) (-15 -2217 ((-1179 |#1| |#2|) $)) (-15 -2217 ((-1184 |#1| |#2|) $)) (-15 -2182 ($ $)) (-15 -4127 ((-588 |#1|) $)) (-15 -2767 ((-588 (-606 |#1| |#2|)) (-588 |#1|))) (-15 -3944 ((-588 (-2 (|:| |k| (-613 |#1|)) (|:| |c| |#2|))) $)) (-15 -2372 ((-588 (-270 |#2|)) $ $)))) -((-2510 (((-588 (-1056 |#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|)))) (-588 (-717 |#1| (-794 |#2|))) (-108)) 71) (((-588 (-968 |#1| |#2|)) (-588 (-717 |#1| (-794 |#2|))) (-108)) 57)) (-2318 (((-108) (-588 (-717 |#1| (-794 |#2|)))) 22)) (-3643 (((-588 (-1056 |#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|)))) (-588 (-717 |#1| (-794 |#2|))) (-108)) 70)) (-3340 (((-588 (-968 |#1| |#2|)) (-588 (-717 |#1| (-794 |#2|))) (-108)) 56)) (-3059 (((-588 (-717 |#1| (-794 |#2|))) (-588 (-717 |#1| (-794 |#2|)))) 26)) (-2413 (((-3 (-588 (-717 |#1| (-794 |#2|))) "failed") (-588 (-717 |#1| (-794 |#2|)))) 25))) -(((-573 |#1| |#2|) (-10 -7 (-15 -2318 ((-108) (-588 (-717 |#1| (-794 |#2|))))) (-15 -2413 ((-3 (-588 (-717 |#1| (-794 |#2|))) "failed") (-588 (-717 |#1| (-794 |#2|))))) (-15 -3059 ((-588 (-717 |#1| (-794 |#2|))) (-588 (-717 |#1| (-794 |#2|))))) (-15 -3340 ((-588 (-968 |#1| |#2|)) (-588 (-717 |#1| (-794 |#2|))) (-108))) (-15 -3643 ((-588 (-1056 |#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|)))) (-588 (-717 |#1| (-794 |#2|))) (-108))) (-15 -2510 ((-588 (-968 |#1| |#2|)) (-588 (-717 |#1| (-794 |#2|))) (-108))) (-15 -2510 ((-588 (-1056 |#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|)))) (-588 (-717 |#1| (-794 |#2|))) (-108)))) (-426) (-588 (-1085))) (T -573)) -((-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-717 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-426)) (-14 *6 (-588 (-1085))) (-5 *2 (-588 (-1056 *5 (-494 (-794 *6)) (-794 *6) (-717 *5 (-794 *6))))) (-5 *1 (-573 *5 *6)))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-717 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-426)) (-14 *6 (-588 (-1085))) (-5 *2 (-588 (-968 *5 *6))) (-5 *1 (-573 *5 *6)))) (-3643 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-717 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-426)) (-14 *6 (-588 (-1085))) (-5 *2 (-588 (-1056 *5 (-494 (-794 *6)) (-794 *6) (-717 *5 (-794 *6))))) (-5 *1 (-573 *5 *6)))) (-3340 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-717 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-426)) (-14 *6 (-588 (-1085))) (-5 *2 (-588 (-968 *5 *6))) (-5 *1 (-573 *5 *6)))) (-3059 (*1 *2 *2) (-12 (-5 *2 (-588 (-717 *3 (-794 *4)))) (-4 *3 (-426)) (-14 *4 (-588 (-1085))) (-5 *1 (-573 *3 *4)))) (-2413 (*1 *2 *2) (|partial| -12 (-5 *2 (-588 (-717 *3 (-794 *4)))) (-4 *3 (-426)) (-14 *4 (-588 (-1085))) (-5 *1 (-573 *3 *4)))) (-2318 (*1 *2 *3) (-12 (-5 *3 (-588 (-717 *4 (-794 *5)))) (-4 *4 (-426)) (-14 *5 (-588 (-1085))) (-5 *2 (-108)) (-5 *1 (-573 *4 *5))))) -(-10 -7 (-15 -2318 ((-108) (-588 (-717 |#1| (-794 |#2|))))) (-15 -2413 ((-3 (-588 (-717 |#1| (-794 |#2|))) "failed") (-588 (-717 |#1| (-794 |#2|))))) (-15 -3059 ((-588 (-717 |#1| (-794 |#2|))) (-588 (-717 |#1| (-794 |#2|))))) (-15 -3340 ((-588 (-968 |#1| |#2|)) (-588 (-717 |#1| (-794 |#2|))) (-108))) (-15 -3643 ((-588 (-1056 |#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|)))) (-588 (-717 |#1| (-794 |#2|))) (-108))) (-15 -2510 ((-588 (-968 |#1| |#2|)) (-588 (-717 |#1| (-794 |#2|))) (-108))) (-15 -2510 ((-588 (-1056 |#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|)))) (-588 (-717 |#1| (-794 |#2|))) (-108)))) -((-3044 (($ $) 38)) (-2923 (($ $) 21)) (-3023 (($ $) 37)) (-2906 (($ $) 22)) (-3066 (($ $) 36)) (-2936 (($ $) 23)) (-2980 (($) 48)) (-1238 (($ $) 45)) (-3335 (($ $) 17)) (-2093 (($ $ (-1007 $)) 7) (($ $ (-1085)) 6)) (-3357 (($ $) 46)) (-2880 (($ $) 15)) (-2900 (($ $) 16)) (-1831 (($ $) 35)) (-2946 (($ $) 24)) (-3054 (($ $) 34)) (-2928 (($ $) 25)) (-3035 (($ $) 33)) (-2915 (($ $) 26)) (-1856 (($ $) 44)) (-2976 (($ $) 32)) (-1839 (($ $) 43)) (-2957 (($ $) 31)) (-1873 (($ $) 42)) (-3001 (($ $) 30)) (-2476 (($ $) 41)) (-3011 (($ $) 29)) (-1864 (($ $) 40)) (-2989 (($ $) 28)) (-1849 (($ $) 39)) (-2966 (($ $) 27)) (-3758 (($ $) 19)) (-2440 (($ $) 20)) (-2866 (($ $) 18)) (** (($ $ $) 47))) -(((-574) (-1197)) (T -574)) -((-2440 (*1 *1 *1) (-4 *1 (-574))) (-3758 (*1 *1 *1) (-4 *1 (-574))) (-2866 (*1 *1 *1) (-4 *1 (-574))) (-3335 (*1 *1 *1) (-4 *1 (-574))) (-2900 (*1 *1 *1) (-4 *1 (-574))) (-2880 (*1 *1 *1) (-4 *1 (-574)))) -(-13 (-887) (-1106) (-10 -8 (-15 -2440 ($ $)) (-15 -3758 ($ $)) (-15 -2866 ($ $)) (-15 -3335 ($ $)) (-15 -2900 ($ $)) (-15 -2880 ($ $)))) -(((-34) . T) ((-91) . T) ((-260) . T) ((-463) . T) ((-887) . T) ((-1106) . T) ((-1109) . T)) -((-1771 (((-110) (-110)) 83)) (-3335 ((|#2| |#2|) 30)) (-2093 ((|#2| |#2| (-1007 |#2|)) 79) ((|#2| |#2| (-1085)) 52)) (-2880 ((|#2| |#2|) 29)) (-2900 ((|#2| |#2|) 31)) (-4082 (((-108) (-110)) 34)) (-3758 ((|#2| |#2|) 26)) (-2440 ((|#2| |#2|) 28)) (-2866 ((|#2| |#2|) 27))) -(((-575 |#1| |#2|) (-10 -7 (-15 -4082 ((-108) (-110))) (-15 -1771 ((-110) (-110))) (-15 -2440 (|#2| |#2|)) (-15 -3758 (|#2| |#2|)) (-15 -2866 (|#2| |#2|)) (-15 -3335 (|#2| |#2|)) (-15 -2880 (|#2| |#2|)) (-15 -2900 (|#2| |#2|)) (-15 -2093 (|#2| |#2| (-1085))) (-15 -2093 (|#2| |#2| (-1007 |#2|)))) (-13 (-784) (-514)) (-13 (-405 |#1|) (-928) (-1106))) (T -575)) -((-2093 (*1 *2 *2 *3) (-12 (-5 *3 (-1007 *2)) (-4 *2 (-13 (-405 *4) (-928) (-1106))) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-575 *4 *2)))) (-2093 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-575 *4 *2)) (-4 *2 (-13 (-405 *4) (-928) (-1106))))) (-2900 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2)) (-4 *2 (-13 (-405 *3) (-928) (-1106))))) (-2880 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2)) (-4 *2 (-13 (-405 *3) (-928) (-1106))))) (-3335 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2)) (-4 *2 (-13 (-405 *3) (-928) (-1106))))) (-2866 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2)) (-4 *2 (-13 (-405 *3) (-928) (-1106))))) (-3758 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2)) (-4 *2 (-13 (-405 *3) (-928) (-1106))))) (-2440 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2)) (-4 *2 (-13 (-405 *3) (-928) (-1106))))) (-1771 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *4)) (-4 *4 (-13 (-405 *3) (-928) (-1106))))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108)) (-5 *1 (-575 *4 *5)) (-4 *5 (-13 (-405 *4) (-928) (-1106)))))) -(-10 -7 (-15 -4082 ((-108) (-110))) (-15 -1771 ((-110) (-110))) (-15 -2440 (|#2| |#2|)) (-15 -3758 (|#2| |#2|)) (-15 -2866 (|#2| |#2|)) (-15 -3335 (|#2| |#2|)) (-15 -2880 (|#2| |#2|)) (-15 -2900 (|#2| |#2|)) (-15 -2093 (|#2| |#2| (-1085))) (-15 -2093 (|#2| |#2| (-1007 |#2|)))) -((-2609 (((-454 |#1| |#2|) (-224 |#1| |#2|)) 53)) (-1916 (((-588 (-224 |#1| |#2|)) (-588 (-454 |#1| |#2|))) 68)) (-1959 (((-454 |#1| |#2|) (-588 (-454 |#1| |#2|)) (-794 |#1|)) 70) (((-454 |#1| |#2|) (-588 (-454 |#1| |#2|)) (-588 (-454 |#1| |#2|)) (-794 |#1|)) 69)) (-2495 (((-2 (|:| |gblist| (-588 (-224 |#1| |#2|))) (|:| |gvlist| (-588 (-522)))) (-588 (-454 |#1| |#2|))) 106)) (-1890 (((-588 (-454 |#1| |#2|)) (-794 |#1|) (-588 (-454 |#1| |#2|)) (-588 (-454 |#1| |#2|))) 83)) (-2485 (((-2 (|:| |glbase| (-588 (-224 |#1| |#2|))) (|:| |glval| (-588 (-522)))) (-588 (-224 |#1| |#2|))) 117)) (-2647 (((-1166 |#2|) (-454 |#1| |#2|) (-588 (-454 |#1| |#2|))) 58)) (-1912 (((-588 (-454 |#1| |#2|)) (-588 (-454 |#1| |#2|))) 39)) (-1997 (((-224 |#1| |#2|) (-224 |#1| |#2|) (-588 (-224 |#1| |#2|))) 49)) (-3612 (((-224 |#1| |#2|) (-588 |#2|) (-224 |#1| |#2|) (-588 (-224 |#1| |#2|))) 90))) -(((-576 |#1| |#2|) (-10 -7 (-15 -2495 ((-2 (|:| |gblist| (-588 (-224 |#1| |#2|))) (|:| |gvlist| (-588 (-522)))) (-588 (-454 |#1| |#2|)))) (-15 -2485 ((-2 (|:| |glbase| (-588 (-224 |#1| |#2|))) (|:| |glval| (-588 (-522)))) (-588 (-224 |#1| |#2|)))) (-15 -1916 ((-588 (-224 |#1| |#2|)) (-588 (-454 |#1| |#2|)))) (-15 -1959 ((-454 |#1| |#2|) (-588 (-454 |#1| |#2|)) (-588 (-454 |#1| |#2|)) (-794 |#1|))) (-15 -1959 ((-454 |#1| |#2|) (-588 (-454 |#1| |#2|)) (-794 |#1|))) (-15 -1912 ((-588 (-454 |#1| |#2|)) (-588 (-454 |#1| |#2|)))) (-15 -2647 ((-1166 |#2|) (-454 |#1| |#2|) (-588 (-454 |#1| |#2|)))) (-15 -3612 ((-224 |#1| |#2|) (-588 |#2|) (-224 |#1| |#2|) (-588 (-224 |#1| |#2|)))) (-15 -1890 ((-588 (-454 |#1| |#2|)) (-794 |#1|) (-588 (-454 |#1| |#2|)) (-588 (-454 |#1| |#2|)))) (-15 -1997 ((-224 |#1| |#2|) (-224 |#1| |#2|) (-588 (-224 |#1| |#2|)))) (-15 -2609 ((-454 |#1| |#2|) (-224 |#1| |#2|)))) (-588 (-1085)) (-426)) (T -576)) -((-2609 (*1 *2 *3) (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-426)) (-5 *2 (-454 *4 *5)) (-5 *1 (-576 *4 *5)))) (-1997 (*1 *2 *2 *3) (-12 (-5 *3 (-588 (-224 *4 *5))) (-5 *2 (-224 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-426)) (-5 *1 (-576 *4 *5)))) (-1890 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-588 (-454 *4 *5))) (-5 *3 (-794 *4)) (-14 *4 (-588 (-1085))) (-4 *5 (-426)) (-5 *1 (-576 *4 *5)))) (-3612 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-588 *6)) (-5 *4 (-588 (-224 *5 *6))) (-4 *6 (-426)) (-5 *2 (-224 *5 *6)) (-14 *5 (-588 (-1085))) (-5 *1 (-576 *5 *6)))) (-2647 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-454 *5 *6))) (-5 *3 (-454 *5 *6)) (-14 *5 (-588 (-1085))) (-4 *6 (-426)) (-5 *2 (-1166 *6)) (-5 *1 (-576 *5 *6)))) (-1912 (*1 *2 *2) (-12 (-5 *2 (-588 (-454 *3 *4))) (-14 *3 (-588 (-1085))) (-4 *4 (-426)) (-5 *1 (-576 *3 *4)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-454 *5 *6))) (-5 *4 (-794 *5)) (-14 *5 (-588 (-1085))) (-5 *2 (-454 *5 *6)) (-5 *1 (-576 *5 *6)) (-4 *6 (-426)))) (-1959 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-588 (-454 *5 *6))) (-5 *4 (-794 *5)) (-14 *5 (-588 (-1085))) (-5 *2 (-454 *5 *6)) (-5 *1 (-576 *5 *6)) (-4 *6 (-426)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-588 (-454 *4 *5))) (-14 *4 (-588 (-1085))) (-4 *5 (-426)) (-5 *2 (-588 (-224 *4 *5))) (-5 *1 (-576 *4 *5)))) (-2485 (*1 *2 *3) (-12 (-14 *4 (-588 (-1085))) (-4 *5 (-426)) (-5 *2 (-2 (|:| |glbase| (-588 (-224 *4 *5))) (|:| |glval| (-588 (-522))))) (-5 *1 (-576 *4 *5)) (-5 *3 (-588 (-224 *4 *5))))) (-2495 (*1 *2 *3) (-12 (-5 *3 (-588 (-454 *4 *5))) (-14 *4 (-588 (-1085))) (-4 *5 (-426)) (-5 *2 (-2 (|:| |gblist| (-588 (-224 *4 *5))) (|:| |gvlist| (-588 (-522))))) (-5 *1 (-576 *4 *5))))) -(-10 -7 (-15 -2495 ((-2 (|:| |gblist| (-588 (-224 |#1| |#2|))) (|:| |gvlist| (-588 (-522)))) (-588 (-454 |#1| |#2|)))) (-15 -2485 ((-2 (|:| |glbase| (-588 (-224 |#1| |#2|))) (|:| |glval| (-588 (-522)))) (-588 (-224 |#1| |#2|)))) (-15 -1916 ((-588 (-224 |#1| |#2|)) (-588 (-454 |#1| |#2|)))) (-15 -1959 ((-454 |#1| |#2|) (-588 (-454 |#1| |#2|)) (-588 (-454 |#1| |#2|)) (-794 |#1|))) (-15 -1959 ((-454 |#1| |#2|) (-588 (-454 |#1| |#2|)) (-794 |#1|))) (-15 -1912 ((-588 (-454 |#1| |#2|)) (-588 (-454 |#1| |#2|)))) (-15 -2647 ((-1166 |#2|) (-454 |#1| |#2|) (-588 (-454 |#1| |#2|)))) (-15 -3612 ((-224 |#1| |#2|) (-588 |#2|) (-224 |#1| |#2|) (-588 (-224 |#1| |#2|)))) (-15 -1890 ((-588 (-454 |#1| |#2|)) (-794 |#1|) (-588 (-454 |#1| |#2|)) (-588 (-454 |#1| |#2|)))) (-15 -1997 ((-224 |#1| |#2|) (-224 |#1| |#2|) (-588 (-224 |#1| |#2|)))) (-15 -2609 ((-454 |#1| |#2|) (-224 |#1| |#2|)))) -((-1419 (((-108) $ $) NIL (-3844 (|has| (-51) (-1014)) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-1014))))) (-1883 (($) NIL) (($ (-588 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))))) NIL)) (-3883 (((-1171) $ (-1068) (-1068)) NIL (|has| $ (-6 -4239)))) (-2717 (((-108) $ (-708)) NIL)) (-2437 (((-51) $ (-1068) (-51)) 16) (((-51) $ (-1085) (-51)) 17)) (-1213 (($ (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-4011 (((-3 (-51) "failed") (-1068) $) NIL)) (-3367 (($) NIL T CONST)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-1014))))) (-1700 (($ (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-3 (-51) "failed") (-1068) $) NIL)) (-1424 (($ (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-1014)))) (($ (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-2153 (((-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-1 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) $ (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-1014)))) (((-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-1 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) $ (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-1 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-2411 (((-51) $ (-1068) (-51)) NIL (|has| $ (-6 -4239)))) (-2186 (((-51) $ (-1068)) NIL)) (-2395 (((-588 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-588 (-51)) $) NIL (|has| $ (-6 -4238)))) (-2922 (($ $) NIL)) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-1068) $) NIL (|has| (-1068) (-784)))) (-4084 (((-588 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-588 (-51)) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-1014)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-51) (-1014))))) (-2201 (((-1068) $) NIL (|has| (-1068) (-784)))) (-2397 (($ (-1 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4239))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1810 (($ (-363)) 9)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (-3844 (|has| (-51) (-1014)) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-1014))))) (-2562 (((-588 (-1068)) $) NIL)) (-2241 (((-108) (-1068) $) NIL)) (-1431 (((-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) $) NIL)) (-3365 (($ (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) $) NIL)) (-2130 (((-588 (-1068)) $) NIL)) (-2103 (((-108) (-1068) $) NIL)) (-4174 (((-1032) $) NIL (-3844 (|has| (-51) (-1014)) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-1014))))) (-2337 (((-51) $) NIL (|has| (-1068) (-784)))) (-2187 (((-3 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) "failed") (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) $) NIL)) (-1972 (($ $ (-51)) NIL (|has| $ (-6 -4239)))) (-3295 (((-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) $) NIL)) (-3487 (((-108) (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))))) NIL (-12 (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-285 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))))) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-1014)))) (($ $ (-270 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))))) NIL (-12 (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-285 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))))) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-1014)))) (($ $ (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) NIL (-12 (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-285 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))))) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-1014)))) (($ $ (-588 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) (-588 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))))) NIL (-12 (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-285 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))))) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-1014)))) (($ $ (-588 (-51)) (-588 (-51))) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014)))) (($ $ (-270 (-51))) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014)))) (($ $ (-588 (-270 (-51)))) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-51) (-1014))))) (-1973 (((-588 (-51)) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 (((-51) $ (-1068)) 14) (((-51) $ (-1068) (-51)) NIL) (((-51) $ (-1085)) 15)) (-3546 (($) NIL) (($ (-588 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))))) NIL)) (-4187 (((-708) (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-1014)))) (((-708) (-51) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-51) (-1014)))) (((-708) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4238)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-563 (-498))))) (-2227 (($ (-588 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))))) NIL)) (-2217 (((-792) $) NIL (-3844 (|has| (-51) (-562 (-792))) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-562 (-792)))))) (-2501 (($ (-588 (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))))) NIL)) (-1381 (((-108) (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) NIL (-3844 (|has| (-51) (-1014)) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 (-51))) (-1014))))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-577) (-13 (-1097 (-1068) (-51)) (-10 -8 (-15 -1810 ($ (-363))) (-15 -2922 ($ $)) (-15 -2683 ((-51) $ (-1085))) (-15 -2437 ((-51) $ (-1085) (-51)))))) (T -577)) -((-1810 (*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-577)))) (-2922 (*1 *1 *1) (-5 *1 (-577))) (-2683 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-51)) (-5 *1 (-577)))) (-2437 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1085)) (-5 *1 (-577))))) -(-13 (-1097 (-1068) (-51)) (-10 -8 (-15 -1810 ($ (-363))) (-15 -2922 ($ $)) (-15 -2683 ((-51) $ (-1085))) (-15 -2437 ((-51) $ (-1085) (-51))))) -((-1682 (($ $ |#2|) 10))) -(((-578 |#1| |#2|) (-10 -8 (-15 -1682 (|#1| |#1| |#2|))) (-579 |#2|) (-157)) (T -578)) -NIL -(-10 -8 (-15 -1682 (|#1| |#1| |#2|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2227 (($ $ $) 29)) (-2217 (((-792) $) 11)) (-3697 (($) 18 T CONST)) (-1562 (((-108) $ $) 6)) (-1682 (($ $ |#1|) 28 (|has| |#1| (-338)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-579 |#1|) (-1197) (-157)) (T -579)) -((-2227 (*1 *1 *1 *1) (-12 (-4 *1 (-579 *2)) (-4 *2 (-157)))) (-1682 (*1 *1 *1 *2) (-12 (-4 *1 (-579 *2)) (-4 *2 (-157)) (-4 *2 (-338))))) -(-13 (-655 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2227 ($ $ $)) (IF (|has| |t#1| (-338)) (-15 -1682 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-655 |#1|) . T) ((-977 |#1|) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2541 (((-3 $ "failed")) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-2265 (((-3 $ "failed") $ $) NIL)) (-3690 (((-1166 (-628 |#1|))) NIL (|has| |#2| (-392 |#1|))) (((-1166 (-628 |#1|)) (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-2726 (((-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-3367 (($) NIL T CONST)) (-2722 (((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed")) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-3050 (((-3 $ "failed")) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-3531 (((-628 |#1|)) NIL (|has| |#2| (-392 |#1|))) (((-628 |#1|) (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-2046 ((|#1| $) NIL (|has| |#2| (-342 |#1|)))) (-2853 (((-628 |#1|) $) NIL (|has| |#2| (-392 |#1|))) (((-628 |#1|) $ (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-1279 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-1662 (((-1081 (-881 |#1|))) NIL (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-338))))) (-2698 (($ $ (-850)) NIL)) (-3676 ((|#1| $) NIL (|has| |#2| (-342 |#1|)))) (-4080 (((-1081 |#1|) $) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-4035 ((|#1|) NIL (|has| |#2| (-392 |#1|))) ((|#1| (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-3767 (((-1081 |#1|) $) NIL (|has| |#2| (-342 |#1|)))) (-1340 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3225 (($ (-1166 |#1|)) NIL (|has| |#2| (-392 |#1|))) (($ (-1166 |#1|) (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-3920 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-1692 (((-850)) NIL (|has| |#2| (-342 |#1|)))) (-2134 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2870 (($ $ (-850)) NIL)) (-2287 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3702 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3868 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2439 (((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed")) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-3351 (((-3 $ "failed")) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-1521 (((-628 |#1|)) NIL (|has| |#2| (-392 |#1|))) (((-628 |#1|) (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-3411 ((|#1| $) NIL (|has| |#2| (-342 |#1|)))) (-2734 (((-628 |#1|) $) NIL (|has| |#2| (-392 |#1|))) (((-628 |#1|) $ (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-3070 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-3943 (((-1081 (-881 |#1|))) NIL (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-338))))) (-1946 (($ $ (-850)) NIL)) (-1819 ((|#1| $) NIL (|has| |#2| (-342 |#1|)))) (-1216 (((-1081 |#1|) $) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-3020 ((|#1|) NIL (|has| |#2| (-392 |#1|))) ((|#1| (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-2724 (((-1081 |#1|) $) NIL (|has| |#2| (-342 |#1|)))) (-4197 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2311 (((-1068) $) NIL)) (-3823 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-1388 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3509 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-4174 (((-1032) $) NIL)) (-1427 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2683 ((|#1| $ (-522)) NIL (|has| |#2| (-392 |#1|)))) (-3510 (((-628 |#1|) (-1166 $)) NIL (|has| |#2| (-392 |#1|))) (((-1166 |#1|) $) NIL (|has| |#2| (-392 |#1|))) (((-628 |#1|) (-1166 $) (-1166 $)) NIL (|has| |#2| (-342 |#1|))) (((-1166 |#1|) $ (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-3873 (($ (-1166 |#1|)) NIL (|has| |#2| (-392 |#1|))) (((-1166 |#1|) $) NIL (|has| |#2| (-392 |#1|)))) (-1777 (((-588 (-881 |#1|))) NIL (|has| |#2| (-392 |#1|))) (((-588 (-881 |#1|)) (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-1596 (($ $ $) NIL)) (-3990 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2217 (((-792) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2905 (((-1166 $)) NIL (|has| |#2| (-392 |#1|)))) (-1548 (((-588 (-1166 |#1|))) NIL (-3844 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-2185 (($ $ $ $) NIL)) (-3597 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-1664 (($ (-628 |#1|) $) NIL (|has| |#2| (-392 |#1|)))) (-1369 (($ $ $) NIL)) (-3578 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2912 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-1855 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3697 (($) 15 T CONST)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) 17)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-580 |#1| |#2|) (-13 (-682 |#1|) (-562 |#2|) (-10 -8 (-15 -2217 ($ |#2|)) (IF (|has| |#2| (-392 |#1|)) (-6 (-392 |#1|)) |%noBranch|) (IF (|has| |#2| (-342 |#1|)) (-6 (-342 |#1|)) |%noBranch|))) (-157) (-682 |#1|)) (T -580)) -((-2217 (*1 *1 *2) (-12 (-4 *3 (-157)) (-5 *1 (-580 *3 *2)) (-4 *2 (-682 *3))))) -(-13 (-682 |#1|) (-562 |#2|) (-10 -8 (-15 -2217 ($ |#2|)) (IF (|has| |#2| (-392 |#1|)) (-6 (-392 |#1|)) |%noBranch|) (IF (|has| |#2| (-342 |#1|)) (-6 (-342 |#1|)) |%noBranch|))) -((-2280 (((-3 (-777 |#2|) "failed") |#2| (-270 |#2|) (-1068)) 78) (((-3 (-777 |#2|) (-2 (|:| |leftHandLimit| (-3 (-777 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-777 |#2|) "failed"))) "failed") |#2| (-270 (-777 |#2|))) 100)) (-3890 (((-3 (-770 |#2|) "failed") |#2| (-270 (-770 |#2|))) 105))) -(((-581 |#1| |#2|) (-10 -7 (-15 -2280 ((-3 (-777 |#2|) (-2 (|:| |leftHandLimit| (-3 (-777 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-777 |#2|) "failed"))) "failed") |#2| (-270 (-777 |#2|)))) (-15 -3890 ((-3 (-770 |#2|) "failed") |#2| (-270 (-770 |#2|)))) (-15 -2280 ((-3 (-777 |#2|) "failed") |#2| (-270 |#2|) (-1068)))) (-13 (-426) (-784) (-962 (-522)) (-584 (-522))) (-13 (-27) (-1106) (-405 |#1|))) (T -581)) -((-2280 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-270 *3)) (-5 *5 (-1068)) (-4 *3 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-777 *3)) (-5 *1 (-581 *6 *3)))) (-3890 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-270 (-770 *3))) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-770 *3)) (-5 *1 (-581 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))))) (-2280 (*1 *2 *3 *4) (-12 (-5 *4 (-270 (-777 *3))) (-4 *3 (-13 (-27) (-1106) (-405 *5))) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-3 (-777 *3) (-2 (|:| |leftHandLimit| (-3 (-777 *3) "failed")) (|:| |rightHandLimit| (-3 (-777 *3) "failed"))) "failed")) (-5 *1 (-581 *5 *3))))) -(-10 -7 (-15 -2280 ((-3 (-777 |#2|) (-2 (|:| |leftHandLimit| (-3 (-777 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-777 |#2|) "failed"))) "failed") |#2| (-270 (-777 |#2|)))) (-15 -3890 ((-3 (-770 |#2|) "failed") |#2| (-270 (-770 |#2|)))) (-15 -2280 ((-3 (-777 |#2|) "failed") |#2| (-270 |#2|) (-1068)))) -((-2280 (((-3 (-777 (-382 (-881 |#1|))) "failed") (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|))) (-1068)) 79) (((-3 (-777 (-382 (-881 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed"))) "failed") (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|)))) 18) (((-3 (-777 (-382 (-881 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed"))) "failed") (-382 (-881 |#1|)) (-270 (-777 (-881 |#1|)))) 34)) (-3890 (((-770 (-382 (-881 |#1|))) (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|)))) 21) (((-770 (-382 (-881 |#1|))) (-382 (-881 |#1|)) (-270 (-770 (-881 |#1|)))) 42))) -(((-582 |#1|) (-10 -7 (-15 -2280 ((-3 (-777 (-382 (-881 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed"))) "failed") (-382 (-881 |#1|)) (-270 (-777 (-881 |#1|))))) (-15 -2280 ((-3 (-777 (-382 (-881 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed"))) "failed") (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|))))) (-15 -3890 ((-770 (-382 (-881 |#1|))) (-382 (-881 |#1|)) (-270 (-770 (-881 |#1|))))) (-15 -3890 ((-770 (-382 (-881 |#1|))) (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|))))) (-15 -2280 ((-3 (-777 (-382 (-881 |#1|))) "failed") (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|))) (-1068)))) (-426)) (T -582)) -((-2280 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-270 (-382 (-881 *6)))) (-5 *5 (-1068)) (-5 *3 (-382 (-881 *6))) (-4 *6 (-426)) (-5 *2 (-777 *3)) (-5 *1 (-582 *6)))) (-3890 (*1 *2 *3 *4) (-12 (-5 *4 (-270 (-382 (-881 *5)))) (-5 *3 (-382 (-881 *5))) (-4 *5 (-426)) (-5 *2 (-770 *3)) (-5 *1 (-582 *5)))) (-3890 (*1 *2 *3 *4) (-12 (-5 *4 (-270 (-770 (-881 *5)))) (-4 *5 (-426)) (-5 *2 (-770 (-382 (-881 *5)))) (-5 *1 (-582 *5)) (-5 *3 (-382 (-881 *5))))) (-2280 (*1 *2 *3 *4) (-12 (-5 *4 (-270 (-382 (-881 *5)))) (-5 *3 (-382 (-881 *5))) (-4 *5 (-426)) (-5 *2 (-3 (-777 *3) (-2 (|:| |leftHandLimit| (-3 (-777 *3) "failed")) (|:| |rightHandLimit| (-3 (-777 *3) "failed"))) "failed")) (-5 *1 (-582 *5)))) (-2280 (*1 *2 *3 *4) (-12 (-5 *4 (-270 (-777 (-881 *5)))) (-4 *5 (-426)) (-5 *2 (-3 (-777 (-382 (-881 *5))) (-2 (|:| |leftHandLimit| (-3 (-777 (-382 (-881 *5))) "failed")) (|:| |rightHandLimit| (-3 (-777 (-382 (-881 *5))) "failed"))) "failed")) (-5 *1 (-582 *5)) (-5 *3 (-382 (-881 *5)))))) -(-10 -7 (-15 -2280 ((-3 (-777 (-382 (-881 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed"))) "failed") (-382 (-881 |#1|)) (-270 (-777 (-881 |#1|))))) (-15 -2280 ((-3 (-777 (-382 (-881 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed"))) "failed") (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|))))) (-15 -3890 ((-770 (-382 (-881 |#1|))) (-382 (-881 |#1|)) (-270 (-770 (-881 |#1|))))) (-15 -3890 ((-770 (-382 (-881 |#1|))) (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|))))) (-15 -2280 ((-3 (-777 (-382 (-881 |#1|))) "failed") (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|))) (-1068)))) -((-3379 (((-3 (-1166 (-382 |#1|)) "failed") (-1166 |#2|) |#2|) 57 (-2473 (|has| |#1| (-338)))) (((-3 (-1166 |#1|) "failed") (-1166 |#2|) |#2|) 42 (|has| |#1| (-338)))) (-1454 (((-108) (-1166 |#2|)) 30)) (-2234 (((-3 (-1166 |#1|) "failed") (-1166 |#2|)) 33))) -(((-583 |#1| |#2|) (-10 -7 (-15 -1454 ((-108) (-1166 |#2|))) (-15 -2234 ((-3 (-1166 |#1|) "failed") (-1166 |#2|))) (IF (|has| |#1| (-338)) (-15 -3379 ((-3 (-1166 |#1|) "failed") (-1166 |#2|) |#2|)) (-15 -3379 ((-3 (-1166 (-382 |#1|)) "failed") (-1166 |#2|) |#2|)))) (-514) (-584 |#1|)) (T -583)) -((-3379 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1166 *4)) (-4 *4 (-584 *5)) (-2473 (-4 *5 (-338))) (-4 *5 (-514)) (-5 *2 (-1166 (-382 *5))) (-5 *1 (-583 *5 *4)))) (-3379 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1166 *4)) (-4 *4 (-584 *5)) (-4 *5 (-338)) (-4 *5 (-514)) (-5 *2 (-1166 *5)) (-5 *1 (-583 *5 *4)))) (-2234 (*1 *2 *3) (|partial| -12 (-5 *3 (-1166 *5)) (-4 *5 (-584 *4)) (-4 *4 (-514)) (-5 *2 (-1166 *4)) (-5 *1 (-583 *4 *5)))) (-1454 (*1 *2 *3) (-12 (-5 *3 (-1166 *5)) (-4 *5 (-584 *4)) (-4 *4 (-514)) (-5 *2 (-108)) (-5 *1 (-583 *4 *5))))) -(-10 -7 (-15 -1454 ((-108) (-1166 |#2|))) (-15 -2234 ((-3 (-1166 |#1|) "failed") (-1166 |#2|))) (IF (|has| |#1| (-338)) (-15 -3379 ((-3 (-1166 |#1|) "failed") (-1166 |#2|) |#2|)) (-15 -3379 ((-3 (-1166 (-382 |#1|)) "failed") (-1166 |#2|) |#2|)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-1226 (((-628 |#1|) (-628 $)) 36) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 35)) (-3920 (((-3 $ "failed") $) 34)) (-2859 (((-108) $) 31)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11) (($ (-522)) 28)) (-2742 (((-708)) 29)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-584 |#1|) (-1197) (-971)) (T -584)) -((-1226 (*1 *2 *3) (-12 (-5 *3 (-628 *1)) (-4 *1 (-584 *4)) (-4 *4 (-971)) (-5 *2 (-628 *4)))) (-1226 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *1)) (-5 *4 (-1166 *1)) (-4 *1 (-584 *5)) (-4 *5 (-971)) (-5 *2 (-2 (|:| -2149 (-628 *5)) (|:| |vec| (-1166 *5))))))) -(-13 (-971) (-10 -8 (-15 -1226 ((-628 |t#1|) (-628 $))) (-15 -1226 ((-2 (|:| -2149 (-628 |t#1|)) (|:| |vec| (-1166 |t#1|))) (-628 $) (-1166 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 $) . T) ((-664) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-4171 ((|#2| (-588 |#1|) (-588 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-588 |#1|) (-588 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-588 |#1|) (-588 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-588 |#1|) (-588 |#2|) |#2|) 17) ((|#2| (-588 |#1|) (-588 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-588 |#1|) (-588 |#2|)) 12))) -(((-585 |#1| |#2|) (-10 -7 (-15 -4171 ((-1 |#2| |#1|) (-588 |#1|) (-588 |#2|))) (-15 -4171 (|#2| (-588 |#1|) (-588 |#2|) |#1|)) (-15 -4171 ((-1 |#2| |#1|) (-588 |#1|) (-588 |#2|) |#2|)) (-15 -4171 (|#2| (-588 |#1|) (-588 |#2|) |#1| |#2|)) (-15 -4171 ((-1 |#2| |#1|) (-588 |#1|) (-588 |#2|) (-1 |#2| |#1|))) (-15 -4171 (|#2| (-588 |#1|) (-588 |#2|) |#1| (-1 |#2| |#1|)))) (-1014) (-1120)) (T -585)) -((-4171 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-588 *5)) (-5 *4 (-588 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1014)) (-4 *2 (-1120)) (-5 *1 (-585 *5 *2)))) (-4171 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-588 *5)) (-5 *4 (-588 *6)) (-4 *5 (-1014)) (-4 *6 (-1120)) (-5 *1 (-585 *5 *6)))) (-4171 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-588 *5)) (-5 *4 (-588 *2)) (-4 *5 (-1014)) (-4 *2 (-1120)) (-5 *1 (-585 *5 *2)))) (-4171 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-588 *6)) (-5 *4 (-588 *5)) (-4 *6 (-1014)) (-4 *5 (-1120)) (-5 *2 (-1 *5 *6)) (-5 *1 (-585 *6 *5)))) (-4171 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-588 *5)) (-5 *4 (-588 *2)) (-4 *5 (-1014)) (-4 *2 (-1120)) (-5 *1 (-585 *5 *2)))) (-4171 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *5)) (-5 *4 (-588 *6)) (-4 *5 (-1014)) (-4 *6 (-1120)) (-5 *2 (-1 *6 *5)) (-5 *1 (-585 *5 *6))))) -(-10 -7 (-15 -4171 ((-1 |#2| |#1|) (-588 |#1|) (-588 |#2|))) (-15 -4171 (|#2| (-588 |#1|) (-588 |#2|) |#1|)) (-15 -4171 ((-1 |#2| |#1|) (-588 |#1|) (-588 |#2|) |#2|)) (-15 -4171 (|#2| (-588 |#1|) (-588 |#2|) |#1| |#2|)) (-15 -4171 ((-1 |#2| |#1|) (-588 |#1|) (-588 |#2|) (-1 |#2| |#1|))) (-15 -4171 (|#2| (-588 |#1|) (-588 |#2|) |#1| (-1 |#2| |#1|)))) -((-3639 (((-588 |#2|) (-1 |#2| |#1| |#2|) (-588 |#1|) |#2|) 16)) (-2153 ((|#2| (-1 |#2| |#1| |#2|) (-588 |#1|) |#2|) 18)) (-3810 (((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|)) 13))) -(((-586 |#1| |#2|) (-10 -7 (-15 -3639 ((-588 |#2|) (-1 |#2| |#1| |#2|) (-588 |#1|) |#2|)) (-15 -2153 (|#2| (-1 |#2| |#1| |#2|) (-588 |#1|) |#2|)) (-15 -3810 ((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|)))) (-1120) (-1120)) (T -586)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-588 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-588 *6)) (-5 *1 (-586 *5 *6)))) (-2153 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-588 *5)) (-4 *5 (-1120)) (-4 *2 (-1120)) (-5 *1 (-586 *5 *2)))) (-3639 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-588 *6)) (-4 *6 (-1120)) (-4 *5 (-1120)) (-5 *2 (-588 *5)) (-5 *1 (-586 *6 *5))))) -(-10 -7 (-15 -3639 ((-588 |#2|) (-1 |#2| |#1| |#2|) (-588 |#1|) |#2|)) (-15 -2153 (|#2| (-1 |#2| |#1| |#2|) (-588 |#1|) |#2|)) (-15 -3810 ((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|)))) -((-3810 (((-588 |#3|) (-1 |#3| |#1| |#2|) (-588 |#1|) (-588 |#2|)) 13))) -(((-587 |#1| |#2| |#3|) (-10 -7 (-15 -3810 ((-588 |#3|) (-1 |#3| |#1| |#2|) (-588 |#1|) (-588 |#2|)))) (-1120) (-1120) (-1120)) (T -587)) -((-3810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-588 *6)) (-5 *5 (-588 *7)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-588 *8)) (-5 *1 (-587 *6 *7 *8))))) -(-10 -7 (-15 -3810 ((-588 |#3|) (-1 |#3| |#1| |#2|) (-588 |#1|) (-588 |#2|)))) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3526 ((|#1| $) NIL)) (-2126 ((|#1| $) NIL)) (-3961 (($ $) NIL)) (-3883 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-2211 (($ $ (-522)) NIL (|has| $ (-6 -4239)))) (-1866 (((-108) $) NIL (|has| |#1| (-784))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-2806 (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3296 (($ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-2717 (((-108) $ (-708)) NIL)) (-1198 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-2398 (($ $ $) NIL (|has| $ (-6 -4239)))) (-2631 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-3393 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-2437 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4239))) (($ $ "rest" $) NIL (|has| $ (-6 -4239))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-2684 (($ $ (-588 $)) NIL (|has| $ (-6 -4239)))) (-1650 (($ $ $) 32 (|has| |#1| (-1014)))) (-1638 (($ $ $) 34 (|has| |#1| (-1014)))) (-1629 (($ $ $) 37 (|has| |#1| (-1014)))) (-1213 (($ (-1 (-108) |#1|) $) NIL)) (-1696 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2116 ((|#1| $) NIL)) (-3367 (($) NIL T CONST)) (-2465 (($ $) NIL (|has| $ (-6 -4239)))) (-1939 (($ $) NIL)) (-2352 (($ $) NIL) (($ $ (-708)) NIL)) (-1581 (($ $) NIL (|has| |#1| (-1014)))) (-2379 (($ $) 31 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1700 (($ |#1| $) NIL (|has| |#1| (-1014))) (($ (-1 (-108) |#1|) $) NIL)) (-1424 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2411 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-522)) NIL)) (-3614 (((-108) $) NIL)) (-3314 (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014))) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) (-1 (-108) |#1|) $) NIL)) (-2395 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-1389 (((-108) $) 9)) (-2674 (((-588 $) $) NIL)) (-2402 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2088 (($) 7)) (-1893 (($ (-708) |#1|) NIL)) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) NIL (|has| (-522) (-784)))) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-3557 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3164 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 33 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2201 (((-522) $) NIL (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-2397 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1614 (($ |#1|) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2548 (((-588 |#1|) $) NIL)) (-3394 (((-108) $) NIL)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1442 ((|#1| $) NIL) (($ $ (-708)) NIL)) (-3365 (($ $ $ (-522)) NIL) (($ |#1| $ (-522)) NIL)) (-1731 (($ $ $ (-522)) NIL) (($ |#1| $ (-522)) NIL)) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) NIL)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2337 ((|#1| $) NIL) (($ $ (-708)) NIL)) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1972 (($ $ |#1|) NIL (|has| $ (-6 -4239)))) (-4196 (((-108) $) NIL)) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1133 (-522))) NIL) ((|#1| $ (-522)) 36) ((|#1| $ (-522) |#1|) NIL)) (-3381 (((-522) $ $) NIL)) (-3551 (($ $ (-1133 (-522))) NIL) (($ $ (-522)) NIL)) (-3835 (($ $ (-1133 (-522))) NIL) (($ $ (-522)) NIL)) (-3395 (((-108) $) NIL)) (-2885 (($ $) NIL)) (-1668 (($ $) NIL (|has| $ (-6 -4239)))) (-1321 (((-708) $) NIL)) (-1502 (($ $) NIL)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3629 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) 45 (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) NIL)) (-3019 (($ |#1| $) 10)) (-2335 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4170 (($ $ $) 30) (($ |#1| $) NIL) (($ (-588 $)) NIL) (($ $ |#1|) NIL)) (-2217 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1515 (((-588 $) $) NIL)) (-3294 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3818 (($ $ $) 11)) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2810 (((-1068) $) 26 (|has| |#1| (-765))) (((-1068) $ (-108)) 27 (|has| |#1| (-765))) (((-1171) (-759) $) 28 (|has| |#1| (-765))) (((-1171) (-759) $ (-108)) 29 (|has| |#1| (-765)))) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-588 |#1|) (-13 (-608 |#1|) (-10 -8 (-15 -2088 ($)) (-15 -1389 ((-108) $)) (-15 -3019 ($ |#1| $)) (-15 -3818 ($ $ $)) (IF (|has| |#1| (-1014)) (PROGN (-15 -1650 ($ $ $)) (-15 -1638 ($ $ $)) (-15 -1629 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|))) (-1120)) (T -588)) -((-2088 (*1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1120)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-588 *3)) (-4 *3 (-1120)))) (-3019 (*1 *1 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1120)))) (-3818 (*1 *1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1120)))) (-1650 (*1 *1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1014)) (-4 *2 (-1120)))) (-1638 (*1 *1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1014)) (-4 *2 (-1120)))) (-1629 (*1 *1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1014)) (-4 *2 (-1120))))) -(-13 (-608 |#1|) (-10 -8 (-15 -2088 ($)) (-15 -1389 ((-108) $)) (-15 -3019 ($ |#1| $)) (-15 -3818 ($ $ $)) (IF (|has| |#1| (-1014)) (PROGN (-15 -1650 ($ $ $)) (-15 -1638 ($ $ $)) (-15 -1629 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|))) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2365 (($ |#1| |#1| $) 43)) (-2717 (((-108) $ (-708)) NIL)) (-1213 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3367 (($) NIL T CONST)) (-1581 (($ $) 45)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1700 (($ |#1| $) 52 (|has| $ (-6 -4238))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4238)))) (-1424 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238)))) (-2395 (((-588 |#1|) $) 9 (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) NIL)) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2397 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 37)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1431 ((|#1| $) 46)) (-3365 (($ |#1| $) 26) (($ |#1| $ (-708)) 42)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3295 ((|#1| $) 48)) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) 21)) (-3298 (($) 25)) (-3123 (((-108) $) 50)) (-3699 (((-588 (-2 (|:| -3149 |#1|) (|:| -4187 (-708)))) $) 59)) (-3546 (($) 23) (($ (-588 |#1|)) 18)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) 56 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) 19)) (-3873 (((-498) $) 34 (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) NIL)) (-2217 (((-792) $) 14 (|has| |#1| (-562 (-792))))) (-2501 (($ (-588 |#1|)) 22)) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 61 (|has| |#1| (-1014)))) (-3591 (((-708) $) 16 (|has| $ (-6 -4238))))) -(((-589 |#1|) (-13 (-633 |#1|) (-10 -8 (-6 -4238) (-15 -3123 ((-108) $)) (-15 -2365 ($ |#1| |#1| $)))) (-1014)) (T -589)) -((-3123 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-589 *3)) (-4 *3 (-1014)))) (-2365 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1014))))) -(-13 (-633 |#1|) (-10 -8 (-6 -4238) (-15 -3123 ((-108) $)) (-15 -2365 ($ |#1| |#1| $)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-3697 (($) 18 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ |#1| $) 23))) -(((-590 |#1|) (-1197) (-978)) (T -590)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-978))))) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1733 ((|#1| $) NIL)) (-1546 ((|#1| $) NIL)) (-4039 (($ $) NIL)) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-2961 (($ $ (-523)) 58 (|has| $ (-6 -4245)))) (-1964 (((-108) $) NIL (|has| |#1| (-786))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-1506 (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786)))) (($ (-1 (-108) |#1| |#1|) $) 56 (|has| $ (-6 -4245)))) (-3974 (($ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1823 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-2110 (($ $ $) 23 (|has| $ (-6 -4245)))) (-3395 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-3456 ((|#1| $ |#1|) 21 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4245))) (($ $ "rest" $) 24 (|has| $ (-6 -4245))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) NIL (|has| $ (-6 -4245)))) (-3387 (($ (-1 (-108) |#1|) $) NIL)) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-1532 ((|#1| $) NIL)) (-2518 (($) NIL T CONST)) (-2867 (($ $) 28 (|has| $ (-6 -4245)))) (-3631 (($ $) 29)) (-1751 (($ $) 18) (($ $ (-710)) 32)) (-3941 (($ $) 54 (|has| |#1| (-1016)))) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2249 (($ |#1| $) NIL (|has| |#1| (-1016))) (($ (-1 (-108) |#1|) $) NIL)) (-2557 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2863 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) NIL)) (-1232 (((-108) $) NIL)) (-1479 (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016))) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) (-1 (-108) |#1|) $) NIL)) (-1666 (((-589 |#1|) $) 27 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) NIL)) (-1238 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3052 (($ (-710) |#1|) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) 31 (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2158 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) 57)) (-2178 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 52 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3992 (($ |#1|) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-2726 (((-589 |#1|) $) NIL)) (-3555 (((-108) $) NIL)) (-3779 (((-1070) $) 51 (|has| |#1| (-1016)))) (-2579 ((|#1| $) NIL) (($ $ (-710)) NIL)) (-3450 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2847 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1738 ((|#1| $) 13) (($ $ (-710)) NIL)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) NIL (|has| $ (-6 -4245)))) (-2402 (((-108) $) NIL)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 12)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) 17)) (-3988 (($) 16)) (-3223 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1135 (-523))) NIL) ((|#1| $ (-523)) NIL) ((|#1| $ (-523) |#1|) NIL)) (-1549 (((-523) $ $) NIL)) (-2753 (($ $ (-1135 (-523))) NIL) (($ $ (-523)) NIL)) (-1469 (($ $ (-1135 (-523))) NIL) (($ $ (-523)) NIL)) (-2524 (((-108) $) 34)) (-2732 (($ $) NIL)) (-2363 (($ $) NIL (|has| $ (-6 -4245)))) (-2316 (((-710) $) NIL)) (-3562 (($ $) 36)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) 35)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 26)) (-1746 (($ $ $) 53) (($ $ |#1|) NIL)) (-2326 (($ $ $) NIL) (($ |#1| $) 10) (($ (-589 $)) NIL) (($ $ |#1|) NIL)) (-1458 (((-794) $) 46 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) NIL)) (-3653 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) 48 (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2676 (((-710) $) 9 (|has| $ (-6 -4244))))) +(((-489 |#1| |#2|) (-609 |#1|) (-1122) (-523)) (T -489)) +NIL +(-609 |#1|) +((-2445 ((|#4| |#4|) 26)) (-1319 (((-710) |#4|) 31)) (-1867 (((-710) |#4|) 32)) (-3498 (((-589 |#3|) |#4|) 38 (|has| |#3| (-6 -4245)))) (-3698 (((-3 |#4| "failed") |#4|) 48)) (-1463 ((|#4| |#4|) 41)) (-2310 ((|#1| |#4|) 40))) +(((-490 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2445 (|#4| |#4|)) (-15 -1319 ((-710) |#4|)) (-15 -1867 ((-710) |#4|)) (IF (|has| |#3| (-6 -4245)) (-15 -3498 ((-589 |#3|) |#4|)) |%noBranch|) (-15 -2310 (|#1| |#4|)) (-15 -1463 (|#4| |#4|)) (-15 -3698 ((-3 |#4| "failed") |#4|))) (-339) (-349 |#1|) (-349 |#1|) (-627 |#1| |#2| |#3|)) (T -490)) +((-3698 (*1 *2 *2) (|partial| -12 (-4 *3 (-339)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-490 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-1463 (*1 *2 *2) (-12 (-4 *3 (-339)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-490 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2310 (*1 *2 *3) (-12 (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-339)) (-5 *1 (-490 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) (-3498 (*1 *2 *3) (-12 (|has| *6 (-6 -4245)) (-4 *4 (-339)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-589 *6)) (-5 *1 (-490 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-1867 (*1 *2 *3) (-12 (-4 *4 (-339)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-710)) (-5 *1 (-490 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-1319 (*1 *2 *3) (-12 (-4 *4 (-339)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-710)) (-5 *1 (-490 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-2445 (*1 *2 *2) (-12 (-4 *3 (-339)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-490 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +(-10 -7 (-15 -2445 (|#4| |#4|)) (-15 -1319 ((-710) |#4|)) (-15 -1867 ((-710) |#4|)) (IF (|has| |#3| (-6 -4245)) (-15 -3498 ((-589 |#3|) |#4|)) |%noBranch|) (-15 -2310 (|#1| |#4|)) (-15 -1463 (|#4| |#4|)) (-15 -3698 ((-3 |#4| "failed") |#4|))) +((-2445 ((|#8| |#4|) 20)) (-3498 (((-589 |#3|) |#4|) 29 (|has| |#7| (-6 -4245)))) (-3698 (((-3 |#8| "failed") |#4|) 23))) +(((-491 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2445 (|#8| |#4|)) (-15 -3698 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4245)) (-15 -3498 ((-589 |#3|) |#4|)) |%noBranch|)) (-515) (-349 |#1|) (-349 |#1|) (-627 |#1| |#2| |#3|) (-921 |#1|) (-349 |#5|) (-349 |#5|) (-627 |#5| |#6| |#7|)) (T -491)) +((-3498 (*1 *2 *3) (-12 (|has| *9 (-6 -4245)) (-4 *4 (-515)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-4 *7 (-921 *4)) (-4 *8 (-349 *7)) (-4 *9 (-349 *7)) (-5 *2 (-589 *6)) (-5 *1 (-491 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-627 *4 *5 *6)) (-4 *10 (-627 *7 *8 *9)))) (-3698 (*1 *2 *3) (|partial| -12 (-4 *4 (-515)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-4 *7 (-921 *4)) (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-491 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-349 *7)) (-4 *9 (-349 *7)))) (-2445 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-4 *7 (-921 *4)) (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-491 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-349 *7)) (-4 *9 (-349 *7))))) +(-10 -7 (-15 -2445 (|#8| |#4|)) (-15 -3698 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4245)) (-15 -3498 ((-589 |#3|) |#4|)) |%noBranch|)) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2821 (($ (-710) (-710)) NIL)) (-1911 (($ $ $) NIL)) (-4190 (($ (-554 |#1| |#3|)) NIL) (($ $) NIL)) (-2606 (((-108) $) NIL)) (-2637 (($ $ (-523) (-523)) 12)) (-3276 (($ $ (-523) (-523)) NIL)) (-2934 (($ $ (-523) (-523) (-523) (-523)) NIL)) (-3858 (($ $) NIL)) (-2651 (((-108) $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1494 (($ $ (-523) (-523) $) NIL)) (-1641 ((|#1| $ (-523) (-523) |#1|) NIL) (($ $ (-589 (-523)) (-589 (-523)) $) NIL)) (-3787 (($ $ (-523) (-554 |#1| |#3|)) NIL)) (-3617 (($ $ (-523) (-554 |#1| |#2|)) NIL)) (-1421 (($ (-710) |#1|) NIL)) (-2518 (($) NIL T CONST)) (-2445 (($ $) 19 (|has| |#1| (-284)))) (-2031 (((-554 |#1| |#3|) $ (-523)) NIL)) (-1319 (((-710) $) 22 (|has| |#1| (-515)))) (-2863 ((|#1| $ (-523) (-523) |#1|) NIL)) (-2795 ((|#1| $ (-523) (-523)) NIL)) (-1666 (((-589 |#1|) $) NIL)) (-1867 (((-710) $) 24 (|has| |#1| (-515)))) (-3498 (((-589 (-554 |#1| |#2|)) $) 27 (|has| |#1| (-515)))) (-2803 (((-710) $) NIL)) (-3052 (($ (-710) (-710) |#1|) NIL)) (-2813 (((-710) $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-1925 ((|#1| $) 17 (|has| |#1| (-6 (-4246 "*"))))) (-3871 (((-523) $) 10)) (-1758 (((-523) $) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3338 (((-523) $) 11)) (-2347 (((-523) $) NIL)) (-3068 (($ (-589 (-589 |#1|))) NIL)) (-2852 (($ (-1 |#1| |#1|) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2289 (((-589 (-589 |#1|)) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3698 (((-3 $ "failed") $) 31 (|has| |#1| (-339)))) (-3945 (($ $ $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-4203 (($ $ |#1|) NIL)) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-523) (-523)) NIL) ((|#1| $ (-523) (-523) |#1|) NIL) (($ $ (-589 (-523)) (-589 (-523))) NIL)) (-3739 (($ (-589 |#1|)) NIL) (($ (-589 $)) NIL)) (-3117 (((-108) $) NIL)) (-2310 ((|#1| $) 15 (|has| |#1| (-6 (-4246 "*"))))) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1595 (((-554 |#1| |#2|) $ (-523)) NIL)) (-1458 (($ (-554 |#1| |#2|)) NIL) (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2175 (((-108) $) NIL)) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $ $) NIL) (($ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-523) $) NIL) (((-554 |#1| |#2|) $ (-554 |#1| |#2|)) NIL) (((-554 |#1| |#3|) (-554 |#1| |#3|) $) NIL)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-492 |#1| |#2| |#3|) (-627 |#1| (-554 |#1| |#3|) (-554 |#1| |#2|)) (-973) (-523) (-523)) (T -492)) +NIL +(-627 |#1| (-554 |#1| |#3|) (-554 |#1| |#2|)) +((-3155 (((-1083 |#1|) (-710)) 75)) (-4187 (((-1168 |#1|) (-1168 |#1|) (-852)) 68)) (-1416 (((-1173) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))) |#1|) 83)) (-2415 (((-1168 |#1|) (-1168 |#1|) (-710)) 36)) (-4032 (((-1168 |#1|) (-852)) 70)) (-4074 (((-1168 |#1|) (-1168 |#1|) (-523)) 24)) (-1480 (((-1083 |#1|) (-1168 |#1|)) 76)) (-1881 (((-1168 |#1|) (-852)) 94)) (-2307 (((-108) (-1168 |#1|)) 79)) (-3892 (((-1168 |#1|) (-1168 |#1|) (-852)) 61)) (-1397 (((-1083 |#1|) (-1168 |#1|)) 88)) (-2072 (((-852) (-1168 |#1|)) 58)) (-3738 (((-1168 |#1|) (-1168 |#1|)) 30)) (-3878 (((-1168 |#1|) (-852) (-852)) 96)) (-1943 (((-1168 |#1|) (-1168 |#1|) (-1034) (-1034)) 23)) (-3936 (((-1168 |#1|) (-1168 |#1|) (-710) (-1034)) 37)) (-4041 (((-1168 (-1168 |#1|)) (-852)) 93)) (-4098 (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 80)) (** (((-1168 |#1|) (-1168 |#1|) (-523)) 45)) (* (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 25))) +(((-493 |#1|) (-10 -7 (-15 -1416 ((-1173) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))) |#1|)) (-15 -4032 ((-1168 |#1|) (-852))) (-15 -3878 ((-1168 |#1|) (-852) (-852))) (-15 -1480 ((-1083 |#1|) (-1168 |#1|))) (-15 -3155 ((-1083 |#1|) (-710))) (-15 -3936 ((-1168 |#1|) (-1168 |#1|) (-710) (-1034))) (-15 -2415 ((-1168 |#1|) (-1168 |#1|) (-710))) (-15 -1943 ((-1168 |#1|) (-1168 |#1|) (-1034) (-1034))) (-15 -4074 ((-1168 |#1|) (-1168 |#1|) (-523))) (-15 ** ((-1168 |#1|) (-1168 |#1|) (-523))) (-15 * ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -4098 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -3892 ((-1168 |#1|) (-1168 |#1|) (-852))) (-15 -4187 ((-1168 |#1|) (-1168 |#1|) (-852))) (-15 -3738 ((-1168 |#1|) (-1168 |#1|))) (-15 -2072 ((-852) (-1168 |#1|))) (-15 -2307 ((-108) (-1168 |#1|))) (-15 -4041 ((-1168 (-1168 |#1|)) (-852))) (-15 -1881 ((-1168 |#1|) (-852))) (-15 -1397 ((-1083 |#1|) (-1168 |#1|)))) (-325)) (T -493)) +((-1397 (*1 *2 *3) (-12 (-5 *3 (-1168 *4)) (-4 *4 (-325)) (-5 *2 (-1083 *4)) (-5 *1 (-493 *4)))) (-1881 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1168 *4)) (-5 *1 (-493 *4)) (-4 *4 (-325)))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1168 (-1168 *4))) (-5 *1 (-493 *4)) (-4 *4 (-325)))) (-2307 (*1 *2 *3) (-12 (-5 *3 (-1168 *4)) (-4 *4 (-325)) (-5 *2 (-108)) (-5 *1 (-493 *4)))) (-2072 (*1 *2 *3) (-12 (-5 *3 (-1168 *4)) (-4 *4 (-325)) (-5 *2 (-852)) (-5 *1 (-493 *4)))) (-3738 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-325)) (-5 *1 (-493 *3)))) (-4187 (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-852)) (-4 *4 (-325)) (-5 *1 (-493 *4)))) (-3892 (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-852)) (-4 *4 (-325)) (-5 *1 (-493 *4)))) (-4098 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-325)) (-5 *1 (-493 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-325)) (-5 *1 (-493 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-523)) (-4 *4 (-325)) (-5 *1 (-493 *4)))) (-4074 (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-523)) (-4 *4 (-325)) (-5 *1 (-493 *4)))) (-1943 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1034)) (-4 *4 (-325)) (-5 *1 (-493 *4)))) (-2415 (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-710)) (-4 *4 (-325)) (-5 *1 (-493 *4)))) (-3936 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1168 *5)) (-5 *3 (-710)) (-5 *4 (-1034)) (-4 *5 (-325)) (-5 *1 (-493 *5)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1083 *4)) (-5 *1 (-493 *4)) (-4 *4 (-325)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-1168 *4)) (-4 *4 (-325)) (-5 *2 (-1083 *4)) (-5 *1 (-493 *4)))) (-3878 (*1 *2 *3 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1168 *4)) (-5 *1 (-493 *4)) (-4 *4 (-325)))) (-4032 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1168 *4)) (-5 *1 (-493 *4)) (-4 *4 (-325)))) (-1416 (*1 *2 *3 *4) (-12 (-5 *3 (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034)))))) (-4 *4 (-325)) (-5 *2 (-1173)) (-5 *1 (-493 *4))))) +(-10 -7 (-15 -1416 ((-1173) (-1168 (-589 (-2 (|:| -1733 |#1|) (|:| -3878 (-1034))))) |#1|)) (-15 -4032 ((-1168 |#1|) (-852))) (-15 -3878 ((-1168 |#1|) (-852) (-852))) (-15 -1480 ((-1083 |#1|) (-1168 |#1|))) (-15 -3155 ((-1083 |#1|) (-710))) (-15 -3936 ((-1168 |#1|) (-1168 |#1|) (-710) (-1034))) (-15 -2415 ((-1168 |#1|) (-1168 |#1|) (-710))) (-15 -1943 ((-1168 |#1|) (-1168 |#1|) (-1034) (-1034))) (-15 -4074 ((-1168 |#1|) (-1168 |#1|) (-523))) (-15 ** ((-1168 |#1|) (-1168 |#1|) (-523))) (-15 * ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -4098 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -3892 ((-1168 |#1|) (-1168 |#1|) (-852))) (-15 -4187 ((-1168 |#1|) (-1168 |#1|) (-852))) (-15 -3738 ((-1168 |#1|) (-1168 |#1|))) (-15 -2072 ((-852) (-1168 |#1|))) (-15 -2307 ((-108) (-1168 |#1|))) (-15 -4041 ((-1168 (-1168 |#1|)) (-852))) (-15 -1881 ((-1168 |#1|) (-852))) (-15 -1397 ((-1083 |#1|) (-1168 |#1|)))) +((-3674 (((-1 |#1| |#1|) |#1|) 11)) (-3378 (((-1 |#1| |#1|)) 10))) +(((-494 |#1|) (-10 -7 (-15 -3378 ((-1 |#1| |#1|))) (-15 -3674 ((-1 |#1| |#1|) |#1|))) (-13 (-666) (-25))) (T -494)) +((-3674 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-494 *3)) (-4 *3 (-13 (-666) (-25))))) (-3378 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-494 *3)) (-4 *3 (-13 (-666) (-25)))))) +(-10 -7 (-15 -3378 ((-1 |#1| |#1|))) (-15 -3674 ((-1 |#1| |#1|) |#1|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3596 (($ $ $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3810 (($ $) NIL)) (-1933 (($ (-710) |#1|) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3612 (($ (-1 (-710) (-710)) $) NIL)) (-1953 ((|#1| $) NIL)) (-3786 (((-710) $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 20)) (-2756 (($) NIL T CONST)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL)) (* (($ (-710) $) NIL) (($ (-852) $) NIL))) +(((-495 |#1|) (-13 (-732) (-479 (-710) |#1|)) (-786)) (T -495)) +NIL +(-13 (-732) (-479 (-710) |#1|)) +((-1795 (((-589 |#2|) (-1083 |#1|) |#3|) 83)) (-2973 (((-589 (-2 (|:| |outval| |#2|) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 |#2|))))) (-629 |#1|) |#3| (-1 (-394 (-1083 |#1|)) (-1083 |#1|))) 99)) (-3876 (((-1083 |#1|) (-629 |#1|)) 95))) +(((-496 |#1| |#2| |#3|) (-10 -7 (-15 -3876 ((-1083 |#1|) (-629 |#1|))) (-15 -1795 ((-589 |#2|) (-1083 |#1|) |#3|)) (-15 -2973 ((-589 (-2 (|:| |outval| |#2|) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 |#2|))))) (-629 |#1|) |#3| (-1 (-394 (-1083 |#1|)) (-1083 |#1|))))) (-339) (-339) (-13 (-339) (-784))) (T -496)) +((-2973 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *6)) (-5 *5 (-1 (-394 (-1083 *6)) (-1083 *6))) (-4 *6 (-339)) (-5 *2 (-589 (-2 (|:| |outval| *7) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 *7)))))) (-5 *1 (-496 *6 *7 *4)) (-4 *7 (-339)) (-4 *4 (-13 (-339) (-784))))) (-1795 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *5)) (-4 *5 (-339)) (-5 *2 (-589 *6)) (-5 *1 (-496 *5 *6 *4)) (-4 *6 (-339)) (-4 *4 (-13 (-339) (-784))))) (-3876 (*1 *2 *3) (-12 (-5 *3 (-629 *4)) (-4 *4 (-339)) (-5 *2 (-1083 *4)) (-5 *1 (-496 *4 *5 *6)) (-4 *5 (-339)) (-4 *6 (-13 (-339) (-784)))))) +(-10 -7 (-15 -3876 ((-1083 |#1|) (-629 |#1|))) (-15 -1795 ((-589 |#2|) (-1083 |#1|) |#3|)) (-15 -2973 ((-589 (-2 (|:| |outval| |#2|) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 |#2|))))) (-629 |#1|) |#3| (-1 (-394 (-1083 |#1|)) (-1083 |#1|))))) +((-1891 (((-779 (-523))) 11)) (-1903 (((-779 (-523))) 13)) (-2833 (((-772 (-523))) 8))) +(((-497) (-10 -7 (-15 -2833 ((-772 (-523)))) (-15 -1891 ((-779 (-523)))) (-15 -1903 ((-779 (-523)))))) (T -497)) +((-1903 (*1 *2) (-12 (-5 *2 (-779 (-523))) (-5 *1 (-497)))) (-1891 (*1 *2) (-12 (-5 *2 (-779 (-523))) (-5 *1 (-497)))) (-2833 (*1 *2) (-12 (-5 *2 (-772 (-523))) (-5 *1 (-497))))) +(-10 -7 (-15 -2833 ((-772 (-523)))) (-15 -1891 ((-779 (-523)))) (-15 -1903 ((-779 (-523))))) +((-2546 (((-499) (-1087)) 15)) (-2711 ((|#1| (-499)) 20))) +(((-498 |#1|) (-10 -7 (-15 -2546 ((-499) (-1087))) (-15 -2711 (|#1| (-499)))) (-1122)) (T -498)) +((-2711 (*1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-498 *2)) (-4 *2 (-1122)))) (-2546 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-499)) (-5 *1 (-498 *4)) (-4 *4 (-1122))))) +(-10 -7 (-15 -2546 ((-499) (-1087))) (-15 -2711 (|#1| (-499)))) +((-3924 (((-108) $ $) NIL)) (-2246 (((-1070) $) 46)) (-3129 (((-108) $) 43)) (-3335 (((-1087) $) 44)) (-3708 (((-108) $) 41)) (-3207 (((-1070) $) 42)) (-3021 (((-108) $) NIL)) (-1888 (((-108) $) NIL)) (-1749 (((-108) $) NIL)) (-3779 (((-1070) $) NIL)) (-2661 (($ $ (-589 (-1087))) 20)) (-2711 (((-51) $) 22)) (-1538 (((-108) $) NIL)) (-3356 (((-523) $) NIL)) (-2783 (((-1034) $) NIL)) (-3121 (($ $ (-589 (-1087)) (-1087)) 58)) (-3264 (((-108) $) NIL)) (-4092 (((-203) $) NIL)) (-1689 (($ $) 38)) (-2659 (((-794) $) NIL)) (-1710 (((-108) $ $) NIL)) (-3223 (($ $ (-523)) NIL) (($ $ (-589 (-523))) NIL)) (-1887 (((-589 $) $) 28)) (-3303 (((-1087) (-589 $)) 47)) (-3663 (($ (-589 $)) 51) (($ (-1070)) NIL) (($ (-1087)) 18) (($ (-523)) 8) (($ (-203)) 25) (($ (-794)) NIL) (((-1020) $) 11) (($ (-1020)) 12)) (-4176 (((-1087) (-1087) (-589 $)) 50)) (-1458 (((-794) $) NIL)) (-1627 (($ $) 49)) (-4003 (($ $) 48)) (-2716 (($ $ (-589 $)) 55)) (-1308 (((-108) $) 27)) (-2756 (($) 9 T CONST)) (-2767 (($) 10 T CONST)) (-3983 (((-108) $ $) 59)) (-4098 (($ $ $) 64)) (-4075 (($ $ $) 60)) (** (($ $ (-710)) 63) (($ $ (-523)) 62)) (* (($ $ $) 61)) (-2676 (((-523) $) NIL))) +(((-499) (-13 (-1019 (-1070) (-1087) (-523) (-203) (-794)) (-564 (-1020)) (-10 -8 (-15 -2711 ((-51) $)) (-15 -3663 ($ (-1020))) (-15 -2716 ($ $ (-589 $))) (-15 -3121 ($ $ (-589 (-1087)) (-1087))) (-15 -2661 ($ $ (-589 (-1087)))) (-15 -4075 ($ $ $)) (-15 * ($ $ $)) (-15 -4098 ($ $ $)) (-15 ** ($ $ (-710))) (-15 ** ($ $ (-523))) (-15 0 ($) -3059) (-15 1 ($) -3059) (-15 -1689 ($ $)) (-15 -2246 ((-1070) $)) (-15 -3303 ((-1087) (-589 $))) (-15 -4176 ((-1087) (-1087) (-589 $)))))) (T -499)) +((-2711 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-499)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-499)))) (-2716 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-499))) (-5 *1 (-499)))) (-3121 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-1087)) (-5 *1 (-499)))) (-2661 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-499)))) (-4075 (*1 *1 *1 *1) (-5 *1 (-499))) (* (*1 *1 *1 *1) (-5 *1 (-499))) (-4098 (*1 *1 *1 *1) (-5 *1 (-499))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-499)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-499)))) (-2756 (*1 *1) (-5 *1 (-499))) (-2767 (*1 *1) (-5 *1 (-499))) (-1689 (*1 *1 *1) (-5 *1 (-499))) (-2246 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-499)))) (-3303 (*1 *2 *3) (-12 (-5 *3 (-589 (-499))) (-5 *2 (-1087)) (-5 *1 (-499)))) (-4176 (*1 *2 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-499))) (-5 *1 (-499))))) +(-13 (-1019 (-1070) (-1087) (-523) (-203) (-794)) (-564 (-1020)) (-10 -8 (-15 -2711 ((-51) $)) (-15 -3663 ($ (-1020))) (-15 -2716 ($ $ (-589 $))) (-15 -3121 ($ $ (-589 (-1087)) (-1087))) (-15 -2661 ($ $ (-589 (-1087)))) (-15 -4075 ($ $ $)) (-15 * ($ $ $)) (-15 -4098 ($ $ $)) (-15 ** ($ $ (-710))) (-15 ** ($ $ (-523))) (-15 (-2756) ($) -3059) (-15 (-2767) ($) -3059) (-15 -1689 ($ $)) (-15 -2246 ((-1070) $)) (-15 -3303 ((-1087) (-589 $))) (-15 -4176 ((-1087) (-1087) (-589 $))))) +((-3173 ((|#2| |#2|) 17)) (-1379 ((|#2| |#2|) 13)) (-1333 ((|#2| |#2| (-523) (-523)) 20)) (-1425 ((|#2| |#2|) 15))) +(((-500 |#1| |#2|) (-10 -7 (-15 -1379 (|#2| |#2|)) (-15 -1425 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -1333 (|#2| |#2| (-523) (-523)))) (-13 (-515) (-136)) (-1159 |#1|)) (T -500)) +((-1333 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-523)) (-4 *4 (-13 (-515) (-136))) (-5 *1 (-500 *4 *2)) (-4 *2 (-1159 *4)))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-500 *3 *2)) (-4 *2 (-1159 *3)))) (-1425 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-500 *3 *2)) (-4 *2 (-1159 *3)))) (-1379 (*1 *2 *2) (-12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-500 *3 *2)) (-4 *2 (-1159 *3))))) +(-10 -7 (-15 -1379 (|#2| |#2|)) (-15 -1425 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -1333 (|#2| |#2| (-523) (-523)))) +((-3053 (((-589 (-271 (-883 |#2|))) (-589 |#2|) (-589 (-1087))) 32)) (-1652 (((-589 |#2|) (-883 |#1|) |#3|) 53) (((-589 |#2|) (-1083 |#1|) |#3|) 52)) (-4091 (((-589 (-589 |#2|)) (-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087)) |#3|) 87))) +(((-501 |#1| |#2| |#3|) (-10 -7 (-15 -1652 ((-589 |#2|) (-1083 |#1|) |#3|)) (-15 -1652 ((-589 |#2|) (-883 |#1|) |#3|)) (-15 -4091 ((-589 (-589 |#2|)) (-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087)) |#3|)) (-15 -3053 ((-589 (-271 (-883 |#2|))) (-589 |#2|) (-589 (-1087))))) (-427) (-339) (-13 (-339) (-784))) (T -501)) +((-3053 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 (-1087))) (-4 *6 (-339)) (-5 *2 (-589 (-271 (-883 *6)))) (-5 *1 (-501 *5 *6 *7)) (-4 *5 (-427)) (-4 *7 (-13 (-339) (-784))))) (-4091 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-589 (-883 *6))) (-5 *4 (-589 (-1087))) (-4 *6 (-427)) (-5 *2 (-589 (-589 *7))) (-5 *1 (-501 *6 *7 *5)) (-4 *7 (-339)) (-4 *5 (-13 (-339) (-784))))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-883 *5)) (-4 *5 (-427)) (-5 *2 (-589 *6)) (-5 *1 (-501 *5 *6 *4)) (-4 *6 (-339)) (-4 *4 (-13 (-339) (-784))))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *5)) (-4 *5 (-427)) (-5 *2 (-589 *6)) (-5 *1 (-501 *5 *6 *4)) (-4 *6 (-339)) (-4 *4 (-13 (-339) (-784)))))) +(-10 -7 (-15 -1652 ((-589 |#2|) (-1083 |#1|) |#3|)) (-15 -1652 ((-589 |#2|) (-883 |#1|) |#3|)) (-15 -4091 ((-589 (-589 |#2|)) (-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087)) |#3|)) (-15 -3053 ((-589 (-271 (-883 |#2|))) (-589 |#2|) (-589 (-1087))))) +((-2227 ((|#2| |#2| |#1|) 17)) (-2765 ((|#2| (-589 |#2|)) 27)) (-3884 ((|#2| (-589 |#2|)) 46))) +(((-502 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2765 (|#2| (-589 |#2|))) (-15 -3884 (|#2| (-589 |#2|))) (-15 -2227 (|#2| |#2| |#1|))) (-284) (-1144 |#1|) |#1| (-1 |#1| |#1| (-710))) (T -502)) +((-2227 (*1 *2 *2 *3) (-12 (-4 *3 (-284)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-710))) (-5 *1 (-502 *3 *2 *4 *5)) (-4 *2 (-1144 *3)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-1144 *4)) (-5 *1 (-502 *4 *2 *5 *6)) (-4 *4 (-284)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-710))))) (-2765 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-1144 *4)) (-5 *1 (-502 *4 *2 *5 *6)) (-4 *4 (-284)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-710)))))) +(-10 -7 (-15 -2765 (|#2| (-589 |#2|))) (-15 -3884 (|#2| (-589 |#2|))) (-15 -2227 (|#2| |#2| |#1|))) +((-1820 (((-394 (-1083 |#4|)) (-1083 |#4|) (-1 (-394 (-1083 |#3|)) (-1083 |#3|))) 79) (((-394 |#4|) |#4| (-1 (-394 (-1083 |#3|)) (-1083 |#3|))) 166))) +(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1820 ((-394 |#4|) |#4| (-1 (-394 (-1083 |#3|)) (-1083 |#3|)))) (-15 -1820 ((-394 (-1083 |#4|)) (-1083 |#4|) (-1 (-394 (-1083 |#3|)) (-1083 |#3|))))) (-786) (-732) (-13 (-284) (-136)) (-880 |#3| |#2| |#1|)) (T -503)) +((-1820 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-394 (-1083 *7)) (-1083 *7))) (-4 *7 (-13 (-284) (-136))) (-4 *5 (-786)) (-4 *6 (-732)) (-4 *8 (-880 *7 *6 *5)) (-5 *2 (-394 (-1083 *8))) (-5 *1 (-503 *5 *6 *7 *8)) (-5 *3 (-1083 *8)))) (-1820 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-394 (-1083 *7)) (-1083 *7))) (-4 *7 (-13 (-284) (-136))) (-4 *5 (-786)) (-4 *6 (-732)) (-5 *2 (-394 *3)) (-5 *1 (-503 *5 *6 *7 *3)) (-4 *3 (-880 *7 *6 *5))))) +(-10 -7 (-15 -1820 ((-394 |#4|) |#4| (-1 (-394 (-1083 |#3|)) (-1083 |#3|)))) (-15 -1820 ((-394 (-1083 |#4|)) (-1083 |#4|) (-1 (-394 (-1083 |#3|)) (-1083 |#3|))))) +((-3173 ((|#4| |#4|) 74)) (-1379 ((|#4| |#4|) 70)) (-1333 ((|#4| |#4| (-523) (-523)) 76)) (-1425 ((|#4| |#4|) 72))) +(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1379 (|#4| |#4|)) (-15 -1425 (|#4| |#4|)) (-15 -3173 (|#4| |#4|)) (-15 -1333 (|#4| |#4| (-523) (-523)))) (-13 (-339) (-344) (-564 (-523))) (-1144 |#1|) (-664 |#1| |#2|) (-1159 |#3|)) (T -504)) +((-1333 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-523)) (-4 *4 (-13 (-339) (-344) (-564 *3))) (-4 *5 (-1144 *4)) (-4 *6 (-664 *4 *5)) (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-1159 *6)))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-4 *4 (-1144 *3)) (-4 *5 (-664 *3 *4)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-1159 *5)))) (-1425 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-4 *4 (-1144 *3)) (-4 *5 (-664 *3 *4)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-1159 *5)))) (-1379 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-4 *4 (-1144 *3)) (-4 *5 (-664 *3 *4)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-1159 *5))))) +(-10 -7 (-15 -1379 (|#4| |#4|)) (-15 -1425 (|#4| |#4|)) (-15 -3173 (|#4| |#4|)) (-15 -1333 (|#4| |#4| (-523) (-523)))) +((-3173 ((|#2| |#2|) 27)) (-1379 ((|#2| |#2|) 23)) (-1333 ((|#2| |#2| (-523) (-523)) 29)) (-1425 ((|#2| |#2|) 25))) +(((-505 |#1| |#2|) (-10 -7 (-15 -1379 (|#2| |#2|)) (-15 -1425 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -1333 (|#2| |#2| (-523) (-523)))) (-13 (-339) (-344) (-564 (-523))) (-1159 |#1|)) (T -505)) +((-1333 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-523)) (-4 *4 (-13 (-339) (-344) (-564 *3))) (-5 *1 (-505 *4 *2)) (-4 *2 (-1159 *4)))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-5 *1 (-505 *3 *2)) (-4 *2 (-1159 *3)))) (-1425 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-5 *1 (-505 *3 *2)) (-4 *2 (-1159 *3)))) (-1379 (*1 *2 *2) (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-5 *1 (-505 *3 *2)) (-4 *2 (-1159 *3))))) +(-10 -7 (-15 -1379 (|#2| |#2|)) (-15 -1425 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -1333 (|#2| |#2| (-523) (-523)))) +((-2769 (((-3 (-523) "failed") |#2| |#1| (-1 (-3 (-523) "failed") |#1|)) 14) (((-3 (-523) "failed") |#2| |#1| (-523) (-1 (-3 (-523) "failed") |#1|)) 13) (((-3 (-523) "failed") |#2| (-523) (-1 (-3 (-523) "failed") |#1|)) 26))) +(((-506 |#1| |#2|) (-10 -7 (-15 -2769 ((-3 (-523) "failed") |#2| (-523) (-1 (-3 (-523) "failed") |#1|))) (-15 -2769 ((-3 (-523) "failed") |#2| |#1| (-523) (-1 (-3 (-523) "failed") |#1|))) (-15 -2769 ((-3 (-523) "failed") |#2| |#1| (-1 (-3 (-523) "failed") |#1|)))) (-973) (-1144 |#1|)) (T -506)) +((-2769 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-523) "failed") *4)) (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-506 *4 *3)) (-4 *3 (-1144 *4)))) (-2769 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-523) "failed") *4)) (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-506 *4 *3)) (-4 *3 (-1144 *4)))) (-2769 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-523) "failed") *5)) (-4 *5 (-973)) (-5 *2 (-523)) (-5 *1 (-506 *5 *3)) (-4 *3 (-1144 *5))))) +(-10 -7 (-15 -2769 ((-3 (-523) "failed") |#2| (-523) (-1 (-3 (-523) "failed") |#1|))) (-15 -2769 ((-3 (-523) "failed") |#2| |#1| (-523) (-1 (-3 (-523) "failed") |#1|))) (-15 -2769 ((-3 (-523) "failed") |#2| |#1| (-1 (-3 (-523) "failed") |#1|)))) +((-2312 (($ $ $) 79)) (-3614 (((-394 $) $) 47)) (-3517 (((-3 (-523) "failed") $) 59)) (-3474 (((-523) $) 37)) (-3346 (((-3 (-383 (-523)) "failed") $) 74)) (-1292 (((-108) $) 24)) (-2146 (((-383 (-523)) $) 72)) (-2657 (((-108) $) 50)) (-2819 (($ $ $ $) 86)) (-2604 (((-108) $) 16)) (-3654 (($ $ $) 57)) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 69)) (-4058 (((-3 $ "failed") $) 64)) (-1647 (($ $) 23)) (-3305 (($ $ $) 84)) (-2262 (($) 60)) (-3217 (($ $) 53)) (-1820 (((-394 $) $) 45)) (-4104 (((-108) $) 14)) (-1972 (((-710) $) 28)) (-3523 (($ $ (-710)) NIL) (($ $) 10)) (-1664 (($ $) 17)) (-3663 (((-523) $) NIL) (((-499) $) 36) (((-823 (-523)) $) 40) (((-355) $) 31) (((-203) $) 33)) (-1621 (((-710)) 8)) (-1981 (((-108) $ $) 20)) (-2574 (($ $ $) 55))) +(((-507 |#1|) (-10 -8 (-15 -3305 (|#1| |#1| |#1|)) (-15 -2819 (|#1| |#1| |#1| |#1|)) (-15 -1647 (|#1| |#1|)) (-15 -1664 (|#1| |#1|)) (-15 -3346 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -2146 ((-383 (-523)) |#1|)) (-15 -1292 ((-108) |#1|)) (-15 -2312 (|#1| |#1| |#1|)) (-15 -1981 ((-108) |#1| |#1|)) (-15 -4104 ((-108) |#1|)) (-15 -2262 (|#1|)) (-15 -4058 ((-3 |#1| "failed") |#1|)) (-15 -3663 ((-203) |#1|)) (-15 -3663 ((-355) |#1|)) (-15 -3654 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1|)) (-15 -2574 (|#1| |#1| |#1|)) (-15 -2130 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3663 ((-523) |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -2604 ((-108) |#1|)) (-15 -1972 ((-710) |#1|)) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3614 ((-394 |#1|) |#1|)) (-15 -2657 ((-108) |#1|)) (-15 -1621 ((-710)))) (-508)) (T -507)) +((-1621 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-507 *3)) (-4 *3 (-508))))) +(-10 -8 (-15 -3305 (|#1| |#1| |#1|)) (-15 -2819 (|#1| |#1| |#1| |#1|)) (-15 -1647 (|#1| |#1|)) (-15 -1664 (|#1| |#1|)) (-15 -3346 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -2146 ((-383 (-523)) |#1|)) (-15 -1292 ((-108) |#1|)) (-15 -2312 (|#1| |#1| |#1|)) (-15 -1981 ((-108) |#1| |#1|)) (-15 -4104 ((-108) |#1|)) (-15 -2262 (|#1|)) (-15 -4058 ((-3 |#1| "failed") |#1|)) (-15 -3663 ((-203) |#1|)) (-15 -3663 ((-355) |#1|)) (-15 -3654 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1|)) (-15 -2574 (|#1| |#1| |#1|)) (-15 -2130 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3663 ((-523) |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -2604 ((-108) |#1|)) (-15 -1972 ((-710) |#1|)) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3614 ((-394 |#1|) |#1|)) (-15 -2657 ((-108) |#1|)) (-15 -1621 ((-710)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-2312 (($ $ $) 85)) (-3212 (((-3 $ "failed") $ $) 19)) (-1808 (($ $ $ $) 73)) (-2291 (($ $) 51)) (-3614 (((-394 $) $) 52)) (-1387 (((-108) $ $) 125)) (-3671 (((-523) $) 114)) (-2041 (($ $ $) 88)) (-2518 (($) 17 T CONST)) (-3517 (((-3 (-523) "failed") $) 106)) (-3474 (((-523) $) 105)) (-3796 (($ $ $) 129)) (-2381 (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 104) (((-629 (-523)) (-629 $)) 103)) (-2121 (((-3 $ "failed") $) 34)) (-3346 (((-3 (-383 (-523)) "failed") $) 82)) (-1292 (((-108) $) 84)) (-2146 (((-383 (-523)) $) 83)) (-4032 (($) 81) (($ $) 80)) (-3769 (($ $ $) 128)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 123)) (-2657 (((-108) $) 53)) (-2819 (($ $ $ $) 71)) (-1980 (($ $ $) 86)) (-2604 (((-108) $) 116)) (-3654 (($ $ $) 97)) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 100)) (-2023 (((-108) $) 31)) (-1557 (((-108) $) 92)) (-4058 (((-3 $ "failed") $) 94)) (-4114 (((-108) $) 115)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 132)) (-4183 (($ $ $ $) 72)) (-2454 (($ $ $) 117)) (-2062 (($ $ $) 118)) (-1647 (($ $) 75)) (-2996 (($ $) 89)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-3305 (($ $ $) 70)) (-2262 (($) 93 T CONST)) (-3201 (($ $) 77)) (-2783 (((-1034) $) 10) (($ $) 79)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-3217 (($ $) 98)) (-1820 (((-394 $) $) 50)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 130)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 124)) (-4104 (((-108) $) 91)) (-1972 (((-710) $) 126)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 127)) (-3523 (($ $ (-710)) 111) (($ $) 109)) (-2029 (($ $) 76)) (-1664 (($ $) 78)) (-3663 (((-523) $) 108) (((-499) $) 102) (((-823 (-523)) $) 101) (((-355) $) 96) (((-203) $) 95)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-523)) 107)) (-1621 (((-710)) 29)) (-1981 (((-108) $ $) 87)) (-2574 (($ $ $) 99)) (-3007 (($) 90)) (-1704 (((-108) $ $) 39)) (-2108 (($ $ $ $) 74)) (-2619 (($ $) 113)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-710)) 112) (($ $) 110)) (-4043 (((-108) $ $) 120)) (-4019 (((-108) $ $) 121)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 119)) (-4007 (((-108) $ $) 122)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-508) (-129)) (T -508)) +((-1557 (*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108)))) (-4104 (*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108)))) (-3007 (*1 *1) (-4 *1 (-508))) (-2996 (*1 *1 *1) (-4 *1 (-508))) (-2041 (*1 *1 *1 *1) (-4 *1 (-508))) (-1981 (*1 *2 *1 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108)))) (-1980 (*1 *1 *1 *1) (-4 *1 (-508))) (-2312 (*1 *1 *1 *1) (-4 *1 (-508))) (-1292 (*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-383 (-523))))) (-3346 (*1 *2 *1) (|partial| -12 (-4 *1 (-508)) (-5 *2 (-383 (-523))))) (-4032 (*1 *1) (-4 *1 (-508))) (-4032 (*1 *1 *1) (-4 *1 (-508))) (-2783 (*1 *1 *1) (-4 *1 (-508))) (-1664 (*1 *1 *1) (-4 *1 (-508))) (-3201 (*1 *1 *1) (-4 *1 (-508))) (-2029 (*1 *1 *1) (-4 *1 (-508))) (-1647 (*1 *1 *1) (-4 *1 (-508))) (-2108 (*1 *1 *1 *1 *1) (-4 *1 (-508))) (-1808 (*1 *1 *1 *1 *1) (-4 *1 (-508))) (-4183 (*1 *1 *1 *1 *1) (-4 *1 (-508))) (-2819 (*1 *1 *1 *1 *1) (-4 *1 (-508))) (-3305 (*1 *1 *1 *1) (-4 *1 (-508)))) +(-13 (-1126) (-284) (-759) (-211) (-564 (-523)) (-964 (-523)) (-585 (-523)) (-564 (-499)) (-564 (-823 (-523))) (-817 (-523)) (-132) (-949) (-136) (-1063) (-10 -8 (-15 -1557 ((-108) $)) (-15 -4104 ((-108) $)) (-6 -4243) (-15 -3007 ($)) (-15 -2996 ($ $)) (-15 -2041 ($ $ $)) (-15 -1981 ((-108) $ $)) (-15 -1980 ($ $ $)) (-15 -2312 ($ $ $)) (-15 -1292 ((-108) $)) (-15 -2146 ((-383 (-523)) $)) (-15 -3346 ((-3 (-383 (-523)) "failed") $)) (-15 -4032 ($)) (-15 -4032 ($ $)) (-15 -2783 ($ $)) (-15 -1664 ($ $)) (-15 -3201 ($ $)) (-15 -2029 ($ $)) (-15 -1647 ($ $)) (-15 -2108 ($ $ $ $)) (-15 -1808 ($ $ $ $)) (-15 -4183 ($ $ $ $)) (-15 -2819 ($ $ $ $)) (-15 -3305 ($ $ $)) (-6 -4242))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-136) . T) ((-563 (-794)) . T) ((-132) . T) ((-158) . T) ((-564 (-203)) . T) ((-564 (-355)) . T) ((-564 (-499)) . T) ((-564 (-523)) . T) ((-564 (-823 (-523))) . T) ((-211) . T) ((-267) . T) ((-284) . T) ((-427) . T) ((-515) . T) ((-591 $) . T) ((-585 (-523)) . T) ((-657 $) . T) ((-666) . T) ((-730) . T) ((-731) . T) ((-733) . T) ((-734) . T) ((-759) . T) ((-784) . T) ((-786) . T) ((-817 (-523)) . T) ((-851) . T) ((-949) . T) ((-964 (-523)) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) . T) ((-1126) . T)) +((-3924 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-4207 (((-1173) $ |#1| |#1|) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#2| $ |#1| |#2|) NIL)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2243 (((-3 |#2| "failed") |#1| $) NIL)) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-2249 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-3 |#2| "failed") |#1| $) NIL)) (-2557 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) NIL)) (-1666 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 ((|#1| $) NIL (|has| |#1| (-786)))) (-2136 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3056 ((|#1| $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4245))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1330 (((-589 |#1|) $) NIL)) (-2777 (((-108) |#1| $) NIL)) (-1934 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-3450 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-2412 (((-589 |#1|) $) NIL)) (-4135 (((-108) |#1| $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1738 ((|#2| $) NIL (|has| |#1| (-786)))) (-2114 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL)) (-4203 (($ $ |#2|) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3433 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016)))) (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-1458 (((-794) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794)))))) (-2401 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-509 |#1| |#2| |#3|) (-13 (-1099 |#1| |#2|) (-10 -7 (-6 -4244))) (-1016) (-1016) (-13 (-1099 |#1| |#2|) (-10 -7 (-6 -4244)))) (T -509)) +NIL +(-13 (-1099 |#1| |#2|) (-10 -7 (-6 -4244))) +((-3778 (((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) (-1 (-1083 |#2|) (-1083 |#2|))) 49))) +(((-510 |#1| |#2|) (-10 -7 (-15 -3778 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) (-1 (-1083 |#2|) (-1083 |#2|))))) (-13 (-786) (-515)) (-13 (-27) (-406 |#1|))) (T -510)) +((-3778 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-562 *3)) (-5 *5 (-1 (-1083 *3) (-1083 *3))) (-4 *3 (-13 (-27) (-406 *6))) (-4 *6 (-13 (-786) (-515))) (-5 *2 (-540 *3)) (-5 *1 (-510 *6 *3))))) +(-10 -7 (-15 -3778 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) (-1 (-1083 |#2|) (-1083 |#2|))))) +((-3167 (((-540 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-3835 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-2712 (((-540 |#5|) |#5| (-1 |#3| |#3|)) 198))) +(((-511 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2712 ((-540 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3167 ((-540 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3835 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-786) (-515) (-964 (-523))) (-13 (-27) (-406 |#1|)) (-1144 |#2|) (-1144 (-383 |#3|)) (-318 |#2| |#3| |#4|)) (T -511)) +((-3835 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-27) (-406 *4))) (-4 *4 (-13 (-786) (-515) (-964 (-523)))) (-4 *7 (-1144 (-383 *6))) (-5 *1 (-511 *4 *5 *6 *7 *2)) (-4 *2 (-318 *5 *6 *7)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1144 *6)) (-4 *6 (-13 (-27) (-406 *5))) (-4 *5 (-13 (-786) (-515) (-964 (-523)))) (-4 *8 (-1144 (-383 *7))) (-5 *2 (-540 *3)) (-5 *1 (-511 *5 *6 *7 *8 *3)) (-4 *3 (-318 *6 *7 *8)))) (-2712 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1144 *6)) (-4 *6 (-13 (-27) (-406 *5))) (-4 *5 (-13 (-786) (-515) (-964 (-523)))) (-4 *8 (-1144 (-383 *7))) (-5 *2 (-540 *3)) (-5 *1 (-511 *5 *6 *7 *8 *3)) (-4 *3 (-318 *6 *7 *8))))) +(-10 -7 (-15 -2712 ((-540 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3167 ((-540 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3835 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-1846 (((-108) (-523) (-523)) 10)) (-2305 (((-523) (-523)) 7)) (-1516 (((-523) (-523) (-523)) 8))) +(((-512) (-10 -7 (-15 -2305 ((-523) (-523))) (-15 -1516 ((-523) (-523) (-523))) (-15 -1846 ((-108) (-523) (-523))))) (T -512)) +((-1846 (*1 *2 *3 *3) (-12 (-5 *3 (-523)) (-5 *2 (-108)) (-5 *1 (-512)))) (-1516 (*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-512)))) (-2305 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-512))))) +(-10 -7 (-15 -2305 ((-523) (-523))) (-15 -1516 ((-523) (-523) (-523))) (-15 -1846 ((-108) (-523) (-523)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3919 ((|#1| $) 61)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-1769 (($ $) 91)) (-3780 (($ $) 74)) (-3596 ((|#1| $) 62)) (-3212 (((-3 $ "failed") $ $) 19)) (-1832 (($ $) 73)) (-1744 (($ $) 90)) (-3711 (($ $) 75)) (-1793 (($ $) 89)) (-3805 (($ $) 76)) (-2518 (($) 17 T CONST)) (-3517 (((-3 (-523) "failed") $) 69)) (-3474 (((-523) $) 68)) (-2121 (((-3 $ "failed") $) 34)) (-2194 (($ |#1| |#1|) 66)) (-2604 (((-108) $) 60)) (-2820 (($) 101)) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 72)) (-4114 (((-108) $) 59)) (-2454 (($ $ $) 107)) (-2062 (($ $ $) 106)) (-2384 (($ $) 98)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-2081 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-383 (-523))) 64)) (-2774 ((|#1| $) 63)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-3746 (((-3 $ "failed") $ $) 42)) (-1811 (($ $) 99)) (-1805 (($ $) 88)) (-3816 (($ $) 77)) (-1782 (($ $) 87)) (-3793 (($ $) 78)) (-1757 (($ $) 86)) (-3767 (($ $) 79)) (-2442 (((-108) $ |#1|) 58)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-523)) 70)) (-1621 (((-710)) 29)) (-1839 (($ $) 97)) (-3847 (($ $) 85)) (-1704 (((-108) $ $) 39)) (-1818 (($ $) 96)) (-3828 (($ $) 84)) (-1865 (($ $) 95)) (-1719 (($ $) 83)) (-2914 (($ $) 94)) (-1731 (($ $) 82)) (-1852 (($ $) 93)) (-3859 (($ $) 81)) (-1830 (($ $) 92)) (-3838 (($ $) 80)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-4043 (((-108) $ $) 104)) (-4019 (((-108) $ $) 103)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 105)) (-4007 (((-108) $ $) 102)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ $) 100) (($ $ (-383 (-523))) 71)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-513 |#1|) (-129) (-13 (-380) (-1108))) (T -513)) +((-2081 (*1 *1 *2 *2) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108))))) (-2194 (*1 *1 *2 *2) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108))))) (-2081 (*1 *1 *2) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108))))) (-2081 (*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-4 *1 (-513 *3)) (-4 *3 (-13 (-380) (-1108))))) (-2774 (*1 *2 *1) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108))))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108))))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108))))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-513 *3)) (-4 *3 (-13 (-380) (-1108))) (-5 *2 (-108)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-513 *3)) (-4 *3 (-13 (-380) (-1108))) (-5 *2 (-108)))) (-2442 (*1 *2 *1 *3) (-12 (-4 *1 (-513 *3)) (-4 *3 (-13 (-380) (-1108))) (-5 *2 (-108))))) +(-13 (-427) (-786) (-1108) (-930) (-964 (-523)) (-10 -8 (-6 -2562) (-15 -2081 ($ |t#1| |t#1|)) (-15 -2194 ($ |t#1| |t#1|)) (-15 -2081 ($ |t#1|)) (-15 -2081 ($ (-383 (-523)))) (-15 -2774 (|t#1| $)) (-15 -3596 (|t#1| $)) (-15 -3919 (|t#1| $)) (-15 -2604 ((-108) $)) (-15 -4114 ((-108) $)) (-15 -2442 ((-108) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-261) . T) ((-267) . T) ((-427) . T) ((-464) . T) ((-515) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-786) . T) ((-930) . T) ((-964 (-523)) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1108) . T) ((-1111) . T)) +((-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 9)) (-3345 (($ $) 11)) (-3331 (((-108) $) 18)) (-2121 (((-3 $ "failed") $) 16)) (-1704 (((-108) $ $) 20))) +(((-514 |#1|) (-10 -8 (-15 -3331 ((-108) |#1|)) (-15 -1704 ((-108) |#1| |#1|)) (-15 -3345 (|#1| |#1|)) (-15 -1669 ((-2 (|:| -3819 |#1|) (|:| -4231 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2121 ((-3 |#1| "failed") |#1|))) (-515)) (T -514)) +NIL +(-10 -8 (-15 -3331 ((-108) |#1|)) (-15 -1704 ((-108) |#1| |#1|)) (-15 -3345 (|#1| |#1|)) (-15 -1669 ((-2 (|:| -3819 |#1|) (|:| -4231 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2121 ((-3 |#1| "failed") |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3746 (((-3 $ "failed") $ $) 42)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-515) (-129)) (T -515)) +((-3746 (*1 *1 *1 *1) (|partial| -4 *1 (-515))) (-1669 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3819 *1) (|:| -4231 *1) (|:| |associate| *1))) (-4 *1 (-515)))) (-3345 (*1 *1 *1) (-4 *1 (-515))) (-1704 (*1 *2 *1 *1) (-12 (-4 *1 (-515)) (-5 *2 (-108)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-108))))) +(-13 (-158) (-37 $) (-267) (-10 -8 (-15 -3746 ((-3 $ "failed") $ $)) (-15 -1669 ((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $)) (-15 -3345 ($ $)) (-15 -1704 ((-108) $ $)) (-15 -3331 ((-108) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-267) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-2230 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1087) (-589 |#2|)) 35)) (-3009 (((-540 |#2|) |#2| (-1087)) 58)) (-1968 (((-3 |#2| "failed") |#2| (-1087)) 149)) (-3587 (((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1087) (-562 |#2|) (-589 (-562 |#2|))) 152)) (-1366 (((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1087) |#2|) 38))) +(((-516 |#1| |#2|) (-10 -7 (-15 -1366 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1087) |#2|)) (-15 -2230 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1087) (-589 |#2|))) (-15 -1968 ((-3 |#2| "failed") |#2| (-1087))) (-15 -3009 ((-540 |#2|) |#2| (-1087))) (-15 -3587 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1087) (-562 |#2|) (-589 (-562 |#2|))))) (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1108) (-406 |#1|))) (T -516)) +((-3587 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1087)) (-5 *6 (-589 (-562 *3))) (-5 *5 (-562 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *7))) (-4 *7 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-2 (|:| -2462 *3) (|:| |coeff| *3))) (-5 *1 (-516 *7 *3)))) (-3009 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-540 *3)) (-5 *1 (-516 *5 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))))) (-1968 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1087)) (-4 *4 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *1 (-516 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4))))) (-2230 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-589 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-516 *6 *3)))) (-1366 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1087)) (-4 *5 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 (-2 (|:| -2462 *3) (|:| |coeff| *3))) (-5 *1 (-516 *5 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5)))))) +(-10 -7 (-15 -1366 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1087) |#2|)) (-15 -2230 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1087) (-589 |#2|))) (-15 -1968 ((-3 |#2| "failed") |#2| (-1087))) (-15 -3009 ((-540 |#2|) |#2| (-1087))) (-15 -3587 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1087) (-562 |#2|) (-589 (-562 |#2|))))) +((-3614 (((-394 |#1|) |#1|) 18)) (-1820 (((-394 |#1|) |#1|) 33)) (-3466 (((-3 |#1| "failed") |#1|) 44)) (-2006 (((-394 |#1|) |#1|) 51))) +(((-517 |#1|) (-10 -7 (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3614 ((-394 |#1|) |#1|)) (-15 -2006 ((-394 |#1|) |#1|)) (-15 -3466 ((-3 |#1| "failed") |#1|))) (-508)) (T -517)) +((-3466 (*1 *2 *2) (|partial| -12 (-5 *1 (-517 *2)) (-4 *2 (-508)))) (-2006 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-517 *3)) (-4 *3 (-508)))) (-3614 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-517 *3)) (-4 *3 (-508)))) (-1820 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-517 *3)) (-4 *3 (-508))))) +(-10 -7 (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3614 ((-394 |#1|) |#1|)) (-15 -2006 ((-394 |#1|) |#1|)) (-15 -3466 ((-3 |#1| "failed") |#1|))) +((-3889 (($) 9)) (-4215 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 29)) (-1330 (((-589 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) $) 26)) (-3450 (($ (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-2969 (($ (-589 (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-2433 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 33)) (-1264 (((-589 (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-3809 (((-1173)) 12))) +(((-518) (-10 -8 (-15 -3889 ($)) (-15 -3809 ((-1173))) (-15 -1330 ((-589 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) $)) (-15 -2969 ($ (-589 (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3450 ($ (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -4215 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1264 ((-589 (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2433 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) (T -518)) +((-2433 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-518)))) (-1264 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-518)))) (-4215 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-518)))) (-3450 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-518)))) (-2969 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-518)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-5 *1 (-518)))) (-3809 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-518)))) (-3889 (*1 *1) (-5 *1 (-518)))) +(-10 -8 (-15 -3889 ($)) (-15 -3809 ((-1173))) (-15 -1330 ((-589 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) $)) (-15 -2969 ($ (-589 (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3450 ($ (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -4215 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1264 ((-589 (-2 (|:| -1853 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2433 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) +((-1786 (((-1083 (-383 (-1083 |#2|))) |#2| (-562 |#2|) (-562 |#2|) (-1083 |#2|)) 28)) (-3580 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|) |#2| (-1083 |#2|)) 106)) (-1858 (((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|))) 78) (((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) |#2| (-1083 |#2|)) 50)) (-2742 (((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2| (-562 |#2|) |#2| (-383 (-1083 |#2|))) 85) (((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2| |#2| (-1083 |#2|)) 105)) (-1954 (((-3 |#2| "failed") |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)) (-562 |#2|) |#2| (-383 (-1083 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)) |#2| (-1083 |#2|)) 107)) (-3944 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4041 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|))) 124 (|has| |#3| (-599 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4041 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) |#2| (-1083 |#2|)) 123 (|has| |#3| (-599 |#2|)))) (-1945 ((|#2| (-1083 (-383 (-1083 |#2|))) (-562 |#2|) |#2|) 48)) (-2428 (((-1083 (-383 (-1083 |#2|))) (-1083 |#2|) (-562 |#2|)) 27))) +(((-519 |#1| |#2| |#3|) (-10 -7 (-15 -1858 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) |#2| (-1083 |#2|))) (-15 -1858 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -2742 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2| |#2| (-1083 |#2|))) (-15 -2742 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2| (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -3580 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|) |#2| (-1083 |#2|))) (-15 -3580 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -1954 ((-3 |#2| "failed") |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)) |#2| (-1083 |#2|))) (-15 -1954 ((-3 |#2| "failed") |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)) (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -1786 ((-1083 (-383 (-1083 |#2|))) |#2| (-562 |#2|) (-562 |#2|) (-1083 |#2|))) (-15 -1945 (|#2| (-1083 (-383 (-1083 |#2|))) (-562 |#2|) |#2|)) (-15 -2428 ((-1083 (-383 (-1083 |#2|))) (-1083 |#2|) (-562 |#2|))) (IF (|has| |#3| (-599 |#2|)) (PROGN (-15 -3944 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4041 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) |#2| (-1083 |#2|))) (-15 -3944 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4041 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|))))) |%noBranch|)) (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523))) (-13 (-406 |#1|) (-27) (-1108)) (-1016)) (T -519)) +((-3944 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-562 *4)) (-5 *6 (-383 (-1083 *4))) (-4 *4 (-13 (-406 *7) (-27) (-1108))) (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1016)))) (-3944 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-562 *4)) (-5 *6 (-1083 *4)) (-4 *4 (-13 (-406 *7) (-27) (-1108))) (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1016)))) (-2428 (*1 *2 *3 *4) (-12 (-5 *4 (-562 *6)) (-4 *6 (-13 (-406 *5) (-27) (-1108))) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-1083 (-383 (-1083 *6)))) (-5 *1 (-519 *5 *6 *7)) (-5 *3 (-1083 *6)) (-4 *7 (-1016)))) (-1945 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1083 (-383 (-1083 *2)))) (-5 *4 (-562 *2)) (-4 *2 (-13 (-406 *5) (-27) (-1108))) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1016)))) (-1786 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-562 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1108))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-1083 (-383 (-1083 *3)))) (-5 *1 (-519 *6 *3 *7)) (-5 *5 (-1083 *3)) (-4 *7 (-1016)))) (-1954 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-562 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1087))) (-5 *5 (-383 (-1083 *2))) (-4 *2 (-13 (-406 *6) (-27) (-1108))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *1 (-519 *6 *2 *7)) (-4 *7 (-1016)))) (-1954 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-562 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1087))) (-5 *5 (-1083 *2)) (-4 *2 (-13 (-406 *6) (-27) (-1108))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *1 (-519 *6 *2 *7)) (-4 *7 (-1016)))) (-3580 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-589 *3)) (-5 *6 (-383 (-1083 *3))) (-4 *3 (-13 (-406 *7) (-27) (-1108))) (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *7 *3 *8)) (-4 *8 (-1016)))) (-3580 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-589 *3)) (-5 *6 (-1083 *3)) (-4 *3 (-13 (-406 *7) (-27) (-1108))) (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *7 *3 *8)) (-4 *8 (-1016)))) (-2742 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-383 (-1083 *3))) (-4 *3 (-13 (-406 *6) (-27) (-1108))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| -2462 *3) (|:| |coeff| *3))) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016)))) (-2742 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-1083 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1108))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| -2462 *3) (|:| |coeff| *3))) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016)))) (-1858 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-562 *3)) (-5 *5 (-383 (-1083 *3))) (-4 *3 (-13 (-406 *6) (-27) (-1108))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-540 *3)) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016)))) (-1858 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-562 *3)) (-5 *5 (-1083 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1108))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-540 *3)) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016))))) +(-10 -7 (-15 -1858 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) |#2| (-1083 |#2|))) (-15 -1858 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -2742 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2| |#2| (-1083 |#2|))) (-15 -2742 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2| (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -3580 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|) |#2| (-1083 |#2|))) (-15 -3580 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -1954 ((-3 |#2| "failed") |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)) |#2| (-1083 |#2|))) (-15 -1954 ((-3 |#2| "failed") |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)) (-562 |#2|) |#2| (-383 (-1083 |#2|)))) (-15 -1786 ((-1083 (-383 (-1083 |#2|))) |#2| (-562 |#2|) (-562 |#2|) (-1083 |#2|))) (-15 -1945 (|#2| (-1083 (-383 (-1083 |#2|))) (-562 |#2|) |#2|)) (-15 -2428 ((-1083 (-383 (-1083 |#2|))) (-1083 |#2|) (-562 |#2|))) (IF (|has| |#3| (-599 |#2|)) (PROGN (-15 -3944 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4041 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) |#2| (-1083 |#2|))) (-15 -3944 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4041 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) (-562 |#2|) |#2| (-383 (-1083 |#2|))))) |%noBranch|)) +((-3721 (((-523) (-523) (-710)) 66)) (-3971 (((-523) (-523)) 65)) (-2335 (((-523) (-523)) 64)) (-3546 (((-523) (-523)) 69)) (-1220 (((-523) (-523) (-523)) 49)) (-2678 (((-523) (-523) (-523)) 46)) (-2002 (((-383 (-523)) (-523)) 20)) (-1212 (((-523) (-523)) 21)) (-2642 (((-523) (-523)) 58)) (-1712 (((-523) (-523)) 32)) (-2812 (((-589 (-523)) (-523)) 63)) (-3169 (((-523) (-523) (-523) (-523) (-523)) 44)) (-3490 (((-383 (-523)) (-523)) 41))) +(((-520) (-10 -7 (-15 -3490 ((-383 (-523)) (-523))) (-15 -3169 ((-523) (-523) (-523) (-523) (-523))) (-15 -2812 ((-589 (-523)) (-523))) (-15 -1712 ((-523) (-523))) (-15 -2642 ((-523) (-523))) (-15 -1212 ((-523) (-523))) (-15 -2002 ((-383 (-523)) (-523))) (-15 -2678 ((-523) (-523) (-523))) (-15 -1220 ((-523) (-523) (-523))) (-15 -3546 ((-523) (-523))) (-15 -2335 ((-523) (-523))) (-15 -3971 ((-523) (-523))) (-15 -3721 ((-523) (-523) (-710))))) (T -520)) +((-3721 (*1 *2 *2 *3) (-12 (-5 *2 (-523)) (-5 *3 (-710)) (-5 *1 (-520)))) (-3971 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-2335 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-3546 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-1220 (*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-2678 (*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-2002 (*1 *2 *3) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-520)) (-5 *3 (-523)))) (-1212 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-2642 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-1712 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-2812 (*1 *2 *3) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-520)) (-5 *3 (-523)))) (-3169 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) (-3490 (*1 *2 *3) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-520)) (-5 *3 (-523))))) +(-10 -7 (-15 -3490 ((-383 (-523)) (-523))) (-15 -3169 ((-523) (-523) (-523) (-523) (-523))) (-15 -2812 ((-589 (-523)) (-523))) (-15 -1712 ((-523) (-523))) (-15 -2642 ((-523) (-523))) (-15 -1212 ((-523) (-523))) (-15 -2002 ((-383 (-523)) (-523))) (-15 -2678 ((-523) (-523) (-523))) (-15 -1220 ((-523) (-523) (-523))) (-15 -3546 ((-523) (-523))) (-15 -2335 ((-523) (-523))) (-15 -3971 ((-523) (-523))) (-15 -3721 ((-523) (-523) (-710)))) +((-1762 (((-2 (|:| |answer| |#4|) (|:| -2124 |#4|)) |#4| (-1 |#2| |#2|)) 52))) +(((-521 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1762 ((-2 (|:| |answer| |#4|) (|:| -2124 |#4|)) |#4| (-1 |#2| |#2|)))) (-339) (-1144 |#1|) (-1144 (-383 |#2|)) (-318 |#1| |#2| |#3|)) (T -521)) +((-1762 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) (-4 *7 (-1144 (-383 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2124 *3))) (-5 *1 (-521 *5 *6 *7 *3)) (-4 *3 (-318 *5 *6 *7))))) +(-10 -7 (-15 -1762 ((-2 (|:| |answer| |#4|) (|:| -2124 |#4|)) |#4| (-1 |#2| |#2|)))) +((-1762 (((-2 (|:| |answer| (-383 |#2|)) (|:| -2124 (-383 |#2|)) (|:| |specpart| (-383 |#2|)) (|:| |polypart| |#2|)) (-383 |#2|) (-1 |#2| |#2|)) 18))) +(((-522 |#1| |#2|) (-10 -7 (-15 -1762 ((-2 (|:| |answer| (-383 |#2|)) (|:| -2124 (-383 |#2|)) (|:| |specpart| (-383 |#2|)) (|:| |polypart| |#2|)) (-383 |#2|) (-1 |#2| |#2|)))) (-339) (-1144 |#1|)) (T -522)) +((-1762 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| |answer| (-383 *6)) (|:| -2124 (-383 *6)) (|:| |specpart| (-383 *6)) (|:| |polypart| *6))) (-5 *1 (-522 *5 *6)) (-5 *3 (-383 *6))))) +(-10 -7 (-15 -1762 ((-2 (|:| |answer| (-383 |#2|)) (|:| -2124 (-383 |#2|)) (|:| |specpart| (-383 |#2|)) (|:| |polypart| |#2|)) (-383 |#2|) (-1 |#2| |#2|)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 25)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 86)) (-3345 (($ $) 87)) (-3331 (((-108) $) NIL)) (-2312 (($ $ $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1808 (($ $ $ $) 42)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL)) (-2041 (($ $ $) 80)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL)) (-3474 (((-523) $) NIL)) (-3796 (($ $ $) 79)) (-2381 (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 60) (((-629 (-523)) (-629 $)) 57)) (-2121 (((-3 $ "failed") $) 83)) (-3346 (((-3 (-383 (-523)) "failed") $) NIL)) (-1292 (((-108) $) NIL)) (-2146 (((-383 (-523)) $) NIL)) (-4032 (($) 62) (($ $) 63)) (-3769 (($ $ $) 78)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2819 (($ $ $ $) NIL)) (-1980 (($ $ $) 54)) (-2604 (((-108) $) NIL)) (-3654 (($ $ $) NIL)) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL)) (-2023 (((-108) $) 26)) (-1557 (((-108) $) 73)) (-4058 (((-3 $ "failed") $) NIL)) (-4114 (((-108) $) 34)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4183 (($ $ $ $) 43)) (-2454 (($ $ $) 75)) (-2062 (($ $ $) 74)) (-1647 (($ $) NIL)) (-2996 (($ $) 40)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) 53)) (-3305 (($ $ $) NIL)) (-2262 (($) NIL T CONST)) (-3201 (($ $) 31)) (-2783 (((-1034) $) NIL) (($ $) 33)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 117)) (-3278 (($ $ $) 84) (($ (-589 $)) NIL)) (-3217 (($ $) NIL)) (-1820 (((-394 $) $) 103)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL)) (-3746 (((-3 $ "failed") $ $) 82)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4104 (((-108) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 77)) (-3523 (($ $ (-710)) NIL) (($ $) NIL)) (-2029 (($ $) 32)) (-1664 (($ $) 30)) (-3663 (((-523) $) 39) (((-499) $) 51) (((-823 (-523)) $) NIL) (((-355) $) 46) (((-203) $) 48) (((-1070) $) 52)) (-1458 (((-794) $) 37) (($ (-523)) 38) (($ $) NIL) (($ (-523)) 38)) (-1621 (((-710)) NIL)) (-1981 (((-108) $ $) NIL)) (-2574 (($ $ $) NIL)) (-3007 (($) 29)) (-1704 (((-108) $ $) NIL)) (-2108 (($ $ $ $) 41)) (-2619 (($ $) 61)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 27 T CONST)) (-2767 (($) 28 T CONST)) (-3790 (((-1070) $) 20) (((-1070) $ (-108)) 22) (((-1173) (-761) $) 23) (((-1173) (-761) $ (-108)) 24)) (-2862 (($ $ (-710)) NIL) (($ $) NIL)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 64)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 65)) (-4087 (($ $) 66) (($ $ $) 68)) (-4075 (($ $ $) 67)) (** (($ $ (-852)) NIL) (($ $ (-710)) 72)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 70) (($ $ $) 69))) +(((-523) (-13 (-508) (-564 (-1070)) (-767) (-10 -8 (-15 -4032 ($ $)) (-6 -4231) (-6 -4236) (-6 -4232) (-6 -4226)))) (T -523)) +((-4032 (*1 *1 *1) (-5 *1 (-523)))) +(-13 (-508) (-564 (-1070)) (-767) (-10 -8 (-15 -4032 ($ $)) (-6 -4231) (-6 -4236) (-6 -4232) (-6 -4226))) +((-1228 (((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))) (-708) (-985)) 103) (((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))) (-708)) 105)) (-3417 (((-3 (-962) "failed") (-292 (-355)) (-1009 (-779 (-355))) (-1087)) 168) (((-3 (-962) "failed") (-292 (-355)) (-1009 (-779 (-355))) (-1070)) 167) (((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355) (-355) (-985)) 173) (((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355) (-355)) 174) (((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355)) 175) (((-962) (-292 (-355)) (-589 (-1011 (-779 (-355))))) 176) (((-962) (-292 (-355)) (-1011 (-779 (-355)))) 163) (((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355)) 162) (((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355) (-355)) 158) (((-962) (-708)) 150) (((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355) (-355) (-985)) 157))) +(((-524) (-10 -7 (-15 -3417 ((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355) (-355) (-985))) (-15 -3417 ((-962) (-708))) (-15 -3417 ((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355) (-355))) (-15 -3417 ((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355))) (-15 -3417 ((-962) (-292 (-355)) (-1011 (-779 (-355))))) (-15 -3417 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))))) (-15 -3417 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355))) (-15 -3417 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355) (-355))) (-15 -3417 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355) (-355) (-985))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))) (-708))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))) (-708) (-985))) (-15 -3417 ((-3 (-962) "failed") (-292 (-355)) (-1009 (-779 (-355))) (-1070))) (-15 -3417 ((-3 (-962) "failed") (-292 (-355)) (-1009 (-779 (-355))) (-1087))))) (T -524)) +((-3417 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-292 (-355))) (-5 *4 (-1009 (-779 (-355)))) (-5 *5 (-1087)) (-5 *2 (-962)) (-5 *1 (-524)))) (-3417 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-292 (-355))) (-5 *4 (-1009 (-779 (-355)))) (-5 *5 (-1070)) (-5 *2 (-962)) (-5 *1 (-524)))) (-1228 (*1 *2 *3 *4) (-12 (-5 *3 (-708)) (-5 *4 (-985)) (-5 *2 (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962)))) (-5 *1 (-524)))) (-1228 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962)))) (-5 *1 (-524)))) (-3417 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) (-5 *5 (-355)) (-5 *6 (-985)) (-5 *2 (-962)) (-5 *1 (-524)))) (-3417 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) (-3417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) (-5 *2 (-962)) (-5 *1 (-524)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) (-5 *2 (-962)) (-5 *1 (-524)))) (-3417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) (-3417 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) (-3417 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-962)) (-5 *1 (-524)))) (-3417 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) (-5 *5 (-355)) (-5 *6 (-985)) (-5 *2 (-962)) (-5 *1 (-524))))) +(-10 -7 (-15 -3417 ((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355) (-355) (-985))) (-15 -3417 ((-962) (-708))) (-15 -3417 ((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355) (-355))) (-15 -3417 ((-962) (-292 (-355)) (-1011 (-779 (-355))) (-355))) (-15 -3417 ((-962) (-292 (-355)) (-1011 (-779 (-355))))) (-15 -3417 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))))) (-15 -3417 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355))) (-15 -3417 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355) (-355))) (-15 -3417 ((-962) (-292 (-355)) (-589 (-1011 (-779 (-355)))) (-355) (-355) (-985))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))) (-708))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962))) (-708) (-985))) (-15 -3417 ((-3 (-962) "failed") (-292 (-355)) (-1009 (-779 (-355))) (-1070))) (-15 -3417 ((-3 (-962) "failed") (-292 (-355)) (-1009 (-779 (-355))) (-1087)))) +((-3089 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|)) 181)) (-1217 (((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|)) 99)) (-4082 (((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2|) 177)) (-2513 (((-3 |#2| "failed") |#2| |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087))) 186)) (-3275 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4041 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) (-1087)) 194 (|has| |#3| (-599 |#2|))))) +(((-525 |#1| |#2| |#3|) (-10 -7 (-15 -1217 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|))) (-15 -4082 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2|)) (-15 -3089 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|))) (-15 -2513 ((-3 |#2| "failed") |#2| |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)))) (IF (|has| |#3| (-599 |#2|)) (-15 -3275 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4041 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) (-1087))) |%noBranch|)) (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523))) (-13 (-406 |#1|) (-27) (-1108)) (-1016)) (T -525)) +((-3275 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-562 *4)) (-5 *6 (-1087)) (-4 *4 (-13 (-406 *7) (-27) (-1108))) (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) (-5 *1 (-525 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1016)))) (-2513 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-562 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1087))) (-4 *2 (-13 (-406 *5) (-27) (-1108))) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *1 (-525 *5 *2 *6)) (-4 *6 (-1016)))) (-3089 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-589 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1108))) (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-525 *6 *3 *7)) (-4 *7 (-1016)))) (-4082 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-562 *3)) (-4 *3 (-13 (-406 *5) (-27) (-1108))) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| -2462 *3) (|:| |coeff| *3))) (-5 *1 (-525 *5 *3 *6)) (-4 *6 (-1016)))) (-1217 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-562 *3)) (-4 *3 (-13 (-406 *5) (-27) (-1108))) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-540 *3)) (-5 *1 (-525 *5 *3 *6)) (-4 *6 (-1016))))) +(-10 -7 (-15 -1217 ((-540 |#2|) |#2| (-562 |#2|) (-562 |#2|))) (-15 -4082 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-562 |#2|) (-562 |#2|) |#2|)) (-15 -3089 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-562 |#2|) (-562 |#2|) (-589 |#2|))) (-15 -2513 ((-3 |#2| "failed") |#2| |#2| |#2| (-562 |#2|) (-562 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1087)))) (IF (|has| |#3| (-599 |#2|)) (-15 -3275 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4041 (-589 |#2|))) |#3| |#2| (-562 |#2|) (-562 |#2|) (-1087))) |%noBranch|)) +((-1861 (((-2 (|:| -1280 |#2|) (|:| |nconst| |#2|)) |#2| (-1087)) 62)) (-3528 (((-3 |#2| "failed") |#2| (-1087) (-779 |#2|) (-779 |#2|)) 159 (-12 (|has| |#2| (-1051)) (|has| |#1| (-564 (-823 (-523)))) (|has| |#1| (-817 (-523))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087)) 133 (-12 (|has| |#2| (-575)) (|has| |#1| (-564 (-823 (-523)))) (|has| |#1| (-817 (-523)))))) (-3922 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087)) 142 (-12 (|has| |#2| (-575)) (|has| |#1| (-564 (-823 (-523)))) (|has| |#1| (-817 (-523))))))) +(((-526 |#1| |#2|) (-10 -7 (-15 -1861 ((-2 (|:| -1280 |#2|) (|:| |nconst| |#2|)) |#2| (-1087))) (IF (|has| |#1| (-564 (-823 (-523)))) (IF (|has| |#1| (-817 (-523))) (PROGN (IF (|has| |#2| (-575)) (PROGN (-15 -3922 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087))) (-15 -3528 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087)))) |%noBranch|) (IF (|has| |#2| (-1051)) (-15 -3528 ((-3 |#2| "failed") |#2| (-1087) (-779 |#2|) (-779 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-786) (-964 (-523)) (-427) (-585 (-523))) (-13 (-27) (-1108) (-406 |#1|))) (T -526)) +((-3528 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1087)) (-5 *4 (-779 *2)) (-4 *2 (-1051)) (-4 *2 (-13 (-27) (-1108) (-406 *5))) (-4 *5 (-564 (-823 (-523)))) (-4 *5 (-817 (-523))) (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) (-5 *1 (-526 *5 *2)))) (-3528 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1087)) (-4 *5 (-564 (-823 (-523)))) (-4 *5 (-817 (-523))) (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-526 *5 *3)) (-4 *3 (-575)) (-4 *3 (-13 (-27) (-1108) (-406 *5))))) (-3922 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1087)) (-4 *5 (-564 (-823 (-523)))) (-4 *5 (-817 (-523))) (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-526 *5 *3)) (-4 *3 (-575)) (-4 *3 (-13 (-27) (-1108) (-406 *5))))) (-1861 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) (-5 *2 (-2 (|:| -1280 *3) (|:| |nconst| *3))) (-5 *1 (-526 *5 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5)))))) +(-10 -7 (-15 -1861 ((-2 (|:| -1280 |#2|) (|:| |nconst| |#2|)) |#2| (-1087))) (IF (|has| |#1| (-564 (-823 (-523)))) (IF (|has| |#1| (-817 (-523))) (PROGN (IF (|has| |#2| (-575)) (PROGN (-15 -3922 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087))) (-15 -3528 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087)))) |%noBranch|) (IF (|has| |#2| (-1051)) (-15 -3528 ((-3 |#2| "failed") |#2| (-1087) (-779 |#2|) (-779 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2380 (((-3 (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|)))))) "failed") (-383 |#2|) (-589 (-383 |#2|))) 39)) (-3417 (((-540 (-383 |#2|)) (-383 |#2|)) 27)) (-1984 (((-3 (-383 |#2|) "failed") (-383 |#2|)) 16)) (-3241 (((-3 (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-383 |#2|)) 46))) +(((-527 |#1| |#2|) (-10 -7 (-15 -3417 ((-540 (-383 |#2|)) (-383 |#2|))) (-15 -1984 ((-3 (-383 |#2|) "failed") (-383 |#2|))) (-15 -3241 ((-3 (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-383 |#2|))) (-15 -2380 ((-3 (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|)))))) "failed") (-383 |#2|) (-589 (-383 |#2|))))) (-13 (-339) (-136) (-964 (-523))) (-1144 |#1|)) (T -527)) +((-2380 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-589 (-383 *6))) (-5 *3 (-383 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *5 *6)))) (-3241 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| -2462 (-383 *5)) (|:| |coeff| (-383 *5)))) (-5 *1 (-527 *4 *5)) (-5 *3 (-383 *5)))) (-1984 (*1 *2 *2) (|partial| -12 (-5 *2 (-383 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-13 (-339) (-136) (-964 (-523)))) (-5 *1 (-527 *3 *4)))) (-3417 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) (-4 *5 (-1144 *4)) (-5 *2 (-540 (-383 *5))) (-5 *1 (-527 *4 *5)) (-5 *3 (-383 *5))))) +(-10 -7 (-15 -3417 ((-540 (-383 |#2|)) (-383 |#2|))) (-15 -1984 ((-3 (-383 |#2|) "failed") (-383 |#2|))) (-15 -3241 ((-3 (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-383 |#2|))) (-15 -2380 ((-3 (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|)))))) "failed") (-383 |#2|) (-589 (-383 |#2|))))) +((-2156 (((-3 (-523) "failed") |#1|) 14)) (-1538 (((-108) |#1|) 13)) (-3356 (((-523) |#1|) 9))) +(((-528 |#1|) (-10 -7 (-15 -3356 ((-523) |#1|)) (-15 -1538 ((-108) |#1|)) (-15 -2156 ((-3 (-523) "failed") |#1|))) (-964 (-523))) (T -528)) +((-2156 (*1 *2 *3) (|partial| -12 (-5 *2 (-523)) (-5 *1 (-528 *3)) (-4 *3 (-964 *2)))) (-1538 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-528 *3)) (-4 *3 (-964 (-523))))) (-3356 (*1 *2 *3) (-12 (-5 *2 (-523)) (-5 *1 (-528 *3)) (-4 *3 (-964 *2))))) +(-10 -7 (-15 -3356 ((-523) |#1|)) (-15 -1538 ((-108) |#1|)) (-15 -2156 ((-3 (-523) "failed") |#1|))) +((-3569 (((-3 (-2 (|:| |mainpart| (-383 (-883 |#1|))) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 (-883 |#1|))) (|:| |logand| (-383 (-883 |#1|))))))) "failed") (-383 (-883 |#1|)) (-1087) (-589 (-383 (-883 |#1|)))) 43)) (-2737 (((-540 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-1087)) 25)) (-3732 (((-3 (-383 (-883 |#1|)) "failed") (-383 (-883 |#1|)) (-1087)) 20)) (-3516 (((-3 (-2 (|:| -2462 (-383 (-883 |#1|))) (|:| |coeff| (-383 (-883 |#1|)))) "failed") (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|))) 32))) +(((-529 |#1|) (-10 -7 (-15 -2737 ((-540 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-1087))) (-15 -3732 ((-3 (-383 (-883 |#1|)) "failed") (-383 (-883 |#1|)) (-1087))) (-15 -3569 ((-3 (-2 (|:| |mainpart| (-383 (-883 |#1|))) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 (-883 |#1|))) (|:| |logand| (-383 (-883 |#1|))))))) "failed") (-383 (-883 |#1|)) (-1087) (-589 (-383 (-883 |#1|))))) (-15 -3516 ((-3 (-2 (|:| -2462 (-383 (-883 |#1|))) (|:| |coeff| (-383 (-883 |#1|)))) "failed") (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|))))) (-13 (-515) (-964 (-523)) (-136))) (T -529)) +((-3516 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-964 (-523)) (-136))) (-5 *2 (-2 (|:| -2462 (-383 (-883 *5))) (|:| |coeff| (-383 (-883 *5))))) (-5 *1 (-529 *5)) (-5 *3 (-383 (-883 *5))))) (-3569 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-589 (-383 (-883 *6)))) (-5 *3 (-383 (-883 *6))) (-4 *6 (-13 (-515) (-964 (-523)) (-136))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-529 *6)))) (-3732 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-383 (-883 *4))) (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-964 (-523)) (-136))) (-5 *1 (-529 *4)))) (-2737 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-964 (-523)) (-136))) (-5 *2 (-540 (-383 (-883 *5)))) (-5 *1 (-529 *5)) (-5 *3 (-383 (-883 *5)))))) +(-10 -7 (-15 -2737 ((-540 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-1087))) (-15 -3732 ((-3 (-383 (-883 |#1|)) "failed") (-383 (-883 |#1|)) (-1087))) (-15 -3569 ((-3 (-2 (|:| |mainpart| (-383 (-883 |#1|))) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 (-883 |#1|))) (|:| |logand| (-383 (-883 |#1|))))))) "failed") (-383 (-883 |#1|)) (-1087) (-589 (-383 (-883 |#1|))))) (-15 -3516 ((-3 (-2 (|:| -2462 (-383 (-883 |#1|))) (|:| |coeff| (-383 (-883 |#1|)))) "failed") (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|))))) +((-3924 (((-108) $ $) 59)) (-2295 (((-108) $) 36)) (-3919 ((|#1| $) 30)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) 63)) (-1769 (($ $) 123)) (-3780 (($ $) 103)) (-3596 ((|#1| $) 28)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1832 (($ $) NIL)) (-1744 (($ $) 125)) (-3711 (($ $) 99)) (-1793 (($ $) 127)) (-3805 (($ $) 107)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) 78)) (-3474 (((-523) $) 80)) (-2121 (((-3 $ "failed") $) 62)) (-2194 (($ |#1| |#1|) 26)) (-2604 (((-108) $) 33)) (-2820 (($) 89)) (-2023 (((-108) $) 43)) (-1420 (($ $ (-523)) NIL)) (-4114 (((-108) $) 34)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-2384 (($ $) 91)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-2081 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-383 (-523))) 77)) (-2774 ((|#1| $) 27)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) 65) (($ (-589 $)) NIL)) (-3746 (((-3 $ "failed") $ $) 64)) (-1811 (($ $) 93)) (-1805 (($ $) 131)) (-3816 (($ $) 105)) (-1782 (($ $) 133)) (-3793 (($ $) 109)) (-1757 (($ $) 129)) (-3767 (($ $) 101)) (-2442 (((-108) $ |#1|) 31)) (-1458 (((-794) $) 85) (($ (-523)) 67) (($ $) NIL) (($ (-523)) 67)) (-1621 (((-710)) 87)) (-1839 (($ $) 145)) (-3847 (($ $) 115)) (-1704 (((-108) $ $) NIL)) (-1818 (($ $) 143)) (-3828 (($ $) 111)) (-1865 (($ $) 141)) (-1719 (($ $) 121)) (-2914 (($ $) 139)) (-1731 (($ $) 119)) (-1852 (($ $) 137)) (-3859 (($ $) 117)) (-1830 (($ $) 135)) (-3838 (($ $) 113)) (-2364 (($ $ (-852)) 55) (($ $ (-710)) NIL)) (-2756 (($) 21 T CONST)) (-2767 (($) 10 T CONST)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 37)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 35)) (-4087 (($ $) 41) (($ $ $) 42)) (-4075 (($ $ $) 40)) (** (($ $ (-852)) 54) (($ $ (-710)) NIL) (($ $ $) 95) (($ $ (-383 (-523))) 147)) (* (($ (-852) $) 51) (($ (-710) $) NIL) (($ (-523) $) 50) (($ $ $) 48))) +(((-530 |#1|) (-513 |#1|) (-13 (-380) (-1108))) (T -530)) +NIL +(-513 |#1|) +((-3652 (((-3 (-589 (-1083 (-523))) "failed") (-589 (-1083 (-523))) (-1083 (-523))) 24))) +(((-531) (-10 -7 (-15 -3652 ((-3 (-589 (-1083 (-523))) "failed") (-589 (-1083 (-523))) (-1083 (-523)))))) (T -531)) +((-3652 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 (-1083 (-523)))) (-5 *3 (-1083 (-523))) (-5 *1 (-531))))) +(-10 -7 (-15 -3652 ((-3 (-589 (-1083 (-523))) "failed") (-589 (-1083 (-523))) (-1083 (-523))))) +((-3328 (((-589 (-562 |#2|)) (-589 (-562 |#2|)) (-1087)) 18)) (-1695 (((-589 (-562 |#2|)) (-589 |#2|) (-1087)) 23)) (-3288 (((-589 (-562 |#2|)) (-589 (-562 |#2|)) (-589 (-562 |#2|))) 10)) (-3511 ((|#2| |#2| (-1087)) 52 (|has| |#1| (-515)))) (-1860 ((|#2| |#2| (-1087)) 77 (-12 (|has| |#2| (-261)) (|has| |#1| (-427))))) (-1273 (((-562 |#2|) (-562 |#2|) (-589 (-562 |#2|)) (-1087)) 25)) (-4213 (((-562 |#2|) (-589 (-562 |#2|))) 24)) (-2485 (((-540 |#2|) |#2| (-1087) (-1 (-540 |#2|) |#2| (-1087)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087))) 101 (-12 (|has| |#2| (-261)) (|has| |#2| (-575)) (|has| |#2| (-964 (-1087))) (|has| |#1| (-564 (-823 (-523)))) (|has| |#1| (-427)) (|has| |#1| (-817 (-523))))))) +(((-532 |#1| |#2|) (-10 -7 (-15 -3328 ((-589 (-562 |#2|)) (-589 (-562 |#2|)) (-1087))) (-15 -4213 ((-562 |#2|) (-589 (-562 |#2|)))) (-15 -1273 ((-562 |#2|) (-562 |#2|) (-589 (-562 |#2|)) (-1087))) (-15 -3288 ((-589 (-562 |#2|)) (-589 (-562 |#2|)) (-589 (-562 |#2|)))) (-15 -1695 ((-589 (-562 |#2|)) (-589 |#2|) (-1087))) (IF (|has| |#1| (-515)) (-15 -3511 (|#2| |#2| (-1087))) |%noBranch|) (IF (|has| |#1| (-427)) (IF (|has| |#2| (-261)) (PROGN (-15 -1860 (|#2| |#2| (-1087))) (IF (|has| |#1| (-564 (-823 (-523)))) (IF (|has| |#1| (-817 (-523))) (IF (|has| |#2| (-575)) (IF (|has| |#2| (-964 (-1087))) (-15 -2485 ((-540 |#2|) |#2| (-1087) (-1 (-540 |#2|) |#2| (-1087)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-786) (-406 |#1|)) (T -532)) +((-2485 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-540 *3) *3 (-1087))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1087))) (-4 *3 (-261)) (-4 *3 (-575)) (-4 *3 (-964 *4)) (-4 *3 (-406 *7)) (-5 *4 (-1087)) (-4 *7 (-564 (-823 (-523)))) (-4 *7 (-427)) (-4 *7 (-817 (-523))) (-4 *7 (-786)) (-5 *2 (-540 *3)) (-5 *1 (-532 *7 *3)))) (-1860 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-427)) (-4 *4 (-786)) (-5 *1 (-532 *4 *2)) (-4 *2 (-261)) (-4 *2 (-406 *4)))) (-3511 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-515)) (-4 *4 (-786)) (-5 *1 (-532 *4 *2)) (-4 *2 (-406 *4)))) (-1695 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *6)) (-5 *4 (-1087)) (-4 *6 (-406 *5)) (-4 *5 (-786)) (-5 *2 (-589 (-562 *6))) (-5 *1 (-532 *5 *6)))) (-3288 (*1 *2 *2 *2) (-12 (-5 *2 (-589 (-562 *4))) (-4 *4 (-406 *3)) (-4 *3 (-786)) (-5 *1 (-532 *3 *4)))) (-1273 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-589 (-562 *6))) (-5 *4 (-1087)) (-5 *2 (-562 *6)) (-4 *6 (-406 *5)) (-4 *5 (-786)) (-5 *1 (-532 *5 *6)))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-589 (-562 *5))) (-4 *4 (-786)) (-5 *2 (-562 *5)) (-5 *1 (-532 *4 *5)) (-4 *5 (-406 *4)))) (-3328 (*1 *2 *2 *3) (-12 (-5 *2 (-589 (-562 *5))) (-5 *3 (-1087)) (-4 *5 (-406 *4)) (-4 *4 (-786)) (-5 *1 (-532 *4 *5))))) +(-10 -7 (-15 -3328 ((-589 (-562 |#2|)) (-589 (-562 |#2|)) (-1087))) (-15 -4213 ((-562 |#2|) (-589 (-562 |#2|)))) (-15 -1273 ((-562 |#2|) (-562 |#2|) (-589 (-562 |#2|)) (-1087))) (-15 -3288 ((-589 (-562 |#2|)) (-589 (-562 |#2|)) (-589 (-562 |#2|)))) (-15 -1695 ((-589 (-562 |#2|)) (-589 |#2|) (-1087))) (IF (|has| |#1| (-515)) (-15 -3511 (|#2| |#2| (-1087))) |%noBranch|) (IF (|has| |#1| (-427)) (IF (|has| |#2| (-261)) (PROGN (-15 -1860 (|#2| |#2| (-1087))) (IF (|has| |#1| (-564 (-823 (-523)))) (IF (|has| |#1| (-817 (-523))) (IF (|has| |#2| (-575)) (IF (|has| |#2| (-964 (-1087))) (-15 -2485 ((-540 |#2|) |#2| (-1087) (-1 (-540 |#2|) |#2| (-1087)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1087)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-1528 (((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-589 |#1|) "failed") (-523) |#1| |#1|)) 168)) (-2669 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|))))))) (|:| |a0| |#1|)) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-589 (-383 |#2|))) 144)) (-3575 (((-3 (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|)))))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-589 (-383 |#2|))) 141)) (-1958 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 130)) (-2105 (((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 154)) (-3784 (((-3 (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-383 |#2|)) 171)) (-3609 (((-3 (-2 (|:| |answer| (-383 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-383 |#2|)) 174)) (-3163 (((-2 (|:| |ir| (-540 (-383 |#2|))) (|:| |specpart| (-383 |#2|)) (|:| |polypart| |#2|)) (-383 |#2|) (-1 |#2| |#2|)) 82)) (-3281 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 89)) (-2159 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|))))))) (|:| |a0| |#1|)) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|) (-589 (-383 |#2|))) 148)) (-1407 (((-3 (-570 |#1| |#2|) "failed") (-570 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|)) 134)) (-2447 (((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|)) 158)) (-2092 (((-3 (-2 (|:| |answer| (-383 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|) (-383 |#2|)) 179))) +(((-533 |#1| |#2|) (-10 -7 (-15 -2105 ((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2447 ((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|))) (-15 -1528 ((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-589 |#1|) "failed") (-523) |#1| |#1|))) (-15 -3609 ((-3 (-2 (|:| |answer| (-383 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-383 |#2|))) (-15 -2092 ((-3 (-2 (|:| |answer| (-383 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|) (-383 |#2|))) (-15 -2669 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|))))))) (|:| |a0| |#1|)) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-589 (-383 |#2|)))) (-15 -2159 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|))))))) (|:| |a0| |#1|)) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|) (-589 (-383 |#2|)))) (-15 -3784 ((-3 (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-383 |#2|))) (-15 -3575 ((-3 (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|)))))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-589 (-383 |#2|)))) (-15 -1958 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1407 ((-3 (-570 |#1| |#2|) "failed") (-570 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|))) (-15 -3163 ((-2 (|:| |ir| (-540 (-383 |#2|))) (|:| |specpart| (-383 |#2|)) (|:| |polypart| |#2|)) (-383 |#2|) (-1 |#2| |#2|))) (-15 -3281 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-339) (-1144 |#1|)) (T -533)) +((-3281 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-533 *5 *3)))) (-3163 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| |ir| (-540 (-383 *6))) (|:| |specpart| (-383 *6)) (|:| |polypart| *6))) (-5 *1 (-533 *5 *6)) (-5 *3 (-383 *6)))) (-1407 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-570 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3159 *4) (|:| |sol?| (-108))) (-523) *4)) (-4 *4 (-339)) (-4 *5 (-1144 *4)) (-5 *1 (-533 *4 *5)))) (-1958 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2462 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-339)) (-5 *1 (-533 *4 *2)) (-4 *2 (-1144 *4)))) (-3575 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-589 (-383 *7))) (-4 *7 (-1144 *6)) (-5 *3 (-383 *7)) (-4 *6 (-339)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-533 *6 *7)))) (-3784 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| -2462 (-383 *6)) (|:| |coeff| (-383 *6)))) (-5 *1 (-533 *5 *6)) (-5 *3 (-383 *6)))) (-2159 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3159 *7) (|:| |sol?| (-108))) (-523) *7)) (-5 *6 (-589 (-383 *8))) (-4 *7 (-339)) (-4 *8 (-1144 *7)) (-5 *3 (-383 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-533 *7 *8)))) (-2669 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2462 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-589 (-383 *8))) (-4 *7 (-339)) (-4 *8 (-1144 *7)) (-5 *3 (-383 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-533 *7 *8)))) (-2092 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3159 *6) (|:| |sol?| (-108))) (-523) *6)) (-4 *6 (-339)) (-4 *7 (-1144 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-383 *7)) (|:| |a0| *6)) (-2 (|:| -2462 (-383 *7)) (|:| |coeff| (-383 *7))) "failed")) (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7)))) (-3609 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2462 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-339)) (-4 *7 (-1144 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-383 *7)) (|:| |a0| *6)) (-2 (|:| -2462 (-383 *7)) (|:| |coeff| (-383 *7))) "failed")) (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7)))) (-1528 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-589 *6) "failed") (-523) *6 *6)) (-4 *6 (-339)) (-4 *7 (-1144 *6)) (-5 *2 (-2 (|:| |answer| (-540 (-383 *7))) (|:| |a0| *6))) (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7)))) (-2447 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3159 *6) (|:| |sol?| (-108))) (-523) *6)) (-4 *6 (-339)) (-4 *7 (-1144 *6)) (-5 *2 (-2 (|:| |answer| (-540 (-383 *7))) (|:| |a0| *6))) (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7)))) (-2105 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2462 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-339)) (-4 *7 (-1144 *6)) (-5 *2 (-2 (|:| |answer| (-540 (-383 *7))) (|:| |a0| *6))) (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7))))) +(-10 -7 (-15 -2105 ((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2447 ((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|))) (-15 -1528 ((-2 (|:| |answer| (-540 (-383 |#2|))) (|:| |a0| |#1|)) (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-589 |#1|) "failed") (-523) |#1| |#1|))) (-15 -3609 ((-3 (-2 (|:| |answer| (-383 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-383 |#2|))) (-15 -2092 ((-3 (-2 (|:| |answer| (-383 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|) (-383 |#2|))) (-15 -2669 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|))))))) (|:| |a0| |#1|)) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-589 (-383 |#2|)))) (-15 -2159 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|))))))) (|:| |a0| |#1|)) "failed") (-383 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|) (-589 (-383 |#2|)))) (-15 -3784 ((-3 (-2 (|:| -2462 (-383 |#2|)) (|:| |coeff| (-383 |#2|))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-383 |#2|))) (-15 -3575 ((-3 (-2 (|:| |mainpart| (-383 |#2|)) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| (-383 |#2|)) (|:| |logand| (-383 |#2|)))))) "failed") (-383 |#2|) (-1 |#2| |#2|) (-589 (-383 |#2|)))) (-15 -1958 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1407 ((-3 (-570 |#1| |#2|) "failed") (-570 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3159 |#1|) (|:| |sol?| (-108))) (-523) |#1|))) (-15 -3163 ((-2 (|:| |ir| (-540 (-383 |#2|))) (|:| |specpart| (-383 |#2|)) (|:| |polypart| |#2|)) (-383 |#2|) (-1 |#2| |#2|))) (-15 -3281 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-3990 (((-3 |#2| "failed") |#2| (-1087) (-1087)) 10))) +(((-534 |#1| |#2|) (-10 -7 (-15 -3990 ((-3 |#2| "failed") |#2| (-1087) (-1087)))) (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-1108) (-889) (-1051) (-29 |#1|))) (T -534)) +((-3990 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1087)) (-4 *4 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *1 (-534 *4 *2)) (-4 *2 (-13 (-1108) (-889) (-1051) (-29 *4)))))) +(-10 -7 (-15 -3990 ((-3 |#2| "failed") |#2| (-1087) (-1087)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1832 (($ $ (-523)) 65)) (-1387 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-2635 (($ (-1083 (-523)) (-523)) 71)) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) 57)) (-2816 (($ $) 33)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1640 (((-710) $) 15)) (-2023 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3507 (((-523)) 27)) (-2329 (((-523) $) 31)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4097 (($ $ (-523)) 21)) (-3746 (((-3 $ "failed") $ $) 58)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) 16)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 60)) (-1617 (((-1068 (-523)) $) 18)) (-1353 (($ $) 23)) (-1458 (((-794) $) 86) (($ (-523)) 51) (($ $) NIL)) (-1621 (((-710)) 14)) (-1704 (((-108) $ $) NIL)) (-2562 (((-523) $ (-523)) 35)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 34 T CONST)) (-2767 (($) 19 T CONST)) (-3983 (((-108) $ $) 38)) (-4087 (($ $) 50) (($ $ $) 36)) (-4075 (($ $ $) 49)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 53) (($ $ $) 54))) +(((-535 |#1| |#2|) (-800 |#1|) (-523) (-108)) (T -535)) +NIL +(-800 |#1|) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 18)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 (($ $ (-852)) NIL (|has| $ (-344))) (($ $) NIL)) (-2430 (((-1096 (-852) (-710)) (-523)) 47)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 $ "failed") $) 75)) (-3474 (($ $) 74)) (-3409 (($ (-1168 $)) 73)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) 30)) (-4032 (($) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) 49)) (-2155 (((-108) $) NIL)) (-1991 (($ $) NIL) (($ $ (-710)) NIL)) (-2657 (((-108) $) NIL)) (-1640 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-2023 (((-108) $) NIL)) (-1881 (($) 35 (|has| $ (-344)))) (-2307 (((-108) $) NIL (|has| $ (-344)))) (-3892 (($ $ (-852)) NIL (|has| $ (-344))) (($ $) NIL)) (-4058 (((-3 $ "failed") $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 $) $ (-852)) NIL (|has| $ (-344))) (((-1083 $) $) 83)) (-2072 (((-852) $) 55)) (-3943 (((-1083 $) $) NIL (|has| $ (-344)))) (-2122 (((-3 (-1083 $) "failed") $ $) NIL (|has| $ (-344))) (((-1083 $) $) NIL (|has| $ (-344)))) (-3865 (($ $ (-1083 $)) NIL (|has| $ (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL T CONST)) (-3878 (($ (-852)) 48)) (-1290 (((-108) $) 67)) (-2783 (((-1034) $) NIL)) (-3441 (($) 16 (|has| $ (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) 40)) (-1820 (((-394 $) $) NIL)) (-4124 (((-852)) 66) (((-772 (-852))) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-3 (-710) "failed") $ $) NIL) (((-710) $) NIL)) (-3203 (((-126)) NIL)) (-3523 (($ $ (-710)) NIL) (($ $) NIL)) (-2299 (((-852) $) 65) (((-772 (-852)) $) NIL)) (-3727 (((-1083 $)) 82)) (-3425 (($) 54)) (-2749 (($) 36 (|has| $ (-344)))) (-2966 (((-629 $) (-1168 $)) NIL) (((-1168 $) $) 71)) (-3663 (((-523) $) 26)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) 28) (($ $) NIL) (($ (-383 (-523))) NIL)) (-3901 (((-3 $ "failed") $) NIL) (($ $) 84)) (-1621 (((-710)) 37)) (-4041 (((-1168 $) (-852)) 77) (((-1168 $)) 76)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 19 T CONST)) (-2767 (($) 15 T CONST)) (-3454 (($ $ (-710)) NIL (|has| $ (-344))) (($ $) NIL (|has| $ (-344)))) (-2862 (($ $ (-710)) NIL) (($ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 24)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 61) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) +(((-536 |#1|) (-13 (-325) (-305 $) (-564 (-523))) (-852)) (T -536)) +NIL +(-13 (-325) (-305 $) (-564 (-523))) +((-3753 (((-1173) (-1070)) 10))) +(((-537) (-10 -7 (-15 -3753 ((-1173) (-1070))))) (T -537)) +((-3753 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-537))))) +(-10 -7 (-15 -3753 ((-1173) (-1070)))) +((-2063 (((-540 |#2|) (-540 |#2|)) 38)) (-3686 (((-589 |#2|) (-540 |#2|)) 40)) (-2134 ((|#2| (-540 |#2|)) 47))) +(((-538 |#1| |#2|) (-10 -7 (-15 -2063 ((-540 |#2|) (-540 |#2|))) (-15 -3686 ((-589 |#2|) (-540 |#2|))) (-15 -2134 (|#2| (-540 |#2|)))) (-13 (-427) (-964 (-523)) (-786) (-585 (-523))) (-13 (-29 |#1|) (-1108))) (T -538)) +((-2134 (*1 *2 *3) (-12 (-5 *3 (-540 *2)) (-4 *2 (-13 (-29 *4) (-1108))) (-5 *1 (-538 *4 *2)) (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))))) (-3686 (*1 *2 *3) (-12 (-5 *3 (-540 *5)) (-4 *5 (-13 (-29 *4) (-1108))) (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *2 (-589 *5)) (-5 *1 (-538 *4 *5)))) (-2063 (*1 *2 *2) (-12 (-5 *2 (-540 *4)) (-4 *4 (-13 (-29 *3) (-1108))) (-4 *3 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *1 (-538 *3 *4))))) +(-10 -7 (-15 -2063 ((-540 |#2|) (-540 |#2|))) (-15 -3686 ((-589 |#2|) (-540 |#2|))) (-15 -2134 (|#2| (-540 |#2|)))) +((-3612 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-540 |#2|) (-1 |#2| |#1|) (-540 |#1|)) 26))) +(((-539 |#1| |#2|) (-10 -7 (-15 -3612 ((-540 |#2|) (-1 |#2| |#1|) (-540 |#1|))) (-15 -3612 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3612 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3612 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-339) (-339)) (T -539)) +((-3612 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-339)) (-4 *6 (-339)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-539 *5 *6)))) (-3612 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-339)) (-4 *2 (-339)) (-5 *1 (-539 *5 *2)))) (-3612 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2462 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-339)) (-4 *6 (-339)) (-5 *2 (-2 (|:| -2462 *6) (|:| |coeff| *6))) (-5 *1 (-539 *5 *6)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-540 *5)) (-4 *5 (-339)) (-4 *6 (-339)) (-5 *2 (-540 *6)) (-5 *1 (-539 *5 *6))))) +(-10 -7 (-15 -3612 ((-540 |#2|) (-1 |#2| |#1|) (-540 |#1|))) (-15 -3612 ((-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2462 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3612 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3612 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) 69)) (-3474 ((|#1| $) NIL)) (-2462 ((|#1| $) 24)) (-1225 (((-589 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-3658 (($ |#1| (-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) (-589 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-2124 (((-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) $) 25)) (-3779 (((-1070) $) NIL)) (-1373 (($ |#1| |#1|) 32) (($ |#1| (-1087)) 43 (|has| |#1| (-964 (-1087))))) (-2783 (((-1034) $) NIL)) (-3998 (((-108) $) 28)) (-3523 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1087)) 82 (|has| |#1| (-831 (-1087))))) (-1458 (((-794) $) 96) (($ |#1|) 23)) (-2756 (($) 16 T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) 15) (($ $ $) NIL)) (-4075 (($ $ $) 78)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 14) (($ (-383 (-523)) $) 35) (($ $ (-383 (-523))) NIL))) +(((-540 |#1|) (-13 (-657 (-383 (-523))) (-964 |#1|) (-10 -8 (-15 -3658 ($ |#1| (-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) (-589 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2462 (|#1| $)) (-15 -2124 ((-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) $)) (-15 -1225 ((-589 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3998 ((-108) $)) (-15 -1373 ($ |#1| |#1|)) (-15 -3523 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-831 (-1087))) (-15 -3523 (|#1| $ (-1087))) |%noBranch|) (IF (|has| |#1| (-964 (-1087))) (-15 -1373 ($ |#1| (-1087))) |%noBranch|))) (-339)) (T -540)) +((-3658 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 *2)) (|:| |logand| (-1083 *2))))) (-5 *4 (-589 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-339)) (-5 *1 (-540 *2)))) (-2462 (*1 *2 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-339)))) (-2124 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 *3)) (|:| |logand| (-1083 *3))))) (-5 *1 (-540 *3)) (-4 *3 (-339)))) (-1225 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-540 *3)) (-4 *3 (-339)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-540 *3)) (-4 *3 (-339)))) (-1373 (*1 *1 *2 *2) (-12 (-5 *1 (-540 *2)) (-4 *2 (-339)))) (-3523 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-540 *2)) (-4 *2 (-339)))) (-3523 (*1 *2 *1 *3) (-12 (-4 *2 (-339)) (-4 *2 (-831 *3)) (-5 *1 (-540 *2)) (-5 *3 (-1087)))) (-1373 (*1 *1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *1 (-540 *2)) (-4 *2 (-964 *3)) (-4 *2 (-339))))) +(-13 (-657 (-383 (-523))) (-964 |#1|) (-10 -8 (-15 -3658 ($ |#1| (-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) (-589 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2462 (|#1| $)) (-15 -2124 ((-589 (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) $)) (-15 -1225 ((-589 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3998 ((-108) $)) (-15 -1373 ($ |#1| |#1|)) (-15 -3523 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-831 (-1087))) (-15 -3523 (|#1| $ (-1087))) |%noBranch|) (IF (|has| |#1| (-964 (-1087))) (-15 -1373 ($ |#1| (-1087))) |%noBranch|))) +((-3472 (((-108) |#1|) 16)) (-3128 (((-3 |#1| "failed") |#1|) 14)) (-3955 (((-2 (|:| -3007 |#1|) (|:| -2735 (-710))) |#1|) 31) (((-3 |#1| "failed") |#1| (-710)) 18)) (-2421 (((-108) |#1| (-710)) 19)) (-3437 ((|#1| |#1|) 32)) (-3377 ((|#1| |#1| (-710)) 34))) +(((-541 |#1|) (-10 -7 (-15 -2421 ((-108) |#1| (-710))) (-15 -3955 ((-3 |#1| "failed") |#1| (-710))) (-15 -3955 ((-2 (|:| -3007 |#1|) (|:| -2735 (-710))) |#1|)) (-15 -3377 (|#1| |#1| (-710))) (-15 -3472 ((-108) |#1|)) (-15 -3128 ((-3 |#1| "failed") |#1|)) (-15 -3437 (|#1| |#1|))) (-508)) (T -541)) +((-3437 (*1 *2 *2) (-12 (-5 *1 (-541 *2)) (-4 *2 (-508)))) (-3128 (*1 *2 *2) (|partial| -12 (-5 *1 (-541 *2)) (-4 *2 (-508)))) (-3472 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-541 *3)) (-4 *3 (-508)))) (-3377 (*1 *2 *2 *3) (-12 (-5 *3 (-710)) (-5 *1 (-541 *2)) (-4 *2 (-508)))) (-3955 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3007 *3) (|:| -2735 (-710)))) (-5 *1 (-541 *3)) (-4 *3 (-508)))) (-3955 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-710)) (-5 *1 (-541 *2)) (-4 *2 (-508)))) (-2421 (*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-5 *2 (-108)) (-5 *1 (-541 *3)) (-4 *3 (-508))))) +(-10 -7 (-15 -2421 ((-108) |#1| (-710))) (-15 -3955 ((-3 |#1| "failed") |#1| (-710))) (-15 -3955 ((-2 (|:| -3007 |#1|) (|:| -2735 (-710))) |#1|)) (-15 -3377 (|#1| |#1| (-710))) (-15 -3472 ((-108) |#1|)) (-15 -3128 ((-3 |#1| "failed") |#1|)) (-15 -3437 (|#1| |#1|))) +((-2287 (((-1083 |#1|) (-852)) 27))) +(((-542 |#1|) (-10 -7 (-15 -2287 ((-1083 |#1|) (-852)))) (-325)) (T -542)) +((-2287 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-542 *4)) (-4 *4 (-325))))) +(-10 -7 (-15 -2287 ((-1083 |#1|) (-852)))) +((-2063 (((-540 (-383 (-883 |#1|))) (-540 (-383 (-883 |#1|)))) 26)) (-3417 (((-3 (-292 |#1|) (-589 (-292 |#1|))) (-383 (-883 |#1|)) (-1087)) 32 (|has| |#1| (-136)))) (-3686 (((-589 (-292 |#1|)) (-540 (-383 (-883 |#1|)))) 18)) (-1533 (((-292 |#1|) (-383 (-883 |#1|)) (-1087)) 30 (|has| |#1| (-136)))) (-2134 (((-292 |#1|) (-540 (-383 (-883 |#1|)))) 20))) +(((-543 |#1|) (-10 -7 (-15 -2063 ((-540 (-383 (-883 |#1|))) (-540 (-383 (-883 |#1|))))) (-15 -3686 ((-589 (-292 |#1|)) (-540 (-383 (-883 |#1|))))) (-15 -2134 ((-292 |#1|) (-540 (-383 (-883 |#1|))))) (IF (|has| |#1| (-136)) (PROGN (-15 -3417 ((-3 (-292 |#1|) (-589 (-292 |#1|))) (-383 (-883 |#1|)) (-1087))) (-15 -1533 ((-292 |#1|) (-383 (-883 |#1|)) (-1087)))) |%noBranch|)) (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (T -543)) +((-1533 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-136)) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *2 (-292 *5)) (-5 *1 (-543 *5)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-136)) (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *2 (-3 (-292 *5) (-589 (-292 *5)))) (-5 *1 (-543 *5)))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-540 (-383 (-883 *4)))) (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *2 (-292 *4)) (-5 *1 (-543 *4)))) (-3686 (*1 *2 *3) (-12 (-5 *3 (-540 (-383 (-883 *4)))) (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *2 (-589 (-292 *4))) (-5 *1 (-543 *4)))) (-2063 (*1 *2 *2) (-12 (-5 *2 (-540 (-383 (-883 *3)))) (-4 *3 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) (-5 *1 (-543 *3))))) +(-10 -7 (-15 -2063 ((-540 (-383 (-883 |#1|))) (-540 (-383 (-883 |#1|))))) (-15 -3686 ((-589 (-292 |#1|)) (-540 (-383 (-883 |#1|))))) (-15 -2134 ((-292 |#1|) (-540 (-383 (-883 |#1|))))) (IF (|has| |#1| (-136)) (PROGN (-15 -3417 ((-3 (-292 |#1|) (-589 (-292 |#1|))) (-383 (-883 |#1|)) (-1087))) (-15 -1533 ((-292 |#1|) (-383 (-883 |#1|)) (-1087)))) |%noBranch|)) +((-2507 (((-589 (-629 (-523))) (-589 (-523)) (-589 (-836 (-523)))) 46) (((-589 (-629 (-523))) (-589 (-523))) 47) (((-629 (-523)) (-589 (-523)) (-836 (-523))) 42)) (-1741 (((-710) (-589 (-523))) 40))) +(((-544) (-10 -7 (-15 -1741 ((-710) (-589 (-523)))) (-15 -2507 ((-629 (-523)) (-589 (-523)) (-836 (-523)))) (-15 -2507 ((-589 (-629 (-523))) (-589 (-523)))) (-15 -2507 ((-589 (-629 (-523))) (-589 (-523)) (-589 (-836 (-523))))))) (T -544)) +((-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-523))) (-5 *4 (-589 (-836 (-523)))) (-5 *2 (-589 (-629 (-523)))) (-5 *1 (-544)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-589 (-629 (-523)))) (-5 *1 (-544)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-523))) (-5 *4 (-836 (-523))) (-5 *2 (-629 (-523))) (-5 *1 (-544)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-710)) (-5 *1 (-544))))) +(-10 -7 (-15 -1741 ((-710) (-589 (-523)))) (-15 -2507 ((-629 (-523)) (-589 (-523)) (-836 (-523)))) (-15 -2507 ((-589 (-629 (-523))) (-589 (-523)))) (-15 -2507 ((-589 (-629 (-523))) (-589 (-523)) (-589 (-836 (-523)))))) +((-2419 (((-589 |#5|) |#5| (-108)) 73)) (-1468 (((-108) |#5| (-589 |#5|)) 30))) +(((-545 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2419 ((-589 |#5|) |#5| (-108))) (-15 -1468 ((-108) |#5| (-589 |#5|)))) (-13 (-284) (-136)) (-732) (-786) (-987 |#1| |#2| |#3|) (-1025 |#1| |#2| |#3| |#4|)) (T -545)) +((-1468 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *3)) (-4 *3 (-1025 *5 *6 *7 *8)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-545 *5 *6 *7 *8 *3)))) (-2419 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-589 *3)) (-5 *1 (-545 *5 *6 *7 *8 *3)) (-4 *3 (-1025 *5 *6 *7 *8))))) +(-10 -7 (-15 -2419 ((-589 |#5|) |#5| (-108))) (-15 -1468 ((-108) |#5| (-589 |#5|)))) +((-3924 (((-108) $ $) NIL (|has| (-133) (-1016)))) (-2109 (($ $) 34)) (-1303 (($ $) NIL)) (-2874 (($ $ (-133)) NIL) (($ $ (-130)) NIL)) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1545 (((-108) $ $) 51)) (-1521 (((-108) $ $ (-523)) 46)) (-2063 (((-589 $) $ (-133)) 60) (((-589 $) $ (-130)) 61)) (-1964 (((-108) (-1 (-108) (-133) (-133)) $) NIL) (((-108) $) NIL (|has| (-133) (-786)))) (-1506 (($ (-1 (-108) (-133) (-133)) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| (-133) (-786))))) (-3974 (($ (-1 (-108) (-133) (-133)) $) NIL) (($ $) NIL (|has| (-133) (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 (((-133) $ (-523) (-133)) 45 (|has| $ (-6 -4245))) (((-133) $ (-1135 (-523)) (-133)) NIL (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-4123 (($ $ (-133)) 64) (($ $ (-130)) 65)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-2129 (($ $ (-1135 (-523)) $) 44)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-2557 (($ (-133) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016)))) (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-133) (-1 (-133) (-133) (-133)) $ (-133) (-133)) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016)))) (((-133) (-1 (-133) (-133) (-133)) $ (-133)) NIL (|has| $ (-6 -4244))) (((-133) (-1 (-133) (-133) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2863 (((-133) $ (-523) (-133)) NIL (|has| $ (-6 -4245)))) (-2795 (((-133) $ (-523)) NIL)) (-1569 (((-108) $ $) 71)) (-1479 (((-523) (-1 (-108) (-133)) $) NIL) (((-523) (-133) $) NIL (|has| (-133) (-1016))) (((-523) (-133) $ (-523)) 48 (|has| (-133) (-1016))) (((-523) $ $ (-523)) 47) (((-523) (-130) $ (-523)) 50)) (-1666 (((-589 (-133)) $) NIL (|has| $ (-6 -4244)))) (-3052 (($ (-710) (-133)) 9)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) 28 (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| (-133) (-786)))) (-2178 (($ (-1 (-108) (-133) (-133)) $ $) NIL) (($ $ $) NIL (|has| (-133) (-786)))) (-2136 (((-589 (-133)) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-133) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-3056 (((-523) $) 42 (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| (-133) (-786)))) (-2599 (((-108) $ $ (-133)) 72)) (-1547 (((-710) $ $ (-133)) 70)) (-2852 (($ (-1 (-133) (-133)) $) 33 (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-133) (-133)) $) NIL) (($ (-1 (-133) (-133) (-133)) $ $) NIL)) (-2858 (($ $) 37)) (-2674 (($ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-4133 (($ $ (-133)) 62) (($ $ (-130)) 63)) (-3779 (((-1070) $) 38 (|has| (-133) (-1016)))) (-2847 (($ (-133) $ (-523)) NIL) (($ $ $ (-523)) 23)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-523) $) 69) (((-1034) $) NIL (|has| (-133) (-1016)))) (-1738 (((-133) $) NIL (|has| (-523) (-786)))) (-2114 (((-3 (-133) "failed") (-1 (-108) (-133)) $) NIL)) (-4203 (($ $ (-133)) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-133)))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-271 (-133))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-133) (-133)) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-589 (-133)) (-589 (-133))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) (-133) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-1264 (((-589 (-133)) $) NIL)) (-3883 (((-108) $) 12)) (-3988 (($) 10)) (-3223 (((-133) $ (-523) (-133)) NIL) (((-133) $ (-523)) 52) (($ $ (-1135 (-523))) 21) (($ $ $) NIL)) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2792 (((-710) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244))) (((-710) (-133) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-3160 (($ $ $ (-523)) 66 (|has| $ (-6 -4245)))) (-1664 (($ $) 17)) (-3663 (((-499) $) NIL (|has| (-133) (-564 (-499))))) (-1472 (($ (-589 (-133))) NIL)) (-2326 (($ $ (-133)) NIL) (($ (-133) $) NIL) (($ $ $) 16) (($ (-589 $)) 67)) (-1458 (($ (-133)) NIL) (((-794) $) 27 (|has| (-133) (-563 (-794))))) (-2096 (((-108) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| (-133) (-786)))) (-4019 (((-108) $ $) NIL (|has| (-133) (-786)))) (-3983 (((-108) $ $) 14 (|has| (-133) (-1016)))) (-4030 (((-108) $ $) NIL (|has| (-133) (-786)))) (-4007 (((-108) $ $) 15 (|has| (-133) (-786)))) (-2676 (((-710) $) 13 (|has| $ (-6 -4244))))) +(((-546 |#1|) (-13 (-1056) (-10 -8 (-15 -2783 ((-523) $)))) (-523)) (T -546)) +((-2783 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-546 *3)) (-14 *3 *2)))) +(-13 (-1056) (-10 -8 (-15 -2783 ((-523) $)))) +((-1923 (((-2 (|:| |num| |#4|) (|:| |den| (-523))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-523))) |#4| |#2| (-1011 |#4|)) 32))) +(((-547 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1923 ((-2 (|:| |num| |#4|) (|:| |den| (-523))) |#4| |#2| (-1011 |#4|))) (-15 -1923 ((-2 (|:| |num| |#4|) (|:| |den| (-523))) |#4| |#2|))) (-732) (-786) (-515) (-880 |#3| |#1| |#2|)) (T -547)) +((-1923 (*1 *2 *3 *4) (-12 (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-515)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-523)))) (-5 *1 (-547 *5 *4 *6 *3)) (-4 *3 (-880 *6 *5 *4)))) (-1923 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1011 *3)) (-4 *3 (-880 *7 *6 *4)) (-4 *6 (-732)) (-4 *4 (-786)) (-4 *7 (-515)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-523)))) (-5 *1 (-547 *6 *4 *7 *3))))) +(-10 -7 (-15 -1923 ((-2 (|:| |num| |#4|) (|:| |den| (-523))) |#4| |#2| (-1011 |#4|))) (-15 -1923 ((-2 (|:| |num| |#4|) (|:| |den| (-523))) |#4| |#2|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 63)) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3984 (($ $ (-523)) 54) (($ $ (-523) (-523)) 55)) (-2133 (((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $) 60)) (-1321 (($ $) 100)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3823 (((-794) (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) (-953 (-779 (-523))) (-1087) |#1| (-383 (-523))) 215)) (-2417 (($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|)))) 34)) (-2518 (($) NIL T CONST)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2003 (((-108) $) NIL)) (-1640 (((-523) $) 58) (((-523) $ (-523)) 59)) (-2023 (((-108) $) NIL)) (-1349 (($ $ (-852)) 76)) (-3735 (($ (-1 |#1| (-523)) $) 73)) (-2620 (((-108) $) 25)) (-1933 (($ |#1| (-523)) 22) (($ $ (-1001) (-523)) NIL) (($ $ (-589 (-1001)) (-589 (-523))) NIL)) (-3612 (($ (-1 |#1| |#1|) $) 67)) (-2239 (($ (-953 (-779 (-523))) (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|)))) 11)) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-3417 (($ $) 112 (|has| |#1| (-37 (-383 (-523)))))) (-3107 (((-3 $ "failed") $ $ (-108)) 99)) (-1670 (($ $ $) 108)) (-2783 (((-1034) $) NIL)) (-1597 (((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $) 13)) (-2069 (((-953 (-779 (-523))) $) 12)) (-4097 (($ $ (-523)) 45)) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-2679 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-523)))))) (-3223 ((|#1| $ (-523)) 57) (($ $ $) NIL (|has| (-523) (-1028)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-523) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (-2299 (((-523) $) NIL)) (-1353 (($ $) 46)) (-1458 (((-794) $) NIL) (($ (-523)) 28) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515))) (($ |#1|) 27 (|has| |#1| (-158)))) (-2365 ((|#1| $ (-523)) 56)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) 37)) (-1288 ((|#1| $) NIL)) (-2211 (($ $) 180 (|has| |#1| (-37 (-383 (-523)))))) (-2145 (($ $) 156 (|has| |#1| (-37 (-383 (-523)))))) (-3440 (($ $) 177 (|has| |#1| (-37 (-383 (-523)))))) (-3194 (($ $) 153 (|has| |#1| (-37 (-383 (-523)))))) (-2406 (($ $) 182 (|has| |#1| (-37 (-383 (-523)))))) (-1400 (($ $) 159 (|has| |#1| (-37 (-383 (-523)))))) (-2486 (($ $ (-383 (-523))) 146 (|has| |#1| (-37 (-383 (-523)))))) (-1893 (($ $ |#1|) 121 (|has| |#1| (-37 (-383 (-523)))))) (-2197 (($ $) 150 (|has| |#1| (-37 (-383 (-523)))))) (-1318 (($ $) 148 (|has| |#1| (-37 (-383 (-523)))))) (-1266 (($ $) 183 (|has| |#1| (-37 (-383 (-523)))))) (-2465 (($ $) 160 (|has| |#1| (-37 (-383 (-523)))))) (-4080 (($ $) 181 (|has| |#1| (-37 (-383 (-523)))))) (-1593 (($ $) 158 (|has| |#1| (-37 (-383 (-523)))))) (-2747 (($ $) 178 (|has| |#1| (-37 (-383 (-523)))))) (-3446 (($ $) 154 (|has| |#1| (-37 (-383 (-523)))))) (-3756 (($ $) 188 (|has| |#1| (-37 (-383 (-523)))))) (-1237 (($ $) 168 (|has| |#1| (-37 (-383 (-523)))))) (-1613 (($ $) 185 (|has| |#1| (-37 (-383 (-523)))))) (-3453 (($ $) 163 (|has| |#1| (-37 (-383 (-523)))))) (-3291 (($ $) 192 (|has| |#1| (-37 (-383 (-523)))))) (-2855 (($ $) 172 (|has| |#1| (-37 (-383 (-523)))))) (-2915 (($ $) 194 (|has| |#1| (-37 (-383 (-523)))))) (-4010 (($ $) 174 (|has| |#1| (-37 (-383 (-523)))))) (-3209 (($ $) 190 (|has| |#1| (-37 (-383 (-523)))))) (-1960 (($ $) 170 (|has| |#1| (-37 (-383 (-523)))))) (-1809 (($ $) 187 (|has| |#1| (-37 (-383 (-523)))))) (-2807 (($ $) 166 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2562 ((|#1| $ (-523)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-523)))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 29 T CONST)) (-2767 (($) 38 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-523) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (-3983 (((-108) $ $) 65)) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) 84) (($ $ $) 64)) (-4075 (($ $ $) 81)) (** (($ $ (-852)) NIL) (($ $ (-710)) 103)) (* (($ (-852) $) 89) (($ (-710) $) 87) (($ (-523) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-548 |#1|) (-13 (-1146 |#1| (-523)) (-10 -8 (-15 -2239 ($ (-953 (-779 (-523))) (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))))) (-15 -2069 ((-953 (-779 (-523))) $)) (-15 -1597 ((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $)) (-15 -2417 ($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))))) (-15 -2620 ((-108) $)) (-15 -3735 ($ (-1 |#1| (-523)) $)) (-15 -3107 ((-3 $ "failed") $ $ (-108))) (-15 -1321 ($ $)) (-15 -1670 ($ $ $)) (-15 -3823 ((-794) (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) (-953 (-779 (-523))) (-1087) |#1| (-383 (-523)))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ($ $)) (-15 -1893 ($ $ |#1|)) (-15 -2486 ($ $ (-383 (-523)))) (-15 -1318 ($ $)) (-15 -2197 ($ $)) (-15 -3194 ($ $)) (-15 -3446 ($ $)) (-15 -2145 ($ $)) (-15 -1593 ($ $)) (-15 -1400 ($ $)) (-15 -2465 ($ $)) (-15 -3453 ($ $)) (-15 -2807 ($ $)) (-15 -1237 ($ $)) (-15 -1960 ($ $)) (-15 -2855 ($ $)) (-15 -4010 ($ $)) (-15 -3440 ($ $)) (-15 -2747 ($ $)) (-15 -2211 ($ $)) (-15 -4080 ($ $)) (-15 -2406 ($ $)) (-15 -1266 ($ $)) (-15 -1613 ($ $)) (-15 -1809 ($ $)) (-15 -3756 ($ $)) (-15 -3209 ($ $)) (-15 -3291 ($ $)) (-15 -2915 ($ $))) |%noBranch|))) (-973)) (T -548)) +((-2620 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-548 *3)) (-4 *3 (-973)))) (-2239 (*1 *1 *2 *3) (-12 (-5 *2 (-953 (-779 (-523)))) (-5 *3 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *4)))) (-4 *4 (-973)) (-5 *1 (-548 *4)))) (-2069 (*1 *2 *1) (-12 (-5 *2 (-953 (-779 (-523)))) (-5 *1 (-548 *3)) (-4 *3 (-973)))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *3)))) (-5 *1 (-548 *3)) (-4 *3 (-973)))) (-2417 (*1 *1 *2) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *3)))) (-4 *3 (-973)) (-5 *1 (-548 *3)))) (-3735 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-523))) (-4 *3 (-973)) (-5 *1 (-548 *3)))) (-3107 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-548 *3)) (-4 *3 (-973)))) (-1321 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-973)))) (-1670 (*1 *1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-973)))) (-3823 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *6)))) (-5 *4 (-953 (-779 (-523)))) (-5 *5 (-1087)) (-5 *7 (-383 (-523))) (-4 *6 (-973)) (-5 *2 (-794)) (-5 *1 (-548 *6)))) (-3417 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1893 (*1 *1 *1 *2) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2486 (*1 *1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-548 *3)) (-4 *3 (-37 *2)) (-4 *3 (-973)))) (-1318 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2197 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3194 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3446 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2145 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1593 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1400 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2465 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3453 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2807 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1237 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1960 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2855 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-4010 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3440 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2747 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2211 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-4080 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2406 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1266 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1613 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-1809 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3756 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3209 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-3291 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) (-2915 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(-13 (-1146 |#1| (-523)) (-10 -8 (-15 -2239 ($ (-953 (-779 (-523))) (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))))) (-15 -2069 ((-953 (-779 (-523))) $)) (-15 -1597 ((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $)) (-15 -2417 ($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))))) (-15 -2620 ((-108) $)) (-15 -3735 ($ (-1 |#1| (-523)) $)) (-15 -3107 ((-3 $ "failed") $ $ (-108))) (-15 -1321 ($ $)) (-15 -1670 ($ $ $)) (-15 -3823 ((-794) (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) (-953 (-779 (-523))) (-1087) |#1| (-383 (-523)))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ($ $)) (-15 -1893 ($ $ |#1|)) (-15 -2486 ($ $ (-383 (-523)))) (-15 -1318 ($ $)) (-15 -2197 ($ $)) (-15 -3194 ($ $)) (-15 -3446 ($ $)) (-15 -2145 ($ $)) (-15 -1593 ($ $)) (-15 -1400 ($ $)) (-15 -2465 ($ $)) (-15 -3453 ($ $)) (-15 -2807 ($ $)) (-15 -1237 ($ $)) (-15 -1960 ($ $)) (-15 -2855 ($ $)) (-15 -4010 ($ $)) (-15 -3440 ($ $)) (-15 -2747 ($ $)) (-15 -2211 ($ $)) (-15 -4080 ($ $)) (-15 -2406 ($ $)) (-15 -1266 ($ $)) (-15 -1613 ($ $)) (-15 -1809 ($ $)) (-15 -3756 ($ $)) (-15 -3209 ($ $)) (-15 -3291 ($ $)) (-15 -2915 ($ $))) |%noBranch|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2417 (($ (-1068 |#1|)) 9)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) 42)) (-2003 (((-108) $) 52)) (-1640 (((-710) $) 55) (((-710) $ (-710)) 54)) (-2023 (((-108) $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3746 (((-3 $ "failed") $ $) 44 (|has| |#1| (-515)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL (|has| |#1| (-515)))) (-1251 (((-1068 |#1|) $) 23)) (-1621 (((-710)) 51)) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 10 T CONST)) (-2767 (($) 14 T CONST)) (-3983 (((-108) $ $) 22)) (-4087 (($ $) 30) (($ $ $) 16)) (-4075 (($ $ $) 25)) (** (($ $ (-852)) NIL) (($ $ (-710)) 49)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-523)) 36))) +(((-549 |#1|) (-13 (-973) (-10 -8 (-15 -1251 ((-1068 |#1|) $)) (-15 -2417 ($ (-1068 |#1|))) (-15 -2003 ((-108) $)) (-15 -1640 ((-710) $)) (-15 -1640 ((-710) $ (-710))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-523))) (IF (|has| |#1| (-515)) (-6 (-515)) |%noBranch|))) (-973)) (T -549)) +((-1251 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) (-2417 (*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-549 *3)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) (-1640 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) (-1640 (*1 *2 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-549 *2)) (-4 *2 (-973)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-549 *2)) (-4 *2 (-973)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-549 *3)) (-4 *3 (-973))))) +(-13 (-973) (-10 -8 (-15 -1251 ((-1068 |#1|) $)) (-15 -2417 ($ (-1068 |#1|))) (-15 -2003 ((-108) $)) (-15 -1640 ((-710) $)) (-15 -1640 ((-710) $ (-710))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-523))) (IF (|has| |#1| (-515)) (-6 (-515)) |%noBranch|))) +((-3612 (((-553 |#2|) (-1 |#2| |#1|) (-553 |#1|)) 15))) +(((-550 |#1| |#2|) (-10 -7 (-15 -3612 ((-553 |#2|) (-1 |#2| |#1|) (-553 |#1|)))) (-1122) (-1122)) (T -550)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-553 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-553 *6)) (-5 *1 (-550 *5 *6))))) +(-10 -7 (-15 -3612 ((-553 |#2|) (-1 |#2| |#1|) (-553 |#1|)))) +((-3612 (((-1068 |#3|) (-1 |#3| |#1| |#2|) (-553 |#1|) (-1068 |#2|)) 20) (((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-553 |#2|)) 19) (((-553 |#3|) (-1 |#3| |#1| |#2|) (-553 |#1|) (-553 |#2|)) 18))) +(((-551 |#1| |#2| |#3|) (-10 -7 (-15 -3612 ((-553 |#3|) (-1 |#3| |#1| |#2|) (-553 |#1|) (-553 |#2|))) (-15 -3612 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-553 |#2|))) (-15 -3612 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-553 |#1|) (-1068 |#2|)))) (-1122) (-1122) (-1122)) (T -551)) +((-3612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-553 *6)) (-5 *5 (-1068 *7)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-4 *8 (-1122)) (-5 *2 (-1068 *8)) (-5 *1 (-551 *6 *7 *8)))) (-3612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-553 *7)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-4 *8 (-1122)) (-5 *2 (-1068 *8)) (-5 *1 (-551 *6 *7 *8)))) (-3612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-553 *6)) (-5 *5 (-553 *7)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-4 *8 (-1122)) (-5 *2 (-553 *8)) (-5 *1 (-551 *6 *7 *8))))) +(-10 -7 (-15 -3612 ((-553 |#3|) (-1 |#3| |#1| |#2|) (-553 |#1|) (-553 |#2|))) (-15 -3612 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-553 |#2|))) (-15 -3612 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-553 |#1|) (-1068 |#2|)))) +((-2214 ((|#3| |#3| (-589 (-562 |#3|)) (-589 (-1087))) 55)) (-1841 (((-155 |#2|) |#3|) 116)) (-2587 ((|#3| (-155 |#2|)) 43)) (-3032 ((|#2| |#3|) 19)) (-3171 ((|#3| |#2|) 32))) +(((-552 |#1| |#2| |#3|) (-10 -7 (-15 -2587 (|#3| (-155 |#2|))) (-15 -3032 (|#2| |#3|)) (-15 -3171 (|#3| |#2|)) (-15 -1841 ((-155 |#2|) |#3|)) (-15 -2214 (|#3| |#3| (-589 (-562 |#3|)) (-589 (-1087))))) (-13 (-515) (-786)) (-13 (-406 |#1|) (-930) (-1108)) (-13 (-406 (-155 |#1|)) (-930) (-1108))) (T -552)) +((-2214 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-589 (-562 *2))) (-5 *4 (-589 (-1087))) (-4 *2 (-13 (-406 (-155 *5)) (-930) (-1108))) (-4 *5 (-13 (-515) (-786))) (-5 *1 (-552 *5 *6 *2)) (-4 *6 (-13 (-406 *5) (-930) (-1108))))) (-1841 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786))) (-5 *2 (-155 *5)) (-5 *1 (-552 *4 *5 *3)) (-4 *5 (-13 (-406 *4) (-930) (-1108))) (-4 *3 (-13 (-406 (-155 *4)) (-930) (-1108))))) (-3171 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786))) (-4 *2 (-13 (-406 (-155 *4)) (-930) (-1108))) (-5 *1 (-552 *4 *3 *2)) (-4 *3 (-13 (-406 *4) (-930) (-1108))))) (-3032 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-786))) (-4 *2 (-13 (-406 *4) (-930) (-1108))) (-5 *1 (-552 *4 *2 *3)) (-4 *3 (-13 (-406 (-155 *4)) (-930) (-1108))))) (-2587 (*1 *2 *3) (-12 (-5 *3 (-155 *5)) (-4 *5 (-13 (-406 *4) (-930) (-1108))) (-4 *4 (-13 (-515) (-786))) (-4 *2 (-13 (-406 (-155 *4)) (-930) (-1108))) (-5 *1 (-552 *4 *5 *2))))) +(-10 -7 (-15 -2587 (|#3| (-155 |#2|))) (-15 -3032 (|#2| |#3|)) (-15 -3171 (|#3| |#2|)) (-15 -1841 ((-155 |#2|) |#3|)) (-15 -2214 (|#3| |#3| (-589 (-562 |#3|)) (-589 (-1087))))) +((-3724 (($ (-1 (-108) |#1|) $) 16)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-3655 (($ (-1 |#1| |#1|) |#1|) 9)) (-3699 (($ (-1 (-108) |#1|) $) 12)) (-3712 (($ (-1 (-108) |#1|) $) 14)) (-1472 (((-1068 |#1|) $) 17)) (-1458 (((-794) $) NIL))) +(((-553 |#1|) (-13 (-563 (-794)) (-10 -8 (-15 -3612 ($ (-1 |#1| |#1|) $)) (-15 -3699 ($ (-1 (-108) |#1|) $)) (-15 -3712 ($ (-1 (-108) |#1|) $)) (-15 -3724 ($ (-1 (-108) |#1|) $)) (-15 -3655 ($ (-1 |#1| |#1|) |#1|)) (-15 -1472 ((-1068 |#1|) $)))) (-1122)) (T -553)) +((-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-553 *3)))) (-3699 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1122)) (-5 *1 (-553 *3)))) (-3712 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1122)) (-5 *1 (-553 *3)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1122)) (-5 *1 (-553 *3)))) (-3655 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-553 *3)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-553 *3)) (-4 *3 (-1122))))) +(-13 (-563 (-794)) (-10 -8 (-15 -3612 ($ (-1 |#1| |#1|) $)) (-15 -3699 ($ (-1 (-108) |#1|) $)) (-15 -3712 ($ (-1 (-108) |#1|) $)) (-15 -3724 ($ (-1 (-108) |#1|) $)) (-15 -3655 ($ (-1 |#1| |#1|) |#1|)) (-15 -1472 ((-1068 |#1|) $)))) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2821 (($ (-710)) NIL (|has| |#1| (-23)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) NIL)) (-1479 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1777 (((-629 |#1|) $ $) NIL (|has| |#1| (-973)))) (-3052 (($ (-710) |#1|) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3798 ((|#1| $) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-973))))) (-2866 (((-108) $ (-710)) NIL)) (-2996 ((|#1| $) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-973))))) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1738 ((|#1| $) NIL (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-3269 ((|#1| $ $) NIL (|has| |#1| (-973)))) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2240 (($ $ $) NIL (|has| |#1| (-973)))) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) NIL)) (-2326 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4087 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4075 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-523) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-666))) (($ $ |#1|) NIL (|has| |#1| (-666)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-554 |#1| |#2|) (-1166 |#1|) (-1122) (-523)) (T -554)) +NIL +(-1166 |#1|) +((-4207 (((-1173) $ |#2| |#2|) 36)) (-4084 ((|#2| $) 23)) (-3056 ((|#2| $) 21)) (-2852 (($ (-1 |#3| |#3|) $) 32)) (-3612 (($ (-1 |#3| |#3|) $) 30)) (-1738 ((|#3| $) 26)) (-4203 (($ $ |#3|) 33)) (-1370 (((-108) |#3| $) 17)) (-1264 (((-589 |#3|) $) 15)) (-3223 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-555 |#1| |#2| |#3|) (-10 -8 (-15 -4207 ((-1173) |#1| |#2| |#2|)) (-15 -4203 (|#1| |#1| |#3|)) (-15 -1738 (|#3| |#1|)) (-15 -4084 (|#2| |#1|)) (-15 -3056 (|#2| |#1|)) (-15 -1370 ((-108) |#3| |#1|)) (-15 -1264 ((-589 |#3|) |#1|)) (-15 -3223 (|#3| |#1| |#2|)) (-15 -3223 (|#3| |#1| |#2| |#3|)) (-15 -2852 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3612 (|#1| (-1 |#3| |#3|) |#1|))) (-556 |#2| |#3|) (-1016) (-1122)) (T -555)) +NIL +(-10 -8 (-15 -4207 ((-1173) |#1| |#2| |#2|)) (-15 -4203 (|#1| |#1| |#3|)) (-15 -1738 (|#3| |#1|)) (-15 -4084 (|#2| |#1|)) (-15 -3056 (|#2| |#1|)) (-15 -1370 ((-108) |#3| |#1|)) (-15 -1264 ((-589 |#3|) |#1|)) (-15 -3223 (|#3| |#1| |#2|)) (-15 -3223 (|#3| |#1| |#2| |#3|)) (-15 -2852 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3612 (|#1| (-1 |#3| |#3|) |#1|))) +((-3924 (((-108) $ $) 19 (|has| |#2| (-1016)))) (-4207 (((-1173) $ |#1| |#1|) 40 (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) 8)) (-1641 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4245)))) (-2518 (($) 7 T CONST)) (-2863 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) 51)) (-1666 (((-589 |#2|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-4084 ((|#1| $) 43 (|has| |#1| (-786)))) (-2136 (((-589 |#2|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4244))))) (-3056 ((|#1| $) 44 (|has| |#1| (-786)))) (-2852 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#2| |#2|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#2| (-1016)))) (-2412 (((-589 |#1|) $) 46)) (-4135 (((-108) |#1| $) 47)) (-2783 (((-1034) $) 21 (|has| |#2| (-1016)))) (-1738 ((|#2| $) 42 (|has| |#1| (-786)))) (-4203 (($ $ |#2|) 41 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#2|))) 26 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) 25 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) 23 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2792 (((-710) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4244))) (((-710) |#2| $) 28 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-794) $) 18 (|has| |#2| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#2| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-556 |#1| |#2|) (-129) (-1016) (-1122)) (T -556)) +((-1264 (*1 *2 *1) (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1122)) (-5 *2 (-589 *4)))) (-4135 (*1 *2 *3 *1) (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1122)) (-5 *2 (-108)))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1122)) (-5 *2 (-589 *3)))) (-1370 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4244)) (-4 *1 (-556 *4 *3)) (-4 *4 (-1016)) (-4 *3 (-1122)) (-4 *3 (-1016)) (-5 *2 (-108)))) (-3056 (*1 *2 *1) (-12 (-4 *1 (-556 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1016)) (-4 *2 (-786)))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-556 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1016)) (-4 *2 (-786)))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-556 *3 *2)) (-4 *3 (-1016)) (-4 *3 (-786)) (-4 *2 (-1122)))) (-4203 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-556 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1122)))) (-4207 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1122)) (-5 *2 (-1173))))) +(-13 (-462 |t#2|) (-265 |t#1| |t#2|) (-10 -8 (-15 -1264 ((-589 |t#2|) $)) (-15 -4135 ((-108) |t#1| $)) (-15 -2412 ((-589 |t#1|) $)) (IF (|has| |t#2| (-1016)) (IF (|has| $ (-6 -4244)) (-15 -1370 ((-108) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-786)) (PROGN (-15 -3056 (|t#1| $)) (-15 -4084 (|t#1| $)) (-15 -1738 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4245)) (PROGN (-15 -4203 ($ $ |t#2|)) (-15 -4207 ((-1173) $ |t#1| |t#1|))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#2| (-1016)) ((-563 (-794)) -3262 (|has| |#2| (-1016)) (|has| |#2| (-563 (-794)))) ((-263 |#1| |#2|) . T) ((-265 |#1| |#2|) . T) ((-286 |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-462 |#2|) . T) ((-484 |#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-1016) |has| |#2| (-1016)) ((-1122) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3819 (((-3 $ "failed")) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3115 (((-1168 (-629 |#1|))) NIL (|has| |#2| (-393 |#1|))) (((-1168 (-629 |#1|)) (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-2738 (((-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-2518 (($) NIL T CONST)) (-3486 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3545 (((-3 $ "failed")) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1431 (((-629 |#1|)) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-3744 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-2788 (((-629 |#1|) $) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) $ (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-2532 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3138 (((-1083 (-883 |#1|))) NIL (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-339))))) (-1970 (($ $ (-852)) NIL)) (-4212 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-1726 (((-1083 |#1|) $) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-2284 ((|#1|) NIL (|has| |#2| (-393 |#1|))) ((|#1| (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-1778 (((-1083 |#1|) $) NIL (|has| |#2| (-343 |#1|)))) (-2117 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3409 (($ (-1168 |#1|)) NIL (|has| |#2| (-393 |#1|))) (($ (-1168 |#1|) (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-2121 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1319 (((-852)) NIL (|has| |#2| (-343 |#1|)))) (-1487 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3650 (($ $ (-852)) NIL)) (-1649 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2956 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2491 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2362 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1386 (((-3 $ "failed")) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1504 (((-629 |#1|)) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-3237 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-2139 (((-629 |#1|) $) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) $ (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-1579 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-2525 (((-1083 (-883 |#1|))) NIL (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-339))))) (-1448 (($ $ (-852)) NIL)) (-4050 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-2553 (((-1083 |#1|) $) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3002 ((|#1|) NIL (|has| |#2| (-393 |#1|))) ((|#1| (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-2565 (((-1083 |#1|) $) NIL (|has| |#2| (-343 |#1|)))) (-1216 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3779 (((-1070) $) NIL)) (-2345 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-1510 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2871 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2783 (((-1034) $) NIL)) (-2751 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3223 ((|#1| $ (-523)) NIL (|has| |#2| (-393 |#1|)))) (-2966 (((-629 |#1|) (-1168 $)) NIL (|has| |#2| (-393 |#1|))) (((-1168 |#1|) $) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) (-1168 $) (-1168 $)) NIL (|has| |#2| (-343 |#1|))) (((-1168 |#1|) $ (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-3663 (($ (-1168 |#1|)) NIL (|has| |#2| (-393 |#1|))) (((-1168 |#1|) $) NIL (|has| |#2| (-393 |#1|)))) (-3863 (((-589 (-883 |#1|))) NIL (|has| |#2| (-393 |#1|))) (((-589 (-883 |#1|)) (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-1714 (($ $ $) NIL)) (-1673 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-1458 (((-794) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-4041 (((-1168 $)) NIL (|has| |#2| (-393 |#1|)))) (-3751 (((-589 (-1168 |#1|))) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-2022 (($ $ $ $) NIL)) (-3120 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-1677 (($ (-629 |#1|) $) NIL (|has| |#2| (-393 |#1|)))) (-1995 (($ $ $) NIL)) (-1462 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3366 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2071 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2756 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) 24)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-557 |#1| |#2|) (-13 (-684 |#1|) (-563 |#2|) (-10 -8 (-15 -1458 ($ |#2|)) (IF (|has| |#2| (-393 |#1|)) (-6 (-393 |#1|)) |%noBranch|) (IF (|has| |#2| (-343 |#1|)) (-6 (-343 |#1|)) |%noBranch|))) (-158) (-684 |#1|)) (T -557)) +((-1458 (*1 *1 *2) (-12 (-4 *3 (-158)) (-5 *1 (-557 *3 *2)) (-4 *2 (-684 *3))))) +(-13 (-684 |#1|) (-563 |#2|) (-10 -8 (-15 -1458 ($ |#2|)) (IF (|has| |#2| (-393 |#1|)) (-6 (-393 |#1|)) |%noBranch|) (IF (|has| |#2| (-343 |#1|)) (-6 (-343 |#1|)) |%noBranch|))) +((-3924 (((-108) $ $) NIL)) (-3715 (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) 32)) (-3043 (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL) (($) NIL)) (-4207 (((-1173) $ (-1070) (-1070)) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-1070) |#1|) 42)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-2243 (((-3 |#1| "failed") (-1070) $) 45)) (-2518 (($) NIL T CONST)) (-2647 (($ $ (-1070)) 24)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016))))) (-2249 (((-3 |#1| "failed") (-1070) $) 46) (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244))) (($ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL (|has| $ (-6 -4244)))) (-2557 (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244))) (($ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016))))) (-2437 (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016))))) (-3114 (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) 31)) (-2863 ((|#1| $ (-1070) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-1070)) NIL)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244))) (((-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-2918 (($ $) 47)) (-2625 (($ (-364)) 22) (($ (-364) (-1070)) 21)) (-4038 (((-364) $) 33)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-1070) $) NIL (|has| (-1070) (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244))) (((-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (((-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016))))) (-3056 (((-1070) $) NIL (|has| (-1070) (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245))) (($ (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-1330 (((-589 (-1070)) $) 38)) (-2777 (((-108) (-1070) $) NIL)) (-1998 (((-1070) $) 34)) (-1934 (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL)) (-3450 (($ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL)) (-2412 (((-589 (-1070)) $) NIL)) (-4135 (((-108) (-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 ((|#1| $) NIL (|has| (-1070) (-786)))) (-2114 (((-3 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) "failed") (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL)) (-4203 (($ $ |#1|) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (($ $ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (($ $ (-589 (-271 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) 36)) (-3223 ((|#1| $ (-1070) |#1|) NIL) ((|#1| $ (-1070)) 41)) (-3433 (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL) (($) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (((-710) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (((-710) (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL)) (-1458 (((-794) $) 20)) (-1685 (($ $) 25)) (-2401 (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 19)) (-2676 (((-710) $) 40 (|has| $ (-6 -4244))))) +(((-558 |#1|) (-13 (-340 (-364) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) (-1099 (-1070) |#1|) (-10 -8 (-6 -4244) (-15 -2918 ($ $)))) (-1016)) (T -558)) +((-2918 (*1 *1 *1) (-12 (-5 *1 (-558 *2)) (-4 *2 (-1016))))) +(-13 (-340 (-364) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) (-1099 (-1070) |#1|) (-10 -8 (-6 -4244) (-15 -2918 ($ $)))) +((-1973 (((-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) $) 15)) (-1330 (((-589 |#2|) $) 19)) (-2777 (((-108) |#2| $) 12))) +(((-559 |#1| |#2| |#3|) (-10 -8 (-15 -1330 ((-589 |#2|) |#1|)) (-15 -2777 ((-108) |#2| |#1|)) (-15 -1973 ((-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|))) (-560 |#2| |#3|) (-1016) (-1016)) (T -559)) +NIL +(-10 -8 (-15 -1330 ((-589 |#2|) |#1|)) (-15 -2777 ((-108) |#2| |#1|)) (-15 -1973 ((-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|))) +((-3924 (((-108) $ $) 19 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-3079 (((-108) $ (-710)) 8)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 45 (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 55 (|has| $ (-6 -4244)))) (-2243 (((-3 |#2| "failed") |#1| $) 61)) (-2518 (($) 7 T CONST)) (-1773 (($ $) 58 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244))))) (-2249 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 47 (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 46 (|has| $ (-6 -4244))) (((-3 |#2| "failed") |#1| $) 62)) (-2557 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 57 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 54 (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 56 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 53 (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 52 (|has| $ (-6 -4244)))) (-1666 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 27 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-1330 (((-589 |#1|) $) 63)) (-2777 (((-108) |#1| $) 64)) (-1934 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 39)) (-3450 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 40)) (-2783 (((-1034) $) 21 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-2114 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 51)) (-3761 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 41)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) 26 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 25 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 24 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 23 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3433 (($) 49) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 48)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 31 (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 59 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 50)) (-1458 (((-794) $) 18 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794))))) (-2401 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 42)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-560 |#1| |#2|) (-129) (-1016) (-1016)) (T -560)) +((-2777 (*1 *2 *3 *1) (-12 (-4 *1 (-560 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-5 *2 (-108)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-560 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-5 *2 (-589 *3)))) (-2249 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-560 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016)))) (-2243 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-560 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016))))) +(-13 (-207 (-2 (|:| -1853 |t#1|) (|:| -2433 |t#2|))) (-10 -8 (-15 -2777 ((-108) |t#1| $)) (-15 -1330 ((-589 |t#1|) $)) (-15 -2249 ((-3 |t#2| "failed") |t#1| $)) (-15 -2243 ((-3 |t#2| "failed") |t#1| $)))) +(((-33) . T) ((-102 #0=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T) ((-97) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) ((-563 (-794)) -3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794)))) ((-140 #0#) . T) ((-564 (-499)) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))) ((-207 #0#) . T) ((-213 #0#) . T) ((-286 #0#) -12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))) ((-462 #0#) . T) ((-484 #0# #0#) -12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))) ((-1016) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) ((-1122) . T)) +((-1244 (((-562 |#2|) |#1|) 15)) (-2808 (((-3 |#1| "failed") (-562 |#2|)) 19))) +(((-561 |#1| |#2|) (-10 -7 (-15 -1244 ((-562 |#2|) |#1|)) (-15 -2808 ((-3 |#1| "failed") (-562 |#2|)))) (-786) (-786)) (T -561)) +((-2808 (*1 *2 *3) (|partial| -12 (-5 *3 (-562 *4)) (-4 *4 (-786)) (-4 *2 (-786)) (-5 *1 (-561 *2 *4)))) (-1244 (*1 *2 *3) (-12 (-5 *2 (-562 *4)) (-5 *1 (-561 *3 *4)) (-4 *3 (-786)) (-4 *4 (-786))))) +(-10 -7 (-15 -1244 ((-562 |#2|) |#1|)) (-15 -2808 ((-3 |#1| "failed") (-562 |#2|)))) +((-3924 (((-108) $ $) NIL)) (-2154 (((-3 (-1087) "failed") $) 36)) (-2118 (((-1173) $ (-710)) 26)) (-1479 (((-710) $) 25)) (-1403 (((-110) $) 12)) (-4038 (((-1087) $) 20)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2868 (($ (-110) (-589 |#1|) (-710)) 30) (($ (-1087)) 31)) (-3259 (((-108) $ (-110)) 18) (((-108) $ (-1087)) 16)) (-2510 (((-710) $) 22)) (-2783 (((-1034) $) NIL)) (-3663 (((-823 (-523)) $) 69 (|has| |#1| (-564 (-823 (-523))))) (((-823 (-355)) $) 75 (|has| |#1| (-564 (-823 (-355))))) (((-499) $) 62 (|has| |#1| (-564 (-499))))) (-1458 (((-794) $) 51)) (-2135 (((-589 |#1|) $) 24)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 39)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 40))) +(((-562 |#1|) (-13 (-125) (-815 |#1|) (-10 -8 (-15 -4038 ((-1087) $)) (-15 -1403 ((-110) $)) (-15 -2135 ((-589 |#1|) $)) (-15 -2510 ((-710) $)) (-15 -2868 ($ (-110) (-589 |#1|) (-710))) (-15 -2868 ($ (-1087))) (-15 -2154 ((-3 (-1087) "failed") $)) (-15 -3259 ((-108) $ (-110))) (-15 -3259 ((-108) $ (-1087))) (IF (|has| |#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|))) (-786)) (T -562)) +((-4038 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) (-2135 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) (-2868 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-110)) (-5 *3 (-589 *5)) (-5 *4 (-710)) (-4 *5 (-786)) (-5 *1 (-562 *5)))) (-2868 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) (-2154 (*1 *2 *1) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) (-3259 (*1 *2 *1 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-562 *4)) (-4 *4 (-786)))) (-3259 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-108)) (-5 *1 (-562 *4)) (-4 *4 (-786))))) +(-13 (-125) (-815 |#1|) (-10 -8 (-15 -4038 ((-1087) $)) (-15 -1403 ((-110) $)) (-15 -2135 ((-589 |#1|) $)) (-15 -2510 ((-710) $)) (-15 -2868 ($ (-110) (-589 |#1|) (-710))) (-15 -2868 ($ (-1087))) (-15 -2154 ((-3 (-1087) "failed") $)) (-15 -3259 ((-108) $ (-110))) (-15 -3259 ((-108) $ (-1087))) (IF (|has| |#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|))) +((-1458 ((|#1| $) 6))) +(((-563 |#1|) (-129) (-1122)) (T -563)) +((-1458 (*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-1122))))) +(-13 (-10 -8 (-15 -1458 (|t#1| $)))) +((-3663 ((|#1| $) 6))) +(((-564 |#1|) (-129) (-1122)) (T -564)) +((-3663 (*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-1122))))) +(-13 (-10 -8 (-15 -3663 (|t#1| $)))) +((-1884 (((-3 (-1083 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|) (-1 (-394 |#2|) |#2|)) 13) (((-3 (-1083 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|)) 14))) +(((-565 |#1| |#2|) (-10 -7 (-15 -1884 ((-3 (-1083 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|))) (-15 -1884 ((-3 (-1083 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|) (-1 (-394 |#2|) |#2|)))) (-13 (-136) (-27) (-964 (-523)) (-964 (-383 (-523)))) (-1144 |#1|)) (T -565)) +((-1884 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-136) (-27) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-1083 (-383 *6))) (-5 *1 (-565 *5 *6)) (-5 *3 (-383 *6)))) (-1884 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-136) (-27) (-964 (-523)) (-964 (-383 (-523))))) (-4 *5 (-1144 *4)) (-5 *2 (-1083 (-383 *5))) (-5 *1 (-565 *4 *5)) (-5 *3 (-383 *5))))) +(-10 -7 (-15 -1884 ((-3 (-1083 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|))) (-15 -1884 ((-3 (-1083 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|) (-1 (-394 |#2|) |#2|)))) +((-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) 10))) +(((-566 |#1| |#2|) (-10 -8 (-15 -1458 (|#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) (-567 |#2|) (-973)) (T -566)) +NIL +(-10 -8 (-15 -1458 (|#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 36)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ |#1| $) 37))) +(((-567 |#1|) (-129) (-973)) (T -567)) +((-1458 (*1 *1 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-973))))) +(-13 (-973) (-591 |t#1|) (-10 -8 (-15 -1458 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-666) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3671 (((-523) $) NIL (|has| |#1| (-784)))) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL)) (-2604 (((-108) $) NIL (|has| |#1| (-784)))) (-2023 (((-108) $) NIL)) (-2785 ((|#1| $) 13)) (-4114 (((-108) $) NIL (|has| |#1| (-784)))) (-2454 (($ $ $) NIL (|has| |#1| (-784)))) (-2062 (($ $ $) NIL (|has| |#1| (-784)))) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2797 ((|#3| $) 15)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) NIL)) (-1621 (((-710)) 20)) (-2619 (($ $) NIL (|has| |#1| (-784)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) 12 T CONST)) (-4043 (((-108) $ $) NIL (|has| |#1| (-784)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#1| (-784)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-784)))) (-4098 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-568 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|) (-15 -4098 ($ $ |#3|)) (-15 -4098 ($ |#1| |#3|)) (-15 -2785 (|#1| $)) (-15 -2797 (|#3| $)))) (-37 |#2|) (-158) (|SubsetCategory| (-666) |#2|)) (T -568)) +((-4098 (*1 *1 *1 *2) (-12 (-4 *4 (-158)) (-5 *1 (-568 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-666) *4)))) (-4098 (*1 *1 *2 *3) (-12 (-4 *4 (-158)) (-5 *1 (-568 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-666) *4)))) (-2785 (*1 *2 *1) (-12 (-4 *3 (-158)) (-4 *2 (-37 *3)) (-5 *1 (-568 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-666) *3)))) (-2797 (*1 *2 *1) (-12 (-4 *4 (-158)) (-4 *2 (|SubsetCategory| (-666) *4)) (-5 *1 (-568 *3 *4 *2)) (-4 *3 (-37 *4))))) +(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|) (-15 -4098 ($ $ |#3|)) (-15 -4098 ($ |#1| |#3|)) (-15 -2785 (|#1| $)) (-15 -2797 (|#3| $)))) +((-3010 ((|#2| |#2| (-1087) (-1087)) 18))) +(((-569 |#1| |#2|) (-10 -7 (-15 -3010 (|#2| |#2| (-1087) (-1087)))) (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-1108) (-889) (-29 |#1|))) (T -569)) +((-3010 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-1108) (-889) (-29 *4)))))) +(-10 -7 (-15 -3010 (|#2| |#2| (-1087) (-1087)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 52)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2167 ((|#1| $) 49)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-3444 (((-2 (|:| -3062 $) (|:| -2591 (-383 |#2|))) (-383 |#2|)) 97 (|has| |#1| (-339)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 82)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) 24)) (-2121 (((-3 $ "failed") $) 76)) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-1640 (((-523) $) 19)) (-2023 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2620 (((-108) $) 36)) (-1933 (($ |#1| (-523)) 21)) (-3786 ((|#1| $) 51)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) 87 (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-3746 (((-3 $ "failed") $ $) 80)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-1972 (((-710) $) 99 (|has| |#1| (-339)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 98 (|has| |#1| (-339)))) (-3523 (($ $ (-1 |#2| |#2|)) 67) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $) NIL (|has| |#2| (-211)))) (-2299 (((-523) $) 34)) (-3663 (((-383 |#2|) $) 42)) (-1458 (((-794) $) 63) (($ (-523)) 32) (($ $) NIL) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) 31) (($ |#2|) 22)) (-2365 ((|#1| $ (-523)) 64)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 9 T CONST)) (-2767 (($) 12 T CONST)) (-2862 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $) NIL (|has| |#2| (-211)))) (-3983 (((-108) $ $) 17)) (-4087 (($ $) 46) (($ $ $) NIL)) (-4075 (($ $ $) 77)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 26) (($ $ $) 44))) +(((-570 |#1| |#2|) (-13 (-209 |#2|) (-515) (-564 (-383 |#2|)) (-387 |#1|) (-964 |#2|) (-10 -8 (-15 -2620 ((-108) $)) (-15 -2299 ((-523) $)) (-15 -1640 ((-523) $)) (-15 -3810 ($ $)) (-15 -3786 (|#1| $)) (-15 -2167 (|#1| $)) (-15 -2365 (|#1| $ (-523))) (-15 -1933 ($ |#1| (-523))) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-6 (-284)) (-15 -3444 ((-2 (|:| -3062 $) (|:| -2591 (-383 |#2|))) (-383 |#2|)))) |%noBranch|))) (-515) (-1144 |#1|)) (T -570)) +((-2620 (*1 *2 *1) (-12 (-4 *3 (-515)) (-5 *2 (-108)) (-5 *1 (-570 *3 *4)) (-4 *4 (-1144 *3)))) (-2299 (*1 *2 *1) (-12 (-4 *3 (-515)) (-5 *2 (-523)) (-5 *1 (-570 *3 *4)) (-4 *4 (-1144 *3)))) (-1640 (*1 *2 *1) (-12 (-4 *3 (-515)) (-5 *2 (-523)) (-5 *1 (-570 *3 *4)) (-4 *4 (-1144 *3)))) (-3810 (*1 *1 *1) (-12 (-4 *2 (-515)) (-5 *1 (-570 *2 *3)) (-4 *3 (-1144 *2)))) (-3786 (*1 *2 *1) (-12 (-4 *2 (-515)) (-5 *1 (-570 *2 *3)) (-4 *3 (-1144 *2)))) (-2167 (*1 *2 *1) (-12 (-4 *2 (-515)) (-5 *1 (-570 *2 *3)) (-4 *3 (-1144 *2)))) (-2365 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *2 (-515)) (-5 *1 (-570 *2 *4)) (-4 *4 (-1144 *2)))) (-1933 (*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-4 *2 (-515)) (-5 *1 (-570 *2 *4)) (-4 *4 (-1144 *2)))) (-3444 (*1 *2 *3) (-12 (-4 *4 (-339)) (-4 *4 (-515)) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| -3062 (-570 *4 *5)) (|:| -2591 (-383 *5)))) (-5 *1 (-570 *4 *5)) (-5 *3 (-383 *5))))) +(-13 (-209 |#2|) (-515) (-564 (-383 |#2|)) (-387 |#1|) (-964 |#2|) (-10 -8 (-15 -2620 ((-108) $)) (-15 -2299 ((-523) $)) (-15 -1640 ((-523) $)) (-15 -3810 ($ $)) (-15 -3786 (|#1| $)) (-15 -2167 (|#1| $)) (-15 -2365 (|#1| $ (-523))) (-15 -1933 ($ |#1| (-523))) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-6 (-284)) (-15 -3444 ((-2 (|:| -3062 $) (|:| -2591 (-383 |#2|))) (-383 |#2|)))) |%noBranch|))) +((-3846 (((-589 |#6|) (-589 |#4|) (-108)) 47)) (-1705 ((|#6| |#6|) 40))) +(((-571 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1705 (|#6| |#6|)) (-15 -3846 ((-589 |#6|) (-589 |#4|) (-108)))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-992 |#1| |#2| |#3| |#4|) (-1025 |#1| |#2| |#3| |#4|)) (T -571)) +((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 *10)) (-5 *1 (-571 *5 *6 *7 *8 *9 *10)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *10 (-1025 *5 *6 *7 *8)))) (-1705 (*1 *2 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *1 (-571 *3 *4 *5 *6 *7 *2)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *2 (-1025 *3 *4 *5 *6))))) +(-10 -7 (-15 -1705 (|#6| |#6|)) (-15 -3846 ((-589 |#6|) (-589 |#4|) (-108)))) +((-1555 (((-108) |#3| (-710) (-589 |#3|)) 23)) (-2260 (((-3 (-2 (|:| |polfac| (-589 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-589 (-1083 |#3|)))) "failed") |#3| (-589 (-1083 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1979 (-589 (-2 (|:| |irr| |#4|) (|:| -1227 (-523)))))) (-589 |#3|) (-589 |#1|) (-589 |#3|)) 52))) +(((-572 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1555 ((-108) |#3| (-710) (-589 |#3|))) (-15 -2260 ((-3 (-2 (|:| |polfac| (-589 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-589 (-1083 |#3|)))) "failed") |#3| (-589 (-1083 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1979 (-589 (-2 (|:| |irr| |#4|) (|:| -1227 (-523)))))) (-589 |#3|) (-589 |#1|) (-589 |#3|)))) (-786) (-732) (-284) (-880 |#3| |#2| |#1|)) (T -572)) +((-2260 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1979 (-589 (-2 (|:| |irr| *10) (|:| -1227 (-523))))))) (-5 *6 (-589 *3)) (-5 *7 (-589 *8)) (-4 *8 (-786)) (-4 *3 (-284)) (-4 *10 (-880 *3 *9 *8)) (-4 *9 (-732)) (-5 *2 (-2 (|:| |polfac| (-589 *10)) (|:| |correct| *3) (|:| |corrfact| (-589 (-1083 *3))))) (-5 *1 (-572 *8 *9 *3 *10)) (-5 *4 (-589 (-1083 *3))))) (-1555 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-710)) (-5 *5 (-589 *3)) (-4 *3 (-284)) (-4 *6 (-786)) (-4 *7 (-732)) (-5 *2 (-108)) (-5 *1 (-572 *6 *7 *3 *8)) (-4 *8 (-880 *3 *7 *6))))) +(-10 -7 (-15 -1555 ((-108) |#3| (-710) (-589 |#3|))) (-15 -2260 ((-3 (-2 (|:| |polfac| (-589 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-589 (-1083 |#3|)))) "failed") |#3| (-589 (-1083 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1979 (-589 (-2 (|:| |irr| |#4|) (|:| -1227 (-523)))))) (-589 |#3|) (-589 |#1|) (-589 |#3|)))) +((-3924 (((-108) $ $) NIL)) (-2061 (((-589 |#1|) $) NIL)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-1419 (($ $) 67)) (-2384 (((-607 |#1| |#2|) $) 52)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 70)) (-3752 (((-589 (-271 |#2|)) $ $) 33)) (-2783 (((-1034) $) NIL)) (-1811 (($ (-607 |#1| |#2|)) 48)) (-3208 (($ $ $) NIL)) (-1714 (($ $ $) NIL)) (-1458 (((-794) $) 58) (((-1181 |#1| |#2|) $) NIL) (((-1186 |#1| |#2|) $) 66)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2767 (($) 53 T CONST)) (-2618 (((-589 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $) 31)) (-2643 (((-589 (-607 |#1| |#2|)) (-589 |#1|)) 65)) (-1643 (((-589 (-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|))) $) 36)) (-3983 (((-108) $ $) 54)) (-4098 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ $ $) 44))) +(((-573 |#1| |#2| |#3|) (-13 (-448) (-10 -8 (-15 -1811 ($ (-607 |#1| |#2|))) (-15 -2384 ((-607 |#1| |#2|) $)) (-15 -1643 ((-589 (-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|))) $)) (-15 -1458 ((-1181 |#1| |#2|) $)) (-15 -1458 ((-1186 |#1| |#2|) $)) (-15 -1419 ($ $)) (-15 -2061 ((-589 |#1|) $)) (-15 -2643 ((-589 (-607 |#1| |#2|)) (-589 |#1|))) (-15 -2618 ((-589 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $)) (-15 -3752 ((-589 (-271 |#2|)) $ $)))) (-786) (-13 (-158) (-657 (-383 (-523)))) (-852)) (T -573)) +((-1811 (*1 *1 *2) (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-5 *1 (-573 *3 *4 *5)) (-14 *5 (-852)))) (-2384 (*1 *2 *1) (-12 (-5 *2 (-607 *3 *4)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) (-1643 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |k| (-824 *3)) (|:| |c| *4)))) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1181 *3 *4)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1186 *3 *4)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) (-1419 (*1 *1 *1) (-12 (-5 *1 (-573 *2 *3 *4)) (-4 *2 (-786)) (-4 *3 (-13 (-158) (-657 (-383 (-523))))) (-14 *4 (-852)))) (-2061 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) (-2643 (*1 *2 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-786)) (-5 *2 (-589 (-607 *4 *5))) (-5 *1 (-573 *4 *5 *6)) (-4 *5 (-13 (-158) (-657 (-383 (-523))))) (-14 *6 (-852)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |k| (-614 *3)) (|:| |c| *4)))) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) (-3752 (*1 *2 *1 *1) (-12 (-5 *2 (-589 (-271 *4))) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852))))) +(-13 (-448) (-10 -8 (-15 -1811 ($ (-607 |#1| |#2|))) (-15 -2384 ((-607 |#1| |#2|) $)) (-15 -1643 ((-589 (-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|))) $)) (-15 -1458 ((-1181 |#1| |#2|) $)) (-15 -1458 ((-1186 |#1| |#2|) $)) (-15 -1419 ($ $)) (-15 -2061 ((-589 |#1|) $)) (-15 -2643 ((-589 (-607 |#1| |#2|)) (-589 |#1|))) (-15 -2618 ((-589 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $)) (-15 -3752 ((-589 (-271 |#2|)) $ $)))) +((-3846 (((-589 (-1058 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|)))) (-589 (-719 |#1| (-796 |#2|))) (-108)) 71) (((-589 (-970 |#1| |#2|)) (-589 (-719 |#1| (-796 |#2|))) (-108)) 57)) (-3249 (((-108) (-589 (-719 |#1| (-796 |#2|)))) 22)) (-1885 (((-589 (-1058 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|)))) (-589 (-719 |#1| (-796 |#2|))) (-108)) 70)) (-2883 (((-589 (-970 |#1| |#2|)) (-589 (-719 |#1| (-796 |#2|))) (-108)) 56)) (-1896 (((-589 (-719 |#1| (-796 |#2|))) (-589 (-719 |#1| (-796 |#2|)))) 26)) (-4095 (((-3 (-589 (-719 |#1| (-796 |#2|))) "failed") (-589 (-719 |#1| (-796 |#2|)))) 25))) +(((-574 |#1| |#2|) (-10 -7 (-15 -3249 ((-108) (-589 (-719 |#1| (-796 |#2|))))) (-15 -4095 ((-3 (-589 (-719 |#1| (-796 |#2|))) "failed") (-589 (-719 |#1| (-796 |#2|))))) (-15 -1896 ((-589 (-719 |#1| (-796 |#2|))) (-589 (-719 |#1| (-796 |#2|))))) (-15 -2883 ((-589 (-970 |#1| |#2|)) (-589 (-719 |#1| (-796 |#2|))) (-108))) (-15 -1885 ((-589 (-1058 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|)))) (-589 (-719 |#1| (-796 |#2|))) (-108))) (-15 -3846 ((-589 (-970 |#1| |#2|)) (-589 (-719 |#1| (-796 |#2|))) (-108))) (-15 -3846 ((-589 (-1058 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|)))) (-589 (-719 |#1| (-796 |#2|))) (-108)))) (-427) (-589 (-1087))) (T -574)) +((-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-1058 *5 (-495 (-796 *6)) (-796 *6) (-719 *5 (-796 *6))))) (-5 *1 (-574 *5 *6)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-970 *5 *6))) (-5 *1 (-574 *5 *6)))) (-1885 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-1058 *5 (-495 (-796 *6)) (-796 *6) (-719 *5 (-796 *6))))) (-5 *1 (-574 *5 *6)))) (-2883 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-970 *5 *6))) (-5 *1 (-574 *5 *6)))) (-1896 (*1 *2 *2) (-12 (-5 *2 (-589 (-719 *3 (-796 *4)))) (-4 *3 (-427)) (-14 *4 (-589 (-1087))) (-5 *1 (-574 *3 *4)))) (-4095 (*1 *2 *2) (|partial| -12 (-5 *2 (-589 (-719 *3 (-796 *4)))) (-4 *3 (-427)) (-14 *4 (-589 (-1087))) (-5 *1 (-574 *3 *4)))) (-3249 (*1 *2 *3) (-12 (-5 *3 (-589 (-719 *4 (-796 *5)))) (-4 *4 (-427)) (-14 *5 (-589 (-1087))) (-5 *2 (-108)) (-5 *1 (-574 *4 *5))))) +(-10 -7 (-15 -3249 ((-108) (-589 (-719 |#1| (-796 |#2|))))) (-15 -4095 ((-3 (-589 (-719 |#1| (-796 |#2|))) "failed") (-589 (-719 |#1| (-796 |#2|))))) (-15 -1896 ((-589 (-719 |#1| (-796 |#2|))) (-589 (-719 |#1| (-796 |#2|))))) (-15 -2883 ((-589 (-970 |#1| |#2|)) (-589 (-719 |#1| (-796 |#2|))) (-108))) (-15 -1885 ((-589 (-1058 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|)))) (-589 (-719 |#1| (-796 |#2|))) (-108))) (-15 -3846 ((-589 (-970 |#1| |#2|)) (-589 (-719 |#1| (-796 |#2|))) (-108))) (-15 -3846 ((-589 (-1058 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|)))) (-589 (-719 |#1| (-796 |#2|))) (-108)))) +((-1769 (($ $) 38)) (-3780 (($ $) 21)) (-1744 (($ $) 37)) (-3711 (($ $) 22)) (-1793 (($ $) 36)) (-3805 (($ $) 23)) (-2820 (($) 48)) (-2384 (($ $) 45)) (-3825 (($ $) 17)) (-1373 (($ $ (-1009 $)) 7) (($ $ (-1087)) 6)) (-1811 (($ $) 46)) (-3084 (($ $) 15)) (-3694 (($ $) 16)) (-1805 (($ $) 35)) (-3816 (($ $) 24)) (-1782 (($ $) 34)) (-3793 (($ $) 25)) (-1757 (($ $) 33)) (-3767 (($ $) 26)) (-1839 (($ $) 44)) (-3847 (($ $) 32)) (-1818 (($ $) 43)) (-3828 (($ $) 31)) (-1865 (($ $) 42)) (-1719 (($ $) 30)) (-2914 (($ $) 41)) (-1731 (($ $) 29)) (-1852 (($ $) 40)) (-3859 (($ $) 28)) (-1830 (($ $) 39)) (-3838 (($ $) 27)) (-3334 (($ $) 19)) (-2440 (($ $) 20)) (-1527 (($ $) 18)) (** (($ $ $) 47))) +(((-575) (-129)) (T -575)) +((-2440 (*1 *1 *1) (-4 *1 (-575))) (-3334 (*1 *1 *1) (-4 *1 (-575))) (-1527 (*1 *1 *1) (-4 *1 (-575))) (-3825 (*1 *1 *1) (-4 *1 (-575))) (-3694 (*1 *1 *1) (-4 *1 (-575))) (-3084 (*1 *1 *1) (-4 *1 (-575)))) +(-13 (-889) (-1108) (-10 -8 (-15 -2440 ($ $)) (-15 -3334 ($ $)) (-15 -1527 ($ $)) (-15 -3825 ($ $)) (-15 -3694 ($ $)) (-15 -3084 ($ $)))) +(((-34) . T) ((-91) . T) ((-261) . T) ((-464) . T) ((-889) . T) ((-1108) . T) ((-1111) . T)) +((-1403 (((-110) (-110)) 83)) (-3825 ((|#2| |#2|) 30)) (-1373 ((|#2| |#2| (-1009 |#2|)) 79) ((|#2| |#2| (-1087)) 52)) (-3084 ((|#2| |#2|) 29)) (-3694 ((|#2| |#2|) 31)) (-1950 (((-108) (-110)) 34)) (-3334 ((|#2| |#2|) 26)) (-2440 ((|#2| |#2|) 28)) (-1527 ((|#2| |#2|) 27))) +(((-576 |#1| |#2|) (-10 -7 (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 -2440 (|#2| |#2|)) (-15 -3334 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -3825 (|#2| |#2|)) (-15 -3084 (|#2| |#2|)) (-15 -3694 (|#2| |#2|)) (-15 -1373 (|#2| |#2| (-1087))) (-15 -1373 (|#2| |#2| (-1009 |#2|)))) (-13 (-786) (-515)) (-13 (-406 |#1|) (-930) (-1108))) (T -576)) +((-1373 (*1 *2 *2 *3) (-12 (-5 *3 (-1009 *2)) (-4 *2 (-13 (-406 *4) (-930) (-1108))) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-576 *4 *2)))) (-1373 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-576 *4 *2)) (-4 *2 (-13 (-406 *4) (-930) (-1108))))) (-3694 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) (-4 *2 (-13 (-406 *3) (-930) (-1108))))) (-3084 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) (-4 *2 (-13 (-406 *3) (-930) (-1108))))) (-3825 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) (-4 *2 (-13 (-406 *3) (-930) (-1108))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) (-4 *2 (-13 (-406 *3) (-930) (-1108))))) (-3334 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) (-4 *2 (-13 (-406 *3) (-930) (-1108))))) (-2440 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) (-4 *2 (-13 (-406 *3) (-930) (-1108))))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *4)) (-4 *4 (-13 (-406 *3) (-930) (-1108))))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) (-5 *1 (-576 *4 *5)) (-4 *5 (-13 (-406 *4) (-930) (-1108)))))) +(-10 -7 (-15 -1950 ((-108) (-110))) (-15 -1403 ((-110) (-110))) (-15 -2440 (|#2| |#2|)) (-15 -3334 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -3825 (|#2| |#2|)) (-15 -3084 (|#2| |#2|)) (-15 -3694 (|#2| |#2|)) (-15 -1373 (|#2| |#2| (-1087))) (-15 -1373 (|#2| |#2| (-1009 |#2|)))) +((-3218 (((-455 |#1| |#2|) (-225 |#1| |#2|)) 53)) (-3678 (((-589 (-225 |#1| |#2|)) (-589 (-455 |#1| |#2|))) 68)) (-3381 (((-455 |#1| |#2|) (-589 (-455 |#1| |#2|)) (-796 |#1|)) 70) (((-455 |#1| |#2|) (-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|)) (-796 |#1|)) 69)) (-1565 (((-2 (|:| |gblist| (-589 (-225 |#1| |#2|))) (|:| |gvlist| (-589 (-523)))) (-589 (-455 |#1| |#2|))) 106)) (-3213 (((-589 (-455 |#1| |#2|)) (-796 |#1|) (-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|))) 83)) (-2082 (((-2 (|:| |glbase| (-589 (-225 |#1| |#2|))) (|:| |glval| (-589 (-523)))) (-589 (-225 |#1| |#2|))) 117)) (-2013 (((-1168 |#2|) (-455 |#1| |#2|) (-589 (-455 |#1| |#2|))) 58)) (-1414 (((-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|))) 39)) (-1508 (((-225 |#1| |#2|) (-225 |#1| |#2|) (-589 (-225 |#1| |#2|))) 49)) (-2282 (((-225 |#1| |#2|) (-589 |#2|) (-225 |#1| |#2|) (-589 (-225 |#1| |#2|))) 90))) +(((-577 |#1| |#2|) (-10 -7 (-15 -1565 ((-2 (|:| |gblist| (-589 (-225 |#1| |#2|))) (|:| |gvlist| (-589 (-523)))) (-589 (-455 |#1| |#2|)))) (-15 -2082 ((-2 (|:| |glbase| (-589 (-225 |#1| |#2|))) (|:| |glval| (-589 (-523)))) (-589 (-225 |#1| |#2|)))) (-15 -3678 ((-589 (-225 |#1| |#2|)) (-589 (-455 |#1| |#2|)))) (-15 -3381 ((-455 |#1| |#2|) (-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|)) (-796 |#1|))) (-15 -3381 ((-455 |#1| |#2|) (-589 (-455 |#1| |#2|)) (-796 |#1|))) (-15 -1414 ((-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|)))) (-15 -2013 ((-1168 |#2|) (-455 |#1| |#2|) (-589 (-455 |#1| |#2|)))) (-15 -2282 ((-225 |#1| |#2|) (-589 |#2|) (-225 |#1| |#2|) (-589 (-225 |#1| |#2|)))) (-15 -3213 ((-589 (-455 |#1| |#2|)) (-796 |#1|) (-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|)))) (-15 -1508 ((-225 |#1| |#2|) (-225 |#1| |#2|) (-589 (-225 |#1| |#2|)))) (-15 -3218 ((-455 |#1| |#2|) (-225 |#1| |#2|)))) (-589 (-1087)) (-427)) (T -577)) +((-3218 (*1 *2 *3) (-12 (-5 *3 (-225 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *2 (-455 *4 *5)) (-5 *1 (-577 *4 *5)))) (-1508 (*1 *2 *2 *3) (-12 (-5 *3 (-589 (-225 *4 *5))) (-5 *2 (-225 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *1 (-577 *4 *5)))) (-3213 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-589 (-455 *4 *5))) (-5 *3 (-796 *4)) (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *1 (-577 *4 *5)))) (-2282 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 (-225 *5 *6))) (-4 *6 (-427)) (-5 *2 (-225 *5 *6)) (-14 *5 (-589 (-1087))) (-5 *1 (-577 *5 *6)))) (-2013 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-455 *5 *6))) (-5 *3 (-455 *5 *6)) (-14 *5 (-589 (-1087))) (-4 *6 (-427)) (-5 *2 (-1168 *6)) (-5 *1 (-577 *5 *6)))) (-1414 (*1 *2 *2) (-12 (-5 *2 (-589 (-455 *3 *4))) (-14 *3 (-589 (-1087))) (-4 *4 (-427)) (-5 *1 (-577 *3 *4)))) (-3381 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-455 *5 *6))) (-5 *4 (-796 *5)) (-14 *5 (-589 (-1087))) (-5 *2 (-455 *5 *6)) (-5 *1 (-577 *5 *6)) (-4 *6 (-427)))) (-3381 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-589 (-455 *5 *6))) (-5 *4 (-796 *5)) (-14 *5 (-589 (-1087))) (-5 *2 (-455 *5 *6)) (-5 *1 (-577 *5 *6)) (-4 *6 (-427)))) (-3678 (*1 *2 *3) (-12 (-5 *3 (-589 (-455 *4 *5))) (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *2 (-589 (-225 *4 *5))) (-5 *1 (-577 *4 *5)))) (-2082 (*1 *2 *3) (-12 (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *2 (-2 (|:| |glbase| (-589 (-225 *4 *5))) (|:| |glval| (-589 (-523))))) (-5 *1 (-577 *4 *5)) (-5 *3 (-589 (-225 *4 *5))))) (-1565 (*1 *2 *3) (-12 (-5 *3 (-589 (-455 *4 *5))) (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *2 (-2 (|:| |gblist| (-589 (-225 *4 *5))) (|:| |gvlist| (-589 (-523))))) (-5 *1 (-577 *4 *5))))) +(-10 -7 (-15 -1565 ((-2 (|:| |gblist| (-589 (-225 |#1| |#2|))) (|:| |gvlist| (-589 (-523)))) (-589 (-455 |#1| |#2|)))) (-15 -2082 ((-2 (|:| |glbase| (-589 (-225 |#1| |#2|))) (|:| |glval| (-589 (-523)))) (-589 (-225 |#1| |#2|)))) (-15 -3678 ((-589 (-225 |#1| |#2|)) (-589 (-455 |#1| |#2|)))) (-15 -3381 ((-455 |#1| |#2|) (-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|)) (-796 |#1|))) (-15 -3381 ((-455 |#1| |#2|) (-589 (-455 |#1| |#2|)) (-796 |#1|))) (-15 -1414 ((-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|)))) (-15 -2013 ((-1168 |#2|) (-455 |#1| |#2|) (-589 (-455 |#1| |#2|)))) (-15 -2282 ((-225 |#1| |#2|) (-589 |#2|) (-225 |#1| |#2|) (-589 (-225 |#1| |#2|)))) (-15 -3213 ((-589 (-455 |#1| |#2|)) (-796 |#1|) (-589 (-455 |#1| |#2|)) (-589 (-455 |#1| |#2|)))) (-15 -1508 ((-225 |#1| |#2|) (-225 |#1| |#2|) (-589 (-225 |#1| |#2|)))) (-15 -3218 ((-455 |#1| |#2|) (-225 |#1| |#2|)))) +((-3924 (((-108) $ $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016))))) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))))) NIL)) (-4207 (((-1173) $ (-1070) (-1070)) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 (((-51) $ (-1070) (-51)) 16) (((-51) $ (-1087) (-51)) 17)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-2243 (((-3 (-51) "failed") (-1070) $) NIL)) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016))))) (-2249 (($ (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-3 (-51) "failed") (-1070) $) NIL)) (-2557 (($ (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $ (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016)))) (((-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $ (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-2863 (((-51) $ (-1070) (-51)) NIL (|has| $ (-6 -4245)))) (-2795 (((-51) $ (-1070)) NIL)) (-1666 (((-589 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-589 (-51)) $) NIL (|has| $ (-6 -4244)))) (-2918 (($ $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-1070) $) NIL (|has| (-1070) (-786)))) (-2136 (((-589 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-589 (-51)) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-51) (-1016))))) (-3056 (((-1070) $) NIL (|has| (-1070) (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4245))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4042 (($ (-364)) 9)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016))))) (-1330 (((-589 (-1070)) $) NIL)) (-2777 (((-108) (-1070) $) NIL)) (-1934 (((-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) $) NIL)) (-3450 (($ (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) $) NIL)) (-2412 (((-589 (-1070)) $) NIL)) (-4135 (((-108) (-1070) $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016))))) (-1738 (((-51) $) NIL (|has| (-1070) (-786)))) (-2114 (((-3 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) "failed") (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL)) (-4203 (($ $ (-51)) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016)))) (($ $ (-271 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016)))) (($ $ (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016)))) (($ $ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016)))) (($ $ (-589 (-51)) (-589 (-51))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-271 (-51))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-589 (-271 (-51)))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-51) (-1016))))) (-1264 (((-589 (-51)) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 (((-51) $ (-1070)) 14) (((-51) $ (-1070) (-51)) NIL) (((-51) $ (-1087)) 15)) (-3433 (($) NIL) (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))))) NIL)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016)))) (((-710) (-51) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-51) (-1016)))) (((-710) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))))) NIL)) (-1458 (((-794) $) NIL (-3262 (|has| (-51) (-563 (-794))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-563 (-794)))))) (-2401 (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))))) NIL)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 (-51))) (-1016))))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-578) (-13 (-1099 (-1070) (-51)) (-10 -8 (-15 -4042 ($ (-364))) (-15 -2918 ($ $)) (-15 -3223 ((-51) $ (-1087))) (-15 -1641 ((-51) $ (-1087) (-51)))))) (T -578)) +((-4042 (*1 *1 *2) (-12 (-5 *2 (-364)) (-5 *1 (-578)))) (-2918 (*1 *1 *1) (-5 *1 (-578))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-51)) (-5 *1 (-578)))) (-1641 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1087)) (-5 *1 (-578))))) +(-13 (-1099 (-1070) (-51)) (-10 -8 (-15 -4042 ($ (-364))) (-15 -2918 ($ $)) (-15 -3223 ((-51) $ (-1087))) (-15 -1641 ((-51) $ (-1087) (-51))))) +((-4098 (($ $ |#2|) 10))) +(((-579 |#1| |#2|) (-10 -8 (-15 -4098 (|#1| |#1| |#2|))) (-580 |#2|) (-158)) (T -579)) +NIL +(-10 -8 (-15 -4098 (|#1| |#1| |#2|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1472 (($ $ $) 29)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 28 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-580 |#1|) (-129) (-158)) (T -580)) +((-1472 (*1 *1 *1 *1) (-12 (-4 *1 (-580 *2)) (-4 *2 (-158)))) (-4098 (*1 *1 *1 *2) (-12 (-4 *1 (-580 *2)) (-4 *2 (-158)) (-4 *2 (-339))))) +(-13 (-657 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -1472 ($ $ $)) (IF (|has| |t#1| (-339)) (-15 -4098 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-657 |#1|) . T) ((-979 |#1|) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3819 (((-3 $ "failed")) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3115 (((-1168 (-629 |#1|))) NIL (|has| |#2| (-393 |#1|))) (((-1168 (-629 |#1|)) (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-2738 (((-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-2518 (($) NIL T CONST)) (-3486 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3545 (((-3 $ "failed")) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1431 (((-629 |#1|)) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-3744 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-2788 (((-629 |#1|) $) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) $ (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-2532 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3138 (((-1083 (-883 |#1|))) NIL (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-339))))) (-1970 (($ $ (-852)) NIL)) (-4212 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-1726 (((-1083 |#1|) $) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-2284 ((|#1|) NIL (|has| |#2| (-393 |#1|))) ((|#1| (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-1778 (((-1083 |#1|) $) NIL (|has| |#2| (-343 |#1|)))) (-2117 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3409 (($ (-1168 |#1|)) NIL (|has| |#2| (-393 |#1|))) (($ (-1168 |#1|) (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-2121 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1319 (((-852)) NIL (|has| |#2| (-343 |#1|)))) (-1487 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3650 (($ $ (-852)) NIL)) (-1649 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2956 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2491 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2362 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1386 (((-3 $ "failed")) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-1504 (((-629 |#1|)) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-3237 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-2139 (((-629 |#1|) $) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) $ (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-1579 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-2525 (((-1083 (-883 |#1|))) NIL (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-339))))) (-1448 (($ $ (-852)) NIL)) (-4050 ((|#1| $) NIL (|has| |#2| (-343 |#1|)))) (-2553 (((-1083 |#1|) $) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-3002 ((|#1|) NIL (|has| |#2| (-393 |#1|))) ((|#1| (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-2565 (((-1083 |#1|) $) NIL (|has| |#2| (-343 |#1|)))) (-1216 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3779 (((-1070) $) NIL)) (-2345 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-1510 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2871 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2783 (((-1034) $) NIL)) (-2751 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3223 ((|#1| $ (-523)) NIL (|has| |#2| (-393 |#1|)))) (-2966 (((-629 |#1|) (-1168 $)) NIL (|has| |#2| (-393 |#1|))) (((-1168 |#1|) $) NIL (|has| |#2| (-393 |#1|))) (((-629 |#1|) (-1168 $) (-1168 $)) NIL (|has| |#2| (-343 |#1|))) (((-1168 |#1|) $ (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-3663 (($ (-1168 |#1|)) NIL (|has| |#2| (-393 |#1|))) (((-1168 |#1|) $) NIL (|has| |#2| (-393 |#1|)))) (-3863 (((-589 (-883 |#1|))) NIL (|has| |#2| (-393 |#1|))) (((-589 (-883 |#1|)) (-1168 $)) NIL (|has| |#2| (-343 |#1|)))) (-1714 (($ $ $) NIL)) (-1673 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-1458 (((-794) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-4041 (((-1168 $)) NIL (|has| |#2| (-393 |#1|)))) (-3751 (((-589 (-1168 |#1|))) NIL (-3262 (-12 (|has| |#2| (-343 |#1|)) (|has| |#1| (-515))) (-12 (|has| |#2| (-393 |#1|)) (|has| |#1| (-515)))))) (-2022 (($ $ $ $) NIL)) (-3120 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-1677 (($ (-629 |#1|) $) NIL (|has| |#2| (-393 |#1|)))) (-1995 (($ $ $) NIL)) (-1462 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-3366 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2071 (((-108)) NIL (|has| |#2| (-343 |#1|)))) (-2756 (($) 15 T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) 17)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-581 |#1| |#2|) (-13 (-684 |#1|) (-563 |#2|) (-10 -8 (-15 -1458 ($ |#2|)) (IF (|has| |#2| (-393 |#1|)) (-6 (-393 |#1|)) |%noBranch|) (IF (|has| |#2| (-343 |#1|)) (-6 (-343 |#1|)) |%noBranch|))) (-158) (-684 |#1|)) (T -581)) +((-1458 (*1 *1 *2) (-12 (-4 *3 (-158)) (-5 *1 (-581 *3 *2)) (-4 *2 (-684 *3))))) +(-13 (-684 |#1|) (-563 |#2|) (-10 -8 (-15 -1458 ($ |#2|)) (IF (|has| |#2| (-393 |#1|)) (-6 (-393 |#1|)) |%noBranch|) (IF (|has| |#2| (-343 |#1|)) (-6 (-343 |#1|)) |%noBranch|))) +((-2165 (((-3 (-779 |#2|) "failed") |#2| (-271 |#2|) (-1070)) 78) (((-3 (-779 |#2|) (-2 (|:| |leftHandLimit| (-3 (-779 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-779 |#2|) "failed"))) "failed") |#2| (-271 (-779 |#2|))) 100)) (-3641 (((-3 (-772 |#2|) "failed") |#2| (-271 (-772 |#2|))) 105))) +(((-582 |#1| |#2|) (-10 -7 (-15 -2165 ((-3 (-779 |#2|) (-2 (|:| |leftHandLimit| (-3 (-779 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-779 |#2|) "failed"))) "failed") |#2| (-271 (-779 |#2|)))) (-15 -3641 ((-3 (-772 |#2|) "failed") |#2| (-271 (-772 |#2|)))) (-15 -2165 ((-3 (-779 |#2|) "failed") |#2| (-271 |#2|) (-1070)))) (-13 (-427) (-786) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1108) (-406 |#1|))) (T -582)) +((-2165 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-271 *3)) (-5 *5 (-1070)) (-4 *3 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-779 *3)) (-5 *1 (-582 *6 *3)))) (-3641 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-271 (-772 *3))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-772 *3)) (-5 *1 (-582 *5 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))))) (-2165 (*1 *2 *3 *4) (-12 (-5 *4 (-271 (-779 *3))) (-4 *3 (-13 (-27) (-1108) (-406 *5))) (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-3 (-779 *3) (-2 (|:| |leftHandLimit| (-3 (-779 *3) "failed")) (|:| |rightHandLimit| (-3 (-779 *3) "failed"))) "failed")) (-5 *1 (-582 *5 *3))))) +(-10 -7 (-15 -2165 ((-3 (-779 |#2|) (-2 (|:| |leftHandLimit| (-3 (-779 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-779 |#2|) "failed"))) "failed") |#2| (-271 (-779 |#2|)))) (-15 -3641 ((-3 (-772 |#2|) "failed") |#2| (-271 (-772 |#2|)))) (-15 -2165 ((-3 (-779 |#2|) "failed") |#2| (-271 |#2|) (-1070)))) +((-2165 (((-3 (-779 (-383 (-883 |#1|))) "failed") (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))) (-1070)) 79) (((-3 (-779 (-383 (-883 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed"))) "failed") (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|)))) 18) (((-3 (-779 (-383 (-883 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed"))) "failed") (-383 (-883 |#1|)) (-271 (-779 (-883 |#1|)))) 34)) (-3641 (((-772 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|)))) 21) (((-772 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-271 (-772 (-883 |#1|)))) 42))) +(((-583 |#1|) (-10 -7 (-15 -2165 ((-3 (-779 (-383 (-883 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed"))) "failed") (-383 (-883 |#1|)) (-271 (-779 (-883 |#1|))))) (-15 -2165 ((-3 (-779 (-383 (-883 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed"))) "failed") (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))))) (-15 -3641 ((-772 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-271 (-772 (-883 |#1|))))) (-15 -3641 ((-772 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))))) (-15 -2165 ((-3 (-779 (-383 (-883 |#1|))) "failed") (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))) (-1070)))) (-427)) (T -583)) +((-2165 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-271 (-383 (-883 *6)))) (-5 *5 (-1070)) (-5 *3 (-383 (-883 *6))) (-4 *6 (-427)) (-5 *2 (-779 *3)) (-5 *1 (-583 *6)))) (-3641 (*1 *2 *3 *4) (-12 (-5 *4 (-271 (-383 (-883 *5)))) (-5 *3 (-383 (-883 *5))) (-4 *5 (-427)) (-5 *2 (-772 *3)) (-5 *1 (-583 *5)))) (-3641 (*1 *2 *3 *4) (-12 (-5 *4 (-271 (-772 (-883 *5)))) (-4 *5 (-427)) (-5 *2 (-772 (-383 (-883 *5)))) (-5 *1 (-583 *5)) (-5 *3 (-383 (-883 *5))))) (-2165 (*1 *2 *3 *4) (-12 (-5 *4 (-271 (-383 (-883 *5)))) (-5 *3 (-383 (-883 *5))) (-4 *5 (-427)) (-5 *2 (-3 (-779 *3) (-2 (|:| |leftHandLimit| (-3 (-779 *3) "failed")) (|:| |rightHandLimit| (-3 (-779 *3) "failed"))) "failed")) (-5 *1 (-583 *5)))) (-2165 (*1 *2 *3 *4) (-12 (-5 *4 (-271 (-779 (-883 *5)))) (-4 *5 (-427)) (-5 *2 (-3 (-779 (-383 (-883 *5))) (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 *5))) "failed")) (|:| |rightHandLimit| (-3 (-779 (-383 (-883 *5))) "failed"))) "failed")) (-5 *1 (-583 *5)) (-5 *3 (-383 (-883 *5)))))) +(-10 -7 (-15 -2165 ((-3 (-779 (-383 (-883 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed"))) "failed") (-383 (-883 |#1|)) (-271 (-779 (-883 |#1|))))) (-15 -2165 ((-3 (-779 (-383 (-883 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-779 (-383 (-883 |#1|))) "failed"))) "failed") (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))))) (-15 -3641 ((-772 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-271 (-772 (-883 |#1|))))) (-15 -3641 ((-772 (-383 (-883 |#1|))) (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))))) (-15 -2165 ((-3 (-779 (-383 (-883 |#1|))) "failed") (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))) (-1070)))) +((-1315 (((-3 (-1168 (-383 |#1|)) "failed") (-1168 |#2|) |#2|) 57 (-3900 (|has| |#1| (-339)))) (((-3 (-1168 |#1|) "failed") (-1168 |#2|) |#2|) 42 (|has| |#1| (-339)))) (-3161 (((-108) (-1168 |#2|)) 30)) (-3284 (((-3 (-1168 |#1|) "failed") (-1168 |#2|)) 33))) +(((-584 |#1| |#2|) (-10 -7 (-15 -3161 ((-108) (-1168 |#2|))) (-15 -3284 ((-3 (-1168 |#1|) "failed") (-1168 |#2|))) (IF (|has| |#1| (-339)) (-15 -1315 ((-3 (-1168 |#1|) "failed") (-1168 |#2|) |#2|)) (-15 -1315 ((-3 (-1168 (-383 |#1|)) "failed") (-1168 |#2|) |#2|)))) (-515) (-585 |#1|)) (T -584)) +((-1315 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-585 *5)) (-3900 (-4 *5 (-339))) (-4 *5 (-515)) (-5 *2 (-1168 (-383 *5))) (-5 *1 (-584 *5 *4)))) (-1315 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-585 *5)) (-4 *5 (-339)) (-4 *5 (-515)) (-5 *2 (-1168 *5)) (-5 *1 (-584 *5 *4)))) (-3284 (*1 *2 *3) (|partial| -12 (-5 *3 (-1168 *5)) (-4 *5 (-585 *4)) (-4 *4 (-515)) (-5 *2 (-1168 *4)) (-5 *1 (-584 *4 *5)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-1168 *5)) (-4 *5 (-585 *4)) (-4 *4 (-515)) (-5 *2 (-108)) (-5 *1 (-584 *4 *5))))) +(-10 -7 (-15 -3161 ((-108) (-1168 |#2|))) (-15 -3284 ((-3 (-1168 |#1|) "failed") (-1168 |#2|))) (IF (|has| |#1| (-339)) (-15 -1315 ((-3 (-1168 |#1|) "failed") (-1168 |#2|) |#2|)) (-15 -1315 ((-3 (-1168 (-383 |#1|)) "failed") (-1168 |#2|) |#2|)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2381 (((-629 |#1|) (-629 $)) 36) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 35)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-585 |#1|) (-129) (-973)) (T -585)) +((-2381 (*1 *2 *3) (-12 (-5 *3 (-629 *1)) (-4 *1 (-585 *4)) (-4 *4 (-973)) (-5 *2 (-629 *4)))) (-2381 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *1)) (-5 *4 (-1168 *1)) (-4 *1 (-585 *5)) (-4 *5 (-973)) (-5 *2 (-2 (|:| -3392 (-629 *5)) (|:| |vec| (-1168 *5))))))) +(-13 (-973) (-10 -8 (-15 -2381 ((-629 |t#1|) (-629 $))) (-15 -2381 ((-2 (|:| -3392 (-629 |t#1|)) (|:| |vec| (-1168 |t#1|))) (-629 $) (-1168 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 $) . T) ((-666) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-1547 ((|#2| (-589 |#1|) (-589 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-589 |#1|) (-589 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|) |#2|) 17) ((|#2| (-589 |#1|) (-589 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|)) 12))) +(((-586 |#1| |#2|) (-10 -7 (-15 -1547 ((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|))) (-15 -1547 (|#2| (-589 |#1|) (-589 |#2|) |#1|)) (-15 -1547 ((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|) |#2|)) (-15 -1547 (|#2| (-589 |#1|) (-589 |#2|) |#1| |#2|)) (-15 -1547 ((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|) (-1 |#2| |#1|))) (-15 -1547 (|#2| (-589 |#1|) (-589 |#2|) |#1| (-1 |#2| |#1|)))) (-1016) (-1122)) (T -586)) +((-1547 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1016)) (-4 *2 (-1122)) (-5 *1 (-586 *5 *2)))) (-1547 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-589 *5)) (-5 *4 (-589 *6)) (-4 *5 (-1016)) (-4 *6 (-1122)) (-5 *1 (-586 *5 *6)))) (-1547 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *2)) (-4 *5 (-1016)) (-4 *2 (-1122)) (-5 *1 (-586 *5 *2)))) (-1547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 *5)) (-4 *6 (-1016)) (-4 *5 (-1122)) (-5 *2 (-1 *5 *6)) (-5 *1 (-586 *6 *5)))) (-1547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *2)) (-4 *5 (-1016)) (-4 *2 (-1122)) (-5 *1 (-586 *5 *2)))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *6)) (-4 *5 (-1016)) (-4 *6 (-1122)) (-5 *2 (-1 *6 *5)) (-5 *1 (-586 *5 *6))))) +(-10 -7 (-15 -1547 ((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|))) (-15 -1547 (|#2| (-589 |#1|) (-589 |#2|) |#1|)) (-15 -1547 ((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|) |#2|)) (-15 -1547 (|#2| (-589 |#1|) (-589 |#2|) |#1| |#2|)) (-15 -1547 ((-1 |#2| |#1|) (-589 |#1|) (-589 |#2|) (-1 |#2| |#1|))) (-15 -1547 (|#2| (-589 |#1|) (-589 |#2|) |#1| (-1 |#2| |#1|)))) +((-2837 (((-589 |#2|) (-1 |#2| |#1| |#2|) (-589 |#1|) |#2|) 16)) (-2437 ((|#2| (-1 |#2| |#1| |#2|) (-589 |#1|) |#2|) 18)) (-3612 (((-589 |#2|) (-1 |#2| |#1|) (-589 |#1|)) 13))) +(((-587 |#1| |#2|) (-10 -7 (-15 -2837 ((-589 |#2|) (-1 |#2| |#1| |#2|) (-589 |#1|) |#2|)) (-15 -2437 (|#2| (-1 |#2| |#1| |#2|) (-589 |#1|) |#2|)) (-15 -3612 ((-589 |#2|) (-1 |#2| |#1|) (-589 |#1|)))) (-1122) (-1122)) (T -587)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-589 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-589 *6)) (-5 *1 (-587 *5 *6)))) (-2437 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-589 *5)) (-4 *5 (-1122)) (-4 *2 (-1122)) (-5 *1 (-587 *5 *2)))) (-2837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-589 *6)) (-4 *6 (-1122)) (-4 *5 (-1122)) (-5 *2 (-589 *5)) (-5 *1 (-587 *6 *5))))) +(-10 -7 (-15 -2837 ((-589 |#2|) (-1 |#2| |#1| |#2|) (-589 |#1|) |#2|)) (-15 -2437 (|#2| (-1 |#2| |#1| |#2|) (-589 |#1|) |#2|)) (-15 -3612 ((-589 |#2|) (-1 |#2| |#1|) (-589 |#1|)))) +((-3612 (((-589 |#3|) (-1 |#3| |#1| |#2|) (-589 |#1|) (-589 |#2|)) 13))) +(((-588 |#1| |#2| |#3|) (-10 -7 (-15 -3612 ((-589 |#3|) (-1 |#3| |#1| |#2|) (-589 |#1|) (-589 |#2|)))) (-1122) (-1122) (-1122)) (T -588)) +((-3612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-589 *6)) (-5 *5 (-589 *7)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-4 *8 (-1122)) (-5 *2 (-589 *8)) (-5 *1 (-588 *6 *7 *8))))) +(-10 -7 (-15 -3612 ((-589 |#3|) (-1 |#3| |#1| |#2|) (-589 |#1|) (-589 |#2|)))) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1733 ((|#1| $) NIL)) (-1546 ((|#1| $) NIL)) (-4039 (($ $) NIL)) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-2961 (($ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) $) NIL (|has| |#1| (-786))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-1506 (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3974 (($ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1823 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-2110 (($ $ $) NIL (|has| $ (-6 -4245)))) (-3395 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-3456 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4245))) (($ $ "rest" $) NIL (|has| $ (-6 -4245))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) NIL (|has| $ (-6 -4245)))) (-1661 (($ $ $) 32 (|has| |#1| (-1016)))) (-1653 (($ $ $) 34 (|has| |#1| (-1016)))) (-1638 (($ $ $) 37 (|has| |#1| (-1016)))) (-3387 (($ (-1 (-108) |#1|) $) NIL)) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-1532 ((|#1| $) NIL)) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1751 (($ $) NIL) (($ $ (-710)) NIL)) (-3941 (($ $) NIL (|has| |#1| (-1016)))) (-1773 (($ $) 31 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2249 (($ |#1| $) NIL (|has| |#1| (-1016))) (($ (-1 (-108) |#1|) $) NIL)) (-2557 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2863 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) NIL)) (-1232 (((-108) $) NIL)) (-1479 (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016))) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) (-1 (-108) |#1|) $) NIL)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1544 (((-108) $) 9)) (-2645 (((-589 $) $) NIL)) (-1238 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3656 (($) 7)) (-3052 (($ (-710) |#1|) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2158 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2178 (($ $ $) NIL (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 33 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3992 (($ |#1|) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-2726 (((-589 |#1|) $) NIL)) (-3555 (((-108) $) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2579 ((|#1| $) NIL) (($ $ (-710)) NIL)) (-3450 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2847 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1738 ((|#1| $) NIL) (($ $ (-710)) NIL)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) NIL (|has| $ (-6 -4245)))) (-2402 (((-108) $) NIL)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1135 (-523))) NIL) ((|#1| $ (-523)) 36) ((|#1| $ (-523) |#1|) NIL)) (-1549 (((-523) $ $) NIL)) (-2753 (($ $ (-1135 (-523))) NIL) (($ $ (-523)) NIL)) (-1469 (($ $ (-1135 (-523))) NIL) (($ $ (-523)) NIL)) (-2524 (((-108) $) NIL)) (-2732 (($ $) NIL)) (-2363 (($ $) NIL (|has| $ (-6 -4245)))) (-2316 (((-710) $) NIL)) (-3562 (($ $) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) 45 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) NIL)) (-3449 (($ |#1| $) 10)) (-1746 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2326 (($ $ $) 30) (($ |#1| $) NIL) (($ (-589 $)) NIL) (($ $ |#1|) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) NIL)) (-3653 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2881 (($ $ $) 11)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3790 (((-1070) $) 26 (|has| |#1| (-767))) (((-1070) $ (-108)) 27 (|has| |#1| (-767))) (((-1173) (-761) $) 28 (|has| |#1| (-767))) (((-1173) (-761) $ (-108)) 29 (|has| |#1| (-767)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-589 |#1|) (-13 (-609 |#1|) (-10 -8 (-15 -3656 ($)) (-15 -1544 ((-108) $)) (-15 -3449 ($ |#1| $)) (-15 -2881 ($ $ $)) (IF (|has| |#1| (-1016)) (PROGN (-15 -1661 ($ $ $)) (-15 -1653 ($ $ $)) (-15 -1638 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|))) (-1122)) (T -589)) +((-3656 (*1 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1122)))) (-1544 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-589 *3)) (-4 *3 (-1122)))) (-3449 (*1 *1 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1122)))) (-2881 (*1 *1 *1 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1122)))) (-1661 (*1 *1 *1 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-1122)))) (-1653 (*1 *1 *1 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-1122)))) (-1638 (*1 *1 *1 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-1122))))) +(-13 (-609 |#1|) (-10 -8 (-15 -3656 ($)) (-15 -1544 ((-108) $)) (-15 -3449 ($ |#1| $)) (-15 -2881 ($ $ $)) (IF (|has| |#1| (-1016)) (PROGN (-15 -1661 ($ $ $)) (-15 -1653 ($ $ $)) (-15 -1638 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|))) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1763 (($ |#1| |#1| $) 43)) (-3079 (((-108) $ (-710)) NIL)) (-3387 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-3941 (($ $) 45)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2249 (($ |#1| $) 52 (|has| $ (-6 -4244))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4244)))) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244)))) (-1666 (((-589 |#1|) $) 9 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 37)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1934 ((|#1| $) 46)) (-3450 (($ |#1| $) 26) (($ |#1| $ (-710)) 42)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3761 ((|#1| $) 48)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 21)) (-3988 (($) 25)) (-2288 (((-108) $) 50)) (-2766 (((-589 (-2 (|:| -2433 |#1|) (|:| -2792 (-710)))) $) 59)) (-3433 (($) 23) (($ (-589 |#1|)) 18)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) 56 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) 19)) (-3663 (((-499) $) 34 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) NIL)) (-1458 (((-794) $) 14 (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) 22)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 61 (|has| |#1| (-1016)))) (-2676 (((-710) $) 16 (|has| $ (-6 -4244))))) +(((-590 |#1|) (-13 (-634 |#1|) (-10 -8 (-6 -4244) (-15 -2288 ((-108) $)) (-15 -1763 ($ |#1| |#1| $)))) (-1016)) (T -590)) +((-2288 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-590 *3)) (-4 *3 (-1016)))) (-1763 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1016))))) +(-13 (-634 |#1|) (-10 -8 (-6 -4244) (-15 -2288 ((-108) $)) (-15 -1763 ($ |#1| |#1| $)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#1| $) 23))) +(((-591 |#1|) (-129) (-980)) (T -591)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-591 *2)) (-4 *2 (-980))))) (-13 (-21) (-10 -8 (-15 * ($ |t#1| $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-1685 (((-708) $) 15)) (-2952 (($ $ |#1|) 55)) (-2465 (($ $) 32)) (-1939 (($ $) 31)) (-3700 (((-3 |#1| "failed") $) 47)) (-1478 ((|#1| $) NIL)) (-2457 (($ |#1| |#2| $) 61) (($ $ $) 62)) (-3094 (((-792) $ (-1 (-792) (-792) (-792)) (-1 (-792) (-792) (-792)) (-522)) 45)) (-3108 ((|#1| $ (-522)) 30)) (-4213 ((|#2| $ (-522)) 29)) (-2007 (($ (-1 |#1| |#1|) $) 34)) (-1250 (($ (-1 |#2| |#2|) $) 38)) (-2527 (($) 10)) (-1653 (($ |#1| |#2|) 22)) (-2881 (($ (-588 (-2 (|:| |gen| |#1|) (|:| -3357 |#2|)))) 23)) (-3373 (((-588 (-2 (|:| |gen| |#1|) (|:| -3357 |#2|))) $) 13)) (-1287 (($ |#1| $) 56)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-1229 (((-108) $ $) 58)) (-2217 (((-792) $) 19) (($ |#1|) 16)) (-1562 (((-108) $ $) 25))) -(((-591 |#1| |#2| |#3|) (-13 (-1014) (-962 |#1|) (-10 -8 (-15 -3094 ((-792) $ (-1 (-792) (-792) (-792)) (-1 (-792) (-792) (-792)) (-522))) (-15 -3373 ((-588 (-2 (|:| |gen| |#1|) (|:| -3357 |#2|))) $)) (-15 -1653 ($ |#1| |#2|)) (-15 -2881 ($ (-588 (-2 (|:| |gen| |#1|) (|:| -3357 |#2|))))) (-15 -4213 (|#2| $ (-522))) (-15 -3108 (|#1| $ (-522))) (-15 -1939 ($ $)) (-15 -2465 ($ $)) (-15 -1685 ((-708) $)) (-15 -2527 ($)) (-15 -2952 ($ $ |#1|)) (-15 -1287 ($ |#1| $)) (-15 -2457 ($ |#1| |#2| $)) (-15 -2457 ($ $ $)) (-15 -1229 ((-108) $ $)) (-15 -1250 ($ (-1 |#2| |#2|) $)) (-15 -2007 ($ (-1 |#1| |#1|) $)))) (-1014) (-23) |#2|) (T -591)) -((-3094 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-792) (-792) (-792))) (-5 *4 (-522)) (-5 *2 (-792)) (-5 *1 (-591 *5 *6 *7)) (-4 *5 (-1014)) (-4 *6 (-23)) (-14 *7 *6))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3357 *4)))) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))) (-1653 (*1 *1 *2 *3) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2881 (*1 *1 *2) (-12 (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3357 *4)))) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)))) (-4213 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *2 (-23)) (-5 *1 (-591 *4 *2 *5)) (-4 *4 (-1014)) (-14 *5 *2))) (-3108 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *2 (-1014)) (-5 *1 (-591 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1939 (*1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2465 (*1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-1685 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))) (-2527 (*1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2952 (*1 *1 *1 *2) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-1287 (*1 *1 *2 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2457 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2457 (*1 *1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-1229 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))) (-1250 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1014)))) (-2007 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-591 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1014) (-962 |#1|) (-10 -8 (-15 -3094 ((-792) $ (-1 (-792) (-792) (-792)) (-1 (-792) (-792) (-792)) (-522))) (-15 -3373 ((-588 (-2 (|:| |gen| |#1|) (|:| -3357 |#2|))) $)) (-15 -1653 ($ |#1| |#2|)) (-15 -2881 ($ (-588 (-2 (|:| |gen| |#1|) (|:| -3357 |#2|))))) (-15 -4213 (|#2| $ (-522))) (-15 -3108 (|#1| $ (-522))) (-15 -1939 ($ $)) (-15 -2465 ($ $)) (-15 -1685 ((-708) $)) (-15 -2527 ($)) (-15 -2952 ($ $ |#1|)) (-15 -1287 ($ |#1| $)) (-15 -2457 ($ |#1| |#2| $)) (-15 -2457 ($ $ $)) (-15 -1229 ((-108) $ $)) (-15 -1250 ($ (-1 |#2| |#2|) $)) (-15 -2007 ($ (-1 |#1| |#1|) $)))) -((-2201 (((-522) $) 24)) (-1731 (($ |#2| $ (-522)) 22) (($ $ $ (-522)) NIL)) (-2130 (((-588 (-522)) $) 12)) (-2103 (((-108) (-522) $) 15)) (-4170 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-588 $)) NIL))) -(((-592 |#1| |#2|) (-10 -8 (-15 -1731 (|#1| |#1| |#1| (-522))) (-15 -1731 (|#1| |#2| |#1| (-522))) (-15 -4170 (|#1| (-588 |#1|))) (-15 -4170 (|#1| |#1| |#1|)) (-15 -4170 (|#1| |#2| |#1|)) (-15 -4170 (|#1| |#1| |#2|)) (-15 -2201 ((-522) |#1|)) (-15 -2130 ((-588 (-522)) |#1|)) (-15 -2103 ((-108) (-522) |#1|))) (-593 |#2|) (-1120)) (T -592)) -NIL -(-10 -8 (-15 -1731 (|#1| |#1| |#1| (-522))) (-15 -1731 (|#1| |#2| |#1| (-522))) (-15 -4170 (|#1| (-588 |#1|))) (-15 -4170 (|#1| |#1| |#1|)) (-15 -4170 (|#1| |#2| |#1|)) (-15 -4170 (|#1| |#1| |#2|)) (-15 -2201 ((-522) |#1|)) (-15 -2130 ((-588 (-522)) |#1|)) (-15 -2103 ((-108) (-522) |#1|))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3883 (((-1171) $ (-522) (-522)) 40 (|has| $ (-6 -4239)))) (-2717 (((-108) $ (-708)) 8)) (-2437 ((|#1| $ (-522) |#1|) 52 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) 58 (|has| $ (-6 -4239)))) (-1696 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4238)))) (-3367 (($) 7 T CONST)) (-2379 (($ $) 78 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1424 (($ |#1| $) 77 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4238)))) (-2411 ((|#1| $ (-522) |#1|) 53 (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-522)) 51)) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1893 (($ (-708) |#1|) 69)) (-1480 (((-108) $ (-708)) 9)) (-3496 (((-522) $) 43 (|has| (-522) (-784)))) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2201 (((-522) $) 44 (|has| (-522) (-784)))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3309 (((-108) $ (-708)) 10)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1731 (($ |#1| $ (-522)) 60) (($ $ $ (-522)) 59)) (-2130 (((-588 (-522)) $) 46)) (-2103 (((-108) (-522) $) 47)) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2337 ((|#1| $) 42 (|has| (-522) (-784)))) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1972 (($ $ |#1|) 41 (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3434 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) 48)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 ((|#1| $ (-522) |#1|) 50) ((|#1| $ (-522)) 49) (($ $ (-1133 (-522))) 63)) (-3835 (($ $ (-522)) 62) (($ $ (-1133 (-522))) 61)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-3873 (((-498) $) 79 (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) 70)) (-4170 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-588 $)) 65)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-593 |#1|) (-1197) (-1120)) (T -593)) -((-1893 (*1 *1 *2 *3) (-12 (-5 *2 (-708)) (-4 *1 (-593 *3)) (-4 *3 (-1120)))) (-4170 (*1 *1 *1 *2) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1120)))) (-4170 (*1 *1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1120)))) (-4170 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1120)))) (-4170 (*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-593 *3)) (-4 *3 (-1120)))) (-3810 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-593 *3)) (-4 *3 (-1120)))) (-2683 (*1 *1 *1 *2) (-12 (-5 *2 (-1133 (-522))) (-4 *1 (-593 *3)) (-4 *3 (-1120)))) (-3835 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-593 *3)) (-4 *3 (-1120)))) (-3835 (*1 *1 *1 *2) (-12 (-5 *2 (-1133 (-522))) (-4 *1 (-593 *3)) (-4 *3 (-1120)))) (-1731 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-593 *2)) (-4 *2 (-1120)))) (-1731 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-593 *3)) (-4 *3 (-1120)))) (-2437 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1133 (-522))) (|has| *1 (-6 -4239)) (-4 *1 (-593 *2)) (-4 *2 (-1120))))) -(-13 (-555 (-522) |t#1|) (-139 |t#1|) (-10 -8 (-15 -1893 ($ (-708) |t#1|)) (-15 -4170 ($ $ |t#1|)) (-15 -4170 ($ |t#1| $)) (-15 -4170 ($ $ $)) (-15 -4170 ($ (-588 $))) (-15 -3810 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2683 ($ $ (-1133 (-522)))) (-15 -3835 ($ $ (-522))) (-15 -3835 ($ $ (-1133 (-522)))) (-15 -1731 ($ |t#1| $ (-522))) (-15 -1731 ($ $ $ (-522))) (IF (|has| $ (-6 -4239)) (-15 -2437 (|t#1| $ (-1133 (-522)) |t#1|)) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-262 #0=(-522) |#1|) . T) ((-264 #0# |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-555 #0# |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T)) -((-2925 (((-3 |#2| "failed") |#3| |#2| (-1085) |#2| (-588 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2905 (-588 |#2|))) "failed") |#3| |#2| (-1085)) 43))) -(((-594 |#1| |#2| |#3|) (-10 -7 (-15 -2925 ((-3 (-2 (|:| |particular| |#2|) (|:| -2905 (-588 |#2|))) "failed") |#3| |#2| (-1085))) (-15 -2925 ((-3 |#2| "failed") |#3| |#2| (-1085) |#2| (-588 |#2|)))) (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)) (-13 (-29 |#1|) (-1106) (-887)) (-598 |#2|)) (T -594)) -((-2925 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-588 *2)) (-4 *2 (-13 (-29 *6) (-1106) (-887))) (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *1 (-594 *6 *2 *3)) (-4 *3 (-598 *2)))) (-2925 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1085)) (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-4 *4 (-13 (-29 *6) (-1106) (-887))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2905 (-588 *4)))) (-5 *1 (-594 *6 *4 *3)) (-4 *3 (-598 *4))))) -(-10 -7 (-15 -2925 ((-3 (-2 (|:| |particular| |#2|) (|:| -2905 (-588 |#2|))) "failed") |#3| |#2| (-1085))) (-15 -2925 ((-3 |#2| "failed") |#3| |#2| (-1085) |#2| (-588 |#2|)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-1978 (($ $) NIL (|has| |#1| (-338)))) (-3730 (($ $ $) NIL (|has| |#1| (-338)))) (-2649 (($ $ (-708)) NIL (|has| |#1| (-338)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3525 (($ $ $) NIL (|has| |#1| (-338)))) (-1342 (($ $ $) NIL (|has| |#1| (-338)))) (-1734 (($ $ $) NIL (|has| |#1| (-338)))) (-3320 (($ $ $) NIL (|has| |#1| (-338)))) (-2228 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-338)))) (-1975 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-1432 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-338)))) (-3700 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) NIL)) (-1478 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) NIL)) (-3241 (($ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2883 (($ $) NIL (|has| |#1| (-426)))) (-2859 (((-108) $) NIL)) (-3500 (($ |#1| (-708)) NIL)) (-3865 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-514)))) (-2118 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-514)))) (-3564 (((-708) $) NIL)) (-3755 (($ $ $) NIL (|has| |#1| (-338)))) (-1416 (($ $ $) NIL (|has| |#1| (-338)))) (-3283 (($ $ $) NIL (|has| |#1| (-338)))) (-3453 (($ $ $) NIL (|has| |#1| (-338)))) (-2045 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-338)))) (-2708 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-2070 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-338)))) (-3224 ((|#1| $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2276 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514)))) (-2683 ((|#1| $ |#1|) NIL)) (-3412 (($ $ $) NIL (|has| |#1| (-338)))) (-2487 (((-708) $) NIL)) (-2988 ((|#1| $) NIL (|has| |#1| (-426)))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ (-382 (-522))) NIL (|has| |#1| (-962 (-382 (-522))))) (($ |#1|) NIL)) (-2180 (((-588 |#1|) $) NIL)) (-1643 ((|#1| $ (-708)) NIL)) (-2742 (((-708)) NIL)) (-1664 ((|#1| $ |#1| |#1|) NIL)) (-3397 (($ $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($) NIL)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-595 |#1|) (-598 |#1|) (-210)) (T -595)) -NIL -(-598 |#1|) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-1978 (($ $) NIL (|has| |#1| (-338)))) (-3730 (($ $ $) NIL (|has| |#1| (-338)))) (-2649 (($ $ (-708)) NIL (|has| |#1| (-338)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3525 (($ $ $) NIL (|has| |#1| (-338)))) (-1342 (($ $ $) NIL (|has| |#1| (-338)))) (-1734 (($ $ $) NIL (|has| |#1| (-338)))) (-3320 (($ $ $) NIL (|has| |#1| (-338)))) (-2228 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-338)))) (-1975 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-1432 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-338)))) (-3700 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) NIL)) (-1478 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) NIL)) (-3241 (($ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2883 (($ $) NIL (|has| |#1| (-426)))) (-2859 (((-108) $) NIL)) (-3500 (($ |#1| (-708)) NIL)) (-3865 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-514)))) (-2118 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-514)))) (-3564 (((-708) $) NIL)) (-3755 (($ $ $) NIL (|has| |#1| (-338)))) (-1416 (($ $ $) NIL (|has| |#1| (-338)))) (-3283 (($ $ $) NIL (|has| |#1| (-338)))) (-3453 (($ $ $) NIL (|has| |#1| (-338)))) (-2045 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-338)))) (-2708 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-2070 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-338)))) (-3224 ((|#1| $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2276 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514)))) (-2683 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3412 (($ $ $) NIL (|has| |#1| (-338)))) (-2487 (((-708) $) NIL)) (-2988 ((|#1| $) NIL (|has| |#1| (-426)))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ (-382 (-522))) NIL (|has| |#1| (-962 (-382 (-522))))) (($ |#1|) NIL)) (-2180 (((-588 |#1|) $) NIL)) (-1643 ((|#1| $ (-708)) NIL)) (-2742 (((-708)) NIL)) (-1664 ((|#1| $ |#1| |#1|) NIL)) (-3397 (($ $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($) NIL)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-596 |#1| |#2|) (-13 (-598 |#1|) (-262 |#2| |#2|)) (-210) (-13 (-590 |#1|) (-10 -8 (-15 -2731 ($ $))))) (T -596)) -NIL -(-13 (-598 |#1|) (-262 |#2| |#2|)) -((-1978 (($ $) 27)) (-3397 (($ $) 25)) (-2252 (($) 12))) -(((-597 |#1| |#2|) (-10 -8 (-15 -1978 (|#1| |#1|)) (-15 -3397 (|#1| |#1|)) (-15 -2252 (|#1|))) (-598 |#2|) (-971)) (T -597)) -NIL -(-10 -8 (-15 -1978 (|#1| |#1|)) (-15 -3397 (|#1| |#1|)) (-15 -2252 (|#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-1978 (($ $) 82 (|has| |#1| (-338)))) (-3730 (($ $ $) 84 (|has| |#1| (-338)))) (-2649 (($ $ (-708)) 83 (|has| |#1| (-338)))) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3525 (($ $ $) 45 (|has| |#1| (-338)))) (-1342 (($ $ $) 46 (|has| |#1| (-338)))) (-1734 (($ $ $) 48 (|has| |#1| (-338)))) (-3320 (($ $ $) 43 (|has| |#1| (-338)))) (-2228 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 42 (|has| |#1| (-338)))) (-1975 (((-3 $ "failed") $ $) 44 (|has| |#1| (-338)))) (-1432 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 47 (|has| |#1| (-338)))) (-3700 (((-3 (-522) "failed") $) 74 (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) 72 (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 69)) (-1478 (((-522) $) 75 (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) 73 (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) 68)) (-3241 (($ $) 64)) (-3920 (((-3 $ "failed") $) 34)) (-2883 (($ $) 55 (|has| |#1| (-426)))) (-2859 (((-108) $) 31)) (-3500 (($ |#1| (-708)) 62)) (-3865 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 57 (|has| |#1| (-514)))) (-2118 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 58 (|has| |#1| (-514)))) (-3564 (((-708) $) 66)) (-3755 (($ $ $) 52 (|has| |#1| (-338)))) (-1416 (($ $ $) 53 (|has| |#1| (-338)))) (-3283 (($ $ $) 41 (|has| |#1| (-338)))) (-3453 (($ $ $) 50 (|has| |#1| (-338)))) (-2045 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 49 (|has| |#1| (-338)))) (-2708 (((-3 $ "failed") $ $) 51 (|has| |#1| (-338)))) (-2070 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 54 (|has| |#1| (-338)))) (-3224 ((|#1| $) 65)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2276 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-514)))) (-2683 ((|#1| $ |#1|) 87)) (-3412 (($ $ $) 81 (|has| |#1| (-338)))) (-2487 (((-708) $) 67)) (-2988 ((|#1| $) 56 (|has| |#1| (-426)))) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ (-382 (-522))) 71 (|has| |#1| (-962 (-382 (-522))))) (($ |#1|) 70)) (-2180 (((-588 |#1|) $) 61)) (-1643 ((|#1| $ (-708)) 63)) (-2742 (((-708)) 29)) (-1664 ((|#1| $ |#1| |#1|) 60)) (-3397 (($ $) 85)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($) 86)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76))) -(((-598 |#1|) (-1197) (-971)) (T -598)) -((-2252 (*1 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-971)))) (-3397 (*1 *1 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-971)))) (-3730 (*1 *1 *1 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-2649 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-598 *3)) (-4 *3 (-971)) (-4 *3 (-338)))) (-1978 (*1 *1 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-3412 (*1 *1 *1 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-971)) (-4 *2 (-338))))) -(-13 (-786 |t#1|) (-262 |t#1| |t#1|) (-10 -8 (-15 -2252 ($)) (-15 -3397 ($ $)) (IF (|has| |t#1| (-338)) (PROGN (-15 -3730 ($ $ $)) (-15 -2649 ($ $ (-708))) (-15 -1978 ($ $)) (-15 -3412 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-262 |#1| |#1|) . T) ((-386 |#1|) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-655 |#1|) |has| |#1| (-157)) ((-664) . T) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T) ((-977 |#1|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-786 |#1|) . T)) -((-1669 (((-588 (-595 (-382 |#2|))) (-595 (-382 |#2|))) 73 (|has| |#1| (-27)))) (-2006 (((-588 (-595 (-382 |#2|))) (-595 (-382 |#2|))) 72 (|has| |#1| (-27))) (((-588 (-595 (-382 |#2|))) (-595 (-382 |#2|)) (-1 (-588 |#1|) |#2|)) 15))) -(((-599 |#1| |#2|) (-10 -7 (-15 -2006 ((-588 (-595 (-382 |#2|))) (-595 (-382 |#2|)) (-1 (-588 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2006 ((-588 (-595 (-382 |#2|))) (-595 (-382 |#2|)))) (-15 -1669 ((-588 (-595 (-382 |#2|))) (-595 (-382 |#2|))))) |%noBranch|)) (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))) (-1142 |#1|)) (T -599)) -((-1669 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-4 *5 (-1142 *4)) (-5 *2 (-588 (-595 (-382 *5)))) (-5 *1 (-599 *4 *5)) (-5 *3 (-595 (-382 *5))))) (-2006 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-4 *5 (-1142 *4)) (-5 *2 (-588 (-595 (-382 *5)))) (-5 *1 (-599 *4 *5)) (-5 *3 (-595 (-382 *5))))) (-2006 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-588 *5) *6)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-4 *6 (-1142 *5)) (-5 *2 (-588 (-595 (-382 *6)))) (-5 *1 (-599 *5 *6)) (-5 *3 (-595 (-382 *6)))))) -(-10 -7 (-15 -2006 ((-588 (-595 (-382 |#2|))) (-595 (-382 |#2|)) (-1 (-588 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2006 ((-588 (-595 (-382 |#2|))) (-595 (-382 |#2|)))) (-15 -1669 ((-588 (-595 (-382 |#2|))) (-595 (-382 |#2|))))) |%noBranch|)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-1978 (($ $) NIL (|has| |#1| (-338)))) (-3730 (($ $ $) 28 (|has| |#1| (-338)))) (-2649 (($ $ (-708)) 31 (|has| |#1| (-338)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3525 (($ $ $) NIL (|has| |#1| (-338)))) (-1342 (($ $ $) NIL (|has| |#1| (-338)))) (-1734 (($ $ $) NIL (|has| |#1| (-338)))) (-3320 (($ $ $) NIL (|has| |#1| (-338)))) (-2228 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-338)))) (-1975 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-1432 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-338)))) (-3700 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) NIL)) (-1478 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) NIL)) (-3241 (($ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2883 (($ $) NIL (|has| |#1| (-426)))) (-2859 (((-108) $) NIL)) (-3500 (($ |#1| (-708)) NIL)) (-3865 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-514)))) (-2118 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-514)))) (-3564 (((-708) $) NIL)) (-3755 (($ $ $) NIL (|has| |#1| (-338)))) (-1416 (($ $ $) NIL (|has| |#1| (-338)))) (-3283 (($ $ $) NIL (|has| |#1| (-338)))) (-3453 (($ $ $) NIL (|has| |#1| (-338)))) (-2045 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-338)))) (-2708 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-2070 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-338)))) (-3224 ((|#1| $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2276 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514)))) (-2683 ((|#1| $ |#1|) 24)) (-3412 (($ $ $) 33 (|has| |#1| (-338)))) (-2487 (((-708) $) NIL)) (-2988 ((|#1| $) NIL (|has| |#1| (-426)))) (-2217 (((-792) $) 20) (($ (-522)) NIL) (($ (-382 (-522))) NIL (|has| |#1| (-962 (-382 (-522))))) (($ |#1|) NIL)) (-2180 (((-588 |#1|) $) NIL)) (-1643 ((|#1| $ (-708)) NIL)) (-2742 (((-708)) NIL)) (-1664 ((|#1| $ |#1| |#1|) 23)) (-3397 (($ $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 21 T CONST)) (-3709 (($) 8 T CONST)) (-2252 (($) NIL)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-600 |#1| |#2|) (-598 |#1|) (-971) (-1 |#1| |#1|)) (T -600)) -NIL -(-598 |#1|) -((-3730 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 60)) (-2649 ((|#2| |#2| (-708) (-1 |#1| |#1|)) 41)) (-3412 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 62))) -(((-601 |#1| |#2|) (-10 -7 (-15 -3730 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2649 (|#2| |#2| (-708) (-1 |#1| |#1|))) (-15 -3412 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-338) (-598 |#1|)) (T -601)) -((-3412 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-338)) (-5 *1 (-601 *4 *2)) (-4 *2 (-598 *4)))) (-2649 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-708)) (-5 *4 (-1 *5 *5)) (-4 *5 (-338)) (-5 *1 (-601 *5 *2)) (-4 *2 (-598 *5)))) (-3730 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-338)) (-5 *1 (-601 *4 *2)) (-4 *2 (-598 *4))))) -(-10 -7 (-15 -3730 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2649 (|#2| |#2| (-708) (-1 |#1| |#1|))) (-15 -3412 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-2920 (($ $ $) 9))) -(((-602 |#1|) (-10 -8 (-15 -2920 (|#1| |#1| |#1|))) (-603)) (T -602)) -NIL -(-10 -8 (-15 -2920 (|#1| |#1| |#1|))) -((-1419 (((-108) $ $) 7)) (-1504 (($ $) 10)) (-2920 (($ $ $) 8)) (-1562 (((-108) $ $) 6)) (-2388 (($ $ $) 9))) -(((-603) (-1197)) (T -603)) -((-1504 (*1 *1 *1) (-4 *1 (-603))) (-2388 (*1 *1 *1 *1) (-4 *1 (-603))) (-2920 (*1 *1 *1 *1) (-4 *1 (-603)))) -(-13 (-97) (-10 -8 (-15 -1504 ($ $)) (-15 -2388 ($ $ $)) (-15 -2920 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-1703 (((-710) $) 15)) (-2894 (($ $ |#1|) 55)) (-2867 (($ $) 32)) (-3631 (($ $) 31)) (-3517 (((-3 |#1| "failed") $) 47)) (-3474 ((|#1| $) NIL)) (-2209 (($ |#1| |#2| $) 61) (($ $ $) 62)) (-3553 (((-794) $ (-1 (-794) (-794) (-794)) (-1 (-794) (-794) (-794)) (-523)) 45)) (-2378 ((|#1| $ (-523)) 30)) (-3731 ((|#2| $ (-523)) 29)) (-4093 (($ (-1 |#1| |#1|) $) 34)) (-2682 (($ (-1 |#2| |#2|) $) 38)) (-1920 (($) 10)) (-3795 (($ |#1| |#2|) 22)) (-2424 (($ (-589 (-2 (|:| |gen| |#1|) (|:| -1811 |#2|)))) 23)) (-1932 (((-589 (-2 (|:| |gen| |#1|) (|:| -1811 |#2|))) $) 13)) (-1974 (($ |#1| $) 56)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1301 (((-108) $ $) 58)) (-1458 (((-794) $) 19) (($ |#1|) 16)) (-3983 (((-108) $ $) 25))) +(((-592 |#1| |#2| |#3|) (-13 (-1016) (-964 |#1|) (-10 -8 (-15 -3553 ((-794) $ (-1 (-794) (-794) (-794)) (-1 (-794) (-794) (-794)) (-523))) (-15 -1932 ((-589 (-2 (|:| |gen| |#1|) (|:| -1811 |#2|))) $)) (-15 -3795 ($ |#1| |#2|)) (-15 -2424 ($ (-589 (-2 (|:| |gen| |#1|) (|:| -1811 |#2|))))) (-15 -3731 (|#2| $ (-523))) (-15 -2378 (|#1| $ (-523))) (-15 -3631 ($ $)) (-15 -2867 ($ $)) (-15 -1703 ((-710) $)) (-15 -1920 ($)) (-15 -2894 ($ $ |#1|)) (-15 -1974 ($ |#1| $)) (-15 -2209 ($ |#1| |#2| $)) (-15 -2209 ($ $ $)) (-15 -1301 ((-108) $ $)) (-15 -2682 ($ (-1 |#2| |#2|) $)) (-15 -4093 ($ (-1 |#1| |#1|) $)))) (-1016) (-23) |#2|) (T -592)) +((-3553 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-794) (-794) (-794))) (-5 *4 (-523)) (-5 *2 (-794)) (-5 *1 (-592 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-23)) (-14 *7 *6))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 *4)))) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-23)) (-14 *5 *4))) (-3795 (*1 *1 *2 *3) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-2424 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 *4)))) (-4 *3 (-1016)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)))) (-3731 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *2 (-23)) (-5 *1 (-592 *4 *2 *5)) (-4 *4 (-1016)) (-14 *5 *2))) (-2378 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *2 (-1016)) (-5 *1 (-592 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3631 (*1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-2867 (*1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-23)) (-14 *5 *4))) (-1920 (*1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-2894 (*1 *1 *1 *2) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-1974 (*1 *1 *2 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-2209 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-2209 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3))) (-1301 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-23)) (-14 *5 *4))) (-2682 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016)))) (-4093 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-592 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1016) (-964 |#1|) (-10 -8 (-15 -3553 ((-794) $ (-1 (-794) (-794) (-794)) (-1 (-794) (-794) (-794)) (-523))) (-15 -1932 ((-589 (-2 (|:| |gen| |#1|) (|:| -1811 |#2|))) $)) (-15 -3795 ($ |#1| |#2|)) (-15 -2424 ($ (-589 (-2 (|:| |gen| |#1|) (|:| -1811 |#2|))))) (-15 -3731 (|#2| $ (-523))) (-15 -2378 (|#1| $ (-523))) (-15 -3631 ($ $)) (-15 -2867 ($ $)) (-15 -1703 ((-710) $)) (-15 -1920 ($)) (-15 -2894 ($ $ |#1|)) (-15 -1974 ($ |#1| $)) (-15 -2209 ($ |#1| |#2| $)) (-15 -2209 ($ $ $)) (-15 -1301 ((-108) $ $)) (-15 -2682 ($ (-1 |#2| |#2|) $)) (-15 -4093 ($ (-1 |#1| |#1|) $)))) +((-3056 (((-523) $) 24)) (-2847 (($ |#2| $ (-523)) 22) (($ $ $ (-523)) NIL)) (-2412 (((-589 (-523)) $) 12)) (-4135 (((-108) (-523) $) 15)) (-2326 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-589 $)) NIL))) +(((-593 |#1| |#2|) (-10 -8 (-15 -2847 (|#1| |#1| |#1| (-523))) (-15 -2847 (|#1| |#2| |#1| (-523))) (-15 -2326 (|#1| (-589 |#1|))) (-15 -2326 (|#1| |#1| |#1|)) (-15 -2326 (|#1| |#2| |#1|)) (-15 -2326 (|#1| |#1| |#2|)) (-15 -3056 ((-523) |#1|)) (-15 -2412 ((-589 (-523)) |#1|)) (-15 -4135 ((-108) (-523) |#1|))) (-594 |#2|) (-1122)) (T -593)) +NIL +(-10 -8 (-15 -2847 (|#1| |#1| |#1| (-523))) (-15 -2847 (|#1| |#2| |#1| (-523))) (-15 -2326 (|#1| (-589 |#1|))) (-15 -2326 (|#1| |#1| |#1|)) (-15 -2326 (|#1| |#2| |#1|)) (-15 -2326 (|#1| |#1| |#2|)) (-15 -3056 ((-523) |#1|)) (-15 -2412 ((-589 (-523)) |#1|)) (-15 -4135 ((-108) (-523) |#1|))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-4207 (((-1173) $ (-523) (-523)) 40 (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) 8)) (-1641 ((|#1| $ (-523) |#1|) 52 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) 58 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-1773 (($ $) 78 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#1| $) 77 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) 53 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 51)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-3052 (($ (-710) |#1|) 69)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 43 (|has| (-523) (-786)))) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 44 (|has| (-523) (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) 60) (($ $ $ (-523)) 59)) (-2412 (((-589 (-523)) $) 46)) (-4135 (((-108) (-523) $) 47)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1738 ((|#1| $) 42 (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-4203 (($ $ |#1|) 41 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ (-523) |#1|) 50) ((|#1| $ (-523)) 49) (($ $ (-1135 (-523))) 63)) (-1469 (($ $ (-523)) 62) (($ $ (-1135 (-523))) 61)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 79 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 70)) (-2326 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-594 |#1|) (-129) (-1122)) (T -594)) +((-3052 (*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) (-2326 (*1 *1 *1 *2) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1122)))) (-2326 (*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1122)))) (-2326 (*1 *1 *1 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1122)))) (-2326 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) (-3612 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 (-1135 (-523))) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) (-1469 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) (-1469 (*1 *1 *1 *2) (-12 (-5 *2 (-1135 (-523))) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) (-2847 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-594 *2)) (-4 *2 (-1122)))) (-2847 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) (-1641 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1135 (-523))) (|has| *1 (-6 -4245)) (-4 *1 (-594 *2)) (-4 *2 (-1122))))) +(-13 (-556 (-523) |t#1|) (-140 |t#1|) (-10 -8 (-15 -3052 ($ (-710) |t#1|)) (-15 -2326 ($ $ |t#1|)) (-15 -2326 ($ |t#1| $)) (-15 -2326 ($ $ $)) (-15 -2326 ($ (-589 $))) (-15 -3612 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3223 ($ $ (-1135 (-523)))) (-15 -1469 ($ $ (-523))) (-15 -1469 ($ $ (-1135 (-523)))) (-15 -2847 ($ |t#1| $ (-523))) (-15 -2847 ($ $ $ (-523))) (IF (|has| $ (-6 -4245)) (-15 -1641 (|t#1| $ (-1135 (-523)) |t#1|)) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) +((-1940 (((-3 |#2| "failed") |#3| |#2| (-1087) |#2| (-589 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) "failed") |#3| |#2| (-1087)) 43))) +(((-595 |#1| |#2| |#3|) (-10 -7 (-15 -1940 ((-3 (-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) "failed") |#3| |#2| (-1087))) (-15 -1940 ((-3 |#2| "failed") |#3| |#2| (-1087) |#2| (-589 |#2|)))) (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136)) (-13 (-29 |#1|) (-1108) (-889)) (-599 |#2|)) (T -595)) +((-1940 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-589 *2)) (-4 *2 (-13 (-29 *6) (-1108) (-889))) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *1 (-595 *6 *2 *3)) (-4 *3 (-599 *2)))) (-1940 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1087)) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-4 *4 (-13 (-29 *6) (-1108) (-889))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4041 (-589 *4)))) (-5 *1 (-595 *6 *4 *3)) (-4 *3 (-599 *4))))) +(-10 -7 (-15 -1940 ((-3 (-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) "failed") |#3| |#2| (-1087))) (-15 -1940 ((-3 |#2| "failed") |#3| |#2| (-1087) |#2| (-589 |#2|)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1709 (($ $) NIL (|has| |#1| (-339)))) (-2731 (($ $ $) NIL (|has| |#1| (-339)))) (-2221 (($ $ (-710)) NIL (|has| |#1| (-339)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2383 (($ $ $) NIL (|has| |#1| (-339)))) (-2324 (($ $ $) NIL (|has| |#1| (-339)))) (-1354 (($ $ $) NIL (|has| |#1| (-339)))) (-1470 (($ $ $) NIL (|has| |#1| (-339)))) (-3852 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-1371 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-2042 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#1| (-427)))) (-2023 (((-108) $) NIL)) (-1933 (($ |#1| (-710)) NIL)) (-2225 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-515)))) (-2024 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-515)))) (-1575 (((-710) $) NIL)) (-3077 (($ $ $) NIL (|has| |#1| (-339)))) (-3082 (($ $ $) NIL (|has| |#1| (-339)))) (-2035 (($ $ $) NIL (|has| |#1| (-339)))) (-2500 (($ $ $) NIL (|has| |#1| (-339)))) (-3645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-1687 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-3091 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-3223 ((|#1| $ |#1|) NIL)) (-3332 (($ $ $) NIL (|has| |#1| (-339)))) (-2299 (((-710) $) NIL)) (-2438 ((|#1| $) NIL (|has| |#1| (-427)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) NIL)) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-710)) NIL)) (-1621 (((-710)) NIL)) (-1677 ((|#1| $ |#1| |#1|) NIL)) (-2708 (($ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($) NIL)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-596 |#1|) (-599 |#1|) (-211)) (T -596)) +NIL +(-599 |#1|) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1709 (($ $) NIL (|has| |#1| (-339)))) (-2731 (($ $ $) NIL (|has| |#1| (-339)))) (-2221 (($ $ (-710)) NIL (|has| |#1| (-339)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2383 (($ $ $) NIL (|has| |#1| (-339)))) (-2324 (($ $ $) NIL (|has| |#1| (-339)))) (-1354 (($ $ $) NIL (|has| |#1| (-339)))) (-1470 (($ $ $) NIL (|has| |#1| (-339)))) (-3852 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-1371 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-2042 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#1| (-427)))) (-2023 (((-108) $) NIL)) (-1933 (($ |#1| (-710)) NIL)) (-2225 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-515)))) (-2024 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-515)))) (-1575 (((-710) $) NIL)) (-3077 (($ $ $) NIL (|has| |#1| (-339)))) (-3082 (($ $ $) NIL (|has| |#1| (-339)))) (-2035 (($ $ $) NIL (|has| |#1| (-339)))) (-2500 (($ $ $) NIL (|has| |#1| (-339)))) (-3645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-1687 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-3091 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-3223 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3332 (($ $ $) NIL (|has| |#1| (-339)))) (-2299 (((-710) $) NIL)) (-2438 ((|#1| $) NIL (|has| |#1| (-427)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) NIL)) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-710)) NIL)) (-1621 (((-710)) NIL)) (-1677 ((|#1| $ |#1| |#1|) NIL)) (-2708 (($ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($) NIL)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-597 |#1| |#2|) (-13 (-599 |#1|) (-263 |#2| |#2|)) (-211) (-13 (-591 |#1|) (-10 -8 (-15 -3523 ($ $))))) (T -597)) +NIL +(-13 (-599 |#1|) (-263 |#2| |#2|)) +((-1709 (($ $) 27)) (-2708 (($ $) 25)) (-2862 (($) 12))) +(((-598 |#1| |#2|) (-10 -8 (-15 -1709 (|#1| |#1|)) (-15 -2708 (|#1| |#1|)) (-15 -2862 (|#1|))) (-599 |#2|) (-973)) (T -598)) +NIL +(-10 -8 (-15 -1709 (|#1| |#1|)) (-15 -2708 (|#1| |#1|)) (-15 -2862 (|#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1709 (($ $) 82 (|has| |#1| (-339)))) (-2731 (($ $ $) 84 (|has| |#1| (-339)))) (-2221 (($ $ (-710)) 83 (|has| |#1| (-339)))) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2383 (($ $ $) 45 (|has| |#1| (-339)))) (-2324 (($ $ $) 46 (|has| |#1| (-339)))) (-1354 (($ $ $) 48 (|has| |#1| (-339)))) (-1470 (($ $ $) 43 (|has| |#1| (-339)))) (-3852 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 42 (|has| |#1| (-339)))) (-1371 (((-3 $ "failed") $ $) 44 (|has| |#1| (-339)))) (-2042 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 47 (|has| |#1| (-339)))) (-3517 (((-3 (-523) "failed") $) 74 (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 72 (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 69)) (-3474 (((-523) $) 75 (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) 73 (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 68)) (-3810 (($ $) 64)) (-2121 (((-3 $ "failed") $) 34)) (-2528 (($ $) 55 (|has| |#1| (-427)))) (-2023 (((-108) $) 31)) (-1933 (($ |#1| (-710)) 62)) (-2225 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57 (|has| |#1| (-515)))) (-2024 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 58 (|has| |#1| (-515)))) (-1575 (((-710) $) 66)) (-3077 (($ $ $) 52 (|has| |#1| (-339)))) (-3082 (($ $ $) 53 (|has| |#1| (-339)))) (-2035 (($ $ $) 41 (|has| |#1| (-339)))) (-2500 (($ $ $) 50 (|has| |#1| (-339)))) (-3645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 49 (|has| |#1| (-339)))) (-1687 (((-3 $ "failed") $ $) 51 (|has| |#1| (-339)))) (-3091 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 54 (|has| |#1| (-339)))) (-3786 ((|#1| $) 65)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3746 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-515)))) (-3223 ((|#1| $ |#1|) 87)) (-3332 (($ $ $) 81 (|has| |#1| (-339)))) (-2299 (((-710) $) 67)) (-2438 ((|#1| $) 56 (|has| |#1| (-427)))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 71 (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) 70)) (-1251 (((-589 |#1|) $) 61)) (-2365 ((|#1| $ (-710)) 63)) (-1621 (((-710)) 29)) (-1677 ((|#1| $ |#1| |#1|) 60)) (-2708 (($ $) 85)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($) 86)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76))) +(((-599 |#1|) (-129) (-973)) (T -599)) +((-2862 (*1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)))) (-2708 (*1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)))) (-2731 (*1 *1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-2221 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-599 *3)) (-4 *3 (-973)) (-4 *3 (-339)))) (-1709 (*1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-3332 (*1 *1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(-13 (-788 |t#1|) (-263 |t#1| |t#1|) (-10 -8 (-15 -2862 ($)) (-15 -2708 ($ $)) (IF (|has| |t#1| (-339)) (PROGN (-15 -2731 ($ $ $)) (-15 -2221 ($ $ (-710))) (-15 -1709 ($ $)) (-15 -3332 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-158)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-263 |#1| |#1|) . T) ((-387 |#1|) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-657 |#1|) |has| |#1| (-158)) ((-666) . T) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-979 |#1|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-788 |#1|) . T)) +((-2441 (((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|))) 73 (|has| |#1| (-27)))) (-1820 (((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|))) 72 (|has| |#1| (-27))) (((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|)) 15))) +(((-600 |#1| |#2|) (-10 -7 (-15 -1820 ((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1820 ((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|)))) (-15 -2441 ((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|))))) |%noBranch|)) (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523)))) (-1144 |#1|)) (T -600)) +((-2441 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *5 (-1144 *4)) (-5 *2 (-589 (-596 (-383 *5)))) (-5 *1 (-600 *4 *5)) (-5 *3 (-596 (-383 *5))))) (-1820 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *5 (-1144 *4)) (-5 *2 (-589 (-596 (-383 *5)))) (-5 *1 (-600 *4 *5)) (-5 *3 (-596 (-383 *5))))) (-1820 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-589 *5) *6)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *6 (-1144 *5)) (-5 *2 (-589 (-596 (-383 *6)))) (-5 *1 (-600 *5 *6)) (-5 *3 (-596 (-383 *6)))))) +(-10 -7 (-15 -1820 ((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1820 ((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|)))) (-15 -2441 ((-589 (-596 (-383 |#2|))) (-596 (-383 |#2|))))) |%noBranch|)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1709 (($ $) NIL (|has| |#1| (-339)))) (-2731 (($ $ $) 28 (|has| |#1| (-339)))) (-2221 (($ $ (-710)) 31 (|has| |#1| (-339)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2383 (($ $ $) NIL (|has| |#1| (-339)))) (-2324 (($ $ $) NIL (|has| |#1| (-339)))) (-1354 (($ $ $) NIL (|has| |#1| (-339)))) (-1470 (($ $ $) NIL (|has| |#1| (-339)))) (-3852 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-1371 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-2042 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#1| (-427)))) (-2023 (((-108) $) NIL)) (-1933 (($ |#1| (-710)) NIL)) (-2225 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-515)))) (-2024 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-515)))) (-1575 (((-710) $) NIL)) (-3077 (($ $ $) NIL (|has| |#1| (-339)))) (-3082 (($ $ $) NIL (|has| |#1| (-339)))) (-2035 (($ $ $) NIL (|has| |#1| (-339)))) (-2500 (($ $ $) NIL (|has| |#1| (-339)))) (-3645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-1687 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-3091 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-3223 ((|#1| $ |#1|) 24)) (-3332 (($ $ $) 33 (|has| |#1| (-339)))) (-2299 (((-710) $) NIL)) (-2438 ((|#1| $) NIL (|has| |#1| (-427)))) (-1458 (((-794) $) 20) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) NIL)) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-710)) NIL)) (-1621 (((-710)) NIL)) (-1677 ((|#1| $ |#1| |#1|) 23)) (-2708 (($ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 21 T CONST)) (-2767 (($) 8 T CONST)) (-2862 (($) NIL)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-601 |#1| |#2|) (-599 |#1|) (-973) (-1 |#1| |#1|)) (T -601)) +NIL +(-599 |#1|) +((-2731 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 60)) (-2221 ((|#2| |#2| (-710) (-1 |#1| |#1|)) 41)) (-3332 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 62))) +(((-602 |#1| |#2|) (-10 -7 (-15 -2731 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2221 (|#2| |#2| (-710) (-1 |#1| |#1|))) (-15 -3332 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-339) (-599 |#1|)) (T -602)) +((-3332 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-339)) (-5 *1 (-602 *4 *2)) (-4 *2 (-599 *4)))) (-2221 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-710)) (-5 *4 (-1 *5 *5)) (-4 *5 (-339)) (-5 *1 (-602 *5 *2)) (-4 *2 (-599 *5)))) (-2731 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-339)) (-5 *1 (-602 *4 *2)) (-4 *2 (-599 *4))))) +(-10 -7 (-15 -2731 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2221 (|#2| |#2| (-710) (-1 |#1| |#1|))) (-15 -3332 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-3651 (($ $ $) 9))) +(((-603 |#1|) (-10 -8 (-15 -3651 (|#1| |#1| |#1|))) (-604)) (T -603)) +NIL +(-10 -8 (-15 -3651 (|#1| |#1| |#1|))) +((-3924 (((-108) $ $) 7)) (-2573 (($ $) 10)) (-3651 (($ $ $) 8)) (-3983 (((-108) $ $) 6)) (-3640 (($ $ $) 9))) +(((-604) (-129)) (T -604)) +((-2573 (*1 *1 *1) (-4 *1 (-604))) (-3640 (*1 *1 *1 *1) (-4 *1 (-604))) (-3651 (*1 *1 *1 *1) (-4 *1 (-604)))) +(-13 (-97) (-10 -8 (-15 -2573 ($ $)) (-15 -3640 ($ $ $)) (-15 -3651 ($ $ $)))) (((-97) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 15)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-2947 ((|#1| $) 21)) (-1308 (($ $ $) NIL (|has| |#1| (-728)))) (-2524 (($ $ $) NIL (|has| |#1| (-728)))) (-2311 (((-1068) $) 46)) (-4174 (((-1032) $) NIL)) (-2959 ((|#3| $) 22)) (-2217 (((-792) $) 42)) (-3697 (($) 10 T CONST)) (-1623 (((-108) $ $) NIL (|has| |#1| (-728)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-728)))) (-1562 (((-108) $ $) 20)) (-1609 (((-108) $ $) NIL (|has| |#1| (-728)))) (-1587 (((-108) $ $) 24 (|has| |#1| (-728)))) (-1682 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1672 (($ $) 17) (($ $ $) NIL)) (-1661 (($ $ $) 27)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) -(((-604 |#1| |#2| |#3|) (-13 (-655 |#2|) (-10 -8 (IF (|has| |#1| (-728)) (-6 (-728)) |%noBranch|) (-15 -1682 ($ $ |#3|)) (-15 -1682 ($ |#1| |#3|)) (-15 -2947 (|#1| $)) (-15 -2959 (|#3| $)))) (-655 |#2|) (-157) (|SubsetCategory| (-664) |#2|)) (T -604)) -((-1682 (*1 *1 *1 *2) (-12 (-4 *4 (-157)) (-5 *1 (-604 *3 *4 *2)) (-4 *3 (-655 *4)) (-4 *2 (|SubsetCategory| (-664) *4)))) (-1682 (*1 *1 *2 *3) (-12 (-4 *4 (-157)) (-5 *1 (-604 *2 *4 *3)) (-4 *2 (-655 *4)) (-4 *3 (|SubsetCategory| (-664) *4)))) (-2947 (*1 *2 *1) (-12 (-4 *3 (-157)) (-4 *2 (-655 *3)) (-5 *1 (-604 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-664) *3)))) (-2959 (*1 *2 *1) (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-664) *4)) (-5 *1 (-604 *3 *4 *2)) (-4 *3 (-655 *4))))) -(-13 (-655 |#2|) (-10 -8 (IF (|has| |#1| (-728)) (-6 (-728)) |%noBranch|) (-15 -1682 ($ $ |#3|)) (-15 -1682 ($ |#1| |#3|)) (-15 -2947 (|#1| $)) (-15 -2959 (|#3| $)))) -((-1814 (((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|)) 33))) -(((-605 |#1|) (-10 -7 (-15 -1814 ((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|)))) (-838)) (T -605)) -((-1814 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-588 (-1081 *4))) (-5 *3 (-1081 *4)) (-4 *4 (-838)) (-5 *1 (-605 *4))))) -(-10 -7 (-15 -1814 ((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-4127 (((-588 |#1|) $) 83)) (-3331 (($ $ (-708)) 91)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-1745 (((-1188 |#1| |#2|) (-1188 |#1| |#2|) $) 48)) (-3700 (((-3 (-613 |#1|) "failed") $) NIL)) (-1478 (((-613 |#1|) $) NIL)) (-3241 (($ $) 90)) (-1391 (((-708) $) NIL)) (-3038 (((-588 $) $) NIL)) (-1374 (((-108) $) NIL)) (-2623 (($ (-613 |#1|) |#2|) 69)) (-2182 (($ $) 87)) (-3810 (($ (-1 |#2| |#2|) $) NIL)) (-4038 (((-1188 |#1| |#2|) (-1188 |#1| |#2|) $) 47)) (-2893 (((-2 (|:| |k| (-613 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3216 (((-613 |#1|) $) NIL)) (-3224 ((|#2| $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2330 (($ $ |#1| $) 30) (($ $ (-588 |#1|) (-588 $)) 32)) (-2487 (((-708) $) 89)) (-2227 (($ $ $) 20) (($ (-613 |#1|) (-613 |#1|)) 78) (($ (-613 |#1|) $) 76) (($ $ (-613 |#1|)) 77)) (-2217 (((-792) $) NIL) (($ |#1|) 75) (((-1179 |#1| |#2|) $) 59) (((-1188 |#1| |#2|) $) 41) (($ (-613 |#1|)) 25)) (-2180 (((-588 |#2|) $) NIL)) (-1643 ((|#2| $ (-613 |#1|)) NIL)) (-3112 ((|#2| (-1188 |#1| |#2|) $) 43)) (-3697 (($) 23 T CONST)) (-1738 (((-588 (-2 (|:| |k| (-613 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3600 (((-3 $ "failed") (-1179 |#1| |#2|)) 61)) (-1612 (($ (-613 |#1|)) 14)) (-1562 (((-108) $ $) 44)) (-1682 (($ $ |#2|) NIL (|has| |#2| (-338)))) (-1672 (($ $) 67) (($ $ $) NIL)) (-1661 (($ $ $) 29)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-613 |#1|)) NIL))) -(((-606 |#1| |#2|) (-13 (-349 |#1| |#2|) (-357 |#2| (-613 |#1|)) (-10 -8 (-15 -3600 ((-3 $ "failed") (-1179 |#1| |#2|))) (-15 -2227 ($ (-613 |#1|) (-613 |#1|))) (-15 -2227 ($ (-613 |#1|) $)) (-15 -2227 ($ $ (-613 |#1|))))) (-784) (-157)) (T -606)) -((-3600 (*1 *1 *2) (|partial| -12 (-5 *2 (-1179 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) (-5 *1 (-606 *3 *4)))) (-2227 (*1 *1 *2 *2) (-12 (-5 *2 (-613 *3)) (-4 *3 (-784)) (-5 *1 (-606 *3 *4)) (-4 *4 (-157)))) (-2227 (*1 *1 *2 *1) (-12 (-5 *2 (-613 *3)) (-4 *3 (-784)) (-5 *1 (-606 *3 *4)) (-4 *4 (-157)))) (-2227 (*1 *1 *1 *2) (-12 (-5 *2 (-613 *3)) (-4 *3 (-784)) (-5 *1 (-606 *3 *4)) (-4 *4 (-157))))) -(-13 (-349 |#1| |#2|) (-357 |#2| (-613 |#1|)) (-10 -8 (-15 -3600 ((-3 $ "failed") (-1179 |#1| |#2|))) (-15 -2227 ($ (-613 |#1|) (-613 |#1|))) (-15 -2227 ($ (-613 |#1|) $)) (-15 -2227 ($ $ (-613 |#1|))))) -((-1866 (((-108) $) NIL) (((-108) (-1 (-108) |#2| |#2|) $) 50)) (-2806 (($ $) NIL) (($ (-1 (-108) |#2| |#2|) $) 11)) (-1213 (($ (-1 (-108) |#2|) $) 28)) (-2465 (($ $) 56)) (-1581 (($ $) 63)) (-1700 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 37)) (-2153 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-3314 (((-522) |#2| $ (-522)) 61) (((-522) |#2| $) NIL) (((-522) (-1 (-108) |#2|) $) 47)) (-1893 (($ (-708) |#2|) 54)) (-3557 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 30)) (-3164 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 24)) (-3810 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-1614 (($ |#2|) 14)) (-3365 (($ $ $ (-522)) 36) (($ |#2| $ (-522)) 34)) (-2187 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 46)) (-3551 (($ $ (-1133 (-522))) 44) (($ $ (-522)) 38)) (-3629 (($ $ $ (-522)) 60)) (-2463 (($ $) 58)) (-1587 (((-108) $ $) 65))) -(((-607 |#1| |#2|) (-10 -8 (-15 -1614 (|#1| |#2|)) (-15 -3551 (|#1| |#1| (-522))) (-15 -3551 (|#1| |#1| (-1133 (-522)))) (-15 -1700 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3365 (|#1| |#2| |#1| (-522))) (-15 -3365 (|#1| |#1| |#1| (-522))) (-15 -3557 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1213 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1700 (|#1| |#2| |#1|)) (-15 -1581 (|#1| |#1|)) (-15 -3557 (|#1| |#1| |#1|)) (-15 -3164 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1866 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3314 ((-522) (-1 (-108) |#2|) |#1|)) (-15 -3314 ((-522) |#2| |#1|)) (-15 -3314 ((-522) |#2| |#1| (-522))) (-15 -3164 (|#1| |#1| |#1|)) (-15 -1866 ((-108) |#1|)) (-15 -3629 (|#1| |#1| |#1| (-522))) (-15 -2465 (|#1| |#1|)) (-15 -2806 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -1587 ((-108) |#1| |#1|)) (-15 -2153 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2153 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2153 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2187 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -1893 (|#1| (-708) |#2|)) (-15 -3810 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3810 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2463 (|#1| |#1|))) (-608 |#2|) (-1120)) (T -607)) -NIL -(-10 -8 (-15 -1614 (|#1| |#2|)) (-15 -3551 (|#1| |#1| (-522))) (-15 -3551 (|#1| |#1| (-1133 (-522)))) (-15 -1700 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3365 (|#1| |#2| |#1| (-522))) (-15 -3365 (|#1| |#1| |#1| (-522))) (-15 -3557 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1213 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1700 (|#1| |#2| |#1|)) (-15 -1581 (|#1| |#1|)) (-15 -3557 (|#1| |#1| |#1|)) (-15 -3164 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1866 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3314 ((-522) (-1 (-108) |#2|) |#1|)) (-15 -3314 ((-522) |#2| |#1|)) (-15 -3314 ((-522) |#2| |#1| (-522))) (-15 -3164 (|#1| |#1| |#1|)) (-15 -1866 ((-108) |#1|)) (-15 -3629 (|#1| |#1| |#1| (-522))) (-15 -2465 (|#1| |#1|)) (-15 -2806 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -1587 ((-108) |#1| |#1|)) (-15 -2153 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2153 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2153 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2187 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -1893 (|#1| (-708) |#2|)) (-15 -3810 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3810 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2463 (|#1| |#1|))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3526 ((|#1| $) 48)) (-2126 ((|#1| $) 65)) (-3961 (($ $) 67)) (-3883 (((-1171) $ (-522) (-522)) 97 (|has| $ (-6 -4239)))) (-2211 (($ $ (-522)) 52 (|has| $ (-6 -4239)))) (-1866 (((-108) $) 142 (|has| |#1| (-784))) (((-108) (-1 (-108) |#1| |#1|) $) 136)) (-2806 (($ $) 146 (-12 (|has| |#1| (-784)) (|has| $ (-6 -4239)))) (($ (-1 (-108) |#1| |#1|) $) 145 (|has| $ (-6 -4239)))) (-3296 (($ $) 141 (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $) 135)) (-2717 (((-108) $ (-708)) 8)) (-1198 ((|#1| $ |#1|) 39 (|has| $ (-6 -4239)))) (-2398 (($ $ $) 56 (|has| $ (-6 -4239)))) (-2631 ((|#1| $ |#1|) 54 (|has| $ (-6 -4239)))) (-3393 ((|#1| $ |#1|) 58 (|has| $ (-6 -4239)))) (-2437 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4239))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4239))) (($ $ "rest" $) 55 (|has| $ (-6 -4239))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) 117 (|has| $ (-6 -4239))) ((|#1| $ (-522) |#1|) 86 (|has| $ (-6 -4239)))) (-2684 (($ $ (-588 $)) 41 (|has| $ (-6 -4239)))) (-1213 (($ (-1 (-108) |#1|) $) 129)) (-1696 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4238)))) (-2116 ((|#1| $) 66)) (-3367 (($) 7 T CONST)) (-2465 (($ $) 144 (|has| $ (-6 -4239)))) (-1939 (($ $) 134)) (-2352 (($ $) 73) (($ $ (-708)) 71)) (-1581 (($ $) 131 (|has| |#1| (-1014)))) (-2379 (($ $) 99 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1700 (($ |#1| $) 130 (|has| |#1| (-1014))) (($ (-1 (-108) |#1|) $) 125)) (-1424 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4238))) (($ |#1| $) 100 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2411 ((|#1| $ (-522) |#1|) 85 (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-522)) 87)) (-3614 (((-108) $) 83)) (-3314 (((-522) |#1| $ (-522)) 139 (|has| |#1| (-1014))) (((-522) |#1| $) 138 (|has| |#1| (-1014))) (((-522) (-1 (-108) |#1|) $) 137)) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-2674 (((-588 $) $) 50)) (-2402 (((-108) $ $) 42 (|has| |#1| (-1014)))) (-1893 (($ (-708) |#1|) 108)) (-1480 (((-108) $ (-708)) 9)) (-3496 (((-522) $) 95 (|has| (-522) (-784)))) (-1308 (($ $ $) 147 (|has| |#1| (-784)))) (-3557 (($ $ $) 132 (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) 128)) (-3164 (($ $ $) 140 (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) 133)) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2201 (((-522) $) 94 (|has| (-522) (-784)))) (-2524 (($ $ $) 148 (|has| |#1| (-784)))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1614 (($ |#1|) 122)) (-3309 (((-108) $ (-708)) 10)) (-2548 (((-588 |#1|) $) 45)) (-3394 (((-108) $) 49)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1442 ((|#1| $) 70) (($ $ (-708)) 68)) (-3365 (($ $ $ (-522)) 127) (($ |#1| $ (-522)) 126)) (-1731 (($ $ $ (-522)) 116) (($ |#1| $ (-522)) 115)) (-2130 (((-588 (-522)) $) 92)) (-2103 (((-108) (-522) $) 91)) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2337 ((|#1| $) 76) (($ $ (-708)) 74)) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-1972 (($ $ |#1|) 96 (|has| $ (-6 -4239)))) (-4196 (((-108) $) 84)) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3434 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) 90)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1133 (-522))) 112) ((|#1| $ (-522)) 89) ((|#1| $ (-522) |#1|) 88)) (-3381 (((-522) $ $) 44)) (-3551 (($ $ (-1133 (-522))) 124) (($ $ (-522)) 123)) (-3835 (($ $ (-1133 (-522))) 114) (($ $ (-522)) 113)) (-3395 (((-108) $) 46)) (-2885 (($ $) 62)) (-1668 (($ $) 59 (|has| $ (-6 -4239)))) (-1321 (((-708) $) 63)) (-1502 (($ $) 64)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3629 (($ $ $ (-522)) 143 (|has| $ (-6 -4239)))) (-2463 (($ $) 13)) (-3873 (((-498) $) 98 (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) 107)) (-2335 (($ $ $) 61) (($ $ |#1|) 60)) (-4170 (($ $ $) 78) (($ |#1| $) 77) (($ (-588 $)) 110) (($ $ |#1|) 109)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1515 (((-588 $) $) 51)) (-3294 (((-108) $ $) 43 (|has| |#1| (-1014)))) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1623 (((-108) $ $) 150 (|has| |#1| (-784)))) (-1597 (((-108) $ $) 151 (|has| |#1| (-784)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-1609 (((-108) $ $) 149 (|has| |#1| (-784)))) (-1587 (((-108) $ $) 152 (|has| |#1| (-784)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-608 |#1|) (-1197) (-1120)) (T -608)) -((-1614 (*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1120))))) -(-13 (-1059 |t#1|) (-348 |t#1|) (-258 |t#1|) (-10 -8 (-15 -1614 ($ |t#1|)))) -(((-33) . T) ((-97) -3844 (|has| |#1| (-1014)) (|has| |#1| (-784))) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-784)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-262 #0=(-522) |#1|) . T) ((-264 #0# |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-258 |#1|) . T) ((-348 |#1|) . T) ((-461 |#1|) . T) ((-555 #0# |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-593 |#1|) . T) ((-784) |has| |#1| (-784)) ((-936 |#1|) . T) ((-1014) -3844 (|has| |#1| (-1014)) (|has| |#1| (-784))) ((-1059 |#1|) . T) ((-1120) . T) ((-1154 |#1|) . T)) -((-2925 (((-588 (-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -2905 (-588 (-1166 |#1|))))) (-588 (-588 |#1|)) (-588 (-1166 |#1|))) 21) (((-588 (-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -2905 (-588 (-1166 |#1|))))) (-628 |#1|) (-588 (-1166 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -2905 (-588 (-1166 |#1|)))) (-588 (-588 |#1|)) (-1166 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -2905 (-588 (-1166 |#1|)))) (-628 |#1|) (-1166 |#1|)) 13)) (-1692 (((-708) (-628 |#1|) (-1166 |#1|)) 29)) (-2786 (((-3 (-1166 |#1|) "failed") (-628 |#1|) (-1166 |#1|)) 23)) (-1802 (((-108) (-628 |#1|) (-1166 |#1|)) 26))) -(((-609 |#1|) (-10 -7 (-15 -2925 ((-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -2905 (-588 (-1166 |#1|)))) (-628 |#1|) (-1166 |#1|))) (-15 -2925 ((-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -2905 (-588 (-1166 |#1|)))) (-588 (-588 |#1|)) (-1166 |#1|))) (-15 -2925 ((-588 (-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -2905 (-588 (-1166 |#1|))))) (-628 |#1|) (-588 (-1166 |#1|)))) (-15 -2925 ((-588 (-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -2905 (-588 (-1166 |#1|))))) (-588 (-588 |#1|)) (-588 (-1166 |#1|)))) (-15 -2786 ((-3 (-1166 |#1|) "failed") (-628 |#1|) (-1166 |#1|))) (-15 -1802 ((-108) (-628 |#1|) (-1166 |#1|))) (-15 -1692 ((-708) (-628 |#1|) (-1166 |#1|)))) (-338)) (T -609)) -((-1692 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-338)) (-5 *2 (-708)) (-5 *1 (-609 *5)))) (-1802 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-338)) (-5 *2 (-108)) (-5 *1 (-609 *5)))) (-2786 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1166 *4)) (-5 *3 (-628 *4)) (-4 *4 (-338)) (-5 *1 (-609 *4)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-588 *5))) (-4 *5 (-338)) (-5 *2 (-588 (-2 (|:| |particular| (-3 (-1166 *5) "failed")) (|:| -2905 (-588 (-1166 *5)))))) (-5 *1 (-609 *5)) (-5 *4 (-588 (-1166 *5))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *5)) (-4 *5 (-338)) (-5 *2 (-588 (-2 (|:| |particular| (-3 (-1166 *5) "failed")) (|:| -2905 (-588 (-1166 *5)))))) (-5 *1 (-609 *5)) (-5 *4 (-588 (-1166 *5))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-588 *5))) (-4 *5 (-338)) (-5 *2 (-2 (|:| |particular| (-3 (-1166 *5) "failed")) (|:| -2905 (-588 (-1166 *5))))) (-5 *1 (-609 *5)) (-5 *4 (-1166 *5)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *5)) (-4 *5 (-338)) (-5 *2 (-2 (|:| |particular| (-3 (-1166 *5) "failed")) (|:| -2905 (-588 (-1166 *5))))) (-5 *1 (-609 *5)) (-5 *4 (-1166 *5))))) -(-10 -7 (-15 -2925 ((-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -2905 (-588 (-1166 |#1|)))) (-628 |#1|) (-1166 |#1|))) (-15 -2925 ((-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -2905 (-588 (-1166 |#1|)))) (-588 (-588 |#1|)) (-1166 |#1|))) (-15 -2925 ((-588 (-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -2905 (-588 (-1166 |#1|))))) (-628 |#1|) (-588 (-1166 |#1|)))) (-15 -2925 ((-588 (-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -2905 (-588 (-1166 |#1|))))) (-588 (-588 |#1|)) (-588 (-1166 |#1|)))) (-15 -2786 ((-3 (-1166 |#1|) "failed") (-628 |#1|) (-1166 |#1|))) (-15 -1802 ((-108) (-628 |#1|) (-1166 |#1|))) (-15 -1692 ((-708) (-628 |#1|) (-1166 |#1|)))) -((-2925 (((-588 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2905 (-588 |#3|)))) |#4| (-588 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2905 (-588 |#3|))) |#4| |#3|) 45)) (-1692 (((-708) |#4| |#3|) 17)) (-2786 (((-3 |#3| "failed") |#4| |#3|) 20)) (-1802 (((-108) |#4| |#3|) 13))) -(((-610 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2925 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2905 (-588 |#3|))) |#4| |#3|)) (-15 -2925 ((-588 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2905 (-588 |#3|)))) |#4| (-588 |#3|))) (-15 -2786 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1802 ((-108) |#4| |#3|)) (-15 -1692 ((-708) |#4| |#3|))) (-338) (-13 (-348 |#1|) (-10 -7 (-6 -4239))) (-13 (-348 |#1|) (-10 -7 (-6 -4239))) (-626 |#1| |#2| |#3|)) (T -610)) -((-1692 (*1 *2 *3 *4) (-12 (-4 *5 (-338)) (-4 *6 (-13 (-348 *5) (-10 -7 (-6 -4239)))) (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4239)))) (-5 *2 (-708)) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4)))) (-1802 (*1 *2 *3 *4) (-12 (-4 *5 (-338)) (-4 *6 (-13 (-348 *5) (-10 -7 (-6 -4239)))) (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4239)))) (-5 *2 (-108)) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4)))) (-2786 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-338)) (-4 *5 (-13 (-348 *4) (-10 -7 (-6 -4239)))) (-4 *2 (-13 (-348 *4) (-10 -7 (-6 -4239)))) (-5 *1 (-610 *4 *5 *2 *3)) (-4 *3 (-626 *4 *5 *2)))) (-2925 (*1 *2 *3 *4) (-12 (-4 *5 (-338)) (-4 *6 (-13 (-348 *5) (-10 -7 (-6 -4239)))) (-4 *7 (-13 (-348 *5) (-10 -7 (-6 -4239)))) (-5 *2 (-588 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2905 (-588 *7))))) (-5 *1 (-610 *5 *6 *7 *3)) (-5 *4 (-588 *7)) (-4 *3 (-626 *5 *6 *7)))) (-2925 (*1 *2 *3 *4) (-12 (-4 *5 (-338)) (-4 *6 (-13 (-348 *5) (-10 -7 (-6 -4239)))) (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4239)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2905 (-588 *4)))) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4))))) -(-10 -7 (-15 -2925 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2905 (-588 |#3|))) |#4| |#3|)) (-15 -2925 ((-588 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2905 (-588 |#3|)))) |#4| (-588 |#3|))) (-15 -2786 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1802 ((-108) |#4| |#3|)) (-15 -1692 ((-708) |#4| |#3|))) -((-1297 (((-2 (|:| |particular| (-3 (-1166 (-382 |#4|)) "failed")) (|:| -2905 (-588 (-1166 (-382 |#4|))))) (-588 |#4|) (-588 |#3|)) 45))) -(((-611 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1297 ((-2 (|:| |particular| (-3 (-1166 (-382 |#4|)) "failed")) (|:| -2905 (-588 (-1166 (-382 |#4|))))) (-588 |#4|) (-588 |#3|)))) (-514) (-730) (-784) (-878 |#1| |#2| |#3|)) (T -611)) -((-1297 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 *7)) (-4 *7 (-784)) (-4 *8 (-878 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730)) (-5 *2 (-2 (|:| |particular| (-3 (-1166 (-382 *8)) "failed")) (|:| -2905 (-588 (-1166 (-382 *8)))))) (-5 *1 (-611 *5 *6 *7 *8))))) -(-10 -7 (-15 -1297 ((-2 (|:| |particular| (-3 (-1166 (-382 |#4|)) "failed")) (|:| -2905 (-588 (-1166 (-382 |#4|))))) (-588 |#4|) (-588 |#3|)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2541 (((-3 $ "failed")) NIL (|has| |#2| (-514)))) (-1945 ((|#2| $) NIL)) (-3455 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3690 (((-1166 (-628 |#2|))) NIL) (((-1166 (-628 |#2|)) (-1166 $)) NIL)) (-2208 (((-108) $) NIL)) (-2726 (((-1166 $)) 37)) (-2717 (((-108) $ (-708)) NIL)) (-1348 (($ |#2|) NIL)) (-3367 (($) NIL T CONST)) (-2091 (($ $) NIL (|has| |#2| (-283)))) (-2635 (((-217 |#1| |#2|) $ (-522)) NIL)) (-2722 (((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed")) NIL (|has| |#2| (-514)))) (-3050 (((-3 $ "failed")) NIL (|has| |#2| (-514)))) (-3531 (((-628 |#2|)) NIL) (((-628 |#2|) (-1166 $)) NIL)) (-2046 ((|#2| $) NIL)) (-2853 (((-628 |#2|) $) NIL) (((-628 |#2|) $ (-1166 $)) NIL)) (-1279 (((-3 $ "failed") $) NIL (|has| |#2| (-514)))) (-1662 (((-1081 (-881 |#2|))) NIL (|has| |#2| (-338)))) (-2698 (($ $ (-850)) NIL)) (-3676 ((|#2| $) NIL)) (-4080 (((-1081 |#2|) $) NIL (|has| |#2| (-514)))) (-4035 ((|#2|) NIL) ((|#2| (-1166 $)) NIL)) (-3767 (((-1081 |#2|) $) NIL)) (-1340 (((-108)) NIL)) (-3700 (((-3 (-522) "failed") $) NIL (|has| |#2| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-3 |#2| "failed") $) NIL)) (-1478 (((-522) $) NIL (|has| |#2| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#2| (-962 (-382 (-522))))) ((|#2| $) NIL)) (-3225 (($ (-1166 |#2|)) NIL) (($ (-1166 |#2|) (-1166 $)) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL) (((-628 |#2|) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-1692 (((-708) $) NIL (|has| |#2| (-514))) (((-850)) 38)) (-2186 ((|#2| $ (-522) (-522)) NIL)) (-2134 (((-108)) NIL)) (-2870 (($ $ (-850)) NIL)) (-2395 (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-2859 (((-108) $) NIL)) (-2336 (((-708) $) NIL (|has| |#2| (-514)))) (-2819 (((-588 (-217 |#1| |#2|)) $) NIL (|has| |#2| (-514)))) (-2949 (((-708) $) NIL)) (-2287 (((-108)) NIL)) (-2960 (((-708) $) NIL)) (-1480 (((-108) $ (-708)) NIL)) (-3721 ((|#2| $) NIL (|has| |#2| (-6 (-4240 "*"))))) (-2604 (((-522) $) NIL)) (-4042 (((-522) $) NIL)) (-4084 (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1925 (((-522) $) NIL)) (-2595 (((-522) $) NIL)) (-1347 (($ (-588 (-588 |#2|))) NIL)) (-2397 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2862 (((-588 (-588 |#2|)) $) NIL)) (-3702 (((-108)) NIL)) (-3868 (((-108)) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2439 (((-3 (-2 (|:| |particular| $) (|:| -2905 (-588 $))) "failed")) NIL (|has| |#2| (-514)))) (-3351 (((-3 $ "failed")) NIL (|has| |#2| (-514)))) (-1521 (((-628 |#2|)) NIL) (((-628 |#2|) (-1166 $)) NIL)) (-3411 ((|#2| $) NIL)) (-2734 (((-628 |#2|) $) NIL) (((-628 |#2|) $ (-1166 $)) NIL)) (-3070 (((-3 $ "failed") $) NIL (|has| |#2| (-514)))) (-3943 (((-1081 (-881 |#2|))) NIL (|has| |#2| (-338)))) (-1946 (($ $ (-850)) NIL)) (-1819 ((|#2| $) NIL)) (-1216 (((-1081 |#2|) $) NIL (|has| |#2| (-514)))) (-3020 ((|#2|) NIL) ((|#2| (-1166 $)) NIL)) (-2724 (((-1081 |#2|) $) NIL)) (-4197 (((-108)) NIL)) (-2311 (((-1068) $) NIL)) (-3823 (((-108)) NIL)) (-1388 (((-108)) NIL)) (-3509 (((-108)) NIL)) (-3073 (((-3 $ "failed") $) NIL (|has| |#2| (-338)))) (-4174 (((-1032) $) NIL)) (-1427 (((-108)) NIL)) (-2276 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-514)))) (-3487 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#2| $ (-522) (-522) |#2|) NIL) ((|#2| $ (-522) (-522)) 22) ((|#2| $ (-522)) NIL)) (-2731 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-708)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-4147 ((|#2| $) NIL)) (-3215 (($ (-588 |#2|)) NIL)) (-3498 (((-108) $) NIL)) (-1828 (((-217 |#1| |#2|) $) NIL)) (-2500 ((|#2| $) NIL (|has| |#2| (-6 (-4240 "*"))))) (-4187 (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2463 (($ $) NIL)) (-3510 (((-628 |#2|) (-1166 $)) NIL) (((-1166 |#2|) $) NIL) (((-628 |#2|) (-1166 $) (-1166 $)) NIL) (((-1166 |#2|) $ (-1166 $)) 25)) (-3873 (($ (-1166 |#2|)) NIL) (((-1166 |#2|) $) NIL)) (-1777 (((-588 (-881 |#2|))) NIL) (((-588 (-881 |#2|)) (-1166 $)) NIL)) (-1596 (($ $ $) NIL)) (-3990 (((-108)) NIL)) (-2223 (((-217 |#1| |#2|) $ (-522)) NIL)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ (-382 (-522))) NIL (|has| |#2| (-962 (-382 (-522))))) (($ |#2|) NIL) (((-628 |#2|) $) NIL)) (-2742 (((-708)) NIL)) (-2905 (((-1166 $)) 36)) (-1548 (((-588 (-1166 |#2|))) NIL (|has| |#2| (-514)))) (-2185 (($ $ $ $) NIL)) (-3597 (((-108)) NIL)) (-1664 (($ (-628 |#2|) $) NIL)) (-1381 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-4047 (((-108) $) NIL)) (-1369 (($ $ $) NIL)) (-3578 (((-108)) NIL)) (-2912 (((-108)) NIL)) (-1855 (((-108)) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-708)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ |#2|) NIL (|has| |#2| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#2| (-338)))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-217 |#1| |#2|) $ (-217 |#1| |#2|)) NIL) (((-217 |#1| |#2|) (-217 |#1| |#2|) $) NIL)) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-612 |#1| |#2|) (-13 (-1035 |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) (-562 (-628 |#2|)) (-392 |#2|)) (-850) (-157)) (T -612)) -NIL -(-13 (-1035 |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) (-562 (-628 |#2|)) (-392 |#2|)) -((-1419 (((-108) $ $) NIL)) (-4127 (((-588 |#1|) $) NIL)) (-2002 (($ $) 51)) (-1608 (((-108) $) NIL)) (-3700 (((-3 |#1| "failed") $) NIL)) (-1478 ((|#1| $) NIL)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-4154 (((-3 $ "failed") (-756 |#1|)) 23)) (-3762 (((-108) (-756 |#1|)) 15)) (-2377 (($ (-756 |#1|)) 24)) (-2618 (((-108) $ $) 29)) (-4030 (((-850) $) 36)) (-1993 (($ $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2006 (((-588 $) (-756 |#1|)) 17)) (-2217 (((-792) $) 42) (($ |#1|) 33) (((-756 |#1|) $) 38) (((-617 |#1|) $) 43)) (-1455 (((-57 (-588 $)) (-588 |#1|) (-850)) 56)) (-2669 (((-588 $) (-588 |#1|) (-850)) 59)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 52)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 37))) -(((-613 |#1|) (-13 (-784) (-962 |#1|) (-10 -8 (-15 -1608 ((-108) $)) (-15 -1993 ($ $)) (-15 -2002 ($ $)) (-15 -4030 ((-850) $)) (-15 -2618 ((-108) $ $)) (-15 -2217 ((-756 |#1|) $)) (-15 -2217 ((-617 |#1|) $)) (-15 -2006 ((-588 $) (-756 |#1|))) (-15 -3762 ((-108) (-756 |#1|))) (-15 -2377 ($ (-756 |#1|))) (-15 -4154 ((-3 $ "failed") (-756 |#1|))) (-15 -4127 ((-588 |#1|) $)) (-15 -1455 ((-57 (-588 $)) (-588 |#1|) (-850))) (-15 -2669 ((-588 $) (-588 |#1|) (-850))))) (-784)) (T -613)) -((-1608 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-613 *3)) (-4 *3 (-784)))) (-1993 (*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-784)))) (-2002 (*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-784)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-613 *3)) (-4 *3 (-784)))) (-2618 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-613 *3)) (-4 *3 (-784)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-756 *3)) (-5 *1 (-613 *3)) (-4 *3 (-784)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-617 *3)) (-5 *1 (-613 *3)) (-4 *3 (-784)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-756 *4)) (-4 *4 (-784)) (-5 *2 (-588 (-613 *4))) (-5 *1 (-613 *4)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-756 *4)) (-4 *4 (-784)) (-5 *2 (-108)) (-5 *1 (-613 *4)))) (-2377 (*1 *1 *2) (-12 (-5 *2 (-756 *3)) (-4 *3 (-784)) (-5 *1 (-613 *3)))) (-4154 (*1 *1 *2) (|partial| -12 (-5 *2 (-756 *3)) (-4 *3 (-784)) (-5 *1 (-613 *3)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-613 *3)) (-4 *3 (-784)))) (-1455 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *5)) (-5 *4 (-850)) (-4 *5 (-784)) (-5 *2 (-57 (-588 (-613 *5)))) (-5 *1 (-613 *5)))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *5)) (-5 *4 (-850)) (-4 *5 (-784)) (-5 *2 (-588 (-613 *5))) (-5 *1 (-613 *5))))) -(-13 (-784) (-962 |#1|) (-10 -8 (-15 -1608 ((-108) $)) (-15 -1993 ($ $)) (-15 -2002 ($ $)) (-15 -4030 ((-850) $)) (-15 -2618 ((-108) $ $)) (-15 -2217 ((-756 |#1|) $)) (-15 -2217 ((-617 |#1|) $)) (-15 -2006 ((-588 $) (-756 |#1|))) (-15 -3762 ((-108) (-756 |#1|))) (-15 -2377 ($ (-756 |#1|))) (-15 -4154 ((-3 $ "failed") (-756 |#1|))) (-15 -4127 ((-588 |#1|) $)) (-15 -1455 ((-57 (-588 $)) (-588 |#1|) (-850))) (-15 -2669 ((-588 $) (-588 |#1|) (-850))))) -((-3526 ((|#2| $) 76)) (-3961 (($ $) 96)) (-2717 (((-108) $ (-708)) 26)) (-2352 (($ $) 85) (($ $ (-708)) 88)) (-3614 (((-108) $) 97)) (-2674 (((-588 $) $) 72)) (-2402 (((-108) $ $) 71)) (-1480 (((-108) $ (-708)) 24)) (-3496 (((-522) $) 46)) (-2201 (((-522) $) 45)) (-3309 (((-108) $ (-708)) 22)) (-3394 (((-108) $) 74)) (-1442 ((|#2| $) 89) (($ $ (-708)) 92)) (-1731 (($ $ $ (-522)) 62) (($ |#2| $ (-522)) 61)) (-2130 (((-588 (-522)) $) 44)) (-2103 (((-108) (-522) $) 42)) (-2337 ((|#2| $) NIL) (($ $ (-708)) 84)) (-3934 (($ $ (-522)) 100)) (-4196 (((-108) $) 99)) (-3487 (((-108) (-1 (-108) |#2|) $) 32)) (-1973 (((-588 |#2|) $) 33)) (-2683 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1133 (-522))) 58) ((|#2| $ (-522)) 40) ((|#2| $ (-522) |#2|) 41)) (-3381 (((-522) $ $) 70)) (-3835 (($ $ (-1133 (-522))) 57) (($ $ (-522)) 51)) (-3395 (((-108) $) 66)) (-2885 (($ $) 81)) (-1321 (((-708) $) 80)) (-1502 (($ $) 79)) (-2227 (($ (-588 |#2|)) 37)) (-1944 (($ $) 101)) (-1515 (((-588 $) $) 69)) (-3294 (((-108) $ $) 68)) (-1381 (((-108) (-1 (-108) |#2|) $) 31)) (-1562 (((-108) $ $) 18)) (-3591 (((-708) $) 29))) -(((-614 |#1| |#2|) (-10 -8 (-15 -1944 (|#1| |#1|)) (-15 -3934 (|#1| |#1| (-522))) (-15 -3614 ((-108) |#1|)) (-15 -4196 ((-108) |#1|)) (-15 -2683 (|#2| |#1| (-522) |#2|)) (-15 -2683 (|#2| |#1| (-522))) (-15 -1973 ((-588 |#2|) |#1|)) (-15 -2103 ((-108) (-522) |#1|)) (-15 -2130 ((-588 (-522)) |#1|)) (-15 -2201 ((-522) |#1|)) (-15 -3496 ((-522) |#1|)) (-15 -2227 (|#1| (-588 |#2|))) (-15 -2683 (|#1| |#1| (-1133 (-522)))) (-15 -3835 (|#1| |#1| (-522))) (-15 -3835 (|#1| |#1| (-1133 (-522)))) (-15 -1731 (|#1| |#2| |#1| (-522))) (-15 -1731 (|#1| |#1| |#1| (-522))) (-15 -2885 (|#1| |#1|)) (-15 -1321 ((-708) |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -1442 (|#1| |#1| (-708))) (-15 -2683 (|#2| |#1| "last")) (-15 -1442 (|#2| |#1|)) (-15 -2352 (|#1| |#1| (-708))) (-15 -2683 (|#1| |#1| "rest")) (-15 -2352 (|#1| |#1|)) (-15 -2337 (|#1| |#1| (-708))) (-15 -2683 (|#2| |#1| "first")) (-15 -2337 (|#2| |#1|)) (-15 -2402 ((-108) |#1| |#1|)) (-15 -3294 ((-108) |#1| |#1|)) (-15 -3381 ((-522) |#1| |#1|)) (-15 -3395 ((-108) |#1|)) (-15 -2683 (|#2| |#1| "value")) (-15 -3526 (|#2| |#1|)) (-15 -3394 ((-108) |#1|)) (-15 -2674 ((-588 |#1|) |#1|)) (-15 -1515 ((-588 |#1|) |#1|)) (-15 -1562 ((-108) |#1| |#1|)) (-15 -3487 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1381 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3591 ((-708) |#1|)) (-15 -2717 ((-108) |#1| (-708))) (-15 -1480 ((-108) |#1| (-708))) (-15 -3309 ((-108) |#1| (-708)))) (-615 |#2|) (-1120)) (T -614)) -NIL -(-10 -8 (-15 -1944 (|#1| |#1|)) (-15 -3934 (|#1| |#1| (-522))) (-15 -3614 ((-108) |#1|)) (-15 -4196 ((-108) |#1|)) (-15 -2683 (|#2| |#1| (-522) |#2|)) (-15 -2683 (|#2| |#1| (-522))) (-15 -1973 ((-588 |#2|) |#1|)) (-15 -2103 ((-108) (-522) |#1|)) (-15 -2130 ((-588 (-522)) |#1|)) (-15 -2201 ((-522) |#1|)) (-15 -3496 ((-522) |#1|)) (-15 -2227 (|#1| (-588 |#2|))) (-15 -2683 (|#1| |#1| (-1133 (-522)))) (-15 -3835 (|#1| |#1| (-522))) (-15 -3835 (|#1| |#1| (-1133 (-522)))) (-15 -1731 (|#1| |#2| |#1| (-522))) (-15 -1731 (|#1| |#1| |#1| (-522))) (-15 -2885 (|#1| |#1|)) (-15 -1321 ((-708) |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -1442 (|#1| |#1| (-708))) (-15 -2683 (|#2| |#1| "last")) (-15 -1442 (|#2| |#1|)) (-15 -2352 (|#1| |#1| (-708))) (-15 -2683 (|#1| |#1| "rest")) (-15 -2352 (|#1| |#1|)) (-15 -2337 (|#1| |#1| (-708))) (-15 -2683 (|#2| |#1| "first")) (-15 -2337 (|#2| |#1|)) (-15 -2402 ((-108) |#1| |#1|)) (-15 -3294 ((-108) |#1| |#1|)) (-15 -3381 ((-522) |#1| |#1|)) (-15 -3395 ((-108) |#1|)) (-15 -2683 (|#2| |#1| "value")) (-15 -3526 (|#2| |#1|)) (-15 -3394 ((-108) |#1|)) (-15 -2674 ((-588 |#1|) |#1|)) (-15 -1515 ((-588 |#1|) |#1|)) (-15 -1562 ((-108) |#1| |#1|)) (-15 -3487 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1381 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3591 ((-708) |#1|)) (-15 -2717 ((-108) |#1| (-708))) (-15 -1480 ((-108) |#1| (-708))) (-15 -3309 ((-108) |#1| (-708)))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3526 ((|#1| $) 48)) (-2126 ((|#1| $) 65)) (-3961 (($ $) 67)) (-3883 (((-1171) $ (-522) (-522)) 97 (|has| $ (-6 -4239)))) (-2211 (($ $ (-522)) 52 (|has| $ (-6 -4239)))) (-2717 (((-108) $ (-708)) 8)) (-1198 ((|#1| $ |#1|) 39 (|has| $ (-6 -4239)))) (-2398 (($ $ $) 56 (|has| $ (-6 -4239)))) (-2631 ((|#1| $ |#1|) 54 (|has| $ (-6 -4239)))) (-3393 ((|#1| $ |#1|) 58 (|has| $ (-6 -4239)))) (-2437 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4239))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4239))) (($ $ "rest" $) 55 (|has| $ (-6 -4239))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) 117 (|has| $ (-6 -4239))) ((|#1| $ (-522) |#1|) 86 (|has| $ (-6 -4239)))) (-2684 (($ $ (-588 $)) 41 (|has| $ (-6 -4239)))) (-1696 (($ (-1 (-108) |#1|) $) 102)) (-2116 ((|#1| $) 66)) (-3367 (($) 7 T CONST)) (-3441 (($ $) 124)) (-2352 (($ $) 73) (($ $ (-708)) 71)) (-2379 (($ $) 99 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1424 (($ |#1| $) 100 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 103)) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2411 ((|#1| $ (-522) |#1|) 85 (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-522)) 87)) (-3614 (((-108) $) 83)) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-3847 (((-708) $) 123)) (-2674 (((-588 $) $) 50)) (-2402 (((-108) $ $) 42 (|has| |#1| (-1014)))) (-1893 (($ (-708) |#1|) 108)) (-1480 (((-108) $ (-708)) 9)) (-3496 (((-522) $) 95 (|has| (-522) (-784)))) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2201 (((-522) $) 94 (|has| (-522) (-784)))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3309 (((-108) $ (-708)) 10)) (-2548 (((-588 |#1|) $) 45)) (-3394 (((-108) $) 49)) (-3136 (($ $) 126)) (-3789 (((-108) $) 127)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1442 ((|#1| $) 70) (($ $ (-708)) 68)) (-1731 (($ $ $ (-522)) 116) (($ |#1| $ (-522)) 115)) (-2130 (((-588 (-522)) $) 92)) (-2103 (((-108) (-522) $) 91)) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-1578 ((|#1| $) 125)) (-2337 ((|#1| $) 76) (($ $ (-708)) 74)) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-1972 (($ $ |#1|) 96 (|has| $ (-6 -4239)))) (-3934 (($ $ (-522)) 122)) (-4196 (((-108) $) 84)) (-3963 (((-108) $) 128)) (-3726 (((-108) $) 129)) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3434 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) 90)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1133 (-522))) 112) ((|#1| $ (-522)) 89) ((|#1| $ (-522) |#1|) 88)) (-3381 (((-522) $ $) 44)) (-3835 (($ $ (-1133 (-522))) 114) (($ $ (-522)) 113)) (-3395 (((-108) $) 46)) (-2885 (($ $) 62)) (-1668 (($ $) 59 (|has| $ (-6 -4239)))) (-1321 (((-708) $) 63)) (-1502 (($ $) 64)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-3873 (((-498) $) 98 (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) 107)) (-2335 (($ $ $) 61 (|has| $ (-6 -4239))) (($ $ |#1|) 60 (|has| $ (-6 -4239)))) (-4170 (($ $ $) 78) (($ |#1| $) 77) (($ (-588 $)) 110) (($ $ |#1|) 109)) (-1944 (($ $) 121)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1515 (((-588 $) $) 51)) (-3294 (((-108) $ $) 43 (|has| |#1| (-1014)))) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-615 |#1|) (-1197) (-1120)) (T -615)) -((-1424 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-615 *3)) (-4 *3 (-1120)))) (-1696 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-615 *3)) (-4 *3 (-1120)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1120)) (-5 *2 (-108)))) (-3963 (*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1120)) (-5 *2 (-108)))) (-3789 (*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1120)) (-5 *2 (-108)))) (-3136 (*1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1120)))) (-1578 (*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1120)))) (-3441 (*1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1120)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1120)) (-5 *2 (-708)))) (-3934 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-615 *3)) (-4 *3 (-1120)))) (-1944 (*1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1120))))) -(-13 (-1059 |t#1|) (-10 -8 (-15 -1424 ($ (-1 (-108) |t#1|) $)) (-15 -1696 ($ (-1 (-108) |t#1|) $)) (-15 -3726 ((-108) $)) (-15 -3963 ((-108) $)) (-15 -3789 ((-108) $)) (-15 -3136 ($ $)) (-15 -1578 (|t#1| $)) (-15 -3441 ($ $)) (-15 -3847 ((-708) $)) (-15 -3934 ($ $ (-522))) (-15 -1944 ($ $)))) -(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-262 #0=(-522) |#1|) . T) ((-264 #0# |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-555 #0# |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-593 |#1|) . T) ((-936 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1059 |#1|) . T) ((-1120) . T) ((-1154 |#1|) . T)) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3233 (($ (-708) (-708) (-708)) 34 (|has| |#1| (-971)))) (-2717 (((-108) $ (-708)) NIL)) (-1732 ((|#1| $ (-708) (-708) (-708) |#1|) 29)) (-3367 (($) NIL T CONST)) (-2457 (($ $ $) 38 (|has| |#1| (-971)))) (-2395 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) NIL)) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1571 (((-1166 (-708)) $) 10)) (-3984 (($ (-1085) $ $) 24)) (-2397 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1681 (($ (-708)) 36 (|has| |#1| (-971)))) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#1| $ (-708) (-708) (-708)) 27)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) NIL)) (-2227 (($ (-588 (-588 (-588 |#1|)))) 45)) (-2217 (($ (-886 (-886 (-886 |#1|)))) 17) (((-886 (-886 (-886 |#1|))) $) 14) (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-616 |#1|) (-13 (-461 |#1|) (-10 -8 (IF (|has| |#1| (-971)) (PROGN (-15 -3233 ($ (-708) (-708) (-708))) (-15 -1681 ($ (-708))) (-15 -2457 ($ $ $))) |%noBranch|) (-15 -2227 ($ (-588 (-588 (-588 |#1|))))) (-15 -2683 (|#1| $ (-708) (-708) (-708))) (-15 -1732 (|#1| $ (-708) (-708) (-708) |#1|)) (-15 -2217 ($ (-886 (-886 (-886 |#1|))))) (-15 -2217 ((-886 (-886 (-886 |#1|))) $)) (-15 -3984 ($ (-1085) $ $)) (-15 -1571 ((-1166 (-708)) $)))) (-1014)) (T -616)) -((-3233 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-708)) (-5 *1 (-616 *3)) (-4 *3 (-971)) (-4 *3 (-1014)))) (-1681 (*1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-616 *3)) (-4 *3 (-971)) (-4 *3 (-1014)))) (-2457 (*1 *1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-971)) (-4 *2 (-1014)))) (-2227 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 (-588 *3)))) (-4 *3 (-1014)) (-5 *1 (-616 *3)))) (-2683 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-708)) (-5 *1 (-616 *2)) (-4 *2 (-1014)))) (-1732 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-616 *2)) (-4 *2 (-1014)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-886 (-886 (-886 *3)))) (-4 *3 (-1014)) (-5 *1 (-616 *3)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-886 (-886 (-886 *3)))) (-5 *1 (-616 *3)) (-4 *3 (-1014)))) (-3984 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-616 *3)) (-4 *3 (-1014)))) (-1571 (*1 *2 *1) (-12 (-5 *2 (-1166 (-708))) (-5 *1 (-616 *3)) (-4 *3 (-1014))))) -(-13 (-461 |#1|) (-10 -8 (IF (|has| |#1| (-971)) (PROGN (-15 -3233 ($ (-708) (-708) (-708))) (-15 -1681 ($ (-708))) (-15 -2457 ($ $ $))) |%noBranch|) (-15 -2227 ($ (-588 (-588 (-588 |#1|))))) (-15 -2683 (|#1| $ (-708) (-708) (-708))) (-15 -1732 (|#1| $ (-708) (-708) (-708) |#1|)) (-15 -2217 ($ (-886 (-886 (-886 |#1|))))) (-15 -2217 ((-886 (-886 (-886 |#1|))) $)) (-15 -3984 ($ (-1085) $ $)) (-15 -1571 ((-1166 (-708)) $)))) -((-1419 (((-108) $ $) NIL)) (-4127 (((-588 |#1|) $) 14)) (-2002 (($ $) 18)) (-1608 (((-108) $) 19)) (-3700 (((-3 |#1| "failed") $) 22)) (-1478 ((|#1| $) 20)) (-2352 (($ $) 36)) (-2182 (($ $) 24)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-2618 (((-108) $ $) 42)) (-4030 (((-850) $) 38)) (-1993 (($ $) 17)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2337 ((|#1| $) 35)) (-2217 (((-792) $) 31) (($ |#1|) 23) (((-756 |#1|) $) 27)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 12)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 40)) (* (($ $ $) 34))) -(((-617 |#1|) (-13 (-784) (-962 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2217 ((-756 |#1|) $)) (-15 -2337 (|#1| $)) (-15 -1993 ($ $)) (-15 -4030 ((-850) $)) (-15 -2618 ((-108) $ $)) (-15 -2182 ($ $)) (-15 -2352 ($ $)) (-15 -1608 ((-108) $)) (-15 -2002 ($ $)) (-15 -4127 ((-588 |#1|) $)))) (-784)) (T -617)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-756 *3)) (-5 *1 (-617 *3)) (-4 *3 (-784)))) (-2337 (*1 *2 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784)))) (-1993 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-617 *3)) (-4 *3 (-784)))) (-2618 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-784)))) (-2182 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784)))) (-2352 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784)))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-784)))) (-2002 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-617 *3)) (-4 *3 (-784))))) -(-13 (-784) (-962 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2217 ((-756 |#1|) $)) (-15 -2337 (|#1| $)) (-15 -1993 ($ $)) (-15 -4030 ((-850) $)) (-15 -2618 ((-108) $ $)) (-15 -2182 ($ $)) (-15 -2352 ($ $)) (-15 -1608 ((-108) $)) (-15 -2002 ($ $)) (-15 -4127 ((-588 |#1|) $)))) -((-1861 ((|#1| (-1 |#1| (-708) |#1|) (-708) |#1|) 11)) (-3286 ((|#1| (-1 |#1| |#1|) (-708) |#1|) 9))) -(((-618 |#1|) (-10 -7 (-15 -3286 (|#1| (-1 |#1| |#1|) (-708) |#1|)) (-15 -1861 (|#1| (-1 |#1| (-708) |#1|) (-708) |#1|))) (-1014)) (T -618)) -((-1861 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-708) *2)) (-5 *4 (-708)) (-4 *2 (-1014)) (-5 *1 (-618 *2)))) (-3286 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-708)) (-4 *2 (-1014)) (-5 *1 (-618 *2))))) -(-10 -7 (-15 -3286 (|#1| (-1 |#1| |#1|) (-708) |#1|)) (-15 -1861 (|#1| (-1 |#1| (-708) |#1|) (-708) |#1|))) -((-4135 ((|#2| |#1| |#2|) 9)) (-4123 ((|#1| |#1| |#2|) 8))) -(((-619 |#1| |#2|) (-10 -7 (-15 -4123 (|#1| |#1| |#2|)) (-15 -4135 (|#2| |#1| |#2|))) (-1014) (-1014)) (T -619)) -((-4135 (*1 *2 *3 *2) (-12 (-5 *1 (-619 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-4123 (*1 *2 *2 *3) (-12 (-5 *1 (-619 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) -(-10 -7 (-15 -4123 (|#1| |#1| |#2|)) (-15 -4135 (|#2| |#1| |#2|))) -((-3713 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-620 |#1| |#2| |#3|) (-10 -7 (-15 -3713 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1014) (-1014) (-1014)) (T -620)) -((-3713 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)) (-5 *1 (-620 *5 *6 *2))))) -(-10 -7 (-15 -3713 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-1861 (((-1 |#1| (-708) |#1|) (-1 |#1| (-708) |#1|)) 23)) (-4049 (((-1 |#1|) |#1|) 8)) (-1868 ((|#1| |#1|) 16)) (-3107 (((-588 |#1|) (-1 (-588 |#1|) (-588 |#1|)) (-522)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2217 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-708)) 20))) -(((-621 |#1|) (-10 -7 (-15 -4049 ((-1 |#1|) |#1|)) (-15 -2217 ((-1 |#1|) |#1|)) (-15 -3107 (|#1| (-1 |#1| |#1|))) (-15 -3107 ((-588 |#1|) (-1 (-588 |#1|) (-588 |#1|)) (-522))) (-15 -1868 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-708))) (-15 -1861 ((-1 |#1| (-708) |#1|) (-1 |#1| (-708) |#1|)))) (-1014)) (T -621)) -((-1861 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-708) *3)) (-4 *3 (-1014)) (-5 *1 (-621 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-708)) (-4 *4 (-1014)) (-5 *1 (-621 *4)))) (-1868 (*1 *2 *2) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1014)))) (-3107 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-588 *5) (-588 *5))) (-5 *4 (-522)) (-5 *2 (-588 *5)) (-5 *1 (-621 *5)) (-4 *5 (-1014)))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-621 *2)) (-4 *2 (-1014)))) (-2217 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-621 *3)) (-4 *3 (-1014)))) (-4049 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-621 *3)) (-4 *3 (-1014))))) -(-10 -7 (-15 -4049 ((-1 |#1|) |#1|)) (-15 -2217 ((-1 |#1|) |#1|)) (-15 -3107 (|#1| (-1 |#1| |#1|))) (-15 -3107 ((-588 |#1|) (-1 (-588 |#1|) (-588 |#1|)) (-522))) (-15 -1868 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-708))) (-15 -1861 ((-1 |#1| (-708) |#1|) (-1 |#1| (-708) |#1|)))) -((-3991 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2052 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2855 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2441 (((-1 |#2| |#1|) |#2|) 11))) -(((-622 |#1| |#2|) (-10 -7 (-15 -2441 ((-1 |#2| |#1|) |#2|)) (-15 -2052 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2855 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3991 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1014) (-1014)) (T -622)) -((-3991 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) (-5 *1 (-622 *4 *5)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) (-5 *1 (-622 *4 *5)) (-4 *4 (-1014)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5)) (-5 *1 (-622 *4 *5)))) (-2441 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-622 *4 *3)) (-4 *4 (-1014)) (-4 *3 (-1014))))) -(-10 -7 (-15 -2441 ((-1 |#2| |#1|) |#2|)) (-15 -2052 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2855 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3991 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-3363 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2711 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3429 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2190 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3346 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-623 |#1| |#2| |#3|) (-10 -7 (-15 -2711 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3429 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2190 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3346 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3363 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1014) (-1014) (-1014)) (T -623)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-1 *7 *5)) (-5 *1 (-623 *5 *6 *7)))) (-3363 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-623 *4 *5 *6)))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-623 *4 *5 *6)) (-4 *4 (-1014)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-623 *4 *5 *6)) (-4 *5 (-1014)))) (-3429 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *5)) (-5 *1 (-623 *4 *5 *6)))) (-2711 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1014)) (-4 *4 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *5)) (-5 *1 (-623 *5 *4 *6))))) -(-10 -7 (-15 -2711 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3429 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2190 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3346 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3363 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-2153 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3810 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-624 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3810 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3810 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2153 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-971) (-348 |#1|) (-348 |#1|) (-626 |#1| |#2| |#3|) (-971) (-348 |#5|) (-348 |#5|) (-626 |#5| |#6| |#7|)) (T -624)) -((-2153 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-971)) (-4 *2 (-971)) (-4 *6 (-348 *5)) (-4 *7 (-348 *5)) (-4 *8 (-348 *2)) (-4 *9 (-348 *2)) (-5 *1 (-624 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-626 *5 *6 *7)) (-4 *10 (-626 *2 *8 *9)))) (-3810 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-971)) (-4 *8 (-971)) (-4 *6 (-348 *5)) (-4 *7 (-348 *5)) (-4 *2 (-626 *8 *9 *10)) (-5 *1 (-624 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-626 *5 *6 *7)) (-4 *9 (-348 *8)) (-4 *10 (-348 *8)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-971)) (-4 *8 (-971)) (-4 *6 (-348 *5)) (-4 *7 (-348 *5)) (-4 *2 (-626 *8 *9 *10)) (-5 *1 (-624 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-626 *5 *6 *7)) (-4 *9 (-348 *8)) (-4 *10 (-348 *8))))) -(-10 -7 (-15 -3810 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3810 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2153 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-1785 (($ (-708) (-708)) 32)) (-3021 (($ $ $) 55)) (-2682 (($ |#3|) 51) (($ $) 52)) (-3455 (((-108) $) 27)) (-3637 (($ $ (-522) (-522)) 57)) (-1957 (($ $ (-522) (-522)) 58)) (-1834 (($ $ (-522) (-522) (-522) (-522)) 62)) (-2449 (($ $) 53)) (-2208 (((-108) $) 14)) (-3352 (($ $ (-522) (-522) $) 63)) (-2437 ((|#2| $ (-522) (-522) |#2|) NIL) (($ $ (-588 (-522)) (-588 (-522)) $) 61)) (-1348 (($ (-708) |#2|) 37)) (-1347 (($ (-588 (-588 |#2|))) 35)) (-2862 (((-588 (-588 |#2|)) $) 56)) (-3594 (($ $ $) 54)) (-2276 (((-3 $ "failed") $ |#2|) 90)) (-2683 ((|#2| $ (-522) (-522)) NIL) ((|#2| $ (-522) (-522) |#2|) NIL) (($ $ (-588 (-522)) (-588 (-522))) 60)) (-3215 (($ (-588 |#2|)) 39) (($ (-588 $)) 41)) (-3498 (((-108) $) 24)) (-2217 (($ |#4|) 46) (((-792) $) NIL)) (-4047 (((-108) $) 29)) (-1682 (($ $ |#2|) 92)) (-1672 (($ $ $) 67) (($ $) 70)) (-1661 (($ $ $) 65)) (** (($ $ (-708)) 79) (($ $ (-522)) 95)) (* (($ $ $) 76) (($ |#2| $) 72) (($ $ |#2|) 73) (($ (-522) $) 75) ((|#4| $ |#4|) 83) ((|#3| |#3| $) 87))) -(((-625 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2217 ((-792) |#1|)) (-15 ** (|#1| |#1| (-522))) (-15 -1682 (|#1| |#1| |#2|)) (-15 -2276 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-708))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 -1672 (|#1| |#1| |#1|)) (-15 -1661 (|#1| |#1| |#1|)) (-15 -3352 (|#1| |#1| (-522) (-522) |#1|)) (-15 -1834 (|#1| |#1| (-522) (-522) (-522) (-522))) (-15 -1957 (|#1| |#1| (-522) (-522))) (-15 -3637 (|#1| |#1| (-522) (-522))) (-15 -2437 (|#1| |#1| (-588 (-522)) (-588 (-522)) |#1|)) (-15 -2683 (|#1| |#1| (-588 (-522)) (-588 (-522)))) (-15 -2862 ((-588 (-588 |#2|)) |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3594 (|#1| |#1| |#1|)) (-15 -2449 (|#1| |#1|)) (-15 -2682 (|#1| |#1|)) (-15 -2682 (|#1| |#3|)) (-15 -2217 (|#1| |#4|)) (-15 -3215 (|#1| (-588 |#1|))) (-15 -3215 (|#1| (-588 |#2|))) (-15 -1348 (|#1| (-708) |#2|)) (-15 -1347 (|#1| (-588 (-588 |#2|)))) (-15 -1785 (|#1| (-708) (-708))) (-15 -4047 ((-108) |#1|)) (-15 -3455 ((-108) |#1|)) (-15 -3498 ((-108) |#1|)) (-15 -2208 ((-108) |#1|)) (-15 -2437 (|#2| |#1| (-522) (-522) |#2|)) (-15 -2683 (|#2| |#1| (-522) (-522) |#2|)) (-15 -2683 (|#2| |#1| (-522) (-522)))) (-626 |#2| |#3| |#4|) (-971) (-348 |#2|) (-348 |#2|)) (T -625)) -NIL -(-10 -8 (-15 -2217 ((-792) |#1|)) (-15 ** (|#1| |#1| (-522))) (-15 -1682 (|#1| |#1| |#2|)) (-15 -2276 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-708))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 -1672 (|#1| |#1| |#1|)) (-15 -1661 (|#1| |#1| |#1|)) (-15 -3352 (|#1| |#1| (-522) (-522) |#1|)) (-15 -1834 (|#1| |#1| (-522) (-522) (-522) (-522))) (-15 -1957 (|#1| |#1| (-522) (-522))) (-15 -3637 (|#1| |#1| (-522) (-522))) (-15 -2437 (|#1| |#1| (-588 (-522)) (-588 (-522)) |#1|)) (-15 -2683 (|#1| |#1| (-588 (-522)) (-588 (-522)))) (-15 -2862 ((-588 (-588 |#2|)) |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3594 (|#1| |#1| |#1|)) (-15 -2449 (|#1| |#1|)) (-15 -2682 (|#1| |#1|)) (-15 -2682 (|#1| |#3|)) (-15 -2217 (|#1| |#4|)) (-15 -3215 (|#1| (-588 |#1|))) (-15 -3215 (|#1| (-588 |#2|))) (-15 -1348 (|#1| (-708) |#2|)) (-15 -1347 (|#1| (-588 (-588 |#2|)))) (-15 -1785 (|#1| (-708) (-708))) (-15 -4047 ((-108) |#1|)) (-15 -3455 ((-108) |#1|)) (-15 -3498 ((-108) |#1|)) (-15 -2208 ((-108) |#1|)) (-15 -2437 (|#2| |#1| (-522) (-522) |#2|)) (-15 -2683 (|#2| |#1| (-522) (-522) |#2|)) (-15 -2683 (|#2| |#1| (-522) (-522)))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-1785 (($ (-708) (-708)) 97)) (-3021 (($ $ $) 87)) (-2682 (($ |#2|) 91) (($ $) 90)) (-3455 (((-108) $) 99)) (-3637 (($ $ (-522) (-522)) 83)) (-1957 (($ $ (-522) (-522)) 82)) (-1834 (($ $ (-522) (-522) (-522) (-522)) 81)) (-2449 (($ $) 89)) (-2208 (((-108) $) 101)) (-2717 (((-108) $ (-708)) 8)) (-3352 (($ $ (-522) (-522) $) 80)) (-2437 ((|#1| $ (-522) (-522) |#1|) 44) (($ $ (-588 (-522)) (-588 (-522)) $) 84)) (-3074 (($ $ (-522) |#2|) 42)) (-4060 (($ $ (-522) |#3|) 41)) (-1348 (($ (-708) |#1|) 95)) (-3367 (($) 7 T CONST)) (-2091 (($ $) 67 (|has| |#1| (-283)))) (-2635 ((|#2| $ (-522)) 46)) (-1692 (((-708) $) 66 (|has| |#1| (-514)))) (-2411 ((|#1| $ (-522) (-522) |#1|) 43)) (-2186 ((|#1| $ (-522) (-522)) 48)) (-2395 (((-588 |#1|) $) 30)) (-2336 (((-708) $) 65 (|has| |#1| (-514)))) (-2819 (((-588 |#3|) $) 64 (|has| |#1| (-514)))) (-2949 (((-708) $) 51)) (-1893 (($ (-708) (-708) |#1|) 57)) (-2960 (((-708) $) 50)) (-1480 (((-108) $ (-708)) 9)) (-3721 ((|#1| $) 62 (|has| |#1| (-6 (-4240 "*"))))) (-2604 (((-522) $) 55)) (-4042 (((-522) $) 53)) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1925 (((-522) $) 54)) (-2595 (((-522) $) 52)) (-1347 (($ (-588 (-588 |#1|))) 96)) (-2397 (($ (-1 |#1| |#1|) $) 34)) (-3810 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2862 (((-588 (-588 |#1|)) $) 86)) (-3309 (((-108) $ (-708)) 10)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-3073 (((-3 $ "failed") $) 61 (|has| |#1| (-338)))) (-3594 (($ $ $) 88)) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-1972 (($ $ |#1|) 56)) (-2276 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-514)))) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 ((|#1| $ (-522) (-522)) 49) ((|#1| $ (-522) (-522) |#1|) 47) (($ $ (-588 (-522)) (-588 (-522))) 85)) (-3215 (($ (-588 |#1|)) 94) (($ (-588 $)) 93)) (-3498 (((-108) $) 100)) (-2500 ((|#1| $) 63 (|has| |#1| (-6 (-4240 "*"))))) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-2223 ((|#3| $ (-522)) 45)) (-2217 (($ |#3|) 92) (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-4047 (((-108) $) 98)) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-1682 (($ $ |#1|) 68 (|has| |#1| (-338)))) (-1672 (($ $ $) 78) (($ $) 77)) (-1661 (($ $ $) 79)) (** (($ $ (-708)) 70) (($ $ (-522)) 60 (|has| |#1| (-338)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-522) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-626 |#1| |#2| |#3|) (-1197) (-971) (-348 |t#1|) (-348 |t#1|)) (T -626)) -((-2208 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-108)))) (-3498 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-108)))) (-3455 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-108)))) (-4047 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-108)))) (-1785 (*1 *1 *2 *2) (-12 (-5 *2 (-708)) (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *5)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-1347 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *5)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-1348 (*1 *1 *2 *3) (-12 (-5 *2 (-708)) (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *5)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-3215 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *5)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-3215 (*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *5)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-2217 (*1 *1 *2) (-12 (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *2)) (-4 *4 (-348 *3)) (-4 *2 (-348 *3)))) (-2682 (*1 *1 *2) (-12 (-4 *3 (-971)) (-4 *1 (-626 *3 *2 *4)) (-4 *2 (-348 *3)) (-4 *4 (-348 *3)))) (-2682 (*1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (-2449 (*1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (-3594 (*1 *1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (-3021 (*1 *1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (-2862 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-588 (-588 *3))))) (-2683 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-588 (-522))) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-2437 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-588 (-522))) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-3637 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-1957 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-1834 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-3352 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-1661 (*1 *1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (-1672 (*1 *1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (-1672 (*1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-626 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *2 (-348 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-626 *3 *2 *4)) (-4 *3 (-971)) (-4 *2 (-348 *3)) (-4 *4 (-348 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-2276 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)) (-4 *2 (-514)))) (-1682 (*1 *1 *1 *2) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)) (-4 *2 (-338)))) (-2091 (*1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)) (-4 *2 (-283)))) (-1692 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-4 *3 (-514)) (-5 *2 (-708)))) (-2336 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-4 *3 (-514)) (-5 *2 (-708)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-4 *3 (-514)) (-5 *2 (-588 *5)))) (-2500 (*1 *2 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)) (|has| *2 (-6 (-4240 "*"))) (-4 *2 (-971)))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)) (|has| *2 (-6 (-4240 "*"))) (-4 *2 (-971)))) (-3073 (*1 *1 *1) (|partial| -12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)) (-4 *2 (-338)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-4 *3 (-338))))) -(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4239) (-6 -4238) (-15 -2208 ((-108) $)) (-15 -3498 ((-108) $)) (-15 -3455 ((-108) $)) (-15 -4047 ((-108) $)) (-15 -1785 ($ (-708) (-708))) (-15 -1347 ($ (-588 (-588 |t#1|)))) (-15 -1348 ($ (-708) |t#1|)) (-15 -3215 ($ (-588 |t#1|))) (-15 -3215 ($ (-588 $))) (-15 -2217 ($ |t#3|)) (-15 -2682 ($ |t#2|)) (-15 -2682 ($ $)) (-15 -2449 ($ $)) (-15 -3594 ($ $ $)) (-15 -3021 ($ $ $)) (-15 -2862 ((-588 (-588 |t#1|)) $)) (-15 -2683 ($ $ (-588 (-522)) (-588 (-522)))) (-15 -2437 ($ $ (-588 (-522)) (-588 (-522)) $)) (-15 -3637 ($ $ (-522) (-522))) (-15 -1957 ($ $ (-522) (-522))) (-15 -1834 ($ $ (-522) (-522) (-522) (-522))) (-15 -3352 ($ $ (-522) (-522) $)) (-15 -1661 ($ $ $)) (-15 -1672 ($ $ $)) (-15 -1672 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-522) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-708))) (IF (|has| |t#1| (-514)) (-15 -2276 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-338)) (-15 -1682 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-283)) (-15 -2091 ($ $)) |%noBranch|) (IF (|has| |t#1| (-514)) (PROGN (-15 -1692 ((-708) $)) (-15 -2336 ((-708) $)) (-15 -2819 ((-588 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4240 "*"))) (PROGN (-15 -2500 (|t#1| $)) (-15 -3721 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-338)) (PROGN (-15 -3073 ((-3 $ "failed") $)) (-15 ** ($ $ (-522)))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-55 |#1| |#2| |#3|) . T) ((-1120) . T)) -((-2091 ((|#4| |#4|) 68 (|has| |#1| (-283)))) (-1692 (((-708) |#4|) 70 (|has| |#1| (-514)))) (-2336 (((-708) |#4|) 72 (|has| |#1| (-514)))) (-2819 (((-588 |#3|) |#4|) 79 (|has| |#1| (-514)))) (-2419 (((-2 (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1|) 96 (|has| |#1| (-283)))) (-3721 ((|#1| |#4|) 34)) (-3750 (((-3 |#4| "failed") |#4|) 62 (|has| |#1| (-514)))) (-3073 (((-3 |#4| "failed") |#4|) 76 (|has| |#1| (-338)))) (-1364 ((|#4| |#4|) 55 (|has| |#1| (-514)))) (-3905 ((|#4| |#4| |#1| (-522) (-522)) 42)) (-3653 ((|#4| |#4| (-522) (-522)) 37)) (-2117 ((|#4| |#4| |#1| (-522) (-522)) 47)) (-2500 ((|#1| |#4|) 74)) (-3397 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 58 (|has| |#1| (-514))))) -(((-627 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2500 (|#1| |#4|)) (-15 -3721 (|#1| |#4|)) (-15 -3653 (|#4| |#4| (-522) (-522))) (-15 -3905 (|#4| |#4| |#1| (-522) (-522))) (-15 -2117 (|#4| |#4| |#1| (-522) (-522))) (IF (|has| |#1| (-514)) (PROGN (-15 -1692 ((-708) |#4|)) (-15 -2336 ((-708) |#4|)) (-15 -2819 ((-588 |#3|) |#4|)) (-15 -1364 (|#4| |#4|)) (-15 -3750 ((-3 |#4| "failed") |#4|)) (-15 -3397 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-283)) (PROGN (-15 -2091 (|#4| |#4|)) (-15 -2419 ((-2 (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-338)) (-15 -3073 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-157) (-348 |#1|) (-348 |#1|) (-626 |#1| |#2| |#3|)) (T -627)) -((-3073 (*1 *2 *2) (|partial| -12 (-4 *3 (-338)) (-4 *3 (-157)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-627 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-2419 (*1 *2 *3 *3) (-12 (-4 *3 (-283)) (-4 *3 (-157)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-2 (|:| -3450 *3) (|:| -4002 *3))) (-5 *1 (-627 *3 *4 *5 *6)) (-4 *6 (-626 *3 *4 *5)))) (-2091 (*1 *2 *2) (-12 (-4 *3 (-283)) (-4 *3 (-157)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-627 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-3397 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *4 (-157)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-627 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-3750 (*1 *2 *2) (|partial| -12 (-4 *3 (-514)) (-4 *3 (-157)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-627 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-1364 (*1 *2 *2) (-12 (-4 *3 (-514)) (-4 *3 (-157)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-627 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-2819 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *4 (-157)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-5 *2 (-588 *6)) (-5 *1 (-627 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-2336 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *4 (-157)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-5 *2 (-708)) (-5 *1 (-627 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-1692 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *4 (-157)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-5 *2 (-708)) (-5 *1 (-627 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-2117 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-522)) (-4 *3 (-157)) (-4 *5 (-348 *3)) (-4 *6 (-348 *3)) (-5 *1 (-627 *3 *5 *6 *2)) (-4 *2 (-626 *3 *5 *6)))) (-3905 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-522)) (-4 *3 (-157)) (-4 *5 (-348 *3)) (-4 *6 (-348 *3)) (-5 *1 (-627 *3 *5 *6 *2)) (-4 *2 (-626 *3 *5 *6)))) (-3653 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-522)) (-4 *4 (-157)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-5 *1 (-627 *4 *5 *6 *2)) (-4 *2 (-626 *4 *5 *6)))) (-3721 (*1 *2 *3) (-12 (-4 *4 (-348 *2)) (-4 *5 (-348 *2)) (-4 *2 (-157)) (-5 *1 (-627 *2 *4 *5 *3)) (-4 *3 (-626 *2 *4 *5)))) (-2500 (*1 *2 *3) (-12 (-4 *4 (-348 *2)) (-4 *5 (-348 *2)) (-4 *2 (-157)) (-5 *1 (-627 *2 *4 *5 *3)) (-4 *3 (-626 *2 *4 *5))))) -(-10 -7 (-15 -2500 (|#1| |#4|)) (-15 -3721 (|#1| |#4|)) (-15 -3653 (|#4| |#4| (-522) (-522))) (-15 -3905 (|#4| |#4| |#1| (-522) (-522))) (-15 -2117 (|#4| |#4| |#1| (-522) (-522))) (IF (|has| |#1| (-514)) (PROGN (-15 -1692 ((-708) |#4|)) (-15 -2336 ((-708) |#4|)) (-15 -2819 ((-588 |#3|) |#4|)) (-15 -1364 (|#4| |#4|)) (-15 -3750 ((-3 |#4| "failed") |#4|)) (-15 -3397 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-283)) (PROGN (-15 -2091 (|#4| |#4|)) (-15 -2419 ((-2 (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-338)) (-15 -3073 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1785 (($ (-708) (-708)) 45)) (-3021 (($ $ $) NIL)) (-2682 (($ (-1166 |#1|)) NIL) (($ $) NIL)) (-3455 (((-108) $) NIL)) (-3637 (($ $ (-522) (-522)) 12)) (-1957 (($ $ (-522) (-522)) NIL)) (-1834 (($ $ (-522) (-522) (-522) (-522)) NIL)) (-2449 (($ $) NIL)) (-2208 (((-108) $) NIL)) (-2717 (((-108) $ (-708)) NIL)) (-3352 (($ $ (-522) (-522) $) NIL)) (-2437 ((|#1| $ (-522) (-522) |#1|) NIL) (($ $ (-588 (-522)) (-588 (-522)) $) NIL)) (-3074 (($ $ (-522) (-1166 |#1|)) NIL)) (-4060 (($ $ (-522) (-1166 |#1|)) NIL)) (-1348 (($ (-708) |#1|) 22)) (-3367 (($) NIL T CONST)) (-2091 (($ $) 30 (|has| |#1| (-283)))) (-2635 (((-1166 |#1|) $ (-522)) NIL)) (-1692 (((-708) $) 32 (|has| |#1| (-514)))) (-2411 ((|#1| $ (-522) (-522) |#1|) 50)) (-2186 ((|#1| $ (-522) (-522)) NIL)) (-2395 (((-588 |#1|) $) NIL)) (-2336 (((-708) $) 34 (|has| |#1| (-514)))) (-2819 (((-588 (-1166 |#1|)) $) 37 (|has| |#1| (-514)))) (-2949 (((-708) $) 20)) (-1893 (($ (-708) (-708) |#1|) NIL)) (-2960 (((-708) $) 21)) (-1480 (((-108) $ (-708)) NIL)) (-3721 ((|#1| $) 28 (|has| |#1| (-6 (-4240 "*"))))) (-2604 (((-522) $) 9)) (-4042 (((-522) $) 10)) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1925 (((-522) $) 11)) (-2595 (((-522) $) 46)) (-1347 (($ (-588 (-588 |#1|))) NIL)) (-2397 (($ (-1 |#1| |#1|) $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2862 (((-588 (-588 |#1|)) $) 58)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-3073 (((-3 $ "failed") $) 41 (|has| |#1| (-338)))) (-3594 (($ $ $) NIL)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-1972 (($ $ |#1|) NIL)) (-2276 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514)))) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#1| $ (-522) (-522)) NIL) ((|#1| $ (-522) (-522) |#1|) NIL) (($ $ (-588 (-522)) (-588 (-522))) NIL)) (-3215 (($ (-588 |#1|)) NIL) (($ (-588 $)) NIL) (($ (-1166 |#1|)) 51)) (-3498 (((-108) $) NIL)) (-2500 ((|#1| $) 26 (|has| |#1| (-6 (-4240 "*"))))) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) NIL)) (-3873 (((-498) $) 62 (|has| |#1| (-563 (-498))))) (-2223 (((-1166 |#1|) $ (-522)) NIL)) (-2217 (($ (-1166 |#1|)) NIL) (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-4047 (((-108) $) NIL)) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1672 (($ $ $) NIL) (($ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-708)) 23) (($ $ (-522)) 44 (|has| |#1| (-338)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-522) $) NIL) (((-1166 |#1|) $ (-1166 |#1|)) NIL) (((-1166 |#1|) (-1166 |#1|) $) NIL)) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-628 |#1|) (-13 (-626 |#1| (-1166 |#1|) (-1166 |#1|)) (-10 -8 (-15 -3215 ($ (-1166 |#1|))) (IF (|has| |#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) (IF (|has| |#1| (-338)) (-15 -3073 ((-3 $ "failed") $)) |%noBranch|))) (-971)) (T -628)) -((-3073 (*1 *1 *1) (|partial| -12 (-5 *1 (-628 *2)) (-4 *2 (-338)) (-4 *2 (-971)))) (-3215 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-971)) (-5 *1 (-628 *3))))) -(-13 (-626 |#1| (-1166 |#1|) (-1166 |#1|)) (-10 -8 (-15 -3215 ($ (-1166 |#1|))) (IF (|has| |#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) (IF (|has| |#1| (-338)) (-15 -3073 ((-3 $ "failed") $)) |%noBranch|))) -((-3163 (((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|)) 25)) (-1473 (((-628 |#1|) (-628 |#1|) (-628 |#1|) |#1|) 21)) (-1716 (((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|) (-708)) 26)) (-3267 (((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|)) 14)) (-4025 (((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|)) 18) (((-628 |#1|) (-628 |#1|) (-628 |#1|)) 16)) (-3034 (((-628 |#1|) (-628 |#1|) |#1| (-628 |#1|)) 20)) (-2193 (((-628 |#1|) (-628 |#1|) (-628 |#1|)) 12)) (** (((-628 |#1|) (-628 |#1|) (-708)) 30))) -(((-629 |#1|) (-10 -7 (-15 -2193 ((-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -3267 ((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -4025 ((-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -4025 ((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -3034 ((-628 |#1|) (-628 |#1|) |#1| (-628 |#1|))) (-15 -1473 ((-628 |#1|) (-628 |#1|) (-628 |#1|) |#1|)) (-15 -3163 ((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -1716 ((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|) (-708))) (-15 ** ((-628 |#1|) (-628 |#1|) (-708)))) (-971)) (T -629)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-628 *4)) (-5 *3 (-708)) (-4 *4 (-971)) (-5 *1 (-629 *4)))) (-1716 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-628 *4)) (-5 *3 (-708)) (-4 *4 (-971)) (-5 *1 (-629 *4)))) (-3163 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3)))) (-1473 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3)))) (-3034 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3)))) (-4025 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3)))) (-4025 (*1 *2 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3)))) (-3267 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3)))) (-2193 (*1 *2 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3))))) -(-10 -7 (-15 -2193 ((-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -3267 ((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -4025 ((-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -4025 ((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -3034 ((-628 |#1|) (-628 |#1|) |#1| (-628 |#1|))) (-15 -1473 ((-628 |#1|) (-628 |#1|) (-628 |#1|) |#1|)) (-15 -3163 ((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -1716 ((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|) (-708))) (-15 ** ((-628 |#1|) (-628 |#1|) (-708)))) -((-2798 ((|#2| |#2| |#4|) 25)) (-2435 (((-628 |#2|) |#3| |#4|) 31)) (-3714 (((-628 |#2|) |#2| |#4|) 30)) (-3480 (((-1166 |#2|) |#2| |#4|) 16)) (-3030 ((|#2| |#3| |#4|) 24)) (-3621 (((-628 |#2|) |#3| |#4| (-708) (-708)) 38)) (-4027 (((-628 |#2|) |#2| |#4| (-708)) 37))) -(((-630 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3480 ((-1166 |#2|) |#2| |#4|)) (-15 -3030 (|#2| |#3| |#4|)) (-15 -2798 (|#2| |#2| |#4|)) (-15 -3714 ((-628 |#2|) |#2| |#4|)) (-15 -4027 ((-628 |#2|) |#2| |#4| (-708))) (-15 -2435 ((-628 |#2|) |#3| |#4|)) (-15 -3621 ((-628 |#2|) |#3| |#4| (-708) (-708)))) (-1014) (-829 |#1|) (-348 |#2|) (-13 (-348 |#1|) (-10 -7 (-6 -4238)))) (T -630)) -((-3621 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-708)) (-4 *6 (-1014)) (-4 *7 (-829 *6)) (-5 *2 (-628 *7)) (-5 *1 (-630 *6 *7 *3 *4)) (-4 *3 (-348 *7)) (-4 *4 (-13 (-348 *6) (-10 -7 (-6 -4238)))))) (-2435 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-4 *6 (-829 *5)) (-5 *2 (-628 *6)) (-5 *1 (-630 *5 *6 *3 *4)) (-4 *3 (-348 *6)) (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4238)))))) (-4027 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-708)) (-4 *6 (-1014)) (-4 *3 (-829 *6)) (-5 *2 (-628 *3)) (-5 *1 (-630 *6 *3 *7 *4)) (-4 *7 (-348 *3)) (-4 *4 (-13 (-348 *6) (-10 -7 (-6 -4238)))))) (-3714 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-4 *3 (-829 *5)) (-5 *2 (-628 *3)) (-5 *1 (-630 *5 *3 *6 *4)) (-4 *6 (-348 *3)) (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4238)))))) (-2798 (*1 *2 *2 *3) (-12 (-4 *4 (-1014)) (-4 *2 (-829 *4)) (-5 *1 (-630 *4 *2 *5 *3)) (-4 *5 (-348 *2)) (-4 *3 (-13 (-348 *4) (-10 -7 (-6 -4238)))))) (-3030 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-4 *2 (-829 *5)) (-5 *1 (-630 *5 *2 *3 *4)) (-4 *3 (-348 *2)) (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4238)))))) (-3480 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-4 *3 (-829 *5)) (-5 *2 (-1166 *3)) (-5 *1 (-630 *5 *3 *6 *4)) (-4 *6 (-348 *3)) (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4238))))))) -(-10 -7 (-15 -3480 ((-1166 |#2|) |#2| |#4|)) (-15 -3030 (|#2| |#3| |#4|)) (-15 -2798 (|#2| |#2| |#4|)) (-15 -3714 ((-628 |#2|) |#2| |#4|)) (-15 -4027 ((-628 |#2|) |#2| |#4| (-708))) (-15 -2435 ((-628 |#2|) |#3| |#4|)) (-15 -3621 ((-628 |#2|) |#3| |#4| (-708) (-708)))) -((-2567 (((-2 (|:| |num| (-628 |#1|)) (|:| |den| |#1|)) (-628 |#2|)) 18)) (-2460 ((|#1| (-628 |#2|)) 9)) (-2508 (((-628 |#1|) (-628 |#2|)) 16))) -(((-631 |#1| |#2|) (-10 -7 (-15 -2460 (|#1| (-628 |#2|))) (-15 -2508 ((-628 |#1|) (-628 |#2|))) (-15 -2567 ((-2 (|:| |num| (-628 |#1|)) (|:| |den| |#1|)) (-628 |#2|)))) (-514) (-919 |#1|)) (T -631)) -((-2567 (*1 *2 *3) (-12 (-5 *3 (-628 *5)) (-4 *5 (-919 *4)) (-4 *4 (-514)) (-5 *2 (-2 (|:| |num| (-628 *4)) (|:| |den| *4))) (-5 *1 (-631 *4 *5)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-628 *5)) (-4 *5 (-919 *4)) (-4 *4 (-514)) (-5 *2 (-628 *4)) (-5 *1 (-631 *4 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-628 *4)) (-4 *4 (-919 *2)) (-4 *2 (-514)) (-5 *1 (-631 *2 *4))))) -(-10 -7 (-15 -2460 (|#1| (-628 |#2|))) (-15 -2508 ((-628 |#1|) (-628 |#2|))) (-15 -2567 ((-2 (|:| |num| (-628 |#1|)) (|:| |den| |#1|)) (-628 |#2|)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-3356 (((-628 (-637))) NIL) (((-628 (-637)) (-1166 $)) NIL)) (-1945 (((-637) $) NIL)) (-3044 (($ $) NIL (|has| (-637) (-1106)))) (-2923 (($ $) NIL (|has| (-637) (-1106)))) (-3833 (((-1094 (-850) (-708)) (-522)) NIL (|has| (-637) (-324)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-637) (-283)) (|has| (-637) (-838))))) (-2961 (($ $) NIL (-3844 (-12 (|has| (-637) (-283)) (|has| (-637) (-838))) (|has| (-637) (-338))))) (-3133 (((-393 $) $) NIL (-3844 (-12 (|has| (-637) (-283)) (|has| (-637) (-838))) (|has| (-637) (-338))))) (-2016 (($ $) NIL (-12 (|has| (-637) (-928)) (|has| (-637) (-1106))))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-637) (-283)) (|has| (-637) (-838))))) (-2805 (((-108) $ $) NIL (|has| (-637) (-283)))) (-1685 (((-708)) NIL (|has| (-637) (-343)))) (-3023 (($ $) NIL (|has| (-637) (-1106)))) (-2906 (($ $) NIL (|has| (-637) (-1106)))) (-3066 (($ $) NIL (|has| (-637) (-1106)))) (-2936 (($ $) NIL (|has| (-637) (-1106)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) NIL) (((-3 (-637) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| (-637) (-962 (-382 (-522)))))) (-1478 (((-522) $) NIL) (((-637) $) NIL) (((-382 (-522)) $) NIL (|has| (-637) (-962 (-382 (-522)))))) (-3225 (($ (-1166 (-637))) NIL) (($ (-1166 (-637)) (-1166 $)) NIL)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-637) (-324)))) (-2333 (($ $ $) NIL (|has| (-637) (-283)))) (-1359 (((-628 (-637)) $) NIL) (((-628 (-637)) $ (-1166 $)) NIL)) (-1226 (((-628 (-637)) (-628 $)) NIL) (((-2 (|:| -2149 (-628 (-637))) (|:| |vec| (-1166 (-637)))) (-628 $) (-1166 $)) NIL) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| (-637) (-584 (-522)))) (((-628 (-522)) (-628 $)) NIL (|has| (-637) (-584 (-522))))) (-2153 (((-3 $ "failed") (-382 (-1081 (-637)))) NIL (|has| (-637) (-338))) (($ (-1081 (-637))) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2025 (((-637) $) 29)) (-2549 (((-3 (-382 (-522)) "failed") $) NIL (|has| (-637) (-507)))) (-3519 (((-108) $) NIL (|has| (-637) (-507)))) (-1699 (((-382 (-522)) $) NIL (|has| (-637) (-507)))) (-1692 (((-850)) NIL)) (-3344 (($) NIL (|has| (-637) (-343)))) (-2303 (($ $ $) NIL (|has| (-637) (-283)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL (|has| (-637) (-283)))) (-2160 (($) NIL (|has| (-637) (-324)))) (-2087 (((-108) $) NIL (|has| (-637) (-324)))) (-1380 (($ $) NIL (|has| (-637) (-324))) (($ $ (-708)) NIL (|has| (-637) (-324)))) (-2725 (((-108) $) NIL (-3844 (-12 (|has| (-637) (-283)) (|has| (-637) (-838))) (|has| (-637) (-338))))) (-1272 (((-2 (|:| |r| (-637)) (|:| |phi| (-637))) $) NIL (-12 (|has| (-637) (-980)) (|has| (-637) (-1106))))) (-2980 (($) NIL (|has| (-637) (-1106)))) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| (-637) (-815 (-354)))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| (-637) (-815 (-522))))) (-3872 (((-770 (-850)) $) NIL (|has| (-637) (-324))) (((-850) $) NIL (|has| (-637) (-324)))) (-2859 (((-108) $) NIL)) (-1811 (($ $ (-522)) NIL (-12 (|has| (-637) (-928)) (|has| (-637) (-1106))))) (-1269 (((-637) $) NIL)) (-4208 (((-3 $ "failed") $) NIL (|has| (-637) (-324)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| (-637) (-283)))) (-4199 (((-1081 (-637)) $) NIL (|has| (-637) (-338)))) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-3810 (($ (-1 (-637) (-637)) $) NIL)) (-1475 (((-850) $) NIL (|has| (-637) (-343)))) (-1238 (($ $) NIL (|has| (-637) (-1106)))) (-2142 (((-1081 (-637)) $) NIL)) (-2267 (($ (-588 $)) NIL (|has| (-637) (-283))) (($ $ $) NIL (|has| (-637) (-283)))) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL (|has| (-637) (-338)))) (-3937 (($) NIL (|has| (-637) (-324)) CONST)) (-2882 (($ (-850)) NIL (|has| (-637) (-343)))) (-2755 (($) NIL)) (-2033 (((-637) $) 31)) (-4174 (((-1032) $) NIL)) (-1368 (($) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| (-637) (-283)))) (-2308 (($ (-588 $)) NIL (|has| (-637) (-283))) (($ $ $) NIL (|has| (-637) (-283)))) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) NIL (|has| (-637) (-324)))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-637) (-283)) (|has| (-637) (-838))))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-637) (-283)) (|has| (-637) (-838))))) (-2006 (((-393 $) $) NIL (-3844 (-12 (|has| (-637) (-283)) (|has| (-637) (-838))) (|has| (-637) (-338))))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-637) (-283))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| (-637) (-283)))) (-2276 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-637)) NIL (|has| (-637) (-514)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| (-637) (-283)))) (-3357 (($ $) NIL (|has| (-637) (-1106)))) (-2330 (($ $ (-1085) (-637)) NIL (|has| (-637) (-483 (-1085) (-637)))) (($ $ (-588 (-1085)) (-588 (-637))) NIL (|has| (-637) (-483 (-1085) (-637)))) (($ $ (-588 (-270 (-637)))) NIL (|has| (-637) (-285 (-637)))) (($ $ (-270 (-637))) NIL (|has| (-637) (-285 (-637)))) (($ $ (-637) (-637)) NIL (|has| (-637) (-285 (-637)))) (($ $ (-588 (-637)) (-588 (-637))) NIL (|has| (-637) (-285 (-637))))) (-4031 (((-708) $) NIL (|has| (-637) (-283)))) (-2683 (($ $ (-637)) NIL (|has| (-637) (-262 (-637) (-637))))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| (-637) (-283)))) (-1615 (((-637)) NIL) (((-637) (-1166 $)) NIL)) (-1304 (((-3 (-708) "failed") $ $) NIL (|has| (-637) (-324))) (((-708) $) NIL (|has| (-637) (-324)))) (-2731 (($ $ (-1 (-637) (-637))) NIL) (($ $ (-1 (-637) (-637)) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-637) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-637) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-637) (-829 (-1085)))) (($ $ (-1085)) NIL (|has| (-637) (-829 (-1085)))) (($ $ (-708)) NIL (|has| (-637) (-210))) (($ $) NIL (|has| (-637) (-210)))) (-2620 (((-628 (-637)) (-1166 $) (-1 (-637) (-637))) NIL (|has| (-637) (-338)))) (-1579 (((-1081 (-637))) NIL)) (-1831 (($ $) NIL (|has| (-637) (-1106)))) (-2946 (($ $) NIL (|has| (-637) (-1106)))) (-2670 (($) NIL (|has| (-637) (-324)))) (-3054 (($ $) NIL (|has| (-637) (-1106)))) (-2928 (($ $) NIL (|has| (-637) (-1106)))) (-3035 (($ $) NIL (|has| (-637) (-1106)))) (-2915 (($ $) NIL (|has| (-637) (-1106)))) (-3510 (((-628 (-637)) (-1166 $)) NIL) (((-1166 (-637)) $) NIL) (((-628 (-637)) (-1166 $) (-1166 $)) NIL) (((-1166 (-637)) $ (-1166 $)) NIL)) (-3873 (((-498) $) NIL (|has| (-637) (-563 (-498)))) (((-154 (-202)) $) NIL (|has| (-637) (-947))) (((-154 (-354)) $) NIL (|has| (-637) (-947))) (((-821 (-354)) $) NIL (|has| (-637) (-563 (-821 (-354))))) (((-821 (-522)) $) NIL (|has| (-637) (-563 (-821 (-522))))) (($ (-1081 (-637))) NIL) (((-1081 (-637)) $) NIL) (($ (-1166 (-637))) NIL) (((-1166 (-637)) $) NIL)) (-2983 (($ $) NIL)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-3844 (-12 (|has| (-637) (-283)) (|has| $ (-133)) (|has| (-637) (-838))) (|has| (-637) (-324))))) (-4005 (($ (-637) (-637)) 12)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-522)) NIL) (($ (-637)) NIL) (($ (-154 (-354))) 13) (($ (-154 (-522))) 19) (($ (-154 (-637))) 28) (($ (-154 (-639))) 25) (((-154 (-354)) $) 33) (($ (-382 (-522))) NIL (-3844 (|has| (-637) (-962 (-382 (-522)))) (|has| (-637) (-338))))) (-3040 (($ $) NIL (|has| (-637) (-324))) (((-3 $ "failed") $) NIL (-3844 (-12 (|has| (-637) (-283)) (|has| $ (-133)) (|has| (-637) (-838))) (|has| (-637) (-133))))) (-2645 (((-1081 (-637)) $) NIL)) (-2742 (((-708)) NIL)) (-2905 (((-1166 $)) NIL)) (-1856 (($ $) NIL (|has| (-637) (-1106)))) (-2976 (($ $) NIL (|has| (-637) (-1106)))) (-1407 (((-108) $ $) NIL)) (-1839 (($ $) NIL (|has| (-637) (-1106)))) (-2957 (($ $) NIL (|has| (-637) (-1106)))) (-1873 (($ $) NIL (|has| (-637) (-1106)))) (-3001 (($ $) NIL (|has| (-637) (-1106)))) (-2636 (((-637) $) NIL (|has| (-637) (-1106)))) (-2476 (($ $) NIL (|has| (-637) (-1106)))) (-3011 (($ $) NIL (|has| (-637) (-1106)))) (-1864 (($ $) NIL (|has| (-637) (-1106)))) (-2989 (($ $) NIL (|has| (-637) (-1106)))) (-1849 (($ $) NIL (|has| (-637) (-1106)))) (-2966 (($ $) NIL (|has| (-637) (-1106)))) (-4126 (($ $) NIL (|has| (-637) (-980)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| (-637) (-338)))) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $ (-1 (-637) (-637))) NIL) (($ $ (-1 (-637) (-637)) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-637) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-637) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-637) (-829 (-1085)))) (($ $ (-1085)) NIL (|has| (-637) (-829 (-1085)))) (($ $ (-708)) NIL (|has| (-637) (-210))) (($ $) NIL (|has| (-637) (-210)))) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) NIL)) (-1682 (($ $ $) NIL (|has| (-637) (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ $) NIL (|has| (-637) (-1106))) (($ $ (-382 (-522))) NIL (-12 (|has| (-637) (-928)) (|has| (-637) (-1106)))) (($ $ (-522)) NIL (|has| (-637) (-338)))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ (-637) $) NIL) (($ $ (-637)) NIL) (($ (-382 (-522)) $) NIL (|has| (-637) (-338))) (($ $ (-382 (-522))) NIL (|has| (-637) (-338))))) -(((-632) (-13 (-362) (-151 (-637)) (-10 -8 (-15 -2217 ($ (-154 (-354)))) (-15 -2217 ($ (-154 (-522)))) (-15 -2217 ($ (-154 (-637)))) (-15 -2217 ($ (-154 (-639)))) (-15 -2217 ((-154 (-354)) $))))) (T -632)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-154 (-354))) (-5 *1 (-632)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-154 (-522))) (-5 *1 (-632)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-154 (-637))) (-5 *1 (-632)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-154 (-639))) (-5 *1 (-632)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-154 (-354))) (-5 *1 (-632))))) -(-13 (-362) (-151 (-637)) (-10 -8 (-15 -2217 ($ (-154 (-354)))) (-15 -2217 ($ (-154 (-522)))) (-15 -2217 ($ (-154 (-637)))) (-15 -2217 ($ (-154 (-639)))) (-15 -2217 ((-154 (-354)) $)))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-2717 (((-108) $ (-708)) 8)) (-1213 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4238)))) (-3367 (($) 7 T CONST)) (-1581 (($ $) 62)) (-2379 (($ $) 58 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1700 (($ |#1| $) 47 (|has| $ (-6 -4238))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4238)))) (-1424 (($ |#1| $) 57 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4238)))) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) 9)) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35)) (-3309 (((-108) $ (-708)) 10)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1431 ((|#1| $) 39)) (-3365 (($ |#1| $) 40) (($ |#1| $ (-708)) 63)) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3295 ((|#1| $) 41)) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-3699 (((-588 (-2 (|:| -3149 |#1|) (|:| -4187 (-708)))) $) 61)) (-3546 (($) 49) (($ (-588 |#1|)) 48)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-3873 (((-498) $) 59 (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) 50)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-2501 (($ (-588 |#1|)) 42)) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-633 |#1|) (-1197) (-1014)) (T -633)) -((-3365 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-708)) (-4 *1 (-633 *2)) (-4 *2 (-1014)))) (-1581 (*1 *1 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1014)))) (-3699 (*1 *2 *1) (-12 (-4 *1 (-633 *3)) (-4 *3 (-1014)) (-5 *2 (-588 (-2 (|:| -3149 *3) (|:| -4187 (-708)))))))) -(-13 (-212 |t#1|) (-10 -8 (-15 -3365 ($ |t#1| $ (-708))) (-15 -1581 ($ $)) (-15 -3699 ((-588 (-2 (|:| -3149 |t#1|) (|:| -4187 (-708)))) $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-212 |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T)) -((-2665 (((-588 |#1|) (-588 (-2 (|:| -2006 |#1|) (|:| -2487 (-522)))) (-522)) 46)) (-1538 ((|#1| |#1| (-522)) 45)) (-2308 ((|#1| |#1| |#1| (-522)) 35)) (-2006 (((-588 |#1|) |#1| (-522)) 38)) (-2433 ((|#1| |#1| (-522) |#1| (-522)) 32)) (-3707 (((-588 (-2 (|:| -2006 |#1|) (|:| -2487 (-522)))) |#1| (-522)) 44))) -(((-634 |#1|) (-10 -7 (-15 -2308 (|#1| |#1| |#1| (-522))) (-15 -1538 (|#1| |#1| (-522))) (-15 -2006 ((-588 |#1|) |#1| (-522))) (-15 -3707 ((-588 (-2 (|:| -2006 |#1|) (|:| -2487 (-522)))) |#1| (-522))) (-15 -2665 ((-588 |#1|) (-588 (-2 (|:| -2006 |#1|) (|:| -2487 (-522)))) (-522))) (-15 -2433 (|#1| |#1| (-522) |#1| (-522)))) (-1142 (-522))) (T -634)) -((-2433 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-634 *2)) (-4 *2 (-1142 *3)))) (-2665 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-2 (|:| -2006 *5) (|:| -2487 (-522))))) (-5 *4 (-522)) (-4 *5 (-1142 *4)) (-5 *2 (-588 *5)) (-5 *1 (-634 *5)))) (-3707 (*1 *2 *3 *4) (-12 (-5 *4 (-522)) (-5 *2 (-588 (-2 (|:| -2006 *3) (|:| -2487 *4)))) (-5 *1 (-634 *3)) (-4 *3 (-1142 *4)))) (-2006 (*1 *2 *3 *4) (-12 (-5 *4 (-522)) (-5 *2 (-588 *3)) (-5 *1 (-634 *3)) (-4 *3 (-1142 *4)))) (-1538 (*1 *2 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-634 *2)) (-4 *2 (-1142 *3)))) (-2308 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-634 *2)) (-4 *2 (-1142 *3))))) -(-10 -7 (-15 -2308 (|#1| |#1| |#1| (-522))) (-15 -1538 (|#1| |#1| (-522))) (-15 -2006 ((-588 |#1|) |#1| (-522))) (-15 -3707 ((-588 (-2 (|:| -2006 |#1|) (|:| -2487 (-522)))) |#1| (-522))) (-15 -2665 ((-588 |#1|) (-588 (-2 (|:| -2006 |#1|) (|:| -2487 (-522)))) (-522))) (-15 -2433 (|#1| |#1| (-522) |#1| (-522)))) -((-2848 (((-1 (-872 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202) (-202))) 17)) (-3948 (((-1045 (-202)) (-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-588 (-239))) 38) (((-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-588 (-239))) 40) (((-1045 (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1009 (-202)) (-1009 (-202)) (-588 (-239))) 42)) (-2746 (((-1045 (-202)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-588 (-239))) NIL)) (-3930 (((-1045 (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1009 (-202)) (-1009 (-202)) (-588 (-239))) 43))) -(((-635) (-10 -7 (-15 -3948 ((-1045 (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1009 (-202)) (-1009 (-202)) (-588 (-239)))) (-15 -3948 ((-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-588 (-239)))) (-15 -3948 ((-1045 (-202)) (-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-588 (-239)))) (-15 -3930 ((-1045 (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1009 (-202)) (-1009 (-202)) (-588 (-239)))) (-15 -2746 ((-1045 (-202)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-588 (-239)))) (-15 -2848 ((-1 (-872 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202) (-202)))))) (T -635)) -((-2848 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1 (-202) (-202) (-202) (-202))) (-5 *2 (-1 (-872 (-202)) (-202) (-202))) (-5 *1 (-635)))) (-2746 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-291 (-522))) (-5 *4 (-1 (-202) (-202))) (-5 *5 (-1009 (-202))) (-5 *6 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-635)))) (-3930 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-3 (-1 (-202) (-202) (-202) (-202)) "undefined")) (-5 *5 (-1009 (-202))) (-5 *6 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-635)))) (-3948 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1045 (-202))) (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-202))) (-5 *5 (-588 (-239))) (-5 *1 (-635)))) (-3948 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-202))) (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-635)))) (-3948 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-3 (-1 (-202) (-202) (-202) (-202)) "undefined")) (-5 *5 (-1009 (-202))) (-5 *6 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-635))))) -(-10 -7 (-15 -3948 ((-1045 (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1009 (-202)) (-1009 (-202)) (-588 (-239)))) (-15 -3948 ((-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-588 (-239)))) (-15 -3948 ((-1045 (-202)) (-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-588 (-239)))) (-15 -3930 ((-1045 (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1009 (-202)) (-1009 (-202)) (-588 (-239)))) (-15 -2746 ((-1045 (-202)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-588 (-239)))) (-15 -2848 ((-1 (-872 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202) (-202))))) -((-2006 (((-393 (-1081 |#4|)) (-1081 |#4|)) 73) (((-393 |#4|) |#4|) 217))) -(((-636 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2006 ((-393 |#4|) |#4|)) (-15 -2006 ((-393 (-1081 |#4|)) (-1081 |#4|)))) (-784) (-730) (-324) (-878 |#3| |#2| |#1|)) (T -636)) -((-2006 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-730)) (-4 *6 (-324)) (-4 *7 (-878 *6 *5 *4)) (-5 *2 (-393 (-1081 *7))) (-5 *1 (-636 *4 *5 *6 *7)) (-5 *3 (-1081 *7)))) (-2006 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-730)) (-4 *6 (-324)) (-5 *2 (-393 *3)) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-878 *6 *5 *4))))) -(-10 -7 (-15 -2006 ((-393 |#4|) |#4|)) (-15 -2006 ((-393 (-1081 |#4|)) (-1081 |#4|)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 84)) (-3049 (((-522) $) 30)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-3495 (($ $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2016 (($ $) NIL)) (-2805 (((-108) $ $) NIL)) (-3355 (((-522) $) NIL)) (-3367 (($) NIL T CONST)) (-1943 (($ $) NIL)) (-3700 (((-3 (-522) "failed") $) 73) (((-3 (-382 (-522)) "failed") $) 26) (((-3 (-354) "failed") $) 70)) (-1478 (((-522) $) 75) (((-382 (-522)) $) 67) (((-354) $) 68)) (-2333 (($ $ $) 96)) (-3920 (((-3 $ "failed") $) 87)) (-2303 (($ $ $) 95)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-3684 (((-850)) 77) (((-850) (-850)) 76)) (-3603 (((-108) $) NIL)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL)) (-3872 (((-522) $) NIL)) (-2859 (((-108) $) NIL)) (-1811 (($ $ (-522)) NIL)) (-1269 (($ $) NIL)) (-3740 (((-108) $) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3770 (((-522) (-522)) 81) (((-522)) 82)) (-1308 (($ $ $) NIL) (($) NIL (-12 (-2473 (|has| $ (-6 -4221))) (-2473 (|has| $ (-6 -4229)))))) (-1395 (((-522) (-522)) 79) (((-522)) 80)) (-2524 (($ $ $) NIL) (($) NIL (-12 (-2473 (|has| $ (-6 -4221))) (-2473 (|has| $ (-6 -4229)))))) (-3451 (((-522) $) 16)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) 91)) (-1494 (((-850) (-522)) NIL (|has| $ (-6 -4229)))) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4194 (($ $) NIL)) (-3592 (($ $) NIL)) (-3173 (($ (-522) (-522)) NIL) (($ (-522) (-522) (-850)) NIL)) (-2006 (((-393 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) 92)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3858 (((-522) $) 22)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 94)) (-3353 (((-850)) NIL) (((-850) (-850)) NIL (|has| $ (-6 -4229)))) (-1688 (((-850) (-522)) NIL (|has| $ (-6 -4229)))) (-3873 (((-354) $) NIL) (((-202) $) NIL) (((-821 (-354)) $) NIL)) (-2217 (((-792) $) 52) (($ (-522)) 63) (($ $) NIL) (($ (-382 (-522))) 66) (($ (-522)) 63) (($ (-382 (-522))) 66) (($ (-354)) 60) (((-354) $) 50) (($ (-639)) 55)) (-2742 (((-708)) 103)) (-3719 (($ (-522) (-522) (-850)) 44)) (-1379 (($ $) NIL)) (-2780 (((-850)) NIL) (((-850) (-850)) NIL (|has| $ (-6 -4229)))) (-1897 (((-850)) 35) (((-850) (-850)) 78)) (-1407 (((-108) $ $) NIL)) (-4126 (($ $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) 32 T CONST)) (-3709 (($) 17 T CONST)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 83)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 101)) (-1682 (($ $ $) 65)) (-1672 (($ $) 99) (($ $ $) 100)) (-1661 (($ $ $) 98)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL) (($ $ (-382 (-522))) 90)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 97) (($ $ $) 88) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL))) -(((-637) (-13 (-379) (-362) (-338) (-962 (-354)) (-962 (-382 (-522))) (-135) (-10 -8 (-15 -3684 ((-850) (-850))) (-15 -3684 ((-850))) (-15 -1897 ((-850) (-850))) (-15 -1897 ((-850))) (-15 -1395 ((-522) (-522))) (-15 -1395 ((-522))) (-15 -3770 ((-522) (-522))) (-15 -3770 ((-522))) (-15 -2217 ((-354) $)) (-15 -2217 ($ (-639))) (-15 -3451 ((-522) $)) (-15 -3858 ((-522) $)) (-15 -3719 ($ (-522) (-522) (-850)))))) (T -637)) -((-1897 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-637)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-637)))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-637)))) (-3684 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-637)))) (-3684 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-637)))) (-1897 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-637)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-637)))) (-1395 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-637)))) (-3770 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-637)))) (-3770 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-637)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-354)) (-5 *1 (-637)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-639)) (-5 *1 (-637)))) (-3719 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-522)) (-5 *3 (-850)) (-5 *1 (-637))))) -(-13 (-379) (-362) (-338) (-962 (-354)) (-962 (-382 (-522))) (-135) (-10 -8 (-15 -3684 ((-850) (-850))) (-15 -3684 ((-850))) (-15 -1897 ((-850) (-850))) (-15 -1897 ((-850))) (-15 -1395 ((-522) (-522))) (-15 -1395 ((-522))) (-15 -3770 ((-522) (-522))) (-15 -3770 ((-522))) (-15 -2217 ((-354) $)) (-15 -2217 ($ (-639))) (-15 -3451 ((-522) $)) (-15 -3858 ((-522) $)) (-15 -3719 ($ (-522) (-522) (-850))))) -((-3264 (((-628 |#1|) (-628 |#1|) |#1| |#1|) 65)) (-2091 (((-628 |#1|) (-628 |#1|) |#1|) 48)) (-3648 (((-628 |#1|) (-628 |#1|) |#1|) 66)) (-2243 (((-628 |#1|) (-628 |#1|)) 49)) (-2419 (((-2 (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1|) 64))) -(((-638 |#1|) (-10 -7 (-15 -2243 ((-628 |#1|) (-628 |#1|))) (-15 -2091 ((-628 |#1|) (-628 |#1|) |#1|)) (-15 -3648 ((-628 |#1|) (-628 |#1|) |#1|)) (-15 -3264 ((-628 |#1|) (-628 |#1|) |#1| |#1|)) (-15 -2419 ((-2 (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1|))) (-283)) (T -638)) -((-2419 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3450 *3) (|:| -4002 *3))) (-5 *1 (-638 *3)) (-4 *3 (-283)))) (-3264 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-628 *3)) (-4 *3 (-283)) (-5 *1 (-638 *3)))) (-3648 (*1 *2 *2 *3) (-12 (-5 *2 (-628 *3)) (-4 *3 (-283)) (-5 *1 (-638 *3)))) (-2091 (*1 *2 *2 *3) (-12 (-5 *2 (-628 *3)) (-4 *3 (-283)) (-5 *1 (-638 *3)))) (-2243 (*1 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-283)) (-5 *1 (-638 *3))))) -(-10 -7 (-15 -2243 ((-628 |#1|) (-628 |#1|))) (-15 -2091 ((-628 |#1|) (-628 |#1|) |#1|)) (-15 -3648 ((-628 |#1|) (-628 |#1|) |#1|)) (-15 -3264 ((-628 |#1|) (-628 |#1|) |#1| |#1|)) (-15 -2419 ((-2 (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-1805 (($ $ $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3372 (($ $ $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2805 (((-108) $ $) NIL)) (-3355 (((-522) $) NIL)) (-1736 (($ $ $) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) 27)) (-1478 (((-522) $) 25)) (-2333 (($ $ $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2549 (((-3 (-382 (-522)) "failed") $) NIL)) (-3519 (((-108) $) NIL)) (-1699 (((-382 (-522)) $) NIL)) (-3344 (($ $) NIL) (($) NIL)) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-3859 (($ $ $ $) NIL)) (-1968 (($ $ $) NIL)) (-3603 (((-108) $) NIL)) (-2634 (($ $ $) NIL)) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL)) (-2859 (((-108) $) NIL)) (-3077 (((-108) $) NIL)) (-4208 (((-3 $ "failed") $) NIL)) (-3740 (((-108) $) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2037 (($ $ $ $) NIL)) (-1308 (($ $ $) NIL)) (-2557 (((-850) (-850)) 10) (((-850)) 9)) (-2524 (($ $ $) NIL)) (-4000 (($ $) NIL)) (-4030 (($ $) NIL)) (-2267 (($ (-588 $)) NIL) (($ $ $) NIL)) (-2311 (((-1068) $) NIL)) (-1988 (($ $ $) NIL)) (-3937 (($) NIL T CONST)) (-3092 (($ $) NIL)) (-4174 (((-1032) $) NIL) (($ $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ (-588 $)) NIL) (($ $ $) NIL)) (-1274 (($ $) NIL)) (-2006 (((-393 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2626 (((-108) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-2731 (($ $) NIL) (($ $ (-708)) NIL)) (-3518 (($ $) NIL)) (-2463 (($ $) NIL)) (-3873 (((-202) $) NIL) (((-354) $) NIL) (((-821 (-522)) $) NIL) (((-498) $) NIL) (((-522) $) NIL)) (-2217 (((-792) $) NIL) (($ (-522)) 24) (($ $) NIL) (($ (-522)) 24) (((-291 $) (-291 (-522))) 18)) (-2742 (((-708)) NIL)) (-1763 (((-108) $ $) NIL)) (-1591 (($ $ $) NIL)) (-1897 (($) NIL)) (-1407 (((-108) $ $) NIL)) (-3673 (($ $ $ $) NIL)) (-4126 (($ $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $) NIL) (($ $ (-708)) NIL)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL))) -(((-639) (-13 (-362) (-507) (-10 -8 (-15 -2557 ((-850) (-850))) (-15 -2557 ((-850))) (-15 -2217 ((-291 $) (-291 (-522))))))) (T -639)) -((-2557 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-639)))) (-2557 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-639)))) (-2217 (*1 *2 *3) (-12 (-5 *3 (-291 (-522))) (-5 *2 (-291 (-639))) (-5 *1 (-639))))) -(-13 (-362) (-507) (-10 -8 (-15 -2557 ((-850) (-850))) (-15 -2557 ((-850))) (-15 -2217 ((-291 $) (-291 (-522)))))) -((-3200 (((-1 |#4| |#2| |#3|) |#1| (-1085) (-1085)) 19)) (-3279 (((-1 |#4| |#2| |#3|) (-1085)) 12))) -(((-640 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3279 ((-1 |#4| |#2| |#3|) (-1085))) (-15 -3200 ((-1 |#4| |#2| |#3|) |#1| (-1085) (-1085)))) (-563 (-498)) (-1120) (-1120) (-1120)) (T -640)) -((-3200 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1085)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *3 *5 *6 *7)) (-4 *3 (-563 (-498))) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *4 *5 *6 *7)) (-4 *4 (-563 (-498))) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120))))) -(-10 -7 (-15 -3279 ((-1 |#4| |#2| |#3|) (-1085))) (-15 -3200 ((-1 |#4| |#2| |#3|) |#1| (-1085) (-1085)))) -((-1419 (((-108) $ $) NIL)) (-2648 (((-1171) $ (-708)) 14)) (-3314 (((-708) $) 12)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 25)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 24))) -(((-641 |#1|) (-13 (-125) (-562 |#1|) (-10 -8 (-15 -2217 ($ |#1|)))) (-1014)) (T -641)) -((-2217 (*1 *1 *2) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1014))))) -(-13 (-125) (-562 |#1|) (-10 -8 (-15 -2217 ($ |#1|)))) -((-1719 (((-1 (-202) (-202) (-202)) |#1| (-1085) (-1085)) 33) (((-1 (-202) (-202)) |#1| (-1085)) 38))) -(((-642 |#1|) (-10 -7 (-15 -1719 ((-1 (-202) (-202)) |#1| (-1085))) (-15 -1719 ((-1 (-202) (-202) (-202)) |#1| (-1085) (-1085)))) (-563 (-498))) (T -642)) -((-1719 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1085)) (-5 *2 (-1 (-202) (-202) (-202))) (-5 *1 (-642 *3)) (-4 *3 (-563 (-498))))) (-1719 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-5 *2 (-1 (-202) (-202))) (-5 *1 (-642 *3)) (-4 *3 (-563 (-498)))))) -(-10 -7 (-15 -1719 ((-1 (-202) (-202)) |#1| (-1085))) (-15 -1719 ((-1 (-202) (-202) (-202)) |#1| (-1085) (-1085)))) -((-2138 (((-1085) |#1| (-1085) (-588 (-1085))) 9) (((-1085) |#1| (-1085) (-1085) (-1085)) 12) (((-1085) |#1| (-1085) (-1085)) 11) (((-1085) |#1| (-1085)) 10))) -(((-643 |#1|) (-10 -7 (-15 -2138 ((-1085) |#1| (-1085))) (-15 -2138 ((-1085) |#1| (-1085) (-1085))) (-15 -2138 ((-1085) |#1| (-1085) (-1085) (-1085))) (-15 -2138 ((-1085) |#1| (-1085) (-588 (-1085))))) (-563 (-498))) (T -643)) -((-2138 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-588 (-1085))) (-5 *2 (-1085)) (-5 *1 (-643 *3)) (-4 *3 (-563 (-498))))) (-2138 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-643 *3)) (-4 *3 (-563 (-498))))) (-2138 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-643 *3)) (-4 *3 (-563 (-498))))) (-2138 (*1 *2 *3 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-643 *3)) (-4 *3 (-563 (-498)))))) -(-10 -7 (-15 -2138 ((-1085) |#1| (-1085))) (-15 -2138 ((-1085) |#1| (-1085) (-1085))) (-15 -2138 ((-1085) |#1| (-1085) (-1085) (-1085))) (-15 -2138 ((-1085) |#1| (-1085) (-588 (-1085))))) -((-1765 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-644 |#1| |#2|) (-10 -7 (-15 -1765 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1120) (-1120)) (T -644)) -((-1765 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-644 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120))))) -(-10 -7 (-15 -1765 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-1841 (((-1 |#3| |#2|) (-1085)) 11)) (-3200 (((-1 |#3| |#2|) |#1| (-1085)) 21))) -(((-645 |#1| |#2| |#3|) (-10 -7 (-15 -1841 ((-1 |#3| |#2|) (-1085))) (-15 -3200 ((-1 |#3| |#2|) |#1| (-1085)))) (-563 (-498)) (-1120) (-1120)) (T -645)) -((-3200 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *3 *5 *6)) (-4 *3 (-563 (-498))) (-4 *5 (-1120)) (-4 *6 (-1120)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *4 *5 *6)) (-4 *4 (-563 (-498))) (-4 *5 (-1120)) (-4 *6 (-1120))))) -(-10 -7 (-15 -1841 ((-1 |#3| |#2|) (-1085))) (-15 -3200 ((-1 |#3| |#2|) |#1| (-1085)))) -((-3505 (((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-588 |#2|) (-588 (-1081 |#4|)) (-588 |#3|) (-588 |#4|) (-588 (-588 (-2 (|:| -2170 (-708)) (|:| |pcoef| |#4|)))) (-588 (-708)) (-1166 (-588 (-1081 |#3|))) |#3|) 59)) (-2707 (((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-588 |#2|) (-588 (-1081 |#3|)) (-588 |#3|) (-588 |#4|) (-588 (-708)) |#3|) 72)) (-2057 (((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-588 |#2|) (-588 |#3|) (-588 (-708)) (-588 (-1081 |#4|)) (-1166 (-588 (-1081 |#3|))) |#3|) 32))) -(((-646 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2057 ((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-588 |#2|) (-588 |#3|) (-588 (-708)) (-588 (-1081 |#4|)) (-1166 (-588 (-1081 |#3|))) |#3|)) (-15 -2707 ((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-588 |#2|) (-588 (-1081 |#3|)) (-588 |#3|) (-588 |#4|) (-588 (-708)) |#3|)) (-15 -3505 ((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-588 |#2|) (-588 (-1081 |#4|)) (-588 |#3|) (-588 |#4|) (-588 (-588 (-2 (|:| -2170 (-708)) (|:| |pcoef| |#4|)))) (-588 (-708)) (-1166 (-588 (-1081 |#3|))) |#3|))) (-730) (-784) (-283) (-878 |#3| |#1| |#2|)) (T -646)) -((-3505 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-588 (-1081 *13))) (-5 *3 (-1081 *13)) (-5 *4 (-588 *12)) (-5 *5 (-588 *10)) (-5 *6 (-588 *13)) (-5 *7 (-588 (-588 (-2 (|:| -2170 (-708)) (|:| |pcoef| *13))))) (-5 *8 (-588 (-708))) (-5 *9 (-1166 (-588 (-1081 *10)))) (-4 *12 (-784)) (-4 *10 (-283)) (-4 *13 (-878 *10 *11 *12)) (-4 *11 (-730)) (-5 *1 (-646 *11 *12 *10 *13)))) (-2707 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-588 *11)) (-5 *5 (-588 (-1081 *9))) (-5 *6 (-588 *9)) (-5 *7 (-588 *12)) (-5 *8 (-588 (-708))) (-4 *11 (-784)) (-4 *9 (-283)) (-4 *12 (-878 *9 *10 *11)) (-4 *10 (-730)) (-5 *2 (-588 (-1081 *12))) (-5 *1 (-646 *10 *11 *9 *12)) (-5 *3 (-1081 *12)))) (-2057 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-588 (-1081 *11))) (-5 *3 (-1081 *11)) (-5 *4 (-588 *10)) (-5 *5 (-588 *8)) (-5 *6 (-588 (-708))) (-5 *7 (-1166 (-588 (-1081 *8)))) (-4 *10 (-784)) (-4 *8 (-283)) (-4 *11 (-878 *8 *9 *10)) (-4 *9 (-730)) (-5 *1 (-646 *9 *10 *8 *11))))) -(-10 -7 (-15 -2057 ((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-588 |#2|) (-588 |#3|) (-588 (-708)) (-588 (-1081 |#4|)) (-1166 (-588 (-1081 |#3|))) |#3|)) (-15 -2707 ((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-588 |#2|) (-588 (-1081 |#3|)) (-588 |#3|) (-588 |#4|) (-588 (-708)) |#3|)) (-15 -3505 ((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-588 |#2|) (-588 (-1081 |#4|)) (-588 |#3|) (-588 |#4|) (-588 (-588 (-2 (|:| -2170 (-708)) (|:| |pcoef| |#4|)))) (-588 (-708)) (-1166 (-588 (-1081 |#3|))) |#3|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3241 (($ $) 41)) (-3920 (((-3 $ "failed") $) 34)) (-2859 (((-108) $) 31)) (-3500 (($ |#1| (-708)) 39)) (-3564 (((-708) $) 43)) (-3224 ((|#1| $) 42)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2487 (((-708) $) 44)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 38 (|has| |#1| (-157)))) (-1643 ((|#1| $ (-708)) 40)) (-2742 (((-708)) 29)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-647 |#1|) (-1197) (-971)) (T -647)) -((-2487 (*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-971)) (-5 *2 (-708)))) (-3564 (*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-971)) (-5 *2 (-708)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-971)))) (-3241 (*1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-971)))) (-1643 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-4 *1 (-647 *2)) (-4 *2 (-971)))) (-3500 (*1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-647 *2)) (-4 *2 (-971))))) -(-13 (-971) (-107 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -2487 ((-708) $)) (-15 -3564 ((-708) $)) (-15 -3224 (|t#1| $)) (-15 -3241 ($ $)) (-15 -1643 (|t#1| $ (-708))) (-15 -3500 ($ |t#1| (-708))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-655 |#1|) |has| |#1| (-157)) ((-664) . T) ((-977 |#1|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-3810 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-648 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3810 (|#6| (-1 |#4| |#1|) |#3|))) (-514) (-1142 |#1|) (-1142 (-382 |#2|)) (-514) (-1142 |#4|) (-1142 (-382 |#5|))) (T -648)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-514)) (-4 *7 (-514)) (-4 *6 (-1142 *5)) (-4 *2 (-1142 (-382 *8))) (-5 *1 (-648 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1142 (-382 *6))) (-4 *8 (-1142 *7))))) -(-10 -7 (-15 -3810 (|#6| (-1 |#4| |#1|) |#3|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2805 (((-108) $ $) NIL)) (-3367 (($) NIL T CONST)) (-2333 (($ $ $) NIL)) (-2153 (($ |#1| |#2|) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-2859 (((-108) $) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1246 ((|#2| $) NIL)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2006 (((-393 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1466 (((-3 $ "failed") $ $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) ((|#1| $) NIL)) (-2742 (((-708)) NIL)) (-1407 (((-108) $ $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL))) -(((-649 |#1| |#2| |#3| |#4| |#5|) (-13 (-338) (-10 -8 (-15 -1246 (|#2| $)) (-15 -2217 (|#1| $)) (-15 -2153 ($ |#1| |#2|)) (-15 -1466 ((-3 $ "failed") $ $)))) (-157) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -649)) -((-1246 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-649 *3 *2 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2217 (*1 *2 *1) (-12 (-4 *2 (-157)) (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2153 (*1 *1 *2 *3) (-12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1466 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-338) (-10 -8 (-15 -1246 (|#2| $)) (-15 -2217 (|#1| $)) (-15 -2153 ($ |#1| |#2|)) (-15 -1466 ((-3 $ "failed") $ $)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 30)) (-1428 (((-1166 |#1|) $ (-708)) NIL)) (-3533 (((-588 (-999)) $) NIL)) (-2264 (($ (-1081 |#1|)) NIL)) (-1264 (((-1081 $) $ (-999)) NIL) (((-1081 |#1|) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) NIL (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-3358 (((-708) $) NIL) (((-708) $ (-588 (-999))) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3485 (($ $ $) NIL (|has| |#1| (-514)))) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2961 (($ $) NIL (|has| |#1| (-426)))) (-3133 (((-393 $) $) NIL (|has| |#1| (-426)))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2805 (((-108) $ $) NIL (|has| |#1| (-338)))) (-1685 (((-708)) 47 (|has| |#1| (-343)))) (-1633 (($ $ (-708)) NIL)) (-2165 (($ $ (-708)) NIL)) (-4076 ((|#2| |#2|) 44)) (-2458 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-426)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-999) "failed") $) NIL)) (-1478 ((|#1| $) NIL) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-999) $) NIL)) (-2908 (($ $ $ (-999)) NIL (|has| |#1| (-157))) ((|#1| $ $) NIL (|has| |#1| (-157)))) (-2333 (($ $ $) NIL (|has| |#1| (-338)))) (-3241 (($ $) 34)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-2153 (($ |#2|) 42)) (-3920 (((-3 $ "failed") $) 85)) (-3344 (($) 51 (|has| |#1| (-343)))) (-2303 (($ $ $) NIL (|has| |#1| (-338)))) (-2659 (($ $ $) NIL)) (-2830 (($ $ $) NIL (|has| |#1| (-514)))) (-3370 (((-2 (|:| -3112 |#1|) (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-514)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2883 (($ $) NIL (|has| |#1| (-426))) (($ $ (-999)) NIL (|has| |#1| (-426)))) (-3232 (((-588 $) $) NIL)) (-2725 (((-108) $) NIL (|has| |#1| (-838)))) (-4160 (((-886 $)) 79)) (-3792 (($ $ |#1| (-708) $) NIL)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-999) (-815 (-354))) (|has| |#1| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-999) (-815 (-522))) (|has| |#1| (-815 (-522)))))) (-3872 (((-708) $ $) NIL (|has| |#1| (-514)))) (-2859 (((-108) $) NIL)) (-1391 (((-708) $) NIL)) (-4208 (((-3 $ "failed") $) NIL (|has| |#1| (-1061)))) (-3520 (($ (-1081 |#1|) (-999)) NIL) (($ (-1081 $) (-999)) NIL)) (-2895 (($ $ (-708)) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3038 (((-588 $) $) NIL)) (-1374 (((-108) $) NIL)) (-3500 (($ |#1| (-708)) 77) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-3058 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $ (-999)) NIL) (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-1246 ((|#2|) 45)) (-3564 (((-708) $) NIL) (((-708) $ (-999)) NIL) (((-588 (-708)) $ (-588 (-999))) NIL)) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-1723 (($ (-1 (-708) (-708)) $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-4178 (((-1081 |#1|) $) NIL)) (-3155 (((-3 (-999) "failed") $) NIL)) (-1475 (((-850) $) NIL (|has| |#1| (-343)))) (-2142 ((|#2| $) 41)) (-3216 (($ $) NIL)) (-3224 ((|#1| $) 28)) (-2267 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-2311 (((-1068) $) NIL)) (-2927 (((-2 (|:| -3450 $) (|:| -4002 $)) $ (-708)) NIL)) (-2760 (((-3 (-588 $) "failed") $) NIL)) (-1919 (((-3 (-588 $) "failed") $) NIL)) (-2024 (((-3 (-2 (|:| |var| (-999)) (|:| -3858 (-708))) "failed") $) NIL)) (-2611 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3937 (($) NIL (|has| |#1| (-1061)) CONST)) (-2882 (($ (-850)) NIL (|has| |#1| (-343)))) (-4174 (((-1032) $) NIL)) (-3199 (((-108) $) NIL)) (-3207 ((|#1| $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-426)))) (-2308 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-3886 (($ $) 78 (|has| |#1| (-324)))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2006 (((-393 $) $) NIL (|has| |#1| (-838)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-338)))) (-2276 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-514)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-2330 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-999) |#1|) NIL) (($ $ (-588 (-999)) (-588 |#1|)) NIL) (($ $ (-999) $) NIL) (($ $ (-588 (-999)) (-588 $)) NIL)) (-4031 (((-708) $) NIL (|has| |#1| (-338)))) (-2683 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-382 $) (-382 $) (-382 $)) NIL (|has| |#1| (-514))) ((|#1| (-382 $) |#1|) NIL (|has| |#1| (-338))) (((-382 $) $ (-382 $)) NIL (|has| |#1| (-514)))) (-2877 (((-3 $ "failed") $ (-708)) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 86 (|has| |#1| (-338)))) (-1615 (($ $ (-999)) NIL (|has| |#1| (-157))) ((|#1| $) NIL (|has| |#1| (-157)))) (-2731 (($ $ (-999)) NIL) (($ $ (-588 (-999))) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL) (($ $ (-708)) NIL) (($ $) NIL) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2487 (((-708) $) 32) (((-708) $ (-999)) NIL) (((-588 (-708)) $ (-588 (-999))) NIL)) (-3873 (((-821 (-354)) $) NIL (-12 (|has| (-999) (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-999) (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-999) (-563 (-498))) (|has| |#1| (-563 (-498)))))) (-2988 ((|#1| $) NIL (|has| |#1| (-426))) (($ $ (-999)) NIL (|has| |#1| (-426)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2790 (((-886 $)) 36)) (-3884 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514))) (((-3 (-382 $) "failed") (-382 $) $) NIL (|has| |#1| (-514)))) (-2217 (((-792) $) 61) (($ (-522)) NIL) (($ |#1|) 58) (($ (-999)) NIL) (($ |#2|) 68) (($ (-382 (-522))) NIL (-3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#1| (-514)))) (-2180 (((-588 |#1|) $) NIL)) (-1643 ((|#1| $ (-708)) 63) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2742 (((-708)) NIL)) (-1225 (($ $ $ (-708)) NIL (|has| |#1| (-157)))) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 20 T CONST)) (-1625 (((-1166 |#1|) $) 75)) (-2751 (($ (-1166 |#1|)) 50)) (-3709 (($) 8 T CONST)) (-2252 (($ $ (-999)) NIL) (($ $ (-588 (-999))) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL) (($ $ (-708)) NIL) (($ $) NIL) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2932 (((-1166 |#1|) $) NIL)) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) 69)) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1672 (($ $) 72) (($ $ $) NIL)) (-1661 (($ $ $) 33)) (** (($ $ (-850)) NIL) (($ $ (-708)) 80)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 57) (($ $ $) 74) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) -(((-650 |#1| |#2|) (-13 (-1142 |#1|) (-10 -8 (-15 -4076 (|#2| |#2|)) (-15 -1246 (|#2|)) (-15 -2153 ($ |#2|)) (-15 -2142 (|#2| $)) (-15 -2217 ($ |#2|)) (-15 -1625 ((-1166 |#1|) $)) (-15 -2751 ($ (-1166 |#1|))) (-15 -2932 ((-1166 |#1|) $)) (-15 -4160 ((-886 $))) (-15 -2790 ((-886 $))) (IF (|has| |#1| (-324)) (-15 -3886 ($ $)) |%noBranch|) (IF (|has| |#1| (-343)) (-6 (-343)) |%noBranch|))) (-971) (-1142 |#1|)) (T -650)) -((-4076 (*1 *2 *2) (-12 (-4 *3 (-971)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1142 *3)))) (-1246 (*1 *2) (-12 (-4 *2 (-1142 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-971)))) (-2153 (*1 *1 *2) (-12 (-4 *3 (-971)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1142 *3)))) (-2142 (*1 *2 *1) (-12 (-4 *2 (-1142 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-971)))) (-2217 (*1 *1 *2) (-12 (-4 *3 (-971)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1142 *3)))) (-1625 (*1 *2 *1) (-12 (-4 *3 (-971)) (-5 *2 (-1166 *3)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1142 *3)))) (-2751 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-971)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1142 *3)))) (-2932 (*1 *2 *1) (-12 (-4 *3 (-971)) (-5 *2 (-1166 *3)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1142 *3)))) (-4160 (*1 *2) (-12 (-4 *3 (-971)) (-5 *2 (-886 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) (-4 *4 (-1142 *3)))) (-2790 (*1 *2) (-12 (-4 *3 (-971)) (-5 *2 (-886 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) (-4 *4 (-1142 *3)))) (-3886 (*1 *1 *1) (-12 (-4 *2 (-324)) (-4 *2 (-971)) (-5 *1 (-650 *2 *3)) (-4 *3 (-1142 *2))))) -(-13 (-1142 |#1|) (-10 -8 (-15 -4076 (|#2| |#2|)) (-15 -1246 (|#2|)) (-15 -2153 ($ |#2|)) (-15 -2142 (|#2| $)) (-15 -2217 ($ |#2|)) (-15 -1625 ((-1166 |#1|) $)) (-15 -2751 ($ (-1166 |#1|))) (-15 -2932 ((-1166 |#1|) $)) (-15 -4160 ((-886 $))) (-15 -2790 ((-886 $))) (IF (|has| |#1| (-324)) (-15 -3886 ($ $)) |%noBranch|) (IF (|has| |#1| (-343)) (-6 (-343)) |%noBranch|))) -((-1419 (((-108) $ $) NIL)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-2311 (((-1068) $) NIL)) (-2882 ((|#1| $) 13)) (-4174 (((-1032) $) NIL)) (-3858 ((|#2| $) 12)) (-2227 (($ |#1| |#2|) 16)) (-2217 (((-792) $) NIL) (($ (-2 (|:| -2882 |#1|) (|:| -3858 |#2|))) 15) (((-2 (|:| -2882 |#1|) (|:| -3858 |#2|)) $) 14)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 11))) -(((-651 |#1| |#2| |#3|) (-13 (-784) (-10 -8 (-15 -3858 (|#2| $)) (-15 -2882 (|#1| $)) (-15 -2217 ($ (-2 (|:| -2882 |#1|) (|:| -3858 |#2|)))) (-15 -2217 ((-2 (|:| -2882 |#1|) (|:| -3858 |#2|)) $)) (-15 -2227 ($ |#1| |#2|)))) (-784) (-1014) (-1 (-108) (-2 (|:| -2882 |#1|) (|:| -3858 |#2|)) (-2 (|:| -2882 |#1|) (|:| -3858 |#2|)))) (T -651)) -((-3858 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-651 *3 *2 *4)) (-4 *3 (-784)) (-14 *4 (-1 (-108) (-2 (|:| -2882 *3) (|:| -3858 *2)) (-2 (|:| -2882 *3) (|:| -3858 *2)))))) (-2882 (*1 *2 *1) (-12 (-4 *2 (-784)) (-5 *1 (-651 *2 *3 *4)) (-4 *3 (-1014)) (-14 *4 (-1 (-108) (-2 (|:| -2882 *2) (|:| -3858 *3)) (-2 (|:| -2882 *2) (|:| -3858 *3)))))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2882 *3) (|:| -3858 *4))) (-4 *3 (-784)) (-4 *4 (-1014)) (-5 *1 (-651 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2882 *3) (|:| -3858 *4))) (-5 *1 (-651 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-1014)) (-14 *5 (-1 (-108) *2 *2)))) (-2227 (*1 *1 *2 *3) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-784)) (-4 *3 (-1014)) (-14 *4 (-1 (-108) (-2 (|:| -2882 *2) (|:| -3858 *3)) (-2 (|:| -2882 *2) (|:| -3858 *3))))))) -(-13 (-784) (-10 -8 (-15 -3858 (|#2| $)) (-15 -2882 (|#1| $)) (-15 -2217 ($ (-2 (|:| -2882 |#1|) (|:| -3858 |#2|)))) (-15 -2217 ((-2 (|:| -2882 |#1|) (|:| -3858 |#2|)) $)) (-15 -2227 ($ |#1| |#2|)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 59)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) 89) (((-3 (-110) "failed") $) 95)) (-1478 ((|#1| $) NIL) (((-110) $) 39)) (-3920 (((-3 $ "failed") $) 90)) (-4106 ((|#2| (-110) |#2|) 82)) (-2859 (((-108) $) NIL)) (-1687 (($ |#1| (-336 (-110))) 13)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-1786 (($ $ (-1 |#2| |#2|)) 58)) (-1710 (($ $ (-1 |#2| |#2|)) 44)) (-2683 ((|#2| $ |#2|) 32)) (-3658 ((|#1| |#1|) 100 (|has| |#1| (-157)))) (-2217 (((-792) $) 66) (($ (-522)) 17) (($ |#1|) 16) (($ (-110)) 23)) (-3040 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2742 (((-708)) 36)) (-3397 (($ $) 99 (|has| |#1| (-157))) (($ $ $) 103 (|has| |#1| (-157)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 20 T CONST)) (-3709 (($) 9 T CONST)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) 48) (($ $ $) NIL)) (-1661 (($ $ $) 73)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ (-110) (-522)) NIL) (($ $ (-522)) 57)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-157))) (($ $ |#1|) 97 (|has| |#1| (-157))))) -(((-652 |#1| |#2|) (-13 (-971) (-962 |#1|) (-962 (-110)) (-262 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -3397 ($ $)) (-15 -3397 ($ $ $)) (-15 -3658 (|#1| |#1|))) |%noBranch|) (-15 -1710 ($ $ (-1 |#2| |#2|))) (-15 -1786 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-522))) (-15 ** ($ $ (-522))) (-15 -4106 (|#2| (-110) |#2|)) (-15 -1687 ($ |#1| (-336 (-110)))))) (-971) (-590 |#1|)) (T -652)) -((-3397 (*1 *1 *1) (-12 (-4 *2 (-157)) (-4 *2 (-971)) (-5 *1 (-652 *2 *3)) (-4 *3 (-590 *2)))) (-3397 (*1 *1 *1 *1) (-12 (-4 *2 (-157)) (-4 *2 (-971)) (-5 *1 (-652 *2 *3)) (-4 *3 (-590 *2)))) (-3658 (*1 *2 *2) (-12 (-4 *2 (-157)) (-4 *2 (-971)) (-5 *1 (-652 *2 *3)) (-4 *3 (-590 *2)))) (-1710 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-971)) (-5 *1 (-652 *3 *4)))) (-1786 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-971)) (-5 *1 (-652 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-522)) (-4 *4 (-971)) (-5 *1 (-652 *4 *5)) (-4 *5 (-590 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *3 (-971)) (-5 *1 (-652 *3 *4)) (-4 *4 (-590 *3)))) (-4106 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-4 *4 (-971)) (-5 *1 (-652 *4 *2)) (-4 *2 (-590 *4)))) (-1687 (*1 *1 *2 *3) (-12 (-5 *3 (-336 (-110))) (-4 *2 (-971)) (-5 *1 (-652 *2 *4)) (-4 *4 (-590 *2))))) -(-13 (-971) (-962 |#1|) (-962 (-110)) (-262 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -3397 ($ $)) (-15 -3397 ($ $ $)) (-15 -3658 (|#1| |#1|))) |%noBranch|) (-15 -1710 ($ $ (-1 |#2| |#2|))) (-15 -1786 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-522))) (-15 ** ($ $ (-522))) (-15 -4106 (|#2| (-110) |#2|)) (-15 -1687 ($ |#1| (-336 (-110)))))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 33)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-2153 (($ |#1| |#2|) 25)) (-3920 (((-3 $ "failed") $) 47)) (-2859 (((-108) $) 35)) (-1246 ((|#2| $) 12)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) 48)) (-4174 (((-1032) $) NIL)) (-1466 (((-3 $ "failed") $ $) 46)) (-2217 (((-792) $) 24) (($ (-522)) 19) ((|#1| $) 13)) (-2742 (((-708)) 28)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 16 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 38)) (-1672 (($ $) 43) (($ $ $) 37)) (-1661 (($ $ $) 40)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 21) (($ $ $) 20))) -(((-653 |#1| |#2| |#3| |#4| |#5|) (-13 (-971) (-10 -8 (-15 -1246 (|#2| $)) (-15 -2217 (|#1| $)) (-15 -2153 ($ |#1| |#2|)) (-15 -1466 ((-3 $ "failed") $ $)) (-15 -3920 ((-3 $ "failed") $)) (-15 -3193 ($ $)))) (-157) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -653)) -((-3920 (*1 *1 *1) (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1246 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-653 *3 *2 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2217 (*1 *2 *1) (-12 (-4 *2 (-157)) (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2153 (*1 *1 *2 *3) (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1466 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3193 (*1 *1 *1) (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-971) (-10 -8 (-15 -1246 (|#2| $)) (-15 -2217 (|#1| $)) (-15 -2153 ($ |#1| |#2|)) (-15 -1466 ((-3 $ "failed") $ $)) (-15 -3920 ((-3 $ "failed") $)) (-15 -3193 ($ $)))) -((* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-654 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|))) (-655 |#2|) (-157)) (T -654)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-3697 (($) 18 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-655 |#1|) (-1197) (-157)) (T -655)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 15)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2785 ((|#1| $) 21)) (-2454 (($ $ $) NIL (|has| |#1| (-730)))) (-2062 (($ $ $) NIL (|has| |#1| (-730)))) (-3779 (((-1070) $) 46)) (-2783 (((-1034) $) NIL)) (-2797 ((|#3| $) 22)) (-1458 (((-794) $) 42)) (-2756 (($) 10 T CONST)) (-4043 (((-108) $ $) NIL (|has| |#1| (-730)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-730)))) (-3983 (((-108) $ $) 20)) (-4030 (((-108) $ $) NIL (|has| |#1| (-730)))) (-4007 (((-108) $ $) 24 (|has| |#1| (-730)))) (-4098 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-4087 (($ $) 17) (($ $ $) NIL)) (-4075 (($ $ $) 27)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) +(((-605 |#1| |#2| |#3|) (-13 (-657 |#2|) (-10 -8 (IF (|has| |#1| (-730)) (-6 (-730)) |%noBranch|) (-15 -4098 ($ $ |#3|)) (-15 -4098 ($ |#1| |#3|)) (-15 -2785 (|#1| $)) (-15 -2797 (|#3| $)))) (-657 |#2|) (-158) (|SubsetCategory| (-666) |#2|)) (T -605)) +((-4098 (*1 *1 *1 *2) (-12 (-4 *4 (-158)) (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-657 *4)) (-4 *2 (|SubsetCategory| (-666) *4)))) (-4098 (*1 *1 *2 *3) (-12 (-4 *4 (-158)) (-5 *1 (-605 *2 *4 *3)) (-4 *2 (-657 *4)) (-4 *3 (|SubsetCategory| (-666) *4)))) (-2785 (*1 *2 *1) (-12 (-4 *3 (-158)) (-4 *2 (-657 *3)) (-5 *1 (-605 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-666) *3)))) (-2797 (*1 *2 *1) (-12 (-4 *4 (-158)) (-4 *2 (|SubsetCategory| (-666) *4)) (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-657 *4))))) +(-13 (-657 |#2|) (-10 -8 (IF (|has| |#1| (-730)) (-6 (-730)) |%noBranch|) (-15 -4098 ($ $ |#3|)) (-15 -4098 ($ |#1| |#3|)) (-15 -2785 (|#1| $)) (-15 -2797 (|#3| $)))) +((-1730 (((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|)) 33))) +(((-606 |#1|) (-10 -7 (-15 -1730 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|)))) (-840)) (T -606)) +((-1730 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 (-1083 *4))) (-5 *3 (-1083 *4)) (-4 *4 (-840)) (-5 *1 (-606 *4))))) +(-10 -7 (-15 -1730 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2061 (((-589 |#1|) $) 83)) (-3296 (($ $ (-710)) 91)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-4111 (((-1190 |#1| |#2|) (-1190 |#1| |#2|) $) 48)) (-3517 (((-3 (-614 |#1|) "failed") $) NIL)) (-3474 (((-614 |#1|) $) NIL)) (-3810 (($ $) 90)) (-3554 (((-710) $) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-2302 (($ (-614 |#1|) |#2|) 69)) (-1419 (($ $) 87)) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-2701 (((-1190 |#1| |#2|) (-1190 |#1| |#2|) $) 47)) (-4184 (((-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3774 (((-614 |#1|) $) NIL)) (-3786 ((|#2| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2679 (($ $ |#1| $) 30) (($ $ (-589 |#1|) (-589 $)) 32)) (-2299 (((-710) $) 89)) (-1472 (($ $ $) 20) (($ (-614 |#1|) (-614 |#1|)) 78) (($ (-614 |#1|) $) 76) (($ $ (-614 |#1|)) 77)) (-1458 (((-794) $) NIL) (($ |#1|) 75) (((-1181 |#1| |#2|) $) 59) (((-1190 |#1| |#2|) $) 41) (($ (-614 |#1|)) 25)) (-1251 (((-589 |#2|) $) NIL)) (-2365 ((|#2| $ (-614 |#1|)) NIL)) (-2935 ((|#2| (-1190 |#1| |#2|) $) 43)) (-2756 (($) 23 T CONST)) (-1643 (((-589 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3442 (((-3 $ "failed") (-1181 |#1| |#2|)) 61)) (-1484 (($ (-614 |#1|)) 14)) (-3983 (((-108) $ $) 44)) (-4098 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4087 (($ $) 67) (($ $ $) NIL)) (-4075 (($ $ $) 29)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-614 |#1|)) NIL))) +(((-607 |#1| |#2|) (-13 (-350 |#1| |#2|) (-358 |#2| (-614 |#1|)) (-10 -8 (-15 -3442 ((-3 $ "failed") (-1181 |#1| |#2|))) (-15 -1472 ($ (-614 |#1|) (-614 |#1|))) (-15 -1472 ($ (-614 |#1|) $)) (-15 -1472 ($ $ (-614 |#1|))))) (-786) (-158)) (T -607)) +((-3442 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) (-5 *1 (-607 *3 *4)))) (-1472 (*1 *1 *2 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-786)) (-5 *1 (-607 *3 *4)) (-4 *4 (-158)))) (-1472 (*1 *1 *2 *1) (-12 (-5 *2 (-614 *3)) (-4 *3 (-786)) (-5 *1 (-607 *3 *4)) (-4 *4 (-158)))) (-1472 (*1 *1 *1 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-786)) (-5 *1 (-607 *3 *4)) (-4 *4 (-158))))) +(-13 (-350 |#1| |#2|) (-358 |#2| (-614 |#1|)) (-10 -8 (-15 -3442 ((-3 $ "failed") (-1181 |#1| |#2|))) (-15 -1472 ($ (-614 |#1|) (-614 |#1|))) (-15 -1472 ($ (-614 |#1|) $)) (-15 -1472 ($ $ (-614 |#1|))))) +((-1964 (((-108) $) NIL) (((-108) (-1 (-108) |#2| |#2|) $) 50)) (-1506 (($ $) NIL) (($ (-1 (-108) |#2| |#2|) $) 11)) (-3387 (($ (-1 (-108) |#2|) $) 28)) (-2867 (($ $) 56)) (-3941 (($ $) 63)) (-2249 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 37)) (-2437 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-1479 (((-523) |#2| $ (-523)) 61) (((-523) |#2| $) NIL) (((-523) (-1 (-108) |#2|) $) 47)) (-3052 (($ (-710) |#2|) 54)) (-2158 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 30)) (-2178 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 24)) (-3612 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-3992 (($ |#2|) 14)) (-3450 (($ $ $ (-523)) 36) (($ |#2| $ (-523)) 34)) (-2114 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 46)) (-2753 (($ $ (-1135 (-523))) 44) (($ $ (-523)) 38)) (-3160 (($ $ $ (-523)) 60)) (-1664 (($ $) 58)) (-4007 (((-108) $ $) 65))) +(((-608 |#1| |#2|) (-10 -8 (-15 -3992 (|#1| |#2|)) (-15 -2753 (|#1| |#1| (-523))) (-15 -2753 (|#1| |#1| (-1135 (-523)))) (-15 -2249 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3450 (|#1| |#2| |#1| (-523))) (-15 -3450 (|#1| |#1| |#1| (-523))) (-15 -2158 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3387 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2249 (|#1| |#2| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -2158 (|#1| |#1| |#1|)) (-15 -2178 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1964 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1479 ((-523) (-1 (-108) |#2|) |#1|)) (-15 -1479 ((-523) |#2| |#1|)) (-15 -1479 ((-523) |#2| |#1| (-523))) (-15 -2178 (|#1| |#1| |#1|)) (-15 -1964 ((-108) |#1|)) (-15 -3160 (|#1| |#1| |#1| (-523))) (-15 -2867 (|#1| |#1|)) (-15 -1506 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -4007 ((-108) |#1| |#1|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2114 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3052 (|#1| (-710) |#2|)) (-15 -3612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1664 (|#1| |#1|))) (-609 |#2|) (-1122)) (T -608)) +NIL +(-10 -8 (-15 -3992 (|#1| |#2|)) (-15 -2753 (|#1| |#1| (-523))) (-15 -2753 (|#1| |#1| (-1135 (-523)))) (-15 -2249 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3450 (|#1| |#2| |#1| (-523))) (-15 -3450 (|#1| |#1| |#1| (-523))) (-15 -2158 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3387 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2249 (|#1| |#2| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -2158 (|#1| |#1| |#1|)) (-15 -2178 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1964 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1479 ((-523) (-1 (-108) |#2|) |#1|)) (-15 -1479 ((-523) |#2| |#1|)) (-15 -1479 ((-523) |#2| |#1| (-523))) (-15 -2178 (|#1| |#1| |#1|)) (-15 -1964 ((-108) |#1|)) (-15 -3160 (|#1| |#1| |#1| (-523))) (-15 -2867 (|#1| |#1|)) (-15 -1506 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -4007 ((-108) |#1| |#1|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2437 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2114 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3052 (|#1| (-710) |#2|)) (-15 -3612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1664 (|#1| |#1|))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1733 ((|#1| $) 48)) (-1546 ((|#1| $) 65)) (-4039 (($ $) 67)) (-4207 (((-1173) $ (-523) (-523)) 97 (|has| $ (-6 -4245)))) (-2961 (($ $ (-523)) 52 (|has| $ (-6 -4245)))) (-1964 (((-108) $) 142 (|has| |#1| (-786))) (((-108) (-1 (-108) |#1| |#1|) $) 136)) (-1506 (($ $) 146 (-12 (|has| |#1| (-786)) (|has| $ (-6 -4245)))) (($ (-1 (-108) |#1| |#1|) $) 145 (|has| $ (-6 -4245)))) (-3974 (($ $) 141 (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $) 135)) (-3079 (((-108) $ (-710)) 8)) (-1823 ((|#1| $ |#1|) 39 (|has| $ (-6 -4245)))) (-2110 (($ $ $) 56 (|has| $ (-6 -4245)))) (-3395 ((|#1| $ |#1|) 54 (|has| $ (-6 -4245)))) (-3456 ((|#1| $ |#1|) 58 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4245))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4245))) (($ $ "rest" $) 55 (|has| $ (-6 -4245))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) 117 (|has| $ (-6 -4245))) ((|#1| $ (-523) |#1|) 86 (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 41 (|has| $ (-6 -4245)))) (-3387 (($ (-1 (-108) |#1|) $) 129)) (-3724 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4244)))) (-1532 ((|#1| $) 66)) (-2518 (($) 7 T CONST)) (-2867 (($ $) 144 (|has| $ (-6 -4245)))) (-3631 (($ $) 134)) (-1751 (($ $) 73) (($ $ (-710)) 71)) (-3941 (($ $) 131 (|has| |#1| (-1016)))) (-1773 (($ $) 99 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2249 (($ |#1| $) 130 (|has| |#1| (-1016))) (($ (-1 (-108) |#1|) $) 125)) (-2557 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4244))) (($ |#1| $) 100 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2863 ((|#1| $ (-523) |#1|) 85 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 87)) (-1232 (((-108) $) 83)) (-1479 (((-523) |#1| $ (-523)) 139 (|has| |#1| (-1016))) (((-523) |#1| $) 138 (|has| |#1| (-1016))) (((-523) (-1 (-108) |#1|) $) 137)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) 50)) (-1238 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-3052 (($ (-710) |#1|) 108)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 95 (|has| (-523) (-786)))) (-2454 (($ $ $) 147 (|has| |#1| (-786)))) (-2158 (($ $ $) 132 (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) 128)) (-2178 (($ $ $) 140 (|has| |#1| (-786))) (($ (-1 (-108) |#1| |#1|) $ $) 133)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 94 (|has| (-523) (-786)))) (-2062 (($ $ $) 148 (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3992 (($ |#1|) 122)) (-2866 (((-108) $ (-710)) 10)) (-2726 (((-589 |#1|) $) 45)) (-3555 (((-108) $) 49)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2579 ((|#1| $) 70) (($ $ (-710)) 68)) (-3450 (($ $ $ (-523)) 127) (($ |#1| $ (-523)) 126)) (-2847 (($ $ $ (-523)) 116) (($ |#1| $ (-523)) 115)) (-2412 (((-589 (-523)) $) 92)) (-4135 (((-108) (-523) $) 91)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1738 ((|#1| $) 76) (($ $ (-710)) 74)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-4203 (($ $ |#1|) 96 (|has| $ (-6 -4245)))) (-2402 (((-108) $) 84)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) 90)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1135 (-523))) 112) ((|#1| $ (-523)) 89) ((|#1| $ (-523) |#1|) 88)) (-1549 (((-523) $ $) 44)) (-2753 (($ $ (-1135 (-523))) 124) (($ $ (-523)) 123)) (-1469 (($ $ (-1135 (-523))) 114) (($ $ (-523)) 113)) (-2524 (((-108) $) 46)) (-2732 (($ $) 62)) (-2363 (($ $) 59 (|has| $ (-6 -4245)))) (-2316 (((-710) $) 63)) (-3562 (($ $) 64)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3160 (($ $ $ (-523)) 143 (|has| $ (-6 -4245)))) (-1664 (($ $) 13)) (-3663 (((-499) $) 98 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 107)) (-1746 (($ $ $) 61) (($ $ |#1|) 60)) (-2326 (($ $ $) 78) (($ |#1| $) 77) (($ (-589 $)) 110) (($ $ |#1|) 109)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) 51)) (-3653 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) 150 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 151 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-4030 (((-108) $ $) 149 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 152 (|has| |#1| (-786)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-609 |#1|) (-129) (-1122)) (T -609)) +((-3992 (*1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1122))))) +(-13 (-1061 |t#1|) (-349 |t#1|) (-259 |t#1|) (-10 -8 (-15 -3992 ($ |t#1|)))) +(((-33) . T) ((-97) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-259 |#1|) . T) ((-349 |#1|) . T) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-786) |has| |#1| (-786)) ((-938 |#1|) . T) ((-1016) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-1061 |#1|) . T) ((-1122) . T) ((-1156 |#1|) . T)) +((-1940 (((-589 (-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|))))) (-589 (-589 |#1|)) (-589 (-1168 |#1|))) 21) (((-589 (-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|))))) (-629 |#1|) (-589 (-1168 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|)))) (-589 (-589 |#1|)) (-1168 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|)))) (-629 |#1|) (-1168 |#1|)) 13)) (-1319 (((-710) (-629 |#1|) (-1168 |#1|)) 29)) (-1848 (((-3 (-1168 |#1|) "failed") (-629 |#1|) (-1168 |#1|)) 23)) (-2048 (((-108) (-629 |#1|) (-1168 |#1|)) 26))) +(((-610 |#1|) (-10 -7 (-15 -1940 ((-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|)))) (-629 |#1|) (-1168 |#1|))) (-15 -1940 ((-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|)))) (-589 (-589 |#1|)) (-1168 |#1|))) (-15 -1940 ((-589 (-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|))))) (-629 |#1|) (-589 (-1168 |#1|)))) (-15 -1940 ((-589 (-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|))))) (-589 (-589 |#1|)) (-589 (-1168 |#1|)))) (-15 -1848 ((-3 (-1168 |#1|) "failed") (-629 |#1|) (-1168 |#1|))) (-15 -2048 ((-108) (-629 |#1|) (-1168 |#1|))) (-15 -1319 ((-710) (-629 |#1|) (-1168 |#1|)))) (-339)) (T -610)) +((-1319 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-339)) (-5 *2 (-710)) (-5 *1 (-610 *5)))) (-2048 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-339)) (-5 *2 (-108)) (-5 *1 (-610 *5)))) (-1848 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1168 *4)) (-5 *3 (-629 *4)) (-4 *4 (-339)) (-5 *1 (-610 *4)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-589 *5))) (-4 *5 (-339)) (-5 *2 (-589 (-2 (|:| |particular| (-3 (-1168 *5) "failed")) (|:| -4041 (-589 (-1168 *5)))))) (-5 *1 (-610 *5)) (-5 *4 (-589 (-1168 *5))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *5)) (-4 *5 (-339)) (-5 *2 (-589 (-2 (|:| |particular| (-3 (-1168 *5) "failed")) (|:| -4041 (-589 (-1168 *5)))))) (-5 *1 (-610 *5)) (-5 *4 (-589 (-1168 *5))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-589 *5))) (-4 *5 (-339)) (-5 *2 (-2 (|:| |particular| (-3 (-1168 *5) "failed")) (|:| -4041 (-589 (-1168 *5))))) (-5 *1 (-610 *5)) (-5 *4 (-1168 *5)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| |particular| (-3 (-1168 *5) "failed")) (|:| -4041 (-589 (-1168 *5))))) (-5 *1 (-610 *5)) (-5 *4 (-1168 *5))))) +(-10 -7 (-15 -1940 ((-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|)))) (-629 |#1|) (-1168 |#1|))) (-15 -1940 ((-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|)))) (-589 (-589 |#1|)) (-1168 |#1|))) (-15 -1940 ((-589 (-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|))))) (-629 |#1|) (-589 (-1168 |#1|)))) (-15 -1940 ((-589 (-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|))))) (-589 (-589 |#1|)) (-589 (-1168 |#1|)))) (-15 -1848 ((-3 (-1168 |#1|) "failed") (-629 |#1|) (-1168 |#1|))) (-15 -2048 ((-108) (-629 |#1|) (-1168 |#1|))) (-15 -1319 ((-710) (-629 |#1|) (-1168 |#1|)))) +((-1940 (((-589 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4041 (-589 |#3|)))) |#4| (-589 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4041 (-589 |#3|))) |#4| |#3|) 45)) (-1319 (((-710) |#4| |#3|) 17)) (-1848 (((-3 |#3| "failed") |#4| |#3|) 20)) (-2048 (((-108) |#4| |#3|) 13))) +(((-611 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1940 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4041 (-589 |#3|))) |#4| |#3|)) (-15 -1940 ((-589 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4041 (-589 |#3|)))) |#4| (-589 |#3|))) (-15 -1848 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2048 ((-108) |#4| |#3|)) (-15 -1319 ((-710) |#4| |#3|))) (-339) (-13 (-349 |#1|) (-10 -7 (-6 -4245))) (-13 (-349 |#1|) (-10 -7 (-6 -4245))) (-627 |#1| |#2| |#3|)) (T -611)) +((-1319 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-5 *2 (-710)) (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-2048 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-5 *2 (-108)) (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-1848 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-339)) (-4 *5 (-13 (-349 *4) (-10 -7 (-6 -4245)))) (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4245)))) (-5 *1 (-611 *4 *5 *2 *3)) (-4 *3 (-627 *4 *5 *2)))) (-1940 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-4 *7 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-5 *2 (-589 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4041 (-589 *7))))) (-5 *1 (-611 *5 *6 *7 *3)) (-5 *4 (-589 *7)) (-4 *3 (-627 *5 *6 *7)))) (-1940 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))) +(-10 -7 (-15 -1940 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4041 (-589 |#3|))) |#4| |#3|)) (-15 -1940 ((-589 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4041 (-589 |#3|)))) |#4| (-589 |#3|))) (-15 -1848 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2048 ((-108) |#4| |#3|)) (-15 -1319 ((-710) |#4| |#3|))) +((-1654 (((-2 (|:| |particular| (-3 (-1168 (-383 |#4|)) "failed")) (|:| -4041 (-589 (-1168 (-383 |#4|))))) (-589 |#4|) (-589 |#3|)) 45))) +(((-612 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1654 ((-2 (|:| |particular| (-3 (-1168 (-383 |#4|)) "failed")) (|:| -4041 (-589 (-1168 (-383 |#4|))))) (-589 |#4|) (-589 |#3|)))) (-515) (-732) (-786) (-880 |#1| |#2| |#3|)) (T -612)) +((-1654 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *7)) (-4 *7 (-786)) (-4 *8 (-880 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-5 *2 (-2 (|:| |particular| (-3 (-1168 (-383 *8)) "failed")) (|:| -4041 (-589 (-1168 (-383 *8)))))) (-5 *1 (-612 *5 *6 *7 *8))))) +(-10 -7 (-15 -1654 ((-2 (|:| |particular| (-3 (-1168 (-383 |#4|)) "failed")) (|:| -4041 (-589 (-1168 (-383 |#4|))))) (-589 |#4|) (-589 |#3|)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3819 (((-3 $ "failed")) NIL (|has| |#2| (-515)))) (-4187 ((|#2| $) NIL)) (-2606 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3115 (((-1168 (-629 |#2|))) NIL) (((-1168 (-629 |#2|)) (-1168 $)) NIL)) (-2651 (((-108) $) NIL)) (-2738 (((-1168 $)) 37)) (-3079 (((-108) $ (-710)) NIL)) (-1421 (($ |#2|) NIL)) (-2518 (($) NIL T CONST)) (-2445 (($ $) NIL (|has| |#2| (-284)))) (-2031 (((-218 |#1| |#2|) $ (-523)) NIL)) (-3486 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) NIL (|has| |#2| (-515)))) (-3545 (((-3 $ "failed")) NIL (|has| |#2| (-515)))) (-1431 (((-629 |#2|)) NIL) (((-629 |#2|) (-1168 $)) NIL)) (-3744 ((|#2| $) NIL)) (-2788 (((-629 |#2|) $) NIL) (((-629 |#2|) $ (-1168 $)) NIL)) (-2532 (((-3 $ "failed") $) NIL (|has| |#2| (-515)))) (-3138 (((-1083 (-883 |#2|))) NIL (|has| |#2| (-339)))) (-1970 (($ $ (-852)) NIL)) (-4212 ((|#2| $) NIL)) (-1726 (((-1083 |#2|) $) NIL (|has| |#2| (-515)))) (-2284 ((|#2|) NIL) ((|#2| (-1168 $)) NIL)) (-1778 (((-1083 |#2|) $) NIL)) (-2117 (((-108)) NIL)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 |#2| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) ((|#2| $) NIL)) (-3409 (($ (-1168 |#2|)) NIL) (($ (-1168 |#2|) (-1168 $)) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-1319 (((-710) $) NIL (|has| |#2| (-515))) (((-852)) 38)) (-2795 ((|#2| $ (-523) (-523)) NIL)) (-1487 (((-108)) NIL)) (-3650 (($ $ (-852)) NIL)) (-1666 (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-2023 (((-108) $) NIL)) (-1867 (((-710) $) NIL (|has| |#2| (-515)))) (-3498 (((-589 (-218 |#1| |#2|)) $) NIL (|has| |#2| (-515)))) (-2803 (((-710) $) NIL)) (-1649 (((-108)) NIL)) (-2813 (((-710) $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-1925 ((|#2| $) NIL (|has| |#2| (-6 (-4246 "*"))))) (-3871 (((-523) $) NIL)) (-1758 (((-523) $) NIL)) (-2136 (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3338 (((-523) $) NIL)) (-2347 (((-523) $) NIL)) (-3068 (($ (-589 (-589 |#2|))) NIL)) (-2852 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2289 (((-589 (-589 |#2|)) $) NIL)) (-2956 (((-108)) NIL)) (-2491 (((-108)) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-2362 (((-3 (-2 (|:| |particular| $) (|:| -4041 (-589 $))) "failed")) NIL (|has| |#2| (-515)))) (-1386 (((-3 $ "failed")) NIL (|has| |#2| (-515)))) (-1504 (((-629 |#2|)) NIL) (((-629 |#2|) (-1168 $)) NIL)) (-3237 ((|#2| $) NIL)) (-2139 (((-629 |#2|) $) NIL) (((-629 |#2|) $ (-1168 $)) NIL)) (-1579 (((-3 $ "failed") $) NIL (|has| |#2| (-515)))) (-2525 (((-1083 (-883 |#2|))) NIL (|has| |#2| (-339)))) (-1448 (($ $ (-852)) NIL)) (-4050 ((|#2| $) NIL)) (-2553 (((-1083 |#2|) $) NIL (|has| |#2| (-515)))) (-3002 ((|#2|) NIL) ((|#2| (-1168 $)) NIL)) (-2565 (((-1083 |#2|) $) NIL)) (-1216 (((-108)) NIL)) (-3779 (((-1070) $) NIL)) (-2345 (((-108)) NIL)) (-1510 (((-108)) NIL)) (-2871 (((-108)) NIL)) (-3698 (((-3 $ "failed") $) NIL (|has| |#2| (-339)))) (-2783 (((-1034) $) NIL)) (-2751 (((-108)) NIL)) (-3746 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515)))) (-1327 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#2| $ (-523) (-523) |#2|) NIL) ((|#2| $ (-523) (-523)) 22) ((|#2| $ (-523)) NIL)) (-3523 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $) NIL (|has| |#2| (-211)))) (-3804 ((|#2| $) NIL)) (-3739 (($ (-589 |#2|)) NIL)) (-3117 (((-108) $) NIL)) (-2561 (((-218 |#1| |#2|) $) NIL)) (-2310 ((|#2| $) NIL (|has| |#2| (-6 (-4246 "*"))))) (-2792 (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1664 (($ $) NIL)) (-2966 (((-629 |#2|) (-1168 $)) NIL) (((-1168 |#2|) $) NIL) (((-629 |#2|) (-1168 $) (-1168 $)) NIL) (((-1168 |#2|) $ (-1168 $)) 25)) (-3663 (($ (-1168 |#2|)) NIL) (((-1168 |#2|) $) NIL)) (-3863 (((-589 (-883 |#2|))) NIL) (((-589 (-883 |#2|)) (-1168 $)) NIL)) (-1714 (($ $ $) NIL)) (-1673 (((-108)) NIL)) (-1595 (((-218 |#1| |#2|) $ (-523)) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#2| (-964 (-383 (-523))))) (($ |#2|) NIL) (((-629 |#2|) $) NIL)) (-1621 (((-710)) NIL)) (-4041 (((-1168 $)) 36)) (-3751 (((-589 (-1168 |#2|))) NIL (|has| |#2| (-515)))) (-2022 (($ $ $ $) NIL)) (-3120 (((-108)) NIL)) (-1677 (($ (-629 |#2|) $) NIL)) (-2096 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2175 (((-108) $) NIL)) (-1995 (($ $ $) NIL)) (-1462 (((-108)) NIL)) (-3366 (((-108)) NIL)) (-2071 (((-108)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $) NIL (|has| |#2| (-211)))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#2| (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-218 |#1| |#2|) $ (-218 |#1| |#2|)) NIL) (((-218 |#1| |#2|) (-218 |#1| |#2|) $) NIL)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-613 |#1| |#2|) (-13 (-1037 |#1| |#2| (-218 |#1| |#2|) (-218 |#1| |#2|)) (-563 (-629 |#2|)) (-393 |#2|)) (-852) (-158)) (T -613)) +NIL +(-13 (-1037 |#1| |#2| (-218 |#1| |#2|) (-218 |#1| |#2|)) (-563 (-629 |#2|)) (-393 |#2|)) +((-3924 (((-108) $ $) NIL)) (-2061 (((-589 |#1|) $) NIL)) (-3159 (($ $) 51)) (-1406 (((-108) $) NIL)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3788 (((-3 $ "failed") (-758 |#1|)) 23)) (-2552 (((-108) (-758 |#1|)) 15)) (-3057 (($ (-758 |#1|)) 24)) (-2964 (((-108) $ $) 29)) (-2996 (((-852) $) 36)) (-3149 (($ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1820 (((-589 $) (-758 |#1|)) 17)) (-1458 (((-794) $) 42) (($ |#1|) 33) (((-758 |#1|) $) 38) (((-618 |#1|) $) 43)) (-3263 (((-57 (-589 $)) (-589 |#1|) (-852)) 56)) (-3344 (((-589 $) (-589 |#1|) (-852)) 59)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 52)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 37))) +(((-614 |#1|) (-13 (-786) (-964 |#1|) (-10 -8 (-15 -1406 ((-108) $)) (-15 -3149 ($ $)) (-15 -3159 ($ $)) (-15 -2996 ((-852) $)) (-15 -2964 ((-108) $ $)) (-15 -1458 ((-758 |#1|) $)) (-15 -1458 ((-618 |#1|) $)) (-15 -1820 ((-589 $) (-758 |#1|))) (-15 -2552 ((-108) (-758 |#1|))) (-15 -3057 ($ (-758 |#1|))) (-15 -3788 ((-3 $ "failed") (-758 |#1|))) (-15 -2061 ((-589 |#1|) $)) (-15 -3263 ((-57 (-589 $)) (-589 |#1|) (-852))) (-15 -3344 ((-589 $) (-589 |#1|) (-852))))) (-786)) (T -614)) +((-1406 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) (-3149 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-786)))) (-3159 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-786)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-852)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) (-2964 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-758 *3)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) (-1820 (*1 *2 *3) (-12 (-5 *3 (-758 *4)) (-4 *4 (-786)) (-5 *2 (-589 (-614 *4))) (-5 *1 (-614 *4)))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-758 *4)) (-4 *4 (-786)) (-5 *2 (-108)) (-5 *1 (-614 *4)))) (-3057 (*1 *1 *2) (-12 (-5 *2 (-758 *3)) (-4 *3 (-786)) (-5 *1 (-614 *3)))) (-3788 (*1 *1 *2) (|partial| -12 (-5 *2 (-758 *3)) (-4 *3 (-786)) (-5 *1 (-614 *3)))) (-2061 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) (-3263 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *5)) (-5 *4 (-852)) (-4 *5 (-786)) (-5 *2 (-57 (-589 (-614 *5)))) (-5 *1 (-614 *5)))) (-3344 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *5)) (-5 *4 (-852)) (-4 *5 (-786)) (-5 *2 (-589 (-614 *5))) (-5 *1 (-614 *5))))) +(-13 (-786) (-964 |#1|) (-10 -8 (-15 -1406 ((-108) $)) (-15 -3149 ($ $)) (-15 -3159 ($ $)) (-15 -2996 ((-852) $)) (-15 -2964 ((-108) $ $)) (-15 -1458 ((-758 |#1|) $)) (-15 -1458 ((-618 |#1|) $)) (-15 -1820 ((-589 $) (-758 |#1|))) (-15 -2552 ((-108) (-758 |#1|))) (-15 -3057 ($ (-758 |#1|))) (-15 -3788 ((-3 $ "failed") (-758 |#1|))) (-15 -2061 ((-589 |#1|) $)) (-15 -3263 ((-57 (-589 $)) (-589 |#1|) (-852))) (-15 -3344 ((-589 $) (-589 |#1|) (-852))))) +((-1733 ((|#2| $) 76)) (-4039 (($ $) 96)) (-3079 (((-108) $ (-710)) 26)) (-1751 (($ $) 85) (($ $ (-710)) 88)) (-1232 (((-108) $) 97)) (-2645 (((-589 $) $) 72)) (-1238 (((-108) $ $) 71)) (-2346 (((-108) $ (-710)) 24)) (-4084 (((-523) $) 46)) (-3056 (((-523) $) 45)) (-2866 (((-108) $ (-710)) 22)) (-3555 (((-108) $) 74)) (-2579 ((|#2| $) 89) (($ $ (-710)) 92)) (-2847 (($ $ $ (-523)) 62) (($ |#2| $ (-523)) 61)) (-2412 (((-589 (-523)) $) 44)) (-4135 (((-108) (-523) $) 42)) (-1738 ((|#2| $) NIL) (($ $ (-710)) 84)) (-4097 (($ $ (-523)) 100)) (-2402 (((-108) $) 99)) (-1327 (((-108) (-1 (-108) |#2|) $) 32)) (-1264 (((-589 |#2|) $) 33)) (-3223 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1135 (-523))) 58) ((|#2| $ (-523)) 40) ((|#2| $ (-523) |#2|) 41)) (-1549 (((-523) $ $) 70)) (-1469 (($ $ (-1135 (-523))) 57) (($ $ (-523)) 51)) (-2524 (((-108) $) 66)) (-2732 (($ $) 81)) (-2316 (((-710) $) 80)) (-3562 (($ $) 79)) (-1472 (($ (-589 |#2|)) 37)) (-1353 (($ $) 101)) (-2296 (((-589 $) $) 69)) (-3653 (((-108) $ $) 68)) (-2096 (((-108) (-1 (-108) |#2|) $) 31)) (-3983 (((-108) $ $) 18)) (-2676 (((-710) $) 29))) +(((-615 |#1| |#2|) (-10 -8 (-15 -1353 (|#1| |#1|)) (-15 -4097 (|#1| |#1| (-523))) (-15 -1232 ((-108) |#1|)) (-15 -2402 ((-108) |#1|)) (-15 -3223 (|#2| |#1| (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523))) (-15 -1264 ((-589 |#2|) |#1|)) (-15 -4135 ((-108) (-523) |#1|)) (-15 -2412 ((-589 (-523)) |#1|)) (-15 -3056 ((-523) |#1|)) (-15 -4084 ((-523) |#1|)) (-15 -1472 (|#1| (-589 |#2|))) (-15 -3223 (|#1| |#1| (-1135 (-523)))) (-15 -1469 (|#1| |#1| (-523))) (-15 -1469 (|#1| |#1| (-1135 (-523)))) (-15 -2847 (|#1| |#2| |#1| (-523))) (-15 -2847 (|#1| |#1| |#1| (-523))) (-15 -2732 (|#1| |#1|)) (-15 -2316 ((-710) |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -4039 (|#1| |#1|)) (-15 -2579 (|#1| |#1| (-710))) (-15 -3223 (|#2| |#1| "last")) (-15 -2579 (|#2| |#1|)) (-15 -1751 (|#1| |#1| (-710))) (-15 -3223 (|#1| |#1| "rest")) (-15 -1751 (|#1| |#1|)) (-15 -1738 (|#1| |#1| (-710))) (-15 -3223 (|#2| |#1| "first")) (-15 -1738 (|#2| |#1|)) (-15 -1238 ((-108) |#1| |#1|)) (-15 -3653 ((-108) |#1| |#1|)) (-15 -1549 ((-523) |#1| |#1|)) (-15 -2524 ((-108) |#1|)) (-15 -3223 (|#2| |#1| "value")) (-15 -1733 (|#2| |#1|)) (-15 -3555 ((-108) |#1|)) (-15 -2645 ((-589 |#1|) |#1|)) (-15 -2296 ((-589 |#1|) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1327 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2676 ((-710) |#1|)) (-15 -3079 ((-108) |#1| (-710))) (-15 -2346 ((-108) |#1| (-710))) (-15 -2866 ((-108) |#1| (-710)))) (-616 |#2|) (-1122)) (T -615)) +NIL +(-10 -8 (-15 -1353 (|#1| |#1|)) (-15 -4097 (|#1| |#1| (-523))) (-15 -1232 ((-108) |#1|)) (-15 -2402 ((-108) |#1|)) (-15 -3223 (|#2| |#1| (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523))) (-15 -1264 ((-589 |#2|) |#1|)) (-15 -4135 ((-108) (-523) |#1|)) (-15 -2412 ((-589 (-523)) |#1|)) (-15 -3056 ((-523) |#1|)) (-15 -4084 ((-523) |#1|)) (-15 -1472 (|#1| (-589 |#2|))) (-15 -3223 (|#1| |#1| (-1135 (-523)))) (-15 -1469 (|#1| |#1| (-523))) (-15 -1469 (|#1| |#1| (-1135 (-523)))) (-15 -2847 (|#1| |#2| |#1| (-523))) (-15 -2847 (|#1| |#1| |#1| (-523))) (-15 -2732 (|#1| |#1|)) (-15 -2316 ((-710) |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -4039 (|#1| |#1|)) (-15 -2579 (|#1| |#1| (-710))) (-15 -3223 (|#2| |#1| "last")) (-15 -2579 (|#2| |#1|)) (-15 -1751 (|#1| |#1| (-710))) (-15 -3223 (|#1| |#1| "rest")) (-15 -1751 (|#1| |#1|)) (-15 -1738 (|#1| |#1| (-710))) (-15 -3223 (|#2| |#1| "first")) (-15 -1738 (|#2| |#1|)) (-15 -1238 ((-108) |#1| |#1|)) (-15 -3653 ((-108) |#1| |#1|)) (-15 -1549 ((-523) |#1| |#1|)) (-15 -2524 ((-108) |#1|)) (-15 -3223 (|#2| |#1| "value")) (-15 -1733 (|#2| |#1|)) (-15 -3555 ((-108) |#1|)) (-15 -2645 ((-589 |#1|) |#1|)) (-15 -2296 ((-589 |#1|) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1327 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2676 ((-710) |#1|)) (-15 -3079 ((-108) |#1| (-710))) (-15 -2346 ((-108) |#1| (-710))) (-15 -2866 ((-108) |#1| (-710)))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1733 ((|#1| $) 48)) (-1546 ((|#1| $) 65)) (-4039 (($ $) 67)) (-4207 (((-1173) $ (-523) (-523)) 97 (|has| $ (-6 -4245)))) (-2961 (($ $ (-523)) 52 (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) 8)) (-1823 ((|#1| $ |#1|) 39 (|has| $ (-6 -4245)))) (-2110 (($ $ $) 56 (|has| $ (-6 -4245)))) (-3395 ((|#1| $ |#1|) 54 (|has| $ (-6 -4245)))) (-3456 ((|#1| $ |#1|) 58 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4245))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4245))) (($ $ "rest" $) 55 (|has| $ (-6 -4245))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) 117 (|has| $ (-6 -4245))) ((|#1| $ (-523) |#1|) 86 (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 41 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) 102)) (-1532 ((|#1| $) 66)) (-2518 (($) 7 T CONST)) (-3898 (($ $) 124)) (-1751 (($ $) 73) (($ $ (-710)) 71)) (-1773 (($ $) 99 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#1| $) 100 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 103)) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2863 ((|#1| $ (-523) |#1|) 85 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 87)) (-1232 (((-108) $) 83)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-4122 (((-710) $) 123)) (-2645 (((-589 $) $) 50)) (-1238 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-3052 (($ (-710) |#1|) 108)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 95 (|has| (-523) (-786)))) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 94 (|has| (-523) (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2866 (((-108) $ (-710)) 10)) (-2726 (((-589 |#1|) $) 45)) (-3555 (((-108) $) 49)) (-3886 (($ $) 126)) (-2271 (((-108) $) 127)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2579 ((|#1| $) 70) (($ $ (-710)) 68)) (-2847 (($ $ $ (-523)) 116) (($ |#1| $ (-523)) 115)) (-2412 (((-589 (-523)) $) 92)) (-4135 (((-108) (-523) $) 91)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1810 ((|#1| $) 125)) (-1738 ((|#1| $) 76) (($ $ (-710)) 74)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-4203 (($ $ |#1|) 96 (|has| $ (-6 -4245)))) (-4097 (($ $ (-523)) 122)) (-2402 (((-108) $) 84)) (-3762 (((-108) $) 128)) (-2556 (((-108) $) 129)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) 90)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1135 (-523))) 112) ((|#1| $ (-523)) 89) ((|#1| $ (-523) |#1|) 88)) (-1549 (((-523) $ $) 44)) (-1469 (($ $ (-1135 (-523))) 114) (($ $ (-523)) 113)) (-2524 (((-108) $) 46)) (-2732 (($ $) 62)) (-2363 (($ $) 59 (|has| $ (-6 -4245)))) (-2316 (((-710) $) 63)) (-3562 (($ $) 64)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 98 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 107)) (-1746 (($ $ $) 61 (|has| $ (-6 -4245))) (($ $ |#1|) 60 (|has| $ (-6 -4245)))) (-2326 (($ $ $) 78) (($ |#1| $) 77) (($ (-589 $)) 110) (($ $ |#1|) 109)) (-1353 (($ $) 121)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) 51)) (-3653 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-616 |#1|) (-129) (-1122)) (T -616)) +((-2557 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1122)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1122)))) (-2556 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1122)) (-5 *2 (-108)))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1122)) (-5 *2 (-108)))) (-2271 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1122)) (-5 *2 (-108)))) (-3886 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1122)))) (-1810 (*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1122)))) (-3898 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1122)))) (-4122 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1122)) (-5 *2 (-710)))) (-4097 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-616 *3)) (-4 *3 (-1122)))) (-1353 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1122))))) +(-13 (-1061 |t#1|) (-10 -8 (-15 -2557 ($ (-1 (-108) |t#1|) $)) (-15 -3724 ($ (-1 (-108) |t#1|) $)) (-15 -2556 ((-108) $)) (-15 -3762 ((-108) $)) (-15 -2271 ((-108) $)) (-15 -3886 ($ $)) (-15 -1810 (|t#1| $)) (-15 -3898 ($ $)) (-15 -4122 ((-710) $)) (-15 -4097 ($ $ (-523))) (-15 -1353 ($ $)))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-938 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1061 |#1|) . T) ((-1122) . T) ((-1156 |#1|) . T)) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1785 (($ (-710) (-710) (-710)) 34 (|has| |#1| (-973)))) (-3079 (((-108) $ (-710)) NIL)) (-3354 ((|#1| $ (-710) (-710) (-710) |#1|) 29)) (-2518 (($) NIL T CONST)) (-2209 (($ $ $) 38 (|has| |#1| (-973)))) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1247 (((-1168 (-710)) $) 10)) (-2304 (($ (-1087) $ $) 24)) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3947 (($ (-710)) 36 (|has| |#1| (-973)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-710) (-710) (-710)) 27)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1472 (($ (-589 (-589 (-589 |#1|)))) 45)) (-1458 (($ (-888 (-888 (-888 |#1|)))) 17) (((-888 (-888 (-888 |#1|))) $) 14) (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-617 |#1|) (-13 (-462 |#1|) (-10 -8 (IF (|has| |#1| (-973)) (PROGN (-15 -1785 ($ (-710) (-710) (-710))) (-15 -3947 ($ (-710))) (-15 -2209 ($ $ $))) |%noBranch|) (-15 -1472 ($ (-589 (-589 (-589 |#1|))))) (-15 -3223 (|#1| $ (-710) (-710) (-710))) (-15 -3354 (|#1| $ (-710) (-710) (-710) |#1|)) (-15 -1458 ($ (-888 (-888 (-888 |#1|))))) (-15 -1458 ((-888 (-888 (-888 |#1|))) $)) (-15 -2304 ($ (-1087) $ $)) (-15 -1247 ((-1168 (-710)) $)))) (-1016)) (T -617)) +((-1785 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-710)) (-5 *1 (-617 *3)) (-4 *3 (-973)) (-4 *3 (-1016)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-617 *3)) (-4 *3 (-973)) (-4 *3 (-1016)))) (-2209 (*1 *1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-973)) (-4 *2 (-1016)))) (-1472 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-589 *3)))) (-4 *3 (-1016)) (-5 *1 (-617 *3)))) (-3223 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-710)) (-5 *1 (-617 *2)) (-4 *2 (-1016)))) (-3354 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-617 *2)) (-4 *2 (-1016)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-888 (-888 (-888 *3)))) (-4 *3 (-1016)) (-5 *1 (-617 *3)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-888 (-888 (-888 *3)))) (-5 *1 (-617 *3)) (-4 *3 (-1016)))) (-2304 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-617 *3)) (-4 *3 (-1016)))) (-1247 (*1 *2 *1) (-12 (-5 *2 (-1168 (-710))) (-5 *1 (-617 *3)) (-4 *3 (-1016))))) +(-13 (-462 |#1|) (-10 -8 (IF (|has| |#1| (-973)) (PROGN (-15 -1785 ($ (-710) (-710) (-710))) (-15 -3947 ($ (-710))) (-15 -2209 ($ $ $))) |%noBranch|) (-15 -1472 ($ (-589 (-589 (-589 |#1|))))) (-15 -3223 (|#1| $ (-710) (-710) (-710))) (-15 -3354 (|#1| $ (-710) (-710) (-710) |#1|)) (-15 -1458 ($ (-888 (-888 (-888 |#1|))))) (-15 -1458 ((-888 (-888 (-888 |#1|))) $)) (-15 -2304 ($ (-1087) $ $)) (-15 -1247 ((-1168 (-710)) $)))) +((-3924 (((-108) $ $) NIL)) (-2061 (((-589 |#1|) $) 14)) (-3159 (($ $) 18)) (-1406 (((-108) $) 19)) (-3517 (((-3 |#1| "failed") $) 22)) (-3474 ((|#1| $) 20)) (-1751 (($ $) 36)) (-1419 (($ $) 24)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-2964 (((-108) $ $) 42)) (-2996 (((-852) $) 38)) (-3149 (($ $) 17)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 ((|#1| $) 35)) (-1458 (((-794) $) 31) (($ |#1|) 23) (((-758 |#1|) $) 27)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 12)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 40)) (* (($ $ $) 34))) +(((-618 |#1|) (-13 (-786) (-964 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1458 ((-758 |#1|) $)) (-15 -1738 (|#1| $)) (-15 -3149 ($ $)) (-15 -2996 ((-852) $)) (-15 -2964 ((-108) $ $)) (-15 -1419 ($ $)) (-15 -1751 ($ $)) (-15 -1406 ((-108) $)) (-15 -3159 ($ $)) (-15 -2061 ((-589 |#1|) $)))) (-786)) (T -618)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-758 *3)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) (-1738 (*1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) (-3149 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-852)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) (-2964 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) (-1419 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) (-1751 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) (-3159 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) (-2061 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-618 *3)) (-4 *3 (-786))))) +(-13 (-786) (-964 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1458 ((-758 |#1|) $)) (-15 -1738 (|#1| $)) (-15 -3149 ($ $)) (-15 -2996 ((-852) $)) (-15 -2964 ((-108) $ $)) (-15 -1419 ($ $)) (-15 -1751 ($ $)) (-15 -1406 ((-108) $)) (-15 -3159 ($ $)) (-15 -2061 ((-589 |#1|) $)))) +((-2755 ((|#1| (-1 |#1| (-710) |#1|) (-710) |#1|) 11)) (-1721 ((|#1| (-1 |#1| |#1|) (-710) |#1|) 9))) +(((-619 |#1|) (-10 -7 (-15 -1721 (|#1| (-1 |#1| |#1|) (-710) |#1|)) (-15 -2755 (|#1| (-1 |#1| (-710) |#1|) (-710) |#1|))) (-1016)) (T -619)) +((-2755 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-710) *2)) (-5 *4 (-710)) (-4 *2 (-1016)) (-5 *1 (-619 *2)))) (-1721 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-710)) (-4 *2 (-1016)) (-5 *1 (-619 *2))))) +(-10 -7 (-15 -1721 (|#1| (-1 |#1| |#1|) (-710) |#1|)) (-15 -2755 (|#1| (-1 |#1| (-710) |#1|) (-710) |#1|))) +((-1511 ((|#2| |#1| |#2|) 9)) (-1499 ((|#1| |#1| |#2|) 8))) +(((-620 |#1| |#2|) (-10 -7 (-15 -1499 (|#1| |#1| |#2|)) (-15 -1511 (|#2| |#1| |#2|))) (-1016) (-1016)) (T -620)) +((-1511 (*1 *2 *3 *2) (-12 (-5 *1 (-620 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016)))) (-1499 (*1 *2 *2 *3) (-12 (-5 *1 (-620 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) +(-10 -7 (-15 -1499 (|#1| |#1| |#2|)) (-15 -1511 (|#2| |#1| |#2|))) +((-2370 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-621 |#1| |#2| |#3|) (-10 -7 (-15 -2370 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1016) (-1016) (-1016)) (T -621)) +((-2370 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)) (-5 *1 (-621 *5 *6 *2))))) +(-10 -7 (-15 -2370 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-2755 (((-1 |#1| (-710) |#1|) (-1 |#1| (-710) |#1|)) 23)) (-2244 (((-1 |#1|) |#1|) 8)) (-3024 ((|#1| |#1|) 16)) (-2285 (((-589 |#1|) (-1 (-589 |#1|) (-589 |#1|)) (-523)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-1458 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-710)) 20))) +(((-622 |#1|) (-10 -7 (-15 -2244 ((-1 |#1|) |#1|)) (-15 -1458 ((-1 |#1|) |#1|)) (-15 -2285 (|#1| (-1 |#1| |#1|))) (-15 -2285 ((-589 |#1|) (-1 (-589 |#1|) (-589 |#1|)) (-523))) (-15 -3024 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-710))) (-15 -2755 ((-1 |#1| (-710) |#1|) (-1 |#1| (-710) |#1|)))) (-1016)) (T -622)) +((-2755 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-710) *3)) (-4 *3 (-1016)) (-5 *1 (-622 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-710)) (-4 *4 (-1016)) (-5 *1 (-622 *4)))) (-3024 (*1 *2 *2) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1016)))) (-2285 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-589 *5) (-589 *5))) (-5 *4 (-523)) (-5 *2 (-589 *5)) (-5 *1 (-622 *5)) (-4 *5 (-1016)))) (-2285 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-622 *2)) (-4 *2 (-1016)))) (-1458 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1016)))) (-2244 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1016))))) +(-10 -7 (-15 -2244 ((-1 |#1|) |#1|)) (-15 -1458 ((-1 |#1|) |#1|)) (-15 -2285 (|#1| (-1 |#1| |#1|))) (-15 -2285 ((-589 |#1|) (-1 (-589 |#1|) (-589 |#1|)) (-523))) (-15 -3024 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-710))) (-15 -2755 ((-1 |#1| (-710) |#1|) (-1 |#1| (-710) |#1|)))) +((-3608 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3137 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3059 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1280 (((-1 |#2| |#1|) |#2|) 11))) +(((-623 |#1| |#2|) (-10 -7 (-15 -1280 ((-1 |#2| |#1|) |#2|)) (-15 -3137 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3059 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3608 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1016) (-1016)) (T -623)) +((-3608 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-5 *2 (-1 *5 *4)) (-5 *1 (-623 *4 *5)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1016)) (-5 *2 (-1 *5 *4)) (-5 *1 (-623 *4 *5)) (-4 *4 (-1016)))) (-3137 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-5 *2 (-1 *5)) (-5 *1 (-623 *4 *5)))) (-1280 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-623 *4 *3)) (-4 *4 (-1016)) (-4 *3 (-1016))))) +(-10 -7 (-15 -1280 ((-1 |#2| |#1|) |#2|)) (-15 -3137 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3059 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3608 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-3233 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3841 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2164 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-4217 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2204 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-624 |#1| |#2| |#3|) (-10 -7 (-15 -3841 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2164 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4217 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2204 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3233 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1016) (-1016) (-1016)) (T -624)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-1 *7 *5)) (-5 *1 (-624 *5 *6 *7)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-624 *4 *5 *6)))) (-2204 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-624 *4 *5 *6)) (-4 *4 (-1016)))) (-4217 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1016)) (-4 *6 (-1016)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-624 *4 *5 *6)) (-4 *5 (-1016)))) (-2164 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *4 *5 *6)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1016)) (-4 *4 (-1016)) (-4 *6 (-1016)) (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *5 *4 *6))))) +(-10 -7 (-15 -3841 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2164 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4217 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2204 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3233 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-2437 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3612 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-625 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3612 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3612 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2437 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-973) (-349 |#1|) (-349 |#1|) (-627 |#1| |#2| |#3|) (-973) (-349 |#5|) (-349 |#5|) (-627 |#5| |#6| |#7|)) (T -625)) +((-2437 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-973)) (-4 *2 (-973)) (-4 *6 (-349 *5)) (-4 *7 (-349 *5)) (-4 *8 (-349 *2)) (-4 *9 (-349 *2)) (-5 *1 (-625 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-627 *5 *6 *7)) (-4 *10 (-627 *2 *8 *9)))) (-3612 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-973)) (-4 *8 (-973)) (-4 *6 (-349 *5)) (-4 *7 (-349 *5)) (-4 *2 (-627 *8 *9 *10)) (-5 *1 (-625 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) (-4 *9 (-349 *8)) (-4 *10 (-349 *8)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-973)) (-4 *8 (-973)) (-4 *6 (-349 *5)) (-4 *7 (-349 *5)) (-4 *2 (-627 *8 *9 *10)) (-5 *1 (-625 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) (-4 *9 (-349 *8)) (-4 *10 (-349 *8))))) +(-10 -7 (-15 -3612 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3612 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2437 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-2821 (($ (-710) (-710)) 32)) (-1911 (($ $ $) 55)) (-4190 (($ |#3|) 51) (($ $) 52)) (-2606 (((-108) $) 27)) (-2637 (($ $ (-523) (-523)) 57)) (-3276 (($ $ (-523) (-523)) 58)) (-2934 (($ $ (-523) (-523) (-523) (-523)) 62)) (-3858 (($ $) 53)) (-2651 (((-108) $) 14)) (-1494 (($ $ (-523) (-523) $) 63)) (-1641 ((|#2| $ (-523) (-523) |#2|) NIL) (($ $ (-589 (-523)) (-589 (-523)) $) 61)) (-1421 (($ (-710) |#2|) 37)) (-3068 (($ (-589 (-589 |#2|))) 35)) (-2289 (((-589 (-589 |#2|)) $) 56)) (-3945 (($ $ $) 54)) (-3746 (((-3 $ "failed") $ |#2|) 90)) (-3223 ((|#2| $ (-523) (-523)) NIL) ((|#2| $ (-523) (-523) |#2|) NIL) (($ $ (-589 (-523)) (-589 (-523))) 60)) (-3739 (($ (-589 |#2|)) 39) (($ (-589 $)) 41)) (-3117 (((-108) $) 24)) (-1458 (($ |#4|) 46) (((-794) $) NIL)) (-2175 (((-108) $) 29)) (-4098 (($ $ |#2|) 92)) (-4087 (($ $ $) 67) (($ $) 70)) (-4075 (($ $ $) 65)) (** (($ $ (-710)) 79) (($ $ (-523)) 95)) (* (($ $ $) 76) (($ |#2| $) 72) (($ $ |#2|) 73) (($ (-523) $) 75) ((|#4| $ |#4|) 83) ((|#3| |#3| $) 87))) +(((-626 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1458 ((-794) |#1|)) (-15 ** (|#1| |#1| (-523))) (-15 -4098 (|#1| |#1| |#2|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-710))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4075 (|#1| |#1| |#1|)) (-15 -1494 (|#1| |#1| (-523) (-523) |#1|)) (-15 -2934 (|#1| |#1| (-523) (-523) (-523) (-523))) (-15 -3276 (|#1| |#1| (-523) (-523))) (-15 -2637 (|#1| |#1| (-523) (-523))) (-15 -1641 (|#1| |#1| (-589 (-523)) (-589 (-523)) |#1|)) (-15 -3223 (|#1| |#1| (-589 (-523)) (-589 (-523)))) (-15 -2289 ((-589 (-589 |#2|)) |#1|)) (-15 -1911 (|#1| |#1| |#1|)) (-15 -3945 (|#1| |#1| |#1|)) (-15 -3858 (|#1| |#1|)) (-15 -4190 (|#1| |#1|)) (-15 -4190 (|#1| |#3|)) (-15 -1458 (|#1| |#4|)) (-15 -3739 (|#1| (-589 |#1|))) (-15 -3739 (|#1| (-589 |#2|))) (-15 -1421 (|#1| (-710) |#2|)) (-15 -3068 (|#1| (-589 (-589 |#2|)))) (-15 -2821 (|#1| (-710) (-710))) (-15 -2175 ((-108) |#1|)) (-15 -2606 ((-108) |#1|)) (-15 -3117 ((-108) |#1|)) (-15 -2651 ((-108) |#1|)) (-15 -1641 (|#2| |#1| (-523) (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523) (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523) (-523)))) (-627 |#2| |#3| |#4|) (-973) (-349 |#2|) (-349 |#2|)) (T -626)) +NIL +(-10 -8 (-15 -1458 ((-794) |#1|)) (-15 ** (|#1| |#1| (-523))) (-15 -4098 (|#1| |#1| |#2|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-710))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4075 (|#1| |#1| |#1|)) (-15 -1494 (|#1| |#1| (-523) (-523) |#1|)) (-15 -2934 (|#1| |#1| (-523) (-523) (-523) (-523))) (-15 -3276 (|#1| |#1| (-523) (-523))) (-15 -2637 (|#1| |#1| (-523) (-523))) (-15 -1641 (|#1| |#1| (-589 (-523)) (-589 (-523)) |#1|)) (-15 -3223 (|#1| |#1| (-589 (-523)) (-589 (-523)))) (-15 -2289 ((-589 (-589 |#2|)) |#1|)) (-15 -1911 (|#1| |#1| |#1|)) (-15 -3945 (|#1| |#1| |#1|)) (-15 -3858 (|#1| |#1|)) (-15 -4190 (|#1| |#1|)) (-15 -4190 (|#1| |#3|)) (-15 -1458 (|#1| |#4|)) (-15 -3739 (|#1| (-589 |#1|))) (-15 -3739 (|#1| (-589 |#2|))) (-15 -1421 (|#1| (-710) |#2|)) (-15 -3068 (|#1| (-589 (-589 |#2|)))) (-15 -2821 (|#1| (-710) (-710))) (-15 -2175 ((-108) |#1|)) (-15 -2606 ((-108) |#1|)) (-15 -3117 ((-108) |#1|)) (-15 -2651 ((-108) |#1|)) (-15 -1641 (|#2| |#1| (-523) (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523) (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523) (-523)))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-2821 (($ (-710) (-710)) 97)) (-1911 (($ $ $) 87)) (-4190 (($ |#2|) 91) (($ $) 90)) (-2606 (((-108) $) 99)) (-2637 (($ $ (-523) (-523)) 83)) (-3276 (($ $ (-523) (-523)) 82)) (-2934 (($ $ (-523) (-523) (-523) (-523)) 81)) (-3858 (($ $) 89)) (-2651 (((-108) $) 101)) (-3079 (((-108) $ (-710)) 8)) (-1494 (($ $ (-523) (-523) $) 80)) (-1641 ((|#1| $ (-523) (-523) |#1|) 44) (($ $ (-589 (-523)) (-589 (-523)) $) 84)) (-3787 (($ $ (-523) |#2|) 42)) (-3617 (($ $ (-523) |#3|) 41)) (-1421 (($ (-710) |#1|) 95)) (-2518 (($) 7 T CONST)) (-2445 (($ $) 67 (|has| |#1| (-284)))) (-2031 ((|#2| $ (-523)) 46)) (-1319 (((-710) $) 66 (|has| |#1| (-515)))) (-2863 ((|#1| $ (-523) (-523) |#1|) 43)) (-2795 ((|#1| $ (-523) (-523)) 48)) (-1666 (((-589 |#1|) $) 30)) (-1867 (((-710) $) 65 (|has| |#1| (-515)))) (-3498 (((-589 |#3|) $) 64 (|has| |#1| (-515)))) (-2803 (((-710) $) 51)) (-3052 (($ (-710) (-710) |#1|) 57)) (-2813 (((-710) $) 50)) (-2346 (((-108) $ (-710)) 9)) (-1925 ((|#1| $) 62 (|has| |#1| (-6 (-4246 "*"))))) (-3871 (((-523) $) 55)) (-1758 (((-523) $) 53)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3338 (((-523) $) 54)) (-2347 (((-523) $) 52)) (-3068 (($ (-589 (-589 |#1|))) 96)) (-2852 (($ (-1 |#1| |#1|) $) 34)) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2289 (((-589 (-589 |#1|)) $) 86)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-3698 (((-3 $ "failed") $) 61 (|has| |#1| (-339)))) (-3945 (($ $ $) 88)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-4203 (($ $ |#1|) 56)) (-3746 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-515)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ (-523) (-523)) 49) ((|#1| $ (-523) (-523) |#1|) 47) (($ $ (-589 (-523)) (-589 (-523))) 85)) (-3739 (($ (-589 |#1|)) 94) (($ (-589 $)) 93)) (-3117 (((-108) $) 100)) (-2310 ((|#1| $) 63 (|has| |#1| (-6 (-4246 "*"))))) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1595 ((|#3| $ (-523)) 45)) (-1458 (($ |#3|) 92) (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-2175 (((-108) $) 98)) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-4098 (($ $ |#1|) 68 (|has| |#1| (-339)))) (-4087 (($ $ $) 78) (($ $) 77)) (-4075 (($ $ $) 79)) (** (($ $ (-710)) 70) (($ $ (-523)) 60 (|has| |#1| (-339)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-523) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-627 |#1| |#2| |#3|) (-129) (-973) (-349 |t#1|) (-349 |t#1|)) (T -627)) +((-2651 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-108)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-108)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-108)))) (-2175 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-108)))) (-2821 (*1 *1 *2 *2) (-12 (-5 *2 (-710)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-3068 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-1421 (*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-3739 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-3739 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-1458 (*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *2)) (-4 *4 (-349 *3)) (-4 *2 (-349 *3)))) (-4190 (*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *1 (-627 *3 *2 *4)) (-4 *2 (-349 *3)) (-4 *4 (-349 *3)))) (-4190 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (-3858 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (-3945 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (-1911 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-589 (-589 *3))))) (-3223 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-589 (-523))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-1641 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-589 (-523))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-2637 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-3276 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-2934 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-1494 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-4075 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (-4087 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (-4087 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-627 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *2 (-349 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-627 *3 *2 *4)) (-4 *3 (-973)) (-4 *2 (-349 *3)) (-4 *4 (-349 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) (-3746 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (-4 *2 (-515)))) (-4098 (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (-4 *2 (-339)))) (-2445 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (-4 *2 (-284)))) (-1319 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-4 *3 (-515)) (-5 *2 (-710)))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-4 *3 (-515)) (-5 *2 (-710)))) (-3498 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-4 *3 (-515)) (-5 *2 (-589 *5)))) (-2310 (*1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (|has| *2 (-6 (-4246 "*"))) (-4 *2 (-973)))) (-1925 (*1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (|has| *2 (-6 (-4246 "*"))) (-4 *2 (-973)))) (-3698 (*1 *1 *1) (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (-4 *2 (-339)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-4 *3 (-339))))) +(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4245) (-6 -4244) (-15 -2651 ((-108) $)) (-15 -3117 ((-108) $)) (-15 -2606 ((-108) $)) (-15 -2175 ((-108) $)) (-15 -2821 ($ (-710) (-710))) (-15 -3068 ($ (-589 (-589 |t#1|)))) (-15 -1421 ($ (-710) |t#1|)) (-15 -3739 ($ (-589 |t#1|))) (-15 -3739 ($ (-589 $))) (-15 -1458 ($ |t#3|)) (-15 -4190 ($ |t#2|)) (-15 -4190 ($ $)) (-15 -3858 ($ $)) (-15 -3945 ($ $ $)) (-15 -1911 ($ $ $)) (-15 -2289 ((-589 (-589 |t#1|)) $)) (-15 -3223 ($ $ (-589 (-523)) (-589 (-523)))) (-15 -1641 ($ $ (-589 (-523)) (-589 (-523)) $)) (-15 -2637 ($ $ (-523) (-523))) (-15 -3276 ($ $ (-523) (-523))) (-15 -2934 ($ $ (-523) (-523) (-523) (-523))) (-15 -1494 ($ $ (-523) (-523) $)) (-15 -4075 ($ $ $)) (-15 -4087 ($ $ $)) (-15 -4087 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-523) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-710))) (IF (|has| |t#1| (-515)) (-15 -3746 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-339)) (-15 -4098 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-284)) (-15 -2445 ($ $)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -1319 ((-710) $)) (-15 -1867 ((-710) $)) (-15 -3498 ((-589 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4246 "*"))) (PROGN (-15 -2310 (|t#1| $)) (-15 -1925 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-339)) (PROGN (-15 -3698 ((-3 $ "failed") $)) (-15 ** ($ $ (-523)))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-55 |#1| |#2| |#3|) . T) ((-1122) . T)) +((-2445 ((|#4| |#4|) 68 (|has| |#1| (-284)))) (-1319 (((-710) |#4|) 70 (|has| |#1| (-515)))) (-1867 (((-710) |#4|) 72 (|has| |#1| (-515)))) (-3498 (((-589 |#3|) |#4|) 79 (|has| |#1| (-515)))) (-3527 (((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|) 96 (|has| |#1| (-284)))) (-1925 ((|#1| |#4|) 34)) (-3755 (((-3 |#4| "failed") |#4|) 62 (|has| |#1| (-515)))) (-3698 (((-3 |#4| "failed") |#4|) 76 (|has| |#1| (-339)))) (-3374 ((|#4| |#4|) 55 (|has| |#1| (-515)))) (-4011 ((|#4| |#4| |#1| (-523) (-523)) 42)) (-1678 ((|#4| |#4| (-523) (-523)) 37)) (-1917 ((|#4| |#4| |#1| (-523) (-523)) 47)) (-2310 ((|#1| |#4|) 74)) (-2708 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 58 (|has| |#1| (-515))))) +(((-628 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2310 (|#1| |#4|)) (-15 -1925 (|#1| |#4|)) (-15 -1678 (|#4| |#4| (-523) (-523))) (-15 -4011 (|#4| |#4| |#1| (-523) (-523))) (-15 -1917 (|#4| |#4| |#1| (-523) (-523))) (IF (|has| |#1| (-515)) (PROGN (-15 -1319 ((-710) |#4|)) (-15 -1867 ((-710) |#4|)) (-15 -3498 ((-589 |#3|) |#4|)) (-15 -3374 (|#4| |#4|)) (-15 -3755 ((-3 |#4| "failed") |#4|)) (-15 -2708 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-284)) (PROGN (-15 -2445 (|#4| |#4|)) (-15 -3527 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-339)) (-15 -3698 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-158) (-349 |#1|) (-349 |#1|) (-627 |#1| |#2| |#3|)) (T -628)) +((-3698 (*1 *2 *2) (|partial| -12 (-4 *3 (-339)) (-4 *3 (-158)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3527 (*1 *2 *3 *3) (-12 (-4 *3 (-284)) (-4 *3 (-158)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-628 *3 *4 *5 *6)) (-4 *6 (-627 *3 *4 *5)))) (-2445 (*1 *2 *2) (-12 (-4 *3 (-284)) (-4 *3 (-158)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2708 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3755 (*1 *2 *2) (|partial| -12 (-4 *3 (-515)) (-4 *3 (-158)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3374 (*1 *2 *2) (-12 (-4 *3 (-515)) (-4 *3 (-158)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3498 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-589 *6)) (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-1867 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-710)) (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-1319 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-710)) (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-1917 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-523)) (-4 *3 (-158)) (-4 *5 (-349 *3)) (-4 *6 (-349 *3)) (-5 *1 (-628 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))) (-4011 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-523)) (-4 *3 (-158)) (-4 *5 (-349 *3)) (-4 *6 (-349 *3)) (-5 *1 (-628 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))) (-1678 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-523)) (-4 *4 (-158)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *1 (-628 *4 *5 *6 *2)) (-4 *2 (-627 *4 *5 *6)))) (-1925 (*1 *2 *3) (-12 (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-158)) (-5 *1 (-628 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) (-2310 (*1 *2 *3) (-12 (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-158)) (-5 *1 (-628 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5))))) +(-10 -7 (-15 -2310 (|#1| |#4|)) (-15 -1925 (|#1| |#4|)) (-15 -1678 (|#4| |#4| (-523) (-523))) (-15 -4011 (|#4| |#4| |#1| (-523) (-523))) (-15 -1917 (|#4| |#4| |#1| (-523) (-523))) (IF (|has| |#1| (-515)) (PROGN (-15 -1319 ((-710) |#4|)) (-15 -1867 ((-710) |#4|)) (-15 -3498 ((-589 |#3|) |#4|)) (-15 -3374 (|#4| |#4|)) (-15 -3755 ((-3 |#4| "failed") |#4|)) (-15 -2708 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-284)) (PROGN (-15 -2445 (|#4| |#4|)) (-15 -3527 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-339)) (-15 -3698 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2821 (($ (-710) (-710)) 45)) (-1911 (($ $ $) NIL)) (-4190 (($ (-1168 |#1|)) NIL) (($ $) NIL)) (-2606 (((-108) $) NIL)) (-2637 (($ $ (-523) (-523)) 12)) (-3276 (($ $ (-523) (-523)) NIL)) (-2934 (($ $ (-523) (-523) (-523) (-523)) NIL)) (-3858 (($ $) NIL)) (-2651 (((-108) $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1494 (($ $ (-523) (-523) $) NIL)) (-1641 ((|#1| $ (-523) (-523) |#1|) NIL) (($ $ (-589 (-523)) (-589 (-523)) $) NIL)) (-3787 (($ $ (-523) (-1168 |#1|)) NIL)) (-3617 (($ $ (-523) (-1168 |#1|)) NIL)) (-1421 (($ (-710) |#1|) 22)) (-2518 (($) NIL T CONST)) (-2445 (($ $) 30 (|has| |#1| (-284)))) (-2031 (((-1168 |#1|) $ (-523)) NIL)) (-1319 (((-710) $) 32 (|has| |#1| (-515)))) (-2863 ((|#1| $ (-523) (-523) |#1|) 50)) (-2795 ((|#1| $ (-523) (-523)) NIL)) (-1666 (((-589 |#1|) $) NIL)) (-1867 (((-710) $) 34 (|has| |#1| (-515)))) (-3498 (((-589 (-1168 |#1|)) $) 37 (|has| |#1| (-515)))) (-2803 (((-710) $) 20)) (-3052 (($ (-710) (-710) |#1|) 16)) (-2813 (((-710) $) 21)) (-2346 (((-108) $ (-710)) NIL)) (-1925 ((|#1| $) 28 (|has| |#1| (-6 (-4246 "*"))))) (-3871 (((-523) $) 9)) (-1758 (((-523) $) 10)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3338 (((-523) $) 11)) (-2347 (((-523) $) 46)) (-3068 (($ (-589 (-589 |#1|))) NIL)) (-2852 (($ (-1 |#1| |#1|) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2289 (((-589 (-589 |#1|)) $) 58)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3698 (((-3 $ "failed") $) 41 (|has| |#1| (-339)))) (-3945 (($ $ $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-4203 (($ $ |#1|) NIL)) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-523) (-523)) NIL) ((|#1| $ (-523) (-523) |#1|) NIL) (($ $ (-589 (-523)) (-589 (-523))) NIL)) (-3739 (($ (-589 |#1|)) NIL) (($ (-589 $)) NIL) (($ (-1168 |#1|)) 51)) (-3117 (((-108) $) NIL)) (-2310 ((|#1| $) 26 (|has| |#1| (-6 (-4246 "*"))))) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-3663 (((-499) $) 62 (|has| |#1| (-564 (-499))))) (-1595 (((-1168 |#1|) $ (-523)) NIL)) (-1458 (($ (-1168 |#1|)) NIL) (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2175 (((-108) $) NIL)) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $ $) NIL) (($ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-710)) 23) (($ $ (-523)) 44 (|has| |#1| (-339)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-523) $) NIL) (((-1168 |#1|) $ (-1168 |#1|)) NIL) (((-1168 |#1|) (-1168 |#1|) $) NIL)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-629 |#1|) (-13 (-627 |#1| (-1168 |#1|) (-1168 |#1|)) (-10 -8 (-15 -3739 ($ (-1168 |#1|))) (IF (|has| |#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |#1| (-339)) (-15 -3698 ((-3 $ "failed") $)) |%noBranch|))) (-973)) (T -629)) +((-3698 (*1 *1 *1) (|partial| -12 (-5 *1 (-629 *2)) (-4 *2 (-339)) (-4 *2 (-973)))) (-3739 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-973)) (-5 *1 (-629 *3))))) +(-13 (-627 |#1| (-1168 |#1|) (-1168 |#1|)) (-10 -8 (-15 -3739 ($ (-1168 |#1|))) (IF (|has| |#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |#1| (-339)) (-15 -3698 ((-3 $ "failed") $)) |%noBranch|))) +((-2065 (((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|)) 25)) (-1907 (((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|) 21)) (-1358 (((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-710)) 26)) (-2900 (((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|)) 14)) (-3363 (((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|)) 18) (((-629 |#1|) (-629 |#1|) (-629 |#1|)) 16)) (-1536 (((-629 |#1|) (-629 |#1|) |#1| (-629 |#1|)) 20)) (-1486 (((-629 |#1|) (-629 |#1|) (-629 |#1|)) 12)) (** (((-629 |#1|) (-629 |#1|) (-710)) 30))) +(((-630 |#1|) (-10 -7 (-15 -1486 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -2900 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3363 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3363 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -1536 ((-629 |#1|) (-629 |#1|) |#1| (-629 |#1|))) (-15 -1907 ((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|)) (-15 -2065 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -1358 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-710))) (-15 ** ((-629 |#1|) (-629 |#1|) (-710)))) (-973)) (T -630)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-629 *4)) (-5 *3 (-710)) (-4 *4 (-973)) (-5 *1 (-630 *4)))) (-1358 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-629 *4)) (-5 *3 (-710)) (-4 *4 (-973)) (-5 *1 (-630 *4)))) (-2065 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3)))) (-1907 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3)))) (-1536 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3)))) (-3363 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3)))) (-3363 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3)))) (-2900 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3)))) (-1486 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3))))) +(-10 -7 (-15 -1486 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -2900 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3363 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3363 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -1536 ((-629 |#1|) (-629 |#1|) |#1| (-629 |#1|))) (-15 -1907 ((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|)) (-15 -2065 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -1358 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-710))) (-15 ** ((-629 |#1|) (-629 |#1|) (-710)))) +((-1618 ((|#2| |#2| |#4|) 25)) (-2140 (((-629 |#2|) |#3| |#4|) 31)) (-3112 (((-629 |#2|) |#2| |#4|) 30)) (-1994 (((-1168 |#2|) |#2| |#4|) 16)) (-1248 ((|#2| |#3| |#4|) 24)) (-3691 (((-629 |#2|) |#3| |#4| (-710) (-710)) 38)) (-3505 (((-629 |#2|) |#2| |#4| (-710)) 37))) +(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1994 ((-1168 |#2|) |#2| |#4|)) (-15 -1248 (|#2| |#3| |#4|)) (-15 -1618 (|#2| |#2| |#4|)) (-15 -3112 ((-629 |#2|) |#2| |#4|)) (-15 -3505 ((-629 |#2|) |#2| |#4| (-710))) (-15 -2140 ((-629 |#2|) |#3| |#4|)) (-15 -3691 ((-629 |#2|) |#3| |#4| (-710) (-710)))) (-1016) (-831 |#1|) (-349 |#2|) (-13 (-349 |#1|) (-10 -7 (-6 -4244)))) (T -631)) +((-3691 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-710)) (-4 *6 (-1016)) (-4 *7 (-831 *6)) (-5 *2 (-629 *7)) (-5 *1 (-631 *6 *7 *3 *4)) (-4 *3 (-349 *7)) (-4 *4 (-13 (-349 *6) (-10 -7 (-6 -4244)))))) (-2140 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-4 *6 (-831 *5)) (-5 *2 (-629 *6)) (-5 *1 (-631 *5 *6 *3 *4)) (-4 *3 (-349 *6)) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4244)))))) (-3505 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-710)) (-4 *6 (-1016)) (-4 *3 (-831 *6)) (-5 *2 (-629 *3)) (-5 *1 (-631 *6 *3 *7 *4)) (-4 *7 (-349 *3)) (-4 *4 (-13 (-349 *6) (-10 -7 (-6 -4244)))))) (-3112 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-4 *3 (-831 *5)) (-5 *2 (-629 *3)) (-5 *1 (-631 *5 *3 *6 *4)) (-4 *6 (-349 *3)) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4244)))))) (-1618 (*1 *2 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-831 *4)) (-5 *1 (-631 *4 *2 *5 *3)) (-4 *5 (-349 *2)) (-4 *3 (-13 (-349 *4) (-10 -7 (-6 -4244)))))) (-1248 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-4 *2 (-831 *5)) (-5 *1 (-631 *5 *2 *3 *4)) (-4 *3 (-349 *2)) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4244)))))) (-1994 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-4 *3 (-831 *5)) (-5 *2 (-1168 *3)) (-5 *1 (-631 *5 *3 *6 *4)) (-4 *6 (-349 *3)) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4244))))))) +(-10 -7 (-15 -1994 ((-1168 |#2|) |#2| |#4|)) (-15 -1248 (|#2| |#3| |#4|)) (-15 -1618 (|#2| |#2| |#4|)) (-15 -3112 ((-629 |#2|) |#2| |#4|)) (-15 -3505 ((-629 |#2|) |#2| |#4| (-710))) (-15 -2140 ((-629 |#2|) |#3| |#4|)) (-15 -3691 ((-629 |#2|) |#3| |#4| (-710) (-710)))) +((-1199 (((-2 (|:| |num| (-629 |#1|)) (|:| |den| |#1|)) (-629 |#2|)) 18)) (-3616 ((|#1| (-629 |#2|)) 9)) (-3604 (((-629 |#1|) (-629 |#2|)) 16))) +(((-632 |#1| |#2|) (-10 -7 (-15 -3616 (|#1| (-629 |#2|))) (-15 -3604 ((-629 |#1|) (-629 |#2|))) (-15 -1199 ((-2 (|:| |num| (-629 |#1|)) (|:| |den| |#1|)) (-629 |#2|)))) (-515) (-921 |#1|)) (T -632)) +((-1199 (*1 *2 *3) (-12 (-5 *3 (-629 *5)) (-4 *5 (-921 *4)) (-4 *4 (-515)) (-5 *2 (-2 (|:| |num| (-629 *4)) (|:| |den| *4))) (-5 *1 (-632 *4 *5)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-629 *5)) (-4 *5 (-921 *4)) (-4 *4 (-515)) (-5 *2 (-629 *4)) (-5 *1 (-632 *4 *5)))) (-3616 (*1 *2 *3) (-12 (-5 *3 (-629 *4)) (-4 *4 (-921 *2)) (-4 *2 (-515)) (-5 *1 (-632 *2 *4))))) +(-10 -7 (-15 -3616 (|#1| (-629 |#2|))) (-15 -3604 ((-629 |#1|) (-629 |#2|))) (-15 -1199 ((-2 (|:| |num| (-629 |#1|)) (|:| |den| |#1|)) (-629 |#2|)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3750 (((-629 (-638))) NIL) (((-629 (-638)) (-1168 $)) NIL)) (-4187 (((-638) $) NIL)) (-1769 (($ $) NIL (|has| (-638) (-1108)))) (-3780 (($ $) NIL (|has| (-638) (-1108)))) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| (-638) (-325)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-638) (-284)) (|has| (-638) (-840))))) (-2291 (($ $) NIL (-3262 (-12 (|has| (-638) (-284)) (|has| (-638) (-840))) (|has| (-638) (-339))))) (-3614 (((-394 $) $) NIL (-3262 (-12 (|has| (-638) (-284)) (|has| (-638) (-840))) (|has| (-638) (-339))))) (-1832 (($ $) NIL (-12 (|has| (-638) (-930)) (|has| (-638) (-1108))))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-638) (-284)) (|has| (-638) (-840))))) (-1387 (((-108) $ $) NIL (|has| (-638) (-284)))) (-1703 (((-710)) NIL (|has| (-638) (-344)))) (-1744 (($ $) NIL (|has| (-638) (-1108)))) (-3711 (($ $) NIL (|has| (-638) (-1108)))) (-1793 (($ $) NIL (|has| (-638) (-1108)))) (-3805 (($ $) NIL (|has| (-638) (-1108)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-638) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-638) (-964 (-383 (-523)))))) (-3474 (((-523) $) NIL) (((-638) $) NIL) (((-383 (-523)) $) NIL (|has| (-638) (-964 (-383 (-523)))))) (-3409 (($ (-1168 (-638))) NIL) (($ (-1168 (-638)) (-1168 $)) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-638) (-325)))) (-3796 (($ $ $) NIL (|has| (-638) (-284)))) (-4079 (((-629 (-638)) $) NIL) (((-629 (-638)) $ (-1168 $)) NIL)) (-2381 (((-629 (-638)) (-629 $)) NIL) (((-2 (|:| -3392 (-629 (-638))) (|:| |vec| (-1168 (-638)))) (-629 $) (-1168 $)) NIL) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| (-638) (-585 (-523)))) (((-629 (-523)) (-629 $)) NIL (|has| (-638) (-585 (-523))))) (-2437 (((-3 $ "failed") (-383 (-1083 (-638)))) NIL (|has| (-638) (-339))) (($ (-1083 (-638))) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-1842 (((-638) $) 29)) (-3346 (((-3 (-383 (-523)) "failed") $) NIL (|has| (-638) (-508)))) (-1292 (((-108) $) NIL (|has| (-638) (-508)))) (-2146 (((-383 (-523)) $) NIL (|has| (-638) (-508)))) (-1319 (((-852)) NIL)) (-4032 (($) NIL (|has| (-638) (-344)))) (-3769 (($ $ $) NIL (|has| (-638) (-284)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| (-638) (-284)))) (-1996 (($) NIL (|has| (-638) (-325)))) (-2155 (((-108) $) NIL (|has| (-638) (-325)))) (-1991 (($ $) NIL (|has| (-638) (-325))) (($ $ (-710)) NIL (|has| (-638) (-325)))) (-2657 (((-108) $) NIL (-3262 (-12 (|has| (-638) (-284)) (|has| (-638) (-840))) (|has| (-638) (-339))))) (-4107 (((-2 (|:| |r| (-638)) (|:| |phi| (-638))) $) NIL (-12 (|has| (-638) (-982)) (|has| (-638) (-1108))))) (-2820 (($) NIL (|has| (-638) (-1108)))) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-638) (-817 (-355)))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-638) (-817 (-523))))) (-1640 (((-772 (-852)) $) NIL (|has| (-638) (-325))) (((-852) $) NIL (|has| (-638) (-325)))) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL (-12 (|has| (-638) (-930)) (|has| (-638) (-1108))))) (-3892 (((-638) $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| (-638) (-325)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| (-638) (-284)))) (-1397 (((-1083 (-638)) $) NIL (|has| (-638) (-339)))) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3612 (($ (-1 (-638) (-638)) $) NIL)) (-2072 (((-852) $) NIL (|has| (-638) (-344)))) (-2384 (($ $) NIL (|has| (-638) (-1108)))) (-2428 (((-1083 (-638)) $) NIL)) (-3244 (($ (-589 $)) NIL (|has| (-638) (-284))) (($ $ $) NIL (|has| (-638) (-284)))) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| (-638) (-339)))) (-2262 (($) NIL (|has| (-638) (-325)) CONST)) (-3878 (($ (-852)) NIL (|has| (-638) (-344)))) (-3917 (($) NIL)) (-1856 (((-638) $) 31)) (-2783 (((-1034) $) NIL)) (-3441 (($) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| (-638) (-284)))) (-3278 (($ (-589 $)) NIL (|has| (-638) (-284))) (($ $ $) NIL (|has| (-638) (-284)))) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| (-638) (-325)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-638) (-284)) (|has| (-638) (-840))))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-638) (-284)) (|has| (-638) (-840))))) (-1820 (((-394 $) $) NIL (-3262 (-12 (|has| (-638) (-284)) (|has| (-638) (-840))) (|has| (-638) (-339))))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-638) (-284))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| (-638) (-284)))) (-3746 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-638)) NIL (|has| (-638) (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| (-638) (-284)))) (-1811 (($ $) NIL (|has| (-638) (-1108)))) (-2679 (($ $ (-1087) (-638)) NIL (|has| (-638) (-484 (-1087) (-638)))) (($ $ (-589 (-1087)) (-589 (-638))) NIL (|has| (-638) (-484 (-1087) (-638)))) (($ $ (-589 (-271 (-638)))) NIL (|has| (-638) (-286 (-638)))) (($ $ (-271 (-638))) NIL (|has| (-638) (-286 (-638)))) (($ $ (-638) (-638)) NIL (|has| (-638) (-286 (-638)))) (($ $ (-589 (-638)) (-589 (-638))) NIL (|has| (-638) (-286 (-638))))) (-1972 (((-710) $) NIL (|has| (-638) (-284)))) (-3223 (($ $ (-638)) NIL (|has| (-638) (-263 (-638) (-638))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| (-638) (-284)))) (-3549 (((-638)) NIL) (((-638) (-1168 $)) NIL)) (-2974 (((-3 (-710) "failed") $ $) NIL (|has| (-638) (-325))) (((-710) $) NIL (|has| (-638) (-325)))) (-3523 (($ $ (-1 (-638) (-638))) NIL) (($ $ (-1 (-638) (-638)) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-1087)) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-710)) NIL (|has| (-638) (-211))) (($ $) NIL (|has| (-638) (-211)))) (-1976 (((-629 (-638)) (-1168 $) (-1 (-638) (-638))) NIL (|has| (-638) (-339)))) (-3727 (((-1083 (-638))) NIL)) (-1805 (($ $) NIL (|has| (-638) (-1108)))) (-3816 (($ $) NIL (|has| (-638) (-1108)))) (-3425 (($) NIL (|has| (-638) (-325)))) (-1782 (($ $) NIL (|has| (-638) (-1108)))) (-3793 (($ $) NIL (|has| (-638) (-1108)))) (-1757 (($ $) NIL (|has| (-638) (-1108)))) (-3767 (($ $) NIL (|has| (-638) (-1108)))) (-2966 (((-629 (-638)) (-1168 $)) NIL) (((-1168 (-638)) $) NIL) (((-629 (-638)) (-1168 $) (-1168 $)) NIL) (((-1168 (-638)) $ (-1168 $)) NIL)) (-3663 (((-499) $) NIL (|has| (-638) (-564 (-499)))) (((-155 (-203)) $) NIL (|has| (-638) (-949))) (((-155 (-355)) $) NIL (|has| (-638) (-949))) (((-823 (-355)) $) NIL (|has| (-638) (-564 (-823 (-355))))) (((-823 (-523)) $) NIL (|has| (-638) (-564 (-823 (-523))))) (($ (-1083 (-638))) NIL) (((-1083 (-638)) $) NIL) (($ (-1168 (-638))) NIL) (((-1168 (-638)) $) NIL)) (-3208 (($ $) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-3262 (-12 (|has| (-638) (-284)) (|has| $ (-134)) (|has| (-638) (-840))) (|has| (-638) (-325))))) (-2571 (($ (-638) (-638)) 12)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-523)) NIL) (($ (-638)) NIL) (($ (-155 (-355))) 13) (($ (-155 (-523))) 19) (($ (-155 (-638))) 28) (($ (-155 (-640))) 25) (((-155 (-355)) $) 33) (($ (-383 (-523))) NIL (-3262 (|has| (-638) (-964 (-383 (-523)))) (|has| (-638) (-339))))) (-3901 (($ $) NIL (|has| (-638) (-325))) (((-3 $ "failed") $) NIL (-3262 (-12 (|has| (-638) (-284)) (|has| $ (-134)) (|has| (-638) (-840))) (|has| (-638) (-134))))) (-1807 (((-1083 (-638)) $) NIL)) (-1621 (((-710)) NIL)) (-4041 (((-1168 $)) NIL)) (-1839 (($ $) NIL (|has| (-638) (-1108)))) (-3847 (($ $) NIL (|has| (-638) (-1108)))) (-1704 (((-108) $ $) NIL)) (-1818 (($ $) NIL (|has| (-638) (-1108)))) (-3828 (($ $) NIL (|has| (-638) (-1108)))) (-1865 (($ $) NIL (|has| (-638) (-1108)))) (-1719 (($ $) NIL (|has| (-638) (-1108)))) (-2135 (((-638) $) NIL (|has| (-638) (-1108)))) (-2914 (($ $) NIL (|has| (-638) (-1108)))) (-1731 (($ $) NIL (|has| (-638) (-1108)))) (-1852 (($ $) NIL (|has| (-638) (-1108)))) (-3859 (($ $) NIL (|has| (-638) (-1108)))) (-1830 (($ $) NIL (|has| (-638) (-1108)))) (-3838 (($ $) NIL (|has| (-638) (-1108)))) (-2619 (($ $) NIL (|has| (-638) (-982)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| (-638) (-339)))) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-1 (-638) (-638))) NIL) (($ $ (-1 (-638) (-638)) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-1087)) NIL (|has| (-638) (-831 (-1087)))) (($ $ (-710)) NIL (|has| (-638) (-211))) (($ $) NIL (|has| (-638) (-211)))) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL (|has| (-638) (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ $) NIL (|has| (-638) (-1108))) (($ $ (-383 (-523))) NIL (-12 (|has| (-638) (-930)) (|has| (-638) (-1108)))) (($ $ (-523)) NIL (|has| (-638) (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ (-638) $) NIL) (($ $ (-638)) NIL) (($ (-383 (-523)) $) NIL (|has| (-638) (-339))) (($ $ (-383 (-523))) NIL (|has| (-638) (-339))))) +(((-633) (-13 (-363) (-152 (-638)) (-10 -8 (-15 -1458 ($ (-155 (-355)))) (-15 -1458 ($ (-155 (-523)))) (-15 -1458 ($ (-155 (-638)))) (-15 -1458 ($ (-155 (-640)))) (-15 -1458 ((-155 (-355)) $))))) (T -633)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-155 (-355))) (-5 *1 (-633)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-155 (-523))) (-5 *1 (-633)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-155 (-638))) (-5 *1 (-633)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-155 (-640))) (-5 *1 (-633)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-155 (-355))) (-5 *1 (-633))))) +(-13 (-363) (-152 (-638)) (-10 -8 (-15 -1458 ($ (-155 (-355)))) (-15 -1458 ($ (-155 (-523)))) (-15 -1458 ($ (-155 (-638)))) (-15 -1458 ($ (-155 (-640)))) (-15 -1458 ((-155 (-355)) $)))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) 8)) (-3387 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-3941 (($ $) 62)) (-1773 (($ $) 58 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2249 (($ |#1| $) 47 (|has| $ (-6 -4244))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4244)))) (-2557 (($ |#1| $) 57 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4244)))) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1934 ((|#1| $) 39)) (-3450 (($ |#1| $) 40) (($ |#1| $ (-710)) 63)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-2766 (((-589 (-2 (|:| -2433 |#1|) (|:| -2792 (-710)))) $) 61)) (-3433 (($) 49) (($ (-589 |#1|)) 48)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 59 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 50)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) 42)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-634 |#1|) (-129) (-1016)) (T -634)) +((-3450 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-634 *2)) (-4 *2 (-1016)))) (-3941 (*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1016)))) (-2766 (*1 *2 *1) (-12 (-4 *1 (-634 *3)) (-4 *3 (-1016)) (-5 *2 (-589 (-2 (|:| -2433 *3) (|:| -2792 (-710)))))))) +(-13 (-213 |t#1|) (-10 -8 (-15 -3450 ($ |t#1| $ (-710))) (-15 -3941 ($ $)) (-15 -2766 ((-589 (-2 (|:| -2433 |t#1|) (|:| -2792 (-710)))) $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-213 |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) +((-2987 (((-589 |#1|) (-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523)))) (-523)) 46)) (-2103 ((|#1| |#1| (-523)) 45)) (-3278 ((|#1| |#1| |#1| (-523)) 35)) (-1820 (((-589 |#1|) |#1| (-523)) 38)) (-1281 ((|#1| |#1| (-523) |#1| (-523)) 32)) (-3929 (((-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523)))) |#1| (-523)) 44))) +(((-635 |#1|) (-10 -7 (-15 -3278 (|#1| |#1| |#1| (-523))) (-15 -2103 (|#1| |#1| (-523))) (-15 -1820 ((-589 |#1|) |#1| (-523))) (-15 -3929 ((-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523)))) |#1| (-523))) (-15 -2987 ((-589 |#1|) (-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523)))) (-523))) (-15 -1281 (|#1| |#1| (-523) |#1| (-523)))) (-1144 (-523))) (T -635)) +((-1281 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-635 *2)) (-4 *2 (-1144 *3)))) (-2987 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-2 (|:| -1820 *5) (|:| -2299 (-523))))) (-5 *4 (-523)) (-4 *5 (-1144 *4)) (-5 *2 (-589 *5)) (-5 *1 (-635 *5)))) (-3929 (*1 *2 *3 *4) (-12 (-5 *4 (-523)) (-5 *2 (-589 (-2 (|:| -1820 *3) (|:| -2299 *4)))) (-5 *1 (-635 *3)) (-4 *3 (-1144 *4)))) (-1820 (*1 *2 *3 *4) (-12 (-5 *4 (-523)) (-5 *2 (-589 *3)) (-5 *1 (-635 *3)) (-4 *3 (-1144 *4)))) (-2103 (*1 *2 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-635 *2)) (-4 *2 (-1144 *3)))) (-3278 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-635 *2)) (-4 *2 (-1144 *3))))) +(-10 -7 (-15 -3278 (|#1| |#1| |#1| (-523))) (-15 -2103 (|#1| |#1| (-523))) (-15 -1820 ((-589 |#1|) |#1| (-523))) (-15 -3929 ((-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523)))) |#1| (-523))) (-15 -2987 ((-589 |#1|) (-589 (-2 (|:| -1820 |#1|) (|:| -2299 (-523)))) (-523))) (-15 -1281 (|#1| |#1| (-523) |#1| (-523)))) +((-3487 (((-1 (-874 (-203)) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203) (-203))) 17)) (-2965 (((-1047 (-203)) (-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-589 (-240))) 38) (((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-589 (-240))) 40) (((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-3 (-1 (-203) (-203) (-203) (-203)) "undefined") (-1011 (-203)) (-1011 (-203)) (-589 (-240))) 42)) (-1253 (((-1047 (-203)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-589 (-240))) NIL)) (-3647 (((-1047 (-203)) (-1 (-203) (-203) (-203)) (-3 (-1 (-203) (-203) (-203) (-203)) "undefined") (-1011 (-203)) (-1011 (-203)) (-589 (-240))) 43))) +(((-636) (-10 -7 (-15 -2965 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-3 (-1 (-203) (-203) (-203) (-203)) "undefined") (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -2965 ((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -2965 ((-1047 (-203)) (-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -3647 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-3 (-1 (-203) (-203) (-203) (-203)) "undefined") (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -1253 ((-1047 (-203)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -3487 ((-1 (-874 (-203)) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203) (-203)))))) (T -636)) +((-3487 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1 (-203) (-203) (-203) (-203))) (-5 *2 (-1 (-874 (-203)) (-203) (-203))) (-5 *1 (-636)))) (-1253 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) (-5 *5 (-1011 (-203))) (-5 *6 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-636)))) (-3647 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-3 (-1 (-203) (-203) (-203) (-203)) "undefined")) (-5 *5 (-1011 (-203))) (-5 *6 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-636)))) (-2965 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1047 (-203))) (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-203))) (-5 *5 (-589 (-240))) (-5 *1 (-636)))) (-2965 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-203))) (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-636)))) (-2965 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-3 (-1 (-203) (-203) (-203) (-203)) "undefined")) (-5 *5 (-1011 (-203))) (-5 *6 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-636))))) +(-10 -7 (-15 -2965 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-3 (-1 (-203) (-203) (-203) (-203)) "undefined") (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -2965 ((-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -2965 ((-1047 (-203)) (-1047 (-203)) (-1 (-874 (-203)) (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -3647 ((-1047 (-203)) (-1 (-203) (-203) (-203)) (-3 (-1 (-203) (-203) (-203) (-203)) "undefined") (-1011 (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -1253 ((-1047 (-203)) (-292 (-523)) (-292 (-523)) (-292 (-523)) (-1 (-203) (-203)) (-1011 (-203)) (-589 (-240)))) (-15 -3487 ((-1 (-874 (-203)) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203)) (-1 (-203) (-203) (-203) (-203))))) +((-1820 (((-394 (-1083 |#4|)) (-1083 |#4|)) 73) (((-394 |#4|) |#4|) 217))) +(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1820 ((-394 |#4|) |#4|)) (-15 -1820 ((-394 (-1083 |#4|)) (-1083 |#4|)))) (-786) (-732) (-325) (-880 |#3| |#2| |#1|)) (T -637)) +((-1820 (*1 *2 *3) (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-325)) (-4 *7 (-880 *6 *5 *4)) (-5 *2 (-394 (-1083 *7))) (-5 *1 (-637 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-1820 (*1 *2 *3) (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-325)) (-5 *2 (-394 *3)) (-5 *1 (-637 *4 *5 *6 *3)) (-4 *3 (-880 *6 *5 *4))))) +(-10 -7 (-15 -1820 ((-394 |#4|) |#4|)) (-15 -1820 ((-394 (-1083 |#4|)) (-1083 |#4|)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 84)) (-3458 (((-523) $) 30)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3984 (($ $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1832 (($ $) NIL)) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL)) (-2518 (($) NIL T CONST)) (-1258 (($ $) NIL)) (-3517 (((-3 (-523) "failed") $) 73) (((-3 (-383 (-523)) "failed") $) 26) (((-3 (-355) "failed") $) 70)) (-3474 (((-523) $) 75) (((-383 (-523)) $) 67) (((-355) $) 68)) (-3796 (($ $ $) 96)) (-2121 (((-3 $ "failed") $) 87)) (-3769 (($ $ $) 95)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2685 (((-852)) 77) (((-852) (-852)) 76)) (-2604 (((-108) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL)) (-1640 (((-523) $) NIL)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL)) (-3892 (($ $) NIL)) (-4114 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4101 (((-523) (-523)) 81) (((-523)) 82)) (-2454 (($ $ $) NIL) (($) NIL (-12 (-3900 (|has| $ (-6 -4227))) (-3900 (|has| $ (-6 -4235)))))) (-3930 (((-523) (-523)) 79) (((-523)) 80)) (-2062 (($ $ $) NIL) (($) NIL (-12 (-3900 (|has| $ (-6 -4227))) (-3900 (|has| $ (-6 -4235)))))) (-1369 (((-523) $) 16)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 91)) (-3986 (((-852) (-523)) NIL (|has| $ (-6 -4235)))) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL)) (-3722 (($ $) NIL)) (-4092 (($ (-523) (-523)) NIL) (($ (-523) (-523) (-852)) NIL)) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) 92)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2735 (((-523) $) 22)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 94)) (-1617 (((-852)) NIL) (((-852) (-852)) NIL (|has| $ (-6 -4235)))) (-3134 (((-852) (-523)) NIL (|has| $ (-6 -4235)))) (-3663 (((-355) $) NIL) (((-203) $) NIL) (((-823 (-355)) $) NIL)) (-1458 (((-794) $) 52) (($ (-523)) 63) (($ $) NIL) (($ (-383 (-523))) 66) (($ (-523)) 63) (($ (-383 (-523))) 66) (($ (-355)) 60) (((-355) $) 50) (($ (-640)) 55)) (-1621 (((-710)) 103)) (-3492 (($ (-523) (-523) (-852)) 44)) (-1886 (($ $) NIL)) (-1329 (((-852)) NIL) (((-852) (-852)) NIL (|has| $ (-6 -4235)))) (-3007 (((-852)) 35) (((-852) (-852)) 78)) (-1704 (((-108) $ $) NIL)) (-2619 (($ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 32 T CONST)) (-2767 (($) 17 T CONST)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 83)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 101)) (-4098 (($ $ $) 65)) (-4087 (($ $) 99) (($ $ $) 100)) (-4075 (($ $ $) 98)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL) (($ $ (-383 (-523))) 90)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 97) (($ $ $) 88) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) +(((-638) (-13 (-380) (-363) (-339) (-964 (-355)) (-964 (-383 (-523))) (-136) (-10 -8 (-15 -2685 ((-852) (-852))) (-15 -2685 ((-852))) (-15 -3007 ((-852) (-852))) (-15 -3007 ((-852))) (-15 -3930 ((-523) (-523))) (-15 -3930 ((-523))) (-15 -4101 ((-523) (-523))) (-15 -4101 ((-523))) (-15 -1458 ((-355) $)) (-15 -1458 ($ (-640))) (-15 -1369 ((-523) $)) (-15 -2735 ((-523) $)) (-15 -3492 ($ (-523) (-523) (-852)))))) (T -638)) +((-3007 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) (-2685 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638)))) (-2685 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638)))) (-3007 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638)))) (-3930 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) (-3930 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) (-4101 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) (-4101 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-355)) (-5 *1 (-638)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-640)) (-5 *1 (-638)))) (-3492 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-523)) (-5 *3 (-852)) (-5 *1 (-638))))) +(-13 (-380) (-363) (-339) (-964 (-355)) (-964 (-383 (-523))) (-136) (-10 -8 (-15 -2685 ((-852) (-852))) (-15 -2685 ((-852))) (-15 -3007 ((-852) (-852))) (-15 -3007 ((-852))) (-15 -3930 ((-523) (-523))) (-15 -3930 ((-523))) (-15 -4101 ((-523) (-523))) (-15 -4101 ((-523))) (-15 -1458 ((-355) $)) (-15 -1458 ($ (-640))) (-15 -1369 ((-523) $)) (-15 -2735 ((-523) $)) (-15 -3492 ($ (-523) (-523) (-852))))) +((-2586 (((-629 |#1|) (-629 |#1|) |#1| |#1|) 65)) (-2445 (((-629 |#1|) (-629 |#1|) |#1|) 48)) (-4216 (((-629 |#1|) (-629 |#1|) |#1|) 66)) (-1813 (((-629 |#1|) (-629 |#1|)) 49)) (-3527 (((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|) 64))) +(((-639 |#1|) (-10 -7 (-15 -1813 ((-629 |#1|) (-629 |#1|))) (-15 -2445 ((-629 |#1|) (-629 |#1|) |#1|)) (-15 -4216 ((-629 |#1|) (-629 |#1|) |#1|)) (-15 -2586 ((-629 |#1|) (-629 |#1|) |#1| |#1|)) (-15 -3527 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|))) (-284)) (T -639)) +((-3527 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-639 *3)) (-4 *3 (-284)))) (-2586 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3)))) (-4216 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3)))) (-2445 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3)))) (-1813 (*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3))))) +(-10 -7 (-15 -1813 ((-629 |#1|) (-629 |#1|))) (-15 -2445 ((-629 |#1|) (-629 |#1|) |#1|)) (-15 -4216 ((-629 |#1|) (-629 |#1|) |#1|)) (-15 -2586 ((-629 |#1|) (-629 |#1|) |#1| |#1|)) (-15 -3527 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2312 (($ $ $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1808 (($ $ $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL)) (-2041 (($ $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) 27)) (-3474 (((-523) $) 25)) (-3796 (($ $ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3346 (((-3 (-383 (-523)) "failed") $) NIL)) (-1292 (((-108) $) NIL)) (-2146 (((-383 (-523)) $) NIL)) (-4032 (($ $) NIL) (($) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2819 (($ $ $ $) NIL)) (-1980 (($ $ $) NIL)) (-2604 (((-108) $) NIL)) (-3654 (($ $ $) NIL)) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL)) (-2023 (((-108) $) NIL)) (-1557 (((-108) $) NIL)) (-4058 (((-3 $ "failed") $) NIL)) (-4114 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4183 (($ $ $ $) NIL)) (-2454 (($ $ $) NIL)) (-2729 (((-852) (-852)) 10) (((-852)) 9)) (-2062 (($ $ $) NIL)) (-1647 (($ $) NIL)) (-2996 (($ $) NIL)) (-3244 (($ (-589 $)) NIL) (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-3305 (($ $ $) NIL)) (-2262 (($) NIL T CONST)) (-3201 (($ $) NIL)) (-2783 (((-1034) $) NIL) (($ $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ (-589 $)) NIL) (($ $ $) NIL)) (-3217 (($ $) NIL)) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4104 (((-108) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $) NIL) (($ $ (-710)) NIL)) (-2029 (($ $) NIL)) (-1664 (($ $) NIL)) (-3663 (((-203) $) NIL) (((-355) $) NIL) (((-823 (-523)) $) NIL) (((-499) $) NIL) (((-523) $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) 24) (($ $) NIL) (($ (-523)) 24) (((-292 $) (-292 (-523))) 18)) (-1621 (((-710)) NIL)) (-1981 (((-108) $ $) NIL)) (-2574 (($ $ $) NIL)) (-3007 (($) NIL)) (-1704 (((-108) $ $) NIL)) (-2108 (($ $ $ $) NIL)) (-2619 (($ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $) NIL) (($ $ (-710)) NIL)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL))) +(((-640) (-13 (-363) (-508) (-10 -8 (-15 -2729 ((-852) (-852))) (-15 -2729 ((-852))) (-15 -1458 ((-292 $) (-292 (-523))))))) (T -640)) +((-2729 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-640)))) (-2729 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-640)))) (-1458 (*1 *2 *3) (-12 (-5 *3 (-292 (-523))) (-5 *2 (-292 (-640))) (-5 *1 (-640))))) +(-13 (-363) (-508) (-10 -8 (-15 -2729 ((-852) (-852))) (-15 -2729 ((-852))) (-15 -1458 ((-292 $) (-292 (-523)))))) +((-1989 (((-1 |#4| |#2| |#3|) |#1| (-1087) (-1087)) 19)) (-1449 (((-1 |#4| |#2| |#3|) (-1087)) 12))) +(((-641 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1449 ((-1 |#4| |#2| |#3|) (-1087))) (-15 -1989 ((-1 |#4| |#2| |#3|) |#1| (-1087) (-1087)))) (-564 (-499)) (-1122) (-1122) (-1122)) (T -641)) +((-1989 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1087)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *3 *5 *6 *7)) (-4 *3 (-564 (-499))) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)))) (-1449 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *4 *5 *6 *7)) (-4 *4 (-564 (-499))) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122))))) +(-10 -7 (-15 -1449 ((-1 |#4| |#2| |#3|) (-1087))) (-15 -1989 ((-1 |#4| |#2| |#3|) |#1| (-1087) (-1087)))) +((-3924 (((-108) $ $) NIL)) (-2118 (((-1173) $ (-710)) 14)) (-1479 (((-710) $) 12)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 25)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 24))) +(((-642 |#1|) (-13 (-125) (-563 |#1|) (-10 -8 (-15 -1458 ($ |#1|)))) (-1016)) (T -642)) +((-1458 (*1 *1 *2) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1016))))) +(-13 (-125) (-563 |#1|) (-10 -8 (-15 -1458 ($ |#1|)))) +((-3501 (((-1 (-203) (-203) (-203)) |#1| (-1087) (-1087)) 33) (((-1 (-203) (-203)) |#1| (-1087)) 38))) +(((-643 |#1|) (-10 -7 (-15 -3501 ((-1 (-203) (-203)) |#1| (-1087))) (-15 -3501 ((-1 (-203) (-203) (-203)) |#1| (-1087) (-1087)))) (-564 (-499))) (T -643)) +((-3501 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1087)) (-5 *2 (-1 (-203) (-203) (-203))) (-5 *1 (-643 *3)) (-4 *3 (-564 (-499))))) (-3501 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-5 *2 (-1 (-203) (-203))) (-5 *1 (-643 *3)) (-4 *3 (-564 (-499)))))) +(-10 -7 (-15 -3501 ((-1 (-203) (-203)) |#1| (-1087))) (-15 -3501 ((-1 (-203) (-203) (-203)) |#1| (-1087) (-1087)))) +((-3121 (((-1087) |#1| (-1087) (-589 (-1087))) 9) (((-1087) |#1| (-1087) (-1087) (-1087)) 12) (((-1087) |#1| (-1087) (-1087)) 11) (((-1087) |#1| (-1087)) 10))) +(((-644 |#1|) (-10 -7 (-15 -3121 ((-1087) |#1| (-1087))) (-15 -3121 ((-1087) |#1| (-1087) (-1087))) (-15 -3121 ((-1087) |#1| (-1087) (-1087) (-1087))) (-15 -3121 ((-1087) |#1| (-1087) (-589 (-1087))))) (-564 (-499))) (T -644)) +((-3121 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-589 (-1087))) (-5 *2 (-1087)) (-5 *1 (-644 *3)) (-4 *3 (-564 (-499))))) (-3121 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-644 *3)) (-4 *3 (-564 (-499))))) (-3121 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-644 *3)) (-4 *3 (-564 (-499))))) (-3121 (*1 *2 *3 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-644 *3)) (-4 *3 (-564 (-499)))))) +(-10 -7 (-15 -3121 ((-1087) |#1| (-1087))) (-15 -3121 ((-1087) |#1| (-1087) (-1087))) (-15 -3121 ((-1087) |#1| (-1087) (-1087) (-1087))) (-15 -3121 ((-1087) |#1| (-1087) (-589 (-1087))))) +((-3792 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-645 |#1| |#2|) (-10 -7 (-15 -3792 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1122) (-1122)) (T -645)) +((-3792 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-645 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) +(-10 -7 (-15 -3792 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-2341 (((-1 |#3| |#2|) (-1087)) 11)) (-1989 (((-1 |#3| |#2|) |#1| (-1087)) 21))) +(((-646 |#1| |#2| |#3|) (-10 -7 (-15 -2341 ((-1 |#3| |#2|) (-1087))) (-15 -1989 ((-1 |#3| |#2|) |#1| (-1087)))) (-564 (-499)) (-1122) (-1122)) (T -646)) +((-1989 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *3 *5 *6)) (-4 *3 (-564 (-499))) (-4 *5 (-1122)) (-4 *6 (-1122)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *4 *5 *6)) (-4 *4 (-564 (-499))) (-4 *5 (-1122)) (-4 *6 (-1122))))) +(-10 -7 (-15 -2341 ((-1 |#3| |#2|) (-1087))) (-15 -1989 ((-1 |#3| |#2|) |#1| (-1087)))) +((-2502 (((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 (-1083 |#4|)) (-589 |#3|) (-589 |#4|) (-589 (-589 (-2 (|:| -1725 (-710)) (|:| |pcoef| |#4|)))) (-589 (-710)) (-1168 (-589 (-1083 |#3|))) |#3|) 59)) (-1594 (((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 (-1083 |#3|)) (-589 |#3|) (-589 |#4|) (-589 (-710)) |#3|) 72)) (-2369 (((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 |#3|) (-589 (-710)) (-589 (-1083 |#4|)) (-1168 (-589 (-1083 |#3|))) |#3|) 32))) +(((-647 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2369 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 |#3|) (-589 (-710)) (-589 (-1083 |#4|)) (-1168 (-589 (-1083 |#3|))) |#3|)) (-15 -1594 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 (-1083 |#3|)) (-589 |#3|) (-589 |#4|) (-589 (-710)) |#3|)) (-15 -2502 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 (-1083 |#4|)) (-589 |#3|) (-589 |#4|) (-589 (-589 (-2 (|:| -1725 (-710)) (|:| |pcoef| |#4|)))) (-589 (-710)) (-1168 (-589 (-1083 |#3|))) |#3|))) (-732) (-786) (-284) (-880 |#3| |#1| |#2|)) (T -647)) +((-2502 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-589 (-1083 *13))) (-5 *3 (-1083 *13)) (-5 *4 (-589 *12)) (-5 *5 (-589 *10)) (-5 *6 (-589 *13)) (-5 *7 (-589 (-589 (-2 (|:| -1725 (-710)) (|:| |pcoef| *13))))) (-5 *8 (-589 (-710))) (-5 *9 (-1168 (-589 (-1083 *10)))) (-4 *12 (-786)) (-4 *10 (-284)) (-4 *13 (-880 *10 *11 *12)) (-4 *11 (-732)) (-5 *1 (-647 *11 *12 *10 *13)))) (-1594 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-589 *11)) (-5 *5 (-589 (-1083 *9))) (-5 *6 (-589 *9)) (-5 *7 (-589 *12)) (-5 *8 (-589 (-710))) (-4 *11 (-786)) (-4 *9 (-284)) (-4 *12 (-880 *9 *10 *11)) (-4 *10 (-732)) (-5 *2 (-589 (-1083 *12))) (-5 *1 (-647 *10 *11 *9 *12)) (-5 *3 (-1083 *12)))) (-2369 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-589 (-1083 *11))) (-5 *3 (-1083 *11)) (-5 *4 (-589 *10)) (-5 *5 (-589 *8)) (-5 *6 (-589 (-710))) (-5 *7 (-1168 (-589 (-1083 *8)))) (-4 *10 (-786)) (-4 *8 (-284)) (-4 *11 (-880 *8 *9 *10)) (-4 *9 (-732)) (-5 *1 (-647 *9 *10 *8 *11))))) +(-10 -7 (-15 -2369 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 |#3|) (-589 (-710)) (-589 (-1083 |#4|)) (-1168 (-589 (-1083 |#3|))) |#3|)) (-15 -1594 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 (-1083 |#3|)) (-589 |#3|) (-589 |#4|) (-589 (-710)) |#3|)) (-15 -2502 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-589 |#2|) (-589 (-1083 |#4|)) (-589 |#3|) (-589 |#4|) (-589 (-589 (-2 (|:| -1725 (-710)) (|:| |pcoef| |#4|)))) (-589 (-710)) (-1168 (-589 (-1083 |#3|))) |#3|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3810 (($ $) 41)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-1933 (($ |#1| (-710)) 39)) (-1575 (((-710) $) 43)) (-3786 ((|#1| $) 42)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2299 (((-710) $) 44)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 38 (|has| |#1| (-158)))) (-2365 ((|#1| $ (-710)) 40)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-648 |#1|) (-129) (-973)) (T -648)) +((-2299 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) (-1575 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-973)))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-973)))) (-2365 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-648 *2)) (-4 *2 (-973)))) (-1933 (*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-648 *2)) (-4 *2 (-973))))) +(-13 (-973) (-107 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-158)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -2299 ((-710) $)) (-15 -1575 ((-710) $)) (-15 -3786 (|t#1| $)) (-15 -3810 ($ $)) (-15 -2365 (|t#1| $ (-710))) (-15 -1933 ($ |t#1| (-710))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-158)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-657 |#1|) |has| |#1| (-158)) ((-666) . T) ((-979 |#1|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-3612 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-649 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3612 (|#6| (-1 |#4| |#1|) |#3|))) (-515) (-1144 |#1|) (-1144 (-383 |#2|)) (-515) (-1144 |#4|) (-1144 (-383 |#5|))) (T -649)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-515)) (-4 *7 (-515)) (-4 *6 (-1144 *5)) (-4 *2 (-1144 (-383 *8))) (-5 *1 (-649 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1144 (-383 *6))) (-4 *8 (-1144 *7))))) +(-10 -7 (-15 -3612 (|#6| (-1 |#4| |#1|) |#3|))) +((-3924 (((-108) $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2958 (((-1070) (-794)) 31)) (-3973 (((-1173) (-1070)) 28)) (-3027 (((-1070) (-794)) 24)) (-2060 (((-1070) (-794)) 25)) (-1458 (((-794) $) NIL) (((-1070) (-794)) 23)) (-3983 (((-108) $ $) NIL))) +(((-650) (-13 (-1016) (-10 -7 (-15 -1458 ((-1070) (-794))) (-15 -3027 ((-1070) (-794))) (-15 -2060 ((-1070) (-794))) (-15 -2958 ((-1070) (-794))) (-15 -3973 ((-1173) (-1070)))))) (T -650)) +((-1458 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650)))) (-3027 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650)))) (-2060 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650)))) (-2958 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-650))))) +(-13 (-1016) (-10 -7 (-15 -1458 ((-1070) (-794))) (-15 -3027 ((-1070) (-794))) (-15 -2060 ((-1070) (-794))) (-15 -2958 ((-1070) (-794))) (-15 -3973 ((-1173) (-1070))))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-3796 (($ $ $) NIL)) (-2437 (($ |#1| |#2|) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2023 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3507 ((|#2| $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3620 (((-3 $ "failed") $ $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) ((|#1| $) NIL)) (-1621 (((-710)) NIL)) (-1704 (((-108) $ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) +(((-651 |#1| |#2| |#3| |#4| |#5|) (-13 (-339) (-10 -8 (-15 -3507 (|#2| $)) (-15 -1458 (|#1| $)) (-15 -2437 ($ |#1| |#2|)) (-15 -3620 ((-3 $ "failed") $ $)))) (-158) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -651)) +((-3507 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-651 *3 *2 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1458 (*1 *2 *1) (-12 (-4 *2 (-158)) (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2437 (*1 *1 *2 *3) (-12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3620 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-339) (-10 -8 (-15 -3507 (|#2| $)) (-15 -1458 (|#1| $)) (-15 -2437 ($ |#1| |#2|)) (-15 -3620 ((-3 $ "failed") $ $)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 30)) (-2854 (((-1168 |#1|) $ (-710)) NIL)) (-1957 (((-589 (-1001)) $) NIL)) (-3131 (($ (-1083 |#1|)) NIL)) (-1786 (((-1083 $) $ (-1001)) NIL) (((-1083 |#1|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-1001))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2407 (($ $ $) NIL (|has| |#1| (-515)))) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2291 (($ $) NIL (|has| |#1| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1703 (((-710)) 47 (|has| |#1| (-344)))) (-2692 (($ $ (-710)) NIL)) (-2482 (($ $ (-710)) NIL)) (-2686 ((|#2| |#2|) 44)) (-3444 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-427)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-1001) "failed") $) NIL)) (-3474 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-1001) $) NIL)) (-3078 (($ $ $ (-1001)) NIL (|has| |#1| (-158))) ((|#1| $ $) NIL (|has| |#1| (-158)))) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) 34)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2437 (($ |#2|) 42)) (-2121 (((-3 $ "failed") $) 85)) (-4032 (($) 51 (|has| |#1| (-344)))) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-3666 (($ $ $) NIL)) (-2349 (($ $ $) NIL (|has| |#1| (-515)))) (-2815 (((-2 (|:| -2935 |#1|) (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-515)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2528 (($ $) NIL (|has| |#1| (-427))) (($ $ (-1001)) NIL (|has| |#1| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#1| (-840)))) (-1227 (((-888 $)) 79)) (-1284 (($ $ |#1| (-710) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1001) (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1001) (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-1640 (((-710) $ $) NIL (|has| |#1| (-515)))) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-1063)))) (-1945 (($ (-1083 |#1|) (-1001)) NIL) (($ (-1083 $) (-1001)) NIL)) (-1349 (($ $ (-710)) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-710)) 77) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-1001)) NIL) (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3507 ((|#2|) 45)) (-1575 (((-710) $) NIL) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3782 (($ (-1 (-710) (-710)) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2180 (((-1083 |#1|) $) NIL)) (-2520 (((-3 (-1001) "failed") $) NIL)) (-2072 (((-852) $) NIL (|has| |#1| (-344)))) (-2428 ((|#2| $) 41)) (-3774 (($ $) NIL)) (-3786 ((|#1| $) 28)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-3779 (((-1070) $) NIL)) (-2150 (((-2 (|:| -3445 $) (|:| -3282 $)) $ (-710)) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-1001)) (|:| -2735 (-710))) "failed") $) NIL)) (-3417 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2262 (($) NIL (|has| |#1| (-1063)) CONST)) (-3878 (($ (-852)) NIL (|has| |#1| (-344)))) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 ((|#1| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-1429 (($ $) 78 (|has| |#1| (-325)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-840)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-1001) |#1|) NIL) (($ $ (-589 (-1001)) (-589 |#1|)) NIL) (($ $ (-1001) $) NIL) (($ $ (-589 (-1001)) (-589 $)) NIL)) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-383 $) (-383 $) (-383 $)) NIL (|has| |#1| (-515))) ((|#1| (-383 $) |#1|) NIL (|has| |#1| (-339))) (((-383 $) $ (-383 $)) NIL (|has| |#1| (-515)))) (-3255 (((-3 $ "failed") $ (-710)) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 86 (|has| |#1| (-339)))) (-3549 (($ $ (-1001)) NIL (|has| |#1| (-158))) ((|#1| $) NIL (|has| |#1| (-158)))) (-3523 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2299 (((-710) $) 32) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-1001) (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-2438 ((|#1| $) NIL (|has| |#1| (-427))) (($ $ (-1001)) NIL (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-2149 (((-888 $)) 36)) (-1260 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515))) (((-3 (-383 $) "failed") (-383 $) $) NIL (|has| |#1| (-515)))) (-1458 (((-794) $) 61) (($ (-523)) NIL) (($ |#1|) 58) (($ (-1001)) NIL) (($ |#2|) 68) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-710)) 63) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 20 T CONST)) (-3329 (((-1168 |#1|) $) 75)) (-1706 (($ (-1168 |#1|)) 50)) (-2767 (($) 8 T CONST)) (-2862 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4150 (((-1168 |#1|) $) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) 69)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) 72) (($ $ $) NIL)) (-4075 (($ $ $) 33)) (** (($ $ (-852)) NIL) (($ $ (-710)) 80)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 57) (($ $ $) 74) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) +(((-652 |#1| |#2|) (-13 (-1144 |#1|) (-10 -8 (-15 -2686 (|#2| |#2|)) (-15 -3507 (|#2|)) (-15 -2437 ($ |#2|)) (-15 -2428 (|#2| $)) (-15 -1458 ($ |#2|)) (-15 -3329 ((-1168 |#1|) $)) (-15 -1706 ($ (-1168 |#1|))) (-15 -4150 ((-1168 |#1|) $)) (-15 -1227 ((-888 $))) (-15 -2149 ((-888 $))) (IF (|has| |#1| (-325)) (-15 -1429 ($ $)) |%noBranch|) (IF (|has| |#1| (-344)) (-6 (-344)) |%noBranch|))) (-973) (-1144 |#1|)) (T -652)) +((-2686 (*1 *2 *2) (-12 (-4 *3 (-973)) (-5 *1 (-652 *3 *2)) (-4 *2 (-1144 *3)))) (-3507 (*1 *2) (-12 (-4 *2 (-1144 *3)) (-5 *1 (-652 *3 *2)) (-4 *3 (-973)))) (-2437 (*1 *1 *2) (-12 (-4 *3 (-973)) (-5 *1 (-652 *3 *2)) (-4 *2 (-1144 *3)))) (-2428 (*1 *2 *1) (-12 (-4 *2 (-1144 *3)) (-5 *1 (-652 *3 *2)) (-4 *3 (-973)))) (-1458 (*1 *1 *2) (-12 (-4 *3 (-973)) (-5 *1 (-652 *3 *2)) (-4 *2 (-1144 *3)))) (-3329 (*1 *2 *1) (-12 (-4 *3 (-973)) (-5 *2 (-1168 *3)) (-5 *1 (-652 *3 *4)) (-4 *4 (-1144 *3)))) (-1706 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-973)) (-5 *1 (-652 *3 *4)) (-4 *4 (-1144 *3)))) (-4150 (*1 *2 *1) (-12 (-4 *3 (-973)) (-5 *2 (-1168 *3)) (-5 *1 (-652 *3 *4)) (-4 *4 (-1144 *3)))) (-1227 (*1 *2) (-12 (-4 *3 (-973)) (-5 *2 (-888 (-652 *3 *4))) (-5 *1 (-652 *3 *4)) (-4 *4 (-1144 *3)))) (-2149 (*1 *2) (-12 (-4 *3 (-973)) (-5 *2 (-888 (-652 *3 *4))) (-5 *1 (-652 *3 *4)) (-4 *4 (-1144 *3)))) (-1429 (*1 *1 *1) (-12 (-4 *2 (-325)) (-4 *2 (-973)) (-5 *1 (-652 *2 *3)) (-4 *3 (-1144 *2))))) +(-13 (-1144 |#1|) (-10 -8 (-15 -2686 (|#2| |#2|)) (-15 -3507 (|#2|)) (-15 -2437 ($ |#2|)) (-15 -2428 (|#2| $)) (-15 -1458 ($ |#2|)) (-15 -3329 ((-1168 |#1|) $)) (-15 -1706 ($ (-1168 |#1|))) (-15 -4150 ((-1168 |#1|) $)) (-15 -1227 ((-888 $))) (-15 -2149 ((-888 $))) (IF (|has| |#1| (-325)) (-15 -1429 ($ $)) |%noBranch|) (IF (|has| |#1| (-344)) (-6 (-344)) |%noBranch|))) +((-3924 (((-108) $ $) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-3878 ((|#1| $) 13)) (-2783 (((-1034) $) NIL)) (-2735 ((|#2| $) 12)) (-1472 (($ |#1| |#2|) 16)) (-1458 (((-794) $) NIL) (($ (-2 (|:| -3878 |#1|) (|:| -2735 |#2|))) 15) (((-2 (|:| -3878 |#1|) (|:| -2735 |#2|)) $) 14)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 11))) +(((-653 |#1| |#2| |#3|) (-13 (-786) (-10 -8 (-15 -2735 (|#2| $)) (-15 -3878 (|#1| $)) (-15 -1458 ($ (-2 (|:| -3878 |#1|) (|:| -2735 |#2|)))) (-15 -1458 ((-2 (|:| -3878 |#1|) (|:| -2735 |#2|)) $)) (-15 -1472 ($ |#1| |#2|)))) (-786) (-1016) (-1 (-108) (-2 (|:| -3878 |#1|) (|:| -2735 |#2|)) (-2 (|:| -3878 |#1|) (|:| -2735 |#2|)))) (T -653)) +((-2735 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-653 *3 *2 *4)) (-4 *3 (-786)) (-14 *4 (-1 (-108) (-2 (|:| -3878 *3) (|:| -2735 *2)) (-2 (|:| -3878 *3) (|:| -2735 *2)))))) (-3878 (*1 *2 *1) (-12 (-4 *2 (-786)) (-5 *1 (-653 *2 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-1 (-108) (-2 (|:| -3878 *2) (|:| -2735 *3)) (-2 (|:| -3878 *2) (|:| -2735 *3)))))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3878 *3) (|:| -2735 *4))) (-4 *3 (-786)) (-4 *4 (-1016)) (-5 *1 (-653 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3878 *3) (|:| -2735 *4))) (-5 *1 (-653 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-1016)) (-14 *5 (-1 (-108) *2 *2)))) (-1472 (*1 *1 *2 *3) (-12 (-5 *1 (-653 *2 *3 *4)) (-4 *2 (-786)) (-4 *3 (-1016)) (-14 *4 (-1 (-108) (-2 (|:| -3878 *2) (|:| -2735 *3)) (-2 (|:| -3878 *2) (|:| -2735 *3))))))) +(-13 (-786) (-10 -8 (-15 -2735 (|#2| $)) (-15 -3878 (|#1| $)) (-15 -1458 ($ (-2 (|:| -3878 |#1|) (|:| -2735 |#2|)))) (-15 -1458 ((-2 (|:| -3878 |#1|) (|:| -2735 |#2|)) $)) (-15 -1472 ($ |#1| |#2|)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 59)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) 89) (((-3 (-110) "failed") $) 95)) (-3474 ((|#1| $) NIL) (((-110) $) 39)) (-2121 (((-3 $ "failed") $) 90)) (-1257 ((|#2| (-110) |#2|) 82)) (-2023 (((-108) $) NIL)) (-4209 (($ |#1| (-337 (-110))) 13)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3512 (($ $ (-1 |#2| |#2|)) 58)) (-2038 (($ $ (-1 |#2| |#2|)) 44)) (-3223 ((|#2| $ |#2|) 32)) (-4056 ((|#1| |#1|) 100 (|has| |#1| (-158)))) (-1458 (((-794) $) 66) (($ (-523)) 17) (($ |#1|) 16) (($ (-110)) 23)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) 36)) (-2708 (($ $) 99 (|has| |#1| (-158))) (($ $ $) 103 (|has| |#1| (-158)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 20 T CONST)) (-2767 (($) 9 T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) 48) (($ $ $) NIL)) (-4075 (($ $ $) 73)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ (-110) (-523)) NIL) (($ $ (-523)) 57)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-158))) (($ $ |#1|) 97 (|has| |#1| (-158))))) +(((-654 |#1| |#2|) (-13 (-973) (-964 |#1|) (-964 (-110)) (-263 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-158)) (PROGN (-6 (-37 |#1|)) (-15 -2708 ($ $)) (-15 -2708 ($ $ $)) (-15 -4056 (|#1| |#1|))) |%noBranch|) (-15 -2038 ($ $ (-1 |#2| |#2|))) (-15 -3512 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-523))) (-15 ** ($ $ (-523))) (-15 -1257 (|#2| (-110) |#2|)) (-15 -4209 ($ |#1| (-337 (-110)))))) (-973) (-591 |#1|)) (T -654)) +((-2708 (*1 *1 *1) (-12 (-4 *2 (-158)) (-4 *2 (-973)) (-5 *1 (-654 *2 *3)) (-4 *3 (-591 *2)))) (-2708 (*1 *1 *1 *1) (-12 (-4 *2 (-158)) (-4 *2 (-973)) (-5 *1 (-654 *2 *3)) (-4 *3 (-591 *2)))) (-4056 (*1 *2 *2) (-12 (-4 *2 (-158)) (-4 *2 (-973)) (-5 *1 (-654 *2 *3)) (-4 *3 (-591 *2)))) (-2038 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-973)) (-5 *1 (-654 *3 *4)))) (-3512 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-973)) (-5 *1 (-654 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-523)) (-4 *4 (-973)) (-5 *1 (-654 *4 *5)) (-4 *5 (-591 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *3 (-973)) (-5 *1 (-654 *3 *4)) (-4 *4 (-591 *3)))) (-1257 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-4 *4 (-973)) (-5 *1 (-654 *4 *2)) (-4 *2 (-591 *4)))) (-4209 (*1 *1 *2 *3) (-12 (-5 *3 (-337 (-110))) (-4 *2 (-973)) (-5 *1 (-654 *2 *4)) (-4 *4 (-591 *2))))) +(-13 (-973) (-964 |#1|) (-964 (-110)) (-263 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-158)) (PROGN (-6 (-37 |#1|)) (-15 -2708 ($ $)) (-15 -2708 ($ $ $)) (-15 -4056 (|#1| |#1|))) |%noBranch|) (-15 -2038 ($ $ (-1 |#2| |#2|))) (-15 -3512 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-523))) (-15 ** ($ $ (-523))) (-15 -1257 (|#2| (-110) |#2|)) (-15 -4209 ($ |#1| (-337 (-110)))))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 33)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2437 (($ |#1| |#2|) 25)) (-2121 (((-3 $ "failed") $) 47)) (-2023 (((-108) $) 35)) (-3507 ((|#2| $) 12)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 48)) (-2783 (((-1034) $) NIL)) (-3620 (((-3 $ "failed") $ $) 46)) (-1458 (((-794) $) 24) (($ (-523)) 19) ((|#1| $) 13)) (-1621 (((-710)) 28)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 16 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 38)) (-4087 (($ $) 43) (($ $ $) 37)) (-4075 (($ $ $) 40)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 21) (($ $ $) 20))) +(((-655 |#1| |#2| |#3| |#4| |#5|) (-13 (-973) (-10 -8 (-15 -3507 (|#2| $)) (-15 -1458 (|#1| $)) (-15 -2437 ($ |#1| |#2|)) (-15 -3620 ((-3 $ "failed") $ $)) (-15 -2121 ((-3 $ "failed") $)) (-15 -3738 ($ $)))) (-158) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -655)) +((-2121 (*1 *1 *1) (|partial| -12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3507 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-655 *3 *2 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1458 (*1 *2 *1) (-12 (-4 *2 (-158)) (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2437 (*1 *1 *2 *3) (-12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3620 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3738 (*1 *1 *1) (-12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-973) (-10 -8 (-15 -3507 (|#2| $)) (-15 -1458 (|#1| $)) (-15 -2437 ($ |#1| |#2|)) (-15 -3620 ((-3 $ "failed") $ $)) (-15 -2121 ((-3 $ "failed") $)) (-15 -3738 ($ $)))) +((* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-656 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) (-657 |#2|) (-158)) (T -656)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-657 |#1|) (-129) (-158)) (T -657)) NIL (-13 (-107 |t#1| |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-977 |#1|) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-1736 (($ |#1|) 17) (($ $ |#1|) 20)) (-3808 (($ |#1|) 18) (($ $ |#1|) 21)) (-3367 (($) NIL T CONST)) (-3920 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2859 (((-108) $) NIL)) (-1744 (($ |#1| |#1| |#1| |#1|) 8)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) 16)) (-4174 (((-1032) $) NIL)) (-2330 ((|#1| $ |#1|) 24) (((-770 |#1|) $ (-770 |#1|)) 32)) (-2983 (($ $ $) NIL)) (-1596 (($ $ $) NIL)) (-2217 (((-792) $) 39)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3709 (($) 9 T CONST)) (-1562 (((-108) $ $) 44)) (-1682 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ $ $) 14))) -(((-656 |#1|) (-13 (-447) (-10 -8 (-15 -1744 ($ |#1| |#1| |#1| |#1|)) (-15 -1736 ($ |#1|)) (-15 -3808 ($ |#1|)) (-15 -3920 ($)) (-15 -1736 ($ $ |#1|)) (-15 -3808 ($ $ |#1|)) (-15 -3920 ($ $)) (-15 -2330 (|#1| $ |#1|)) (-15 -2330 ((-770 |#1|) $ (-770 |#1|))))) (-338)) (T -656)) -((-1744 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) (-1736 (*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) (-3808 (*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) (-3920 (*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) (-1736 (*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) (-3808 (*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) (-3920 (*1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) (-2330 (*1 *2 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) (-2330 (*1 *2 *1 *2) (-12 (-5 *2 (-770 *3)) (-4 *3 (-338)) (-5 *1 (-656 *3))))) -(-13 (-447) (-10 -8 (-15 -1744 ($ |#1| |#1| |#1| |#1|)) (-15 -1736 ($ |#1|)) (-15 -3808 ($ |#1|)) (-15 -3920 ($)) (-15 -1736 ($ $ |#1|)) (-15 -3808 ($ $ |#1|)) (-15 -3920 ($ $)) (-15 -2330 (|#1| $ |#1|)) (-15 -2330 ((-770 |#1|) $ (-770 |#1|))))) -((-2698 (($ $ (-850)) 12)) (-1946 (($ $ (-850)) 13)) (** (($ $ (-850)) 10))) -(((-657 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-850))) (-15 -1946 (|#1| |#1| (-850))) (-15 -2698 (|#1| |#1| (-850)))) (-658)) (T -657)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-850))) (-15 -1946 (|#1| |#1| (-850))) (-15 -2698 (|#1| |#1| (-850)))) -((-1419 (((-108) $ $) 7)) (-2698 (($ $ (-850)) 15)) (-1946 (($ $ (-850)) 14)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-1562 (((-108) $ $) 6)) (** (($ $ (-850)) 13)) (* (($ $ $) 16))) -(((-658) (-1197)) (T -658)) -((* (*1 *1 *1 *1) (-4 *1 (-658))) (-2698 (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-850)))) (-1946 (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-850)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-850))))) -(-13 (-1014) (-10 -8 (-15 * ($ $ $)) (-15 -2698 ($ $ (-850))) (-15 -1946 ($ $ (-850))) (-15 ** ($ $ (-850))))) -(((-97) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-2698 (($ $ (-850)) NIL) (($ $ (-708)) 17)) (-2859 (((-108) $) 10)) (-1946 (($ $ (-850)) NIL) (($ $ (-708)) 18)) (** (($ $ (-850)) NIL) (($ $ (-708)) 15))) -(((-659 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-708))) (-15 -1946 (|#1| |#1| (-708))) (-15 -2698 (|#1| |#1| (-708))) (-15 -2859 ((-108) |#1|)) (-15 ** (|#1| |#1| (-850))) (-15 -1946 (|#1| |#1| (-850))) (-15 -2698 (|#1| |#1| (-850)))) (-660)) (T -659)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-708))) (-15 -1946 (|#1| |#1| (-708))) (-15 -2698 (|#1| |#1| (-708))) (-15 -2859 ((-108) |#1|)) (-15 ** (|#1| |#1| (-850))) (-15 -1946 (|#1| |#1| (-850))) (-15 -2698 (|#1| |#1| (-850)))) -((-1419 (((-108) $ $) 7)) (-1279 (((-3 $ "failed") $) 17)) (-2698 (($ $ (-850)) 15) (($ $ (-708)) 22)) (-3920 (((-3 $ "failed") $) 19)) (-2859 (((-108) $) 23)) (-3070 (((-3 $ "failed") $) 18)) (-1946 (($ $ (-850)) 14) (($ $ (-708)) 21)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-3709 (($) 24 T CONST)) (-1562 (((-108) $ $) 6)) (** (($ $ (-850)) 13) (($ $ (-708)) 20)) (* (($ $ $) 16))) -(((-660) (-1197)) (T -660)) -((-3709 (*1 *1) (-4 *1 (-660))) (-2859 (*1 *2 *1) (-12 (-4 *1 (-660)) (-5 *2 (-108)))) (-2698 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-708)))) (-1946 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-708)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-708)))) (-3920 (*1 *1 *1) (|partial| -4 *1 (-660))) (-3070 (*1 *1 *1) (|partial| -4 *1 (-660))) (-1279 (*1 *1 *1) (|partial| -4 *1 (-660)))) -(-13 (-658) (-10 -8 (-15 (-3709) ($) -2855) (-15 -2859 ((-108) $)) (-15 -2698 ($ $ (-708))) (-15 -1946 ($ $ (-708))) (-15 ** ($ $ (-708))) (-15 -3920 ((-3 $ "failed") $)) (-15 -3070 ((-3 $ "failed") $)) (-15 -1279 ((-3 $ "failed") $)))) -(((-97) . T) ((-562 (-792)) . T) ((-658) . T) ((-1014) . T)) -((-1685 (((-708)) 35)) (-3700 (((-3 (-522) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1478 (((-522) $) NIL) (((-382 (-522)) $) NIL) ((|#2| $) 22)) (-2153 (($ |#3|) NIL) (((-3 $ "failed") (-382 |#3|)) 45)) (-3920 (((-3 $ "failed") $) 65)) (-3344 (($) 39)) (-1269 ((|#2| $) 20)) (-1368 (($) 17)) (-2731 (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085)) NIL) (($ $ (-708)) NIL) (($ $) NIL)) (-2620 (((-628 |#2|) (-1166 $) (-1 |#2| |#2|)) 60)) (-3873 (((-1166 |#2|) $) NIL) (($ (-1166 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2645 ((|#3| $) 32)) (-2905 (((-1166 $)) 29))) -(((-661 |#1| |#2| |#3|) (-10 -8 (-15 -2731 (|#1| |#1|)) (-15 -2731 (|#1| |#1| (-708))) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -3344 (|#1|)) (-15 -1685 ((-708))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2620 ((-628 |#2|) (-1166 |#1|) (-1 |#2| |#2|))) (-15 -2153 ((-3 |#1| "failed") (-382 |#3|))) (-15 -3873 (|#1| |#3|)) (-15 -2153 (|#1| |#3|)) (-15 -1368 (|#1|)) (-15 -1478 (|#2| |#1|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-522) |#1|)) (-15 -3873 (|#3| |#1|)) (-15 -3873 (|#1| (-1166 |#2|))) (-15 -3873 ((-1166 |#2|) |#1|)) (-15 -2905 ((-1166 |#1|))) (-15 -2645 (|#3| |#1|)) (-15 -1269 (|#2| |#1|)) (-15 -3920 ((-3 |#1| "failed") |#1|))) (-662 |#2| |#3|) (-157) (-1142 |#2|)) (T -661)) -((-1685 (*1 *2) (-12 (-4 *4 (-157)) (-4 *5 (-1142 *4)) (-5 *2 (-708)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-662 *4 *5))))) -(-10 -8 (-15 -2731 (|#1| |#1|)) (-15 -2731 (|#1| |#1| (-708))) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -3344 (|#1|)) (-15 -1685 ((-708))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2620 ((-628 |#2|) (-1166 |#1|) (-1 |#2| |#2|))) (-15 -2153 ((-3 |#1| "failed") (-382 |#3|))) (-15 -3873 (|#1| |#3|)) (-15 -2153 (|#1| |#3|)) (-15 -1368 (|#1|)) (-15 -1478 (|#2| |#1|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-522) |#1|)) (-15 -3873 (|#3| |#1|)) (-15 -3873 (|#1| (-1166 |#2|))) (-15 -3873 ((-1166 |#2|) |#1|)) (-15 -2905 ((-1166 |#1|))) (-15 -2645 (|#3| |#1|)) (-15 -1269 (|#2| |#1|)) (-15 -3920 ((-3 |#1| "failed") |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 93 (|has| |#1| (-338)))) (-2298 (($ $) 94 (|has| |#1| (-338)))) (-3007 (((-108) $) 96 (|has| |#1| (-338)))) (-3356 (((-628 |#1|) (-1166 $)) 46) (((-628 |#1|)) 61)) (-1945 ((|#1| $) 52)) (-3833 (((-1094 (-850) (-708)) (-522)) 147 (|has| |#1| (-324)))) (-2265 (((-3 $ "failed") $ $) 19)) (-2961 (($ $) 113 (|has| |#1| (-338)))) (-3133 (((-393 $) $) 114 (|has| |#1| (-338)))) (-2805 (((-108) $ $) 104 (|has| |#1| (-338)))) (-1685 (((-708)) 87 (|has| |#1| (-343)))) (-3367 (($) 17 T CONST)) (-3700 (((-3 (-522) "failed") $) 169 (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) 167 (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 166)) (-1478 (((-522) $) 170 (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) 168 (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) 165)) (-3225 (($ (-1166 |#1|) (-1166 $)) 48) (($ (-1166 |#1|)) 64)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-324)))) (-2333 (($ $ $) 108 (|has| |#1| (-338)))) (-1359 (((-628 |#1|) $ (-1166 $)) 53) (((-628 |#1|) $) 59)) (-1226 (((-628 (-522)) (-628 $)) 164 (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 163 (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 162) (((-628 |#1|) (-628 $)) 161)) (-2153 (($ |#2|) 158) (((-3 $ "failed") (-382 |#2|)) 155 (|has| |#1| (-338)))) (-3920 (((-3 $ "failed") $) 34)) (-1692 (((-850)) 54)) (-3344 (($) 90 (|has| |#1| (-343)))) (-2303 (($ $ $) 107 (|has| |#1| (-338)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 102 (|has| |#1| (-338)))) (-2160 (($) 149 (|has| |#1| (-324)))) (-2087 (((-108) $) 150 (|has| |#1| (-324)))) (-1380 (($ $ (-708)) 141 (|has| |#1| (-324))) (($ $) 140 (|has| |#1| (-324)))) (-2725 (((-108) $) 115 (|has| |#1| (-338)))) (-3872 (((-850) $) 152 (|has| |#1| (-324))) (((-770 (-850)) $) 138 (|has| |#1| (-324)))) (-2859 (((-108) $) 31)) (-1269 ((|#1| $) 51)) (-4208 (((-3 $ "failed") $) 142 (|has| |#1| (-324)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 111 (|has| |#1| (-338)))) (-4199 ((|#2| $) 44 (|has| |#1| (-338)))) (-1475 (((-850) $) 89 (|has| |#1| (-343)))) (-2142 ((|#2| $) 156)) (-2267 (($ (-588 $)) 100 (|has| |#1| (-338))) (($ $ $) 99 (|has| |#1| (-338)))) (-2311 (((-1068) $) 9)) (-3193 (($ $) 116 (|has| |#1| (-338)))) (-3937 (($) 143 (|has| |#1| (-324)) CONST)) (-2882 (($ (-850)) 88 (|has| |#1| (-343)))) (-4174 (((-1032) $) 10)) (-1368 (($) 160)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 101 (|has| |#1| (-338)))) (-2308 (($ (-588 $)) 98 (|has| |#1| (-338))) (($ $ $) 97 (|has| |#1| (-338)))) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) 146 (|has| |#1| (-324)))) (-2006 (((-393 $) $) 112 (|has| |#1| (-338)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 109 (|has| |#1| (-338)))) (-2276 (((-3 $ "failed") $ $) 92 (|has| |#1| (-338)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 103 (|has| |#1| (-338)))) (-4031 (((-708) $) 105 (|has| |#1| (-338)))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 106 (|has| |#1| (-338)))) (-1615 ((|#1| (-1166 $)) 47) ((|#1|) 60)) (-1304 (((-708) $) 151 (|has| |#1| (-324))) (((-3 (-708) "failed") $ $) 139 (|has| |#1| (-324)))) (-2731 (($ $) 137 (-3844 (-4079 (|has| |#1| (-210)) (|has| |#1| (-338))) (|has| |#1| (-324)))) (($ $ (-708)) 135 (-3844 (-4079 (|has| |#1| (-210)) (|has| |#1| (-338))) (|has| |#1| (-324)))) (($ $ (-1085)) 133 (-4079 (|has| |#1| (-829 (-1085))) (|has| |#1| (-338)))) (($ $ (-588 (-1085))) 132 (-4079 (|has| |#1| (-829 (-1085))) (|has| |#1| (-338)))) (($ $ (-1085) (-708)) 131 (-4079 (|has| |#1| (-829 (-1085))) (|has| |#1| (-338)))) (($ $ (-588 (-1085)) (-588 (-708))) 130 (-4079 (|has| |#1| (-829 (-1085))) (|has| |#1| (-338)))) (($ $ (-1 |#1| |#1|) (-708)) 123 (|has| |#1| (-338))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-338)))) (-2620 (((-628 |#1|) (-1166 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-338)))) (-1579 ((|#2|) 159)) (-2670 (($) 148 (|has| |#1| (-324)))) (-3510 (((-1166 |#1|) $ (-1166 $)) 50) (((-628 |#1|) (-1166 $) (-1166 $)) 49) (((-1166 |#1|) $) 66) (((-628 |#1|) (-1166 $)) 65)) (-3873 (((-1166 |#1|) $) 63) (($ (-1166 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) 145 (|has| |#1| (-324)))) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-338))) (($ (-382 (-522))) 86 (-3844 (|has| |#1| (-338)) (|has| |#1| (-962 (-382 (-522))))))) (-3040 (($ $) 144 (|has| |#1| (-324))) (((-3 $ "failed") $) 43 (|has| |#1| (-133)))) (-2645 ((|#2| $) 45)) (-2742 (((-708)) 29)) (-2905 (((-1166 $)) 67)) (-1407 (((-108) $ $) 95 (|has| |#1| (-338)))) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 117 (|has| |#1| (-338)))) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $) 136 (-3844 (-4079 (|has| |#1| (-210)) (|has| |#1| (-338))) (|has| |#1| (-324)))) (($ $ (-708)) 134 (-3844 (-4079 (|has| |#1| (-210)) (|has| |#1| (-338))) (|has| |#1| (-324)))) (($ $ (-1085)) 129 (-4079 (|has| |#1| (-829 (-1085))) (|has| |#1| (-338)))) (($ $ (-588 (-1085))) 128 (-4079 (|has| |#1| (-829 (-1085))) (|has| |#1| (-338)))) (($ $ (-1085) (-708)) 127 (-4079 (|has| |#1| (-829 (-1085))) (|has| |#1| (-338)))) (($ $ (-588 (-1085)) (-588 (-708))) 126 (-4079 (|has| |#1| (-829 (-1085))) (|has| |#1| (-338)))) (($ $ (-1 |#1| |#1|) (-708)) 125 (|has| |#1| (-338))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-338)))) (-1562 (((-108) $ $) 6)) (-1682 (($ $ $) 121 (|has| |#1| (-338)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 118 (|has| |#1| (-338)))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-382 (-522)) $) 120 (|has| |#1| (-338))) (($ $ (-382 (-522))) 119 (|has| |#1| (-338))))) -(((-662 |#1| |#2|) (-1197) (-157) (-1142 |t#1|)) (T -662)) -((-1368 (*1 *1) (-12 (-4 *2 (-157)) (-4 *1 (-662 *2 *3)) (-4 *3 (-1142 *2)))) (-1579 (*1 *2) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1142 *3)))) (-2153 (*1 *1 *2) (-12 (-4 *3 (-157)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1142 *3)))) (-3873 (*1 *1 *2) (-12 (-4 *3 (-157)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1142 *3)))) (-2142 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1142 *3)))) (-2153 (*1 *1 *2) (|partial| -12 (-5 *2 (-382 *4)) (-4 *4 (-1142 *3)) (-4 *3 (-338)) (-4 *3 (-157)) (-4 *1 (-662 *3 *4)))) (-2620 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-338)) (-4 *1 (-662 *5 *6)) (-4 *5 (-157)) (-4 *6 (-1142 *5)) (-5 *2 (-628 *5))))) -(-13 (-384 |t#1| |t#2|) (-157) (-563 |t#2|) (-386 |t#1|) (-352 |t#1|) (-10 -8 (-15 -1368 ($)) (-15 -1579 (|t#2|)) (-15 -2153 ($ |t#2|)) (-15 -3873 ($ |t#2|)) (-15 -2142 (|t#2| $)) (IF (|has| |t#1| (-343)) (-6 (-343)) |%noBranch|) (IF (|has| |t#1| (-338)) (PROGN (-6 (-338)) (-6 (-208 |t#1|)) (-15 -2153 ((-3 $ "failed") (-382 |t#2|))) (-15 -2620 ((-628 |t#1|) (-1166 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-324)) (-6 (-324)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) -3844 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-37 |#1|) . T) ((-37 $) -3844 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-97) . T) ((-107 #0# #0#) -3844 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3844 (|has| |#1| (-324)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) . T) ((-563 |#2|) . T) ((-208 |#1|) |has| |#1| (-338)) ((-210) -3844 (|has| |#1| (-324)) (-12 (|has| |#1| (-210)) (|has| |#1| (-338)))) ((-220) -3844 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-266) -3844 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-283) -3844 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-338) -3844 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-377) |has| |#1| (-324)) ((-343) -3844 (|has| |#1| (-343)) (|has| |#1| (-324))) ((-324) |has| |#1| (-324)) ((-345 |#1| |#2|) . T) ((-384 |#1| |#2|) . T) ((-352 |#1|) . T) ((-386 |#1|) . T) ((-426) -3844 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-514) -3844 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-590 #0#) -3844 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-590 |#1|) . T) ((-590 $) . T) ((-584 (-522)) |has| |#1| (-584 (-522))) ((-584 |#1|) . T) ((-655 #0#) -3844 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-655 |#1|) . T) ((-655 $) -3844 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-664) . T) ((-829 (-1085)) -12 (|has| |#1| (-338)) (|has| |#1| (-829 (-1085)))) ((-849) -3844 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T) ((-977 #0#) -3844 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-977 |#1|) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1061) |has| |#1| (-324)) ((-1124) -3844 (|has| |#1| (-324)) (|has| |#1| (-338)))) -((-3367 (($) 14)) (-3920 (((-3 $ "failed") $) 16)) (-2859 (((-108) $) 13)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) 9)) (** (($ $ (-850)) NIL) (($ $ (-708)) 20))) -(((-663 |#1|) (-10 -8 (-15 -3920 ((-3 |#1| "failed") |#1|)) (-15 -3622 (|#1| |#1| (-708))) (-15 ** (|#1| |#1| (-708))) (-15 -2859 ((-108) |#1|)) (-15 -3367 (|#1|)) (-15 -3622 (|#1| |#1| (-850))) (-15 ** (|#1| |#1| (-850)))) (-664)) (T -663)) -NIL -(-10 -8 (-15 -3920 ((-3 |#1| "failed") |#1|)) (-15 -3622 (|#1| |#1| (-708))) (-15 ** (|#1| |#1| (-708))) (-15 -2859 ((-108) |#1|)) (-15 -3367 (|#1|)) (-15 -3622 (|#1| |#1| (-850))) (-15 ** (|#1| |#1| (-850)))) -((-1419 (((-108) $ $) 7)) (-3367 (($) 20 T CONST)) (-3920 (((-3 $ "failed") $) 16)) (-2859 (((-108) $) 19)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-3622 (($ $ (-850)) 13) (($ $ (-708)) 17)) (-3709 (($) 21 T CONST)) (-1562 (((-108) $ $) 6)) (** (($ $ (-850)) 14) (($ $ (-708)) 18)) (* (($ $ $) 15))) -(((-664) (-1197)) (T -664)) -((-3709 (*1 *1) (-4 *1 (-664))) (-3367 (*1 *1) (-4 *1 (-664))) (-2859 (*1 *2 *1) (-12 (-4 *1 (-664)) (-5 *2 (-108)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-708)))) (-3622 (*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-708)))) (-3920 (*1 *1 *1) (|partial| -4 *1 (-664)))) -(-13 (-1026) (-10 -8 (-15 (-3709) ($) -2855) (-15 -3367 ($) -2855) (-15 -2859 ((-108) $)) (-15 ** ($ $ (-708))) (-15 -3622 ($ $ (-708))) (-15 -3920 ((-3 $ "failed") $)))) -(((-97) . T) ((-562 (-792)) . T) ((-1026) . T) ((-1014) . T)) -((-3913 (((-2 (|:| -3798 (-393 |#2|)) (|:| |special| (-393 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3428 (((-2 (|:| -3798 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3540 ((|#2| (-382 |#2|) (-1 |#2| |#2|)) 13)) (-2327 (((-2 (|:| |poly| |#2|) (|:| -3798 (-382 |#2|)) (|:| |special| (-382 |#2|))) (-382 |#2|) (-1 |#2| |#2|)) 47))) -(((-665 |#1| |#2|) (-10 -7 (-15 -3428 ((-2 (|:| -3798 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3913 ((-2 (|:| -3798 (-393 |#2|)) (|:| |special| (-393 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3540 (|#2| (-382 |#2|) (-1 |#2| |#2|))) (-15 -2327 ((-2 (|:| |poly| |#2|) (|:| -3798 (-382 |#2|)) (|:| |special| (-382 |#2|))) (-382 |#2|) (-1 |#2| |#2|)))) (-338) (-1142 |#1|)) (T -665)) -((-2327 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3798 (-382 *6)) (|:| |special| (-382 *6)))) (-5 *1 (-665 *5 *6)) (-5 *3 (-382 *6)))) (-3540 (*1 *2 *3 *4) (-12 (-5 *3 (-382 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1142 *5)) (-5 *1 (-665 *5 *2)) (-4 *5 (-338)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-338)) (-5 *2 (-2 (|:| -3798 (-393 *3)) (|:| |special| (-393 *3)))) (-5 *1 (-665 *5 *3)))) (-3428 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-338)) (-5 *2 (-2 (|:| -3798 *3) (|:| |special| *3))) (-5 *1 (-665 *5 *3))))) -(-10 -7 (-15 -3428 ((-2 (|:| -3798 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3913 ((-2 (|:| -3798 (-393 |#2|)) (|:| |special| (-393 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3540 (|#2| (-382 |#2|) (-1 |#2| |#2|))) (-15 -2327 ((-2 (|:| |poly| |#2|) (|:| -3798 (-382 |#2|)) (|:| |special| (-382 |#2|))) (-382 |#2|) (-1 |#2| |#2|)))) -((-3213 ((|#7| (-588 |#5|) |#6|) NIL)) (-3810 ((|#7| (-1 |#5| |#4|) |#6|) 26))) -(((-666 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3810 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3213 (|#7| (-588 |#5|) |#6|))) (-784) (-730) (-730) (-971) (-971) (-878 |#4| |#2| |#1|) (-878 |#5| |#3| |#1|)) (T -666)) -((-3213 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *9)) (-4 *9 (-971)) (-4 *5 (-784)) (-4 *6 (-730)) (-4 *8 (-971)) (-4 *2 (-878 *9 *7 *5)) (-5 *1 (-666 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-730)) (-4 *4 (-878 *8 *6 *5)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-971)) (-4 *9 (-971)) (-4 *5 (-784)) (-4 *6 (-730)) (-4 *2 (-878 *9 *7 *5)) (-5 *1 (-666 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-730)) (-4 *4 (-878 *8 *6 *5))))) -(-10 -7 (-15 -3810 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3213 (|#7| (-588 |#5|) |#6|))) -((-3810 ((|#7| (-1 |#2| |#1|) |#6|) 29))) -(((-667 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3810 (|#7| (-1 |#2| |#1|) |#6|))) (-784) (-784) (-730) (-730) (-971) (-878 |#5| |#3| |#1|) (-878 |#5| |#4| |#2|)) (T -667)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-784)) (-4 *6 (-784)) (-4 *7 (-730)) (-4 *9 (-971)) (-4 *2 (-878 *9 *8 *6)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-730)) (-4 *4 (-878 *9 *7 *5))))) -(-10 -7 (-15 -3810 (|#7| (-1 |#2| |#1|) |#6|))) -((-2006 (((-393 |#4|) |#4|) 39))) -(((-668 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2006 ((-393 |#4|) |#4|))) (-730) (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $)) (-15 -1660 ((-3 $ "failed") (-1085))))) (-283) (-878 (-881 |#3|) |#1| |#2|)) (T -668)) -((-2006 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $)) (-15 -1660 ((-3 $ "failed") (-1085)))))) (-4 *6 (-283)) (-5 *2 (-393 *3)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-878 (-881 *6) *4 *5))))) -(-10 -7 (-15 -2006 ((-393 |#4|) |#4|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3533 (((-588 (-794 |#1|)) $) NIL)) (-1264 (((-1081 $) $ (-794 |#1|)) NIL) (((-1081 |#2|) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#2| (-514)))) (-2298 (($ $) NIL (|has| |#2| (-514)))) (-3007 (((-108) $) NIL (|has| |#2| (-514)))) (-3358 (((-708) $) NIL) (((-708) $ (-588 (-794 |#1|))) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-2961 (($ $) NIL (|has| |#2| (-426)))) (-3133 (((-393 $) $) NIL (|has| |#2| (-426)))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#2| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#2| (-962 (-522)))) (((-3 (-794 |#1|) "failed") $) NIL)) (-1478 ((|#2| $) NIL) (((-382 (-522)) $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#2| (-962 (-522)))) (((-794 |#1|) $) NIL)) (-2908 (($ $ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-3241 (($ $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL) (((-628 |#2|) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2883 (($ $) NIL (|has| |#2| (-426))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-426)))) (-3232 (((-588 $) $) NIL)) (-2725 (((-108) $) NIL (|has| |#2| (-838)))) (-3792 (($ $ |#2| (-494 (-794 |#1|)) $) NIL)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-354))) (|has| |#2| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-522))) (|has| |#2| (-815 (-522)))))) (-2859 (((-108) $) NIL)) (-1391 (((-708) $) NIL)) (-3520 (($ (-1081 |#2|) (-794 |#1|)) NIL) (($ (-1081 $) (-794 |#1|)) NIL)) (-3038 (((-588 $) $) NIL)) (-1374 (((-108) $) NIL)) (-3500 (($ |#2| (-494 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-3058 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $ (-794 |#1|)) NIL)) (-3564 (((-494 (-794 |#1|)) $) NIL) (((-708) $ (-794 |#1|)) NIL) (((-588 (-708)) $ (-588 (-794 |#1|))) NIL)) (-1308 (($ $ $) NIL (|has| |#2| (-784)))) (-2524 (($ $ $) NIL (|has| |#2| (-784)))) (-1723 (($ (-1 (-494 (-794 |#1|)) (-494 (-794 |#1|))) $) NIL)) (-3810 (($ (-1 |#2| |#2|) $) NIL)) (-3155 (((-3 (-794 |#1|) "failed") $) NIL)) (-3216 (($ $) NIL)) (-3224 ((|#2| $) NIL)) (-2267 (($ (-588 $)) NIL (|has| |#2| (-426))) (($ $ $) NIL (|has| |#2| (-426)))) (-2311 (((-1068) $) NIL)) (-2760 (((-3 (-588 $) "failed") $) NIL)) (-1919 (((-3 (-588 $) "failed") $) NIL)) (-2024 (((-3 (-2 (|:| |var| (-794 |#1|)) (|:| -3858 (-708))) "failed") $) NIL)) (-4174 (((-1032) $) NIL)) (-3199 (((-108) $) NIL)) (-3207 ((|#2| $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#2| (-426)))) (-2308 (($ (-588 $)) NIL (|has| |#2| (-426))) (($ $ $) NIL (|has| |#2| (-426)))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-2006 (((-393 $) $) NIL (|has| |#2| (-838)))) (-2276 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-514))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-514)))) (-2330 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-794 |#1|) |#2|) NIL) (($ $ (-588 (-794 |#1|)) (-588 |#2|)) NIL) (($ $ (-794 |#1|) $) NIL) (($ $ (-588 (-794 |#1|)) (-588 $)) NIL)) (-1615 (($ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-2731 (($ $ (-794 |#1|)) NIL) (($ $ (-588 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-2487 (((-494 (-794 |#1|)) $) NIL) (((-708) $ (-794 |#1|)) NIL) (((-588 (-708)) $ (-588 (-794 |#1|))) NIL)) (-3873 (((-821 (-354)) $) NIL (-12 (|has| (-794 |#1|) (-563 (-821 (-354)))) (|has| |#2| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-794 |#1|) (-563 (-821 (-522)))) (|has| |#2| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-794 |#1|) (-563 (-498))) (|has| |#2| (-563 (-498)))))) (-2988 ((|#2| $) NIL (|has| |#2| (-426))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-426)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-838))))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#2|) NIL) (($ (-794 |#1|)) NIL) (($ $) NIL (|has| |#2| (-514))) (($ (-382 (-522))) NIL (-3844 (|has| |#2| (-37 (-382 (-522)))) (|has| |#2| (-962 (-382 (-522))))))) (-2180 (((-588 |#2|) $) NIL)) (-1643 ((|#2| $ (-494 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| |#2| (-838))) (|has| |#2| (-133))))) (-2742 (((-708)) NIL)) (-1225 (($ $ $ (-708)) NIL (|has| |#2| (-157)))) (-1407 (((-108) $ $) NIL (|has| |#2| (-514)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $ (-794 |#1|)) NIL) (($ $ (-588 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-1623 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1682 (($ $ |#2|) NIL (|has| |#2| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL (|has| |#2| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#2| (-37 (-382 (-522))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-669 |#1| |#2|) (-878 |#2| (-494 (-794 |#1|)) (-794 |#1|)) (-588 (-1085)) (-971)) (T -669)) -NIL -(-878 |#2| (-494 (-794 |#1|)) (-794 |#1|)) -((-2483 (((-2 (|:| -1827 (-881 |#3|)) (|:| -3099 (-881 |#3|))) |#4|) 13)) (-2788 ((|#4| |#4| |#2|) 30)) (-2362 ((|#4| (-382 (-881 |#3|)) |#2|) 64)) (-2466 ((|#4| (-1081 (-881 |#3|)) |#2|) 77)) (-1251 ((|#4| (-1081 |#4|) |#2|) 50)) (-2678 ((|#4| |#4| |#2|) 53)) (-2006 (((-393 |#4|) |#4|) 38))) -(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2483 ((-2 (|:| -1827 (-881 |#3|)) (|:| -3099 (-881 |#3|))) |#4|)) (-15 -2678 (|#4| |#4| |#2|)) (-15 -1251 (|#4| (-1081 |#4|) |#2|)) (-15 -2788 (|#4| |#4| |#2|)) (-15 -2466 (|#4| (-1081 (-881 |#3|)) |#2|)) (-15 -2362 (|#4| (-382 (-881 |#3|)) |#2|)) (-15 -2006 ((-393 |#4|) |#4|))) (-730) (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $)))) (-514) (-878 (-382 (-881 |#3|)) |#1| |#2|)) (T -670)) -((-2006 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $))))) (-4 *6 (-514)) (-5 *2 (-393 *3)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-878 (-382 (-881 *6)) *4 *5)))) (-2362 (*1 *2 *3 *4) (-12 (-4 *6 (-514)) (-4 *2 (-878 *3 *5 *4)) (-5 *1 (-670 *5 *4 *6 *2)) (-5 *3 (-382 (-881 *6))) (-4 *5 (-730)) (-4 *4 (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $))))))) (-2466 (*1 *2 *3 *4) (-12 (-5 *3 (-1081 (-881 *6))) (-4 *6 (-514)) (-4 *2 (-878 (-382 (-881 *6)) *5 *4)) (-5 *1 (-670 *5 *4 *6 *2)) (-4 *5 (-730)) (-4 *4 (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $))))))) (-2788 (*1 *2 *2 *3) (-12 (-4 *4 (-730)) (-4 *3 (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $))))) (-4 *5 (-514)) (-5 *1 (-670 *4 *3 *5 *2)) (-4 *2 (-878 (-382 (-881 *5)) *4 *3)))) (-1251 (*1 *2 *3 *4) (-12 (-5 *3 (-1081 *2)) (-4 *2 (-878 (-382 (-881 *6)) *5 *4)) (-5 *1 (-670 *5 *4 *6 *2)) (-4 *5 (-730)) (-4 *4 (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $))))) (-4 *6 (-514)))) (-2678 (*1 *2 *2 *3) (-12 (-4 *4 (-730)) (-4 *3 (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $))))) (-4 *5 (-514)) (-5 *1 (-670 *4 *3 *5 *2)) (-4 *2 (-878 (-382 (-881 *5)) *4 *3)))) (-2483 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $))))) (-4 *6 (-514)) (-5 *2 (-2 (|:| -1827 (-881 *6)) (|:| -3099 (-881 *6)))) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-878 (-382 (-881 *6)) *4 *5))))) -(-10 -7 (-15 -2483 ((-2 (|:| -1827 (-881 |#3|)) (|:| -3099 (-881 |#3|))) |#4|)) (-15 -2678 (|#4| |#4| |#2|)) (-15 -1251 (|#4| (-1081 |#4|) |#2|)) (-15 -2788 (|#4| |#4| |#2|)) (-15 -2466 (|#4| (-1081 (-881 |#3|)) |#2|)) (-15 -2362 (|#4| (-382 (-881 |#3|)) |#2|)) (-15 -2006 ((-393 |#4|) |#4|))) -((-2006 (((-393 |#4|) |#4|) 51))) -(((-671 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2006 ((-393 |#4|) |#4|))) (-730) (-784) (-13 (-283) (-135)) (-878 (-382 |#3|) |#1| |#2|)) (T -671)) -((-2006 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-13 (-283) (-135))) (-5 *2 (-393 *3)) (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-878 (-382 *6) *4 *5))))) -(-10 -7 (-15 -2006 ((-393 |#4|) |#4|))) -((-3810 (((-673 |#2| |#3|) (-1 |#2| |#1|) (-673 |#1| |#3|)) 18))) -(((-672 |#1| |#2| |#3|) (-10 -7 (-15 -3810 ((-673 |#2| |#3|) (-1 |#2| |#1|) (-673 |#1| |#3|)))) (-971) (-971) (-664)) (T -672)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-673 *5 *7)) (-4 *5 (-971)) (-4 *6 (-971)) (-4 *7 (-664)) (-5 *2 (-673 *6 *7)) (-5 *1 (-672 *5 *6 *7))))) -(-10 -7 (-15 -3810 ((-673 |#2| |#3|) (-1 |#2| |#1|) (-673 |#1| |#3|)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 26)) (-3024 (((-588 (-2 (|:| -3112 |#1|) (|:| -2623 |#2|))) $) 27)) (-2265 (((-3 $ "failed") $ $) NIL)) (-1685 (((-708)) 20 (-12 (|has| |#2| (-343)) (|has| |#1| (-343))))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#2| "failed") $) 56) (((-3 |#1| "failed") $) 59)) (-1478 ((|#2| $) NIL) ((|#1| $) NIL)) (-3241 (($ $) 76 (|has| |#2| (-784)))) (-3920 (((-3 $ "failed") $) 63)) (-3344 (($) 33 (-12 (|has| |#2| (-343)) (|has| |#1| (-343))))) (-2859 (((-108) $) NIL)) (-1391 (((-708) $) 54)) (-3038 (((-588 $) $) 37)) (-1374 (((-108) $) NIL)) (-3500 (($ |#1| |#2|) 16)) (-3810 (($ (-1 |#1| |#1|) $) 53)) (-1475 (((-850) $) 30 (-12 (|has| |#2| (-343)) (|has| |#1| (-343))))) (-3216 ((|#2| $) 75 (|has| |#2| (-784)))) (-3224 ((|#1| $) 74 (|has| |#2| (-784)))) (-2311 (((-1068) $) NIL)) (-2882 (($ (-850)) 25 (-12 (|has| |#2| (-343)) (|has| |#1| (-343))))) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 73) (($ (-522)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (-588 (-2 (|:| -3112 |#1|) (|:| -2623 |#2|)))) 11)) (-2180 (((-588 |#1|) $) 39)) (-1643 ((|#1| $ |#2|) 84)) (-3040 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2742 (((-708)) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 12 T CONST)) (-3709 (($) 31 T CONST)) (-1562 (((-108) $ $) 77)) (-1672 (($ $) 46) (($ $ $) NIL)) (-1661 (($ $ $) 24)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 51) (($ $ $) 86) (($ |#1| $) 48 (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157))))) -(((-673 |#1| |#2|) (-13 (-971) (-962 |#2|) (-962 |#1|) (-10 -8 (-15 -3500 ($ |#1| |#2|)) (-15 -1643 (|#1| $ |#2|)) (-15 -2217 ($ (-588 (-2 (|:| -3112 |#1|) (|:| -2623 |#2|))))) (-15 -3024 ((-588 (-2 (|:| -3112 |#1|) (|:| -2623 |#2|))) $)) (-15 -3810 ($ (-1 |#1| |#1|) $)) (-15 -1374 ((-108) $)) (-15 -2180 ((-588 |#1|) $)) (-15 -3038 ((-588 $) $)) (-15 -1391 ((-708) $)) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-343)) (IF (|has| |#2| (-343)) (-6 (-343)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-784)) (PROGN (-15 -3216 (|#2| $)) (-15 -3224 (|#1| $)) (-15 -3241 ($ $))) |%noBranch|))) (-971) (-664)) (T -673)) -((-3500 (*1 *1 *2 *3) (-12 (-5 *1 (-673 *2 *3)) (-4 *2 (-971)) (-4 *3 (-664)))) (-1643 (*1 *2 *1 *3) (-12 (-4 *2 (-971)) (-5 *1 (-673 *2 *3)) (-4 *3 (-664)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-588 (-2 (|:| -3112 *3) (|:| -2623 *4)))) (-4 *3 (-971)) (-4 *4 (-664)) (-5 *1 (-673 *3 *4)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| -3112 *3) (|:| -2623 *4)))) (-5 *1 (-673 *3 *4)) (-4 *3 (-971)) (-4 *4 (-664)))) (-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-673 *3 *4)) (-4 *4 (-664)))) (-1374 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-673 *3 *4)) (-4 *3 (-971)) (-4 *4 (-664)))) (-2180 (*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-673 *3 *4)) (-4 *3 (-971)) (-4 *4 (-664)))) (-3038 (*1 *2 *1) (-12 (-5 *2 (-588 (-673 *3 *4))) (-5 *1 (-673 *3 *4)) (-4 *3 (-971)) (-4 *4 (-664)))) (-1391 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-673 *3 *4)) (-4 *3 (-971)) (-4 *4 (-664)))) (-3216 (*1 *2 *1) (-12 (-4 *2 (-664)) (-4 *2 (-784)) (-5 *1 (-673 *3 *2)) (-4 *3 (-971)))) (-3224 (*1 *2 *1) (-12 (-4 *2 (-971)) (-5 *1 (-673 *2 *3)) (-4 *3 (-784)) (-4 *3 (-664)))) (-3241 (*1 *1 *1) (-12 (-5 *1 (-673 *2 *3)) (-4 *3 (-784)) (-4 *2 (-971)) (-4 *3 (-664))))) -(-13 (-971) (-962 |#2|) (-962 |#1|) (-10 -8 (-15 -3500 ($ |#1| |#2|)) (-15 -1643 (|#1| $ |#2|)) (-15 -2217 ($ (-588 (-2 (|:| -3112 |#1|) (|:| -2623 |#2|))))) (-15 -3024 ((-588 (-2 (|:| -3112 |#1|) (|:| -2623 |#2|))) $)) (-15 -3810 ($ (-1 |#1| |#1|) $)) (-15 -1374 ((-108) $)) (-15 -2180 ((-588 |#1|) $)) (-15 -3038 ((-588 $) $)) (-15 -1391 ((-708) $)) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-343)) (IF (|has| |#2| (-343)) (-6 (-343)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-784)) (PROGN (-15 -3216 (|#2| $)) (-15 -3224 (|#1| $)) (-15 -3241 ($ $))) |%noBranch|))) -((-1419 (((-108) $ $) 19)) (-2323 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-4099 (($ $ $) 72)) (-1751 (((-108) $ $) 73)) (-2717 (((-108) $ (-708)) 8)) (-1852 (($ (-588 |#1|)) 68) (($) 67)) (-1213 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4238)))) (-3367 (($) 7 T CONST)) (-1581 (($ $) 62)) (-2379 (($ $) 58 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1700 (($ |#1| $) 47 (|has| $ (-6 -4238))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4238)))) (-1424 (($ |#1| $) 57 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4238)))) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) 9)) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35)) (-3309 (((-108) $ (-708)) 10)) (-2311 (((-1068) $) 22)) (-2251 (($ $ $) 69)) (-1431 ((|#1| $) 39)) (-3365 (($ |#1| $) 40) (($ |#1| $ (-708)) 63)) (-4174 (((-1032) $) 21)) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3295 ((|#1| $) 41)) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-3699 (((-588 (-2 (|:| -3149 |#1|) (|:| -4187 (-708)))) $) 61)) (-3962 (($ $ |#1|) 71) (($ $ $) 70)) (-3546 (($) 49) (($ (-588 |#1|)) 48)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-3873 (((-498) $) 59 (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) 50)) (-2217 (((-792) $) 18)) (-3482 (($ (-588 |#1|)) 66) (($) 65)) (-2501 (($ (-588 |#1|)) 42)) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20)) (-1587 (((-108) $ $) 64)) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-674 |#1|) (-1197) (-1014)) (T -674)) -NIL -(-13 (-633 |t#1|) (-1012 |t#1|)) -(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-562 (-792)) . T) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-212 |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-633 |#1|) . T) ((-1012 |#1|) . T) ((-1014) . T) ((-1120) . T)) -((-1419 (((-108) $ $) NIL)) (-2323 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-4099 (($ $ $) 79)) (-1751 (((-108) $ $) 82)) (-2717 (((-108) $ (-708)) NIL)) (-1852 (($ (-588 |#1|)) 24) (($) 15)) (-1213 (($ (-1 (-108) |#1|) $) 70 (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3367 (($) NIL T CONST)) (-1581 (($ $) 71)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1700 (($ |#1| $) 61 (|has| $ (-6 -4238))) (($ (-1 (-108) |#1|) $) 64 (|has| $ (-6 -4238))) (($ |#1| $ (-522)) 62) (($ (-1 (-108) |#1|) $ (-522)) 65)) (-1424 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (($ |#1| $ (-522)) 67) (($ (-1 (-108) |#1|) $ (-522)) 68)) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238)))) (-2395 (((-588 |#1|) $) 32 (|has| $ (-6 -4238)))) (-3756 (($) 13) (($ |#1|) 26) (($ (-588 |#1|)) 21)) (-1480 (((-108) $ (-708)) NIL)) (-4084 (((-588 |#1|) $) 38)) (-4176 (((-108) |#1| $) 57 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2397 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 75)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL)) (-2251 (($ $ $) 77)) (-1431 ((|#1| $) 54)) (-3365 (($ |#1| $) 55) (($ |#1| $ (-708)) 72)) (-4174 (((-1032) $) NIL)) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3295 ((|#1| $) 53)) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) 49)) (-3298 (($) 12)) (-3699 (((-588 (-2 (|:| -3149 |#1|) (|:| -4187 (-708)))) $) 47)) (-3962 (($ $ |#1|) NIL) (($ $ $) 78)) (-3546 (($) 14) (($ (-588 |#1|)) 23)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) 60 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) 66)) (-3873 (((-498) $) 36 (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) 20)) (-2217 (((-792) $) 44)) (-3482 (($ (-588 |#1|)) 25) (($) 16)) (-2501 (($ (-588 |#1|)) 22)) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 80)) (-1587 (((-108) $ $) 81)) (-3591 (((-708) $) 59 (|has| $ (-6 -4238))))) -(((-675 |#1|) (-13 (-674 |#1|) (-10 -8 (-6 -4238) (-6 -4239) (-15 -3756 ($)) (-15 -3756 ($ |#1|)) (-15 -3756 ($ (-588 |#1|))) (-15 -4084 ((-588 |#1|) $)) (-15 -1424 ($ |#1| $ (-522))) (-15 -1424 ($ (-1 (-108) |#1|) $ (-522))) (-15 -1700 ($ |#1| $ (-522))) (-15 -1700 ($ (-1 (-108) |#1|) $ (-522))))) (-1014)) (T -675)) -((-3756 (*1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1014)))) (-3756 (*1 *1 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1014)))) (-3756 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-675 *3)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1014)))) (-1424 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *1 (-675 *2)) (-4 *2 (-1014)))) (-1424 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-522)) (-4 *4 (-1014)) (-5 *1 (-675 *4)))) (-1700 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *1 (-675 *2)) (-4 *2 (-1014)))) (-1700 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-522)) (-4 *4 (-1014)) (-5 *1 (-675 *4))))) -(-13 (-674 |#1|) (-10 -8 (-6 -4238) (-6 -4239) (-15 -3756 ($)) (-15 -3756 ($ |#1|)) (-15 -3756 ($ (-588 |#1|))) (-15 -4084 ((-588 |#1|) $)) (-15 -1424 ($ |#1| $ (-522))) (-15 -1424 ($ (-1 (-108) |#1|) $ (-522))) (-15 -1700 ($ |#1| $ (-522))) (-15 -1700 ($ (-1 (-108) |#1|) $ (-522))))) -((-3776 (((-1171) (-1068)) 8))) -(((-676) (-10 -7 (-15 -3776 ((-1171) (-1068))))) (T -676)) -((-3776 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-676))))) -(-10 -7 (-15 -3776 ((-1171) (-1068)))) -((-2801 (((-588 |#1|) (-588 |#1|) (-588 |#1|)) 10))) -(((-677 |#1|) (-10 -7 (-15 -2801 ((-588 |#1|) (-588 |#1|) (-588 |#1|)))) (-784)) (T -677)) -((-2801 (*1 *2 *2 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-677 *3))))) -(-10 -7 (-15 -2801 ((-588 |#1|) (-588 |#1|) (-588 |#1|)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3533 (((-588 |#2|) $) 136)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 129 (|has| |#1| (-514)))) (-2298 (($ $) 128 (|has| |#1| (-514)))) (-3007 (((-108) $) 126 (|has| |#1| (-514)))) (-3044 (($ $) 85 (|has| |#1| (-37 (-382 (-522)))))) (-2923 (($ $) 68 (|has| |#1| (-37 (-382 (-522)))))) (-2265 (((-3 $ "failed") $ $) 19)) (-2016 (($ $) 67 (|has| |#1| (-37 (-382 (-522)))))) (-3023 (($ $) 84 (|has| |#1| (-37 (-382 (-522)))))) (-2906 (($ $) 69 (|has| |#1| (-37 (-382 (-522)))))) (-3066 (($ $) 83 (|has| |#1| (-37 (-382 (-522)))))) (-2936 (($ $) 70 (|has| |#1| (-37 (-382 (-522)))))) (-3367 (($) 17 T CONST)) (-3241 (($ $) 120)) (-3920 (((-3 $ "failed") $) 34)) (-3710 (((-881 |#1|) $ (-708)) 98) (((-881 |#1|) $ (-708) (-708)) 97)) (-3672 (((-108) $) 137)) (-2980 (($) 95 (|has| |#1| (-37 (-382 (-522)))))) (-3872 (((-708) $ |#2|) 100) (((-708) $ |#2| (-708)) 99)) (-2859 (((-108) $) 31)) (-1811 (($ $ (-522)) 66 (|has| |#1| (-37 (-382 (-522)))))) (-1374 (((-108) $) 118)) (-3500 (($ $ (-588 |#2|) (-588 (-494 |#2|))) 135) (($ $ |#2| (-494 |#2|)) 134) (($ |#1| (-494 |#2|)) 119) (($ $ |#2| (-708)) 102) (($ $ (-588 |#2|) (-588 (-708))) 101)) (-3810 (($ (-1 |#1| |#1|) $) 117)) (-1238 (($ $) 92 (|has| |#1| (-37 (-382 (-522)))))) (-3216 (($ $) 115)) (-3224 ((|#1| $) 114)) (-2311 (((-1068) $) 9)) (-2611 (($ $ |#2|) 96 (|has| |#1| (-37 (-382 (-522)))))) (-4174 (((-1032) $) 10)) (-3934 (($ $ (-708)) 103)) (-2276 (((-3 $ "failed") $ $) 130 (|has| |#1| (-514)))) (-3357 (($ $) 93 (|has| |#1| (-37 (-382 (-522)))))) (-2330 (($ $ |#2| $) 111) (($ $ (-588 |#2|) (-588 $)) 110) (($ $ (-588 (-270 $))) 109) (($ $ (-270 $)) 108) (($ $ $ $) 107) (($ $ (-588 $) (-588 $)) 106)) (-2731 (($ $ |#2|) 42) (($ $ (-588 |#2|)) 41) (($ $ |#2| (-708)) 40) (($ $ (-588 |#2|) (-588 (-708))) 39)) (-2487 (((-494 |#2|) $) 116)) (-1831 (($ $) 82 (|has| |#1| (-37 (-382 (-522)))))) (-2946 (($ $) 71 (|has| |#1| (-37 (-382 (-522)))))) (-3054 (($ $) 81 (|has| |#1| (-37 (-382 (-522)))))) (-2928 (($ $) 72 (|has| |#1| (-37 (-382 (-522)))))) (-3035 (($ $) 80 (|has| |#1| (-37 (-382 (-522)))))) (-2915 (($ $) 73 (|has| |#1| (-37 (-382 (-522)))))) (-1944 (($ $) 138)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 133 (|has| |#1| (-157))) (($ $) 131 (|has| |#1| (-514))) (($ (-382 (-522))) 123 (|has| |#1| (-37 (-382 (-522)))))) (-1643 ((|#1| $ (-494 |#2|)) 121) (($ $ |#2| (-708)) 105) (($ $ (-588 |#2|) (-588 (-708))) 104)) (-3040 (((-3 $ "failed") $) 132 (|has| |#1| (-133)))) (-2742 (((-708)) 29)) (-1856 (($ $) 91 (|has| |#1| (-37 (-382 (-522)))))) (-2976 (($ $) 79 (|has| |#1| (-37 (-382 (-522)))))) (-1407 (((-108) $ $) 127 (|has| |#1| (-514)))) (-1839 (($ $) 90 (|has| |#1| (-37 (-382 (-522)))))) (-2957 (($ $) 78 (|has| |#1| (-37 (-382 (-522)))))) (-1873 (($ $) 89 (|has| |#1| (-37 (-382 (-522)))))) (-3001 (($ $) 77 (|has| |#1| (-37 (-382 (-522)))))) (-2476 (($ $) 88 (|has| |#1| (-37 (-382 (-522)))))) (-3011 (($ $) 76 (|has| |#1| (-37 (-382 (-522)))))) (-1864 (($ $) 87 (|has| |#1| (-37 (-382 (-522)))))) (-2989 (($ $) 75 (|has| |#1| (-37 (-382 (-522)))))) (-1849 (($ $) 86 (|has| |#1| (-37 (-382 (-522)))))) (-2966 (($ $) 74 (|has| |#1| (-37 (-382 (-522)))))) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $ |#2|) 38) (($ $ (-588 |#2|)) 37) (($ $ |#2| (-708)) 36) (($ $ (-588 |#2|) (-588 (-708))) 35)) (-1562 (((-108) $ $) 6)) (-1682 (($ $ |#1|) 122 (|has| |#1| (-338)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ $) 94 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 65 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 125 (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) 124 (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 113) (($ $ |#1|) 112))) -(((-678 |#1| |#2|) (-1197) (-971) (-784)) (T -678)) -((-1643 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-678 *4 *2)) (-4 *4 (-971)) (-4 *2 (-784)))) (-1643 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 *5)) (-5 *3 (-588 (-708))) (-4 *1 (-678 *4 *5)) (-4 *4 (-971)) (-4 *5 (-784)))) (-3934 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-678 *3 *4)) (-4 *3 (-971)) (-4 *4 (-784)))) (-3500 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-678 *4 *2)) (-4 *4 (-971)) (-4 *2 (-784)))) (-3500 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 *5)) (-5 *3 (-588 (-708))) (-4 *1 (-678 *4 *5)) (-4 *4 (-971)) (-4 *5 (-784)))) (-3872 (*1 *2 *1 *3) (-12 (-4 *1 (-678 *4 *3)) (-4 *4 (-971)) (-4 *3 (-784)) (-5 *2 (-708)))) (-3872 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-708)) (-4 *1 (-678 *4 *3)) (-4 *4 (-971)) (-4 *3 (-784)))) (-3710 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-4 *1 (-678 *4 *5)) (-4 *4 (-971)) (-4 *5 (-784)) (-5 *2 (-881 *4)))) (-3710 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-708)) (-4 *1 (-678 *4 *5)) (-4 *4 (-971)) (-4 *5 (-784)) (-5 *2 (-881 *4)))) (-2611 (*1 *1 *1 *2) (-12 (-4 *1 (-678 *3 *2)) (-4 *3 (-971)) (-4 *2 (-784)) (-4 *3 (-37 (-382 (-522))))))) -(-13 (-829 |t#2|) (-900 |t#1| (-494 |t#2|) |t#2|) (-483 |t#2| $) (-285 $) (-10 -8 (-15 -1643 ($ $ |t#2| (-708))) (-15 -1643 ($ $ (-588 |t#2|) (-588 (-708)))) (-15 -3934 ($ $ (-708))) (-15 -3500 ($ $ |t#2| (-708))) (-15 -3500 ($ $ (-588 |t#2|) (-588 (-708)))) (-15 -3872 ((-708) $ |t#2|)) (-15 -3872 ((-708) $ |t#2| (-708))) (-15 -3710 ((-881 |t#1|) $ (-708))) (-15 -3710 ((-881 |t#1|) $ (-708) (-708))) (IF (|has| |t#1| (-37 (-382 (-522)))) (PROGN (-15 -2611 ($ $ |t#2|)) (-6 (-928)) (-6 (-1106))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-494 |#2|)) . T) ((-25) . T) ((-37 #1=(-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-514)) ((-34) |has| |#1| (-37 (-382 (-522)))) ((-91) |has| |#1| (-37 (-382 (-522)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-382 (-522)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3844 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3844 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-260) |has| |#1| (-37 (-382 (-522)))) ((-266) |has| |#1| (-514)) ((-285 $) . T) ((-463) |has| |#1| (-37 (-382 (-522)))) ((-483 |#2| $) . T) ((-483 $ $) . T) ((-514) |has| |#1| (-514)) ((-590 #1#) |has| |#1| (-37 (-382 (-522)))) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #1#) |has| |#1| (-37 (-382 (-522)))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) |has| |#1| (-514)) ((-664) . T) ((-829 |#2|) . T) ((-900 |#1| #0# |#2|) . T) ((-928) |has| |#1| (-37 (-382 (-522)))) ((-977 #1#) |has| |#1| (-37 (-382 (-522)))) ((-977 |#1|) . T) ((-977 $) -3844 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1106) |has| |#1| (-37 (-382 (-522)))) ((-1109) |has| |#1| (-37 (-382 (-522))))) -((-2006 (((-393 (-1081 |#4|)) (-1081 |#4|)) 28) (((-393 |#4|) |#4|) 24))) -(((-679 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2006 ((-393 |#4|) |#4|)) (-15 -2006 ((-393 (-1081 |#4|)) (-1081 |#4|)))) (-784) (-730) (-13 (-283) (-135)) (-878 |#3| |#2| |#1|)) (T -679)) -((-2006 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-730)) (-4 *6 (-13 (-283) (-135))) (-4 *7 (-878 *6 *5 *4)) (-5 *2 (-393 (-1081 *7))) (-5 *1 (-679 *4 *5 *6 *7)) (-5 *3 (-1081 *7)))) (-2006 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-730)) (-4 *6 (-13 (-283) (-135))) (-5 *2 (-393 *3)) (-5 *1 (-679 *4 *5 *6 *3)) (-4 *3 (-878 *6 *5 *4))))) -(-10 -7 (-15 -2006 ((-393 |#4|) |#4|)) (-15 -2006 ((-393 (-1081 |#4|)) (-1081 |#4|)))) -((-2085 (((-393 |#4|) |#4| |#2|) 117)) (-1714 (((-393 |#4|) |#4|) NIL)) (-3133 (((-393 (-1081 |#4|)) (-1081 |#4|)) 108) (((-393 |#4|) |#4|) 38)) (-1603 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-588 (-2 (|:| -2006 (-1081 |#4|)) (|:| -3858 (-522)))))) (-1081 |#4|) (-588 |#2|) (-588 (-588 |#3|))) 66)) (-1535 (((-1081 |#3|) (-1081 |#3|) (-522)) 134)) (-2601 (((-588 (-708)) (-1081 |#4|) (-588 |#2|) (-708)) 59)) (-2142 (((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-1081 |#3|) (-1081 |#3|) |#4| (-588 |#2|) (-588 (-708)) (-588 |#3|)) 63)) (-4012 (((-2 (|:| |upol| (-1081 |#3|)) (|:| |Lval| (-588 |#3|)) (|:| |Lfact| (-588 (-2 (|:| -2006 (-1081 |#3|)) (|:| -3858 (-522))))) (|:| |ctpol| |#3|)) (-1081 |#4|) (-588 |#2|) (-588 (-588 |#3|))) 22)) (-3328 (((-2 (|:| -1976 (-1081 |#4|)) (|:| |polval| (-1081 |#3|))) (-1081 |#4|) (-1081 |#3|) (-522)) 55)) (-3815 (((-522) (-588 (-2 (|:| -2006 (-1081 |#3|)) (|:| -3858 (-522))))) 131)) (-3992 ((|#4| (-522) (-393 |#4|)) 56)) (-2181 (((-108) (-588 (-2 (|:| -2006 (-1081 |#3|)) (|:| -3858 (-522)))) (-588 (-2 (|:| -2006 (-1081 |#3|)) (|:| -3858 (-522))))) NIL))) -(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3133 ((-393 |#4|) |#4|)) (-15 -3133 ((-393 (-1081 |#4|)) (-1081 |#4|))) (-15 -1714 ((-393 |#4|) |#4|)) (-15 -3815 ((-522) (-588 (-2 (|:| -2006 (-1081 |#3|)) (|:| -3858 (-522)))))) (-15 -2085 ((-393 |#4|) |#4| |#2|)) (-15 -3328 ((-2 (|:| -1976 (-1081 |#4|)) (|:| |polval| (-1081 |#3|))) (-1081 |#4|) (-1081 |#3|) (-522))) (-15 -1603 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-588 (-2 (|:| -2006 (-1081 |#4|)) (|:| -3858 (-522)))))) (-1081 |#4|) (-588 |#2|) (-588 (-588 |#3|)))) (-15 -4012 ((-2 (|:| |upol| (-1081 |#3|)) (|:| |Lval| (-588 |#3|)) (|:| |Lfact| (-588 (-2 (|:| -2006 (-1081 |#3|)) (|:| -3858 (-522))))) (|:| |ctpol| |#3|)) (-1081 |#4|) (-588 |#2|) (-588 (-588 |#3|)))) (-15 -3992 (|#4| (-522) (-393 |#4|))) (-15 -2181 ((-108) (-588 (-2 (|:| -2006 (-1081 |#3|)) (|:| -3858 (-522)))) (-588 (-2 (|:| -2006 (-1081 |#3|)) (|:| -3858 (-522)))))) (-15 -2142 ((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-1081 |#3|) (-1081 |#3|) |#4| (-588 |#2|) (-588 (-708)) (-588 |#3|))) (-15 -2601 ((-588 (-708)) (-1081 |#4|) (-588 |#2|) (-708))) (-15 -1535 ((-1081 |#3|) (-1081 |#3|) (-522)))) (-730) (-784) (-283) (-878 |#3| |#1| |#2|)) (T -680)) -((-1535 (*1 *2 *2 *3) (-12 (-5 *2 (-1081 *6)) (-5 *3 (-522)) (-4 *6 (-283)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-680 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5)))) (-2601 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1081 *9)) (-5 *4 (-588 *7)) (-4 *7 (-784)) (-4 *9 (-878 *8 *6 *7)) (-4 *6 (-730)) (-4 *8 (-283)) (-5 *2 (-588 (-708))) (-5 *1 (-680 *6 *7 *8 *9)) (-5 *5 (-708)))) (-2142 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1081 *11)) (-5 *6 (-588 *10)) (-5 *7 (-588 (-708))) (-5 *8 (-588 *11)) (-4 *10 (-784)) (-4 *11 (-283)) (-4 *9 (-730)) (-4 *5 (-878 *11 *9 *10)) (-5 *2 (-588 (-1081 *5))) (-5 *1 (-680 *9 *10 *11 *5)) (-5 *3 (-1081 *5)))) (-2181 (*1 *2 *3 *3) (-12 (-5 *3 (-588 (-2 (|:| -2006 (-1081 *6)) (|:| -3858 (-522))))) (-4 *6 (-283)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-680 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5)))) (-3992 (*1 *2 *3 *4) (-12 (-5 *3 (-522)) (-5 *4 (-393 *2)) (-4 *2 (-878 *7 *5 *6)) (-5 *1 (-680 *5 *6 *7 *2)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-283)))) (-4012 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1081 *9)) (-5 *4 (-588 *7)) (-5 *5 (-588 (-588 *8))) (-4 *7 (-784)) (-4 *8 (-283)) (-4 *9 (-878 *8 *6 *7)) (-4 *6 (-730)) (-5 *2 (-2 (|:| |upol| (-1081 *8)) (|:| |Lval| (-588 *8)) (|:| |Lfact| (-588 (-2 (|:| -2006 (-1081 *8)) (|:| -3858 (-522))))) (|:| |ctpol| *8))) (-5 *1 (-680 *6 *7 *8 *9)))) (-1603 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-588 *7)) (-5 *5 (-588 (-588 *8))) (-4 *7 (-784)) (-4 *8 (-283)) (-4 *6 (-730)) (-4 *9 (-878 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-588 (-2 (|:| -2006 (-1081 *9)) (|:| -3858 (-522))))))) (-5 *1 (-680 *6 *7 *8 *9)) (-5 *3 (-1081 *9)))) (-3328 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-522)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-283)) (-4 *9 (-878 *8 *6 *7)) (-5 *2 (-2 (|:| -1976 (-1081 *9)) (|:| |polval| (-1081 *8)))) (-5 *1 (-680 *6 *7 *8 *9)) (-5 *3 (-1081 *9)) (-5 *4 (-1081 *8)))) (-2085 (*1 *2 *3 *4) (-12 (-4 *5 (-730)) (-4 *4 (-784)) (-4 *6 (-283)) (-5 *2 (-393 *3)) (-5 *1 (-680 *5 *4 *6 *3)) (-4 *3 (-878 *6 *5 *4)))) (-3815 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| -2006 (-1081 *6)) (|:| -3858 (-522))))) (-4 *6 (-283)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-522)) (-5 *1 (-680 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5)))) (-1714 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283)) (-5 *2 (-393 *3)) (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-878 *6 *4 *5)))) (-3133 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-393 (-1081 *7))) (-5 *1 (-680 *4 *5 *6 *7)) (-5 *3 (-1081 *7)))) (-3133 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283)) (-5 *2 (-393 *3)) (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-878 *6 *4 *5))))) -(-10 -7 (-15 -3133 ((-393 |#4|) |#4|)) (-15 -3133 ((-393 (-1081 |#4|)) (-1081 |#4|))) (-15 -1714 ((-393 |#4|) |#4|)) (-15 -3815 ((-522) (-588 (-2 (|:| -2006 (-1081 |#3|)) (|:| -3858 (-522)))))) (-15 -2085 ((-393 |#4|) |#4| |#2|)) (-15 -3328 ((-2 (|:| -1976 (-1081 |#4|)) (|:| |polval| (-1081 |#3|))) (-1081 |#4|) (-1081 |#3|) (-522))) (-15 -1603 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-588 (-2 (|:| -2006 (-1081 |#4|)) (|:| -3858 (-522)))))) (-1081 |#4|) (-588 |#2|) (-588 (-588 |#3|)))) (-15 -4012 ((-2 (|:| |upol| (-1081 |#3|)) (|:| |Lval| (-588 |#3|)) (|:| |Lfact| (-588 (-2 (|:| -2006 (-1081 |#3|)) (|:| -3858 (-522))))) (|:| |ctpol| |#3|)) (-1081 |#4|) (-588 |#2|) (-588 (-588 |#3|)))) (-15 -3992 (|#4| (-522) (-393 |#4|))) (-15 -2181 ((-108) (-588 (-2 (|:| -2006 (-1081 |#3|)) (|:| -3858 (-522)))) (-588 (-2 (|:| -2006 (-1081 |#3|)) (|:| -3858 (-522)))))) (-15 -2142 ((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-1081 |#3|) (-1081 |#3|) |#4| (-588 |#2|) (-588 (-708)) (-588 |#3|))) (-15 -2601 ((-588 (-708)) (-1081 |#4|) (-588 |#2|) (-708))) (-15 -1535 ((-1081 |#3|) (-1081 |#3|) (-522)))) -((-2870 (($ $ (-850)) 12))) -(((-681 |#1| |#2|) (-10 -8 (-15 -2870 (|#1| |#1| (-850)))) (-682 |#2|) (-157)) (T -681)) -NIL -(-10 -8 (-15 -2870 (|#1| |#1| (-850)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-2698 (($ $ (-850)) 28)) (-2870 (($ $ (-850)) 33)) (-1946 (($ $ (-850)) 29)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-1596 (($ $ $) 25)) (-2217 (((-792) $) 11)) (-2185 (($ $ $ $) 26)) (-1369 (($ $ $) 24)) (-3697 (($) 18 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 30)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-682 |#1|) (-1197) (-157)) (T -682)) -((-2870 (*1 *1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-682 *3)) (-4 *3 (-157))))) -(-13 (-699) (-655 |t#1|) (-10 -8 (-15 -2870 ($ $ (-850))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-699) . T) ((-977 |#1|) . T) ((-1014) . T)) -((-4086 (((-960) (-628 (-202)) (-522) (-108) (-522)) 24)) (-2127 (((-960) (-628 (-202)) (-522) (-108) (-522)) 23))) -(((-683) (-10 -7 (-15 -2127 ((-960) (-628 (-202)) (-522) (-108) (-522))) (-15 -4086 ((-960) (-628 (-202)) (-522) (-108) (-522))))) (T -683)) -((-4086 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *5 (-108)) (-5 *2 (-960)) (-5 *1 (-683)))) (-2127 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *5 (-108)) (-5 *2 (-960)) (-5 *1 (-683))))) -(-10 -7 (-15 -2127 ((-960) (-628 (-202)) (-522) (-108) (-522))) (-15 -4086 ((-960) (-628 (-202)) (-522) (-108) (-522)))) -((-3458 (((-960) (-522) (-522) (-522) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-72 FCN)))) 43)) (-1617 (((-960) (-522) (-522) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-79 FCN)))) 39)) (-3805 (((-960) (-202) (-202) (-202) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102)))) 32))) -(((-684) (-10 -7 (-15 -3805 ((-960) (-202) (-202) (-202) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102))))) (-15 -1617 ((-960) (-522) (-522) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-79 FCN))))) (-15 -3458 ((-960) (-522) (-522) (-522) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-72 FCN))))))) (T -684)) -((-3458 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-72 FCN)))) (-5 *2 (-960)) (-5 *1 (-684)))) (-1617 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-79 FCN)))) (-5 *2 (-960)) (-5 *1 (-684)))) (-3805 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102)))) (-5 *2 (-960)) (-5 *1 (-684))))) -(-10 -7 (-15 -3805 ((-960) (-202) (-202) (-202) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102))))) (-15 -1617 ((-960) (-522) (-522) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-79 FCN))))) (-15 -3458 ((-960) (-522) (-522) (-522) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-72 FCN)))))) -((-2020 (((-960) (-522) (-522) (-628 (-202)) (-522)) 33)) (-3754 (((-960) (-522) (-522) (-628 (-202)) (-522)) 32)) (-3319 (((-960) (-522) (-628 (-202)) (-522)) 31)) (-2141 (((-960) (-522) (-628 (-202)) (-522)) 30)) (-3447 (((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522)) 29)) (-2301 (((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522)) 28)) (-3777 (((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-522)) 27)) (-2617 (((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-522)) 26)) (-3907 (((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522)) 23)) (-4156 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-522)) 22)) (-2225 (((-960) (-522) (-628 (-202)) (-522)) 21)) (-2385 (((-960) (-522) (-628 (-202)) (-522)) 20))) -(((-685) (-10 -7 (-15 -2385 ((-960) (-522) (-628 (-202)) (-522))) (-15 -2225 ((-960) (-522) (-628 (-202)) (-522))) (-15 -4156 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3907 ((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2617 ((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3777 ((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2301 ((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3447 ((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2141 ((-960) (-522) (-628 (-202)) (-522))) (-15 -3319 ((-960) (-522) (-628 (-202)) (-522))) (-15 -3754 ((-960) (-522) (-522) (-628 (-202)) (-522))) (-15 -2020 ((-960) (-522) (-522) (-628 (-202)) (-522))))) (T -685)) -((-2020 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-3754 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-3319 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-2141 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-3447 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-1068)) (-5 *5 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-2301 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-1068)) (-5 *5 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-3777 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-1068)) (-5 *5 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-2617 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-1068)) (-5 *5 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-3907 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-4156 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-2225 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-2385 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685))))) -(-10 -7 (-15 -2385 ((-960) (-522) (-628 (-202)) (-522))) (-15 -2225 ((-960) (-522) (-628 (-202)) (-522))) (-15 -4156 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3907 ((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2617 ((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3777 ((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2301 ((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3447 ((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2141 ((-960) (-522) (-628 (-202)) (-522))) (-15 -3319 ((-960) (-522) (-628 (-202)) (-522))) (-15 -3754 ((-960) (-522) (-522) (-628 (-202)) (-522))) (-15 -2020 ((-960) (-522) (-522) (-628 (-202)) (-522)))) -((-1293 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-522) (-202) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-76 FUNCTN)))) 52)) (-2955 (((-960) (-628 (-202)) (-628 (-202)) (-522) (-522)) 51)) (-3252 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-522) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-76 FUNCTN)))) 50)) (-3908 (((-960) (-202) (-202) (-522) (-522) (-522) (-522)) 46)) (-2783 (((-960) (-202) (-202) (-522) (-202) (-522) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) 45)) (-4182 (((-960) (-202) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) 44)) (-1450 (((-960) (-202) (-202) (-202) (-202) (-522) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) 43)) (-2793 (((-960) (-202) (-202) (-202) (-522) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) 42)) (-3569 (((-960) (-202) (-522) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102)))) 38)) (-1599 (((-960) (-202) (-202) (-522) (-628 (-202)) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102)))) 37)) (-2363 (((-960) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102)))) 33)) (-3951 (((-960) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102)))) 32))) -(((-686) (-10 -7 (-15 -3951 ((-960) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102))))) (-15 -2363 ((-960) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102))))) (-15 -1599 ((-960) (-202) (-202) (-522) (-628 (-202)) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102))))) (-15 -3569 ((-960) (-202) (-522) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102))))) (-15 -2793 ((-960) (-202) (-202) (-202) (-522) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G))))) (-15 -1450 ((-960) (-202) (-202) (-202) (-202) (-522) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G))))) (-15 -4182 ((-960) (-202) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G))))) (-15 -2783 ((-960) (-202) (-202) (-522) (-202) (-522) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G))))) (-15 -3908 ((-960) (-202) (-202) (-522) (-522) (-522) (-522))) (-15 -3252 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-76 FUNCTN))))) (-15 -2955 ((-960) (-628 (-202)) (-628 (-202)) (-522) (-522))) (-15 -1293 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522) (-202) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-76 FUNCTN))))))) (T -686)) -((-1293 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-960)) (-5 *1 (-686)))) (-2955 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-686)))) (-3252 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-960)) (-5 *1 (-686)))) (-3908 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-686)))) (-2783 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) (-5 *2 (-960)) (-5 *1 (-686)))) (-4182 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) (-5 *2 (-960)) (-5 *1 (-686)))) (-1450 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) (-5 *2 (-960)) (-5 *1 (-686)))) (-2793 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) (-5 *2 (-960)) (-5 *1 (-686)))) (-3569 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102)))) (-5 *2 (-960)) (-5 *1 (-686)))) (-1599 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102)))) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-686)))) (-2363 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102)))) (-5 *2 (-960)) (-5 *1 (-686)))) (-3951 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102)))) (-5 *2 (-960)) (-5 *1 (-686))))) -(-10 -7 (-15 -3951 ((-960) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102))))) (-15 -2363 ((-960) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102))))) (-15 -1599 ((-960) (-202) (-202) (-522) (-628 (-202)) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102))))) (-15 -3569 ((-960) (-202) (-522) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102))))) (-15 -2793 ((-960) (-202) (-202) (-202) (-522) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G))))) (-15 -1450 ((-960) (-202) (-202) (-202) (-202) (-522) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G))))) (-15 -4182 ((-960) (-202) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G))))) (-15 -2783 ((-960) (-202) (-202) (-522) (-202) (-522) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G))))) (-15 -3908 ((-960) (-202) (-202) (-522) (-522) (-522) (-522))) (-15 -3252 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-76 FUNCTN))))) (-15 -2955 ((-960) (-628 (-202)) (-628 (-202)) (-522) (-522))) (-15 -1293 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522) (-202) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-76 FUNCTN)))))) -((-3988 (((-960) (-522) (-522) (-522) (-522) (-202) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-363)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-3065 (((-960) (-628 (-202)) (-522) (-522) (-202) (-522) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-85 BDYVAL))) (-363) (-363)) 69) (((-960) (-628 (-202)) (-522) (-522) (-202) (-522) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-85 BDYVAL)))) 68)) (-2987 (((-960) (-202) (-202) (-522) (-202) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-363)) (|:| |fp| (-83 FCNG)))) 57)) (-1294 (((-960) (-628 (-202)) (-628 (-202)) (-522) (-202) (-202) (-202) (-522) (-522) (-522) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN)))) 50)) (-1346 (((-960) (-202) (-522) (-522) (-1068) (-522) (-202) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT)))) 49)) (-3442 (((-960) (-202) (-522) (-522) (-202) (-1068) (-202) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT)))) 45)) (-3488 (((-960) (-202) (-522) (-522) (-202) (-202) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN)))) 42)) (-2758 (((-960) (-202) (-522) (-522) (-522) (-202) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT)))) 38))) -(((-687) (-10 -7 (-15 -2758 ((-960) (-202) (-522) (-522) (-522) (-202) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT))))) (-15 -3488 ((-960) (-202) (-522) (-522) (-202) (-202) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))))) (-15 -3442 ((-960) (-202) (-522) (-522) (-202) (-1068) (-202) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT))))) (-15 -1346 ((-960) (-202) (-522) (-522) (-1068) (-522) (-202) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT))))) (-15 -1294 ((-960) (-628 (-202)) (-628 (-202)) (-522) (-202) (-202) (-202) (-522) (-522) (-522) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))))) (-15 -2987 ((-960) (-202) (-202) (-522) (-202) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-363)) (|:| |fp| (-83 FCNG))))) (-15 -3065 ((-960) (-628 (-202)) (-522) (-522) (-202) (-522) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-85 BDYVAL))))) (-15 -3065 ((-960) (-628 (-202)) (-522) (-522) (-202) (-522) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-85 BDYVAL))) (-363) (-363))) (-15 -3988 ((-960) (-522) (-522) (-522) (-522) (-202) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-363)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -687)) -((-3988 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-687)))) (-3065 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-363)) (-5 *2 (-960)) (-5 *1 (-687)))) (-3065 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-960)) (-5 *1 (-687)))) (-2987 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-687)))) (-1294 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN)))) (-5 *2 (-960)) (-5 *1 (-687)))) (-1346 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-522)) (-5 *5 (-1068)) (-5 *6 (-628 (-202))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-363)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-687)))) (-3442 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-522)) (-5 *5 (-1068)) (-5 *6 (-628 (-202))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-687)))) (-3488 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN)))) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-687)))) (-2758 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-687))))) -(-10 -7 (-15 -2758 ((-960) (-202) (-522) (-522) (-522) (-202) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT))))) (-15 -3488 ((-960) (-202) (-522) (-522) (-202) (-202) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))))) (-15 -3442 ((-960) (-202) (-522) (-522) (-202) (-1068) (-202) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT))))) (-15 -1346 ((-960) (-202) (-522) (-522) (-1068) (-522) (-202) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT))))) (-15 -1294 ((-960) (-628 (-202)) (-628 (-202)) (-522) (-202) (-202) (-202) (-522) (-522) (-522) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))))) (-15 -2987 ((-960) (-202) (-202) (-522) (-202) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-363)) (|:| |fp| (-83 FCNG))))) (-15 -3065 ((-960) (-628 (-202)) (-522) (-522) (-202) (-522) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-85 BDYVAL))))) (-15 -3065 ((-960) (-628 (-202)) (-522) (-522) (-202) (-522) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-85 BDYVAL))) (-363) (-363))) (-15 -3988 ((-960) (-522) (-522) (-522) (-522) (-202) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-363)) (|:| |fp| (-74 G JACOBG JACGEP)))))) -((-2092 (((-960) (-202) (-202) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-202) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-202) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-616 (-202)) (-522)) 45)) (-2939 (((-960) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-1068) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-363)) (|:| |fp| (-81 BNDY)))) 41)) (-3219 (((-960) (-522) (-522) (-522) (-522) (-202) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522)) 23))) -(((-688) (-10 -7 (-15 -3219 ((-960) (-522) (-522) (-522) (-522) (-202) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2939 ((-960) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-1068) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-363)) (|:| |fp| (-81 BNDY))))) (-15 -2092 ((-960) (-202) (-202) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-202) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-202) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-616 (-202)) (-522))))) (T -688)) -((-2092 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-616 (-202))) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-688)))) (-2939 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *5 (-1068)) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-960)) (-5 *1 (-688)))) (-3219 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-688))))) -(-10 -7 (-15 -3219 ((-960) (-522) (-522) (-522) (-522) (-202) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2939 ((-960) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-1068) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-363)) (|:| |fp| (-81 BNDY))))) (-15 -2092 ((-960) (-202) (-202) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-202) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-202) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-616 (-202)) (-522)))) -((-2632 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-628 (-202)) (-202) (-202) (-522)) 35)) (-3265 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-202) (-202) (-522)) 34)) (-3554 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-628 (-202)) (-202) (-202) (-522)) 33)) (-4110 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522)) 29)) (-4023 (((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522)) 28)) (-3226 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-202) (-522)) 27)) (-3945 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-522)) 23)) (-3732 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-522)) 22)) (-2281 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-522)) 21)) (-1203 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-522) (-522) (-522)) 20))) -(((-689) (-10 -7 (-15 -1203 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522) (-522) (-522))) (-15 -2281 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3732 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-522))) (-15 -3945 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-522))) (-15 -3226 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-202) (-522))) (-15 -4023 ((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -4110 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3554 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-628 (-202)) (-202) (-202) (-522))) (-15 -3265 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-202) (-202) (-522))) (-15 -2632 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-628 (-202)) (-202) (-202) (-522))))) (T -689)) -((-2632 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) (-5 *2 (-960)) (-5 *1 (-689)))) (-3265 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) (-5 *2 (-960)) (-5 *1 (-689)))) (-3554 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *6 (-202)) (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-689)))) (-4110 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-689)))) (-4023 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-689)))) (-3226 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) (-5 *2 (-960)) (-5 *1 (-689)))) (-3945 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-689)))) (-3732 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-689)))) (-2281 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-689)))) (-1203 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-689))))) -(-10 -7 (-15 -1203 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522) (-522) (-522))) (-15 -2281 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3732 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-522))) (-15 -3945 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-522))) (-15 -3226 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-202) (-522))) (-15 -4023 ((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -4110 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3554 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-628 (-202)) (-202) (-202) (-522))) (-15 -3265 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-202) (-202) (-522))) (-15 -2632 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-628 (-202)) (-202) (-202) (-522)))) -((-2721 (((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-522) (-522) (-522)) 45)) (-2535 (((-960) (-522) (-522) (-522) (-202) (-628 (-202)) (-628 (-202)) (-522)) 44)) (-2761 (((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-522)) 43)) (-1989 (((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522)) 42)) (-1607 (((-960) (-1068) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-522)) 41)) (-2076 (((-960) (-1068) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-522)) 40)) (-3348 (((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-522) (-522) (-522) (-202) (-628 (-202)) (-522)) 39)) (-1376 (((-960) (-1068) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-522))) 38)) (-3383 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-522)) 35)) (-3462 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522)) 34)) (-1539 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522)) 33)) (-3790 (((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522)) 32)) (-2216 (((-960) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-202) (-522)) 31)) (-3177 (((-960) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-202) (-522) (-522) (-522)) 30)) (-3490 (((-960) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-522) (-522) (-522)) 29)) (-1284 (((-960) (-522) (-522) (-522) (-202) (-202) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-522) (-628 (-522)) (-522) (-522) (-522)) 28)) (-2677 (((-960) (-522) (-628 (-202)) (-202) (-522)) 24)) (-2386 (((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522)) 20))) -(((-690) (-10 -7 (-15 -2386 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2677 ((-960) (-522) (-628 (-202)) (-202) (-522))) (-15 -1284 ((-960) (-522) (-522) (-522) (-202) (-202) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-522) (-628 (-522)) (-522) (-522) (-522))) (-15 -3490 ((-960) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-522) (-522) (-522))) (-15 -3177 ((-960) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-202) (-522) (-522) (-522))) (-15 -2216 ((-960) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-202) (-522))) (-15 -3790 ((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1539 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522))) (-15 -3462 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522))) (-15 -3383 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1376 ((-960) (-1068) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-522)))) (-15 -3348 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-522) (-522) (-522) (-202) (-628 (-202)) (-522))) (-15 -2076 ((-960) (-1068) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-522))) (-15 -1607 ((-960) (-1068) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1989 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2761 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-522))) (-15 -2535 ((-960) (-522) (-522) (-522) (-202) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2721 ((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-522) (-522) (-522))))) (T -690)) -((-2721 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-690)))) (-2535 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-690)))) (-2761 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-690)))) (-1989 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-690)))) (-1607 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-202)) (-5 *2 (-960)) (-5 *1 (-690)))) (-2076 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1068)) (-5 *5 (-628 (-202))) (-5 *6 (-202)) (-5 *7 (-628 (-522))) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-690)))) (-3348 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *6 (-202)) (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-690)))) (-1376 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1068)) (-5 *5 (-628 (-202))) (-5 *6 (-202)) (-5 *7 (-628 (-522))) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-690)))) (-3383 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-690)))) (-3462 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) (-5 *2 (-960)) (-5 *1 (-690)))) (-1539 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) (-5 *2 (-960)) (-5 *1 (-690)))) (-3790 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-690)))) (-2216 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-690)))) (-3177 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-690)))) (-3490 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-690)))) (-1284 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-628 (-202))) (-5 *6 (-628 (-522))) (-5 *3 (-522)) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-690)))) (-2677 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) (-5 *2 (-960)) (-5 *1 (-690)))) (-2386 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-690))))) -(-10 -7 (-15 -2386 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2677 ((-960) (-522) (-628 (-202)) (-202) (-522))) (-15 -1284 ((-960) (-522) (-522) (-522) (-202) (-202) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-522) (-628 (-522)) (-522) (-522) (-522))) (-15 -3490 ((-960) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-522) (-522) (-522))) (-15 -3177 ((-960) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-202) (-522) (-522) (-522))) (-15 -2216 ((-960) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-202) (-522))) (-15 -3790 ((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1539 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522))) (-15 -3462 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522))) (-15 -3383 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1376 ((-960) (-1068) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-522)))) (-15 -3348 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-522) (-522) (-522) (-202) (-628 (-202)) (-522))) (-15 -2076 ((-960) (-1068) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-522))) (-15 -1607 ((-960) (-1068) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1989 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2761 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-522))) (-15 -2535 ((-960) (-522) (-522) (-522) (-202) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2721 ((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-522) (-522) (-522)))) -((-1241 (((-960) (-522) (-522) (-522) (-202) (-628 (-202)) (-522) (-628 (-202)) (-522)) 63)) (-3290 (((-960) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-108) (-202) (-522) (-202) (-202) (-108) (-202) (-202) (-202) (-202) (-108) (-522) (-522) (-522) (-522) (-522) (-202) (-202) (-202) (-522) (-522) (-522) (-522) (-522) (-628 (-522)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-75 OBJFUN)))) 62)) (-1585 (((-960) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-202) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-108) (-108) (-108) (-522) (-522) (-628 (-202)) (-628 (-522)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-63 QPHESS)))) 58)) (-3625 (((-960) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-108) (-522) (-522) (-628 (-202)) (-522)) 51)) (-3969 (((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-64 FUNCT1)))) 50)) (-2319 (((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-61 LSFUN2)))) 46)) (-3870 (((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-77 LSFUN1)))) 42)) (-3388 (((-960) (-522) (-202) (-202) (-522) (-202) (-108) (-202) (-202) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-75 OBJFUN)))) 38))) -(((-691) (-10 -7 (-15 -3388 ((-960) (-522) (-202) (-202) (-522) (-202) (-108) (-202) (-202) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-75 OBJFUN))))) (-15 -3870 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-77 LSFUN1))))) (-15 -2319 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-61 LSFUN2))))) (-15 -3969 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-64 FUNCT1))))) (-15 -3625 ((-960) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-108) (-522) (-522) (-628 (-202)) (-522))) (-15 -1585 ((-960) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-202) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-108) (-108) (-108) (-522) (-522) (-628 (-202)) (-628 (-522)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-63 QPHESS))))) (-15 -3290 ((-960) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-108) (-202) (-522) (-202) (-202) (-108) (-202) (-202) (-202) (-202) (-108) (-522) (-522) (-522) (-522) (-522) (-202) (-202) (-202) (-522) (-522) (-522) (-522) (-522) (-628 (-522)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-75 OBJFUN))))) (-15 -1241 ((-960) (-522) (-522) (-522) (-202) (-628 (-202)) (-522) (-628 (-202)) (-522))))) (T -691)) -((-1241 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-691)))) (-3290 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-628 (-202))) (-5 *5 (-108)) (-5 *6 (-202)) (-5 *7 (-628 (-522))) (-5 *8 (-3 (|:| |fn| (-363)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-363)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-691)))) (-1585 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-628 (-202))) (-5 *6 (-108)) (-5 *7 (-628 (-522))) (-5 *8 (-3 (|:| |fn| (-363)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-522)) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-691)))) (-3625 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-108)) (-5 *2 (-960)) (-5 *1 (-691)))) (-3969 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-960)) (-5 *1 (-691)))) (-2319 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-960)) (-5 *1 (-691)))) (-3870 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-960)) (-5 *1 (-691)))) (-3388 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-522)) (-5 *5 (-108)) (-5 *6 (-628 (-202))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-691))))) -(-10 -7 (-15 -3388 ((-960) (-522) (-202) (-202) (-522) (-202) (-108) (-202) (-202) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-75 OBJFUN))))) (-15 -3870 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-77 LSFUN1))))) (-15 -2319 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-61 LSFUN2))))) (-15 -3969 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-64 FUNCT1))))) (-15 -3625 ((-960) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-108) (-522) (-522) (-628 (-202)) (-522))) (-15 -1585 ((-960) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-202) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-108) (-108) (-108) (-522) (-522) (-628 (-202)) (-628 (-522)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-63 QPHESS))))) (-15 -3290 ((-960) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-108) (-202) (-522) (-202) (-202) (-108) (-202) (-202) (-202) (-202) (-108) (-522) (-522) (-522) (-522) (-522) (-202) (-202) (-202) (-522) (-522) (-522) (-522) (-522) (-628 (-522)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-75 OBJFUN))))) (-15 -1241 ((-960) (-522) (-522) (-522) (-202) (-628 (-202)) (-522) (-628 (-202)) (-522)))) -((-3079 (((-960) (-1068) (-522) (-522) (-522) (-522) (-628 (-154 (-202))) (-628 (-154 (-202))) (-522)) 46)) (-2224 (((-960) (-1068) (-1068) (-522) (-522) (-628 (-154 (-202))) (-522) (-628 (-154 (-202))) (-522) (-522) (-628 (-154 (-202))) (-522)) 45)) (-2522 (((-960) (-522) (-522) (-522) (-628 (-154 (-202))) (-522)) 44)) (-3964 (((-960) (-1068) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522)) 40)) (-3975 (((-960) (-1068) (-1068) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-522) (-522) (-628 (-202)) (-522)) 39)) (-3010 (((-960) (-522) (-522) (-522) (-628 (-202)) (-522)) 36)) (-4212 (((-960) (-522) (-628 (-202)) (-522) (-628 (-522)) (-522)) 35)) (-1769 (((-960) (-522) (-522) (-522) (-522) (-588 (-108)) (-628 (-202)) (-628 (-522)) (-628 (-522)) (-202) (-202) (-522)) 34)) (-2666 (((-960) (-522) (-522) (-522) (-628 (-522)) (-628 (-522)) (-628 (-522)) (-628 (-522)) (-108) (-202) (-108) (-628 (-522)) (-628 (-202)) (-522)) 33)) (-2692 (((-960) (-522) (-522) (-522) (-522) (-202) (-108) (-108) (-588 (-108)) (-628 (-202)) (-628 (-522)) (-628 (-522)) (-522)) 32))) -(((-692) (-10 -7 (-15 -2692 ((-960) (-522) (-522) (-522) (-522) (-202) (-108) (-108) (-588 (-108)) (-628 (-202)) (-628 (-522)) (-628 (-522)) (-522))) (-15 -2666 ((-960) (-522) (-522) (-522) (-628 (-522)) (-628 (-522)) (-628 (-522)) (-628 (-522)) (-108) (-202) (-108) (-628 (-522)) (-628 (-202)) (-522))) (-15 -1769 ((-960) (-522) (-522) (-522) (-522) (-588 (-108)) (-628 (-202)) (-628 (-522)) (-628 (-522)) (-202) (-202) (-522))) (-15 -4212 ((-960) (-522) (-628 (-202)) (-522) (-628 (-522)) (-522))) (-15 -3010 ((-960) (-522) (-522) (-522) (-628 (-202)) (-522))) (-15 -3975 ((-960) (-1068) (-1068) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-522) (-522) (-628 (-202)) (-522))) (-15 -3964 ((-960) (-1068) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2522 ((-960) (-522) (-522) (-522) (-628 (-154 (-202))) (-522))) (-15 -2224 ((-960) (-1068) (-1068) (-522) (-522) (-628 (-154 (-202))) (-522) (-628 (-154 (-202))) (-522) (-522) (-628 (-154 (-202))) (-522))) (-15 -3079 ((-960) (-1068) (-522) (-522) (-522) (-522) (-628 (-154 (-202))) (-628 (-154 (-202))) (-522))))) (T -692)) -((-3079 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-154 (-202)))) (-5 *2 (-960)) (-5 *1 (-692)))) (-2224 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-154 (-202)))) (-5 *2 (-960)) (-5 *1 (-692)))) (-2522 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-154 (-202)))) (-5 *2 (-960)) (-5 *1 (-692)))) (-3964 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-692)))) (-3975 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-692)))) (-3010 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-692)))) (-4212 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-692)))) (-1769 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-588 (-108))) (-5 *5 (-628 (-202))) (-5 *6 (-628 (-522))) (-5 *7 (-202)) (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-692)))) (-2666 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-628 (-522))) (-5 *5 (-108)) (-5 *7 (-628 (-202))) (-5 *3 (-522)) (-5 *6 (-202)) (-5 *2 (-960)) (-5 *1 (-692)))) (-2692 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-588 (-108))) (-5 *7 (-628 (-202))) (-5 *8 (-628 (-522))) (-5 *3 (-522)) (-5 *4 (-202)) (-5 *5 (-108)) (-5 *2 (-960)) (-5 *1 (-692))))) -(-10 -7 (-15 -2692 ((-960) (-522) (-522) (-522) (-522) (-202) (-108) (-108) (-588 (-108)) (-628 (-202)) (-628 (-522)) (-628 (-522)) (-522))) (-15 -2666 ((-960) (-522) (-522) (-522) (-628 (-522)) (-628 (-522)) (-628 (-522)) (-628 (-522)) (-108) (-202) (-108) (-628 (-522)) (-628 (-202)) (-522))) (-15 -1769 ((-960) (-522) (-522) (-522) (-522) (-588 (-108)) (-628 (-202)) (-628 (-522)) (-628 (-522)) (-202) (-202) (-522))) (-15 -4212 ((-960) (-522) (-628 (-202)) (-522) (-628 (-522)) (-522))) (-15 -3010 ((-960) (-522) (-522) (-522) (-628 (-202)) (-522))) (-15 -3975 ((-960) (-1068) (-1068) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-522) (-522) (-628 (-202)) (-522))) (-15 -3964 ((-960) (-1068) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2522 ((-960) (-522) (-522) (-522) (-628 (-154 (-202))) (-522))) (-15 -2224 ((-960) (-1068) (-1068) (-522) (-522) (-628 (-154 (-202))) (-522) (-628 (-154 (-202))) (-522) (-522) (-628 (-154 (-202))) (-522))) (-15 -3079 ((-960) (-1068) (-522) (-522) (-522) (-522) (-628 (-154 (-202))) (-628 (-154 (-202))) (-522)))) -((-3086 (((-960) (-522) (-522) (-522) (-522) (-522) (-108) (-522) (-108) (-522) (-628 (-154 (-202))) (-628 (-154 (-202))) (-522)) 64)) (-3027 (((-960) (-522) (-522) (-522) (-522) (-522) (-108) (-522) (-108) (-522) (-628 (-202)) (-628 (-202)) (-522)) 60)) (-1676 (((-960) (-522) (-522) (-202) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-363)) (|:| |fp| (-66 IMAGE))) (-363)) 56) (((-960) (-522) (-522) (-202) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-363)) (|:| |fp| (-66 IMAGE)))) 55)) (-2559 (((-960) (-522) (-522) (-522) (-202) (-108) (-522) (-628 (-202)) (-628 (-202)) (-522)) 37)) (-3390 (((-960) (-522) (-522) (-202) (-202) (-522) (-522) (-628 (-202)) (-522)) 33)) (-1351 (((-960) (-628 (-202)) (-522) (-628 (-202)) (-522) (-522) (-522) (-522) (-522)) 29)) (-3231 (((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522)) 28)) (-1753 (((-960) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522)) 27)) (-3382 (((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522)) 26)) (-3555 (((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-522)) 25)) (-2452 (((-960) (-522) (-522) (-628 (-202)) (-522)) 24)) (-3315 (((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522)) 23)) (-2975 (((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522)) 22)) (-4167 (((-960) (-628 (-202)) (-522) (-522) (-522) (-522)) 21)) (-2018 (((-960) (-522) (-522) (-628 (-202)) (-522)) 20))) -(((-693) (-10 -7 (-15 -2018 ((-960) (-522) (-522) (-628 (-202)) (-522))) (-15 -4167 ((-960) (-628 (-202)) (-522) (-522) (-522) (-522))) (-15 -2975 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3315 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2452 ((-960) (-522) (-522) (-628 (-202)) (-522))) (-15 -3555 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-522))) (-15 -3382 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1753 ((-960) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3231 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1351 ((-960) (-628 (-202)) (-522) (-628 (-202)) (-522) (-522) (-522) (-522) (-522))) (-15 -3390 ((-960) (-522) (-522) (-202) (-202) (-522) (-522) (-628 (-202)) (-522))) (-15 -2559 ((-960) (-522) (-522) (-522) (-202) (-108) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1676 ((-960) (-522) (-522) (-202) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-363)) (|:| |fp| (-66 IMAGE))))) (-15 -1676 ((-960) (-522) (-522) (-202) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-363)) (|:| |fp| (-66 IMAGE))) (-363))) (-15 -3027 ((-960) (-522) (-522) (-522) (-522) (-522) (-108) (-522) (-108) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3086 ((-960) (-522) (-522) (-522) (-522) (-522) (-108) (-522) (-108) (-522) (-628 (-154 (-202))) (-628 (-154 (-202))) (-522))))) (T -693)) -((-3086 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-108)) (-5 *5 (-628 (-154 (-202)))) (-5 *2 (-960)) (-5 *1 (-693)))) (-3027 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-108)) (-5 *5 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-693)))) (-1676 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-363)) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-693)))) (-1676 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-693)))) (-2559 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-522)) (-5 *5 (-108)) (-5 *6 (-628 (-202))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-693)))) (-3390 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-693)))) (-1351 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-693)))) (-3231 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-693)))) (-1753 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-693)))) (-3382 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-693)))) (-3555 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-693)))) (-2452 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-693)))) (-3315 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-693)))) (-2975 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-693)))) (-4167 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-693)))) (-2018 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-693))))) -(-10 -7 (-15 -2018 ((-960) (-522) (-522) (-628 (-202)) (-522))) (-15 -4167 ((-960) (-628 (-202)) (-522) (-522) (-522) (-522))) (-15 -2975 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3315 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2452 ((-960) (-522) (-522) (-628 (-202)) (-522))) (-15 -3555 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-522))) (-15 -3382 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1753 ((-960) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3231 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1351 ((-960) (-628 (-202)) (-522) (-628 (-202)) (-522) (-522) (-522) (-522) (-522))) (-15 -3390 ((-960) (-522) (-522) (-202) (-202) (-522) (-522) (-628 (-202)) (-522))) (-15 -2559 ((-960) (-522) (-522) (-522) (-202) (-108) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1676 ((-960) (-522) (-522) (-202) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-363)) (|:| |fp| (-66 IMAGE))))) (-15 -1676 ((-960) (-522) (-522) (-202) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-363)) (|:| |fp| (-66 IMAGE))) (-363))) (-15 -3027 ((-960) (-522) (-522) (-522) (-522) (-522) (-108) (-522) (-108) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3086 ((-960) (-522) (-522) (-522) (-522) (-522) (-108) (-522) (-108) (-522) (-628 (-154 (-202))) (-628 (-154 (-202))) (-522)))) -((-2302 (((-960) (-522) (-522) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-68 APROD)))) 60)) (-1467 (((-960) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-522)) (-522) (-628 (-202)) (-522) (-522) (-522) (-522)) 56)) (-2523 (((-960) (-522) (-628 (-202)) (-108) (-202) (-522) (-522) (-522) (-522) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-363)) (|:| |fp| (-71 MSOLVE)))) 55)) (-4133 (((-960) (-522) (-522) (-628 (-202)) (-522) (-628 (-522)) (-522) (-628 (-522)) (-628 (-202)) (-628 (-522)) (-628 (-522)) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-522)) 36)) (-2447 (((-960) (-522) (-522) (-522) (-202) (-522) (-628 (-202)) (-628 (-202)) (-522)) 35)) (-2474 (((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522)) 31)) (-1385 (((-960) (-522) (-628 (-202)) (-522) (-628 (-522)) (-628 (-522)) (-522) (-628 (-522)) (-628 (-202))) 30)) (-1879 (((-960) (-628 (-202)) (-522) (-628 (-202)) (-522) (-522) (-522)) 26)) (-3682 (((-960) (-522) (-628 (-202)) (-522) (-628 (-202)) (-522)) 25)) (-2823 (((-960) (-522) (-628 (-202)) (-522) (-628 (-202)) (-522)) 24)) (-1564 (((-960) (-522) (-628 (-154 (-202))) (-522) (-522) (-522) (-522) (-628 (-154 (-202))) (-522)) 20))) -(((-694) (-10 -7 (-15 -1564 ((-960) (-522) (-628 (-154 (-202))) (-522) (-522) (-522) (-522) (-628 (-154 (-202))) (-522))) (-15 -2823 ((-960) (-522) (-628 (-202)) (-522) (-628 (-202)) (-522))) (-15 -3682 ((-960) (-522) (-628 (-202)) (-522) (-628 (-202)) (-522))) (-15 -1879 ((-960) (-628 (-202)) (-522) (-628 (-202)) (-522) (-522) (-522))) (-15 -1385 ((-960) (-522) (-628 (-202)) (-522) (-628 (-522)) (-628 (-522)) (-522) (-628 (-522)) (-628 (-202)))) (-15 -2474 ((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2447 ((-960) (-522) (-522) (-522) (-202) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -4133 ((-960) (-522) (-522) (-628 (-202)) (-522) (-628 (-522)) (-522) (-628 (-522)) (-628 (-202)) (-628 (-522)) (-628 (-522)) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-522))) (-15 -2523 ((-960) (-522) (-628 (-202)) (-108) (-202) (-522) (-522) (-522) (-522) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-363)) (|:| |fp| (-71 MSOLVE))))) (-15 -1467 ((-960) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-522)) (-522) (-628 (-202)) (-522) (-522) (-522) (-522))) (-15 -2302 ((-960) (-522) (-522) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-68 APROD))))))) (T -694)) -((-2302 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-68 APROD)))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-694)))) (-1467 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-694)))) (-2523 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-108)) (-5 *6 (-202)) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-363)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-960)) (-5 *1 (-694)))) (-4133 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-694)))) (-2447 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-694)))) (-2474 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-694)))) (-1385 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-694)))) (-1879 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-694)))) (-3682 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-694)))) (-2823 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-694)))) (-1564 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-154 (-202)))) (-5 *2 (-960)) (-5 *1 (-694))))) -(-10 -7 (-15 -1564 ((-960) (-522) (-628 (-154 (-202))) (-522) (-522) (-522) (-522) (-628 (-154 (-202))) (-522))) (-15 -2823 ((-960) (-522) (-628 (-202)) (-522) (-628 (-202)) (-522))) (-15 -3682 ((-960) (-522) (-628 (-202)) (-522) (-628 (-202)) (-522))) (-15 -1879 ((-960) (-628 (-202)) (-522) (-628 (-202)) (-522) (-522) (-522))) (-15 -1385 ((-960) (-522) (-628 (-202)) (-522) (-628 (-522)) (-628 (-522)) (-522) (-628 (-522)) (-628 (-202)))) (-15 -2474 ((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2447 ((-960) (-522) (-522) (-522) (-202) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -4133 ((-960) (-522) (-522) (-628 (-202)) (-522) (-628 (-522)) (-522) (-628 (-522)) (-628 (-202)) (-628 (-522)) (-628 (-522)) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-522))) (-15 -2523 ((-960) (-522) (-628 (-202)) (-108) (-202) (-522) (-522) (-522) (-522) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-363)) (|:| |fp| (-71 MSOLVE))))) (-15 -1467 ((-960) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-522)) (-522) (-628 (-202)) (-522) (-522) (-522) (-522))) (-15 -2302 ((-960) (-522) (-522) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-68 APROD)))))) -((-1435 (((-960) (-1068) (-522) (-522) (-628 (-202)) (-522) (-522) (-628 (-202))) 28)) (-3638 (((-960) (-1068) (-522) (-522) (-628 (-202))) 27)) (-4001 (((-960) (-1068) (-522) (-522) (-628 (-202)) (-522) (-628 (-522)) (-522) (-628 (-202))) 26)) (-1659 (((-960) (-522) (-522) (-522) (-628 (-202))) 20))) -(((-695) (-10 -7 (-15 -1659 ((-960) (-522) (-522) (-522) (-628 (-202)))) (-15 -4001 ((-960) (-1068) (-522) (-522) (-628 (-202)) (-522) (-628 (-522)) (-522) (-628 (-202)))) (-15 -3638 ((-960) (-1068) (-522) (-522) (-628 (-202)))) (-15 -1435 ((-960) (-1068) (-522) (-522) (-628 (-202)) (-522) (-522) (-628 (-202)))))) (T -695)) -((-1435 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-695)))) (-3638 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-695)))) (-4001 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1068)) (-5 *5 (-628 (-202))) (-5 *6 (-628 (-522))) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-695)))) (-1659 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-695))))) -(-10 -7 (-15 -1659 ((-960) (-522) (-522) (-522) (-628 (-202)))) (-15 -4001 ((-960) (-1068) (-522) (-522) (-628 (-202)) (-522) (-628 (-522)) (-522) (-628 (-202)))) (-15 -3638 ((-960) (-1068) (-522) (-522) (-628 (-202)))) (-15 -1435 ((-960) (-1068) (-522) (-522) (-628 (-202)) (-522) (-522) (-628 (-202))))) -((-2517 (((-960) (-202) (-202) (-202) (-202) (-522)) 62)) (-2332 (((-960) (-202) (-202) (-202) (-522)) 61)) (-3720 (((-960) (-202) (-202) (-202) (-522)) 60)) (-2347 (((-960) (-202) (-202) (-522)) 59)) (-2275 (((-960) (-202) (-522)) 58)) (-2467 (((-960) (-202) (-522)) 57)) (-1383 (((-960) (-202) (-522)) 56)) (-1550 (((-960) (-202) (-522)) 55)) (-2663 (((-960) (-202) (-522)) 54)) (-2571 (((-960) (-202) (-522)) 53)) (-1277 (((-960) (-202) (-154 (-202)) (-522) (-1068) (-522)) 52)) (-1259 (((-960) (-202) (-154 (-202)) (-522) (-1068) (-522)) 51)) (-3152 (((-960) (-202) (-522)) 50)) (-3671 (((-960) (-202) (-522)) 49)) (-2238 (((-960) (-202) (-522)) 48)) (-3773 (((-960) (-202) (-522)) 47)) (-2407 (((-960) (-522) (-202) (-154 (-202)) (-522) (-1068) (-522)) 46)) (-2785 (((-960) (-1068) (-154 (-202)) (-1068) (-522)) 45)) (-1234 (((-960) (-1068) (-154 (-202)) (-1068) (-522)) 44)) (-2552 (((-960) (-202) (-154 (-202)) (-522) (-1068) (-522)) 43)) (-1527 (((-960) (-202) (-154 (-202)) (-522) (-1068) (-522)) 42)) (-3097 (((-960) (-202) (-522)) 39)) (-1237 (((-960) (-202) (-522)) 38)) (-2387 (((-960) (-202) (-522)) 37)) (-2825 (((-960) (-202) (-522)) 36)) (-3666 (((-960) (-202) (-522)) 35)) (-1335 (((-960) (-202) (-522)) 34)) (-1319 (((-960) (-202) (-522)) 33)) (-2646 (((-960) (-202) (-522)) 32)) (-1790 (((-960) (-202) (-522)) 31)) (-1822 (((-960) (-202) (-522)) 30)) (-1545 (((-960) (-202) (-202) (-202) (-522)) 29)) (-3850 (((-960) (-202) (-522)) 28)) (-3022 (((-960) (-202) (-522)) 27)) (-2326 (((-960) (-202) (-522)) 26)) (-4089 (((-960) (-202) (-522)) 25)) (-2471 (((-960) (-202) (-522)) 24)) (-4020 (((-960) (-154 (-202)) (-522)) 20))) -(((-696) (-10 -7 (-15 -4020 ((-960) (-154 (-202)) (-522))) (-15 -2471 ((-960) (-202) (-522))) (-15 -4089 ((-960) (-202) (-522))) (-15 -2326 ((-960) (-202) (-522))) (-15 -3022 ((-960) (-202) (-522))) (-15 -3850 ((-960) (-202) (-522))) (-15 -1545 ((-960) (-202) (-202) (-202) (-522))) (-15 -1822 ((-960) (-202) (-522))) (-15 -1790 ((-960) (-202) (-522))) (-15 -2646 ((-960) (-202) (-522))) (-15 -1319 ((-960) (-202) (-522))) (-15 -1335 ((-960) (-202) (-522))) (-15 -3666 ((-960) (-202) (-522))) (-15 -2825 ((-960) (-202) (-522))) (-15 -2387 ((-960) (-202) (-522))) (-15 -1237 ((-960) (-202) (-522))) (-15 -3097 ((-960) (-202) (-522))) (-15 -1527 ((-960) (-202) (-154 (-202)) (-522) (-1068) (-522))) (-15 -2552 ((-960) (-202) (-154 (-202)) (-522) (-1068) (-522))) (-15 -1234 ((-960) (-1068) (-154 (-202)) (-1068) (-522))) (-15 -2785 ((-960) (-1068) (-154 (-202)) (-1068) (-522))) (-15 -2407 ((-960) (-522) (-202) (-154 (-202)) (-522) (-1068) (-522))) (-15 -3773 ((-960) (-202) (-522))) (-15 -2238 ((-960) (-202) (-522))) (-15 -3671 ((-960) (-202) (-522))) (-15 -3152 ((-960) (-202) (-522))) (-15 -1259 ((-960) (-202) (-154 (-202)) (-522) (-1068) (-522))) (-15 -1277 ((-960) (-202) (-154 (-202)) (-522) (-1068) (-522))) (-15 -2571 ((-960) (-202) (-522))) (-15 -2663 ((-960) (-202) (-522))) (-15 -1550 ((-960) (-202) (-522))) (-15 -1383 ((-960) (-202) (-522))) (-15 -2467 ((-960) (-202) (-522))) (-15 -2275 ((-960) (-202) (-522))) (-15 -2347 ((-960) (-202) (-202) (-522))) (-15 -3720 ((-960) (-202) (-202) (-202) (-522))) (-15 -2332 ((-960) (-202) (-202) (-202) (-522))) (-15 -2517 ((-960) (-202) (-202) (-202) (-202) (-522))))) (T -696)) -((-2517 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-2332 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-3720 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-2347 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-2275 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-2467 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1383 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1550 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-2663 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1277 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-202))) (-5 *5 (-522)) (-5 *6 (-1068)) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1259 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-202))) (-5 *5 (-522)) (-5 *6 (-1068)) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-696)))) (-3152 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-3773 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-2407 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-522)) (-5 *5 (-154 (-202))) (-5 *6 (-1068)) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-696)))) (-2785 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1068)) (-5 *4 (-154 (-202))) (-5 *5 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1234 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1068)) (-5 *4 (-154 (-202))) (-5 *5 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-2552 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-202))) (-5 *5 (-522)) (-5 *6 (-1068)) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1527 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-202))) (-5 *5 (-522)) (-5 *6 (-1068)) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-696)))) (-3097 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1237 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-2387 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-2825 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1335 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1319 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-2646 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1790 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1822 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1545 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-3850 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-3022 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-2326 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-4089 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-2471 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-4020 (*1 *2 *3 *4) (-12 (-5 *3 (-154 (-202))) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(-10 -7 (-15 -4020 ((-960) (-154 (-202)) (-522))) (-15 -2471 ((-960) (-202) (-522))) (-15 -4089 ((-960) (-202) (-522))) (-15 -2326 ((-960) (-202) (-522))) (-15 -3022 ((-960) (-202) (-522))) (-15 -3850 ((-960) (-202) (-522))) (-15 -1545 ((-960) (-202) (-202) (-202) (-522))) (-15 -1822 ((-960) (-202) (-522))) (-15 -1790 ((-960) (-202) (-522))) (-15 -2646 ((-960) (-202) (-522))) (-15 -1319 ((-960) (-202) (-522))) (-15 -1335 ((-960) (-202) (-522))) (-15 -3666 ((-960) (-202) (-522))) (-15 -2825 ((-960) (-202) (-522))) (-15 -2387 ((-960) (-202) (-522))) (-15 -1237 ((-960) (-202) (-522))) (-15 -3097 ((-960) (-202) (-522))) (-15 -1527 ((-960) (-202) (-154 (-202)) (-522) (-1068) (-522))) (-15 -2552 ((-960) (-202) (-154 (-202)) (-522) (-1068) (-522))) (-15 -1234 ((-960) (-1068) (-154 (-202)) (-1068) (-522))) (-15 -2785 ((-960) (-1068) (-154 (-202)) (-1068) (-522))) (-15 -2407 ((-960) (-522) (-202) (-154 (-202)) (-522) (-1068) (-522))) (-15 -3773 ((-960) (-202) (-522))) (-15 -2238 ((-960) (-202) (-522))) (-15 -3671 ((-960) (-202) (-522))) (-15 -3152 ((-960) (-202) (-522))) (-15 -1259 ((-960) (-202) (-154 (-202)) (-522) (-1068) (-522))) (-15 -1277 ((-960) (-202) (-154 (-202)) (-522) (-1068) (-522))) (-15 -2571 ((-960) (-202) (-522))) (-15 -2663 ((-960) (-202) (-522))) (-15 -1550 ((-960) (-202) (-522))) (-15 -1383 ((-960) (-202) (-522))) (-15 -2467 ((-960) (-202) (-522))) (-15 -2275 ((-960) (-202) (-522))) (-15 -2347 ((-960) (-202) (-202) (-522))) (-15 -3720 ((-960) (-202) (-202) (-202) (-522))) (-15 -2332 ((-960) (-202) (-202) (-202) (-522))) (-15 -2517 ((-960) (-202) (-202) (-202) (-202) (-522)))) -((-4051 (((-1171)) 18)) (-3821 (((-1068)) 22)) (-2312 (((-1068)) 21)) (-2878 (((-1018) (-1085) (-628 (-522))) 35) (((-1018) (-1085) (-628 (-202))) 31)) (-1655 (((-108)) 16)) (-2537 (((-1068) (-1068)) 25))) -(((-697) (-10 -7 (-15 -2312 ((-1068))) (-15 -3821 ((-1068))) (-15 -2537 ((-1068) (-1068))) (-15 -2878 ((-1018) (-1085) (-628 (-202)))) (-15 -2878 ((-1018) (-1085) (-628 (-522)))) (-15 -1655 ((-108))) (-15 -4051 ((-1171))))) (T -697)) -((-4051 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-697)))) (-1655 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-697)))) (-2878 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-628 (-522))) (-5 *2 (-1018)) (-5 *1 (-697)))) (-2878 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-628 (-202))) (-5 *2 (-1018)) (-5 *1 (-697)))) (-2537 (*1 *2 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-697)))) (-3821 (*1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-697)))) (-2312 (*1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-697))))) -(-10 -7 (-15 -2312 ((-1068))) (-15 -3821 ((-1068))) (-15 -2537 ((-1068) (-1068))) (-15 -2878 ((-1018) (-1085) (-628 (-202)))) (-15 -2878 ((-1018) (-1085) (-628 (-522)))) (-15 -1655 ((-108))) (-15 -4051 ((-1171)))) -((-1596 (($ $ $) 10)) (-2185 (($ $ $ $) 9)) (-1369 (($ $ $) 12))) -(((-698 |#1|) (-10 -8 (-15 -1369 (|#1| |#1| |#1|)) (-15 -1596 (|#1| |#1| |#1|)) (-15 -2185 (|#1| |#1| |#1| |#1|))) (-699)) (T -698)) -NIL -(-10 -8 (-15 -1369 (|#1| |#1| |#1|)) (-15 -1596 (|#1| |#1| |#1|)) (-15 -2185 (|#1| |#1| |#1| |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-2698 (($ $ (-850)) 28)) (-1946 (($ $ (-850)) 29)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-1596 (($ $ $) 25)) (-2217 (((-792) $) 11)) (-2185 (($ $ $ $) 26)) (-1369 (($ $ $) 24)) (-3697 (($) 18 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 30)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 27))) -(((-699) (-1197)) (T -699)) -((-2185 (*1 *1 *1 *1 *1) (-4 *1 (-699))) (-1596 (*1 *1 *1 *1) (-4 *1 (-699))) (-1369 (*1 *1 *1 *1) (-4 *1 (-699)))) -(-13 (-21) (-658) (-10 -8 (-15 -2185 ($ $ $ $)) (-15 -1596 ($ $ $)) (-15 -1369 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-658) . T) ((-1014) . T)) -((-2217 (((-792) $) NIL) (($ (-522)) 10))) -(((-700 |#1|) (-10 -8 (-15 -2217 (|#1| (-522))) (-15 -2217 ((-792) |#1|))) (-701)) (T -700)) -NIL -(-10 -8 (-15 -2217 (|#1| (-522))) (-15 -2217 ((-792) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-1279 (((-3 $ "failed") $) 40)) (-2698 (($ $ (-850)) 28) (($ $ (-708)) 35)) (-3920 (((-3 $ "failed") $) 38)) (-2859 (((-108) $) 34)) (-3070 (((-3 $ "failed") $) 39)) (-1946 (($ $ (-850)) 29) (($ $ (-708)) 36)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-1596 (($ $ $) 25)) (-2217 (((-792) $) 11) (($ (-522)) 31)) (-2742 (((-708)) 32)) (-2185 (($ $ $ $) 26)) (-1369 (($ $ $) 24)) (-3697 (($) 18 T CONST)) (-3709 (($) 33 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 30) (($ $ (-708)) 37)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 27))) -(((-701) (-1197)) (T -701)) -((-2742 (*1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-708)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-701))))) -(-13 (-699) (-660) (-10 -8 (-15 -2742 ((-708))) (-15 -2217 ($ (-522))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-658) . T) ((-660) . T) ((-699) . T) ((-1014) . T)) -((-2204 (((-588 (-2 (|:| |outval| (-154 |#1|)) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 (-154 |#1|)))))) (-628 (-154 (-382 (-522)))) |#1|) 27)) (-2704 (((-588 (-154 |#1|)) (-628 (-154 (-382 (-522)))) |#1|) 19)) (-2645 (((-881 (-154 (-382 (-522)))) (-628 (-154 (-382 (-522)))) (-1085)) 16) (((-881 (-154 (-382 (-522)))) (-628 (-154 (-382 (-522))))) 15))) -(((-702 |#1|) (-10 -7 (-15 -2645 ((-881 (-154 (-382 (-522)))) (-628 (-154 (-382 (-522)))))) (-15 -2645 ((-881 (-154 (-382 (-522)))) (-628 (-154 (-382 (-522)))) (-1085))) (-15 -2704 ((-588 (-154 |#1|)) (-628 (-154 (-382 (-522)))) |#1|)) (-15 -2204 ((-588 (-2 (|:| |outval| (-154 |#1|)) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 (-154 |#1|)))))) (-628 (-154 (-382 (-522)))) |#1|))) (-13 (-338) (-782))) (T -702)) -((-2204 (*1 *2 *3 *4) (-12 (-5 *3 (-628 (-154 (-382 (-522))))) (-5 *2 (-588 (-2 (|:| |outval| (-154 *4)) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 (-154 *4))))))) (-5 *1 (-702 *4)) (-4 *4 (-13 (-338) (-782))))) (-2704 (*1 *2 *3 *4) (-12 (-5 *3 (-628 (-154 (-382 (-522))))) (-5 *2 (-588 (-154 *4))) (-5 *1 (-702 *4)) (-4 *4 (-13 (-338) (-782))))) (-2645 (*1 *2 *3 *4) (-12 (-5 *3 (-628 (-154 (-382 (-522))))) (-5 *4 (-1085)) (-5 *2 (-881 (-154 (-382 (-522))))) (-5 *1 (-702 *5)) (-4 *5 (-13 (-338) (-782))))) (-2645 (*1 *2 *3) (-12 (-5 *3 (-628 (-154 (-382 (-522))))) (-5 *2 (-881 (-154 (-382 (-522))))) (-5 *1 (-702 *4)) (-4 *4 (-13 (-338) (-782)))))) -(-10 -7 (-15 -2645 ((-881 (-154 (-382 (-522)))) (-628 (-154 (-382 (-522)))))) (-15 -2645 ((-881 (-154 (-382 (-522)))) (-628 (-154 (-382 (-522)))) (-1085))) (-15 -2704 ((-588 (-154 |#1|)) (-628 (-154 (-382 (-522)))) |#1|)) (-15 -2204 ((-588 (-2 (|:| |outval| (-154 |#1|)) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 (-154 |#1|)))))) (-628 (-154 (-382 (-522)))) |#1|))) -((-1471 (((-158 (-522)) |#1|) 25))) -(((-703 |#1|) (-10 -7 (-15 -1471 ((-158 (-522)) |#1|))) (-379)) (T -703)) -((-1471 (*1 *2 *3) (-12 (-5 *2 (-158 (-522))) (-5 *1 (-703 *3)) (-4 *3 (-379))))) -(-10 -7 (-15 -1471 ((-158 (-522)) |#1|))) -((-3755 ((|#1| |#1| |#1|) 25)) (-1416 ((|#1| |#1| |#1|) 24)) (-3283 ((|#1| |#1| |#1|) 32)) (-3453 ((|#1| |#1| |#1|) 28)) (-2708 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2070 (((-2 (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1|) 23))) -(((-704 |#1| |#2|) (-10 -7 (-15 -2070 ((-2 (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1|)) (-15 -1416 (|#1| |#1| |#1|)) (-15 -3755 (|#1| |#1| |#1|)) (-15 -2708 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3453 (|#1| |#1| |#1|)) (-15 -3283 (|#1| |#1| |#1|))) (-647 |#2|) (-338)) (T -704)) -((-3283 (*1 *2 *2 *2) (-12 (-4 *3 (-338)) (-5 *1 (-704 *2 *3)) (-4 *2 (-647 *3)))) (-3453 (*1 *2 *2 *2) (-12 (-4 *3 (-338)) (-5 *1 (-704 *2 *3)) (-4 *2 (-647 *3)))) (-2708 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-338)) (-5 *1 (-704 *2 *3)) (-4 *2 (-647 *3)))) (-3755 (*1 *2 *2 *2) (-12 (-4 *3 (-338)) (-5 *1 (-704 *2 *3)) (-4 *2 (-647 *3)))) (-1416 (*1 *2 *2 *2) (-12 (-4 *3 (-338)) (-5 *1 (-704 *2 *3)) (-4 *2 (-647 *3)))) (-2070 (*1 *2 *3 *3) (-12 (-4 *4 (-338)) (-5 *2 (-2 (|:| -3450 *3) (|:| -4002 *3))) (-5 *1 (-704 *3 *4)) (-4 *3 (-647 *4))))) -(-10 -7 (-15 -2070 ((-2 (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1|)) (-15 -1416 (|#1| |#1| |#1|)) (-15 -3755 (|#1| |#1| |#1|)) (-15 -2708 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3453 (|#1| |#1| |#1|)) (-15 -3283 (|#1| |#1| |#1|))) -((-3387 (((-2 (|:| -2905 (-628 (-522))) (|:| |basisDen| (-522)) (|:| |basisInv| (-628 (-522)))) (-522)) 58)) (-1886 (((-2 (|:| -2905 (-628 (-522))) (|:| |basisDen| (-522)) (|:| |basisInv| (-628 (-522))))) 56)) (-1615 (((-522)) 68))) -(((-705 |#1| |#2|) (-10 -7 (-15 -1615 ((-522))) (-15 -1886 ((-2 (|:| -2905 (-628 (-522))) (|:| |basisDen| (-522)) (|:| |basisInv| (-628 (-522)))))) (-15 -3387 ((-2 (|:| -2905 (-628 (-522))) (|:| |basisDen| (-522)) (|:| |basisInv| (-628 (-522)))) (-522)))) (-1142 (-522)) (-384 (-522) |#1|)) (T -705)) -((-3387 (*1 *2 *3) (-12 (-5 *3 (-522)) (-4 *4 (-1142 *3)) (-5 *2 (-2 (|:| -2905 (-628 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-628 *3)))) (-5 *1 (-705 *4 *5)) (-4 *5 (-384 *3 *4)))) (-1886 (*1 *2) (-12 (-4 *3 (-1142 (-522))) (-5 *2 (-2 (|:| -2905 (-628 (-522))) (|:| |basisDen| (-522)) (|:| |basisInv| (-628 (-522))))) (-5 *1 (-705 *3 *4)) (-4 *4 (-384 (-522) *3)))) (-1615 (*1 *2) (-12 (-4 *3 (-1142 *2)) (-5 *2 (-522)) (-5 *1 (-705 *3 *4)) (-4 *4 (-384 *2 *3))))) -(-10 -7 (-15 -1615 ((-522))) (-15 -1886 ((-2 (|:| -2905 (-628 (-522))) (|:| |basisDen| (-522)) (|:| |basisInv| (-628 (-522)))))) (-15 -3387 ((-2 (|:| -2905 (-628 (-522))) (|:| |basisDen| (-522)) (|:| |basisInv| (-628 (-522)))) (-522)))) -((-1419 (((-108) $ $) NIL)) (-1478 (((-3 (|:| |nia| (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) $) 15)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 14) (($ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 8) (($ (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) 12)) (-1562 (((-108) $ $) NIL))) -(((-706) (-13 (-1014) (-10 -8 (-15 -2217 ($ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2217 ($ (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2217 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (-15 -2217 ((-792) $)) (-15 -1478 ((-3 (|:| |nia| (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) $))))) (T -706)) -((-2217 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-706)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *1 (-706)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *1 (-706)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) (-5 *1 (-706)))) (-1478 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) (-5 *1 (-706))))) -(-13 (-1014) (-10 -8 (-15 -2217 ($ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2217 ($ (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2217 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (-15 -2217 ((-792) $)) (-15 -1478 ((-3 (|:| |nia| (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) $)))) -((-2984 (((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|))) 14) (((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|)) (-588 (-1085))) 13)) (-2925 (((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|))) 16) (((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|)) (-588 (-1085))) 15))) -(((-707 |#1|) (-10 -7 (-15 -2984 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|)) (-588 (-1085)))) (-15 -2984 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|)))) (-15 -2925 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|)) (-588 (-1085)))) (-15 -2925 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|))))) (-514)) (T -707)) -((-2925 (*1 *2 *3) (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *4)))))) (-5 *1 (-707 *4)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-588 (-1085))) (-4 *5 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *5)))))) (-5 *1 (-707 *5)))) (-2984 (*1 *2 *3) (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *4)))))) (-5 *1 (-707 *4)))) (-2984 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-588 (-1085))) (-4 *5 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *5)))))) (-5 *1 (-707 *5))))) -(-10 -7 (-15 -2984 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|)) (-588 (-1085)))) (-15 -2984 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|)))) (-15 -2925 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|)) (-588 (-1085)))) (-15 -2925 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|))))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-1827 (($ $ $) 8)) (-2265 (((-3 $ "failed") $ $) 11)) (-1736 (($ $ (-522)) 9)) (-3367 (($) NIL T CONST)) (-2333 (($ $ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3344 (($ $) NIL)) (-2303 (($ $ $) NIL)) (-2859 (((-108) $) NIL)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2308 (($ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-2217 (((-792) $) NIL)) (-3622 (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (* (($ (-708) $) NIL) (($ (-850) $) NIL) (($ $ $) NIL))) -(((-708) (-13 (-730) (-664) (-10 -8 (-15 -2303 ($ $ $)) (-15 -2333 ($ $ $)) (-15 -2308 ($ $ $)) (-15 -4164 ((-2 (|:| -3450 $) (|:| -4002 $)) $ $)) (-15 -2276 ((-3 $ "failed") $ $)) (-15 -1736 ($ $ (-522))) (-15 -3344 ($ $)) (-6 (-4240 "*"))))) (T -708)) -((-2303 (*1 *1 *1 *1) (-5 *1 (-708))) (-2333 (*1 *1 *1 *1) (-5 *1 (-708))) (-2308 (*1 *1 *1 *1) (-5 *1 (-708))) (-4164 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3450 (-708)) (|:| -4002 (-708)))) (-5 *1 (-708)))) (-2276 (*1 *1 *1 *1) (|partial| -5 *1 (-708))) (-1736 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-708)))) (-3344 (*1 *1 *1) (-5 *1 (-708)))) -(-13 (-730) (-664) (-10 -8 (-15 -2303 ($ $ $)) (-15 -2333 ($ $ $)) (-15 -2308 ($ $ $)) (-15 -4164 ((-2 (|:| -3450 $) (|:| -4002 $)) $ $)) (-15 -2276 ((-3 $ "failed") $ $)) (-15 -1736 ($ $ (-522))) (-15 -3344 ($ $)) (-6 (-4240 "*")))) -((-2925 (((-3 |#2| "failed") |#2| |#2| (-110) (-1085)) 35))) -(((-709 |#1| |#2|) (-10 -7 (-15 -2925 ((-3 |#2| "failed") |#2| |#2| (-110) (-1085)))) (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)) (-13 (-29 |#1|) (-1106) (-887))) (T -709)) -((-2925 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1085)) (-4 *5 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *1 (-709 *5 *2)) (-4 *2 (-13 (-29 *5) (-1106) (-887)))))) -(-10 -7 (-15 -2925 ((-3 |#2| "failed") |#2| |#2| (-110) (-1085)))) -((-2217 (((-711) |#1|) 8))) -(((-710 |#1|) (-10 -7 (-15 -2217 ((-711) |#1|))) (-1120)) (T -710)) -((-2217 (*1 *2 *3) (-12 (-5 *2 (-711)) (-5 *1 (-710 *3)) (-4 *3 (-1120))))) -(-10 -7 (-15 -2217 ((-711) |#1|))) -((-1419 (((-108) $ $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 7)) (-1562 (((-108) $ $) 9))) -(((-711) (-1014)) (T -711)) -NIL -(-1014) -((-1269 ((|#2| |#4|) 35))) -(((-712 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1269 (|#2| |#4|))) (-426) (-1142 |#1|) (-662 |#1| |#2|) (-1142 |#3|)) (T -712)) -((-1269 (*1 *2 *3) (-12 (-4 *4 (-426)) (-4 *5 (-662 *4 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-712 *4 *2 *5 *3)) (-4 *3 (-1142 *5))))) -(-10 -7 (-15 -1269 (|#2| |#4|))) -((-3920 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-1520 (((-1171) (-1068) (-1068) |#4| |#5|) 33)) (-1398 ((|#4| |#4| |#5|) 73)) (-2774 (((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#5|) 77)) (-3391 (((-588 (-2 (|:| |val| (-108)) (|:| -1974 |#5|))) |#4| |#5|) 15))) -(((-713 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3920 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1398 (|#4| |#4| |#5|)) (-15 -2774 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#5|)) (-15 -1520 ((-1171) (-1068) (-1068) |#4| |#5|)) (-15 -3391 ((-588 (-2 (|:| |val| (-108)) (|:| -1974 |#5|))) |#4| |#5|))) (-426) (-730) (-784) (-985 |#1| |#2| |#3|) (-990 |#1| |#2| |#3| |#4|)) (T -713)) -((-3391 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1974 *4)))) (-5 *1 (-713 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-1520 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1068)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *4 (-985 *6 *7 *8)) (-5 *2 (-1171)) (-5 *1 (-713 *6 *7 *8 *4 *5)) (-4 *5 (-990 *6 *7 *8 *4)))) (-2774 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *4)))) (-5 *1 (-713 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-1398 (*1 *2 *2 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *2 (-985 *4 *5 *6)) (-5 *1 (-713 *4 *5 *6 *2 *3)) (-4 *3 (-990 *4 *5 *6 *2)))) (-3920 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-713 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))) -(-10 -7 (-15 -3920 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1398 (|#4| |#4| |#5|)) (-15 -2774 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#5|)) (-15 -1520 ((-1171) (-1068) (-1068) |#4| |#5|)) (-15 -3391 ((-588 (-2 (|:| |val| (-108)) (|:| -1974 |#5|))) |#4| |#5|))) -((-3700 (((-3 (-1081 (-1081 |#1|)) "failed") |#4|) 44)) (-1979 (((-588 |#4|) |#4|) 15)) (-2938 ((|#4| |#4|) 11))) -(((-714 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1979 ((-588 |#4|) |#4|)) (-15 -3700 ((-3 (-1081 (-1081 |#1|)) "failed") |#4|)) (-15 -2938 (|#4| |#4|))) (-324) (-304 |#1|) (-1142 |#2|) (-1142 |#3|) (-850)) (T -714)) -((-2938 (*1 *2 *2) (-12 (-4 *3 (-324)) (-4 *4 (-304 *3)) (-4 *5 (-1142 *4)) (-5 *1 (-714 *3 *4 *5 *2 *6)) (-4 *2 (-1142 *5)) (-14 *6 (-850)))) (-3700 (*1 *2 *3) (|partial| -12 (-4 *4 (-324)) (-4 *5 (-304 *4)) (-4 *6 (-1142 *5)) (-5 *2 (-1081 (-1081 *4))) (-5 *1 (-714 *4 *5 *6 *3 *7)) (-4 *3 (-1142 *6)) (-14 *7 (-850)))) (-1979 (*1 *2 *3) (-12 (-4 *4 (-324)) (-4 *5 (-304 *4)) (-4 *6 (-1142 *5)) (-5 *2 (-588 *3)) (-5 *1 (-714 *4 *5 *6 *3 *7)) (-4 *3 (-1142 *6)) (-14 *7 (-850))))) -(-10 -7 (-15 -1979 ((-588 |#4|) |#4|)) (-15 -3700 ((-3 (-1081 (-1081 |#1|)) "failed") |#4|)) (-15 -2938 (|#4| |#4|))) -((-2911 (((-2 (|:| |deter| (-588 (-1081 |#5|))) (|:| |dterm| (-588 (-588 (-2 (|:| -2170 (-708)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-588 |#1|)) (|:| |nlead| (-588 |#5|))) (-1081 |#5|) (-588 |#1|) (-588 |#5|)) 53)) (-3704 (((-588 (-708)) |#1|) 12))) -(((-715 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2911 ((-2 (|:| |deter| (-588 (-1081 |#5|))) (|:| |dterm| (-588 (-588 (-2 (|:| -2170 (-708)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-588 |#1|)) (|:| |nlead| (-588 |#5|))) (-1081 |#5|) (-588 |#1|) (-588 |#5|))) (-15 -3704 ((-588 (-708)) |#1|))) (-1142 |#4|) (-730) (-784) (-283) (-878 |#4| |#2| |#3|)) (T -715)) -((-3704 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283)) (-5 *2 (-588 (-708))) (-5 *1 (-715 *3 *4 *5 *6 *7)) (-4 *3 (-1142 *6)) (-4 *7 (-878 *6 *4 *5)))) (-2911 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1142 *9)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *9 (-283)) (-4 *10 (-878 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-588 (-1081 *10))) (|:| |dterm| (-588 (-588 (-2 (|:| -2170 (-708)) (|:| |pcoef| *10))))) (|:| |nfacts| (-588 *6)) (|:| |nlead| (-588 *10)))) (-5 *1 (-715 *6 *7 *8 *9 *10)) (-5 *3 (-1081 *10)) (-5 *4 (-588 *6)) (-5 *5 (-588 *10))))) -(-10 -7 (-15 -2911 ((-2 (|:| |deter| (-588 (-1081 |#5|))) (|:| |dterm| (-588 (-588 (-2 (|:| -2170 (-708)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-588 |#1|)) (|:| |nlead| (-588 |#5|))) (-1081 |#5|) (-588 |#1|) (-588 |#5|))) (-15 -3704 ((-588 (-708)) |#1|))) -((-1533 (((-588 (-2 (|:| |outval| |#1|) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 |#1|))))) (-628 (-382 (-522))) |#1|) 27)) (-1756 (((-588 |#1|) (-628 (-382 (-522))) |#1|) 19)) (-2645 (((-881 (-382 (-522))) (-628 (-382 (-522))) (-1085)) 16) (((-881 (-382 (-522))) (-628 (-382 (-522)))) 15))) -(((-716 |#1|) (-10 -7 (-15 -2645 ((-881 (-382 (-522))) (-628 (-382 (-522))))) (-15 -2645 ((-881 (-382 (-522))) (-628 (-382 (-522))) (-1085))) (-15 -1756 ((-588 |#1|) (-628 (-382 (-522))) |#1|)) (-15 -1533 ((-588 (-2 (|:| |outval| |#1|) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 |#1|))))) (-628 (-382 (-522))) |#1|))) (-13 (-338) (-782))) (T -716)) -((-1533 (*1 *2 *3 *4) (-12 (-5 *3 (-628 (-382 (-522)))) (-5 *2 (-588 (-2 (|:| |outval| *4) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 *4)))))) (-5 *1 (-716 *4)) (-4 *4 (-13 (-338) (-782))))) (-1756 (*1 *2 *3 *4) (-12 (-5 *3 (-628 (-382 (-522)))) (-5 *2 (-588 *4)) (-5 *1 (-716 *4)) (-4 *4 (-13 (-338) (-782))))) (-2645 (*1 *2 *3 *4) (-12 (-5 *3 (-628 (-382 (-522)))) (-5 *4 (-1085)) (-5 *2 (-881 (-382 (-522)))) (-5 *1 (-716 *5)) (-4 *5 (-13 (-338) (-782))))) (-2645 (*1 *2 *3) (-12 (-5 *3 (-628 (-382 (-522)))) (-5 *2 (-881 (-382 (-522)))) (-5 *1 (-716 *4)) (-4 *4 (-13 (-338) (-782)))))) -(-10 -7 (-15 -2645 ((-881 (-382 (-522))) (-628 (-382 (-522))))) (-15 -2645 ((-881 (-382 (-522))) (-628 (-382 (-522))) (-1085))) (-15 -1756 ((-588 |#1|) (-628 (-382 (-522))) |#1|)) (-15 -1533 ((-588 (-2 (|:| |outval| |#1|) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 |#1|))))) (-628 (-382 (-522))) |#1|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 34)) (-3533 (((-588 |#2|) $) NIL)) (-1264 (((-1081 $) $ |#2|) NIL) (((-1081 |#1|) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) NIL (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-3358 (((-708) $) NIL) (((-708) $ (-588 |#2|)) NIL)) (-3961 (($ $) 28)) (-2942 (((-108) $ $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3485 (($ $ $) 93 (|has| |#1| (-514)))) (-2817 (((-588 $) $ $) 106 (|has| |#1| (-514)))) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2961 (($ $) NIL (|has| |#1| (-426)))) (-3133 (((-393 $) $) NIL (|has| |#1| (-426)))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-881 (-382 (-522)))) NIL (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#2| (-563 (-1085))))) (((-3 $ "failed") (-881 (-522))) NIL (-3844 (-12 (|has| |#1| (-37 (-522))) (|has| |#2| (-563 (-1085))) (-2473 (|has| |#1| (-37 (-382 (-522)))))) (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#2| (-563 (-1085)))))) (((-3 $ "failed") (-881 |#1|)) NIL (-3844 (-12 (|has| |#2| (-563 (-1085))) (-2473 (|has| |#1| (-37 (-382 (-522))))) (-2473 (|has| |#1| (-37 (-522))))) (-12 (|has| |#1| (-37 (-522))) (|has| |#2| (-563 (-1085))) (-2473 (|has| |#1| (-37 (-382 (-522))))) (-2473 (|has| |#1| (-507)))) (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#2| (-563 (-1085))) (-2473 (|has| |#1| (-919 (-522))))))) (((-3 (-1037 |#1| |#2|) "failed") $) 18)) (-1478 ((|#1| $) NIL) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#1| (-962 (-522)))) ((|#2| $) NIL) (($ (-881 (-382 (-522)))) NIL (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#2| (-563 (-1085))))) (($ (-881 (-522))) NIL (-3844 (-12 (|has| |#1| (-37 (-522))) (|has| |#2| (-563 (-1085))) (-2473 (|has| |#1| (-37 (-382 (-522)))))) (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#2| (-563 (-1085)))))) (($ (-881 |#1|)) NIL (-3844 (-12 (|has| |#2| (-563 (-1085))) (-2473 (|has| |#1| (-37 (-382 (-522))))) (-2473 (|has| |#1| (-37 (-522))))) (-12 (|has| |#1| (-37 (-522))) (|has| |#2| (-563 (-1085))) (-2473 (|has| |#1| (-37 (-382 (-522))))) (-2473 (|has| |#1| (-507)))) (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#2| (-563 (-1085))) (-2473 (|has| |#1| (-919 (-522))))))) (((-1037 |#1| |#2|) $) NIL)) (-2908 (($ $ $ |#2|) NIL (|has| |#1| (-157))) (($ $ $) 104 (|has| |#1| (-514)))) (-3241 (($ $) NIL) (($ $ |#2|) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-1426 (((-108) $ $) NIL) (((-108) $ (-588 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2184 (((-108) $) NIL)) (-3370 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 70)) (-2563 (($ $) 119 (|has| |#1| (-426)))) (-2883 (($ $) NIL (|has| |#1| (-426))) (($ $ |#2|) NIL (|has| |#1| (-426)))) (-3232 (((-588 $) $) NIL)) (-2725 (((-108) $) NIL (|has| |#1| (-838)))) (-2948 (($ $) NIL (|has| |#1| (-514)))) (-1510 (($ $) NIL (|has| |#1| (-514)))) (-4107 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3168 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-3792 (($ $ |#1| (-494 |#2|) $) NIL)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| |#1| (-815 (-354))) (|has| |#2| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| |#1| (-815 (-522))) (|has| |#2| (-815 (-522)))))) (-2859 (((-108) $) NIL)) (-1391 (((-708) $) NIL)) (-1384 (((-108) $ $) NIL) (((-108) $ (-588 $)) NIL)) (-2662 (($ $ $ $ $) 90 (|has| |#1| (-514)))) (-1933 ((|#2| $) 19)) (-3520 (($ (-1081 |#1|) |#2|) NIL) (($ (-1081 $) |#2|) NIL)) (-3038 (((-588 $) $) NIL)) (-1374 (((-108) $) NIL)) (-3500 (($ |#1| (-494 |#2|)) NIL) (($ $ |#2| (-708)) 36) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-3556 (($ $ $) 60)) (-3058 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $ |#2|) NIL)) (-1257 (((-108) $) NIL)) (-3564 (((-494 |#2|) $) NIL) (((-708) $ |#2|) NIL) (((-588 (-708)) $ (-588 |#2|)) NIL)) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-2059 (((-708) $) 20)) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-1723 (($ (-1 (-494 |#2|) (-494 |#2|)) $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-3 |#2| "failed") $) NIL)) (-2894 (($ $) NIL (|has| |#1| (-426)))) (-2408 (($ $) NIL (|has| |#1| (-426)))) (-2697 (((-588 $) $) NIL)) (-3110 (($ $) 37)) (-1840 (($ $) NIL (|has| |#1| (-426)))) (-3814 (((-588 $) $) 41)) (-3409 (($ $) 39)) (-3216 (($ $) NIL)) (-3224 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2267 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-3816 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4062 (-708))) $ $) 82)) (-1456 (((-2 (|:| -3112 $) (|:| |gap| (-708)) (|:| -3450 $) (|:| -4002 $)) $ $) 67) (((-2 (|:| -3112 $) (|:| |gap| (-708)) (|:| -3450 $) (|:| -4002 $)) $ $ |#2|) NIL)) (-2038 (((-2 (|:| -3112 $) (|:| |gap| (-708)) (|:| -4002 $)) $ $) NIL) (((-2 (|:| -3112 $) (|:| |gap| (-708)) (|:| -4002 $)) $ $ |#2|) NIL)) (-3968 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3787 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-2311 (((-1068) $) NIL)) (-1998 (($ $ $) 108 (|has| |#1| (-514)))) (-3946 (((-588 $) $) 30)) (-2760 (((-3 (-588 $) "failed") $) NIL)) (-1919 (((-3 (-588 $) "failed") $) NIL)) (-2024 (((-3 (-2 (|:| |var| |#2|) (|:| -3858 (-708))) "failed") $) NIL)) (-3864 (((-108) $ $) NIL) (((-108) $ (-588 $)) NIL)) (-2556 (($ $ $) NIL)) (-3937 (($ $) 21)) (-1517 (((-108) $ $) NIL)) (-3060 (((-108) $ $) NIL) (((-108) $ (-588 $)) NIL)) (-3896 (($ $ $) NIL)) (-3655 (($ $) 23)) (-4174 (((-1032) $) NIL)) (-3214 (((-2 (|:| -2308 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-514)))) (-2997 (((-2 (|:| -2308 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-514)))) (-3199 (((-108) $) 52)) (-3207 ((|#1| $) 55)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-426)))) (-2308 ((|#1| |#1| $) 116 (|has| |#1| (-426))) (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2006 (((-393 $) $) NIL (|has| |#1| (-838)))) (-2078 (((-2 (|:| -2308 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-514)))) (-2276 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-514)))) (-4139 (($ $ |#1|) 112 (|has| |#1| (-514))) (($ $ $) NIL (|has| |#1| (-514)))) (-2376 (($ $ |#1|) 111 (|has| |#1| (-514))) (($ $ $) NIL (|has| |#1| (-514)))) (-2330 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-588 |#2|) (-588 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-588 |#2|) (-588 $)) NIL)) (-1615 (($ $ |#2|) NIL (|has| |#1| (-157)))) (-2731 (($ $ |#2|) NIL) (($ $ (-588 |#2|)) NIL) (($ $ |#2| (-708)) NIL) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-2487 (((-494 |#2|) $) NIL) (((-708) $ |#2|) 43) (((-588 (-708)) $ (-588 |#2|)) NIL)) (-2581 (($ $) NIL)) (-2209 (($ $) 33)) (-3873 (((-821 (-354)) $) NIL (-12 (|has| |#1| (-563 (-821 (-354)))) (|has| |#2| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| |#1| (-563 (-821 (-522)))) (|has| |#2| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| |#1| (-563 (-498))) (|has| |#2| (-563 (-498))))) (($ (-881 (-382 (-522)))) NIL (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#2| (-563 (-1085))))) (($ (-881 (-522))) NIL (-3844 (-12 (|has| |#1| (-37 (-522))) (|has| |#2| (-563 (-1085))) (-2473 (|has| |#1| (-37 (-382 (-522)))))) (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#2| (-563 (-1085)))))) (($ (-881 |#1|)) NIL (|has| |#2| (-563 (-1085)))) (((-1068) $) NIL (-12 (|has| |#1| (-962 (-522))) (|has| |#2| (-563 (-1085))))) (((-881 |#1|) $) NIL (|has| |#2| (-563 (-1085))))) (-2988 ((|#1| $) 115 (|has| |#1| (-426))) (($ $ |#2|) NIL (|has| |#1| (-426)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-881 |#1|) $) NIL (|has| |#2| (-563 (-1085)))) (((-1037 |#1| |#2|) $) 15) (($ (-1037 |#1| |#2|)) 16) (($ (-382 (-522))) NIL (-3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#1| (-514)))) (-2180 (((-588 |#1|) $) NIL)) (-1643 ((|#1| $ (-494 |#2|)) NIL) (($ $ |#2| (-708)) 44) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2742 (((-708)) NIL)) (-1225 (($ $ $ (-708)) NIL (|has| |#1| (-157)))) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 13 T CONST)) (-1679 (((-3 (-108) "failed") $ $) NIL)) (-3709 (($) 35 T CONST)) (-2580 (($ $ $ $ (-708)) 88 (|has| |#1| (-514)))) (-2575 (($ $ $ (-708)) 87 (|has| |#1| (-514)))) (-2252 (($ $ |#2|) NIL) (($ $ (-588 |#2|)) NIL) (($ $ |#2| (-708)) NIL) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) 54)) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1672 (($ $) NIL) (($ $ $) 64)) (-1661 (($ $ $) 74)) (** (($ $ (-850)) NIL) (($ $ (-708)) 61)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 59) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) -(((-717 |#1| |#2|) (-13 (-985 |#1| (-494 |#2|) |#2|) (-562 (-1037 |#1| |#2|)) (-962 (-1037 |#1| |#2|))) (-971) (-784)) (T -717)) -NIL -(-13 (-985 |#1| (-494 |#2|) |#2|) (-562 (-1037 |#1| |#2|)) (-962 (-1037 |#1| |#2|))) -((-3810 (((-719 |#2|) (-1 |#2| |#1|) (-719 |#1|)) 13))) -(((-718 |#1| |#2|) (-10 -7 (-15 -3810 ((-719 |#2|) (-1 |#2| |#1|) (-719 |#1|)))) (-971) (-971)) (T -718)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-719 *5)) (-4 *5 (-971)) (-4 *6 (-971)) (-5 *2 (-719 *6)) (-5 *1 (-718 *5 *6))))) -(-10 -7 (-15 -3810 ((-719 |#2|) (-1 |#2| |#1|) (-719 |#1|)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 12)) (-1428 (((-1166 |#1|) $ (-708)) NIL)) (-3533 (((-588 (-999)) $) NIL)) (-2264 (($ (-1081 |#1|)) NIL)) (-1264 (((-1081 $) $ (-999)) NIL) (((-1081 |#1|) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) NIL (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-3358 (((-708) $) NIL) (((-708) $ (-588 (-999))) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-1314 (((-588 $) $ $) 39 (|has| |#1| (-514)))) (-3485 (($ $ $) 35 (|has| |#1| (-514)))) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2961 (($ $) NIL (|has| |#1| (-426)))) (-3133 (((-393 $) $) NIL (|has| |#1| (-426)))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2805 (((-108) $ $) NIL (|has| |#1| (-338)))) (-1633 (($ $ (-708)) NIL)) (-2165 (($ $ (-708)) NIL)) (-2458 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-426)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-999) "failed") $) NIL) (((-3 (-1081 |#1|) "failed") $) 10)) (-1478 ((|#1| $) NIL) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-999) $) NIL) (((-1081 |#1|) $) NIL)) (-2908 (($ $ $ (-999)) NIL (|has| |#1| (-157))) ((|#1| $ $) 43 (|has| |#1| (-157)))) (-2333 (($ $ $) NIL (|has| |#1| (-338)))) (-3241 (($ $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2303 (($ $ $) NIL (|has| |#1| (-338)))) (-2659 (($ $ $) NIL)) (-2830 (($ $ $) 71 (|has| |#1| (-514)))) (-3370 (((-2 (|:| -3112 |#1|) (|:| -3450 $) (|:| -4002 $)) $ $) 70 (|has| |#1| (-514)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2883 (($ $) NIL (|has| |#1| (-426))) (($ $ (-999)) NIL (|has| |#1| (-426)))) (-3232 (((-588 $) $) NIL)) (-2725 (((-108) $) NIL (|has| |#1| (-838)))) (-3792 (($ $ |#1| (-708) $) NIL)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-999) (-815 (-354))) (|has| |#1| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-999) (-815 (-522))) (|has| |#1| (-815 (-522)))))) (-3872 (((-708) $ $) NIL (|has| |#1| (-514)))) (-2859 (((-108) $) NIL)) (-1391 (((-708) $) NIL)) (-4208 (((-3 $ "failed") $) NIL (|has| |#1| (-1061)))) (-3520 (($ (-1081 |#1|) (-999)) NIL) (($ (-1081 $) (-999)) NIL)) (-2895 (($ $ (-708)) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3038 (((-588 $) $) NIL)) (-1374 (((-108) $) NIL)) (-3500 (($ |#1| (-708)) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-3556 (($ $ $) 20)) (-3058 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $ (-999)) NIL) (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-3564 (((-708) $) NIL) (((-708) $ (-999)) NIL) (((-588 (-708)) $ (-588 (-999))) NIL)) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-1723 (($ (-1 (-708) (-708)) $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-4178 (((-1081 |#1|) $) NIL)) (-3155 (((-3 (-999) "failed") $) NIL)) (-3216 (($ $) NIL)) (-3224 ((|#1| $) NIL)) (-2267 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-3816 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4062 (-708))) $ $) 26)) (-1554 (($ $ $) 29)) (-2393 (($ $ $) 32)) (-1456 (((-2 (|:| -3112 |#1|) (|:| |gap| (-708)) (|:| -3450 $) (|:| -4002 $)) $ $) 31)) (-2311 (((-1068) $) NIL)) (-1998 (($ $ $) 41 (|has| |#1| (-514)))) (-2927 (((-2 (|:| -3450 $) (|:| -4002 $)) $ (-708)) NIL)) (-2760 (((-3 (-588 $) "failed") $) NIL)) (-1919 (((-3 (-588 $) "failed") $) NIL)) (-2024 (((-3 (-2 (|:| |var| (-999)) (|:| -3858 (-708))) "failed") $) NIL)) (-2611 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3937 (($) NIL (|has| |#1| (-1061)) CONST)) (-4174 (((-1032) $) NIL)) (-3214 (((-2 (|:| -2308 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-514)))) (-2997 (((-2 (|:| -2308 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-514)))) (-4115 (((-2 (|:| -2908 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-514)))) (-3400 (((-2 (|:| -2908 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-514)))) (-3199 (((-108) $) 13)) (-3207 ((|#1| $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-426)))) (-2308 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-1953 (($ $ (-708) |#1| $) 19)) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2006 (((-393 $) $) NIL (|has| |#1| (-838)))) (-2078 (((-2 (|:| -2308 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-514)))) (-4065 (((-2 (|:| -2908 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-514)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-338)))) (-2276 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-2330 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-999) |#1|) NIL) (($ $ (-588 (-999)) (-588 |#1|)) NIL) (($ $ (-999) $) NIL) (($ $ (-588 (-999)) (-588 $)) NIL)) (-4031 (((-708) $) NIL (|has| |#1| (-338)))) (-2683 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-382 $) (-382 $) (-382 $)) NIL (|has| |#1| (-514))) ((|#1| (-382 $) |#1|) NIL (|has| |#1| (-338))) (((-382 $) $ (-382 $)) NIL (|has| |#1| (-514)))) (-2877 (((-3 $ "failed") $ (-708)) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-338)))) (-1615 (($ $ (-999)) NIL (|has| |#1| (-157))) ((|#1| $) NIL (|has| |#1| (-157)))) (-2731 (($ $ (-999)) NIL) (($ $ (-588 (-999))) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL) (($ $ (-708)) NIL) (($ $) NIL) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2487 (((-708) $) NIL) (((-708) $ (-999)) NIL) (((-588 (-708)) $ (-588 (-999))) NIL)) (-3873 (((-821 (-354)) $) NIL (-12 (|has| (-999) (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-999) (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-999) (-563 (-498))) (|has| |#1| (-563 (-498)))))) (-2988 ((|#1| $) NIL (|has| |#1| (-426))) (($ $ (-999)) NIL (|has| |#1| (-426)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-3884 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514))) (((-3 (-382 $) "failed") (-382 $) $) NIL (|has| |#1| (-514)))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL) (($ (-999)) NIL) (((-1081 |#1|) $) 7) (($ (-1081 |#1|)) 8) (($ (-382 (-522))) NIL (-3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#1| (-514)))) (-2180 (((-588 |#1|) $) NIL)) (-1643 ((|#1| $ (-708)) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2742 (((-708)) NIL)) (-1225 (($ $ $ (-708)) NIL (|has| |#1| (-157)))) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 21 T CONST)) (-3709 (($) 24 T CONST)) (-2252 (($ $ (-999)) NIL) (($ $ (-588 (-999))) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL) (($ $ (-708)) NIL) (($ $) NIL) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1672 (($ $) 28) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) -(((-719 |#1|) (-13 (-1142 |#1|) (-562 (-1081 |#1|)) (-962 (-1081 |#1|)) (-10 -8 (-15 -1953 ($ $ (-708) |#1| $)) (-15 -3556 ($ $ $)) (-15 -3816 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4062 (-708))) $ $)) (-15 -1554 ($ $ $)) (-15 -1456 ((-2 (|:| -3112 |#1|) (|:| |gap| (-708)) (|:| -3450 $) (|:| -4002 $)) $ $)) (-15 -2393 ($ $ $)) (IF (|has| |#1| (-514)) (PROGN (-15 -1314 ((-588 $) $ $)) (-15 -1998 ($ $ $)) (-15 -2078 ((-2 (|:| -2308 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2997 ((-2 (|:| -2308 $) (|:| |coef1| $)) $ $)) (-15 -3214 ((-2 (|:| -2308 $) (|:| |coef2| $)) $ $)) (-15 -4065 ((-2 (|:| -2908 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3400 ((-2 (|:| -2908 |#1|) (|:| |coef1| $)) $ $)) (-15 -4115 ((-2 (|:| -2908 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-971)) (T -719)) -((-1953 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-708)) (-5 *1 (-719 *3)) (-4 *3 (-971)))) (-3556 (*1 *1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-971)))) (-3816 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-719 *3)) (|:| |polden| *3) (|:| -4062 (-708)))) (-5 *1 (-719 *3)) (-4 *3 (-971)))) (-1554 (*1 *1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-971)))) (-1456 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3112 *3) (|:| |gap| (-708)) (|:| -3450 (-719 *3)) (|:| -4002 (-719 *3)))) (-5 *1 (-719 *3)) (-4 *3 (-971)))) (-2393 (*1 *1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-971)))) (-1314 (*1 *2 *1 *1) (-12 (-5 *2 (-588 (-719 *3))) (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971)))) (-1998 (*1 *1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-514)) (-4 *2 (-971)))) (-2078 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2308 (-719 *3)) (|:| |coef1| (-719 *3)) (|:| |coef2| (-719 *3)))) (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971)))) (-2997 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2308 (-719 *3)) (|:| |coef1| (-719 *3)))) (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971)))) (-3214 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2308 (-719 *3)) (|:| |coef2| (-719 *3)))) (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971)))) (-4065 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2908 *3) (|:| |coef1| (-719 *3)) (|:| |coef2| (-719 *3)))) (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971)))) (-3400 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2908 *3) (|:| |coef1| (-719 *3)))) (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971)))) (-4115 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2908 *3) (|:| |coef2| (-719 *3)))) (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971))))) -(-13 (-1142 |#1|) (-562 (-1081 |#1|)) (-962 (-1081 |#1|)) (-10 -8 (-15 -1953 ($ $ (-708) |#1| $)) (-15 -3556 ($ $ $)) (-15 -3816 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4062 (-708))) $ $)) (-15 -1554 ($ $ $)) (-15 -1456 ((-2 (|:| -3112 |#1|) (|:| |gap| (-708)) (|:| -3450 $) (|:| -4002 $)) $ $)) (-15 -2393 ($ $ $)) (IF (|has| |#1| (-514)) (PROGN (-15 -1314 ((-588 $) $ $)) (-15 -1998 ($ $ $)) (-15 -2078 ((-2 (|:| -2308 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2997 ((-2 (|:| -2308 $) (|:| |coef1| $)) $ $)) (-15 -3214 ((-2 (|:| -2308 $) (|:| |coef2| $)) $ $)) (-15 -4065 ((-2 (|:| -2908 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3400 ((-2 (|:| -2908 |#1|) (|:| |coef1| $)) $ $)) (-15 -4115 ((-2 (|:| -2908 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-2121 ((|#1| (-708) |#1|) 33 (|has| |#1| (-37 (-382 (-522)))))) (-2406 ((|#1| (-708) |#1|) 23)) (-2858 ((|#1| (-708) |#1|) 35 (|has| |#1| (-37 (-382 (-522))))))) -(((-720 |#1|) (-10 -7 (-15 -2406 (|#1| (-708) |#1|)) (IF (|has| |#1| (-37 (-382 (-522)))) (PROGN (-15 -2858 (|#1| (-708) |#1|)) (-15 -2121 (|#1| (-708) |#1|))) |%noBranch|)) (-157)) (T -720)) -((-2121 (*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-720 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-157)))) (-2858 (*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-720 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-157)))) (-2406 (*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-720 *2)) (-4 *2 (-157))))) -(-10 -7 (-15 -2406 (|#1| (-708) |#1|)) (IF (|has| |#1| (-37 (-382 (-522)))) (PROGN (-15 -2858 (|#1| (-708) |#1|)) (-15 -2121 (|#1| (-708) |#1|))) |%noBranch|)) -((-1419 (((-108) $ $) 7)) (-3829 (((-588 (-2 (|:| -1720 $) (|:| -1566 (-588 |#4|)))) (-588 |#4|)) 85)) (-2510 (((-588 $) (-588 |#4|)) 86) (((-588 $) (-588 |#4|) (-108)) 111)) (-3533 (((-588 |#3|) $) 33)) (-2161 (((-108) $) 26)) (-2702 (((-108) $) 17 (|has| |#1| (-514)))) (-1900 (((-108) |#4| $) 101) (((-108) $) 97)) (-2163 ((|#4| |#4| $) 92)) (-2961 (((-588 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| $) 126)) (-3296 (((-2 (|:| |under| $) (|:| -3592 $) (|:| |upper| $)) $ |#3|) 27)) (-2717 (((-108) $ (-708)) 44)) (-1696 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4238))) (((-3 |#4| "failed") $ |#3|) 79)) (-3367 (($) 45 T CONST)) (-1298 (((-108) $) 22 (|has| |#1| (-514)))) (-1657 (((-108) $ $) 24 (|has| |#1| (-514)))) (-3598 (((-108) $ $) 23 (|has| |#1| (-514)))) (-2818 (((-108) $) 25 (|has| |#1| (-514)))) (-3090 (((-588 |#4|) (-588 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3461 (((-588 |#4|) (-588 |#4|) $) 18 (|has| |#1| (-514)))) (-3668 (((-588 |#4|) (-588 |#4|) $) 19 (|has| |#1| (-514)))) (-3700 (((-3 $ "failed") (-588 |#4|)) 36)) (-1478 (($ (-588 |#4|)) 35)) (-2352 (((-3 $ "failed") $) 82)) (-2625 ((|#4| |#4| $) 89)) (-2379 (($ $) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-1424 (($ |#4| $) 67 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4238)))) (-4002 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-514)))) (-1426 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2918 ((|#4| |#4| $) 87)) (-2153 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4238))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-1199 (((-2 (|:| -1720 (-588 |#4|)) (|:| -1566 (-588 |#4|))) $) 105)) (-2396 (((-108) |#4| $) 136)) (-3039 (((-108) |#4| $) 133)) (-2278 (((-108) |#4| $) 137) (((-108) $) 134)) (-2395 (((-588 |#4|) $) 52 (|has| $ (-6 -4238)))) (-1384 (((-108) |#4| $) 104) (((-108) $) 103)) (-1933 ((|#3| $) 34)) (-1480 (((-108) $ (-708)) 43)) (-4084 (((-588 |#4|) $) 53 (|has| $ (-6 -4238)))) (-4176 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#4| |#4|) $) 47)) (-2714 (((-588 |#3|) $) 32)) (-3826 (((-108) |#3| $) 31)) (-3309 (((-108) $ (-708)) 42)) (-2311 (((-1068) $) 9)) (-1418 (((-3 |#4| (-588 $)) |#4| |#4| $) 128)) (-1998 (((-588 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| |#4| $) 127)) (-1442 (((-3 |#4| "failed") $) 83)) (-1468 (((-588 $) |#4| $) 129)) (-1892 (((-3 (-108) (-588 $)) |#4| $) 132)) (-1862 (((-588 (-2 (|:| |val| (-108)) (|:| -1974 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2251 (((-588 $) |#4| $) 125) (((-588 $) (-588 |#4|) $) 124) (((-588 $) (-588 |#4|) (-588 $)) 123) (((-588 $) |#4| (-588 $)) 122)) (-2953 (($ |#4| $) 117) (($ (-588 |#4|) $) 116)) (-4138 (((-588 |#4|) $) 107)) (-3864 (((-108) |#4| $) 99) (((-108) $) 95)) (-2556 ((|#4| |#4| $) 90)) (-1517 (((-108) $ $) 110)) (-2507 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-514)))) (-3060 (((-108) |#4| $) 100) (((-108) $) 96)) (-3896 ((|#4| |#4| $) 91)) (-4174 (((-1032) $) 10)) (-2337 (((-3 |#4| "failed") $) 84)) (-2187 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-4078 (((-3 $ "failed") $ |#4|) 78)) (-3934 (($ $ |#4|) 77) (((-588 $) |#4| $) 115) (((-588 $) |#4| (-588 $)) 114) (((-588 $) (-588 |#4|) $) 113) (((-588 $) (-588 |#4|) (-588 $)) 112)) (-3487 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 |#4|) (-588 |#4|)) 59 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) 57 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) 56 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-2065 (((-108) $ $) 38)) (-3494 (((-108) $) 41)) (-3298 (($) 40)) (-2487 (((-708) $) 106)) (-4187 (((-708) |#4| $) 54 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4238)))) (-2463 (($ $) 39)) (-3873 (((-498) $) 69 (|has| |#4| (-563 (-498))))) (-2227 (($ (-588 |#4|)) 60)) (-2271 (($ $ |#3|) 28)) (-2154 (($ $ |#3|) 30)) (-1524 (($ $) 88)) (-2773 (($ $ |#3|) 29)) (-2217 (((-792) $) 11) (((-588 |#4|) $) 37)) (-3111 (((-708) $) 76 (|has| |#3| (-343)))) (-3538 (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-2102 (((-108) $ (-1 (-108) |#4| (-588 |#4|))) 98)) (-3386 (((-588 $) |#4| $) 121) (((-588 $) |#4| (-588 $)) 120) (((-588 $) (-588 |#4|) $) 119) (((-588 $) (-588 |#4|) (-588 $)) 118)) (-1381 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4238)))) (-1982 (((-588 |#3|) $) 81)) (-1336 (((-108) |#4| $) 135)) (-1711 (((-108) |#3| $) 80)) (-1562 (((-108) $ $) 6)) (-3591 (((-708) $) 46 (|has| $ (-6 -4238))))) -(((-721 |#1| |#2| |#3| |#4|) (-1197) (-426) (-730) (-784) (-985 |t#1| |t#2| |t#3|)) (T -721)) -NIL -(-13 (-990 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-97) . T) ((-562 (-588 |#4|)) . T) ((-562 (-792)) . T) ((-139 |#4|) . T) ((-563 (-498)) |has| |#4| (-563 (-498))) ((-285 |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-461 |#4|) . T) ((-483 |#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-903 |#1| |#2| |#3| |#4|) . T) ((-990 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1114 |#1| |#2| |#3| |#4|) . T) ((-1120) . T)) -((-1984 (((-3 (-354) "failed") (-291 |#1|) (-850)) 60 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-3 (-354) "failed") (-291 |#1|)) 52 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-3 (-354) "failed") (-382 (-881 |#1|)) (-850)) 39 (|has| |#1| (-514))) (((-3 (-354) "failed") (-382 (-881 |#1|))) 35 (|has| |#1| (-514))) (((-3 (-354) "failed") (-881 |#1|) (-850)) 30 (|has| |#1| (-971))) (((-3 (-354) "failed") (-881 |#1|)) 24 (|has| |#1| (-971)))) (-3895 (((-354) (-291 |#1|) (-850)) 92 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-354) (-291 |#1|)) 87 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-354) (-382 (-881 |#1|)) (-850)) 84 (|has| |#1| (-514))) (((-354) (-382 (-881 |#1|))) 81 (|has| |#1| (-514))) (((-354) (-881 |#1|) (-850)) 80 (|has| |#1| (-971))) (((-354) (-881 |#1|)) 77 (|has| |#1| (-971))) (((-354) |#1| (-850)) 73) (((-354) |#1|) 22)) (-3159 (((-3 (-154 (-354)) "failed") (-291 (-154 |#1|)) (-850)) 68 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-3 (-154 (-354)) "failed") (-291 (-154 |#1|))) 58 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-3 (-154 (-354)) "failed") (-291 |#1|) (-850)) 61 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-3 (-154 (-354)) "failed") (-291 |#1|)) 59 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-3 (-154 (-354)) "failed") (-382 (-881 (-154 |#1|))) (-850)) 44 (|has| |#1| (-514))) (((-3 (-154 (-354)) "failed") (-382 (-881 (-154 |#1|)))) 43 (|has| |#1| (-514))) (((-3 (-154 (-354)) "failed") (-382 (-881 |#1|)) (-850)) 38 (|has| |#1| (-514))) (((-3 (-154 (-354)) "failed") (-382 (-881 |#1|))) 37 (|has| |#1| (-514))) (((-3 (-154 (-354)) "failed") (-881 |#1|) (-850)) 28 (|has| |#1| (-971))) (((-3 (-154 (-354)) "failed") (-881 |#1|)) 26 (|has| |#1| (-971))) (((-3 (-154 (-354)) "failed") (-881 (-154 |#1|)) (-850)) 17 (|has| |#1| (-157))) (((-3 (-154 (-354)) "failed") (-881 (-154 |#1|))) 14 (|has| |#1| (-157)))) (-1232 (((-154 (-354)) (-291 (-154 |#1|)) (-850)) 95 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-154 (-354)) (-291 (-154 |#1|))) 94 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-154 (-354)) (-291 |#1|) (-850)) 93 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-154 (-354)) (-291 |#1|)) 91 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-154 (-354)) (-382 (-881 (-154 |#1|))) (-850)) 86 (|has| |#1| (-514))) (((-154 (-354)) (-382 (-881 (-154 |#1|)))) 85 (|has| |#1| (-514))) (((-154 (-354)) (-382 (-881 |#1|)) (-850)) 83 (|has| |#1| (-514))) (((-154 (-354)) (-382 (-881 |#1|))) 82 (|has| |#1| (-514))) (((-154 (-354)) (-881 |#1|) (-850)) 79 (|has| |#1| (-971))) (((-154 (-354)) (-881 |#1|)) 78 (|has| |#1| (-971))) (((-154 (-354)) (-881 (-154 |#1|)) (-850)) 75 (|has| |#1| (-157))) (((-154 (-354)) (-881 (-154 |#1|))) 74 (|has| |#1| (-157))) (((-154 (-354)) (-154 |#1|) (-850)) 16 (|has| |#1| (-157))) (((-154 (-354)) (-154 |#1|)) 12 (|has| |#1| (-157))) (((-154 (-354)) |#1| (-850)) 27) (((-154 (-354)) |#1|) 25))) -(((-722 |#1|) (-10 -7 (-15 -3895 ((-354) |#1|)) (-15 -3895 ((-354) |#1| (-850))) (-15 -1232 ((-154 (-354)) |#1|)) (-15 -1232 ((-154 (-354)) |#1| (-850))) (IF (|has| |#1| (-157)) (PROGN (-15 -1232 ((-154 (-354)) (-154 |#1|))) (-15 -1232 ((-154 (-354)) (-154 |#1|) (-850))) (-15 -1232 ((-154 (-354)) (-881 (-154 |#1|)))) (-15 -1232 ((-154 (-354)) (-881 (-154 |#1|)) (-850)))) |%noBranch|) (IF (|has| |#1| (-971)) (PROGN (-15 -3895 ((-354) (-881 |#1|))) (-15 -3895 ((-354) (-881 |#1|) (-850))) (-15 -1232 ((-154 (-354)) (-881 |#1|))) (-15 -1232 ((-154 (-354)) (-881 |#1|) (-850)))) |%noBranch|) (IF (|has| |#1| (-514)) (PROGN (-15 -3895 ((-354) (-382 (-881 |#1|)))) (-15 -3895 ((-354) (-382 (-881 |#1|)) (-850))) (-15 -1232 ((-154 (-354)) (-382 (-881 |#1|)))) (-15 -1232 ((-154 (-354)) (-382 (-881 |#1|)) (-850))) (-15 -1232 ((-154 (-354)) (-382 (-881 (-154 |#1|))))) (-15 -1232 ((-154 (-354)) (-382 (-881 (-154 |#1|))) (-850))) (IF (|has| |#1| (-784)) (PROGN (-15 -3895 ((-354) (-291 |#1|))) (-15 -3895 ((-354) (-291 |#1|) (-850))) (-15 -1232 ((-154 (-354)) (-291 |#1|))) (-15 -1232 ((-154 (-354)) (-291 |#1|) (-850))) (-15 -1232 ((-154 (-354)) (-291 (-154 |#1|)))) (-15 -1232 ((-154 (-354)) (-291 (-154 |#1|)) (-850)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-15 -3159 ((-3 (-154 (-354)) "failed") (-881 (-154 |#1|)))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-881 (-154 |#1|)) (-850)))) |%noBranch|) (IF (|has| |#1| (-971)) (PROGN (-15 -1984 ((-3 (-354) "failed") (-881 |#1|))) (-15 -1984 ((-3 (-354) "failed") (-881 |#1|) (-850))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-881 |#1|))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-881 |#1|) (-850)))) |%noBranch|) (IF (|has| |#1| (-514)) (PROGN (-15 -1984 ((-3 (-354) "failed") (-382 (-881 |#1|)))) (-15 -1984 ((-3 (-354) "failed") (-382 (-881 |#1|)) (-850))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-382 (-881 |#1|)))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-382 (-881 |#1|)) (-850))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-382 (-881 (-154 |#1|))))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-382 (-881 (-154 |#1|))) (-850))) (IF (|has| |#1| (-784)) (PROGN (-15 -1984 ((-3 (-354) "failed") (-291 |#1|))) (-15 -1984 ((-3 (-354) "failed") (-291 |#1|) (-850))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-291 |#1|))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-291 |#1|) (-850))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-291 (-154 |#1|)))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-291 (-154 |#1|)) (-850)))) |%noBranch|)) |%noBranch|)) (-563 (-354))) (T -722)) -((-3159 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-291 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-784)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-3159 (*1 *2 *3) (|partial| -12 (-5 *3 (-291 (-154 *4))) (-4 *4 (-514)) (-4 *4 (-784)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-3159 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-291 *5)) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-784)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-3159 (*1 *2 *3) (|partial| -12 (-5 *3 (-291 *4)) (-4 *4 (-514)) (-4 *4 (-784)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-1984 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-291 *5)) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-784)) (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5)))) (-1984 (*1 *2 *3) (|partial| -12 (-5 *3 (-291 *4)) (-4 *4 (-514)) (-4 *4 (-784)) (-4 *4 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *4)))) (-3159 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-382 (-881 (-154 *5)))) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-3159 (*1 *2 *3) (|partial| -12 (-5 *3 (-382 (-881 (-154 *4)))) (-4 *4 (-514)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-3159 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-3159 (*1 *2 *3) (|partial| -12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-1984 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5)))) (-1984 (*1 *2 *3) (|partial| -12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514)) (-4 *4 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *4)))) (-3159 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-971)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-3159 (*1 *2 *3) (|partial| -12 (-5 *3 (-881 *4)) (-4 *4 (-971)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-1984 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-971)) (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5)))) (-1984 (*1 *2 *3) (|partial| -12 (-5 *3 (-881 *4)) (-4 *4 (-971)) (-4 *4 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *4)))) (-3159 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-881 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-157)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-3159 (*1 *2 *3) (|partial| -12 (-5 *3 (-881 (-154 *4))) (-4 *4 (-157)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-1232 (*1 *2 *3 *4) (-12 (-5 *3 (-291 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-784)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-1232 (*1 *2 *3) (-12 (-5 *3 (-291 (-154 *4))) (-4 *4 (-514)) (-4 *4 (-784)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-1232 (*1 *2 *3 *4) (-12 (-5 *3 (-291 *5)) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-784)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-1232 (*1 *2 *3) (-12 (-5 *3 (-291 *4)) (-4 *4 (-514)) (-4 *4 (-784)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-291 *5)) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-784)) (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-291 *4)) (-4 *4 (-514)) (-4 *4 (-784)) (-4 *4 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *4)))) (-1232 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 (-154 *5)))) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-1232 (*1 *2 *3) (-12 (-5 *3 (-382 (-881 (-154 *4)))) (-4 *4 (-514)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-1232 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-1232 (*1 *2 *3) (-12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514)) (-4 *4 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *4)))) (-1232 (*1 *2 *3 *4) (-12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-971)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-1232 (*1 *2 *3) (-12 (-5 *3 (-881 *4)) (-4 *4 (-971)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-971)) (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-881 *4)) (-4 *4 (-971)) (-4 *4 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *4)))) (-1232 (*1 *2 *3 *4) (-12 (-5 *3 (-881 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-157)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-1232 (*1 *2 *3) (-12 (-5 *3 (-881 (-154 *4))) (-4 *4 (-157)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-1232 (*1 *2 *3 *4) (-12 (-5 *3 (-154 *5)) (-5 *4 (-850)) (-4 *5 (-157)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-1232 (*1 *2 *3) (-12 (-5 *3 (-154 *4)) (-4 *4 (-157)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-1232 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-5 *2 (-154 (-354))) (-5 *1 (-722 *3)) (-4 *3 (-563 (-354))))) (-1232 (*1 *2 *3) (-12 (-5 *2 (-154 (-354))) (-5 *1 (-722 *3)) (-4 *3 (-563 (-354))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-5 *2 (-354)) (-5 *1 (-722 *3)) (-4 *3 (-563 *2)))) (-3895 (*1 *2 *3) (-12 (-5 *2 (-354)) (-5 *1 (-722 *3)) (-4 *3 (-563 *2))))) -(-10 -7 (-15 -3895 ((-354) |#1|)) (-15 -3895 ((-354) |#1| (-850))) (-15 -1232 ((-154 (-354)) |#1|)) (-15 -1232 ((-154 (-354)) |#1| (-850))) (IF (|has| |#1| (-157)) (PROGN (-15 -1232 ((-154 (-354)) (-154 |#1|))) (-15 -1232 ((-154 (-354)) (-154 |#1|) (-850))) (-15 -1232 ((-154 (-354)) (-881 (-154 |#1|)))) (-15 -1232 ((-154 (-354)) (-881 (-154 |#1|)) (-850)))) |%noBranch|) (IF (|has| |#1| (-971)) (PROGN (-15 -3895 ((-354) (-881 |#1|))) (-15 -3895 ((-354) (-881 |#1|) (-850))) (-15 -1232 ((-154 (-354)) (-881 |#1|))) (-15 -1232 ((-154 (-354)) (-881 |#1|) (-850)))) |%noBranch|) (IF (|has| |#1| (-514)) (PROGN (-15 -3895 ((-354) (-382 (-881 |#1|)))) (-15 -3895 ((-354) (-382 (-881 |#1|)) (-850))) (-15 -1232 ((-154 (-354)) (-382 (-881 |#1|)))) (-15 -1232 ((-154 (-354)) (-382 (-881 |#1|)) (-850))) (-15 -1232 ((-154 (-354)) (-382 (-881 (-154 |#1|))))) (-15 -1232 ((-154 (-354)) (-382 (-881 (-154 |#1|))) (-850))) (IF (|has| |#1| (-784)) (PROGN (-15 -3895 ((-354) (-291 |#1|))) (-15 -3895 ((-354) (-291 |#1|) (-850))) (-15 -1232 ((-154 (-354)) (-291 |#1|))) (-15 -1232 ((-154 (-354)) (-291 |#1|) (-850))) (-15 -1232 ((-154 (-354)) (-291 (-154 |#1|)))) (-15 -1232 ((-154 (-354)) (-291 (-154 |#1|)) (-850)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-15 -3159 ((-3 (-154 (-354)) "failed") (-881 (-154 |#1|)))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-881 (-154 |#1|)) (-850)))) |%noBranch|) (IF (|has| |#1| (-971)) (PROGN (-15 -1984 ((-3 (-354) "failed") (-881 |#1|))) (-15 -1984 ((-3 (-354) "failed") (-881 |#1|) (-850))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-881 |#1|))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-881 |#1|) (-850)))) |%noBranch|) (IF (|has| |#1| (-514)) (PROGN (-15 -1984 ((-3 (-354) "failed") (-382 (-881 |#1|)))) (-15 -1984 ((-3 (-354) "failed") (-382 (-881 |#1|)) (-850))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-382 (-881 |#1|)))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-382 (-881 |#1|)) (-850))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-382 (-881 (-154 |#1|))))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-382 (-881 (-154 |#1|))) (-850))) (IF (|has| |#1| (-784)) (PROGN (-15 -1984 ((-3 (-354) "failed") (-291 |#1|))) (-15 -1984 ((-3 (-354) "failed") (-291 |#1|) (-850))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-291 |#1|))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-291 |#1|) (-850))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-291 (-154 |#1|)))) (-15 -3159 ((-3 (-154 (-354)) "failed") (-291 (-154 |#1|)) (-850)))) |%noBranch|)) |%noBranch|)) -((-2348 (((-850) (-1068)) 64)) (-2233 (((-3 (-354) "failed") (-1068)) 33)) (-2285 (((-354) (-1068)) 31)) (-3172 (((-850) (-1068)) 54)) (-2564 (((-1068) (-850)) 55)) (-1386 (((-1068) (-850)) 53))) -(((-723) (-10 -7 (-15 -1386 ((-1068) (-850))) (-15 -3172 ((-850) (-1068))) (-15 -2564 ((-1068) (-850))) (-15 -2348 ((-850) (-1068))) (-15 -2285 ((-354) (-1068))) (-15 -2233 ((-3 (-354) "failed") (-1068))))) (T -723)) -((-2233 (*1 *2 *3) (|partial| -12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-723)))) (-2285 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-723)))) (-2348 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-850)) (-5 *1 (-723)))) (-2564 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1068)) (-5 *1 (-723)))) (-3172 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-850)) (-5 *1 (-723)))) (-1386 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1068)) (-5 *1 (-723))))) -(-10 -7 (-15 -1386 ((-1068) (-850))) (-15 -3172 ((-850) (-1068))) (-15 -2564 ((-1068) (-850))) (-15 -2348 ((-850) (-1068))) (-15 -2285 ((-354) (-1068))) (-15 -2233 ((-3 (-354) "failed") (-1068)))) -((-1419 (((-108) $ $) 7)) (-3459 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 15) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 13)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 16) (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 14)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-1562 (((-108) $ $) 6))) -(((-724) (-1197)) (T -724)) -((-1361 (*1 *2 *3 *4) (-12 (-4 *1 (-724)) (-5 *3 (-983)) (-5 *4 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960)))))) (-3459 (*1 *2 *3 *2) (-12 (-4 *1 (-724)) (-5 *2 (-960)) (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) (-1361 (*1 *2 *3 *4) (-12 (-4 *1 (-724)) (-5 *3 (-983)) (-5 *4 (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960)))))) (-3459 (*1 *2 *3 *2) (-12 (-4 *1 (-724)) (-5 *2 (-960)) (-5 *3 (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) -(-13 (-1014) (-10 -7 (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3459 ((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960))) (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3459 ((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960))))) -(((-97) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-3402 (((-1171) (-1166 (-354)) (-522) (-354) (-2 (|:| |try| (-354)) (|:| |did| (-354)) (|:| -3745 (-354))) (-354) (-1166 (-354)) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354))) 44) (((-1171) (-1166 (-354)) (-522) (-354) (-2 (|:| |try| (-354)) (|:| |did| (-354)) (|:| -3745 (-354))) (-354) (-1166 (-354)) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354))) 43)) (-2671 (((-1171) (-1166 (-354)) (-522) (-354) (-354) (-522) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354))) 50)) (-2498 (((-1171) (-1166 (-354)) (-522) (-354) (-354) (-354) (-354) (-522) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354))) 41)) (-3114 (((-1171) (-1166 (-354)) (-522) (-354) (-354) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354))) 52) (((-1171) (-1166 (-354)) (-522) (-354) (-354) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354))) 51))) -(((-725) (-10 -7 (-15 -3114 ((-1171) (-1166 (-354)) (-522) (-354) (-354) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)))) (-15 -3114 ((-1171) (-1166 (-354)) (-522) (-354) (-354) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)))) (-15 -2498 ((-1171) (-1166 (-354)) (-522) (-354) (-354) (-354) (-354) (-522) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)))) (-15 -3402 ((-1171) (-1166 (-354)) (-522) (-354) (-2 (|:| |try| (-354)) (|:| |did| (-354)) (|:| -3745 (-354))) (-354) (-1166 (-354)) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)))) (-15 -3402 ((-1171) (-1166 (-354)) (-522) (-354) (-2 (|:| |try| (-354)) (|:| |did| (-354)) (|:| -3745 (-354))) (-354) (-1166 (-354)) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)))) (-15 -2671 ((-1171) (-1166 (-354)) (-522) (-354) (-354) (-522) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)))))) (T -725)) -((-2671 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-522)) (-5 *6 (-1 (-1171) (-1166 *5) (-1166 *5) (-354))) (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171)) (-5 *1 (-725)))) (-3402 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-522)) (-5 *6 (-2 (|:| |try| (-354)) (|:| |did| (-354)) (|:| -3745 (-354)))) (-5 *7 (-1 (-1171) (-1166 *5) (-1166 *5) (-354))) (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171)) (-5 *1 (-725)))) (-3402 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-522)) (-5 *6 (-2 (|:| |try| (-354)) (|:| |did| (-354)) (|:| -3745 (-354)))) (-5 *7 (-1 (-1171) (-1166 *5) (-1166 *5) (-354))) (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171)) (-5 *1 (-725)))) (-2498 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-522)) (-5 *6 (-1 (-1171) (-1166 *5) (-1166 *5) (-354))) (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171)) (-5 *1 (-725)))) (-3114 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-522)) (-5 *6 (-1 (-1171) (-1166 *5) (-1166 *5) (-354))) (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171)) (-5 *1 (-725)))) (-3114 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-522)) (-5 *6 (-1 (-1171) (-1166 *5) (-1166 *5) (-354))) (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171)) (-5 *1 (-725))))) -(-10 -7 (-15 -3114 ((-1171) (-1166 (-354)) (-522) (-354) (-354) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)))) (-15 -3114 ((-1171) (-1166 (-354)) (-522) (-354) (-354) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)))) (-15 -2498 ((-1171) (-1166 (-354)) (-522) (-354) (-354) (-354) (-354) (-522) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)))) (-15 -3402 ((-1171) (-1166 (-354)) (-522) (-354) (-2 (|:| |try| (-354)) (|:| |did| (-354)) (|:| -3745 (-354))) (-354) (-1166 (-354)) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)))) (-15 -3402 ((-1171) (-1166 (-354)) (-522) (-354) (-2 (|:| |try| (-354)) (|:| |did| (-354)) (|:| -3745 (-354))) (-354) (-1166 (-354)) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)))) (-15 -2671 ((-1171) (-1166 (-354)) (-522) (-354) (-354) (-522) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354))))) -((-3548 (((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522)) 53)) (-1300 (((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522)) 30)) (-3499 (((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522)) 52)) (-1482 (((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522)) 28)) (-2071 (((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522)) 51)) (-2700 (((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522)) 18)) (-2824 (((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522) (-522)) 31)) (-3179 (((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522) (-522)) 29)) (-3901 (((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522) (-522)) 27))) -(((-726) (-10 -7 (-15 -3901 ((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522) (-522))) (-15 -3179 ((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522) (-522))) (-15 -2824 ((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522) (-522))) (-15 -2700 ((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))) (-15 -1482 ((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))) (-15 -1300 ((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))) (-15 -2071 ((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))) (-15 -3499 ((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))) (-15 -3548 ((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))))) (T -726)) -((-3548 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) (-5 *2 (-2 (|:| -3526 *4) (|:| -3106 *4) (|:| |totalpts| (-522)) (|:| |success| (-108)))) (-5 *1 (-726)) (-5 *5 (-522)))) (-3499 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) (-5 *2 (-2 (|:| -3526 *4) (|:| -3106 *4) (|:| |totalpts| (-522)) (|:| |success| (-108)))) (-5 *1 (-726)) (-5 *5 (-522)))) (-2071 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) (-5 *2 (-2 (|:| -3526 *4) (|:| -3106 *4) (|:| |totalpts| (-522)) (|:| |success| (-108)))) (-5 *1 (-726)) (-5 *5 (-522)))) (-1300 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) (-5 *2 (-2 (|:| -3526 *4) (|:| -3106 *4) (|:| |totalpts| (-522)) (|:| |success| (-108)))) (-5 *1 (-726)) (-5 *5 (-522)))) (-1482 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) (-5 *2 (-2 (|:| -3526 *4) (|:| -3106 *4) (|:| |totalpts| (-522)) (|:| |success| (-108)))) (-5 *1 (-726)) (-5 *5 (-522)))) (-2700 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) (-5 *2 (-2 (|:| -3526 *4) (|:| -3106 *4) (|:| |totalpts| (-522)) (|:| |success| (-108)))) (-5 *1 (-726)) (-5 *5 (-522)))) (-2824 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) (-5 *2 (-2 (|:| -3526 *4) (|:| -3106 *4) (|:| |totalpts| (-522)) (|:| |success| (-108)))) (-5 *1 (-726)) (-5 *5 (-522)))) (-3179 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) (-5 *2 (-2 (|:| -3526 *4) (|:| -3106 *4) (|:| |totalpts| (-522)) (|:| |success| (-108)))) (-5 *1 (-726)) (-5 *5 (-522)))) (-3901 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) (-5 *2 (-2 (|:| -3526 *4) (|:| -3106 *4) (|:| |totalpts| (-522)) (|:| |success| (-108)))) (-5 *1 (-726)) (-5 *5 (-522))))) -(-10 -7 (-15 -3901 ((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522) (-522))) (-15 -3179 ((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522) (-522))) (-15 -2824 ((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522) (-522))) (-15 -2700 ((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))) (-15 -1482 ((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))) (-15 -1300 ((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))) (-15 -2071 ((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))) (-15 -3499 ((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))) (-15 -3548 ((-2 (|:| -3526 (-354)) (|:| -3106 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522)))) -((-1530 (((-1116 |#1|) |#1| (-202) (-522)) 45))) -(((-727 |#1|) (-10 -7 (-15 -1530 ((-1116 |#1|) |#1| (-202) (-522)))) (-901)) (T -727)) -((-1530 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-202)) (-5 *5 (-522)) (-5 *2 (-1116 *3)) (-5 *1 (-727 *3)) (-4 *3 (-901))))) -(-10 -7 (-15 -1530 ((-1116 |#1|) |#1| (-202) (-522)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 24)) (-2265 (((-3 $ "failed") $ $) 26)) (-3367 (($) 23 T CONST)) (-1308 (($ $ $) 13)) (-2524 (($ $ $) 14)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-3697 (($) 22 T CONST)) (-1623 (((-108) $ $) 16)) (-1597 (((-108) $ $) 17)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 15)) (-1587 (((-108) $ $) 18)) (-1672 (($ $ $) 28) (($ $) 27)) (-1661 (($ $ $) 20)) (* (($ (-708) $) 25) (($ (-850) $) 21) (($ (-522) $) 29))) -(((-728) (-1197)) (T -728)) -NIL -(-13 (-732) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-729) . T) ((-731) . T) ((-732) . T) ((-784) . T) ((-1014) . T)) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 24)) (-3367 (($) 23 T CONST)) (-1308 (($ $ $) 13)) (-2524 (($ $ $) 14)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-3697 (($) 22 T CONST)) (-1623 (((-108) $ $) 16)) (-1597 (((-108) $ $) 17)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 15)) (-1587 (((-108) $ $) 18)) (-1661 (($ $ $) 20)) (* (($ (-708) $) 25) (($ (-850) $) 21))) -(((-729) (-1197)) (T -729)) -NIL -(-13 (-731) (-23)) -(((-23) . T) ((-25) . T) ((-97) . T) ((-562 (-792)) . T) ((-731) . T) ((-784) . T) ((-1014) . T)) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 24)) (-1827 (($ $ $) 27)) (-2265 (((-3 $ "failed") $ $) 26)) (-3367 (($) 23 T CONST)) (-1308 (($ $ $) 13)) (-2524 (($ $ $) 14)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-3697 (($) 22 T CONST)) (-1623 (((-108) $ $) 16)) (-1597 (((-108) $ $) 17)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 15)) (-1587 (((-108) $ $) 18)) (-1661 (($ $ $) 20)) (* (($ (-708) $) 25) (($ (-850) $) 21))) -(((-730) (-1197)) (T -730)) -((-1827 (*1 *1 *1 *1) (-4 *1 (-730)))) -(-13 (-732) (-10 -8 (-15 -1827 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-729) . T) ((-731) . T) ((-732) . T) ((-784) . T) ((-1014) . T)) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 24)) (-3367 (($) 23 T CONST)) (-1308 (($ $ $) 13)) (-2524 (($ $ $) 14)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-3697 (($) 22 T CONST)) (-1623 (((-108) $ $) 16)) (-1597 (((-108) $ $) 17)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 15)) (-1587 (((-108) $ $) 18)) (-1661 (($ $ $) 20)) (* (($ (-708) $) 25) (($ (-850) $) 21))) -(((-731) (-1197)) (T -731)) -NIL -(-13 (-784) (-23)) -(((-23) . T) ((-25) . T) ((-97) . T) ((-562 (-792)) . T) ((-784) . T) ((-1014) . T)) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 24)) (-2265 (((-3 $ "failed") $ $) 26)) (-3367 (($) 23 T CONST)) (-1308 (($ $ $) 13)) (-2524 (($ $ $) 14)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-3697 (($) 22 T CONST)) (-1623 (((-108) $ $) 16)) (-1597 (((-108) $ $) 17)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 15)) (-1587 (((-108) $ $) 18)) (-1661 (($ $ $) 20)) (* (($ (-708) $) 25) (($ (-850) $) 21))) -(((-732) (-1197)) (T -732)) -NIL -(-13 (-729) (-124)) -(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-729) . T) ((-731) . T) ((-784) . T) ((-1014) . T)) -((-2944 (((-108) $) 41)) (-3700 (((-3 (-522) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-1478 (((-522) $) NIL) (((-382 (-522)) $) NIL) ((|#2| $) 42)) (-2549 (((-3 (-382 (-522)) "failed") $) 78)) (-3519 (((-108) $) 72)) (-1699 (((-382 (-522)) $) 76)) (-1269 ((|#2| $) 26)) (-3810 (($ (-1 |#2| |#2|) $) 23)) (-3193 (($ $) 61)) (-3873 (((-498) $) 67)) (-2983 (($ $) 21)) (-2217 (((-792) $) 56) (($ (-522)) 39) (($ |#2|) 37) (($ (-382 (-522))) NIL)) (-2742 (((-708)) 10)) (-4126 ((|#2| $) 71)) (-1562 (((-108) $ $) 29)) (-1587 (((-108) $ $) 69)) (-1672 (($ $) 31) (($ $ $) NIL)) (-1661 (($ $ $) 30)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) -(((-733 |#1| |#2|) (-10 -8 (-15 -1587 ((-108) |#1| |#1|)) (-15 -3873 ((-498) |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -2549 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1699 ((-382 (-522)) |#1|)) (-15 -3519 ((-108) |#1|)) (-15 -4126 (|#2| |#1|)) (-15 -1269 (|#2| |#1|)) (-15 -2983 (|#1| |#1|)) (-15 -3810 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1478 (|#2| |#1|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-522) |#1|)) (-15 -2217 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2217 (|#1| (-522))) (-15 -2742 ((-708))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 -1672 (|#1| |#1| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 -2944 ((-108) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -1661 (|#1| |#1| |#1|)) (-15 -2217 ((-792) |#1|)) (-15 -1562 ((-108) |#1| |#1|))) (-734 |#2|) (-157)) (T -733)) -((-2742 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-708)) (-5 *1 (-733 *3 *4)) (-4 *3 (-734 *4))))) -(-10 -8 (-15 -1587 ((-108) |#1| |#1|)) (-15 -3873 ((-498) |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -2549 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1699 ((-382 (-522)) |#1|)) (-15 -3519 ((-108) |#1|)) (-15 -4126 (|#2| |#1|)) (-15 -1269 (|#2| |#1|)) (-15 -2983 (|#1| |#1|)) (-15 -3810 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1478 (|#2| |#1|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-522) |#1|)) (-15 -2217 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2217 (|#1| (-522))) (-15 -2742 ((-708))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 -1672 (|#1| |#1| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 -2944 ((-108) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -1661 (|#1| |#1| |#1|)) (-15 -2217 ((-792) |#1|)) (-15 -1562 ((-108) |#1| |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-1685 (((-708)) 53 (|has| |#1| (-343)))) (-3367 (($) 17 T CONST)) (-3700 (((-3 (-522) "failed") $) 94 (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) 92 (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 90)) (-1478 (((-522) $) 95 (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) 93 (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) 89)) (-3920 (((-3 $ "failed") $) 34)) (-2025 ((|#1| $) 79)) (-2549 (((-3 (-382 (-522)) "failed") $) 66 (|has| |#1| (-507)))) (-3519 (((-108) $) 68 (|has| |#1| (-507)))) (-1699 (((-382 (-522)) $) 67 (|has| |#1| (-507)))) (-3344 (($) 56 (|has| |#1| (-343)))) (-2859 (((-108) $) 31)) (-2210 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-1269 ((|#1| $) 71)) (-1308 (($ $ $) 62 (|has| |#1| (-784)))) (-2524 (($ $ $) 61 (|has| |#1| (-784)))) (-3810 (($ (-1 |#1| |#1|) $) 81)) (-1475 (((-850) $) 55 (|has| |#1| (-343)))) (-2311 (((-1068) $) 9)) (-3193 (($ $) 65 (|has| |#1| (-338)))) (-2882 (($ (-850)) 54 (|has| |#1| (-343)))) (-2624 ((|#1| $) 76)) (-2940 ((|#1| $) 77)) (-3584 ((|#1| $) 78)) (-2965 ((|#1| $) 72)) (-2412 ((|#1| $) 73)) (-1773 ((|#1| $) 74)) (-1555 ((|#1| $) 75)) (-4174 (((-1032) $) 10)) (-2330 (($ $ (-588 |#1|) (-588 |#1|)) 87 (|has| |#1| (-285 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-285 |#1|))) (($ $ (-270 |#1|)) 85 (|has| |#1| (-285 |#1|))) (($ $ (-588 (-270 |#1|))) 84 (|has| |#1| (-285 |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) 83 (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-1085) |#1|) 82 (|has| |#1| (-483 (-1085) |#1|)))) (-2683 (($ $ |#1|) 88 (|has| |#1| (-262 |#1| |#1|)))) (-3873 (((-498) $) 63 (|has| |#1| (-563 (-498))))) (-2983 (($ $) 80)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 37) (($ (-382 (-522))) 91 (|has| |#1| (-962 (-382 (-522)))))) (-3040 (((-3 $ "failed") $) 64 (|has| |#1| (-133)))) (-2742 (((-708)) 29)) (-4126 ((|#1| $) 69 (|has| |#1| (-980)))) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1623 (((-108) $ $) 59 (|has| |#1| (-784)))) (-1597 (((-108) $ $) 58 (|has| |#1| (-784)))) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 60 (|has| |#1| (-784)))) (-1587 (((-108) $ $) 57 (|has| |#1| (-784)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) -(((-734 |#1|) (-1197) (-157)) (T -734)) -((-2983 (*1 *1 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-2025 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-3584 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-2940 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-2624 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-1555 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-1773 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-2965 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-1269 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-2210 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)) (-4 *2 (-980)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-734 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-108)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-734 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-382 (-522))))) (-2549 (*1 *2 *1) (|partial| -12 (-4 *1 (-734 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-382 (-522))))) (-3193 (*1 *1 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)) (-4 *2 (-338))))) -(-13 (-37 |t#1|) (-386 |t#1|) (-313 |t#1|) (-10 -8 (-15 -2983 ($ $)) (-15 -2025 (|t#1| $)) (-15 -3584 (|t#1| $)) (-15 -2940 (|t#1| $)) (-15 -2624 (|t#1| $)) (-15 -1555 (|t#1| $)) (-15 -1773 (|t#1| $)) (-15 -2412 (|t#1| $)) (-15 -2965 (|t#1| $)) (-15 -1269 (|t#1| $)) (-15 -2210 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-343)) (-6 (-343)) |%noBranch|) (IF (|has| |t#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-980)) (-15 -4126 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-507)) (PROGN (-15 -3519 ((-108) $)) (-15 -1699 ((-382 (-522)) $)) (-15 -2549 ((-3 (-382 (-522)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-338)) (-15 -3193 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-262 |#1| $) |has| |#1| (-262 |#1| |#1|)) ((-285 |#1|) |has| |#1| (-285 |#1|)) ((-343) |has| |#1| (-343)) ((-313 |#1|) . T) ((-386 |#1|) . T) ((-483 (-1085) |#1|) |has| |#1| (-483 (-1085) |#1|)) ((-483 |#1| |#1|) |has| |#1| (-285 |#1|)) ((-590 |#1|) . T) ((-590 $) . T) ((-655 |#1|) . T) ((-664) . T) ((-784) |has| |#1| (-784)) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T) ((-977 |#1|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-3810 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-735 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3810 (|#3| (-1 |#4| |#2|) |#1|))) (-734 |#2|) (-157) (-734 |#4|) (-157)) (T -735)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-4 *2 (-734 *6)) (-5 *1 (-735 *4 *5 *2 *6)) (-4 *4 (-734 *5))))) -(-10 -7 (-15 -3810 (|#3| (-1 |#4| |#2|) |#1|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-1685 (((-708)) NIL (|has| |#1| (-343)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) NIL) (((-3 (-925 |#1|) "failed") $) 35) (((-3 (-522) "failed") $) NIL (-3844 (|has| (-925 |#1|) (-962 (-522))) (|has| |#1| (-962 (-522))))) (((-3 (-382 (-522)) "failed") $) NIL (-3844 (|has| (-925 |#1|) (-962 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522))))))) (-1478 ((|#1| $) NIL) (((-925 |#1|) $) 33) (((-522) $) NIL (-3844 (|has| (-925 |#1|) (-962 (-522))) (|has| |#1| (-962 (-522))))) (((-382 (-522)) $) NIL (-3844 (|has| (-925 |#1|) (-962 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522))))))) (-3920 (((-3 $ "failed") $) NIL)) (-2025 ((|#1| $) 16)) (-2549 (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-507)))) (-3519 (((-108) $) NIL (|has| |#1| (-507)))) (-1699 (((-382 (-522)) $) NIL (|has| |#1| (-507)))) (-3344 (($) NIL (|has| |#1| (-343)))) (-2859 (((-108) $) NIL)) (-2210 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-925 |#1|) (-925 |#1|)) 29)) (-1269 ((|#1| $) NIL)) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-1475 (((-850) $) NIL (|has| |#1| (-343)))) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL (|has| |#1| (-338)))) (-2882 (($ (-850)) NIL (|has| |#1| (-343)))) (-2624 ((|#1| $) 22)) (-2940 ((|#1| $) 20)) (-3584 ((|#1| $) 18)) (-2965 ((|#1| $) 26)) (-2412 ((|#1| $) 25)) (-1773 ((|#1| $) 24)) (-1555 ((|#1| $) 23)) (-4174 (((-1032) $) NIL)) (-2330 (($ $ (-588 |#1|) (-588 |#1|)) NIL (|has| |#1| (-285 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-285 |#1|))) (($ $ (-270 |#1|)) NIL (|has| |#1| (-285 |#1|))) (($ $ (-588 (-270 |#1|))) NIL (|has| |#1| (-285 |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) NIL (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-1085) |#1|) NIL (|has| |#1| (-483 (-1085) |#1|)))) (-2683 (($ $ |#1|) NIL (|has| |#1| (-262 |#1| |#1|)))) (-3873 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-2983 (($ $) NIL)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL) (($ (-925 |#1|)) 30) (($ (-382 (-522))) NIL (-3844 (|has| (-925 |#1|) (-962 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522))))))) (-3040 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2742 (((-708)) NIL)) (-4126 ((|#1| $) NIL (|has| |#1| (-980)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 8 T CONST)) (-3709 (($) 12 T CONST)) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-736 |#1|) (-13 (-734 |#1|) (-386 (-925 |#1|)) (-10 -8 (-15 -2210 ($ (-925 |#1|) (-925 |#1|))))) (-157)) (T -736)) -((-2210 (*1 *1 *2 *2) (-12 (-5 *2 (-925 *3)) (-4 *3 (-157)) (-5 *1 (-736 *3))))) -(-13 (-734 |#1|) (-386 (-925 |#1|)) (-10 -8 (-15 -2210 ($ (-925 |#1|) (-925 |#1|))))) -((-1419 (((-108) $ $) 7)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 14)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-3221 (((-960) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 13)) (-1562 (((-108) $ $) 6))) -(((-737) (-1197)) (T -737)) -((-1361 (*1 *2 *3 *4) (-12 (-4 *1 (-737)) (-5 *3 (-983)) (-5 *4 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)))))) (-3221 (*1 *2 *3) (-12 (-4 *1 (-737)) (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-960))))) -(-13 (-1014) (-10 -7 (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3221 ((-960) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) -(((-97) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-3104 (((-2 (|:| |particular| |#2|) (|:| -2905 (-588 |#2|))) |#3| |#2| (-1085)) 19))) -(((-738 |#1| |#2| |#3|) (-10 -7 (-15 -3104 ((-2 (|:| |particular| |#2|) (|:| -2905 (-588 |#2|))) |#3| |#2| (-1085)))) (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)) (-13 (-29 |#1|) (-1106) (-887)) (-598 |#2|)) (T -738)) -((-3104 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1085)) (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-4 *4 (-13 (-29 *6) (-1106) (-887))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2905 (-588 *4)))) (-5 *1 (-738 *6 *4 *3)) (-4 *3 (-598 *4))))) -(-10 -7 (-15 -3104 ((-2 (|:| |particular| |#2|) (|:| -2905 (-588 |#2|))) |#3| |#2| (-1085)))) -((-2925 (((-3 |#2| "failed") |#2| (-110) (-270 |#2|) (-588 |#2|)) 26) (((-3 |#2| "failed") (-270 |#2|) (-110) (-270 |#2|) (-588 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -2905 (-588 |#2|))) |#2| "failed") |#2| (-110) (-1085)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -2905 (-588 |#2|))) |#2| "failed") (-270 |#2|) (-110) (-1085)) 17) (((-3 (-2 (|:| |particular| (-1166 |#2|)) (|:| -2905 (-588 (-1166 |#2|)))) "failed") (-588 |#2|) (-588 (-110)) (-1085)) 22) (((-3 (-2 (|:| |particular| (-1166 |#2|)) (|:| -2905 (-588 (-1166 |#2|)))) "failed") (-588 (-270 |#2|)) (-588 (-110)) (-1085)) 24) (((-3 (-588 (-1166 |#2|)) "failed") (-628 |#2|) (-1085)) 36) (((-3 (-2 (|:| |particular| (-1166 |#2|)) (|:| -2905 (-588 (-1166 |#2|)))) "failed") (-628 |#2|) (-1166 |#2|) (-1085)) 34))) -(((-739 |#1| |#2|) (-10 -7 (-15 -2925 ((-3 (-2 (|:| |particular| (-1166 |#2|)) (|:| -2905 (-588 (-1166 |#2|)))) "failed") (-628 |#2|) (-1166 |#2|) (-1085))) (-15 -2925 ((-3 (-588 (-1166 |#2|)) "failed") (-628 |#2|) (-1085))) (-15 -2925 ((-3 (-2 (|:| |particular| (-1166 |#2|)) (|:| -2905 (-588 (-1166 |#2|)))) "failed") (-588 (-270 |#2|)) (-588 (-110)) (-1085))) (-15 -2925 ((-3 (-2 (|:| |particular| (-1166 |#2|)) (|:| -2905 (-588 (-1166 |#2|)))) "failed") (-588 |#2|) (-588 (-110)) (-1085))) (-15 -2925 ((-3 (-2 (|:| |particular| |#2|) (|:| -2905 (-588 |#2|))) |#2| "failed") (-270 |#2|) (-110) (-1085))) (-15 -2925 ((-3 (-2 (|:| |particular| |#2|) (|:| -2905 (-588 |#2|))) |#2| "failed") |#2| (-110) (-1085))) (-15 -2925 ((-3 |#2| "failed") (-270 |#2|) (-110) (-270 |#2|) (-588 |#2|))) (-15 -2925 ((-3 |#2| "failed") |#2| (-110) (-270 |#2|) (-588 |#2|)))) (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)) (-13 (-29 |#1|) (-1106) (-887))) (T -739)) -((-2925 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-270 *2)) (-5 *5 (-588 *2)) (-4 *2 (-13 (-29 *6) (-1106) (-887))) (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *1 (-739 *6 *2)))) (-2925 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-270 *2)) (-5 *4 (-110)) (-5 *5 (-588 *2)) (-4 *2 (-13 (-29 *6) (-1106) (-887))) (-5 *1 (-739 *6 *2)) (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))))) (-2925 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-5 *5 (-1085)) (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2905 (-588 *3))) *3 "failed")) (-5 *1 (-739 *6 *3)) (-4 *3 (-13 (-29 *6) (-1106) (-887))))) (-2925 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-270 *7)) (-5 *4 (-110)) (-5 *5 (-1085)) (-4 *7 (-13 (-29 *6) (-1106) (-887))) (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2905 (-588 *7))) *7 "failed")) (-5 *1 (-739 *6 *7)))) (-2925 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-588 *7)) (-5 *4 (-588 (-110))) (-5 *5 (-1085)) (-4 *7 (-13 (-29 *6) (-1106) (-887))) (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-2 (|:| |particular| (-1166 *7)) (|:| -2905 (-588 (-1166 *7))))) (-5 *1 (-739 *6 *7)))) (-2925 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-588 (-270 *7))) (-5 *4 (-588 (-110))) (-5 *5 (-1085)) (-4 *7 (-13 (-29 *6) (-1106) (-887))) (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-2 (|:| |particular| (-1166 *7)) (|:| -2905 (-588 (-1166 *7))))) (-5 *1 (-739 *6 *7)))) (-2925 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-628 *6)) (-5 *4 (-1085)) (-4 *6 (-13 (-29 *5) (-1106) (-887))) (-4 *5 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-588 (-1166 *6))) (-5 *1 (-739 *5 *6)))) (-2925 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-628 *7)) (-5 *5 (-1085)) (-4 *7 (-13 (-29 *6) (-1106) (-887))) (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-2 (|:| |particular| (-1166 *7)) (|:| -2905 (-588 (-1166 *7))))) (-5 *1 (-739 *6 *7)) (-5 *4 (-1166 *7))))) -(-10 -7 (-15 -2925 ((-3 (-2 (|:| |particular| (-1166 |#2|)) (|:| -2905 (-588 (-1166 |#2|)))) "failed") (-628 |#2|) (-1166 |#2|) (-1085))) (-15 -2925 ((-3 (-588 (-1166 |#2|)) "failed") (-628 |#2|) (-1085))) (-15 -2925 ((-3 (-2 (|:| |particular| (-1166 |#2|)) (|:| -2905 (-588 (-1166 |#2|)))) "failed") (-588 (-270 |#2|)) (-588 (-110)) (-1085))) (-15 -2925 ((-3 (-2 (|:| |particular| (-1166 |#2|)) (|:| -2905 (-588 (-1166 |#2|)))) "failed") (-588 |#2|) (-588 (-110)) (-1085))) (-15 -2925 ((-3 (-2 (|:| |particular| |#2|) (|:| -2905 (-588 |#2|))) |#2| "failed") (-270 |#2|) (-110) (-1085))) (-15 -2925 ((-3 (-2 (|:| |particular| |#2|) (|:| -2905 (-588 |#2|))) |#2| "failed") |#2| (-110) (-1085))) (-15 -2925 ((-3 |#2| "failed") (-270 |#2|) (-110) (-270 |#2|) (-588 |#2|))) (-15 -2925 ((-3 |#2| "failed") |#2| (-110) (-270 |#2|) (-588 |#2|)))) -((-4162 (($) 9)) (-3278 (((-3 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354))) "failed") (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 26)) (-2562 (((-588 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $) 23)) (-3365 (($ (-2 (|:| -2644 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3149 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354)))))) 20)) (-2226 (($ (-588 (-2 (|:| -2644 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3149 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354))))))) 18)) (-2417 (((-1171)) 12))) -(((-740) (-10 -8 (-15 -4162 ($)) (-15 -2417 ((-1171))) (-15 -2562 ((-588 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $)) (-15 -2226 ($ (-588 (-2 (|:| -2644 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3149 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354)))))))) (-15 -3365 ($ (-2 (|:| -2644 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3149 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354))))))) (-15 -3278 ((-3 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354))) "failed") (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (T -740)) -((-3278 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354)))) (-5 *1 (-740)))) (-3365 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2644 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3149 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354)))))) (-5 *1 (-740)))) (-2226 (*1 *1 *2) (-12 (-5 *2 (-588 (-2 (|:| -2644 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3149 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354))))))) (-5 *1 (-740)))) (-2562 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-5 *1 (-740)))) (-2417 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-740)))) (-4162 (*1 *1) (-5 *1 (-740)))) -(-10 -8 (-15 -4162 ($)) (-15 -2417 ((-1171))) (-15 -2562 ((-588 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $)) (-15 -2226 ($ (-588 (-2 (|:| -2644 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3149 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354)))))))) (-15 -3365 ($ (-2 (|:| -2644 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3149 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354))))))) (-15 -3278 ((-3 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354))) "failed") (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) -((-4149 ((|#2| |#2| (-1085)) 15)) (-3377 ((|#2| |#2| (-1085)) 47)) (-3596 (((-1 |#2| |#2|) (-1085)) 11))) -(((-741 |#1| |#2|) (-10 -7 (-15 -4149 (|#2| |#2| (-1085))) (-15 -3377 (|#2| |#2| (-1085))) (-15 -3596 ((-1 |#2| |#2|) (-1085)))) (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)) (-13 (-29 |#1|) (-1106) (-887))) (T -741)) -((-3596 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-1 *5 *5)) (-5 *1 (-741 *4 *5)) (-4 *5 (-13 (-29 *4) (-1106) (-887))))) (-3377 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *1 (-741 *4 *2)) (-4 *2 (-13 (-29 *4) (-1106) (-887))))) (-4149 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *1 (-741 *4 *2)) (-4 *2 (-13 (-29 *4) (-1106) (-887)))))) -(-10 -7 (-15 -4149 (|#2| |#2| (-1085))) (-15 -3377 (|#2| |#2| (-1085))) (-15 -3596 ((-1 |#2| |#2|) (-1085)))) -((-2925 (((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-291 (-354)) (-588 (-354)) (-354) (-354)) 114) (((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-291 (-354)) (-588 (-354)) (-354)) 115) (((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-588 (-354)) (-354)) 117) (((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-291 (-354)) (-354)) 118) (((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-354)) 119) (((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354))) 120) (((-960) (-745) (-983)) 105) (((-960) (-745)) 106)) (-1361 (((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068)))) (-745) (-983)) 71) (((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068)))) (-745)) 73))) -(((-742) (-10 -7 (-15 -2925 ((-960) (-745))) (-15 -2925 ((-960) (-745) (-983))) (-15 -2925 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)))) (-15 -2925 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-354))) (-15 -2925 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-291 (-354)) (-354))) (-15 -2925 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-588 (-354)) (-354))) (-15 -2925 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-291 (-354)) (-588 (-354)) (-354))) (-15 -2925 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-291 (-354)) (-588 (-354)) (-354) (-354))) (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068)))) (-745))) (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068)))) (-745) (-983))))) (T -742)) -((-1361 (*1 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-983)) (-5 *2 (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068))))) (-5 *1 (-742)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068))))) (-5 *1 (-742)))) (-2925 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1166 (-291 *4))) (-5 *5 (-588 (-354))) (-5 *6 (-291 (-354))) (-5 *4 (-354)) (-5 *2 (-960)) (-5 *1 (-742)))) (-2925 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1166 (-291 *4))) (-5 *5 (-588 (-354))) (-5 *6 (-291 (-354))) (-5 *4 (-354)) (-5 *2 (-960)) (-5 *1 (-742)))) (-2925 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1166 (-291 (-354)))) (-5 *4 (-354)) (-5 *5 (-588 *4)) (-5 *2 (-960)) (-5 *1 (-742)))) (-2925 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1166 (-291 *4))) (-5 *5 (-588 (-354))) (-5 *6 (-291 (-354))) (-5 *4 (-354)) (-5 *2 (-960)) (-5 *1 (-742)))) (-2925 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1166 (-291 (-354)))) (-5 *4 (-354)) (-5 *5 (-588 *4)) (-5 *2 (-960)) (-5 *1 (-742)))) (-2925 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1166 (-291 (-354)))) (-5 *4 (-354)) (-5 *5 (-588 *4)) (-5 *2 (-960)) (-5 *1 (-742)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-983)) (-5 *2 (-960)) (-5 *1 (-742)))) (-2925 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-960)) (-5 *1 (-742))))) -(-10 -7 (-15 -2925 ((-960) (-745))) (-15 -2925 ((-960) (-745) (-983))) (-15 -2925 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)))) (-15 -2925 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-354))) (-15 -2925 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-291 (-354)) (-354))) (-15 -2925 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-588 (-354)) (-354))) (-15 -2925 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-291 (-354)) (-588 (-354)) (-354))) (-15 -2925 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-291 (-354)) (-588 (-354)) (-354) (-354))) (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068)))) (-745))) (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068)))) (-745) (-983)))) -((-4061 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2905 (-588 |#4|))) (-595 |#4|) |#4|) 32))) -(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4061 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2905 (-588 |#4|))) (-595 |#4|) |#4|))) (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))) (-1142 |#1|) (-1142 (-382 |#2|)) (-317 |#1| |#2| |#3|)) (T -743)) -((-4061 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *4)) (-4 *4 (-317 *5 *6 *7)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2905 (-588 *4)))) (-5 *1 (-743 *5 *6 *7 *4))))) -(-10 -7 (-15 -4061 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2905 (-588 |#4|))) (-595 |#4|) |#4|))) -((-2567 (((-2 (|:| -3277 |#3|) (|:| |rh| (-588 (-382 |#2|)))) |#4| (-588 (-382 |#2|))) 52)) (-2106 (((-588 (-2 (|:| -1980 |#2|) (|:| -1656 |#2|))) |#4| |#2|) 60) (((-588 (-2 (|:| -1980 |#2|) (|:| -1656 |#2|))) |#4|) 59) (((-588 (-2 (|:| -1980 |#2|) (|:| -1656 |#2|))) |#3| |#2|) 20) (((-588 (-2 (|:| -1980 |#2|) (|:| -1656 |#2|))) |#3|) 21)) (-1754 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-1440 ((|#2| |#3| (-588 (-382 |#2|))) 94) (((-3 |#2| "failed") |#3| (-382 |#2|)) 91))) -(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1440 ((-3 |#2| "failed") |#3| (-382 |#2|))) (-15 -1440 (|#2| |#3| (-588 (-382 |#2|)))) (-15 -2106 ((-588 (-2 (|:| -1980 |#2|) (|:| -1656 |#2|))) |#3|)) (-15 -2106 ((-588 (-2 (|:| -1980 |#2|) (|:| -1656 |#2|))) |#3| |#2|)) (-15 -1754 (|#2| |#3| |#1|)) (-15 -2106 ((-588 (-2 (|:| -1980 |#2|) (|:| -1656 |#2|))) |#4|)) (-15 -2106 ((-588 (-2 (|:| -1980 |#2|) (|:| -1656 |#2|))) |#4| |#2|)) (-15 -1754 (|#2| |#4| |#1|)) (-15 -2567 ((-2 (|:| -3277 |#3|) (|:| |rh| (-588 (-382 |#2|)))) |#4| (-588 (-382 |#2|))))) (-13 (-338) (-135) (-962 (-382 (-522)))) (-1142 |#1|) (-598 |#2|) (-598 (-382 |#2|))) (T -744)) -((-2567 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *6 (-1142 *5)) (-5 *2 (-2 (|:| -3277 *7) (|:| |rh| (-588 (-382 *6))))) (-5 *1 (-744 *5 *6 *7 *3)) (-5 *4 (-588 (-382 *6))) (-4 *7 (-598 *6)) (-4 *3 (-598 (-382 *6))))) (-1754 (*1 *2 *3 *4) (-12 (-4 *2 (-1142 *4)) (-5 *1 (-744 *4 *2 *5 *3)) (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *5 (-598 *2)) (-4 *3 (-598 (-382 *2))))) (-2106 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *4 (-1142 *5)) (-5 *2 (-588 (-2 (|:| -1980 *4) (|:| -1656 *4)))) (-5 *1 (-744 *5 *4 *6 *3)) (-4 *6 (-598 *4)) (-4 *3 (-598 (-382 *4))))) (-2106 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *5 (-1142 *4)) (-5 *2 (-588 (-2 (|:| -1980 *5) (|:| -1656 *5)))) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *6 (-598 *5)) (-4 *3 (-598 (-382 *5))))) (-1754 (*1 *2 *3 *4) (-12 (-4 *2 (-1142 *4)) (-5 *1 (-744 *4 *2 *3 *5)) (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *3 (-598 *2)) (-4 *5 (-598 (-382 *2))))) (-2106 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *4 (-1142 *5)) (-5 *2 (-588 (-2 (|:| -1980 *4) (|:| -1656 *4)))) (-5 *1 (-744 *5 *4 *3 *6)) (-4 *3 (-598 *4)) (-4 *6 (-598 (-382 *4))))) (-2106 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *5 (-1142 *4)) (-5 *2 (-588 (-2 (|:| -1980 *5) (|:| -1656 *5)))) (-5 *1 (-744 *4 *5 *3 *6)) (-4 *3 (-598 *5)) (-4 *6 (-598 (-382 *5))))) (-1440 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-382 *2))) (-4 *2 (-1142 *5)) (-5 *1 (-744 *5 *2 *3 *6)) (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *3 (-598 *2)) (-4 *6 (-598 (-382 *2))))) (-1440 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-382 *2)) (-4 *2 (-1142 *5)) (-5 *1 (-744 *5 *2 *3 *6)) (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *3 (-598 *2)) (-4 *6 (-598 *4))))) -(-10 -7 (-15 -1440 ((-3 |#2| "failed") |#3| (-382 |#2|))) (-15 -1440 (|#2| |#3| (-588 (-382 |#2|)))) (-15 -2106 ((-588 (-2 (|:| -1980 |#2|) (|:| -1656 |#2|))) |#3|)) (-15 -2106 ((-588 (-2 (|:| -1980 |#2|) (|:| -1656 |#2|))) |#3| |#2|)) (-15 -1754 (|#2| |#3| |#1|)) (-15 -2106 ((-588 (-2 (|:| -1980 |#2|) (|:| -1656 |#2|))) |#4|)) (-15 -2106 ((-588 (-2 (|:| -1980 |#2|) (|:| -1656 |#2|))) |#4| |#2|)) (-15 -1754 (|#2| |#4| |#1|)) (-15 -2567 ((-2 (|:| -3277 |#3|) (|:| |rh| (-588 (-382 |#2|)))) |#4| (-588 (-382 |#2|))))) -((-1419 (((-108) $ $) NIL)) (-1478 (((-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) $) 9)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 11) (($ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 8)) (-1562 (((-108) $ $) NIL))) -(((-745) (-13 (-1014) (-10 -8 (-15 -2217 ($ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2217 ((-792) $)) (-15 -1478 ((-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) $))))) (T -745)) -((-2217 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-745)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *1 (-745)))) (-1478 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *1 (-745))))) -(-13 (-1014) (-10 -8 (-15 -2217 ($ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2217 ((-792) $)) (-15 -1478 ((-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) $)))) -((-3836 (((-588 (-2 (|:| |frac| (-382 |#2|)) (|:| -3277 |#3|))) |#3| (-1 (-588 |#2|) |#2| (-1081 |#2|)) (-1 (-393 |#2|) |#2|)) 117)) (-3563 (((-588 (-2 (|:| |poly| |#2|) (|:| -3277 |#3|))) |#3| (-1 (-588 |#1|) |#2|)) 45)) (-2615 (((-588 (-2 (|:| |deg| (-708)) (|:| -3277 |#2|))) |#3|) 94)) (-1701 ((|#2| |#3|) 37)) (-3045 (((-588 (-2 (|:| -2855 |#1|) (|:| -3277 |#3|))) |#3| (-1 (-588 |#1|) |#2|)) 81)) (-3507 ((|#3| |#3| (-382 |#2|)) 62) ((|#3| |#3| |#2|) 78))) -(((-746 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1701 (|#2| |#3|)) (-15 -2615 ((-588 (-2 (|:| |deg| (-708)) (|:| -3277 |#2|))) |#3|)) (-15 -3045 ((-588 (-2 (|:| -2855 |#1|) (|:| -3277 |#3|))) |#3| (-1 (-588 |#1|) |#2|))) (-15 -3563 ((-588 (-2 (|:| |poly| |#2|) (|:| -3277 |#3|))) |#3| (-1 (-588 |#1|) |#2|))) (-15 -3836 ((-588 (-2 (|:| |frac| (-382 |#2|)) (|:| -3277 |#3|))) |#3| (-1 (-588 |#2|) |#2| (-1081 |#2|)) (-1 (-393 |#2|) |#2|))) (-15 -3507 (|#3| |#3| |#2|)) (-15 -3507 (|#3| |#3| (-382 |#2|)))) (-13 (-338) (-135) (-962 (-382 (-522)))) (-1142 |#1|) (-598 |#2|) (-598 (-382 |#2|))) (T -746)) -((-3507 (*1 *2 *2 *3) (-12 (-5 *3 (-382 *5)) (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *5 (-1142 *4)) (-5 *1 (-746 *4 *5 *2 *6)) (-4 *2 (-598 *5)) (-4 *6 (-598 *3)))) (-3507 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *3 (-1142 *4)) (-5 *1 (-746 *4 *3 *2 *5)) (-4 *2 (-598 *3)) (-4 *5 (-598 (-382 *3))))) (-3836 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-588 *7) *7 (-1081 *7))) (-5 *5 (-1 (-393 *7) *7)) (-4 *7 (-1142 *6)) (-4 *6 (-13 (-338) (-135) (-962 (-382 (-522))))) (-5 *2 (-588 (-2 (|:| |frac| (-382 *7)) (|:| -3277 *3)))) (-5 *1 (-746 *6 *7 *3 *8)) (-4 *3 (-598 *7)) (-4 *8 (-598 (-382 *7))))) (-3563 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-588 *5) *6)) (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *6 (-1142 *5)) (-5 *2 (-588 (-2 (|:| |poly| *6) (|:| -3277 *3)))) (-5 *1 (-746 *5 *6 *3 *7)) (-4 *3 (-598 *6)) (-4 *7 (-598 (-382 *6))))) (-3045 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-588 *5) *6)) (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *6 (-1142 *5)) (-5 *2 (-588 (-2 (|:| -2855 *5) (|:| -3277 *3)))) (-5 *1 (-746 *5 *6 *3 *7)) (-4 *3 (-598 *6)) (-4 *7 (-598 (-382 *6))))) (-2615 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *5 (-1142 *4)) (-5 *2 (-588 (-2 (|:| |deg| (-708)) (|:| -3277 *5)))) (-5 *1 (-746 *4 *5 *3 *6)) (-4 *3 (-598 *5)) (-4 *6 (-598 (-382 *5))))) (-1701 (*1 *2 *3) (-12 (-4 *2 (-1142 *4)) (-5 *1 (-746 *4 *2 *3 *5)) (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *3 (-598 *2)) (-4 *5 (-598 (-382 *2)))))) -(-10 -7 (-15 -1701 (|#2| |#3|)) (-15 -2615 ((-588 (-2 (|:| |deg| (-708)) (|:| -3277 |#2|))) |#3|)) (-15 -3045 ((-588 (-2 (|:| -2855 |#1|) (|:| -3277 |#3|))) |#3| (-1 (-588 |#1|) |#2|))) (-15 -3563 ((-588 (-2 (|:| |poly| |#2|) (|:| -3277 |#3|))) |#3| (-1 (-588 |#1|) |#2|))) (-15 -3836 ((-588 (-2 (|:| |frac| (-382 |#2|)) (|:| -3277 |#3|))) |#3| (-1 (-588 |#2|) |#2| (-1081 |#2|)) (-1 (-393 |#2|) |#2|))) (-15 -3507 (|#3| |#3| |#2|)) (-15 -3507 (|#3| |#3| (-382 |#2|)))) -((-3338 (((-2 (|:| -2905 (-588 (-382 |#2|))) (|:| -2149 (-628 |#1|))) (-596 |#2| (-382 |#2|)) (-588 (-382 |#2|))) 118) (((-2 (|:| |particular| (-3 (-382 |#2|) "failed")) (|:| -2905 (-588 (-382 |#2|)))) (-596 |#2| (-382 |#2|)) (-382 |#2|)) 117) (((-2 (|:| -2905 (-588 (-382 |#2|))) (|:| -2149 (-628 |#1|))) (-595 (-382 |#2|)) (-588 (-382 |#2|))) 112) (((-2 (|:| |particular| (-3 (-382 |#2|) "failed")) (|:| -2905 (-588 (-382 |#2|)))) (-595 (-382 |#2|)) (-382 |#2|)) 110)) (-1415 ((|#2| (-596 |#2| (-382 |#2|))) 77) ((|#2| (-595 (-382 |#2|))) 81))) -(((-747 |#1| |#2|) (-10 -7 (-15 -3338 ((-2 (|:| |particular| (-3 (-382 |#2|) "failed")) (|:| -2905 (-588 (-382 |#2|)))) (-595 (-382 |#2|)) (-382 |#2|))) (-15 -3338 ((-2 (|:| -2905 (-588 (-382 |#2|))) (|:| -2149 (-628 |#1|))) (-595 (-382 |#2|)) (-588 (-382 |#2|)))) (-15 -3338 ((-2 (|:| |particular| (-3 (-382 |#2|) "failed")) (|:| -2905 (-588 (-382 |#2|)))) (-596 |#2| (-382 |#2|)) (-382 |#2|))) (-15 -3338 ((-2 (|:| -2905 (-588 (-382 |#2|))) (|:| -2149 (-628 |#1|))) (-596 |#2| (-382 |#2|)) (-588 (-382 |#2|)))) (-15 -1415 (|#2| (-595 (-382 |#2|)))) (-15 -1415 (|#2| (-596 |#2| (-382 |#2|))))) (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))) (-1142 |#1|)) (T -747)) -((-1415 (*1 *2 *3) (-12 (-5 *3 (-596 *2 (-382 *2))) (-4 *2 (-1142 *4)) (-5 *1 (-747 *4 *2)) (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))))) (-1415 (*1 *2 *3) (-12 (-5 *3 (-595 (-382 *2))) (-4 *2 (-1142 *4)) (-5 *1 (-747 *4 *2)) (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))))) (-3338 (*1 *2 *3 *4) (-12 (-5 *3 (-596 *6 (-382 *6))) (-4 *6 (-1142 *5)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-5 *2 (-2 (|:| -2905 (-588 (-382 *6))) (|:| -2149 (-628 *5)))) (-5 *1 (-747 *5 *6)) (-5 *4 (-588 (-382 *6))))) (-3338 (*1 *2 *3 *4) (-12 (-5 *3 (-596 *6 (-382 *6))) (-5 *4 (-382 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2905 (-588 *4)))) (-5 *1 (-747 *5 *6)))) (-3338 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-382 *6))) (-4 *6 (-1142 *5)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-5 *2 (-2 (|:| -2905 (-588 (-382 *6))) (|:| -2149 (-628 *5)))) (-5 *1 (-747 *5 *6)) (-5 *4 (-588 (-382 *6))))) (-3338 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-382 *6))) (-5 *4 (-382 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2905 (-588 *4)))) (-5 *1 (-747 *5 *6))))) -(-10 -7 (-15 -3338 ((-2 (|:| |particular| (-3 (-382 |#2|) "failed")) (|:| -2905 (-588 (-382 |#2|)))) (-595 (-382 |#2|)) (-382 |#2|))) (-15 -3338 ((-2 (|:| -2905 (-588 (-382 |#2|))) (|:| -2149 (-628 |#1|))) (-595 (-382 |#2|)) (-588 (-382 |#2|)))) (-15 -3338 ((-2 (|:| |particular| (-3 (-382 |#2|) "failed")) (|:| -2905 (-588 (-382 |#2|)))) (-596 |#2| (-382 |#2|)) (-382 |#2|))) (-15 -3338 ((-2 (|:| -2905 (-588 (-382 |#2|))) (|:| -2149 (-628 |#1|))) (-596 |#2| (-382 |#2|)) (-588 (-382 |#2|)))) (-15 -1415 (|#2| (-595 (-382 |#2|)))) (-15 -1415 (|#2| (-596 |#2| (-382 |#2|))))) -((-3577 (((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#1|))) |#5| |#4|) 47))) -(((-748 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3577 ((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#1|))) |#5| |#4|))) (-338) (-598 |#1|) (-1142 |#1|) (-662 |#1| |#3|) (-598 |#4|)) (T -748)) -((-3577 (*1 *2 *3 *4) (-12 (-4 *5 (-338)) (-4 *7 (-1142 *5)) (-4 *4 (-662 *5 *7)) (-5 *2 (-2 (|:| -2149 (-628 *6)) (|:| |vec| (-1166 *5)))) (-5 *1 (-748 *5 *6 *7 *4 *3)) (-4 *6 (-598 *5)) (-4 *3 (-598 *4))))) -(-10 -7 (-15 -3577 ((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#1|))) |#5| |#4|))) -((-3836 (((-588 (-2 (|:| |frac| (-382 |#2|)) (|:| -3277 (-596 |#2| (-382 |#2|))))) (-596 |#2| (-382 |#2|)) (-1 (-393 |#2|) |#2|)) 43)) (-3102 (((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)) (-1 (-393 |#2|) |#2|)) 134 (|has| |#1| (-27))) (((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|))) 135 (|has| |#1| (-27))) (((-588 (-382 |#2|)) (-595 (-382 |#2|)) (-1 (-393 |#2|) |#2|)) 136 (|has| |#1| (-27))) (((-588 (-382 |#2|)) (-595 (-382 |#2|))) 137 (|has| |#1| (-27))) (((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)) (-1 (-588 |#1|) |#2|) (-1 (-393 |#2|) |#2|)) 36) (((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)) (-1 (-588 |#1|) |#2|)) 37) (((-588 (-382 |#2|)) (-595 (-382 |#2|)) (-1 (-588 |#1|) |#2|) (-1 (-393 |#2|) |#2|)) 34) (((-588 (-382 |#2|)) (-595 (-382 |#2|)) (-1 (-588 |#1|) |#2|)) 35)) (-3563 (((-588 (-2 (|:| |poly| |#2|) (|:| -3277 (-596 |#2| (-382 |#2|))))) (-596 |#2| (-382 |#2|)) (-1 (-588 |#1|) |#2|)) 81))) -(((-749 |#1| |#2|) (-10 -7 (-15 -3102 ((-588 (-382 |#2|)) (-595 (-382 |#2|)) (-1 (-588 |#1|) |#2|))) (-15 -3102 ((-588 (-382 |#2|)) (-595 (-382 |#2|)) (-1 (-588 |#1|) |#2|) (-1 (-393 |#2|) |#2|))) (-15 -3102 ((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)) (-1 (-588 |#1|) |#2|))) (-15 -3102 ((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)) (-1 (-588 |#1|) |#2|) (-1 (-393 |#2|) |#2|))) (-15 -3836 ((-588 (-2 (|:| |frac| (-382 |#2|)) (|:| -3277 (-596 |#2| (-382 |#2|))))) (-596 |#2| (-382 |#2|)) (-1 (-393 |#2|) |#2|))) (-15 -3563 ((-588 (-2 (|:| |poly| |#2|) (|:| -3277 (-596 |#2| (-382 |#2|))))) (-596 |#2| (-382 |#2|)) (-1 (-588 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3102 ((-588 (-382 |#2|)) (-595 (-382 |#2|)))) (-15 -3102 ((-588 (-382 |#2|)) (-595 (-382 |#2|)) (-1 (-393 |#2|) |#2|))) (-15 -3102 ((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)))) (-15 -3102 ((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)) (-1 (-393 |#2|) |#2|)))) |%noBranch|)) (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))) (-1142 |#1|)) (T -749)) -((-3102 (*1 *2 *3 *4) (-12 (-5 *3 (-596 *6 (-382 *6))) (-5 *4 (-1 (-393 *6) *6)) (-4 *6 (-1142 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-5 *2 (-588 (-382 *6))) (-5 *1 (-749 *5 *6)))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-596 *5 (-382 *5))) (-4 *5 (-1142 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-5 *2 (-588 (-382 *5))) (-5 *1 (-749 *4 *5)))) (-3102 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-382 *6))) (-5 *4 (-1 (-393 *6) *6)) (-4 *6 (-1142 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-5 *2 (-588 (-382 *6))) (-5 *1 (-749 *5 *6)))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-595 (-382 *5))) (-4 *5 (-1142 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-5 *2 (-588 (-382 *5))) (-5 *1 (-749 *4 *5)))) (-3563 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-588 *5) *6)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-4 *6 (-1142 *5)) (-5 *2 (-588 (-2 (|:| |poly| *6) (|:| -3277 (-596 *6 (-382 *6)))))) (-5 *1 (-749 *5 *6)) (-5 *3 (-596 *6 (-382 *6))))) (-3836 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-393 *6) *6)) (-4 *6 (-1142 *5)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-5 *2 (-588 (-2 (|:| |frac| (-382 *6)) (|:| -3277 (-596 *6 (-382 *6)))))) (-5 *1 (-749 *5 *6)) (-5 *3 (-596 *6 (-382 *6))))) (-3102 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-596 *7 (-382 *7))) (-5 *4 (-1 (-588 *6) *7)) (-5 *5 (-1 (-393 *7) *7)) (-4 *6 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-4 *7 (-1142 *6)) (-5 *2 (-588 (-382 *7))) (-5 *1 (-749 *6 *7)))) (-3102 (*1 *2 *3 *4) (-12 (-5 *3 (-596 *6 (-382 *6))) (-5 *4 (-1 (-588 *5) *6)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-4 *6 (-1142 *5)) (-5 *2 (-588 (-382 *6))) (-5 *1 (-749 *5 *6)))) (-3102 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-595 (-382 *7))) (-5 *4 (-1 (-588 *6) *7)) (-5 *5 (-1 (-393 *7) *7)) (-4 *6 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-4 *7 (-1142 *6)) (-5 *2 (-588 (-382 *7))) (-5 *1 (-749 *6 *7)))) (-3102 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-382 *6))) (-5 *4 (-1 (-588 *5) *6)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-4 *6 (-1142 *5)) (-5 *2 (-588 (-382 *6))) (-5 *1 (-749 *5 *6))))) -(-10 -7 (-15 -3102 ((-588 (-382 |#2|)) (-595 (-382 |#2|)) (-1 (-588 |#1|) |#2|))) (-15 -3102 ((-588 (-382 |#2|)) (-595 (-382 |#2|)) (-1 (-588 |#1|) |#2|) (-1 (-393 |#2|) |#2|))) (-15 -3102 ((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)) (-1 (-588 |#1|) |#2|))) (-15 -3102 ((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)) (-1 (-588 |#1|) |#2|) (-1 (-393 |#2|) |#2|))) (-15 -3836 ((-588 (-2 (|:| |frac| (-382 |#2|)) (|:| -3277 (-596 |#2| (-382 |#2|))))) (-596 |#2| (-382 |#2|)) (-1 (-393 |#2|) |#2|))) (-15 -3563 ((-588 (-2 (|:| |poly| |#2|) (|:| -3277 (-596 |#2| (-382 |#2|))))) (-596 |#2| (-382 |#2|)) (-1 (-588 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3102 ((-588 (-382 |#2|)) (-595 (-382 |#2|)))) (-15 -3102 ((-588 (-382 |#2|)) (-595 (-382 |#2|)) (-1 (-393 |#2|) |#2|))) (-15 -3102 ((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)))) (-15 -3102 ((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)) (-1 (-393 |#2|) |#2|)))) |%noBranch|)) -((-3820 (((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#1|))) (-628 |#2|) (-1166 |#1|)) 85) (((-2 (|:| A (-628 |#1|)) (|:| |eqs| (-588 (-2 (|:| C (-628 |#1|)) (|:| |g| (-1166 |#1|)) (|:| -3277 |#2|) (|:| |rh| |#1|))))) (-628 |#1|) (-1166 |#1|)) 14)) (-2984 (((-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -2905 (-588 (-1166 |#1|)))) (-628 |#2|) (-1166 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2905 (-588 |#1|))) |#2| |#1|)) 91)) (-2925 (((-3 (-2 (|:| |particular| (-1166 |#1|)) (|:| -2905 (-628 |#1|))) "failed") (-628 |#1|) (-1166 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2905 (-588 |#1|))) "failed") |#2| |#1|)) 44))) -(((-750 |#1| |#2|) (-10 -7 (-15 -3820 ((-2 (|:| A (-628 |#1|)) (|:| |eqs| (-588 (-2 (|:| C (-628 |#1|)) (|:| |g| (-1166 |#1|)) (|:| -3277 |#2|) (|:| |rh| |#1|))))) (-628 |#1|) (-1166 |#1|))) (-15 -3820 ((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#1|))) (-628 |#2|) (-1166 |#1|))) (-15 -2925 ((-3 (-2 (|:| |particular| (-1166 |#1|)) (|:| -2905 (-628 |#1|))) "failed") (-628 |#1|) (-1166 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2905 (-588 |#1|))) "failed") |#2| |#1|))) (-15 -2984 ((-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -2905 (-588 (-1166 |#1|)))) (-628 |#2|) (-1166 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2905 (-588 |#1|))) |#2| |#1|)))) (-338) (-598 |#1|)) (T -750)) -((-2984 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-628 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2905 (-588 *6))) *7 *6)) (-4 *6 (-338)) (-4 *7 (-598 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1166 *6) "failed")) (|:| -2905 (-588 (-1166 *6))))) (-5 *1 (-750 *6 *7)) (-5 *4 (-1166 *6)))) (-2925 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2905 (-588 *6))) "failed") *7 *6)) (-4 *6 (-338)) (-4 *7 (-598 *6)) (-5 *2 (-2 (|:| |particular| (-1166 *6)) (|:| -2905 (-628 *6)))) (-5 *1 (-750 *6 *7)) (-5 *3 (-628 *6)) (-5 *4 (-1166 *6)))) (-3820 (*1 *2 *3 *4) (-12 (-4 *5 (-338)) (-4 *6 (-598 *5)) (-5 *2 (-2 (|:| -2149 (-628 *6)) (|:| |vec| (-1166 *5)))) (-5 *1 (-750 *5 *6)) (-5 *3 (-628 *6)) (-5 *4 (-1166 *5)))) (-3820 (*1 *2 *3 *4) (-12 (-4 *5 (-338)) (-5 *2 (-2 (|:| A (-628 *5)) (|:| |eqs| (-588 (-2 (|:| C (-628 *5)) (|:| |g| (-1166 *5)) (|:| -3277 *6) (|:| |rh| *5)))))) (-5 *1 (-750 *5 *6)) (-5 *3 (-628 *5)) (-5 *4 (-1166 *5)) (-4 *6 (-598 *5))))) -(-10 -7 (-15 -3820 ((-2 (|:| A (-628 |#1|)) (|:| |eqs| (-588 (-2 (|:| C (-628 |#1|)) (|:| |g| (-1166 |#1|)) (|:| -3277 |#2|) (|:| |rh| |#1|))))) (-628 |#1|) (-1166 |#1|))) (-15 -3820 ((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#1|))) (-628 |#2|) (-1166 |#1|))) (-15 -2925 ((-3 (-2 (|:| |particular| (-1166 |#1|)) (|:| -2905 (-628 |#1|))) "failed") (-628 |#1|) (-1166 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2905 (-588 |#1|))) "failed") |#2| |#1|))) (-15 -2984 ((-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -2905 (-588 (-1166 |#1|)))) (-628 |#2|) (-1166 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2905 (-588 |#1|))) |#2| |#1|)))) -((-2690 (((-628 |#1|) (-588 |#1|) (-708)) 13) (((-628 |#1|) (-588 |#1|)) 14)) (-3473 (((-3 (-1166 |#1|) "failed") |#2| |#1| (-588 |#1|)) 34)) (-2786 (((-3 |#1| "failed") |#2| |#1| (-588 |#1|) (-1 |#1| |#1|)) 42))) -(((-751 |#1| |#2|) (-10 -7 (-15 -2690 ((-628 |#1|) (-588 |#1|))) (-15 -2690 ((-628 |#1|) (-588 |#1|) (-708))) (-15 -3473 ((-3 (-1166 |#1|) "failed") |#2| |#1| (-588 |#1|))) (-15 -2786 ((-3 |#1| "failed") |#2| |#1| (-588 |#1|) (-1 |#1| |#1|)))) (-338) (-598 |#1|)) (T -751)) -((-2786 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-588 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-338)) (-5 *1 (-751 *2 *3)) (-4 *3 (-598 *2)))) (-3473 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-588 *4)) (-4 *4 (-338)) (-5 *2 (-1166 *4)) (-5 *1 (-751 *4 *3)) (-4 *3 (-598 *4)))) (-2690 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *5)) (-5 *4 (-708)) (-4 *5 (-338)) (-5 *2 (-628 *5)) (-5 *1 (-751 *5 *6)) (-4 *6 (-598 *5)))) (-2690 (*1 *2 *3) (-12 (-5 *3 (-588 *4)) (-4 *4 (-338)) (-5 *2 (-628 *4)) (-5 *1 (-751 *4 *5)) (-4 *5 (-598 *4))))) -(-10 -7 (-15 -2690 ((-628 |#1|) (-588 |#1|))) (-15 -2690 ((-628 |#1|) (-588 |#1|) (-708))) (-15 -3473 ((-3 (-1166 |#1|) "failed") |#2| |#1| (-588 |#1|))) (-15 -2786 ((-3 |#1| "failed") |#2| |#1| (-588 |#1|) (-1 |#1| |#1|)))) -((-1419 (((-108) $ $) NIL (|has| |#2| (-1014)))) (-2944 (((-108) $) NIL (|has| |#2| (-124)))) (-2826 (($ (-850)) NIL (|has| |#2| (-971)))) (-3883 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1827 (($ $ $) NIL (|has| |#2| (-730)))) (-2265 (((-3 $ "failed") $ $) NIL (|has| |#2| (-124)))) (-2717 (((-108) $ (-708)) NIL)) (-1685 (((-708)) NIL (|has| |#2| (-343)))) (-3355 (((-522) $) NIL (|has| |#2| (-782)))) (-2437 ((|#2| $ (-522) |#2|) NIL (|has| $ (-6 -4239)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) NIL (-12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014)))) (((-3 (-382 (-522)) "failed") $) NIL (-12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1014)))) (-1478 (((-522) $) NIL (-12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014)))) (((-382 (-522)) $) NIL (-12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) ((|#2| $) NIL (|has| |#2| (-1014)))) (-1226 (((-628 (-522)) (-628 $)) NIL (-12 (|has| |#2| (-584 (-522))) (|has| |#2| (-971)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (-12 (|has| |#2| (-584 (-522))) (|has| |#2| (-971)))) (((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL (|has| |#2| (-971))) (((-628 |#2|) (-628 $)) NIL (|has| |#2| (-971)))) (-3920 (((-3 $ "failed") $) NIL (|has| |#2| (-971)))) (-3344 (($) NIL (|has| |#2| (-343)))) (-2411 ((|#2| $ (-522) |#2|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#2| $ (-522)) NIL)) (-3603 (((-108) $) NIL (|has| |#2| (-782)))) (-2395 (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-2859 (((-108) $) NIL (|has| |#2| (-971)))) (-3740 (((-108) $) NIL (|has| |#2| (-782)))) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) NIL (|has| (-522) (-784)))) (-1308 (($ $ $) NIL (-3844 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-4084 (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2201 (((-522) $) NIL (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (-3844 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-2397 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#2| |#2|) $) NIL)) (-1475 (((-850) $) NIL (|has| |#2| (-343)))) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (|has| |#2| (-1014)))) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) NIL)) (-2882 (($ (-850)) NIL (|has| |#2| (-343)))) (-4174 (((-1032) $) NIL (|has| |#2| (-1014)))) (-2337 ((|#2| $) NIL (|has| (-522) (-784)))) (-1972 (($ $ |#2|) NIL (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1973 (((-588 |#2|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#2| $ (-522) |#2|) NIL) ((|#2| $ (-522)) NIL)) (-4024 ((|#2| $ $) NIL (|has| |#2| (-971)))) (-2041 (($ (-1166 |#2|)) NIL)) (-3222 (((-126)) NIL (|has| |#2| (-338)))) (-2731 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1 |#2| |#2|) (-708)) NIL (|has| |#2| (-971))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-971)))) (-4187 (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2463 (($ $) NIL)) (-2217 (((-1166 |#2|) $) NIL) (($ (-522)) NIL (-3844 (-12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014))) (|has| |#2| (-971)))) (($ (-382 (-522))) NIL (-12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) (($ |#2|) NIL (|has| |#2| (-1014))) (((-792) $) NIL (|has| |#2| (-562 (-792))))) (-2742 (((-708)) NIL (|has| |#2| (-971)))) (-1381 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-4126 (($ $) NIL (|has| |#2| (-782)))) (-3622 (($ $ (-708)) NIL (|has| |#2| (-971))) (($ $ (-850)) NIL (|has| |#2| (-971)))) (-3697 (($) NIL (|has| |#2| (-124)) CONST)) (-3709 (($) NIL (|has| |#2| (-971)) CONST)) (-2252 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1 |#2| |#2|) (-708)) NIL (|has| |#2| (-971))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-971)))) (-1623 (((-108) $ $) NIL (-3844 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1597 (((-108) $ $) NIL (-3844 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1562 (((-108) $ $) NIL (|has| |#2| (-1014)))) (-1609 (((-108) $ $) NIL (-3844 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1587 (((-108) $ $) 11 (-3844 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1682 (($ $ |#2|) NIL (|has| |#2| (-338)))) (-1672 (($ $ $) NIL (|has| |#2| (-971))) (($ $) NIL (|has| |#2| (-971)))) (-1661 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-708)) NIL (|has| |#2| (-971))) (($ $ (-850)) NIL (|has| |#2| (-971)))) (* (($ $ $) NIL (|has| |#2| (-971))) (($ (-522) $) NIL (|has| |#2| (-971))) (($ $ |#2|) NIL (|has| |#2| (-664))) (($ |#2| $) NIL (|has| |#2| (-664))) (($ (-708) $) NIL (|has| |#2| (-124))) (($ (-850) $) NIL (|has| |#2| (-25)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-752 |#1| |#2| |#3|) (-215 |#1| |#2|) (-708) (-730) (-1 (-108) (-1166 |#2|) (-1166 |#2|))) (T -752)) -NIL -(-215 |#1| |#2|) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-4044 (((-588 (-708)) $) NIL) (((-588 (-708)) $ (-1085)) NIL)) (-3192 (((-708) $) NIL) (((-708) $ (-1085)) NIL)) (-3533 (((-588 (-755 (-1085))) $) NIL)) (-1264 (((-1081 $) $ (-755 (-1085))) NIL) (((-1081 |#1|) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) NIL (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-3358 (((-708) $) NIL) (((-708) $ (-588 (-755 (-1085)))) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2961 (($ $) NIL (|has| |#1| (-426)))) (-3133 (((-393 $) $) NIL (|has| |#1| (-426)))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-1646 (($ $) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-755 (-1085)) "failed") $) NIL) (((-3 (-1085) "failed") $) NIL) (((-3 (-1037 |#1| (-1085)) "failed") $) NIL)) (-1478 ((|#1| $) NIL) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-755 (-1085)) $) NIL) (((-1085) $) NIL) (((-1037 |#1| (-1085)) $) NIL)) (-2908 (($ $ $ (-755 (-1085))) NIL (|has| |#1| (-157)))) (-3241 (($ $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2883 (($ $) NIL (|has| |#1| (-426))) (($ $ (-755 (-1085))) NIL (|has| |#1| (-426)))) (-3232 (((-588 $) $) NIL)) (-2725 (((-108) $) NIL (|has| |#1| (-838)))) (-3792 (($ $ |#1| (-494 (-755 (-1085))) $) NIL)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-755 (-1085)) (-815 (-354))) (|has| |#1| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-755 (-1085)) (-815 (-522))) (|has| |#1| (-815 (-522)))))) (-3872 (((-708) $ (-1085)) NIL) (((-708) $) NIL)) (-2859 (((-108) $) NIL)) (-1391 (((-708) $) NIL)) (-3520 (($ (-1081 |#1|) (-755 (-1085))) NIL) (($ (-1081 $) (-755 (-1085))) NIL)) (-3038 (((-588 $) $) NIL)) (-1374 (((-108) $) NIL)) (-3500 (($ |#1| (-494 (-755 (-1085)))) NIL) (($ $ (-755 (-1085)) (-708)) NIL) (($ $ (-588 (-755 (-1085))) (-588 (-708))) NIL)) (-3058 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $ (-755 (-1085))) NIL)) (-3564 (((-494 (-755 (-1085))) $) NIL) (((-708) $ (-755 (-1085))) NIL) (((-588 (-708)) $ (-588 (-755 (-1085)))) NIL)) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-1723 (($ (-1 (-494 (-755 (-1085))) (-494 (-755 (-1085)))) $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-2718 (((-1 $ (-708)) (-1085)) NIL) (((-1 $ (-708)) $) NIL (|has| |#1| (-210)))) (-3155 (((-3 (-755 (-1085)) "failed") $) NIL)) (-3216 (($ $) NIL)) (-3224 ((|#1| $) NIL)) (-1611 (((-755 (-1085)) $) NIL)) (-2267 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-2311 (((-1068) $) NIL)) (-1717 (((-108) $) NIL)) (-2760 (((-3 (-588 $) "failed") $) NIL)) (-1919 (((-3 (-588 $) "failed") $) NIL)) (-2024 (((-3 (-2 (|:| |var| (-755 (-1085))) (|:| -3858 (-708))) "failed") $) NIL)) (-1992 (($ $) NIL)) (-4174 (((-1032) $) NIL)) (-3199 (((-108) $) NIL)) (-3207 ((|#1| $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-426)))) (-2308 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2006 (((-393 $) $) NIL (|has| |#1| (-838)))) (-2276 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-2330 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-755 (-1085)) |#1|) NIL) (($ $ (-588 (-755 (-1085))) (-588 |#1|)) NIL) (($ $ (-755 (-1085)) $) NIL) (($ $ (-588 (-755 (-1085))) (-588 $)) NIL) (($ $ (-1085) $) NIL (|has| |#1| (-210))) (($ $ (-588 (-1085)) (-588 $)) NIL (|has| |#1| (-210))) (($ $ (-1085) |#1|) NIL (|has| |#1| (-210))) (($ $ (-588 (-1085)) (-588 |#1|)) NIL (|has| |#1| (-210)))) (-1615 (($ $ (-755 (-1085))) NIL (|has| |#1| (-157)))) (-2731 (($ $ (-755 (-1085))) NIL) (($ $ (-588 (-755 (-1085)))) NIL) (($ $ (-755 (-1085)) (-708)) NIL) (($ $ (-588 (-755 (-1085))) (-588 (-708))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1266 (((-588 (-1085)) $) NIL)) (-2487 (((-494 (-755 (-1085))) $) NIL) (((-708) $ (-755 (-1085))) NIL) (((-588 (-708)) $ (-588 (-755 (-1085)))) NIL) (((-708) $ (-1085)) NIL)) (-3873 (((-821 (-354)) $) NIL (-12 (|has| (-755 (-1085)) (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-755 (-1085)) (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-755 (-1085)) (-563 (-498))) (|has| |#1| (-563 (-498)))))) (-2988 ((|#1| $) NIL (|has| |#1| (-426))) (($ $ (-755 (-1085))) NIL (|has| |#1| (-426)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL) (($ (-755 (-1085))) NIL) (($ (-1085)) NIL) (($ (-1037 |#1| (-1085))) NIL) (($ (-382 (-522))) NIL (-3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#1| (-514)))) (-2180 (((-588 |#1|) $) NIL)) (-1643 ((|#1| $ (-494 (-755 (-1085)))) NIL) (($ $ (-755 (-1085)) (-708)) NIL) (($ $ (-588 (-755 (-1085))) (-588 (-708))) NIL)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2742 (((-708)) NIL)) (-1225 (($ $ $ (-708)) NIL (|has| |#1| (-157)))) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $ (-755 (-1085))) NIL) (($ $ (-588 (-755 (-1085)))) NIL) (($ $ (-755 (-1085)) (-708)) NIL) (($ $ (-588 (-755 (-1085))) (-588 (-708))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-753 |#1|) (-13 (-229 |#1| (-1085) (-755 (-1085)) (-494 (-755 (-1085)))) (-962 (-1037 |#1| (-1085)))) (-971)) (T -753)) -NIL -(-13 (-229 |#1| (-1085) (-755 (-1085)) (-494 (-755 (-1085)))) (-962 (-1037 |#1| (-1085)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#2| (-338)))) (-2298 (($ $) NIL (|has| |#2| (-338)))) (-3007 (((-108) $) NIL (|has| |#2| (-338)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL (|has| |#2| (-338)))) (-3133 (((-393 $) $) NIL (|has| |#2| (-338)))) (-2805 (((-108) $ $) NIL (|has| |#2| (-338)))) (-3367 (($) NIL T CONST)) (-2333 (($ $ $) NIL (|has| |#2| (-338)))) (-3920 (((-3 $ "failed") $) NIL)) (-2303 (($ $ $) NIL (|has| |#2| (-338)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL (|has| |#2| (-338)))) (-2725 (((-108) $) NIL (|has| |#2| (-338)))) (-2859 (((-108) $) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#2| (-338)))) (-2267 (($ (-588 $)) NIL (|has| |#2| (-338))) (($ $ $) NIL (|has| |#2| (-338)))) (-2311 (((-1068) $) NIL)) (-3193 (($ $) 20 (|has| |#2| (-338)))) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#2| (-338)))) (-2308 (($ (-588 $)) NIL (|has| |#2| (-338))) (($ $ $) NIL (|has| |#2| (-338)))) (-2006 (((-393 $) $) NIL (|has| |#2| (-338)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#2| (-338)))) (-2276 (((-3 $ "failed") $ $) NIL (|has| |#2| (-338)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#2| (-338)))) (-4031 (((-708) $) NIL (|has| |#2| (-338)))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#2| (-338)))) (-2731 (($ $ (-708)) NIL) (($ $) 13)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-382 (-522))) NIL (|has| |#2| (-338))) (($ $) NIL (|has| |#2| (-338)))) (-2742 (((-708)) NIL)) (-1407 (((-108) $ $) NIL (|has| |#2| (-338)))) (-3622 (($ $ (-708)) NIL) (($ $ (-850)) NIL) (($ $ (-522)) NIL (|has| |#2| (-338)))) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $ (-708)) NIL) (($ $) NIL)) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ $) 15 (|has| |#2| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-708)) NIL) (($ $ (-850)) NIL) (($ $ (-522)) 18 (|has| |#2| (-338)))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-382 (-522)) $) NIL (|has| |#2| (-338))) (($ $ (-382 (-522))) NIL (|has| |#2| (-338))))) -(((-754 |#1| |#2| |#3|) (-13 (-107 $ $) (-210) (-10 -8 (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) (-15 -2217 ($ |#2|)) (-15 -2217 (|#2| $)))) (-1014) (-829 |#1|) |#1|) (T -754)) -((-2217 (*1 *1 *2) (-12 (-4 *3 (-1014)) (-14 *4 *3) (-5 *1 (-754 *3 *2 *4)) (-4 *2 (-829 *3)))) (-2217 (*1 *2 *1) (-12 (-4 *2 (-829 *3)) (-5 *1 (-754 *3 *2 *4)) (-4 *3 (-1014)) (-14 *4 *3)))) -(-13 (-107 $ $) (-210) (-10 -8 (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) (-15 -2217 ($ |#2|)) (-15 -2217 (|#2| $)))) -((-1419 (((-108) $ $) NIL)) (-3192 (((-708) $) NIL)) (-1660 ((|#1| $) 10)) (-3700 (((-3 |#1| "failed") $) NIL)) (-1478 ((|#1| $) NIL)) (-3872 (((-708) $) 11)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-2718 (($ |#1| (-708)) 9)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2731 (($ $) NIL) (($ $ (-708)) NIL)) (-2217 (((-792) $) NIL) (($ |#1|) NIL)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) NIL))) -(((-755 |#1|) (-242 |#1|) (-784)) (T -755)) -NIL -(-242 |#1|) -((-1419 (((-108) $ $) NIL)) (-4127 (((-588 |#1|) $) 29)) (-1685 (((-708) $) NIL)) (-3367 (($) NIL T CONST)) (-1745 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 19)) (-3700 (((-3 |#1| "failed") $) NIL)) (-1478 ((|#1| $) NIL)) (-2352 (($ $) 31)) (-3920 (((-3 $ "failed") $) NIL)) (-2496 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2859 (((-108) $) NIL)) (-3108 ((|#1| $ (-522)) NIL)) (-4213 (((-708) $ (-522)) NIL)) (-2182 (($ $) 36)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 16)) (-2618 (((-108) $ $) 34)) (-4030 (((-708) $) 25)) (-2311 (((-1068) $) NIL)) (-2089 (($ $ $) NIL)) (-2629 (($ $ $) NIL)) (-4174 (((-1032) $) NIL)) (-2337 ((|#1| $) 30)) (-4045 (((-588 (-2 (|:| |gen| |#1|) (|:| -3357 (-708)))) $) NIL)) (-2289 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2217 (((-792) $) NIL) (($ |#1|) NIL)) (-3622 (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (-3709 (($) 14 T CONST)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 35)) (** (($ $ (-708)) NIL) (($ $ (-850)) NIL) (($ |#1| (-708)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-756 |#1|) (-13 (-780) (-962 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-708))) (-15 -2337 (|#1| $)) (-15 -2352 ($ $)) (-15 -2182 ($ $)) (-15 -2618 ((-108) $ $)) (-15 -2629 ($ $ $)) (-15 -2089 ($ $ $)) (-15 -4038 ((-3 $ "failed") $ $)) (-15 -1745 ((-3 $ "failed") $ $)) (-15 -4038 ((-3 $ "failed") $ |#1|)) (-15 -1745 ((-3 $ "failed") $ |#1|)) (-15 -2289 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2496 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1685 ((-708) $)) (-15 -4213 ((-708) $ (-522))) (-15 -3108 (|#1| $ (-522))) (-15 -4045 ((-588 (-2 (|:| |gen| |#1|) (|:| -3357 (-708)))) $)) (-15 -4030 ((-708) $)) (-15 -4127 ((-588 |#1|) $)))) (-784)) (T -756)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-708)) (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-2337 (*1 *2 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-2352 (*1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-2182 (*1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-2618 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-756 *3)) (-4 *3 (-784)))) (-2629 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-2089 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-4038 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-1745 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-4038 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-1745 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-2289 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-756 *3)) (|:| |rm| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-784)))) (-2496 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-756 *3)) (|:| |mm| (-756 *3)) (|:| |rm| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-784)))) (-1685 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-756 *3)) (-4 *3 (-784)))) (-4213 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *2 (-708)) (-5 *1 (-756 *4)) (-4 *4 (-784)))) (-3108 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3357 (-708))))) (-5 *1 (-756 *3)) (-4 *3 (-784)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-756 *3)) (-4 *3 (-784)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-756 *3)) (-4 *3 (-784))))) -(-13 (-780) (-962 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-708))) (-15 -2337 (|#1| $)) (-15 -2352 ($ $)) (-15 -2182 ($ $)) (-15 -2618 ((-108) $ $)) (-15 -2629 ($ $ $)) (-15 -2089 ($ $ $)) (-15 -4038 ((-3 $ "failed") $ $)) (-15 -1745 ((-3 $ "failed") $ $)) (-15 -4038 ((-3 $ "failed") $ |#1|)) (-15 -1745 ((-3 $ "failed") $ |#1|)) (-15 -2289 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2496 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1685 ((-708) $)) (-15 -4213 ((-708) $ (-522))) (-15 -3108 (|#1| $ (-522))) (-15 -4045 ((-588 (-2 (|:| |gen| |#1|) (|:| -3357 (-708)))) $)) (-15 -4030 ((-708) $)) (-15 -4127 ((-588 |#1|) $)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2298 (($ $) 40)) (-3007 (((-108) $) 38)) (-2265 (((-3 $ "failed") $ $) 19)) (-3355 (((-522) $) 53)) (-3367 (($) 17 T CONST)) (-3920 (((-3 $ "failed") $) 34)) (-3603 (((-108) $) 51)) (-2859 (((-108) $) 31)) (-3740 (((-108) $) 52)) (-1308 (($ $ $) 50)) (-2524 (($ $ $) 49)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2276 (((-3 $ "failed") $ $) 42)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 43)) (-2742 (((-708)) 29)) (-1407 (((-108) $ $) 39)) (-4126 (($ $) 54)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1623 (((-108) $ $) 47)) (-1597 (((-108) $ $) 46)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 48)) (-1587 (((-108) $ $) 45)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-757) (-1197)) (T -757)) -NIL -(-13 (-514) (-782)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-266) . T) ((-514) . T) ((-590 $) . T) ((-655 $) . T) ((-664) . T) ((-728) . T) ((-729) . T) ((-731) . T) ((-732) . T) ((-782) . T) ((-784) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-2578 (($ (-1032)) 7)) (-2769 (((-108) $ (-1068) (-1032)) 15)) (-3675 (((-759) $) 12)) (-1955 (((-759) $) 11)) (-3287 (((-1171) $) 9)) (-3497 (((-108) $ (-1032)) 16))) -(((-758) (-10 -8 (-15 -2578 ($ (-1032))) (-15 -3287 ((-1171) $)) (-15 -1955 ((-759) $)) (-15 -3675 ((-759) $)) (-15 -2769 ((-108) $ (-1068) (-1032))) (-15 -3497 ((-108) $ (-1032))))) (T -758)) -((-3497 (*1 *2 *1 *3) (-12 (-5 *3 (-1032)) (-5 *2 (-108)) (-5 *1 (-758)))) (-2769 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1068)) (-5 *4 (-1032)) (-5 *2 (-108)) (-5 *1 (-758)))) (-3675 (*1 *2 *1) (-12 (-5 *2 (-759)) (-5 *1 (-758)))) (-1955 (*1 *2 *1) (-12 (-5 *2 (-759)) (-5 *1 (-758)))) (-3287 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-758)))) (-2578 (*1 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-758))))) -(-10 -8 (-15 -2578 ($ (-1032))) (-15 -3287 ((-1171) $)) (-15 -1955 ((-759) $)) (-15 -3675 ((-759) $)) (-15 -2769 ((-108) $ (-1068) (-1032))) (-15 -3497 ((-108) $ (-1032)))) -((-3967 (((-1171) $ (-760)) 12)) (-1846 (((-1171) $ (-1085)) 32)) (-1305 (((-1171) $ (-1068) (-1068)) 34)) (-3715 (((-1171) $ (-1068)) 33)) (-3187 (((-1171) $) 19)) (-1746 (((-1171) $ (-522)) 28)) (-1733 (((-1171) $ (-202)) 30)) (-3780 (((-1171) $) 18)) (-2994 (((-1171) $) 26)) (-2229 (((-1171) $) 25)) (-2073 (((-1171) $) 23)) (-3794 (((-1171) $) 24)) (-3292 (((-1171) $) 22)) (-1895 (((-1171) $) 21)) (-2606 (((-1171) $) 20)) (-3321 (((-1171) $) 16)) (-1885 (((-1171) $) 17)) (-2139 (((-1171) $) 15)) (-2836 (((-1171) $) 14)) (-3484 (((-1171) $) 13)) (-1580 (($ (-1068) (-760)) 9)) (-3541 (($ (-1068) (-1068) (-760)) 8)) (-3609 (((-1085) $) 51)) (-1495 (((-1085) $) 55)) (-3976 (((-2 (|:| |cd| (-1068)) (|:| -3015 (-1068))) $) 54)) (-3667 (((-1068) $) 52)) (-2004 (((-1171) $) 41)) (-2296 (((-522) $) 49)) (-2410 (((-202) $) 50)) (-2176 (((-1171) $) 40)) (-4202 (((-1171) $) 48)) (-3599 (((-1171) $) 47)) (-1409 (((-1171) $) 45)) (-1702 (((-1171) $) 46)) (-1256 (((-1171) $) 44)) (-3535 (((-1171) $) 43)) (-1877 (((-1171) $) 42)) (-2851 (((-1171) $) 38)) (-2123 (((-1171) $) 39)) (-2929 (((-1171) $) 37)) (-2863 (((-1171) $) 36)) (-3645 (((-1171) $) 35)) (-1556 (((-1171) $) 11))) -(((-759) (-10 -8 (-15 -3541 ($ (-1068) (-1068) (-760))) (-15 -1580 ($ (-1068) (-760))) (-15 -1556 ((-1171) $)) (-15 -3967 ((-1171) $ (-760))) (-15 -3484 ((-1171) $)) (-15 -2836 ((-1171) $)) (-15 -2139 ((-1171) $)) (-15 -3321 ((-1171) $)) (-15 -1885 ((-1171) $)) (-15 -3780 ((-1171) $)) (-15 -3187 ((-1171) $)) (-15 -2606 ((-1171) $)) (-15 -1895 ((-1171) $)) (-15 -3292 ((-1171) $)) (-15 -2073 ((-1171) $)) (-15 -3794 ((-1171) $)) (-15 -2229 ((-1171) $)) (-15 -2994 ((-1171) $)) (-15 -1746 ((-1171) $ (-522))) (-15 -1733 ((-1171) $ (-202))) (-15 -1846 ((-1171) $ (-1085))) (-15 -3715 ((-1171) $ (-1068))) (-15 -1305 ((-1171) $ (-1068) (-1068))) (-15 -3645 ((-1171) $)) (-15 -2863 ((-1171) $)) (-15 -2929 ((-1171) $)) (-15 -2851 ((-1171) $)) (-15 -2123 ((-1171) $)) (-15 -2176 ((-1171) $)) (-15 -2004 ((-1171) $)) (-15 -1877 ((-1171) $)) (-15 -3535 ((-1171) $)) (-15 -1256 ((-1171) $)) (-15 -1409 ((-1171) $)) (-15 -1702 ((-1171) $)) (-15 -3599 ((-1171) $)) (-15 -4202 ((-1171) $)) (-15 -2296 ((-522) $)) (-15 -2410 ((-202) $)) (-15 -3609 ((-1085) $)) (-15 -3667 ((-1068) $)) (-15 -3976 ((-2 (|:| |cd| (-1068)) (|:| -3015 (-1068))) $)) (-15 -1495 ((-1085) $)))) (T -759)) -((-1495 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-759)))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1068)) (|:| -3015 (-1068)))) (-5 *1 (-759)))) (-3667 (*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-759)))) (-3609 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-759)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-759)))) (-2296 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-759)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-3599 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-1409 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-1256 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2004 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2176 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2123 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2851 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-3645 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-1305 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-759)))) (-3715 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-759)))) (-1846 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-759)))) (-1733 (*1 *2 *1 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1171)) (-5 *1 (-759)))) (-1746 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-759)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2229 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-3794 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2073 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-3292 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-3187 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-3780 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-1885 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2139 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2836 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-3484 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-3967 (*1 *2 *1 *3) (-12 (-5 *3 (-760)) (-5 *2 (-1171)) (-5 *1 (-759)))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-1580 (*1 *1 *2 *3) (-12 (-5 *2 (-1068)) (-5 *3 (-760)) (-5 *1 (-759)))) (-3541 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1068)) (-5 *3 (-760)) (-5 *1 (-759))))) -(-10 -8 (-15 -3541 ($ (-1068) (-1068) (-760))) (-15 -1580 ($ (-1068) (-760))) (-15 -1556 ((-1171) $)) (-15 -3967 ((-1171) $ (-760))) (-15 -3484 ((-1171) $)) (-15 -2836 ((-1171) $)) (-15 -2139 ((-1171) $)) (-15 -3321 ((-1171) $)) (-15 -1885 ((-1171) $)) (-15 -3780 ((-1171) $)) (-15 -3187 ((-1171) $)) (-15 -2606 ((-1171) $)) (-15 -1895 ((-1171) $)) (-15 -3292 ((-1171) $)) (-15 -2073 ((-1171) $)) (-15 -3794 ((-1171) $)) (-15 -2229 ((-1171) $)) (-15 -2994 ((-1171) $)) (-15 -1746 ((-1171) $ (-522))) (-15 -1733 ((-1171) $ (-202))) (-15 -1846 ((-1171) $ (-1085))) (-15 -3715 ((-1171) $ (-1068))) (-15 -1305 ((-1171) $ (-1068) (-1068))) (-15 -3645 ((-1171) $)) (-15 -2863 ((-1171) $)) (-15 -2929 ((-1171) $)) (-15 -2851 ((-1171) $)) (-15 -2123 ((-1171) $)) (-15 -2176 ((-1171) $)) (-15 -2004 ((-1171) $)) (-15 -1877 ((-1171) $)) (-15 -3535 ((-1171) $)) (-15 -1256 ((-1171) $)) (-15 -1409 ((-1171) $)) (-15 -1702 ((-1171) $)) (-15 -3599 ((-1171) $)) (-15 -4202 ((-1171) $)) (-15 -2296 ((-522) $)) (-15 -2410 ((-202) $)) (-15 -3609 ((-1085) $)) (-15 -3667 ((-1068) $)) (-15 -3976 ((-2 (|:| |cd| (-1068)) (|:| -3015 (-1068))) $)) (-15 -1495 ((-1085) $))) -((-1419 (((-108) $ $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 12)) (-2356 (($) 15)) (-1373 (($) 13)) (-3234 (($) 16)) (-2553 (($) 14)) (-1562 (((-108) $ $) 8))) -(((-760) (-13 (-1014) (-10 -8 (-15 -1373 ($)) (-15 -2356 ($)) (-15 -3234 ($)) (-15 -2553 ($))))) (T -760)) -((-1373 (*1 *1) (-5 *1 (-760))) (-2356 (*1 *1) (-5 *1 (-760))) (-3234 (*1 *1) (-5 *1 (-760))) (-2553 (*1 *1) (-5 *1 (-760)))) -(-13 (-1014) (-10 -8 (-15 -1373 ($)) (-15 -2356 ($)) (-15 -3234 ($)) (-15 -2553 ($)))) -((-1419 (((-108) $ $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 21) (($ (-1085)) 17)) (-2831 (((-108) $) 10)) (-1474 (((-108) $) 9)) (-1691 (((-108) $) 11)) (-2712 (((-108) $) 8)) (-1562 (((-108) $ $) 19))) -(((-761) (-13 (-1014) (-10 -8 (-15 -2217 ($ (-1085))) (-15 -2712 ((-108) $)) (-15 -1474 ((-108) $)) (-15 -2831 ((-108) $)) (-15 -1691 ((-108) $))))) (T -761)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-761)))) (-2712 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761)))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761)))) (-2831 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761))))) -(-13 (-1014) (-10 -8 (-15 -2217 ($ (-1085))) (-15 -2712 ((-108) $)) (-15 -1474 ((-108) $)) (-15 -2831 ((-108) $)) (-15 -1691 ((-108) $)))) -((-1419 (((-108) $ $) NIL)) (-2837 (($ (-761) (-588 (-1085))) 24)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-3852 (((-761) $) 25)) (-3737 (((-588 (-1085)) $) 26)) (-2217 (((-792) $) 23)) (-1562 (((-108) $ $) NIL))) -(((-762) (-13 (-1014) (-10 -8 (-15 -3852 ((-761) $)) (-15 -3737 ((-588 (-1085)) $)) (-15 -2837 ($ (-761) (-588 (-1085))))))) (T -762)) -((-3852 (*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-762)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-762)))) (-2837 (*1 *1 *2 *3) (-12 (-5 *2 (-761)) (-5 *3 (-588 (-1085))) (-5 *1 (-762))))) -(-13 (-1014) (-10 -8 (-15 -3852 ((-761) $)) (-15 -3737 ((-588 (-1085)) $)) (-15 -2837 ($ (-761) (-588 (-1085)))))) -((-2810 (((-1171) (-759) (-291 |#1|) (-108)) 22) (((-1171) (-759) (-291 |#1|)) 76) (((-1068) (-291 |#1|) (-108)) 75) (((-1068) (-291 |#1|)) 74))) -(((-763 |#1|) (-10 -7 (-15 -2810 ((-1068) (-291 |#1|))) (-15 -2810 ((-1068) (-291 |#1|) (-108))) (-15 -2810 ((-1171) (-759) (-291 |#1|))) (-15 -2810 ((-1171) (-759) (-291 |#1|) (-108)))) (-13 (-765) (-784) (-971))) (T -763)) -((-2810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-759)) (-5 *4 (-291 *6)) (-5 *5 (-108)) (-4 *6 (-13 (-765) (-784) (-971))) (-5 *2 (-1171)) (-5 *1 (-763 *6)))) (-2810 (*1 *2 *3 *4) (-12 (-5 *3 (-759)) (-5 *4 (-291 *5)) (-4 *5 (-13 (-765) (-784) (-971))) (-5 *2 (-1171)) (-5 *1 (-763 *5)))) (-2810 (*1 *2 *3 *4) (-12 (-5 *3 (-291 *5)) (-5 *4 (-108)) (-4 *5 (-13 (-765) (-784) (-971))) (-5 *2 (-1068)) (-5 *1 (-763 *5)))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-291 *4)) (-4 *4 (-13 (-765) (-784) (-971))) (-5 *2 (-1068)) (-5 *1 (-763 *4))))) -(-10 -7 (-15 -2810 ((-1068) (-291 |#1|))) (-15 -2810 ((-1068) (-291 |#1|) (-108))) (-15 -2810 ((-1171) (-759) (-291 |#1|))) (-15 -2810 ((-1171) (-759) (-291 |#1|) (-108)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3241 (($ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-1726 ((|#1| $) 10)) (-1410 (($ |#1|) 9)) (-2859 (((-108) $) NIL)) (-3500 (($ |#2| (-708)) NIL)) (-3564 (((-708) $) NIL)) (-3224 ((|#2| $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2731 (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $) NIL (|has| |#1| (-210)))) (-2487 (((-708) $) NIL)) (-2217 (((-792) $) 17) (($ (-522)) NIL) (($ |#2|) NIL (|has| |#2| (-157)))) (-1643 ((|#2| $ (-708)) NIL)) (-2742 (((-708)) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $) NIL (|has| |#1| (-210)))) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-764 |#1| |#2|) (-13 (-647 |#2|) (-10 -8 (IF (|has| |#1| (-210)) (-6 (-210)) |%noBranch|) (-15 -1410 ($ |#1|)) (-15 -1726 (|#1| $)))) (-647 |#2|) (-971)) (T -764)) -((-1410 (*1 *1 *2) (-12 (-4 *3 (-971)) (-5 *1 (-764 *2 *3)) (-4 *2 (-647 *3)))) (-1726 (*1 *2 *1) (-12 (-4 *2 (-647 *3)) (-5 *1 (-764 *2 *3)) (-4 *3 (-971))))) -(-13 (-647 |#2|) (-10 -8 (IF (|has| |#1| (-210)) (-6 (-210)) |%noBranch|) (-15 -1410 ($ |#1|)) (-15 -1726 (|#1| $)))) -((-2810 (((-1171) (-759) $ (-108)) 9) (((-1171) (-759) $) 8) (((-1068) $ (-108)) 7) (((-1068) $) 6))) -(((-765) (-1197)) (T -765)) -((-2810 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-765)) (-5 *3 (-759)) (-5 *4 (-108)) (-5 *2 (-1171)))) (-2810 (*1 *2 *3 *1) (-12 (-4 *1 (-765)) (-5 *3 (-759)) (-5 *2 (-1171)))) (-2810 (*1 *2 *1 *3) (-12 (-4 *1 (-765)) (-5 *3 (-108)) (-5 *2 (-1068)))) (-2810 (*1 *2 *1) (-12 (-4 *1 (-765)) (-5 *2 (-1068))))) -(-13 (-10 -8 (-15 -2810 ((-1068) $)) (-15 -2810 ((-1068) $ (-108))) (-15 -2810 ((-1171) (-759) $)) (-15 -2810 ((-1171) (-759) $ (-108))))) -((-2320 (((-287) (-1068) (-1068)) 12)) (-2219 (((-108) (-1068) (-1068)) 34)) (-4146 (((-108) (-1068)) 33)) (-2547 (((-51) (-1068)) 25)) (-4105 (((-51) (-1068)) 23)) (-3979 (((-51) (-759)) 17)) (-2732 (((-588 (-1068)) (-1068)) 28)) (-3481 (((-588 (-1068))) 27))) -(((-766) (-10 -7 (-15 -3979 ((-51) (-759))) (-15 -4105 ((-51) (-1068))) (-15 -2547 ((-51) (-1068))) (-15 -3481 ((-588 (-1068)))) (-15 -2732 ((-588 (-1068)) (-1068))) (-15 -4146 ((-108) (-1068))) (-15 -2219 ((-108) (-1068) (-1068))) (-15 -2320 ((-287) (-1068) (-1068))))) (T -766)) -((-2320 (*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-287)) (-5 *1 (-766)))) (-2219 (*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-108)) (-5 *1 (-766)))) (-4146 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-108)) (-5 *1 (-766)))) (-2732 (*1 *2 *3) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-766)) (-5 *3 (-1068)))) (-3481 (*1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-766)))) (-2547 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-51)) (-5 *1 (-766)))) (-4105 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-51)) (-5 *1 (-766)))) (-3979 (*1 *2 *3) (-12 (-5 *3 (-759)) (-5 *2 (-51)) (-5 *1 (-766))))) -(-10 -7 (-15 -3979 ((-51) (-759))) (-15 -4105 ((-51) (-1068))) (-15 -2547 ((-51) (-1068))) (-15 -3481 ((-588 (-1068)))) (-15 -2732 ((-588 (-1068)) (-1068))) (-15 -4146 ((-108) (-1068))) (-15 -2219 ((-108) (-1068) (-1068))) (-15 -2320 ((-287) (-1068) (-1068)))) -((-1419 (((-108) $ $) 19)) (-2323 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-4099 (($ $ $) 72)) (-1751 (((-108) $ $) 73)) (-2717 (((-108) $ (-708)) 8)) (-1852 (($ (-588 |#1|)) 68) (($) 67)) (-1213 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4238)))) (-3367 (($) 7 T CONST)) (-1581 (($ $) 62)) (-2379 (($ $) 58 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1700 (($ |#1| $) 47 (|has| $ (-6 -4238))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4238)))) (-1424 (($ |#1| $) 57 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4238)))) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) 9)) (-1308 ((|#1| $) 78)) (-3557 (($ $ $) 81)) (-3164 (($ $ $) 80)) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2524 ((|#1| $) 79)) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35)) (-3309 (((-108) $ (-708)) 10)) (-2311 (((-1068) $) 22)) (-2251 (($ $ $) 69)) (-1431 ((|#1| $) 39)) (-3365 (($ |#1| $) 40) (($ |#1| $ (-708)) 63)) (-4174 (((-1032) $) 21)) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3295 ((|#1| $) 41)) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-3699 (((-588 (-2 (|:| -3149 |#1|) (|:| -4187 (-708)))) $) 61)) (-3962 (($ $ |#1|) 71) (($ $ $) 70)) (-3546 (($) 49) (($ (-588 |#1|)) 48)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-3873 (((-498) $) 59 (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) 50)) (-2217 (((-792) $) 18)) (-3482 (($ (-588 |#1|)) 66) (($) 65)) (-2501 (($ (-588 |#1|)) 42)) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20)) (-1587 (((-108) $ $) 64)) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-767 |#1|) (-1197) (-784)) (T -767)) -((-1308 (*1 *2 *1) (-12 (-4 *1 (-767 *2)) (-4 *2 (-784))))) -(-13 (-674 |t#1|) (-896 |t#1|) (-10 -8 (-15 -1308 (|t#1| $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-562 (-792)) . T) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-212 |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-633 |#1|) . T) ((-674 |#1|) . T) ((-896 |#1|) . T) ((-1012 |#1|) . T) ((-1014) . T) ((-1120) . T)) -((-2205 (((-1171) (-1032) (-1032)) 47)) (-2026 (((-1171) (-758) (-51)) 44)) (-1740 (((-51) (-758)) 16))) -(((-768) (-10 -7 (-15 -1740 ((-51) (-758))) (-15 -2026 ((-1171) (-758) (-51))) (-15 -2205 ((-1171) (-1032) (-1032))))) (T -768)) -((-2205 (*1 *2 *3 *3) (-12 (-5 *3 (-1032)) (-5 *2 (-1171)) (-5 *1 (-768)))) (-2026 (*1 *2 *3 *4) (-12 (-5 *3 (-758)) (-5 *4 (-51)) (-5 *2 (-1171)) (-5 *1 (-768)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-51)) (-5 *1 (-768))))) -(-10 -7 (-15 -1740 ((-51) (-758))) (-15 -2026 ((-1171) (-758) (-51))) (-15 -2205 ((-1171) (-1032) (-1032)))) -((-3810 (((-770 |#2|) (-1 |#2| |#1|) (-770 |#1|) (-770 |#2|)) 12) (((-770 |#2|) (-1 |#2| |#1|) (-770 |#1|)) 13))) -(((-769 |#1| |#2|) (-10 -7 (-15 -3810 ((-770 |#2|) (-1 |#2| |#1|) (-770 |#1|))) (-15 -3810 ((-770 |#2|) (-1 |#2| |#1|) (-770 |#1|) (-770 |#2|)))) (-1014) (-1014)) (T -769)) -((-3810 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-770 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-770 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *1 (-769 *5 *6)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-770 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-770 *6)) (-5 *1 (-769 *5 *6))))) -(-10 -7 (-15 -3810 ((-770 |#2|) (-1 |#2| |#1|) (-770 |#1|))) (-15 -3810 ((-770 |#2|) (-1 |#2| |#1|) (-770 |#1|) (-770 |#2|)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL (|has| |#1| (-21)))) (-2265 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3355 (((-522) $) NIL (|has| |#1| (-782)))) (-3367 (($) NIL (|has| |#1| (-21)) CONST)) (-3700 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 15)) (-1478 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) 9)) (-3920 (((-3 $ "failed") $) 40 (|has| |#1| (-782)))) (-2549 (((-3 (-382 (-522)) "failed") $) 48 (|has| |#1| (-507)))) (-3519 (((-108) $) 43 (|has| |#1| (-507)))) (-1699 (((-382 (-522)) $) 45 (|has| |#1| (-507)))) (-3603 (((-108) $) NIL (|has| |#1| (-782)))) (-2859 (((-108) $) NIL (|has| |#1| (-782)))) (-3740 (((-108) $) NIL (|has| |#1| (-782)))) (-1308 (($ $ $) NIL (|has| |#1| (-782)))) (-2524 (($ $ $) NIL (|has| |#1| (-782)))) (-2311 (((-1068) $) NIL)) (-2990 (($) 13)) (-3927 (((-108) $) 12)) (-4174 (((-1032) $) NIL)) (-2680 (((-108) $) 11)) (-2217 (((-792) $) 18) (($ (-382 (-522))) NIL (|has| |#1| (-962 (-382 (-522))))) (($ |#1|) 8) (($ (-522)) NIL (-3844 (|has| |#1| (-782)) (|has| |#1| (-962 (-522)))))) (-2742 (((-708)) 34 (|has| |#1| (-782)))) (-4126 (($ $) NIL (|has| |#1| (-782)))) (-3622 (($ $ (-850)) NIL (|has| |#1| (-782))) (($ $ (-708)) NIL (|has| |#1| (-782)))) (-3697 (($) 22 (|has| |#1| (-21)) CONST)) (-3709 (($) 31 (|has| |#1| (-782)) CONST)) (-1623 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1562 (((-108) $ $) 20)) (-1609 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1587 (((-108) $ $) 42 (|has| |#1| (-782)))) (-1672 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1661 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-850)) NIL (|has| |#1| (-782))) (($ $ (-708)) NIL (|has| |#1| (-782)))) (* (($ $ $) 37 (|has| |#1| (-782))) (($ (-522) $) 25 (|has| |#1| (-21))) (($ (-708) $) NIL (|has| |#1| (-21))) (($ (-850) $) NIL (|has| |#1| (-21))))) -(((-770 |#1|) (-13 (-1014) (-386 |#1|) (-10 -8 (-15 -2990 ($)) (-15 -2680 ((-108) $)) (-15 -3927 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (IF (|has| |#1| (-507)) (PROGN (-15 -3519 ((-108) $)) (-15 -1699 ((-382 (-522)) $)) (-15 -2549 ((-3 (-382 (-522)) "failed") $))) |%noBranch|))) (-1014)) (T -770)) -((-2990 (*1 *1) (-12 (-5 *1 (-770 *2)) (-4 *2 (-1014)))) (-2680 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-770 *3)) (-4 *3 (-1014)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-770 *3)) (-4 *3 (-1014)))) (-3519 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-770 *3)) (-4 *3 (-507)) (-4 *3 (-1014)))) (-1699 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-770 *3)) (-4 *3 (-507)) (-4 *3 (-1014)))) (-2549 (*1 *2 *1) (|partial| -12 (-5 *2 (-382 (-522))) (-5 *1 (-770 *3)) (-4 *3 (-507)) (-4 *3 (-1014))))) -(-13 (-1014) (-386 |#1|) (-10 -8 (-15 -2990 ($)) (-15 -2680 ((-108) $)) (-15 -3927 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (IF (|has| |#1| (-507)) (PROGN (-15 -3519 ((-108) $)) (-15 -1699 ((-382 (-522)) $)) (-15 -2549 ((-3 (-382 (-522)) "failed") $))) |%noBranch|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) NIL) (((-3 (-110) "failed") $) NIL)) (-1478 ((|#1| $) NIL) (((-110) $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-4106 ((|#1| (-110) |#1|) NIL)) (-2859 (((-108) $) NIL)) (-1687 (($ |#1| (-336 (-110))) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-1786 (($ $ (-1 |#1| |#1|)) NIL)) (-1710 (($ $ (-1 |#1| |#1|)) NIL)) (-2683 ((|#1| $ |#1|) NIL)) (-3658 ((|#1| |#1|) NIL (|has| |#1| (-157)))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL) (($ (-110)) NIL)) (-3040 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2742 (((-708)) NIL)) (-3397 (($ $) NIL (|has| |#1| (-157))) (($ $ $) NIL (|has| |#1| (-157)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ (-110) (-522)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157))))) -(((-771 |#1|) (-13 (-971) (-962 |#1|) (-962 (-110)) (-262 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -3397 ($ $)) (-15 -3397 ($ $ $)) (-15 -3658 (|#1| |#1|))) |%noBranch|) (-15 -1710 ($ $ (-1 |#1| |#1|))) (-15 -1786 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-522))) (-15 ** ($ $ (-522))) (-15 -4106 (|#1| (-110) |#1|)) (-15 -1687 ($ |#1| (-336 (-110)))))) (-971)) (T -771)) -((-3397 (*1 *1 *1) (-12 (-5 *1 (-771 *2)) (-4 *2 (-157)) (-4 *2 (-971)))) (-3397 (*1 *1 *1 *1) (-12 (-5 *1 (-771 *2)) (-4 *2 (-157)) (-4 *2 (-971)))) (-3658 (*1 *2 *2) (-12 (-5 *1 (-771 *2)) (-4 *2 (-157)) (-4 *2 (-971)))) (-1710 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-771 *3)))) (-1786 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-771 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-522)) (-5 *1 (-771 *4)) (-4 *4 (-971)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-771 *3)) (-4 *3 (-971)))) (-4106 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-771 *2)) (-4 *2 (-971)))) (-1687 (*1 *1 *2 *3) (-12 (-5 *3 (-336 (-110))) (-5 *1 (-771 *2)) (-4 *2 (-971))))) -(-13 (-971) (-962 |#1|) (-962 (-110)) (-262 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -3397 ($ $)) (-15 -3397 ($ $ $)) (-15 -3658 (|#1| |#1|))) |%noBranch|) (-15 -1710 ($ $ (-1 |#1| |#1|))) (-15 -1786 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-522))) (-15 ** ($ $ (-522))) (-15 -4106 (|#1| (-110) |#1|)) (-15 -1687 ($ |#1| (-336 (-110)))))) -((-2962 (((-192 (-472)) (-1068)) 8))) -(((-772) (-10 -7 (-15 -2962 ((-192 (-472)) (-1068))))) (T -772)) -((-2962 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-192 (-472))) (-5 *1 (-772))))) -(-10 -7 (-15 -2962 ((-192 (-472)) (-1068)))) -((-1419 (((-108) $ $) 7)) (-4128 (((-960) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) 14) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 13)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 16) (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) 15)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-1562 (((-108) $ $) 6))) -(((-773) (-1197)) (T -773)) -((-1361 (*1 *2 *3 *4) (-12 (-4 *1 (-773)) (-5 *3 (-983)) (-5 *4 (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (-5 *2 (-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)))))) (-1361 (*1 *2 *3 *4) (-12 (-4 *1 (-773)) (-5 *3 (-983)) (-5 *4 (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) (-5 *2 (-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)))))) (-4128 (*1 *2 *3) (-12 (-4 *1 (-773)) (-5 *3 (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) (-5 *2 (-960)))) (-4128 (*1 *2 *3) (-12 (-4 *1 (-773)) (-5 *3 (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (-5 *2 (-960))))) -(-13 (-1014) (-10 -7 (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202))))))) (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202)))))) (-15 -4128 ((-960) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202)))))) (-15 -4128 ((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202))))))))) -(((-97) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-2055 (((-960) (-588 (-291 (-354))) (-588 (-354))) 143) (((-960) (-291 (-354)) (-588 (-354))) 141) (((-960) (-291 (-354)) (-588 (-354)) (-588 (-777 (-354))) (-588 (-777 (-354)))) 140) (((-960) (-291 (-354)) (-588 (-354)) (-588 (-777 (-354))) (-588 (-291 (-354))) (-588 (-777 (-354)))) 139) (((-960) (-775)) 112) (((-960) (-775) (-983)) 111)) (-1361 (((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068)))) (-775) (-983)) 76) (((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068)))) (-775)) 78)) (-2158 (((-960) (-588 (-291 (-354))) (-588 (-354))) 144) (((-960) (-775)) 128))) -(((-774) (-10 -7 (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068)))) (-775))) (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068)))) (-775) (-983))) (-15 -2055 ((-960) (-775) (-983))) (-15 -2055 ((-960) (-775))) (-15 -2158 ((-960) (-775))) (-15 -2055 ((-960) (-291 (-354)) (-588 (-354)) (-588 (-777 (-354))) (-588 (-291 (-354))) (-588 (-777 (-354))))) (-15 -2055 ((-960) (-291 (-354)) (-588 (-354)) (-588 (-777 (-354))) (-588 (-777 (-354))))) (-15 -2055 ((-960) (-291 (-354)) (-588 (-354)))) (-15 -2055 ((-960) (-588 (-291 (-354))) (-588 (-354)))) (-15 -2158 ((-960) (-588 (-291 (-354))) (-588 (-354)))))) (T -774)) -((-2158 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-291 (-354)))) (-5 *4 (-588 (-354))) (-5 *2 (-960)) (-5 *1 (-774)))) (-2055 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-291 (-354)))) (-5 *4 (-588 (-354))) (-5 *2 (-960)) (-5 *1 (-774)))) (-2055 (*1 *2 *3 *4) (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-354))) (-5 *2 (-960)) (-5 *1 (-774)))) (-2055 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-354))) (-5 *5 (-588 (-777 (-354)))) (-5 *2 (-960)) (-5 *1 (-774)))) (-2055 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-588 (-354))) (-5 *5 (-588 (-777 (-354)))) (-5 *6 (-588 (-291 (-354)))) (-5 *3 (-291 (-354))) (-5 *2 (-960)) (-5 *1 (-774)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-775)) (-5 *2 (-960)) (-5 *1 (-774)))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-775)) (-5 *2 (-960)) (-5 *1 (-774)))) (-2055 (*1 *2 *3 *4) (-12 (-5 *3 (-775)) (-5 *4 (-983)) (-5 *2 (-960)) (-5 *1 (-774)))) (-1361 (*1 *2 *3 *4) (-12 (-5 *3 (-775)) (-5 *4 (-983)) (-5 *2 (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068))))) (-5 *1 (-774)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-775)) (-5 *2 (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068))))) (-5 *1 (-774))))) -(-10 -7 (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068)))) (-775))) (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068)))) (-775) (-983))) (-15 -2055 ((-960) (-775) (-983))) (-15 -2055 ((-960) (-775))) (-15 -2158 ((-960) (-775))) (-15 -2055 ((-960) (-291 (-354)) (-588 (-354)) (-588 (-777 (-354))) (-588 (-291 (-354))) (-588 (-777 (-354))))) (-15 -2055 ((-960) (-291 (-354)) (-588 (-354)) (-588 (-777 (-354))) (-588 (-777 (-354))))) (-15 -2055 ((-960) (-291 (-354)) (-588 (-354)))) (-15 -2055 ((-960) (-588 (-291 (-354))) (-588 (-354)))) (-15 -2158 ((-960) (-588 (-291 (-354))) (-588 (-354))))) -((-1419 (((-108) $ $) NIL)) (-1478 (((-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202)))))) $) 15)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 14) (($ (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 8) (($ (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))))) 12)) (-1562 (((-108) $ $) NIL))) -(((-775) (-13 (-1014) (-10 -8 (-15 -2217 ($ (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202))))))) (-15 -2217 ($ (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202)))))) (-15 -2217 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202)))))))) (-15 -2217 ((-792) $)) (-15 -1478 ((-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202)))))) $))))) (T -775)) -((-2217 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-775)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (-5 *1 (-775)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) (-5 *1 (-775)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))))) (-5 *1 (-775)))) (-1478 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))))) (-5 *1 (-775))))) -(-13 (-1014) (-10 -8 (-15 -2217 ($ (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202))))))) (-15 -2217 ($ (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202)))))) (-15 -2217 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202)))))))) (-15 -2217 ((-792) $)) (-15 -1478 ((-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202)))))) $)))) -((-3810 (((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|) (-777 |#2|) (-777 |#2|)) 13) (((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|)) 14))) -(((-776 |#1| |#2|) (-10 -7 (-15 -3810 ((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|))) (-15 -3810 ((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|) (-777 |#2|) (-777 |#2|)))) (-1014) (-1014)) (T -776)) -((-3810 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-777 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-777 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *1 (-776 *5 *6)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-777 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-777 *6)) (-5 *1 (-776 *5 *6))))) -(-10 -7 (-15 -3810 ((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|))) (-15 -3810 ((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|) (-777 |#2|) (-777 |#2|)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL (|has| |#1| (-21)))) (-1425 (((-1032) $) 24)) (-2265 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3355 (((-522) $) NIL (|has| |#1| (-782)))) (-3367 (($) NIL (|has| |#1| (-21)) CONST)) (-3700 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 16)) (-1478 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) 9)) (-3920 (((-3 $ "failed") $) 47 (|has| |#1| (-782)))) (-2549 (((-3 (-382 (-522)) "failed") $) 54 (|has| |#1| (-507)))) (-3519 (((-108) $) 49 (|has| |#1| (-507)))) (-1699 (((-382 (-522)) $) 52 (|has| |#1| (-507)))) (-3603 (((-108) $) NIL (|has| |#1| (-782)))) (-3012 (($) 13)) (-2859 (((-108) $) NIL (|has| |#1| (-782)))) (-3740 (((-108) $) NIL (|has| |#1| (-782)))) (-3025 (($) 14)) (-1308 (($ $ $) NIL (|has| |#1| (-782)))) (-2524 (($ $ $) NIL (|has| |#1| (-782)))) (-2311 (((-1068) $) NIL)) (-3927 (((-108) $) 12)) (-4174 (((-1032) $) NIL)) (-2680 (((-108) $) 11)) (-2217 (((-792) $) 22) (($ (-382 (-522))) NIL (|has| |#1| (-962 (-382 (-522))))) (($ |#1|) 8) (($ (-522)) NIL (-3844 (|has| |#1| (-782)) (|has| |#1| (-962 (-522)))))) (-2742 (((-708)) 41 (|has| |#1| (-782)))) (-4126 (($ $) NIL (|has| |#1| (-782)))) (-3622 (($ $ (-850)) NIL (|has| |#1| (-782))) (($ $ (-708)) NIL (|has| |#1| (-782)))) (-3697 (($) 29 (|has| |#1| (-21)) CONST)) (-3709 (($) 38 (|has| |#1| (-782)) CONST)) (-1623 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1562 (((-108) $ $) 27)) (-1609 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1587 (((-108) $ $) 48 (|has| |#1| (-782)))) (-1672 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1661 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-850)) NIL (|has| |#1| (-782))) (($ $ (-708)) NIL (|has| |#1| (-782)))) (* (($ $ $) 44 (|has| |#1| (-782))) (($ (-522) $) 32 (|has| |#1| (-21))) (($ (-708) $) NIL (|has| |#1| (-21))) (($ (-850) $) NIL (|has| |#1| (-21))))) -(((-777 |#1|) (-13 (-1014) (-386 |#1|) (-10 -8 (-15 -3012 ($)) (-15 -3025 ($)) (-15 -2680 ((-108) $)) (-15 -3927 ((-108) $)) (-15 -1425 ((-1032) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (IF (|has| |#1| (-507)) (PROGN (-15 -3519 ((-108) $)) (-15 -1699 ((-382 (-522)) $)) (-15 -2549 ((-3 (-382 (-522)) "failed") $))) |%noBranch|))) (-1014)) (T -777)) -((-3012 (*1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1014)))) (-3025 (*1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1014)))) (-2680 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-777 *3)) (-4 *3 (-1014)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-777 *3)) (-4 *3 (-1014)))) (-1425 (*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-777 *3)) (-4 *3 (-1014)))) (-3519 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-777 *3)) (-4 *3 (-507)) (-4 *3 (-1014)))) (-1699 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-777 *3)) (-4 *3 (-507)) (-4 *3 (-1014)))) (-2549 (*1 *2 *1) (|partial| -12 (-5 *2 (-382 (-522))) (-5 *1 (-777 *3)) (-4 *3 (-507)) (-4 *3 (-1014))))) -(-13 (-1014) (-386 |#1|) (-10 -8 (-15 -3012 ($)) (-15 -3025 ($)) (-15 -2680 ((-108) $)) (-15 -3927 ((-108) $)) (-15 -1425 ((-1032) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (IF (|has| |#1| (-507)) (PROGN (-15 -3519 ((-108) $)) (-15 -1699 ((-382 (-522)) $)) (-15 -2549 ((-3 (-382 (-522)) "failed") $))) |%noBranch|))) -((-1419 (((-108) $ $) 7)) (-1685 (((-708)) 20)) (-3344 (($) 23)) (-1308 (($ $ $) 13)) (-2524 (($ $ $) 14)) (-1475 (((-850) $) 22)) (-2311 (((-1068) $) 9)) (-2882 (($ (-850)) 21)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-1623 (((-108) $ $) 16)) (-1597 (((-108) $ $) 17)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 15)) (-1587 (((-108) $ $) 18))) -(((-778) (-1197)) (T -778)) -NIL -(-13 (-784) (-343)) -(((-97) . T) ((-562 (-792)) . T) ((-343) . T) ((-784) . T) ((-1014) . T)) -((-3206 (((-108) (-1166 |#2|) (-1166 |#2|)) 17)) (-2737 (((-108) (-1166 |#2|) (-1166 |#2|)) 18)) (-1706 (((-108) (-1166 |#2|) (-1166 |#2|)) 14))) -(((-779 |#1| |#2|) (-10 -7 (-15 -1706 ((-108) (-1166 |#2|) (-1166 |#2|))) (-15 -3206 ((-108) (-1166 |#2|) (-1166 |#2|))) (-15 -2737 ((-108) (-1166 |#2|) (-1166 |#2|)))) (-708) (-729)) (T -779)) -((-2737 (*1 *2 *3 *3) (-12 (-5 *3 (-1166 *5)) (-4 *5 (-729)) (-5 *2 (-108)) (-5 *1 (-779 *4 *5)) (-14 *4 (-708)))) (-3206 (*1 *2 *3 *3) (-12 (-5 *3 (-1166 *5)) (-4 *5 (-729)) (-5 *2 (-108)) (-5 *1 (-779 *4 *5)) (-14 *4 (-708)))) (-1706 (*1 *2 *3 *3) (-12 (-5 *3 (-1166 *5)) (-4 *5 (-729)) (-5 *2 (-108)) (-5 *1 (-779 *4 *5)) (-14 *4 (-708))))) -(-10 -7 (-15 -1706 ((-108) (-1166 |#2|) (-1166 |#2|))) (-15 -3206 ((-108) (-1166 |#2|) (-1166 |#2|))) (-15 -2737 ((-108) (-1166 |#2|) (-1166 |#2|)))) -((-1419 (((-108) $ $) 7)) (-3367 (($) 24 T CONST)) (-3920 (((-3 $ "failed") $) 28)) (-2859 (((-108) $) 25)) (-1308 (($ $ $) 13)) (-2524 (($ $ $) 14)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-3622 (($ $ (-708)) 27) (($ $ (-850)) 22)) (-3709 (($) 23 T CONST)) (-1623 (((-108) $ $) 16)) (-1597 (((-108) $ $) 17)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 15)) (-1587 (((-108) $ $) 18)) (** (($ $ (-708)) 26) (($ $ (-850)) 21)) (* (($ $ $) 20))) -(((-780) (-1197)) (T -780)) -NIL -(-13 (-784) (-664)) -(((-97) . T) ((-562 (-792)) . T) ((-664) . T) ((-784) . T) ((-1026) . T) ((-1014) . T)) -((-3355 (((-522) $) 17)) (-3603 (((-108) $) 10)) (-3740 (((-108) $) 11)) (-4126 (($ $) 19))) -(((-781 |#1|) (-10 -8 (-15 -4126 (|#1| |#1|)) (-15 -3355 ((-522) |#1|)) (-15 -3740 ((-108) |#1|)) (-15 -3603 ((-108) |#1|))) (-782)) (T -781)) -NIL -(-10 -8 (-15 -4126 (|#1| |#1|)) (-15 -3355 ((-522) |#1|)) (-15 -3740 ((-108) |#1|)) (-15 -3603 ((-108) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 24)) (-2265 (((-3 $ "failed") $ $) 26)) (-3355 (((-522) $) 33)) (-3367 (($) 23 T CONST)) (-3920 (((-3 $ "failed") $) 39)) (-3603 (((-108) $) 35)) (-2859 (((-108) $) 42)) (-3740 (((-108) $) 34)) (-1308 (($ $ $) 13)) (-2524 (($ $ $) 14)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11) (($ (-522)) 45)) (-2742 (((-708)) 44)) (-4126 (($ $) 32)) (-3622 (($ $ (-708)) 40) (($ $ (-850)) 36)) (-3697 (($) 22 T CONST)) (-3709 (($) 43 T CONST)) (-1623 (((-108) $ $) 16)) (-1597 (((-108) $ $) 17)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 15)) (-1587 (((-108) $ $) 18)) (-1672 (($ $ $) 28) (($ $) 27)) (-1661 (($ $ $) 20)) (** (($ $ (-708)) 41) (($ $ (-850)) 37)) (* (($ (-708) $) 25) (($ (-850) $) 21) (($ (-522) $) 29) (($ $ $) 38))) -(((-782) (-1197)) (T -782)) -((-3603 (*1 *2 *1) (-12 (-4 *1 (-782)) (-5 *2 (-108)))) (-3740 (*1 *2 *1) (-12 (-4 *1 (-782)) (-5 *2 (-108)))) (-3355 (*1 *2 *1) (-12 (-4 *1 (-782)) (-5 *2 (-522)))) (-4126 (*1 *1 *1) (-4 *1 (-782)))) -(-13 (-728) (-971) (-664) (-10 -8 (-15 -3603 ((-108) $)) (-15 -3740 ((-108) $)) (-15 -3355 ((-522) $)) (-15 -4126 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 $) . T) ((-664) . T) ((-728) . T) ((-729) . T) ((-731) . T) ((-732) . T) ((-784) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-1308 (($ $ $) 10)) (-2524 (($ $ $) 9)) (-1623 (((-108) $ $) 13)) (-1597 (((-108) $ $) 11)) (-1609 (((-108) $ $) 14))) -(((-783 |#1|) (-10 -8 (-15 -1308 (|#1| |#1| |#1|)) (-15 -2524 (|#1| |#1| |#1|)) (-15 -1609 ((-108) |#1| |#1|)) (-15 -1623 ((-108) |#1| |#1|)) (-15 -1597 ((-108) |#1| |#1|))) (-784)) (T -783)) -NIL -(-10 -8 (-15 -1308 (|#1| |#1| |#1|)) (-15 -2524 (|#1| |#1| |#1|)) (-15 -1609 ((-108) |#1| |#1|)) (-15 -1623 ((-108) |#1| |#1|)) (-15 -1597 ((-108) |#1| |#1|))) -((-1419 (((-108) $ $) 7)) (-1308 (($ $ $) 13)) (-2524 (($ $ $) 14)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-1623 (((-108) $ $) 16)) (-1597 (((-108) $ $) 17)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 15)) (-1587 (((-108) $ $) 18))) -(((-784) (-1197)) (T -784)) -((-1587 (*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) (-1597 (*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) (-1623 (*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) (-1609 (*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) (-2524 (*1 *1 *1 *1) (-4 *1 (-784))) (-1308 (*1 *1 *1 *1) (-4 *1 (-784)))) -(-13 (-1014) (-10 -8 (-15 -1587 ((-108) $ $)) (-15 -1597 ((-108) $ $)) (-15 -1623 ((-108) $ $)) (-15 -1609 ((-108) $ $)) (-15 -2524 ($ $ $)) (-15 -1308 ($ $ $)))) -(((-97) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-3525 (($ $ $) 46)) (-1342 (($ $ $) 45)) (-1734 (($ $ $) 43)) (-3320 (($ $ $) 52)) (-2228 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 47)) (-1975 (((-3 $ "failed") $ $) 50)) (-3700 (((-3 (-522) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2883 (($ $) 36)) (-3755 (($ $ $) 40)) (-1416 (($ $ $) 39)) (-3283 (($ $ $) 48)) (-3453 (($ $ $) 54)) (-2045 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 42)) (-2708 (((-3 $ "failed") $ $) 49)) (-2276 (((-3 $ "failed") $ |#2|) 29)) (-2988 ((|#2| $) 33)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ (-382 (-522))) NIL) (($ |#2|) 12)) (-2180 (((-588 |#2|) $) 19)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 23))) -(((-785 |#1| |#2|) (-10 -8 (-15 -3283 (|#1| |#1| |#1|)) (-15 -2228 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1368 |#1|)) |#1| |#1|)) (-15 -3320 (|#1| |#1| |#1|)) (-15 -1975 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3525 (|#1| |#1| |#1|)) (-15 -1342 (|#1| |#1| |#1|)) (-15 -1734 (|#1| |#1| |#1|)) (-15 -2045 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1368 |#1|)) |#1| |#1|)) (-15 -3453 (|#1| |#1| |#1|)) (-15 -2708 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3755 (|#1| |#1| |#1|)) (-15 -1416 (|#1| |#1| |#1|)) (-15 -2883 (|#1| |#1|)) (-15 -2988 (|#2| |#1|)) (-15 -2276 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2180 ((-588 |#2|) |#1|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2217 (|#1| (-522))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -2217 ((-792) |#1|))) (-786 |#2|) (-971)) (T -785)) -NIL -(-10 -8 (-15 -3283 (|#1| |#1| |#1|)) (-15 -2228 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1368 |#1|)) |#1| |#1|)) (-15 -3320 (|#1| |#1| |#1|)) (-15 -1975 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3525 (|#1| |#1| |#1|)) (-15 -1342 (|#1| |#1| |#1|)) (-15 -1734 (|#1| |#1| |#1|)) (-15 -2045 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1368 |#1|)) |#1| |#1|)) (-15 -3453 (|#1| |#1| |#1|)) (-15 -2708 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3755 (|#1| |#1| |#1|)) (-15 -1416 (|#1| |#1| |#1|)) (-15 -2883 (|#1| |#1|)) (-15 -2988 (|#2| |#1|)) (-15 -2276 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2180 ((-588 |#2|) |#1|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2217 (|#1| (-522))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -2217 ((-792) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3525 (($ $ $) 45 (|has| |#1| (-338)))) (-1342 (($ $ $) 46 (|has| |#1| (-338)))) (-1734 (($ $ $) 48 (|has| |#1| (-338)))) (-3320 (($ $ $) 43 (|has| |#1| (-338)))) (-2228 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 42 (|has| |#1| (-338)))) (-1975 (((-3 $ "failed") $ $) 44 (|has| |#1| (-338)))) (-1432 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 47 (|has| |#1| (-338)))) (-3700 (((-3 (-522) "failed") $) 74 (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) 72 (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 69)) (-1478 (((-522) $) 75 (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) 73 (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) 68)) (-3241 (($ $) 64)) (-3920 (((-3 $ "failed") $) 34)) (-2883 (($ $) 55 (|has| |#1| (-426)))) (-2859 (((-108) $) 31)) (-3500 (($ |#1| (-708)) 62)) (-3865 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 57 (|has| |#1| (-514)))) (-2118 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 58 (|has| |#1| (-514)))) (-3564 (((-708) $) 66)) (-3755 (($ $ $) 52 (|has| |#1| (-338)))) (-1416 (($ $ $) 53 (|has| |#1| (-338)))) (-3283 (($ $ $) 41 (|has| |#1| (-338)))) (-3453 (($ $ $) 50 (|has| |#1| (-338)))) (-2045 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 49 (|has| |#1| (-338)))) (-2708 (((-3 $ "failed") $ $) 51 (|has| |#1| (-338)))) (-2070 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 54 (|has| |#1| (-338)))) (-3224 ((|#1| $) 65)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2276 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-514)))) (-2487 (((-708) $) 67)) (-2988 ((|#1| $) 56 (|has| |#1| (-426)))) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ (-382 (-522))) 71 (|has| |#1| (-962 (-382 (-522))))) (($ |#1|) 70)) (-2180 (((-588 |#1|) $) 61)) (-1643 ((|#1| $ (-708)) 63)) (-2742 (((-708)) 29)) (-1664 ((|#1| $ |#1| |#1|) 60)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76))) -(((-786 |#1|) (-1197) (-971)) (T -786)) -((-2487 (*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-971)) (-5 *2 (-708)))) (-3564 (*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-971)) (-5 *2 (-708)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)))) (-3241 (*1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)))) (-1643 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-4 *1 (-786 *2)) (-4 *2 (-971)))) (-3500 (*1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-786 *2)) (-4 *2 (-971)))) (-2180 (*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-971)) (-5 *2 (-588 *3)))) (-1664 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)))) (-2276 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-514)))) (-2118 (*1 *2 *1 *1) (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-5 *2 (-2 (|:| -3450 *1) (|:| -4002 *1))) (-4 *1 (-786 *3)))) (-3865 (*1 *2 *1 *1) (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-5 *2 (-2 (|:| -3450 *1) (|:| -4002 *1))) (-4 *1 (-786 *3)))) (-2988 (*1 *2 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-426)))) (-2883 (*1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-426)))) (-2070 (*1 *2 *1 *1) (-12 (-4 *3 (-338)) (-4 *3 (-971)) (-5 *2 (-2 (|:| -3450 *1) (|:| -4002 *1))) (-4 *1 (-786 *3)))) (-1416 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-3755 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-2708 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-3453 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-2045 (*1 *2 *1 *1) (-12 (-4 *3 (-338)) (-4 *3 (-971)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1368 *1))) (-4 *1 (-786 *3)))) (-1734 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-1432 (*1 *2 *1 *1) (-12 (-4 *3 (-338)) (-4 *3 (-971)) (-5 *2 (-2 (|:| -3450 *1) (|:| -4002 *1))) (-4 *1 (-786 *3)))) (-1342 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-3525 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-1975 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-3320 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-2228 (*1 *2 *1 *1) (-12 (-4 *3 (-338)) (-4 *3 (-971)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1368 *1))) (-4 *1 (-786 *3)))) (-3283 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338))))) -(-13 (-971) (-107 |t#1| |t#1|) (-386 |t#1|) (-10 -8 (-15 -2487 ((-708) $)) (-15 -3564 ((-708) $)) (-15 -3224 (|t#1| $)) (-15 -3241 ($ $)) (-15 -1643 (|t#1| $ (-708))) (-15 -3500 ($ |t#1| (-708))) (-15 -2180 ((-588 |t#1|) $)) (-15 -1664 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-514)) (PROGN (-15 -2276 ((-3 $ "failed") $ |t#1|)) (-15 -2118 ((-2 (|:| -3450 $) (|:| -4002 $)) $ $)) (-15 -3865 ((-2 (|:| -3450 $) (|:| -4002 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-426)) (PROGN (-15 -2988 (|t#1| $)) (-15 -2883 ($ $))) |%noBranch|) (IF (|has| |t#1| (-338)) (PROGN (-15 -2070 ((-2 (|:| -3450 $) (|:| -4002 $)) $ $)) (-15 -1416 ($ $ $)) (-15 -3755 ($ $ $)) (-15 -2708 ((-3 $ "failed") $ $)) (-15 -3453 ($ $ $)) (-15 -2045 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $)) (-15 -1734 ($ $ $)) (-15 -1432 ((-2 (|:| -3450 $) (|:| -4002 $)) $ $)) (-15 -1342 ($ $ $)) (-15 -3525 ($ $ $)) (-15 -1975 ((-3 $ "failed") $ $)) (-15 -3320 ($ $ $)) (-15 -2228 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $)) (-15 -3283 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-386 |#1|) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-655 |#1|) |has| |#1| (-157)) ((-664) . T) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T) ((-977 |#1|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-2572 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 21)) (-1432 (((-2 (|:| -3450 |#2|) (|:| -4002 |#2|)) |#2| |#2| (-94 |#1|)) 44 (|has| |#1| (-338)))) (-3865 (((-2 (|:| -3450 |#2|) (|:| -4002 |#2|)) |#2| |#2| (-94 |#1|)) 41 (|has| |#1| (-514)))) (-2118 (((-2 (|:| -3450 |#2|) (|:| -4002 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-514)))) (-2070 (((-2 (|:| -3450 |#2|) (|:| -4002 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-338)))) (-1664 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 32))) -(((-787 |#1| |#2|) (-10 -7 (-15 -2572 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1664 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-514)) (PROGN (-15 -2118 ((-2 (|:| -3450 |#2|) (|:| -4002 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3865 ((-2 (|:| -3450 |#2|) (|:| -4002 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-338)) (PROGN (-15 -2070 ((-2 (|:| -3450 |#2|) (|:| -4002 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -1432 ((-2 (|:| -3450 |#2|) (|:| -4002 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) (-971) (-786 |#1|)) (T -787)) -((-1432 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-338)) (-4 *5 (-971)) (-5 *2 (-2 (|:| -3450 *3) (|:| -4002 *3))) (-5 *1 (-787 *5 *3)) (-4 *3 (-786 *5)))) (-2070 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-338)) (-4 *5 (-971)) (-5 *2 (-2 (|:| -3450 *3) (|:| -4002 *3))) (-5 *1 (-787 *5 *3)) (-4 *3 (-786 *5)))) (-3865 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-514)) (-4 *5 (-971)) (-5 *2 (-2 (|:| -3450 *3) (|:| -4002 *3))) (-5 *1 (-787 *5 *3)) (-4 *3 (-786 *5)))) (-2118 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-514)) (-4 *5 (-971)) (-5 *2 (-2 (|:| -3450 *3) (|:| -4002 *3))) (-5 *1 (-787 *5 *3)) (-4 *3 (-786 *5)))) (-1664 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-971)) (-5 *1 (-787 *2 *3)) (-4 *3 (-786 *2)))) (-2572 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-971)) (-5 *1 (-787 *5 *2)) (-4 *2 (-786 *5))))) -(-10 -7 (-15 -2572 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1664 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-514)) (PROGN (-15 -2118 ((-2 (|:| -3450 |#2|) (|:| -4002 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3865 ((-2 (|:| -3450 |#2|) (|:| -4002 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-338)) (PROGN (-15 -2070 ((-2 (|:| -3450 |#2|) (|:| -4002 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -1432 ((-2 (|:| -3450 |#2|) (|:| -4002 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3525 (($ $ $) NIL (|has| |#1| (-338)))) (-1342 (($ $ $) NIL (|has| |#1| (-338)))) (-1734 (($ $ $) NIL (|has| |#1| (-338)))) (-3320 (($ $ $) NIL (|has| |#1| (-338)))) (-2228 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-338)))) (-1975 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-1432 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 25 (|has| |#1| (-338)))) (-3700 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) NIL)) (-1478 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) NIL)) (-3241 (($ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2883 (($ $) NIL (|has| |#1| (-426)))) (-3094 (((-792) $ (-792)) NIL)) (-2859 (((-108) $) NIL)) (-3500 (($ |#1| (-708)) NIL)) (-3865 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 21 (|has| |#1| (-514)))) (-2118 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 19 (|has| |#1| (-514)))) (-3564 (((-708) $) NIL)) (-3755 (($ $ $) NIL (|has| |#1| (-338)))) (-1416 (($ $ $) NIL (|has| |#1| (-338)))) (-3283 (($ $ $) NIL (|has| |#1| (-338)))) (-3453 (($ $ $) NIL (|has| |#1| (-338)))) (-2045 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-338)))) (-2708 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-2070 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 23 (|has| |#1| (-338)))) (-3224 ((|#1| $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2276 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514)))) (-2487 (((-708) $) NIL)) (-2988 ((|#1| $) NIL (|has| |#1| (-426)))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ (-382 (-522))) NIL (|has| |#1| (-962 (-382 (-522))))) (($ |#1|) NIL)) (-2180 (((-588 |#1|) $) NIL)) (-1643 ((|#1| $ (-708)) NIL)) (-2742 (((-708)) NIL)) (-1664 ((|#1| $ |#1| |#1|) 15)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-788 |#1| |#2| |#3|) (-13 (-786 |#1|) (-10 -8 (-15 -3094 ((-792) $ (-792))))) (-971) (-94 |#1|) (-1 |#1| |#1|)) (T -788)) -((-3094 (*1 *2 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-788 *3 *4 *5)) (-4 *3 (-971)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-786 |#1|) (-10 -8 (-15 -3094 ((-792) $ (-792))))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3525 (($ $ $) NIL (|has| |#2| (-338)))) (-1342 (($ $ $) NIL (|has| |#2| (-338)))) (-1734 (($ $ $) NIL (|has| |#2| (-338)))) (-3320 (($ $ $) NIL (|has| |#2| (-338)))) (-2228 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#2| (-338)))) (-1975 (((-3 $ "failed") $ $) NIL (|has| |#2| (-338)))) (-1432 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#2| (-338)))) (-3700 (((-3 (-522) "failed") $) NIL (|has| |#2| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-3 |#2| "failed") $) NIL)) (-1478 (((-522) $) NIL (|has| |#2| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#2| (-962 (-382 (-522))))) ((|#2| $) NIL)) (-3241 (($ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2883 (($ $) NIL (|has| |#2| (-426)))) (-2859 (((-108) $) NIL)) (-3500 (($ |#2| (-708)) 16)) (-3865 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#2| (-514)))) (-2118 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#2| (-514)))) (-3564 (((-708) $) NIL)) (-3755 (($ $ $) NIL (|has| |#2| (-338)))) (-1416 (($ $ $) NIL (|has| |#2| (-338)))) (-3283 (($ $ $) NIL (|has| |#2| (-338)))) (-3453 (($ $ $) NIL (|has| |#2| (-338)))) (-2045 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#2| (-338)))) (-2708 (((-3 $ "failed") $ $) NIL (|has| |#2| (-338)))) (-2070 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#2| (-338)))) (-3224 ((|#2| $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2276 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-514)))) (-2487 (((-708) $) NIL)) (-2988 ((|#2| $) NIL (|has| |#2| (-426)))) (-2217 (((-792) $) 23) (($ (-522)) NIL) (($ (-382 (-522))) NIL (|has| |#2| (-962 (-382 (-522))))) (($ |#2|) NIL) (($ (-1162 |#1|)) 18)) (-2180 (((-588 |#2|) $) NIL)) (-1643 ((|#2| $ (-708)) NIL)) (-2742 (((-708)) NIL)) (-1664 ((|#2| $ |#2| |#2|) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) 13 T CONST)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-789 |#1| |#2| |#3| |#4|) (-13 (-786 |#2|) (-10 -8 (-15 -2217 ($ (-1162 |#1|))))) (-1085) (-971) (-94 |#2|) (-1 |#2| |#2|)) (T -789)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1162 *3)) (-14 *3 (-1085)) (-5 *1 (-789 *3 *4 *5 *6)) (-4 *4 (-971)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4))))) -(-13 (-786 |#2|) (-10 -8 (-15 -2217 ($ (-1162 |#1|))))) -((-3743 ((|#1| (-708) |#1|) 35 (|has| |#1| (-37 (-382 (-522)))))) (-1806 ((|#1| (-708) (-708) |#1|) 27) ((|#1| (-708) |#1|) 20)) (-3759 ((|#1| (-708) |#1|) 31)) (-3188 ((|#1| (-708) |#1|) 29)) (-2270 ((|#1| (-708) |#1|) 28))) -(((-790 |#1|) (-10 -7 (-15 -2270 (|#1| (-708) |#1|)) (-15 -3188 (|#1| (-708) |#1|)) (-15 -3759 (|#1| (-708) |#1|)) (-15 -1806 (|#1| (-708) |#1|)) (-15 -1806 (|#1| (-708) (-708) |#1|)) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -3743 (|#1| (-708) |#1|)) |%noBranch|)) (-157)) (T -790)) -((-3743 (*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-157)))) (-1806 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-157)))) (-1806 (*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-157)))) (-3759 (*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-157)))) (-3188 (*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-157)))) (-2270 (*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-157))))) -(-10 -7 (-15 -2270 (|#1| (-708) |#1|)) (-15 -3188 (|#1| (-708) |#1|)) (-15 -3759 (|#1| (-708) |#1|)) (-15 -1806 (|#1| (-708) |#1|)) (-15 -1806 (|#1| (-708) (-708) |#1|)) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -3743 (|#1| (-708) |#1|)) |%noBranch|)) -((-1419 (((-108) $ $) NIL)) (-3526 (((-522) $) 12)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 18) (($ (-522)) 11)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 8)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 9))) -(((-791) (-13 (-784) (-10 -8 (-15 -2217 ($ (-522))) (-15 -3526 ((-522) $))))) (T -791)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-791)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-791))))) -(-13 (-784) (-10 -8 (-15 -2217 ($ (-522))) (-15 -3526 ((-522) $)))) -((-1419 (((-108) $ $) NIL)) (-1826 (($ $ $) 115)) (-2815 (((-522) $) 30) (((-522)) 35)) (-3284 (($ (-522)) 44)) (-2554 (($ $ $) 45) (($ (-588 $)) 76)) (-3537 (($ $ (-588 $)) 74)) (-3559 (((-522) $) 33)) (-2934 (($ $ $) 63)) (-3640 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-2169 (((-522) $) 32)) (-1949 (($ $ $) 62)) (-1513 (($ $) 105)) (-3174 (($ $ $) 119)) (-3273 (($ (-588 $)) 52)) (-4039 (($ $ (-588 $)) 69)) (-2221 (($ (-522) (-522)) 46)) (-3763 (($ $) 116) (($ $ $) 117)) (-2002 (($ $ (-522)) 40) (($ $) 43)) (-2333 (($ $ $) 89)) (-2651 (($ $ $) 122)) (-3806 (($ $) 106)) (-2303 (($ $ $) 90)) (-2592 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-2100 (((-1171) $) 8)) (-3909 (($ $) 109) (($ $ (-708)) 112)) (-2736 (($ $ $) 65)) (-2482 (($ $ $) 64)) (-3476 (($ $ (-588 $)) 100)) (-2236 (($ $ $) 104)) (-3414 (($ (-588 $)) 50)) (-2930 (($ $) 60) (($ (-588 $)) 61)) (-3415 (($ $ $) 113)) (-3932 (($ $) 107)) (-1356 (($ $ $) 118)) (-3094 (($ (-522)) 20) (($ (-1085)) 22) (($ (-1068)) 29) (($ (-202)) 24)) (-4070 (($ $ $) 93)) (-2473 (($ $) 94)) (-2655 (((-1171) (-1068)) 14)) (-2970 (($ (-1068)) 13)) (-1347 (($ (-588 (-588 $))) 48)) (-1993 (($ $ (-522)) 39) (($ $) 42)) (-2311 (((-1068) $) NIL)) (-3032 (($ $ $) 121)) (-4149 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-3993 (((-108) $) 98)) (-1821 (($ $ (-588 $)) 102) (($ $ $ $) 103)) (-3095 (($ (-522)) 36)) (-4179 (((-522) $) 31) (((-522)) 34)) (-3368 (($ $ $) 37) (($ (-588 $)) 75)) (-4174 (((-1032) $) NIL)) (-2276 (($ $ $) 91)) (-3298 (($) 12)) (-2683 (($ $ (-588 $)) 99)) (-4024 (($ $) 108) (($ $ (-708)) 111)) (-2289 (($ $ $) 88)) (-2731 (($ $ (-708)) 127)) (-2043 (($ (-588 $)) 51)) (-2217 (((-792) $) 18)) (-1980 (($ $ (-522)) 38) (($ $) 41)) (-2394 (($ $) 58) (($ (-588 $)) 59)) (-3482 (($ $) 56) (($ (-588 $)) 57)) (-3811 (($ $) 114)) (-3801 (($ (-588 $)) 55)) (-1591 (($ $ $) 97)) (-3849 (($ $ $) 120)) (-4079 (($ $ $) 92)) (-2488 (($ $ $) 77)) (-1752 (($ $ $) 95) (($ $) 96)) (-1623 (($ $ $) 81)) (-1597 (($ $ $) 79)) (-1562 (((-108) $ $) 15) (($ $ $) 16)) (-1609 (($ $ $) 80)) (-1587 (($ $ $) 78)) (-1682 (($ $ $) 86)) (-1672 (($ $ $) 83) (($ $) 84)) (-1661 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) -(((-792) (-13 (-1014) (-10 -8 (-15 -2100 ((-1171) $)) (-15 -2970 ($ (-1068))) (-15 -2655 ((-1171) (-1068))) (-15 -3094 ($ (-522))) (-15 -3094 ($ (-1085))) (-15 -3094 ($ (-1068))) (-15 -3094 ($ (-202))) (-15 -3298 ($)) (-15 -2815 ((-522) $)) (-15 -4179 ((-522) $)) (-15 -2815 ((-522))) (-15 -4179 ((-522))) (-15 -2169 ((-522) $)) (-15 -3559 ((-522) $)) (-15 -3095 ($ (-522))) (-15 -3284 ($ (-522))) (-15 -2221 ($ (-522) (-522))) (-15 -1993 ($ $ (-522))) (-15 -2002 ($ $ (-522))) (-15 -1980 ($ $ (-522))) (-15 -1993 ($ $)) (-15 -2002 ($ $)) (-15 -1980 ($ $)) (-15 -3368 ($ $ $)) (-15 -2554 ($ $ $)) (-15 -3368 ($ (-588 $))) (-15 -2554 ($ (-588 $))) (-15 -3476 ($ $ (-588 $))) (-15 -1821 ($ $ (-588 $))) (-15 -1821 ($ $ $ $)) (-15 -2236 ($ $ $)) (-15 -3993 ((-108) $)) (-15 -2683 ($ $ (-588 $))) (-15 -1513 ($ $)) (-15 -3032 ($ $ $)) (-15 -3811 ($ $)) (-15 -1347 ($ (-588 (-588 $)))) (-15 -1826 ($ $ $)) (-15 -3763 ($ $)) (-15 -3763 ($ $ $)) (-15 -1356 ($ $ $)) (-15 -3174 ($ $ $)) (-15 -3849 ($ $ $)) (-15 -2651 ($ $ $)) (-15 -2731 ($ $ (-708))) (-15 -1591 ($ $ $)) (-15 -1949 ($ $ $)) (-15 -2934 ($ $ $)) (-15 -2482 ($ $ $)) (-15 -2736 ($ $ $)) (-15 -4039 ($ $ (-588 $))) (-15 -3537 ($ $ (-588 $))) (-15 -3806 ($ $)) (-15 -4024 ($ $)) (-15 -4024 ($ $ (-708))) (-15 -3909 ($ $)) (-15 -3909 ($ $ (-708))) (-15 -3932 ($ $)) (-15 -3415 ($ $ $)) (-15 -3640 ($ $)) (-15 -3640 ($ $ $)) (-15 -3640 ($ $ $ $)) (-15 -2592 ($ $)) (-15 -2592 ($ $ $)) (-15 -2592 ($ $ $ $)) (-15 -4149 ($ $)) (-15 -4149 ($ $ $)) (-15 -4149 ($ $ $ $)) (-15 -3482 ($ $)) (-15 -3482 ($ (-588 $))) (-15 -2394 ($ $)) (-15 -2394 ($ (-588 $))) (-15 -2930 ($ $)) (-15 -2930 ($ (-588 $))) (-15 -3414 ($ (-588 $))) (-15 -2043 ($ (-588 $))) (-15 -3273 ($ (-588 $))) (-15 -3801 ($ (-588 $))) (-15 -1562 ($ $ $)) (-15 -2488 ($ $ $)) (-15 -1587 ($ $ $)) (-15 -1597 ($ $ $)) (-15 -1609 ($ $ $)) (-15 -1623 ($ $ $)) (-15 -1661 ($ $ $)) (-15 -1672 ($ $ $)) (-15 -1672 ($ $)) (-15 * ($ $ $)) (-15 -1682 ($ $ $)) (-15 ** ($ $ $)) (-15 -2289 ($ $ $)) (-15 -2333 ($ $ $)) (-15 -2303 ($ $ $)) (-15 -2276 ($ $ $)) (-15 -4079 ($ $ $)) (-15 -4070 ($ $ $)) (-15 -2473 ($ $)) (-15 -1752 ($ $ $)) (-15 -1752 ($ $))))) (T -792)) -((-2100 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-792)))) (-2970 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-792)))) (-2655 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-792)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-792)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-792)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-792)))) (-3298 (*1 *1) (-5 *1 (-792))) (-2815 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-2815 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-4179 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-2169 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-3559 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-3095 (*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-3284 (*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-2221 (*1 *1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-1993 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-2002 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-1980 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-1993 (*1 *1 *1) (-5 *1 (-792))) (-2002 (*1 *1 *1) (-5 *1 (-792))) (-1980 (*1 *1 *1) (-5 *1 (-792))) (-3368 (*1 *1 *1 *1) (-5 *1 (-792))) (-2554 (*1 *1 *1 *1) (-5 *1 (-792))) (-3368 (*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-2554 (*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-3476 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-1821 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-1821 (*1 *1 *1 *1 *1) (-5 *1 (-792))) (-2236 (*1 *1 *1 *1) (-5 *1 (-792))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-792)))) (-2683 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-1513 (*1 *1 *1) (-5 *1 (-792))) (-3032 (*1 *1 *1 *1) (-5 *1 (-792))) (-3811 (*1 *1 *1) (-5 *1 (-792))) (-1347 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 (-792)))) (-5 *1 (-792)))) (-1826 (*1 *1 *1 *1) (-5 *1 (-792))) (-3763 (*1 *1 *1) (-5 *1 (-792))) (-3763 (*1 *1 *1 *1) (-5 *1 (-792))) (-1356 (*1 *1 *1 *1) (-5 *1 (-792))) (-3174 (*1 *1 *1 *1) (-5 *1 (-792))) (-3849 (*1 *1 *1 *1) (-5 *1 (-792))) (-2651 (*1 *1 *1 *1) (-5 *1 (-792))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-792)))) (-1591 (*1 *1 *1 *1) (-5 *1 (-792))) (-1949 (*1 *1 *1 *1) (-5 *1 (-792))) (-2934 (*1 *1 *1 *1) (-5 *1 (-792))) (-2482 (*1 *1 *1 *1) (-5 *1 (-792))) (-2736 (*1 *1 *1 *1) (-5 *1 (-792))) (-4039 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-3537 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-3806 (*1 *1 *1) (-5 *1 (-792))) (-4024 (*1 *1 *1) (-5 *1 (-792))) (-4024 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-792)))) (-3909 (*1 *1 *1) (-5 *1 (-792))) (-3909 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-792)))) (-3932 (*1 *1 *1) (-5 *1 (-792))) (-3415 (*1 *1 *1 *1) (-5 *1 (-792))) (-3640 (*1 *1 *1) (-5 *1 (-792))) (-3640 (*1 *1 *1 *1) (-5 *1 (-792))) (-3640 (*1 *1 *1 *1 *1) (-5 *1 (-792))) (-2592 (*1 *1 *1) (-5 *1 (-792))) (-2592 (*1 *1 *1 *1) (-5 *1 (-792))) (-2592 (*1 *1 *1 *1 *1) (-5 *1 (-792))) (-4149 (*1 *1 *1) (-5 *1 (-792))) (-4149 (*1 *1 *1 *1) (-5 *1 (-792))) (-4149 (*1 *1 *1 *1 *1) (-5 *1 (-792))) (-3482 (*1 *1 *1) (-5 *1 (-792))) (-3482 (*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-2394 (*1 *1 *1) (-5 *1 (-792))) (-2394 (*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-2930 (*1 *1 *1) (-5 *1 (-792))) (-2930 (*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-3414 (*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-2043 (*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-3273 (*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-3801 (*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-1562 (*1 *1 *1 *1) (-5 *1 (-792))) (-2488 (*1 *1 *1 *1) (-5 *1 (-792))) (-1587 (*1 *1 *1 *1) (-5 *1 (-792))) (-1597 (*1 *1 *1 *1) (-5 *1 (-792))) (-1609 (*1 *1 *1 *1) (-5 *1 (-792))) (-1623 (*1 *1 *1 *1) (-5 *1 (-792))) (-1661 (*1 *1 *1 *1) (-5 *1 (-792))) (-1672 (*1 *1 *1 *1) (-5 *1 (-792))) (-1672 (*1 *1 *1) (-5 *1 (-792))) (* (*1 *1 *1 *1) (-5 *1 (-792))) (-1682 (*1 *1 *1 *1) (-5 *1 (-792))) (** (*1 *1 *1 *1) (-5 *1 (-792))) (-2289 (*1 *1 *1 *1) (-5 *1 (-792))) (-2333 (*1 *1 *1 *1) (-5 *1 (-792))) (-2303 (*1 *1 *1 *1) (-5 *1 (-792))) (-2276 (*1 *1 *1 *1) (-5 *1 (-792))) (-4079 (*1 *1 *1 *1) (-5 *1 (-792))) (-4070 (*1 *1 *1 *1) (-5 *1 (-792))) (-2473 (*1 *1 *1) (-5 *1 (-792))) (-1752 (*1 *1 *1 *1) (-5 *1 (-792))) (-1752 (*1 *1 *1) (-5 *1 (-792)))) -(-13 (-1014) (-10 -8 (-15 -2100 ((-1171) $)) (-15 -2970 ($ (-1068))) (-15 -2655 ((-1171) (-1068))) (-15 -3094 ($ (-522))) (-15 -3094 ($ (-1085))) (-15 -3094 ($ (-1068))) (-15 -3094 ($ (-202))) (-15 -3298 ($)) (-15 -2815 ((-522) $)) (-15 -4179 ((-522) $)) (-15 -2815 ((-522))) (-15 -4179 ((-522))) (-15 -2169 ((-522) $)) (-15 -3559 ((-522) $)) (-15 -3095 ($ (-522))) (-15 -3284 ($ (-522))) (-15 -2221 ($ (-522) (-522))) (-15 -1993 ($ $ (-522))) (-15 -2002 ($ $ (-522))) (-15 -1980 ($ $ (-522))) (-15 -1993 ($ $)) (-15 -2002 ($ $)) (-15 -1980 ($ $)) (-15 -3368 ($ $ $)) (-15 -2554 ($ $ $)) (-15 -3368 ($ (-588 $))) (-15 -2554 ($ (-588 $))) (-15 -3476 ($ $ (-588 $))) (-15 -1821 ($ $ (-588 $))) (-15 -1821 ($ $ $ $)) (-15 -2236 ($ $ $)) (-15 -3993 ((-108) $)) (-15 -2683 ($ $ (-588 $))) (-15 -1513 ($ $)) (-15 -3032 ($ $ $)) (-15 -3811 ($ $)) (-15 -1347 ($ (-588 (-588 $)))) (-15 -1826 ($ $ $)) (-15 -3763 ($ $)) (-15 -3763 ($ $ $)) (-15 -1356 ($ $ $)) (-15 -3174 ($ $ $)) (-15 -3849 ($ $ $)) (-15 -2651 ($ $ $)) (-15 -2731 ($ $ (-708))) (-15 -1591 ($ $ $)) (-15 -1949 ($ $ $)) (-15 -2934 ($ $ $)) (-15 -2482 ($ $ $)) (-15 -2736 ($ $ $)) (-15 -4039 ($ $ (-588 $))) (-15 -3537 ($ $ (-588 $))) (-15 -3806 ($ $)) (-15 -4024 ($ $)) (-15 -4024 ($ $ (-708))) (-15 -3909 ($ $)) (-15 -3909 ($ $ (-708))) (-15 -3932 ($ $)) (-15 -3415 ($ $ $)) (-15 -3640 ($ $)) (-15 -3640 ($ $ $)) (-15 -3640 ($ $ $ $)) (-15 -2592 ($ $)) (-15 -2592 ($ $ $)) (-15 -2592 ($ $ $ $)) (-15 -4149 ($ $)) (-15 -4149 ($ $ $)) (-15 -4149 ($ $ $ $)) (-15 -3482 ($ $)) (-15 -3482 ($ (-588 $))) (-15 -2394 ($ $)) (-15 -2394 ($ (-588 $))) (-15 -2930 ($ $)) (-15 -2930 ($ (-588 $))) (-15 -3414 ($ (-588 $))) (-15 -2043 ($ (-588 $))) (-15 -3273 ($ (-588 $))) (-15 -3801 ($ (-588 $))) (-15 -1562 ($ $ $)) (-15 -2488 ($ $ $)) (-15 -1587 ($ $ $)) (-15 -1597 ($ $ $)) (-15 -1609 ($ $ $)) (-15 -1623 ($ $ $)) (-15 -1661 ($ $ $)) (-15 -1672 ($ $ $)) (-15 -1672 ($ $)) (-15 * ($ $ $)) (-15 -1682 ($ $ $)) (-15 ** ($ $ $)) (-15 -2289 ($ $ $)) (-15 -2333 ($ $ $)) (-15 -2303 ($ $ $)) (-15 -2276 ($ $ $)) (-15 -4079 ($ $ $)) (-15 -4070 ($ $ $)) (-15 -2473 ($ $)) (-15 -1752 ($ $ $)) (-15 -1752 ($ $)))) -((-1492 (((-1171) (-588 (-51))) 24)) (-1637 (((-1171) (-1068) (-792)) 14) (((-1171) (-792)) 9) (((-1171) (-1068)) 11))) -(((-793) (-10 -7 (-15 -1637 ((-1171) (-1068))) (-15 -1637 ((-1171) (-792))) (-15 -1637 ((-1171) (-1068) (-792))) (-15 -1492 ((-1171) (-588 (-51)))))) (T -793)) -((-1492 (*1 *2 *3) (-12 (-5 *3 (-588 (-51))) (-5 *2 (-1171)) (-5 *1 (-793)))) (-1637 (*1 *2 *3 *4) (-12 (-5 *3 (-1068)) (-5 *4 (-792)) (-5 *2 (-1171)) (-5 *1 (-793)))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1171)) (-5 *1 (-793)))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-793))))) -(-10 -7 (-15 -1637 ((-1171) (-1068))) (-15 -1637 ((-1171) (-792))) (-15 -1637 ((-1171) (-1068) (-792))) (-15 -1492 ((-1171) (-588 (-51))))) -((-1419 (((-108) $ $) NIL)) (-1660 (((-3 $ "failed") (-1085)) 32)) (-1685 (((-708)) 30)) (-3344 (($) NIL)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-1475 (((-850) $) 28)) (-2311 (((-1068) $) 38)) (-2882 (($ (-850)) 27)) (-4174 (((-1032) $) NIL)) (-3873 (((-1085) $) 13) (((-498) $) 19) (((-821 (-354)) $) 25) (((-821 (-522)) $) 22)) (-2217 (((-792) $) 16)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 35)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 34))) -(((-794 |#1|) (-13 (-778) (-563 (-1085)) (-563 (-498)) (-563 (-821 (-354))) (-563 (-821 (-522))) (-10 -8 (-15 -1660 ((-3 $ "failed") (-1085))))) (-588 (-1085))) (T -794)) -((-1660 (*1 *1 *2) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-794 *3)) (-14 *3 (-588 *2))))) -(-13 (-778) (-563 (-1085)) (-563 (-498)) (-563 (-821 (-354))) (-563 (-821 (-522))) (-10 -8 (-15 -1660 ((-3 $ "failed") (-1085))))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3920 (((-3 $ "failed") $) NIL)) (-2859 (((-108) $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (((-881 |#1|) $) NIL) (($ (-881 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-157)))) (-2742 (((-708)) NIL)) (-3860 (((-1171) (-708)) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-1562 (((-108) $ $) NIL)) (-1682 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157))))) -(((-795 |#1| |#2| |#3| |#4|) (-13 (-971) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2217 ((-881 |#1|) $)) (-15 -2217 ($ (-881 |#1|))) (IF (|has| |#1| (-338)) (-15 -1682 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3860 ((-1171) (-708))))) (-971) (-588 (-1085)) (-588 (-708)) (-708)) (T -795)) -((-2217 (*1 *2 *1) (-12 (-5 *2 (-881 *3)) (-5 *1 (-795 *3 *4 *5 *6)) (-4 *3 (-971)) (-14 *4 (-588 (-1085))) (-14 *5 (-588 (-708))) (-14 *6 (-708)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-971)) (-5 *1 (-795 *3 *4 *5 *6)) (-14 *4 (-588 (-1085))) (-14 *5 (-588 (-708))) (-14 *6 (-708)))) (-1682 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-795 *2 *3 *4 *5)) (-4 *2 (-338)) (-4 *2 (-971)) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-708))) (-14 *5 (-708)))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-795 *4 *5 *6 *7)) (-4 *4 (-971)) (-14 *5 (-588 (-1085))) (-14 *6 (-588 *3)) (-14 *7 *3)))) -(-13 (-971) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2217 ((-881 |#1|) $)) (-15 -2217 ($ (-881 |#1|))) (IF (|has| |#1| (-338)) (-15 -1682 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3860 ((-1171) (-708))))) -((-1401 (((-3 (-158 |#3|) "failed") (-708) (-708) |#2| |#2|) 31)) (-3456 (((-3 (-382 |#3|) "failed") (-708) (-708) |#2| |#2|) 24))) -(((-796 |#1| |#2| |#3|) (-10 -7 (-15 -3456 ((-3 (-382 |#3|) "failed") (-708) (-708) |#2| |#2|)) (-15 -1401 ((-3 (-158 |#3|) "failed") (-708) (-708) |#2| |#2|))) (-338) (-1157 |#1|) (-1142 |#1|)) (T -796)) -((-1401 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-708)) (-4 *5 (-338)) (-5 *2 (-158 *6)) (-5 *1 (-796 *5 *4 *6)) (-4 *4 (-1157 *5)) (-4 *6 (-1142 *5)))) (-3456 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-708)) (-4 *5 (-338)) (-5 *2 (-382 *6)) (-5 *1 (-796 *5 *4 *6)) (-4 *4 (-1157 *5)) (-4 *6 (-1142 *5))))) -(-10 -7 (-15 -3456 ((-3 (-382 |#3|) "failed") (-708) (-708) |#2| |#2|)) (-15 -1401 ((-3 (-158 |#3|) "failed") (-708) (-708) |#2| |#2|))) -((-3456 (((-3 (-382 (-1139 |#2| |#1|)) "failed") (-708) (-708) (-1158 |#1| |#2| |#3|)) 28) (((-3 (-382 (-1139 |#2| |#1|)) "failed") (-708) (-708) (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|)) 26))) -(((-797 |#1| |#2| |#3|) (-10 -7 (-15 -3456 ((-3 (-382 (-1139 |#2| |#1|)) "failed") (-708) (-708) (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|))) (-15 -3456 ((-3 (-382 (-1139 |#2| |#1|)) "failed") (-708) (-708) (-1158 |#1| |#2| |#3|)))) (-338) (-1085) |#1|) (T -797)) -((-3456 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-708)) (-5 *4 (-1158 *5 *6 *7)) (-4 *5 (-338)) (-14 *6 (-1085)) (-14 *7 *5) (-5 *2 (-382 (-1139 *6 *5))) (-5 *1 (-797 *5 *6 *7)))) (-3456 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-708)) (-5 *4 (-1158 *5 *6 *7)) (-4 *5 (-338)) (-14 *6 (-1085)) (-14 *7 *5) (-5 *2 (-382 (-1139 *6 *5))) (-5 *1 (-797 *5 *6 *7))))) -(-10 -7 (-15 -3456 ((-3 (-382 (-1139 |#2| |#1|)) "failed") (-708) (-708) (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|))) (-15 -3456 ((-3 (-382 (-1139 |#2| |#1|)) "failed") (-708) (-708) (-1158 |#1| |#2| |#3|)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2298 (($ $) 40)) (-3007 (((-108) $) 38)) (-2265 (((-3 $ "failed") $ $) 19)) (-2016 (($ $ (-522)) 62)) (-2805 (((-108) $ $) 59)) (-3367 (($) 17 T CONST)) (-3763 (($ (-1081 (-522)) (-522)) 61)) (-2333 (($ $ $) 55)) (-3920 (((-3 $ "failed") $) 34)) (-3606 (($ $) 64)) (-2303 (($ $ $) 56)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 51)) (-3872 (((-708) $) 69)) (-2859 (((-108) $) 31)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-1246 (((-522)) 66)) (-3316 (((-522) $) 65)) (-2267 (($ $ $) 46) (($ (-588 $)) 45)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2308 (($ $ $) 48) (($ (-588 $)) 47)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3934 (($ $ (-522)) 68)) (-2276 (((-3 $ "failed") $ $) 42)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-4031 (((-708) $) 58)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 57)) (-3353 (((-1066 (-522)) $) 70)) (-1944 (($ $) 67)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 43)) (-2742 (((-708)) 29)) (-1407 (((-108) $ $) 39)) (-3996 (((-522) $ (-522)) 63)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-798 |#1|) (-1197) (-522)) (T -798)) -((-3353 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-5 *2 (-1066 (-522))))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-5 *2 (-708)))) (-3934 (*1 *1 *1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-522)))) (-1944 (*1 *1 *1) (-4 *1 (-798 *2))) (-1246 (*1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-522)))) (-3316 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-5 *2 (-522)))) (-3606 (*1 *1 *1) (-4 *1 (-798 *2))) (-3996 (*1 *2 *1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-522)))) (-2016 (*1 *1 *1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-522)))) (-3763 (*1 *1 *2 *3) (-12 (-5 *2 (-1081 (-522))) (-5 *3 (-522)) (-4 *1 (-798 *4))))) -(-13 (-283) (-135) (-10 -8 (-15 -3353 ((-1066 (-522)) $)) (-15 -3872 ((-708) $)) (-15 -3934 ($ $ (-522))) (-15 -1944 ($ $)) (-15 -1246 ((-522))) (-15 -3316 ((-522) $)) (-15 -3606 ($ $)) (-15 -3996 ((-522) $ (-522))) (-15 -2016 ($ $ (-522))) (-15 -3763 ($ (-1081 (-522)) (-522))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-562 (-792)) . T) ((-157) . T) ((-266) . T) ((-283) . T) ((-426) . T) ((-514) . T) ((-590 $) . T) ((-655 $) . T) ((-664) . T) ((-849) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-2016 (($ $ (-522)) NIL)) (-2805 (((-108) $ $) NIL)) (-3367 (($) NIL T CONST)) (-3763 (($ (-1081 (-522)) (-522)) NIL)) (-2333 (($ $ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3606 (($ $) NIL)) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-3872 (((-708) $) NIL)) (-2859 (((-108) $) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1246 (((-522)) NIL)) (-3316 (((-522) $) NIL)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3934 (($ $ (-522)) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-3353 (((-1066 (-522)) $) NIL)) (-1944 (($ $) NIL)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL)) (-2742 (((-708)) NIL)) (-1407 (((-108) $ $) NIL)) (-3996 (((-522) $ (-522)) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL))) -(((-799 |#1|) (-798 |#1|) (-522)) (T -799)) -NIL -(-798 |#1|) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3049 (((-799 |#1|) $) NIL (|has| (-799 |#1|) (-283)))) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-799 |#1|) (-838)))) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| (-799 |#1|) (-838)))) (-2805 (((-108) $ $) NIL)) (-3355 (((-522) $) NIL (|has| (-799 |#1|) (-757)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-799 |#1|) "failed") $) NIL) (((-3 (-1085) "failed") $) NIL (|has| (-799 |#1|) (-962 (-1085)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| (-799 |#1|) (-962 (-522)))) (((-3 (-522) "failed") $) NIL (|has| (-799 |#1|) (-962 (-522))))) (-1478 (((-799 |#1|) $) NIL) (((-1085) $) NIL (|has| (-799 |#1|) (-962 (-1085)))) (((-382 (-522)) $) NIL (|has| (-799 |#1|) (-962 (-522)))) (((-522) $) NIL (|has| (-799 |#1|) (-962 (-522))))) (-3734 (($ $) NIL) (($ (-522) $) NIL)) (-2333 (($ $ $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| (-799 |#1|) (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| (-799 |#1|) (-584 (-522)))) (((-2 (|:| -2149 (-628 (-799 |#1|))) (|:| |vec| (-1166 (-799 |#1|)))) (-628 $) (-1166 $)) NIL) (((-628 (-799 |#1|)) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3344 (($) NIL (|has| (-799 |#1|) (-507)))) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-3603 (((-108) $) NIL (|has| (-799 |#1|) (-757)))) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| (-799 |#1|) (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| (-799 |#1|) (-815 (-354))))) (-2859 (((-108) $) NIL)) (-1558 (($ $) NIL)) (-2947 (((-799 |#1|) $) NIL)) (-4208 (((-3 $ "failed") $) NIL (|has| (-799 |#1|) (-1061)))) (-3740 (((-108) $) NIL (|has| (-799 |#1|) (-757)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1308 (($ $ $) NIL (|has| (-799 |#1|) (-784)))) (-2524 (($ $ $) NIL (|has| (-799 |#1|) (-784)))) (-3810 (($ (-1 (-799 |#1|) (-799 |#1|)) $) NIL)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-3937 (($) NIL (|has| (-799 |#1|) (-1061)) CONST)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4194 (($ $) NIL (|has| (-799 |#1|) (-283)))) (-3592 (((-799 |#1|) $) NIL (|has| (-799 |#1|) (-507)))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-799 |#1|) (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-799 |#1|) (-838)))) (-2006 (((-393 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2330 (($ $ (-588 (-799 |#1|)) (-588 (-799 |#1|))) NIL (|has| (-799 |#1|) (-285 (-799 |#1|)))) (($ $ (-799 |#1|) (-799 |#1|)) NIL (|has| (-799 |#1|) (-285 (-799 |#1|)))) (($ $ (-270 (-799 |#1|))) NIL (|has| (-799 |#1|) (-285 (-799 |#1|)))) (($ $ (-588 (-270 (-799 |#1|)))) NIL (|has| (-799 |#1|) (-285 (-799 |#1|)))) (($ $ (-588 (-1085)) (-588 (-799 |#1|))) NIL (|has| (-799 |#1|) (-483 (-1085) (-799 |#1|)))) (($ $ (-1085) (-799 |#1|)) NIL (|has| (-799 |#1|) (-483 (-1085) (-799 |#1|))))) (-4031 (((-708) $) NIL)) (-2683 (($ $ (-799 |#1|)) NIL (|has| (-799 |#1|) (-262 (-799 |#1|) (-799 |#1|))))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-2731 (($ $) NIL (|has| (-799 |#1|) (-210))) (($ $ (-708)) NIL (|has| (-799 |#1|) (-210))) (($ $ (-1085)) NIL (|has| (-799 |#1|) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-799 |#1|) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-799 |#1|) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-799 |#1|) (-829 (-1085)))) (($ $ (-1 (-799 |#1|) (-799 |#1|)) (-708)) NIL) (($ $ (-1 (-799 |#1|) (-799 |#1|))) NIL)) (-2762 (($ $) NIL)) (-2959 (((-799 |#1|) $) NIL)) (-3873 (((-821 (-522)) $) NIL (|has| (-799 |#1|) (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| (-799 |#1|) (-563 (-821 (-354))))) (((-498) $) NIL (|has| (-799 |#1|) (-563 (-498)))) (((-354) $) NIL (|has| (-799 |#1|) (-947))) (((-202) $) NIL (|has| (-799 |#1|) (-947)))) (-1471 (((-158 (-382 (-522))) $) NIL)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| (-799 |#1|) (-838))))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ (-799 |#1|)) NIL) (($ (-1085)) NIL (|has| (-799 |#1|) (-962 (-1085))))) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| (-799 |#1|) (-838))) (|has| (-799 |#1|) (-133))))) (-2742 (((-708)) NIL)) (-1379 (((-799 |#1|) $) NIL (|has| (-799 |#1|) (-507)))) (-1407 (((-108) $ $) NIL)) (-3996 (((-382 (-522)) $ (-522)) NIL)) (-4126 (($ $) NIL (|has| (-799 |#1|) (-757)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $) NIL (|has| (-799 |#1|) (-210))) (($ $ (-708)) NIL (|has| (-799 |#1|) (-210))) (($ $ (-1085)) NIL (|has| (-799 |#1|) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-799 |#1|) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-799 |#1|) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-799 |#1|) (-829 (-1085)))) (($ $ (-1 (-799 |#1|) (-799 |#1|)) (-708)) NIL) (($ $ (-1 (-799 |#1|) (-799 |#1|))) NIL)) (-1623 (((-108) $ $) NIL (|has| (-799 |#1|) (-784)))) (-1597 (((-108) $ $) NIL (|has| (-799 |#1|) (-784)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| (-799 |#1|) (-784)))) (-1587 (((-108) $ $) NIL (|has| (-799 |#1|) (-784)))) (-1682 (($ $ $) NIL) (($ (-799 |#1|) (-799 |#1|)) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ (-799 |#1|) $) NIL) (($ $ (-799 |#1|)) NIL))) -(((-800 |#1|) (-13 (-919 (-799 |#1|)) (-10 -8 (-15 -3996 ((-382 (-522)) $ (-522))) (-15 -1471 ((-158 (-382 (-522))) $)) (-15 -3734 ($ $)) (-15 -3734 ($ (-522) $)))) (-522)) (T -800)) -((-3996 (*1 *2 *1 *3) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-800 *4)) (-14 *4 *3) (-5 *3 (-522)))) (-1471 (*1 *2 *1) (-12 (-5 *2 (-158 (-382 (-522)))) (-5 *1 (-800 *3)) (-14 *3 (-522)))) (-3734 (*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-14 *2 (-522)))) (-3734 (*1 *1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-800 *3)) (-14 *3 *2)))) -(-13 (-919 (-799 |#1|)) (-10 -8 (-15 -3996 ((-382 (-522)) $ (-522))) (-15 -1471 ((-158 (-382 (-522))) $)) (-15 -3734 ($ $)) (-15 -3734 ($ (-522) $)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3049 ((|#2| $) NIL (|has| |#2| (-283)))) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-2805 (((-108) $ $) NIL)) (-3355 (((-522) $) NIL (|has| |#2| (-757)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#2| "failed") $) NIL) (((-3 (-1085) "failed") $) NIL (|has| |#2| (-962 (-1085)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#2| (-962 (-522)))) (((-3 (-522) "failed") $) NIL (|has| |#2| (-962 (-522))))) (-1478 ((|#2| $) NIL) (((-1085) $) NIL (|has| |#2| (-962 (-1085)))) (((-382 (-522)) $) NIL (|has| |#2| (-962 (-522)))) (((-522) $) NIL (|has| |#2| (-962 (-522))))) (-3734 (($ $) 31) (($ (-522) $) 32)) (-2333 (($ $ $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL) (((-628 |#2|) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) 53)) (-3344 (($) NIL (|has| |#2| (-507)))) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-3603 (((-108) $) NIL (|has| |#2| (-757)))) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| |#2| (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| |#2| (-815 (-354))))) (-2859 (((-108) $) NIL)) (-1558 (($ $) NIL)) (-2947 ((|#2| $) NIL)) (-4208 (((-3 $ "failed") $) NIL (|has| |#2| (-1061)))) (-3740 (((-108) $) NIL (|has| |#2| (-757)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1308 (($ $ $) NIL (|has| |#2| (-784)))) (-2524 (($ $ $) NIL (|has| |#2| (-784)))) (-3810 (($ (-1 |#2| |#2|) $) NIL)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) 49)) (-3937 (($) NIL (|has| |#2| (-1061)) CONST)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4194 (($ $) NIL (|has| |#2| (-283)))) (-3592 ((|#2| $) NIL (|has| |#2| (-507)))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-2006 (((-393 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2330 (($ $ (-588 |#2|) (-588 |#2|)) NIL (|has| |#2| (-285 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-285 |#2|))) (($ $ (-270 |#2|)) NIL (|has| |#2| (-285 |#2|))) (($ $ (-588 (-270 |#2|))) NIL (|has| |#2| (-285 |#2|))) (($ $ (-588 (-1085)) (-588 |#2|)) NIL (|has| |#2| (-483 (-1085) |#2|))) (($ $ (-1085) |#2|) NIL (|has| |#2| (-483 (-1085) |#2|)))) (-4031 (((-708) $) NIL)) (-2683 (($ $ |#2|) NIL (|has| |#2| (-262 |#2| |#2|)))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-2731 (($ $) NIL (|has| |#2| (-210))) (($ $ (-708)) NIL (|has| |#2| (-210))) (($ $ (-1085)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2762 (($ $) NIL)) (-2959 ((|#2| $) NIL)) (-3873 (((-821 (-522)) $) NIL (|has| |#2| (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| |#2| (-563 (-821 (-354))))) (((-498) $) NIL (|has| |#2| (-563 (-498)))) (((-354) $) NIL (|has| |#2| (-947))) (((-202) $) NIL (|has| |#2| (-947)))) (-1471 (((-158 (-382 (-522))) $) 68)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-838))))) (-2217 (((-792) $) 86) (($ (-522)) 19) (($ $) NIL) (($ (-382 (-522))) 24) (($ |#2|) 18) (($ (-1085)) NIL (|has| |#2| (-962 (-1085))))) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| |#2| (-838))) (|has| |#2| (-133))))) (-2742 (((-708)) NIL)) (-1379 ((|#2| $) NIL (|has| |#2| (-507)))) (-1407 (((-108) $ $) NIL)) (-3996 (((-382 (-522)) $ (-522)) 60)) (-4126 (($ $) NIL (|has| |#2| (-757)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) 14 T CONST)) (-3709 (($) 16 T CONST)) (-2252 (($ $) NIL (|has| |#2| (-210))) (($ $ (-708)) NIL (|has| |#2| (-210))) (($ $ (-1085)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1623 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1562 (((-108) $ $) 35)) (-1609 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1682 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1672 (($ $) 39) (($ $ $) 41)) (-1661 (($ $ $) 37)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) 50)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 42) (($ $ $) 44) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) -(((-801 |#1| |#2|) (-13 (-919 |#2|) (-10 -8 (-15 -3996 ((-382 (-522)) $ (-522))) (-15 -1471 ((-158 (-382 (-522))) $)) (-15 -3734 ($ $)) (-15 -3734 ($ (-522) $)))) (-522) (-798 |#1|)) (T -801)) -((-3996 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-382 (-522))) (-5 *1 (-801 *4 *5)) (-5 *3 (-522)) (-4 *5 (-798 *4)))) (-1471 (*1 *2 *1) (-12 (-14 *3 (-522)) (-5 *2 (-158 (-382 (-522)))) (-5 *1 (-801 *3 *4)) (-4 *4 (-798 *3)))) (-3734 (*1 *1 *1) (-12 (-14 *2 (-522)) (-5 *1 (-801 *2 *3)) (-4 *3 (-798 *2)))) (-3734 (*1 *1 *2 *1) (-12 (-5 *2 (-522)) (-14 *3 *2) (-5 *1 (-801 *3 *4)) (-4 *4 (-798 *3))))) -(-13 (-919 |#2|) (-10 -8 (-15 -3996 ((-382 (-522)) $ (-522))) (-15 -1471 ((-158 (-382 (-522))) $)) (-15 -3734 ($ $)) (-15 -3734 ($ (-522) $)))) -((-1419 (((-108) $ $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))))) (-2116 ((|#2| $) 12)) (-2901 (($ |#1| |#2|) 9)) (-2311 (((-1068) $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))))) (-4174 (((-1032) $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))))) (-2337 ((|#1| $) 11)) (-2227 (($ |#1| |#2|) 10)) (-2217 (((-792) $) 18 (-3844 (-12 (|has| |#1| (-562 (-792))) (|has| |#2| (-562 (-792)))) (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014)))))) (-1562 (((-108) $ $) 22 (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014)))))) -(((-802 |#1| |#2|) (-13 (-1120) (-10 -8 (IF (|has| |#1| (-562 (-792))) (IF (|has| |#2| (-562 (-792))) (-6 (-562 (-792))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1014)) (IF (|has| |#2| (-1014)) (-6 (-1014)) |%noBranch|) |%noBranch|) (-15 -2901 ($ |#1| |#2|)) (-15 -2227 ($ |#1| |#2|)) (-15 -2337 (|#1| $)) (-15 -2116 (|#2| $)))) (-1120) (-1120)) (T -802)) -((-2901 (*1 *1 *2 *3) (-12 (-5 *1 (-802 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-2227 (*1 *1 *2 *3) (-12 (-5 *1 (-802 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-2337 (*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-802 *2 *3)) (-4 *3 (-1120)))) (-2116 (*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-802 *3 *2)) (-4 *3 (-1120))))) -(-13 (-1120) (-10 -8 (IF (|has| |#1| (-562 (-792))) (IF (|has| |#2| (-562 (-792))) (-6 (-562 (-792))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1014)) (IF (|has| |#2| (-1014)) (-6 (-1014)) |%noBranch|) |%noBranch|) (-15 -2901 ($ |#1| |#2|)) (-15 -2227 ($ |#1| |#2|)) (-15 -2337 (|#1| $)) (-15 -2116 (|#2| $)))) -((-1419 (((-108) $ $) NIL)) (-3167 (((-522) $) 15)) (-2060 (($ (-143)) 11)) (-2658 (($ (-143)) 12)) (-2311 (((-1068) $) NIL)) (-2137 (((-143) $) 13)) (-4174 (((-1032) $) NIL)) (-2787 (($ (-143)) 9)) (-2455 (($ (-143)) 8)) (-2217 (((-792) $) 23) (($ (-143)) 16)) (-2272 (($ (-143)) 10)) (-1562 (((-108) $ $) NIL))) -(((-803) (-13 (-1014) (-10 -8 (-15 -2455 ($ (-143))) (-15 -2787 ($ (-143))) (-15 -2272 ($ (-143))) (-15 -2060 ($ (-143))) (-15 -2658 ($ (-143))) (-15 -2137 ((-143) $)) (-15 -3167 ((-522) $)) (-15 -2217 ($ (-143)))))) (T -803)) -((-2455 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))) (-2787 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))) (-2272 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))) (-2060 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))) (-2137 (*1 *2 *1) (-12 (-5 *2 (-143)) (-5 *1 (-803)))) (-3167 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-803)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803))))) -(-13 (-1014) (-10 -8 (-15 -2455 ($ (-143))) (-15 -2787 ($ (-143))) (-15 -2272 ($ (-143))) (-15 -2060 ($ (-143))) (-15 -2658 ($ (-143))) (-15 -2137 ((-143) $)) (-15 -3167 ((-522) $)) (-15 -2217 ($ (-143))))) -((-2217 (((-291 (-522)) (-382 (-881 (-47)))) 21) (((-291 (-522)) (-881 (-47))) 16))) -(((-804) (-10 -7 (-15 -2217 ((-291 (-522)) (-881 (-47)))) (-15 -2217 ((-291 (-522)) (-382 (-881 (-47))))))) (T -804)) -((-2217 (*1 *2 *3) (-12 (-5 *3 (-382 (-881 (-47)))) (-5 *2 (-291 (-522))) (-5 *1 (-804)))) (-2217 (*1 *2 *3) (-12 (-5 *3 (-881 (-47))) (-5 *2 (-291 (-522))) (-5 *1 (-804))))) -(-10 -7 (-15 -2217 ((-291 (-522)) (-881 (-47)))) (-15 -2217 ((-291 (-522)) (-382 (-881 (-47)))))) -((-3810 (((-806 |#2|) (-1 |#2| |#1|) (-806 |#1|)) 14))) -(((-805 |#1| |#2|) (-10 -7 (-15 -3810 ((-806 |#2|) (-1 |#2| |#1|) (-806 |#1|)))) (-1120) (-1120)) (T -805)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-806 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-806 *6)) (-5 *1 (-805 *5 *6))))) -(-10 -7 (-15 -3810 ((-806 |#2|) (-1 |#2| |#1|) (-806 |#1|)))) -((-3364 (($ |#1| |#1|) 8)) (-4217 ((|#1| $ (-708)) 10))) -(((-806 |#1|) (-10 -8 (-15 -3364 ($ |#1| |#1|)) (-15 -4217 (|#1| $ (-708)))) (-1120)) (T -806)) -((-4217 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *1 (-806 *2)) (-4 *2 (-1120)))) (-3364 (*1 *1 *2 *2) (-12 (-5 *1 (-806 *2)) (-4 *2 (-1120))))) -(-10 -8 (-15 -3364 ($ |#1| |#1|)) (-15 -4217 (|#1| $ (-708)))) -((-3810 (((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|)) 14))) -(((-807 |#1| |#2|) (-10 -7 (-15 -3810 ((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|)))) (-1120) (-1120)) (T -807)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-808 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-808 *6)) (-5 *1 (-807 *5 *6))))) -(-10 -7 (-15 -3810 ((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|)))) -((-3364 (($ |#1| |#1| |#1|) 8)) (-4217 ((|#1| $ (-708)) 10))) -(((-808 |#1|) (-10 -8 (-15 -3364 ($ |#1| |#1| |#1|)) (-15 -4217 (|#1| $ (-708)))) (-1120)) (T -808)) -((-4217 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *1 (-808 *2)) (-4 *2 (-1120)))) (-3364 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-808 *2)) (-4 *2 (-1120))))) -(-10 -8 (-15 -3364 ($ |#1| |#1| |#1|)) (-15 -4217 (|#1| $ (-708)))) -((-2784 (((-588 (-1090)) (-1068)) 8))) -(((-809) (-10 -7 (-15 -2784 ((-588 (-1090)) (-1068))))) (T -809)) -((-2784 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-588 (-1090))) (-5 *1 (-809))))) -(-10 -7 (-15 -2784 ((-588 (-1090)) (-1068)))) -((-3810 (((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|)) 14))) -(((-810 |#1| |#2|) (-10 -7 (-15 -3810 ((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|)))) (-1120) (-1120)) (T -810)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-811 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-811 *6)) (-5 *1 (-810 *5 *6))))) -(-10 -7 (-15 -3810 ((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|)))) -((-2536 (($ |#1| |#1| |#1|) 8)) (-4217 ((|#1| $ (-708)) 10))) -(((-811 |#1|) (-10 -8 (-15 -2536 ($ |#1| |#1| |#1|)) (-15 -4217 (|#1| $ (-708)))) (-1120)) (T -811)) -((-4217 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *1 (-811 *2)) (-4 *2 (-1120)))) (-2536 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-811 *2)) (-4 *2 (-1120))))) -(-10 -8 (-15 -2536 ($ |#1| |#1| |#1|)) (-15 -4217 (|#1| $ (-708)))) -((-3478 (((-1066 (-588 (-522))) (-588 (-522)) (-1066 (-588 (-522)))) 32)) (-3121 (((-1066 (-588 (-522))) (-588 (-522)) (-588 (-522))) 28)) (-1807 (((-1066 (-588 (-522))) (-588 (-522))) 41) (((-1066 (-588 (-522))) (-588 (-522)) (-588 (-522))) 40)) (-2290 (((-1066 (-588 (-522))) (-522)) 42)) (-3851 (((-1066 (-588 (-522))) (-522) (-522)) 22) (((-1066 (-588 (-522))) (-522)) 16) (((-1066 (-588 (-522))) (-522) (-522) (-522)) 12)) (-3659 (((-1066 (-588 (-522))) (-1066 (-588 (-522)))) 26)) (-2983 (((-588 (-522)) (-588 (-522))) 25))) -(((-812) (-10 -7 (-15 -3851 ((-1066 (-588 (-522))) (-522) (-522) (-522))) (-15 -3851 ((-1066 (-588 (-522))) (-522))) (-15 -3851 ((-1066 (-588 (-522))) (-522) (-522))) (-15 -2983 ((-588 (-522)) (-588 (-522)))) (-15 -3659 ((-1066 (-588 (-522))) (-1066 (-588 (-522))))) (-15 -3121 ((-1066 (-588 (-522))) (-588 (-522)) (-588 (-522)))) (-15 -3478 ((-1066 (-588 (-522))) (-588 (-522)) (-1066 (-588 (-522))))) (-15 -1807 ((-1066 (-588 (-522))) (-588 (-522)) (-588 (-522)))) (-15 -1807 ((-1066 (-588 (-522))) (-588 (-522)))) (-15 -2290 ((-1066 (-588 (-522))) (-522))))) (T -812)) -((-2290 (*1 *2 *3) (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-522)))) (-1807 (*1 *2 *3) (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-588 (-522))))) (-1807 (*1 *2 *3 *3) (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-588 (-522))))) (-3478 (*1 *2 *3 *2) (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *3 (-588 (-522))) (-5 *1 (-812)))) (-3121 (*1 *2 *3 *3) (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-588 (-522))))) (-3659 (*1 *2 *2) (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)))) (-2983 (*1 *2 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-812)))) (-3851 (*1 *2 *3 *3) (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-522)))) (-3851 (*1 *2 *3) (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-522)))) (-3851 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-522))))) -(-10 -7 (-15 -3851 ((-1066 (-588 (-522))) (-522) (-522) (-522))) (-15 -3851 ((-1066 (-588 (-522))) (-522))) (-15 -3851 ((-1066 (-588 (-522))) (-522) (-522))) (-15 -2983 ((-588 (-522)) (-588 (-522)))) (-15 -3659 ((-1066 (-588 (-522))) (-1066 (-588 (-522))))) (-15 -3121 ((-1066 (-588 (-522))) (-588 (-522)) (-588 (-522)))) (-15 -3478 ((-1066 (-588 (-522))) (-588 (-522)) (-1066 (-588 (-522))))) (-15 -1807 ((-1066 (-588 (-522))) (-588 (-522)) (-588 (-522)))) (-15 -1807 ((-1066 (-588 (-522))) (-588 (-522)))) (-15 -2290 ((-1066 (-588 (-522))) (-522)))) -((-3873 (((-821 (-354)) $) 9 (|has| |#1| (-563 (-821 (-354))))) (((-821 (-522)) $) 8 (|has| |#1| (-563 (-821 (-522))))))) -(((-813 |#1|) (-1197) (-1120)) (T -813)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-563 (-821 (-522)))) (-6 (-563 (-821 (-522)))) |%noBranch|) (IF (|has| |t#1| (-563 (-821 (-354)))) (-6 (-563 (-821 (-354)))) |%noBranch|))) -(((-563 (-821 (-354))) |has| |#1| (-563 (-821 (-354)))) ((-563 (-821 (-522))) |has| |#1| (-563 (-821 (-522))))) -((-1419 (((-108) $ $) NIL)) (-1893 (($) 14)) (-1429 (($ (-818 |#1| |#2|) (-818 |#1| |#3|)) 27)) (-2389 (((-818 |#1| |#3|) $) 16)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-4055 (((-108) $) 22)) (-3181 (($) 19)) (-2217 (((-792) $) 30)) (-1666 (((-818 |#1| |#2|) $) 15)) (-1562 (((-108) $ $) 25))) -(((-814 |#1| |#2| |#3|) (-13 (-1014) (-10 -8 (-15 -4055 ((-108) $)) (-15 -3181 ($)) (-15 -1893 ($)) (-15 -1429 ($ (-818 |#1| |#2|) (-818 |#1| |#3|))) (-15 -1666 ((-818 |#1| |#2|) $)) (-15 -2389 ((-818 |#1| |#3|) $)))) (-1014) (-1014) (-608 |#2|)) (T -814)) -((-4055 (*1 *2 *1) (-12 (-4 *4 (-1014)) (-5 *2 (-108)) (-5 *1 (-814 *3 *4 *5)) (-4 *3 (-1014)) (-4 *5 (-608 *4)))) (-3181 (*1 *1) (-12 (-4 *3 (-1014)) (-5 *1 (-814 *2 *3 *4)) (-4 *2 (-1014)) (-4 *4 (-608 *3)))) (-1893 (*1 *1) (-12 (-4 *3 (-1014)) (-5 *1 (-814 *2 *3 *4)) (-4 *2 (-1014)) (-4 *4 (-608 *3)))) (-1429 (*1 *1 *2 *3) (-12 (-5 *2 (-818 *4 *5)) (-5 *3 (-818 *4 *6)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-608 *5)) (-5 *1 (-814 *4 *5 *6)))) (-1666 (*1 *2 *1) (-12 (-4 *4 (-1014)) (-5 *2 (-818 *3 *4)) (-5 *1 (-814 *3 *4 *5)) (-4 *3 (-1014)) (-4 *5 (-608 *4)))) (-2389 (*1 *2 *1) (-12 (-4 *4 (-1014)) (-5 *2 (-818 *3 *5)) (-5 *1 (-814 *3 *4 *5)) (-4 *3 (-1014)) (-4 *5 (-608 *4))))) -(-13 (-1014) (-10 -8 (-15 -4055 ((-108) $)) (-15 -3181 ($)) (-15 -1893 ($)) (-15 -1429 ($ (-818 |#1| |#2|) (-818 |#1| |#3|))) (-15 -1666 ((-818 |#1| |#2|) $)) (-15 -2389 ((-818 |#1| |#3|) $)))) -((-1419 (((-108) $ $) 7)) (-3738 (((-818 |#1| $) $ (-821 |#1|) (-818 |#1| $)) 13)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-1562 (((-108) $ $) 6))) -(((-815 |#1|) (-1197) (-1014)) (T -815)) -((-3738 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-818 *4 *1)) (-5 *3 (-821 *4)) (-4 *1 (-815 *4)) (-4 *4 (-1014))))) -(-13 (-1014) (-10 -8 (-15 -3738 ((-818 |t#1| $) $ (-821 |t#1|) (-818 |t#1| $))))) -(((-97) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-2935 (((-108) (-588 |#2|) |#3|) 23) (((-108) |#2| |#3|) 18)) (-3774 (((-818 |#1| |#2|) |#2| |#3|) 43 (-12 (-2473 (|has| |#2| (-962 (-1085)))) (-2473 (|has| |#2| (-971))))) (((-588 (-270 (-881 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-971)) (-2473 (|has| |#2| (-962 (-1085)))))) (((-588 (-270 |#2|)) |#2| |#3|) 35 (|has| |#2| (-962 (-1085)))) (((-814 |#1| |#2| (-588 |#2|)) (-588 |#2|) |#3|) 21))) -(((-816 |#1| |#2| |#3|) (-10 -7 (-15 -2935 ((-108) |#2| |#3|)) (-15 -2935 ((-108) (-588 |#2|) |#3|)) (-15 -3774 ((-814 |#1| |#2| (-588 |#2|)) (-588 |#2|) |#3|)) (IF (|has| |#2| (-962 (-1085))) (-15 -3774 ((-588 (-270 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-971)) (-15 -3774 ((-588 (-270 (-881 |#2|))) |#2| |#3|)) (-15 -3774 ((-818 |#1| |#2|) |#2| |#3|))))) (-1014) (-815 |#1|) (-563 (-821 |#1|))) (T -816)) -((-3774 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-818 *5 *3)) (-5 *1 (-816 *5 *3 *4)) (-2473 (-4 *3 (-962 (-1085)))) (-2473 (-4 *3 (-971))) (-4 *3 (-815 *5)) (-4 *4 (-563 (-821 *5))))) (-3774 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-588 (-270 (-881 *3)))) (-5 *1 (-816 *5 *3 *4)) (-4 *3 (-971)) (-2473 (-4 *3 (-962 (-1085)))) (-4 *3 (-815 *5)) (-4 *4 (-563 (-821 *5))))) (-3774 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-588 (-270 *3))) (-5 *1 (-816 *5 *3 *4)) (-4 *3 (-962 (-1085))) (-4 *3 (-815 *5)) (-4 *4 (-563 (-821 *5))))) (-3774 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-4 *6 (-815 *5)) (-5 *2 (-814 *5 *6 (-588 *6))) (-5 *1 (-816 *5 *6 *4)) (-5 *3 (-588 *6)) (-4 *4 (-563 (-821 *5))))) (-2935 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *6)) (-4 *6 (-815 *5)) (-4 *5 (-1014)) (-5 *2 (-108)) (-5 *1 (-816 *5 *6 *4)) (-4 *4 (-563 (-821 *5))))) (-2935 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-108)) (-5 *1 (-816 *5 *3 *4)) (-4 *3 (-815 *5)) (-4 *4 (-563 (-821 *5)))))) -(-10 -7 (-15 -2935 ((-108) |#2| |#3|)) (-15 -2935 ((-108) (-588 |#2|) |#3|)) (-15 -3774 ((-814 |#1| |#2| (-588 |#2|)) (-588 |#2|) |#3|)) (IF (|has| |#2| (-962 (-1085))) (-15 -3774 ((-588 (-270 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-971)) (-15 -3774 ((-588 (-270 (-881 |#2|))) |#2| |#3|)) (-15 -3774 ((-818 |#1| |#2|) |#2| |#3|))))) -((-3810 (((-818 |#1| |#3|) (-1 |#3| |#2|) (-818 |#1| |#2|)) 21))) -(((-817 |#1| |#2| |#3|) (-10 -7 (-15 -3810 ((-818 |#1| |#3|) (-1 |#3| |#2|) (-818 |#1| |#2|)))) (-1014) (-1014) (-1014)) (T -817)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-818 *5 *6)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-818 *5 *7)) (-5 *1 (-817 *5 *6 *7))))) -(-10 -7 (-15 -3810 ((-818 |#1| |#3|) (-1 |#3| |#2|) (-818 |#1| |#2|)))) -((-1419 (((-108) $ $) NIL)) (-2323 (($ $ $) 37)) (-3651 (((-3 (-108) "failed") $ (-821 |#1|)) 34)) (-1893 (($) 11)) (-2311 (((-1068) $) NIL)) (-1845 (($ (-821 |#1|) |#2| $) 20)) (-4174 (((-1032) $) NIL)) (-3392 (((-3 |#2| "failed") (-821 |#1|) $) 48)) (-4055 (((-108) $) 14)) (-3181 (($) 12)) (-2058 (((-588 (-2 (|:| -2644 (-1085)) (|:| -3149 |#2|))) $) 25)) (-2227 (($ (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 |#2|)))) 23)) (-2217 (((-792) $) 42)) (-4081 (($ (-821 |#1|) |#2| $ |#2|) 46)) (-1774 (($ (-821 |#1|) |#2| $) 45)) (-1562 (((-108) $ $) 39))) -(((-818 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -4055 ((-108) $)) (-15 -3181 ($)) (-15 -1893 ($)) (-15 -2323 ($ $ $)) (-15 -3392 ((-3 |#2| "failed") (-821 |#1|) $)) (-15 -1774 ($ (-821 |#1|) |#2| $)) (-15 -1845 ($ (-821 |#1|) |#2| $)) (-15 -4081 ($ (-821 |#1|) |#2| $ |#2|)) (-15 -2058 ((-588 (-2 (|:| -2644 (-1085)) (|:| -3149 |#2|))) $)) (-15 -2227 ($ (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 |#2|))))) (-15 -3651 ((-3 (-108) "failed") $ (-821 |#1|))))) (-1014) (-1014)) (T -818)) -((-4055 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3181 (*1 *1) (-12 (-5 *1 (-818 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-1893 (*1 *1) (-12 (-5 *1 (-818 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-2323 (*1 *1 *1 *1) (-12 (-5 *1 (-818 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3392 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-821 *4)) (-4 *4 (-1014)) (-4 *2 (-1014)) (-5 *1 (-818 *4 *2)))) (-1774 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-821 *4)) (-4 *4 (-1014)) (-5 *1 (-818 *4 *3)) (-4 *3 (-1014)))) (-1845 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-821 *4)) (-4 *4 (-1014)) (-5 *1 (-818 *4 *3)) (-4 *3 (-1014)))) (-4081 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-821 *4)) (-4 *4 (-1014)) (-5 *1 (-818 *4 *3)) (-4 *3 (-1014)))) (-2058 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 *4)))) (-5 *1 (-818 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-2227 (*1 *1 *2) (-12 (-5 *2 (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 *4)))) (-4 *4 (-1014)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1014)))) (-3651 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-821 *4)) (-4 *4 (-1014)) (-5 *2 (-108)) (-5 *1 (-818 *4 *5)) (-4 *5 (-1014))))) -(-13 (-1014) (-10 -8 (-15 -4055 ((-108) $)) (-15 -3181 ($)) (-15 -1893 ($)) (-15 -2323 ($ $ $)) (-15 -3392 ((-3 |#2| "failed") (-821 |#1|) $)) (-15 -1774 ($ (-821 |#1|) |#2| $)) (-15 -1845 ($ (-821 |#1|) |#2| $)) (-15 -4081 ($ (-821 |#1|) |#2| $ |#2|)) (-15 -2058 ((-588 (-2 (|:| -2644 (-1085)) (|:| -3149 |#2|))) $)) (-15 -2227 ($ (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 |#2|))))) (-15 -3651 ((-3 (-108) "failed") $ (-821 |#1|))))) -((-1958 (((-821 |#1|) (-821 |#1|) (-588 (-1085)) (-1 (-108) (-588 |#2|))) 30) (((-821 |#1|) (-821 |#1|) (-588 (-1 (-108) |#2|))) 42) (((-821 |#1|) (-821 |#1|) (-1 (-108) |#2|)) 33)) (-3651 (((-108) (-588 |#2|) (-821 |#1|)) 39) (((-108) |#2| (-821 |#1|)) 35)) (-2260 (((-1 (-108) |#2|) (-821 |#1|)) 14)) (-2490 (((-588 |#2|) (-821 |#1|)) 23)) (-3413 (((-821 |#1|) (-821 |#1|) |#2|) 19))) -(((-819 |#1| |#2|) (-10 -7 (-15 -1958 ((-821 |#1|) (-821 |#1|) (-1 (-108) |#2|))) (-15 -1958 ((-821 |#1|) (-821 |#1|) (-588 (-1 (-108) |#2|)))) (-15 -1958 ((-821 |#1|) (-821 |#1|) (-588 (-1085)) (-1 (-108) (-588 |#2|)))) (-15 -2260 ((-1 (-108) |#2|) (-821 |#1|))) (-15 -3651 ((-108) |#2| (-821 |#1|))) (-15 -3651 ((-108) (-588 |#2|) (-821 |#1|))) (-15 -3413 ((-821 |#1|) (-821 |#1|) |#2|)) (-15 -2490 ((-588 |#2|) (-821 |#1|)))) (-1014) (-1120)) (T -819)) -((-2490 (*1 *2 *3) (-12 (-5 *3 (-821 *4)) (-4 *4 (-1014)) (-5 *2 (-588 *5)) (-5 *1 (-819 *4 *5)) (-4 *5 (-1120)))) (-3413 (*1 *2 *2 *3) (-12 (-5 *2 (-821 *4)) (-4 *4 (-1014)) (-5 *1 (-819 *4 *3)) (-4 *3 (-1120)))) (-3651 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *6)) (-5 *4 (-821 *5)) (-4 *5 (-1014)) (-4 *6 (-1120)) (-5 *2 (-108)) (-5 *1 (-819 *5 *6)))) (-3651 (*1 *2 *3 *4) (-12 (-5 *4 (-821 *5)) (-4 *5 (-1014)) (-5 *2 (-108)) (-5 *1 (-819 *5 *3)) (-4 *3 (-1120)))) (-2260 (*1 *2 *3) (-12 (-5 *3 (-821 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-819 *4 *5)) (-4 *5 (-1120)))) (-1958 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-821 *5)) (-5 *3 (-588 (-1085))) (-5 *4 (-1 (-108) (-588 *6))) (-4 *5 (-1014)) (-4 *6 (-1120)) (-5 *1 (-819 *5 *6)))) (-1958 (*1 *2 *2 *3) (-12 (-5 *2 (-821 *4)) (-5 *3 (-588 (-1 (-108) *5))) (-4 *4 (-1014)) (-4 *5 (-1120)) (-5 *1 (-819 *4 *5)))) (-1958 (*1 *2 *2 *3) (-12 (-5 *2 (-821 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1014)) (-4 *5 (-1120)) (-5 *1 (-819 *4 *5))))) -(-10 -7 (-15 -1958 ((-821 |#1|) (-821 |#1|) (-1 (-108) |#2|))) (-15 -1958 ((-821 |#1|) (-821 |#1|) (-588 (-1 (-108) |#2|)))) (-15 -1958 ((-821 |#1|) (-821 |#1|) (-588 (-1085)) (-1 (-108) (-588 |#2|)))) (-15 -2260 ((-1 (-108) |#2|) (-821 |#1|))) (-15 -3651 ((-108) |#2| (-821 |#1|))) (-15 -3651 ((-108) (-588 |#2|) (-821 |#1|))) (-15 -3413 ((-821 |#1|) (-821 |#1|) |#2|)) (-15 -2490 ((-588 |#2|) (-821 |#1|)))) -((-3810 (((-821 |#2|) (-1 |#2| |#1|) (-821 |#1|)) 17))) -(((-820 |#1| |#2|) (-10 -7 (-15 -3810 ((-821 |#2|) (-1 |#2| |#1|) (-821 |#1|)))) (-1014) (-1014)) (T -820)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-821 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-821 *6)) (-5 *1 (-820 *5 *6))))) -(-10 -7 (-15 -3810 ((-821 |#2|) (-1 |#2| |#1|) (-821 |#1|)))) -((-1419 (((-108) $ $) NIL)) (-1354 (($ $ (-588 (-51))) 63)) (-3533 (((-588 $) $) 117)) (-2879 (((-2 (|:| |var| (-588 (-1085))) (|:| |pred| (-51))) $) 23)) (-2415 (((-108) $) 30)) (-3692 (($ $ (-588 (-1085)) (-51)) 25)) (-1986 (($ $ (-588 (-51))) 62)) (-3700 (((-3 |#1| "failed") $) 60) (((-3 (-1085) "failed") $) 139)) (-1478 ((|#1| $) 56) (((-1085) $) NIL)) (-3940 (($ $) 107)) (-1261 (((-108) $) 46)) (-2538 (((-588 (-51)) $) 44)) (-3954 (($ (-1085) (-108) (-108) (-108)) 64)) (-1263 (((-3 (-588 $) "failed") (-588 $)) 71)) (-4193 (((-108) $) 49)) (-1703 (((-108) $) 48)) (-2311 (((-1068) $) NIL)) (-2760 (((-3 (-588 $) "failed") $) 35)) (-4118 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 42)) (-3242 (((-3 (-2 (|:| |val| $) (|:| -3858 $)) "failed") $) 82)) (-1919 (((-3 (-588 $) "failed") $) 32)) (-4094 (((-3 (-588 $) "failed") $ (-110)) 106) (((-3 (-2 (|:| -1410 (-110)) (|:| |arg| (-588 $))) "failed") $) 94)) (-2656 (((-3 (-588 $) "failed") $) 36)) (-2024 (((-3 (-2 (|:| |val| $) (|:| -3858 (-708))) "failed") $) 39)) (-2685 (((-108) $) 29)) (-4174 (((-1032) $) NIL)) (-2469 (((-108) $) 21)) (-2723 (((-108) $) 45)) (-3686 (((-588 (-51)) $) 110)) (-1654 (((-108) $) 47)) (-2683 (($ (-110) (-588 $)) 91)) (-3735 (((-708) $) 28)) (-2463 (($ $) 61)) (-3873 (($ (-588 $)) 58)) (-1967 (((-108) $) 26)) (-2217 (((-792) $) 51) (($ |#1|) 18) (($ (-1085)) 65)) (-3413 (($ $ (-51)) 109)) (-3697 (($) 90 T CONST)) (-3709 (($) 72 T CONST)) (-1562 (((-108) $ $) 78)) (-1682 (($ $ $) 99)) (-1661 (($ $ $) 103)) (** (($ $ (-708)) 98) (($ $ $) 52)) (* (($ $ $) 104))) -(((-821 |#1|) (-13 (-1014) (-962 |#1|) (-962 (-1085)) (-10 -8 (-15 0 ($) -2855) (-15 1 ($) -2855) (-15 -1919 ((-3 (-588 $) "failed") $)) (-15 -2760 ((-3 (-588 $) "failed") $)) (-15 -4094 ((-3 (-588 $) "failed") $ (-110))) (-15 -4094 ((-3 (-2 (|:| -1410 (-110)) (|:| |arg| (-588 $))) "failed") $)) (-15 -2024 ((-3 (-2 (|:| |val| $) (|:| -3858 (-708))) "failed") $)) (-15 -4118 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2656 ((-3 (-588 $) "failed") $)) (-15 -3242 ((-3 (-2 (|:| |val| $) (|:| -3858 $)) "failed") $)) (-15 -2683 ($ (-110) (-588 $))) (-15 -1661 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-708))) (-15 ** ($ $ $)) (-15 -1682 ($ $ $)) (-15 -3735 ((-708) $)) (-15 -3873 ($ (-588 $))) (-15 -2463 ($ $)) (-15 -2685 ((-108) $)) (-15 -1261 ((-108) $)) (-15 -2415 ((-108) $)) (-15 -1967 ((-108) $)) (-15 -1654 ((-108) $)) (-15 -1703 ((-108) $)) (-15 -4193 ((-108) $)) (-15 -2723 ((-108) $)) (-15 -2538 ((-588 (-51)) $)) (-15 -1986 ($ $ (-588 (-51)))) (-15 -1354 ($ $ (-588 (-51)))) (-15 -3954 ($ (-1085) (-108) (-108) (-108))) (-15 -3692 ($ $ (-588 (-1085)) (-51))) (-15 -2879 ((-2 (|:| |var| (-588 (-1085))) (|:| |pred| (-51))) $)) (-15 -2469 ((-108) $)) (-15 -3940 ($ $)) (-15 -3413 ($ $ (-51))) (-15 -3686 ((-588 (-51)) $)) (-15 -3533 ((-588 $) $)) (-15 -1263 ((-3 (-588 $) "failed") (-588 $))))) (-1014)) (T -821)) -((-3697 (*1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) (-3709 (*1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) (-1919 (*1 *2 *1) (|partial| -12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-2760 (*1 *2 *1) (|partial| -12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-4094 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-588 (-821 *4))) (-5 *1 (-821 *4)) (-4 *4 (-1014)))) (-4094 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1410 (-110)) (|:| |arg| (-588 (-821 *3))))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-2024 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-821 *3)) (|:| -3858 (-708)))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-4118 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-821 *3)) (|:| |den| (-821 *3)))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-2656 (*1 *2 *1) (|partial| -12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-3242 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-821 *3)) (|:| -3858 (-821 *3)))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-2683 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-588 (-821 *4))) (-5 *1 (-821 *4)) (-4 *4 (-1014)))) (-1661 (*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) (-1682 (*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-2463 (*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) (-2685 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-1261 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-2415 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-1967 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-2538 (*1 *2 *1) (-12 (-5 *2 (-588 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-1986 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-1354 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-3954 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-108)) (-5 *1 (-821 *4)) (-4 *4 (-1014)))) (-3692 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-51)) (-5 *1 (-821 *4)) (-4 *4 (-1014)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-588 (-1085))) (|:| |pred| (-51)))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-2469 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-3940 (*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) (-3413 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-3686 (*1 *2 *1) (-12 (-5 *2 (-588 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-3533 (*1 *2 *1) (-12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-1263 (*1 *2 *2) (|partial| -12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1014))))) -(-13 (-1014) (-962 |#1|) (-962 (-1085)) (-10 -8 (-15 (-3697) ($) -2855) (-15 (-3709) ($) -2855) (-15 -1919 ((-3 (-588 $) "failed") $)) (-15 -2760 ((-3 (-588 $) "failed") $)) (-15 -4094 ((-3 (-588 $) "failed") $ (-110))) (-15 -4094 ((-3 (-2 (|:| -1410 (-110)) (|:| |arg| (-588 $))) "failed") $)) (-15 -2024 ((-3 (-2 (|:| |val| $) (|:| -3858 (-708))) "failed") $)) (-15 -4118 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2656 ((-3 (-588 $) "failed") $)) (-15 -3242 ((-3 (-2 (|:| |val| $) (|:| -3858 $)) "failed") $)) (-15 -2683 ($ (-110) (-588 $))) (-15 -1661 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-708))) (-15 ** ($ $ $)) (-15 -1682 ($ $ $)) (-15 -3735 ((-708) $)) (-15 -3873 ($ (-588 $))) (-15 -2463 ($ $)) (-15 -2685 ((-108) $)) (-15 -1261 ((-108) $)) (-15 -2415 ((-108) $)) (-15 -1967 ((-108) $)) (-15 -1654 ((-108) $)) (-15 -1703 ((-108) $)) (-15 -4193 ((-108) $)) (-15 -2723 ((-108) $)) (-15 -2538 ((-588 (-51)) $)) (-15 -1986 ($ $ (-588 (-51)))) (-15 -1354 ($ $ (-588 (-51)))) (-15 -3954 ($ (-1085) (-108) (-108) (-108))) (-15 -3692 ($ $ (-588 (-1085)) (-51))) (-15 -2879 ((-2 (|:| |var| (-588 (-1085))) (|:| |pred| (-51))) $)) (-15 -2469 ((-108) $)) (-15 -3940 ($ $)) (-15 -3413 ($ $ (-51))) (-15 -3686 ((-588 (-51)) $)) (-15 -3533 ((-588 $) $)) (-15 -1263 ((-3 (-588 $) "failed") (-588 $))))) -((-1419 (((-108) $ $) NIL)) (-4127 (((-588 |#1|) $) 16)) (-1608 (((-108) $) 38)) (-3700 (((-3 (-613 |#1|) "failed") $) 41)) (-1478 (((-613 |#1|) $) 39)) (-2352 (($ $) 18)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-4030 (((-708) $) 45)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2337 (((-613 |#1|) $) 17)) (-2217 (((-792) $) 37) (($ (-613 |#1|)) 21) (((-756 |#1|) $) 27) (($ |#1|) 20)) (-3709 (($) 8 T CONST)) (-1738 (((-588 (-613 |#1|)) $) 23)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 11)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 48))) -(((-822 |#1|) (-13 (-784) (-962 (-613 |#1|)) (-10 -8 (-15 1 ($) -2855) (-15 -2217 ((-756 |#1|) $)) (-15 -2217 ($ |#1|)) (-15 -2337 ((-613 |#1|) $)) (-15 -4030 ((-708) $)) (-15 -1738 ((-588 (-613 |#1|)) $)) (-15 -2352 ($ $)) (-15 -1608 ((-108) $)) (-15 -4127 ((-588 |#1|) $)))) (-784)) (T -822)) -((-3709 (*1 *1) (-12 (-5 *1 (-822 *2)) (-4 *2 (-784)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-756 *3)) (-5 *1 (-822 *3)) (-4 *3 (-784)))) (-2217 (*1 *1 *2) (-12 (-5 *1 (-822 *2)) (-4 *2 (-784)))) (-2337 (*1 *2 *1) (-12 (-5 *2 (-613 *3)) (-5 *1 (-822 *3)) (-4 *3 (-784)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-822 *3)) (-4 *3 (-784)))) (-1738 (*1 *2 *1) (-12 (-5 *2 (-588 (-613 *3))) (-5 *1 (-822 *3)) (-4 *3 (-784)))) (-2352 (*1 *1 *1) (-12 (-5 *1 (-822 *2)) (-4 *2 (-784)))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-822 *3)) (-4 *3 (-784)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-822 *3)) (-4 *3 (-784))))) -(-13 (-784) (-962 (-613 |#1|)) (-10 -8 (-15 (-3709) ($) -2855) (-15 -2217 ((-756 |#1|) $)) (-15 -2217 ($ |#1|)) (-15 -2337 ((-613 |#1|) $)) (-15 -4030 ((-708) $)) (-15 -1738 ((-588 (-613 |#1|)) $)) (-15 -2352 ($ $)) (-15 -1608 ((-108) $)) (-15 -4127 ((-588 |#1|) $)))) -((-2262 ((|#1| |#1| |#1|) 20))) -(((-823 |#1| |#2|) (-10 -7 (-15 -2262 (|#1| |#1| |#1|))) (-1142 |#2|) (-971)) (T -823)) -((-2262 (*1 *2 *2 *2) (-12 (-4 *3 (-971)) (-5 *1 (-823 *2 *3)) (-4 *2 (-1142 *3))))) -(-10 -7 (-15 -2262 (|#1| |#1| |#1|))) -((-1419 (((-108) $ $) 7)) (-1361 (((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) 14)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-3536 (((-960) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) 13)) (-1562 (((-108) $ $) 6))) -(((-824) (-1197)) (T -824)) -((-1361 (*1 *2 *3 *4) (-12 (-4 *1 (-824)) (-5 *3 (-983)) (-5 *4 (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) (-5 *2 (-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)))))) (-3536 (*1 *2 *3) (-12 (-4 *1 (-824)) (-5 *3 (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) (-5 *2 (-960))))) -(-13 (-1014) (-10 -7 (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202))))) (-15 -3536 ((-960) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202))))))) -(((-97) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-3822 ((|#1| |#1| (-708)) 24)) (-3031 (((-3 |#1| "failed") |#1| |#1|) 23)) (-2327 (((-3 (-2 (|:| -1993 |#1|) (|:| -2002 |#1|)) "failed") |#1| (-708) (-708)) 27) (((-588 |#1|) |#1|) 29))) -(((-825 |#1| |#2|) (-10 -7 (-15 -2327 ((-588 |#1|) |#1|)) (-15 -2327 ((-3 (-2 (|:| -1993 |#1|) (|:| -2002 |#1|)) "failed") |#1| (-708) (-708))) (-15 -3031 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3822 (|#1| |#1| (-708)))) (-1142 |#2|) (-338)) (T -825)) -((-3822 (*1 *2 *2 *3) (-12 (-5 *3 (-708)) (-4 *4 (-338)) (-5 *1 (-825 *2 *4)) (-4 *2 (-1142 *4)))) (-3031 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-338)) (-5 *1 (-825 *2 *3)) (-4 *2 (-1142 *3)))) (-2327 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-708)) (-4 *5 (-338)) (-5 *2 (-2 (|:| -1993 *3) (|:| -2002 *3))) (-5 *1 (-825 *3 *5)) (-4 *3 (-1142 *5)))) (-2327 (*1 *2 *3) (-12 (-4 *4 (-338)) (-5 *2 (-588 *3)) (-5 *1 (-825 *3 *4)) (-4 *3 (-1142 *4))))) -(-10 -7 (-15 -2327 ((-588 |#1|) |#1|)) (-15 -2327 ((-3 (-2 (|:| -1993 |#1|) (|:| -2002 |#1|)) "failed") |#1| (-708) (-708))) (-15 -3031 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3822 (|#1| |#1| (-708)))) -((-2925 (((-960) (-354) (-354) (-354) (-354) (-708) (-708) (-588 (-291 (-354))) (-588 (-588 (-291 (-354)))) (-1068)) 92) (((-960) (-354) (-354) (-354) (-354) (-708) (-708) (-588 (-291 (-354))) (-588 (-588 (-291 (-354)))) (-1068) (-202)) 87) (((-960) (-827) (-983)) 76) (((-960) (-827)) 77)) (-1361 (((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068)))) (-827) (-983)) 50) (((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068)))) (-827)) 52))) -(((-826) (-10 -7 (-15 -2925 ((-960) (-827))) (-15 -2925 ((-960) (-827) (-983))) (-15 -2925 ((-960) (-354) (-354) (-354) (-354) (-708) (-708) (-588 (-291 (-354))) (-588 (-588 (-291 (-354)))) (-1068) (-202))) (-15 -2925 ((-960) (-354) (-354) (-354) (-354) (-708) (-708) (-588 (-291 (-354))) (-588 (-588 (-291 (-354)))) (-1068))) (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068)))) (-827))) (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068)))) (-827) (-983))))) (T -826)) -((-1361 (*1 *2 *3 *4) (-12 (-5 *3 (-827)) (-5 *4 (-983)) (-5 *2 (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068))))) (-5 *1 (-826)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068))))) (-5 *1 (-826)))) (-2925 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-708)) (-5 *6 (-588 (-588 (-291 *3)))) (-5 *7 (-1068)) (-5 *5 (-588 (-291 (-354)))) (-5 *3 (-354)) (-5 *2 (-960)) (-5 *1 (-826)))) (-2925 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-708)) (-5 *6 (-588 (-588 (-291 *3)))) (-5 *7 (-1068)) (-5 *8 (-202)) (-5 *5 (-588 (-291 (-354)))) (-5 *3 (-354)) (-5 *2 (-960)) (-5 *1 (-826)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-827)) (-5 *4 (-983)) (-5 *2 (-960)) (-5 *1 (-826)))) (-2925 (*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-960)) (-5 *1 (-826))))) -(-10 -7 (-15 -2925 ((-960) (-827))) (-15 -2925 ((-960) (-827) (-983))) (-15 -2925 ((-960) (-354) (-354) (-354) (-354) (-708) (-708) (-588 (-291 (-354))) (-588 (-588 (-291 (-354)))) (-1068) (-202))) (-15 -2925 ((-960) (-354) (-354) (-354) (-354) (-708) (-708) (-588 (-291 (-354))) (-588 (-588 (-291 (-354)))) (-1068))) (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068)))) (-827))) (-15 -1361 ((-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) (|:| |explanations| (-588 (-1068)))) (-827) (-983)))) -((-1419 (((-108) $ $) NIL)) (-1478 (((-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202))) $) 10)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 12) (($ (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) 9)) (-1562 (((-108) $ $) NIL))) -(((-827) (-13 (-1014) (-10 -8 (-15 -2217 ($ (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202))))) (-15 -2217 ((-792) $)) (-15 -1478 ((-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202))) $))))) (T -827)) -((-2217 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-827)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) (-5 *1 (-827)))) (-1478 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) (-5 *1 (-827))))) -(-13 (-1014) (-10 -8 (-15 -2217 ($ (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202))))) (-15 -2217 ((-792) $)) (-15 -1478 ((-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202))) $)))) -((-2731 (($ $ |#2|) NIL) (($ $ (-588 |#2|)) 10) (($ $ |#2| (-708)) 12) (($ $ (-588 |#2|) (-588 (-708))) 15)) (-2252 (($ $ |#2|) 16) (($ $ (-588 |#2|)) 18) (($ $ |#2| (-708)) 19) (($ $ (-588 |#2|) (-588 (-708))) 21))) -(((-828 |#1| |#2|) (-10 -8 (-15 -2252 (|#1| |#1| (-588 |#2|) (-588 (-708)))) (-15 -2252 (|#1| |#1| |#2| (-708))) (-15 -2252 (|#1| |#1| (-588 |#2|))) (-15 -2252 (|#1| |#1| |#2|)) (-15 -2731 (|#1| |#1| (-588 |#2|) (-588 (-708)))) (-15 -2731 (|#1| |#1| |#2| (-708))) (-15 -2731 (|#1| |#1| (-588 |#2|))) (-15 -2731 (|#1| |#1| |#2|))) (-829 |#2|) (-1014)) (T -828)) -NIL -(-10 -8 (-15 -2252 (|#1| |#1| (-588 |#2|) (-588 (-708)))) (-15 -2252 (|#1| |#1| |#2| (-708))) (-15 -2252 (|#1| |#1| (-588 |#2|))) (-15 -2252 (|#1| |#1| |#2|)) (-15 -2731 (|#1| |#1| (-588 |#2|) (-588 (-708)))) (-15 -2731 (|#1| |#1| |#2| (-708))) (-15 -2731 (|#1| |#1| (-588 |#2|))) (-15 -2731 (|#1| |#1| |#2|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3920 (((-3 $ "failed") $) 34)) (-2859 (((-108) $) 31)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2731 (($ $ |#1|) 42) (($ $ (-588 |#1|)) 41) (($ $ |#1| (-708)) 40) (($ $ (-588 |#1|) (-588 (-708))) 39)) (-2217 (((-792) $) 11) (($ (-522)) 28)) (-2742 (((-708)) 29)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $ |#1|) 38) (($ $ (-588 |#1|)) 37) (($ $ |#1| (-708)) 36) (($ $ (-588 |#1|) (-588 (-708))) 35)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-829 |#1|) (-1197) (-1014)) (T -829)) -((-2731 (*1 *1 *1 *2) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1014)))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *1 (-829 *3)) (-4 *3 (-1014)))) (-2731 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-829 *2)) (-4 *2 (-1014)))) (-2731 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 *4)) (-5 *3 (-588 (-708))) (-4 *1 (-829 *4)) (-4 *4 (-1014)))) (-2252 (*1 *1 *1 *2) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1014)))) (-2252 (*1 *1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *1 (-829 *3)) (-4 *3 (-1014)))) (-2252 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-829 *2)) (-4 *2 (-1014)))) (-2252 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 *4)) (-5 *3 (-588 (-708))) (-4 *1 (-829 *4)) (-4 *4 (-1014))))) -(-13 (-971) (-10 -8 (-15 -2731 ($ $ |t#1|)) (-15 -2731 ($ $ (-588 |t#1|))) (-15 -2731 ($ $ |t#1| (-708))) (-15 -2731 ($ $ (-588 |t#1|) (-588 (-708)))) (-15 -2252 ($ $ |t#1|)) (-15 -2252 ($ $ (-588 |t#1|))) (-15 -2252 ($ $ |t#1| (-708))) (-15 -2252 ($ $ (-588 |t#1|) (-588 (-708)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 $) . T) ((-664) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3526 ((|#1| $) 26)) (-2717 (((-108) $ (-708)) NIL)) (-1198 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-2766 (($ $ $) NIL (|has| $ (-6 -4239)))) (-3268 (($ $ $) NIL (|has| $ (-6 -4239)))) (-2437 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4239))) (($ $ "left" $) NIL (|has| $ (-6 -4239))) (($ $ "right" $) NIL (|has| $ (-6 -4239)))) (-2684 (($ $ (-588 $)) NIL (|has| $ (-6 -4239)))) (-3367 (($) NIL T CONST)) (-2002 (($ $) 25)) (-1891 (($ |#1|) 12) (($ $ $) 17)) (-2395 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2674 (((-588 $) $) NIL)) (-2402 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1480 (((-108) $ (-708)) NIL)) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2397 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-1993 (($ $) 23)) (-2548 (((-588 |#1|) $) NIL)) (-3394 (((-108) $) 20)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3381 (((-522) $ $) NIL)) (-3395 (((-108) $) NIL)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) NIL)) (-2217 (((-1107 |#1|) $) 9) (((-792) $) 29 (|has| |#1| (-562 (-792))))) (-1515 (((-588 $) $) NIL)) (-3294 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 21 (|has| |#1| (-1014)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-830 |#1|) (-13 (-115 |#1|) (-10 -8 (-15 -1891 ($ |#1|)) (-15 -1891 ($ $ $)) (-15 -2217 ((-1107 |#1|) $)))) (-1014)) (T -830)) -((-1891 (*1 *1 *2) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1014)))) (-1891 (*1 *1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1014)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-1107 *3)) (-5 *1 (-830 *3)) (-4 *3 (-1014))))) -(-13 (-115 |#1|) (-10 -8 (-15 -1891 ($ |#1|)) (-15 -1891 ($ $ $)) (-15 -2217 ((-1107 |#1|) $)))) -((-1303 ((|#2| (-1052 |#1| |#2|)) 41))) -(((-831 |#1| |#2|) (-10 -7 (-15 -1303 (|#2| (-1052 |#1| |#2|)))) (-850) (-13 (-971) (-10 -7 (-6 (-4240 "*"))))) (T -831)) -((-1303 (*1 *2 *3) (-12 (-5 *3 (-1052 *4 *2)) (-14 *4 (-850)) (-4 *2 (-13 (-971) (-10 -7 (-6 (-4240 "*"))))) (-5 *1 (-831 *4 *2))))) -(-10 -7 (-15 -1303 (|#2| (-1052 |#1| |#2|)))) -((-1419 (((-108) $ $) 7)) (-3367 (($) 20 T CONST)) (-3920 (((-3 $ "failed") $) 16)) (-3246 (((-1016 |#1|) $ |#1|) 35)) (-2859 (((-108) $) 19)) (-1308 (($ $ $) 33 (-3844 (|has| |#1| (-784)) (|has| |#1| (-343))))) (-2524 (($ $ $) 32 (-3844 (|has| |#1| (-784)) (|has| |#1| (-343))))) (-2311 (((-1068) $) 9)) (-3193 (($ $) 27)) (-4174 (((-1032) $) 10)) (-2330 ((|#1| $ |#1|) 37)) (-2683 ((|#1| $ |#1|) 36)) (-3683 (($ (-588 (-588 |#1|))) 38)) (-1436 (($ (-588 |#1|)) 39)) (-2983 (($ $ $) 23)) (-1596 (($ $ $) 22)) (-2217 (((-792) $) 11)) (-3622 (($ $ (-850)) 13) (($ $ (-708)) 17) (($ $ (-522)) 24)) (-3709 (($) 21 T CONST)) (-1623 (((-108) $ $) 30 (-3844 (|has| |#1| (-784)) (|has| |#1| (-343))))) (-1597 (((-108) $ $) 29 (-3844 (|has| |#1| (-784)) (|has| |#1| (-343))))) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 31 (-3844 (|has| |#1| (-784)) (|has| |#1| (-343))))) (-1587 (((-108) $ $) 34)) (-1682 (($ $ $) 26)) (** (($ $ (-850)) 14) (($ $ (-708)) 18) (($ $ (-522)) 25)) (* (($ $ $) 15))) -(((-832 |#1|) (-1197) (-1014)) (T -832)) -((-1436 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-4 *1 (-832 *3)))) (-3683 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-1014)) (-4 *1 (-832 *3)))) (-2330 (*1 *2 *1 *2) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1014)))) (-2683 (*1 *2 *1 *2) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1014)))) (-3246 (*1 *2 *1 *3) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1014)) (-5 *2 (-1016 *3)))) (-1587 (*1 *2 *1 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1014)) (-5 *2 (-108))))) -(-13 (-447) (-10 -8 (-15 -1436 ($ (-588 |t#1|))) (-15 -3683 ($ (-588 (-588 |t#1|)))) (-15 -2330 (|t#1| $ |t#1|)) (-15 -2683 (|t#1| $ |t#1|)) (-15 -3246 ((-1016 |t#1|) $ |t#1|)) (-15 -1587 ((-108) $ $)) (IF (|has| |t#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#1| (-343)) (-6 (-784)) |%noBranch|))) -(((-97) . T) ((-562 (-792)) . T) ((-447) . T) ((-664) . T) ((-784) -3844 (|has| |#1| (-784)) (|has| |#1| (-343))) ((-1026) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-4137 (((-588 (-588 (-708))) $) 108)) (-1808 (((-588 (-708)) (-834 |#1|) $) 130)) (-1417 (((-588 (-708)) (-834 |#1|) $) 131)) (-2812 (((-588 (-834 |#1|)) $) 98)) (-3344 (((-834 |#1|) $ (-522)) 103) (((-834 |#1|) $) 104)) (-4071 (($ (-588 (-834 |#1|))) 110)) (-3872 (((-708) $) 105)) (-1824 (((-1016 (-1016 |#1|)) $) 128)) (-3246 (((-1016 |#1|) $ |#1|) 121) (((-1016 (-1016 |#1|)) $ (-1016 |#1|)) 139) (((-1016 (-588 |#1|)) $ (-588 |#1|)) 142)) (-1965 (((-1016 |#1|) $) 101)) (-4176 (((-108) (-834 |#1|) $) 92)) (-2311 (((-1068) $) NIL)) (-2699 (((-1171) $) 95) (((-1171) $ (-522) (-522)) 143)) (-4174 (((-1032) $) NIL)) (-3915 (((-588 (-834 |#1|)) $) 96)) (-2683 (((-834 |#1|) $ (-708)) 99)) (-2487 (((-708) $) 106)) (-2217 (((-792) $) 119) (((-588 (-834 |#1|)) $) 22) (($ (-588 (-834 |#1|))) 109)) (-1897 (((-588 |#1|) $) 107)) (-1562 (((-108) $ $) 136)) (-1609 (((-108) $ $) 134)) (-1587 (((-108) $ $) 133))) -(((-833 |#1|) (-13 (-1014) (-10 -8 (-15 -2217 ((-588 (-834 |#1|)) $)) (-15 -3915 ((-588 (-834 |#1|)) $)) (-15 -2683 ((-834 |#1|) $ (-708))) (-15 -3344 ((-834 |#1|) $ (-522))) (-15 -3344 ((-834 |#1|) $)) (-15 -3872 ((-708) $)) (-15 -2487 ((-708) $)) (-15 -1897 ((-588 |#1|) $)) (-15 -2812 ((-588 (-834 |#1|)) $)) (-15 -4137 ((-588 (-588 (-708))) $)) (-15 -2217 ($ (-588 (-834 |#1|)))) (-15 -4071 ($ (-588 (-834 |#1|)))) (-15 -3246 ((-1016 |#1|) $ |#1|)) (-15 -1824 ((-1016 (-1016 |#1|)) $)) (-15 -3246 ((-1016 (-1016 |#1|)) $ (-1016 |#1|))) (-15 -3246 ((-1016 (-588 |#1|)) $ (-588 |#1|))) (-15 -4176 ((-108) (-834 |#1|) $)) (-15 -1808 ((-588 (-708)) (-834 |#1|) $)) (-15 -1417 ((-588 (-708)) (-834 |#1|) $)) (-15 -1965 ((-1016 |#1|) $)) (-15 -1587 ((-108) $ $)) (-15 -1609 ((-108) $ $)) (-15 -2699 ((-1171) $)) (-15 -2699 ((-1171) $ (-522) (-522))))) (-1014)) (T -833)) -((-2217 (*1 *2 *1) (-12 (-5 *2 (-588 (-834 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-588 (-834 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-2683 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *2 (-834 *4)) (-5 *1 (-833 *4)) (-4 *4 (-1014)))) (-3344 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *2 (-834 *4)) (-5 *1 (-833 *4)) (-4 *4 (-1014)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-834 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-1897 (*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-2812 (*1 *2 *1) (-12 (-5 *2 (-588 (-834 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-4137 (*1 *2 *1) (-12 (-5 *2 (-588 (-588 (-708)))) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-588 (-834 *3))) (-4 *3 (-1014)) (-5 *1 (-833 *3)))) (-4071 (*1 *1 *2) (-12 (-5 *2 (-588 (-834 *3))) (-4 *3 (-1014)) (-5 *1 (-833 *3)))) (-3246 (*1 *2 *1 *3) (-12 (-5 *2 (-1016 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-1824 (*1 *2 *1) (-12 (-5 *2 (-1016 (-1016 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-3246 (*1 *2 *1 *3) (-12 (-4 *4 (-1014)) (-5 *2 (-1016 (-1016 *4))) (-5 *1 (-833 *4)) (-5 *3 (-1016 *4)))) (-3246 (*1 *2 *1 *3) (-12 (-4 *4 (-1014)) (-5 *2 (-1016 (-588 *4))) (-5 *1 (-833 *4)) (-5 *3 (-588 *4)))) (-4176 (*1 *2 *3 *1) (-12 (-5 *3 (-834 *4)) (-4 *4 (-1014)) (-5 *2 (-108)) (-5 *1 (-833 *4)))) (-1808 (*1 *2 *3 *1) (-12 (-5 *3 (-834 *4)) (-4 *4 (-1014)) (-5 *2 (-588 (-708))) (-5 *1 (-833 *4)))) (-1417 (*1 *2 *3 *1) (-12 (-5 *3 (-834 *4)) (-4 *4 (-1014)) (-5 *2 (-588 (-708))) (-5 *1 (-833 *4)))) (-1965 (*1 *2 *1) (-12 (-5 *2 (-1016 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-1587 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-1609 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-2699 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-2699 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-833 *4)) (-4 *4 (-1014))))) -(-13 (-1014) (-10 -8 (-15 -2217 ((-588 (-834 |#1|)) $)) (-15 -3915 ((-588 (-834 |#1|)) $)) (-15 -2683 ((-834 |#1|) $ (-708))) (-15 -3344 ((-834 |#1|) $ (-522))) (-15 -3344 ((-834 |#1|) $)) (-15 -3872 ((-708) $)) (-15 -2487 ((-708) $)) (-15 -1897 ((-588 |#1|) $)) (-15 -2812 ((-588 (-834 |#1|)) $)) (-15 -4137 ((-588 (-588 (-708))) $)) (-15 -2217 ($ (-588 (-834 |#1|)))) (-15 -4071 ($ (-588 (-834 |#1|)))) (-15 -3246 ((-1016 |#1|) $ |#1|)) (-15 -1824 ((-1016 (-1016 |#1|)) $)) (-15 -3246 ((-1016 (-1016 |#1|)) $ (-1016 |#1|))) (-15 -3246 ((-1016 (-588 |#1|)) $ (-588 |#1|))) (-15 -4176 ((-108) (-834 |#1|) $)) (-15 -1808 ((-588 (-708)) (-834 |#1|) $)) (-15 -1417 ((-588 (-708)) (-834 |#1|) $)) (-15 -1965 ((-1016 |#1|) $)) (-15 -1587 ((-108) $ $)) (-15 -1609 ((-108) $ $)) (-15 -2699 ((-1171) $)) (-15 -2699 ((-1171) $ (-522) (-522))))) -((-1419 (((-108) $ $) NIL)) (-3296 (((-588 $) (-588 $)) 77)) (-3355 (((-522) $) 60)) (-3367 (($) NIL T CONST)) (-3920 (((-3 $ "failed") $) NIL)) (-3872 (((-708) $) 58)) (-3246 (((-1016 |#1|) $ |#1|) 49)) (-2859 (((-108) $) NIL)) (-3077 (((-108) $) 63)) (-3693 (((-708) $) 61)) (-1965 (((-1016 |#1|) $) 42)) (-1308 (($ $ $) NIL (-3844 (|has| |#1| (-343)) (|has| |#1| (-784))))) (-2524 (($ $ $) NIL (-3844 (|has| |#1| (-343)) (|has| |#1| (-784))))) (-1420 (((-2 (|:| |preimage| (-588 |#1|)) (|:| |image| (-588 |#1|))) $) 36)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) 93)) (-4174 (((-1032) $) NIL)) (-2733 (((-1016 |#1|) $) 99 (|has| |#1| (-343)))) (-2626 (((-108) $) 59)) (-2330 ((|#1| $ |#1|) 47)) (-2683 ((|#1| $ |#1|) 94)) (-2487 (((-708) $) 44)) (-3683 (($ (-588 (-588 |#1|))) 85)) (-2540 (((-898) $) 53)) (-1436 (($ (-588 |#1|)) 21)) (-2983 (($ $ $) NIL)) (-1596 (($ $ $) NIL)) (-4183 (($ (-588 (-588 |#1|))) 39)) (-2189 (($ (-588 (-588 |#1|))) 88)) (-4200 (($ (-588 |#1|)) 96)) (-2217 (((-792) $) 84) (($ (-588 (-588 |#1|))) 66) (($ (-588 |#1|)) 67)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3709 (($) 16 T CONST)) (-1623 (((-108) $ $) NIL (-3844 (|has| |#1| (-343)) (|has| |#1| (-784))))) (-1597 (((-108) $ $) NIL (-3844 (|has| |#1| (-343)) (|has| |#1| (-784))))) (-1562 (((-108) $ $) 45)) (-1609 (((-108) $ $) NIL (-3844 (|has| |#1| (-343)) (|has| |#1| (-784))))) (-1587 (((-108) $ $) 65)) (-1682 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ $ $) 22))) -(((-834 |#1|) (-13 (-832 |#1|) (-10 -8 (-15 -1420 ((-2 (|:| |preimage| (-588 |#1|)) (|:| |image| (-588 |#1|))) $)) (-15 -4183 ($ (-588 (-588 |#1|)))) (-15 -2217 ($ (-588 (-588 |#1|)))) (-15 -2217 ($ (-588 |#1|))) (-15 -2189 ($ (-588 (-588 |#1|)))) (-15 -2487 ((-708) $)) (-15 -1965 ((-1016 |#1|) $)) (-15 -2540 ((-898) $)) (-15 -3872 ((-708) $)) (-15 -3693 ((-708) $)) (-15 -3355 ((-522) $)) (-15 -2626 ((-108) $)) (-15 -3077 ((-108) $)) (-15 -3296 ((-588 $) (-588 $))) (IF (|has| |#1| (-343)) (-15 -2733 ((-1016 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-507)) (-15 -4200 ($ (-588 |#1|))) (IF (|has| |#1| (-343)) (-15 -4200 ($ (-588 |#1|))) |%noBranch|)))) (-1014)) (T -834)) -((-1420 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-588 *3)) (|:| |image| (-588 *3)))) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) (-4183 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-1014)) (-5 *1 (-834 *3)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-1014)) (-5 *1 (-834 *3)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-834 *3)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-1014)) (-5 *1 (-834 *3)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) (-1965 (*1 *2 *1) (-12 (-5 *2 (-1016 *3)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) (-2540 (*1 *2 *1) (-12 (-5 *2 (-898)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) (-3355 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) (-2626 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) (-3296 (*1 *2 *2) (-12 (-5 *2 (-588 (-834 *3))) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) (-2733 (*1 *2 *1) (-12 (-5 *2 (-1016 *3)) (-5 *1 (-834 *3)) (-4 *3 (-343)) (-4 *3 (-1014)))) (-4200 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-834 *3))))) -(-13 (-832 |#1|) (-10 -8 (-15 -1420 ((-2 (|:| |preimage| (-588 |#1|)) (|:| |image| (-588 |#1|))) $)) (-15 -4183 ($ (-588 (-588 |#1|)))) (-15 -2217 ($ (-588 (-588 |#1|)))) (-15 -2217 ($ (-588 |#1|))) (-15 -2189 ($ (-588 (-588 |#1|)))) (-15 -2487 ((-708) $)) (-15 -1965 ((-1016 |#1|) $)) (-15 -2540 ((-898) $)) (-15 -3872 ((-708) $)) (-15 -3693 ((-708) $)) (-15 -3355 ((-522) $)) (-15 -2626 ((-108) $)) (-15 -3077 ((-108) $)) (-15 -3296 ((-588 $) (-588 $))) (IF (|has| |#1| (-343)) (-15 -2733 ((-1016 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-507)) (-15 -4200 ($ (-588 |#1|))) (IF (|has| |#1| (-343)) (-15 -4200 ($ (-588 |#1|))) |%noBranch|)))) -((-2151 (((-3 (-588 (-1081 |#4|)) "failed") (-588 (-1081 |#4|)) (-1081 |#4|)) 128)) (-4028 ((|#1|) 76)) (-1850 (((-393 (-1081 |#4|)) (-1081 |#4|)) 137)) (-2568 (((-393 (-1081 |#4|)) (-588 |#3|) (-1081 |#4|)) 68)) (-3916 (((-393 (-1081 |#4|)) (-1081 |#4|)) 147)) (-1604 (((-3 (-588 (-1081 |#4|)) "failed") (-588 (-1081 |#4|)) (-1081 |#4|) |#3|) 92))) -(((-835 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2151 ((-3 (-588 (-1081 |#4|)) "failed") (-588 (-1081 |#4|)) (-1081 |#4|))) (-15 -3916 ((-393 (-1081 |#4|)) (-1081 |#4|))) (-15 -1850 ((-393 (-1081 |#4|)) (-1081 |#4|))) (-15 -4028 (|#1|)) (-15 -1604 ((-3 (-588 (-1081 |#4|)) "failed") (-588 (-1081 |#4|)) (-1081 |#4|) |#3|)) (-15 -2568 ((-393 (-1081 |#4|)) (-588 |#3|) (-1081 |#4|)))) (-838) (-730) (-784) (-878 |#1| |#2| |#3|)) (T -835)) -((-2568 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *7)) (-4 *7 (-784)) (-4 *5 (-838)) (-4 *6 (-730)) (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-393 (-1081 *8))) (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-1081 *8)))) (-1604 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-588 (-1081 *7))) (-5 *3 (-1081 *7)) (-4 *7 (-878 *5 *6 *4)) (-4 *5 (-838)) (-4 *6 (-730)) (-4 *4 (-784)) (-5 *1 (-835 *5 *6 *4 *7)))) (-4028 (*1 *2) (-12 (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-838)) (-5 *1 (-835 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) (-1850 (*1 *2 *3) (-12 (-4 *4 (-838)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-393 (-1081 *7))) (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-1081 *7)))) (-3916 (*1 *2 *3) (-12 (-4 *4 (-838)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-393 (-1081 *7))) (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-1081 *7)))) (-2151 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-588 (-1081 *7))) (-5 *3 (-1081 *7)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-838)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-835 *4 *5 *6 *7))))) -(-10 -7 (-15 -2151 ((-3 (-588 (-1081 |#4|)) "failed") (-588 (-1081 |#4|)) (-1081 |#4|))) (-15 -3916 ((-393 (-1081 |#4|)) (-1081 |#4|))) (-15 -1850 ((-393 (-1081 |#4|)) (-1081 |#4|))) (-15 -4028 (|#1|)) (-15 -1604 ((-3 (-588 (-1081 |#4|)) "failed") (-588 (-1081 |#4|)) (-1081 |#4|) |#3|)) (-15 -2568 ((-393 (-1081 |#4|)) (-588 |#3|) (-1081 |#4|)))) -((-2151 (((-3 (-588 (-1081 |#2|)) "failed") (-588 (-1081 |#2|)) (-1081 |#2|)) 36)) (-4028 ((|#1|) 54)) (-1850 (((-393 (-1081 |#2|)) (-1081 |#2|)) 102)) (-2568 (((-393 (-1081 |#2|)) (-1081 |#2|)) 89)) (-3916 (((-393 (-1081 |#2|)) (-1081 |#2|)) 113))) -(((-836 |#1| |#2|) (-10 -7 (-15 -2151 ((-3 (-588 (-1081 |#2|)) "failed") (-588 (-1081 |#2|)) (-1081 |#2|))) (-15 -3916 ((-393 (-1081 |#2|)) (-1081 |#2|))) (-15 -1850 ((-393 (-1081 |#2|)) (-1081 |#2|))) (-15 -4028 (|#1|)) (-15 -2568 ((-393 (-1081 |#2|)) (-1081 |#2|)))) (-838) (-1142 |#1|)) (T -836)) -((-2568 (*1 *2 *3) (-12 (-4 *4 (-838)) (-4 *5 (-1142 *4)) (-5 *2 (-393 (-1081 *5))) (-5 *1 (-836 *4 *5)) (-5 *3 (-1081 *5)))) (-4028 (*1 *2) (-12 (-4 *2 (-838)) (-5 *1 (-836 *2 *3)) (-4 *3 (-1142 *2)))) (-1850 (*1 *2 *3) (-12 (-4 *4 (-838)) (-4 *5 (-1142 *4)) (-5 *2 (-393 (-1081 *5))) (-5 *1 (-836 *4 *5)) (-5 *3 (-1081 *5)))) (-3916 (*1 *2 *3) (-12 (-4 *4 (-838)) (-4 *5 (-1142 *4)) (-5 *2 (-393 (-1081 *5))) (-5 *1 (-836 *4 *5)) (-5 *3 (-1081 *5)))) (-2151 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-588 (-1081 *5))) (-5 *3 (-1081 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-838)) (-5 *1 (-836 *4 *5))))) -(-10 -7 (-15 -2151 ((-3 (-588 (-1081 |#2|)) "failed") (-588 (-1081 |#2|)) (-1081 |#2|))) (-15 -3916 ((-393 (-1081 |#2|)) (-1081 |#2|))) (-15 -1850 ((-393 (-1081 |#2|)) (-1081 |#2|))) (-15 -4028 (|#1|)) (-15 -2568 ((-393 (-1081 |#2|)) (-1081 |#2|)))) -((-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 39)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 18)) (-3040 (((-3 $ "failed") $) 33))) -(((-837 |#1|) (-10 -8 (-15 -3040 ((-3 |#1| "failed") |#1|)) (-15 -2800 ((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|))) (-15 -1789 ((-1081 |#1|) (-1081 |#1|) (-1081 |#1|)))) (-838)) (T -837)) -NIL -(-10 -8 (-15 -3040 ((-3 |#1| "failed") |#1|)) (-15 -2800 ((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|))) (-15 -1789 ((-1081 |#1|) (-1081 |#1|) (-1081 |#1|)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2298 (($ $) 40)) (-3007 (((-108) $) 38)) (-2265 (((-3 $ "failed") $ $) 19)) (-3543 (((-393 (-1081 $)) (-1081 $)) 60)) (-2961 (($ $) 51)) (-3133 (((-393 $) $) 52)) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 57)) (-3367 (($) 17 T CONST)) (-3920 (((-3 $ "failed") $) 34)) (-2725 (((-108) $) 53)) (-2859 (((-108) $) 31)) (-2267 (($ $ $) 46) (($ (-588 $)) 45)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2308 (($ $ $) 48) (($ (-588 $)) 47)) (-4022 (((-393 (-1081 $)) (-1081 $)) 58)) (-2313 (((-393 (-1081 $)) (-1081 $)) 59)) (-2006 (((-393 $) $) 50)) (-2276 (((-3 $ "failed") $ $) 42)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) 56 (|has| $ (-133)))) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 43)) (-3040 (((-3 $ "failed") $) 55 (|has| $ (-133)))) (-2742 (((-708)) 29)) (-1407 (((-108) $ $) 39)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-838) (-1197)) (T -838)) -((-1789 (*1 *2 *2 *2) (-12 (-5 *2 (-1081 *1)) (-4 *1 (-838)))) (-3543 (*1 *2 *3) (-12 (-4 *1 (-838)) (-5 *2 (-393 (-1081 *1))) (-5 *3 (-1081 *1)))) (-2313 (*1 *2 *3) (-12 (-4 *1 (-838)) (-5 *2 (-393 (-1081 *1))) (-5 *3 (-1081 *1)))) (-4022 (*1 *2 *3) (-12 (-4 *1 (-838)) (-5 *2 (-393 (-1081 *1))) (-5 *3 (-1081 *1)))) (-2800 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-588 (-1081 *1))) (-5 *3 (-1081 *1)) (-4 *1 (-838)))) (-2583 (*1 *2 *3) (|partial| -12 (-5 *3 (-628 *1)) (-4 *1 (-133)) (-4 *1 (-838)) (-5 *2 (-1166 *1)))) (-3040 (*1 *1 *1) (|partial| -12 (-4 *1 (-133)) (-4 *1 (-838))))) -(-13 (-1124) (-10 -8 (-15 -3543 ((-393 (-1081 $)) (-1081 $))) (-15 -2313 ((-393 (-1081 $)) (-1081 $))) (-15 -4022 ((-393 (-1081 $)) (-1081 $))) (-15 -1789 ((-1081 $) (-1081 $) (-1081 $))) (-15 -2800 ((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $))) (IF (|has| $ (-133)) (PROGN (-15 -2583 ((-3 (-1166 $) "failed") (-628 $))) (-15 -3040 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-266) . T) ((-426) . T) ((-514) . T) ((-590 $) . T) ((-655 $) . T) ((-664) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2400 (((-108) $) NIL)) (-1593 (((-708)) NIL)) (-1945 (($ $ (-850)) NIL (|has| $ (-343))) (($ $) NIL)) (-3833 (((-1094 (-850) (-708)) (-522)) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2805 (((-108) $ $) NIL)) (-1685 (((-708)) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 $ "failed") $) NIL)) (-1478 (($ $) NIL)) (-3225 (($ (-1166 $)) NIL)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2333 (($ $ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3344 (($) NIL)) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2160 (($) NIL)) (-2087 (((-108) $) NIL)) (-1380 (($ $) NIL) (($ $ (-708)) NIL)) (-2725 (((-108) $) NIL)) (-3872 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-2859 (((-108) $) NIL)) (-3768 (($) NIL (|has| $ (-343)))) (-1372 (((-108) $) NIL (|has| $ (-343)))) (-1269 (($ $ (-850)) NIL (|has| $ (-343))) (($ $) NIL)) (-4208 (((-3 $ "failed") $) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4199 (((-1081 $) $ (-850)) NIL (|has| $ (-343))) (((-1081 $) $) NIL)) (-1475 (((-850) $) NIL)) (-3657 (((-1081 $) $) NIL (|has| $ (-343)))) (-3723 (((-3 (-1081 $) "failed") $ $) NIL (|has| $ (-343))) (((-1081 $) $) NIL (|has| $ (-343)))) (-2259 (($ $ (-1081 $)) NIL (|has| $ (-343)))) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-3937 (($) NIL T CONST)) (-2882 (($ (-850)) NIL)) (-2804 (((-108) $) NIL)) (-4174 (((-1032) $) NIL)) (-1368 (($) NIL (|has| $ (-343)))) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) NIL)) (-2006 (((-393 $) $) NIL)) (-1713 (((-850)) NIL) (((-770 (-850))) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-1304 (((-3 (-708) "failed") $ $) NIL) (((-708) $) NIL)) (-3222 (((-126)) NIL)) (-2731 (($ $ (-708)) NIL) (($ $) NIL)) (-2487 (((-850) $) NIL) (((-770 (-850)) $) NIL)) (-1579 (((-1081 $)) NIL)) (-2670 (($) NIL)) (-1705 (($) NIL (|has| $ (-343)))) (-3510 (((-628 $) (-1166 $)) NIL) (((-1166 $) $) NIL)) (-3873 (((-522) $) NIL)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL)) (-3040 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2742 (((-708)) NIL)) (-2905 (((-1166 $) (-850)) NIL) (((-1166 $)) NIL)) (-1407 (((-108) $ $) NIL)) (-1711 (((-108) $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2938 (($ $ (-708)) NIL (|has| $ (-343))) (($ $) NIL (|has| $ (-343)))) (-2252 (($ $ (-708)) NIL) (($ $) NIL)) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL))) -(((-839 |#1|) (-13 (-324) (-304 $) (-563 (-522))) (-850)) (T -839)) -NIL -(-13 (-324) (-304 $) (-563 (-522))) -((-4210 (((-3 (-2 (|:| -3872 (-708)) (|:| -2138 |#5|)) "failed") (-311 |#2| |#3| |#4| |#5|)) 76)) (-2144 (((-108) (-311 |#2| |#3| |#4| |#5|)) 16)) (-3872 (((-3 (-708) "failed") (-311 |#2| |#3| |#4| |#5|)) 14))) -(((-840 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3872 ((-3 (-708) "failed") (-311 |#2| |#3| |#4| |#5|))) (-15 -2144 ((-108) (-311 |#2| |#3| |#4| |#5|))) (-15 -4210 ((-3 (-2 (|:| -3872 (-708)) (|:| -2138 |#5|)) "failed") (-311 |#2| |#3| |#4| |#5|)))) (-13 (-784) (-514) (-962 (-522))) (-405 |#1|) (-1142 |#2|) (-1142 (-382 |#3|)) (-317 |#2| |#3| |#4|)) (T -840)) -((-4210 (*1 *2 *3) (|partial| -12 (-5 *3 (-311 *5 *6 *7 *8)) (-4 *5 (-405 *4)) (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6))) (-4 *8 (-317 *5 *6 *7)) (-4 *4 (-13 (-784) (-514) (-962 (-522)))) (-5 *2 (-2 (|:| -3872 (-708)) (|:| -2138 *8))) (-5 *1 (-840 *4 *5 *6 *7 *8)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-311 *5 *6 *7 *8)) (-4 *5 (-405 *4)) (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6))) (-4 *8 (-317 *5 *6 *7)) (-4 *4 (-13 (-784) (-514) (-962 (-522)))) (-5 *2 (-108)) (-5 *1 (-840 *4 *5 *6 *7 *8)))) (-3872 (*1 *2 *3) (|partial| -12 (-5 *3 (-311 *5 *6 *7 *8)) (-4 *5 (-405 *4)) (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6))) (-4 *8 (-317 *5 *6 *7)) (-4 *4 (-13 (-784) (-514) (-962 (-522)))) (-5 *2 (-708)) (-5 *1 (-840 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -3872 ((-3 (-708) "failed") (-311 |#2| |#3| |#4| |#5|))) (-15 -2144 ((-108) (-311 |#2| |#3| |#4| |#5|))) (-15 -4210 ((-3 (-2 (|:| -3872 (-708)) (|:| -2138 |#5|)) "failed") (-311 |#2| |#3| |#4| |#5|)))) -((-4210 (((-3 (-2 (|:| -3872 (-708)) (|:| -2138 |#3|)) "failed") (-311 (-382 (-522)) |#1| |#2| |#3|)) 56)) (-2144 (((-108) (-311 (-382 (-522)) |#1| |#2| |#3|)) 13)) (-3872 (((-3 (-708) "failed") (-311 (-382 (-522)) |#1| |#2| |#3|)) 11))) -(((-841 |#1| |#2| |#3|) (-10 -7 (-15 -3872 ((-3 (-708) "failed") (-311 (-382 (-522)) |#1| |#2| |#3|))) (-15 -2144 ((-108) (-311 (-382 (-522)) |#1| |#2| |#3|))) (-15 -4210 ((-3 (-2 (|:| -3872 (-708)) (|:| -2138 |#3|)) "failed") (-311 (-382 (-522)) |#1| |#2| |#3|)))) (-1142 (-382 (-522))) (-1142 (-382 |#1|)) (-317 (-382 (-522)) |#1| |#2|)) (T -841)) -((-4210 (*1 *2 *3) (|partial| -12 (-5 *3 (-311 (-382 (-522)) *4 *5 *6)) (-4 *4 (-1142 (-382 (-522)))) (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 (-382 (-522)) *4 *5)) (-5 *2 (-2 (|:| -3872 (-708)) (|:| -2138 *6))) (-5 *1 (-841 *4 *5 *6)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-311 (-382 (-522)) *4 *5 *6)) (-4 *4 (-1142 (-382 (-522)))) (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 (-382 (-522)) *4 *5)) (-5 *2 (-108)) (-5 *1 (-841 *4 *5 *6)))) (-3872 (*1 *2 *3) (|partial| -12 (-5 *3 (-311 (-382 (-522)) *4 *5 *6)) (-4 *4 (-1142 (-382 (-522)))) (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 (-382 (-522)) *4 *5)) (-5 *2 (-708)) (-5 *1 (-841 *4 *5 *6))))) -(-10 -7 (-15 -3872 ((-3 (-708) "failed") (-311 (-382 (-522)) |#1| |#2| |#3|))) (-15 -2144 ((-108) (-311 (-382 (-522)) |#1| |#2| |#3|))) (-15 -4210 ((-3 (-2 (|:| -3872 (-708)) (|:| -2138 |#3|)) "failed") (-311 (-382 (-522)) |#1| |#2| |#3|)))) -((-1645 ((|#2| |#2|) 25)) (-2214 (((-522) (-588 (-2 (|:| |den| (-522)) (|:| |gcdnum| (-522))))) 15)) (-1486 (((-850) (-522)) 35)) (-3369 (((-522) |#2|) 42)) (-2426 (((-522) |#2|) 21) (((-2 (|:| |den| (-522)) (|:| |gcdnum| (-522))) |#1|) 20))) -(((-842 |#1| |#2|) (-10 -7 (-15 -1486 ((-850) (-522))) (-15 -2426 ((-2 (|:| |den| (-522)) (|:| |gcdnum| (-522))) |#1|)) (-15 -2426 ((-522) |#2|)) (-15 -2214 ((-522) (-588 (-2 (|:| |den| (-522)) (|:| |gcdnum| (-522)))))) (-15 -3369 ((-522) |#2|)) (-15 -1645 (|#2| |#2|))) (-1142 (-382 (-522))) (-1142 (-382 |#1|))) (T -842)) -((-1645 (*1 *2 *2) (-12 (-4 *3 (-1142 (-382 (-522)))) (-5 *1 (-842 *3 *2)) (-4 *2 (-1142 (-382 *3))))) (-3369 (*1 *2 *3) (-12 (-4 *4 (-1142 (-382 *2))) (-5 *2 (-522)) (-5 *1 (-842 *4 *3)) (-4 *3 (-1142 (-382 *4))))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| |den| (-522)) (|:| |gcdnum| (-522))))) (-4 *4 (-1142 (-382 *2))) (-5 *2 (-522)) (-5 *1 (-842 *4 *5)) (-4 *5 (-1142 (-382 *4))))) (-2426 (*1 *2 *3) (-12 (-4 *4 (-1142 (-382 *2))) (-5 *2 (-522)) (-5 *1 (-842 *4 *3)) (-4 *3 (-1142 (-382 *4))))) (-2426 (*1 *2 *3) (-12 (-4 *3 (-1142 (-382 (-522)))) (-5 *2 (-2 (|:| |den| (-522)) (|:| |gcdnum| (-522)))) (-5 *1 (-842 *3 *4)) (-4 *4 (-1142 (-382 *3))))) (-1486 (*1 *2 *3) (-12 (-5 *3 (-522)) (-4 *4 (-1142 (-382 *3))) (-5 *2 (-850)) (-5 *1 (-842 *4 *5)) (-4 *5 (-1142 (-382 *4)))))) -(-10 -7 (-15 -1486 ((-850) (-522))) (-15 -2426 ((-2 (|:| |den| (-522)) (|:| |gcdnum| (-522))) |#1|)) (-15 -2426 ((-522) |#2|)) (-15 -2214 ((-522) (-588 (-2 (|:| |den| (-522)) (|:| |gcdnum| (-522)))))) (-15 -3369 ((-522) |#2|)) (-15 -1645 (|#2| |#2|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3049 ((|#1| $) 81)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2805 (((-108) $ $) NIL)) (-3367 (($) NIL T CONST)) (-2333 (($ $ $) NIL)) (-3920 (((-3 $ "failed") $) 75)) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-3443 (($ |#1| (-393 |#1|)) 73)) (-3237 (((-1081 |#1|) |#1| |#1|) 40)) (-4148 (($ $) 49)) (-2859 (((-108) $) NIL)) (-2480 (((-522) $) 78)) (-3925 (($ $ (-522)) 80)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-1496 ((|#1| $) 77)) (-1252 (((-393 |#1|) $) 76)) (-2006 (((-393 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) 74)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-3479 (($ $) 38)) (-2217 (((-792) $) 99) (($ (-522)) 54) (($ $) NIL) (($ (-382 (-522))) NIL) (($ |#1|) 30) (((-382 |#1|) $) 59) (($ (-382 (-393 |#1|))) 67)) (-2742 (((-708)) 52)) (-1407 (((-108) $ $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) 23 T CONST)) (-3709 (($) 11 T CONST)) (-1562 (((-108) $ $) 68)) (-1682 (($ $ $) NIL)) (-1672 (($ $) 88) (($ $ $) NIL)) (-1661 (($ $ $) 37)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 90) (($ $ $) 36) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) -(((-843 |#1|) (-13 (-338) (-37 |#1|) (-10 -8 (-15 -2217 ((-382 |#1|) $)) (-15 -2217 ($ (-382 (-393 |#1|)))) (-15 -3479 ($ $)) (-15 -1252 ((-393 |#1|) $)) (-15 -1496 (|#1| $)) (-15 -3925 ($ $ (-522))) (-15 -2480 ((-522) $)) (-15 -3237 ((-1081 |#1|) |#1| |#1|)) (-15 -4148 ($ $)) (-15 -3443 ($ |#1| (-393 |#1|))) (-15 -3049 (|#1| $)))) (-283)) (T -843)) -((-2217 (*1 *2 *1) (-12 (-5 *2 (-382 *3)) (-5 *1 (-843 *3)) (-4 *3 (-283)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-382 (-393 *3))) (-4 *3 (-283)) (-5 *1 (-843 *3)))) (-3479 (*1 *1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-283)))) (-1252 (*1 *2 *1) (-12 (-5 *2 (-393 *3)) (-5 *1 (-843 *3)) (-4 *3 (-283)))) (-1496 (*1 *2 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-283)))) (-3925 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-843 *3)) (-4 *3 (-283)))) (-2480 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-843 *3)) (-4 *3 (-283)))) (-3237 (*1 *2 *3 *3) (-12 (-5 *2 (-1081 *3)) (-5 *1 (-843 *3)) (-4 *3 (-283)))) (-4148 (*1 *1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-283)))) (-3443 (*1 *1 *2 *3) (-12 (-5 *3 (-393 *2)) (-4 *2 (-283)) (-5 *1 (-843 *2)))) (-3049 (*1 *2 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-283))))) -(-13 (-338) (-37 |#1|) (-10 -8 (-15 -2217 ((-382 |#1|) $)) (-15 -2217 ($ (-382 (-393 |#1|)))) (-15 -3479 ($ $)) (-15 -1252 ((-393 |#1|) $)) (-15 -1496 (|#1| $)) (-15 -3925 ($ $ (-522))) (-15 -2480 ((-522) $)) (-15 -3237 ((-1081 |#1|) |#1| |#1|)) (-15 -4148 ($ $)) (-15 -3443 ($ |#1| (-393 |#1|))) (-15 -3049 (|#1| $)))) -((-3443 (((-51) (-881 |#1|) (-393 (-881 |#1|)) (-1085)) 16) (((-51) (-382 (-881 |#1|)) (-1085)) 17))) -(((-844 |#1|) (-10 -7 (-15 -3443 ((-51) (-382 (-881 |#1|)) (-1085))) (-15 -3443 ((-51) (-881 |#1|) (-393 (-881 |#1|)) (-1085)))) (-13 (-283) (-135))) (T -844)) -((-3443 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-393 (-881 *6))) (-5 *5 (-1085)) (-5 *3 (-881 *6)) (-4 *6 (-13 (-283) (-135))) (-5 *2 (-51)) (-5 *1 (-844 *6)))) (-3443 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085)) (-4 *5 (-13 (-283) (-135))) (-5 *2 (-51)) (-5 *1 (-844 *5))))) -(-10 -7 (-15 -3443 ((-51) (-382 (-881 |#1|)) (-1085))) (-15 -3443 ((-51) (-881 |#1|) (-393 (-881 |#1|)) (-1085)))) -((-2803 ((|#4| (-588 |#4|)) 119) (((-1081 |#4|) (-1081 |#4|) (-1081 |#4|)) 66) ((|#4| |#4| |#4|) 118)) (-2308 (((-1081 |#4|) (-588 (-1081 |#4|))) 112) (((-1081 |#4|) (-1081 |#4|) (-1081 |#4|)) 49) ((|#4| (-588 |#4|)) 54) ((|#4| |#4| |#4|) 83))) -(((-845 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2308 (|#4| |#4| |#4|)) (-15 -2308 (|#4| (-588 |#4|))) (-15 -2308 ((-1081 |#4|) (-1081 |#4|) (-1081 |#4|))) (-15 -2308 ((-1081 |#4|) (-588 (-1081 |#4|)))) (-15 -2803 (|#4| |#4| |#4|)) (-15 -2803 ((-1081 |#4|) (-1081 |#4|) (-1081 |#4|))) (-15 -2803 (|#4| (-588 |#4|)))) (-730) (-784) (-283) (-878 |#3| |#1| |#2|)) (T -845)) -((-2803 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *6 *4 *5)) (-5 *1 (-845 *4 *5 *6 *2)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283)))) (-2803 (*1 *2 *2 *2) (-12 (-5 *2 (-1081 *6)) (-4 *6 (-878 *5 *3 *4)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *5 (-283)) (-5 *1 (-845 *3 *4 *5 *6)))) (-2803 (*1 *2 *2 *2) (-12 (-4 *3 (-730)) (-4 *4 (-784)) (-4 *5 (-283)) (-5 *1 (-845 *3 *4 *5 *2)) (-4 *2 (-878 *5 *3 *4)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-588 (-1081 *7))) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283)) (-5 *2 (-1081 *7)) (-5 *1 (-845 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5)))) (-2308 (*1 *2 *2 *2) (-12 (-5 *2 (-1081 *6)) (-4 *6 (-878 *5 *3 *4)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *5 (-283)) (-5 *1 (-845 *3 *4 *5 *6)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *6 *4 *5)) (-5 *1 (-845 *4 *5 *6 *2)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283)))) (-2308 (*1 *2 *2 *2) (-12 (-4 *3 (-730)) (-4 *4 (-784)) (-4 *5 (-283)) (-5 *1 (-845 *3 *4 *5 *2)) (-4 *2 (-878 *5 *3 *4))))) -(-10 -7 (-15 -2308 (|#4| |#4| |#4|)) (-15 -2308 (|#4| (-588 |#4|))) (-15 -2308 ((-1081 |#4|) (-1081 |#4|) (-1081 |#4|))) (-15 -2308 ((-1081 |#4|) (-588 (-1081 |#4|)))) (-15 -2803 (|#4| |#4| |#4|)) (-15 -2803 ((-1081 |#4|) (-1081 |#4|) (-1081 |#4|))) (-15 -2803 (|#4| (-588 |#4|)))) -((-3630 (((-833 (-522)) (-898)) 22) (((-833 (-522)) (-588 (-522))) 19)) (-3994 (((-833 (-522)) (-588 (-522))) 46) (((-833 (-522)) (-850)) 47)) (-3894 (((-833 (-522))) 23)) (-1595 (((-833 (-522))) 36) (((-833 (-522)) (-588 (-522))) 35)) (-1310 (((-833 (-522))) 34) (((-833 (-522)) (-588 (-522))) 33)) (-3722 (((-833 (-522))) 32) (((-833 (-522)) (-588 (-522))) 31)) (-1503 (((-833 (-522))) 30) (((-833 (-522)) (-588 (-522))) 29)) (-3869 (((-833 (-522))) 28) (((-833 (-522)) (-588 (-522))) 27)) (-1523 (((-833 (-522))) 38) (((-833 (-522)) (-588 (-522))) 37)) (-3018 (((-833 (-522)) (-588 (-522))) 50) (((-833 (-522)) (-850)) 51)) (-3072 (((-833 (-522)) (-588 (-522))) 48) (((-833 (-522)) (-850)) 49)) (-2249 (((-833 (-522)) (-588 (-522))) 43) (((-833 (-522)) (-850)) 45)) (-3724 (((-833 (-522)) (-588 (-850))) 40))) -(((-846) (-10 -7 (-15 -3994 ((-833 (-522)) (-850))) (-15 -3994 ((-833 (-522)) (-588 (-522)))) (-15 -2249 ((-833 (-522)) (-850))) (-15 -2249 ((-833 (-522)) (-588 (-522)))) (-15 -3724 ((-833 (-522)) (-588 (-850)))) (-15 -3072 ((-833 (-522)) (-850))) (-15 -3072 ((-833 (-522)) (-588 (-522)))) (-15 -3018 ((-833 (-522)) (-850))) (-15 -3018 ((-833 (-522)) (-588 (-522)))) (-15 -3869 ((-833 (-522)) (-588 (-522)))) (-15 -3869 ((-833 (-522)))) (-15 -1503 ((-833 (-522)) (-588 (-522)))) (-15 -1503 ((-833 (-522)))) (-15 -3722 ((-833 (-522)) (-588 (-522)))) (-15 -3722 ((-833 (-522)))) (-15 -1310 ((-833 (-522)) (-588 (-522)))) (-15 -1310 ((-833 (-522)))) (-15 -1595 ((-833 (-522)) (-588 (-522)))) (-15 -1595 ((-833 (-522)))) (-15 -1523 ((-833 (-522)) (-588 (-522)))) (-15 -1523 ((-833 (-522)))) (-15 -3894 ((-833 (-522)))) (-15 -3630 ((-833 (-522)) (-588 (-522)))) (-15 -3630 ((-833 (-522)) (-898))))) (T -846)) -((-3630 (*1 *2 *3) (-12 (-5 *3 (-898)) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-3630 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-3894 (*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-1523 (*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-1595 (*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-1595 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-1310 (*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-1310 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-3722 (*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-1503 (*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-1503 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-3869 (*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-3869 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-588 (-850))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-3994 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-3994 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-522))) (-5 *1 (-846))))) -(-10 -7 (-15 -3994 ((-833 (-522)) (-850))) (-15 -3994 ((-833 (-522)) (-588 (-522)))) (-15 -2249 ((-833 (-522)) (-850))) (-15 -2249 ((-833 (-522)) (-588 (-522)))) (-15 -3724 ((-833 (-522)) (-588 (-850)))) (-15 -3072 ((-833 (-522)) (-850))) (-15 -3072 ((-833 (-522)) (-588 (-522)))) (-15 -3018 ((-833 (-522)) (-850))) (-15 -3018 ((-833 (-522)) (-588 (-522)))) (-15 -3869 ((-833 (-522)) (-588 (-522)))) (-15 -3869 ((-833 (-522)))) (-15 -1503 ((-833 (-522)) (-588 (-522)))) (-15 -1503 ((-833 (-522)))) (-15 -3722 ((-833 (-522)) (-588 (-522)))) (-15 -3722 ((-833 (-522)))) (-15 -1310 ((-833 (-522)) (-588 (-522)))) (-15 -1310 ((-833 (-522)))) (-15 -1595 ((-833 (-522)) (-588 (-522)))) (-15 -1595 ((-833 (-522)))) (-15 -1523 ((-833 (-522)) (-588 (-522)))) (-15 -1523 ((-833 (-522)))) (-15 -3894 ((-833 (-522)))) (-15 -3630 ((-833 (-522)) (-588 (-522)))) (-15 -3630 ((-833 (-522)) (-898)))) -((-1528 (((-588 (-881 |#1|)) (-588 (-881 |#1|)) (-588 (-1085))) 10)) (-3560 (((-588 (-881 |#1|)) (-588 (-881 |#1|)) (-588 (-1085))) 9))) -(((-847 |#1|) (-10 -7 (-15 -3560 ((-588 (-881 |#1|)) (-588 (-881 |#1|)) (-588 (-1085)))) (-15 -1528 ((-588 (-881 |#1|)) (-588 (-881 |#1|)) (-588 (-1085))))) (-426)) (T -847)) -((-1528 (*1 *2 *2 *3) (-12 (-5 *2 (-588 (-881 *4))) (-5 *3 (-588 (-1085))) (-4 *4 (-426)) (-5 *1 (-847 *4)))) (-3560 (*1 *2 *2 *3) (-12 (-5 *2 (-588 (-881 *4))) (-5 *3 (-588 (-1085))) (-4 *4 (-426)) (-5 *1 (-847 *4))))) -(-10 -7 (-15 -3560 ((-588 (-881 |#1|)) (-588 (-881 |#1|)) (-588 (-1085)))) (-15 -1528 ((-588 (-881 |#1|)) (-588 (-881 |#1|)) (-588 (-1085))))) -((-2217 (((-291 |#1|) (-451)) 15))) -(((-848 |#1|) (-10 -7 (-15 -2217 ((-291 |#1|) (-451)))) (-13 (-784) (-514))) (T -848)) -((-2217 (*1 *2 *3) (-12 (-5 *3 (-451)) (-5 *2 (-291 *4)) (-5 *1 (-848 *4)) (-4 *4 (-13 (-784) (-514)))))) -(-10 -7 (-15 -2217 ((-291 |#1|) (-451)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2298 (($ $) 40)) (-3007 (((-108) $) 38)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3920 (((-3 $ "failed") $) 34)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 51)) (-2859 (((-108) $) 31)) (-2267 (($ $ $) 46) (($ (-588 $)) 45)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2308 (($ $ $) 48) (($ (-588 $)) 47)) (-2276 (((-3 $ "failed") $ $) 42)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 43)) (-2742 (((-708)) 29)) (-1407 (((-108) $ $) 39)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-849) (-1197)) (T -849)) -((-2135 (*1 *2 *3) (-12 (-4 *1 (-849)) (-5 *2 (-2 (|:| -3112 (-588 *1)) (|:| -1368 *1))) (-5 *3 (-588 *1)))) (-3716 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-588 *1)) (-4 *1 (-849))))) -(-13 (-426) (-10 -8 (-15 -2135 ((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $))) (-15 -3716 ((-3 (-588 $) "failed") (-588 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-266) . T) ((-426) . T) ((-514) . T) ((-590 $) . T) ((-655 $) . T) ((-664) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-3367 (($) NIL T CONST)) (-3920 (((-3 $ "failed") $) NIL)) (-2859 (((-108) $) NIL)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2308 (($ $ $) NIL)) (-2217 (((-792) $) NIL)) (-3622 (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (-3709 (($) NIL T CONST)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (* (($ (-850) $) NIL) (($ $ $) NIL))) -(((-850) (-13 (-25) (-784) (-664) (-10 -8 (-15 -2308 ($ $ $)) (-6 (-4240 "*"))))) (T -850)) -((-2308 (*1 *1 *1 *1) (-5 *1 (-850)))) -(-13 (-25) (-784) (-664) (-10 -8 (-15 -2308 ($ $ $)) (-6 (-4240 "*")))) -((-3360 ((|#2| (-588 |#1|) (-588 |#1|)) 24))) -(((-851 |#1| |#2|) (-10 -7 (-15 -3360 (|#2| (-588 |#1|) (-588 |#1|)))) (-338) (-1142 |#1|)) (T -851)) -((-3360 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *4)) (-4 *4 (-338)) (-4 *2 (-1142 *4)) (-5 *1 (-851 *4 *2))))) -(-10 -7 (-15 -3360 (|#2| (-588 |#1|) (-588 |#1|)))) -((-3288 (((-1081 |#2|) (-588 |#2|) (-588 |#2|)) 17) (((-1139 |#1| |#2|) (-1139 |#1| |#2|) (-588 |#2|) (-588 |#2|)) 13))) -(((-852 |#1| |#2|) (-10 -7 (-15 -3288 ((-1139 |#1| |#2|) (-1139 |#1| |#2|) (-588 |#2|) (-588 |#2|))) (-15 -3288 ((-1081 |#2|) (-588 |#2|) (-588 |#2|)))) (-1085) (-338)) (T -852)) -((-3288 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *5)) (-4 *5 (-338)) (-5 *2 (-1081 *5)) (-5 *1 (-852 *4 *5)) (-14 *4 (-1085)))) (-3288 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1139 *4 *5)) (-5 *3 (-588 *5)) (-14 *4 (-1085)) (-4 *5 (-338)) (-5 *1 (-852 *4 *5))))) -(-10 -7 (-15 -3288 ((-1139 |#1| |#2|) (-1139 |#1| |#2|) (-588 |#2|) (-588 |#2|))) (-15 -3288 ((-1081 |#2|) (-588 |#2|) (-588 |#2|)))) -((-2533 (((-522) (-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-1068)) 138)) (-2261 ((|#4| |#4|) 154)) (-4087 (((-588 (-382 (-881 |#1|))) (-588 (-1085))) 117)) (-3354 (((-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))) (-628 |#4|) (-588 (-382 (-881 |#1|))) (-588 (-588 |#4|)) (-708) (-708) (-522)) 73)) (-2686 (((-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|)))))) (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|)))))) (-588 |#4|)) 57)) (-2534 (((-628 |#4|) (-628 |#4|) (-588 |#4|)) 53)) (-4085 (((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-1068)) 150)) (-1590 (((-522) (-628 |#4|) (-850) (-1068)) 131) (((-522) (-628 |#4|) (-588 (-1085)) (-850) (-1068)) 130) (((-522) (-628 |#4|) (-588 |#4|) (-850) (-1068)) 129) (((-522) (-628 |#4|) (-1068)) 126) (((-522) (-628 |#4|) (-588 (-1085)) (-1068)) 125) (((-522) (-628 |#4|) (-588 |#4|) (-1068)) 124) (((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-850)) 123) (((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 (-1085)) (-850)) 122) (((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 |#4|) (-850)) 121) (((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|)) 119) (((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 (-1085))) 118) (((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 |#4|)) 115)) (-2945 ((|#4| (-881 |#1|)) 66)) (-3957 (((-108) (-588 |#4|) (-588 (-588 |#4|))) 151)) (-2235 (((-588 (-588 (-522))) (-522) (-522)) 128)) (-1506 (((-588 (-588 |#4|)) (-588 (-588 |#4|))) 85)) (-3266 (((-708) (-588 (-2 (|:| -1692 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 |#4|))))) 83)) (-2616 (((-708) (-588 (-2 (|:| -1692 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 |#4|))))) 82)) (-3793 (((-108) (-588 (-881 |#1|))) 17) (((-108) (-588 |#4|)) 13)) (-2021 (((-2 (|:| |sysok| (-108)) (|:| |z0| (-588 |#4|)) (|:| |n0| (-588 |#4|))) (-588 |#4|) (-588 |#4|)) 69)) (-2442 (((-588 |#4|) |#4|) 47)) (-2196 (((-588 (-382 (-881 |#1|))) (-588 |#4|)) 113) (((-628 (-382 (-881 |#1|))) (-628 |#4|)) 54) (((-382 (-881 |#1|)) |#4|) 110)) (-2423 (((-2 (|:| |rgl| (-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|)))))))))) (|:| |rgsz| (-522))) (-628 |#4|) (-588 (-382 (-881 |#1|))) (-708) (-1068) (-522)) 89)) (-3917 (((-588 (-2 (|:| -1692 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 |#4|)))) (-628 |#4|) (-708)) 81)) (-2869 (((-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522))))) (-628 |#4|) (-708)) 98)) (-1582 (((-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|)))))) (-2 (|:| -2149 (-628 (-382 (-881 |#1|)))) (|:| |vec| (-588 (-382 (-881 |#1|)))) (|:| -1692 (-708)) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522))))) 46))) -(((-853 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1590 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 |#4|))) (-15 -1590 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 (-1085)))) (-15 -1590 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|))) (-15 -1590 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 |#4|) (-850))) (-15 -1590 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 (-1085)) (-850))) (-15 -1590 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-850))) (-15 -1590 ((-522) (-628 |#4|) (-588 |#4|) (-1068))) (-15 -1590 ((-522) (-628 |#4|) (-588 (-1085)) (-1068))) (-15 -1590 ((-522) (-628 |#4|) (-1068))) (-15 -1590 ((-522) (-628 |#4|) (-588 |#4|) (-850) (-1068))) (-15 -1590 ((-522) (-628 |#4|) (-588 (-1085)) (-850) (-1068))) (-15 -1590 ((-522) (-628 |#4|) (-850) (-1068))) (-15 -2533 ((-522) (-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-1068))) (-15 -4085 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-1068))) (-15 -2423 ((-2 (|:| |rgl| (-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|)))))))))) (|:| |rgsz| (-522))) (-628 |#4|) (-588 (-382 (-881 |#1|))) (-708) (-1068) (-522))) (-15 -2196 ((-382 (-881 |#1|)) |#4|)) (-15 -2196 ((-628 (-382 (-881 |#1|))) (-628 |#4|))) (-15 -2196 ((-588 (-382 (-881 |#1|))) (-588 |#4|))) (-15 -4087 ((-588 (-382 (-881 |#1|))) (-588 (-1085)))) (-15 -2945 (|#4| (-881 |#1|))) (-15 -2021 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-588 |#4|)) (|:| |n0| (-588 |#4|))) (-588 |#4|) (-588 |#4|))) (-15 -3917 ((-588 (-2 (|:| -1692 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 |#4|)))) (-628 |#4|) (-708))) (-15 -2686 ((-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|)))))) (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|)))))) (-588 |#4|))) (-15 -1582 ((-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|)))))) (-2 (|:| -2149 (-628 (-382 (-881 |#1|)))) (|:| |vec| (-588 (-382 (-881 |#1|)))) (|:| -1692 (-708)) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (-15 -2442 ((-588 |#4|) |#4|)) (-15 -2616 ((-708) (-588 (-2 (|:| -1692 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 |#4|)))))) (-15 -3266 ((-708) (-588 (-2 (|:| -1692 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 |#4|)))))) (-15 -1506 ((-588 (-588 |#4|)) (-588 (-588 |#4|)))) (-15 -2235 ((-588 (-588 (-522))) (-522) (-522))) (-15 -3957 ((-108) (-588 |#4|) (-588 (-588 |#4|)))) (-15 -2869 ((-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522))))) (-628 |#4|) (-708))) (-15 -2534 ((-628 |#4|) (-628 |#4|) (-588 |#4|))) (-15 -3354 ((-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))) (-628 |#4|) (-588 (-382 (-881 |#1|))) (-588 (-588 |#4|)) (-708) (-708) (-522))) (-15 -2261 (|#4| |#4|)) (-15 -3793 ((-108) (-588 |#4|))) (-15 -3793 ((-108) (-588 (-881 |#1|))))) (-13 (-283) (-135)) (-13 (-784) (-563 (-1085))) (-730) (-878 |#1| |#3| |#2|)) (T -853)) -((-3793 (*1 *2 *3) (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-108)) (-5 *1 (-853 *4 *5 *6 *7)) (-4 *7 (-878 *4 *6 *5)))) (-3793 (*1 *2 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-108)) (-5 *1 (-853 *4 *5 *6 *7)))) (-2261 (*1 *2 *2) (-12 (-4 *3 (-13 (-283) (-135))) (-4 *4 (-13 (-784) (-563 (-1085)))) (-4 *5 (-730)) (-5 *1 (-853 *3 *4 *5 *2)) (-4 *2 (-878 *3 *5 *4)))) (-3354 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522))))) (-5 *4 (-628 *12)) (-5 *5 (-588 (-382 (-881 *9)))) (-5 *6 (-588 (-588 *12))) (-5 *7 (-708)) (-5 *8 (-522)) (-4 *9 (-13 (-283) (-135))) (-4 *12 (-878 *9 *11 *10)) (-4 *10 (-13 (-784) (-563 (-1085)))) (-4 *11 (-730)) (-5 *2 (-2 (|:| |eqzro| (-588 *12)) (|:| |neqzro| (-588 *12)) (|:| |wcond| (-588 (-881 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 *9)))) (|:| -2905 (-588 (-1166 (-382 (-881 *9))))))))) (-5 *1 (-853 *9 *10 *11 *12)))) (-2534 (*1 *2 *2 *3) (-12 (-5 *2 (-628 *7)) (-5 *3 (-588 *7)) (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *1 (-853 *4 *5 *6 *7)))) (-2869 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *8)) (-5 *4 (-708)) (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085)))) (-4 *7 (-730)) (-5 *2 (-588 (-2 (|:| |det| *8) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (-5 *1 (-853 *5 *6 *7 *8)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-588 *8))) (-5 *3 (-588 *8)) (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085)))) (-4 *7 (-730)) (-5 *2 (-108)) (-5 *1 (-853 *5 *6 *7 *8)))) (-2235 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-588 (-588 (-522)))) (-5 *1 (-853 *4 *5 *6 *7)) (-5 *3 (-522)) (-4 *7 (-878 *4 *6 *5)))) (-1506 (*1 *2 *2) (-12 (-5 *2 (-588 (-588 *6))) (-4 *6 (-878 *3 *5 *4)) (-4 *3 (-13 (-283) (-135))) (-4 *4 (-13 (-784) (-563 (-1085)))) (-4 *5 (-730)) (-5 *1 (-853 *3 *4 *5 *6)))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| -1692 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| *7) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 *7))))) (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-708)) (-5 *1 (-853 *4 *5 *6 *7)))) (-2616 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| -1692 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| *7) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 *7))))) (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-708)) (-5 *1 (-853 *4 *5 *6 *7)))) (-2442 (*1 *2 *3) (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-588 *3)) (-5 *1 (-853 *4 *5 *6 *3)) (-4 *3 (-878 *4 *6 *5)))) (-1582 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2149 (-628 (-382 (-881 *4)))) (|:| |vec| (-588 (-382 (-881 *4)))) (|:| -1692 (-708)) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522))))) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-2 (|:| |partsol| (-1166 (-382 (-881 *4)))) (|:| -2905 (-588 (-1166 (-382 (-881 *4))))))) (-5 *1 (-853 *4 *5 *6 *7)) (-4 *7 (-878 *4 *6 *5)))) (-2686 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1166 (-382 (-881 *4)))) (|:| -2905 (-588 (-1166 (-382 (-881 *4))))))) (-5 *3 (-588 *7)) (-4 *4 (-13 (-283) (-135))) (-4 *7 (-878 *4 *6 *5)) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *1 (-853 *4 *5 *6 *7)))) (-3917 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *8)) (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085)))) (-4 *7 (-730)) (-5 *2 (-588 (-2 (|:| -1692 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| *8) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 *8))))) (-5 *1 (-853 *5 *6 *7 *8)) (-5 *4 (-708)))) (-2021 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-4 *7 (-878 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-108)) (|:| |z0| (-588 *7)) (|:| |n0| (-588 *7)))) (-5 *1 (-853 *4 *5 *6 *7)) (-5 *3 (-588 *7)))) (-2945 (*1 *2 *3) (-12 (-5 *3 (-881 *4)) (-4 *4 (-13 (-283) (-135))) (-4 *2 (-878 *4 *6 *5)) (-5 *1 (-853 *4 *5 *6 *2)) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)))) (-4087 (*1 *2 *3) (-12 (-5 *3 (-588 (-1085))) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-588 (-382 (-881 *4)))) (-5 *1 (-853 *4 *5 *6 *7)) (-4 *7 (-878 *4 *6 *5)))) (-2196 (*1 *2 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-588 (-382 (-881 *4)))) (-5 *1 (-853 *4 *5 *6 *7)))) (-2196 (*1 *2 *3) (-12 (-5 *3 (-628 *7)) (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-628 (-382 (-881 *4)))) (-5 *1 (-853 *4 *5 *6 *7)))) (-2196 (*1 *2 *3) (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-382 (-881 *4))) (-5 *1 (-853 *4 *5 *6 *3)) (-4 *3 (-878 *4 *6 *5)))) (-2423 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-628 *11)) (-5 *4 (-588 (-382 (-881 *8)))) (-5 *5 (-708)) (-5 *6 (-1068)) (-4 *8 (-13 (-283) (-135))) (-4 *11 (-878 *8 *10 *9)) (-4 *9 (-13 (-784) (-563 (-1085)))) (-4 *10 (-730)) (-5 *2 (-2 (|:| |rgl| (-588 (-2 (|:| |eqzro| (-588 *11)) (|:| |neqzro| (-588 *11)) (|:| |wcond| (-588 (-881 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 *8)))) (|:| -2905 (-588 (-1166 (-382 (-881 *8)))))))))) (|:| |rgsz| (-522)))) (-5 *1 (-853 *8 *9 *10 *11)) (-5 *7 (-522)))) (-4085 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-588 (-2 (|:| |eqzro| (-588 *7)) (|:| |neqzro| (-588 *7)) (|:| |wcond| (-588 (-881 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 *4)))) (|:| -2905 (-588 (-1166 (-382 (-881 *4)))))))))) (-5 *1 (-853 *4 *5 *6 *7)) (-4 *7 (-878 *4 *6 *5)))) (-2533 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-2 (|:| |eqzro| (-588 *8)) (|:| |neqzro| (-588 *8)) (|:| |wcond| (-588 (-881 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 *5)))) (|:| -2905 (-588 (-1166 (-382 (-881 *5)))))))))) (-5 *4 (-1068)) (-4 *5 (-13 (-283) (-135))) (-4 *8 (-878 *5 *7 *6)) (-4 *6 (-13 (-784) (-563 (-1085)))) (-4 *7 (-730)) (-5 *2 (-522)) (-5 *1 (-853 *5 *6 *7 *8)))) (-1590 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-628 *9)) (-5 *4 (-850)) (-5 *5 (-1068)) (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-283) (-135))) (-4 *7 (-13 (-784) (-563 (-1085)))) (-4 *8 (-730)) (-5 *2 (-522)) (-5 *1 (-853 *6 *7 *8 *9)))) (-1590 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-628 *10)) (-5 *4 (-588 (-1085))) (-5 *5 (-850)) (-5 *6 (-1068)) (-4 *10 (-878 *7 *9 *8)) (-4 *7 (-13 (-283) (-135))) (-4 *8 (-13 (-784) (-563 (-1085)))) (-4 *9 (-730)) (-5 *2 (-522)) (-5 *1 (-853 *7 *8 *9 *10)))) (-1590 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-628 *10)) (-5 *4 (-588 *10)) (-5 *5 (-850)) (-5 *6 (-1068)) (-4 *10 (-878 *7 *9 *8)) (-4 *7 (-13 (-283) (-135))) (-4 *8 (-13 (-784) (-563 (-1085)))) (-4 *9 (-730)) (-5 *2 (-522)) (-5 *1 (-853 *7 *8 *9 *10)))) (-1590 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *8)) (-5 *4 (-1068)) (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085)))) (-4 *7 (-730)) (-5 *2 (-522)) (-5 *1 (-853 *5 *6 *7 *8)))) (-1590 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-628 *9)) (-5 *4 (-588 (-1085))) (-5 *5 (-1068)) (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-283) (-135))) (-4 *7 (-13 (-784) (-563 (-1085)))) (-4 *8 (-730)) (-5 *2 (-522)) (-5 *1 (-853 *6 *7 *8 *9)))) (-1590 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-628 *9)) (-5 *4 (-588 *9)) (-5 *5 (-1068)) (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-283) (-135))) (-4 *7 (-13 (-784) (-563 (-1085)))) (-4 *8 (-730)) (-5 *2 (-522)) (-5 *1 (-853 *6 *7 *8 *9)))) (-1590 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *8)) (-5 *4 (-850)) (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085)))) (-4 *7 (-730)) (-5 *2 (-588 (-2 (|:| |eqzro| (-588 *8)) (|:| |neqzro| (-588 *8)) (|:| |wcond| (-588 (-881 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 *5)))) (|:| -2905 (-588 (-1166 (-382 (-881 *5)))))))))) (-5 *1 (-853 *5 *6 *7 *8)))) (-1590 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-628 *9)) (-5 *4 (-588 (-1085))) (-5 *5 (-850)) (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-283) (-135))) (-4 *7 (-13 (-784) (-563 (-1085)))) (-4 *8 (-730)) (-5 *2 (-588 (-2 (|:| |eqzro| (-588 *9)) (|:| |neqzro| (-588 *9)) (|:| |wcond| (-588 (-881 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 *6)))) (|:| -2905 (-588 (-1166 (-382 (-881 *6)))))))))) (-5 *1 (-853 *6 *7 *8 *9)))) (-1590 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-628 *9)) (-5 *5 (-850)) (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-283) (-135))) (-4 *7 (-13 (-784) (-563 (-1085)))) (-4 *8 (-730)) (-5 *2 (-588 (-2 (|:| |eqzro| (-588 *9)) (|:| |neqzro| (-588 *9)) (|:| |wcond| (-588 (-881 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 *6)))) (|:| -2905 (-588 (-1166 (-382 (-881 *6)))))))))) (-5 *1 (-853 *6 *7 *8 *9)) (-5 *4 (-588 *9)))) (-1590 (*1 *2 *3) (-12 (-5 *3 (-628 *7)) (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-588 (-2 (|:| |eqzro| (-588 *7)) (|:| |neqzro| (-588 *7)) (|:| |wcond| (-588 (-881 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 *4)))) (|:| -2905 (-588 (-1166 (-382 (-881 *4)))))))))) (-5 *1 (-853 *4 *5 *6 *7)))) (-1590 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *8)) (-5 *4 (-588 (-1085))) (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085)))) (-4 *7 (-730)) (-5 *2 (-588 (-2 (|:| |eqzro| (-588 *8)) (|:| |neqzro| (-588 *8)) (|:| |wcond| (-588 (-881 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 *5)))) (|:| -2905 (-588 (-1166 (-382 (-881 *5)))))))))) (-5 *1 (-853 *5 *6 *7 *8)))) (-1590 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *8)) (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085)))) (-4 *7 (-730)) (-5 *2 (-588 (-2 (|:| |eqzro| (-588 *8)) (|:| |neqzro| (-588 *8)) (|:| |wcond| (-588 (-881 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 *5)))) (|:| -2905 (-588 (-1166 (-382 (-881 *5)))))))))) (-5 *1 (-853 *5 *6 *7 *8)) (-5 *4 (-588 *8))))) -(-10 -7 (-15 -1590 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 |#4|))) (-15 -1590 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 (-1085)))) (-15 -1590 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|))) (-15 -1590 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 |#4|) (-850))) (-15 -1590 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 (-1085)) (-850))) (-15 -1590 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-850))) (-15 -1590 ((-522) (-628 |#4|) (-588 |#4|) (-1068))) (-15 -1590 ((-522) (-628 |#4|) (-588 (-1085)) (-1068))) (-15 -1590 ((-522) (-628 |#4|) (-1068))) (-15 -1590 ((-522) (-628 |#4|) (-588 |#4|) (-850) (-1068))) (-15 -1590 ((-522) (-628 |#4|) (-588 (-1085)) (-850) (-1068))) (-15 -1590 ((-522) (-628 |#4|) (-850) (-1068))) (-15 -2533 ((-522) (-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-1068))) (-15 -4085 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|))))))))) (-1068))) (-15 -2423 ((-2 (|:| |rgl| (-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|)))))))))) (|:| |rgsz| (-522))) (-628 |#4|) (-588 (-382 (-881 |#1|))) (-708) (-1068) (-522))) (-15 -2196 ((-382 (-881 |#1|)) |#4|)) (-15 -2196 ((-628 (-382 (-881 |#1|))) (-628 |#4|))) (-15 -2196 ((-588 (-382 (-881 |#1|))) (-588 |#4|))) (-15 -4087 ((-588 (-382 (-881 |#1|))) (-588 (-1085)))) (-15 -2945 (|#4| (-881 |#1|))) (-15 -2021 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-588 |#4|)) (|:| |n0| (-588 |#4|))) (-588 |#4|) (-588 |#4|))) (-15 -3917 ((-588 (-2 (|:| -1692 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 |#4|)))) (-628 |#4|) (-708))) (-15 -2686 ((-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|)))))) (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|)))))) (-588 |#4|))) (-15 -1582 ((-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|)))))) (-2 (|:| -2149 (-628 (-382 (-881 |#1|)))) (|:| |vec| (-588 (-382 (-881 |#1|)))) (|:| -1692 (-708)) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (-15 -2442 ((-588 |#4|) |#4|)) (-15 -2616 ((-708) (-588 (-2 (|:| -1692 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 |#4|)))))) (-15 -3266 ((-708) (-588 (-2 (|:| -1692 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 |#4|)))))) (-15 -1506 ((-588 (-588 |#4|)) (-588 (-588 |#4|)))) (-15 -2235 ((-588 (-588 (-522))) (-522) (-522))) (-15 -3957 ((-108) (-588 |#4|) (-588 (-588 |#4|)))) (-15 -2869 ((-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522))))) (-628 |#4|) (-708))) (-15 -2534 ((-628 |#4|) (-628 |#4|) (-588 |#4|))) (-15 -3354 ((-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -2905 (-588 (-1166 (-382 (-881 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))) (-628 |#4|) (-588 (-382 (-881 |#1|))) (-588 (-588 |#4|)) (-708) (-708) (-522))) (-15 -2261 (|#4| |#4|)) (-15 -3793 ((-108) (-588 |#4|))) (-15 -3793 ((-108) (-588 (-881 |#1|))))) -((-4004 (((-856) |#1| (-1085)) 16) (((-856) |#1| (-1085) (-1009 (-202))) 20)) (-2019 (((-856) |#1| |#1| (-1085) (-1009 (-202))) 18) (((-856) |#1| (-1085) (-1009 (-202))) 14))) -(((-854 |#1|) (-10 -7 (-15 -2019 ((-856) |#1| (-1085) (-1009 (-202)))) (-15 -2019 ((-856) |#1| |#1| (-1085) (-1009 (-202)))) (-15 -4004 ((-856) |#1| (-1085) (-1009 (-202)))) (-15 -4004 ((-856) |#1| (-1085)))) (-563 (-498))) (T -854)) -((-4004 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-5 *2 (-856)) (-5 *1 (-854 *3)) (-4 *3 (-563 (-498))))) (-4004 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1085)) (-5 *5 (-1009 (-202))) (-5 *2 (-856)) (-5 *1 (-854 *3)) (-4 *3 (-563 (-498))))) (-2019 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1085)) (-5 *5 (-1009 (-202))) (-5 *2 (-856)) (-5 *1 (-854 *3)) (-4 *3 (-563 (-498))))) (-2019 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1085)) (-5 *5 (-1009 (-202))) (-5 *2 (-856)) (-5 *1 (-854 *3)) (-4 *3 (-563 (-498)))))) -(-10 -7 (-15 -2019 ((-856) |#1| (-1085) (-1009 (-202)))) (-15 -2019 ((-856) |#1| |#1| (-1085) (-1009 (-202)))) (-15 -4004 ((-856) |#1| (-1085) (-1009 (-202)))) (-15 -4004 ((-856) |#1| (-1085)))) -((-2843 (($ $ (-1009 (-202)) (-1009 (-202)) (-1009 (-202))) 69)) (-2380 (((-1009 (-202)) $) 40)) (-2366 (((-1009 (-202)) $) 39)) (-2351 (((-1009 (-202)) $) 38)) (-1767 (((-588 (-588 (-202))) $) 43)) (-2328 (((-1009 (-202)) $) 41)) (-3752 (((-522) (-522)) 32)) (-3169 (((-522) (-522)) 28)) (-3861 (((-522) (-522)) 30)) (-2509 (((-108) (-108)) 35)) (-3089 (((-522)) 31)) (-1776 (($ $ (-1009 (-202))) 72) (($ $) 73)) (-1452 (($ (-1 (-872 (-202)) (-202)) (-1009 (-202))) 77) (($ (-1 (-872 (-202)) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202))) 78)) (-2019 (($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202))) 80) (($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202))) 81) (($ $ (-1009 (-202))) 75)) (-4168 (((-522)) 36)) (-4109 (((-522)) 27)) (-4116 (((-522)) 29)) (-1414 (((-588 (-588 (-872 (-202)))) $) 93)) (-3150 (((-108) (-108)) 37)) (-2217 (((-792) $) 92)) (-2104 (((-108)) 34))) -(((-855) (-13 (-901) (-10 -8 (-15 -1452 ($ (-1 (-872 (-202)) (-202)) (-1009 (-202)))) (-15 -1452 ($ (-1 (-872 (-202)) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -2019 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202)))) (-15 -2019 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -2019 ($ $ (-1009 (-202)))) (-15 -2843 ($ $ (-1009 (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -1776 ($ $ (-1009 (-202)))) (-15 -1776 ($ $)) (-15 -2328 ((-1009 (-202)) $)) (-15 -1767 ((-588 (-588 (-202))) $)) (-15 -4109 ((-522))) (-15 -3169 ((-522) (-522))) (-15 -4116 ((-522))) (-15 -3861 ((-522) (-522))) (-15 -3089 ((-522))) (-15 -3752 ((-522) (-522))) (-15 -2104 ((-108))) (-15 -2509 ((-108) (-108))) (-15 -4168 ((-522))) (-15 -3150 ((-108) (-108)))))) (T -855)) -((-1452 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-855)))) (-1452 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-855)))) (-2019 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-855)))) (-2019 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-855)))) (-2019 (*1 *1 *1 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-855)))) (-2843 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-855)))) (-1776 (*1 *1 *1 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-855)))) (-1776 (*1 *1 *1) (-5 *1 (-855))) (-2328 (*1 *2 *1) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-855)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-588 (-588 (-202)))) (-5 *1 (-855)))) (-4109 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855)))) (-3169 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855)))) (-4116 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855)))) (-3861 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855)))) (-3089 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855)))) (-3752 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855)))) (-2104 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))) (-2509 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))) (-4168 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855)))) (-3150 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855))))) -(-13 (-901) (-10 -8 (-15 -1452 ($ (-1 (-872 (-202)) (-202)) (-1009 (-202)))) (-15 -1452 ($ (-1 (-872 (-202)) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -2019 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202)))) (-15 -2019 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -2019 ($ $ (-1009 (-202)))) (-15 -2843 ($ $ (-1009 (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -1776 ($ $ (-1009 (-202)))) (-15 -1776 ($ $)) (-15 -2328 ((-1009 (-202)) $)) (-15 -1767 ((-588 (-588 (-202))) $)) (-15 -4109 ((-522))) (-15 -3169 ((-522) (-522))) (-15 -4116 ((-522))) (-15 -3861 ((-522) (-522))) (-15 -3089 ((-522))) (-15 -3752 ((-522) (-522))) (-15 -2104 ((-108))) (-15 -2509 ((-108) (-108))) (-15 -4168 ((-522))) (-15 -3150 ((-108) (-108))))) -((-2843 (($ $ (-1009 (-202))) 70) (($ $ (-1009 (-202)) (-1009 (-202))) 71)) (-2366 (((-1009 (-202)) $) 43)) (-2351 (((-1009 (-202)) $) 42)) (-2328 (((-1009 (-202)) $) 44)) (-3153 (((-522) (-522)) 36)) (-3527 (((-522) (-522)) 32)) (-1907 (((-522) (-522)) 34)) (-3247 (((-108) (-108)) 38)) (-3791 (((-522)) 35)) (-1776 (($ $ (-1009 (-202))) 74) (($ $) 75)) (-1452 (($ (-1 (-872 (-202)) (-202)) (-1009 (-202))) 84) (($ (-1 (-872 (-202)) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202))) 85)) (-4004 (($ (-1 (-202) (-202)) (-1009 (-202))) 92) (($ (-1 (-202) (-202))) 95)) (-2019 (($ (-1 (-202) (-202)) (-1009 (-202))) 79) (($ (-1 (-202) (-202)) (-1009 (-202)) (-1009 (-202))) 80) (($ (-588 (-1 (-202) (-202))) (-1009 (-202))) 87) (($ (-588 (-1 (-202) (-202))) (-1009 (-202)) (-1009 (-202))) 88) (($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202))) 81) (($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202))) 82) (($ $ (-1009 (-202))) 76)) (-1307 (((-108) $) 39)) (-2822 (((-522)) 40)) (-2481 (((-522)) 31)) (-3258 (((-522)) 33)) (-1414 (((-588 (-588 (-872 (-202)))) $) 22)) (-3127 (((-108) (-108)) 41)) (-2217 (((-792) $) 106)) (-2493 (((-108)) 37))) -(((-856) (-13 (-883) (-10 -8 (-15 -2019 ($ (-1 (-202) (-202)) (-1009 (-202)))) (-15 -2019 ($ (-1 (-202) (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -2019 ($ (-588 (-1 (-202) (-202))) (-1009 (-202)))) (-15 -2019 ($ (-588 (-1 (-202) (-202))) (-1009 (-202)) (-1009 (-202)))) (-15 -2019 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202)))) (-15 -2019 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -1452 ($ (-1 (-872 (-202)) (-202)) (-1009 (-202)))) (-15 -1452 ($ (-1 (-872 (-202)) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -4004 ($ (-1 (-202) (-202)) (-1009 (-202)))) (-15 -4004 ($ (-1 (-202) (-202)))) (-15 -2019 ($ $ (-1009 (-202)))) (-15 -1307 ((-108) $)) (-15 -2843 ($ $ (-1009 (-202)))) (-15 -2843 ($ $ (-1009 (-202)) (-1009 (-202)))) (-15 -1776 ($ $ (-1009 (-202)))) (-15 -1776 ($ $)) (-15 -2328 ((-1009 (-202)) $)) (-15 -2481 ((-522))) (-15 -3527 ((-522) (-522))) (-15 -3258 ((-522))) (-15 -1907 ((-522) (-522))) (-15 -3791 ((-522))) (-15 -3153 ((-522) (-522))) (-15 -2493 ((-108))) (-15 -3247 ((-108) (-108))) (-15 -2822 ((-522))) (-15 -3127 ((-108) (-108)))))) (T -856)) -((-2019 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-856)))) (-2019 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-856)))) (-2019 (*1 *1 *2 *3) (-12 (-5 *2 (-588 (-1 (-202) (-202)))) (-5 *3 (-1009 (-202))) (-5 *1 (-856)))) (-2019 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-588 (-1 (-202) (-202)))) (-5 *3 (-1009 (-202))) (-5 *1 (-856)))) (-2019 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-856)))) (-2019 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-856)))) (-1452 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-856)))) (-1452 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-856)))) (-4004 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-856)))) (-4004 (*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-856)))) (-2019 (*1 *1 *1 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-856)))) (-1307 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-856)))) (-2843 (*1 *1 *1 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-856)))) (-2843 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-856)))) (-1776 (*1 *1 *1 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-856)))) (-1776 (*1 *1 *1) (-5 *1 (-856))) (-2328 (*1 *2 *1) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-856)))) (-2481 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856)))) (-3527 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856)))) (-3258 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856)))) (-1907 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856)))) (-3791 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856)))) (-3153 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856)))) (-2493 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-856)))) (-3247 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-856)))) (-2822 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856)))) (-3127 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-856))))) -(-13 (-883) (-10 -8 (-15 -2019 ($ (-1 (-202) (-202)) (-1009 (-202)))) (-15 -2019 ($ (-1 (-202) (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -2019 ($ (-588 (-1 (-202) (-202))) (-1009 (-202)))) (-15 -2019 ($ (-588 (-1 (-202) (-202))) (-1009 (-202)) (-1009 (-202)))) (-15 -2019 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202)))) (-15 -2019 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -1452 ($ (-1 (-872 (-202)) (-202)) (-1009 (-202)))) (-15 -1452 ($ (-1 (-872 (-202)) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -4004 ($ (-1 (-202) (-202)) (-1009 (-202)))) (-15 -4004 ($ (-1 (-202) (-202)))) (-15 -2019 ($ $ (-1009 (-202)))) (-15 -1307 ((-108) $)) (-15 -2843 ($ $ (-1009 (-202)))) (-15 -2843 ($ $ (-1009 (-202)) (-1009 (-202)))) (-15 -1776 ($ $ (-1009 (-202)))) (-15 -1776 ($ $)) (-15 -2328 ((-1009 (-202)) $)) (-15 -2481 ((-522))) (-15 -3527 ((-522) (-522))) (-15 -3258 ((-522))) (-15 -1907 ((-522) (-522))) (-15 -3791 ((-522))) (-15 -3153 ((-522) (-522))) (-15 -2493 ((-108))) (-15 -3247 ((-108) (-108))) (-15 -2822 ((-522))) (-15 -3127 ((-108) (-108))))) -((-1894 (((-588 (-1009 (-202))) (-588 (-588 (-872 (-202))))) 23))) -(((-857) (-10 -7 (-15 -1894 ((-588 (-1009 (-202))) (-588 (-588 (-872 (-202)))))))) (T -857)) -((-1894 (*1 *2 *3) (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *2 (-588 (-1009 (-202)))) (-5 *1 (-857))))) -(-10 -7 (-15 -1894 ((-588 (-1009 (-202))) (-588 (-588 (-872 (-202))))))) -((-2867 ((|#2| |#2|) 25)) (-1889 ((|#2| |#2|) 26)) (-2855 ((|#2| |#2|) 24)) (-3115 ((|#2| |#2| (-1068)) 23))) -(((-858 |#1| |#2|) (-10 -7 (-15 -3115 (|#2| |#2| (-1068))) (-15 -2855 (|#2| |#2|)) (-15 -2867 (|#2| |#2|)) (-15 -1889 (|#2| |#2|))) (-784) (-405 |#1|)) (T -858)) -((-1889 (*1 *2 *2) (-12 (-4 *3 (-784)) (-5 *1 (-858 *3 *2)) (-4 *2 (-405 *3)))) (-2867 (*1 *2 *2) (-12 (-4 *3 (-784)) (-5 *1 (-858 *3 *2)) (-4 *2 (-405 *3)))) (-2855 (*1 *2 *2) (-12 (-4 *3 (-784)) (-5 *1 (-858 *3 *2)) (-4 *2 (-405 *3)))) (-3115 (*1 *2 *2 *3) (-12 (-5 *3 (-1068)) (-4 *4 (-784)) (-5 *1 (-858 *4 *2)) (-4 *2 (-405 *4))))) -(-10 -7 (-15 -3115 (|#2| |#2| (-1068))) (-15 -2855 (|#2| |#2|)) (-15 -2867 (|#2| |#2|)) (-15 -1889 (|#2| |#2|))) -((-2867 (((-291 (-522)) (-1085)) 15)) (-1889 (((-291 (-522)) (-1085)) 13)) (-2855 (((-291 (-522)) (-1085)) 11)) (-3115 (((-291 (-522)) (-1085) (-1068)) 18))) -(((-859) (-10 -7 (-15 -3115 ((-291 (-522)) (-1085) (-1068))) (-15 -2855 ((-291 (-522)) (-1085))) (-15 -2867 ((-291 (-522)) (-1085))) (-15 -1889 ((-291 (-522)) (-1085))))) (T -859)) -((-1889 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-291 (-522))) (-5 *1 (-859)))) (-2867 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-291 (-522))) (-5 *1 (-859)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-291 (-522))) (-5 *1 (-859)))) (-3115 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-1068)) (-5 *2 (-291 (-522))) (-5 *1 (-859))))) -(-10 -7 (-15 -3115 ((-291 (-522)) (-1085) (-1068))) (-15 -2855 ((-291 (-522)) (-1085))) (-15 -2867 ((-291 (-522)) (-1085))) (-15 -1889 ((-291 (-522)) (-1085)))) -((-3738 (((-818 |#1| |#3|) |#2| (-821 |#1|) (-818 |#1| |#3|)) 24)) (-2597 (((-1 (-108) |#2|) (-1 (-108) |#3|)) 12))) -(((-860 |#1| |#2| |#3|) (-10 -7 (-15 -2597 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -3738 ((-818 |#1| |#3|) |#2| (-821 |#1|) (-818 |#1| |#3|)))) (-1014) (-815 |#1|) (-13 (-1014) (-962 |#2|))) (T -860)) -((-3738 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 *6)) (-5 *4 (-821 *5)) (-4 *5 (-1014)) (-4 *6 (-13 (-1014) (-962 *3))) (-4 *3 (-815 *5)) (-5 *1 (-860 *5 *3 *6)))) (-2597 (*1 *2 *3) (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1014) (-962 *5))) (-4 *5 (-815 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-860 *4 *5 *6))))) -(-10 -7 (-15 -2597 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -3738 ((-818 |#1| |#3|) |#2| (-821 |#1|) (-818 |#1| |#3|)))) -((-3738 (((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)) 29))) -(((-861 |#1| |#2| |#3|) (-10 -7 (-15 -3738 ((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)))) (-1014) (-13 (-514) (-784) (-815 |#1|)) (-13 (-405 |#2|) (-563 (-821 |#1|)) (-815 |#1|) (-962 (-561 $)))) (T -861)) -((-3738 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-13 (-405 *6) (-563 *4) (-815 *5) (-962 (-561 $)))) (-5 *4 (-821 *5)) (-4 *6 (-13 (-514) (-784) (-815 *5))) (-5 *1 (-861 *5 *6 *3))))) -(-10 -7 (-15 -3738 ((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)))) -((-3738 (((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|)) 12))) -(((-862 |#1|) (-10 -7 (-15 -3738 ((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|)))) (-507)) (T -862)) -((-3738 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 (-522) *3)) (-5 *4 (-821 (-522))) (-4 *3 (-507)) (-5 *1 (-862 *3))))) -(-10 -7 (-15 -3738 ((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|)))) -((-3738 (((-818 |#1| |#2|) (-561 |#2|) (-821 |#1|) (-818 |#1| |#2|)) 52))) -(((-863 |#1| |#2|) (-10 -7 (-15 -3738 ((-818 |#1| |#2|) (-561 |#2|) (-821 |#1|) (-818 |#1| |#2|)))) (-1014) (-13 (-784) (-962 (-561 $)) (-563 (-821 |#1|)) (-815 |#1|))) (T -863)) -((-3738 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 *6)) (-5 *3 (-561 *6)) (-4 *5 (-1014)) (-4 *6 (-13 (-784) (-962 (-561 $)) (-563 *4) (-815 *5))) (-5 *4 (-821 *5)) (-5 *1 (-863 *5 *6))))) -(-10 -7 (-15 -3738 ((-818 |#1| |#2|) (-561 |#2|) (-821 |#1|) (-818 |#1| |#2|)))) -((-3738 (((-814 |#1| |#2| |#3|) |#3| (-821 |#1|) (-814 |#1| |#2| |#3|)) 14))) -(((-864 |#1| |#2| |#3|) (-10 -7 (-15 -3738 ((-814 |#1| |#2| |#3|) |#3| (-821 |#1|) (-814 |#1| |#2| |#3|)))) (-1014) (-815 |#1|) (-608 |#2|)) (T -864)) -((-3738 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-814 *5 *6 *3)) (-5 *4 (-821 *5)) (-4 *5 (-1014)) (-4 *6 (-815 *5)) (-4 *3 (-608 *6)) (-5 *1 (-864 *5 *6 *3))))) -(-10 -7 (-15 -3738 ((-814 |#1| |#2| |#3|) |#3| (-821 |#1|) (-814 |#1| |#2| |#3|)))) -((-3738 (((-818 |#1| |#5|) |#5| (-821 |#1|) (-818 |#1| |#5|)) 17 (|has| |#3| (-815 |#1|))) (((-818 |#1| |#5|) |#5| (-821 |#1|) (-818 |#1| |#5|) (-1 (-818 |#1| |#5|) |#3| (-821 |#1|) (-818 |#1| |#5|))) 16))) -(((-865 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3738 ((-818 |#1| |#5|) |#5| (-821 |#1|) (-818 |#1| |#5|) (-1 (-818 |#1| |#5|) |#3| (-821 |#1|) (-818 |#1| |#5|)))) (IF (|has| |#3| (-815 |#1|)) (-15 -3738 ((-818 |#1| |#5|) |#5| (-821 |#1|) (-818 |#1| |#5|))) |%noBranch|)) (-1014) (-730) (-784) (-13 (-971) (-784) (-815 |#1|)) (-13 (-878 |#4| |#2| |#3|) (-563 (-821 |#1|)))) (T -865)) -((-3738 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-13 (-878 *8 *6 *7) (-563 *4))) (-5 *4 (-821 *5)) (-4 *7 (-815 *5)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-13 (-971) (-784) (-815 *5))) (-5 *1 (-865 *5 *6 *7 *8 *3)))) (-3738 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-818 *6 *3) *8 (-821 *6) (-818 *6 *3))) (-4 *8 (-784)) (-5 *2 (-818 *6 *3)) (-5 *4 (-821 *6)) (-4 *6 (-1014)) (-4 *3 (-13 (-878 *9 *7 *8) (-563 *4))) (-4 *7 (-730)) (-4 *9 (-13 (-971) (-784) (-815 *6))) (-5 *1 (-865 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -3738 ((-818 |#1| |#5|) |#5| (-821 |#1|) (-818 |#1| |#5|) (-1 (-818 |#1| |#5|) |#3| (-821 |#1|) (-818 |#1| |#5|)))) (IF (|has| |#3| (-815 |#1|)) (-15 -3738 ((-818 |#1| |#5|) |#5| (-821 |#1|) (-818 |#1| |#5|))) |%noBranch|)) -((-1958 ((|#2| |#2| (-588 (-1 (-108) |#3|))) 11) ((|#2| |#2| (-1 (-108) |#3|)) 12))) -(((-866 |#1| |#2| |#3|) (-10 -7 (-15 -1958 (|#2| |#2| (-1 (-108) |#3|))) (-15 -1958 (|#2| |#2| (-588 (-1 (-108) |#3|))))) (-784) (-405 |#1|) (-1120)) (T -866)) -((-1958 (*1 *2 *2 *3) (-12 (-5 *3 (-588 (-1 (-108) *5))) (-4 *5 (-1120)) (-4 *4 (-784)) (-5 *1 (-866 *4 *2 *5)) (-4 *2 (-405 *4)))) (-1958 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1120)) (-4 *4 (-784)) (-5 *1 (-866 *4 *2 *5)) (-4 *2 (-405 *4))))) -(-10 -7 (-15 -1958 (|#2| |#2| (-1 (-108) |#3|))) (-15 -1958 (|#2| |#2| (-588 (-1 (-108) |#3|))))) -((-1958 (((-291 (-522)) (-1085) (-588 (-1 (-108) |#1|))) 16) (((-291 (-522)) (-1085) (-1 (-108) |#1|)) 13))) -(((-867 |#1|) (-10 -7 (-15 -1958 ((-291 (-522)) (-1085) (-1 (-108) |#1|))) (-15 -1958 ((-291 (-522)) (-1085) (-588 (-1 (-108) |#1|))))) (-1120)) (T -867)) -((-1958 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-588 (-1 (-108) *5))) (-4 *5 (-1120)) (-5 *2 (-291 (-522))) (-5 *1 (-867 *5)))) (-1958 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1120)) (-5 *2 (-291 (-522))) (-5 *1 (-867 *5))))) -(-10 -7 (-15 -1958 ((-291 (-522)) (-1085) (-1 (-108) |#1|))) (-15 -1958 ((-291 (-522)) (-1085) (-588 (-1 (-108) |#1|))))) -((-3738 (((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)) 25))) -(((-868 |#1| |#2| |#3|) (-10 -7 (-15 -3738 ((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)))) (-1014) (-13 (-514) (-815 |#1|) (-563 (-821 |#1|))) (-919 |#2|)) (T -868)) -((-3738 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-919 *6)) (-4 *6 (-13 (-514) (-815 *5) (-563 *4))) (-5 *4 (-821 *5)) (-5 *1 (-868 *5 *6 *3))))) -(-10 -7 (-15 -3738 ((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)))) -((-3738 (((-818 |#1| (-1085)) (-1085) (-821 |#1|) (-818 |#1| (-1085))) 17))) -(((-869 |#1|) (-10 -7 (-15 -3738 ((-818 |#1| (-1085)) (-1085) (-821 |#1|) (-818 |#1| (-1085))))) (-1014)) (T -869)) -((-3738 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 (-1085))) (-5 *3 (-1085)) (-5 *4 (-821 *5)) (-4 *5 (-1014)) (-5 *1 (-869 *5))))) -(-10 -7 (-15 -3738 ((-818 |#1| (-1085)) (-1085) (-821 |#1|) (-818 |#1| (-1085))))) -((-3238 (((-818 |#1| |#3|) (-588 |#3|) (-588 (-821 |#1|)) (-818 |#1| |#3|) (-1 (-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|))) 33)) (-3738 (((-818 |#1| |#3|) (-588 |#3|) (-588 (-821 |#1|)) (-1 |#3| (-588 |#3|)) (-818 |#1| |#3|) (-1 (-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|))) 32))) -(((-870 |#1| |#2| |#3|) (-10 -7 (-15 -3738 ((-818 |#1| |#3|) (-588 |#3|) (-588 (-821 |#1|)) (-1 |#3| (-588 |#3|)) (-818 |#1| |#3|) (-1 (-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)))) (-15 -3238 ((-818 |#1| |#3|) (-588 |#3|) (-588 (-821 |#1|)) (-818 |#1| |#3|) (-1 (-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|))))) (-1014) (-13 (-971) (-784)) (-13 (-971) (-563 (-821 |#1|)) (-962 |#2|))) (T -870)) -((-3238 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 (-821 *6))) (-5 *5 (-1 (-818 *6 *8) *8 (-821 *6) (-818 *6 *8))) (-4 *6 (-1014)) (-4 *8 (-13 (-971) (-563 (-821 *6)) (-962 *7))) (-5 *2 (-818 *6 *8)) (-4 *7 (-13 (-971) (-784))) (-5 *1 (-870 *6 *7 *8)))) (-3738 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-588 (-821 *7))) (-5 *5 (-1 *9 (-588 *9))) (-5 *6 (-1 (-818 *7 *9) *9 (-821 *7) (-818 *7 *9))) (-4 *7 (-1014)) (-4 *9 (-13 (-971) (-563 (-821 *7)) (-962 *8))) (-5 *2 (-818 *7 *9)) (-5 *3 (-588 *9)) (-4 *8 (-13 (-971) (-784))) (-5 *1 (-870 *7 *8 *9))))) -(-10 -7 (-15 -3738 ((-818 |#1| |#3|) (-588 |#3|) (-588 (-821 |#1|)) (-1 |#3| (-588 |#3|)) (-818 |#1| |#3|) (-1 (-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)))) (-15 -3238 ((-818 |#1| |#3|) (-588 |#3|) (-588 (-821 |#1|)) (-818 |#1| |#3|) (-1 (-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|))))) -((-2963 (((-1081 (-382 (-522))) (-522)) 62)) (-2871 (((-1081 (-522)) (-522)) 65)) (-1813 (((-1081 (-522)) (-522)) 59)) (-3202 (((-522) (-1081 (-522))) 54)) (-3322 (((-1081 (-382 (-522))) (-522)) 48)) (-2406 (((-1081 (-522)) (-522)) 37)) (-3188 (((-1081 (-522)) (-522)) 67)) (-2270 (((-1081 (-522)) (-522)) 66)) (-3469 (((-1081 (-382 (-522))) (-522)) 50))) -(((-871) (-10 -7 (-15 -3469 ((-1081 (-382 (-522))) (-522))) (-15 -2270 ((-1081 (-522)) (-522))) (-15 -3188 ((-1081 (-522)) (-522))) (-15 -2406 ((-1081 (-522)) (-522))) (-15 -3322 ((-1081 (-382 (-522))) (-522))) (-15 -3202 ((-522) (-1081 (-522)))) (-15 -1813 ((-1081 (-522)) (-522))) (-15 -2871 ((-1081 (-522)) (-522))) (-15 -2963 ((-1081 (-382 (-522))) (-522))))) (T -871)) -((-2963 (*1 *2 *3) (-12 (-5 *2 (-1081 (-382 (-522)))) (-5 *1 (-871)) (-5 *3 (-522)))) (-2871 (*1 *2 *3) (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-871)) (-5 *3 (-522)))) (-1813 (*1 *2 *3) (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-871)) (-5 *3 (-522)))) (-3202 (*1 *2 *3) (-12 (-5 *3 (-1081 (-522))) (-5 *2 (-522)) (-5 *1 (-871)))) (-3322 (*1 *2 *3) (-12 (-5 *2 (-1081 (-382 (-522)))) (-5 *1 (-871)) (-5 *3 (-522)))) (-2406 (*1 *2 *3) (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-871)) (-5 *3 (-522)))) (-3188 (*1 *2 *3) (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-871)) (-5 *3 (-522)))) (-2270 (*1 *2 *3) (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-871)) (-5 *3 (-522)))) (-3469 (*1 *2 *3) (-12 (-5 *2 (-1081 (-382 (-522)))) (-5 *1 (-871)) (-5 *3 (-522))))) -(-10 -7 (-15 -3469 ((-1081 (-382 (-522))) (-522))) (-15 -2270 ((-1081 (-522)) (-522))) (-15 -3188 ((-1081 (-522)) (-522))) (-15 -2406 ((-1081 (-522)) (-522))) (-15 -3322 ((-1081 (-382 (-522))) (-522))) (-15 -3202 ((-522) (-1081 (-522)))) (-15 -1813 ((-1081 (-522)) (-522))) (-15 -2871 ((-1081 (-522)) (-522))) (-15 -2963 ((-1081 (-382 (-522))) (-522)))) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1785 (($ (-708)) NIL (|has| |#1| (-23)))) (-3883 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1866 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-2806 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784))))) (-3296 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-2717 (((-108) $ (-708)) NIL)) (-2437 ((|#1| $ (-522) |#1|) 11 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239)))) (-1696 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3367 (($) NIL T CONST)) (-2465 (($ $) NIL (|has| $ (-6 -4239)))) (-1939 (($ $) NIL)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1424 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238)))) (-2411 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-522)) NIL)) (-3314 (((-522) (-1 (-108) |#1|) $) NIL) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014)))) (-1239 (($ (-588 |#1|)) 13)) (-2395 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4043 (((-628 |#1|) $ $) NIL (|has| |#1| (-971)))) (-1893 (($ (-708) |#1|) 8)) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) 10 (|has| (-522) (-784)))) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-3164 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-784)))) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2201 (((-522) $) NIL (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-2397 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4113 ((|#1| $) NIL (-12 (|has| |#1| (-928)) (|has| |#1| (-971))))) (-3309 (((-108) $ (-708)) NIL)) (-4030 ((|#1| $) NIL (-12 (|has| |#1| (-928)) (|has| |#1| (-971))))) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1731 (($ |#1| $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) NIL)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2337 ((|#1| $) NIL (|has| (-522) (-784)))) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1972 (($ $ |#1|) NIL (|has| $ (-6 -4239)))) (-3934 (($ $ (-588 |#1|)) 24)) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#1| $ (-522) |#1|) NIL) ((|#1| $ (-522)) 18) (($ $ (-1133 (-522))) NIL)) (-4024 ((|#1| $ $) NIL (|has| |#1| (-971)))) (-3222 (((-850) $) 16)) (-3835 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-2791 (($ $ $) 22)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3629 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| |#1| (-563 (-498)))) (($ (-588 |#1|)) 17)) (-2227 (($ (-588 |#1|)) NIL)) (-4170 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 23) (($ (-588 $)) NIL)) (-2217 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1672 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1661 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-522) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-664))) (($ $ |#1|) NIL (|has| |#1| (-664)))) (-3591 (((-708) $) 14 (|has| $ (-6 -4238))))) -(((-872 |#1|) (-907 |#1|) (-971)) (T -872)) -NIL -(-907 |#1|) -((-1295 (((-454 |#1| |#2|) (-881 |#2|)) 17)) (-2475 (((-224 |#1| |#2|) (-881 |#2|)) 29)) (-2891 (((-881 |#2|) (-454 |#1| |#2|)) 22)) (-3681 (((-224 |#1| |#2|) (-454 |#1| |#2|)) 53)) (-3689 (((-881 |#2|) (-224 |#1| |#2|)) 26)) (-2641 (((-454 |#1| |#2|) (-224 |#1| |#2|)) 44))) -(((-873 |#1| |#2|) (-10 -7 (-15 -2641 ((-454 |#1| |#2|) (-224 |#1| |#2|))) (-15 -3681 ((-224 |#1| |#2|) (-454 |#1| |#2|))) (-15 -1295 ((-454 |#1| |#2|) (-881 |#2|))) (-15 -2891 ((-881 |#2|) (-454 |#1| |#2|))) (-15 -3689 ((-881 |#2|) (-224 |#1| |#2|))) (-15 -2475 ((-224 |#1| |#2|) (-881 |#2|)))) (-588 (-1085)) (-971)) (T -873)) -((-2475 (*1 *2 *3) (-12 (-5 *3 (-881 *5)) (-4 *5 (-971)) (-5 *2 (-224 *4 *5)) (-5 *1 (-873 *4 *5)) (-14 *4 (-588 (-1085))))) (-3689 (*1 *2 *3) (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-971)) (-5 *2 (-881 *5)) (-5 *1 (-873 *4 *5)))) (-2891 (*1 *2 *3) (-12 (-5 *3 (-454 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-971)) (-5 *2 (-881 *5)) (-5 *1 (-873 *4 *5)))) (-1295 (*1 *2 *3) (-12 (-5 *3 (-881 *5)) (-4 *5 (-971)) (-5 *2 (-454 *4 *5)) (-5 *1 (-873 *4 *5)) (-14 *4 (-588 (-1085))))) (-3681 (*1 *2 *3) (-12 (-5 *3 (-454 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-971)) (-5 *2 (-224 *4 *5)) (-5 *1 (-873 *4 *5)))) (-2641 (*1 *2 *3) (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-971)) (-5 *2 (-454 *4 *5)) (-5 *1 (-873 *4 *5))))) -(-10 -7 (-15 -2641 ((-454 |#1| |#2|) (-224 |#1| |#2|))) (-15 -3681 ((-224 |#1| |#2|) (-454 |#1| |#2|))) (-15 -1295 ((-454 |#1| |#2|) (-881 |#2|))) (-15 -2891 ((-881 |#2|) (-454 |#1| |#2|))) (-15 -3689 ((-881 |#2|) (-224 |#1| |#2|))) (-15 -2475 ((-224 |#1| |#2|) (-881 |#2|)))) -((-1316 (((-588 |#2|) |#2| |#2|) 10)) (-3013 (((-708) (-588 |#1|)) 38 (|has| |#1| (-782)))) (-1405 (((-588 |#2|) |#2|) 11)) (-1670 (((-708) (-588 |#1|) (-522) (-522)) 37 (|has| |#1| (-782)))) (-3435 ((|#1| |#2|) 33 (|has| |#1| (-782))))) -(((-874 |#1| |#2|) (-10 -7 (-15 -1316 ((-588 |#2|) |#2| |#2|)) (-15 -1405 ((-588 |#2|) |#2|)) (IF (|has| |#1| (-782)) (PROGN (-15 -3435 (|#1| |#2|)) (-15 -3013 ((-708) (-588 |#1|))) (-15 -1670 ((-708) (-588 |#1|) (-522) (-522)))) |%noBranch|)) (-338) (-1142 |#1|)) (T -874)) -((-1670 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-588 *5)) (-5 *4 (-522)) (-4 *5 (-782)) (-4 *5 (-338)) (-5 *2 (-708)) (-5 *1 (-874 *5 *6)) (-4 *6 (-1142 *5)))) (-3013 (*1 *2 *3) (-12 (-5 *3 (-588 *4)) (-4 *4 (-782)) (-4 *4 (-338)) (-5 *2 (-708)) (-5 *1 (-874 *4 *5)) (-4 *5 (-1142 *4)))) (-3435 (*1 *2 *3) (-12 (-4 *2 (-338)) (-4 *2 (-782)) (-5 *1 (-874 *2 *3)) (-4 *3 (-1142 *2)))) (-1405 (*1 *2 *3) (-12 (-4 *4 (-338)) (-5 *2 (-588 *3)) (-5 *1 (-874 *4 *3)) (-4 *3 (-1142 *4)))) (-1316 (*1 *2 *3 *3) (-12 (-4 *4 (-338)) (-5 *2 (-588 *3)) (-5 *1 (-874 *4 *3)) (-4 *3 (-1142 *4))))) -(-10 -7 (-15 -1316 ((-588 |#2|) |#2| |#2|)) (-15 -1405 ((-588 |#2|) |#2|)) (IF (|has| |#1| (-782)) (PROGN (-15 -3435 (|#1| |#2|)) (-15 -3013 ((-708) (-588 |#1|))) (-15 -1670 ((-708) (-588 |#1|) (-522) (-522)))) |%noBranch|)) -((-3810 (((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)) 18))) -(((-875 |#1| |#2|) (-10 -7 (-15 -3810 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)))) (-971) (-971)) (T -875)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-971)) (-4 *6 (-971)) (-5 *2 (-881 *6)) (-5 *1 (-875 *5 *6))))) -(-10 -7 (-15 -3810 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)))) -((-1264 (((-1139 |#1| (-881 |#2|)) (-881 |#2|) (-1162 |#1|)) 18))) -(((-876 |#1| |#2|) (-10 -7 (-15 -1264 ((-1139 |#1| (-881 |#2|)) (-881 |#2|) (-1162 |#1|)))) (-1085) (-971)) (T -876)) -((-1264 (*1 *2 *3 *4) (-12 (-5 *4 (-1162 *5)) (-14 *5 (-1085)) (-4 *6 (-971)) (-5 *2 (-1139 *5 (-881 *6))) (-5 *1 (-876 *5 *6)) (-5 *3 (-881 *6))))) -(-10 -7 (-15 -1264 ((-1139 |#1| (-881 |#2|)) (-881 |#2|) (-1162 |#1|)))) -((-3358 (((-708) $) 70) (((-708) $ (-588 |#4|)) 73)) (-2961 (($ $) 170)) (-3133 (((-393 $) $) 162)) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 113)) (-3700 (((-3 |#2| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 (-522) "failed") $) NIL) (((-3 |#4| "failed") $) 59)) (-1478 ((|#2| $) NIL) (((-382 (-522)) $) NIL) (((-522) $) NIL) ((|#4| $) 58)) (-2908 (($ $ $ |#4|) 75)) (-1226 (((-628 (-522)) (-628 $)) NIL) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) 103) (((-628 |#2|) (-628 $)) 96)) (-2883 (($ $) 177) (($ $ |#4|) 180)) (-3232 (((-588 $) $) 62)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 195) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 189)) (-3038 (((-588 $) $) 28)) (-3500 (($ |#2| |#3|) NIL) (($ $ |#4| (-708)) NIL) (($ $ (-588 |#4|) (-588 (-708))) 56)) (-3058 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $ |#4|) 159)) (-2760 (((-3 (-588 $) "failed") $) 42)) (-1919 (((-3 (-588 $) "failed") $) 31)) (-2024 (((-3 (-2 (|:| |var| |#4|) (|:| -3858 (-708))) "failed") $) 46)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 106)) (-4022 (((-393 (-1081 $)) (-1081 $)) 119)) (-2313 (((-393 (-1081 $)) (-1081 $)) 117)) (-2006 (((-393 $) $) 137)) (-2330 (($ $ (-588 (-270 $))) 20) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-588 |#4|) (-588 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-588 |#4|) (-588 $)) NIL)) (-1615 (($ $ |#4|) 77)) (-3873 (((-821 (-354)) $) 209) (((-821 (-522)) $) 202) (((-498) $) 217)) (-2988 ((|#2| $) NIL) (($ $ |#4|) 172)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) 151)) (-1643 ((|#2| $ |#3|) NIL) (($ $ |#4| (-708)) 51) (($ $ (-588 |#4|) (-588 (-708))) 54)) (-3040 (((-3 $ "failed") $) 153)) (-1587 (((-108) $ $) 183))) -(((-877 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1789 ((-1081 |#1|) (-1081 |#1|) (-1081 |#1|))) (-15 -3133 ((-393 |#1|) |#1|)) (-15 -2961 (|#1| |#1|)) (-15 -3040 ((-3 |#1| "failed") |#1|)) (-15 -1587 ((-108) |#1| |#1|)) (-15 -3873 ((-498) |#1|)) (-15 -3873 ((-821 (-522)) |#1|)) (-15 -3873 ((-821 (-354)) |#1|)) (-15 -3738 ((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|))) (-15 -3738 ((-818 (-354) |#1|) |#1| (-821 (-354)) (-818 (-354) |#1|))) (-15 -2006 ((-393 |#1|) |#1|)) (-15 -2313 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -4022 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -2800 ((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|))) (-15 -2583 ((-3 (-1166 |#1|) "failed") (-628 |#1|))) (-15 -2883 (|#1| |#1| |#4|)) (-15 -2988 (|#1| |#1| |#4|)) (-15 -1615 (|#1| |#1| |#4|)) (-15 -2908 (|#1| |#1| |#1| |#4|)) (-15 -3232 ((-588 |#1|) |#1|)) (-15 -3358 ((-708) |#1| (-588 |#4|))) (-15 -3358 ((-708) |#1|)) (-15 -2024 ((-3 (-2 (|:| |var| |#4|) (|:| -3858 (-708))) "failed") |#1|)) (-15 -2760 ((-3 (-588 |#1|) "failed") |#1|)) (-15 -1919 ((-3 (-588 |#1|) "failed") |#1|)) (-15 -3500 (|#1| |#1| (-588 |#4|) (-588 (-708)))) (-15 -3500 (|#1| |#1| |#4| (-708))) (-15 -3058 ((-2 (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1| |#4|)) (-15 -3038 ((-588 |#1|) |#1|)) (-15 -1643 (|#1| |#1| (-588 |#4|) (-588 (-708)))) (-15 -1643 (|#1| |#1| |#4| (-708))) (-15 -1226 ((-628 |#2|) (-628 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 |#1|) (-1166 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -1226 ((-628 (-522)) (-628 |#1|))) (-15 -1478 (|#4| |#1|)) (-15 -3700 ((-3 |#4| "failed") |#1|)) (-15 -2330 (|#1| |#1| (-588 |#4|) (-588 |#1|))) (-15 -2330 (|#1| |#1| |#4| |#1|)) (-15 -2330 (|#1| |#1| (-588 |#4|) (-588 |#2|))) (-15 -2330 (|#1| |#1| |#4| |#2|)) (-15 -2330 (|#1| |#1| (-588 |#1|) (-588 |#1|))) (-15 -2330 (|#1| |#1| |#1| |#1|)) (-15 -2330 (|#1| |#1| (-270 |#1|))) (-15 -2330 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -3500 (|#1| |#2| |#3|)) (-15 -1643 (|#2| |#1| |#3|)) (-15 -1478 ((-522) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -1478 (|#2| |#1|)) (-15 -2988 (|#2| |#1|)) (-15 -2883 (|#1| |#1|))) (-878 |#2| |#3| |#4|) (-971) (-730) (-784)) (T -877)) -NIL -(-10 -8 (-15 -1789 ((-1081 |#1|) (-1081 |#1|) (-1081 |#1|))) (-15 -3133 ((-393 |#1|) |#1|)) (-15 -2961 (|#1| |#1|)) (-15 -3040 ((-3 |#1| "failed") |#1|)) (-15 -1587 ((-108) |#1| |#1|)) (-15 -3873 ((-498) |#1|)) (-15 -3873 ((-821 (-522)) |#1|)) (-15 -3873 ((-821 (-354)) |#1|)) (-15 -3738 ((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|))) (-15 -3738 ((-818 (-354) |#1|) |#1| (-821 (-354)) (-818 (-354) |#1|))) (-15 -2006 ((-393 |#1|) |#1|)) (-15 -2313 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -4022 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -2800 ((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|))) (-15 -2583 ((-3 (-1166 |#1|) "failed") (-628 |#1|))) (-15 -2883 (|#1| |#1| |#4|)) (-15 -2988 (|#1| |#1| |#4|)) (-15 -1615 (|#1| |#1| |#4|)) (-15 -2908 (|#1| |#1| |#1| |#4|)) (-15 -3232 ((-588 |#1|) |#1|)) (-15 -3358 ((-708) |#1| (-588 |#4|))) (-15 -3358 ((-708) |#1|)) (-15 -2024 ((-3 (-2 (|:| |var| |#4|) (|:| -3858 (-708))) "failed") |#1|)) (-15 -2760 ((-3 (-588 |#1|) "failed") |#1|)) (-15 -1919 ((-3 (-588 |#1|) "failed") |#1|)) (-15 -3500 (|#1| |#1| (-588 |#4|) (-588 (-708)))) (-15 -3500 (|#1| |#1| |#4| (-708))) (-15 -3058 ((-2 (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1| |#4|)) (-15 -3038 ((-588 |#1|) |#1|)) (-15 -1643 (|#1| |#1| (-588 |#4|) (-588 (-708)))) (-15 -1643 (|#1| |#1| |#4| (-708))) (-15 -1226 ((-628 |#2|) (-628 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 |#1|) (-1166 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -1226 ((-628 (-522)) (-628 |#1|))) (-15 -1478 (|#4| |#1|)) (-15 -3700 ((-3 |#4| "failed") |#1|)) (-15 -2330 (|#1| |#1| (-588 |#4|) (-588 |#1|))) (-15 -2330 (|#1| |#1| |#4| |#1|)) (-15 -2330 (|#1| |#1| (-588 |#4|) (-588 |#2|))) (-15 -2330 (|#1| |#1| |#4| |#2|)) (-15 -2330 (|#1| |#1| (-588 |#1|) (-588 |#1|))) (-15 -2330 (|#1| |#1| |#1| |#1|)) (-15 -2330 (|#1| |#1| (-270 |#1|))) (-15 -2330 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -3500 (|#1| |#2| |#3|)) (-15 -1643 (|#2| |#1| |#3|)) (-15 -1478 ((-522) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -1478 (|#2| |#1|)) (-15 -2988 (|#2| |#1|)) (-15 -2883 (|#1| |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3533 (((-588 |#3|) $) 110)) (-1264 (((-1081 $) $ |#3|) 125) (((-1081 |#1|) $) 124)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 87 (|has| |#1| (-514)))) (-2298 (($ $) 88 (|has| |#1| (-514)))) (-3007 (((-108) $) 90 (|has| |#1| (-514)))) (-3358 (((-708) $) 112) (((-708) $ (-588 |#3|)) 111)) (-2265 (((-3 $ "failed") $ $) 19)) (-3543 (((-393 (-1081 $)) (-1081 $)) 100 (|has| |#1| (-838)))) (-2961 (($ $) 98 (|has| |#1| (-426)))) (-3133 (((-393 $) $) 97 (|has| |#1| (-426)))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 103 (|has| |#1| (-838)))) (-3367 (($) 17 T CONST)) (-3700 (((-3 |#1| "failed") $) 164) (((-3 (-382 (-522)) "failed") $) 162 (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) 160 (|has| |#1| (-962 (-522)))) (((-3 |#3| "failed") $) 136)) (-1478 ((|#1| $) 165) (((-382 (-522)) $) 161 (|has| |#1| (-962 (-382 (-522))))) (((-522) $) 159 (|has| |#1| (-962 (-522)))) ((|#3| $) 135)) (-2908 (($ $ $ |#3|) 108 (|has| |#1| (-157)))) (-3241 (($ $) 154)) (-1226 (((-628 (-522)) (-628 $)) 134 (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 133 (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 132) (((-628 |#1|) (-628 $)) 131)) (-3920 (((-3 $ "failed") $) 34)) (-2883 (($ $) 176 (|has| |#1| (-426))) (($ $ |#3|) 105 (|has| |#1| (-426)))) (-3232 (((-588 $) $) 109)) (-2725 (((-108) $) 96 (|has| |#1| (-838)))) (-3792 (($ $ |#1| |#2| $) 172)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 84 (-12 (|has| |#3| (-815 (-354))) (|has| |#1| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 83 (-12 (|has| |#3| (-815 (-522))) (|has| |#1| (-815 (-522)))))) (-2859 (((-108) $) 31)) (-1391 (((-708) $) 169)) (-3520 (($ (-1081 |#1|) |#3|) 117) (($ (-1081 $) |#3|) 116)) (-3038 (((-588 $) $) 126)) (-1374 (((-108) $) 152)) (-3500 (($ |#1| |#2|) 153) (($ $ |#3| (-708)) 119) (($ $ (-588 |#3|) (-588 (-708))) 118)) (-3058 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $ |#3|) 120)) (-3564 ((|#2| $) 170) (((-708) $ |#3|) 122) (((-588 (-708)) $ (-588 |#3|)) 121)) (-1308 (($ $ $) 79 (|has| |#1| (-784)))) (-2524 (($ $ $) 78 (|has| |#1| (-784)))) (-1723 (($ (-1 |#2| |#2|) $) 171)) (-3810 (($ (-1 |#1| |#1|) $) 151)) (-3155 (((-3 |#3| "failed") $) 123)) (-3216 (($ $) 149)) (-3224 ((|#1| $) 148)) (-2267 (($ (-588 $)) 94 (|has| |#1| (-426))) (($ $ $) 93 (|has| |#1| (-426)))) (-2311 (((-1068) $) 9)) (-2760 (((-3 (-588 $) "failed") $) 114)) (-1919 (((-3 (-588 $) "failed") $) 115)) (-2024 (((-3 (-2 (|:| |var| |#3|) (|:| -3858 (-708))) "failed") $) 113)) (-4174 (((-1032) $) 10)) (-3199 (((-108) $) 166)) (-3207 ((|#1| $) 167)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 95 (|has| |#1| (-426)))) (-2308 (($ (-588 $)) 92 (|has| |#1| (-426))) (($ $ $) 91 (|has| |#1| (-426)))) (-4022 (((-393 (-1081 $)) (-1081 $)) 102 (|has| |#1| (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) 101 (|has| |#1| (-838)))) (-2006 (((-393 $) $) 99 (|has| |#1| (-838)))) (-2276 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-514))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-514)))) (-2330 (($ $ (-588 (-270 $))) 145) (($ $ (-270 $)) 144) (($ $ $ $) 143) (($ $ (-588 $) (-588 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-588 |#3|) (-588 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-588 |#3|) (-588 $)) 138)) (-1615 (($ $ |#3|) 107 (|has| |#1| (-157)))) (-2731 (($ $ |#3|) 42) (($ $ (-588 |#3|)) 41) (($ $ |#3| (-708)) 40) (($ $ (-588 |#3|) (-588 (-708))) 39)) (-2487 ((|#2| $) 150) (((-708) $ |#3|) 130) (((-588 (-708)) $ (-588 |#3|)) 129)) (-3873 (((-821 (-354)) $) 82 (-12 (|has| |#3| (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354)))))) (((-821 (-522)) $) 81 (-12 (|has| |#3| (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522)))))) (((-498) $) 80 (-12 (|has| |#3| (-563 (-498))) (|has| |#1| (-563 (-498)))))) (-2988 ((|#1| $) 175 (|has| |#1| (-426))) (($ $ |#3|) 106 (|has| |#1| (-426)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) 104 (-4079 (|has| $ (-133)) (|has| |#1| (-838))))) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-514))) (($ (-382 (-522))) 72 (-3844 (|has| |#1| (-962 (-382 (-522)))) (|has| |#1| (-37 (-382 (-522))))))) (-2180 (((-588 |#1|) $) 168)) (-1643 ((|#1| $ |#2|) 155) (($ $ |#3| (-708)) 128) (($ $ (-588 |#3|) (-588 (-708))) 127)) (-3040 (((-3 $ "failed") $) 73 (-3844 (-4079 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2742 (((-708)) 29)) (-1225 (($ $ $ (-708)) 173 (|has| |#1| (-157)))) (-1407 (((-108) $ $) 89 (|has| |#1| (-514)))) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $ |#3|) 38) (($ $ (-588 |#3|)) 37) (($ $ |#3| (-708)) 36) (($ $ (-588 |#3|) (-588 (-708))) 35)) (-1623 (((-108) $ $) 76 (|has| |#1| (-784)))) (-1597 (((-108) $ $) 75 (|has| |#1| (-784)))) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 77 (|has| |#1| (-784)))) (-1587 (((-108) $ $) 74 (|has| |#1| (-784)))) (-1682 (($ $ |#1|) 156 (|has| |#1| (-338)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 158 (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) 157 (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-878 |#1| |#2| |#3|) (-1197) (-971) (-730) (-784)) (T -878)) -((-2883 (*1 *1 *1) (-12 (-4 *1 (-878 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-426)))) (-2487 (*1 *2 *1 *3) (-12 (-4 *1 (-878 *4 *5 *3)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) (-5 *2 (-708)))) (-2487 (*1 *2 *1 *3) (-12 (-5 *3 (-588 *6)) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 (-708))))) (-1643 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-878 *4 *5 *2)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *2 (-784)))) (-1643 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 *6)) (-5 *3 (-588 (-708))) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)))) (-3038 (*1 *2 *1) (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-878 *3 *4 *5)))) (-1264 (*1 *2 *1 *3) (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) (-5 *2 (-1081 *1)) (-4 *1 (-878 *4 *5 *3)))) (-1264 (*1 *2 *1) (-12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-1081 *3)))) (-3155 (*1 *2 *1) (|partial| -12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-878 *4 *5 *3)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) (-5 *2 (-708)))) (-3564 (*1 *2 *1 *3) (-12 (-5 *3 (-588 *6)) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 (-708))))) (-3058 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) (-5 *2 (-2 (|:| -3450 *1) (|:| -4002 *1))) (-4 *1 (-878 *4 *5 *3)))) (-3500 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-878 *4 *5 *2)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *2 (-784)))) (-3500 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 *6)) (-5 *3 (-588 (-708))) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)))) (-3520 (*1 *1 *2 *3) (-12 (-5 *2 (-1081 *4)) (-4 *4 (-971)) (-4 *1 (-878 *4 *5 *3)) (-4 *5 (-730)) (-4 *3 (-784)))) (-3520 (*1 *1 *2 *3) (-12 (-5 *2 (-1081 *1)) (-4 *1 (-878 *4 *5 *3)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)))) (-1919 (*1 *2 *1) (|partial| -12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-878 *3 *4 *5)))) (-2760 (*1 *2 *1) (|partial| -12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-878 *3 *4 *5)))) (-2024 (*1 *2 *1) (|partial| -12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-2 (|:| |var| *5) (|:| -3858 (-708)))))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-708)))) (-3358 (*1 *2 *1 *3) (-12 (-5 *3 (-588 *6)) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-708)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *5)))) (-3232 (*1 *2 *1) (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-878 *3 *4 *5)))) (-2908 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)) (-4 *3 (-157)))) (-1615 (*1 *1 *1 *2) (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)) (-4 *3 (-157)))) (-2988 (*1 *1 *1 *2) (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)) (-4 *3 (-426)))) (-2883 (*1 *1 *1 *2) (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)) (-4 *3 (-426)))) (-2961 (*1 *1 *1) (-12 (-4 *1 (-878 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-426)))) (-3133 (*1 *2 *1) (-12 (-4 *3 (-426)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-393 *1)) (-4 *1 (-878 *3 *4 *5))))) -(-13 (-829 |t#3|) (-301 |t#1| |t#2|) (-285 $) (-483 |t#3| |t#1|) (-483 |t#3| $) (-962 |t#3|) (-352 |t#1|) (-10 -8 (-15 -2487 ((-708) $ |t#3|)) (-15 -2487 ((-588 (-708)) $ (-588 |t#3|))) (-15 -1643 ($ $ |t#3| (-708))) (-15 -1643 ($ $ (-588 |t#3|) (-588 (-708)))) (-15 -3038 ((-588 $) $)) (-15 -1264 ((-1081 $) $ |t#3|)) (-15 -1264 ((-1081 |t#1|) $)) (-15 -3155 ((-3 |t#3| "failed") $)) (-15 -3564 ((-708) $ |t#3|)) (-15 -3564 ((-588 (-708)) $ (-588 |t#3|))) (-15 -3058 ((-2 (|:| -3450 $) (|:| -4002 $)) $ $ |t#3|)) (-15 -3500 ($ $ |t#3| (-708))) (-15 -3500 ($ $ (-588 |t#3|) (-588 (-708)))) (-15 -3520 ($ (-1081 |t#1|) |t#3|)) (-15 -3520 ($ (-1081 $) |t#3|)) (-15 -1919 ((-3 (-588 $) "failed") $)) (-15 -2760 ((-3 (-588 $) "failed") $)) (-15 -2024 ((-3 (-2 (|:| |var| |t#3|) (|:| -3858 (-708))) "failed") $)) (-15 -3358 ((-708) $)) (-15 -3358 ((-708) $ (-588 |t#3|))) (-15 -3533 ((-588 |t#3|) $)) (-15 -3232 ((-588 $) $)) (IF (|has| |t#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#1| (-563 (-498))) (IF (|has| |t#3| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-563 (-821 (-522)))) (IF (|has| |t#3| (-563 (-821 (-522)))) (-6 (-563 (-821 (-522)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-563 (-821 (-354)))) (IF (|has| |t#3| (-563 (-821 (-354)))) (-6 (-563 (-821 (-354)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-815 (-522))) (IF (|has| |t#3| (-815 (-522))) (-6 (-815 (-522))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-815 (-354))) (IF (|has| |t#3| (-815 (-354))) (-6 (-815 (-354))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-157)) (PROGN (-15 -2908 ($ $ $ |t#3|)) (-15 -1615 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-426)) (PROGN (-6 (-426)) (-15 -2988 ($ $ |t#3|)) (-15 -2883 ($ $)) (-15 -2883 ($ $ |t#3|)) (-15 -3133 ((-393 $) $)) (-15 -2961 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4236)) (-6 -4236) |%noBranch|) (IF (|has| |t#1| (-838)) (-6 (-838)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-382 (-522)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-157))) ((-563 (-498)) -12 (|has| |#1| (-563 (-498))) (|has| |#3| (-563 (-498)))) ((-563 (-821 (-354))) -12 (|has| |#1| (-563 (-821 (-354)))) (|has| |#3| (-563 (-821 (-354))))) ((-563 (-821 (-522))) -12 (|has| |#1| (-563 (-821 (-522)))) (|has| |#3| (-563 (-821 (-522))))) ((-266) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-285 $) . T) ((-301 |#1| |#2|) . T) ((-352 |#1|) . T) ((-386 |#1|) . T) ((-426) -3844 (|has| |#1| (-838)) (|has| |#1| (-426))) ((-483 |#3| |#1|) . T) ((-483 |#3| $) . T) ((-483 $ $) . T) ((-514) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-590 #0#) |has| |#1| (-37 (-382 (-522)))) ((-590 |#1|) . T) ((-590 $) . T) ((-584 (-522)) |has| |#1| (-584 (-522))) ((-584 |#1|) . T) ((-655 #0#) |has| |#1| (-37 (-382 (-522)))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-664) . T) ((-784) |has| |#1| (-784)) ((-829 |#3|) . T) ((-815 (-354)) -12 (|has| |#1| (-815 (-354))) (|has| |#3| (-815 (-354)))) ((-815 (-522)) -12 (|has| |#1| (-815 (-522))) (|has| |#3| (-815 (-522)))) ((-838) |has| |#1| (-838)) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T) ((-962 |#3|) . T) ((-977 #0#) |has| |#1| (-37 (-382 (-522)))) ((-977 |#1|) . T) ((-977 $) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) |has| |#1| (-838))) -((-3533 (((-588 |#2|) |#5|) 36)) (-1264 (((-1081 |#5|) |#5| |#2| (-1081 |#5|)) 23) (((-382 (-1081 |#5|)) |#5| |#2|) 16)) (-3520 ((|#5| (-382 (-1081 |#5|)) |#2|) 30)) (-3155 (((-3 |#2| "failed") |#5|) 61)) (-2760 (((-3 (-588 |#5|) "failed") |#5|) 55)) (-3242 (((-3 (-2 (|:| |val| |#5|) (|:| -3858 (-522))) "failed") |#5|) 45)) (-1919 (((-3 (-588 |#5|) "failed") |#5|) 57)) (-2024 (((-3 (-2 (|:| |var| |#2|) (|:| -3858 (-522))) "failed") |#5|) 48))) -(((-879 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3533 ((-588 |#2|) |#5|)) (-15 -3155 ((-3 |#2| "failed") |#5|)) (-15 -1264 ((-382 (-1081 |#5|)) |#5| |#2|)) (-15 -3520 (|#5| (-382 (-1081 |#5|)) |#2|)) (-15 -1264 ((-1081 |#5|) |#5| |#2| (-1081 |#5|))) (-15 -1919 ((-3 (-588 |#5|) "failed") |#5|)) (-15 -2760 ((-3 (-588 |#5|) "failed") |#5|)) (-15 -2024 ((-3 (-2 (|:| |var| |#2|) (|:| -3858 (-522))) "failed") |#5|)) (-15 -3242 ((-3 (-2 (|:| |val| |#5|) (|:| -3858 (-522))) "failed") |#5|))) (-730) (-784) (-971) (-878 |#3| |#1| |#2|) (-13 (-338) (-10 -8 (-15 -2217 ($ |#4|)) (-15 -2947 (|#4| $)) (-15 -2959 (|#4| $))))) (T -879)) -((-3242 (*1 *2 *3) (|partial| -12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3858 (-522)))) (-5 *1 (-879 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-338) (-10 -8 (-15 -2217 ($ *7)) (-15 -2947 (*7 $)) (-15 -2959 (*7 $))))))) (-2024 (*1 *2 *3) (|partial| -12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3858 (-522)))) (-5 *1 (-879 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-338) (-10 -8 (-15 -2217 ($ *7)) (-15 -2947 (*7 $)) (-15 -2959 (*7 $))))))) (-2760 (*1 *2 *3) (|partial| -12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-588 *3)) (-5 *1 (-879 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-338) (-10 -8 (-15 -2217 ($ *7)) (-15 -2947 (*7 $)) (-15 -2959 (*7 $))))))) (-1919 (*1 *2 *3) (|partial| -12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-588 *3)) (-5 *1 (-879 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-338) (-10 -8 (-15 -2217 ($ *7)) (-15 -2947 (*7 $)) (-15 -2959 (*7 $))))))) (-1264 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1081 *3)) (-4 *3 (-13 (-338) (-10 -8 (-15 -2217 ($ *7)) (-15 -2947 (*7 $)) (-15 -2959 (*7 $))))) (-4 *7 (-878 *6 *5 *4)) (-4 *5 (-730)) (-4 *4 (-784)) (-4 *6 (-971)) (-5 *1 (-879 *5 *4 *6 *7 *3)))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-1081 *2))) (-4 *5 (-730)) (-4 *4 (-784)) (-4 *6 (-971)) (-4 *2 (-13 (-338) (-10 -8 (-15 -2217 ($ *7)) (-15 -2947 (*7 $)) (-15 -2959 (*7 $))))) (-5 *1 (-879 *5 *4 *6 *7 *2)) (-4 *7 (-878 *6 *5 *4)))) (-1264 (*1 *2 *3 *4) (-12 (-4 *5 (-730)) (-4 *4 (-784)) (-4 *6 (-971)) (-4 *7 (-878 *6 *5 *4)) (-5 *2 (-382 (-1081 *3))) (-5 *1 (-879 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-338) (-10 -8 (-15 -2217 ($ *7)) (-15 -2947 (*7 $)) (-15 -2959 (*7 $))))))) (-3155 (*1 *2 *3) (|partial| -12 (-4 *4 (-730)) (-4 *5 (-971)) (-4 *6 (-878 *5 *4 *2)) (-4 *2 (-784)) (-5 *1 (-879 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-338) (-10 -8 (-15 -2217 ($ *6)) (-15 -2947 (*6 $)) (-15 -2959 (*6 $))))))) (-3533 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-588 *5)) (-5 *1 (-879 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-338) (-10 -8 (-15 -2217 ($ *7)) (-15 -2947 (*7 $)) (-15 -2959 (*7 $)))))))) -(-10 -7 (-15 -3533 ((-588 |#2|) |#5|)) (-15 -3155 ((-3 |#2| "failed") |#5|)) (-15 -1264 ((-382 (-1081 |#5|)) |#5| |#2|)) (-15 -3520 (|#5| (-382 (-1081 |#5|)) |#2|)) (-15 -1264 ((-1081 |#5|) |#5| |#2| (-1081 |#5|))) (-15 -1919 ((-3 (-588 |#5|) "failed") |#5|)) (-15 -2760 ((-3 (-588 |#5|) "failed") |#5|)) (-15 -2024 ((-3 (-2 (|:| |var| |#2|) (|:| -3858 (-522))) "failed") |#5|)) (-15 -3242 ((-3 (-2 (|:| |val| |#5|) (|:| -3858 (-522))) "failed") |#5|))) -((-3810 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-880 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3810 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-730) (-784) (-971) (-878 |#3| |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -1661 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-708)))))) (T -880)) -((-3810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-784)) (-4 *8 (-971)) (-4 *6 (-730)) (-4 *2 (-13 (-1014) (-10 -8 (-15 -1661 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-708)))))) (-5 *1 (-880 *6 *7 *8 *5 *2)) (-4 *5 (-878 *8 *6 *7))))) -(-10 -7 (-15 -3810 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3533 (((-588 (-1085)) $) 15)) (-1264 (((-1081 $) $ (-1085)) 21) (((-1081 |#1|) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) NIL (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-3358 (((-708) $) NIL) (((-708) $ (-588 (-1085))) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2961 (($ $) NIL (|has| |#1| (-426)))) (-3133 (((-393 $) $) NIL (|has| |#1| (-426)))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) 8) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-1085) "failed") $) NIL)) (-1478 ((|#1| $) NIL) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-1085) $) NIL)) (-2908 (($ $ $ (-1085)) NIL (|has| |#1| (-157)))) (-3241 (($ $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2883 (($ $) NIL (|has| |#1| (-426))) (($ $ (-1085)) NIL (|has| |#1| (-426)))) (-3232 (((-588 $) $) NIL)) (-2725 (((-108) $) NIL (|has| |#1| (-838)))) (-3792 (($ $ |#1| (-494 (-1085)) $) NIL)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-1085) (-815 (-354))) (|has| |#1| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-1085) (-815 (-522))) (|has| |#1| (-815 (-522)))))) (-2859 (((-108) $) NIL)) (-1391 (((-708) $) NIL)) (-3520 (($ (-1081 |#1|) (-1085)) NIL) (($ (-1081 $) (-1085)) NIL)) (-3038 (((-588 $) $) NIL)) (-1374 (((-108) $) NIL)) (-3500 (($ |#1| (-494 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL)) (-3058 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $ (-1085)) NIL)) (-3564 (((-494 (-1085)) $) NIL) (((-708) $ (-1085)) NIL) (((-588 (-708)) $ (-588 (-1085))) NIL)) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-1723 (($ (-1 (-494 (-1085)) (-494 (-1085))) $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-3 (-1085) "failed") $) 19)) (-3216 (($ $) NIL)) (-3224 ((|#1| $) NIL)) (-2267 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-2311 (((-1068) $) NIL)) (-2760 (((-3 (-588 $) "failed") $) NIL)) (-1919 (((-3 (-588 $) "failed") $) NIL)) (-2024 (((-3 (-2 (|:| |var| (-1085)) (|:| -3858 (-708))) "failed") $) NIL)) (-2611 (($ $ (-1085)) 29 (|has| |#1| (-37 (-382 (-522)))))) (-4174 (((-1032) $) NIL)) (-3199 (((-108) $) NIL)) (-3207 ((|#1| $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-426)))) (-2308 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2006 (((-393 $) $) NIL (|has| |#1| (-838)))) (-2276 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-2330 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-1085) |#1|) NIL) (($ $ (-588 (-1085)) (-588 |#1|)) NIL) (($ $ (-1085) $) NIL) (($ $ (-588 (-1085)) (-588 $)) NIL)) (-1615 (($ $ (-1085)) NIL (|has| |#1| (-157)))) (-2731 (($ $ (-1085)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL)) (-2487 (((-494 (-1085)) $) NIL) (((-708) $ (-1085)) NIL) (((-588 (-708)) $ (-588 (-1085))) NIL)) (-3873 (((-821 (-354)) $) NIL (-12 (|has| (-1085) (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-1085) (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-1085) (-563 (-498))) (|has| |#1| (-563 (-498)))))) (-2988 ((|#1| $) NIL (|has| |#1| (-426))) (($ $ (-1085)) NIL (|has| |#1| (-426)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2217 (((-792) $) 25) (($ (-522)) NIL) (($ |#1|) NIL) (($ (-1085)) 27) (($ (-382 (-522))) NIL (-3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#1| (-514)))) (-2180 (((-588 |#1|) $) NIL)) (-1643 ((|#1| $ (-494 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2742 (((-708)) NIL)) (-1225 (($ $ $ (-708)) NIL (|has| |#1| (-157)))) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $ (-1085)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL)) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-881 |#1|) (-13 (-878 |#1| (-494 (-1085)) (-1085)) (-10 -8 (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -2611 ($ $ (-1085))) |%noBranch|))) (-971)) (T -881)) -((-2611 (*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-881 *3)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971))))) -(-13 (-878 |#1| (-494 (-1085)) (-1085)) (-10 -8 (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -2611 ($ $ (-1085))) |%noBranch|))) -((-1642 (((-2 (|:| -3858 (-708)) (|:| -3112 |#5|) (|:| |radicand| |#5|)) |#3| (-708)) 37)) (-4124 (((-2 (|:| -3858 (-708)) (|:| -3112 |#5|) (|:| |radicand| |#5|)) (-382 (-522)) (-708)) 33)) (-3326 (((-2 (|:| -3858 (-708)) (|:| -3112 |#4|) (|:| |radicand| (-588 |#4|))) |#4| (-708)) 52)) (-3929 (((-2 (|:| -3858 (-708)) (|:| -3112 |#5|) (|:| |radicand| |#5|)) |#5| (-708)) 62 (|has| |#3| (-426))))) -(((-882 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1642 ((-2 (|:| -3858 (-708)) (|:| -3112 |#5|) (|:| |radicand| |#5|)) |#3| (-708))) (-15 -4124 ((-2 (|:| -3858 (-708)) (|:| -3112 |#5|) (|:| |radicand| |#5|)) (-382 (-522)) (-708))) (IF (|has| |#3| (-426)) (-15 -3929 ((-2 (|:| -3858 (-708)) (|:| -3112 |#5|) (|:| |radicand| |#5|)) |#5| (-708))) |%noBranch|) (-15 -3326 ((-2 (|:| -3858 (-708)) (|:| -3112 |#4|) (|:| |radicand| (-588 |#4|))) |#4| (-708)))) (-730) (-784) (-514) (-878 |#3| |#1| |#2|) (-13 (-338) (-10 -8 (-15 -2947 (|#4| $)) (-15 -2959 (|#4| $)) (-15 -2217 ($ |#4|))))) (T -882)) -((-3326 (*1 *2 *3 *4) (-12 (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-514)) (-4 *3 (-878 *7 *5 *6)) (-5 *2 (-2 (|:| -3858 (-708)) (|:| -3112 *3) (|:| |radicand| (-588 *3)))) (-5 *1 (-882 *5 *6 *7 *3 *8)) (-5 *4 (-708)) (-4 *8 (-13 (-338) (-10 -8 (-15 -2947 (*3 $)) (-15 -2959 (*3 $)) (-15 -2217 ($ *3))))))) (-3929 (*1 *2 *3 *4) (-12 (-4 *7 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-514)) (-4 *8 (-878 *7 *5 *6)) (-5 *2 (-2 (|:| -3858 (-708)) (|:| -3112 *3) (|:| |radicand| *3))) (-5 *1 (-882 *5 *6 *7 *8 *3)) (-5 *4 (-708)) (-4 *3 (-13 (-338) (-10 -8 (-15 -2947 (*8 $)) (-15 -2959 (*8 $)) (-15 -2217 ($ *8))))))) (-4124 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-522))) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-514)) (-4 *8 (-878 *7 *5 *6)) (-5 *2 (-2 (|:| -3858 (-708)) (|:| -3112 *9) (|:| |radicand| *9))) (-5 *1 (-882 *5 *6 *7 *8 *9)) (-5 *4 (-708)) (-4 *9 (-13 (-338) (-10 -8 (-15 -2947 (*8 $)) (-15 -2959 (*8 $)) (-15 -2217 ($ *8))))))) (-1642 (*1 *2 *3 *4) (-12 (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-514)) (-4 *7 (-878 *3 *5 *6)) (-5 *2 (-2 (|:| -3858 (-708)) (|:| -3112 *8) (|:| |radicand| *8))) (-5 *1 (-882 *5 *6 *3 *7 *8)) (-5 *4 (-708)) (-4 *8 (-13 (-338) (-10 -8 (-15 -2947 (*7 $)) (-15 -2959 (*7 $)) (-15 -2217 ($ *7)))))))) -(-10 -7 (-15 -1642 ((-2 (|:| -3858 (-708)) (|:| -3112 |#5|) (|:| |radicand| |#5|)) |#3| (-708))) (-15 -4124 ((-2 (|:| -3858 (-708)) (|:| -3112 |#5|) (|:| |radicand| |#5|)) (-382 (-522)) (-708))) (IF (|has| |#3| (-426)) (-15 -3929 ((-2 (|:| -3858 (-708)) (|:| -3112 |#5|) (|:| |radicand| |#5|)) |#5| (-708))) |%noBranch|) (-15 -3326 ((-2 (|:| -3858 (-708)) (|:| -3112 |#4|) (|:| |radicand| (-588 |#4|))) |#4| (-708)))) -((-2366 (((-1009 (-202)) $) 8)) (-2351 (((-1009 (-202)) $) 9)) (-1414 (((-588 (-588 (-872 (-202)))) $) 10)) (-2217 (((-792) $) 6))) -(((-883) (-1197)) (T -883)) -((-1414 (*1 *2 *1) (-12 (-4 *1 (-883)) (-5 *2 (-588 (-588 (-872 (-202))))))) (-2351 (*1 *2 *1) (-12 (-4 *1 (-883)) (-5 *2 (-1009 (-202))))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-883)) (-5 *2 (-1009 (-202)))))) -(-13 (-562 (-792)) (-10 -8 (-15 -1414 ((-588 (-588 (-872 (-202)))) $)) (-15 -2351 ((-1009 (-202)) $)) (-15 -2366 ((-1009 (-202)) $)))) -(((-562 (-792)) . T)) -((-3766 (((-3 (-628 |#1|) "failed") |#2| (-850)) 14))) -(((-884 |#1| |#2|) (-10 -7 (-15 -3766 ((-3 (-628 |#1|) "failed") |#2| (-850)))) (-514) (-598 |#1|)) (T -884)) -((-3766 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-850)) (-4 *5 (-514)) (-5 *2 (-628 *5)) (-5 *1 (-884 *5 *3)) (-4 *3 (-598 *5))))) -(-10 -7 (-15 -3766 ((-3 (-628 |#1|) "failed") |#2| (-850)))) -((-3639 (((-886 |#2|) (-1 |#2| |#1| |#2|) (-886 |#1|) |#2|) 16)) (-2153 ((|#2| (-1 |#2| |#1| |#2|) (-886 |#1|) |#2|) 18)) (-3810 (((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)) 13))) -(((-885 |#1| |#2|) (-10 -7 (-15 -3639 ((-886 |#2|) (-1 |#2| |#1| |#2|) (-886 |#1|) |#2|)) (-15 -2153 (|#2| (-1 |#2| |#1| |#2|) (-886 |#1|) |#2|)) (-15 -3810 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)))) (-1120) (-1120)) (T -885)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-886 *6)) (-5 *1 (-885 *5 *6)))) (-2153 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-886 *5)) (-4 *5 (-1120)) (-4 *2 (-1120)) (-5 *1 (-885 *5 *2)))) (-3639 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-886 *6)) (-4 *6 (-1120)) (-4 *5 (-1120)) (-5 *2 (-886 *5)) (-5 *1 (-885 *6 *5))))) -(-10 -7 (-15 -3639 ((-886 |#2|) (-1 |#2| |#1| |#2|) (-886 |#1|) |#2|)) (-15 -2153 (|#2| (-1 |#2| |#1| |#2|) (-886 |#1|) |#2|)) (-15 -3810 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)))) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3883 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1866 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-2806 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784))))) (-3296 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-2717 (((-108) $ (-708)) NIL)) (-2437 ((|#1| $ (-522) |#1|) 17 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239)))) (-1696 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3367 (($) NIL T CONST)) (-2465 (($ $) NIL (|has| $ (-6 -4239)))) (-1939 (($ $) NIL)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1424 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238)))) (-2411 ((|#1| $ (-522) |#1|) 16 (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-522)) 14)) (-3314 (((-522) (-1 (-108) |#1|) $) NIL) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014)))) (-2395 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-1893 (($ (-708) |#1|) 13)) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) 10 (|has| (-522) (-784)))) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-3164 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-784)))) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2201 (((-522) $) NIL (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-2397 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1731 (($ |#1| $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) NIL)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2337 ((|#1| $) NIL (|has| (-522) (-784)))) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1972 (($ $ |#1|) 12 (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) 11)) (-2683 ((|#1| $ (-522) |#1|) NIL) ((|#1| $ (-522)) 15) (($ $ (-1133 (-522))) NIL)) (-3835 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3629 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) NIL)) (-4170 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-588 $)) NIL)) (-2217 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3591 (((-708) $) 8 (|has| $ (-6 -4238))))) -(((-886 |#1|) (-19 |#1|) (-1120)) (T -886)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-979 |#1|) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-2041 (($ |#1|) 17) (($ $ |#1|) 20)) (-3495 (($ |#1|) 18) (($ $ |#1|) 21)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2023 (((-108) $) NIL)) (-4012 (($ |#1| |#1| |#1| |#1|) 8)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 16)) (-2783 (((-1034) $) NIL)) (-2679 ((|#1| $ |#1|) 24) (((-772 |#1|) $ (-772 |#1|)) 32)) (-3208 (($ $ $) NIL)) (-1714 (($ $ $) NIL)) (-1458 (((-794) $) 39)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2767 (($) 9 T CONST)) (-3983 (((-108) $ $) 44)) (-4098 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ $ $) 14))) +(((-658 |#1|) (-13 (-448) (-10 -8 (-15 -4012 ($ |#1| |#1| |#1| |#1|)) (-15 -2041 ($ |#1|)) (-15 -3495 ($ |#1|)) (-15 -2121 ($)) (-15 -2041 ($ $ |#1|)) (-15 -3495 ($ $ |#1|)) (-15 -2121 ($ $)) (-15 -2679 (|#1| $ |#1|)) (-15 -2679 ((-772 |#1|) $ (-772 |#1|))))) (-339)) (T -658)) +((-4012 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-2041 (*1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-3495 (*1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-2121 (*1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-2041 (*1 *1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-3495 (*1 *1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-2121 (*1 *1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-2679 (*1 *2 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) (-2679 (*1 *2 *1 *2) (-12 (-5 *2 (-772 *3)) (-4 *3 (-339)) (-5 *1 (-658 *3))))) +(-13 (-448) (-10 -8 (-15 -4012 ($ |#1| |#1| |#1| |#1|)) (-15 -2041 ($ |#1|)) (-15 -3495 ($ |#1|)) (-15 -2121 ($)) (-15 -2041 ($ $ |#1|)) (-15 -3495 ($ $ |#1|)) (-15 -2121 ($ $)) (-15 -2679 (|#1| $ |#1|)) (-15 -2679 ((-772 |#1|) $ (-772 |#1|))))) +((-1970 (($ $ (-852)) 12)) (-1448 (($ $ (-852)) 13)) (** (($ $ (-852)) 10))) +(((-659 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-852))) (-15 -1448 (|#1| |#1| (-852))) (-15 -1970 (|#1| |#1| (-852)))) (-660)) (T -659)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-852))) (-15 -1448 (|#1| |#1| (-852))) (-15 -1970 (|#1| |#1| (-852)))) +((-3924 (((-108) $ $) 7)) (-1970 (($ $ (-852)) 15)) (-1448 (($ $ (-852)) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 6)) (** (($ $ (-852)) 13)) (* (($ $ $) 16))) +(((-660) (-129)) (T -660)) +((* (*1 *1 *1 *1) (-4 *1 (-660))) (-1970 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-852)))) (-1448 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-852)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-852))))) +(-13 (-1016) (-10 -8 (-15 * ($ $ $)) (-15 -1970 ($ $ (-852))) (-15 -1448 ($ $ (-852))) (-15 ** ($ $ (-852))))) +(((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-1970 (($ $ (-852)) NIL) (($ $ (-710)) 17)) (-2023 (((-108) $) 10)) (-1448 (($ $ (-852)) NIL) (($ $ (-710)) 18)) (** (($ $ (-852)) NIL) (($ $ (-710)) 15))) +(((-661 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-710))) (-15 -1448 (|#1| |#1| (-710))) (-15 -1970 (|#1| |#1| (-710))) (-15 -2023 ((-108) |#1|)) (-15 ** (|#1| |#1| (-852))) (-15 -1448 (|#1| |#1| (-852))) (-15 -1970 (|#1| |#1| (-852)))) (-662)) (T -661)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-710))) (-15 -1448 (|#1| |#1| (-710))) (-15 -1970 (|#1| |#1| (-710))) (-15 -2023 ((-108) |#1|)) (-15 ** (|#1| |#1| (-852))) (-15 -1448 (|#1| |#1| (-852))) (-15 -1970 (|#1| |#1| (-852)))) +((-3924 (((-108) $ $) 7)) (-2532 (((-3 $ "failed") $) 17)) (-1970 (($ $ (-852)) 15) (($ $ (-710)) 22)) (-2121 (((-3 $ "failed") $) 19)) (-2023 (((-108) $) 23)) (-1579 (((-3 $ "failed") $) 18)) (-1448 (($ $ (-852)) 14) (($ $ (-710)) 21)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2767 (($) 24 T CONST)) (-3983 (((-108) $ $) 6)) (** (($ $ (-852)) 13) (($ $ (-710)) 20)) (* (($ $ $) 16))) +(((-662) (-129)) (T -662)) +((-2767 (*1 *1) (-4 *1 (-662))) (-2023 (*1 *2 *1) (-12 (-4 *1 (-662)) (-5 *2 (-108)))) (-1970 (*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-710)))) (-1448 (*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-710)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-710)))) (-2121 (*1 *1 *1) (|partial| -4 *1 (-662))) (-1579 (*1 *1 *1) (|partial| -4 *1 (-662))) (-2532 (*1 *1 *1) (|partial| -4 *1 (-662)))) +(-13 (-660) (-10 -8 (-15 (-2767) ($) -3059) (-15 -2023 ((-108) $)) (-15 -1970 ($ $ (-710))) (-15 -1448 ($ $ (-710))) (-15 ** ($ $ (-710))) (-15 -2121 ((-3 $ "failed") $)) (-15 -1579 ((-3 $ "failed") $)) (-15 -2532 ((-3 $ "failed") $)))) +(((-97) . T) ((-563 (-794)) . T) ((-660) . T) ((-1016) . T)) +((-1703 (((-710)) 35)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3474 (((-523) $) NIL) (((-383 (-523)) $) NIL) ((|#2| $) 22)) (-2437 (($ |#3|) NIL) (((-3 $ "failed") (-383 |#3|)) 45)) (-2121 (((-3 $ "failed") $) 65)) (-4032 (($) 39)) (-3892 ((|#2| $) 20)) (-3441 (($) 17)) (-3523 (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL) (($ $ (-710)) NIL) (($ $) NIL)) (-1976 (((-629 |#2|) (-1168 $) (-1 |#2| |#2|)) 60)) (-3663 (((-1168 |#2|) $) NIL) (($ (-1168 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1807 ((|#3| $) 32)) (-4041 (((-1168 $)) 29))) +(((-663 |#1| |#2| |#3|) (-10 -8 (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -4032 (|#1|)) (-15 -1703 ((-710))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -1976 ((-629 |#2|) (-1168 |#1|) (-1 |#2| |#2|))) (-15 -2437 ((-3 |#1| "failed") (-383 |#3|))) (-15 -3663 (|#1| |#3|)) (-15 -2437 (|#1| |#3|)) (-15 -3441 (|#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3663 (|#3| |#1|)) (-15 -3663 (|#1| (-1168 |#2|))) (-15 -3663 ((-1168 |#2|) |#1|)) (-15 -4041 ((-1168 |#1|))) (-15 -1807 (|#3| |#1|)) (-15 -3892 (|#2| |#1|)) (-15 -2121 ((-3 |#1| "failed") |#1|))) (-664 |#2| |#3|) (-158) (-1144 |#2|)) (T -663)) +((-1703 (*1 *2) (-12 (-4 *4 (-158)) (-4 *5 (-1144 *4)) (-5 *2 (-710)) (-5 *1 (-663 *3 *4 *5)) (-4 *3 (-664 *4 *5))))) +(-10 -8 (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -4032 (|#1|)) (-15 -1703 ((-710))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -1976 ((-629 |#2|) (-1168 |#1|) (-1 |#2| |#2|))) (-15 -2437 ((-3 |#1| "failed") (-383 |#3|))) (-15 -3663 (|#1| |#3|)) (-15 -2437 (|#1| |#3|)) (-15 -3441 (|#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3663 (|#3| |#1|)) (-15 -3663 (|#1| (-1168 |#2|))) (-15 -3663 ((-1168 |#2|) |#1|)) (-15 -4041 ((-1168 |#1|))) (-15 -1807 (|#3| |#1|)) (-15 -3892 (|#2| |#1|)) (-15 -2121 ((-3 |#1| "failed") |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 93 (|has| |#1| (-339)))) (-3345 (($ $) 94 (|has| |#1| (-339)))) (-3331 (((-108) $) 96 (|has| |#1| (-339)))) (-3750 (((-629 |#1|) (-1168 $)) 46) (((-629 |#1|)) 61)) (-4187 ((|#1| $) 52)) (-2430 (((-1096 (-852) (-710)) (-523)) 147 (|has| |#1| (-325)))) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 113 (|has| |#1| (-339)))) (-3614 (((-394 $) $) 114 (|has| |#1| (-339)))) (-1387 (((-108) $ $) 104 (|has| |#1| (-339)))) (-1703 (((-710)) 87 (|has| |#1| (-344)))) (-2518 (($) 17 T CONST)) (-3517 (((-3 (-523) "failed") $) 169 (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 167 (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 166)) (-3474 (((-523) $) 170 (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) 168 (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 165)) (-3409 (($ (-1168 |#1|) (-1168 $)) 48) (($ (-1168 |#1|)) 64)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-325)))) (-3796 (($ $ $) 108 (|has| |#1| (-339)))) (-4079 (((-629 |#1|) $ (-1168 $)) 53) (((-629 |#1|) $) 59)) (-2381 (((-629 (-523)) (-629 $)) 164 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 163 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 162) (((-629 |#1|) (-629 $)) 161)) (-2437 (($ |#2|) 158) (((-3 $ "failed") (-383 |#2|)) 155 (|has| |#1| (-339)))) (-2121 (((-3 $ "failed") $) 34)) (-1319 (((-852)) 54)) (-4032 (($) 90 (|has| |#1| (-344)))) (-3769 (($ $ $) 107 (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 102 (|has| |#1| (-339)))) (-1996 (($) 149 (|has| |#1| (-325)))) (-2155 (((-108) $) 150 (|has| |#1| (-325)))) (-1991 (($ $ (-710)) 141 (|has| |#1| (-325))) (($ $) 140 (|has| |#1| (-325)))) (-2657 (((-108) $) 115 (|has| |#1| (-339)))) (-1640 (((-852) $) 152 (|has| |#1| (-325))) (((-772 (-852)) $) 138 (|has| |#1| (-325)))) (-2023 (((-108) $) 31)) (-3892 ((|#1| $) 51)) (-4058 (((-3 $ "failed") $) 142 (|has| |#1| (-325)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 111 (|has| |#1| (-339)))) (-1397 ((|#2| $) 44 (|has| |#1| (-339)))) (-2072 (((-852) $) 89 (|has| |#1| (-344)))) (-2428 ((|#2| $) 156)) (-3244 (($ (-589 $)) 100 (|has| |#1| (-339))) (($ $ $) 99 (|has| |#1| (-339)))) (-3779 (((-1070) $) 9)) (-3738 (($ $) 116 (|has| |#1| (-339)))) (-2262 (($) 143 (|has| |#1| (-325)) CONST)) (-3878 (($ (-852)) 88 (|has| |#1| (-344)))) (-2783 (((-1034) $) 10)) (-3441 (($) 160)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 101 (|has| |#1| (-339)))) (-3278 (($ (-589 $)) 98 (|has| |#1| (-339))) (($ $ $) 97 (|has| |#1| (-339)))) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) 146 (|has| |#1| (-325)))) (-1820 (((-394 $) $) 112 (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 109 (|has| |#1| (-339)))) (-3746 (((-3 $ "failed") $ $) 92 (|has| |#1| (-339)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 103 (|has| |#1| (-339)))) (-1972 (((-710) $) 105 (|has| |#1| (-339)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 106 (|has| |#1| (-339)))) (-3549 ((|#1| (-1168 $)) 47) ((|#1|) 60)) (-2974 (((-710) $) 151 (|has| |#1| (-325))) (((-3 (-710) "failed") $ $) 139 (|has| |#1| (-325)))) (-3523 (($ $) 137 (-3262 (-4099 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-710)) 135 (-3262 (-4099 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-1087)) 133 (-4099 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-589 (-1087))) 132 (-4099 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-1087) (-710)) 131 (-4099 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-589 (-1087)) (-589 (-710))) 130 (-4099 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-1 |#1| |#1|) (-710)) 123 (|has| |#1| (-339))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-339)))) (-1976 (((-629 |#1|) (-1168 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-339)))) (-3727 ((|#2|) 159)) (-3425 (($) 148 (|has| |#1| (-325)))) (-2966 (((-1168 |#1|) $ (-1168 $)) 50) (((-629 |#1|) (-1168 $) (-1168 $)) 49) (((-1168 |#1|) $) 66) (((-629 |#1|) (-1168 $)) 65)) (-3663 (((-1168 |#1|) $) 63) (($ (-1168 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 145 (|has| |#1| (-325)))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-339))) (($ (-383 (-523))) 86 (-3262 (|has| |#1| (-339)) (|has| |#1| (-964 (-383 (-523))))))) (-3901 (($ $) 144 (|has| |#1| (-325))) (((-3 $ "failed") $) 43 (|has| |#1| (-134)))) (-1807 ((|#2| $) 45)) (-1621 (((-710)) 29)) (-4041 (((-1168 $)) 67)) (-1704 (((-108) $ $) 95 (|has| |#1| (-339)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 117 (|has| |#1| (-339)))) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $) 136 (-3262 (-4099 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-710)) 134 (-3262 (-4099 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-1087)) 129 (-4099 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-589 (-1087))) 128 (-4099 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-1087) (-710)) 127 (-4099 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-589 (-1087)) (-589 (-710))) 126 (-4099 (|has| |#1| (-831 (-1087))) (|has| |#1| (-339)))) (($ $ (-1 |#1| |#1|) (-710)) 125 (|has| |#1| (-339))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-339)))) (-3983 (((-108) $ $) 6)) (-4098 (($ $ $) 121 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 118 (|has| |#1| (-339)))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-383 (-523)) $) 120 (|has| |#1| (-339))) (($ $ (-383 (-523))) 119 (|has| |#1| (-339))))) +(((-664 |#1| |#2|) (-129) (-158) (-1144 |t#1|)) (T -664)) +((-3441 (*1 *1) (-12 (-4 *2 (-158)) (-4 *1 (-664 *2 *3)) (-4 *3 (-1144 *2)))) (-3727 (*1 *2) (-12 (-4 *1 (-664 *3 *2)) (-4 *3 (-158)) (-4 *2 (-1144 *3)))) (-2437 (*1 *1 *2) (-12 (-4 *3 (-158)) (-4 *1 (-664 *3 *2)) (-4 *2 (-1144 *3)))) (-3663 (*1 *1 *2) (-12 (-4 *3 (-158)) (-4 *1 (-664 *3 *2)) (-4 *2 (-1144 *3)))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-664 *3 *2)) (-4 *3 (-158)) (-4 *2 (-1144 *3)))) (-2437 (*1 *1 *2) (|partial| -12 (-5 *2 (-383 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-339)) (-4 *3 (-158)) (-4 *1 (-664 *3 *4)))) (-1976 (*1 *2 *3 *4) (-12 (-5 *3 (-1168 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-339)) (-4 *1 (-664 *5 *6)) (-4 *5 (-158)) (-4 *6 (-1144 *5)) (-5 *2 (-629 *5))))) +(-13 (-385 |t#1| |t#2|) (-158) (-564 |t#2|) (-387 |t#1|) (-353 |t#1|) (-10 -8 (-15 -3441 ($)) (-15 -3727 (|t#2|)) (-15 -2437 ($ |t#2|)) (-15 -3663 ($ |t#2|)) (-15 -2428 (|t#2| $)) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|) (IF (|has| |t#1| (-339)) (PROGN (-6 (-339)) (-6 (-209 |t#1|)) (-15 -2437 ((-3 $ "failed") (-383 |t#2|))) (-15 -1976 ((-629 |t#1|) (-1168 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-325)) (-6 (-325)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-37 |#1|) . T) ((-37 $) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-97) . T) ((-107 #0# #0#) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-134) -3262 (|has| |#1| (-325)) (|has| |#1| (-134))) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) . T) ((-564 |#2|) . T) ((-209 |#1|) |has| |#1| (-339)) ((-211) -3262 (|has| |#1| (-325)) (-12 (|has| |#1| (-211)) (|has| |#1| (-339)))) ((-221) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-267) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-284) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-339) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-378) |has| |#1| (-325)) ((-344) -3262 (|has| |#1| (-344)) (|has| |#1| (-325))) ((-325) |has| |#1| (-325)) ((-346 |#1| |#2|) . T) ((-385 |#1| |#2|) . T) ((-353 |#1|) . T) ((-387 |#1|) . T) ((-427) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-515) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-591 #0#) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #0#) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-657 |#1|) . T) ((-657 $) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-666) . T) ((-831 (-1087)) -12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087)))) ((-851) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-979 #0#) -3262 (|has| |#1| (-325)) (|has| |#1| (-339))) ((-979 |#1|) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) |has| |#1| (-325)) ((-1126) -3262 (|has| |#1| (-325)) (|has| |#1| (-339)))) +((-2518 (($) 14)) (-2121 (((-3 $ "failed") $) 16)) (-2023 (((-108) $) 13)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) 9)) (** (($ $ (-852)) NIL) (($ $ (-710)) 20))) +(((-665 |#1|) (-10 -8 (-15 -2121 ((-3 |#1| "failed") |#1|)) (-15 -2364 (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-710))) (-15 -2023 ((-108) |#1|)) (-15 -2518 (|#1|)) (-15 -2364 (|#1| |#1| (-852))) (-15 ** (|#1| |#1| (-852)))) (-666)) (T -665)) +NIL +(-10 -8 (-15 -2121 ((-3 |#1| "failed") |#1|)) (-15 -2364 (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-710))) (-15 -2023 ((-108) |#1|)) (-15 -2518 (|#1|)) (-15 -2364 (|#1| |#1| (-852))) (-15 ** (|#1| |#1| (-852)))) +((-3924 (((-108) $ $) 7)) (-2518 (($) 20 T CONST)) (-2121 (((-3 $ "failed") $) 16)) (-2023 (((-108) $) 19)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2364 (($ $ (-852)) 13) (($ $ (-710)) 17)) (-2767 (($) 21 T CONST)) (-3983 (((-108) $ $) 6)) (** (($ $ (-852)) 14) (($ $ (-710)) 18)) (* (($ $ $) 15))) +(((-666) (-129)) (T -666)) +((-2767 (*1 *1) (-4 *1 (-666))) (-2518 (*1 *1) (-4 *1 (-666))) (-2023 (*1 *2 *1) (-12 (-4 *1 (-666)) (-5 *2 (-108)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-666)) (-5 *2 (-710)))) (-2364 (*1 *1 *1 *2) (-12 (-4 *1 (-666)) (-5 *2 (-710)))) (-2121 (*1 *1 *1) (|partial| -4 *1 (-666)))) +(-13 (-1028) (-10 -8 (-15 (-2767) ($) -3059) (-15 -2518 ($) -3059) (-15 -2023 ((-108) $)) (-15 ** ($ $ (-710))) (-15 -2364 ($ $ (-710))) (-15 -2121 ((-3 $ "failed") $)))) +(((-97) . T) ((-563 (-794)) . T) ((-1028) . T) ((-1016) . T)) +((-2569 (((-2 (|:| -3127 (-394 |#2|)) (|:| |special| (-394 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-2063 (((-2 (|:| -3127 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-4059 ((|#2| (-383 |#2|) (-1 |#2| |#2|)) 13)) (-2274 (((-2 (|:| |poly| |#2|) (|:| -3127 (-383 |#2|)) (|:| |special| (-383 |#2|))) (-383 |#2|) (-1 |#2| |#2|)) 47))) +(((-667 |#1| |#2|) (-10 -7 (-15 -2063 ((-2 (|:| -3127 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2569 ((-2 (|:| -3127 (-394 |#2|)) (|:| |special| (-394 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4059 (|#2| (-383 |#2|) (-1 |#2| |#2|))) (-15 -2274 ((-2 (|:| |poly| |#2|) (|:| -3127 (-383 |#2|)) (|:| |special| (-383 |#2|))) (-383 |#2|) (-1 |#2| |#2|)))) (-339) (-1144 |#1|)) (T -667)) +((-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3127 (-383 *6)) (|:| |special| (-383 *6)))) (-5 *1 (-667 *5 *6)) (-5 *3 (-383 *6)))) (-4059 (*1 *2 *3 *4) (-12 (-5 *3 (-383 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1144 *5)) (-5 *1 (-667 *5 *2)) (-4 *5 (-339)))) (-2569 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| -3127 (-394 *3)) (|:| |special| (-394 *3)))) (-5 *1 (-667 *5 *3)))) (-2063 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-339)) (-5 *2 (-2 (|:| -3127 *3) (|:| |special| *3))) (-5 *1 (-667 *5 *3))))) +(-10 -7 (-15 -2063 ((-2 (|:| -3127 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2569 ((-2 (|:| -3127 (-394 |#2|)) (|:| |special| (-394 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4059 (|#2| (-383 |#2|) (-1 |#2| |#2|))) (-15 -2274 ((-2 (|:| |poly| |#2|) (|:| -3127 (-383 |#2|)) (|:| |special| (-383 |#2|))) (-383 |#2|) (-1 |#2| |#2|)))) +((-1359 ((|#7| (-589 |#5|) |#6|) NIL)) (-3612 ((|#7| (-1 |#5| |#4|) |#6|) 26))) +(((-668 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3612 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1359 (|#7| (-589 |#5|) |#6|))) (-786) (-732) (-732) (-973) (-973) (-880 |#4| |#2| |#1|) (-880 |#5| |#3| |#1|)) (T -668)) +((-1359 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *9)) (-4 *9 (-973)) (-4 *5 (-786)) (-4 *6 (-732)) (-4 *8 (-973)) (-4 *2 (-880 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-732)) (-4 *4 (-880 *8 *6 *5)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-973)) (-4 *9 (-973)) (-4 *5 (-786)) (-4 *6 (-732)) (-4 *2 (-880 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-732)) (-4 *4 (-880 *8 *6 *5))))) +(-10 -7 (-15 -3612 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1359 (|#7| (-589 |#5|) |#6|))) +((-3612 ((|#7| (-1 |#2| |#1|) |#6|) 29))) +(((-669 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3612 (|#7| (-1 |#2| |#1|) |#6|))) (-786) (-786) (-732) (-732) (-973) (-880 |#5| |#3| |#1|) (-880 |#5| |#4| |#2|)) (T -669)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-786)) (-4 *6 (-786)) (-4 *7 (-732)) (-4 *9 (-973)) (-4 *2 (-880 *9 *8 *6)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-732)) (-4 *4 (-880 *9 *7 *5))))) +(-10 -7 (-15 -3612 (|#7| (-1 |#2| |#1|) |#6|))) +((-1820 (((-394 |#4|) |#4|) 39))) +(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1820 ((-394 |#4|) |#4|))) (-732) (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)) (-15 -2700 ((-3 $ "failed") (-1087))))) (-284) (-880 (-883 |#3|) |#1| |#2|)) (T -670)) +((-1820 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)) (-15 -2700 ((-3 $ "failed") (-1087)))))) (-4 *6 (-284)) (-5 *2 (-394 *3)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-880 (-883 *6) *4 *5))))) +(-10 -7 (-15 -1820 ((-394 |#4|) |#4|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-796 |#1|)) $) NIL)) (-1786 (((-1083 $) $ (-796 |#1|)) NIL) (((-1083 |#2|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#2| (-515)))) (-3345 (($ $) NIL (|has| |#2| (-515)))) (-3331 (((-108) $) NIL (|has| |#2| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-796 |#1|))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2291 (($ $) NIL (|has| |#2| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#2| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-796 |#1|) "failed") $) NIL)) (-3474 ((|#2| $) NIL) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-796 |#1|) $) NIL)) (-3078 (($ $ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-3810 (($ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#2| (-840)))) (-1284 (($ $ |#2| (-495 (-796 |#1|)) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-355))) (|has| |#2| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-796 |#1|) (-817 (-523))) (|has| |#2| (-817 (-523)))))) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-1945 (($ (-1083 |#2|) (-796 |#1|)) NIL) (($ (-1083 $) (-796 |#1|)) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#2| (-495 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-796 |#1|)) NIL)) (-1575 (((-495 (-796 |#1|)) $) NIL) (((-710) $ (-796 |#1|)) NIL) (((-589 (-710)) $ (-589 (-796 |#1|))) NIL)) (-2454 (($ $ $) NIL (|has| |#2| (-786)))) (-2062 (($ $ $) NIL (|has| |#2| (-786)))) (-3782 (($ (-1 (-495 (-796 |#1|)) (-495 (-796 |#1|))) $) NIL)) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-2520 (((-3 (-796 |#1|) "failed") $) NIL)) (-3774 (($ $) NIL)) (-3786 ((|#2| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-3779 (((-1070) $) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-796 |#1|)) (|:| -2735 (-710))) "failed") $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 ((|#2| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#2| (-840)))) (-3746 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-515)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-796 |#1|) |#2|) NIL) (($ $ (-589 (-796 |#1|)) (-589 |#2|)) NIL) (($ $ (-796 |#1|) $) NIL) (($ $ (-589 (-796 |#1|)) (-589 $)) NIL)) (-3549 (($ $ (-796 |#1|)) NIL (|has| |#2| (-158)))) (-3523 (($ $ (-796 |#1|)) NIL) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-2299 (((-495 (-796 |#1|)) $) NIL) (((-710) $ (-796 |#1|)) NIL) (((-589 (-710)) $ (-589 (-796 |#1|))) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-796 |#1|) (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-796 |#1|) (-564 (-499))) (|has| |#2| (-564 (-499)))))) (-2438 ((|#2| $) NIL (|has| |#2| (-427))) (($ $ (-796 |#1|)) NIL (|has| |#2| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#2| (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) NIL) (($ (-796 |#1|)) NIL) (($ $) NIL (|has| |#2| (-515))) (($ (-383 (-523))) NIL (-3262 (|has| |#2| (-37 (-383 (-523)))) (|has| |#2| (-964 (-383 (-523))))))) (-1251 (((-589 |#2|) $) NIL)) (-2365 ((|#2| $ (-495 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#2| (-840))) (|has| |#2| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#2| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#2| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-796 |#1|)) NIL) (($ $ (-589 (-796 |#1|))) NIL) (($ $ (-796 |#1|) (-710)) NIL) (($ $ (-589 (-796 |#1|)) (-589 (-710))) NIL)) (-4043 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4098 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#2| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#2| (-37 (-383 (-523))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-671 |#1| |#2|) (-880 |#2| (-495 (-796 |#1|)) (-796 |#1|)) (-589 (-1087)) (-973)) (T -671)) +NIL +(-880 |#2| (-495 (-796 |#1|)) (-796 |#1|)) +((-1882 (((-2 (|:| -3596 (-883 |#3|)) (|:| -2774 (-883 |#3|))) |#4|) 13)) (-1939 ((|#4| |#4| |#2|) 30)) (-3376 ((|#4| (-383 (-883 |#3|)) |#2|) 64)) (-2953 ((|#4| (-1083 (-883 |#3|)) |#2|) 77)) (-2780 ((|#4| (-1083 |#4|) |#2|) 50)) (-1791 ((|#4| |#4| |#2|) 53)) (-1820 (((-394 |#4|) |#4|) 38))) +(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1882 ((-2 (|:| -3596 (-883 |#3|)) (|:| -2774 (-883 |#3|))) |#4|)) (-15 -1791 (|#4| |#4| |#2|)) (-15 -2780 (|#4| (-1083 |#4|) |#2|)) (-15 -1939 (|#4| |#4| |#2|)) (-15 -2953 (|#4| (-1083 (-883 |#3|)) |#2|)) (-15 -3376 (|#4| (-383 (-883 |#3|)) |#2|)) (-15 -1820 ((-394 |#4|) |#4|))) (-732) (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)))) (-515) (-880 (-383 (-883 |#3|)) |#1| |#2|)) (T -672)) +((-1820 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))) (-4 *6 (-515)) (-5 *2 (-394 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-880 (-383 (-883 *6)) *4 *5)))) (-3376 (*1 *2 *3 *4) (-12 (-4 *6 (-515)) (-4 *2 (-880 *3 *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-5 *3 (-383 (-883 *6))) (-4 *5 (-732)) (-4 *4 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))))) (-2953 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 (-883 *6))) (-4 *6 (-515)) (-4 *2 (-880 (-383 (-883 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-732)) (-4 *4 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))))) (-1939 (*1 *2 *2 *3) (-12 (-4 *4 (-732)) (-4 *3 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))) (-4 *5 (-515)) (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-880 (-383 (-883 *5)) *4 *3)))) (-2780 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *2)) (-4 *2 (-880 (-383 (-883 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-732)) (-4 *4 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))) (-4 *6 (-515)))) (-1791 (*1 *2 *2 *3) (-12 (-4 *4 (-732)) (-4 *3 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))) (-4 *5 (-515)) (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-880 (-383 (-883 *5)) *4 *3)))) (-1882 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))) (-4 *6 (-515)) (-5 *2 (-2 (|:| -3596 (-883 *6)) (|:| -2774 (-883 *6)))) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-880 (-383 (-883 *6)) *4 *5))))) +(-10 -7 (-15 -1882 ((-2 (|:| -3596 (-883 |#3|)) (|:| -2774 (-883 |#3|))) |#4|)) (-15 -1791 (|#4| |#4| |#2|)) (-15 -2780 (|#4| (-1083 |#4|) |#2|)) (-15 -1939 (|#4| |#4| |#2|)) (-15 -2953 (|#4| (-1083 (-883 |#3|)) |#2|)) (-15 -3376 (|#4| (-383 (-883 |#3|)) |#2|)) (-15 -1820 ((-394 |#4|) |#4|))) +((-1820 (((-394 |#4|) |#4|) 51))) +(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1820 ((-394 |#4|) |#4|))) (-732) (-786) (-13 (-284) (-136)) (-880 (-383 |#3|) |#1| |#2|)) (T -673)) +((-1820 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-13 (-284) (-136))) (-5 *2 (-394 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-880 (-383 *6) *4 *5))))) +(-10 -7 (-15 -1820 ((-394 |#4|) |#4|))) +((-3612 (((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)) 18))) +(((-674 |#1| |#2| |#3|) (-10 -7 (-15 -3612 ((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)))) (-973) (-973) (-666)) (T -674)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5 *7)) (-4 *5 (-973)) (-4 *6 (-973)) (-4 *7 (-666)) (-5 *2 (-675 *6 *7)) (-5 *1 (-674 *5 *6 *7))))) +(-10 -7 (-15 -3612 ((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 26)) (-2133 (((-589 (-2 (|:| -2935 |#1|) (|:| -2302 |#2|))) $) 27)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1703 (((-710)) 20 (-12 (|has| |#2| (-344)) (|has| |#1| (-344))))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) 56) (((-3 |#1| "failed") $) 59)) (-3474 ((|#2| $) NIL) ((|#1| $) NIL)) (-3810 (($ $) 76 (|has| |#2| (-786)))) (-2121 (((-3 $ "failed") $) 63)) (-4032 (($) 33 (-12 (|has| |#2| (-344)) (|has| |#1| (-344))))) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) 54)) (-3679 (((-589 $) $) 37)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| |#2|) 16)) (-3612 (($ (-1 |#1| |#1|) $) 53)) (-2072 (((-852) $) 30 (-12 (|has| |#2| (-344)) (|has| |#1| (-344))))) (-3774 ((|#2| $) 75 (|has| |#2| (-786)))) (-3786 ((|#1| $) 74 (|has| |#2| (-786)))) (-3779 (((-1070) $) NIL)) (-3878 (($ (-852)) 25 (-12 (|has| |#2| (-344)) (|has| |#1| (-344))))) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 73) (($ (-523)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (-589 (-2 (|:| -2935 |#1|) (|:| -2302 |#2|)))) 11)) (-1251 (((-589 |#1|) $) 39)) (-2365 ((|#1| $ |#2|) 84)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 12 T CONST)) (-2767 (($) 31 T CONST)) (-3983 (((-108) $ $) 77)) (-4087 (($ $) 46) (($ $ $) NIL)) (-4075 (($ $ $) 24)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 51) (($ $ $) 86) (($ |#1| $) 48 (|has| |#1| (-158))) (($ $ |#1|) NIL (|has| |#1| (-158))))) +(((-675 |#1| |#2|) (-13 (-973) (-964 |#2|) (-964 |#1|) (-10 -8 (-15 -1933 ($ |#1| |#2|)) (-15 -2365 (|#1| $ |#2|)) (-15 -1458 ($ (-589 (-2 (|:| -2935 |#1|) (|:| -2302 |#2|))))) (-15 -2133 ((-589 (-2 (|:| -2935 |#1|) (|:| -2302 |#2|))) $)) (-15 -3612 ($ (-1 |#1| |#1|) $)) (-15 -2620 ((-108) $)) (-15 -1251 ((-589 |#1|) $)) (-15 -3679 ((-589 $) $)) (-15 -3554 ((-710) $)) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-158)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-344)) (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-786)) (PROGN (-15 -3774 (|#2| $)) (-15 -3786 (|#1| $)) (-15 -3810 ($ $))) |%noBranch|))) (-973) (-666)) (T -675)) +((-1933 (*1 *1 *2 *3) (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-973)) (-4 *3 (-666)))) (-2365 (*1 *2 *1 *3) (-12 (-4 *2 (-973)) (-5 *1 (-675 *2 *3)) (-4 *3 (-666)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| -2935 *3) (|:| -2302 *4)))) (-4 *3 (-973)) (-4 *4 (-666)) (-5 *1 (-675 *3 *4)))) (-2133 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| -2935 *3) (|:| -2302 *4)))) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) (-4 *4 (-666)))) (-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-675 *3 *4)) (-4 *4 (-666)))) (-2620 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) (-4 *4 (-666)))) (-1251 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) (-4 *4 (-666)))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-589 (-675 *3 *4))) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) (-4 *4 (-666)))) (-3554 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) (-4 *4 (-666)))) (-3774 (*1 *2 *1) (-12 (-4 *2 (-666)) (-4 *2 (-786)) (-5 *1 (-675 *3 *2)) (-4 *3 (-973)))) (-3786 (*1 *2 *1) (-12 (-4 *2 (-973)) (-5 *1 (-675 *2 *3)) (-4 *3 (-786)) (-4 *3 (-666)))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-675 *2 *3)) (-4 *3 (-786)) (-4 *2 (-973)) (-4 *3 (-666))))) +(-13 (-973) (-964 |#2|) (-964 |#1|) (-10 -8 (-15 -1933 ($ |#1| |#2|)) (-15 -2365 (|#1| $ |#2|)) (-15 -1458 ($ (-589 (-2 (|:| -2935 |#1|) (|:| -2302 |#2|))))) (-15 -2133 ((-589 (-2 (|:| -2935 |#1|) (|:| -2302 |#2|))) $)) (-15 -3612 ($ (-1 |#1| |#1|) $)) (-15 -2620 ((-108) $)) (-15 -1251 ((-589 |#1|) $)) (-15 -3679 ((-589 $) $)) (-15 -3554 ((-710) $)) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-158)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-344)) (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-786)) (PROGN (-15 -3774 (|#2| $)) (-15 -3786 (|#1| $)) (-15 -3810 ($ $))) |%noBranch|))) +((-3924 (((-108) $ $) 19)) (-3288 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1922 (($ $ $) 72)) (-3471 (((-108) $ $) 73)) (-3079 (((-108) $ (-710)) 8)) (-4086 (($ (-589 |#1|)) 68) (($) 67)) (-3387 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-3941 (($ $) 62)) (-1773 (($ $) 58 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2249 (($ |#1| $) 47 (|has| $ (-6 -4244))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4244)))) (-2557 (($ |#1| $) 57 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4244)))) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22)) (-1309 (($ $ $) 69)) (-1934 ((|#1| $) 39)) (-3450 (($ |#1| $) 40) (($ |#1| $ (-710)) 63)) (-2783 (((-1034) $) 21)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-2766 (((-589 (-2 (|:| -2433 |#1|) (|:| -2792 (-710)))) $) 61)) (-3682 (($ $ |#1|) 71) (($ $ $) 70)) (-3433 (($) 49) (($ (-589 |#1|)) 48)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 59 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 50)) (-1458 (((-794) $) 18)) (-1684 (($ (-589 |#1|)) 66) (($) 65)) (-2401 (($ (-589 |#1|)) 42)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20)) (-4007 (((-108) $ $) 64)) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-676 |#1|) (-129) (-1016)) (T -676)) +NIL +(-13 (-634 |t#1|) (-1014 |t#1|)) +(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-563 (-794)) . T) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-213 |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-634 |#1|) . T) ((-1014 |#1|) . T) ((-1016) . T) ((-1122) . T)) +((-3924 (((-108) $ $) NIL)) (-3288 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-1922 (($ $ $) 79)) (-3471 (((-108) $ $) 82)) (-3079 (((-108) $ (-710)) NIL)) (-4086 (($ (-589 |#1|)) 24) (($) 15)) (-3387 (($ (-1 (-108) |#1|) $) 70 (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-3941 (($ $) 71)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2249 (($ |#1| $) 61 (|has| $ (-6 -4244))) (($ (-1 (-108) |#1|) $) 64 (|has| $ (-6 -4244))) (($ |#1| $ (-523)) 62) (($ (-1 (-108) |#1|) $ (-523)) 65)) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (($ |#1| $ (-523)) 67) (($ (-1 (-108) |#1|) $ (-523)) 68)) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244)))) (-1666 (((-589 |#1|) $) 32 (|has| $ (-6 -4244)))) (-3157 (($) 13) (($ |#1|) 26) (($ (-589 |#1|)) 21)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) 38)) (-1973 (((-108) |#1| $) 57 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 75)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-1309 (($ $ $) 77)) (-1934 ((|#1| $) 54)) (-3450 (($ |#1| $) 55) (($ |#1| $ (-710)) 72)) (-2783 (((-1034) $) NIL)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3761 ((|#1| $) 53)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 49)) (-3988 (($) 12)) (-2766 (((-589 (-2 (|:| -2433 |#1|) (|:| -2792 (-710)))) $) 47)) (-3682 (($ $ |#1|) NIL) (($ $ $) 78)) (-3433 (($) 14) (($ (-589 |#1|)) 23)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) 60 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) 66)) (-3663 (((-499) $) 36 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 20)) (-1458 (((-794) $) 44)) (-1684 (($ (-589 |#1|)) 25) (($) 16)) (-2401 (($ (-589 |#1|)) 22)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 80)) (-4007 (((-108) $ $) 81)) (-2676 (((-710) $) 59 (|has| $ (-6 -4244))))) +(((-677 |#1|) (-13 (-676 |#1|) (-10 -8 (-6 -4244) (-6 -4245) (-15 -3157 ($)) (-15 -3157 ($ |#1|)) (-15 -3157 ($ (-589 |#1|))) (-15 -2136 ((-589 |#1|) $)) (-15 -2557 ($ |#1| $ (-523))) (-15 -2557 ($ (-1 (-108) |#1|) $ (-523))) (-15 -2249 ($ |#1| $ (-523))) (-15 -2249 ($ (-1 (-108) |#1|) $ (-523))))) (-1016)) (T -677)) +((-3157 (*1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1016)))) (-3157 (*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1016)))) (-3157 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-677 *3)))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1016)))) (-2557 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-677 *2)) (-4 *2 (-1016)))) (-2557 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-523)) (-4 *4 (-1016)) (-5 *1 (-677 *4)))) (-2249 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-677 *2)) (-4 *2 (-1016)))) (-2249 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-523)) (-4 *4 (-1016)) (-5 *1 (-677 *4))))) +(-13 (-676 |#1|) (-10 -8 (-6 -4244) (-6 -4245) (-15 -3157 ($)) (-15 -3157 ($ |#1|)) (-15 -3157 ($ (-589 |#1|))) (-15 -2136 ((-589 |#1|) $)) (-15 -2557 ($ |#1| $ (-523))) (-15 -2557 ($ (-1 (-108) |#1|) $ (-523))) (-15 -2249 ($ |#1| $ (-523))) (-15 -2249 ($ (-1 (-108) |#1|) $ (-523))))) +((-3094 (((-1173) (-1070)) 8))) +(((-678) (-10 -7 (-15 -3094 ((-1173) (-1070))))) (T -678)) +((-3094 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-678))))) +(-10 -7 (-15 -3094 ((-1173) (-1070)))) +((-3730 (((-589 |#1|) (-589 |#1|) (-589 |#1|)) 10))) +(((-679 |#1|) (-10 -7 (-15 -3730 ((-589 |#1|) (-589 |#1|) (-589 |#1|)))) (-786)) (T -679)) +((-3730 (*1 *2 *2 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-679 *3))))) +(-10 -7 (-15 -3730 ((-589 |#1|) (-589 |#1|) (-589 |#1|)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1957 (((-589 |#2|) $) 136)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 129 (|has| |#1| (-515)))) (-3345 (($ $) 128 (|has| |#1| (-515)))) (-3331 (((-108) $) 126 (|has| |#1| (-515)))) (-1769 (($ $) 85 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 68 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) 19)) (-1832 (($ $) 67 (|has| |#1| (-37 (-383 (-523)))))) (-1744 (($ $) 84 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 69 (|has| |#1| (-37 (-383 (-523)))))) (-1793 (($ $) 83 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 70 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) 17 T CONST)) (-3810 (($ $) 120)) (-2121 (((-3 $ "failed") $) 34)) (-3566 (((-883 |#1|) $ (-710)) 98) (((-883 |#1|) $ (-710) (-710)) 97)) (-2003 (((-108) $) 137)) (-2820 (($) 95 (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-710) $ |#2|) 100) (((-710) $ |#2| (-710)) 99)) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 66 (|has| |#1| (-37 (-383 (-523)))))) (-2620 (((-108) $) 118)) (-1933 (($ $ (-589 |#2|) (-589 (-495 |#2|))) 135) (($ $ |#2| (-495 |#2|)) 134) (($ |#1| (-495 |#2|)) 119) (($ $ |#2| (-710)) 102) (($ $ (-589 |#2|) (-589 (-710))) 101)) (-3612 (($ (-1 |#1| |#1|) $) 117)) (-2384 (($ $) 92 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) 115)) (-3786 ((|#1| $) 114)) (-3779 (((-1070) $) 9)) (-3417 (($ $ |#2|) 96 (|has| |#1| (-37 (-383 (-523)))))) (-2783 (((-1034) $) 10)) (-4097 (($ $ (-710)) 103)) (-3746 (((-3 $ "failed") $ $) 130 (|has| |#1| (-515)))) (-1811 (($ $) 93 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (($ $ |#2| $) 111) (($ $ (-589 |#2|) (-589 $)) 110) (($ $ (-589 (-271 $))) 109) (($ $ (-271 $)) 108) (($ $ $ $) 107) (($ $ (-589 $) (-589 $)) 106)) (-3523 (($ $ |#2|) 42) (($ $ (-589 |#2|)) 41) (($ $ |#2| (-710)) 40) (($ $ (-589 |#2|) (-589 (-710))) 39)) (-2299 (((-495 |#2|) $) 116)) (-1805 (($ $) 82 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 71 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 81 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 72 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 80 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 73 (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) 138)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 133 (|has| |#1| (-158))) (($ $) 131 (|has| |#1| (-515))) (($ (-383 (-523))) 123 (|has| |#1| (-37 (-383 (-523)))))) (-2365 ((|#1| $ (-495 |#2|)) 121) (($ $ |#2| (-710)) 105) (($ $ (-589 |#2|) (-589 (-710))) 104)) (-3901 (((-3 $ "failed") $) 132 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-1839 (($ $) 91 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 79 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) 127 (|has| |#1| (-515)))) (-1818 (($ $) 90 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 78 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 89 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 77 (|has| |#1| (-37 (-383 (-523)))))) (-2914 (($ $) 88 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 76 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 87 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 75 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 86 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 74 (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ |#2|) 38) (($ $ (-589 |#2|)) 37) (($ $ |#2| (-710)) 36) (($ $ (-589 |#2|) (-589 (-710))) 35)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 122 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ $) 94 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 65 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 125 (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) 124 (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 113) (($ $ |#1|) 112))) +(((-680 |#1| |#2|) (-129) (-973) (-786)) (T -680)) +((-2365 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *2)) (-4 *4 (-973)) (-4 *2 (-786)))) (-2365 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *5)) (-5 *3 (-589 (-710))) (-4 *1 (-680 *4 *5)) (-4 *4 (-973)) (-4 *5 (-786)))) (-4097 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-680 *3 *4)) (-4 *3 (-973)) (-4 *4 (-786)))) (-1933 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *2)) (-4 *4 (-973)) (-4 *2 (-786)))) (-1933 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *5)) (-5 *3 (-589 (-710))) (-4 *1 (-680 *4 *5)) (-4 *4 (-973)) (-4 *5 (-786)))) (-1640 (*1 *2 *1 *3) (-12 (-4 *1 (-680 *4 *3)) (-4 *4 (-973)) (-4 *3 (-786)) (-5 *2 (-710)))) (-1640 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-710)) (-4 *1 (-680 *4 *3)) (-4 *4 (-973)) (-4 *3 (-786)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *5)) (-4 *4 (-973)) (-4 *5 (-786)) (-5 *2 (-883 *4)))) (-3566 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *5)) (-4 *4 (-973)) (-4 *5 (-786)) (-5 *2 (-883 *4)))) (-3417 (*1 *1 *1 *2) (-12 (-4 *1 (-680 *3 *2)) (-4 *3 (-973)) (-4 *2 (-786)) (-4 *3 (-37 (-383 (-523))))))) +(-13 (-831 |t#2|) (-902 |t#1| (-495 |t#2|) |t#2|) (-484 |t#2| $) (-286 $) (-10 -8 (-15 -2365 ($ $ |t#2| (-710))) (-15 -2365 ($ $ (-589 |t#2|) (-589 (-710)))) (-15 -4097 ($ $ (-710))) (-15 -1933 ($ $ |t#2| (-710))) (-15 -1933 ($ $ (-589 |t#2|) (-589 (-710)))) (-15 -1640 ((-710) $ |t#2|)) (-15 -1640 ((-710) $ |t#2| (-710))) (-15 -3566 ((-883 |t#1|) $ (-710))) (-15 -3566 ((-883 |t#1|) $ (-710) (-710))) (IF (|has| |t#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ($ $ |t#2|)) (-6 (-930)) (-6 (-1108))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-495 |#2|)) . T) ((-25) . T) ((-37 #1=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) |has| |#1| (-515)) ((-34) |has| |#1| (-37 (-383 (-523)))) ((-91) |has| |#1| (-37 (-383 (-523)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-261) |has| |#1| (-37 (-383 (-523)))) ((-267) |has| |#1| (-515)) ((-286 $) . T) ((-464) |has| |#1| (-37 (-383 (-523)))) ((-484 |#2| $) . T) ((-484 $ $) . T) ((-515) |has| |#1| (-515)) ((-591 #1#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #1#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) |has| |#1| (-515)) ((-666) . T) ((-831 |#2|) . T) ((-902 |#1| #0# |#2|) . T) ((-930) |has| |#1| (-37 (-383 (-523)))) ((-979 #1#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1108) |has| |#1| (-37 (-383 (-523)))) ((-1111) |has| |#1| (-37 (-383 (-523))))) +((-1820 (((-394 (-1083 |#4|)) (-1083 |#4|)) 28) (((-394 |#4|) |#4|) 24))) +(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1820 ((-394 |#4|) |#4|)) (-15 -1820 ((-394 (-1083 |#4|)) (-1083 |#4|)))) (-786) (-732) (-13 (-284) (-136)) (-880 |#3| |#2| |#1|)) (T -681)) +((-1820 (*1 *2 *3) (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-13 (-284) (-136))) (-4 *7 (-880 *6 *5 *4)) (-5 *2 (-394 (-1083 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-1820 (*1 *2 *3) (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-13 (-284) (-136))) (-5 *2 (-394 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-880 *6 *5 *4))))) +(-10 -7 (-15 -1820 ((-394 |#4|) |#4|)) (-15 -1820 ((-394 (-1083 |#4|)) (-1083 |#4|)))) +((-1946 (((-394 |#4|) |#4| |#2|) 117)) (-4211 (((-394 |#4|) |#4|) NIL)) (-3614 (((-394 (-1083 |#4|)) (-1083 |#4|)) 108) (((-394 |#4|) |#4|) 38)) (-2193 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-589 (-2 (|:| -1820 (-1083 |#4|)) (|:| -2735 (-523)))))) (-1083 |#4|) (-589 |#2|) (-589 (-589 |#3|))) 66)) (-2979 (((-1083 |#3|) (-1083 |#3|) (-523)) 134)) (-1722 (((-589 (-710)) (-1083 |#4|) (-589 |#2|) (-710)) 59)) (-2428 (((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-1083 |#3|) (-1083 |#3|) |#4| (-589 |#2|) (-589 (-710)) (-589 |#3|)) 63)) (-2927 (((-2 (|:| |upol| (-1083 |#3|)) (|:| |Lval| (-589 |#3|)) (|:| |Lfact| (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523))))) (|:| |ctpol| |#3|)) (-1083 |#4|) (-589 |#2|) (-589 (-589 |#3|))) 22)) (-4162 (((-2 (|:| -1480 (-1083 |#4|)) (|:| |polval| (-1083 |#3|))) (-1083 |#4|) (-1083 |#3|) (-523)) 55)) (-2848 (((-523) (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523))))) 131)) (-3714 ((|#4| (-523) (-394 |#4|)) 56)) (-1322 (((-108) (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523)))) (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523))))) NIL))) +(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3614 ((-394 |#4|) |#4|)) (-15 -3614 ((-394 (-1083 |#4|)) (-1083 |#4|))) (-15 -4211 ((-394 |#4|) |#4|)) (-15 -2848 ((-523) (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523)))))) (-15 -1946 ((-394 |#4|) |#4| |#2|)) (-15 -4162 ((-2 (|:| -1480 (-1083 |#4|)) (|:| |polval| (-1083 |#3|))) (-1083 |#4|) (-1083 |#3|) (-523))) (-15 -2193 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-589 (-2 (|:| -1820 (-1083 |#4|)) (|:| -2735 (-523)))))) (-1083 |#4|) (-589 |#2|) (-589 (-589 |#3|)))) (-15 -2927 ((-2 (|:| |upol| (-1083 |#3|)) (|:| |Lval| (-589 |#3|)) (|:| |Lfact| (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523))))) (|:| |ctpol| |#3|)) (-1083 |#4|) (-589 |#2|) (-589 (-589 |#3|)))) (-15 -3714 (|#4| (-523) (-394 |#4|))) (-15 -1322 ((-108) (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523)))) (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523)))))) (-15 -2428 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-1083 |#3|) (-1083 |#3|) |#4| (-589 |#2|) (-589 (-710)) (-589 |#3|))) (-15 -1722 ((-589 (-710)) (-1083 |#4|) (-589 |#2|) (-710))) (-15 -2979 ((-1083 |#3|) (-1083 |#3|) (-523)))) (-732) (-786) (-284) (-880 |#3| |#1| |#2|)) (T -682)) +((-2979 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 *6)) (-5 *3 (-523)) (-4 *6 (-284)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5)))) (-1722 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1083 *9)) (-5 *4 (-589 *7)) (-4 *7 (-786)) (-4 *9 (-880 *8 *6 *7)) (-4 *6 (-732)) (-4 *8 (-284)) (-5 *2 (-589 (-710))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *5 (-710)))) (-2428 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1083 *11)) (-5 *6 (-589 *10)) (-5 *7 (-589 (-710))) (-5 *8 (-589 *11)) (-4 *10 (-786)) (-4 *11 (-284)) (-4 *9 (-732)) (-4 *5 (-880 *11 *9 *10)) (-5 *2 (-589 (-1083 *5))) (-5 *1 (-682 *9 *10 *11 *5)) (-5 *3 (-1083 *5)))) (-1322 (*1 *2 *3 *3) (-12 (-5 *3 (-589 (-2 (|:| -1820 (-1083 *6)) (|:| -2735 (-523))))) (-4 *6 (-284)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5)))) (-3714 (*1 *2 *3 *4) (-12 (-5 *3 (-523)) (-5 *4 (-394 *2)) (-4 *2 (-880 *7 *5 *6)) (-5 *1 (-682 *5 *6 *7 *2)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-284)))) (-2927 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1083 *9)) (-5 *4 (-589 *7)) (-5 *5 (-589 (-589 *8))) (-4 *7 (-786)) (-4 *8 (-284)) (-4 *9 (-880 *8 *6 *7)) (-4 *6 (-732)) (-5 *2 (-2 (|:| |upol| (-1083 *8)) (|:| |Lval| (-589 *8)) (|:| |Lfact| (-589 (-2 (|:| -1820 (-1083 *8)) (|:| -2735 (-523))))) (|:| |ctpol| *8))) (-5 *1 (-682 *6 *7 *8 *9)))) (-2193 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-589 *7)) (-5 *5 (-589 (-589 *8))) (-4 *7 (-786)) (-4 *8 (-284)) (-4 *6 (-732)) (-4 *9 (-880 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-589 (-2 (|:| -1820 (-1083 *9)) (|:| -2735 (-523))))))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1083 *9)))) (-4162 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-523)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-284)) (-4 *9 (-880 *8 *6 *7)) (-5 *2 (-2 (|:| -1480 (-1083 *9)) (|:| |polval| (-1083 *8)))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1083 *9)) (-5 *4 (-1083 *8)))) (-1946 (*1 *2 *3 *4) (-12 (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-284)) (-5 *2 (-394 *3)) (-5 *1 (-682 *5 *4 *6 *3)) (-4 *3 (-880 *6 *5 *4)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -1820 (-1083 *6)) (|:| -2735 (-523))))) (-4 *6 (-284)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-523)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5)))) (-4211 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) (-5 *2 (-394 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-880 *6 *4 *5)))) (-3614 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-394 (-1083 *7))) (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-3614 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) (-5 *2 (-394 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-880 *6 *4 *5))))) +(-10 -7 (-15 -3614 ((-394 |#4|) |#4|)) (-15 -3614 ((-394 (-1083 |#4|)) (-1083 |#4|))) (-15 -4211 ((-394 |#4|) |#4|)) (-15 -2848 ((-523) (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523)))))) (-15 -1946 ((-394 |#4|) |#4| |#2|)) (-15 -4162 ((-2 (|:| -1480 (-1083 |#4|)) (|:| |polval| (-1083 |#3|))) (-1083 |#4|) (-1083 |#3|) (-523))) (-15 -2193 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-589 (-2 (|:| -1820 (-1083 |#4|)) (|:| -2735 (-523)))))) (-1083 |#4|) (-589 |#2|) (-589 (-589 |#3|)))) (-15 -2927 ((-2 (|:| |upol| (-1083 |#3|)) (|:| |Lval| (-589 |#3|)) (|:| |Lfact| (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523))))) (|:| |ctpol| |#3|)) (-1083 |#4|) (-589 |#2|) (-589 (-589 |#3|)))) (-15 -3714 (|#4| (-523) (-394 |#4|))) (-15 -1322 ((-108) (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523)))) (-589 (-2 (|:| -1820 (-1083 |#3|)) (|:| -2735 (-523)))))) (-15 -2428 ((-3 (-589 (-1083 |#4|)) "failed") (-1083 |#4|) (-1083 |#3|) (-1083 |#3|) |#4| (-589 |#2|) (-589 (-710)) (-589 |#3|))) (-15 -1722 ((-589 (-710)) (-1083 |#4|) (-589 |#2|) (-710))) (-15 -2979 ((-1083 |#3|) (-1083 |#3|) (-523)))) +((-3650 (($ $ (-852)) 12))) +(((-683 |#1| |#2|) (-10 -8 (-15 -3650 (|#1| |#1| (-852)))) (-684 |#2|) (-158)) (T -683)) +NIL +(-10 -8 (-15 -3650 (|#1| |#1| (-852)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-1970 (($ $ (-852)) 28)) (-3650 (($ $ (-852)) 33)) (-1448 (($ $ (-852)) 29)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1714 (($ $ $) 25)) (-1458 (((-794) $) 11)) (-2022 (($ $ $ $) 26)) (-1995 (($ $ $) 24)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 30)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-684 |#1|) (-129) (-158)) (T -684)) +((-3650 (*1 *1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-684 *3)) (-4 *3 (-158))))) +(-13 (-701) (-657 |t#1|) (-10 -8 (-15 -3650 ($ $ (-852))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-657 |#1|) . T) ((-660) . T) ((-701) . T) ((-979 |#1|) . T) ((-1016) . T)) +((-2332 (((-962) (-629 (-203)) (-523) (-108) (-523)) 24)) (-2174 (((-962) (-629 (-203)) (-523) (-108) (-523)) 23))) +(((-685) (-10 -7 (-15 -2174 ((-962) (-629 (-203)) (-523) (-108) (-523))) (-15 -2332 ((-962) (-629 (-203)) (-523) (-108) (-523))))) (T -685)) +((-2332 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-108)) (-5 *2 (-962)) (-5 *1 (-685)))) (-2174 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-108)) (-5 *2 (-962)) (-5 *1 (-685))))) +(-10 -7 (-15 -2174 ((-962) (-629 (-203)) (-523) (-108) (-523))) (-15 -2332 ((-962) (-629 (-203)) (-523) (-108) (-523)))) +((-2857 (((-962) (-523) (-523) (-523) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-72 FCN)))) 43)) (-3776 (((-962) (-523) (-523) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-79 FCN)))) 39)) (-3187 (((-962) (-203) (-203) (-203) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) 32))) +(((-686) (-10 -7 (-15 -3187 ((-962) (-203) (-203) (-203) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315))))) (-15 -3776 ((-962) (-523) (-523) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-79 FCN))))) (-15 -2857 ((-962) (-523) (-523) (-523) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-72 FCN))))))) (T -686)) +((-2857 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-72 FCN)))) (-5 *2 (-962)) (-5 *1 (-686)))) (-3776 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-79 FCN)))) (-5 *2 (-962)) (-5 *1 (-686)))) (-3187 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) (-5 *2 (-962)) (-5 *1 (-686))))) +(-10 -7 (-15 -3187 ((-962) (-203) (-203) (-203) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315))))) (-15 -3776 ((-962) (-523) (-523) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-79 FCN))))) (-15 -2857 ((-962) (-523) (-523) (-523) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-72 FCN)))))) +((-2111 (((-962) (-523) (-523) (-629 (-203)) (-523)) 33)) (-2995 (((-962) (-523) (-523) (-629 (-203)) (-523)) 32)) (-1361 (((-962) (-523) (-629 (-203)) (-523)) 31)) (-3907 (((-962) (-523) (-629 (-203)) (-523)) 30)) (-3176 (((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 29)) (-2514 (((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 28)) (-3460 (((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-523)) 27)) (-2882 (((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-523)) 26)) (-3074 (((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523)) 23)) (-3979 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-523)) 22)) (-1822 (((-962) (-523) (-629 (-203)) (-523)) 21)) (-3559 (((-962) (-523) (-629 (-203)) (-523)) 20))) +(((-687) (-10 -7 (-15 -3559 ((-962) (-523) (-629 (-203)) (-523))) (-15 -1822 ((-962) (-523) (-629 (-203)) (-523))) (-15 -3979 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3074 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2882 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3460 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2514 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3176 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3907 ((-962) (-523) (-629 (-203)) (-523))) (-15 -1361 ((-962) (-523) (-629 (-203)) (-523))) (-15 -2995 ((-962) (-523) (-523) (-629 (-203)) (-523))) (-15 -2111 ((-962) (-523) (-523) (-629 (-203)) (-523))))) (T -687)) +((-2111 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-2995 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-1361 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-3907 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-3176 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-2514 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-3460 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-2882 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-3074 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-3979 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-1822 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687)))) (-3559 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-687))))) +(-10 -7 (-15 -3559 ((-962) (-523) (-629 (-203)) (-523))) (-15 -1822 ((-962) (-523) (-629 (-203)) (-523))) (-15 -3979 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3074 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2882 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3460 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2514 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3176 ((-962) (-523) (-523) (-1070) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3907 ((-962) (-523) (-629 (-203)) (-523))) (-15 -1361 ((-962) (-523) (-629 (-203)) (-523))) (-15 -2995 ((-962) (-523) (-523) (-629 (-203)) (-523))) (-15 -2111 ((-962) (-523) (-523) (-629 (-203)) (-523)))) +((-1249 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-203) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN)))) 52)) (-1967 (((-962) (-629 (-203)) (-629 (-203)) (-523) (-523)) 51)) (-3995 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN)))) 50)) (-3181 (((-962) (-203) (-203) (-523) (-523) (-523) (-523)) 46)) (-1623 (((-962) (-203) (-203) (-523) (-203) (-523) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) 45)) (-2456 (((-962) (-203) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) 44)) (-4127 (((-962) (-203) (-203) (-203) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) 43)) (-4218 (((-962) (-203) (-203) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) 42)) (-1987 (((-962) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) 38)) (-1904 (((-962) (-203) (-203) (-523) (-629 (-203)) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) 37)) (-3455 (((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) 33)) (-2036 (((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) 32))) +(((-688) (-10 -7 (-15 -2036 ((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315))))) (-15 -3455 ((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315))))) (-15 -1904 ((-962) (-203) (-203) (-523) (-629 (-203)) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315))))) (-15 -1987 ((-962) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315))))) (-15 -4218 ((-962) (-203) (-203) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -4127 ((-962) (-203) (-203) (-203) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -2456 ((-962) (-203) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -1623 ((-962) (-203) (-203) (-523) (-203) (-523) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -3181 ((-962) (-203) (-203) (-523) (-523) (-523) (-523))) (-15 -3995 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN))))) (-15 -1967 ((-962) (-629 (-203)) (-629 (-203)) (-523) (-523))) (-15 -1249 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-203) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN))))))) (T -688)) +((-1249 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-1967 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-688)))) (-3995 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-3181 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-688)))) (-1623 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-2456 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-4127 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-4218 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-1987 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-1904 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-688)))) (-3455 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) (-5 *2 (-962)) (-5 *1 (-688)))) (-2036 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) (-5 *2 (-962)) (-5 *1 (-688))))) +(-10 -7 (-15 -2036 ((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315))))) (-15 -3455 ((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315))))) (-15 -1904 ((-962) (-203) (-203) (-523) (-629 (-203)) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315))))) (-15 -1987 ((-962) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315))))) (-15 -4218 ((-962) (-203) (-203) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -4127 ((-962) (-203) (-203) (-203) (-203) (-523) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -2456 ((-962) (-203) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -1623 ((-962) (-203) (-203) (-523) (-203) (-523) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G))))) (-15 -3181 ((-962) (-203) (-203) (-523) (-523) (-523) (-523))) (-15 -3995 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-203) (-523) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN))))) (-15 -1967 ((-962) (-629 (-203)) (-629 (-203)) (-523) (-523))) (-15 -1249 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-203) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN)))))) +((-1454 (((-962) (-523) (-523) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-364)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-2467 (((-962) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL))) (-364) (-364)) 69) (((-962) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL)))) 68)) (-3465 (((-962) (-203) (-203) (-523) (-203) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-364)) (|:| |fp| (-83 FCNG)))) 57)) (-1341 (((-962) (-629 (-203)) (-629 (-203)) (-523) (-203) (-203) (-203) (-523) (-523) (-523) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) 50)) (-1324 (((-962) (-203) (-523) (-523) (-1070) (-523) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) 49)) (-3981 (((-962) (-203) (-523) (-523) (-203) (-1070) (-203) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) 45)) (-1415 (((-962) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) 42)) (-4200 (((-962) (-203) (-523) (-523) (-523) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) 38))) +(((-689) (-10 -7 (-15 -4200 ((-962) (-203) (-523) (-523) (-523) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT))))) (-15 -1415 ((-962) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))))) (-15 -3981 ((-962) (-203) (-523) (-523) (-203) (-1070) (-203) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT))))) (-15 -1324 ((-962) (-203) (-523) (-523) (-1070) (-523) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT))))) (-15 -1341 ((-962) (-629 (-203)) (-629 (-203)) (-523) (-203) (-203) (-203) (-523) (-523) (-523) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))))) (-15 -3465 ((-962) (-203) (-203) (-523) (-203) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-364)) (|:| |fp| (-83 FCNG))))) (-15 -2467 ((-962) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL))))) (-15 -2467 ((-962) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL))) (-364) (-364))) (-15 -1454 ((-962) (-523) (-523) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-364)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -689)) +((-1454 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-689)))) (-2467 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-203)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-364)) (-5 *2 (-962)) (-5 *1 (-689)))) (-2467 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-203)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-962)) (-5 *1 (-689)))) (-3465 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689)))) (-1341 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-203)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) (-5 *2 (-962)) (-5 *1 (-689)))) (-1324 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-523)) (-5 *5 (-1070)) (-5 *6 (-629 (-203))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-364)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689)))) (-3981 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-523)) (-5 *5 (-1070)) (-5 *6 (-629 (-203))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689)))) (-1415 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689)))) (-4200 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689))))) +(-10 -7 (-15 -4200 ((-962) (-203) (-523) (-523) (-523) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT))))) (-15 -1415 ((-962) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))))) (-15 -3981 ((-962) (-203) (-523) (-523) (-203) (-1070) (-203) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT))))) (-15 -1324 ((-962) (-203) (-523) (-523) (-1070) (-523) (-203) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT))))) (-15 -1341 ((-962) (-629 (-203)) (-629 (-203)) (-523) (-203) (-203) (-203) (-523) (-523) (-523) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN))))) (-15 -3465 ((-962) (-203) (-203) (-523) (-203) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-364)) (|:| |fp| (-83 FCNG))))) (-15 -2467 ((-962) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL))))) (-15 -2467 ((-962) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL))) (-364) (-364))) (-15 -1454 ((-962) (-523) (-523) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-364)) (|:| |fp| (-74 G JACOBG JACGEP)))))) +((-1275 (((-962) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-617 (-203)) (-523)) 45)) (-3542 (((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-1070) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-364)) (|:| |fp| (-81 BNDY)))) 41)) (-4066 (((-962) (-523) (-523) (-523) (-523) (-203) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 23))) +(((-690) (-10 -7 (-15 -4066 ((-962) (-523) (-523) (-523) (-523) (-203) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3542 ((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-1070) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-364)) (|:| |fp| (-81 BNDY))))) (-15 -1275 ((-962) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-617 (-203)) (-523))))) (T -690)) +((-1275 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-617 (-203))) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-690)))) (-3542 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-1070)) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-962)) (-5 *1 (-690)))) (-4066 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-690))))) +(-10 -7 (-15 -4066 ((-962) (-523) (-523) (-523) (-523) (-203) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3542 ((-962) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-1070) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-364)) (|:| |fp| (-81 BNDY))))) (-15 -1275 ((-962) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-617 (-203)) (-523)))) +((-3482 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-629 (-203)) (-203) (-203) (-523)) 35)) (-2687 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-203) (-203) (-523)) 34)) (-3022 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-629 (-203)) (-203) (-203) (-523)) 33)) (-1639 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 29)) (-3165 (((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 28)) (-3506 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523)) 27)) (-2689 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-523)) 23)) (-1696 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-523)) 22)) (-2281 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-523)) 21)) (-4163 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523)) 20))) +(((-691) (-10 -7 (-15 -4163 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523))) (-15 -2281 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1696 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -2689 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -3506 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523))) (-15 -3165 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1639 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3022 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-629 (-203)) (-203) (-203) (-523))) (-15 -2687 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-203) (-203) (-523))) (-15 -3482 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-629 (-203)) (-203) (-203) (-523))))) (T -691)) +((-3482 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *2 (-962)) (-5 *1 (-691)))) (-2687 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *2 (-962)) (-5 *1 (-691)))) (-3022 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *6 (-203)) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-691)))) (-1639 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-691)))) (-3165 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-691)))) (-3506 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *2 (-962)) (-5 *1 (-691)))) (-2689 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-691)))) (-1696 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-691)))) (-2281 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-691)))) (-4163 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-691))))) +(-10 -7 (-15 -4163 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523))) (-15 -2281 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1696 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -2689 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -3506 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-203) (-523))) (-15 -3165 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1639 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3022 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-629 (-203)) (-203) (-203) (-523))) (-15 -2687 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-203) (-203) (-523))) (-15 -3482 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-629 (-203)) (-203) (-203) (-523)))) +((-3388 (((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523)) 45)) (-1436 (((-962) (-523) (-523) (-523) (-203) (-629 (-203)) (-629 (-203)) (-523)) 44)) (-3311 (((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523)) 43)) (-3397 (((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 42)) (-1287 (((-962) (-1070) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523)) 41)) (-3529 (((-962) (-1070) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523)) 40)) (-4177 (((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523) (-523) (-523) (-203) (-629 (-203)) (-523)) 39)) (-2802 (((-962) (-1070) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-523))) 38)) (-3592 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-523)) 35)) (-4036 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523)) 34)) (-2228 (((-962) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523)) 33)) (-2366 (((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 32)) (-2201 (((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-203) (-523)) 31)) (-3832 (((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-523)) 30)) (-1614 (((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-523) (-523) (-523)) 29)) (-2899 (((-962) (-523) (-523) (-523) (-203) (-203) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523) (-629 (-523)) (-523) (-523) (-523)) 28)) (-2917 (((-962) (-523) (-629 (-203)) (-203) (-523)) 24)) (-2540 (((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 20))) +(((-692) (-10 -7 (-15 -2540 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2917 ((-962) (-523) (-629 (-203)) (-203) (-523))) (-15 -2899 ((-962) (-523) (-523) (-523) (-203) (-203) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523) (-629 (-523)) (-523) (-523) (-523))) (-15 -1614 ((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-523) (-523) (-523))) (-15 -3832 ((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-523))) (-15 -2201 ((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-203) (-523))) (-15 -2366 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2228 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523))) (-15 -4036 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523))) (-15 -3592 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2802 ((-962) (-1070) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-523)))) (-15 -4177 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523) (-523) (-523) (-203) (-629 (-203)) (-523))) (-15 -3529 ((-962) (-1070) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523))) (-15 -1287 ((-962) (-1070) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3397 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3311 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523))) (-15 -1436 ((-962) (-523) (-523) (-523) (-203) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3388 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523))))) (T -692)) +((-3388 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-692)))) (-1436 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-3311 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-692)))) (-3397 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-692)))) (-1287 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-3529 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1070)) (-5 *5 (-629 (-203))) (-5 *6 (-203)) (-5 *7 (-629 (-523))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-692)))) (-4177 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *6 (-203)) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-692)))) (-2802 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1070)) (-5 *5 (-629 (-203))) (-5 *6 (-203)) (-5 *7 (-629 (-523))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-692)))) (-3592 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-692)))) (-4036 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-2228 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-2366 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-692)))) (-2201 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-3832 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-1614 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-2899 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-629 (-203))) (-5 *6 (-629 (-523))) (-5 *3 (-523)) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-2917 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) (-5 *2 (-962)) (-5 *1 (-692)))) (-2540 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-692))))) +(-10 -7 (-15 -2540 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2917 ((-962) (-523) (-629 (-203)) (-203) (-523))) (-15 -2899 ((-962) (-523) (-523) (-523) (-203) (-203) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523) (-629 (-523)) (-523) (-523) (-523))) (-15 -1614 ((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-523) (-523) (-523))) (-15 -3832 ((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-203) (-523) (-523) (-523))) (-15 -2201 ((-962) (-523) (-203) (-203) (-629 (-203)) (-523) (-523) (-203) (-523))) (-15 -2366 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2228 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523))) (-15 -4036 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523))) (-15 -3592 ((-962) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2802 ((-962) (-1070) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-523)))) (-15 -4177 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523) (-523) (-523) (-203) (-629 (-203)) (-523))) (-15 -3529 ((-962) (-1070) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523))) (-15 -1287 ((-962) (-1070) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3397 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3311 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523))) (-15 -1436 ((-962) (-523) (-523) (-523) (-203) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3388 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523) (-629 (-203)) (-629 (-203)) (-523) (-523) (-523)))) +((-4148 (((-962) (-523) (-523) (-523) (-203) (-629 (-203)) (-523) (-629 (-203)) (-523)) 63)) (-1376 (((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-108) (-203) (-523) (-203) (-203) (-108) (-203) (-203) (-203) (-203) (-108) (-523) (-523) (-523) (-523) (-523) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-523)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN)))) 62)) (-3188 (((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-203) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-108) (-108) (-108) (-523) (-523) (-629 (-203)) (-629 (-523)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-63 QPHESS)))) 58)) (-4028 (((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-108) (-523) (-523) (-629 (-203)) (-523)) 51)) (-3141 (((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-64 FUNCT1)))) 50)) (-3343 (((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-61 LSFUN2)))) 46)) (-1426 (((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-77 LSFUN1)))) 42)) (-4125 (((-962) (-523) (-203) (-203) (-523) (-203) (-108) (-203) (-203) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN)))) 38))) +(((-693) (-10 -7 (-15 -4125 ((-962) (-523) (-203) (-203) (-523) (-203) (-108) (-203) (-203) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN))))) (-15 -1426 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-77 LSFUN1))))) (-15 -3343 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-61 LSFUN2))))) (-15 -3141 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-64 FUNCT1))))) (-15 -4028 ((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-108) (-523) (-523) (-629 (-203)) (-523))) (-15 -3188 ((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-203) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-108) (-108) (-108) (-523) (-523) (-629 (-203)) (-629 (-523)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-63 QPHESS))))) (-15 -1376 ((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-108) (-203) (-523) (-203) (-203) (-108) (-203) (-203) (-203) (-203) (-108) (-523) (-523) (-523) (-523) (-523) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-523)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN))))) (-15 -4148 ((-962) (-523) (-523) (-523) (-203) (-629 (-203)) (-523) (-629 (-203)) (-523))))) (T -693)) +((-4148 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-693)))) (-1376 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-108)) (-5 *6 (-203)) (-5 *7 (-629 (-523))) (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-693)))) (-3188 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-629 (-203))) (-5 *6 (-108)) (-5 *7 (-629 (-523))) (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-523)) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-693)))) (-4028 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-108)) (-5 *2 (-962)) (-5 *1 (-693)))) (-3141 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-962)) (-5 *1 (-693)))) (-3343 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-962)) (-5 *1 (-693)))) (-1426 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-962)) (-5 *1 (-693)))) (-4125 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-523)) (-5 *5 (-108)) (-5 *6 (-629 (-203))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-693))))) +(-10 -7 (-15 -4125 ((-962) (-523) (-203) (-203) (-523) (-203) (-108) (-203) (-203) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN))))) (-15 -1426 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-77 LSFUN1))))) (-15 -3343 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-61 LSFUN2))))) (-15 -3141 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-64 FUNCT1))))) (-15 -4028 ((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-108) (-523) (-523) (-629 (-203)) (-523))) (-15 -3188 ((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-203) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-108) (-108) (-108) (-523) (-523) (-629 (-203)) (-629 (-523)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-63 QPHESS))))) (-15 -1376 ((-962) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-523) (-108) (-203) (-523) (-203) (-203) (-108) (-203) (-203) (-203) (-203) (-108) (-523) (-523) (-523) (-523) (-523) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-523) (-629 (-523)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN))))) (-15 -4148 ((-962) (-523) (-523) (-523) (-203) (-629 (-203)) (-523) (-629 (-203)) (-523)))) +((-1780 (((-962) (-1070) (-523) (-523) (-523) (-523) (-629 (-155 (-203))) (-629 (-155 (-203))) (-523)) 46)) (-1700 (((-962) (-1070) (-1070) (-523) (-523) (-629 (-155 (-203))) (-523) (-629 (-155 (-203))) (-523) (-523) (-629 (-155 (-203))) (-523)) 45)) (-2714 (((-962) (-523) (-523) (-523) (-629 (-155 (-203))) (-523)) 44)) (-3904 (((-962) (-1070) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523)) 40)) (-2631 (((-962) (-1070) (-1070) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-629 (-203)) (-523)) 39)) (-3588 (((-962) (-523) (-523) (-523) (-629 (-203)) (-523)) 36)) (-3622 (((-962) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523)) 35)) (-1222 (((-962) (-523) (-523) (-523) (-523) (-589 (-108)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-203) (-203) (-523)) 34)) (-3067 (((-962) (-523) (-523) (-523) (-629 (-523)) (-629 (-523)) (-629 (-523)) (-629 (-523)) (-108) (-203) (-108) (-629 (-523)) (-629 (-203)) (-523)) 33)) (-2593 (((-962) (-523) (-523) (-523) (-523) (-203) (-108) (-108) (-589 (-108)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-523)) 32))) +(((-694) (-10 -7 (-15 -2593 ((-962) (-523) (-523) (-523) (-523) (-203) (-108) (-108) (-589 (-108)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-523))) (-15 -3067 ((-962) (-523) (-523) (-523) (-629 (-523)) (-629 (-523)) (-629 (-523)) (-629 (-523)) (-108) (-203) (-108) (-629 (-523)) (-629 (-203)) (-523))) (-15 -1222 ((-962) (-523) (-523) (-523) (-523) (-589 (-108)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-203) (-203) (-523))) (-15 -3622 ((-962) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523))) (-15 -3588 ((-962) (-523) (-523) (-523) (-629 (-203)) (-523))) (-15 -2631 ((-962) (-1070) (-1070) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-629 (-203)) (-523))) (-15 -3904 ((-962) (-1070) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2714 ((-962) (-523) (-523) (-523) (-629 (-155 (-203))) (-523))) (-15 -1700 ((-962) (-1070) (-1070) (-523) (-523) (-629 (-155 (-203))) (-523) (-629 (-155 (-203))) (-523) (-523) (-629 (-155 (-203))) (-523))) (-15 -1780 ((-962) (-1070) (-523) (-523) (-523) (-523) (-629 (-155 (-203))) (-629 (-155 (-203))) (-523))))) (T -694)) +((-1780 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-155 (-203)))) (-5 *2 (-962)) (-5 *1 (-694)))) (-1700 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-155 (-203)))) (-5 *2 (-962)) (-5 *1 (-694)))) (-2714 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-155 (-203)))) (-5 *2 (-962)) (-5 *1 (-694)))) (-3904 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-694)))) (-2631 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-694)))) (-3588 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-694)))) (-3622 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-694)))) (-1222 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-589 (-108))) (-5 *5 (-629 (-203))) (-5 *6 (-629 (-523))) (-5 *7 (-203)) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-694)))) (-3067 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-629 (-523))) (-5 *5 (-108)) (-5 *7 (-629 (-203))) (-5 *3 (-523)) (-5 *6 (-203)) (-5 *2 (-962)) (-5 *1 (-694)))) (-2593 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-589 (-108))) (-5 *7 (-629 (-203))) (-5 *8 (-629 (-523))) (-5 *3 (-523)) (-5 *4 (-203)) (-5 *5 (-108)) (-5 *2 (-962)) (-5 *1 (-694))))) +(-10 -7 (-15 -2593 ((-962) (-523) (-523) (-523) (-523) (-203) (-108) (-108) (-589 (-108)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-523))) (-15 -3067 ((-962) (-523) (-523) (-523) (-629 (-523)) (-629 (-523)) (-629 (-523)) (-629 (-523)) (-108) (-203) (-108) (-629 (-523)) (-629 (-203)) (-523))) (-15 -1222 ((-962) (-523) (-523) (-523) (-523) (-589 (-108)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-203) (-203) (-523))) (-15 -3622 ((-962) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523))) (-15 -3588 ((-962) (-523) (-523) (-523) (-629 (-203)) (-523))) (-15 -2631 ((-962) (-1070) (-1070) (-523) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-629 (-203)) (-523))) (-15 -3904 ((-962) (-1070) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2714 ((-962) (-523) (-523) (-523) (-629 (-155 (-203))) (-523))) (-15 -1700 ((-962) (-1070) (-1070) (-523) (-523) (-629 (-155 (-203))) (-523) (-629 (-155 (-203))) (-523) (-523) (-629 (-155 (-203))) (-523))) (-15 -1780 ((-962) (-1070) (-523) (-523) (-523) (-523) (-629 (-155 (-203))) (-629 (-155 (-203))) (-523)))) +((-4170 (((-962) (-523) (-523) (-523) (-523) (-523) (-108) (-523) (-108) (-523) (-629 (-155 (-203))) (-629 (-155 (-203))) (-523)) 64)) (-2339 (((-962) (-523) (-523) (-523) (-523) (-523) (-108) (-523) (-108) (-523) (-629 (-203)) (-629 (-203)) (-523)) 60)) (-1645 (((-962) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE))) (-364)) 56) (((-962) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE)))) 55)) (-2928 (((-962) (-523) (-523) (-523) (-203) (-108) (-523) (-629 (-203)) (-629 (-203)) (-523)) 37)) (-3148 (((-962) (-523) (-523) (-203) (-203) (-523) (-523) (-629 (-203)) (-523)) 33)) (-1601 (((-962) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-523) (-523) (-523)) 29)) (-2895 (((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523)) 28)) (-3570 (((-962) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523)) 27)) (-1660 (((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523)) 26)) (-1924 (((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523)) 25)) (-4141 (((-962) (-523) (-523) (-629 (-203)) (-523)) 24)) (-2212 (((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523)) 23)) (-3909 (((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523)) 22)) (-2595 (((-962) (-629 (-203)) (-523) (-523) (-523) (-523)) 21)) (-3643 (((-962) (-523) (-523) (-629 (-203)) (-523)) 20))) +(((-695) (-10 -7 (-15 -3643 ((-962) (-523) (-523) (-629 (-203)) (-523))) (-15 -2595 ((-962) (-629 (-203)) (-523) (-523) (-523) (-523))) (-15 -3909 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2212 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -4141 ((-962) (-523) (-523) (-629 (-203)) (-523))) (-15 -1924 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523))) (-15 -1660 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3570 ((-962) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2895 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1601 ((-962) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-523) (-523) (-523))) (-15 -3148 ((-962) (-523) (-523) (-203) (-203) (-523) (-523) (-629 (-203)) (-523))) (-15 -2928 ((-962) (-523) (-523) (-523) (-203) (-108) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1645 ((-962) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE))))) (-15 -1645 ((-962) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE))) (-364))) (-15 -2339 ((-962) (-523) (-523) (-523) (-523) (-523) (-108) (-523) (-108) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -4170 ((-962) (-523) (-523) (-523) (-523) (-523) (-108) (-523) (-108) (-523) (-629 (-155 (-203))) (-629 (-155 (-203))) (-523))))) (T -695)) +((-4170 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-108)) (-5 *5 (-629 (-155 (-203)))) (-5 *2 (-962)) (-5 *1 (-695)))) (-2339 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *4 (-108)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-1645 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-364)) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-695)))) (-1645 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-695)))) (-2928 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-523)) (-5 *5 (-108)) (-5 *6 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-695)))) (-3148 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-695)))) (-1601 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-695)))) (-2895 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-3570 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-1660 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-1924 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-4141 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-2212 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-3909 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695)))) (-2595 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-695)))) (-3643 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-695))))) +(-10 -7 (-15 -3643 ((-962) (-523) (-523) (-629 (-203)) (-523))) (-15 -2595 ((-962) (-629 (-203)) (-523) (-523) (-523) (-523))) (-15 -3909 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2212 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -4141 ((-962) (-523) (-523) (-629 (-203)) (-523))) (-15 -1924 ((-962) (-523) (-523) (-523) (-523) (-629 (-203)) (-523))) (-15 -1660 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -3570 ((-962) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -2895 ((-962) (-523) (-523) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1601 ((-962) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-523) (-523) (-523))) (-15 -3148 ((-962) (-523) (-523) (-203) (-203) (-523) (-523) (-629 (-203)) (-523))) (-15 -2928 ((-962) (-523) (-523) (-523) (-203) (-108) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1645 ((-962) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE))))) (-15 -1645 ((-962) (-523) (-523) (-203) (-523) (-523) (-523) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE))) (-364))) (-15 -2339 ((-962) (-523) (-523) (-523) (-523) (-523) (-108) (-523) (-108) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -4170 ((-962) (-523) (-523) (-523) (-523) (-523) (-108) (-523) (-108) (-523) (-629 (-155 (-203))) (-629 (-155 (-203))) (-523)))) +((-2617 (((-962) (-523) (-523) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-68 APROD)))) 60)) (-2588 (((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-523)) (-523) (-629 (-203)) (-523) (-523) (-523) (-523)) 56)) (-2806 (((-962) (-523) (-629 (-203)) (-108) (-203) (-523) (-523) (-523) (-523) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-364)) (|:| |fp| (-71 MSOLVE)))) 55)) (-1990 (((-962) (-523) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523) (-629 (-523)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523)) 36)) (-1850 (((-962) (-523) (-523) (-523) (-203) (-523) (-629 (-203)) (-629 (-203)) (-523)) 35)) (-2436 (((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523)) 31)) (-1229 (((-962) (-523) (-629 (-203)) (-523) (-629 (-523)) (-629 (-523)) (-523) (-629 (-523)) (-629 (-203))) 30)) (-1630 (((-962) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-523)) 26)) (-3659 (((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523)) 25)) (-2762 (((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523)) 24)) (-1844 (((-962) (-523) (-629 (-155 (-203))) (-523) (-523) (-523) (-523) (-629 (-155 (-203))) (-523)) 20))) +(((-696) (-10 -7 (-15 -1844 ((-962) (-523) (-629 (-155 (-203))) (-523) (-523) (-523) (-523) (-629 (-155 (-203))) (-523))) (-15 -2762 ((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -3659 ((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -1630 ((-962) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-523))) (-15 -1229 ((-962) (-523) (-629 (-203)) (-523) (-629 (-523)) (-629 (-523)) (-523) (-629 (-523)) (-629 (-203)))) (-15 -2436 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1850 ((-962) (-523) (-523) (-523) (-203) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1990 ((-962) (-523) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523) (-629 (-523)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523))) (-15 -2806 ((-962) (-523) (-629 (-203)) (-108) (-203) (-523) (-523) (-523) (-523) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-364)) (|:| |fp| (-71 MSOLVE))))) (-15 -2588 ((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-523)) (-523) (-629 (-203)) (-523) (-523) (-523) (-523))) (-15 -2617 ((-962) (-523) (-523) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-68 APROD))))))) (T -696)) +((-2617 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-68 APROD)))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-696)))) (-2588 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-696)))) (-2806 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-108)) (-5 *6 (-203)) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-962)) (-5 *1 (-696)))) (-1990 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-696)))) (-1850 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-696)))) (-2436 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-696)))) (-1229 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-696)))) (-1630 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-696)))) (-3659 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-696)))) (-2762 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-696)))) (-1844 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-155 (-203)))) (-5 *2 (-962)) (-5 *1 (-696))))) +(-10 -7 (-15 -1844 ((-962) (-523) (-629 (-155 (-203))) (-523) (-523) (-523) (-523) (-629 (-155 (-203))) (-523))) (-15 -2762 ((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -3659 ((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-523))) (-15 -1630 ((-962) (-629 (-203)) (-523) (-629 (-203)) (-523) (-523) (-523))) (-15 -1229 ((-962) (-523) (-629 (-203)) (-523) (-629 (-523)) (-629 (-523)) (-523) (-629 (-523)) (-629 (-203)))) (-15 -2436 ((-962) (-523) (-523) (-629 (-203)) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1850 ((-962) (-523) (-523) (-523) (-203) (-523) (-629 (-203)) (-629 (-203)) (-523))) (-15 -1990 ((-962) (-523) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523) (-629 (-523)) (-629 (-203)) (-629 (-523)) (-629 (-523)) (-629 (-203)) (-629 (-203)) (-629 (-523)) (-523))) (-15 -2806 ((-962) (-523) (-629 (-203)) (-108) (-203) (-523) (-523) (-523) (-523) (-203) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-364)) (|:| |fp| (-71 MSOLVE))))) (-15 -2588 ((-962) (-523) (-629 (-203)) (-523) (-629 (-203)) (-629 (-523)) (-523) (-629 (-203)) (-523) (-523) (-523) (-523))) (-15 -2617 ((-962) (-523) (-523) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-629 (-203)) (-523) (-3 (|:| |fn| (-364)) (|:| |fp| (-68 APROD)))))) +((-2247 (((-962) (-1070) (-523) (-523) (-629 (-203)) (-523) (-523) (-629 (-203))) 28)) (-2739 (((-962) (-1070) (-523) (-523) (-629 (-203))) 27)) (-3168 (((-962) (-1070) (-523) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523) (-629 (-203))) 26)) (-3042 (((-962) (-523) (-523) (-523) (-629 (-203))) 20))) +(((-697) (-10 -7 (-15 -3042 ((-962) (-523) (-523) (-523) (-629 (-203)))) (-15 -3168 ((-962) (-1070) (-523) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523) (-629 (-203)))) (-15 -2739 ((-962) (-1070) (-523) (-523) (-629 (-203)))) (-15 -2247 ((-962) (-1070) (-523) (-523) (-629 (-203)) (-523) (-523) (-629 (-203)))))) (T -697)) +((-2247 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-697)))) (-2739 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-697)))) (-3168 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1070)) (-5 *5 (-629 (-203))) (-5 *6 (-629 (-523))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-697)))) (-3042 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) (-5 *1 (-697))))) +(-10 -7 (-15 -3042 ((-962) (-523) (-523) (-523) (-629 (-203)))) (-15 -3168 ((-962) (-1070) (-523) (-523) (-629 (-203)) (-523) (-629 (-523)) (-523) (-629 (-203)))) (-15 -2739 ((-962) (-1070) (-523) (-523) (-629 (-203)))) (-15 -2247 ((-962) (-1070) (-523) (-523) (-629 (-203)) (-523) (-523) (-629 (-203))))) +((-3429 (((-962) (-203) (-203) (-203) (-203) (-523)) 62)) (-2760 (((-962) (-203) (-203) (-203) (-523)) 61)) (-3581 (((-962) (-203) (-203) (-203) (-523)) 60)) (-1465 (((-962) (-203) (-203) (-523)) 59)) (-2921 (((-962) (-203) (-523)) 58)) (-3029 (((-962) (-203) (-523)) 57)) (-2303 (((-962) (-203) (-523)) 56)) (-3975 (((-962) (-203) (-523)) 55)) (-3948 (((-962) (-203) (-523)) 54)) (-1564 (((-962) (-203) (-523)) 53)) (-3484 (((-962) (-203) (-155 (-203)) (-523) (-1070) (-523)) 52)) (-2358 (((-962) (-203) (-155 (-203)) (-523) (-1070) (-523)) 51)) (-3350 (((-962) (-203) (-523)) 50)) (-1877 (((-962) (-203) (-523)) 49)) (-2503 (((-962) (-203) (-523)) 48)) (-3154 (((-962) (-203) (-523)) 47)) (-1723 (((-962) (-523) (-203) (-155 (-203)) (-523) (-1070) (-523)) 46)) (-1859 (((-962) (-1070) (-155 (-203)) (-1070) (-523)) 45)) (-1753 (((-962) (-1070) (-155 (-203)) (-1070) (-523)) 44)) (-3504 (((-962) (-203) (-155 (-203)) (-523) (-1070) (-523)) 43)) (-2021 (((-962) (-203) (-155 (-203)) (-523) (-1070) (-523)) 42)) (-2684 (((-962) (-203) (-523)) 39)) (-3915 (((-962) (-203) (-523)) 38)) (-2623 (((-962) (-203) (-523)) 37)) (-2968 (((-962) (-203) (-523)) 36)) (-2558 (((-962) (-203) (-523)) 35)) (-3949 (((-962) (-203) (-523)) 34)) (-2086 (((-962) (-203) (-523)) 33)) (-1909 (((-962) (-203) (-523)) 32)) (-2757 (((-962) (-203) (-523)) 31)) (-3146 (((-962) (-203) (-523)) 30)) (-1566 (((-962) (-203) (-203) (-203) (-523)) 29)) (-3215 (((-962) (-203) (-523)) 28)) (-2016 (((-962) (-203) (-523)) 27)) (-2157 (((-962) (-203) (-523)) 26)) (-3421 (((-962) (-203) (-523)) 25)) (-2261 (((-962) (-203) (-523)) 24)) (-4060 (((-962) (-155 (-203)) (-523)) 20))) +(((-698) (-10 -7 (-15 -4060 ((-962) (-155 (-203)) (-523))) (-15 -2261 ((-962) (-203) (-523))) (-15 -3421 ((-962) (-203) (-523))) (-15 -2157 ((-962) (-203) (-523))) (-15 -2016 ((-962) (-203) (-523))) (-15 -3215 ((-962) (-203) (-523))) (-15 -1566 ((-962) (-203) (-203) (-203) (-523))) (-15 -3146 ((-962) (-203) (-523))) (-15 -2757 ((-962) (-203) (-523))) (-15 -1909 ((-962) (-203) (-523))) (-15 -2086 ((-962) (-203) (-523))) (-15 -3949 ((-962) (-203) (-523))) (-15 -2558 ((-962) (-203) (-523))) (-15 -2968 ((-962) (-203) (-523))) (-15 -2623 ((-962) (-203) (-523))) (-15 -3915 ((-962) (-203) (-523))) (-15 -2684 ((-962) (-203) (-523))) (-15 -2021 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -3504 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -1753 ((-962) (-1070) (-155 (-203)) (-1070) (-523))) (-15 -1859 ((-962) (-1070) (-155 (-203)) (-1070) (-523))) (-15 -1723 ((-962) (-523) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -3154 ((-962) (-203) (-523))) (-15 -2503 ((-962) (-203) (-523))) (-15 -1877 ((-962) (-203) (-523))) (-15 -3350 ((-962) (-203) (-523))) (-15 -2358 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -3484 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -1564 ((-962) (-203) (-523))) (-15 -3948 ((-962) (-203) (-523))) (-15 -3975 ((-962) (-203) (-523))) (-15 -2303 ((-962) (-203) (-523))) (-15 -3029 ((-962) (-203) (-523))) (-15 -2921 ((-962) (-203) (-523))) (-15 -1465 ((-962) (-203) (-203) (-523))) (-15 -3581 ((-962) (-203) (-203) (-203) (-523))) (-15 -2760 ((-962) (-203) (-203) (-203) (-523))) (-15 -3429 ((-962) (-203) (-203) (-203) (-203) (-523))))) (T -698)) +((-3429 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2760 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3581 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1465 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2921 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3029 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2303 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3975 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3948 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1564 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3484 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2358 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1877 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3154 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1723 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-523)) (-5 *5 (-155 (-203))) (-5 *6 (-1070)) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1859 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1070)) (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1753 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1070)) (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3504 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2021 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2684 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3915 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2623 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2968 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2558 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3949 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2086 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1909 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3146 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-1566 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3215 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2157 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-3421 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-2261 (*1 *2 *3 *4) (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698)))) (-4060 (*1 *2 *3 *4) (-12 (-5 *3 (-155 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(-10 -7 (-15 -4060 ((-962) (-155 (-203)) (-523))) (-15 -2261 ((-962) (-203) (-523))) (-15 -3421 ((-962) (-203) (-523))) (-15 -2157 ((-962) (-203) (-523))) (-15 -2016 ((-962) (-203) (-523))) (-15 -3215 ((-962) (-203) (-523))) (-15 -1566 ((-962) (-203) (-203) (-203) (-523))) (-15 -3146 ((-962) (-203) (-523))) (-15 -2757 ((-962) (-203) (-523))) (-15 -1909 ((-962) (-203) (-523))) (-15 -2086 ((-962) (-203) (-523))) (-15 -3949 ((-962) (-203) (-523))) (-15 -2558 ((-962) (-203) (-523))) (-15 -2968 ((-962) (-203) (-523))) (-15 -2623 ((-962) (-203) (-523))) (-15 -3915 ((-962) (-203) (-523))) (-15 -2684 ((-962) (-203) (-523))) (-15 -2021 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -3504 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -1753 ((-962) (-1070) (-155 (-203)) (-1070) (-523))) (-15 -1859 ((-962) (-1070) (-155 (-203)) (-1070) (-523))) (-15 -1723 ((-962) (-523) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -3154 ((-962) (-203) (-523))) (-15 -2503 ((-962) (-203) (-523))) (-15 -1877 ((-962) (-203) (-523))) (-15 -3350 ((-962) (-203) (-523))) (-15 -2358 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -3484 ((-962) (-203) (-155 (-203)) (-523) (-1070) (-523))) (-15 -1564 ((-962) (-203) (-523))) (-15 -3948 ((-962) (-203) (-523))) (-15 -3975 ((-962) (-203) (-523))) (-15 -2303 ((-962) (-203) (-523))) (-15 -3029 ((-962) (-203) (-523))) (-15 -2921 ((-962) (-203) (-523))) (-15 -1465 ((-962) (-203) (-203) (-523))) (-15 -3581 ((-962) (-203) (-203) (-203) (-523))) (-15 -2760 ((-962) (-203) (-203) (-203) (-523))) (-15 -3429 ((-962) (-203) (-203) (-203) (-203) (-523)))) +((-1211 (((-1173)) 18)) (-2151 (((-1070)) 22)) (-3868 (((-1070)) 21)) (-3339 (((-1020) (-1087) (-629 (-523))) 35) (((-1020) (-1087) (-629 (-203))) 31)) (-2536 (((-108)) 16)) (-1662 (((-1070) (-1070)) 25))) +(((-699) (-10 -7 (-15 -3868 ((-1070))) (-15 -2151 ((-1070))) (-15 -1662 ((-1070) (-1070))) (-15 -3339 ((-1020) (-1087) (-629 (-203)))) (-15 -3339 ((-1020) (-1087) (-629 (-523)))) (-15 -2536 ((-108))) (-15 -1211 ((-1173))))) (T -699)) +((-1211 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-699)))) (-2536 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-699)))) (-3339 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-629 (-523))) (-5 *2 (-1020)) (-5 *1 (-699)))) (-3339 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-629 (-203))) (-5 *2 (-1020)) (-5 *1 (-699)))) (-1662 (*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-699)))) (-2151 (*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-699)))) (-3868 (*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-699))))) +(-10 -7 (-15 -3868 ((-1070))) (-15 -2151 ((-1070))) (-15 -1662 ((-1070) (-1070))) (-15 -3339 ((-1020) (-1087) (-629 (-203)))) (-15 -3339 ((-1020) (-1087) (-629 (-523)))) (-15 -2536 ((-108))) (-15 -1211 ((-1173)))) +((-1714 (($ $ $) 10)) (-2022 (($ $ $ $) 9)) (-1995 (($ $ $) 12))) +(((-700 |#1|) (-10 -8 (-15 -1995 (|#1| |#1| |#1|)) (-15 -1714 (|#1| |#1| |#1|)) (-15 -2022 (|#1| |#1| |#1| |#1|))) (-701)) (T -700)) +NIL +(-10 -8 (-15 -1995 (|#1| |#1| |#1|)) (-15 -1714 (|#1| |#1| |#1|)) (-15 -2022 (|#1| |#1| |#1| |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-1970 (($ $ (-852)) 28)) (-1448 (($ $ (-852)) 29)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1714 (($ $ $) 25)) (-1458 (((-794) $) 11)) (-2022 (($ $ $ $) 26)) (-1995 (($ $ $) 24)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 30)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 27))) +(((-701) (-129)) (T -701)) +((-2022 (*1 *1 *1 *1 *1) (-4 *1 (-701))) (-1714 (*1 *1 *1 *1) (-4 *1 (-701))) (-1995 (*1 *1 *1 *1) (-4 *1 (-701)))) +(-13 (-21) (-660) (-10 -8 (-15 -2022 ($ $ $ $)) (-15 -1714 ($ $ $)) (-15 -1995 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-660) . T) ((-1016) . T)) +((-1458 (((-794) $) NIL) (($ (-523)) 10))) +(((-702 |#1|) (-10 -8 (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) (-703)) (T -702)) +NIL +(-10 -8 (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2532 (((-3 $ "failed") $) 40)) (-1970 (($ $ (-852)) 28) (($ $ (-710)) 35)) (-2121 (((-3 $ "failed") $) 38)) (-2023 (((-108) $) 34)) (-1579 (((-3 $ "failed") $) 39)) (-1448 (($ $ (-852)) 29) (($ $ (-710)) 36)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1714 (($ $ $) 25)) (-1458 (((-794) $) 11) (($ (-523)) 31)) (-1621 (((-710)) 32)) (-2022 (($ $ $ $) 26)) (-1995 (($ $ $) 24)) (-2756 (($) 18 T CONST)) (-2767 (($) 33 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 30) (($ $ (-710)) 37)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 27))) +(((-703) (-129)) (T -703)) +((-1621 (*1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-710)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-703))))) +(-13 (-701) (-662) (-10 -8 (-15 -1621 ((-710))) (-15 -1458 ($ (-523))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-660) . T) ((-662) . T) ((-701) . T) ((-1016) . T)) +((-3372 (((-589 (-2 (|:| |outval| (-155 |#1|)) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 (-155 |#1|)))))) (-629 (-155 (-383 (-523)))) |#1|) 27)) (-1296 (((-589 (-155 |#1|)) (-629 (-155 (-383 (-523)))) |#1|) 19)) (-1807 (((-883 (-155 (-383 (-523)))) (-629 (-155 (-383 (-523)))) (-1087)) 16) (((-883 (-155 (-383 (-523)))) (-629 (-155 (-383 (-523))))) 15))) +(((-704 |#1|) (-10 -7 (-15 -1807 ((-883 (-155 (-383 (-523)))) (-629 (-155 (-383 (-523)))))) (-15 -1807 ((-883 (-155 (-383 (-523)))) (-629 (-155 (-383 (-523)))) (-1087))) (-15 -1296 ((-589 (-155 |#1|)) (-629 (-155 (-383 (-523)))) |#1|)) (-15 -3372 ((-589 (-2 (|:| |outval| (-155 |#1|)) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 (-155 |#1|)))))) (-629 (-155 (-383 (-523)))) |#1|))) (-13 (-339) (-784))) (T -704)) +((-3372 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-155 (-383 (-523))))) (-5 *2 (-589 (-2 (|:| |outval| (-155 *4)) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 (-155 *4))))))) (-5 *1 (-704 *4)) (-4 *4 (-13 (-339) (-784))))) (-1296 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-155 (-383 (-523))))) (-5 *2 (-589 (-155 *4))) (-5 *1 (-704 *4)) (-4 *4 (-13 (-339) (-784))))) (-1807 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-155 (-383 (-523))))) (-5 *4 (-1087)) (-5 *2 (-883 (-155 (-383 (-523))))) (-5 *1 (-704 *5)) (-4 *5 (-13 (-339) (-784))))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-629 (-155 (-383 (-523))))) (-5 *2 (-883 (-155 (-383 (-523))))) (-5 *1 (-704 *4)) (-4 *4 (-13 (-339) (-784)))))) +(-10 -7 (-15 -1807 ((-883 (-155 (-383 (-523)))) (-629 (-155 (-383 (-523)))))) (-15 -1807 ((-883 (-155 (-383 (-523)))) (-629 (-155 (-383 (-523)))) (-1087))) (-15 -1296 ((-589 (-155 |#1|)) (-629 (-155 (-383 (-523)))) |#1|)) (-15 -3372 ((-589 (-2 (|:| |outval| (-155 |#1|)) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 (-155 |#1|)))))) (-629 (-155 (-383 (-523)))) |#1|))) +((-2947 (((-159 (-523)) |#1|) 25))) +(((-705 |#1|) (-10 -7 (-15 -2947 ((-159 (-523)) |#1|))) (-380)) (T -705)) +((-2947 (*1 *2 *3) (-12 (-5 *2 (-159 (-523))) (-5 *1 (-705 *3)) (-4 *3 (-380))))) +(-10 -7 (-15 -2947 ((-159 (-523)) |#1|))) +((-3077 ((|#1| |#1| |#1|) 25)) (-3082 ((|#1| |#1| |#1|) 24)) (-2035 ((|#1| |#1| |#1|) 32)) (-2500 ((|#1| |#1| |#1|) 28)) (-1687 (((-3 |#1| "failed") |#1| |#1|) 27)) (-3091 (((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|) 23))) +(((-706 |#1| |#2|) (-10 -7 (-15 -3091 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -1687 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2035 (|#1| |#1| |#1|))) (-648 |#2|) (-339)) (T -706)) +((-2035 (*1 *2 *2 *2) (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) (-2500 (*1 *2 *2 *2) (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) (-1687 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) (-3077 (*1 *2 *2 *2) (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) (-3082 (*1 *2 *2 *2) (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) (-3091 (*1 *2 *3 *3) (-12 (-4 *4 (-339)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-706 *3 *4)) (-4 *3 (-648 *4))))) +(-10 -7 (-15 -3091 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -1687 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2035 (|#1| |#1| |#1|))) +((-4029 (((-2 (|:| -4041 (-629 (-523))) (|:| |basisDen| (-523)) (|:| |basisInv| (-629 (-523)))) (-523)) 58)) (-4158 (((-2 (|:| -4041 (-629 (-523))) (|:| |basisDen| (-523)) (|:| |basisInv| (-629 (-523))))) 56)) (-3549 (((-523)) 68))) +(((-707 |#1| |#2|) (-10 -7 (-15 -3549 ((-523))) (-15 -4158 ((-2 (|:| -4041 (-629 (-523))) (|:| |basisDen| (-523)) (|:| |basisInv| (-629 (-523)))))) (-15 -4029 ((-2 (|:| -4041 (-629 (-523))) (|:| |basisDen| (-523)) (|:| |basisInv| (-629 (-523)))) (-523)))) (-1144 (-523)) (-385 (-523) |#1|)) (T -707)) +((-4029 (*1 *2 *3) (-12 (-5 *3 (-523)) (-4 *4 (-1144 *3)) (-5 *2 (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-5 *1 (-707 *4 *5)) (-4 *5 (-385 *3 *4)))) (-4158 (*1 *2) (-12 (-4 *3 (-1144 (-523))) (-5 *2 (-2 (|:| -4041 (-629 (-523))) (|:| |basisDen| (-523)) (|:| |basisInv| (-629 (-523))))) (-5 *1 (-707 *3 *4)) (-4 *4 (-385 (-523) *3)))) (-3549 (*1 *2) (-12 (-4 *3 (-1144 *2)) (-5 *2 (-523)) (-5 *1 (-707 *3 *4)) (-4 *4 (-385 *2 *3))))) +(-10 -7 (-15 -3549 ((-523))) (-15 -4158 ((-2 (|:| -4041 (-629 (-523))) (|:| |basisDen| (-523)) (|:| |basisInv| (-629 (-523)))))) (-15 -4029 ((-2 (|:| -4041 (-629 (-523))) (|:| |basisDen| (-523)) (|:| |basisInv| (-629 (-523)))) (-523)))) +((-3924 (((-108) $ $) NIL)) (-3474 (((-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) $) 15)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 14) (($ (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 8) (($ (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) 12)) (-3983 (((-108) $ $) NIL))) +(((-708) (-13 (-1016) (-10 -8 (-15 -1458 ($ (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1458 ($ (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1458 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) (-15 -1458 ((-794) $)) (-15 -3474 ((-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) $))))) (T -708)) +((-1458 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-708)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *1 (-708)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *1 (-708)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) (-5 *1 (-708)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) (-5 *1 (-708))))) +(-13 (-1016) (-10 -8 (-15 -1458 ($ (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1458 ($ (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1458 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) (-15 -1458 ((-794) $)) (-15 -3474 ((-3 (|:| |nia| (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| |mdnia| (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) $)))) +((-3293 (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|))) 14) (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)) (-589 (-1087))) 13)) (-1940 (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|))) 16) (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)) (-589 (-1087))) 15))) +(((-709 |#1|) (-10 -7 (-15 -3293 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -3293 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)))) (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|))))) (-515)) (T -709)) +((-1940 (*1 *2 *3) (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) (-5 *1 (-709 *4)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-589 (-1087))) (-4 *5 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) (-5 *1 (-709 *5)))) (-3293 (*1 *2 *3) (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) (-5 *1 (-709 *4)))) (-3293 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-589 (-1087))) (-4 *5 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) (-5 *1 (-709 *5))))) +(-10 -7 (-15 -3293 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -3293 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)))) (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-883 |#1|))))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3596 (($ $ $) 8)) (-3212 (((-3 $ "failed") $ $) 11)) (-2041 (($ $ (-523)) 9)) (-2518 (($) NIL T CONST)) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($ $) NIL)) (-3769 (($ $ $) NIL)) (-2023 (((-108) $) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3278 (($ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-1458 (((-794) $) NIL)) (-2364 (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (* (($ (-710) $) NIL) (($ (-852) $) NIL) (($ $ $) NIL))) +(((-710) (-13 (-732) (-666) (-10 -8 (-15 -3769 ($ $ $)) (-15 -3796 ($ $ $)) (-15 -3278 ($ $ $)) (-15 -3462 ((-2 (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -3746 ((-3 $ "failed") $ $)) (-15 -2041 ($ $ (-523))) (-15 -4032 ($ $)) (-6 (-4246 "*"))))) (T -710)) +((-3769 (*1 *1 *1 *1) (-5 *1 (-710))) (-3796 (*1 *1 *1 *1) (-5 *1 (-710))) (-3278 (*1 *1 *1 *1) (-5 *1 (-710))) (-3462 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3445 (-710)) (|:| -3282 (-710)))) (-5 *1 (-710)))) (-3746 (*1 *1 *1 *1) (|partial| -5 *1 (-710))) (-2041 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-710)))) (-4032 (*1 *1 *1) (-5 *1 (-710)))) +(-13 (-732) (-666) (-10 -8 (-15 -3769 ($ $ $)) (-15 -3796 ($ $ $)) (-15 -3278 ($ $ $)) (-15 -3462 ((-2 (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -3746 ((-3 $ "failed") $ $)) (-15 -2041 ($ $ (-523))) (-15 -4032 ($ $)) (-6 (-4246 "*")))) +((-1940 (((-3 |#2| "failed") |#2| |#2| (-110) (-1087)) 35))) +(((-711 |#1| |#2|) (-10 -7 (-15 -1940 ((-3 |#2| "failed") |#2| |#2| (-110) (-1087)))) (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136)) (-13 (-29 |#1|) (-1108) (-889))) (T -711)) +((-1940 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1087)) (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *1 (-711 *5 *2)) (-4 *2 (-13 (-29 *5) (-1108) (-889)))))) +(-10 -7 (-15 -1940 ((-3 |#2| "failed") |#2| |#2| (-110) (-1087)))) +((-1458 (((-713) |#1|) 8))) +(((-712 |#1|) (-10 -7 (-15 -1458 ((-713) |#1|))) (-1122)) (T -712)) +((-1458 (*1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-712 *3)) (-4 *3 (-1122))))) +(-10 -7 (-15 -1458 ((-713) |#1|))) +((-3924 (((-108) $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 7)) (-3983 (((-108) $ $) 9))) +(((-713) (-1016)) (T -713)) +NIL +(-1016) +((-3892 ((|#2| |#4|) 35))) +(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3892 (|#2| |#4|))) (-427) (-1144 |#1|) (-664 |#1| |#2|) (-1144 |#3|)) (T -714)) +((-3892 (*1 *2 *3) (-12 (-4 *4 (-427)) (-4 *5 (-664 *4 *2)) (-4 *2 (-1144 *4)) (-5 *1 (-714 *4 *2 *5 *3)) (-4 *3 (-1144 *5))))) +(-10 -7 (-15 -3892 (|#2| |#4|))) +((-2121 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-1405 (((-1173) (-1070) (-1070) |#4| |#5|) 33)) (-3050 ((|#4| |#4| |#5|) 73)) (-2018 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#5|) 77)) (-3261 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|) 15))) +(((-715 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2121 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3050 (|#4| |#4| |#5|)) (-15 -2018 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#5|)) (-15 -1405 ((-1173) (-1070) (-1070) |#4| |#5|)) (-15 -3261 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-992 |#1| |#2| |#3| |#4|)) (T -715)) +((-3261 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *4)))) (-5 *1 (-715 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-1405 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1070)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *4 (-987 *6 *7 *8)) (-5 *2 (-1173)) (-5 *1 (-715 *6 *7 *8 *4 *5)) (-4 *5 (-992 *6 *7 *8 *4)))) (-2018 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) (-5 *1 (-715 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-3050 (*1 *2 *2 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *2 (-987 *4 *5 *6)) (-5 *1 (-715 *4 *5 *6 *2 *3)) (-4 *3 (-992 *4 *5 *6 *2)))) (-2121 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-715 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(-10 -7 (-15 -2121 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3050 (|#4| |#4| |#5|)) (-15 -2018 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#5|)) (-15 -1405 ((-1173) (-1070) (-1070) |#4| |#5|)) (-15 -3261 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|))) +((-3517 (((-3 (-1083 (-1083 |#1|)) "failed") |#4|) 44)) (-3636 (((-589 |#4|) |#4|) 15)) (-3454 ((|#4| |#4|) 11))) +(((-716 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3636 ((-589 |#4|) |#4|)) (-15 -3517 ((-3 (-1083 (-1083 |#1|)) "failed") |#4|)) (-15 -3454 (|#4| |#4|))) (-325) (-305 |#1|) (-1144 |#2|) (-1144 |#3|) (-852)) (T -716)) +((-3454 (*1 *2 *2) (-12 (-4 *3 (-325)) (-4 *4 (-305 *3)) (-4 *5 (-1144 *4)) (-5 *1 (-716 *3 *4 *5 *2 *6)) (-4 *2 (-1144 *5)) (-14 *6 (-852)))) (-3517 (*1 *2 *3) (|partial| -12 (-4 *4 (-325)) (-4 *5 (-305 *4)) (-4 *6 (-1144 *5)) (-5 *2 (-1083 (-1083 *4))) (-5 *1 (-716 *4 *5 *6 *3 *7)) (-4 *3 (-1144 *6)) (-14 *7 (-852)))) (-3636 (*1 *2 *3) (-12 (-4 *4 (-325)) (-4 *5 (-305 *4)) (-4 *6 (-1144 *5)) (-5 *2 (-589 *3)) (-5 *1 (-716 *4 *5 *6 *3 *7)) (-4 *3 (-1144 *6)) (-14 *7 (-852))))) +(-10 -7 (-15 -3636 ((-589 |#4|) |#4|)) (-15 -3517 ((-3 (-1083 (-1083 |#1|)) "failed") |#4|)) (-15 -3454 (|#4| |#4|))) +((-3271 (((-2 (|:| |deter| (-589 (-1083 |#5|))) (|:| |dterm| (-589 (-589 (-2 (|:| -1725 (-710)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-589 |#1|)) (|:| |nlead| (-589 |#5|))) (-1083 |#5|) (-589 |#1|) (-589 |#5|)) 53)) (-1988 (((-589 (-710)) |#1|) 12))) +(((-717 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3271 ((-2 (|:| |deter| (-589 (-1083 |#5|))) (|:| |dterm| (-589 (-589 (-2 (|:| -1725 (-710)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-589 |#1|)) (|:| |nlead| (-589 |#5|))) (-1083 |#5|) (-589 |#1|) (-589 |#5|))) (-15 -1988 ((-589 (-710)) |#1|))) (-1144 |#4|) (-732) (-786) (-284) (-880 |#4| |#2| |#3|)) (T -717)) +((-1988 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) (-5 *2 (-589 (-710))) (-5 *1 (-717 *3 *4 *5 *6 *7)) (-4 *3 (-1144 *6)) (-4 *7 (-880 *6 *4 *5)))) (-3271 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1144 *9)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-284)) (-4 *10 (-880 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-589 (-1083 *10))) (|:| |dterm| (-589 (-589 (-2 (|:| -1725 (-710)) (|:| |pcoef| *10))))) (|:| |nfacts| (-589 *6)) (|:| |nlead| (-589 *10)))) (-5 *1 (-717 *6 *7 *8 *9 *10)) (-5 *3 (-1083 *10)) (-5 *4 (-589 *6)) (-5 *5 (-589 *10))))) +(-10 -7 (-15 -3271 ((-2 (|:| |deter| (-589 (-1083 |#5|))) (|:| |dterm| (-589 (-589 (-2 (|:| -1725 (-710)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-589 |#1|)) (|:| |nlead| (-589 |#5|))) (-1083 |#5|) (-589 |#1|) (-589 |#5|))) (-15 -1988 ((-589 (-710)) |#1|))) +((-2799 (((-589 (-2 (|:| |outval| |#1|) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 |#1|))))) (-629 (-383 (-523))) |#1|) 27)) (-2613 (((-589 |#1|) (-629 (-383 (-523))) |#1|) 19)) (-1807 (((-883 (-383 (-523))) (-629 (-383 (-523))) (-1087)) 16) (((-883 (-383 (-523))) (-629 (-383 (-523)))) 15))) +(((-718 |#1|) (-10 -7 (-15 -1807 ((-883 (-383 (-523))) (-629 (-383 (-523))))) (-15 -1807 ((-883 (-383 (-523))) (-629 (-383 (-523))) (-1087))) (-15 -2613 ((-589 |#1|) (-629 (-383 (-523))) |#1|)) (-15 -2799 ((-589 (-2 (|:| |outval| |#1|) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 |#1|))))) (-629 (-383 (-523))) |#1|))) (-13 (-339) (-784))) (T -718)) +((-2799 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-383 (-523)))) (-5 *2 (-589 (-2 (|:| |outval| *4) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 *4)))))) (-5 *1 (-718 *4)) (-4 *4 (-13 (-339) (-784))))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-383 (-523)))) (-5 *2 (-589 *4)) (-5 *1 (-718 *4)) (-4 *4 (-13 (-339) (-784))))) (-1807 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-383 (-523)))) (-5 *4 (-1087)) (-5 *2 (-883 (-383 (-523)))) (-5 *1 (-718 *5)) (-4 *5 (-13 (-339) (-784))))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-629 (-383 (-523)))) (-5 *2 (-883 (-383 (-523)))) (-5 *1 (-718 *4)) (-4 *4 (-13 (-339) (-784)))))) +(-10 -7 (-15 -1807 ((-883 (-383 (-523))) (-629 (-383 (-523))))) (-15 -1807 ((-883 (-383 (-523))) (-629 (-383 (-523))) (-1087))) (-15 -2613 ((-589 |#1|) (-629 (-383 (-523))) |#1|)) (-15 -2799 ((-589 (-2 (|:| |outval| |#1|) (|:| |outmult| (-523)) (|:| |outvect| (-589 (-629 |#1|))))) (-629 (-383 (-523))) |#1|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 34)) (-1957 (((-589 |#2|) $) NIL)) (-1786 (((-1083 $) $ |#2|) NIL) (((-1083 |#1|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 |#2|)) NIL)) (-4039 (($ $) 28)) (-2090 (((-108) $ $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2407 (($ $ $) 93 (|has| |#1| (-515)))) (-3301 (((-589 $) $ $) 106 (|has| |#1| (-515)))) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2291 (($ $) NIL (|has| |#1| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-883 (-383 (-523)))) NIL (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087))))) (((-3 $ "failed") (-883 (-523))) NIL (-3262 (-12 (|has| |#1| (-37 (-523))) (|has| |#2| (-564 (-1087))) (-3900 (|has| |#1| (-37 (-383 (-523)))))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087)))))) (((-3 $ "failed") (-883 |#1|)) NIL (-3262 (-12 (|has| |#2| (-564 (-1087))) (-3900 (|has| |#1| (-37 (-383 (-523))))) (-3900 (|has| |#1| (-37 (-523))))) (-12 (|has| |#1| (-37 (-523))) (|has| |#2| (-564 (-1087))) (-3900 (|has| |#1| (-37 (-383 (-523))))) (-3900 (|has| |#1| (-508)))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087))) (-3900 (|has| |#1| (-921 (-523))))))) (((-3 (-1039 |#1| |#2|) "failed") $) 18)) (-3474 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) ((|#2| $) NIL) (($ (-883 (-383 (-523)))) NIL (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087))))) (($ (-883 (-523))) NIL (-3262 (-12 (|has| |#1| (-37 (-523))) (|has| |#2| (-564 (-1087))) (-3900 (|has| |#1| (-37 (-383 (-523)))))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087)))))) (($ (-883 |#1|)) NIL (-3262 (-12 (|has| |#2| (-564 (-1087))) (-3900 (|has| |#1| (-37 (-383 (-523))))) (-3900 (|has| |#1| (-37 (-523))))) (-12 (|has| |#1| (-37 (-523))) (|has| |#2| (-564 (-1087))) (-3900 (|has| |#1| (-37 (-383 (-523))))) (-3900 (|has| |#1| (-508)))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087))) (-3900 (|has| |#1| (-921 (-523))))))) (((-1039 |#1| |#2|) $) NIL)) (-3078 (($ $ $ |#2|) NIL (|has| |#1| (-158))) (($ $ $) 104 (|has| |#1| (-515)))) (-3810 (($ $) NIL) (($ $ |#2|) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2663 (((-108) $ $) NIL) (((-108) $ (-589 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-1906 (((-108) $) NIL)) (-2815 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 70)) (-1978 (($ $) 119 (|has| |#1| (-427)))) (-2528 (($ $) NIL (|has| |#1| (-427))) (($ $ |#2|) NIL (|has| |#1| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#1| (-840)))) (-2611 (($ $) NIL (|has| |#1| (-515)))) (-3058 (($ $) NIL (|has| |#1| (-515)))) (-1351 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-1239 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-1284 (($ $ |#1| (-495 |#2|) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| |#1| (-817 (-355))) (|has| |#2| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| |#1| (-817 (-523))) (|has| |#2| (-817 (-523)))))) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-4172 (((-108) $ $) NIL) (((-108) $ (-589 $)) NIL)) (-3870 (($ $ $ $ $) 90 (|has| |#1| (-515)))) (-2907 ((|#2| $) 19)) (-1945 (($ (-1083 |#1|) |#2|) NIL) (($ (-1083 $) |#2|) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-495 |#2|)) NIL) (($ $ |#2| (-710)) 36) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-2055 (($ $ $) 60)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ |#2|) NIL)) (-2132 (((-108) $) NIL)) (-1575 (((-495 |#2|) $) NIL) (((-710) $ |#2|) NIL) (((-589 (-710)) $ (-589 |#2|)) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2457 (((-710) $) 20)) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3782 (($ (-1 (-495 |#2|) (-495 |#2|)) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2520 (((-3 |#2| "failed") $) NIL)) (-1246 (($ $) NIL (|has| |#1| (-427)))) (-3661 (($ $) NIL (|has| |#1| (-427)))) (-1871 (((-589 $) $) NIL)) (-1298 (($ $) 37)) (-2236 (($ $) NIL (|has| |#1| (-427)))) (-2748 (((-589 $) $) 41)) (-4220 (($ $) 39)) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL) (($ $ |#2|) 45)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-2929 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3829 (-710))) $ $) 82)) (-3369 (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $) 67) (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $ |#2|) NIL)) (-1236 (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3282 $)) $ $) NIL) (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3282 $)) $ $ |#2|) NIL)) (-3055 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-2077 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-3779 (((-1070) $) NIL)) (-1611 (($ $ $) 108 (|has| |#1| (-515)))) (-2800 (((-589 $) $) 30)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| |#2|) (|:| -2735 (-710))) "failed") $) NIL)) (-2112 (((-108) $ $) NIL) (((-108) $ (-589 $)) NIL)) (-2648 (($ $ $) NIL)) (-2262 (($ $) 21)) (-2391 (((-108) $ $) NIL)) (-2001 (((-108) $ $) NIL) (((-108) $ (-589 $)) NIL)) (-1398 (($ $ $) NIL)) (-3729 (($ $) 23)) (-2783 (((-1034) $) NIL)) (-3630 (((-2 (|:| -3278 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-515)))) (-1740 (((-2 (|:| -3278 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-515)))) (-3749 (((-108) $) 52)) (-3760 ((|#1| $) 55)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3278 ((|#1| |#1| $) 116 (|has| |#1| (-427))) (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-840)))) (-2490 (((-2 (|:| -3278 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-515)))) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-515)))) (-2477 (($ $ |#1|) 112 (|has| |#1| (-515))) (($ $ $) NIL (|has| |#1| (-515)))) (-4119 (($ $ |#1|) 111 (|has| |#1| (-515))) (($ $ $) NIL (|has| |#1| (-515)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-589 |#2|) (-589 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-589 |#2|) (-589 $)) NIL)) (-3549 (($ $ |#2|) NIL (|has| |#1| (-158)))) (-3523 (($ $ |#2|) NIL) (($ $ (-589 |#2|)) NIL) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-2299 (((-495 |#2|) $) NIL) (((-710) $ |#2|) 43) (((-589 (-710)) $ (-589 |#2|)) NIL)) (-3190 (($ $) NIL)) (-2752 (($ $) 33)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| |#1| (-564 (-499))) (|has| |#2| (-564 (-499))))) (($ (-883 (-383 (-523)))) NIL (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087))))) (($ (-883 (-523))) NIL (-3262 (-12 (|has| |#1| (-37 (-523))) (|has| |#2| (-564 (-1087))) (-3900 (|has| |#1| (-37 (-383 (-523)))))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#2| (-564 (-1087)))))) (($ (-883 |#1|)) NIL (|has| |#2| (-564 (-1087)))) (((-1070) $) NIL (-12 (|has| |#1| (-964 (-523))) (|has| |#2| (-564 (-1087))))) (((-883 |#1|) $) NIL (|has| |#2| (-564 (-1087))))) (-2438 ((|#1| $) 115 (|has| |#1| (-427))) (($ $ |#2|) NIL (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-883 |#1|) $) NIL (|has| |#2| (-564 (-1087)))) (((-1039 |#1| |#2|) $) 15) (($ (-1039 |#1| |#2|)) 16) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-495 |#2|)) NIL) (($ $ |#2| (-710)) 44) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 13 T CONST)) (-3754 (((-3 (-108) "failed") $ $) NIL)) (-2767 (($) 35 T CONST)) (-3090 (($ $ $ $ (-710)) 88 (|has| |#1| (-515)))) (-3720 (($ $ $ (-710)) 87 (|has| |#1| (-515)))) (-2862 (($ $ |#2|) NIL) (($ $ (-589 |#2|)) NIL) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) 54)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) 64)) (-4075 (($ $ $) 74)) (** (($ $ (-852)) NIL) (($ $ (-710)) 61)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 59) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) +(((-719 |#1| |#2|) (-13 (-987 |#1| (-495 |#2|) |#2|) (-563 (-1039 |#1| |#2|)) (-964 (-1039 |#1| |#2|))) (-973) (-786)) (T -719)) +NIL +(-13 (-987 |#1| (-495 |#2|) |#2|) (-563 (-1039 |#1| |#2|)) (-964 (-1039 |#1| |#2|))) +((-3612 (((-721 |#2|) (-1 |#2| |#1|) (-721 |#1|)) 13))) +(((-720 |#1| |#2|) (-10 -7 (-15 -3612 ((-721 |#2|) (-1 |#2| |#1|) (-721 |#1|)))) (-973) (-973)) (T -720)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-721 *5)) (-4 *5 (-973)) (-4 *6 (-973)) (-5 *2 (-721 *6)) (-5 *1 (-720 *5 *6))))) +(-10 -7 (-15 -3612 ((-721 |#2|) (-1 |#2| |#1|) (-721 |#1|)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 12)) (-2854 (((-1168 |#1|) $ (-710)) NIL)) (-1957 (((-589 (-1001)) $) NIL)) (-3131 (($ (-1083 |#1|)) NIL)) (-1786 (((-1083 $) $ (-1001)) NIL) (((-1083 |#1|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-1001))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2741 (((-589 $) $ $) 39 (|has| |#1| (-515)))) (-2407 (($ $ $) 35 (|has| |#1| (-515)))) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2291 (($ $) NIL (|has| |#1| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-2692 (($ $ (-710)) NIL)) (-2482 (($ $ (-710)) NIL)) (-3444 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-427)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-1001) "failed") $) NIL) (((-3 (-1083 |#1|) "failed") $) 10)) (-3474 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-1001) $) NIL) (((-1083 |#1|) $) NIL)) (-3078 (($ $ $ (-1001)) NIL (|has| |#1| (-158))) ((|#1| $ $) 43 (|has| |#1| (-158)))) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-3666 (($ $ $) NIL)) (-2349 (($ $ $) 71 (|has| |#1| (-515)))) (-2815 (((-2 (|:| -2935 |#1|) (|:| -3445 $) (|:| -3282 $)) $ $) 70 (|has| |#1| (-515)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2528 (($ $) NIL (|has| |#1| (-427))) (($ $ (-1001)) NIL (|has| |#1| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#1| (-840)))) (-1284 (($ $ |#1| (-710) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1001) (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1001) (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-1640 (((-710) $ $) NIL (|has| |#1| (-515)))) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-1063)))) (-1945 (($ (-1083 |#1|) (-1001)) NIL) (($ (-1083 $) (-1001)) NIL)) (-1349 (($ $ (-710)) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-710)) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-2055 (($ $ $) 20)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-1001)) NIL) (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-1575 (((-710) $) NIL) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3782 (($ (-1 (-710) (-710)) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2180 (((-1083 |#1|) $) NIL)) (-2520 (((-3 (-1001) "failed") $) NIL)) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-2929 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3829 (-710))) $ $) 26)) (-3257 (($ $ $) 29)) (-2984 (($ $ $) 32)) (-3369 (((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $) 31)) (-3779 (((-1070) $) NIL)) (-1611 (($ $ $) 41 (|has| |#1| (-515)))) (-2150 (((-2 (|:| -3445 $) (|:| -3282 $)) $ (-710)) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-1001)) (|:| -2735 (-710))) "failed") $) NIL)) (-3417 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2262 (($) NIL (|has| |#1| (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-3630 (((-2 (|:| -3278 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-515)))) (-1740 (((-2 (|:| -3278 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-515)))) (-3997 (((-2 (|:| -3078 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-515)))) (-1556 (((-2 (|:| -3078 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-515)))) (-3749 (((-108) $) 13)) (-3760 ((|#1| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-4034 (($ $ (-710) |#1| $) 19)) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-840)))) (-2490 (((-2 (|:| -3278 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-515)))) (-2954 (((-2 (|:| -3078 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-515)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-1001) |#1|) NIL) (($ $ (-589 (-1001)) (-589 |#1|)) NIL) (($ $ (-1001) $) NIL) (($ $ (-589 (-1001)) (-589 $)) NIL)) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-383 $) (-383 $) (-383 $)) NIL (|has| |#1| (-515))) ((|#1| (-383 $) |#1|) NIL (|has| |#1| (-339))) (((-383 $) $ (-383 $)) NIL (|has| |#1| (-515)))) (-3255 (((-3 $ "failed") $ (-710)) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3549 (($ $ (-1001)) NIL (|has| |#1| (-158))) ((|#1| $) NIL (|has| |#1| (-158)))) (-3523 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2299 (((-710) $) NIL) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-1001) (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-2438 ((|#1| $) NIL (|has| |#1| (-427))) (($ $ (-1001)) NIL (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1260 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515))) (((-3 (-383 $) "failed") (-383 $) $) NIL (|has| |#1| (-515)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-1001)) NIL) (((-1083 |#1|) $) 7) (($ (-1083 |#1|)) 8) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-710)) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 21 T CONST)) (-2767 (($) 24 T CONST)) (-2862 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) 28) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) +(((-721 |#1|) (-13 (-1144 |#1|) (-563 (-1083 |#1|)) (-964 (-1083 |#1|)) (-10 -8 (-15 -4034 ($ $ (-710) |#1| $)) (-15 -2055 ($ $ $)) (-15 -2929 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3829 (-710))) $ $)) (-15 -3257 ($ $ $)) (-15 -3369 ((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -2984 ($ $ $)) (IF (|has| |#1| (-515)) (PROGN (-15 -2741 ((-589 $) $ $)) (-15 -1611 ($ $ $)) (-15 -2490 ((-2 (|:| -3278 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1740 ((-2 (|:| -3278 $) (|:| |coef1| $)) $ $)) (-15 -3630 ((-2 (|:| -3278 $) (|:| |coef2| $)) $ $)) (-15 -2954 ((-2 (|:| -3078 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1556 ((-2 (|:| -3078 |#1|) (|:| |coef1| $)) $ $)) (-15 -3997 ((-2 (|:| -3078 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-973)) (T -721)) +((-4034 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-710)) (-5 *1 (-721 *3)) (-4 *3 (-973)))) (-2055 (*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-973)))) (-2929 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-721 *3)) (|:| |polden| *3) (|:| -3829 (-710)))) (-5 *1 (-721 *3)) (-4 *3 (-973)))) (-3257 (*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-973)))) (-3369 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2935 *3) (|:| |gap| (-710)) (|:| -3445 (-721 *3)) (|:| -3282 (-721 *3)))) (-5 *1 (-721 *3)) (-4 *3 (-973)))) (-2984 (*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-973)))) (-2741 (*1 *2 *1 *1) (-12 (-5 *2 (-589 (-721 *3))) (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) (-1611 (*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-515)) (-4 *2 (-973)))) (-2490 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3278 (-721 *3)) (|:| |coef1| (-721 *3)) (|:| |coef2| (-721 *3)))) (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) (-1740 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3278 (-721 *3)) (|:| |coef1| (-721 *3)))) (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) (-3630 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3278 (-721 *3)) (|:| |coef2| (-721 *3)))) (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) (-2954 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3078 *3) (|:| |coef1| (-721 *3)) (|:| |coef2| (-721 *3)))) (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) (-1556 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3078 *3) (|:| |coef1| (-721 *3)))) (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) (-3997 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3078 *3) (|:| |coef2| (-721 *3)))) (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973))))) +(-13 (-1144 |#1|) (-563 (-1083 |#1|)) (-964 (-1083 |#1|)) (-10 -8 (-15 -4034 ($ $ (-710) |#1| $)) (-15 -2055 ($ $ $)) (-15 -2929 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3829 (-710))) $ $)) (-15 -3257 ($ $ $)) (-15 -3369 ((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -2984 ($ $ $)) (IF (|has| |#1| (-515)) (PROGN (-15 -2741 ((-589 $) $ $)) (-15 -1611 ($ $ $)) (-15 -2490 ((-2 (|:| -3278 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1740 ((-2 (|:| -3278 $) (|:| |coef1| $)) $ $)) (-15 -3630 ((-2 (|:| -3278 $) (|:| |coef2| $)) $ $)) (-15 -2954 ((-2 (|:| -3078 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1556 ((-2 (|:| -3078 |#1|) (|:| |coef1| $)) $ $)) (-15 -3997 ((-2 (|:| -3078 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-2336 ((|#1| (-710) |#1|) 33 (|has| |#1| (-37 (-383 (-523)))))) (-1625 ((|#1| (-710) |#1|) 23)) (-1941 ((|#1| (-710) |#1|) 35 (|has| |#1| (-37 (-383 (-523))))))) +(((-722 |#1|) (-10 -7 (-15 -1625 (|#1| (-710) |#1|)) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -1941 (|#1| (-710) |#1|)) (-15 -2336 (|#1| (-710) |#1|))) |%noBranch|)) (-158)) (T -722)) +((-2336 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-722 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-158)))) (-1941 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-722 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-158)))) (-1625 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-722 *2)) (-4 *2 (-158))))) +(-10 -7 (-15 -1625 (|#1| (-710) |#1|)) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -1941 (|#1| (-710) |#1|)) (-15 -2336 (|#1| (-710) |#1|))) |%noBranch|)) +((-3924 (((-108) $ $) 7)) (-1633 (((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 |#4|)))) (-589 |#4|)) 85)) (-3846 (((-589 $) (-589 |#4|)) 86) (((-589 $) (-589 |#4|) (-108)) 111)) (-1957 (((-589 |#3|) $) 33)) (-2100 (((-108) $) 26)) (-2376 (((-108) $) 17 (|has| |#1| (-515)))) (-2694 (((-108) |#4| $) 101) (((-108) $) 97)) (-2308 ((|#4| |#4| $) 92)) (-2291 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| $) 126)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) 27)) (-3079 (((-108) $ (-710)) 44)) (-3724 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4244))) (((-3 |#4| "failed") $ |#3|) 79)) (-2518 (($) 45 T CONST)) (-3595 (((-108) $) 22 (|has| |#1| (-515)))) (-4017 (((-108) $ $) 24 (|has| |#1| (-515)))) (-3225 (((-108) $ $) 23 (|has| |#1| (-515)))) (-3393 (((-108) $) 25 (|has| |#1| (-515)))) (-3375 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3956 (((-589 |#4|) (-589 |#4|) $) 18 (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) 19 (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) 36)) (-3474 (($ (-589 |#4|)) 35)) (-1751 (((-3 $ "failed") $) 82)) (-4014 ((|#4| |#4| $) 89)) (-1773 (($ $) 68 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#4| $) 67 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-515)))) (-2663 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2636 ((|#4| |#4| $) 87)) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4244))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-3737 (((-2 (|:| -3952 (-589 |#4|)) (|:| -2625 (-589 |#4|))) $) 105)) (-2005 (((-108) |#4| $) 136)) (-3785 (((-108) |#4| $) 133)) (-1944 (((-108) |#4| $) 137) (((-108) $) 134)) (-1666 (((-589 |#4|) $) 52 (|has| $ (-6 -4244)))) (-4172 (((-108) |#4| $) 104) (((-108) $) 103)) (-2907 ((|#3| $) 34)) (-2346 (((-108) $ (-710)) 43)) (-2136 (((-589 |#4|) $) 53 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) 47)) (-4055 (((-589 |#3|) $) 32)) (-1357 (((-108) |#3| $) 31)) (-2866 (((-108) $ (-710)) 42)) (-3779 (((-1070) $) 9)) (-3246 (((-3 |#4| (-589 $)) |#4| |#4| $) 128)) (-1611 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| |#4| $) 127)) (-2579 (((-3 |#4| "failed") $) 83)) (-2668 (((-589 $) |#4| $) 129)) (-3320 (((-3 (-108) (-589 $)) |#4| $) 132)) (-2870 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-1309 (((-589 $) |#4| $) 125) (((-589 $) (-589 |#4|) $) 124) (((-589 $) (-589 |#4|) (-589 $)) 123) (((-589 $) |#4| (-589 $)) 122)) (-1770 (($ |#4| $) 117) (($ (-589 |#4|) $) 116)) (-2404 (((-589 |#4|) $) 107)) (-2112 (((-108) |#4| $) 99) (((-108) $) 95)) (-2648 ((|#4| |#4| $) 90)) (-2391 (((-108) $ $) 110)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-515)))) (-2001 (((-108) |#4| $) 100) (((-108) $) 96)) (-1398 ((|#4| |#4| $) 91)) (-2783 (((-1034) $) 10)) (-1738 (((-3 |#4| "failed") $) 84)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2890 (((-3 $ "failed") $ |#4|) 78)) (-4097 (($ $ |#4|) 77) (((-589 $) |#4| $) 115) (((-589 $) |#4| (-589 $)) 114) (((-589 $) (-589 |#4|) $) 113) (((-589 $) (-589 |#4|) (-589 $)) 112)) (-1327 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) 59 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) 57 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) 56 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) 38)) (-3883 (((-108) $) 41)) (-3988 (($) 40)) (-2299 (((-710) $) 106)) (-2792 (((-710) |#4| $) 54 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4244)))) (-1664 (($ $) 39)) (-3663 (((-499) $) 69 (|has| |#4| (-564 (-499))))) (-1472 (($ (-589 |#4|)) 60)) (-2621 (($ $ |#3|) 28)) (-2624 (($ $ |#3|) 30)) (-1824 (($ $) 88)) (-3076 (($ $ |#3|) 29)) (-1458 (((-794) $) 11) (((-589 |#4|) $) 37)) (-1395 (((-710) $) 76 (|has| |#3| (-344)))) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4031 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) 98)) (-3910 (((-589 $) |#4| $) 121) (((-589 $) |#4| (-589 $)) 120) (((-589 $) (-589 |#4|) $) 119) (((-589 $) (-589 |#4|) (-589 $)) 118)) (-2096 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4244)))) (-3862 (((-589 |#3|) $) 81)) (-4062 (((-108) |#4| $) 135)) (-2153 (((-108) |#3| $) 80)) (-3983 (((-108) $ $) 6)) (-2676 (((-710) $) 46 (|has| $ (-6 -4244))))) +(((-723 |#1| |#2| |#3| |#4|) (-129) (-427) (-732) (-786) (-987 |t#1| |t#2| |t#3|)) (T -723)) +NIL +(-13 (-992 |t#1| |t#2| |t#3| |t#4|)) +(((-33) . T) ((-97) . T) ((-563 (-589 |#4|)) . T) ((-563 (-794)) . T) ((-140 |#4|) . T) ((-564 (-499)) |has| |#4| (-564 (-499))) ((-286 |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-462 |#4|) . T) ((-484 |#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-905 |#1| |#2| |#3| |#4|) . T) ((-992 |#1| |#2| |#3| |#4|) . T) ((-1016) . T) ((-1116 |#1| |#2| |#3| |#4|) . T) ((-1122) . T)) +((-4073 (((-3 (-355) "failed") (-292 |#1|) (-852)) 60 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-3 (-355) "failed") (-292 |#1|)) 52 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-3 (-355) "failed") (-383 (-883 |#1|)) (-852)) 39 (|has| |#1| (-515))) (((-3 (-355) "failed") (-383 (-883 |#1|))) 35 (|has| |#1| (-515))) (((-3 (-355) "failed") (-883 |#1|) (-852)) 30 (|has| |#1| (-973))) (((-3 (-355) "failed") (-883 |#1|)) 24 (|has| |#1| (-973)))) (-3232 (((-355) (-292 |#1|) (-852)) 92 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-355) (-292 |#1|)) 87 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-355) (-383 (-883 |#1|)) (-852)) 84 (|has| |#1| (-515))) (((-355) (-383 (-883 |#1|))) 81 (|has| |#1| (-515))) (((-355) (-883 |#1|) (-852)) 80 (|has| |#1| (-973))) (((-355) (-883 |#1|)) 77 (|has| |#1| (-973))) (((-355) |#1| (-852)) 73) (((-355) |#1|) 22)) (-2932 (((-3 (-155 (-355)) "failed") (-292 (-155 |#1|)) (-852)) 68 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-3 (-155 (-355)) "failed") (-292 (-155 |#1|))) 58 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-3 (-155 (-355)) "failed") (-292 |#1|) (-852)) 61 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-3 (-155 (-355)) "failed") (-292 |#1|)) 59 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-3 (-155 (-355)) "failed") (-383 (-883 (-155 |#1|))) (-852)) 44 (|has| |#1| (-515))) (((-3 (-155 (-355)) "failed") (-383 (-883 (-155 |#1|)))) 43 (|has| |#1| (-515))) (((-3 (-155 (-355)) "failed") (-383 (-883 |#1|)) (-852)) 38 (|has| |#1| (-515))) (((-3 (-155 (-355)) "failed") (-383 (-883 |#1|))) 37 (|has| |#1| (-515))) (((-3 (-155 (-355)) "failed") (-883 |#1|) (-852)) 28 (|has| |#1| (-973))) (((-3 (-155 (-355)) "failed") (-883 |#1|)) 26 (|has| |#1| (-973))) (((-3 (-155 (-355)) "failed") (-883 (-155 |#1|)) (-852)) 17 (|has| |#1| (-158))) (((-3 (-155 (-355)) "failed") (-883 (-155 |#1|))) 14 (|has| |#1| (-158)))) (-1747 (((-155 (-355)) (-292 (-155 |#1|)) (-852)) 95 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-155 (-355)) (-292 (-155 |#1|))) 94 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-155 (-355)) (-292 |#1|) (-852)) 93 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-155 (-355)) (-292 |#1|)) 91 (-12 (|has| |#1| (-515)) (|has| |#1| (-786)))) (((-155 (-355)) (-383 (-883 (-155 |#1|))) (-852)) 86 (|has| |#1| (-515))) (((-155 (-355)) (-383 (-883 (-155 |#1|)))) 85 (|has| |#1| (-515))) (((-155 (-355)) (-383 (-883 |#1|)) (-852)) 83 (|has| |#1| (-515))) (((-155 (-355)) (-383 (-883 |#1|))) 82 (|has| |#1| (-515))) (((-155 (-355)) (-883 |#1|) (-852)) 79 (|has| |#1| (-973))) (((-155 (-355)) (-883 |#1|)) 78 (|has| |#1| (-973))) (((-155 (-355)) (-883 (-155 |#1|)) (-852)) 75 (|has| |#1| (-158))) (((-155 (-355)) (-883 (-155 |#1|))) 74 (|has| |#1| (-158))) (((-155 (-355)) (-155 |#1|) (-852)) 16 (|has| |#1| (-158))) (((-155 (-355)) (-155 |#1|)) 12 (|has| |#1| (-158))) (((-155 (-355)) |#1| (-852)) 27) (((-155 (-355)) |#1|) 25))) +(((-724 |#1|) (-10 -7 (-15 -3232 ((-355) |#1|)) (-15 -3232 ((-355) |#1| (-852))) (-15 -1747 ((-155 (-355)) |#1|)) (-15 -1747 ((-155 (-355)) |#1| (-852))) (IF (|has| |#1| (-158)) (PROGN (-15 -1747 ((-155 (-355)) (-155 |#1|))) (-15 -1747 ((-155 (-355)) (-155 |#1|) (-852))) (-15 -1747 ((-155 (-355)) (-883 (-155 |#1|)))) (-15 -1747 ((-155 (-355)) (-883 (-155 |#1|)) (-852)))) |%noBranch|) (IF (|has| |#1| (-973)) (PROGN (-15 -3232 ((-355) (-883 |#1|))) (-15 -3232 ((-355) (-883 |#1|) (-852))) (-15 -1747 ((-155 (-355)) (-883 |#1|))) (-15 -1747 ((-155 (-355)) (-883 |#1|) (-852)))) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3232 ((-355) (-383 (-883 |#1|)))) (-15 -3232 ((-355) (-383 (-883 |#1|)) (-852))) (-15 -1747 ((-155 (-355)) (-383 (-883 |#1|)))) (-15 -1747 ((-155 (-355)) (-383 (-883 |#1|)) (-852))) (-15 -1747 ((-155 (-355)) (-383 (-883 (-155 |#1|))))) (-15 -1747 ((-155 (-355)) (-383 (-883 (-155 |#1|))) (-852))) (IF (|has| |#1| (-786)) (PROGN (-15 -3232 ((-355) (-292 |#1|))) (-15 -3232 ((-355) (-292 |#1|) (-852))) (-15 -1747 ((-155 (-355)) (-292 |#1|))) (-15 -1747 ((-155 (-355)) (-292 |#1|) (-852))) (-15 -1747 ((-155 (-355)) (-292 (-155 |#1|)))) (-15 -1747 ((-155 (-355)) (-292 (-155 |#1|)) (-852)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-158)) (PROGN (-15 -2932 ((-3 (-155 (-355)) "failed") (-883 (-155 |#1|)))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-883 (-155 |#1|)) (-852)))) |%noBranch|) (IF (|has| |#1| (-973)) (PROGN (-15 -4073 ((-3 (-355) "failed") (-883 |#1|))) (-15 -4073 ((-3 (-355) "failed") (-883 |#1|) (-852))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-883 |#1|))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-883 |#1|) (-852)))) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -4073 ((-3 (-355) "failed") (-383 (-883 |#1|)))) (-15 -4073 ((-3 (-355) "failed") (-383 (-883 |#1|)) (-852))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-383 (-883 |#1|)))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-383 (-883 |#1|)) (-852))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-383 (-883 (-155 |#1|))))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-383 (-883 (-155 |#1|))) (-852))) (IF (|has| |#1| (-786)) (PROGN (-15 -4073 ((-3 (-355) "failed") (-292 |#1|))) (-15 -4073 ((-3 (-355) "failed") (-292 |#1|) (-852))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-292 |#1|))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-292 |#1|) (-852))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-292 (-155 |#1|)))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-292 (-155 |#1|)) (-852)))) |%noBranch|)) |%noBranch|)) (-564 (-355))) (T -724)) +((-2932 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-292 (-155 *5))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-2932 (*1 *2 *3) (|partial| -12 (-5 *3 (-292 (-155 *4))) (-4 *4 (-515)) (-4 *4 (-786)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-2932 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-2932 (*1 *2 *3) (|partial| -12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-4073 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) (-4073 (*1 *2 *3) (|partial| -12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) (-2932 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-383 (-883 (-155 *5)))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-2932 (*1 *2 *3) (|partial| -12 (-5 *3 (-383 (-883 (-155 *4)))) (-4 *4 (-515)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-2932 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-2932 (*1 *2 *3) (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-4073 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) (-4073 (*1 *2 *3) (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) (-2932 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-2932 (*1 *2 *3) (|partial| -12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-4073 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) (-4073 (*1 *2 *3) (|partial| -12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) (-2932 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-883 (-155 *5))) (-5 *4 (-852)) (-4 *5 (-158)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-2932 (*1 *2 *3) (|partial| -12 (-5 *3 (-883 (-155 *4))) (-4 *4 (-158)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-155 *5))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-292 (-155 *4))) (-4 *4 (-515)) (-4 *4 (-786)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-3232 (*1 *2 *3 *4) (-12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) (-3232 (*1 *2 *3) (-12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 (-155 *5)))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-383 (-883 (-155 *4)))) (-4 *4 (-515)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-3232 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) (-3232 (*1 *2 *3) (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-3232 (*1 *2 *3 *4) (-12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) (-3232 (*1 *2 *3) (-12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-883 (-155 *5))) (-5 *4 (-852)) (-4 *5 (-158)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-883 (-155 *4))) (-4 *4 (-158)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-155 *5)) (-5 *4 (-852)) (-4 *5 (-158)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-155 *4)) (-4 *4 (-158)) (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-5 *2 (-155 (-355))) (-5 *1 (-724 *3)) (-4 *3 (-564 (-355))))) (-1747 (*1 *2 *3) (-12 (-5 *2 (-155 (-355))) (-5 *1 (-724 *3)) (-4 *3 (-564 (-355))))) (-3232 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-5 *2 (-355)) (-5 *1 (-724 *3)) (-4 *3 (-564 *2)))) (-3232 (*1 *2 *3) (-12 (-5 *2 (-355)) (-5 *1 (-724 *3)) (-4 *3 (-564 *2))))) +(-10 -7 (-15 -3232 ((-355) |#1|)) (-15 -3232 ((-355) |#1| (-852))) (-15 -1747 ((-155 (-355)) |#1|)) (-15 -1747 ((-155 (-355)) |#1| (-852))) (IF (|has| |#1| (-158)) (PROGN (-15 -1747 ((-155 (-355)) (-155 |#1|))) (-15 -1747 ((-155 (-355)) (-155 |#1|) (-852))) (-15 -1747 ((-155 (-355)) (-883 (-155 |#1|)))) (-15 -1747 ((-155 (-355)) (-883 (-155 |#1|)) (-852)))) |%noBranch|) (IF (|has| |#1| (-973)) (PROGN (-15 -3232 ((-355) (-883 |#1|))) (-15 -3232 ((-355) (-883 |#1|) (-852))) (-15 -1747 ((-155 (-355)) (-883 |#1|))) (-15 -1747 ((-155 (-355)) (-883 |#1|) (-852)))) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3232 ((-355) (-383 (-883 |#1|)))) (-15 -3232 ((-355) (-383 (-883 |#1|)) (-852))) (-15 -1747 ((-155 (-355)) (-383 (-883 |#1|)))) (-15 -1747 ((-155 (-355)) (-383 (-883 |#1|)) (-852))) (-15 -1747 ((-155 (-355)) (-383 (-883 (-155 |#1|))))) (-15 -1747 ((-155 (-355)) (-383 (-883 (-155 |#1|))) (-852))) (IF (|has| |#1| (-786)) (PROGN (-15 -3232 ((-355) (-292 |#1|))) (-15 -3232 ((-355) (-292 |#1|) (-852))) (-15 -1747 ((-155 (-355)) (-292 |#1|))) (-15 -1747 ((-155 (-355)) (-292 |#1|) (-852))) (-15 -1747 ((-155 (-355)) (-292 (-155 |#1|)))) (-15 -1747 ((-155 (-355)) (-292 (-155 |#1|)) (-852)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-158)) (PROGN (-15 -2932 ((-3 (-155 (-355)) "failed") (-883 (-155 |#1|)))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-883 (-155 |#1|)) (-852)))) |%noBranch|) (IF (|has| |#1| (-973)) (PROGN (-15 -4073 ((-3 (-355) "failed") (-883 |#1|))) (-15 -4073 ((-3 (-355) "failed") (-883 |#1|) (-852))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-883 |#1|))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-883 |#1|) (-852)))) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -4073 ((-3 (-355) "failed") (-383 (-883 |#1|)))) (-15 -4073 ((-3 (-355) "failed") (-383 (-883 |#1|)) (-852))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-383 (-883 |#1|)))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-383 (-883 |#1|)) (-852))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-383 (-883 (-155 |#1|))))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-383 (-883 (-155 |#1|))) (-852))) (IF (|has| |#1| (-786)) (PROGN (-15 -4073 ((-3 (-355) "failed") (-292 |#1|))) (-15 -4073 ((-3 (-355) "failed") (-292 |#1|) (-852))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-292 |#1|))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-292 |#1|) (-852))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-292 (-155 |#1|)))) (-15 -2932 ((-3 (-155 (-355)) "failed") (-292 (-155 |#1|)) (-852)))) |%noBranch|)) |%noBranch|)) +((-1570 (((-852) (-1070)) 64)) (-3199 (((-3 (-355) "failed") (-1070)) 33)) (-1423 (((-355) (-1070)) 31)) (-1560 (((-852) (-1070)) 54)) (-2170 (((-1070) (-852)) 55)) (-1314 (((-1070) (-852)) 53))) +(((-725) (-10 -7 (-15 -1314 ((-1070) (-852))) (-15 -1560 ((-852) (-1070))) (-15 -2170 ((-1070) (-852))) (-15 -1570 ((-852) (-1070))) (-15 -1423 ((-355) (-1070))) (-15 -3199 ((-3 (-355) "failed") (-1070))))) (T -725)) +((-3199 (*1 *2 *3) (|partial| -12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-725)))) (-1423 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-725)))) (-1570 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-852)) (-5 *1 (-725)))) (-2170 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1070)) (-5 *1 (-725)))) (-1560 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-852)) (-5 *1 (-725)))) (-1314 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1070)) (-5 *1 (-725))))) +(-10 -7 (-15 -1314 ((-1070) (-852))) (-15 -1560 ((-852) (-1070))) (-15 -2170 ((-1070) (-852))) (-15 -1570 ((-852) (-1070))) (-15 -1423 ((-355) (-1070))) (-15 -3199 ((-3 (-355) "failed") (-1070)))) +((-3924 (((-108) $ $) 7)) (-3765 (((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 15) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962)) 13)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 16) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 6))) +(((-726) (-129)) (T -726)) +((-1228 (*1 *2 *3 *4) (-12 (-4 *1 (-726)) (-5 *3 (-985)) (-5 *4 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962)))))) (-3765 (*1 *2 *3 *2) (-12 (-4 *1 (-726)) (-5 *2 (-962)) (-5 *3 (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) (-1228 (*1 *2 *3 *4) (-12 (-4 *1 (-726)) (-5 *3 (-985)) (-5 *4 (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962)))))) (-3765 (*1 *2 *3 *2) (-12 (-4 *1 (-726)) (-5 *2 (-962)) (-5 *3 (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) +(-13 (-1016) (-10 -7 (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3765 ((-962) (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) (|:| |extra| (-962))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3765 ((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) (-962))))) +(((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-1768 (((-1173) (-1168 (-355)) (-523) (-355) (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1739 (-355))) (-355) (-1168 (-355)) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355))) 44) (((-1173) (-1168 (-355)) (-523) (-355) (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1739 (-355))) (-355) (-1168 (-355)) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355))) 43)) (-2379 (((-1173) (-1168 (-355)) (-523) (-355) (-355) (-523) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355))) 50)) (-1781 (((-1173) (-1168 (-355)) (-523) (-355) (-355) (-355) (-355) (-523) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355))) 41)) (-1596 (((-1173) (-1168 (-355)) (-523) (-355) (-355) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355))) 52) (((-1173) (-1168 (-355)) (-523) (-355) (-355) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355))) 51))) +(((-727) (-10 -7 (-15 -1596 ((-1173) (-1168 (-355)) (-523) (-355) (-355) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)))) (-15 -1596 ((-1173) (-1168 (-355)) (-523) (-355) (-355) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)))) (-15 -1781 ((-1173) (-1168 (-355)) (-523) (-355) (-355) (-355) (-355) (-523) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)))) (-15 -1768 ((-1173) (-1168 (-355)) (-523) (-355) (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1739 (-355))) (-355) (-1168 (-355)) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)))) (-15 -1768 ((-1173) (-1168 (-355)) (-523) (-355) (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1739 (-355))) (-355) (-1168 (-355)) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)))) (-15 -2379 ((-1173) (-1168 (-355)) (-523) (-355) (-355) (-523) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)))))) (T -727)) +((-2379 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) (-5 *1 (-727)))) (-1768 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-523)) (-5 *6 (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1739 (-355)))) (-5 *7 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) (-5 *1 (-727)))) (-1768 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-523)) (-5 *6 (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1739 (-355)))) (-5 *7 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) (-5 *1 (-727)))) (-1781 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) (-5 *1 (-727)))) (-1596 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) (-5 *1 (-727)))) (-1596 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) (-5 *1 (-727))))) +(-10 -7 (-15 -1596 ((-1173) (-1168 (-355)) (-523) (-355) (-355) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)))) (-15 -1596 ((-1173) (-1168 (-355)) (-523) (-355) (-355) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)))) (-15 -1781 ((-1173) (-1168 (-355)) (-523) (-355) (-355) (-355) (-355) (-523) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)))) (-15 -1768 ((-1173) (-1168 (-355)) (-523) (-355) (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1739 (-355))) (-355) (-1168 (-355)) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)))) (-15 -1768 ((-1173) (-1168 (-355)) (-523) (-355) (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1739 (-355))) (-355) (-1168 (-355)) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)) (-1168 (-355)))) (-15 -2379 ((-1173) (-1168 (-355)) (-523) (-355) (-355) (-523) (-1 (-1173) (-1168 (-355)) (-1168 (-355)) (-355))))) +((-3605 (((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523)) 53)) (-3695 (((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523)) 30)) (-3230 (((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523)) 52)) (-2476 (((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523)) 28)) (-3172 (((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523)) 51)) (-2177 (((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523)) 18)) (-2876 (((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523)) 31)) (-3932 (((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523)) 29)) (-3664 (((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523)) 27))) +(((-728) (-10 -7 (-15 -3664 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523))) (-15 -3932 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523))) (-15 -2876 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523))) (-15 -2177 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -2476 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -3695 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -3172 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -3230 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -3605 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))))) (T -728)) +((-3605 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-3230 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-3172 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-3695 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-2476 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-2177 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-2876 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-3932 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523)))) (-3664 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) (|:| |success| (-108)))) (-5 *1 (-728)) (-5 *5 (-523))))) +(-10 -7 (-15 -3664 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523))) (-15 -3932 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523))) (-15 -2876 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523) (-523))) (-15 -2177 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -2476 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -3695 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -3172 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -3230 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523))) (-15 -3605 ((-2 (|:| -1733 (-355)) (|:| -3314 (-355)) (|:| |totalpts| (-523)) (|:| |success| (-108))) (-1 (-355) (-355)) (-355) (-355) (-355) (-355) (-523) (-523)))) +((-2501 (((-1118 |#1|) |#1| (-203) (-523)) 45))) +(((-729 |#1|) (-10 -7 (-15 -2501 ((-1118 |#1|) |#1| (-203) (-523)))) (-903)) (T -729)) +((-2501 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-203)) (-5 *5 (-523)) (-5 *2 (-1118 *3)) (-5 *1 (-729 *3)) (-4 *3 (-903))))) +(-10 -7 (-15 -2501 ((-1118 |#1|) |#1| (-203) (-523)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 24)) (-3212 (((-3 $ "failed") $ $) 26)) (-2518 (($) 23 T CONST)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 22 T CONST)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18)) (-4087 (($ $ $) 28) (($ $) 27)) (-4075 (($ $ $) 20)) (* (($ (-710) $) 25) (($ (-852) $) 21) (($ (-523) $) 29))) +(((-730) (-129)) (T -730)) +NIL +(-13 (-734) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-731) . T) ((-733) . T) ((-734) . T) ((-786) . T) ((-1016) . T)) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 24)) (-2518 (($) 23 T CONST)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 22 T CONST)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18)) (-4075 (($ $ $) 20)) (* (($ (-710) $) 25) (($ (-852) $) 21))) +(((-731) (-129)) (T -731)) +NIL +(-13 (-733) (-23)) +(((-23) . T) ((-25) . T) ((-97) . T) ((-563 (-794)) . T) ((-733) . T) ((-786) . T) ((-1016) . T)) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 24)) (-3596 (($ $ $) 27)) (-3212 (((-3 $ "failed") $ $) 26)) (-2518 (($) 23 T CONST)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 22 T CONST)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18)) (-4075 (($ $ $) 20)) (* (($ (-710) $) 25) (($ (-852) $) 21))) +(((-732) (-129)) (T -732)) +((-3596 (*1 *1 *1 *1) (-4 *1 (-732)))) +(-13 (-734) (-10 -8 (-15 -3596 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-731) . T) ((-733) . T) ((-734) . T) ((-786) . T) ((-1016) . T)) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 24)) (-2518 (($) 23 T CONST)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 22 T CONST)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18)) (-4075 (($ $ $) 20)) (* (($ (-710) $) 25) (($ (-852) $) 21))) +(((-733) (-129)) (T -733)) +NIL +(-13 (-786) (-23)) +(((-23) . T) ((-25) . T) ((-97) . T) ((-563 (-794)) . T) ((-786) . T) ((-1016) . T)) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 24)) (-3212 (((-3 $ "failed") $ $) 26)) (-2518 (($) 23 T CONST)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 22 T CONST)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18)) (-4075 (($ $ $) 20)) (* (($ (-710) $) 25) (($ (-852) $) 21))) +(((-734) (-129)) (T -734)) +NIL +(-13 (-731) (-124)) +(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-731) . T) ((-733) . T) ((-786) . T) ((-1016) . T)) +((-2295 (((-108) $) 41)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3474 (((-523) $) NIL) (((-383 (-523)) $) NIL) ((|#2| $) 42)) (-3346 (((-3 (-383 (-523)) "failed") $) 78)) (-1292 (((-108) $) 72)) (-2146 (((-383 (-523)) $) 76)) (-3892 ((|#2| $) 26)) (-3612 (($ (-1 |#2| |#2|) $) 23)) (-3738 (($ $) 61)) (-3663 (((-499) $) 67)) (-3208 (($ $) 21)) (-1458 (((-794) $) 56) (($ (-523)) 39) (($ |#2|) 37) (($ (-383 (-523))) NIL)) (-1621 (((-710)) 10)) (-2619 ((|#2| $) 71)) (-3983 (((-108) $ $) 29)) (-4007 (((-108) $ $) 69)) (-4087 (($ $) 31) (($ $ $) NIL)) (-4075 (($ $ $) 30)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) +(((-735 |#1| |#2|) (-10 -8 (-15 -4007 ((-108) |#1| |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3738 (|#1| |#1|)) (-15 -3346 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -2146 ((-383 (-523)) |#1|)) (-15 -1292 ((-108) |#1|)) (-15 -2619 (|#2| |#1|)) (-15 -3892 (|#2| |#1|)) (-15 -3208 (|#1| |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -1458 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 -1621 ((-710))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 -2295 ((-108) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -4075 (|#1| |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) (-736 |#2|) (-158)) (T -735)) +((-1621 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-710)) (-5 *1 (-735 *3 *4)) (-4 *3 (-736 *4))))) +(-10 -8 (-15 -4007 ((-108) |#1| |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3738 (|#1| |#1|)) (-15 -3346 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -2146 ((-383 (-523)) |#1|)) (-15 -1292 ((-108) |#1|)) (-15 -2619 (|#2| |#1|)) (-15 -3892 (|#2| |#1|)) (-15 -3208 (|#1| |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -1458 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 -1621 ((-710))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 -2295 ((-108) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -4075 (|#1| |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-1703 (((-710)) 53 (|has| |#1| (-344)))) (-2518 (($) 17 T CONST)) (-3517 (((-3 (-523) "failed") $) 94 (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 92 (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 90)) (-3474 (((-523) $) 95 (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) 93 (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 89)) (-2121 (((-3 $ "failed") $) 34)) (-1842 ((|#1| $) 79)) (-3346 (((-3 (-383 (-523)) "failed") $) 66 (|has| |#1| (-508)))) (-1292 (((-108) $) 68 (|has| |#1| (-508)))) (-2146 (((-383 (-523)) $) 67 (|has| |#1| (-508)))) (-4032 (($) 56 (|has| |#1| (-344)))) (-2023 (((-108) $) 31)) (-2853 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-3892 ((|#1| $) 71)) (-2454 (($ $ $) 62 (|has| |#1| (-786)))) (-2062 (($ $ $) 61 (|has| |#1| (-786)))) (-3612 (($ (-1 |#1| |#1|) $) 81)) (-2072 (((-852) $) 55 (|has| |#1| (-344)))) (-3779 (((-1070) $) 9)) (-3738 (($ $) 65 (|has| |#1| (-339)))) (-3878 (($ (-852)) 54 (|has| |#1| (-344)))) (-3938 ((|#1| $) 76)) (-3615 ((|#1| $) 77)) (-2410 ((|#1| $) 78)) (-1401 ((|#1| $) 72)) (-3972 ((|#1| $) 73)) (-1605 ((|#1| $) 74)) (-3362 ((|#1| $) 75)) (-2783 (((-1034) $) 10)) (-2679 (($ $ (-589 |#1|) (-589 |#1|)) 87 (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) 85 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) 84 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) 83 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) 82 (|has| |#1| (-484 (-1087) |#1|)))) (-3223 (($ $ |#1|) 88 (|has| |#1| (-263 |#1| |#1|)))) (-3663 (((-499) $) 63 (|has| |#1| (-564 (-499))))) (-3208 (($ $) 80)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 37) (($ (-383 (-523))) 91 (|has| |#1| (-964 (-383 (-523)))))) (-3901 (((-3 $ "failed") $) 64 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-2619 ((|#1| $) 69 (|has| |#1| (-982)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-4043 (((-108) $ $) 59 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 58 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 60 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 57 (|has| |#1| (-786)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) +(((-736 |#1|) (-129) (-158)) (T -736)) +((-3208 (*1 *1 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-3615 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-1605 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-1401 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-2853 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) (-2619 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)) (-4 *2 (-982)))) (-1292 (*1 *2 *1) (-12 (-4 *1 (-736 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-108)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-736 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-383 (-523))))) (-3346 (*1 *2 *1) (|partial| -12 (-4 *1 (-736 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-383 (-523))))) (-3738 (*1 *1 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)) (-4 *2 (-339))))) +(-13 (-37 |t#1|) (-387 |t#1|) (-314 |t#1|) (-10 -8 (-15 -3208 ($ $)) (-15 -1842 (|t#1| $)) (-15 -2410 (|t#1| $)) (-15 -3615 (|t#1| $)) (-15 -3938 (|t#1| $)) (-15 -3362 (|t#1| $)) (-15 -1605 (|t#1| $)) (-15 -3972 (|t#1| $)) (-15 -1401 (|t#1| $)) (-15 -3892 (|t#1| $)) (-15 -2853 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|) (IF (|has| |t#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |t#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-982)) (-15 -2619 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-15 -1292 ((-108) $)) (-15 -2146 ((-383 (-523)) $)) (-15 -3346 ((-3 (-383 (-523)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-339)) (-15 -3738 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 |#1| $) |has| |#1| (-263 |#1| |#1|)) ((-286 |#1|) |has| |#1| (-286 |#1|)) ((-344) |has| |#1| (-344)) ((-314 |#1|) . T) ((-387 |#1|) . T) ((-484 (-1087) |#1|) |has| |#1| (-484 (-1087) |#1|)) ((-484 |#1| |#1|) |has| |#1| (-286 |#1|)) ((-591 |#1|) . T) ((-591 $) . T) ((-657 |#1|) . T) ((-666) . T) ((-786) |has| |#1| (-786)) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-979 |#1|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-3612 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-737 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 (|#3| (-1 |#4| |#2|) |#1|))) (-736 |#2|) (-158) (-736 |#4|) (-158)) (T -737)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-158)) (-4 *6 (-158)) (-4 *2 (-736 *6)) (-5 *1 (-737 *4 *5 *2 *6)) (-4 *4 (-736 *5))))) +(-10 -7 (-15 -3612 (|#3| (-1 |#4| |#2|) |#1|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1703 (((-710)) NIL (|has| |#1| (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL) (((-3 (-927 |#1|) "failed") $) 35) (((-3 (-523) "failed") $) NIL (-3262 (|has| (-927 |#1|) (-964 (-523))) (|has| |#1| (-964 (-523))))) (((-3 (-383 (-523)) "failed") $) NIL (-3262 (|has| (-927 |#1|) (-964 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-3474 ((|#1| $) NIL) (((-927 |#1|) $) 33) (((-523) $) NIL (-3262 (|has| (-927 |#1|) (-964 (-523))) (|has| |#1| (-964 (-523))))) (((-383 (-523)) $) NIL (-3262 (|has| (-927 |#1|) (-964 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-2121 (((-3 $ "failed") $) NIL)) (-1842 ((|#1| $) 16)) (-3346 (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-508)))) (-1292 (((-108) $) NIL (|has| |#1| (-508)))) (-2146 (((-383 (-523)) $) NIL (|has| |#1| (-508)))) (-4032 (($) NIL (|has| |#1| (-344)))) (-2023 (((-108) $) NIL)) (-2853 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-927 |#1|) (-927 |#1|)) 29)) (-3892 ((|#1| $) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2072 (((-852) $) NIL (|has| |#1| (-344)))) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| |#1| (-339)))) (-3878 (($ (-852)) NIL (|has| |#1| (-344)))) (-3938 ((|#1| $) 22)) (-3615 ((|#1| $) 20)) (-2410 ((|#1| $) 18)) (-1401 ((|#1| $) 26)) (-3972 ((|#1| $) 25)) (-1605 ((|#1| $) 24)) (-3362 ((|#1| $) 23)) (-2783 (((-1034) $) NIL)) (-2679 (($ $ (-589 |#1|) (-589 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) NIL (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-484 (-1087) |#1|)))) (-3223 (($ $ |#1|) NIL (|has| |#1| (-263 |#1| |#1|)))) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-3208 (($ $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-927 |#1|)) 30) (($ (-383 (-523))) NIL (-3262 (|has| (-927 |#1|) (-964 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-2619 ((|#1| $) NIL (|has| |#1| (-982)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 8 T CONST)) (-2767 (($) 12 T CONST)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-738 |#1|) (-13 (-736 |#1|) (-387 (-927 |#1|)) (-10 -8 (-15 -2853 ($ (-927 |#1|) (-927 |#1|))))) (-158)) (T -738)) +((-2853 (*1 *1 *2 *2) (-12 (-5 *2 (-927 *3)) (-4 *3 (-158)) (-5 *1 (-738 *3))))) +(-13 (-736 |#1|) (-387 (-927 |#1|)) (-10 -8 (-15 -2853 ($ (-927 |#1|) (-927 |#1|))))) +((-3924 (((-108) $ $) 7)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-3098 (((-962) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 13)) (-3983 (((-108) $ $) 6))) +(((-739) (-129)) (T -739)) +((-1228 (*1 *2 *3 *4) (-12 (-4 *1 (-739)) (-5 *3 (-985)) (-5 *4 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)))))) (-3098 (*1 *2 *3) (-12 (-4 *1 (-739)) (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-962))))) +(-13 (-1016) (-10 -7 (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -3098 ((-962) (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) +(((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-2067 (((-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) |#3| |#2| (-1087)) 19))) +(((-740 |#1| |#2| |#3|) (-10 -7 (-15 -2067 ((-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) |#3| |#2| (-1087)))) (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136)) (-13 (-29 |#1|) (-1108) (-889)) (-599 |#2|)) (T -740)) +((-2067 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1087)) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-4 *4 (-13 (-29 *6) (-1108) (-889))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4041 (-589 *4)))) (-5 *1 (-740 *6 *4 *3)) (-4 *3 (-599 *4))))) +(-10 -7 (-15 -2067 ((-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) |#3| |#2| (-1087)))) +((-1940 (((-3 |#2| "failed") |#2| (-110) (-271 |#2|) (-589 |#2|)) 26) (((-3 |#2| "failed") (-271 |#2|) (-110) (-271 |#2|) (-589 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) |#2| "failed") |#2| (-110) (-1087)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) |#2| "failed") (-271 |#2|) (-110) (-1087)) 17) (((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -4041 (-589 (-1168 |#2|)))) "failed") (-589 |#2|) (-589 (-110)) (-1087)) 22) (((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -4041 (-589 (-1168 |#2|)))) "failed") (-589 (-271 |#2|)) (-589 (-110)) (-1087)) 24) (((-3 (-589 (-1168 |#2|)) "failed") (-629 |#2|) (-1087)) 36) (((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -4041 (-589 (-1168 |#2|)))) "failed") (-629 |#2|) (-1168 |#2|) (-1087)) 34))) +(((-741 |#1| |#2|) (-10 -7 (-15 -1940 ((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -4041 (-589 (-1168 |#2|)))) "failed") (-629 |#2|) (-1168 |#2|) (-1087))) (-15 -1940 ((-3 (-589 (-1168 |#2|)) "failed") (-629 |#2|) (-1087))) (-15 -1940 ((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -4041 (-589 (-1168 |#2|)))) "failed") (-589 (-271 |#2|)) (-589 (-110)) (-1087))) (-15 -1940 ((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -4041 (-589 (-1168 |#2|)))) "failed") (-589 |#2|) (-589 (-110)) (-1087))) (-15 -1940 ((-3 (-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) |#2| "failed") (-271 |#2|) (-110) (-1087))) (-15 -1940 ((-3 (-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) |#2| "failed") |#2| (-110) (-1087))) (-15 -1940 ((-3 |#2| "failed") (-271 |#2|) (-110) (-271 |#2|) (-589 |#2|))) (-15 -1940 ((-3 |#2| "failed") |#2| (-110) (-271 |#2|) (-589 |#2|)))) (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136)) (-13 (-29 |#1|) (-1108) (-889))) (T -741)) +((-1940 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-271 *2)) (-5 *5 (-589 *2)) (-4 *2 (-13 (-29 *6) (-1108) (-889))) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *1 (-741 *6 *2)))) (-1940 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-271 *2)) (-5 *4 (-110)) (-5 *5 (-589 *2)) (-4 *2 (-13 (-29 *6) (-1108) (-889))) (-5 *1 (-741 *6 *2)) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))))) (-1940 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-5 *5 (-1087)) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4041 (-589 *3))) *3 "failed")) (-5 *1 (-741 *6 *3)) (-4 *3 (-13 (-29 *6) (-1108) (-889))))) (-1940 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-271 *7)) (-5 *4 (-110)) (-5 *5 (-1087)) (-4 *7 (-13 (-29 *6) (-1108) (-889))) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4041 (-589 *7))) *7 "failed")) (-5 *1 (-741 *6 *7)))) (-1940 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-589 *7)) (-5 *4 (-589 (-110))) (-5 *5 (-1087)) (-4 *7 (-13 (-29 *6) (-1108) (-889))) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-2 (|:| |particular| (-1168 *7)) (|:| -4041 (-589 (-1168 *7))))) (-5 *1 (-741 *6 *7)))) (-1940 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-589 (-271 *7))) (-5 *4 (-589 (-110))) (-5 *5 (-1087)) (-4 *7 (-13 (-29 *6) (-1108) (-889))) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-2 (|:| |particular| (-1168 *7)) (|:| -4041 (-589 (-1168 *7))))) (-5 *1 (-741 *6 *7)))) (-1940 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-629 *6)) (-5 *4 (-1087)) (-4 *6 (-13 (-29 *5) (-1108) (-889))) (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-589 (-1168 *6))) (-5 *1 (-741 *5 *6)))) (-1940 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-629 *7)) (-5 *5 (-1087)) (-4 *7 (-13 (-29 *6) (-1108) (-889))) (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-2 (|:| |particular| (-1168 *7)) (|:| -4041 (-589 (-1168 *7))))) (-5 *1 (-741 *6 *7)) (-5 *4 (-1168 *7))))) +(-10 -7 (-15 -1940 ((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -4041 (-589 (-1168 |#2|)))) "failed") (-629 |#2|) (-1168 |#2|) (-1087))) (-15 -1940 ((-3 (-589 (-1168 |#2|)) "failed") (-629 |#2|) (-1087))) (-15 -1940 ((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -4041 (-589 (-1168 |#2|)))) "failed") (-589 (-271 |#2|)) (-589 (-110)) (-1087))) (-15 -1940 ((-3 (-2 (|:| |particular| (-1168 |#2|)) (|:| -4041 (-589 (-1168 |#2|)))) "failed") (-589 |#2|) (-589 (-110)) (-1087))) (-15 -1940 ((-3 (-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) |#2| "failed") (-271 |#2|) (-110) (-1087))) (-15 -1940 ((-3 (-2 (|:| |particular| |#2|) (|:| -4041 (-589 |#2|))) |#2| "failed") |#2| (-110) (-1087))) (-15 -1940 ((-3 |#2| "failed") (-271 |#2|) (-110) (-271 |#2|) (-589 |#2|))) (-15 -1940 ((-3 |#2| "failed") |#2| (-110) (-271 |#2|) (-589 |#2|)))) +((-3268 (($) 9)) (-1342 (((-3 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))) "failed") (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 26)) (-1330 (((-589 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) $) 23)) (-3450 (($ (-2 (|:| -1853 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355)))))) 20)) (-3736 (($ (-589 (-2 (|:| -1853 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))))))) 18)) (-3337 (((-1173)) 12))) +(((-742) (-10 -8 (-15 -3268 ($)) (-15 -3337 ((-1173))) (-15 -1330 ((-589 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) $)) (-15 -3736 ($ (-589 (-2 (|:| -1853 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355)))))))) (-15 -3450 ($ (-2 (|:| -1853 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))))))) (-15 -1342 ((-3 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))) "failed") (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))))) (T -742)) +((-1342 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355)))) (-5 *1 (-742)))) (-3450 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1853 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355)))))) (-5 *1 (-742)))) (-3736 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| -1853 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))))))) (-5 *1 (-742)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-5 *1 (-742)))) (-3337 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-742)))) (-3268 (*1 *1) (-5 *1 (-742)))) +(-10 -8 (-15 -3268 ($)) (-15 -3337 ((-1173))) (-15 -1330 ((-589 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) $)) (-15 -3736 ($ (-589 (-2 (|:| -1853 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355)))))))) (-15 -3450 ($ (-2 (|:| -1853 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (|:| -2433 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))))))) (-15 -1342 ((-3 (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) (|:| |expense| (-355)) (|:| |accuracy| (-355)) (|:| |intermediateResults| (-355))) "failed") (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) +((-1464 ((|#2| |#2| (-1087)) 15)) (-2375 ((|#2| |#2| (-1087)) 47)) (-4168 (((-1 |#2| |#2|) (-1087)) 11))) +(((-743 |#1| |#2|) (-10 -7 (-15 -1464 (|#2| |#2| (-1087))) (-15 -2375 (|#2| |#2| (-1087))) (-15 -4168 ((-1 |#2| |#2|) (-1087)))) (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136)) (-13 (-29 |#1|) (-1108) (-889))) (T -743)) +((-4168 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-1 *5 *5)) (-5 *1 (-743 *4 *5)) (-4 *5 (-13 (-29 *4) (-1108) (-889))))) (-2375 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *1 (-743 *4 *2)) (-4 *2 (-13 (-29 *4) (-1108) (-889))))) (-1464 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *1 (-743 *4 *2)) (-4 *2 (-13 (-29 *4) (-1108) (-889)))))) +(-10 -7 (-15 -1464 (|#2| |#2| (-1087))) (-15 -2375 (|#2| |#2| (-1087))) (-15 -4168 ((-1 |#2| |#2|) (-1087)))) +((-1940 (((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-589 (-355)) (-355) (-355)) 114) (((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-589 (-355)) (-355)) 115) (((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-589 (-355)) (-355)) 117) (((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-355)) 118) (((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-355)) 119) (((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355))) 120) (((-962) (-747) (-985)) 105) (((-962) (-747)) 106)) (-1228 (((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-747) (-985)) 71) (((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-747)) 73))) +(((-744) (-10 -7 (-15 -1940 ((-962) (-747))) (-15 -1940 ((-962) (-747) (-985))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-355))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-355))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-589 (-355)) (-355))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-589 (-355)) (-355))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-589 (-355)) (-355) (-355))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-747))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-747) (-985))))) (T -744)) +((-1228 (*1 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-985)) (-5 *2 (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))))) (-5 *1 (-744)))) (-1228 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))))) (-5 *1 (-744)))) (-1940 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1168 (-292 *4))) (-5 *5 (-589 (-355))) (-5 *6 (-292 (-355))) (-5 *4 (-355)) (-5 *2 (-962)) (-5 *1 (-744)))) (-1940 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1168 (-292 *4))) (-5 *5 (-589 (-355))) (-5 *6 (-292 (-355))) (-5 *4 (-355)) (-5 *2 (-962)) (-5 *1 (-744)))) (-1940 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1168 (-292 (-355)))) (-5 *4 (-355)) (-5 *5 (-589 *4)) (-5 *2 (-962)) (-5 *1 (-744)))) (-1940 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1168 (-292 *4))) (-5 *5 (-589 (-355))) (-5 *6 (-292 (-355))) (-5 *4 (-355)) (-5 *2 (-962)) (-5 *1 (-744)))) (-1940 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1168 (-292 (-355)))) (-5 *4 (-355)) (-5 *5 (-589 *4)) (-5 *2 (-962)) (-5 *1 (-744)))) (-1940 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1168 (-292 (-355)))) (-5 *4 (-355)) (-5 *5 (-589 *4)) (-5 *2 (-962)) (-5 *1 (-744)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-985)) (-5 *2 (-962)) (-5 *1 (-744)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-962)) (-5 *1 (-744))))) +(-10 -7 (-15 -1940 ((-962) (-747))) (-15 -1940 ((-962) (-747) (-985))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-355))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-355))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-589 (-355)) (-355))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-589 (-355)) (-355))) (-15 -1940 ((-962) (-1168 (-292 (-355))) (-355) (-355) (-589 (-355)) (-292 (-355)) (-589 (-355)) (-355) (-355))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-747))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-747) (-985)))) +((-3725 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4041 (-589 |#4|))) (-596 |#4|) |#4|) 32))) +(((-745 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3725 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4041 (-589 |#4|))) (-596 |#4|) |#4|))) (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523)))) (-1144 |#1|) (-1144 (-383 |#2|)) (-318 |#1| |#2| |#3|)) (T -745)) +((-3725 (*1 *2 *3 *4) (-12 (-5 *3 (-596 *4)) (-4 *4 (-318 *5 *6 *7)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) (-5 *1 (-745 *5 *6 *7 *4))))) +(-10 -7 (-15 -3725 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4041 (-589 |#4|))) (-596 |#4|) |#4|))) +((-1199 (((-2 (|:| -1710 |#3|) (|:| |rh| (-589 (-383 |#2|)))) |#4| (-589 (-383 |#2|))) 52)) (-3285 (((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#4| |#2|) 60) (((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#4|) 59) (((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#3| |#2|) 20) (((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#3|) 21)) (-2530 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-1455 ((|#2| |#3| (-589 (-383 |#2|))) 94) (((-3 |#2| "failed") |#3| (-383 |#2|)) 91))) +(((-746 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1455 ((-3 |#2| "failed") |#3| (-383 |#2|))) (-15 -1455 (|#2| |#3| (-589 (-383 |#2|)))) (-15 -3285 ((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#3|)) (-15 -3285 ((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#3| |#2|)) (-15 -2530 (|#2| |#3| |#1|)) (-15 -3285 ((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#4|)) (-15 -3285 ((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#4| |#2|)) (-15 -2530 (|#2| |#4| |#1|)) (-15 -1199 ((-2 (|:| -1710 |#3|) (|:| |rh| (-589 (-383 |#2|)))) |#4| (-589 (-383 |#2|))))) (-13 (-339) (-136) (-964 (-383 (-523)))) (-1144 |#1|) (-599 |#2|) (-599 (-383 |#2|))) (T -746)) +((-1199 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *6 (-1144 *5)) (-5 *2 (-2 (|:| -1710 *7) (|:| |rh| (-589 (-383 *6))))) (-5 *1 (-746 *5 *6 *7 *3)) (-5 *4 (-589 (-383 *6))) (-4 *7 (-599 *6)) (-4 *3 (-599 (-383 *6))))) (-2530 (*1 *2 *3 *4) (-12 (-4 *2 (-1144 *4)) (-5 *1 (-746 *4 *2 *5 *3)) (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *5 (-599 *2)) (-4 *3 (-599 (-383 *2))))) (-3285 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *4 (-1144 *5)) (-5 *2 (-589 (-2 (|:| -1288 *4) (|:| -1915 *4)))) (-5 *1 (-746 *5 *4 *6 *3)) (-4 *6 (-599 *4)) (-4 *3 (-599 (-383 *4))))) (-3285 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *5 (-1144 *4)) (-5 *2 (-589 (-2 (|:| -1288 *5) (|:| -1915 *5)))) (-5 *1 (-746 *4 *5 *6 *3)) (-4 *6 (-599 *5)) (-4 *3 (-599 (-383 *5))))) (-2530 (*1 *2 *3 *4) (-12 (-4 *2 (-1144 *4)) (-5 *1 (-746 *4 *2 *3 *5)) (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-599 *2)) (-4 *5 (-599 (-383 *2))))) (-3285 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *4 (-1144 *5)) (-5 *2 (-589 (-2 (|:| -1288 *4) (|:| -1915 *4)))) (-5 *1 (-746 *5 *4 *3 *6)) (-4 *3 (-599 *4)) (-4 *6 (-599 (-383 *4))))) (-3285 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *5 (-1144 *4)) (-5 *2 (-589 (-2 (|:| -1288 *5) (|:| -1915 *5)))) (-5 *1 (-746 *4 *5 *3 *6)) (-4 *3 (-599 *5)) (-4 *6 (-599 (-383 *5))))) (-1455 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-383 *2))) (-4 *2 (-1144 *5)) (-5 *1 (-746 *5 *2 *3 *6)) (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-599 *2)) (-4 *6 (-599 (-383 *2))))) (-1455 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-383 *2)) (-4 *2 (-1144 *5)) (-5 *1 (-746 *5 *2 *3 *6)) (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-599 *2)) (-4 *6 (-599 *4))))) +(-10 -7 (-15 -1455 ((-3 |#2| "failed") |#3| (-383 |#2|))) (-15 -1455 (|#2| |#3| (-589 (-383 |#2|)))) (-15 -3285 ((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#3|)) (-15 -3285 ((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#3| |#2|)) (-15 -2530 (|#2| |#3| |#1|)) (-15 -3285 ((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#4|)) (-15 -3285 ((-589 (-2 (|:| -1288 |#2|) (|:| -1915 |#2|))) |#4| |#2|)) (-15 -2530 (|#2| |#4| |#1|)) (-15 -1199 ((-2 (|:| -1710 |#3|) (|:| |rh| (-589 (-383 |#2|)))) |#4| (-589 (-383 |#2|))))) +((-3924 (((-108) $ $) NIL)) (-3474 (((-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) $) 9)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 11) (($ (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) 8)) (-3983 (((-108) $ $) NIL))) +(((-747) (-13 (-1016) (-10 -8 (-15 -1458 ($ (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1458 ((-794) $)) (-15 -3474 ((-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) $))))) (T -747)) +((-1458 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-747)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *1 (-747)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203)))) (-5 *1 (-747))))) +(-13 (-1016) (-10 -8 (-15 -1458 ($ (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))))) (-15 -1458 ((-794) $)) (-15 -3474 ((-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) (|:| |relerr| (-203))) $)))) +((-1334 (((-589 (-2 (|:| |frac| (-383 |#2|)) (|:| -1710 |#3|))) |#3| (-1 (-589 |#2|) |#2| (-1083 |#2|)) (-1 (-394 |#2|) |#2|)) 117)) (-1471 (((-589 (-2 (|:| |poly| |#2|) (|:| -1710 |#3|))) |#3| (-1 (-589 |#1|) |#2|)) 45)) (-2666 (((-589 (-2 (|:| |deg| (-710)) (|:| -1710 |#2|))) |#3|) 94)) (-2478 ((|#2| |#3|) 37)) (-4205 (((-589 (-2 (|:| -3059 |#1|) (|:| -1710 |#3|))) |#3| (-1 (-589 |#1|) |#2|)) 81)) (-2690 ((|#3| |#3| (-383 |#2|)) 62) ((|#3| |#3| |#2|) 78))) +(((-748 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2478 (|#2| |#3|)) (-15 -2666 ((-589 (-2 (|:| |deg| (-710)) (|:| -1710 |#2|))) |#3|)) (-15 -4205 ((-589 (-2 (|:| -3059 |#1|) (|:| -1710 |#3|))) |#3| (-1 (-589 |#1|) |#2|))) (-15 -1471 ((-589 (-2 (|:| |poly| |#2|) (|:| -1710 |#3|))) |#3| (-1 (-589 |#1|) |#2|))) (-15 -1334 ((-589 (-2 (|:| |frac| (-383 |#2|)) (|:| -1710 |#3|))) |#3| (-1 (-589 |#2|) |#2| (-1083 |#2|)) (-1 (-394 |#2|) |#2|))) (-15 -2690 (|#3| |#3| |#2|)) (-15 -2690 (|#3| |#3| (-383 |#2|)))) (-13 (-339) (-136) (-964 (-383 (-523)))) (-1144 |#1|) (-599 |#2|) (-599 (-383 |#2|))) (T -748)) +((-2690 (*1 *2 *2 *3) (-12 (-5 *3 (-383 *5)) (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *5 (-1144 *4)) (-5 *1 (-748 *4 *5 *2 *6)) (-4 *2 (-599 *5)) (-4 *6 (-599 *3)))) (-2690 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-1144 *4)) (-5 *1 (-748 *4 *3 *2 *5)) (-4 *2 (-599 *3)) (-4 *5 (-599 (-383 *3))))) (-1334 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-589 *7) *7 (-1083 *7))) (-5 *5 (-1 (-394 *7) *7)) (-4 *7 (-1144 *6)) (-4 *6 (-13 (-339) (-136) (-964 (-383 (-523))))) (-5 *2 (-589 (-2 (|:| |frac| (-383 *7)) (|:| -1710 *3)))) (-5 *1 (-748 *6 *7 *3 *8)) (-4 *3 (-599 *7)) (-4 *8 (-599 (-383 *7))))) (-1471 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-589 *5) *6)) (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *6 (-1144 *5)) (-5 *2 (-589 (-2 (|:| |poly| *6) (|:| -1710 *3)))) (-5 *1 (-748 *5 *6 *3 *7)) (-4 *3 (-599 *6)) (-4 *7 (-599 (-383 *6))))) (-4205 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-589 *5) *6)) (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *6 (-1144 *5)) (-5 *2 (-589 (-2 (|:| -3059 *5) (|:| -1710 *3)))) (-5 *1 (-748 *5 *6 *3 *7)) (-4 *3 (-599 *6)) (-4 *7 (-599 (-383 *6))))) (-2666 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *5 (-1144 *4)) (-5 *2 (-589 (-2 (|:| |deg| (-710)) (|:| -1710 *5)))) (-5 *1 (-748 *4 *5 *3 *6)) (-4 *3 (-599 *5)) (-4 *6 (-599 (-383 *5))))) (-2478 (*1 *2 *3) (-12 (-4 *2 (-1144 *4)) (-5 *1 (-748 *4 *2 *3 *5)) (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-599 *2)) (-4 *5 (-599 (-383 *2)))))) +(-10 -7 (-15 -2478 (|#2| |#3|)) (-15 -2666 ((-589 (-2 (|:| |deg| (-710)) (|:| -1710 |#2|))) |#3|)) (-15 -4205 ((-589 (-2 (|:| -3059 |#1|) (|:| -1710 |#3|))) |#3| (-1 (-589 |#1|) |#2|))) (-15 -1471 ((-589 (-2 (|:| |poly| |#2|) (|:| -1710 |#3|))) |#3| (-1 (-589 |#1|) |#2|))) (-15 -1334 ((-589 (-2 (|:| |frac| (-383 |#2|)) (|:| -1710 |#3|))) |#3| (-1 (-589 |#2|) |#2| (-1083 |#2|)) (-1 (-394 |#2|) |#2|))) (-15 -2690 (|#3| |#3| |#2|)) (-15 -2690 (|#3| |#3| (-383 |#2|)))) +((-2698 (((-2 (|:| -4041 (-589 (-383 |#2|))) (|:| -3392 (-629 |#1|))) (-597 |#2| (-383 |#2|)) (-589 (-383 |#2|))) 118) (((-2 (|:| |particular| (-3 (-383 |#2|) "failed")) (|:| -4041 (-589 (-383 |#2|)))) (-597 |#2| (-383 |#2|)) (-383 |#2|)) 117) (((-2 (|:| -4041 (-589 (-383 |#2|))) (|:| -3392 (-629 |#1|))) (-596 (-383 |#2|)) (-589 (-383 |#2|))) 112) (((-2 (|:| |particular| (-3 (-383 |#2|) "failed")) (|:| -4041 (-589 (-383 |#2|)))) (-596 (-383 |#2|)) (-383 |#2|)) 110)) (-4157 ((|#2| (-597 |#2| (-383 |#2|))) 77) ((|#2| (-596 (-383 |#2|))) 81))) +(((-749 |#1| |#2|) (-10 -7 (-15 -2698 ((-2 (|:| |particular| (-3 (-383 |#2|) "failed")) (|:| -4041 (-589 (-383 |#2|)))) (-596 (-383 |#2|)) (-383 |#2|))) (-15 -2698 ((-2 (|:| -4041 (-589 (-383 |#2|))) (|:| -3392 (-629 |#1|))) (-596 (-383 |#2|)) (-589 (-383 |#2|)))) (-15 -2698 ((-2 (|:| |particular| (-3 (-383 |#2|) "failed")) (|:| -4041 (-589 (-383 |#2|)))) (-597 |#2| (-383 |#2|)) (-383 |#2|))) (-15 -2698 ((-2 (|:| -4041 (-589 (-383 |#2|))) (|:| -3392 (-629 |#1|))) (-597 |#2| (-383 |#2|)) (-589 (-383 |#2|)))) (-15 -4157 (|#2| (-596 (-383 |#2|)))) (-15 -4157 (|#2| (-597 |#2| (-383 |#2|))))) (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523)))) (-1144 |#1|)) (T -749)) +((-4157 (*1 *2 *3) (-12 (-5 *3 (-597 *2 (-383 *2))) (-4 *2 (-1144 *4)) (-5 *1 (-749 *4 *2)) (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))))) (-4157 (*1 *2 *3) (-12 (-5 *3 (-596 (-383 *2))) (-4 *2 (-1144 *4)) (-5 *1 (-749 *4 *2)) (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6 (-383 *6))) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-2 (|:| -4041 (-589 (-383 *6))) (|:| -3392 (-629 *5)))) (-5 *1 (-749 *5 *6)) (-5 *4 (-589 (-383 *6))))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6 (-383 *6))) (-5 *4 (-383 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) (-5 *1 (-749 *5 *6)))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-596 (-383 *6))) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-2 (|:| -4041 (-589 (-383 *6))) (|:| -3392 (-629 *5)))) (-5 *1 (-749 *5 *6)) (-5 *4 (-589 (-383 *6))))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-596 (-383 *6))) (-5 *4 (-383 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) (-5 *1 (-749 *5 *6))))) +(-10 -7 (-15 -2698 ((-2 (|:| |particular| (-3 (-383 |#2|) "failed")) (|:| -4041 (-589 (-383 |#2|)))) (-596 (-383 |#2|)) (-383 |#2|))) (-15 -2698 ((-2 (|:| -4041 (-589 (-383 |#2|))) (|:| -3392 (-629 |#1|))) (-596 (-383 |#2|)) (-589 (-383 |#2|)))) (-15 -2698 ((-2 (|:| |particular| (-3 (-383 |#2|) "failed")) (|:| -4041 (-589 (-383 |#2|)))) (-597 |#2| (-383 |#2|)) (-383 |#2|))) (-15 -2698 ((-2 (|:| -4041 (-589 (-383 |#2|))) (|:| -3392 (-629 |#1|))) (-597 |#2| (-383 |#2|)) (-589 (-383 |#2|)))) (-15 -4157 (|#2| (-596 (-383 |#2|)))) (-15 -4157 (|#2| (-597 |#2| (-383 |#2|))))) +((-1377 (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#1|))) |#5| |#4|) 47))) +(((-750 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1377 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#1|))) |#5| |#4|))) (-339) (-599 |#1|) (-1144 |#1|) (-664 |#1| |#3|) (-599 |#4|)) (T -750)) +((-1377 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-4 *7 (-1144 *5)) (-4 *4 (-664 *5 *7)) (-5 *2 (-2 (|:| -3392 (-629 *6)) (|:| |vec| (-1168 *5)))) (-5 *1 (-750 *5 *6 *7 *4 *3)) (-4 *6 (-599 *5)) (-4 *3 (-599 *4))))) +(-10 -7 (-15 -1377 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#1|))) |#5| |#4|))) +((-1334 (((-589 (-2 (|:| |frac| (-383 |#2|)) (|:| -1710 (-597 |#2| (-383 |#2|))))) (-597 |#2| (-383 |#2|)) (-1 (-394 |#2|) |#2|)) 43)) (-3040 (((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-394 |#2|) |#2|)) 134 (|has| |#1| (-27))) (((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|))) 135 (|has| |#1| (-27))) (((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-394 |#2|) |#2|)) 136 (|has| |#1| (-27))) (((-589 (-383 |#2|)) (-596 (-383 |#2|))) 137 (|has| |#1| (-27))) (((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|) (-1 (-394 |#2|) |#2|)) 36) (((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|)) 37) (((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|) (-1 (-394 |#2|) |#2|)) 34) (((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|)) 35)) (-1471 (((-589 (-2 (|:| |poly| |#2|) (|:| -1710 (-597 |#2| (-383 |#2|))))) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|)) 81))) +(((-751 |#1| |#2|) (-10 -7 (-15 -3040 ((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (-15 -3040 ((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|) (-1 (-394 |#2|) |#2|))) (-15 -3040 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (-15 -3040 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|) (-1 (-394 |#2|) |#2|))) (-15 -1334 ((-589 (-2 (|:| |frac| (-383 |#2|)) (|:| -1710 (-597 |#2| (-383 |#2|))))) (-597 |#2| (-383 |#2|)) (-1 (-394 |#2|) |#2|))) (-15 -1471 ((-589 (-2 (|:| |poly| |#2|) (|:| -1710 (-597 |#2| (-383 |#2|))))) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3040 ((-589 (-383 |#2|)) (-596 (-383 |#2|)))) (-15 -3040 ((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-394 |#2|) |#2|))) (-15 -3040 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)))) (-15 -3040 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-394 |#2|) |#2|)))) |%noBranch|)) (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523)))) (-1144 |#1|)) (T -751)) +((-3040 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6 (-383 *6))) (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1144 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6)))) (-3040 (*1 *2 *3) (-12 (-5 *3 (-597 *5 (-383 *5))) (-4 *5 (-1144 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-589 (-383 *5))) (-5 *1 (-751 *4 *5)))) (-3040 (*1 *2 *3 *4) (-12 (-5 *3 (-596 (-383 *6))) (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1144 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6)))) (-3040 (*1 *2 *3) (-12 (-5 *3 (-596 (-383 *5))) (-4 *5 (-1144 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-589 (-383 *5))) (-5 *1 (-751 *4 *5)))) (-1471 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-589 *5) *6)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *6 (-1144 *5)) (-5 *2 (-589 (-2 (|:| |poly| *6) (|:| -1710 (-597 *6 (-383 *6)))))) (-5 *1 (-751 *5 *6)) (-5 *3 (-597 *6 (-383 *6))))) (-1334 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-5 *2 (-589 (-2 (|:| |frac| (-383 *6)) (|:| -1710 (-597 *6 (-383 *6)))))) (-5 *1 (-751 *5 *6)) (-5 *3 (-597 *6 (-383 *6))))) (-3040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 *7 (-383 *7))) (-5 *4 (-1 (-589 *6) *7)) (-5 *5 (-1 (-394 *7) *7)) (-4 *6 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *7 (-1144 *6)) (-5 *2 (-589 (-383 *7))) (-5 *1 (-751 *6 *7)))) (-3040 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6 (-383 *6))) (-5 *4 (-1 (-589 *5) *6)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *6 (-1144 *5)) (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6)))) (-3040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-596 (-383 *7))) (-5 *4 (-1 (-589 *6) *7)) (-5 *5 (-1 (-394 *7) *7)) (-4 *6 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *7 (-1144 *6)) (-5 *2 (-589 (-383 *7))) (-5 *1 (-751 *6 *7)))) (-3040 (*1 *2 *3 *4) (-12 (-5 *3 (-596 (-383 *6))) (-5 *4 (-1 (-589 *5) *6)) (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) (-4 *6 (-1144 *5)) (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6))))) +(-10 -7 (-15 -3040 ((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (-15 -3040 ((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-589 |#1|) |#2|) (-1 (-394 |#2|) |#2|))) (-15 -3040 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (-15 -3040 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|) (-1 (-394 |#2|) |#2|))) (-15 -1334 ((-589 (-2 (|:| |frac| (-383 |#2|)) (|:| -1710 (-597 |#2| (-383 |#2|))))) (-597 |#2| (-383 |#2|)) (-1 (-394 |#2|) |#2|))) (-15 -1471 ((-589 (-2 (|:| |poly| |#2|) (|:| -1710 (-597 |#2| (-383 |#2|))))) (-597 |#2| (-383 |#2|)) (-1 (-589 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3040 ((-589 (-383 |#2|)) (-596 (-383 |#2|)))) (-15 -3040 ((-589 (-383 |#2|)) (-596 (-383 |#2|)) (-1 (-394 |#2|) |#2|))) (-15 -3040 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)))) (-15 -3040 ((-589 (-383 |#2|)) (-597 |#2| (-383 |#2|)) (-1 (-394 |#2|) |#2|)))) |%noBranch|)) +((-2037 (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#1|))) (-629 |#2|) (-1168 |#1|)) 85) (((-2 (|:| A (-629 |#1|)) (|:| |eqs| (-589 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1168 |#1|)) (|:| -1710 |#2|) (|:| |rh| |#1|))))) (-629 |#1|) (-1168 |#1|)) 14)) (-3293 (((-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|)))) (-629 |#2|) (-1168 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4041 (-589 |#1|))) |#2| |#1|)) 91)) (-1940 (((-3 (-2 (|:| |particular| (-1168 |#1|)) (|:| -4041 (-629 |#1|))) "failed") (-629 |#1|) (-1168 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4041 (-589 |#1|))) "failed") |#2| |#1|)) 44))) +(((-752 |#1| |#2|) (-10 -7 (-15 -2037 ((-2 (|:| A (-629 |#1|)) (|:| |eqs| (-589 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1168 |#1|)) (|:| -1710 |#2|) (|:| |rh| |#1|))))) (-629 |#1|) (-1168 |#1|))) (-15 -2037 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#1|))) (-629 |#2|) (-1168 |#1|))) (-15 -1940 ((-3 (-2 (|:| |particular| (-1168 |#1|)) (|:| -4041 (-629 |#1|))) "failed") (-629 |#1|) (-1168 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4041 (-589 |#1|))) "failed") |#2| |#1|))) (-15 -3293 ((-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|)))) (-629 |#2|) (-1168 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4041 (-589 |#1|))) |#2| |#1|)))) (-339) (-599 |#1|)) (T -752)) +((-3293 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4041 (-589 *6))) *7 *6)) (-4 *6 (-339)) (-4 *7 (-599 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1168 *6) "failed")) (|:| -4041 (-589 (-1168 *6))))) (-5 *1 (-752 *6 *7)) (-5 *4 (-1168 *6)))) (-1940 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4041 (-589 *6))) "failed") *7 *6)) (-4 *6 (-339)) (-4 *7 (-599 *6)) (-5 *2 (-2 (|:| |particular| (-1168 *6)) (|:| -4041 (-629 *6)))) (-5 *1 (-752 *6 *7)) (-5 *3 (-629 *6)) (-5 *4 (-1168 *6)))) (-2037 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-4 *6 (-599 *5)) (-5 *2 (-2 (|:| -3392 (-629 *6)) (|:| |vec| (-1168 *5)))) (-5 *1 (-752 *5 *6)) (-5 *3 (-629 *6)) (-5 *4 (-1168 *5)))) (-2037 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-5 *2 (-2 (|:| A (-629 *5)) (|:| |eqs| (-589 (-2 (|:| C (-629 *5)) (|:| |g| (-1168 *5)) (|:| -1710 *6) (|:| |rh| *5)))))) (-5 *1 (-752 *5 *6)) (-5 *3 (-629 *5)) (-5 *4 (-1168 *5)) (-4 *6 (-599 *5))))) +(-10 -7 (-15 -2037 ((-2 (|:| A (-629 |#1|)) (|:| |eqs| (-589 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1168 |#1|)) (|:| -1710 |#2|) (|:| |rh| |#1|))))) (-629 |#1|) (-1168 |#1|))) (-15 -2037 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#1|))) (-629 |#2|) (-1168 |#1|))) (-15 -1940 ((-3 (-2 (|:| |particular| (-1168 |#1|)) (|:| -4041 (-629 |#1|))) "failed") (-629 |#1|) (-1168 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4041 (-589 |#1|))) "failed") |#2| |#1|))) (-15 -3293 ((-2 (|:| |particular| (-3 (-1168 |#1|) "failed")) (|:| -4041 (-589 (-1168 |#1|)))) (-629 |#2|) (-1168 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4041 (-589 |#1|))) |#2| |#1|)))) +((-3551 (((-629 |#1|) (-589 |#1|) (-710)) 13) (((-629 |#1|) (-589 |#1|)) 14)) (-2632 (((-3 (-1168 |#1|) "failed") |#2| |#1| (-589 |#1|)) 34)) (-1848 (((-3 |#1| "failed") |#2| |#1| (-589 |#1|) (-1 |#1| |#1|)) 42))) +(((-753 |#1| |#2|) (-10 -7 (-15 -3551 ((-629 |#1|) (-589 |#1|))) (-15 -3551 ((-629 |#1|) (-589 |#1|) (-710))) (-15 -2632 ((-3 (-1168 |#1|) "failed") |#2| |#1| (-589 |#1|))) (-15 -1848 ((-3 |#1| "failed") |#2| |#1| (-589 |#1|) (-1 |#1| |#1|)))) (-339) (-599 |#1|)) (T -753)) +((-1848 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-589 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-339)) (-5 *1 (-753 *2 *3)) (-4 *3 (-599 *2)))) (-2632 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-589 *4)) (-4 *4 (-339)) (-5 *2 (-1168 *4)) (-5 *1 (-753 *4 *3)) (-4 *3 (-599 *4)))) (-3551 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *5)) (-5 *4 (-710)) (-4 *5 (-339)) (-5 *2 (-629 *5)) (-5 *1 (-753 *5 *6)) (-4 *6 (-599 *5)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-339)) (-5 *2 (-629 *4)) (-5 *1 (-753 *4 *5)) (-4 *5 (-599 *4))))) +(-10 -7 (-15 -3551 ((-629 |#1|) (-589 |#1|))) (-15 -3551 ((-629 |#1|) (-589 |#1|) (-710))) (-15 -2632 ((-3 (-1168 |#1|) "failed") |#2| |#1| (-589 |#1|))) (-15 -1848 ((-3 |#1| "failed") |#2| |#1| (-589 |#1|) (-1 |#1| |#1|)))) +((-3924 (((-108) $ $) NIL (|has| |#2| (-1016)))) (-2295 (((-108) $) NIL (|has| |#2| (-124)))) (-1890 (($ (-852)) NIL (|has| |#2| (-973)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-3596 (($ $ $) NIL (|has| |#2| (-732)))) (-3212 (((-3 $ "failed") $ $) NIL (|has| |#2| (-124)))) (-3079 (((-108) $ (-710)) NIL)) (-1703 (((-710)) NIL (|has| |#2| (-344)))) (-3671 (((-523) $) NIL (|has| |#2| (-784)))) (-1641 ((|#2| $ (-523) |#2|) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1016)))) (-3474 (((-523) $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016)))) (((-383 (-523)) $) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) ((|#2| $) NIL (|has| |#2| (-1016)))) (-2381 (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#2| (-973)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL (|has| |#2| (-973))) (((-629 |#2|) (-629 $)) NIL (|has| |#2| (-973)))) (-2121 (((-3 $ "failed") $) NIL (|has| |#2| (-973)))) (-4032 (($) NIL (|has| |#2| (-344)))) (-2863 ((|#2| $ (-523) |#2|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#2| $ (-523)) NIL)) (-2604 (((-108) $) NIL (|has| |#2| (-784)))) (-1666 (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-2023 (((-108) $) NIL (|has| |#2| (-973)))) (-4114 (((-108) $) NIL (|has| |#2| (-784)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-2136 (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-2852 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-2072 (((-852) $) NIL (|has| |#2| (-344)))) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#2| (-1016)))) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-3878 (($ (-852)) NIL (|has| |#2| (-344)))) (-2783 (((-1034) $) NIL (|has| |#2| (-1016)))) (-1738 ((|#2| $) NIL (|has| (-523) (-786)))) (-4203 (($ $ |#2|) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#2| $ (-523) |#2|) NIL) ((|#2| $ (-523)) NIL)) (-3269 ((|#2| $ $) NIL (|has| |#2| (-973)))) (-1868 (($ (-1168 |#2|)) NIL)) (-3203 (((-126)) NIL (|has| |#2| (-339)))) (-3523 (($ $) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-973)))) (-2792 (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-1168 |#2|) $) NIL) (($ (-523)) NIL (-3262 (-12 (|has| |#2| (-964 (-523))) (|has| |#2| (-1016))) (|has| |#2| (-973)))) (($ (-383 (-523))) NIL (-12 (|has| |#2| (-964 (-383 (-523)))) (|has| |#2| (-1016)))) (($ |#2|) NIL (|has| |#2| (-1016))) (((-794) $) NIL (|has| |#2| (-563 (-794))))) (-1621 (((-710)) NIL (|has| |#2| (-973)))) (-2096 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2619 (($ $) NIL (|has| |#2| (-784)))) (-2364 (($ $ (-710)) NIL (|has| |#2| (-973))) (($ $ (-852)) NIL (|has| |#2| (-973)))) (-2756 (($) NIL (|has| |#2| (-124)) CONST)) (-2767 (($) NIL (|has| |#2| (-973)) CONST)) (-2862 (($ $) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#2| (-211)) (|has| |#2| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#2| (-831 (-1087))) (|has| |#2| (-973)))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#2| (-973))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-973)))) (-4043 (((-108) $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-4019 (((-108) $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-3983 (((-108) $ $) NIL (|has| |#2| (-1016)))) (-4030 (((-108) $ $) NIL (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-4007 (((-108) $ $) 11 (-3262 (|has| |#2| (-732)) (|has| |#2| (-784))))) (-4098 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4087 (($ $ $) NIL (|has| |#2| (-973))) (($ $) NIL (|has| |#2| (-973)))) (-4075 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-710)) NIL (|has| |#2| (-973))) (($ $ (-852)) NIL (|has| |#2| (-973)))) (* (($ $ $) NIL (|has| |#2| (-973))) (($ (-523) $) NIL (|has| |#2| (-973))) (($ $ |#2|) NIL (|has| |#2| (-666))) (($ |#2| $) NIL (|has| |#2| (-666))) (($ (-710) $) NIL (|has| |#2| (-124))) (($ (-852) $) NIL (|has| |#2| (-25)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-754 |#1| |#2| |#3|) (-216 |#1| |#2|) (-710) (-732) (-1 (-108) (-1168 |#2|) (-1168 |#2|))) (T -754)) +NIL +(-216 |#1| |#2|) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1854 (((-589 (-710)) $) NIL) (((-589 (-710)) $ (-1087)) NIL)) (-2656 (((-710) $) NIL) (((-710) $ (-1087)) NIL)) (-1957 (((-589 (-757 (-1087))) $) NIL)) (-1786 (((-1083 $) $ (-757 (-1087))) NIL) (((-1083 |#1|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-757 (-1087)))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2291 (($ $) NIL (|has| |#1| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1413 (($ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-757 (-1087)) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL) (((-3 (-1039 |#1| (-1087)) "failed") $) NIL)) (-3474 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-757 (-1087)) $) NIL) (((-1087) $) NIL) (((-1039 |#1| (-1087)) $) NIL)) (-3078 (($ $ $ (-757 (-1087))) NIL (|has| |#1| (-158)))) (-3810 (($ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#1| (-427))) (($ $ (-757 (-1087))) NIL (|has| |#1| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#1| (-840)))) (-1284 (($ $ |#1| (-495 (-757 (-1087))) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-757 (-1087)) (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-757 (-1087)) (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-1640 (((-710) $ (-1087)) NIL) (((-710) $) NIL)) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-1945 (($ (-1083 |#1|) (-757 (-1087))) NIL) (($ (-1083 $) (-757 (-1087))) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-495 (-757 (-1087)))) NIL) (($ $ (-757 (-1087)) (-710)) NIL) (($ $ (-589 (-757 (-1087))) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-757 (-1087))) NIL)) (-1575 (((-495 (-757 (-1087))) $) NIL) (((-710) $ (-757 (-1087))) NIL) (((-589 (-710)) $ (-589 (-757 (-1087)))) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3782 (($ (-1 (-495 (-757 (-1087))) (-495 (-757 (-1087)))) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-3178 (((-1 $ (-710)) (-1087)) NIL) (((-1 $ (-710)) $) NIL (|has| |#1| (-211)))) (-2520 (((-3 (-757 (-1087)) "failed") $) NIL)) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3415 (((-757 (-1087)) $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-3779 (((-1070) $) NIL)) (-1453 (((-108) $) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-757 (-1087))) (|:| -2735 (-710))) "failed") $) NIL)) (-3197 (($ $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 ((|#1| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-840)))) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-757 (-1087)) |#1|) NIL) (($ $ (-589 (-757 (-1087))) (-589 |#1|)) NIL) (($ $ (-757 (-1087)) $) NIL) (($ $ (-589 (-757 (-1087))) (-589 $)) NIL) (($ $ (-1087) $) NIL (|has| |#1| (-211))) (($ $ (-589 (-1087)) (-589 $)) NIL (|has| |#1| (-211))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-211))) (($ $ (-589 (-1087)) (-589 |#1|)) NIL (|has| |#1| (-211)))) (-3549 (($ $ (-757 (-1087))) NIL (|has| |#1| (-158)))) (-3523 (($ $ (-757 (-1087))) NIL) (($ $ (-589 (-757 (-1087)))) NIL) (($ $ (-757 (-1087)) (-710)) NIL) (($ $ (-589 (-757 (-1087))) (-589 (-710))) NIL) (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1748 (((-589 (-1087)) $) NIL)) (-2299 (((-495 (-757 (-1087))) $) NIL) (((-710) $ (-757 (-1087))) NIL) (((-589 (-710)) $ (-589 (-757 (-1087)))) NIL) (((-710) $ (-1087)) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-757 (-1087)) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-757 (-1087)) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-757 (-1087)) (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-2438 ((|#1| $) NIL (|has| |#1| (-427))) (($ $ (-757 (-1087))) NIL (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-757 (-1087))) NIL) (($ (-1087)) NIL) (($ (-1039 |#1| (-1087))) NIL) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-495 (-757 (-1087)))) NIL) (($ $ (-757 (-1087)) (-710)) NIL) (($ $ (-589 (-757 (-1087))) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-757 (-1087))) NIL) (($ $ (-589 (-757 (-1087)))) NIL) (($ $ (-757 (-1087)) (-710)) NIL) (($ $ (-589 (-757 (-1087))) (-589 (-710))) NIL) (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-755 |#1|) (-13 (-230 |#1| (-1087) (-757 (-1087)) (-495 (-757 (-1087)))) (-964 (-1039 |#1| (-1087)))) (-973)) (T -755)) +NIL +(-13 (-230 |#1| (-1087) (-757 (-1087)) (-495 (-757 (-1087)))) (-964 (-1039 |#1| (-1087)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#2| (-339)))) (-3345 (($ $) NIL (|has| |#2| (-339)))) (-3331 (((-108) $) NIL (|has| |#2| (-339)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL (|has| |#2| (-339)))) (-3614 (((-394 $) $) NIL (|has| |#2| (-339)))) (-1387 (((-108) $ $) NIL (|has| |#2| (-339)))) (-2518 (($) NIL T CONST)) (-3796 (($ $ $) NIL (|has| |#2| (-339)))) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL (|has| |#2| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#2| (-339)))) (-2657 (((-108) $) NIL (|has| |#2| (-339)))) (-2023 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#2| (-339)))) (-3244 (($ (-589 $)) NIL (|has| |#2| (-339))) (($ $ $) NIL (|has| |#2| (-339)))) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 20 (|has| |#2| (-339)))) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#2| (-339))) (($ $ $) NIL (|has| |#2| (-339)))) (-1820 (((-394 $) $) NIL (|has| |#2| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#2| (-339)))) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#2| (-339)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#2| (-339)))) (-1972 (((-710) $) NIL (|has| |#2| (-339)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#2| (-339)))) (-3523 (($ $ (-710)) NIL) (($ $) 13)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-383 (-523))) NIL (|has| |#2| (-339))) (($ $) NIL (|has| |#2| (-339)))) (-1621 (((-710)) NIL)) (-1704 (((-108) $ $) NIL (|has| |#2| (-339)))) (-2364 (($ $ (-710)) NIL) (($ $ (-852)) NIL) (($ $ (-523)) NIL (|has| |#2| (-339)))) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-710)) NIL) (($ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) 15 (|has| |#2| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-710)) NIL) (($ $ (-852)) NIL) (($ $ (-523)) 18 (|has| |#2| (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-383 (-523)) $) NIL (|has| |#2| (-339))) (($ $ (-383 (-523))) NIL (|has| |#2| (-339))))) +(((-756 |#1| |#2| |#3|) (-13 (-107 $ $) (-211) (-10 -8 (IF (|has| |#2| (-339)) (-6 (-339)) |%noBranch|) (-15 -1458 ($ |#2|)) (-15 -1458 (|#2| $)))) (-1016) (-831 |#1|) |#1|) (T -756)) +((-1458 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-14 *4 *3) (-5 *1 (-756 *3 *2 *4)) (-4 *2 (-831 *3)))) (-1458 (*1 *2 *1) (-12 (-4 *2 (-831 *3)) (-5 *1 (-756 *3 *2 *4)) (-4 *3 (-1016)) (-14 *4 *3)))) +(-13 (-107 $ $) (-211) (-10 -8 (IF (|has| |#2| (-339)) (-6 (-339)) |%noBranch|) (-15 -1458 ($ |#2|)) (-15 -1458 (|#2| $)))) +((-3924 (((-108) $ $) NIL)) (-2656 (((-710) $) NIL)) (-2700 ((|#1| $) 10)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-1640 (((-710) $) 11)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3178 (($ |#1| (-710)) 9)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3523 (($ $) NIL) (($ $ (-710)) NIL)) (-1458 (((-794) $) NIL) (($ |#1|) NIL)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL))) +(((-757 |#1|) (-243 |#1|) (-786)) (T -757)) +NIL +(-243 |#1|) +((-3924 (((-108) $ $) NIL)) (-2061 (((-589 |#1|) $) 29)) (-1703 (((-710) $) NIL)) (-2518 (($) NIL T CONST)) (-4111 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 19)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-1751 (($ $) 31)) (-2121 (((-3 $ "failed") $) NIL)) (-1655 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2023 (((-108) $) NIL)) (-2378 ((|#1| $ (-523)) NIL)) (-3731 (((-710) $ (-523)) NIL)) (-1419 (($ $) 36)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-2701 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 16)) (-2964 (((-108) $ $) 34)) (-2996 (((-710) $) 25)) (-3779 (((-1070) $) NIL)) (-2259 (($ $ $) NIL)) (-3206 (($ $ $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 ((|#1| $) 30)) (-1979 (((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-710)))) $) NIL)) (-3757 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-1458 (((-794) $) NIL) (($ |#1|) NIL)) (-2364 (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-2767 (($) 14 T CONST)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 35)) (** (($ $ (-710)) NIL) (($ $ (-852)) NIL) (($ |#1| (-710)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-758 |#1|) (-13 (-782) (-964 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-710))) (-15 -1738 (|#1| $)) (-15 -1751 ($ $)) (-15 -1419 ($ $)) (-15 -2964 ((-108) $ $)) (-15 -3206 ($ $ $)) (-15 -2259 ($ $ $)) (-15 -2701 ((-3 $ "failed") $ $)) (-15 -4111 ((-3 $ "failed") $ $)) (-15 -2701 ((-3 $ "failed") $ |#1|)) (-15 -4111 ((-3 $ "failed") $ |#1|)) (-15 -3757 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1655 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1703 ((-710) $)) (-15 -3731 ((-710) $ (-523))) (-15 -2378 (|#1| $ (-523))) (-15 -1979 ((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-710)))) $)) (-15 -2996 ((-710) $)) (-15 -2061 ((-589 |#1|) $)))) (-786)) (T -758)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-1738 (*1 *2 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-1751 (*1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-1419 (*1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-2964 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-758 *3)) (-4 *3 (-786)))) (-3206 (*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-2259 (*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-2701 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-4111 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-2701 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-4111 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-3757 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-758 *3)) (|:| |rm| (-758 *3)))) (-5 *1 (-758 *3)) (-4 *3 (-786)))) (-1655 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-758 *3)) (|:| |mm| (-758 *3)) (|:| |rm| (-758 *3)))) (-5 *1 (-758 *3)) (-4 *3 (-786)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-758 *3)) (-4 *3 (-786)))) (-3731 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-710)) (-5 *1 (-758 *4)) (-4 *4 (-786)))) (-2378 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-758 *2)) (-4 *2 (-786)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 (-710))))) (-5 *1 (-758 *3)) (-4 *3 (-786)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-758 *3)) (-4 *3 (-786)))) (-2061 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-758 *3)) (-4 *3 (-786))))) +(-13 (-782) (-964 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-710))) (-15 -1738 (|#1| $)) (-15 -1751 ($ $)) (-15 -1419 ($ $)) (-15 -2964 ((-108) $ $)) (-15 -3206 ($ $ $)) (-15 -2259 ($ $ $)) (-15 -2701 ((-3 $ "failed") $ $)) (-15 -4111 ((-3 $ "failed") $ $)) (-15 -2701 ((-3 $ "failed") $ |#1|)) (-15 -4111 ((-3 $ "failed") $ |#1|)) (-15 -3757 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1655 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1703 ((-710) $)) (-15 -3731 ((-710) $ (-523))) (-15 -2378 (|#1| $ (-523))) (-15 -1979 ((-589 (-2 (|:| |gen| |#1|) (|:| -1811 (-710)))) $)) (-15 -2996 ((-710) $)) (-15 -2061 ((-589 |#1|) $)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-3671 (((-523) $) 53)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2604 (((-108) $) 51)) (-2023 (((-108) $) 31)) (-4114 (((-108) $) 52)) (-2454 (($ $ $) 50)) (-2062 (($ $ $) 49)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3746 (((-3 $ "failed") $ $) 42)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2619 (($ $) 54)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-4043 (((-108) $ $) 47)) (-4019 (((-108) $ $) 46)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 48)) (-4007 (((-108) $ $) 45)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-759) (-129)) (T -759)) +NIL +(-13 (-515) (-784)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-267) . T) ((-515) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-730) . T) ((-731) . T) ((-733) . T) ((-734) . T) ((-784) . T) ((-786) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-4046 (($ (-1034)) 7)) (-2832 (((-108) $ (-1070) (-1034)) 15)) (-2338 (((-761) $) 12)) (-3073 (((-761) $) 11)) (-2344 (((-1173) $) 9)) (-4196 (((-108) $ (-1034)) 16))) +(((-760) (-10 -8 (-15 -4046 ($ (-1034))) (-15 -2344 ((-1173) $)) (-15 -3073 ((-761) $)) (-15 -2338 ((-761) $)) (-15 -2832 ((-108) $ (-1070) (-1034))) (-15 -4196 ((-108) $ (-1034))))) (T -760)) +((-4196 (*1 *2 *1 *3) (-12 (-5 *3 (-1034)) (-5 *2 (-108)) (-5 *1 (-760)))) (-2832 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-1034)) (-5 *2 (-108)) (-5 *1 (-760)))) (-2338 (*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-760)))) (-3073 (*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-760)))) (-2344 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-760)))) (-4046 (*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-760))))) +(-10 -8 (-15 -4046 ($ (-1034))) (-15 -2344 ((-1173) $)) (-15 -3073 ((-761) $)) (-15 -2338 ((-761) $)) (-15 -2832 ((-108) $ (-1070) (-1034))) (-15 -4196 ((-108) $ (-1034)))) +((-4118 (((-1173) $ (-762)) 12)) (-1552 (((-1173) $ (-1087)) 32)) (-3063 (((-1173) $ (-1070) (-1070)) 34)) (-3216 (((-1173) $ (-1070)) 33)) (-3358 (((-1173) $) 19)) (-3037 (((-1173) $ (-523)) 28)) (-1268 (((-1173) $ (-203)) 30)) (-2603 (((-1173) $) 18)) (-2696 (((-1173) $) 26)) (-3950 (((-1173) $) 25)) (-3351 (((-1173) $) 23)) (-1481 (((-1173) $) 24)) (-1578 (((-1173) $) 22)) (-3520 (((-1173) $) 21)) (-4085 (((-1173) $) 20)) (-1585 (((-1173) $) 16)) (-4047 (((-1173) $) 17)) (-3704 (((-1173) $) 15)) (-1724 (((-1173) $) 14)) (-2306 (((-1173) $) 13)) (-3842 (($ (-1070) (-762)) 9)) (-4151 (($ (-1070) (-1070) (-762)) 8)) (-1935 (((-1087) $) 51)) (-4094 (((-1087) $) 55)) (-2722 (((-2 (|:| |cd| (-1070)) (|:| -4038 (-1070))) $) 54)) (-2670 (((-1070) $) 52)) (-3918 (((-1173) $) 41)) (-3158 (((-523) $) 49)) (-3873 (((-203) $) 50)) (-2125 (((-1173) $) 40)) (-1693 (((-1173) $) 48)) (-3340 (((-1173) $) 47)) (-3696 (((-1173) $) 45)) (-2578 (((-1173) $) 46)) (-2017 (((-1173) $) 44)) (-1754 (((-1173) $) 43)) (-1430 (((-1173) $) 42)) (-2628 (((-1173) $) 38)) (-1918 (((-1173) $) 39)) (-2265 (((-1173) $) 37)) (-1233 (((-1173) $) 36)) (-2181 (((-1173) $) 35)) (-3461 (((-1173) $) 11))) +(((-761) (-10 -8 (-15 -4151 ($ (-1070) (-1070) (-762))) (-15 -3842 ($ (-1070) (-762))) (-15 -3461 ((-1173) $)) (-15 -4118 ((-1173) $ (-762))) (-15 -2306 ((-1173) $)) (-15 -1724 ((-1173) $)) (-15 -3704 ((-1173) $)) (-15 -1585 ((-1173) $)) (-15 -4047 ((-1173) $)) (-15 -2603 ((-1173) $)) (-15 -3358 ((-1173) $)) (-15 -4085 ((-1173) $)) (-15 -3520 ((-1173) $)) (-15 -1578 ((-1173) $)) (-15 -3351 ((-1173) $)) (-15 -1481 ((-1173) $)) (-15 -3950 ((-1173) $)) (-15 -2696 ((-1173) $)) (-15 -3037 ((-1173) $ (-523))) (-15 -1268 ((-1173) $ (-203))) (-15 -1552 ((-1173) $ (-1087))) (-15 -3216 ((-1173) $ (-1070))) (-15 -3063 ((-1173) $ (-1070) (-1070))) (-15 -2181 ((-1173) $)) (-15 -1233 ((-1173) $)) (-15 -2265 ((-1173) $)) (-15 -2628 ((-1173) $)) (-15 -1918 ((-1173) $)) (-15 -2125 ((-1173) $)) (-15 -3918 ((-1173) $)) (-15 -1430 ((-1173) $)) (-15 -1754 ((-1173) $)) (-15 -2017 ((-1173) $)) (-15 -3696 ((-1173) $)) (-15 -2578 ((-1173) $)) (-15 -3340 ((-1173) $)) (-15 -1693 ((-1173) $)) (-15 -3158 ((-523) $)) (-15 -3873 ((-203) $)) (-15 -1935 ((-1087) $)) (-15 -2670 ((-1070) $)) (-15 -2722 ((-2 (|:| |cd| (-1070)) (|:| -4038 (-1070))) $)) (-15 -4094 ((-1087) $)))) (T -761)) +((-4094 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-761)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1070)) (|:| -4038 (-1070)))) (-5 *1 (-761)))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-761)))) (-1935 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-761)))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-203)) (-5 *1 (-761)))) (-3158 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-761)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-3340 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-2578 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-3696 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-1754 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-1918 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-2628 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-1233 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-2181 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-3063 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-761)))) (-3216 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-761)))) (-1552 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-761)))) (-1268 (*1 *2 *1 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1173)) (-5 *1 (-761)))) (-3037 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-761)))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-1481 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-3351 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-4085 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-3358 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-1585 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-2306 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1173)) (-5 *1 (-761)))) (-3461 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761)))) (-3842 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-762)) (-5 *1 (-761)))) (-4151 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-762)) (-5 *1 (-761))))) +(-10 -8 (-15 -4151 ($ (-1070) (-1070) (-762))) (-15 -3842 ($ (-1070) (-762))) (-15 -3461 ((-1173) $)) (-15 -4118 ((-1173) $ (-762))) (-15 -2306 ((-1173) $)) (-15 -1724 ((-1173) $)) (-15 -3704 ((-1173) $)) (-15 -1585 ((-1173) $)) (-15 -4047 ((-1173) $)) (-15 -2603 ((-1173) $)) (-15 -3358 ((-1173) $)) (-15 -4085 ((-1173) $)) (-15 -3520 ((-1173) $)) (-15 -1578 ((-1173) $)) (-15 -3351 ((-1173) $)) (-15 -1481 ((-1173) $)) (-15 -3950 ((-1173) $)) (-15 -2696 ((-1173) $)) (-15 -3037 ((-1173) $ (-523))) (-15 -1268 ((-1173) $ (-203))) (-15 -1552 ((-1173) $ (-1087))) (-15 -3216 ((-1173) $ (-1070))) (-15 -3063 ((-1173) $ (-1070) (-1070))) (-15 -2181 ((-1173) $)) (-15 -1233 ((-1173) $)) (-15 -2265 ((-1173) $)) (-15 -2628 ((-1173) $)) (-15 -1918 ((-1173) $)) (-15 -2125 ((-1173) $)) (-15 -3918 ((-1173) $)) (-15 -1430 ((-1173) $)) (-15 -1754 ((-1173) $)) (-15 -2017 ((-1173) $)) (-15 -3696 ((-1173) $)) (-15 -2578 ((-1173) $)) (-15 -3340 ((-1173) $)) (-15 -1693 ((-1173) $)) (-15 -3158 ((-523) $)) (-15 -3873 ((-203) $)) (-15 -1935 ((-1087) $)) (-15 -2670 ((-1070) $)) (-15 -2722 ((-2 (|:| |cd| (-1070)) (|:| -4038 (-1070))) $)) (-15 -4094 ((-1087) $))) +((-3924 (((-108) $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 12)) (-3993 (($) 15)) (-2527 (($) 13)) (-1899 (($) 16)) (-3600 (($) 14)) (-3983 (((-108) $ $) 8))) +(((-762) (-13 (-1016) (-10 -8 (-15 -2527 ($)) (-15 -3993 ($)) (-15 -1899 ($)) (-15 -3600 ($))))) (T -762)) +((-2527 (*1 *1) (-5 *1 (-762))) (-3993 (*1 *1) (-5 *1 (-762))) (-1899 (*1 *1) (-5 *1 (-762))) (-3600 (*1 *1) (-5 *1 (-762)))) +(-13 (-1016) (-10 -8 (-15 -2527 ($)) (-15 -3993 ($)) (-15 -1899 ($)) (-15 -3600 ($)))) +((-3924 (((-108) $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 21) (($ (-1087)) 17)) (-2444 (((-108) $) 10)) (-2000 (((-108) $) 9)) (-3413 (((-108) $) 11)) (-3933 (((-108) $) 8)) (-3983 (((-108) $ $) 19))) +(((-763) (-13 (-1016) (-10 -8 (-15 -1458 ($ (-1087))) (-15 -3933 ((-108) $)) (-15 -2000 ((-108) $)) (-15 -2444 ((-108) $)) (-15 -3413 ((-108) $))))) (T -763)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-763)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763)))) (-2000 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763)))) (-2444 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763))))) +(-13 (-1016) (-10 -8 (-15 -1458 ($ (-1087))) (-15 -3933 ((-108) $)) (-15 -2000 ((-108) $)) (-15 -2444 ((-108) $)) (-15 -3413 ((-108) $)))) +((-3924 (((-108) $ $) NIL)) (-3660 (($ (-763) (-589 (-1087))) 24)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3403 (((-763) $) 25)) (-2026 (((-589 (-1087)) $) 26)) (-1458 (((-794) $) 23)) (-3983 (((-108) $ $) NIL))) +(((-764) (-13 (-1016) (-10 -8 (-15 -3403 ((-763) $)) (-15 -2026 ((-589 (-1087)) $)) (-15 -3660 ($ (-763) (-589 (-1087))))))) (T -764)) +((-3403 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-764)))) (-2026 (*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-764)))) (-3660 (*1 *1 *2 *3) (-12 (-5 *2 (-763)) (-5 *3 (-589 (-1087))) (-5 *1 (-764))))) +(-13 (-1016) (-10 -8 (-15 -3403 ((-763) $)) (-15 -2026 ((-589 (-1087)) $)) (-15 -3660 ($ (-763) (-589 (-1087)))))) +((-3790 (((-1173) (-761) (-292 |#1|) (-108)) 22) (((-1173) (-761) (-292 |#1|)) 76) (((-1070) (-292 |#1|) (-108)) 75) (((-1070) (-292 |#1|)) 74))) +(((-765 |#1|) (-10 -7 (-15 -3790 ((-1070) (-292 |#1|))) (-15 -3790 ((-1070) (-292 |#1|) (-108))) (-15 -3790 ((-1173) (-761) (-292 |#1|))) (-15 -3790 ((-1173) (-761) (-292 |#1|) (-108)))) (-13 (-767) (-786) (-973))) (T -765)) +((-3790 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-761)) (-5 *4 (-292 *6)) (-5 *5 (-108)) (-4 *6 (-13 (-767) (-786) (-973))) (-5 *2 (-1173)) (-5 *1 (-765 *6)))) (-3790 (*1 *2 *3 *4) (-12 (-5 *3 (-761)) (-5 *4 (-292 *5)) (-4 *5 (-13 (-767) (-786) (-973))) (-5 *2 (-1173)) (-5 *1 (-765 *5)))) (-3790 (*1 *2 *3 *4) (-12 (-5 *3 (-292 *5)) (-5 *4 (-108)) (-4 *5 (-13 (-767) (-786) (-973))) (-5 *2 (-1070)) (-5 *1 (-765 *5)))) (-3790 (*1 *2 *3) (-12 (-5 *3 (-292 *4)) (-4 *4 (-13 (-767) (-786) (-973))) (-5 *2 (-1070)) (-5 *1 (-765 *4))))) +(-10 -7 (-15 -3790 ((-1070) (-292 |#1|))) (-15 -3790 ((-1070) (-292 |#1|) (-108))) (-15 -3790 ((-1173) (-761) (-292 |#1|))) (-15 -3790 ((-1173) (-761) (-292 |#1|) (-108)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4071 ((|#1| $) 10)) (-3013 (($ |#1|) 9)) (-2023 (((-108) $) NIL)) (-1933 (($ |#2| (-710)) NIL)) (-1575 (((-710) $) NIL)) (-3786 ((|#2| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3523 (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $) NIL (|has| |#1| (-211)))) (-2299 (((-710) $) NIL)) (-1458 (((-794) $) 17) (($ (-523)) NIL) (($ |#2|) NIL (|has| |#2| (-158)))) (-2365 ((|#2| $ (-710)) NIL)) (-1621 (((-710)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $) NIL (|has| |#1| (-211)))) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-766 |#1| |#2|) (-13 (-648 |#2|) (-10 -8 (IF (|has| |#1| (-211)) (-6 (-211)) |%noBranch|) (-15 -3013 ($ |#1|)) (-15 -4071 (|#1| $)))) (-648 |#2|) (-973)) (T -766)) +((-3013 (*1 *1 *2) (-12 (-4 *3 (-973)) (-5 *1 (-766 *2 *3)) (-4 *2 (-648 *3)))) (-4071 (*1 *2 *1) (-12 (-4 *2 (-648 *3)) (-5 *1 (-766 *2 *3)) (-4 *3 (-973))))) +(-13 (-648 |#2|) (-10 -8 (IF (|has| |#1| (-211)) (-6 (-211)) |%noBranch|) (-15 -3013 ($ |#1|)) (-15 -4071 (|#1| $)))) +((-3790 (((-1173) (-761) $ (-108)) 9) (((-1173) (-761) $) 8) (((-1070) $ (-108)) 7) (((-1070) $) 6))) +(((-767) (-129)) (T -767)) +((-3790 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-767)) (-5 *3 (-761)) (-5 *4 (-108)) (-5 *2 (-1173)))) (-3790 (*1 *2 *3 *1) (-12 (-4 *1 (-767)) (-5 *3 (-761)) (-5 *2 (-1173)))) (-3790 (*1 *2 *1 *3) (-12 (-4 *1 (-767)) (-5 *3 (-108)) (-5 *2 (-1070)))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-767)) (-5 *2 (-1070))))) +(-13 (-10 -8 (-15 -3790 ((-1070) $)) (-15 -3790 ((-1070) $ (-108))) (-15 -3790 ((-1173) (-761) $)) (-15 -3790 ((-1173) (-761) $ (-108))))) +((-3424 (((-288) (-1070) (-1070)) 12)) (-2425 (((-108) (-1070) (-1070)) 34)) (-3685 (((-108) (-1070)) 33)) (-3242 (((-51) (-1070)) 25)) (-2416 (((-51) (-1070)) 23)) (-1833 (((-51) (-761)) 17)) (-1930 (((-589 (-1070)) (-1070)) 28)) (-2098 (((-589 (-1070))) 27))) +(((-768) (-10 -7 (-15 -1833 ((-51) (-761))) (-15 -2416 ((-51) (-1070))) (-15 -3242 ((-51) (-1070))) (-15 -2098 ((-589 (-1070)))) (-15 -1930 ((-589 (-1070)) (-1070))) (-15 -3685 ((-108) (-1070))) (-15 -2425 ((-108) (-1070) (-1070))) (-15 -3424 ((-288) (-1070) (-1070))))) (T -768)) +((-3424 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-288)) (-5 *1 (-768)))) (-2425 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-768)))) (-3685 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-768)))) (-1930 (*1 *2 *3) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-768)) (-5 *3 (-1070)))) (-2098 (*1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-768)))) (-3242 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-51)) (-5 *1 (-768)))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-51)) (-5 *1 (-768)))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-761)) (-5 *2 (-51)) (-5 *1 (-768))))) +(-10 -7 (-15 -1833 ((-51) (-761))) (-15 -2416 ((-51) (-1070))) (-15 -3242 ((-51) (-1070))) (-15 -2098 ((-589 (-1070)))) (-15 -1930 ((-589 (-1070)) (-1070))) (-15 -3685 ((-108) (-1070))) (-15 -2425 ((-108) (-1070) (-1070))) (-15 -3424 ((-288) (-1070) (-1070)))) +((-3924 (((-108) $ $) 19)) (-3288 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1922 (($ $ $) 72)) (-3471 (((-108) $ $) 73)) (-3079 (((-108) $ (-710)) 8)) (-4086 (($ (-589 |#1|)) 68) (($) 67)) (-3387 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-3941 (($ $) 62)) (-1773 (($ $) 58 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2249 (($ |#1| $) 47 (|has| $ (-6 -4244))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4244)))) (-2557 (($ |#1| $) 57 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4244)))) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2454 ((|#1| $) 78)) (-2158 (($ $ $) 81)) (-2178 (($ $ $) 80)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2062 ((|#1| $) 79)) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22)) (-1309 (($ $ $) 69)) (-1934 ((|#1| $) 39)) (-3450 (($ |#1| $) 40) (($ |#1| $ (-710)) 63)) (-2783 (((-1034) $) 21)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-2766 (((-589 (-2 (|:| -2433 |#1|) (|:| -2792 (-710)))) $) 61)) (-3682 (($ $ |#1|) 71) (($ $ $) 70)) (-3433 (($) 49) (($ (-589 |#1|)) 48)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 59 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 50)) (-1458 (((-794) $) 18)) (-1684 (($ (-589 |#1|)) 66) (($) 65)) (-2401 (($ (-589 |#1|)) 42)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20)) (-4007 (((-108) $ $) 64)) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-769 |#1|) (-129) (-786)) (T -769)) +((-2454 (*1 *2 *1) (-12 (-4 *1 (-769 *2)) (-4 *2 (-786))))) +(-13 (-676 |t#1|) (-898 |t#1|) (-10 -8 (-15 -2454 (|t#1| $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-563 (-794)) . T) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-213 |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-634 |#1|) . T) ((-676 |#1|) . T) ((-898 |#1|) . T) ((-1014 |#1|) . T) ((-1016) . T) ((-1122) . T)) +((-3470 (((-1173) (-1034) (-1034)) 47)) (-2721 (((-1173) (-760) (-51)) 44)) (-3665 (((-51) (-760)) 16))) +(((-770) (-10 -7 (-15 -3665 ((-51) (-760))) (-15 -2721 ((-1173) (-760) (-51))) (-15 -3470 ((-1173) (-1034) (-1034))))) (T -770)) +((-3470 (*1 *2 *3 *3) (-12 (-5 *3 (-1034)) (-5 *2 (-1173)) (-5 *1 (-770)))) (-2721 (*1 *2 *3 *4) (-12 (-5 *3 (-760)) (-5 *4 (-51)) (-5 *2 (-1173)) (-5 *1 (-770)))) (-3665 (*1 *2 *3) (-12 (-5 *3 (-760)) (-5 *2 (-51)) (-5 *1 (-770))))) +(-10 -7 (-15 -3665 ((-51) (-760))) (-15 -2721 ((-1173) (-760) (-51))) (-15 -3470 ((-1173) (-1034) (-1034)))) +((-3612 (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|)) 12) (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|)) 13))) +(((-771 |#1| |#2|) (-10 -7 (-15 -3612 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -3612 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|)))) (-1016) (-1016)) (T -771)) +((-3612 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *1 (-771 *5 *6)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6))))) +(-10 -7 (-15 -3612 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -3612 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL (|has| |#1| (-21)))) (-3212 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3671 (((-523) $) NIL (|has| |#1| (-784)))) (-2518 (($) NIL (|has| |#1| (-21)) CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 15)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 9)) (-2121 (((-3 $ "failed") $) 40 (|has| |#1| (-784)))) (-3346 (((-3 (-383 (-523)) "failed") $) 48 (|has| |#1| (-508)))) (-1292 (((-108) $) 43 (|has| |#1| (-508)))) (-2146 (((-383 (-523)) $) 45 (|has| |#1| (-508)))) (-2604 (((-108) $) NIL (|has| |#1| (-784)))) (-2023 (((-108) $) NIL (|has| |#1| (-784)))) (-4114 (((-108) $) NIL (|has| |#1| (-784)))) (-2454 (($ $ $) NIL (|has| |#1| (-784)))) (-2062 (($ $ $) NIL (|has| |#1| (-784)))) (-3779 (((-1070) $) NIL)) (-2833 (($) 13)) (-1615 (((-108) $) 12)) (-2783 (((-1034) $) NIL)) (-1997 (((-108) $) 11)) (-1458 (((-794) $) 18) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) 8) (($ (-523)) NIL (-3262 (|has| |#1| (-784)) (|has| |#1| (-964 (-523)))))) (-1621 (((-710)) 34 (|has| |#1| (-784)))) (-2619 (($ $) NIL (|has| |#1| (-784)))) (-2364 (($ $ (-852)) NIL (|has| |#1| (-784))) (($ $ (-710)) NIL (|has| |#1| (-784)))) (-2756 (($) 22 (|has| |#1| (-21)) CONST)) (-2767 (($) 31 (|has| |#1| (-784)) CONST)) (-4043 (((-108) $ $) NIL (|has| |#1| (-784)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3983 (((-108) $ $) 20)) (-4030 (((-108) $ $) NIL (|has| |#1| (-784)))) (-4007 (((-108) $ $) 42 (|has| |#1| (-784)))) (-4087 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-4075 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-852)) NIL (|has| |#1| (-784))) (($ $ (-710)) NIL (|has| |#1| (-784)))) (* (($ $ $) 37 (|has| |#1| (-784))) (($ (-523) $) 25 (|has| |#1| (-21))) (($ (-710) $) NIL (|has| |#1| (-21))) (($ (-852) $) NIL (|has| |#1| (-21))))) +(((-772 |#1|) (-13 (-1016) (-387 |#1|) (-10 -8 (-15 -2833 ($)) (-15 -1997 ((-108) $)) (-15 -1615 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -1292 ((-108) $)) (-15 -2146 ((-383 (-523)) $)) (-15 -3346 ((-3 (-383 (-523)) "failed") $))) |%noBranch|))) (-1016)) (T -772)) +((-2833 (*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1016)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-772 *3)) (-4 *3 (-1016)))) (-1615 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-772 *3)) (-4 *3 (-1016)))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-772 *3)) (-4 *3 (-508)) (-4 *3 (-1016)))) (-2146 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-772 *3)) (-4 *3 (-508)) (-4 *3 (-1016)))) (-3346 (*1 *2 *1) (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-772 *3)) (-4 *3 (-508)) (-4 *3 (-1016))))) +(-13 (-1016) (-387 |#1|) (-10 -8 (-15 -2833 ($)) (-15 -1997 ((-108) $)) (-15 -1615 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -1292 ((-108) $)) (-15 -2146 ((-383 (-523)) $)) (-15 -3346 ((-3 (-383 (-523)) "failed") $))) |%noBranch|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL) (((-3 (-110) "failed") $) NIL)) (-3474 ((|#1| $) NIL) (((-110) $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-1257 ((|#1| (-110) |#1|) NIL)) (-2023 (((-108) $) NIL)) (-4209 (($ |#1| (-337 (-110))) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3512 (($ $ (-1 |#1| |#1|)) NIL)) (-2038 (($ $ (-1 |#1| |#1|)) NIL)) (-3223 ((|#1| $ |#1|) NIL)) (-4056 ((|#1| |#1|) NIL (|has| |#1| (-158)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-110)) NIL)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-2708 (($ $) NIL (|has| |#1| (-158))) (($ $ $) NIL (|has| |#1| (-158)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ (-110) (-523)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-158))) (($ $ |#1|) NIL (|has| |#1| (-158))))) +(((-773 |#1|) (-13 (-973) (-964 |#1|) (-964 (-110)) (-263 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-158)) (PROGN (-6 (-37 |#1|)) (-15 -2708 ($ $)) (-15 -2708 ($ $ $)) (-15 -4056 (|#1| |#1|))) |%noBranch|) (-15 -2038 ($ $ (-1 |#1| |#1|))) (-15 -3512 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-523))) (-15 ** ($ $ (-523))) (-15 -1257 (|#1| (-110) |#1|)) (-15 -4209 ($ |#1| (-337 (-110)))))) (-973)) (T -773)) +((-2708 (*1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-158)) (-4 *2 (-973)))) (-2708 (*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-158)) (-4 *2 (-973)))) (-4056 (*1 *2 *2) (-12 (-5 *1 (-773 *2)) (-4 *2 (-158)) (-4 *2 (-973)))) (-2038 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-773 *3)))) (-3512 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-773 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-523)) (-5 *1 (-773 *4)) (-4 *4 (-973)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-773 *3)) (-4 *3 (-973)))) (-1257 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-773 *2)) (-4 *2 (-973)))) (-4209 (*1 *1 *2 *3) (-12 (-5 *3 (-337 (-110))) (-5 *1 (-773 *2)) (-4 *2 (-973))))) +(-13 (-973) (-964 |#1|) (-964 (-110)) (-263 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-158)) (PROGN (-6 (-37 |#1|)) (-15 -2708 ($ $)) (-15 -2708 ($ $ $)) (-15 -4056 (|#1| |#1|))) |%noBranch|) (-15 -2038 ($ $ (-1 |#1| |#1|))) (-15 -3512 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-523))) (-15 ** ($ $ (-523))) (-15 -1257 (|#1| (-110) |#1|)) (-15 -4209 ($ |#1| (-337 (-110)))))) +((-4152 (((-193 (-473)) (-1070)) 8))) +(((-774) (-10 -7 (-15 -4152 ((-193 (-473)) (-1070))))) (T -774)) +((-4152 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-193 (-473))) (-5 *1 (-774))))) +(-10 -7 (-15 -4152 ((-193 (-473)) (-1070)))) +((-3924 (((-108) $ $) 7)) (-2699 (((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) 14) (((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 13)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 16) (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) 15)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 6))) +(((-775) (-129)) (T -775)) +((-1228 (*1 *2 *3 *4) (-12 (-4 *1 (-775)) (-5 *3 (-985)) (-5 *4 (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (-5 *2 (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)))))) (-1228 (*1 *2 *3 *4) (-12 (-4 *1 (-775)) (-5 *3 (-985)) (-5 *4 (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) (-5 *2 (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)))))) (-2699 (*1 *2 *3) (-12 (-4 *1 (-775)) (-5 *3 (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) (-5 *2 (-962)))) (-2699 (*1 *2 *3) (-12 (-4 *1 (-775)) (-5 *3 (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (-5 *2 (-962))))) +(-13 (-1016) (-10 -7 (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) (-15 -2699 ((-962) (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) (-15 -2699 ((-962) (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))))))) +(((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-2703 (((-962) (-589 (-292 (-355))) (-589 (-355))) 143) (((-962) (-292 (-355)) (-589 (-355))) 141) (((-962) (-292 (-355)) (-589 (-355)) (-589 (-779 (-355))) (-589 (-779 (-355)))) 140) (((-962) (-292 (-355)) (-589 (-355)) (-589 (-779 (-355))) (-589 (-292 (-355))) (-589 (-779 (-355)))) 139) (((-962) (-777)) 112) (((-962) (-777) (-985)) 111)) (-1228 (((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-777) (-985)) 76) (((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-777)) 78)) (-2986 (((-962) (-589 (-292 (-355))) (-589 (-355))) 144) (((-962) (-777)) 128))) +(((-776) (-10 -7 (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-777))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-777) (-985))) (-15 -2703 ((-962) (-777) (-985))) (-15 -2703 ((-962) (-777))) (-15 -2986 ((-962) (-777))) (-15 -2703 ((-962) (-292 (-355)) (-589 (-355)) (-589 (-779 (-355))) (-589 (-292 (-355))) (-589 (-779 (-355))))) (-15 -2703 ((-962) (-292 (-355)) (-589 (-355)) (-589 (-779 (-355))) (-589 (-779 (-355))))) (-15 -2703 ((-962) (-292 (-355)) (-589 (-355)))) (-15 -2703 ((-962) (-589 (-292 (-355))) (-589 (-355)))) (-15 -2986 ((-962) (-589 (-292 (-355))) (-589 (-355)))))) (T -776)) +((-2986 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-292 (-355)))) (-5 *4 (-589 (-355))) (-5 *2 (-962)) (-5 *1 (-776)))) (-2703 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-292 (-355)))) (-5 *4 (-589 (-355))) (-5 *2 (-962)) (-5 *1 (-776)))) (-2703 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-355))) (-5 *2 (-962)) (-5 *1 (-776)))) (-2703 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-355))) (-5 *5 (-589 (-779 (-355)))) (-5 *2 (-962)) (-5 *1 (-776)))) (-2703 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-589 (-355))) (-5 *5 (-589 (-779 (-355)))) (-5 *6 (-589 (-292 (-355)))) (-5 *3 (-292 (-355))) (-5 *2 (-962)) (-5 *1 (-776)))) (-2986 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-962)) (-5 *1 (-776)))) (-2703 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-962)) (-5 *1 (-776)))) (-2703 (*1 *2 *3 *4) (-12 (-5 *3 (-777)) (-5 *4 (-985)) (-5 *2 (-962)) (-5 *1 (-776)))) (-1228 (*1 *2 *3 *4) (-12 (-5 *3 (-777)) (-5 *4 (-985)) (-5 *2 (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))))) (-5 *1 (-776)))) (-1228 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))))) (-5 *1 (-776))))) +(-10 -7 (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-777))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-777) (-985))) (-15 -2703 ((-962) (-777) (-985))) (-15 -2703 ((-962) (-777))) (-15 -2986 ((-962) (-777))) (-15 -2703 ((-962) (-292 (-355)) (-589 (-355)) (-589 (-779 (-355))) (-589 (-292 (-355))) (-589 (-779 (-355))))) (-15 -2703 ((-962) (-292 (-355)) (-589 (-355)) (-589 (-779 (-355))) (-589 (-779 (-355))))) (-15 -2703 ((-962) (-292 (-355)) (-589 (-355)))) (-15 -2703 ((-962) (-589 (-292 (-355))) (-589 (-355)))) (-15 -2986 ((-962) (-589 (-292 (-355))) (-589 (-355))))) +((-3924 (((-108) $ $) NIL)) (-3474 (((-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) $) 15)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 14) (($ (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) 8) (($ (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))))) 12)) (-3983 (((-108) $ $) NIL))) +(((-777) (-13 (-1016) (-10 -8 (-15 -1458 ($ (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))))) (-15 -1458 ($ (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) (-15 -1458 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))))) (-15 -1458 ((-794) $)) (-15 -3474 ((-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) $))))) (T -777)) +((-1458 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-777)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (-5 *1 (-777)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) (-5 *1 (-777)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))))) (-5 *1 (-777)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))))) (-5 *1 (-777))))) +(-13 (-1016) (-10 -8 (-15 -1458 ($ (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203))))))) (-15 -1458 ($ (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) (-15 -1458 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))))) (-15 -1458 ((-794) $)) (-15 -3474 ((-3 (|:| |noa| (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203)))))) $)))) +((-3612 (((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|) (-779 |#2|) (-779 |#2|)) 13) (((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|)) 14))) +(((-778 |#1| |#2|) (-10 -7 (-15 -3612 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|))) (-15 -3612 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|) (-779 |#2|) (-779 |#2|)))) (-1016) (-1016)) (T -778)) +((-3612 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-779 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *1 (-778 *5 *6)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-779 *6)) (-5 *1 (-778 *5 *6))))) +(-10 -7 (-15 -3612 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|))) (-15 -3612 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|) (-779 |#2|) (-779 |#2|)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL (|has| |#1| (-21)))) (-2570 (((-1034) $) 24)) (-3212 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3671 (((-523) $) NIL (|has| |#1| (-784)))) (-2518 (($) NIL (|has| |#1| (-21)) CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 16)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 9)) (-2121 (((-3 $ "failed") $) 47 (|has| |#1| (-784)))) (-3346 (((-3 (-383 (-523)) "failed") $) 54 (|has| |#1| (-508)))) (-1292 (((-108) $) 49 (|has| |#1| (-508)))) (-2146 (((-383 (-523)) $) 52 (|has| |#1| (-508)))) (-2604 (((-108) $) NIL (|has| |#1| (-784)))) (-1891 (($) 13)) (-2023 (((-108) $) NIL (|has| |#1| (-784)))) (-4114 (((-108) $) NIL (|has| |#1| (-784)))) (-1903 (($) 14)) (-2454 (($ $ $) NIL (|has| |#1| (-784)))) (-2062 (($ $ $) NIL (|has| |#1| (-784)))) (-3779 (((-1070) $) NIL)) (-1615 (((-108) $) 12)) (-2783 (((-1034) $) NIL)) (-1997 (((-108) $) 11)) (-1458 (((-794) $) 22) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) 8) (($ (-523)) NIL (-3262 (|has| |#1| (-784)) (|has| |#1| (-964 (-523)))))) (-1621 (((-710)) 41 (|has| |#1| (-784)))) (-2619 (($ $) NIL (|has| |#1| (-784)))) (-2364 (($ $ (-852)) NIL (|has| |#1| (-784))) (($ $ (-710)) NIL (|has| |#1| (-784)))) (-2756 (($) 29 (|has| |#1| (-21)) CONST)) (-2767 (($) 38 (|has| |#1| (-784)) CONST)) (-4043 (((-108) $ $) NIL (|has| |#1| (-784)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3983 (((-108) $ $) 27)) (-4030 (((-108) $ $) NIL (|has| |#1| (-784)))) (-4007 (((-108) $ $) 48 (|has| |#1| (-784)))) (-4087 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-4075 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-852)) NIL (|has| |#1| (-784))) (($ $ (-710)) NIL (|has| |#1| (-784)))) (* (($ $ $) 44 (|has| |#1| (-784))) (($ (-523) $) 32 (|has| |#1| (-21))) (($ (-710) $) NIL (|has| |#1| (-21))) (($ (-852) $) NIL (|has| |#1| (-21))))) +(((-779 |#1|) (-13 (-1016) (-387 |#1|) (-10 -8 (-15 -1891 ($)) (-15 -1903 ($)) (-15 -1997 ((-108) $)) (-15 -1615 ((-108) $)) (-15 -2570 ((-1034) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -1292 ((-108) $)) (-15 -2146 ((-383 (-523)) $)) (-15 -3346 ((-3 (-383 (-523)) "failed") $))) |%noBranch|))) (-1016)) (T -779)) +((-1891 (*1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1016)))) (-1903 (*1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1016)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-779 *3)) (-4 *3 (-1016)))) (-1615 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-779 *3)) (-4 *3 (-1016)))) (-2570 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-779 *3)) (-4 *3 (-1016)))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-779 *3)) (-4 *3 (-508)) (-4 *3 (-1016)))) (-2146 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-779 *3)) (-4 *3 (-508)) (-4 *3 (-1016)))) (-3346 (*1 *2 *1) (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-779 *3)) (-4 *3 (-508)) (-4 *3 (-1016))))) +(-13 (-1016) (-387 |#1|) (-10 -8 (-15 -1891 ($)) (-15 -1903 ($)) (-15 -1997 ((-108) $)) (-15 -1615 ((-108) $)) (-15 -2570 ((-1034) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -1292 ((-108) $)) (-15 -2146 ((-383 (-523)) $)) (-15 -3346 ((-3 (-383 (-523)) "failed") $))) |%noBranch|))) +((-3924 (((-108) $ $) 7)) (-1703 (((-710)) 20)) (-4032 (($) 23)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-2072 (((-852) $) 22)) (-3779 (((-1070) $) 9)) (-3878 (($ (-852)) 21)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18))) +(((-780) (-129)) (T -780)) +NIL +(-13 (-786) (-344)) +(((-97) . T) ((-563 (-794)) . T) ((-344) . T) ((-786) . T) ((-1016) . T)) +((-2396 (((-108) (-1168 |#2|) (-1168 |#2|)) 17)) (-2431 (((-108) (-1168 |#2|) (-1168 |#2|)) 18)) (-2850 (((-108) (-1168 |#2|) (-1168 |#2|)) 14))) +(((-781 |#1| |#2|) (-10 -7 (-15 -2850 ((-108) (-1168 |#2|) (-1168 |#2|))) (-15 -2396 ((-108) (-1168 |#2|) (-1168 |#2|))) (-15 -2431 ((-108) (-1168 |#2|) (-1168 |#2|)))) (-710) (-731)) (T -781)) +((-2431 (*1 *2 *3 *3) (-12 (-5 *3 (-1168 *5)) (-4 *5 (-731)) (-5 *2 (-108)) (-5 *1 (-781 *4 *5)) (-14 *4 (-710)))) (-2396 (*1 *2 *3 *3) (-12 (-5 *3 (-1168 *5)) (-4 *5 (-731)) (-5 *2 (-108)) (-5 *1 (-781 *4 *5)) (-14 *4 (-710)))) (-2850 (*1 *2 *3 *3) (-12 (-5 *3 (-1168 *5)) (-4 *5 (-731)) (-5 *2 (-108)) (-5 *1 (-781 *4 *5)) (-14 *4 (-710))))) +(-10 -7 (-15 -2850 ((-108) (-1168 |#2|) (-1168 |#2|))) (-15 -2396 ((-108) (-1168 |#2|) (-1168 |#2|))) (-15 -2431 ((-108) (-1168 |#2|) (-1168 |#2|)))) +((-3924 (((-108) $ $) 7)) (-2518 (($) 24 T CONST)) (-2121 (((-3 $ "failed") $) 28)) (-2023 (((-108) $) 25)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2364 (($ $ (-710)) 27) (($ $ (-852)) 22)) (-2767 (($) 23 T CONST)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18)) (** (($ $ (-710)) 26) (($ $ (-852)) 21)) (* (($ $ $) 20))) +(((-782) (-129)) (T -782)) +NIL +(-13 (-786) (-666)) +(((-97) . T) ((-563 (-794)) . T) ((-666) . T) ((-786) . T) ((-1028) . T) ((-1016) . T)) +((-3671 (((-523) $) 17)) (-2604 (((-108) $) 10)) (-4114 (((-108) $) 11)) (-2619 (($ $) 19))) +(((-783 |#1|) (-10 -8 (-15 -2619 (|#1| |#1|)) (-15 -3671 ((-523) |#1|)) (-15 -4114 ((-108) |#1|)) (-15 -2604 ((-108) |#1|))) (-784)) (T -783)) +NIL +(-10 -8 (-15 -2619 (|#1| |#1|)) (-15 -3671 ((-523) |#1|)) (-15 -4114 ((-108) |#1|)) (-15 -2604 ((-108) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 24)) (-3212 (((-3 $ "failed") $ $) 26)) (-3671 (((-523) $) 33)) (-2518 (($) 23 T CONST)) (-2121 (((-3 $ "failed") $) 39)) (-2604 (((-108) $) 35)) (-2023 (((-108) $) 42)) (-4114 (((-108) $) 34)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 45)) (-1621 (((-710)) 44)) (-2619 (($ $) 32)) (-2364 (($ $ (-710)) 40) (($ $ (-852)) 36)) (-2756 (($) 22 T CONST)) (-2767 (($) 43 T CONST)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18)) (-4087 (($ $ $) 28) (($ $) 27)) (-4075 (($ $ $) 20)) (** (($ $ (-710)) 41) (($ $ (-852)) 37)) (* (($ (-710) $) 25) (($ (-852) $) 21) (($ (-523) $) 29) (($ $ $) 38))) +(((-784) (-129)) (T -784)) +((-2604 (*1 *2 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-784)) (-5 *2 (-523)))) (-2619 (*1 *1 *1) (-4 *1 (-784)))) +(-13 (-730) (-973) (-666) (-10 -8 (-15 -2604 ((-108) $)) (-15 -4114 ((-108) $)) (-15 -3671 ((-523) $)) (-15 -2619 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 $) . T) ((-666) . T) ((-730) . T) ((-731) . T) ((-733) . T) ((-734) . T) ((-786) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-2454 (($ $ $) 10)) (-2062 (($ $ $) 9)) (-4043 (((-108) $ $) 13)) (-4019 (((-108) $ $) 11)) (-4030 (((-108) $ $) 14))) +(((-785 |#1|) (-10 -8 (-15 -2454 (|#1| |#1| |#1|)) (-15 -2062 (|#1| |#1| |#1|)) (-15 -4030 ((-108) |#1| |#1|)) (-15 -4043 ((-108) |#1| |#1|)) (-15 -4019 ((-108) |#1| |#1|))) (-786)) (T -785)) +NIL +(-10 -8 (-15 -2454 (|#1| |#1| |#1|)) (-15 -2062 (|#1| |#1| |#1|)) (-15 -4030 ((-108) |#1| |#1|)) (-15 -4043 ((-108) |#1| |#1|)) (-15 -4019 ((-108) |#1| |#1|))) +((-3924 (((-108) $ $) 7)) (-2454 (($ $ $) 13)) (-2062 (($ $ $) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-4043 (((-108) $ $) 16)) (-4019 (((-108) $ $) 17)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 15)) (-4007 (((-108) $ $) 18))) +(((-786) (-129)) (T -786)) +((-4007 (*1 *2 *1 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) (-4019 (*1 *2 *1 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) (-4043 (*1 *2 *1 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) (-4030 (*1 *2 *1 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) (-2062 (*1 *1 *1 *1) (-4 *1 (-786))) (-2454 (*1 *1 *1 *1) (-4 *1 (-786)))) +(-13 (-1016) (-10 -8 (-15 -4007 ((-108) $ $)) (-15 -4019 ((-108) $ $)) (-15 -4043 ((-108) $ $)) (-15 -4030 ((-108) $ $)) (-15 -2062 ($ $ $)) (-15 -2454 ($ $ $)))) +(((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-2383 (($ $ $) 46)) (-2324 (($ $ $) 45)) (-1354 (($ $ $) 43)) (-1470 (($ $ $) 52)) (-3852 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 47)) (-1371 (((-3 $ "failed") $ $) 50)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2528 (($ $) 36)) (-3077 (($ $ $) 40)) (-3082 (($ $ $) 39)) (-2035 (($ $ $) 48)) (-2500 (($ $ $) 54)) (-3645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 42)) (-1687 (((-3 $ "failed") $ $) 49)) (-3746 (((-3 $ "failed") $ |#2|) 29)) (-2438 ((|#2| $) 33)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 (-523))) NIL) (($ |#2|) 12)) (-1251 (((-589 |#2|) $) 19)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 23))) +(((-787 |#1| |#2|) (-10 -8 (-15 -2035 (|#1| |#1| |#1|)) (-15 -3852 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3441 |#1|)) |#1| |#1|)) (-15 -1470 (|#1| |#1| |#1|)) (-15 -1371 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2383 (|#1| |#1| |#1|)) (-15 -2324 (|#1| |#1| |#1|)) (-15 -1354 (|#1| |#1| |#1|)) (-15 -3645 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3441 |#1|)) |#1| |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -1687 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -2528 (|#1| |#1|)) (-15 -2438 (|#2| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1251 ((-589 |#2|) |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -1458 ((-794) |#1|))) (-788 |#2|) (-973)) (T -787)) +NIL +(-10 -8 (-15 -2035 (|#1| |#1| |#1|)) (-15 -3852 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3441 |#1|)) |#1| |#1|)) (-15 -1470 (|#1| |#1| |#1|)) (-15 -1371 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2383 (|#1| |#1| |#1|)) (-15 -2324 (|#1| |#1| |#1|)) (-15 -1354 (|#1| |#1| |#1|)) (-15 -3645 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3441 |#1|)) |#1| |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -1687 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -2528 (|#1| |#1|)) (-15 -2438 (|#2| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1251 ((-589 |#2|) |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -1458 ((-794) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2383 (($ $ $) 45 (|has| |#1| (-339)))) (-2324 (($ $ $) 46 (|has| |#1| (-339)))) (-1354 (($ $ $) 48 (|has| |#1| (-339)))) (-1470 (($ $ $) 43 (|has| |#1| (-339)))) (-3852 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 42 (|has| |#1| (-339)))) (-1371 (((-3 $ "failed") $ $) 44 (|has| |#1| (-339)))) (-2042 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 47 (|has| |#1| (-339)))) (-3517 (((-3 (-523) "failed") $) 74 (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 72 (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 69)) (-3474 (((-523) $) 75 (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) 73 (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 68)) (-3810 (($ $) 64)) (-2121 (((-3 $ "failed") $) 34)) (-2528 (($ $) 55 (|has| |#1| (-427)))) (-2023 (((-108) $) 31)) (-1933 (($ |#1| (-710)) 62)) (-2225 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57 (|has| |#1| (-515)))) (-2024 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 58 (|has| |#1| (-515)))) (-1575 (((-710) $) 66)) (-3077 (($ $ $) 52 (|has| |#1| (-339)))) (-3082 (($ $ $) 53 (|has| |#1| (-339)))) (-2035 (($ $ $) 41 (|has| |#1| (-339)))) (-2500 (($ $ $) 50 (|has| |#1| (-339)))) (-3645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 49 (|has| |#1| (-339)))) (-1687 (((-3 $ "failed") $ $) 51 (|has| |#1| (-339)))) (-3091 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 54 (|has| |#1| (-339)))) (-3786 ((|#1| $) 65)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3746 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-515)))) (-2299 (((-710) $) 67)) (-2438 ((|#1| $) 56 (|has| |#1| (-427)))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 71 (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) 70)) (-1251 (((-589 |#1|) $) 61)) (-2365 ((|#1| $ (-710)) 63)) (-1621 (((-710)) 29)) (-1677 ((|#1| $ |#1| |#1|) 60)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76))) +(((-788 |#1|) (-129) (-973)) (T -788)) +((-2299 (*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) (-1575 (*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)))) (-2365 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-788 *2)) (-4 *2 (-973)))) (-1933 (*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-788 *2)) (-4 *2 (-973)))) (-1251 (*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-973)) (-5 *2 (-589 *3)))) (-1677 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)))) (-3746 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-515)))) (-2024 (*1 *2 *1 *1) (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-788 *3)))) (-2225 (*1 *2 *1 *1) (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-788 *3)))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-427)))) (-2528 (*1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-427)))) (-3091 (*1 *2 *1 *1) (-12 (-4 *3 (-339)) (-4 *3 (-973)) (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-788 *3)))) (-3082 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-3077 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-1687 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-2500 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-3645 (*1 *2 *1 *1) (-12 (-4 *3 (-339)) (-4 *3 (-973)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3441 *1))) (-4 *1 (-788 *3)))) (-1354 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-2042 (*1 *2 *1 *1) (-12 (-4 *3 (-339)) (-4 *3 (-973)) (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-788 *3)))) (-2324 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-2383 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-1371 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-1470 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-3852 (*1 *2 *1 *1) (-12 (-4 *3 (-339)) (-4 *3 (-973)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3441 *1))) (-4 *1 (-788 *3)))) (-2035 (*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(-13 (-973) (-107 |t#1| |t#1|) (-387 |t#1|) (-10 -8 (-15 -2299 ((-710) $)) (-15 -1575 ((-710) $)) (-15 -3786 (|t#1| $)) (-15 -3810 ($ $)) (-15 -2365 (|t#1| $ (-710))) (-15 -1933 ($ |t#1| (-710))) (-15 -1251 ((-589 |t#1|) $)) (-15 -1677 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-158)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -3746 ((-3 $ "failed") $ |t#1|)) (-15 -2024 ((-2 (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -2225 ((-2 (|:| -3445 $) (|:| -3282 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-427)) (PROGN (-15 -2438 (|t#1| $)) (-15 -2528 ($ $))) |%noBranch|) (IF (|has| |t#1| (-339)) (PROGN (-15 -3091 ((-2 (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -3082 ($ $ $)) (-15 -3077 ($ $ $)) (-15 -1687 ((-3 $ "failed") $ $)) (-15 -2500 ($ $ $)) (-15 -3645 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $)) (-15 -1354 ($ $ $)) (-15 -2042 ((-2 (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -2324 ($ $ $)) (-15 -2383 ($ $ $)) (-15 -1371 ((-3 $ "failed") $ $)) (-15 -1470 ($ $ $)) (-15 -3852 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $)) (-15 -2035 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-158)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-387 |#1|) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-657 |#1|) |has| |#1| (-158)) ((-666) . T) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-979 |#1|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-2255 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 21)) (-2042 (((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|)) 44 (|has| |#1| (-339)))) (-2225 (((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|)) 41 (|has| |#1| (-515)))) (-2024 (((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-515)))) (-3091 (((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-339)))) (-1677 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 32))) +(((-789 |#1| |#2|) (-10 -7 (-15 -2255 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1677 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-515)) (PROGN (-15 -2024 ((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2225 ((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-15 -3091 ((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2042 ((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) (-973) (-788 |#1|)) (T -789)) +((-2042 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-339)) (-4 *5 (-973)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-789 *5 *3)) (-4 *3 (-788 *5)))) (-3091 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-339)) (-4 *5 (-973)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-789 *5 *3)) (-4 *3 (-788 *5)))) (-2225 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-515)) (-4 *5 (-973)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-789 *5 *3)) (-4 *3 (-788 *5)))) (-2024 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-515)) (-4 *5 (-973)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-789 *5 *3)) (-4 *3 (-788 *5)))) (-1677 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-973)) (-5 *1 (-789 *2 *3)) (-4 *3 (-788 *2)))) (-2255 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-973)) (-5 *1 (-789 *5 *2)) (-4 *2 (-788 *5))))) +(-10 -7 (-15 -2255 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1677 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-515)) (PROGN (-15 -2024 ((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2225 ((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-15 -3091 ((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2042 ((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2383 (($ $ $) NIL (|has| |#1| (-339)))) (-2324 (($ $ $) NIL (|has| |#1| (-339)))) (-1354 (($ $ $) NIL (|has| |#1| (-339)))) (-1470 (($ $ $) NIL (|has| |#1| (-339)))) (-3852 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-1371 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-2042 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 25 (|has| |#1| (-339)))) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#1| (-427)))) (-3553 (((-794) $ (-794)) NIL)) (-2023 (((-108) $) NIL)) (-1933 (($ |#1| (-710)) NIL)) (-2225 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 21 (|has| |#1| (-515)))) (-2024 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 19 (|has| |#1| (-515)))) (-1575 (((-710) $) NIL)) (-3077 (($ $ $) NIL (|has| |#1| (-339)))) (-3082 (($ $ $) NIL (|has| |#1| (-339)))) (-2035 (($ $ $) NIL (|has| |#1| (-339)))) (-2500 (($ $ $) NIL (|has| |#1| (-339)))) (-3645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-1687 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-3091 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 23 (|has| |#1| (-339)))) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-2299 (((-710) $) NIL)) (-2438 ((|#1| $) NIL (|has| |#1| (-427)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#1| (-964 (-383 (-523))))) (($ |#1|) NIL)) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-710)) NIL)) (-1621 (((-710)) NIL)) (-1677 ((|#1| $ |#1| |#1|) 15)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-790 |#1| |#2| |#3|) (-13 (-788 |#1|) (-10 -8 (-15 -3553 ((-794) $ (-794))))) (-973) (-94 |#1|) (-1 |#1| |#1|)) (T -790)) +((-3553 (*1 *2 *1 *2) (-12 (-5 *2 (-794)) (-5 *1 (-790 *3 *4 *5)) (-4 *3 (-973)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-788 |#1|) (-10 -8 (-15 -3553 ((-794) $ (-794))))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2383 (($ $ $) NIL (|has| |#2| (-339)))) (-2324 (($ $ $) NIL (|has| |#2| (-339)))) (-1354 (($ $ $) NIL (|has| |#2| (-339)))) (-1470 (($ $ $) NIL (|has| |#2| (-339)))) (-3852 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#2| (-339)))) (-1371 (((-3 $ "failed") $ $) NIL (|has| |#2| (-339)))) (-2042 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#2| (-339)))) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 |#2| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) ((|#2| $) NIL)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#2| (-427)))) (-2023 (((-108) $) NIL)) (-1933 (($ |#2| (-710)) 16)) (-2225 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#2| (-515)))) (-2024 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#2| (-515)))) (-1575 (((-710) $) NIL)) (-3077 (($ $ $) NIL (|has| |#2| (-339)))) (-3082 (($ $ $) NIL (|has| |#2| (-339)))) (-2035 (($ $ $) NIL (|has| |#2| (-339)))) (-2500 (($ $ $) NIL (|has| |#2| (-339)))) (-3645 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#2| (-339)))) (-1687 (((-3 $ "failed") $ $) NIL (|has| |#2| (-339)))) (-3091 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#2| (-339)))) (-3786 ((|#2| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3746 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515)))) (-2299 (((-710) $) NIL)) (-2438 ((|#2| $) NIL (|has| |#2| (-427)))) (-1458 (((-794) $) 23) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#2| (-964 (-383 (-523))))) (($ |#2|) NIL) (($ (-1164 |#1|)) 18)) (-1251 (((-589 |#2|) $) NIL)) (-2365 ((|#2| $ (-710)) NIL)) (-1621 (((-710)) NIL)) (-1677 ((|#2| $ |#2| |#2|) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) 13 T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-791 |#1| |#2| |#3| |#4|) (-13 (-788 |#2|) (-10 -8 (-15 -1458 ($ (-1164 |#1|))))) (-1087) (-973) (-94 |#2|) (-1 |#2| |#2|)) (T -791)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-14 *3 (-1087)) (-5 *1 (-791 *3 *4 *5 *6)) (-4 *4 (-973)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4))))) +(-13 (-788 |#2|) (-10 -8 (-15 -1458 ($ (-1164 |#1|))))) +((-1336 ((|#1| (-710) |#1|) 35 (|has| |#1| (-37 (-383 (-523)))))) (-2374 ((|#1| (-710) (-710) |#1|) 27) ((|#1| (-710) |#1|) 20)) (-3435 ((|#1| (-710) |#1|) 31)) (-3448 ((|#1| (-710) |#1|) 29)) (-2505 ((|#1| (-710) |#1|) 28))) +(((-792 |#1|) (-10 -7 (-15 -2505 (|#1| (-710) |#1|)) (-15 -3448 (|#1| (-710) |#1|)) (-15 -3435 (|#1| (-710) |#1|)) (-15 -2374 (|#1| (-710) |#1|)) (-15 -2374 (|#1| (-710) (-710) |#1|)) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -1336 (|#1| (-710) |#1|)) |%noBranch|)) (-158)) (T -792)) +((-1336 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-158)))) (-2374 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158)))) (-2374 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158)))) (-3435 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158)))) (-3448 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158)))) (-2505 (*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158))))) +(-10 -7 (-15 -2505 (|#1| (-710) |#1|)) (-15 -3448 (|#1| (-710) |#1|)) (-15 -3435 (|#1| (-710) |#1|)) (-15 -2374 (|#1| (-710) |#1|)) (-15 -2374 (|#1| (-710) (-710) |#1|)) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -1336 (|#1| (-710) |#1|)) |%noBranch|)) +((-3924 (((-108) $ $) NIL)) (-1733 (((-523) $) 12)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 18) (($ (-523)) 11)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 8)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 9))) +(((-793) (-13 (-786) (-10 -8 (-15 -1458 ($ (-523))) (-15 -1733 ((-523) $))))) (T -793)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-793)))) (-1733 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-793))))) +(-13 (-786) (-10 -8 (-15 -1458 ($ (-523))) (-15 -1733 ((-523) $)))) +((-3924 (((-108) $ $) NIL)) (-3509 (($ $ $) 115)) (-3919 (((-523) $) 30) (((-523)) 35)) (-2126 (($ (-523)) 44)) (-2555 (($ $ $) 45) (($ (-589 $)) 76)) (-3764 (($ $ (-589 $)) 74)) (-2350 (((-523) $) 33)) (-3175 (($ $ $) 63)) (-1923 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-1616 (((-523) $) 32)) (-3602 (($ $ $) 62)) (-3207 (($ $) 105)) (-1674 (($ $ $) 119)) (-2218 (($ (-589 $)) 52)) (-3005 (($ $ (-589 $)) 69)) (-1372 (($ (-523) (-523)) 46)) (-2635 (($ $) 116) (($ $ $) 117)) (-3159 (($ $ (-523)) 40) (($ $) 43)) (-3796 (($ $ $) 89)) (-4194 (($ $ $) 122)) (-3295 (($ $) 106)) (-3769 (($ $ $) 90)) (-1992 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-2948 (((-1173) $) 8)) (-3287 (($ $) 109) (($ $ (-710)) 112)) (-2354 (($ $ $) 65)) (-1892 (($ $ $) 64)) (-3977 (($ $ (-589 $)) 100)) (-3457 (($ $ $) 104)) (-3531 (($ (-589 $)) 50)) (-2361 (($ $) 60) (($ (-589 $)) 61)) (-3597 (($ $ $) 113)) (-3882 (($ $) 107)) (-3815 (($ $ $) 118)) (-3553 (($ (-523)) 20) (($ (-1087)) 22) (($ (-1070)) 29) (($ (-203)) 24)) (-4090 (($ $ $) 93)) (-3900 (($ $) 94)) (-1443 (((-1173) (-1070)) 14)) (-3991 (($ (-1070)) 13)) (-3068 (($ (-589 (-589 $))) 48)) (-3149 (($ $ (-523)) 39) (($ $) 42)) (-3779 (((-1070) $) NIL)) (-2273 (($ $ $) 121)) (-1464 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-1634 (((-108) $) 98)) (-4219 (($ $ (-589 $)) 102) (($ $ $ $) 103)) (-3634 (($ (-523)) 36)) (-2510 (((-523) $) 31) (((-523)) 34)) (-2612 (($ $ $) 37) (($ (-589 $)) 75)) (-2783 (((-1034) $) NIL)) (-3746 (($ $ $) 91)) (-3988 (($) 12)) (-3223 (($ $ (-589 $)) 99)) (-3269 (($ $) 108) (($ $ (-710)) 111)) (-3757 (($ $ $) 88)) (-3523 (($ $ (-710)) 127)) (-1622 (($ (-589 $)) 51)) (-1458 (((-794) $) 18)) (-1288 (($ $ (-523)) 38) (($ $) 41)) (-1889 (($ $) 58) (($ (-589 $)) 59)) (-1684 (($ $) 56) (($ (-589 $)) 57)) (-3822 (($ $) 114)) (-3942 (($ (-589 $)) 55)) (-2574 (($ $ $) 97)) (-3122 (($ $ $) 120)) (-4099 (($ $ $) 92)) (-1690 (($ $ $) 77)) (-3410 (($ $ $) 95) (($ $) 96)) (-4043 (($ $ $) 81)) (-4019 (($ $ $) 79)) (-3983 (((-108) $ $) 15) (($ $ $) 16)) (-4030 (($ $ $) 80)) (-4007 (($ $ $) 78)) (-4098 (($ $ $) 86)) (-4087 (($ $ $) 83) (($ $) 84)) (-4075 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) +(((-794) (-13 (-1016) (-10 -8 (-15 -2948 ((-1173) $)) (-15 -3991 ($ (-1070))) (-15 -1443 ((-1173) (-1070))) (-15 -3553 ($ (-523))) (-15 -3553 ($ (-1087))) (-15 -3553 ($ (-1070))) (-15 -3553 ($ (-203))) (-15 -3988 ($)) (-15 -3919 ((-523) $)) (-15 -2510 ((-523) $)) (-15 -3919 ((-523))) (-15 -2510 ((-523))) (-15 -1616 ((-523) $)) (-15 -2350 ((-523) $)) (-15 -3634 ($ (-523))) (-15 -2126 ($ (-523))) (-15 -1372 ($ (-523) (-523))) (-15 -3149 ($ $ (-523))) (-15 -3159 ($ $ (-523))) (-15 -1288 ($ $ (-523))) (-15 -3149 ($ $)) (-15 -3159 ($ $)) (-15 -1288 ($ $)) (-15 -2612 ($ $ $)) (-15 -2555 ($ $ $)) (-15 -2612 ($ (-589 $))) (-15 -2555 ($ (-589 $))) (-15 -3977 ($ $ (-589 $))) (-15 -4219 ($ $ (-589 $))) (-15 -4219 ($ $ $ $)) (-15 -3457 ($ $ $)) (-15 -1634 ((-108) $)) (-15 -3223 ($ $ (-589 $))) (-15 -3207 ($ $)) (-15 -2273 ($ $ $)) (-15 -3822 ($ $)) (-15 -3068 ($ (-589 (-589 $)))) (-15 -3509 ($ $ $)) (-15 -2635 ($ $)) (-15 -2635 ($ $ $)) (-15 -3815 ($ $ $)) (-15 -1674 ($ $ $)) (-15 -3122 ($ $ $)) (-15 -4194 ($ $ $)) (-15 -3523 ($ $ (-710))) (-15 -2574 ($ $ $)) (-15 -3602 ($ $ $)) (-15 -3175 ($ $ $)) (-15 -1892 ($ $ $)) (-15 -2354 ($ $ $)) (-15 -3005 ($ $ (-589 $))) (-15 -3764 ($ $ (-589 $))) (-15 -3295 ($ $)) (-15 -3269 ($ $)) (-15 -3269 ($ $ (-710))) (-15 -3287 ($ $)) (-15 -3287 ($ $ (-710))) (-15 -3882 ($ $)) (-15 -3597 ($ $ $)) (-15 -1923 ($ $)) (-15 -1923 ($ $ $)) (-15 -1923 ($ $ $ $)) (-15 -1992 ($ $)) (-15 -1992 ($ $ $)) (-15 -1992 ($ $ $ $)) (-15 -1464 ($ $)) (-15 -1464 ($ $ $)) (-15 -1464 ($ $ $ $)) (-15 -1684 ($ $)) (-15 -1684 ($ (-589 $))) (-15 -1889 ($ $)) (-15 -1889 ($ (-589 $))) (-15 -2361 ($ $)) (-15 -2361 ($ (-589 $))) (-15 -3531 ($ (-589 $))) (-15 -1622 ($ (-589 $))) (-15 -2218 ($ (-589 $))) (-15 -3942 ($ (-589 $))) (-15 -3983 ($ $ $)) (-15 -1690 ($ $ $)) (-15 -4007 ($ $ $)) (-15 -4019 ($ $ $)) (-15 -4030 ($ $ $)) (-15 -4043 ($ $ $)) (-15 -4075 ($ $ $)) (-15 -4087 ($ $ $)) (-15 -4087 ($ $)) (-15 * ($ $ $)) (-15 -4098 ($ $ $)) (-15 ** ($ $ $)) (-15 -3757 ($ $ $)) (-15 -3796 ($ $ $)) (-15 -3769 ($ $ $)) (-15 -3746 ($ $ $)) (-15 -4099 ($ $ $)) (-15 -4090 ($ $ $)) (-15 -3900 ($ $)) (-15 -3410 ($ $ $)) (-15 -3410 ($ $))))) (T -794)) +((-2948 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-794)))) (-3991 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-794)))) (-1443 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-794)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-794)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-794)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-794)))) (-3988 (*1 *1) (-5 *1 (-794))) (-3919 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-3919 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-2510 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-1616 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-3634 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-2126 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-1372 (*1 *1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-3149 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-3159 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-1288 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) (-3149 (*1 *1 *1) (-5 *1 (-794))) (-3159 (*1 *1 *1) (-5 *1 (-794))) (-1288 (*1 *1 *1) (-5 *1 (-794))) (-2612 (*1 *1 *1 *1) (-5 *1 (-794))) (-2555 (*1 *1 *1 *1) (-5 *1 (-794))) (-2612 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-2555 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-3977 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-4219 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-4219 (*1 *1 *1 *1 *1) (-5 *1 (-794))) (-3457 (*1 *1 *1 *1) (-5 *1 (-794))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-794)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-3207 (*1 *1 *1) (-5 *1 (-794))) (-2273 (*1 *1 *1 *1) (-5 *1 (-794))) (-3822 (*1 *1 *1) (-5 *1 (-794))) (-3068 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-794)))) (-5 *1 (-794)))) (-3509 (*1 *1 *1 *1) (-5 *1 (-794))) (-2635 (*1 *1 *1) (-5 *1 (-794))) (-2635 (*1 *1 *1 *1) (-5 *1 (-794))) (-3815 (*1 *1 *1 *1) (-5 *1 (-794))) (-1674 (*1 *1 *1 *1) (-5 *1 (-794))) (-3122 (*1 *1 *1 *1) (-5 *1 (-794))) (-4194 (*1 *1 *1 *1) (-5 *1 (-794))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-794)))) (-2574 (*1 *1 *1 *1) (-5 *1 (-794))) (-3602 (*1 *1 *1 *1) (-5 *1 (-794))) (-3175 (*1 *1 *1 *1) (-5 *1 (-794))) (-1892 (*1 *1 *1 *1) (-5 *1 (-794))) (-2354 (*1 *1 *1 *1) (-5 *1 (-794))) (-3005 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-3764 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-3295 (*1 *1 *1) (-5 *1 (-794))) (-3269 (*1 *1 *1) (-5 *1 (-794))) (-3269 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-794)))) (-3287 (*1 *1 *1) (-5 *1 (-794))) (-3287 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-794)))) (-3882 (*1 *1 *1) (-5 *1 (-794))) (-3597 (*1 *1 *1 *1) (-5 *1 (-794))) (-1923 (*1 *1 *1) (-5 *1 (-794))) (-1923 (*1 *1 *1 *1) (-5 *1 (-794))) (-1923 (*1 *1 *1 *1 *1) (-5 *1 (-794))) (-1992 (*1 *1 *1) (-5 *1 (-794))) (-1992 (*1 *1 *1 *1) (-5 *1 (-794))) (-1992 (*1 *1 *1 *1 *1) (-5 *1 (-794))) (-1464 (*1 *1 *1) (-5 *1 (-794))) (-1464 (*1 *1 *1 *1) (-5 *1 (-794))) (-1464 (*1 *1 *1 *1 *1) (-5 *1 (-794))) (-1684 (*1 *1 *1) (-5 *1 (-794))) (-1684 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-1889 (*1 *1 *1) (-5 *1 (-794))) (-1889 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-2361 (*1 *1 *1) (-5 *1 (-794))) (-2361 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-1622 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-2218 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) (-3983 (*1 *1 *1 *1) (-5 *1 (-794))) (-1690 (*1 *1 *1 *1) (-5 *1 (-794))) (-4007 (*1 *1 *1 *1) (-5 *1 (-794))) (-4019 (*1 *1 *1 *1) (-5 *1 (-794))) (-4030 (*1 *1 *1 *1) (-5 *1 (-794))) (-4043 (*1 *1 *1 *1) (-5 *1 (-794))) (-4075 (*1 *1 *1 *1) (-5 *1 (-794))) (-4087 (*1 *1 *1 *1) (-5 *1 (-794))) (-4087 (*1 *1 *1) (-5 *1 (-794))) (* (*1 *1 *1 *1) (-5 *1 (-794))) (-4098 (*1 *1 *1 *1) (-5 *1 (-794))) (** (*1 *1 *1 *1) (-5 *1 (-794))) (-3757 (*1 *1 *1 *1) (-5 *1 (-794))) (-3796 (*1 *1 *1 *1) (-5 *1 (-794))) (-3769 (*1 *1 *1 *1) (-5 *1 (-794))) (-3746 (*1 *1 *1 *1) (-5 *1 (-794))) (-4099 (*1 *1 *1 *1) (-5 *1 (-794))) (-4090 (*1 *1 *1 *1) (-5 *1 (-794))) (-3900 (*1 *1 *1) (-5 *1 (-794))) (-3410 (*1 *1 *1 *1) (-5 *1 (-794))) (-3410 (*1 *1 *1) (-5 *1 (-794)))) +(-13 (-1016) (-10 -8 (-15 -2948 ((-1173) $)) (-15 -3991 ($ (-1070))) (-15 -1443 ((-1173) (-1070))) (-15 -3553 ($ (-523))) (-15 -3553 ($ (-1087))) (-15 -3553 ($ (-1070))) (-15 -3553 ($ (-203))) (-15 -3988 ($)) (-15 -3919 ((-523) $)) (-15 -2510 ((-523) $)) (-15 -3919 ((-523))) (-15 -2510 ((-523))) (-15 -1616 ((-523) $)) (-15 -2350 ((-523) $)) (-15 -3634 ($ (-523))) (-15 -2126 ($ (-523))) (-15 -1372 ($ (-523) (-523))) (-15 -3149 ($ $ (-523))) (-15 -3159 ($ $ (-523))) (-15 -1288 ($ $ (-523))) (-15 -3149 ($ $)) (-15 -3159 ($ $)) (-15 -1288 ($ $)) (-15 -2612 ($ $ $)) (-15 -2555 ($ $ $)) (-15 -2612 ($ (-589 $))) (-15 -2555 ($ (-589 $))) (-15 -3977 ($ $ (-589 $))) (-15 -4219 ($ $ (-589 $))) (-15 -4219 ($ $ $ $)) (-15 -3457 ($ $ $)) (-15 -1634 ((-108) $)) (-15 -3223 ($ $ (-589 $))) (-15 -3207 ($ $)) (-15 -2273 ($ $ $)) (-15 -3822 ($ $)) (-15 -3068 ($ (-589 (-589 $)))) (-15 -3509 ($ $ $)) (-15 -2635 ($ $)) (-15 -2635 ($ $ $)) (-15 -3815 ($ $ $)) (-15 -1674 ($ $ $)) (-15 -3122 ($ $ $)) (-15 -4194 ($ $ $)) (-15 -3523 ($ $ (-710))) (-15 -2574 ($ $ $)) (-15 -3602 ($ $ $)) (-15 -3175 ($ $ $)) (-15 -1892 ($ $ $)) (-15 -2354 ($ $ $)) (-15 -3005 ($ $ (-589 $))) (-15 -3764 ($ $ (-589 $))) (-15 -3295 ($ $)) (-15 -3269 ($ $)) (-15 -3269 ($ $ (-710))) (-15 -3287 ($ $)) (-15 -3287 ($ $ (-710))) (-15 -3882 ($ $)) (-15 -3597 ($ $ $)) (-15 -1923 ($ $)) (-15 -1923 ($ $ $)) (-15 -1923 ($ $ $ $)) (-15 -1992 ($ $)) (-15 -1992 ($ $ $)) (-15 -1992 ($ $ $ $)) (-15 -1464 ($ $)) (-15 -1464 ($ $ $)) (-15 -1464 ($ $ $ $)) (-15 -1684 ($ $)) (-15 -1684 ($ (-589 $))) (-15 -1889 ($ $)) (-15 -1889 ($ (-589 $))) (-15 -2361 ($ $)) (-15 -2361 ($ (-589 $))) (-15 -3531 ($ (-589 $))) (-15 -1622 ($ (-589 $))) (-15 -2218 ($ (-589 $))) (-15 -3942 ($ (-589 $))) (-15 -3983 ($ $ $)) (-15 -1690 ($ $ $)) (-15 -4007 ($ $ $)) (-15 -4019 ($ $ $)) (-15 -4030 ($ $ $)) (-15 -4043 ($ $ $)) (-15 -4075 ($ $ $)) (-15 -4087 ($ $ $)) (-15 -4087 ($ $)) (-15 * ($ $ $)) (-15 -4098 ($ $ $)) (-15 ** ($ $ $)) (-15 -3757 ($ $ $)) (-15 -3796 ($ $ $)) (-15 -3769 ($ $ $)) (-15 -3746 ($ $ $)) (-15 -4099 ($ $ $)) (-15 -4090 ($ $ $)) (-15 -3900 ($ $)) (-15 -3410 ($ $ $)) (-15 -3410 ($ $)))) +((-2192 (((-1173) (-589 (-51))) 24)) (-3324 (((-1173) (-1070) (-794)) 14) (((-1173) (-794)) 9) (((-1173) (-1070)) 11))) +(((-795) (-10 -7 (-15 -3324 ((-1173) (-1070))) (-15 -3324 ((-1173) (-794))) (-15 -3324 ((-1173) (-1070) (-794))) (-15 -2192 ((-1173) (-589 (-51)))))) (T -795)) +((-2192 (*1 *2 *3) (-12 (-5 *3 (-589 (-51))) (-5 *2 (-1173)) (-5 *1 (-795)))) (-3324 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-794)) (-5 *2 (-1173)) (-5 *1 (-795)))) (-3324 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1173)) (-5 *1 (-795)))) (-3324 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-795))))) +(-10 -7 (-15 -3324 ((-1173) (-1070))) (-15 -3324 ((-1173) (-794))) (-15 -3324 ((-1173) (-1070) (-794))) (-15 -2192 ((-1173) (-589 (-51))))) +((-3924 (((-108) $ $) NIL)) (-2700 (((-3 $ "failed") (-1087)) 32)) (-1703 (((-710)) 30)) (-4032 (($) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-2072 (((-852) $) 28)) (-3779 (((-1070) $) 38)) (-3878 (($ (-852)) 27)) (-2783 (((-1034) $) NIL)) (-3663 (((-1087) $) 13) (((-499) $) 19) (((-823 (-355)) $) 25) (((-823 (-523)) $) 22)) (-1458 (((-794) $) 16)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 35)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 34))) +(((-796 |#1|) (-13 (-780) (-564 (-1087)) (-564 (-499)) (-564 (-823 (-355))) (-564 (-823 (-523))) (-10 -8 (-15 -2700 ((-3 $ "failed") (-1087))))) (-589 (-1087))) (T -796)) +((-2700 (*1 *1 *2) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-796 *3)) (-14 *3 (-589 *2))))) +(-13 (-780) (-564 (-1087)) (-564 (-499)) (-564 (-823 (-355))) (-564 (-823 (-523))) (-10 -8 (-15 -2700 ((-3 $ "failed") (-1087))))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (((-883 |#1|) $) NIL) (($ (-883 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-158)))) (-1621 (((-710)) NIL)) (-2924 (((-1173) (-710)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4098 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-158))) (($ $ |#1|) NIL (|has| |#1| (-158))))) +(((-797 |#1| |#2| |#3| |#4|) (-13 (-973) (-10 -8 (IF (|has| |#1| (-158)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1458 ((-883 |#1|) $)) (-15 -1458 ($ (-883 |#1|))) (IF (|has| |#1| (-339)) (-15 -4098 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2924 ((-1173) (-710))))) (-973) (-589 (-1087)) (-589 (-710)) (-710)) (T -797)) +((-1458 (*1 *2 *1) (-12 (-5 *2 (-883 *3)) (-5 *1 (-797 *3 *4 *5 *6)) (-4 *3 (-973)) (-14 *4 (-589 (-1087))) (-14 *5 (-589 (-710))) (-14 *6 (-710)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-883 *3)) (-4 *3 (-973)) (-5 *1 (-797 *3 *4 *5 *6)) (-14 *4 (-589 (-1087))) (-14 *5 (-589 (-710))) (-14 *6 (-710)))) (-4098 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-797 *2 *3 *4 *5)) (-4 *2 (-339)) (-4 *2 (-973)) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-710))) (-14 *5 (-710)))) (-2924 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-797 *4 *5 *6 *7)) (-4 *4 (-973)) (-14 *5 (-589 (-1087))) (-14 *6 (-589 *3)) (-14 *7 *3)))) +(-13 (-973) (-10 -8 (IF (|has| |#1| (-158)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1458 ((-883 |#1|) $)) (-15 -1458 ($ (-883 |#1|))) (IF (|has| |#1| (-339)) (-15 -4098 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2924 ((-1173) (-710))))) +((-2411 (((-3 (-159 |#3|) "failed") (-710) (-710) |#2| |#2|) 31)) (-2665 (((-3 (-383 |#3|) "failed") (-710) (-710) |#2| |#2|) 24))) +(((-798 |#1| |#2| |#3|) (-10 -7 (-15 -2665 ((-3 (-383 |#3|) "failed") (-710) (-710) |#2| |#2|)) (-15 -2411 ((-3 (-159 |#3|) "failed") (-710) (-710) |#2| |#2|))) (-339) (-1159 |#1|) (-1144 |#1|)) (T -798)) +((-2411 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-710)) (-4 *5 (-339)) (-5 *2 (-159 *6)) (-5 *1 (-798 *5 *4 *6)) (-4 *4 (-1159 *5)) (-4 *6 (-1144 *5)))) (-2665 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-710)) (-4 *5 (-339)) (-5 *2 (-383 *6)) (-5 *1 (-798 *5 *4 *6)) (-4 *4 (-1159 *5)) (-4 *6 (-1144 *5))))) +(-10 -7 (-15 -2665 ((-3 (-383 |#3|) "failed") (-710) (-710) |#2| |#2|)) (-15 -2411 ((-3 (-159 |#3|) "failed") (-710) (-710) |#2| |#2|))) +((-2665 (((-3 (-383 (-1141 |#2| |#1|)) "failed") (-710) (-710) (-1160 |#1| |#2| |#3|)) 28) (((-3 (-383 (-1141 |#2| |#1|)) "failed") (-710) (-710) (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|)) 26))) +(((-799 |#1| |#2| |#3|) (-10 -7 (-15 -2665 ((-3 (-383 (-1141 |#2| |#1|)) "failed") (-710) (-710) (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|))) (-15 -2665 ((-3 (-383 (-1141 |#2| |#1|)) "failed") (-710) (-710) (-1160 |#1| |#2| |#3|)))) (-339) (-1087) |#1|) (T -799)) +((-2665 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-710)) (-5 *4 (-1160 *5 *6 *7)) (-4 *5 (-339)) (-14 *6 (-1087)) (-14 *7 *5) (-5 *2 (-383 (-1141 *6 *5))) (-5 *1 (-799 *5 *6 *7)))) (-2665 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-710)) (-5 *4 (-1160 *5 *6 *7)) (-4 *5 (-339)) (-14 *6 (-1087)) (-14 *7 *5) (-5 *2 (-383 (-1141 *6 *5))) (-5 *1 (-799 *5 *6 *7))))) +(-10 -7 (-15 -2665 ((-3 (-383 (-1141 |#2| |#1|)) "failed") (-710) (-710) (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|))) (-15 -2665 ((-3 (-383 (-1141 |#2| |#1|)) "failed") (-710) (-710) (-1160 |#1| |#2| |#3|)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-1832 (($ $ (-523)) 62)) (-1387 (((-108) $ $) 59)) (-2518 (($) 17 T CONST)) (-2635 (($ (-1083 (-523)) (-523)) 61)) (-3796 (($ $ $) 55)) (-2121 (((-3 $ "failed") $) 34)) (-2816 (($ $) 64)) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-1640 (((-710) $) 69)) (-2023 (((-108) $) 31)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-3507 (((-523)) 66)) (-2329 (((-523) $) 65)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-4097 (($ $ (-523)) 68)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1972 (((-710) $) 58)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-1617 (((-1068 (-523)) $) 70)) (-1353 (($ $) 67)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2562 (((-523) $ (-523)) 63)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-800 |#1|) (-129) (-523)) (T -800)) +((-1617 (*1 *2 *1) (-12 (-4 *1 (-800 *3)) (-5 *2 (-1068 (-523))))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-800 *3)) (-5 *2 (-710)))) (-4097 (*1 *1 *1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) (-1353 (*1 *1 *1) (-4 *1 (-800 *2))) (-3507 (*1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) (-2329 (*1 *2 *1) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) (-2816 (*1 *1 *1) (-4 *1 (-800 *2))) (-2562 (*1 *2 *1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) (-1832 (*1 *1 *1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) (-2635 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 (-523))) (-5 *3 (-523)) (-4 *1 (-800 *4))))) +(-13 (-284) (-136) (-10 -8 (-15 -1617 ((-1068 (-523)) $)) (-15 -1640 ((-710) $)) (-15 -4097 ($ $ (-523))) (-15 -1353 ($ $)) (-15 -3507 ((-523))) (-15 -2329 ((-523) $)) (-15 -2816 ($ $)) (-15 -2562 ((-523) $ (-523))) (-15 -1832 ($ $ (-523))) (-15 -2635 ($ (-1083 (-523)) (-523))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-136) . T) ((-563 (-794)) . T) ((-158) . T) ((-267) . T) ((-284) . T) ((-427) . T) ((-515) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1832 (($ $ (-523)) NIL)) (-1387 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-2635 (($ (-1083 (-523)) (-523)) NIL)) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2816 (($ $) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1640 (((-710) $) NIL)) (-2023 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3507 (((-523)) NIL)) (-2329 (((-523) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4097 (($ $ (-523)) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-1617 (((-1068 (-523)) $) NIL)) (-1353 (($ $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL)) (-1621 (((-710)) NIL)) (-1704 (((-108) $ $) NIL)) (-2562 (((-523) $ (-523)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL))) +(((-801 |#1|) (-800 |#1|) (-523)) (T -801)) +NIL +(-800 |#1|) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3458 (((-801 |#1|) $) NIL (|has| (-801 |#1|) (-284)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-801 |#1|) (-840)))) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| (-801 |#1|) (-840)))) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL (|has| (-801 |#1|) (-759)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-801 |#1|) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (|has| (-801 |#1|) (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-801 |#1|) (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| (-801 |#1|) (-964 (-523))))) (-3474 (((-801 |#1|) $) NIL) (((-1087) $) NIL (|has| (-801 |#1|) (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| (-801 |#1|) (-964 (-523)))) (((-523) $) NIL (|has| (-801 |#1|) (-964 (-523))))) (-1819 (($ $) NIL) (($ (-523) $) NIL)) (-3796 (($ $ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| (-801 |#1|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| (-801 |#1|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-801 |#1|))) (|:| |vec| (-1168 (-801 |#1|)))) (-629 $) (-1168 $)) NIL) (((-629 (-801 |#1|)) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-801 |#1|) (-508)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2604 (((-108) $) NIL (|has| (-801 |#1|) (-759)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-801 |#1|) (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-801 |#1|) (-817 (-355))))) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL)) (-2785 (((-801 |#1|) $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| (-801 |#1|) (-1063)))) (-4114 (((-108) $) NIL (|has| (-801 |#1|) (-759)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL (|has| (-801 |#1|) (-786)))) (-2062 (($ $ $) NIL (|has| (-801 |#1|) (-786)))) (-3612 (($ (-1 (-801 |#1|) (-801 |#1|)) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-801 |#1|) (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL (|has| (-801 |#1|) (-284)))) (-3722 (((-801 |#1|) $) NIL (|has| (-801 |#1|) (-508)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-801 |#1|) (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-801 |#1|) (-840)))) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2679 (($ $ (-589 (-801 |#1|)) (-589 (-801 |#1|))) NIL (|has| (-801 |#1|) (-286 (-801 |#1|)))) (($ $ (-801 |#1|) (-801 |#1|)) NIL (|has| (-801 |#1|) (-286 (-801 |#1|)))) (($ $ (-271 (-801 |#1|))) NIL (|has| (-801 |#1|) (-286 (-801 |#1|)))) (($ $ (-589 (-271 (-801 |#1|)))) NIL (|has| (-801 |#1|) (-286 (-801 |#1|)))) (($ $ (-589 (-1087)) (-589 (-801 |#1|))) NIL (|has| (-801 |#1|) (-484 (-1087) (-801 |#1|)))) (($ $ (-1087) (-801 |#1|)) NIL (|has| (-801 |#1|) (-484 (-1087) (-801 |#1|))))) (-1972 (((-710) $) NIL)) (-3223 (($ $ (-801 |#1|)) NIL (|has| (-801 |#1|) (-263 (-801 |#1|) (-801 |#1|))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $) NIL (|has| (-801 |#1|) (-211))) (($ $ (-710)) NIL (|has| (-801 |#1|) (-211))) (($ $ (-1087)) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-1 (-801 |#1|) (-801 |#1|)) (-710)) NIL) (($ $ (-1 (-801 |#1|) (-801 |#1|))) NIL)) (-3414 (($ $) NIL)) (-2797 (((-801 |#1|) $) NIL)) (-3663 (((-823 (-523)) $) NIL (|has| (-801 |#1|) (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| (-801 |#1|) (-564 (-823 (-355))))) (((-499) $) NIL (|has| (-801 |#1|) (-564 (-499)))) (((-355) $) NIL (|has| (-801 |#1|) (-949))) (((-203) $) NIL (|has| (-801 |#1|) (-949)))) (-2947 (((-159 (-383 (-523))) $) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-801 |#1|) (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL) (($ (-801 |#1|)) NIL) (($ (-1087)) NIL (|has| (-801 |#1|) (-964 (-1087))))) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| (-801 |#1|) (-840))) (|has| (-801 |#1|) (-134))))) (-1621 (((-710)) NIL)) (-1886 (((-801 |#1|) $) NIL (|has| (-801 |#1|) (-508)))) (-1704 (((-108) $ $) NIL)) (-2562 (((-383 (-523)) $ (-523)) NIL)) (-2619 (($ $) NIL (|has| (-801 |#1|) (-759)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $) NIL (|has| (-801 |#1|) (-211))) (($ $ (-710)) NIL (|has| (-801 |#1|) (-211))) (($ $ (-1087)) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-801 |#1|) (-831 (-1087)))) (($ $ (-1 (-801 |#1|) (-801 |#1|)) (-710)) NIL) (($ $ (-1 (-801 |#1|) (-801 |#1|))) NIL)) (-4043 (((-108) $ $) NIL (|has| (-801 |#1|) (-786)))) (-4019 (((-108) $ $) NIL (|has| (-801 |#1|) (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| (-801 |#1|) (-786)))) (-4007 (((-108) $ $) NIL (|has| (-801 |#1|) (-786)))) (-4098 (($ $ $) NIL) (($ (-801 |#1|) (-801 |#1|)) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ (-801 |#1|) $) NIL) (($ $ (-801 |#1|)) NIL))) +(((-802 |#1|) (-13 (-921 (-801 |#1|)) (-10 -8 (-15 -2562 ((-383 (-523)) $ (-523))) (-15 -2947 ((-159 (-383 (-523))) $)) (-15 -1819 ($ $)) (-15 -1819 ($ (-523) $)))) (-523)) (T -802)) +((-2562 (*1 *2 *1 *3) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-802 *4)) (-14 *4 *3) (-5 *3 (-523)))) (-2947 (*1 *2 *1) (-12 (-5 *2 (-159 (-383 (-523)))) (-5 *1 (-802 *3)) (-14 *3 (-523)))) (-1819 (*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-14 *2 (-523)))) (-1819 (*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-802 *3)) (-14 *3 *2)))) +(-13 (-921 (-801 |#1|)) (-10 -8 (-15 -2562 ((-383 (-523)) $ (-523))) (-15 -2947 ((-159 (-383 (-523))) $)) (-15 -1819 ($ $)) (-15 -1819 ($ (-523) $)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3458 ((|#2| $) NIL (|has| |#2| (-284)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL (|has| |#2| (-759)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (|has| |#2| (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523))))) (-3474 ((|#2| $) NIL) (((-1087) $) NIL (|has| |#2| (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-523)))) (((-523) $) NIL (|has| |#2| (-964 (-523))))) (-1819 (($ $) 31) (($ (-523) $) 32)) (-3796 (($ $ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) 53)) (-4032 (($) NIL (|has| |#2| (-508)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2604 (((-108) $) NIL (|has| |#2| (-759)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| |#2| (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| |#2| (-817 (-355))))) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL)) (-2785 ((|#2| $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| |#2| (-1063)))) (-4114 (((-108) $) NIL (|has| |#2| (-759)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL (|has| |#2| (-786)))) (-2062 (($ $ $) NIL (|has| |#2| (-786)))) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 49)) (-2262 (($) NIL (|has| |#2| (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL (|has| |#2| (-284)))) (-3722 ((|#2| $) NIL (|has| |#2| (-508)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2679 (($ $ (-589 |#2|) (-589 |#2|)) NIL (|has| |#2| (-286 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-286 |#2|))) (($ $ (-271 |#2|)) NIL (|has| |#2| (-286 |#2|))) (($ $ (-589 (-271 |#2|))) NIL (|has| |#2| (-286 |#2|))) (($ $ (-589 (-1087)) (-589 |#2|)) NIL (|has| |#2| (-484 (-1087) |#2|))) (($ $ (-1087) |#2|) NIL (|has| |#2| (-484 (-1087) |#2|)))) (-1972 (((-710) $) NIL)) (-3223 (($ $ |#2|) NIL (|has| |#2| (-263 |#2| |#2|)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $) NIL (|has| |#2| (-211))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3414 (($ $) NIL)) (-2797 ((|#2| $) NIL)) (-3663 (((-823 (-523)) $) NIL (|has| |#2| (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| |#2| (-564 (-823 (-355))))) (((-499) $) NIL (|has| |#2| (-564 (-499)))) (((-355) $) NIL (|has| |#2| (-949))) (((-203) $) NIL (|has| |#2| (-949)))) (-2947 (((-159 (-383 (-523))) $) 68)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#2| (-840))))) (-1458 (((-794) $) 86) (($ (-523)) 19) (($ $) NIL) (($ (-383 (-523))) 24) (($ |#2|) 18) (($ (-1087)) NIL (|has| |#2| (-964 (-1087))))) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#2| (-840))) (|has| |#2| (-134))))) (-1621 (((-710)) NIL)) (-1886 ((|#2| $) NIL (|has| |#2| (-508)))) (-1704 (((-108) $ $) NIL)) (-2562 (((-383 (-523)) $ (-523)) 60)) (-2619 (($ $) NIL (|has| |#2| (-759)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 14 T CONST)) (-2767 (($) 16 T CONST)) (-2862 (($ $) NIL (|has| |#2| (-211))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4043 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3983 (((-108) $ $) 35)) (-4030 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4098 (($ $ $) 23) (($ |#2| |#2|) 54)) (-4087 (($ $) 39) (($ $ $) 41)) (-4075 (($ $ $) 37)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) 50)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 42) (($ $ $) 44) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) +(((-803 |#1| |#2|) (-13 (-921 |#2|) (-10 -8 (-15 -2562 ((-383 (-523)) $ (-523))) (-15 -2947 ((-159 (-383 (-523))) $)) (-15 -1819 ($ $)) (-15 -1819 ($ (-523) $)))) (-523) (-800 |#1|)) (T -803)) +((-2562 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-383 (-523))) (-5 *1 (-803 *4 *5)) (-5 *3 (-523)) (-4 *5 (-800 *4)))) (-2947 (*1 *2 *1) (-12 (-14 *3 (-523)) (-5 *2 (-159 (-383 (-523)))) (-5 *1 (-803 *3 *4)) (-4 *4 (-800 *3)))) (-1819 (*1 *1 *1) (-12 (-14 *2 (-523)) (-5 *1 (-803 *2 *3)) (-4 *3 (-800 *2)))) (-1819 (*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-14 *3 *2) (-5 *1 (-803 *3 *4)) (-4 *4 (-800 *3))))) +(-13 (-921 |#2|) (-10 -8 (-15 -2562 ((-383 (-523)) $ (-523))) (-15 -2947 ((-159 (-383 (-523))) $)) (-15 -1819 ($ $)) (-15 -1819 ($ (-523) $)))) +((-3924 (((-108) $ $) NIL (-12 (|has| |#1| (-1016)) (|has| |#2| (-1016))))) (-1532 ((|#2| $) 12)) (-3908 (($ |#1| |#2|) 9)) (-3779 (((-1070) $) NIL (-12 (|has| |#1| (-1016)) (|has| |#2| (-1016))))) (-2783 (((-1034) $) NIL (-12 (|has| |#1| (-1016)) (|has| |#2| (-1016))))) (-1738 ((|#1| $) 11)) (-1472 (($ |#1| |#2|) 10)) (-1458 (((-794) $) 18 (-3262 (-12 (|has| |#1| (-563 (-794))) (|has| |#2| (-563 (-794)))) (-12 (|has| |#1| (-1016)) (|has| |#2| (-1016)))))) (-3983 (((-108) $ $) 22 (-12 (|has| |#1| (-1016)) (|has| |#2| (-1016)))))) +(((-804 |#1| |#2|) (-13 (-1122) (-10 -8 (IF (|has| |#1| (-563 (-794))) (IF (|has| |#2| (-563 (-794))) (-6 (-563 (-794))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1016)) (IF (|has| |#2| (-1016)) (-6 (-1016)) |%noBranch|) |%noBranch|) (-15 -3908 ($ |#1| |#2|)) (-15 -1472 ($ |#1| |#2|)) (-15 -1738 (|#1| $)) (-15 -1532 (|#2| $)))) (-1122) (-1122)) (T -804)) +((-3908 (*1 *1 *2 *3) (-12 (-5 *1 (-804 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-1472 (*1 *1 *2 *3) (-12 (-5 *1 (-804 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-1738 (*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-804 *2 *3)) (-4 *3 (-1122)))) (-1532 (*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-804 *3 *2)) (-4 *3 (-1122))))) +(-13 (-1122) (-10 -8 (IF (|has| |#1| (-563 (-794))) (IF (|has| |#2| (-563 (-794))) (-6 (-563 (-794))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1016)) (IF (|has| |#2| (-1016)) (-6 (-1016)) |%noBranch|) |%noBranch|) (-15 -3908 ($ |#1| |#2|)) (-15 -1472 ($ |#1| |#2|)) (-15 -1738 (|#1| $)) (-15 -1532 (|#2| $)))) +((-3924 (((-108) $ $) NIL)) (-2398 (((-523) $) 15)) (-2542 (($ (-144)) 11)) (-3573 (($ (-144)) 12)) (-3779 (((-1070) $) NIL)) (-1804 (((-144) $) 13)) (-2783 (((-1034) $) NIL)) (-1346 (($ (-144)) 9)) (-3258 (($ (-144)) 8)) (-1458 (((-794) $) 23) (($ (-144)) 16)) (-1427 (($ (-144)) 10)) (-3983 (((-108) $ $) NIL))) +(((-805) (-13 (-1016) (-10 -8 (-15 -3258 ($ (-144))) (-15 -1346 ($ (-144))) (-15 -1427 ($ (-144))) (-15 -2542 ($ (-144))) (-15 -3573 ($ (-144))) (-15 -1804 ((-144) $)) (-15 -2398 ((-523) $)) (-15 -1458 ($ (-144)))))) (T -805)) +((-3258 (*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) (-1346 (*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) (-1427 (*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) (-2542 (*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) (-1804 (*1 *2 *1) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) (-2398 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-805)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805))))) +(-13 (-1016) (-10 -8 (-15 -3258 ($ (-144))) (-15 -1346 ($ (-144))) (-15 -1427 ($ (-144))) (-15 -2542 ($ (-144))) (-15 -3573 ($ (-144))) (-15 -1804 ((-144) $)) (-15 -2398 ((-523) $)) (-15 -1458 ($ (-144))))) +((-1458 (((-292 (-523)) (-383 (-883 (-47)))) 21) (((-292 (-523)) (-883 (-47))) 16))) +(((-806) (-10 -7 (-15 -1458 ((-292 (-523)) (-883 (-47)))) (-15 -1458 ((-292 (-523)) (-383 (-883 (-47))))))) (T -806)) +((-1458 (*1 *2 *3) (-12 (-5 *3 (-383 (-883 (-47)))) (-5 *2 (-292 (-523))) (-5 *1 (-806)))) (-1458 (*1 *2 *3) (-12 (-5 *3 (-883 (-47))) (-5 *2 (-292 (-523))) (-5 *1 (-806))))) +(-10 -7 (-15 -1458 ((-292 (-523)) (-883 (-47)))) (-15 -1458 ((-292 (-523)) (-383 (-883 (-47)))))) +((-3612 (((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|)) 14))) +(((-807 |#1| |#2|) (-10 -7 (-15 -3612 ((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|)))) (-1122) (-1122)) (T -807)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-808 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-808 *6)) (-5 *1 (-807 *5 *6))))) +(-10 -7 (-15 -3612 ((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|)))) +((-3349 (($ |#1| |#1|) 8)) (-3038 ((|#1| $ (-710)) 10))) +(((-808 |#1|) (-10 -8 (-15 -3349 ($ |#1| |#1|)) (-15 -3038 (|#1| $ (-710)))) (-1122)) (T -808)) +((-3038 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *1 (-808 *2)) (-4 *2 (-1122)))) (-3349 (*1 *1 *2 *2) (-12 (-5 *1 (-808 *2)) (-4 *2 (-1122))))) +(-10 -8 (-15 -3349 ($ |#1| |#1|)) (-15 -3038 (|#1| $ (-710)))) +((-3612 (((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)) 14))) +(((-809 |#1| |#2|) (-10 -7 (-15 -3612 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)))) (-1122) (-1122)) (T -809)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-810 *6)) (-5 *1 (-809 *5 *6))))) +(-10 -7 (-15 -3612 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)))) +((-3349 (($ |#1| |#1| |#1|) 8)) (-3038 ((|#1| $ (-710)) 10))) +(((-810 |#1|) (-10 -8 (-15 -3349 ($ |#1| |#1| |#1|)) (-15 -3038 (|#1| $ (-710)))) (-1122)) (T -810)) +((-3038 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *1 (-810 *2)) (-4 *2 (-1122)))) (-3349 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1122))))) +(-10 -8 (-15 -3349 ($ |#1| |#1| |#1|)) (-15 -3038 (|#1| $ (-710)))) +((-1750 (((-589 (-1092)) (-1070)) 8))) +(((-811) (-10 -7 (-15 -1750 ((-589 (-1092)) (-1070))))) (T -811)) +((-1750 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-589 (-1092))) (-5 *1 (-811))))) +(-10 -7 (-15 -1750 ((-589 (-1092)) (-1070)))) +((-3612 (((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|)) 14))) +(((-812 |#1| |#2|) (-10 -7 (-15 -3612 ((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|)))) (-1122) (-1122)) (T -812)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-813 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-813 *6)) (-5 *1 (-812 *5 *6))))) +(-10 -7 (-15 -3612 ((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|)))) +((-1537 (($ |#1| |#1| |#1|) 8)) (-3038 ((|#1| $ (-710)) 10))) +(((-813 |#1|) (-10 -8 (-15 -1537 ($ |#1| |#1| |#1|)) (-15 -3038 (|#1| $ (-710)))) (-1122)) (T -813)) +((-3038 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *1 (-813 *2)) (-4 *2 (-1122)))) (-1537 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1122))))) +(-10 -8 (-15 -1537 ($ |#1| |#1| |#1|)) (-15 -3038 (|#1| $ (-710)))) +((-2993 (((-1068 (-589 (-523))) (-589 (-523)) (-1068 (-589 (-523)))) 32)) (-2104 (((-1068 (-589 (-523))) (-589 (-523)) (-589 (-523))) 28)) (-2449 (((-1068 (-589 (-523))) (-589 (-523))) 41) (((-1068 (-589 (-523))) (-589 (-523)) (-589 (-523))) 40)) (-3701 (((-1068 (-589 (-523))) (-523)) 42)) (-3322 (((-1068 (-589 (-523))) (-523) (-523)) 22) (((-1068 (-589 (-523))) (-523)) 16) (((-1068 (-589 (-523))) (-523) (-523) (-523)) 12)) (-2991 (((-1068 (-589 (-523))) (-1068 (-589 (-523)))) 26)) (-3208 (((-589 (-523)) (-589 (-523))) 25))) +(((-814) (-10 -7 (-15 -3322 ((-1068 (-589 (-523))) (-523) (-523) (-523))) (-15 -3322 ((-1068 (-589 (-523))) (-523))) (-15 -3322 ((-1068 (-589 (-523))) (-523) (-523))) (-15 -3208 ((-589 (-523)) (-589 (-523)))) (-15 -2991 ((-1068 (-589 (-523))) (-1068 (-589 (-523))))) (-15 -2104 ((-1068 (-589 (-523))) (-589 (-523)) (-589 (-523)))) (-15 -2993 ((-1068 (-589 (-523))) (-589 (-523)) (-1068 (-589 (-523))))) (-15 -2449 ((-1068 (-589 (-523))) (-589 (-523)) (-589 (-523)))) (-15 -2449 ((-1068 (-589 (-523))) (-589 (-523)))) (-15 -3701 ((-1068 (-589 (-523))) (-523))))) (T -814)) +((-3701 (*1 *2 *3) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523)))) (-2449 (*1 *2 *3) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-589 (-523))))) (-2449 (*1 *2 *3 *3) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-589 (-523))))) (-2993 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *3 (-589 (-523))) (-5 *1 (-814)))) (-2104 (*1 *2 *3 *3) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-589 (-523))))) (-2991 (*1 *2 *2) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)))) (-3208 (*1 *2 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-814)))) (-3322 (*1 *2 *3 *3) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523)))) (-3322 (*1 *2 *3) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523)))) (-3322 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523))))) +(-10 -7 (-15 -3322 ((-1068 (-589 (-523))) (-523) (-523) (-523))) (-15 -3322 ((-1068 (-589 (-523))) (-523))) (-15 -3322 ((-1068 (-589 (-523))) (-523) (-523))) (-15 -3208 ((-589 (-523)) (-589 (-523)))) (-15 -2991 ((-1068 (-589 (-523))) (-1068 (-589 (-523))))) (-15 -2104 ((-1068 (-589 (-523))) (-589 (-523)) (-589 (-523)))) (-15 -2993 ((-1068 (-589 (-523))) (-589 (-523)) (-1068 (-589 (-523))))) (-15 -2449 ((-1068 (-589 (-523))) (-589 (-523)) (-589 (-523)))) (-15 -2449 ((-1068 (-589 (-523))) (-589 (-523)))) (-15 -3701 ((-1068 (-589 (-523))) (-523)))) +((-3663 (((-823 (-355)) $) 9 (|has| |#1| (-564 (-823 (-355))))) (((-823 (-523)) $) 8 (|has| |#1| (-564 (-823 (-523))))))) +(((-815 |#1|) (-129) (-1122)) (T -815)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-564 (-823 (-523)))) (-6 (-564 (-823 (-523)))) |%noBranch|) (IF (|has| |t#1| (-564 (-823 (-355)))) (-6 (-564 (-823 (-355)))) |%noBranch|))) +(((-564 (-823 (-355))) |has| |#1| (-564 (-823 (-355)))) ((-564 (-823 (-523))) |has| |#1| (-564 (-823 (-523))))) +((-3924 (((-108) $ $) NIL)) (-3052 (($) 14)) (-2941 (($ (-820 |#1| |#2|) (-820 |#1| |#3|)) 27)) (-1384 (((-820 |#1| |#3|) $) 16)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1489 (((-108) $) 22)) (-2494 (($) 19)) (-1458 (((-794) $) 30)) (-2163 (((-820 |#1| |#2|) $) 15)) (-3983 (((-108) $ $) 25))) +(((-816 |#1| |#2| |#3|) (-13 (-1016) (-10 -8 (-15 -1489 ((-108) $)) (-15 -2494 ($)) (-15 -3052 ($)) (-15 -2941 ($ (-820 |#1| |#2|) (-820 |#1| |#3|))) (-15 -2163 ((-820 |#1| |#2|) $)) (-15 -1384 ((-820 |#1| |#3|) $)))) (-1016) (-1016) (-609 |#2|)) (T -816)) +((-1489 (*1 *2 *1) (-12 (-4 *4 (-1016)) (-5 *2 (-108)) (-5 *1 (-816 *3 *4 *5)) (-4 *3 (-1016)) (-4 *5 (-609 *4)))) (-2494 (*1 *1) (-12 (-4 *3 (-1016)) (-5 *1 (-816 *2 *3 *4)) (-4 *2 (-1016)) (-4 *4 (-609 *3)))) (-3052 (*1 *1) (-12 (-4 *3 (-1016)) (-5 *1 (-816 *2 *3 *4)) (-4 *2 (-1016)) (-4 *4 (-609 *3)))) (-2941 (*1 *1 *2 *3) (-12 (-5 *2 (-820 *4 *5)) (-5 *3 (-820 *4 *6)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-609 *5)) (-5 *1 (-816 *4 *5 *6)))) (-2163 (*1 *2 *1) (-12 (-4 *4 (-1016)) (-5 *2 (-820 *3 *4)) (-5 *1 (-816 *3 *4 *5)) (-4 *3 (-1016)) (-4 *5 (-609 *4)))) (-1384 (*1 *2 *1) (-12 (-4 *4 (-1016)) (-5 *2 (-820 *3 *5)) (-5 *1 (-816 *3 *4 *5)) (-4 *3 (-1016)) (-4 *5 (-609 *4))))) +(-13 (-1016) (-10 -8 (-15 -1489 ((-108) $)) (-15 -2494 ($)) (-15 -3052 ($)) (-15 -2941 ($ (-820 |#1| |#2|) (-820 |#1| |#3|))) (-15 -2163 ((-820 |#1| |#2|) $)) (-15 -1384 ((-820 |#1| |#3|) $)))) +((-3924 (((-108) $ $) 7)) (-2130 (((-820 |#1| $) $ (-823 |#1|) (-820 |#1| $)) 13)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 6))) +(((-817 |#1|) (-129) (-1016)) (T -817)) +((-2130 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-820 *4 *1)) (-5 *3 (-823 *4)) (-4 *1 (-817 *4)) (-4 *4 (-1016))))) +(-13 (-1016) (-10 -8 (-15 -2130 ((-820 |t#1| $) $ (-823 |t#1|) (-820 |t#1| $))))) +(((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-3259 (((-108) (-589 |#2|) |#3|) 23) (((-108) |#2| |#3|) 18)) (-3267 (((-820 |#1| |#2|) |#2| |#3|) 43 (-12 (-3900 (|has| |#2| (-964 (-1087)))) (-3900 (|has| |#2| (-973))))) (((-589 (-271 (-883 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-973)) (-3900 (|has| |#2| (-964 (-1087)))))) (((-589 (-271 |#2|)) |#2| |#3|) 35 (|has| |#2| (-964 (-1087)))) (((-816 |#1| |#2| (-589 |#2|)) (-589 |#2|) |#3|) 21))) +(((-818 |#1| |#2| |#3|) (-10 -7 (-15 -3259 ((-108) |#2| |#3|)) (-15 -3259 ((-108) (-589 |#2|) |#3|)) (-15 -3267 ((-816 |#1| |#2| (-589 |#2|)) (-589 |#2|) |#3|)) (IF (|has| |#2| (-964 (-1087))) (-15 -3267 ((-589 (-271 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-973)) (-15 -3267 ((-589 (-271 (-883 |#2|))) |#2| |#3|)) (-15 -3267 ((-820 |#1| |#2|) |#2| |#3|))))) (-1016) (-817 |#1|) (-564 (-823 |#1|))) (T -818)) +((-3267 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-5 *2 (-820 *5 *3)) (-5 *1 (-818 *5 *3 *4)) (-3900 (-4 *3 (-964 (-1087)))) (-3900 (-4 *3 (-973))) (-4 *3 (-817 *5)) (-4 *4 (-564 (-823 *5))))) (-3267 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-5 *2 (-589 (-271 (-883 *3)))) (-5 *1 (-818 *5 *3 *4)) (-4 *3 (-973)) (-3900 (-4 *3 (-964 (-1087)))) (-4 *3 (-817 *5)) (-4 *4 (-564 (-823 *5))))) (-3267 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-5 *2 (-589 (-271 *3))) (-5 *1 (-818 *5 *3 *4)) (-4 *3 (-964 (-1087))) (-4 *3 (-817 *5)) (-4 *4 (-564 (-823 *5))))) (-3267 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-4 *6 (-817 *5)) (-5 *2 (-816 *5 *6 (-589 *6))) (-5 *1 (-818 *5 *6 *4)) (-5 *3 (-589 *6)) (-4 *4 (-564 (-823 *5))))) (-3259 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *6)) (-4 *6 (-817 *5)) (-4 *5 (-1016)) (-5 *2 (-108)) (-5 *1 (-818 *5 *6 *4)) (-4 *4 (-564 (-823 *5))))) (-3259 (*1 *2 *3 *4) (-12 (-4 *5 (-1016)) (-5 *2 (-108)) (-5 *1 (-818 *5 *3 *4)) (-4 *3 (-817 *5)) (-4 *4 (-564 (-823 *5)))))) +(-10 -7 (-15 -3259 ((-108) |#2| |#3|)) (-15 -3259 ((-108) (-589 |#2|) |#3|)) (-15 -3267 ((-816 |#1| |#2| (-589 |#2|)) (-589 |#2|) |#3|)) (IF (|has| |#2| (-964 (-1087))) (-15 -3267 ((-589 (-271 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-973)) (-15 -3267 ((-589 (-271 (-883 |#2|))) |#2| |#3|)) (-15 -3267 ((-820 |#1| |#2|) |#2| |#3|))))) +((-3612 (((-820 |#1| |#3|) (-1 |#3| |#2|) (-820 |#1| |#2|)) 21))) +(((-819 |#1| |#2| |#3|) (-10 -7 (-15 -3612 ((-820 |#1| |#3|) (-1 |#3| |#2|) (-820 |#1| |#2|)))) (-1016) (-1016) (-1016)) (T -819)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-820 *5 *6)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-820 *5 *7)) (-5 *1 (-819 *5 *6 *7))))) +(-10 -7 (-15 -3612 ((-820 |#1| |#3|) (-1 |#3| |#2|) (-820 |#1| |#2|)))) +((-3924 (((-108) $ $) NIL)) (-3288 (($ $ $) 37)) (-1473 (((-3 (-108) "failed") $ (-823 |#1|)) 34)) (-3052 (($) 11)) (-3779 (((-1070) $) NIL)) (-1447 (($ (-823 |#1|) |#2| $) 20)) (-2783 (((-1034) $) NIL)) (-3357 (((-3 |#2| "failed") (-823 |#1|) $) 48)) (-1489 (((-108) $) 14)) (-2494 (($) 12)) (-1887 (((-589 (-2 (|:| -1853 (-1087)) (|:| -2433 |#2|))) $) 25)) (-1472 (($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 |#2|)))) 23)) (-1458 (((-794) $) 42)) (-1847 (($ (-823 |#1|) |#2| $ |#2|) 46)) (-1711 (($ (-823 |#1|) |#2| $) 45)) (-3983 (((-108) $ $) 39))) +(((-820 |#1| |#2|) (-13 (-1016) (-10 -8 (-15 -1489 ((-108) $)) (-15 -2494 ($)) (-15 -3052 ($)) (-15 -3288 ($ $ $)) (-15 -3357 ((-3 |#2| "failed") (-823 |#1|) $)) (-15 -1711 ($ (-823 |#1|) |#2| $)) (-15 -1447 ($ (-823 |#1|) |#2| $)) (-15 -1847 ($ (-823 |#1|) |#2| $ |#2|)) (-15 -1887 ((-589 (-2 (|:| -1853 (-1087)) (|:| -2433 |#2|))) $)) (-15 -1472 ($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 |#2|))))) (-15 -1473 ((-3 (-108) "failed") $ (-823 |#1|))))) (-1016) (-1016)) (T -820)) +((-1489 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-2494 (*1 *1) (-12 (-5 *1 (-820 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-3052 (*1 *1) (-12 (-5 *1 (-820 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-3288 (*1 *1 *1 *1) (-12 (-5 *1 (-820 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-3357 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-4 *2 (-1016)) (-5 *1 (-820 *4 *2)))) (-1711 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-820 *4 *3)) (-4 *3 (-1016)))) (-1447 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-820 *4 *3)) (-4 *3 (-1016)))) (-1847 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-820 *4 *3)) (-4 *3 (-1016)))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 *4)))) (-5 *1 (-820 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-1472 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 *4)))) (-4 *4 (-1016)) (-5 *1 (-820 *3 *4)) (-4 *3 (-1016)))) (-1473 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-5 *2 (-108)) (-5 *1 (-820 *4 *5)) (-4 *5 (-1016))))) +(-13 (-1016) (-10 -8 (-15 -1489 ((-108) $)) (-15 -2494 ($)) (-15 -3052 ($)) (-15 -3288 ($ $ $)) (-15 -3357 ((-3 |#2| "failed") (-823 |#1|) $)) (-15 -1711 ($ (-823 |#1|) |#2| $)) (-15 -1447 ($ (-823 |#1|) |#2| $)) (-15 -1847 ($ (-823 |#1|) |#2| $ |#2|)) (-15 -1887 ((-589 (-2 (|:| -1853 (-1087)) (|:| -2433 |#2|))) $)) (-15 -1472 ($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 |#2|))))) (-15 -1473 ((-3 (-108) "failed") $ (-823 |#1|))))) +((-3547 (((-823 |#1|) (-823 |#1|) (-589 (-1087)) (-1 (-108) (-589 |#2|))) 30) (((-823 |#1|) (-823 |#1|) (-589 (-1 (-108) |#2|))) 42) (((-823 |#1|) (-823 |#1|) (-1 (-108) |#2|)) 33)) (-1473 (((-108) (-589 |#2|) (-823 |#1|)) 39) (((-108) |#2| (-823 |#1|)) 35)) (-3195 (((-1 (-108) |#2|) (-823 |#1|)) 14)) (-1200 (((-589 |#2|) (-823 |#1|)) 23)) (-3434 (((-823 |#1|) (-823 |#1|) |#2|) 19))) +(((-821 |#1| |#2|) (-10 -7 (-15 -3547 ((-823 |#1|) (-823 |#1|) (-1 (-108) |#2|))) (-15 -3547 ((-823 |#1|) (-823 |#1|) (-589 (-1 (-108) |#2|)))) (-15 -3547 ((-823 |#1|) (-823 |#1|) (-589 (-1087)) (-1 (-108) (-589 |#2|)))) (-15 -3195 ((-1 (-108) |#2|) (-823 |#1|))) (-15 -1473 ((-108) |#2| (-823 |#1|))) (-15 -1473 ((-108) (-589 |#2|) (-823 |#1|))) (-15 -3434 ((-823 |#1|) (-823 |#1|) |#2|)) (-15 -1200 ((-589 |#2|) (-823 |#1|)))) (-1016) (-1122)) (T -821)) +((-1200 (*1 *2 *3) (-12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-5 *2 (-589 *5)) (-5 *1 (-821 *4 *5)) (-4 *5 (-1122)))) (-3434 (*1 *2 *2 *3) (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-821 *4 *3)) (-4 *3 (-1122)))) (-1473 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *6)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-4 *6 (-1122)) (-5 *2 (-108)) (-5 *1 (-821 *5 *6)))) (-1473 (*1 *2 *3 *4) (-12 (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-5 *2 (-108)) (-5 *1 (-821 *5 *3)) (-4 *3 (-1122)))) (-3195 (*1 *2 *3) (-12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-821 *4 *5)) (-4 *5 (-1122)))) (-3547 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-823 *5)) (-5 *3 (-589 (-1087))) (-5 *4 (-1 (-108) (-589 *6))) (-4 *5 (-1016)) (-4 *6 (-1122)) (-5 *1 (-821 *5 *6)))) (-3547 (*1 *2 *2 *3) (-12 (-5 *2 (-823 *4)) (-5 *3 (-589 (-1 (-108) *5))) (-4 *4 (-1016)) (-4 *5 (-1122)) (-5 *1 (-821 *4 *5)))) (-3547 (*1 *2 *2 *3) (-12 (-5 *2 (-823 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1016)) (-4 *5 (-1122)) (-5 *1 (-821 *4 *5))))) +(-10 -7 (-15 -3547 ((-823 |#1|) (-823 |#1|) (-1 (-108) |#2|))) (-15 -3547 ((-823 |#1|) (-823 |#1|) (-589 (-1 (-108) |#2|)))) (-15 -3547 ((-823 |#1|) (-823 |#1|) (-589 (-1087)) (-1 (-108) (-589 |#2|)))) (-15 -3195 ((-1 (-108) |#2|) (-823 |#1|))) (-15 -1473 ((-108) |#2| (-823 |#1|))) (-15 -1473 ((-108) (-589 |#2|) (-823 |#1|))) (-15 -3434 ((-823 |#1|) (-823 |#1|) |#2|)) (-15 -1200 ((-589 |#2|) (-823 |#1|)))) +((-3612 (((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|)) 17))) +(((-822 |#1| |#2|) (-10 -7 (-15 -3612 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|)))) (-1016) (-1016)) (T -822)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-823 *6)) (-5 *1 (-822 *5 *6))))) +(-10 -7 (-15 -3612 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|)))) +((-3924 (((-108) $ $) NIL)) (-1817 (($ $ (-589 (-51))) 63)) (-1957 (((-589 $) $) 117)) (-3459 (((-2 (|:| |var| (-589 (-1087))) (|:| |pred| (-51))) $) 23)) (-3129 (((-108) $) 30)) (-3325 (($ $ (-589 (-1087)) (-51)) 25)) (-3095 (($ $ (-589 (-51))) 62)) (-3517 (((-3 |#1| "failed") $) 60) (((-3 (-1087) "failed") $) 139)) (-3474 ((|#1| $) 56) (((-1087) $) NIL)) (-3407 (($ $) 107)) (-1297 (((-108) $) 46)) (-1789 (((-589 (-51)) $) 44)) (-2278 (($ (-1087) (-108) (-108) (-108)) 64)) (-1514 (((-3 (-589 $) "failed") (-589 $)) 71)) (-2115 (((-108) $) 49)) (-2658 (((-108) $) 48)) (-3779 (((-1070) $) NIL)) (-3226 (((-3 (-589 $) "failed") $) 35)) (-2463 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 42)) (-1295 (((-3 (-2 (|:| |val| $) (|:| -2735 $)) "failed") $) 82)) (-4006 (((-3 (-589 $) "failed") $) 32)) (-2743 (((-3 (-589 $) "failed") $ (-110)) 106) (((-3 (-2 (|:| -3013 (-110)) (|:| |arg| (-589 $))) "failed") $) 94)) (-1548 (((-3 (-589 $) "failed") $) 36)) (-2630 (((-3 (-2 (|:| |val| $) (|:| -2735 (-710))) "failed") $) 39)) (-3182 (((-108) $) 29)) (-2783 (((-1034) $) NIL)) (-2044 (((-108) $) 21)) (-3594 (((-108) $) 45)) (-3982 (((-589 (-51)) $) 110)) (-3899 (((-108) $) 47)) (-3223 (($ (-110) (-589 $)) 91)) (-1583 (((-710) $) 28)) (-1664 (($ $) 61)) (-3663 (($ (-589 $)) 58)) (-1869 (((-108) $) 26)) (-1458 (((-794) $) 51) (($ |#1|) 18) (($ (-1087)) 65)) (-3434 (($ $ (-51)) 109)) (-2756 (($) 90 T CONST)) (-2767 (($) 72 T CONST)) (-3983 (((-108) $ $) 78)) (-4098 (($ $ $) 99)) (-4075 (($ $ $) 103)) (** (($ $ (-710)) 98) (($ $ $) 52)) (* (($ $ $) 104))) +(((-823 |#1|) (-13 (-1016) (-964 |#1|) (-964 (-1087)) (-10 -8 (-15 0 ($) -3059) (-15 1 ($) -3059) (-15 -4006 ((-3 (-589 $) "failed") $)) (-15 -3226 ((-3 (-589 $) "failed") $)) (-15 -2743 ((-3 (-589 $) "failed") $ (-110))) (-15 -2743 ((-3 (-2 (|:| -3013 (-110)) (|:| |arg| (-589 $))) "failed") $)) (-15 -2630 ((-3 (-2 (|:| |val| $) (|:| -2735 (-710))) "failed") $)) (-15 -2463 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1548 ((-3 (-589 $) "failed") $)) (-15 -1295 ((-3 (-2 (|:| |val| $) (|:| -2735 $)) "failed") $)) (-15 -3223 ($ (-110) (-589 $))) (-15 -4075 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-710))) (-15 ** ($ $ $)) (-15 -4098 ($ $ $)) (-15 -1583 ((-710) $)) (-15 -3663 ($ (-589 $))) (-15 -1664 ($ $)) (-15 -3182 ((-108) $)) (-15 -1297 ((-108) $)) (-15 -3129 ((-108) $)) (-15 -1869 ((-108) $)) (-15 -3899 ((-108) $)) (-15 -2658 ((-108) $)) (-15 -2115 ((-108) $)) (-15 -3594 ((-108) $)) (-15 -1789 ((-589 (-51)) $)) (-15 -3095 ($ $ (-589 (-51)))) (-15 -1817 ($ $ (-589 (-51)))) (-15 -2278 ($ (-1087) (-108) (-108) (-108))) (-15 -3325 ($ $ (-589 (-1087)) (-51))) (-15 -3459 ((-2 (|:| |var| (-589 (-1087))) (|:| |pred| (-51))) $)) (-15 -2044 ((-108) $)) (-15 -3407 ($ $)) (-15 -3434 ($ $ (-51))) (-15 -3982 ((-589 (-51)) $)) (-15 -1957 ((-589 $) $)) (-15 -1514 ((-3 (-589 $) "failed") (-589 $))))) (-1016)) (T -823)) +((-2756 (*1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (-2767 (*1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (-4006 (*1 *2 *1) (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3226 (*1 *2 *1) (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-2743 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-589 (-823 *4))) (-5 *1 (-823 *4)) (-4 *4 (-1016)))) (-2743 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3013 (-110)) (|:| |arg| (-589 (-823 *3))))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-2630 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-823 *3)) (|:| -2735 (-710)))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-2463 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-823 *3)) (|:| |den| (-823 *3)))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1548 (*1 *2 *1) (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1295 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-823 *3)) (|:| -2735 (-823 *3)))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3223 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-589 (-823 *4))) (-5 *1 (-823 *4)) (-4 *4 (-1016)))) (-4075 (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (-4098 (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1664 (*1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (-3182 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1297 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3129 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3899 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3095 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1817 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-2278 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-108)) (-5 *1 (-823 *4)) (-4 *4 (-1016)))) (-3325 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-51)) (-5 *1 (-823 *4)) (-4 *4 (-1016)))) (-3459 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-589 (-1087))) (|:| |pred| (-51)))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3407 (*1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) (-3434 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-3982 (*1 *2 *1) (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1957 (*1 *2 *1) (-12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) (-1514 (*1 *2 *2) (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(-13 (-1016) (-964 |#1|) (-964 (-1087)) (-10 -8 (-15 (-2756) ($) -3059) (-15 (-2767) ($) -3059) (-15 -4006 ((-3 (-589 $) "failed") $)) (-15 -3226 ((-3 (-589 $) "failed") $)) (-15 -2743 ((-3 (-589 $) "failed") $ (-110))) (-15 -2743 ((-3 (-2 (|:| -3013 (-110)) (|:| |arg| (-589 $))) "failed") $)) (-15 -2630 ((-3 (-2 (|:| |val| $) (|:| -2735 (-710))) "failed") $)) (-15 -2463 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1548 ((-3 (-589 $) "failed") $)) (-15 -1295 ((-3 (-2 (|:| |val| $) (|:| -2735 $)) "failed") $)) (-15 -3223 ($ (-110) (-589 $))) (-15 -4075 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-710))) (-15 ** ($ $ $)) (-15 -4098 ($ $ $)) (-15 -1583 ((-710) $)) (-15 -3663 ($ (-589 $))) (-15 -1664 ($ $)) (-15 -3182 ((-108) $)) (-15 -1297 ((-108) $)) (-15 -3129 ((-108) $)) (-15 -1869 ((-108) $)) (-15 -3899 ((-108) $)) (-15 -2658 ((-108) $)) (-15 -2115 ((-108) $)) (-15 -3594 ((-108) $)) (-15 -1789 ((-589 (-51)) $)) (-15 -3095 ($ $ (-589 (-51)))) (-15 -1817 ($ $ (-589 (-51)))) (-15 -2278 ($ (-1087) (-108) (-108) (-108))) (-15 -3325 ($ $ (-589 (-1087)) (-51))) (-15 -3459 ((-2 (|:| |var| (-589 (-1087))) (|:| |pred| (-51))) $)) (-15 -2044 ((-108) $)) (-15 -3407 ($ $)) (-15 -3434 ($ $ (-51))) (-15 -3982 ((-589 (-51)) $)) (-15 -1957 ((-589 $) $)) (-15 -1514 ((-3 (-589 $) "failed") (-589 $))))) +((-3924 (((-108) $ $) NIL)) (-2061 (((-589 |#1|) $) 16)) (-1406 (((-108) $) 38)) (-3517 (((-3 (-614 |#1|) "failed") $) 41)) (-3474 (((-614 |#1|) $) 39)) (-1751 (($ $) 18)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-2996 (((-710) $) 45)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 (((-614 |#1|) $) 17)) (-1458 (((-794) $) 37) (($ (-614 |#1|)) 21) (((-758 |#1|) $) 27) (($ |#1|) 20)) (-2767 (($) 8 T CONST)) (-1643 (((-589 (-614 |#1|)) $) 23)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 11)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 48))) +(((-824 |#1|) (-13 (-786) (-964 (-614 |#1|)) (-10 -8 (-15 1 ($) -3059) (-15 -1458 ((-758 |#1|) $)) (-15 -1458 ($ |#1|)) (-15 -1738 ((-614 |#1|) $)) (-15 -2996 ((-710) $)) (-15 -1643 ((-589 (-614 |#1|)) $)) (-15 -1751 ($ $)) (-15 -1406 ((-108) $)) (-15 -2061 ((-589 |#1|) $)))) (-786)) (T -824)) +((-2767 (*1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-786)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-758 *3)) (-5 *1 (-824 *3)) (-4 *3 (-786)))) (-1458 (*1 *1 *2) (-12 (-5 *1 (-824 *2)) (-4 *2 (-786)))) (-1738 (*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-824 *3)) (-4 *3 (-786)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-824 *3)) (-4 *3 (-786)))) (-1643 (*1 *2 *1) (-12 (-5 *2 (-589 (-614 *3))) (-5 *1 (-824 *3)) (-4 *3 (-786)))) (-1751 (*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-786)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-824 *3)) (-4 *3 (-786)))) (-2061 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-824 *3)) (-4 *3 (-786))))) +(-13 (-786) (-964 (-614 |#1|)) (-10 -8 (-15 (-2767) ($) -3059) (-15 -1458 ((-758 |#1|) $)) (-15 -1458 ($ |#1|)) (-15 -1738 ((-614 |#1|) $)) (-15 -2996 ((-710) $)) (-15 -1643 ((-589 (-614 |#1|)) $)) (-15 -1751 ($ $)) (-15 -1406 ((-108) $)) (-15 -2061 ((-589 |#1|) $)))) +((-4100 ((|#1| |#1| |#1|) 20))) +(((-825 |#1| |#2|) (-10 -7 (-15 -4100 (|#1| |#1| |#1|))) (-1144 |#2|) (-973)) (T -825)) +((-4100 (*1 *2 *2 *2) (-12 (-4 *3 (-973)) (-5 *1 (-825 *2 *3)) (-4 *2 (-1144 *3))))) +(-10 -7 (-15 -4100 (|#1| |#1| |#1|))) +((-3924 (((-108) $ $) 7)) (-1228 (((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) 14)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-1864 (((-962) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) 13)) (-3983 (((-108) $ $) 6))) +(((-826) (-129)) (T -826)) +((-1228 (*1 *2 *3 *4) (-12 (-4 *1 (-826)) (-5 *3 (-985)) (-5 *4 (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) (-5 *2 (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)))))) (-1864 (*1 *2 *3) (-12 (-4 *1 (-826)) (-5 *3 (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) (-5 *2 (-962))))) +(-13 (-1016) (-10 -7 (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| |explanations| (-1070))) (-985) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))))) (-15 -1864 ((-962) (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))))))) +(((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-2253 ((|#1| |#1| (-710)) 24)) (-1338 (((-3 |#1| "failed") |#1| |#1|) 23)) (-2274 (((-3 (-2 (|:| -3149 |#1|) (|:| -3159 |#1|)) "failed") |#1| (-710) (-710)) 27) (((-589 |#1|) |#1|) 29))) +(((-827 |#1| |#2|) (-10 -7 (-15 -2274 ((-589 |#1|) |#1|)) (-15 -2274 ((-3 (-2 (|:| -3149 |#1|) (|:| -3159 |#1|)) "failed") |#1| (-710) (-710))) (-15 -1338 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2253 (|#1| |#1| (-710)))) (-1144 |#2|) (-339)) (T -827)) +((-2253 (*1 *2 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-339)) (-5 *1 (-827 *2 *4)) (-4 *2 (-1144 *4)))) (-1338 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-339)) (-5 *1 (-827 *2 *3)) (-4 *2 (-1144 *3)))) (-2274 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-710)) (-4 *5 (-339)) (-5 *2 (-2 (|:| -3149 *3) (|:| -3159 *3))) (-5 *1 (-827 *3 *5)) (-4 *3 (-1144 *5)))) (-2274 (*1 *2 *3) (-12 (-4 *4 (-339)) (-5 *2 (-589 *3)) (-5 *1 (-827 *3 *4)) (-4 *3 (-1144 *4))))) +(-10 -7 (-15 -2274 ((-589 |#1|) |#1|)) (-15 -2274 ((-3 (-2 (|:| -3149 |#1|) (|:| -3159 |#1|)) "failed") |#1| (-710) (-710))) (-15 -1338 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2253 (|#1| |#1| (-710)))) +((-1940 (((-962) (-355) (-355) (-355) (-355) (-710) (-710) (-589 (-292 (-355))) (-589 (-589 (-292 (-355)))) (-1070)) 92) (((-962) (-355) (-355) (-355) (-355) (-710) (-710) (-589 (-292 (-355))) (-589 (-589 (-292 (-355)))) (-1070) (-203)) 87) (((-962) (-829) (-985)) 76) (((-962) (-829)) 77)) (-1228 (((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-829) (-985)) 50) (((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-829)) 52))) +(((-828) (-10 -7 (-15 -1940 ((-962) (-829))) (-15 -1940 ((-962) (-829) (-985))) (-15 -1940 ((-962) (-355) (-355) (-355) (-355) (-710) (-710) (-589 (-292 (-355))) (-589 (-589 (-292 (-355)))) (-1070) (-203))) (-15 -1940 ((-962) (-355) (-355) (-355) (-355) (-710) (-710) (-589 (-292 (-355))) (-589 (-589 (-292 (-355)))) (-1070))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-829))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-829) (-985))))) (T -828)) +((-1228 (*1 *2 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-985)) (-5 *2 (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))))) (-5 *1 (-828)))) (-1228 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070))))) (-5 *1 (-828)))) (-1940 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-710)) (-5 *6 (-589 (-589 (-292 *3)))) (-5 *7 (-1070)) (-5 *5 (-589 (-292 (-355)))) (-5 *3 (-355)) (-5 *2 (-962)) (-5 *1 (-828)))) (-1940 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-710)) (-5 *6 (-589 (-589 (-292 *3)))) (-5 *7 (-1070)) (-5 *8 (-203)) (-5 *5 (-589 (-292 (-355)))) (-5 *3 (-355)) (-5 *2 (-962)) (-5 *1 (-828)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-985)) (-5 *2 (-962)) (-5 *1 (-828)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-962)) (-5 *1 (-828))))) +(-10 -7 (-15 -1940 ((-962) (-829))) (-15 -1940 ((-962) (-829) (-985))) (-15 -1940 ((-962) (-355) (-355) (-355) (-355) (-710) (-710) (-589 (-292 (-355))) (-589 (-589 (-292 (-355)))) (-1070) (-203))) (-15 -1940 ((-962) (-355) (-355) (-355) (-355) (-710) (-710) (-589 (-292 (-355))) (-589 (-589 (-292 (-355)))) (-1070))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-829))) (-15 -1228 ((-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) (|:| |explanations| (-589 (-1070)))) (-829) (-985)))) +((-3924 (((-108) $ $) NIL)) (-3474 (((-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))) $) 10)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 12) (($ (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) 9)) (-3983 (((-108) $ $) NIL))) +(((-829) (-13 (-1016) (-10 -8 (-15 -1458 ($ (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))))) (-15 -1458 ((-794) $)) (-15 -3474 ((-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))) $))))) (T -829)) +((-1458 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-829)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) (-5 *1 (-829)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203)))) (-5 *1 (-829))))) +(-13 (-1016) (-10 -8 (-15 -1458 ($ (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))))) (-15 -1458 ((-794) $)) (-15 -3474 ((-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| (-589 (-2 (|:| |start| (-203)) (|:| |finish| (-203)) (|:| |grid| (-710)) (|:| |boundaryType| (-523)) (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) (|:| |tol| (-203))) $)))) +((-3523 (($ $ |#2|) NIL) (($ $ (-589 |#2|)) 10) (($ $ |#2| (-710)) 12) (($ $ (-589 |#2|) (-589 (-710))) 15)) (-2862 (($ $ |#2|) 16) (($ $ (-589 |#2|)) 18) (($ $ |#2| (-710)) 19) (($ $ (-589 |#2|) (-589 (-710))) 21))) +(((-830 |#1| |#2|) (-10 -8 (-15 -2862 (|#1| |#1| (-589 |#2|) (-589 (-710)))) (-15 -2862 (|#1| |#1| |#2| (-710))) (-15 -2862 (|#1| |#1| (-589 |#2|))) (-15 -2862 (|#1| |#1| |#2|)) (-15 -3523 (|#1| |#1| (-589 |#2|) (-589 (-710)))) (-15 -3523 (|#1| |#1| |#2| (-710))) (-15 -3523 (|#1| |#1| (-589 |#2|))) (-15 -3523 (|#1| |#1| |#2|))) (-831 |#2|) (-1016)) (T -830)) +NIL +(-10 -8 (-15 -2862 (|#1| |#1| (-589 |#2|) (-589 (-710)))) (-15 -2862 (|#1| |#1| |#2| (-710))) (-15 -2862 (|#1| |#1| (-589 |#2|))) (-15 -2862 (|#1| |#1| |#2|)) (-15 -3523 (|#1| |#1| (-589 |#2|) (-589 (-710)))) (-15 -3523 (|#1| |#1| |#2| (-710))) (-15 -3523 (|#1| |#1| (-589 |#2|))) (-15 -3523 (|#1| |#1| |#2|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3523 (($ $ |#1|) 42) (($ $ (-589 |#1|)) 41) (($ $ |#1| (-710)) 40) (($ $ (-589 |#1|) (-589 (-710))) 39)) (-1458 (((-794) $) 11) (($ (-523)) 28)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ |#1|) 38) (($ $ (-589 |#1|)) 37) (($ $ |#1| (-710)) 36) (($ $ (-589 |#1|) (-589 (-710))) 35)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-831 |#1|) (-129) (-1016)) (T -831)) +((-3523 (*1 *1 *1 *2) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1016)))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *1 (-831 *3)) (-4 *3 (-1016)))) (-3523 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-831 *2)) (-4 *2 (-1016)))) (-3523 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *4)) (-5 *3 (-589 (-710))) (-4 *1 (-831 *4)) (-4 *4 (-1016)))) (-2862 (*1 *1 *1 *2) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1016)))) (-2862 (*1 *1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *1 (-831 *3)) (-4 *3 (-1016)))) (-2862 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-831 *2)) (-4 *2 (-1016)))) (-2862 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *4)) (-5 *3 (-589 (-710))) (-4 *1 (-831 *4)) (-4 *4 (-1016))))) +(-13 (-973) (-10 -8 (-15 -3523 ($ $ |t#1|)) (-15 -3523 ($ $ (-589 |t#1|))) (-15 -3523 ($ $ |t#1| (-710))) (-15 -3523 ($ $ (-589 |t#1|) (-589 (-710)))) (-15 -2862 ($ $ |t#1|)) (-15 -2862 ($ $ (-589 |t#1|))) (-15 -2862 ($ $ |t#1| (-710))) (-15 -2862 ($ $ (-589 |t#1|) (-589 (-710)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 $) . T) ((-666) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1733 ((|#1| $) 26)) (-3079 (((-108) $ (-710)) NIL)) (-1823 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-2541 (($ $ $) NIL (|has| $ (-6 -4245)))) (-2971 (($ $ $) NIL (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4245))) (($ $ "left" $) NIL (|has| $ (-6 -4245))) (($ $ "right" $) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3159 (($ $) 25)) (-2825 (($ |#1|) 12) (($ $ $) 17)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) NIL)) (-1238 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3149 (($ $) 23)) (-2726 (((-589 |#1|) $) NIL)) (-3555 (((-108) $) 20)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1549 (((-523) $ $) NIL)) (-2524 (((-108) $) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-1109 |#1|) $) 9) (((-794) $) 29 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) NIL)) (-3653 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 21 (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-832 |#1|) (-13 (-115 |#1|) (-10 -8 (-15 -2825 ($ |#1|)) (-15 -2825 ($ $ $)) (-15 -1458 ((-1109 |#1|) $)))) (-1016)) (T -832)) +((-2825 (*1 *1 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-1016)))) (-2825 (*1 *1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-1016)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1109 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1016))))) +(-13 (-115 |#1|) (-10 -8 (-15 -2825 ($ |#1|)) (-15 -2825 ($ $ $)) (-15 -1458 ((-1109 |#1|) $)))) +((-4021 ((|#2| (-1054 |#1| |#2|)) 41))) +(((-833 |#1| |#2|) (-10 -7 (-15 -4021 (|#2| (-1054 |#1| |#2|)))) (-852) (-13 (-973) (-10 -7 (-6 (-4246 "*"))))) (T -833)) +((-4021 (*1 *2 *3) (-12 (-5 *3 (-1054 *4 *2)) (-14 *4 (-852)) (-4 *2 (-13 (-973) (-10 -7 (-6 (-4246 "*"))))) (-5 *1 (-833 *4 *2))))) +(-10 -7 (-15 -4021 (|#2| (-1054 |#1| |#2|)))) +((-3924 (((-108) $ $) 7)) (-2518 (($) 20 T CONST)) (-2121 (((-3 $ "failed") $) 16)) (-1512 (((-1018 |#1|) $ |#1|) 35)) (-2023 (((-108) $) 19)) (-2454 (($ $ $) 33 (-3262 (|has| |#1| (-786)) (|has| |#1| (-344))))) (-2062 (($ $ $) 32 (-3262 (|has| |#1| (-786)) (|has| |#1| (-344))))) (-3779 (((-1070) $) 9)) (-3738 (($ $) 27)) (-2783 (((-1034) $) 10)) (-2679 ((|#1| $ |#1|) 37)) (-3223 ((|#1| $ |#1|) 36)) (-3770 (($ (-589 (-589 |#1|))) 38)) (-2348 (($ (-589 |#1|)) 39)) (-3208 (($ $ $) 23)) (-1714 (($ $ $) 22)) (-1458 (((-794) $) 11)) (-2364 (($ $ (-852)) 13) (($ $ (-710)) 17) (($ $ (-523)) 24)) (-2767 (($) 21 T CONST)) (-4043 (((-108) $ $) 30 (-3262 (|has| |#1| (-786)) (|has| |#1| (-344))))) (-4019 (((-108) $ $) 29 (-3262 (|has| |#1| (-786)) (|has| |#1| (-344))))) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 31 (-3262 (|has| |#1| (-786)) (|has| |#1| (-344))))) (-4007 (((-108) $ $) 34)) (-4098 (($ $ $) 26)) (** (($ $ (-852)) 14) (($ $ (-710)) 18) (($ $ (-523)) 25)) (* (($ $ $) 15))) +(((-834 |#1|) (-129) (-1016)) (T -834)) +((-2348 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-834 *3)))) (-3770 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-4 *1 (-834 *3)))) (-2679 (*1 *2 *1 *2) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1016)))) (-3223 (*1 *2 *1 *2) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1016)))) (-1512 (*1 *2 *1 *3) (-12 (-4 *1 (-834 *3)) (-4 *3 (-1016)) (-5 *2 (-1018 *3)))) (-4007 (*1 *2 *1 *1) (-12 (-4 *1 (-834 *3)) (-4 *3 (-1016)) (-5 *2 (-108))))) +(-13 (-448) (-10 -8 (-15 -2348 ($ (-589 |t#1|))) (-15 -3770 ($ (-589 (-589 |t#1|)))) (-15 -2679 (|t#1| $ |t#1|)) (-15 -3223 (|t#1| $ |t#1|)) (-15 -1512 ((-1018 |t#1|) $ |t#1|)) (-15 -4007 ((-108) $ $)) (IF (|has| |t#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-786)) |%noBranch|))) +(((-97) . T) ((-563 (-794)) . T) ((-448) . T) ((-666) . T) ((-786) -3262 (|has| |#1| (-786)) (|has| |#1| (-344))) ((-1028) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-2301 (((-589 (-589 (-710))) $) 108)) (-1270 (((-589 (-710)) (-836 |#1|) $) 130)) (-3164 (((-589 (-710)) (-836 |#1|) $) 131)) (-4023 (((-589 (-836 |#1|)) $) 98)) (-4032 (((-836 |#1|) $ (-523)) 103) (((-836 |#1|) $) 104)) (-3386 (($ (-589 (-836 |#1|))) 110)) (-1640 (((-710) $) 105)) (-3333 (((-1018 (-1018 |#1|)) $) 128)) (-1512 (((-1018 |#1|) $ |#1|) 121) (((-1018 (-1018 |#1|)) $ (-1018 |#1|)) 139) (((-1018 (-589 |#1|)) $ (-589 |#1|)) 142)) (-2864 (((-1018 |#1|) $) 101)) (-1973 (((-108) (-836 |#1|) $) 92)) (-3779 (((-1070) $) NIL)) (-2066 (((-1173) $) 95) (((-1173) $ (-523) (-523)) 143)) (-2783 (((-1034) $) NIL)) (-2773 (((-589 (-836 |#1|)) $) 96)) (-3223 (((-836 |#1|) $ (-710)) 99)) (-2299 (((-710) $) 106)) (-1458 (((-794) $) 119) (((-589 (-836 |#1|)) $) 22) (($ (-589 (-836 |#1|))) 109)) (-3007 (((-589 |#1|) $) 107)) (-3983 (((-108) $ $) 136)) (-4030 (((-108) $ $) 134)) (-4007 (((-108) $ $) 133))) +(((-835 |#1|) (-13 (-1016) (-10 -8 (-15 -1458 ((-589 (-836 |#1|)) $)) (-15 -2773 ((-589 (-836 |#1|)) $)) (-15 -3223 ((-836 |#1|) $ (-710))) (-15 -4032 ((-836 |#1|) $ (-523))) (-15 -4032 ((-836 |#1|) $)) (-15 -1640 ((-710) $)) (-15 -2299 ((-710) $)) (-15 -3007 ((-589 |#1|) $)) (-15 -4023 ((-589 (-836 |#1|)) $)) (-15 -2301 ((-589 (-589 (-710))) $)) (-15 -1458 ($ (-589 (-836 |#1|)))) (-15 -3386 ($ (-589 (-836 |#1|)))) (-15 -1512 ((-1018 |#1|) $ |#1|)) (-15 -3333 ((-1018 (-1018 |#1|)) $)) (-15 -1512 ((-1018 (-1018 |#1|)) $ (-1018 |#1|))) (-15 -1512 ((-1018 (-589 |#1|)) $ (-589 |#1|))) (-15 -1973 ((-108) (-836 |#1|) $)) (-15 -1270 ((-589 (-710)) (-836 |#1|) $)) (-15 -3164 ((-589 (-710)) (-836 |#1|) $)) (-15 -2864 ((-1018 |#1|) $)) (-15 -4007 ((-108) $ $)) (-15 -4030 ((-108) $ $)) (-15 -2066 ((-1173) $)) (-15 -2066 ((-1173) $ (-523) (-523))))) (-1016)) (T -835)) +((-1458 (*1 *2 *1) (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *2 (-836 *4)) (-5 *1 (-835 *4)) (-4 *4 (-1016)))) (-4032 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-836 *4)) (-5 *1 (-835 *4)) (-4 *4 (-1016)))) (-4032 (*1 *2 *1) (-12 (-5 *2 (-836 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-1640 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-2301 (*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-710)))) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-836 *3))) (-4 *3 (-1016)) (-5 *1 (-835 *3)))) (-3386 (*1 *1 *2) (-12 (-5 *2 (-589 (-836 *3))) (-4 *3 (-1016)) (-5 *1 (-835 *3)))) (-1512 (*1 *2 *1 *3) (-12 (-5 *2 (-1018 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-3333 (*1 *2 *1) (-12 (-5 *2 (-1018 (-1018 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-1512 (*1 *2 *1 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-1018 (-1018 *4))) (-5 *1 (-835 *4)) (-5 *3 (-1018 *4)))) (-1512 (*1 *2 *1 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-1018 (-589 *4))) (-5 *1 (-835 *4)) (-5 *3 (-589 *4)))) (-1973 (*1 *2 *3 *1) (-12 (-5 *3 (-836 *4)) (-4 *4 (-1016)) (-5 *2 (-108)) (-5 *1 (-835 *4)))) (-1270 (*1 *2 *3 *1) (-12 (-5 *3 (-836 *4)) (-4 *4 (-1016)) (-5 *2 (-589 (-710))) (-5 *1 (-835 *4)))) (-3164 (*1 *2 *3 *1) (-12 (-5 *3 (-836 *4)) (-4 *4 (-1016)) (-5 *2 (-589 (-710))) (-5 *1 (-835 *4)))) (-2864 (*1 *2 *1) (-12 (-5 *2 (-1018 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-4007 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-4030 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-2066 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) (-2066 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-835 *4)) (-4 *4 (-1016))))) +(-13 (-1016) (-10 -8 (-15 -1458 ((-589 (-836 |#1|)) $)) (-15 -2773 ((-589 (-836 |#1|)) $)) (-15 -3223 ((-836 |#1|) $ (-710))) (-15 -4032 ((-836 |#1|) $ (-523))) (-15 -4032 ((-836 |#1|) $)) (-15 -1640 ((-710) $)) (-15 -2299 ((-710) $)) (-15 -3007 ((-589 |#1|) $)) (-15 -4023 ((-589 (-836 |#1|)) $)) (-15 -2301 ((-589 (-589 (-710))) $)) (-15 -1458 ($ (-589 (-836 |#1|)))) (-15 -3386 ($ (-589 (-836 |#1|)))) (-15 -1512 ((-1018 |#1|) $ |#1|)) (-15 -3333 ((-1018 (-1018 |#1|)) $)) (-15 -1512 ((-1018 (-1018 |#1|)) $ (-1018 |#1|))) (-15 -1512 ((-1018 (-589 |#1|)) $ (-589 |#1|))) (-15 -1973 ((-108) (-836 |#1|) $)) (-15 -1270 ((-589 (-710)) (-836 |#1|) $)) (-15 -3164 ((-589 (-710)) (-836 |#1|) $)) (-15 -2864 ((-1018 |#1|) $)) (-15 -4007 ((-108) $ $)) (-15 -4030 ((-108) $ $)) (-15 -2066 ((-1173) $)) (-15 -2066 ((-1173) $ (-523) (-523))))) +((-3924 (((-108) $ $) NIL)) (-3974 (((-589 $) (-589 $)) 77)) (-3671 (((-523) $) 60)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL)) (-1640 (((-710) $) 58)) (-1512 (((-1018 |#1|) $ |#1|) 49)) (-2023 (((-108) $) NIL)) (-1557 (((-108) $) 63)) (-3406 (((-710) $) 61)) (-2864 (((-1018 |#1|) $) 42)) (-2454 (($ $ $) NIL (-3262 (|has| |#1| (-344)) (|has| |#1| (-786))))) (-2062 (($ $ $) NIL (-3262 (|has| |#1| (-344)) (|has| |#1| (-786))))) (-3341 (((-2 (|:| |preimage| (-589 |#1|)) (|:| |image| (-589 |#1|))) $) 36)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 93)) (-2783 (((-1034) $) NIL)) (-2049 (((-1018 |#1|) $) 99 (|has| |#1| (-344)))) (-4104 (((-108) $) 59)) (-2679 ((|#1| $ |#1|) 47)) (-3223 ((|#1| $ |#1|) 94)) (-2299 (((-710) $) 44)) (-3770 (($ (-589 (-589 |#1|))) 85)) (-3703 (((-900) $) 53)) (-2348 (($ (-589 |#1|)) 21)) (-3208 (($ $ $) NIL)) (-1714 (($ $ $) NIL)) (-1286 (($ (-589 (-589 |#1|))) 39)) (-2352 (($ (-589 (-589 |#1|))) 88)) (-1496 (($ (-589 |#1|)) 96)) (-1458 (((-794) $) 84) (($ (-589 (-589 |#1|))) 66) (($ (-589 |#1|)) 67)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2767 (($) 16 T CONST)) (-4043 (((-108) $ $) NIL (-3262 (|has| |#1| (-344)) (|has| |#1| (-786))))) (-4019 (((-108) $ $) NIL (-3262 (|has| |#1| (-344)) (|has| |#1| (-786))))) (-3983 (((-108) $ $) 45)) (-4030 (((-108) $ $) NIL (-3262 (|has| |#1| (-344)) (|has| |#1| (-786))))) (-4007 (((-108) $ $) 65)) (-4098 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ $ $) 22))) +(((-836 |#1|) (-13 (-834 |#1|) (-10 -8 (-15 -3341 ((-2 (|:| |preimage| (-589 |#1|)) (|:| |image| (-589 |#1|))) $)) (-15 -1286 ($ (-589 (-589 |#1|)))) (-15 -1458 ($ (-589 (-589 |#1|)))) (-15 -1458 ($ (-589 |#1|))) (-15 -2352 ($ (-589 (-589 |#1|)))) (-15 -2299 ((-710) $)) (-15 -2864 ((-1018 |#1|) $)) (-15 -3703 ((-900) $)) (-15 -1640 ((-710) $)) (-15 -3406 ((-710) $)) (-15 -3671 ((-523) $)) (-15 -4104 ((-108) $)) (-15 -1557 ((-108) $)) (-15 -3974 ((-589 $) (-589 $))) (IF (|has| |#1| (-344)) (-15 -2049 ((-1018 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-508)) (-15 -1496 ($ (-589 |#1|))) (IF (|has| |#1| (-344)) (-15 -1496 ($ (-589 |#1|))) |%noBranch|)))) (-1016)) (T -836)) +((-3341 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-589 *3)) (|:| |image| (-589 *3)))) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-1286 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-836 *3)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-836 *3)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-836 *3)))) (-2352 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-836 *3)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-2864 (*1 *2 *1) (-12 (-5 *2 (-1018 *3)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-3703 (*1 *2 *1) (-12 (-5 *2 (-900)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-1640 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-1557 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-3974 (*1 *2 *2) (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) (-2049 (*1 *2 *1) (-12 (-5 *2 (-1018 *3)) (-5 *1 (-836 *3)) (-4 *3 (-344)) (-4 *3 (-1016)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-836 *3))))) +(-13 (-834 |#1|) (-10 -8 (-15 -3341 ((-2 (|:| |preimage| (-589 |#1|)) (|:| |image| (-589 |#1|))) $)) (-15 -1286 ($ (-589 (-589 |#1|)))) (-15 -1458 ($ (-589 (-589 |#1|)))) (-15 -1458 ($ (-589 |#1|))) (-15 -2352 ($ (-589 (-589 |#1|)))) (-15 -2299 ((-710) $)) (-15 -2864 ((-1018 |#1|) $)) (-15 -3703 ((-900) $)) (-15 -1640 ((-710) $)) (-15 -3406 ((-710) $)) (-15 -3671 ((-523) $)) (-15 -4104 ((-108) $)) (-15 -1557 ((-108) $)) (-15 -3974 ((-589 $) (-589 $))) (IF (|has| |#1| (-344)) (-15 -2049 ((-1018 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-508)) (-15 -1496 ($ (-589 |#1|))) (IF (|has| |#1| (-344)) (-15 -1496 ($ (-589 |#1|))) |%noBranch|)))) +((-3572 (((-3 (-589 (-1083 |#4|)) "failed") (-589 (-1083 |#4|)) (-1083 |#4|)) 128)) (-3625 ((|#1|) 76)) (-1776 (((-394 (-1083 |#4|)) (-1083 |#4|)) 137)) (-1267 (((-394 (-1083 |#4|)) (-589 |#3|) (-1083 |#4|)) 68)) (-2887 (((-394 (-1083 |#4|)) (-1083 |#4|)) 147)) (-2309 (((-3 (-589 (-1083 |#4|)) "failed") (-589 (-1083 |#4|)) (-1083 |#4|) |#3|) 92))) +(((-837 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3572 ((-3 (-589 (-1083 |#4|)) "failed") (-589 (-1083 |#4|)) (-1083 |#4|))) (-15 -2887 ((-394 (-1083 |#4|)) (-1083 |#4|))) (-15 -1776 ((-394 (-1083 |#4|)) (-1083 |#4|))) (-15 -3625 (|#1|)) (-15 -2309 ((-3 (-589 (-1083 |#4|)) "failed") (-589 (-1083 |#4|)) (-1083 |#4|) |#3|)) (-15 -1267 ((-394 (-1083 |#4|)) (-589 |#3|) (-1083 |#4|)))) (-840) (-732) (-786) (-880 |#1| |#2| |#3|)) (T -837)) +((-1267 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *7)) (-4 *7 (-786)) (-4 *5 (-840)) (-4 *6 (-732)) (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-394 (-1083 *8))) (-5 *1 (-837 *5 *6 *7 *8)) (-5 *4 (-1083 *8)))) (-2309 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-589 (-1083 *7))) (-5 *3 (-1083 *7)) (-4 *7 (-880 *5 *6 *4)) (-4 *5 (-840)) (-4 *6 (-732)) (-4 *4 (-786)) (-5 *1 (-837 *5 *6 *4 *7)))) (-3625 (*1 *2) (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-840)) (-5 *1 (-837 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) (-1776 (*1 *2 *3) (-12 (-4 *4 (-840)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-394 (-1083 *7))) (-5 *1 (-837 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-2887 (*1 *2 *3) (-12 (-4 *4 (-840)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-394 (-1083 *7))) (-5 *1 (-837 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-3572 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 (-1083 *7))) (-5 *3 (-1083 *7)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-840)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-837 *4 *5 *6 *7))))) +(-10 -7 (-15 -3572 ((-3 (-589 (-1083 |#4|)) "failed") (-589 (-1083 |#4|)) (-1083 |#4|))) (-15 -2887 ((-394 (-1083 |#4|)) (-1083 |#4|))) (-15 -1776 ((-394 (-1083 |#4|)) (-1083 |#4|))) (-15 -3625 (|#1|)) (-15 -2309 ((-3 (-589 (-1083 |#4|)) "failed") (-589 (-1083 |#4|)) (-1083 |#4|) |#3|)) (-15 -1267 ((-394 (-1083 |#4|)) (-589 |#3|) (-1083 |#4|)))) +((-3572 (((-3 (-589 (-1083 |#2|)) "failed") (-589 (-1083 |#2|)) (-1083 |#2|)) 36)) (-3625 ((|#1|) 54)) (-1776 (((-394 (-1083 |#2|)) (-1083 |#2|)) 102)) (-1267 (((-394 (-1083 |#2|)) (-1083 |#2|)) 89)) (-2887 (((-394 (-1083 |#2|)) (-1083 |#2|)) 113))) +(((-838 |#1| |#2|) (-10 -7 (-15 -3572 ((-3 (-589 (-1083 |#2|)) "failed") (-589 (-1083 |#2|)) (-1083 |#2|))) (-15 -2887 ((-394 (-1083 |#2|)) (-1083 |#2|))) (-15 -1776 ((-394 (-1083 |#2|)) (-1083 |#2|))) (-15 -3625 (|#1|)) (-15 -1267 ((-394 (-1083 |#2|)) (-1083 |#2|)))) (-840) (-1144 |#1|)) (T -838)) +((-1267 (*1 *2 *3) (-12 (-4 *4 (-840)) (-4 *5 (-1144 *4)) (-5 *2 (-394 (-1083 *5))) (-5 *1 (-838 *4 *5)) (-5 *3 (-1083 *5)))) (-3625 (*1 *2) (-12 (-4 *2 (-840)) (-5 *1 (-838 *2 *3)) (-4 *3 (-1144 *2)))) (-1776 (*1 *2 *3) (-12 (-4 *4 (-840)) (-4 *5 (-1144 *4)) (-5 *2 (-394 (-1083 *5))) (-5 *1 (-838 *4 *5)) (-5 *3 (-1083 *5)))) (-2887 (*1 *2 *3) (-12 (-4 *4 (-840)) (-4 *5 (-1144 *4)) (-5 *2 (-394 (-1083 *5))) (-5 *1 (-838 *4 *5)) (-5 *3 (-1083 *5)))) (-3572 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 (-1083 *5))) (-5 *3 (-1083 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-840)) (-5 *1 (-838 *4 *5))))) +(-10 -7 (-15 -3572 ((-3 (-589 (-1083 |#2|)) "failed") (-589 (-1083 |#2|)) (-1083 |#2|))) (-15 -2887 ((-394 (-1083 |#2|)) (-1083 |#2|))) (-15 -1776 ((-394 (-1083 |#2|)) (-1083 |#2|))) (-15 -3625 (|#1|)) (-15 -1267 ((-394 (-1083 |#2|)) (-1083 |#2|)))) +((-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 39)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 18)) (-3901 (((-3 $ "failed") $) 33))) +(((-839 |#1|) (-10 -8 (-15 -3901 ((-3 |#1| "failed") |#1|)) (-15 -3652 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -2667 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)))) (-840)) (T -839)) +NIL +(-10 -8 (-15 -3901 ((-3 |#1| "failed") |#1|)) (-15 -3652 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -2667 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-3156 (((-394 (-1083 $)) (-1083 $)) 60)) (-2291 (($ $) 51)) (-3614 (((-394 $) $) 52)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 57)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2657 (((-108) $) 53)) (-2023 (((-108) $) 31)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-1219 (((-394 (-1083 $)) (-1083 $)) 58)) (-3967 (((-394 (-1083 $)) (-1083 $)) 59)) (-1820 (((-394 $) $) 50)) (-3746 (((-3 $ "failed") $ $) 42)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 56 (|has| $ (-134)))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-3901 (((-3 $ "failed") $) 55 (|has| $ (-134)))) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-840) (-129)) (T -840)) +((-2667 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-840)))) (-3156 (*1 *2 *3) (-12 (-4 *1 (-840)) (-5 *2 (-394 (-1083 *1))) (-5 *3 (-1083 *1)))) (-3967 (*1 *2 *3) (-12 (-4 *1 (-840)) (-5 *2 (-394 (-1083 *1))) (-5 *3 (-1083 *1)))) (-1219 (*1 *2 *3) (-12 (-4 *1 (-840)) (-5 *2 (-394 (-1083 *1))) (-5 *3 (-1083 *1)))) (-3652 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-589 (-1083 *1))) (-5 *3 (-1083 *1)) (-4 *1 (-840)))) (-3391 (*1 *2 *3) (|partial| -12 (-5 *3 (-629 *1)) (-4 *1 (-134)) (-4 *1 (-840)) (-5 *2 (-1168 *1)))) (-3901 (*1 *1 *1) (|partial| -12 (-4 *1 (-134)) (-4 *1 (-840))))) +(-13 (-1126) (-10 -8 (-15 -3156 ((-394 (-1083 $)) (-1083 $))) (-15 -3967 ((-394 (-1083 $)) (-1083 $))) (-15 -1219 ((-394 (-1083 $)) (-1083 $))) (-15 -2667 ((-1083 $) (-1083 $) (-1083 $))) (-15 -3652 ((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $))) (IF (|has| $ (-134)) (PROGN (-15 -3391 ((-3 (-1168 $) "failed") (-629 $))) (-15 -3901 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-267) . T) ((-427) . T) ((-515) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2318 (((-108) $) NIL)) (-2654 (((-710)) NIL)) (-4187 (($ $ (-852)) NIL (|has| $ (-344))) (($ $) NIL)) (-2430 (((-1096 (-852) (-710)) (-523)) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-1703 (((-710)) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 $ "failed") $) NIL)) (-3474 (($ $) NIL)) (-3409 (($ (-1168 $)) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-1996 (($) NIL)) (-2155 (((-108) $) NIL)) (-1991 (($ $) NIL) (($ $ (-710)) NIL)) (-2657 (((-108) $) NIL)) (-1640 (((-772 (-852)) $) NIL) (((-852) $) NIL)) (-2023 (((-108) $) NIL)) (-1881 (($) NIL (|has| $ (-344)))) (-2307 (((-108) $) NIL (|has| $ (-344)))) (-3892 (($ $ (-852)) NIL (|has| $ (-344))) (($ $) NIL)) (-4058 (((-3 $ "failed") $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1397 (((-1083 $) $ (-852)) NIL (|has| $ (-344))) (((-1083 $) $) NIL)) (-2072 (((-852) $) NIL)) (-3943 (((-1083 $) $) NIL (|has| $ (-344)))) (-2122 (((-3 (-1083 $) "failed") $ $) NIL (|has| $ (-344))) (((-1083 $) $) NIL (|has| $ (-344)))) (-3865 (($ $ (-1083 $)) NIL (|has| $ (-344)))) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL T CONST)) (-3878 (($ (-852)) NIL)) (-1290 (((-108) $) NIL)) (-2783 (((-1034) $) NIL)) (-3441 (($) NIL (|has| $ (-344)))) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL)) (-1820 (((-394 $) $) NIL)) (-4124 (((-852)) NIL) (((-772 (-852))) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-2974 (((-3 (-710) "failed") $ $) NIL) (((-710) $) NIL)) (-3203 (((-126)) NIL)) (-3523 (($ $ (-710)) NIL) (($ $) NIL)) (-2299 (((-852) $) NIL) (((-772 (-852)) $) NIL)) (-3727 (((-1083 $)) NIL)) (-3425 (($) NIL)) (-2749 (($) NIL (|has| $ (-344)))) (-2966 (((-629 $) (-1168 $)) NIL) (((-1168 $) $) NIL)) (-3663 (((-523) $) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL)) (-3901 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1621 (((-710)) NIL)) (-4041 (((-1168 $) (-852)) NIL) (((-1168 $)) NIL)) (-1704 (((-108) $ $) NIL)) (-2153 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-3454 (($ $ (-710)) NIL (|has| $ (-344))) (($ $) NIL (|has| $ (-344)))) (-2862 (($ $ (-710)) NIL) (($ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) +(((-841 |#1|) (-13 (-325) (-305 $) (-564 (-523))) (-852)) (T -841)) +NIL +(-13 (-325) (-305 $) (-564 (-523))) +((-3064 (((-3 (-2 (|:| -1640 (-710)) (|:| -3121 |#5|)) "failed") (-312 |#2| |#3| |#4| |#5|)) 76)) (-4112 (((-108) (-312 |#2| |#3| |#4| |#5|)) 16)) (-1640 (((-3 (-710) "failed") (-312 |#2| |#3| |#4| |#5|)) 14))) +(((-842 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1640 ((-3 (-710) "failed") (-312 |#2| |#3| |#4| |#5|))) (-15 -4112 ((-108) (-312 |#2| |#3| |#4| |#5|))) (-15 -3064 ((-3 (-2 (|:| -1640 (-710)) (|:| -3121 |#5|)) "failed") (-312 |#2| |#3| |#4| |#5|)))) (-13 (-786) (-515) (-964 (-523))) (-406 |#1|) (-1144 |#2|) (-1144 (-383 |#3|)) (-318 |#2| |#3| |#4|)) (T -842)) +((-3064 (*1 *2 *3) (|partial| -12 (-5 *3 (-312 *5 *6 *7 *8)) (-4 *5 (-406 *4)) (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) (-4 *8 (-318 *5 *6 *7)) (-4 *4 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-2 (|:| -1640 (-710)) (|:| -3121 *8))) (-5 *1 (-842 *4 *5 *6 *7 *8)))) (-4112 (*1 *2 *3) (-12 (-5 *3 (-312 *5 *6 *7 *8)) (-4 *5 (-406 *4)) (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) (-4 *8 (-318 *5 *6 *7)) (-4 *4 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-108)) (-5 *1 (-842 *4 *5 *6 *7 *8)))) (-1640 (*1 *2 *3) (|partial| -12 (-5 *3 (-312 *5 *6 *7 *8)) (-4 *5 (-406 *4)) (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) (-4 *8 (-318 *5 *6 *7)) (-4 *4 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-710)) (-5 *1 (-842 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -1640 ((-3 (-710) "failed") (-312 |#2| |#3| |#4| |#5|))) (-15 -4112 ((-108) (-312 |#2| |#3| |#4| |#5|))) (-15 -3064 ((-3 (-2 (|:| -1640 (-710)) (|:| -3121 |#5|)) "failed") (-312 |#2| |#3| |#4| |#5|)))) +((-3064 (((-3 (-2 (|:| -1640 (-710)) (|:| -3121 |#3|)) "failed") (-312 (-383 (-523)) |#1| |#2| |#3|)) 56)) (-4112 (((-108) (-312 (-383 (-523)) |#1| |#2| |#3|)) 13)) (-1640 (((-3 (-710) "failed") (-312 (-383 (-523)) |#1| |#2| |#3|)) 11))) +(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -1640 ((-3 (-710) "failed") (-312 (-383 (-523)) |#1| |#2| |#3|))) (-15 -4112 ((-108) (-312 (-383 (-523)) |#1| |#2| |#3|))) (-15 -3064 ((-3 (-2 (|:| -1640 (-710)) (|:| -3121 |#3|)) "failed") (-312 (-383 (-523)) |#1| |#2| |#3|)))) (-1144 (-383 (-523))) (-1144 (-383 |#1|)) (-318 (-383 (-523)) |#1| |#2|)) (T -843)) +((-3064 (*1 *2 *3) (|partial| -12 (-5 *3 (-312 (-383 (-523)) *4 *5 *6)) (-4 *4 (-1144 (-383 (-523)))) (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 (-383 (-523)) *4 *5)) (-5 *2 (-2 (|:| -1640 (-710)) (|:| -3121 *6))) (-5 *1 (-843 *4 *5 *6)))) (-4112 (*1 *2 *3) (-12 (-5 *3 (-312 (-383 (-523)) *4 *5 *6)) (-4 *4 (-1144 (-383 (-523)))) (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 (-383 (-523)) *4 *5)) (-5 *2 (-108)) (-5 *1 (-843 *4 *5 *6)))) (-1640 (*1 *2 *3) (|partial| -12 (-5 *3 (-312 (-383 (-523)) *4 *5 *6)) (-4 *4 (-1144 (-383 (-523)))) (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 (-383 (-523)) *4 *5)) (-5 *2 (-710)) (-5 *1 (-843 *4 *5 *6))))) +(-10 -7 (-15 -1640 ((-3 (-710) "failed") (-312 (-383 (-523)) |#1| |#2| |#3|))) (-15 -4112 ((-108) (-312 (-383 (-523)) |#1| |#2| |#3|))) (-15 -3064 ((-3 (-2 (|:| -1640 (-710)) (|:| -3121 |#3|)) "failed") (-312 (-383 (-523)) |#1| |#2| |#3|)))) +((-1305 ((|#2| |#2|) 25)) (-2088 (((-523) (-589 (-2 (|:| |den| (-523)) (|:| |gcdnum| (-523))))) 15)) (-1580 (((-852) (-523)) 35)) (-2713 (((-523) |#2|) 42)) (-3045 (((-523) |#2|) 21) (((-2 (|:| |den| (-523)) (|:| |gcdnum| (-523))) |#1|) 20))) +(((-844 |#1| |#2|) (-10 -7 (-15 -1580 ((-852) (-523))) (-15 -3045 ((-2 (|:| |den| (-523)) (|:| |gcdnum| (-523))) |#1|)) (-15 -3045 ((-523) |#2|)) (-15 -2088 ((-523) (-589 (-2 (|:| |den| (-523)) (|:| |gcdnum| (-523)))))) (-15 -2713 ((-523) |#2|)) (-15 -1305 (|#2| |#2|))) (-1144 (-383 (-523))) (-1144 (-383 |#1|))) (T -844)) +((-1305 (*1 *2 *2) (-12 (-4 *3 (-1144 (-383 (-523)))) (-5 *1 (-844 *3 *2)) (-4 *2 (-1144 (-383 *3))))) (-2713 (*1 *2 *3) (-12 (-4 *4 (-1144 (-383 *2))) (-5 *2 (-523)) (-5 *1 (-844 *4 *3)) (-4 *3 (-1144 (-383 *4))))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| |den| (-523)) (|:| |gcdnum| (-523))))) (-4 *4 (-1144 (-383 *2))) (-5 *2 (-523)) (-5 *1 (-844 *4 *5)) (-4 *5 (-1144 (-383 *4))))) (-3045 (*1 *2 *3) (-12 (-4 *4 (-1144 (-383 *2))) (-5 *2 (-523)) (-5 *1 (-844 *4 *3)) (-4 *3 (-1144 (-383 *4))))) (-3045 (*1 *2 *3) (-12 (-4 *3 (-1144 (-383 (-523)))) (-5 *2 (-2 (|:| |den| (-523)) (|:| |gcdnum| (-523)))) (-5 *1 (-844 *3 *4)) (-4 *4 (-1144 (-383 *3))))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-523)) (-4 *4 (-1144 (-383 *3))) (-5 *2 (-852)) (-5 *1 (-844 *4 *5)) (-4 *5 (-1144 (-383 *4)))))) +(-10 -7 (-15 -1580 ((-852) (-523))) (-15 -3045 ((-2 (|:| |den| (-523)) (|:| |gcdnum| (-523))) |#1|)) (-15 -3045 ((-523) |#2|)) (-15 -2088 ((-523) (-589 (-2 (|:| |den| (-523)) (|:| |gcdnum| (-523)))))) (-15 -2713 ((-523) |#2|)) (-15 -1305 (|#2| |#2|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3458 ((|#1| $) 81)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-3796 (($ $ $) NIL)) (-2121 (((-3 $ "failed") $) 75)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-4083 (($ |#1| (-394 |#1|)) 73)) (-2131 (((-1083 |#1|) |#1| |#1|) 40)) (-3897 (($ $) 49)) (-2023 (((-108) $) NIL)) (-1663 (((-523) $) 78)) (-1393 (($ $ (-523)) 80)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-4182 ((|#1| $) 77)) (-2896 (((-394 |#1|) $) 76)) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) 74)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-1900 (($ $) 38)) (-1458 (((-794) $) 99) (($ (-523)) 54) (($ $) NIL) (($ (-383 (-523))) NIL) (($ |#1|) 30) (((-383 |#1|) $) 59) (($ (-383 (-394 |#1|))) 67)) (-1621 (((-710)) 52)) (-1704 (((-108) $ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 23 T CONST)) (-2767 (($) 11 T CONST)) (-3983 (((-108) $ $) 68)) (-4098 (($ $ $) NIL)) (-4087 (($ $) 88) (($ $ $) NIL)) (-4075 (($ $ $) 37)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 90) (($ $ $) 36) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) +(((-845 |#1|) (-13 (-339) (-37 |#1|) (-10 -8 (-15 -1458 ((-383 |#1|) $)) (-15 -1458 ($ (-383 (-394 |#1|)))) (-15 -1900 ($ $)) (-15 -2896 ((-394 |#1|) $)) (-15 -4182 (|#1| $)) (-15 -1393 ($ $ (-523))) (-15 -1663 ((-523) $)) (-15 -2131 ((-1083 |#1|) |#1| |#1|)) (-15 -3897 ($ $)) (-15 -4083 ($ |#1| (-394 |#1|))) (-15 -3458 (|#1| $)))) (-284)) (T -845)) +((-1458 (*1 *2 *1) (-12 (-5 *2 (-383 *3)) (-5 *1 (-845 *3)) (-4 *3 (-284)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-383 (-394 *3))) (-4 *3 (-284)) (-5 *1 (-845 *3)))) (-1900 (*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284)))) (-2896 (*1 *2 *1) (-12 (-5 *2 (-394 *3)) (-5 *1 (-845 *3)) (-4 *3 (-284)))) (-4182 (*1 *2 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284)))) (-1393 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-845 *3)) (-4 *3 (-284)))) (-1663 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-845 *3)) (-4 *3 (-284)))) (-2131 (*1 *2 *3 *3) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-845 *3)) (-4 *3 (-284)))) (-3897 (*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284)))) (-4083 (*1 *1 *2 *3) (-12 (-5 *3 (-394 *2)) (-4 *2 (-284)) (-5 *1 (-845 *2)))) (-3458 (*1 *2 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284))))) +(-13 (-339) (-37 |#1|) (-10 -8 (-15 -1458 ((-383 |#1|) $)) (-15 -1458 ($ (-383 (-394 |#1|)))) (-15 -1900 ($ $)) (-15 -2896 ((-394 |#1|) $)) (-15 -4182 (|#1| $)) (-15 -1393 ($ $ (-523))) (-15 -1663 ((-523) $)) (-15 -2131 ((-1083 |#1|) |#1| |#1|)) (-15 -3897 ($ $)) (-15 -4083 ($ |#1| (-394 |#1|))) (-15 -3458 (|#1| $)))) +((-4083 (((-51) (-883 |#1|) (-394 (-883 |#1|)) (-1087)) 16) (((-51) (-383 (-883 |#1|)) (-1087)) 17))) +(((-846 |#1|) (-10 -7 (-15 -4083 ((-51) (-383 (-883 |#1|)) (-1087))) (-15 -4083 ((-51) (-883 |#1|) (-394 (-883 |#1|)) (-1087)))) (-13 (-284) (-136))) (T -846)) +((-4083 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-394 (-883 *6))) (-5 *5 (-1087)) (-5 *3 (-883 *6)) (-4 *6 (-13 (-284) (-136))) (-5 *2 (-51)) (-5 *1 (-846 *6)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-136))) (-5 *2 (-51)) (-5 *1 (-846 *5))))) +(-10 -7 (-15 -4083 ((-51) (-383 (-883 |#1|)) (-1087))) (-15 -4083 ((-51) (-883 |#1|) (-394 (-883 |#1|)) (-1087)))) +((-3916 ((|#4| (-589 |#4|)) 119) (((-1083 |#4|) (-1083 |#4|) (-1083 |#4|)) 66) ((|#4| |#4| |#4|) 118)) (-3278 (((-1083 |#4|) (-589 (-1083 |#4|))) 112) (((-1083 |#4|) (-1083 |#4|) (-1083 |#4|)) 49) ((|#4| (-589 |#4|)) 54) ((|#4| |#4| |#4|) 83))) +(((-847 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3278 (|#4| |#4| |#4|)) (-15 -3278 (|#4| (-589 |#4|))) (-15 -3278 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -3278 ((-1083 |#4|) (-589 (-1083 |#4|)))) (-15 -3916 (|#4| |#4| |#4|)) (-15 -3916 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -3916 (|#4| (-589 |#4|)))) (-732) (-786) (-284) (-880 |#3| |#1| |#2|)) (T -847)) +((-3916 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *6 *4 *5)) (-5 *1 (-847 *4 *5 *6 *2)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)))) (-3916 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *6)) (-4 *6 (-880 *5 *3 *4)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-284)) (-5 *1 (-847 *3 *4 *5 *6)))) (-3916 (*1 *2 *2 *2) (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-284)) (-5 *1 (-847 *3 *4 *5 *2)) (-4 *2 (-880 *5 *3 *4)))) (-3278 (*1 *2 *3) (-12 (-5 *3 (-589 (-1083 *7))) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) (-5 *2 (-1083 *7)) (-5 *1 (-847 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5)))) (-3278 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *6)) (-4 *6 (-880 *5 *3 *4)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-284)) (-5 *1 (-847 *3 *4 *5 *6)))) (-3278 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *6 *4 *5)) (-5 *1 (-847 *4 *5 *6 *2)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)))) (-3278 (*1 *2 *2 *2) (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-284)) (-5 *1 (-847 *3 *4 *5 *2)) (-4 *2 (-880 *5 *3 *4))))) +(-10 -7 (-15 -3278 (|#4| |#4| |#4|)) (-15 -3278 (|#4| (-589 |#4|))) (-15 -3278 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -3278 ((-1083 |#4|) (-589 (-1083 |#4|)))) (-15 -3916 (|#4| |#4| |#4|)) (-15 -3916 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -3916 (|#4| (-589 |#4|)))) +((-3253 (((-835 (-523)) (-900)) 22) (((-835 (-523)) (-589 (-523))) 19)) (-3830 (((-835 (-523)) (-589 (-523))) 46) (((-835 (-523)) (-852)) 47)) (-1279 (((-835 (-523))) 23)) (-2845 (((-835 (-523))) 36) (((-835 (-523)) (-589 (-523))) 35)) (-3469 (((-835 (-523))) 34) (((-835 (-523)) (-589 (-523))) 33)) (-2019 (((-835 (-523))) 32) (((-835 (-523)) (-589 (-523))) 31)) (-3644 (((-835 (-523))) 30) (((-835 (-523)) (-589 (-523))) 29)) (-1340 (((-835 (-523))) 28) (((-835 (-523)) (-589 (-523))) 27)) (-1713 (((-835 (-523))) 38) (((-835 (-523)) (-589 (-523))) 37)) (-2933 (((-835 (-523)) (-589 (-523))) 50) (((-835 (-523)) (-852)) 51)) (-1792 (((-835 (-523)) (-589 (-523))) 48) (((-835 (-523)) (-852)) 49)) (-4188 (((-835 (-523)) (-589 (-523))) 43) (((-835 (-523)) (-852)) 45)) (-2226 (((-835 (-523)) (-589 (-852))) 40))) +(((-848) (-10 -7 (-15 -3830 ((-835 (-523)) (-852))) (-15 -3830 ((-835 (-523)) (-589 (-523)))) (-15 -4188 ((-835 (-523)) (-852))) (-15 -4188 ((-835 (-523)) (-589 (-523)))) (-15 -2226 ((-835 (-523)) (-589 (-852)))) (-15 -1792 ((-835 (-523)) (-852))) (-15 -1792 ((-835 (-523)) (-589 (-523)))) (-15 -2933 ((-835 (-523)) (-852))) (-15 -2933 ((-835 (-523)) (-589 (-523)))) (-15 -1340 ((-835 (-523)) (-589 (-523)))) (-15 -1340 ((-835 (-523)))) (-15 -3644 ((-835 (-523)) (-589 (-523)))) (-15 -3644 ((-835 (-523)))) (-15 -2019 ((-835 (-523)) (-589 (-523)))) (-15 -2019 ((-835 (-523)))) (-15 -3469 ((-835 (-523)) (-589 (-523)))) (-15 -3469 ((-835 (-523)))) (-15 -2845 ((-835 (-523)) (-589 (-523)))) (-15 -2845 ((-835 (-523)))) (-15 -1713 ((-835 (-523)) (-589 (-523)))) (-15 -1713 ((-835 (-523)))) (-15 -1279 ((-835 (-523)))) (-15 -3253 ((-835 (-523)) (-589 (-523)))) (-15 -3253 ((-835 (-523)) (-900))))) (T -848)) +((-3253 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3253 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-1279 (*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-1713 (*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2845 (*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3469 (*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3469 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2019 (*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2019 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3644 (*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-1340 (*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-1340 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2933 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2933 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-1792 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-1792 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-589 (-852))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3830 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) (-3830 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848))))) +(-10 -7 (-15 -3830 ((-835 (-523)) (-852))) (-15 -3830 ((-835 (-523)) (-589 (-523)))) (-15 -4188 ((-835 (-523)) (-852))) (-15 -4188 ((-835 (-523)) (-589 (-523)))) (-15 -2226 ((-835 (-523)) (-589 (-852)))) (-15 -1792 ((-835 (-523)) (-852))) (-15 -1792 ((-835 (-523)) (-589 (-523)))) (-15 -2933 ((-835 (-523)) (-852))) (-15 -2933 ((-835 (-523)) (-589 (-523)))) (-15 -1340 ((-835 (-523)) (-589 (-523)))) (-15 -1340 ((-835 (-523)))) (-15 -3644 ((-835 (-523)) (-589 (-523)))) (-15 -3644 ((-835 (-523)))) (-15 -2019 ((-835 (-523)) (-589 (-523)))) (-15 -2019 ((-835 (-523)))) (-15 -3469 ((-835 (-523)) (-589 (-523)))) (-15 -3469 ((-835 (-523)))) (-15 -2845 ((-835 (-523)) (-589 (-523)))) (-15 -2845 ((-835 (-523)))) (-15 -1713 ((-835 (-523)) (-589 (-523)))) (-15 -1713 ((-835 (-523)))) (-15 -1279 ((-835 (-523)))) (-15 -3253 ((-835 (-523)) (-589 (-523)))) (-15 -3253 ((-835 (-523)) (-900)))) +((-3436 (((-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087))) 10)) (-2446 (((-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087))) 9))) +(((-849 |#1|) (-10 -7 (-15 -2446 ((-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -3436 ((-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087))))) (-427)) (T -849)) +((-3436 (*1 *2 *2 *3) (-12 (-5 *2 (-589 (-883 *4))) (-5 *3 (-589 (-1087))) (-4 *4 (-427)) (-5 *1 (-849 *4)))) (-2446 (*1 *2 *2 *3) (-12 (-5 *2 (-589 (-883 *4))) (-5 *3 (-589 (-1087))) (-4 *4 (-427)) (-5 *1 (-849 *4))))) +(-10 -7 (-15 -2446 ((-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -3436 ((-589 (-883 |#1|)) (-589 (-883 |#1|)) (-589 (-1087))))) +((-1458 (((-292 |#1|) (-452)) 15))) +(((-850 |#1|) (-10 -7 (-15 -1458 ((-292 |#1|) (-452)))) (-13 (-786) (-515))) (T -850)) +((-1458 (*1 *2 *3) (-12 (-5 *3 (-452)) (-5 *2 (-292 *4)) (-5 *1 (-850 *4)) (-4 *4 (-13 (-786) (-515)))))) +(-10 -7 (-15 -1458 ((-292 |#1|) (-452)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-2023 (((-108) $) 31)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-851) (-129)) (T -851)) +((-1590 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *2 (-2 (|:| -2935 (-589 *1)) (|:| -3441 *1))) (-5 *3 (-589 *1)))) (-3312 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-589 *1)) (-4 *1 (-851))))) +(-13 (-427) (-10 -8 (-15 -1590 ((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $))) (-15 -3312 ((-3 (-589 $) "failed") (-589 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-267) . T) ((-427) . T) ((-515) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3278 (($ $ $) NIL)) (-1458 (((-794) $) NIL)) (-2364 (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-2767 (($) NIL T CONST)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (* (($ (-852) $) NIL) (($ $ $) NIL))) +(((-852) (-13 (-25) (-786) (-666) (-10 -8 (-15 -3278 ($ $ $)) (-6 (-4246 "*"))))) (T -852)) +((-3278 (*1 *1 *1 *1) (-5 *1 (-852)))) +(-13 (-25) (-786) (-666) (-10 -8 (-15 -3278 ($ $ $)) (-6 (-4246 "*")))) +((-4089 ((|#2| (-589 |#1|) (-589 |#1|)) 24))) +(((-853 |#1| |#2|) (-10 -7 (-15 -4089 (|#2| (-589 |#1|) (-589 |#1|)))) (-339) (-1144 |#1|)) (T -853)) +((-4089 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-339)) (-4 *2 (-1144 *4)) (-5 *1 (-853 *4 *2))))) +(-10 -7 (-15 -4089 (|#2| (-589 |#1|) (-589 |#1|)))) +((-1201 (((-1083 |#2|) (-589 |#2|) (-589 |#2|)) 17) (((-1141 |#1| |#2|) (-1141 |#1| |#2|) (-589 |#2|) (-589 |#2|)) 13))) +(((-854 |#1| |#2|) (-10 -7 (-15 -1201 ((-1141 |#1| |#2|) (-1141 |#1| |#2|) (-589 |#2|) (-589 |#2|))) (-15 -1201 ((-1083 |#2|) (-589 |#2|) (-589 |#2|)))) (-1087) (-339)) (T -854)) +((-1201 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *5)) (-4 *5 (-339)) (-5 *2 (-1083 *5)) (-5 *1 (-854 *4 *5)) (-14 *4 (-1087)))) (-1201 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1141 *4 *5)) (-5 *3 (-589 *5)) (-14 *4 (-1087)) (-4 *5 (-339)) (-5 *1 (-854 *4 *5))))) +(-10 -7 (-15 -1201 ((-1141 |#1| |#2|) (-1141 |#1| |#2|) (-589 |#2|) (-589 |#2|))) (-15 -1201 ((-1083 |#2|) (-589 |#2|) (-589 |#2|)))) +((-1223 (((-523) (-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-1070)) 138)) (-3976 ((|#4| |#4|) 154)) (-3234 (((-589 (-383 (-883 |#1|))) (-589 (-1087))) 117)) (-3558 (((-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))) (-629 |#4|) (-589 (-383 (-883 |#1|))) (-589 (-589 |#4|)) (-710) (-710) (-523)) 73)) (-3277 (((-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))) (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))) (-589 |#4|)) 57)) (-1328 (((-629 |#4|) (-629 |#4|) (-589 |#4|)) 53)) (-2238 (((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-1070)) 150)) (-2483 (((-523) (-629 |#4|) (-852) (-1070)) 131) (((-523) (-629 |#4|) (-589 (-1087)) (-852) (-1070)) 130) (((-523) (-629 |#4|) (-589 |#4|) (-852) (-1070)) 129) (((-523) (-629 |#4|) (-1070)) 126) (((-523) (-629 |#4|) (-589 (-1087)) (-1070)) 125) (((-523) (-629 |#4|) (-589 |#4|) (-1070)) 124) (((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-852)) 123) (((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 (-1087)) (-852)) 122) (((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 |#4|) (-852)) 121) (((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|)) 119) (((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 (-1087))) 118) (((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 |#4|)) 115)) (-2504 ((|#4| (-883 |#1|)) 66)) (-1428 (((-108) (-589 |#4|) (-589 (-589 |#4|))) 151)) (-3379 (((-589 (-589 (-523))) (-523) (-523)) 128)) (-2706 (((-589 (-589 |#4|)) (-589 (-589 |#4|))) 85)) (-2787 (((-710) (-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|))))) 83)) (-2776 (((-710) (-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|))))) 82)) (-1383 (((-108) (-589 (-883 |#1|))) 17) (((-108) (-589 |#4|)) 13)) (-2215 (((-2 (|:| |sysok| (-108)) (|:| |z0| (-589 |#4|)) (|:| |n0| (-589 |#4|))) (-589 |#4|) (-589 |#4|)) 69)) (-1368 (((-589 |#4|) |#4|) 47)) (-3642 (((-589 (-383 (-883 |#1|))) (-589 |#4|)) 113) (((-629 (-383 (-883 |#1|))) (-629 |#4|)) 54) (((-383 (-883 |#1|)) |#4|) 110)) (-2778 (((-2 (|:| |rgl| (-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))))))) (|:| |rgsz| (-523))) (-629 |#4|) (-589 (-383 (-883 |#1|))) (-710) (-1070) (-523)) 89)) (-2975 (((-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|)))) (-629 |#4|) (-710)) 81)) (-3586 (((-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523))))) (-629 |#4|) (-710)) 98)) (-4054 (((-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))) (-2 (|:| -3392 (-629 (-383 (-883 |#1|)))) (|:| |vec| (-589 (-383 (-883 |#1|)))) (|:| -1319 (-710)) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523))))) 46))) +(((-855 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 |#4|))) (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 (-1087)))) (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|))) (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 |#4|) (-852))) (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 (-1087)) (-852))) (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-852))) (-15 -2483 ((-523) (-629 |#4|) (-589 |#4|) (-1070))) (-15 -2483 ((-523) (-629 |#4|) (-589 (-1087)) (-1070))) (-15 -2483 ((-523) (-629 |#4|) (-1070))) (-15 -2483 ((-523) (-629 |#4|) (-589 |#4|) (-852) (-1070))) (-15 -2483 ((-523) (-629 |#4|) (-589 (-1087)) (-852) (-1070))) (-15 -2483 ((-523) (-629 |#4|) (-852) (-1070))) (-15 -1223 ((-523) (-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-1070))) (-15 -2238 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-1070))) (-15 -2778 ((-2 (|:| |rgl| (-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))))))) (|:| |rgsz| (-523))) (-629 |#4|) (-589 (-383 (-883 |#1|))) (-710) (-1070) (-523))) (-15 -3642 ((-383 (-883 |#1|)) |#4|)) (-15 -3642 ((-629 (-383 (-883 |#1|))) (-629 |#4|))) (-15 -3642 ((-589 (-383 (-883 |#1|))) (-589 |#4|))) (-15 -3234 ((-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -2504 (|#4| (-883 |#1|))) (-15 -2215 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-589 |#4|)) (|:| |n0| (-589 |#4|))) (-589 |#4|) (-589 |#4|))) (-15 -2975 ((-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|)))) (-629 |#4|) (-710))) (-15 -3277 ((-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))) (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))) (-589 |#4|))) (-15 -4054 ((-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))) (-2 (|:| -3392 (-629 (-383 (-883 |#1|)))) (|:| |vec| (-589 (-383 (-883 |#1|)))) (|:| -1319 (-710)) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (-15 -1368 ((-589 |#4|) |#4|)) (-15 -2776 ((-710) (-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|)))))) (-15 -2787 ((-710) (-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|)))))) (-15 -2706 ((-589 (-589 |#4|)) (-589 (-589 |#4|)))) (-15 -3379 ((-589 (-589 (-523))) (-523) (-523))) (-15 -1428 ((-108) (-589 |#4|) (-589 (-589 |#4|)))) (-15 -3586 ((-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523))))) (-629 |#4|) (-710))) (-15 -1328 ((-629 |#4|) (-629 |#4|) (-589 |#4|))) (-15 -3558 ((-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))) (-629 |#4|) (-589 (-383 (-883 |#1|))) (-589 (-589 |#4|)) (-710) (-710) (-523))) (-15 -3976 (|#4| |#4|)) (-15 -1383 ((-108) (-589 |#4|))) (-15 -1383 ((-108) (-589 (-883 |#1|))))) (-13 (-284) (-136)) (-13 (-786) (-564 (-1087))) (-732) (-880 |#1| |#3| |#2|)) (T -855)) +((-1383 (*1 *2 *3) (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-108)) (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-880 *4 *6 *5)))) (-1383 (*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-108)) (-5 *1 (-855 *4 *5 *6 *7)))) (-3976 (*1 *2 *2) (-12 (-4 *3 (-13 (-284) (-136))) (-4 *4 (-13 (-786) (-564 (-1087)))) (-4 *5 (-732)) (-5 *1 (-855 *3 *4 *5 *2)) (-4 *2 (-880 *3 *5 *4)))) (-3558 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523))))) (-5 *4 (-629 *12)) (-5 *5 (-589 (-383 (-883 *9)))) (-5 *6 (-589 (-589 *12))) (-5 *7 (-710)) (-5 *8 (-523)) (-4 *9 (-13 (-284) (-136))) (-4 *12 (-880 *9 *11 *10)) (-4 *10 (-13 (-786) (-564 (-1087)))) (-4 *11 (-732)) (-5 *2 (-2 (|:| |eqzro| (-589 *12)) (|:| |neqzro| (-589 *12)) (|:| |wcond| (-589 (-883 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 *9)))) (|:| -4041 (-589 (-1168 (-383 (-883 *9))))))))) (-5 *1 (-855 *9 *10 *11 *12)))) (-1328 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *7)) (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *1 (-855 *4 *5 *6 *7)))) (-3586 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-710)) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-589 (-2 (|:| |det| *8) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (-5 *1 (-855 *5 *6 *7 *8)))) (-1428 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-589 *8))) (-5 *3 (-589 *8)) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-108)) (-5 *1 (-855 *5 *6 *7 *8)))) (-3379 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-589 (-589 (-523)))) (-5 *1 (-855 *4 *5 *6 *7)) (-5 *3 (-523)) (-4 *7 (-880 *4 *6 *5)))) (-2706 (*1 *2 *2) (-12 (-5 *2 (-589 (-589 *6))) (-4 *6 (-880 *3 *5 *4)) (-4 *3 (-13 (-284) (-136))) (-4 *4 (-13 (-786) (-564 (-1087)))) (-4 *5 (-732)) (-5 *1 (-855 *3 *4 *5 *6)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| *7) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 *7))))) (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-710)) (-5 *1 (-855 *4 *5 *6 *7)))) (-2776 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| *7) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 *7))))) (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-710)) (-5 *1 (-855 *4 *5 *6 *7)))) (-1368 (*1 *2 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-589 *3)) (-5 *1 (-855 *4 *5 *6 *3)) (-4 *3 (-880 *4 *6 *5)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3392 (-629 (-383 (-883 *4)))) (|:| |vec| (-589 (-383 (-883 *4)))) (|:| -1319 (-710)) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523))))) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-2 (|:| |partsol| (-1168 (-383 (-883 *4)))) (|:| -4041 (-589 (-1168 (-383 (-883 *4))))))) (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-880 *4 *6 *5)))) (-3277 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1168 (-383 (-883 *4)))) (|:| -4041 (-589 (-1168 (-383 (-883 *4))))))) (-5 *3 (-589 *7)) (-4 *4 (-13 (-284) (-136))) (-4 *7 (-880 *4 *6 *5)) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *1 (-855 *4 *5 *6 *7)))) (-2975 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| *8) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 *8))))) (-5 *1 (-855 *5 *6 *7 *8)) (-5 *4 (-710)))) (-2215 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-4 *7 (-880 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-108)) (|:| |z0| (-589 *7)) (|:| |n0| (-589 *7)))) (-5 *1 (-855 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-883 *4)) (-4 *4 (-13 (-284) (-136))) (-4 *2 (-880 *4 *6 *5)) (-5 *1 (-855 *4 *5 *6 *2)) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)))) (-3234 (*1 *2 *3) (-12 (-5 *3 (-589 (-1087))) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-589 (-383 (-883 *4)))) (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-880 *4 *6 *5)))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-589 (-383 (-883 *4)))) (-5 *1 (-855 *4 *5 *6 *7)))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-629 (-383 (-883 *4)))) (-5 *1 (-855 *4 *5 *6 *7)))) (-3642 (*1 *2 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-383 (-883 *4))) (-5 *1 (-855 *4 *5 *6 *3)) (-4 *3 (-880 *4 *6 *5)))) (-2778 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-629 *11)) (-5 *4 (-589 (-383 (-883 *8)))) (-5 *5 (-710)) (-5 *6 (-1070)) (-4 *8 (-13 (-284) (-136))) (-4 *11 (-880 *8 *10 *9)) (-4 *9 (-13 (-786) (-564 (-1087)))) (-4 *10 (-732)) (-5 *2 (-2 (|:| |rgl| (-589 (-2 (|:| |eqzro| (-589 *11)) (|:| |neqzro| (-589 *11)) (|:| |wcond| (-589 (-883 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 *8)))) (|:| -4041 (-589 (-1168 (-383 (-883 *8)))))))))) (|:| |rgsz| (-523)))) (-5 *1 (-855 *8 *9 *10 *11)) (-5 *7 (-523)))) (-2238 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-589 (-2 (|:| |eqzro| (-589 *7)) (|:| |neqzro| (-589 *7)) (|:| |wcond| (-589 (-883 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 *4)))) (|:| -4041 (-589 (-1168 (-383 (-883 *4)))))))))) (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-880 *4 *6 *5)))) (-1223 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) (|:| |wcond| (-589 (-883 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 *5)))) (|:| -4041 (-589 (-1168 (-383 (-883 *5)))))))))) (-5 *4 (-1070)) (-4 *5 (-13 (-284) (-136))) (-4 *8 (-880 *5 *7 *6)) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *5 *6 *7 *8)))) (-2483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *9)) (-5 *4 (-852)) (-5 *5 (-1070)) (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *6 *7 *8 *9)))) (-2483 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-629 *10)) (-5 *4 (-589 (-1087))) (-5 *5 (-852)) (-5 *6 (-1070)) (-4 *10 (-880 *7 *9 *8)) (-4 *7 (-13 (-284) (-136))) (-4 *8 (-13 (-786) (-564 (-1087)))) (-4 *9 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *7 *8 *9 *10)))) (-2483 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-629 *10)) (-5 *4 (-589 *10)) (-5 *5 (-852)) (-5 *6 (-1070)) (-4 *10 (-880 *7 *9 *8)) (-4 *7 (-13 (-284) (-136))) (-4 *8 (-13 (-786) (-564 (-1087)))) (-4 *9 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *7 *8 *9 *10)))) (-2483 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-1070)) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *5 *6 *7 *8)))) (-2483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *9)) (-5 *4 (-589 (-1087))) (-5 *5 (-1070)) (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *6 *7 *8 *9)))) (-2483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *9)) (-5 *4 (-589 *9)) (-5 *5 (-1070)) (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *6 *7 *8 *9)))) (-2483 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-852)) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-589 (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) (|:| |wcond| (-589 (-883 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 *5)))) (|:| -4041 (-589 (-1168 (-383 (-883 *5)))))))))) (-5 *1 (-855 *5 *6 *7 *8)))) (-2483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *9)) (-5 *4 (-589 (-1087))) (-5 *5 (-852)) (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-589 (-2 (|:| |eqzro| (-589 *9)) (|:| |neqzro| (-589 *9)) (|:| |wcond| (-589 (-883 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 *6)))) (|:| -4041 (-589 (-1168 (-383 (-883 *6)))))))))) (-5 *1 (-855 *6 *7 *8 *9)))) (-2483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *9)) (-5 *5 (-852)) (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-589 (-2 (|:| |eqzro| (-589 *9)) (|:| |neqzro| (-589 *9)) (|:| |wcond| (-589 (-883 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 *6)))) (|:| -4041 (-589 (-1168 (-383 (-883 *6)))))))))) (-5 *1 (-855 *6 *7 *8 *9)) (-5 *4 (-589 *9)))) (-2483 (*1 *2 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-589 (-2 (|:| |eqzro| (-589 *7)) (|:| |neqzro| (-589 *7)) (|:| |wcond| (-589 (-883 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 *4)))) (|:| -4041 (-589 (-1168 (-383 (-883 *4)))))))))) (-5 *1 (-855 *4 *5 *6 *7)))) (-2483 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-589 (-1087))) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-589 (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) (|:| |wcond| (-589 (-883 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 *5)))) (|:| -4041 (-589 (-1168 (-383 (-883 *5)))))))))) (-5 *1 (-855 *5 *6 *7 *8)))) (-2483 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-589 (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) (|:| |wcond| (-589 (-883 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 *5)))) (|:| -4041 (-589 (-1168 (-383 (-883 *5)))))))))) (-5 *1 (-855 *5 *6 *7 *8)) (-5 *4 (-589 *8))))) +(-10 -7 (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 |#4|))) (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 (-1087)))) (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|))) (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 |#4|) (-852))) (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-589 (-1087)) (-852))) (-15 -2483 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-629 |#4|) (-852))) (-15 -2483 ((-523) (-629 |#4|) (-589 |#4|) (-1070))) (-15 -2483 ((-523) (-629 |#4|) (-589 (-1087)) (-1070))) (-15 -2483 ((-523) (-629 |#4|) (-1070))) (-15 -2483 ((-523) (-629 |#4|) (-589 |#4|) (-852) (-1070))) (-15 -2483 ((-523) (-629 |#4|) (-589 (-1087)) (-852) (-1070))) (-15 -2483 ((-523) (-629 |#4|) (-852) (-1070))) (-15 -1223 ((-523) (-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-1070))) (-15 -2238 ((-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|))))))))) (-1070))) (-15 -2778 ((-2 (|:| |rgl| (-589 (-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))))))) (|:| |rgsz| (-523))) (-629 |#4|) (-589 (-383 (-883 |#1|))) (-710) (-1070) (-523))) (-15 -3642 ((-383 (-883 |#1|)) |#4|)) (-15 -3642 ((-629 (-383 (-883 |#1|))) (-629 |#4|))) (-15 -3642 ((-589 (-383 (-883 |#1|))) (-589 |#4|))) (-15 -3234 ((-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -2504 (|#4| (-883 |#1|))) (-15 -2215 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-589 |#4|)) (|:| |n0| (-589 |#4|))) (-589 |#4|) (-589 |#4|))) (-15 -2975 ((-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|)))) (-629 |#4|) (-710))) (-15 -3277 ((-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))) (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))) (-589 |#4|))) (-15 -4054 ((-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))) (-2 (|:| -3392 (-629 (-383 (-883 |#1|)))) (|:| |vec| (-589 (-383 (-883 |#1|)))) (|:| -1319 (-710)) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (-15 -1368 ((-589 |#4|) |#4|)) (-15 -2776 ((-710) (-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|)))))) (-15 -2787 ((-710) (-589 (-2 (|:| -1319 (-710)) (|:| |eqns| (-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))))) (|:| |fgb| (-589 |#4|)))))) (-15 -2706 ((-589 (-589 |#4|)) (-589 (-589 |#4|)))) (-15 -3379 ((-589 (-589 (-523))) (-523) (-523))) (-15 -1428 ((-108) (-589 |#4|) (-589 (-589 |#4|)))) (-15 -3586 ((-589 (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523))))) (-629 |#4|) (-710))) (-15 -1328 ((-629 |#4|) (-629 |#4|) (-589 |#4|))) (-15 -3558 ((-2 (|:| |eqzro| (-589 |#4|)) (|:| |neqzro| (-589 |#4|)) (|:| |wcond| (-589 (-883 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1168 (-383 (-883 |#1|)))) (|:| -4041 (-589 (-1168 (-383 (-883 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523)))) (-629 |#4|) (-589 (-383 (-883 |#1|))) (-589 (-589 |#4|)) (-710) (-710) (-523))) (-15 -3976 (|#4| |#4|)) (-15 -1383 ((-108) (-589 |#4|))) (-15 -1383 ((-108) (-589 (-883 |#1|))))) +((-3476 (((-858) |#1| (-1087)) 16) (((-858) |#1| (-1087) (-1011 (-203))) 20)) (-2007 (((-858) |#1| |#1| (-1087) (-1011 (-203))) 18) (((-858) |#1| (-1087) (-1011 (-203))) 14))) +(((-856 |#1|) (-10 -7 (-15 -2007 ((-858) |#1| (-1087) (-1011 (-203)))) (-15 -2007 ((-858) |#1| |#1| (-1087) (-1011 (-203)))) (-15 -3476 ((-858) |#1| (-1087) (-1011 (-203)))) (-15 -3476 ((-858) |#1| (-1087)))) (-564 (-499))) (T -856)) +((-3476 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-5 *2 (-858)) (-5 *1 (-856 *3)) (-4 *3 (-564 (-499))))) (-3476 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1087)) (-5 *5 (-1011 (-203))) (-5 *2 (-858)) (-5 *1 (-856 *3)) (-4 *3 (-564 (-499))))) (-2007 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1087)) (-5 *5 (-1011 (-203))) (-5 *2 (-858)) (-5 *1 (-856 *3)) (-4 *3 (-564 (-499))))) (-2007 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1087)) (-5 *5 (-1011 (-203))) (-5 *2 (-858)) (-5 *1 (-856 *3)) (-4 *3 (-564 (-499)))))) +(-10 -7 (-15 -2007 ((-858) |#1| (-1087) (-1011 (-203)))) (-15 -2007 ((-858) |#1| |#1| (-1087) (-1011 (-203)))) (-15 -3476 ((-858) |#1| (-1087) (-1011 (-203)))) (-15 -3476 ((-858) |#1| (-1087)))) +((-4197 (($ $ (-1011 (-203)) (-1011 (-203)) (-1011 (-203))) 69)) (-2842 (((-1011 (-203)) $) 40)) (-2831 (((-1011 (-203)) $) 39)) (-2817 (((-1011 (-203)) $) 38)) (-2294 (((-589 (-589 (-203))) $) 43)) (-2495 (((-1011 (-203)) $) 41)) (-3959 (((-523) (-523)) 32)) (-1339 (((-523) (-523)) 28)) (-2994 (((-523) (-523)) 30)) (-3709 (((-108) (-108)) 35)) (-3279 (((-523)) 31)) (-3747 (($ $ (-1011 (-203))) 72) (($ $) 73)) (-4224 (($ (-1 (-874 (-203)) (-203)) (-1011 (-203))) 77) (($ (-1 (-874 (-203)) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203))) 78)) (-2007 (($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203))) 80) (($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203))) 81) (($ $ (-1011 (-203))) 75)) (-2695 (((-523)) 36)) (-1550 (((-523)) 27)) (-4116 (((-523)) 29)) (-4068 (((-589 (-589 (-874 (-203)))) $) 93)) (-3132 (((-108) (-108)) 37)) (-1458 (((-794) $) 92)) (-3071 (((-108)) 34))) +(((-857) (-13 (-903) (-10 -8 (-15 -4224 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)))) (-15 -4224 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2007 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)))) (-15 -2007 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2007 ($ $ (-1011 (-203)))) (-15 -4197 ($ $ (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -3747 ($ $ (-1011 (-203)))) (-15 -3747 ($ $)) (-15 -2495 ((-1011 (-203)) $)) (-15 -2294 ((-589 (-589 (-203))) $)) (-15 -1550 ((-523))) (-15 -1339 ((-523) (-523))) (-15 -4116 ((-523))) (-15 -2994 ((-523) (-523))) (-15 -3279 ((-523))) (-15 -3959 ((-523) (-523))) (-15 -3071 ((-108))) (-15 -3709 ((-108) (-108))) (-15 -2695 ((-523))) (-15 -3132 ((-108) (-108)))))) (T -857)) +((-4224 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-857)))) (-4224 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-857)))) (-2007 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-857)))) (-2007 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-857)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) (-4197 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) (-3747 (*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) (-3747 (*1 *1 *1) (-5 *1 (-857))) (-2495 (*1 *2 *1) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) (-2294 (*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-203)))) (-5 *1 (-857)))) (-1550 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857)))) (-1339 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857)))) (-4116 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857)))) (-2994 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857)))) (-3279 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857)))) (-3959 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857)))) (-3071 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-857)))) (-3709 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-857)))) (-2695 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857)))) (-3132 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-857))))) +(-13 (-903) (-10 -8 (-15 -4224 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)))) (-15 -4224 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2007 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)))) (-15 -2007 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2007 ($ $ (-1011 (-203)))) (-15 -4197 ($ $ (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -3747 ($ $ (-1011 (-203)))) (-15 -3747 ($ $)) (-15 -2495 ((-1011 (-203)) $)) (-15 -2294 ((-589 (-589 (-203))) $)) (-15 -1550 ((-523))) (-15 -1339 ((-523) (-523))) (-15 -4116 ((-523))) (-15 -2994 ((-523) (-523))) (-15 -3279 ((-523))) (-15 -3959 ((-523) (-523))) (-15 -3071 ((-108))) (-15 -3709 ((-108) (-108))) (-15 -2695 ((-523))) (-15 -3132 ((-108) (-108))))) +((-4197 (($ $ (-1011 (-203))) 70) (($ $ (-1011 (-203)) (-1011 (-203))) 71)) (-2831 (((-1011 (-203)) $) 43)) (-2817 (((-1011 (-203)) $) 42)) (-2495 (((-1011 (-203)) $) 44)) (-3452 (((-523) (-523)) 36)) (-2459 (((-523) (-523)) 32)) (-2272 (((-523) (-523)) 34)) (-1624 (((-108) (-108)) 38)) (-1214 (((-523)) 35)) (-3747 (($ $ (-1011 (-203))) 74) (($ $) 75)) (-4224 (($ (-1 (-874 (-203)) (-203)) (-1011 (-203))) 84) (($ (-1 (-874 (-203)) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203))) 85)) (-3476 (($ (-1 (-203) (-203)) (-1011 (-203))) 92) (($ (-1 (-203) (-203))) 95)) (-2007 (($ (-1 (-203) (-203)) (-1011 (-203))) 79) (($ (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203))) 80) (($ (-589 (-1 (-203) (-203))) (-1011 (-203))) 87) (($ (-589 (-1 (-203) (-203))) (-1011 (-203)) (-1011 (-203))) 88) (($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203))) 81) (($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203))) 82) (($ $ (-1011 (-203))) 76)) (-3265 (((-108) $) 39)) (-2662 (((-523)) 40)) (-1790 (((-523)) 31)) (-3229 (((-523)) 33)) (-4068 (((-589 (-589 (-874 (-203)))) $) 22)) (-1459 (((-108) (-108)) 41)) (-1458 (((-794) $) 106)) (-1388 (((-108)) 37))) +(((-858) (-13 (-885) (-10 -8 (-15 -2007 ($ (-1 (-203) (-203)) (-1011 (-203)))) (-15 -2007 ($ (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2007 ($ (-589 (-1 (-203) (-203))) (-1011 (-203)))) (-15 -2007 ($ (-589 (-1 (-203) (-203))) (-1011 (-203)) (-1011 (-203)))) (-15 -2007 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)))) (-15 -2007 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -4224 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)))) (-15 -4224 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -3476 ($ (-1 (-203) (-203)) (-1011 (-203)))) (-15 -3476 ($ (-1 (-203) (-203)))) (-15 -2007 ($ $ (-1011 (-203)))) (-15 -3265 ((-108) $)) (-15 -4197 ($ $ (-1011 (-203)))) (-15 -4197 ($ $ (-1011 (-203)) (-1011 (-203)))) (-15 -3747 ($ $ (-1011 (-203)))) (-15 -3747 ($ $)) (-15 -2495 ((-1011 (-203)) $)) (-15 -1790 ((-523))) (-15 -2459 ((-523) (-523))) (-15 -3229 ((-523))) (-15 -2272 ((-523) (-523))) (-15 -1214 ((-523))) (-15 -3452 ((-523) (-523))) (-15 -1388 ((-108))) (-15 -1624 ((-108) (-108))) (-15 -2662 ((-523))) (-15 -1459 ((-108) (-108)))))) (T -858)) +((-2007 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-2007 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-2007 (*1 *1 *2 *3) (-12 (-5 *2 (-589 (-1 (-203) (-203)))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-2007 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-589 (-1 (-203) (-203)))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-2007 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-2007 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-4224 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-4224 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-3476 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) (-5 *1 (-858)))) (-3476 (*1 *1 *2) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *1 (-858)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-858)))) (-4197 (*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) (-4197 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) (-3747 (*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) (-3747 (*1 *1 *1) (-5 *1 (-858))) (-2495 (*1 *2 *1) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) (-1790 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858)))) (-2459 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858)))) (-3229 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858)))) (-2272 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858)))) (-1214 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858)))) (-3452 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858)))) (-1388 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-858)))) (-1624 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-858)))) (-2662 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858)))) (-1459 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-858))))) +(-13 (-885) (-10 -8 (-15 -2007 ($ (-1 (-203) (-203)) (-1011 (-203)))) (-15 -2007 ($ (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -2007 ($ (-589 (-1 (-203) (-203))) (-1011 (-203)))) (-15 -2007 ($ (-589 (-1 (-203) (-203))) (-1011 (-203)) (-1011 (-203)))) (-15 -2007 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)))) (-15 -2007 ($ (-1 (-203) (-203)) (-1 (-203) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -4224 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)))) (-15 -4224 ($ (-1 (-874 (-203)) (-203)) (-1011 (-203)) (-1011 (-203)) (-1011 (-203)))) (-15 -3476 ($ (-1 (-203) (-203)) (-1011 (-203)))) (-15 -3476 ($ (-1 (-203) (-203)))) (-15 -2007 ($ $ (-1011 (-203)))) (-15 -3265 ((-108) $)) (-15 -4197 ($ $ (-1011 (-203)))) (-15 -4197 ($ $ (-1011 (-203)) (-1011 (-203)))) (-15 -3747 ($ $ (-1011 (-203)))) (-15 -3747 ($ $)) (-15 -2495 ((-1011 (-203)) $)) (-15 -1790 ((-523))) (-15 -2459 ((-523) (-523))) (-15 -3229 ((-523))) (-15 -2272 ((-523) (-523))) (-15 -1214 ((-523))) (-15 -3452 ((-523) (-523))) (-15 -1388 ((-108))) (-15 -1624 ((-108) (-108))) (-15 -2662 ((-523))) (-15 -1459 ((-108) (-108))))) +((-3422 (((-589 (-1011 (-203))) (-589 (-589 (-874 (-203))))) 23))) +(((-859) (-10 -7 (-15 -3422 ((-589 (-1011 (-203))) (-589 (-589 (-874 (-203)))))))) (T -859)) +((-3422 (*1 *2 *3) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *2 (-589 (-1011 (-203)))) (-5 *1 (-859))))) +(-10 -7 (-15 -3422 ((-589 (-1011 (-203))) (-589 (-589 (-874 (-203))))))) +((-3969 ((|#2| |#2|) 25)) (-2515 ((|#2| |#2|) 26)) (-3059 ((|#2| |#2|) 24)) (-3326 ((|#2| |#2| (-1070)) 23))) +(((-860 |#1| |#2|) (-10 -7 (-15 -3326 (|#2| |#2| (-1070))) (-15 -3059 (|#2| |#2|)) (-15 -3969 (|#2| |#2|)) (-15 -2515 (|#2| |#2|))) (-786) (-406 |#1|)) (T -860)) +((-2515 (*1 *2 *2) (-12 (-4 *3 (-786)) (-5 *1 (-860 *3 *2)) (-4 *2 (-406 *3)))) (-3969 (*1 *2 *2) (-12 (-4 *3 (-786)) (-5 *1 (-860 *3 *2)) (-4 *2 (-406 *3)))) (-3059 (*1 *2 *2) (-12 (-4 *3 (-786)) (-5 *1 (-860 *3 *2)) (-4 *2 (-406 *3)))) (-3326 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-786)) (-5 *1 (-860 *4 *2)) (-4 *2 (-406 *4))))) +(-10 -7 (-15 -3326 (|#2| |#2| (-1070))) (-15 -3059 (|#2| |#2|)) (-15 -3969 (|#2| |#2|)) (-15 -2515 (|#2| |#2|))) +((-3969 (((-292 (-523)) (-1087)) 15)) (-2515 (((-292 (-523)) (-1087)) 13)) (-3059 (((-292 (-523)) (-1087)) 11)) (-3326 (((-292 (-523)) (-1087) (-1070)) 18))) +(((-861) (-10 -7 (-15 -3326 ((-292 (-523)) (-1087) (-1070))) (-15 -3059 ((-292 (-523)) (-1087))) (-15 -3969 ((-292 (-523)) (-1087))) (-15 -2515 ((-292 (-523)) (-1087))))) (T -861)) +((-2515 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-292 (-523))) (-5 *1 (-861)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-292 (-523))) (-5 *1 (-861)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-292 (-523))) (-5 *1 (-861)))) (-3326 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-1070)) (-5 *2 (-292 (-523))) (-5 *1 (-861))))) +(-10 -7 (-15 -3326 ((-292 (-523)) (-1087) (-1070))) (-15 -3059 ((-292 (-523)) (-1087))) (-15 -3969 ((-292 (-523)) (-1087))) (-15 -2515 ((-292 (-523)) (-1087)))) +((-2130 (((-820 |#1| |#3|) |#2| (-823 |#1|) (-820 |#1| |#3|)) 24)) (-1283 (((-1 (-108) |#2|) (-1 (-108) |#3|)) 12))) +(((-862 |#1| |#2| |#3|) (-10 -7 (-15 -1283 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -2130 ((-820 |#1| |#3|) |#2| (-823 |#1|) (-820 |#1| |#3|)))) (-1016) (-817 |#1|) (-13 (-1016) (-964 |#2|))) (T -862)) +((-2130 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *6)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-4 *6 (-13 (-1016) (-964 *3))) (-4 *3 (-817 *5)) (-5 *1 (-862 *5 *3 *6)))) (-1283 (*1 *2 *3) (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1016) (-964 *5))) (-4 *5 (-817 *4)) (-4 *4 (-1016)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-862 *4 *5 *6))))) +(-10 -7 (-15 -1283 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -2130 ((-820 |#1| |#3|) |#2| (-823 |#1|) (-820 |#1| |#3|)))) +((-2130 (((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)) 29))) +(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -2130 ((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)))) (-1016) (-13 (-515) (-786) (-817 |#1|)) (-13 (-406 |#2|) (-564 (-823 |#1|)) (-817 |#1|) (-964 (-562 $)))) (T -863)) +((-2130 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *3)) (-4 *5 (-1016)) (-4 *3 (-13 (-406 *6) (-564 *4) (-817 *5) (-964 (-562 $)))) (-5 *4 (-823 *5)) (-4 *6 (-13 (-515) (-786) (-817 *5))) (-5 *1 (-863 *5 *6 *3))))) +(-10 -7 (-15 -2130 ((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)))) +((-2130 (((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|)) 12))) +(((-864 |#1|) (-10 -7 (-15 -2130 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|)))) (-508)) (T -864)) +((-2130 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 (-523) *3)) (-5 *4 (-823 (-523))) (-4 *3 (-508)) (-5 *1 (-864 *3))))) +(-10 -7 (-15 -2130 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|)))) +((-2130 (((-820 |#1| |#2|) (-562 |#2|) (-823 |#1|) (-820 |#1| |#2|)) 52))) +(((-865 |#1| |#2|) (-10 -7 (-15 -2130 ((-820 |#1| |#2|) (-562 |#2|) (-823 |#1|) (-820 |#1| |#2|)))) (-1016) (-13 (-786) (-964 (-562 $)) (-564 (-823 |#1|)) (-817 |#1|))) (T -865)) +((-2130 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *6)) (-5 *3 (-562 *6)) (-4 *5 (-1016)) (-4 *6 (-13 (-786) (-964 (-562 $)) (-564 *4) (-817 *5))) (-5 *4 (-823 *5)) (-5 *1 (-865 *5 *6))))) +(-10 -7 (-15 -2130 ((-820 |#1| |#2|) (-562 |#2|) (-823 |#1|) (-820 |#1| |#2|)))) +((-2130 (((-816 |#1| |#2| |#3|) |#3| (-823 |#1|) (-816 |#1| |#2| |#3|)) 14))) +(((-866 |#1| |#2| |#3|) (-10 -7 (-15 -2130 ((-816 |#1| |#2| |#3|) |#3| (-823 |#1|) (-816 |#1| |#2| |#3|)))) (-1016) (-817 |#1|) (-609 |#2|)) (T -866)) +((-2130 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-816 *5 *6 *3)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-4 *6 (-817 *5)) (-4 *3 (-609 *6)) (-5 *1 (-866 *5 *6 *3))))) +(-10 -7 (-15 -2130 ((-816 |#1| |#2| |#3|) |#3| (-823 |#1|) (-816 |#1| |#2| |#3|)))) +((-2130 (((-820 |#1| |#5|) |#5| (-823 |#1|) (-820 |#1| |#5|)) 17 (|has| |#3| (-817 |#1|))) (((-820 |#1| |#5|) |#5| (-823 |#1|) (-820 |#1| |#5|) (-1 (-820 |#1| |#5|) |#3| (-823 |#1|) (-820 |#1| |#5|))) 16))) +(((-867 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2130 ((-820 |#1| |#5|) |#5| (-823 |#1|) (-820 |#1| |#5|) (-1 (-820 |#1| |#5|) |#3| (-823 |#1|) (-820 |#1| |#5|)))) (IF (|has| |#3| (-817 |#1|)) (-15 -2130 ((-820 |#1| |#5|) |#5| (-823 |#1|) (-820 |#1| |#5|))) |%noBranch|)) (-1016) (-732) (-786) (-13 (-973) (-786) (-817 |#1|)) (-13 (-880 |#4| |#2| |#3|) (-564 (-823 |#1|)))) (T -867)) +((-2130 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *3)) (-4 *5 (-1016)) (-4 *3 (-13 (-880 *8 *6 *7) (-564 *4))) (-5 *4 (-823 *5)) (-4 *7 (-817 *5)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-13 (-973) (-786) (-817 *5))) (-5 *1 (-867 *5 *6 *7 *8 *3)))) (-2130 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-820 *6 *3) *8 (-823 *6) (-820 *6 *3))) (-4 *8 (-786)) (-5 *2 (-820 *6 *3)) (-5 *4 (-823 *6)) (-4 *6 (-1016)) (-4 *3 (-13 (-880 *9 *7 *8) (-564 *4))) (-4 *7 (-732)) (-4 *9 (-13 (-973) (-786) (-817 *6))) (-5 *1 (-867 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -2130 ((-820 |#1| |#5|) |#5| (-823 |#1|) (-820 |#1| |#5|) (-1 (-820 |#1| |#5|) |#3| (-823 |#1|) (-820 |#1| |#5|)))) (IF (|has| |#3| (-817 |#1|)) (-15 -2130 ((-820 |#1| |#5|) |#5| (-823 |#1|) (-820 |#1| |#5|))) |%noBranch|)) +((-3547 ((|#2| |#2| (-589 (-1 (-108) |#3|))) 11) ((|#2| |#2| (-1 (-108) |#3|)) 12))) +(((-868 |#1| |#2| |#3|) (-10 -7 (-15 -3547 (|#2| |#2| (-1 (-108) |#3|))) (-15 -3547 (|#2| |#2| (-589 (-1 (-108) |#3|))))) (-786) (-406 |#1|) (-1122)) (T -868)) +((-3547 (*1 *2 *2 *3) (-12 (-5 *3 (-589 (-1 (-108) *5))) (-4 *5 (-1122)) (-4 *4 (-786)) (-5 *1 (-868 *4 *2 *5)) (-4 *2 (-406 *4)))) (-3547 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1122)) (-4 *4 (-786)) (-5 *1 (-868 *4 *2 *5)) (-4 *2 (-406 *4))))) +(-10 -7 (-15 -3547 (|#2| |#2| (-1 (-108) |#3|))) (-15 -3547 (|#2| |#2| (-589 (-1 (-108) |#3|))))) +((-3547 (((-292 (-523)) (-1087) (-589 (-1 (-108) |#1|))) 16) (((-292 (-523)) (-1087) (-1 (-108) |#1|)) 13))) +(((-869 |#1|) (-10 -7 (-15 -3547 ((-292 (-523)) (-1087) (-1 (-108) |#1|))) (-15 -3547 ((-292 (-523)) (-1087) (-589 (-1 (-108) |#1|))))) (-1122)) (T -869)) +((-3547 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-589 (-1 (-108) *5))) (-4 *5 (-1122)) (-5 *2 (-292 (-523))) (-5 *1 (-869 *5)))) (-3547 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1122)) (-5 *2 (-292 (-523))) (-5 *1 (-869 *5))))) +(-10 -7 (-15 -3547 ((-292 (-523)) (-1087) (-1 (-108) |#1|))) (-15 -3547 ((-292 (-523)) (-1087) (-589 (-1 (-108) |#1|))))) +((-2130 (((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)) 25))) +(((-870 |#1| |#2| |#3|) (-10 -7 (-15 -2130 ((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)))) (-1016) (-13 (-515) (-817 |#1|) (-564 (-823 |#1|))) (-921 |#2|)) (T -870)) +((-2130 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *3)) (-4 *5 (-1016)) (-4 *3 (-921 *6)) (-4 *6 (-13 (-515) (-817 *5) (-564 *4))) (-5 *4 (-823 *5)) (-5 *1 (-870 *5 *6 *3))))) +(-10 -7 (-15 -2130 ((-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)))) +((-2130 (((-820 |#1| (-1087)) (-1087) (-823 |#1|) (-820 |#1| (-1087))) 17))) +(((-871 |#1|) (-10 -7 (-15 -2130 ((-820 |#1| (-1087)) (-1087) (-823 |#1|) (-820 |#1| (-1087))))) (-1016)) (T -871)) +((-2130 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 (-1087))) (-5 *3 (-1087)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-5 *1 (-871 *5))))) +(-10 -7 (-15 -2130 ((-820 |#1| (-1087)) (-1087) (-823 |#1|) (-820 |#1| (-1087))))) +((-2245 (((-820 |#1| |#3|) (-589 |#3|) (-589 (-823 |#1|)) (-820 |#1| |#3|) (-1 (-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|))) 33)) (-2130 (((-820 |#1| |#3|) (-589 |#3|) (-589 (-823 |#1|)) (-1 |#3| (-589 |#3|)) (-820 |#1| |#3|) (-1 (-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|))) 32))) +(((-872 |#1| |#2| |#3|) (-10 -7 (-15 -2130 ((-820 |#1| |#3|) (-589 |#3|) (-589 (-823 |#1|)) (-1 |#3| (-589 |#3|)) (-820 |#1| |#3|) (-1 (-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)))) (-15 -2245 ((-820 |#1| |#3|) (-589 |#3|) (-589 (-823 |#1|)) (-820 |#1| |#3|) (-1 (-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|))))) (-1016) (-13 (-973) (-786)) (-13 (-973) (-564 (-823 |#1|)) (-964 |#2|))) (T -872)) +((-2245 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 (-823 *6))) (-5 *5 (-1 (-820 *6 *8) *8 (-823 *6) (-820 *6 *8))) (-4 *6 (-1016)) (-4 *8 (-13 (-973) (-564 (-823 *6)) (-964 *7))) (-5 *2 (-820 *6 *8)) (-4 *7 (-13 (-973) (-786))) (-5 *1 (-872 *6 *7 *8)))) (-2130 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-589 (-823 *7))) (-5 *5 (-1 *9 (-589 *9))) (-5 *6 (-1 (-820 *7 *9) *9 (-823 *7) (-820 *7 *9))) (-4 *7 (-1016)) (-4 *9 (-13 (-973) (-564 (-823 *7)) (-964 *8))) (-5 *2 (-820 *7 *9)) (-5 *3 (-589 *9)) (-4 *8 (-13 (-973) (-786))) (-5 *1 (-872 *7 *8 *9))))) +(-10 -7 (-15 -2130 ((-820 |#1| |#3|) (-589 |#3|) (-589 (-823 |#1|)) (-1 |#3| (-589 |#3|)) (-820 |#1| |#3|) (-1 (-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|)))) (-15 -2245 ((-820 |#1| |#3|) (-589 |#3|) (-589 (-823 |#1|)) (-820 |#1| |#3|) (-1 (-820 |#1| |#3|) |#3| (-823 |#1|) (-820 |#1| |#3|))))) +((-1220 (((-1083 (-383 (-523))) (-523)) 62)) (-3801 (((-1083 (-523)) (-523)) 65)) (-1632 (((-1083 (-523)) (-523)) 59)) (-2152 (((-523) (-1083 (-523))) 54)) (-1712 (((-1083 (-383 (-523))) (-523)) 48)) (-1625 (((-1083 (-523)) (-523)) 37)) (-3448 (((-1083 (-523)) (-523)) 67)) (-2505 (((-1083 (-523)) (-523)) 66)) (-3490 (((-1083 (-383 (-523))) (-523)) 50))) +(((-873) (-10 -7 (-15 -3490 ((-1083 (-383 (-523))) (-523))) (-15 -2505 ((-1083 (-523)) (-523))) (-15 -3448 ((-1083 (-523)) (-523))) (-15 -1625 ((-1083 (-523)) (-523))) (-15 -1712 ((-1083 (-383 (-523))) (-523))) (-15 -2152 ((-523) (-1083 (-523)))) (-15 -1632 ((-1083 (-523)) (-523))) (-15 -3801 ((-1083 (-523)) (-523))) (-15 -1220 ((-1083 (-383 (-523))) (-523))))) (T -873)) +((-1220 (*1 *2 *3) (-12 (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-873)) (-5 *3 (-523)))) (-3801 (*1 *2 *3) (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523)))) (-1632 (*1 *2 *3) (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523)))) (-2152 (*1 *2 *3) (-12 (-5 *3 (-1083 (-523))) (-5 *2 (-523)) (-5 *1 (-873)))) (-1712 (*1 *2 *3) (-12 (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-873)) (-5 *3 (-523)))) (-1625 (*1 *2 *3) (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523)))) (-3448 (*1 *2 *3) (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523)))) (-2505 (*1 *2 *3) (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523)))) (-3490 (*1 *2 *3) (-12 (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-873)) (-5 *3 (-523))))) +(-10 -7 (-15 -3490 ((-1083 (-383 (-523))) (-523))) (-15 -2505 ((-1083 (-523)) (-523))) (-15 -3448 ((-1083 (-523)) (-523))) (-15 -1625 ((-1083 (-523)) (-523))) (-15 -1712 ((-1083 (-383 (-523))) (-523))) (-15 -2152 ((-523) (-1083 (-523)))) (-15 -1632 ((-1083 (-523)) (-523))) (-15 -3801 ((-1083 (-523)) (-523))) (-15 -1220 ((-1083 (-383 (-523))) (-523)))) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2821 (($ (-710)) NIL (|has| |#1| (-23)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-523) |#1|) 11 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) NIL)) (-1479 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-2388 (($ (-589 |#1|)) 13)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1777 (((-629 |#1|) $ $) NIL (|has| |#1| (-973)))) (-3052 (($ (-710) |#1|) 8)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) 10 (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3798 ((|#1| $) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-973))))) (-2866 (((-108) $ (-710)) NIL)) (-2996 ((|#1| $) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-973))))) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1738 ((|#1| $) NIL (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) NIL (|has| $ (-6 -4245)))) (-4097 (($ $ (-589 |#1|)) 24)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) 18) (($ $ (-1135 (-523))) NIL)) (-3269 ((|#1| $ $) NIL (|has| |#1| (-973)))) (-3203 (((-852) $) 16)) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2240 (($ $ $) 22)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499)))) (($ (-589 |#1|)) 17)) (-1472 (($ (-589 |#1|)) NIL)) (-2326 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 23) (($ (-589 $)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4087 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4075 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-523) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-666))) (($ $ |#1|) NIL (|has| |#1| (-666)))) (-2676 (((-710) $) 14 (|has| $ (-6 -4244))))) +(((-874 |#1|) (-909 |#1|) (-973)) (T -874)) +NIL +(-909 |#1|) +((-1438 (((-455 |#1| |#2|) (-883 |#2|)) 17)) (-1276 (((-225 |#1| |#2|) (-883 |#2|)) 29)) (-2187 (((-883 |#2|) (-455 |#1| |#2|)) 22)) (-1734 (((-225 |#1| |#2|) (-455 |#1| |#2|)) 53)) (-3025 (((-883 |#2|) (-225 |#1| |#2|)) 26)) (-2740 (((-455 |#1| |#2|) (-225 |#1| |#2|)) 44))) +(((-875 |#1| |#2|) (-10 -7 (-15 -2740 ((-455 |#1| |#2|) (-225 |#1| |#2|))) (-15 -1734 ((-225 |#1| |#2|) (-455 |#1| |#2|))) (-15 -1438 ((-455 |#1| |#2|) (-883 |#2|))) (-15 -2187 ((-883 |#2|) (-455 |#1| |#2|))) (-15 -3025 ((-883 |#2|) (-225 |#1| |#2|))) (-15 -1276 ((-225 |#1| |#2|) (-883 |#2|)))) (-589 (-1087)) (-973)) (T -875)) +((-1276 (*1 *2 *3) (-12 (-5 *3 (-883 *5)) (-4 *5 (-973)) (-5 *2 (-225 *4 *5)) (-5 *1 (-875 *4 *5)) (-14 *4 (-589 (-1087))))) (-3025 (*1 *2 *3) (-12 (-5 *3 (-225 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) (-5 *2 (-883 *5)) (-5 *1 (-875 *4 *5)))) (-2187 (*1 *2 *3) (-12 (-5 *3 (-455 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) (-5 *2 (-883 *5)) (-5 *1 (-875 *4 *5)))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-883 *5)) (-4 *5 (-973)) (-5 *2 (-455 *4 *5)) (-5 *1 (-875 *4 *5)) (-14 *4 (-589 (-1087))))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-455 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) (-5 *2 (-225 *4 *5)) (-5 *1 (-875 *4 *5)))) (-2740 (*1 *2 *3) (-12 (-5 *3 (-225 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) (-5 *2 (-455 *4 *5)) (-5 *1 (-875 *4 *5))))) +(-10 -7 (-15 -2740 ((-455 |#1| |#2|) (-225 |#1| |#2|))) (-15 -1734 ((-225 |#1| |#2|) (-455 |#1| |#2|))) (-15 -1438 ((-455 |#1| |#2|) (-883 |#2|))) (-15 -2187 ((-883 |#2|) (-455 |#1| |#2|))) (-15 -3025 ((-883 |#2|) (-225 |#1| |#2|))) (-15 -1276 ((-225 |#1| |#2|) (-883 |#2|)))) +((-2949 (((-589 |#2|) |#2| |#2|) 10)) (-2560 (((-710) (-589 |#1|)) 38 (|has| |#1| (-784)))) (-1507 (((-589 |#2|) |#2|) 11)) (-1271 (((-710) (-589 |#1|) (-523) (-523)) 37 (|has| |#1| (-784)))) (-1478 ((|#1| |#2|) 33 (|has| |#1| (-784))))) +(((-876 |#1| |#2|) (-10 -7 (-15 -2949 ((-589 |#2|) |#2| |#2|)) (-15 -1507 ((-589 |#2|) |#2|)) (IF (|has| |#1| (-784)) (PROGN (-15 -1478 (|#1| |#2|)) (-15 -2560 ((-710) (-589 |#1|))) (-15 -1271 ((-710) (-589 |#1|) (-523) (-523)))) |%noBranch|)) (-339) (-1144 |#1|)) (T -876)) +((-1271 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-589 *5)) (-5 *4 (-523)) (-4 *5 (-784)) (-4 *5 (-339)) (-5 *2 (-710)) (-5 *1 (-876 *5 *6)) (-4 *6 (-1144 *5)))) (-2560 (*1 *2 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-784)) (-4 *4 (-339)) (-5 *2 (-710)) (-5 *1 (-876 *4 *5)) (-4 *5 (-1144 *4)))) (-1478 (*1 *2 *3) (-12 (-4 *2 (-339)) (-4 *2 (-784)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1144 *2)))) (-1507 (*1 *2 *3) (-12 (-4 *4 (-339)) (-5 *2 (-589 *3)) (-5 *1 (-876 *4 *3)) (-4 *3 (-1144 *4)))) (-2949 (*1 *2 *3 *3) (-12 (-4 *4 (-339)) (-5 *2 (-589 *3)) (-5 *1 (-876 *4 *3)) (-4 *3 (-1144 *4))))) +(-10 -7 (-15 -2949 ((-589 |#2|) |#2| |#2|)) (-15 -1507 ((-589 |#2|) |#2|)) (IF (|has| |#1| (-784)) (PROGN (-15 -1478 (|#1| |#2|)) (-15 -2560 ((-710) (-589 |#1|))) (-15 -1271 ((-710) (-589 |#1|) (-523) (-523)))) |%noBranch|)) +((-3612 (((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)) 18))) +(((-877 |#1| |#2|) (-10 -7 (-15 -3612 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)))) (-973) (-973)) (T -877)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-973)) (-4 *6 (-973)) (-5 *2 (-883 *6)) (-5 *1 (-877 *5 *6))))) +(-10 -7 (-15 -3612 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)))) +((-1786 (((-1141 |#1| (-883 |#2|)) (-883 |#2|) (-1164 |#1|)) 18))) +(((-878 |#1| |#2|) (-10 -7 (-15 -1786 ((-1141 |#1| (-883 |#2|)) (-883 |#2|) (-1164 |#1|)))) (-1087) (-973)) (T -878)) +((-1786 (*1 *2 *3 *4) (-12 (-5 *4 (-1164 *5)) (-14 *5 (-1087)) (-4 *6 (-973)) (-5 *2 (-1141 *5 (-883 *6))) (-5 *1 (-878 *5 *6)) (-5 *3 (-883 *6))))) +(-10 -7 (-15 -1786 ((-1141 |#1| (-883 |#2|)) (-883 |#2|) (-1164 |#1|)))) +((-3893 (((-710) $) 70) (((-710) $ (-589 |#4|)) 73)) (-2291 (($ $) 170)) (-3614 (((-394 $) $) 162)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 113)) (-3517 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 (-523) "failed") $) NIL) (((-3 |#4| "failed") $) 59)) (-3474 ((|#2| $) NIL) (((-383 (-523)) $) NIL) (((-523) $) NIL) ((|#4| $) 58)) (-3078 (($ $ $ |#4|) 75)) (-2381 (((-629 (-523)) (-629 $)) NIL) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) 103) (((-629 |#2|) (-629 $)) 96)) (-2528 (($ $) 177) (($ $ |#4|) 180)) (-3799 (((-589 $) $) 62)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 195) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 189)) (-3679 (((-589 $) $) 28)) (-1933 (($ |#2| |#3|) NIL) (($ $ |#4| (-710)) NIL) (($ $ (-589 |#4|) (-589 (-710))) 56)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ |#4|) 159)) (-3226 (((-3 (-589 $) "failed") $) 42)) (-4006 (((-3 (-589 $) "failed") $) 31)) (-2630 (((-3 (-2 (|:| |var| |#4|) (|:| -2735 (-710))) "failed") $) 46)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 106)) (-1219 (((-394 (-1083 $)) (-1083 $)) 119)) (-3967 (((-394 (-1083 $)) (-1083 $)) 117)) (-1820 (((-394 $) $) 137)) (-2679 (($ $ (-589 (-271 $))) 20) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-589 |#4|) (-589 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-589 |#4|) (-589 $)) NIL)) (-3549 (($ $ |#4|) 77)) (-3663 (((-823 (-355)) $) 209) (((-823 (-523)) $) 202) (((-499) $) 217)) (-2438 ((|#2| $) NIL) (($ $ |#4|) 172)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 151)) (-2365 ((|#2| $ |#3|) NIL) (($ $ |#4| (-710)) 51) (($ $ (-589 |#4|) (-589 (-710))) 54)) (-3901 (((-3 $ "failed") $) 153)) (-4007 (((-108) $ $) 183))) +(((-879 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2667 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3614 ((-394 |#1|) |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -3901 ((-3 |#1| "failed") |#1|)) (-15 -4007 ((-108) |#1| |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -2130 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -2130 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3967 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -1219 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3652 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -3391 ((-3 (-1168 |#1|) "failed") (-629 |#1|))) (-15 -2528 (|#1| |#1| |#4|)) (-15 -2438 (|#1| |#1| |#4|)) (-15 -3549 (|#1| |#1| |#4|)) (-15 -3078 (|#1| |#1| |#1| |#4|)) (-15 -3799 ((-589 |#1|) |#1|)) (-15 -3893 ((-710) |#1| (-589 |#4|))) (-15 -3893 ((-710) |#1|)) (-15 -2630 ((-3 (-2 (|:| |var| |#4|) (|:| -2735 (-710))) "failed") |#1|)) (-15 -3226 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -4006 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -1933 (|#1| |#1| (-589 |#4|) (-589 (-710)))) (-15 -1933 (|#1| |#1| |#4| (-710))) (-15 -2981 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1| |#4|)) (-15 -3679 ((-589 |#1|) |#1|)) (-15 -2365 (|#1| |#1| (-589 |#4|) (-589 (-710)))) (-15 -2365 (|#1| |#1| |#4| (-710))) (-15 -2381 ((-629 |#2|) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -3474 (|#4| |#1|)) (-15 -3517 ((-3 |#4| "failed") |#1|)) (-15 -2679 (|#1| |#1| (-589 |#4|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#4| |#1|)) (-15 -2679 (|#1| |#1| (-589 |#4|) (-589 |#2|))) (-15 -2679 (|#1| |#1| |#4| |#2|)) (-15 -2679 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-271 |#1|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -1933 (|#1| |#2| |#3|)) (-15 -2365 (|#2| |#1| |#3|)) (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -2438 (|#2| |#1|)) (-15 -2528 (|#1| |#1|))) (-880 |#2| |#3| |#4|) (-973) (-732) (-786)) (T -879)) +NIL +(-10 -8 (-15 -2667 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3614 ((-394 |#1|) |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -3901 ((-3 |#1| "failed") |#1|)) (-15 -4007 ((-108) |#1| |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -2130 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -2130 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3967 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -1219 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3652 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -3391 ((-3 (-1168 |#1|) "failed") (-629 |#1|))) (-15 -2528 (|#1| |#1| |#4|)) (-15 -2438 (|#1| |#1| |#4|)) (-15 -3549 (|#1| |#1| |#4|)) (-15 -3078 (|#1| |#1| |#1| |#4|)) (-15 -3799 ((-589 |#1|) |#1|)) (-15 -3893 ((-710) |#1| (-589 |#4|))) (-15 -3893 ((-710) |#1|)) (-15 -2630 ((-3 (-2 (|:| |var| |#4|) (|:| -2735 (-710))) "failed") |#1|)) (-15 -3226 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -4006 ((-3 (-589 |#1|) "failed") |#1|)) (-15 -1933 (|#1| |#1| (-589 |#4|) (-589 (-710)))) (-15 -1933 (|#1| |#1| |#4| (-710))) (-15 -2981 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1| |#4|)) (-15 -3679 ((-589 |#1|) |#1|)) (-15 -2365 (|#1| |#1| (-589 |#4|) (-589 (-710)))) (-15 -2365 (|#1| |#1| |#4| (-710))) (-15 -2381 ((-629 |#2|) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -3474 (|#4| |#1|)) (-15 -3517 ((-3 |#4| "failed") |#1|)) (-15 -2679 (|#1| |#1| (-589 |#4|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#4| |#1|)) (-15 -2679 (|#1| |#1| (-589 |#4|) (-589 |#2|))) (-15 -2679 (|#1| |#1| |#4| |#2|)) (-15 -2679 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-271 |#1|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -1933 (|#1| |#2| |#3|)) (-15 -2365 (|#2| |#1| |#3|)) (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -2438 (|#2| |#1|)) (-15 -2528 (|#1| |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1957 (((-589 |#3|) $) 110)) (-1786 (((-1083 $) $ |#3|) 125) (((-1083 |#1|) $) 124)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 87 (|has| |#1| (-515)))) (-3345 (($ $) 88 (|has| |#1| (-515)))) (-3331 (((-108) $) 90 (|has| |#1| (-515)))) (-3893 (((-710) $) 112) (((-710) $ (-589 |#3|)) 111)) (-3212 (((-3 $ "failed") $ $) 19)) (-3156 (((-394 (-1083 $)) (-1083 $)) 100 (|has| |#1| (-840)))) (-2291 (($ $) 98 (|has| |#1| (-427)))) (-3614 (((-394 $) $) 97 (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 103 (|has| |#1| (-840)))) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#1| "failed") $) 164) (((-3 (-383 (-523)) "failed") $) 162 (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) 160 (|has| |#1| (-964 (-523)))) (((-3 |#3| "failed") $) 136)) (-3474 ((|#1| $) 165) (((-383 (-523)) $) 161 (|has| |#1| (-964 (-383 (-523))))) (((-523) $) 159 (|has| |#1| (-964 (-523)))) ((|#3| $) 135)) (-3078 (($ $ $ |#3|) 108 (|has| |#1| (-158)))) (-3810 (($ $) 154)) (-2381 (((-629 (-523)) (-629 $)) 134 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 133 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 132) (((-629 |#1|) (-629 $)) 131)) (-2121 (((-3 $ "failed") $) 34)) (-2528 (($ $) 176 (|has| |#1| (-427))) (($ $ |#3|) 105 (|has| |#1| (-427)))) (-3799 (((-589 $) $) 109)) (-2657 (((-108) $) 96 (|has| |#1| (-840)))) (-1284 (($ $ |#1| |#2| $) 172)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 84 (-12 (|has| |#3| (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 83 (-12 (|has| |#3| (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-2023 (((-108) $) 31)) (-3554 (((-710) $) 169)) (-1945 (($ (-1083 |#1|) |#3|) 117) (($ (-1083 $) |#3|) 116)) (-3679 (((-589 $) $) 126)) (-2620 (((-108) $) 152)) (-1933 (($ |#1| |#2|) 153) (($ $ |#3| (-710)) 119) (($ $ (-589 |#3|) (-589 (-710))) 118)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ |#3|) 120)) (-1575 ((|#2| $) 170) (((-710) $ |#3|) 122) (((-589 (-710)) $ (-589 |#3|)) 121)) (-2454 (($ $ $) 79 (|has| |#1| (-786)))) (-2062 (($ $ $) 78 (|has| |#1| (-786)))) (-3782 (($ (-1 |#2| |#2|) $) 171)) (-3612 (($ (-1 |#1| |#1|) $) 151)) (-2520 (((-3 |#3| "failed") $) 123)) (-3774 (($ $) 149)) (-3786 ((|#1| $) 148)) (-3244 (($ (-589 $)) 94 (|has| |#1| (-427))) (($ $ $) 93 (|has| |#1| (-427)))) (-3779 (((-1070) $) 9)) (-3226 (((-3 (-589 $) "failed") $) 114)) (-4006 (((-3 (-589 $) "failed") $) 115)) (-2630 (((-3 (-2 (|:| |var| |#3|) (|:| -2735 (-710))) "failed") $) 113)) (-2783 (((-1034) $) 10)) (-3749 (((-108) $) 166)) (-3760 ((|#1| $) 167)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 95 (|has| |#1| (-427)))) (-3278 (($ (-589 $)) 92 (|has| |#1| (-427))) (($ $ $) 91 (|has| |#1| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) 102 (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) 101 (|has| |#1| (-840)))) (-1820 (((-394 $) $) 99 (|has| |#1| (-840)))) (-3746 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-515))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-515)))) (-2679 (($ $ (-589 (-271 $))) 145) (($ $ (-271 $)) 144) (($ $ $ $) 143) (($ $ (-589 $) (-589 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-589 |#3|) (-589 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-589 |#3|) (-589 $)) 138)) (-3549 (($ $ |#3|) 107 (|has| |#1| (-158)))) (-3523 (($ $ |#3|) 42) (($ $ (-589 |#3|)) 41) (($ $ |#3| (-710)) 40) (($ $ (-589 |#3|) (-589 (-710))) 39)) (-2299 ((|#2| $) 150) (((-710) $ |#3|) 130) (((-589 (-710)) $ (-589 |#3|)) 129)) (-3663 (((-823 (-355)) $) 82 (-12 (|has| |#3| (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) 81 (-12 (|has| |#3| (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) 80 (-12 (|has| |#3| (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-2438 ((|#1| $) 175 (|has| |#1| (-427))) (($ $ |#3|) 106 (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 104 (-4099 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-515))) (($ (-383 (-523))) 72 (-3262 (|has| |#1| (-964 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523))))))) (-1251 (((-589 |#1|) $) 168)) (-2365 ((|#1| $ |#2|) 155) (($ $ |#3| (-710)) 128) (($ $ (-589 |#3|) (-589 (-710))) 127)) (-3901 (((-3 $ "failed") $) 73 (-3262 (-4099 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) 29)) (-2276 (($ $ $ (-710)) 173 (|has| |#1| (-158)))) (-1704 (((-108) $ $) 89 (|has| |#1| (-515)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ |#3|) 38) (($ $ (-589 |#3|)) 37) (($ $ |#3| (-710)) 36) (($ $ (-589 |#3|) (-589 (-710))) 35)) (-4043 (((-108) $ $) 76 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 75 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 77 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 74 (|has| |#1| (-786)))) (-4098 (($ $ |#1|) 156 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 158 (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) 157 (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-880 |#1| |#2| |#3|) (-129) (-973) (-732) (-786)) (T -880)) +((-2528 (*1 *1 *1) (-12 (-4 *1 (-880 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-427)))) (-2299 (*1 *2 *1 *3) (-12 (-4 *1 (-880 *4 *5 *3)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-5 *2 (-710)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *6)) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 (-710))))) (-2365 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-880 *4 *5 *2)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *2 (-786)))) (-2365 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *6)) (-5 *3 (-589 (-710))) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)))) (-3679 (*1 *2 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-880 *3 *4 *5)))) (-1786 (*1 *2 *1 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-5 *2 (-1083 *1)) (-4 *1 (-880 *4 *5 *3)))) (-1786 (*1 *2 *1) (-12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-1083 *3)))) (-2520 (*1 *2 *1) (|partial| -12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-1575 (*1 *2 *1 *3) (-12 (-4 *1 (-880 *4 *5 *3)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-5 *2 (-710)))) (-1575 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *6)) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 (-710))))) (-2981 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-880 *4 *5 *3)))) (-1933 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-880 *4 *5 *2)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *2 (-786)))) (-1933 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *6)) (-5 *3 (-589 (-710))) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)))) (-1945 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *4)) (-4 *4 (-973)) (-4 *1 (-880 *4 *5 *3)) (-4 *5 (-732)) (-4 *3 (-786)))) (-1945 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-880 *4 *5 *3)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)))) (-4006 (*1 *2 *1) (|partial| -12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-880 *3 *4 *5)))) (-3226 (*1 *2 *1) (|partial| -12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-880 *3 *4 *5)))) (-2630 (*1 *2 *1) (|partial| -12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| |var| *5) (|:| -2735 (-710)))))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-710)))) (-3893 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *6)) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-710)))) (-1957 (*1 *2 *1) (-12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *5)))) (-3799 (*1 *2 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-880 *3 *4 *5)))) (-3078 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)) (-4 *3 (-158)))) (-3549 (*1 *1 *1 *2) (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)) (-4 *3 (-158)))) (-2438 (*1 *1 *1 *2) (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)) (-4 *3 (-427)))) (-2528 (*1 *1 *1 *2) (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)) (-4 *3 (-427)))) (-2291 (*1 *1 *1) (-12 (-4 *1 (-880 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-427)))) (-3614 (*1 *2 *1) (-12 (-4 *3 (-427)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-394 *1)) (-4 *1 (-880 *3 *4 *5))))) +(-13 (-831 |t#3|) (-302 |t#1| |t#2|) (-286 $) (-484 |t#3| |t#1|) (-484 |t#3| $) (-964 |t#3|) (-353 |t#1|) (-10 -8 (-15 -2299 ((-710) $ |t#3|)) (-15 -2299 ((-589 (-710)) $ (-589 |t#3|))) (-15 -2365 ($ $ |t#3| (-710))) (-15 -2365 ($ $ (-589 |t#3|) (-589 (-710)))) (-15 -3679 ((-589 $) $)) (-15 -1786 ((-1083 $) $ |t#3|)) (-15 -1786 ((-1083 |t#1|) $)) (-15 -2520 ((-3 |t#3| "failed") $)) (-15 -1575 ((-710) $ |t#3|)) (-15 -1575 ((-589 (-710)) $ (-589 |t#3|))) (-15 -2981 ((-2 (|:| -3445 $) (|:| -3282 $)) $ $ |t#3|)) (-15 -1933 ($ $ |t#3| (-710))) (-15 -1933 ($ $ (-589 |t#3|) (-589 (-710)))) (-15 -1945 ($ (-1083 |t#1|) |t#3|)) (-15 -1945 ($ (-1083 $) |t#3|)) (-15 -4006 ((-3 (-589 $) "failed") $)) (-15 -3226 ((-3 (-589 $) "failed") $)) (-15 -2630 ((-3 (-2 (|:| |var| |t#3|) (|:| -2735 (-710))) "failed") $)) (-15 -3893 ((-710) $)) (-15 -3893 ((-710) $ (-589 |t#3|))) (-15 -1957 ((-589 |t#3|) $)) (-15 -3799 ((-589 $) $)) (IF (|has| |t#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |t#1| (-564 (-499))) (IF (|has| |t#3| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-564 (-823 (-523)))) (IF (|has| |t#3| (-564 (-823 (-523)))) (-6 (-564 (-823 (-523)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-564 (-823 (-355)))) (IF (|has| |t#3| (-564 (-823 (-355)))) (-6 (-564 (-823 (-355)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-817 (-523))) (IF (|has| |t#3| (-817 (-523))) (-6 (-817 (-523))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-817 (-355))) (IF (|has| |t#3| (-817 (-355))) (-6 (-817 (-355))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-158)) (PROGN (-15 -3078 ($ $ $ |t#3|)) (-15 -3549 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-427)) (PROGN (-6 (-427)) (-15 -2438 ($ $ |t#3|)) (-15 -2528 ($ $)) (-15 -2528 ($ $ |t#3|)) (-15 -3614 ((-394 $) $)) (-15 -2291 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4242)) (-6 -4242) |%noBranch|) (IF (|has| |t#1| (-840)) (-6 (-840)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-564 (-499)) -12 (|has| |#1| (-564 (-499))) (|has| |#3| (-564 (-499)))) ((-564 (-823 (-355))) -12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#3| (-564 (-823 (-355))))) ((-564 (-823 (-523))) -12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#3| (-564 (-823 (-523))))) ((-267) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-286 $) . T) ((-302 |#1| |#2|) . T) ((-353 |#1|) . T) ((-387 |#1|) . T) ((-427) -3262 (|has| |#1| (-840)) (|has| |#1| (-427))) ((-484 |#3| |#1|) . T) ((-484 |#3| $) . T) ((-484 $ $) . T) ((-515) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-591 #0#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #0#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-666) . T) ((-786) |has| |#1| (-786)) ((-831 |#3|) . T) ((-817 (-355)) -12 (|has| |#1| (-817 (-355))) (|has| |#3| (-817 (-355)))) ((-817 (-523)) -12 (|has| |#1| (-817 (-523))) (|has| |#3| (-817 (-523)))) ((-840) |has| |#1| (-840)) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-964 |#3|) . T) ((-979 #0#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) |has| |#1| (-840))) +((-1957 (((-589 |#2|) |#5|) 36)) (-1786 (((-1083 |#5|) |#5| |#2| (-1083 |#5|)) 23) (((-383 (-1083 |#5|)) |#5| |#2|) 16)) (-1945 ((|#5| (-383 (-1083 |#5|)) |#2|) 30)) (-2520 (((-3 |#2| "failed") |#5|) 61)) (-3226 (((-3 (-589 |#5|) "failed") |#5|) 55)) (-1295 (((-3 (-2 (|:| |val| |#5|) (|:| -2735 (-523))) "failed") |#5|) 45)) (-4006 (((-3 (-589 |#5|) "failed") |#5|) 57)) (-2630 (((-3 (-2 (|:| |var| |#2|) (|:| -2735 (-523))) "failed") |#5|) 48))) +(((-881 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1957 ((-589 |#2|) |#5|)) (-15 -2520 ((-3 |#2| "failed") |#5|)) (-15 -1786 ((-383 (-1083 |#5|)) |#5| |#2|)) (-15 -1945 (|#5| (-383 (-1083 |#5|)) |#2|)) (-15 -1786 ((-1083 |#5|) |#5| |#2| (-1083 |#5|))) (-15 -4006 ((-3 (-589 |#5|) "failed") |#5|)) (-15 -3226 ((-3 (-589 |#5|) "failed") |#5|)) (-15 -2630 ((-3 (-2 (|:| |var| |#2|) (|:| -2735 (-523))) "failed") |#5|)) (-15 -1295 ((-3 (-2 (|:| |val| |#5|) (|:| -2735 (-523))) "failed") |#5|))) (-732) (-786) (-973) (-880 |#3| |#1| |#2|) (-13 (-339) (-10 -8 (-15 -1458 ($ |#4|)) (-15 -2785 (|#4| $)) (-15 -2797 (|#4| $))))) (T -881)) +((-1295 (*1 *2 *3) (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2735 (-523)))) (-5 *1 (-881 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))))) (-2630 (*1 *2 *3) (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2735 (-523)))) (-5 *1 (-881 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))))) (-3226 (*1 *2 *3) (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-589 *3)) (-5 *1 (-881 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))))) (-4006 (*1 *2 *3) (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-589 *3)) (-5 *1 (-881 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))))) (-1786 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))) (-4 *7 (-880 *6 *5 *4)) (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-973)) (-5 *1 (-881 *5 *4 *6 *7 *3)))) (-1945 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-1083 *2))) (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-973)) (-4 *2 (-13 (-339) (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))) (-5 *1 (-881 *5 *4 *6 *7 *2)) (-4 *7 (-880 *6 *5 *4)))) (-1786 (*1 *2 *3 *4) (-12 (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-973)) (-4 *7 (-880 *6 *5 *4)) (-5 *2 (-383 (-1083 *3))) (-5 *1 (-881 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))))) (-2520 (*1 *2 *3) (|partial| -12 (-4 *4 (-732)) (-4 *5 (-973)) (-4 *6 (-880 *5 *4 *2)) (-4 *2 (-786)) (-5 *1 (-881 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1458 ($ *6)) (-15 -2785 (*6 $)) (-15 -2797 (*6 $))))))) (-1957 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-589 *5)) (-5 *1 (-881 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-339) (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $)))))))) +(-10 -7 (-15 -1957 ((-589 |#2|) |#5|)) (-15 -2520 ((-3 |#2| "failed") |#5|)) (-15 -1786 ((-383 (-1083 |#5|)) |#5| |#2|)) (-15 -1945 (|#5| (-383 (-1083 |#5|)) |#2|)) (-15 -1786 ((-1083 |#5|) |#5| |#2| (-1083 |#5|))) (-15 -4006 ((-3 (-589 |#5|) "failed") |#5|)) (-15 -3226 ((-3 (-589 |#5|) "failed") |#5|)) (-15 -2630 ((-3 (-2 (|:| |var| |#2|) (|:| -2735 (-523))) "failed") |#5|)) (-15 -1295 ((-3 (-2 (|:| |val| |#5|) (|:| -2735 (-523))) "failed") |#5|))) +((-3612 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-882 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3612 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-732) (-786) (-973) (-880 |#3| |#1| |#2|) (-13 (-1016) (-10 -8 (-15 -4075 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-710)))))) (T -882)) +((-3612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-786)) (-4 *8 (-973)) (-4 *6 (-732)) (-4 *2 (-13 (-1016) (-10 -8 (-15 -4075 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-710)))))) (-5 *1 (-882 *6 *7 *8 *5 *2)) (-4 *5 (-880 *8 *6 *7))))) +(-10 -7 (-15 -3612 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-1087)) $) 15)) (-1786 (((-1083 $) $ (-1087)) 21) (((-1083 |#1|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-1087))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2291 (($ $) NIL (|has| |#1| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) 8) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-1087) "failed") $) NIL)) (-3474 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-1087) $) NIL)) (-3078 (($ $ $ (-1087)) NIL (|has| |#1| (-158)))) (-3810 (($ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#1| (-427))) (($ $ (-1087)) NIL (|has| |#1| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#1| (-840)))) (-1284 (($ $ |#1| (-495 (-1087)) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1087) (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1087) (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-1945 (($ (-1083 |#1|) (-1087)) NIL) (($ (-1083 $) (-1087)) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-495 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-1087)) NIL)) (-1575 (((-495 (-1087)) $) NIL) (((-710) $ (-1087)) NIL) (((-589 (-710)) $ (-589 (-1087))) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3782 (($ (-1 (-495 (-1087)) (-495 (-1087))) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2520 (((-3 (-1087) "failed") $) 19)) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-3779 (((-1070) $) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-1087)) (|:| -2735 (-710))) "failed") $) NIL)) (-3417 (($ $ (-1087)) 29 (|has| |#1| (-37 (-383 (-523)))))) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 ((|#1| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-840)))) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-1087) |#1|) NIL) (($ $ (-589 (-1087)) (-589 |#1|)) NIL) (($ $ (-1087) $) NIL) (($ $ (-589 (-1087)) (-589 $)) NIL)) (-3549 (($ $ (-1087)) NIL (|has| |#1| (-158)))) (-3523 (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL)) (-2299 (((-495 (-1087)) $) NIL) (((-710) $ (-1087)) NIL) (((-589 (-710)) $ (-589 (-1087))) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-1087) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-1087) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-1087) (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-2438 ((|#1| $) NIL (|has| |#1| (-427))) (($ $ (-1087)) NIL (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) 25) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-1087)) 27) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-495 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-883 |#1|) (-13 (-880 |#1| (-495 (-1087)) (-1087)) (-10 -8 (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1087))) |%noBranch|))) (-973)) (T -883)) +((-3417 (*1 *1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-883 *3)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973))))) +(-13 (-880 |#1| (-495 (-1087)) (-1087)) (-10 -8 (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1087))) |%noBranch|))) +((-2257 (((-2 (|:| -2735 (-710)) (|:| -2935 |#5|) (|:| |radicand| |#5|)) |#3| (-710)) 37)) (-3556 (((-2 (|:| -2735 (-710)) (|:| -2935 |#5|) (|:| |radicand| |#5|)) (-383 (-523)) (-710)) 33)) (-3961 (((-2 (|:| -2735 (-710)) (|:| -2935 |#4|) (|:| |radicand| (-589 |#4|))) |#4| (-710)) 52)) (-1735 (((-2 (|:| -2735 (-710)) (|:| -2935 |#5|) (|:| |radicand| |#5|)) |#5| (-710)) 62 (|has| |#3| (-427))))) +(((-884 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2257 ((-2 (|:| -2735 (-710)) (|:| -2935 |#5|) (|:| |radicand| |#5|)) |#3| (-710))) (-15 -3556 ((-2 (|:| -2735 (-710)) (|:| -2935 |#5|) (|:| |radicand| |#5|)) (-383 (-523)) (-710))) (IF (|has| |#3| (-427)) (-15 -1735 ((-2 (|:| -2735 (-710)) (|:| -2935 |#5|) (|:| |radicand| |#5|)) |#5| (-710))) |%noBranch|) (-15 -3961 ((-2 (|:| -2735 (-710)) (|:| -2935 |#4|) (|:| |radicand| (-589 |#4|))) |#4| (-710)))) (-732) (-786) (-515) (-880 |#3| |#1| |#2|) (-13 (-339) (-10 -8 (-15 -2785 (|#4| $)) (-15 -2797 (|#4| $)) (-15 -1458 ($ |#4|))))) (T -884)) +((-3961 (*1 *2 *3 *4) (-12 (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-515)) (-4 *3 (-880 *7 *5 *6)) (-5 *2 (-2 (|:| -2735 (-710)) (|:| -2935 *3) (|:| |radicand| (-589 *3)))) (-5 *1 (-884 *5 *6 *7 *3 *8)) (-5 *4 (-710)) (-4 *8 (-13 (-339) (-10 -8 (-15 -2785 (*3 $)) (-15 -2797 (*3 $)) (-15 -1458 ($ *3))))))) (-1735 (*1 *2 *3 *4) (-12 (-4 *7 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-515)) (-4 *8 (-880 *7 *5 *6)) (-5 *2 (-2 (|:| -2735 (-710)) (|:| -2935 *3) (|:| |radicand| *3))) (-5 *1 (-884 *5 *6 *7 *8 *3)) (-5 *4 (-710)) (-4 *3 (-13 (-339) (-10 -8 (-15 -2785 (*8 $)) (-15 -2797 (*8 $)) (-15 -1458 ($ *8))))))) (-3556 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-523))) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-515)) (-4 *8 (-880 *7 *5 *6)) (-5 *2 (-2 (|:| -2735 (-710)) (|:| -2935 *9) (|:| |radicand| *9))) (-5 *1 (-884 *5 *6 *7 *8 *9)) (-5 *4 (-710)) (-4 *9 (-13 (-339) (-10 -8 (-15 -2785 (*8 $)) (-15 -2797 (*8 $)) (-15 -1458 ($ *8))))))) (-2257 (*1 *2 *3 *4) (-12 (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-515)) (-4 *7 (-880 *3 *5 *6)) (-5 *2 (-2 (|:| -2735 (-710)) (|:| -2935 *8) (|:| |radicand| *8))) (-5 *1 (-884 *5 *6 *3 *7 *8)) (-5 *4 (-710)) (-4 *8 (-13 (-339) (-10 -8 (-15 -2785 (*7 $)) (-15 -2797 (*7 $)) (-15 -1458 ($ *7)))))))) +(-10 -7 (-15 -2257 ((-2 (|:| -2735 (-710)) (|:| -2935 |#5|) (|:| |radicand| |#5|)) |#3| (-710))) (-15 -3556 ((-2 (|:| -2735 (-710)) (|:| -2935 |#5|) (|:| |radicand| |#5|)) (-383 (-523)) (-710))) (IF (|has| |#3| (-427)) (-15 -1735 ((-2 (|:| -2735 (-710)) (|:| -2935 |#5|) (|:| |radicand| |#5|)) |#5| (-710))) |%noBranch|) (-15 -3961 ((-2 (|:| -2735 (-710)) (|:| -2935 |#4|) (|:| |radicand| (-589 |#4|))) |#4| (-710)))) +((-2831 (((-1011 (-203)) $) 8)) (-2817 (((-1011 (-203)) $) 9)) (-4068 (((-589 (-589 (-874 (-203)))) $) 10)) (-1458 (((-794) $) 6))) +(((-885) (-129)) (T -885)) +((-4068 (*1 *2 *1) (-12 (-4 *1 (-885)) (-5 *2 (-589 (-589 (-874 (-203))))))) (-2817 (*1 *2 *1) (-12 (-4 *1 (-885)) (-5 *2 (-1011 (-203))))) (-2831 (*1 *2 *1) (-12 (-4 *1 (-885)) (-5 *2 (-1011 (-203)))))) +(-13 (-563 (-794)) (-10 -8 (-15 -4068 ((-589 (-589 (-874 (-203)))) $)) (-15 -2817 ((-1011 (-203)) $)) (-15 -2831 ((-1011 (-203)) $)))) +(((-563 (-794)) . T)) +((-2926 (((-3 (-629 |#1|) "failed") |#2| (-852)) 14))) +(((-886 |#1| |#2|) (-10 -7 (-15 -2926 ((-3 (-629 |#1|) "failed") |#2| (-852)))) (-515) (-599 |#1|)) (T -886)) +((-2926 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-852)) (-4 *5 (-515)) (-5 *2 (-629 *5)) (-5 *1 (-886 *5 *3)) (-4 *3 (-599 *5))))) +(-10 -7 (-15 -2926 ((-3 (-629 |#1|) "failed") |#2| (-852)))) +((-2837 (((-888 |#2|) (-1 |#2| |#1| |#2|) (-888 |#1|) |#2|) 16)) (-2437 ((|#2| (-1 |#2| |#1| |#2|) (-888 |#1|) |#2|) 18)) (-3612 (((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)) 13))) +(((-887 |#1| |#2|) (-10 -7 (-15 -2837 ((-888 |#2|) (-1 |#2| |#1| |#2|) (-888 |#1|) |#2|)) (-15 -2437 (|#2| (-1 |#2| |#1| |#2|) (-888 |#1|) |#2|)) (-15 -3612 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) (-1122) (-1122)) (T -887)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))) (-2437 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-888 *5)) (-4 *5 (-1122)) (-4 *2 (-1122)) (-5 *1 (-887 *5 *2)))) (-2837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-888 *6)) (-4 *6 (-1122)) (-4 *5 (-1122)) (-5 *2 (-888 *5)) (-5 *1 (-887 *6 *5))))) +(-10 -7 (-15 -2837 ((-888 |#2|) (-1 |#2| |#1| |#2|) (-888 |#1|) |#2|)) (-15 -2437 (|#2| (-1 |#2| |#1| |#2|) (-888 |#1|) |#2|)) (-15 -3612 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-523) |#1|) 17 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) 16 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 14)) (-1479 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-3052 (($ (-710) |#1|) 13)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) 10 (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1738 ((|#1| $) NIL (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) 12 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) 11)) (-3223 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) 15) (($ $ (-1135 (-523))) NIL)) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) NIL)) (-2326 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-2676 (((-710) $) 8 (|has| $ (-6 -4244))))) +(((-888 |#1|) (-19 |#1|) (-1122)) (T -888)) NIL (-19 |#1|) -((-2093 (($ $ (-1007 $)) 7) (($ $ (-1085)) 6))) -(((-887) (-1197)) (T -887)) -((-2093 (*1 *1 *1 *2) (-12 (-5 *2 (-1007 *1)) (-4 *1 (-887)))) (-2093 (*1 *1 *1 *2) (-12 (-4 *1 (-887)) (-5 *2 (-1085))))) -(-13 (-10 -8 (-15 -2093 ($ $ (-1085))) (-15 -2093 ($ $ (-1007 $))))) -((-2160 (((-2 (|:| -3112 (-588 (-522))) (|:| |poly| (-588 (-1081 |#1|))) (|:| |prim| (-1081 |#1|))) (-588 (-881 |#1|)) (-588 (-1085)) (-1085)) 23) (((-2 (|:| -3112 (-588 (-522))) (|:| |poly| (-588 (-1081 |#1|))) (|:| |prim| (-1081 |#1|))) (-588 (-881 |#1|)) (-588 (-1085))) 24) (((-2 (|:| |coef1| (-522)) (|:| |coef2| (-522)) (|:| |prim| (-1081 |#1|))) (-881 |#1|) (-1085) (-881 |#1|) (-1085)) 41))) -(((-888 |#1|) (-10 -7 (-15 -2160 ((-2 (|:| |coef1| (-522)) (|:| |coef2| (-522)) (|:| |prim| (-1081 |#1|))) (-881 |#1|) (-1085) (-881 |#1|) (-1085))) (-15 -2160 ((-2 (|:| -3112 (-588 (-522))) (|:| |poly| (-588 (-1081 |#1|))) (|:| |prim| (-1081 |#1|))) (-588 (-881 |#1|)) (-588 (-1085)))) (-15 -2160 ((-2 (|:| -3112 (-588 (-522))) (|:| |poly| (-588 (-1081 |#1|))) (|:| |prim| (-1081 |#1|))) (-588 (-881 |#1|)) (-588 (-1085)) (-1085)))) (-13 (-338) (-135))) (T -888)) -((-2160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-588 (-881 *6))) (-5 *4 (-588 (-1085))) (-5 *5 (-1085)) (-4 *6 (-13 (-338) (-135))) (-5 *2 (-2 (|:| -3112 (-588 (-522))) (|:| |poly| (-588 (-1081 *6))) (|:| |prim| (-1081 *6)))) (-5 *1 (-888 *6)))) (-2160 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-588 (-1085))) (-4 *5 (-13 (-338) (-135))) (-5 *2 (-2 (|:| -3112 (-588 (-522))) (|:| |poly| (-588 (-1081 *5))) (|:| |prim| (-1081 *5)))) (-5 *1 (-888 *5)))) (-2160 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-881 *5)) (-5 *4 (-1085)) (-4 *5 (-13 (-338) (-135))) (-5 *2 (-2 (|:| |coef1| (-522)) (|:| |coef2| (-522)) (|:| |prim| (-1081 *5)))) (-5 *1 (-888 *5))))) -(-10 -7 (-15 -2160 ((-2 (|:| |coef1| (-522)) (|:| |coef2| (-522)) (|:| |prim| (-1081 |#1|))) (-881 |#1|) (-1085) (-881 |#1|) (-1085))) (-15 -2160 ((-2 (|:| -3112 (-588 (-522))) (|:| |poly| (-588 (-1081 |#1|))) (|:| |prim| (-1081 |#1|))) (-588 (-881 |#1|)) (-588 (-1085)))) (-15 -2160 ((-2 (|:| -3112 (-588 (-522))) (|:| |poly| (-588 (-1081 |#1|))) (|:| |prim| (-1081 |#1|))) (-588 (-881 |#1|)) (-588 (-1085)) (-1085)))) -((-2807 (((-588 |#1|) |#1| |#1|) 42)) (-2725 (((-108) |#1|) 39)) (-4036 ((|#1| |#1|) 65)) (-1230 ((|#1| |#1|) 64))) -(((-889 |#1|) (-10 -7 (-15 -2725 ((-108) |#1|)) (-15 -1230 (|#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 -2807 ((-588 |#1|) |#1| |#1|))) (-507)) (T -889)) -((-2807 (*1 *2 *3 *3) (-12 (-5 *2 (-588 *3)) (-5 *1 (-889 *3)) (-4 *3 (-507)))) (-4036 (*1 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-507)))) (-1230 (*1 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-507)))) (-2725 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-889 *3)) (-4 *3 (-507))))) -(-10 -7 (-15 -2725 ((-108) |#1|)) (-15 -1230 (|#1| |#1|)) (-15 -4036 (|#1| |#1|)) (-15 -2807 ((-588 |#1|) |#1| |#1|))) -((-2100 (((-1171) (-792)) 9))) -(((-890) (-10 -7 (-15 -2100 ((-1171) (-792))))) (T -890)) -((-2100 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1171)) (-5 *1 (-890))))) -(-10 -7 (-15 -2100 ((-1171) (-792)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 63 (|has| |#1| (-514)))) (-2298 (($ $) 64 (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 28)) (-1478 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) NIL)) (-3241 (($ $) 24)) (-3920 (((-3 $ "failed") $) 35)) (-2883 (($ $) NIL (|has| |#1| (-426)))) (-3792 (($ $ |#1| |#2| $) 48)) (-2859 (((-108) $) NIL)) (-1391 (((-708) $) 16)) (-1374 (((-108) $) NIL)) (-3500 (($ |#1| |#2|) NIL)) (-3564 ((|#2| $) 19)) (-1723 (($ (-1 |#2| |#2|) $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-3216 (($ $) 23)) (-3224 ((|#1| $) 21)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-3199 (((-108) $) 40)) (-3207 ((|#1| $) NIL)) (-1953 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-124)) (|has| |#1| (-514))))) (-2276 (((-3 $ "failed") $ $) 74 (|has| |#1| (-514))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-514)))) (-2487 ((|#2| $) 17)) (-2988 ((|#1| $) NIL (|has| |#1| (-426)))) (-2217 (((-792) $) NIL) (($ (-522)) 39) (($ $) NIL (|has| |#1| (-514))) (($ |#1|) 34) (($ (-382 (-522))) NIL (-3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522))))))) (-2180 (((-588 |#1|) $) NIL)) (-1643 ((|#1| $ |#2|) 31)) (-3040 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2742 (((-708)) 15)) (-1225 (($ $ $ (-708)) 59 (|has| |#1| (-157)))) (-1407 (((-108) $ $) 69 (|has| |#1| (-514)))) (-3622 (($ $ (-850)) 55) (($ $ (-708)) 56)) (-3697 (($) 22 T CONST)) (-3709 (($) 12 T CONST)) (-1562 (((-108) $ $) 68)) (-1682 (($ $ |#1|) 75 (|has| |#1| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) 54) (($ $ (-708)) 52)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))))) -(((-891 |#1| |#2|) (-13 (-301 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-514)) (IF (|has| |#2| (-124)) (-15 -1953 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4236)) (-6 -4236) |%noBranch|))) (-971) (-729)) (T -891)) -((-1953 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-891 *3 *2)) (-4 *2 (-124)) (-4 *3 (-514)) (-4 *3 (-971)) (-4 *2 (-729))))) -(-13 (-301 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-514)) (IF (|has| |#2| (-124)) (-15 -1953 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4236)) (-6 -4236) |%noBranch|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL (-3844 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-730)) (|has| |#2| (-730)))))) (-1827 (($ $ $) 63 (-12 (|has| |#1| (-730)) (|has| |#2| (-730))))) (-2265 (((-3 $ "failed") $ $) 50 (-3844 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-730)) (|has| |#2| (-730)))))) (-1685 (((-708)) 34 (-12 (|has| |#1| (-343)) (|has| |#2| (-343))))) (-3679 ((|#2| $) 21)) (-2371 ((|#1| $) 20)) (-3367 (($) NIL (-3844 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664))) (-12 (|has| |#1| (-730)) (|has| |#2| (-730)))) CONST)) (-3920 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))))) (-3344 (($) NIL (-12 (|has| |#1| (-343)) (|has| |#2| (-343))))) (-2859 (((-108) $) NIL (-3844 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))))) (-1308 (($ $ $) NIL (-3844 (-12 (|has| |#1| (-730)) (|has| |#2| (-730))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-2524 (($ $ $) NIL (-3844 (-12 (|has| |#1| (-730)) (|has| |#2| (-730))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-1782 (($ |#1| |#2|) 19)) (-1475 (((-850) $) NIL (-12 (|has| |#1| (-343)) (|has| |#2| (-343))))) (-2311 (((-1068) $) NIL)) (-3193 (($ $) 37 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))))) (-2882 (($ (-850)) NIL (-12 (|has| |#1| (-343)) (|has| |#2| (-343))))) (-4174 (((-1032) $) NIL)) (-2983 (($ $ $) NIL (-12 (|has| |#1| (-447)) (|has| |#2| (-447))))) (-1596 (($ $ $) NIL (-12 (|has| |#1| (-447)) (|has| |#2| (-447))))) (-2217 (((-792) $) 14)) (-3622 (($ $ (-522)) NIL (-12 (|has| |#1| (-447)) (|has| |#2| (-447)))) (($ $ (-708)) NIL (-3844 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664))))) (($ $ (-850)) NIL (-3844 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))))) (-3697 (($) 40 (-3844 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-730)) (|has| |#2| (-730)))) CONST)) (-3709 (($) 24 (-3844 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) CONST)) (-1623 (((-108) $ $) NIL (-3844 (-12 (|has| |#1| (-730)) (|has| |#2| (-730))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-1597 (((-108) $ $) NIL (-3844 (-12 (|has| |#1| (-730)) (|has| |#2| (-730))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-1562 (((-108) $ $) 18)) (-1609 (((-108) $ $) NIL (-3844 (-12 (|has| |#1| (-730)) (|has| |#2| (-730))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-1587 (((-108) $ $) 66 (-3844 (-12 (|has| |#1| (-730)) (|has| |#2| (-730))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-1682 (($ $ $) NIL (-12 (|has| |#1| (-447)) (|has| |#2| (-447))))) (-1672 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1661 (($ $ $) 43 (-3844 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-730)) (|has| |#2| (-730)))))) (** (($ $ (-522)) NIL (-12 (|has| |#1| (-447)) (|has| |#2| (-447)))) (($ $ (-708)) 31 (-3844 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664))))) (($ $ (-850)) NIL (-3844 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))))) (* (($ (-522) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-708) $) 46 (-3844 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-730)) (|has| |#2| (-730))))) (($ (-850) $) NIL (-3844 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-730)) (|has| |#2| (-730))))) (($ $ $) 27 (-3844 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664))))))) -(((-892 |#1| |#2|) (-13 (-1014) (-10 -8 (IF (|has| |#1| (-343)) (IF (|has| |#2| (-343)) (-6 (-343)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-664)) (IF (|has| |#2| (-664)) (-6 (-664)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-124)) (IF (|has| |#2| (-124)) (-6 (-124)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-447)) (IF (|has| |#2| (-447)) (-6 (-447)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-730)) (IF (|has| |#2| (-730)) (-6 (-730)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-784)) (IF (|has| |#2| (-784)) (-6 (-784)) |%noBranch|) |%noBranch|) (-15 -1782 ($ |#1| |#2|)) (-15 -2371 (|#1| $)) (-15 -3679 (|#2| $)))) (-1014) (-1014)) (T -892)) -((-1782 (*1 *1 *2 *3) (-12 (-5 *1 (-892 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-2371 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-892 *2 *3)) (-4 *3 (-1014)))) (-3679 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-892 *3 *2)) (-4 *3 (-1014))))) -(-13 (-1014) (-10 -8 (IF (|has| |#1| (-343)) (IF (|has| |#2| (-343)) (-6 (-343)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-664)) (IF (|has| |#2| (-664)) (-6 (-664)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-124)) (IF (|has| |#2| (-124)) (-6 (-124)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-447)) (IF (|has| |#2| (-447)) (-6 (-447)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-730)) (IF (|has| |#2| (-730)) (-6 (-730)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-784)) (IF (|has| |#2| (-784)) (-6 (-784)) |%noBranch|) |%noBranch|) (-15 -1782 ($ |#1| |#2|)) (-15 -2371 (|#1| $)) (-15 -3679 (|#2| $)))) -((-3526 (((-1018) $) 12)) (-2008 (($ (-1085) (-1018)) 13)) (-3015 (((-1085) $) 10)) (-2217 (((-792) $) 24))) -(((-893) (-13 (-562 (-792)) (-10 -8 (-15 -3015 ((-1085) $)) (-15 -3526 ((-1018) $)) (-15 -2008 ($ (-1085) (-1018)))))) (T -893)) -((-3015 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-893)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-893)))) (-2008 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1018)) (-5 *1 (-893))))) -(-13 (-562 (-792)) (-10 -8 (-15 -3015 ((-1085) $)) (-15 -3526 ((-1018) $)) (-15 -2008 ($ (-1085) (-1018))))) -((-3533 (((-1016 (-1085)) $) 19)) (-1652 (((-108) $) 26)) (-1660 (((-1085) $) 27)) (-3663 (((-108) $) 24)) (-2401 ((|#1| $) 25)) (-3802 (((-802 $ $) $) 34)) (-2171 (((-108) $) 33)) (-4070 (($ $ $) 12)) (-2462 (($ $) 29)) (-2715 (((-108) $) 28)) (-2473 (($ $) 10)) (-1242 (((-802 $ $) $) 36)) (-2772 (((-108) $) 35)) (-3444 (($ $ $) 13)) (-2122 (((-802 $ $) $) 38)) (-3195 (((-108) $) 37)) (-2820 (($ $ $) 14)) (-2217 (($ |#1|) 7) (($ (-1085)) 9) (((-792) $) 40 (|has| |#1| (-562 (-792))))) (-2424 (((-802 $ $) $) 32)) (-2063 (((-108) $) 30)) (-4079 (($ $ $) 11))) -(((-894 |#1|) (-13 (-895) (-10 -8 (IF (|has| |#1| (-562 (-792))) (-6 (-562 (-792))) |%noBranch|) (-15 -2217 ($ |#1|)) (-15 -2217 ($ (-1085))) (-15 -3533 ((-1016 (-1085)) $)) (-15 -3663 ((-108) $)) (-15 -2401 (|#1| $)) (-15 -1652 ((-108) $)) (-15 -1660 ((-1085) $)) (-15 -2715 ((-108) $)) (-15 -2462 ($ $)) (-15 -2063 ((-108) $)) (-15 -2424 ((-802 $ $) $)) (-15 -2171 ((-108) $)) (-15 -3802 ((-802 $ $) $)) (-15 -2772 ((-108) $)) (-15 -1242 ((-802 $ $) $)) (-15 -3195 ((-108) $)) (-15 -2122 ((-802 $ $) $)))) (-895)) (T -894)) -((-2217 (*1 *1 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-895)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-3533 (*1 *2 *1) (-12 (-5 *2 (-1016 (-1085))) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-3663 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-2401 (*1 *2 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-895)))) (-1652 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-2715 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-2462 (*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-895)))) (-2063 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-2424 (*1 *2 *1) (-12 (-5 *2 (-802 (-894 *3) (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-802 (-894 *3) (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-1242 (*1 *2 *1) (-12 (-5 *2 (-802 (-894 *3) (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-3195 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-2122 (*1 *2 *1) (-12 (-5 *2 (-802 (-894 *3) (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-895))))) -(-13 (-895) (-10 -8 (IF (|has| |#1| (-562 (-792))) (-6 (-562 (-792))) |%noBranch|) (-15 -2217 ($ |#1|)) (-15 -2217 ($ (-1085))) (-15 -3533 ((-1016 (-1085)) $)) (-15 -3663 ((-108) $)) (-15 -2401 (|#1| $)) (-15 -1652 ((-108) $)) (-15 -1660 ((-1085) $)) (-15 -2715 ((-108) $)) (-15 -2462 ($ $)) (-15 -2063 ((-108) $)) (-15 -2424 ((-802 $ $) $)) (-15 -2171 ((-108) $)) (-15 -3802 ((-802 $ $) $)) (-15 -2772 ((-108) $)) (-15 -1242 ((-802 $ $) $)) (-15 -3195 ((-108) $)) (-15 -2122 ((-802 $ $) $)))) -((-4070 (($ $ $) 8)) (-2473 (($ $) 6)) (-3444 (($ $ $) 9)) (-2820 (($ $ $) 10)) (-4079 (($ $ $) 7))) -(((-895) (-1197)) (T -895)) -((-2820 (*1 *1 *1 *1) (-4 *1 (-895))) (-3444 (*1 *1 *1 *1) (-4 *1 (-895))) (-4070 (*1 *1 *1 *1) (-4 *1 (-895))) (-4079 (*1 *1 *1 *1) (-4 *1 (-895))) (-2473 (*1 *1 *1) (-4 *1 (-895)))) -(-13 (-10 -8 (-15 -2473 ($ $)) (-15 -4079 ($ $ $)) (-15 -4070 ($ $ $)) (-15 -3444 ($ $ $)) (-15 -2820 ($ $ $)))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-2717 (((-108) $ (-708)) 8)) (-3367 (($) 7 T CONST)) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) 9)) (-3557 (($ $ $) 43)) (-3164 (($ $ $) 44)) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2524 ((|#1| $) 45)) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35)) (-3309 (((-108) $ (-708)) 10)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1431 ((|#1| $) 39)) (-3365 (($ |#1| $) 40)) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-3295 ((|#1| $) 41)) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-2501 (($ (-588 |#1|)) 42)) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-896 |#1|) (-1197) (-784)) (T -896)) -((-2524 (*1 *2 *1) (-12 (-4 *1 (-896 *2)) (-4 *2 (-784)))) (-3164 (*1 *1 *1 *1) (-12 (-4 *1 (-896 *2)) (-4 *2 (-784)))) (-3557 (*1 *1 *1 *1) (-12 (-4 *1 (-896 *2)) (-4 *2 (-784))))) -(-13 (-102 |t#1|) (-10 -8 (-6 -4238) (-15 -2524 (|t#1| $)) (-15 -3164 ($ $ $)) (-15 -3557 ($ $ $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T)) -((-3665 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2308 |#2|)) |#2| |#2|) 85)) (-3485 ((|#2| |#2| |#2|) 83)) (-3781 (((-2 (|:| |coef2| |#2|) (|:| -2308 |#2|)) |#2| |#2|) 87)) (-3504 (((-2 (|:| |coef1| |#2|) (|:| -2308 |#2|)) |#2| |#2|) 89)) (-3126 (((-2 (|:| |coef2| |#2|) (|:| -1920 |#1|)) |#2| |#2|) 107 (|has| |#1| (-426)))) (-2486 (((-2 (|:| |coef2| |#2|) (|:| -2908 |#1|)) |#2| |#2|) 46)) (-2044 (((-2 (|:| |coef2| |#2|) (|:| -2908 |#1|)) |#2| |#2|) 64)) (-3803 (((-2 (|:| |coef1| |#2|) (|:| -2908 |#1|)) |#2| |#2|) 66)) (-3618 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-2015 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708)) 71)) (-3705 (((-2 (|:| |coef2| |#2|) (|:| -1615 |#1|)) |#2|) 97)) (-1514 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708)) 74)) (-2392 (((-588 (-708)) |#2| |#2|) 82)) (-1244 ((|#1| |#2| |#2|) 42)) (-1960 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1920 |#1|)) |#2| |#2|) 105 (|has| |#1| (-426)))) (-1920 ((|#1| |#2| |#2|) 103 (|has| |#1| (-426)))) (-3918 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2908 |#1|)) |#2| |#2|) 44)) (-3256 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2908 |#1|)) |#2| |#2|) 63)) (-2908 ((|#1| |#2| |#2|) 61)) (-3370 (((-2 (|:| -3112 |#1|) (|:| -3450 |#2|) (|:| -4002 |#2|)) |#2| |#2|) 35)) (-1328 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-1483 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-1998 ((|#2| |#2| |#2|) 75)) (-3175 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708)) 69)) (-2358 ((|#2| |#2| |#2| (-708)) 67)) (-2308 ((|#2| |#2| |#2|) 111 (|has| |#1| (-426)))) (-2276 (((-1166 |#2|) (-1166 |#2|) |#1|) 21)) (-4164 (((-2 (|:| -3450 |#2|) (|:| -4002 |#2|)) |#2| |#2|) 39)) (-3539 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1615 |#1|)) |#2|) 95)) (-1615 ((|#1| |#2|) 92)) (-2660 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708)) 73)) (-2322 ((|#2| |#2| |#2| (-708)) 72)) (-3971 (((-588 |#2|) |#2| |#2|) 80)) (-3853 ((|#2| |#2| |#1| |#1| (-708)) 50)) (-3138 ((|#1| |#1| |#1| (-708)) 49)) (* (((-1166 |#2|) |#1| (-1166 |#2|)) 16))) -(((-897 |#1| |#2|) (-10 -7 (-15 -2908 (|#1| |#2| |#2|)) (-15 -3256 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2908 |#1|)) |#2| |#2|)) (-15 -2044 ((-2 (|:| |coef2| |#2|) (|:| -2908 |#1|)) |#2| |#2|)) (-15 -3803 ((-2 (|:| |coef1| |#2|) (|:| -2908 |#1|)) |#2| |#2|)) (-15 -2358 (|#2| |#2| |#2| (-708))) (-15 -3175 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708))) (-15 -2015 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708))) (-15 -2322 (|#2| |#2| |#2| (-708))) (-15 -2660 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708))) (-15 -1514 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708))) (-15 -1998 (|#2| |#2| |#2|)) (-15 -1483 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3618 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3485 (|#2| |#2| |#2|)) (-15 -3665 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2308 |#2|)) |#2| |#2|)) (-15 -3781 ((-2 (|:| |coef2| |#2|) (|:| -2308 |#2|)) |#2| |#2|)) (-15 -3504 ((-2 (|:| |coef1| |#2|) (|:| -2308 |#2|)) |#2| |#2|)) (-15 -1615 (|#1| |#2|)) (-15 -3539 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1615 |#1|)) |#2|)) (-15 -3705 ((-2 (|:| |coef2| |#2|) (|:| -1615 |#1|)) |#2|)) (-15 -3971 ((-588 |#2|) |#2| |#2|)) (-15 -2392 ((-588 (-708)) |#2| |#2|)) (IF (|has| |#1| (-426)) (PROGN (-15 -1920 (|#1| |#2| |#2|)) (-15 -1960 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1920 |#1|)) |#2| |#2|)) (-15 -3126 ((-2 (|:| |coef2| |#2|) (|:| -1920 |#1|)) |#2| |#2|)) (-15 -2308 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1166 |#2|) |#1| (-1166 |#2|))) (-15 -2276 ((-1166 |#2|) (-1166 |#2|) |#1|)) (-15 -3370 ((-2 (|:| -3112 |#1|) (|:| -3450 |#2|) (|:| -4002 |#2|)) |#2| |#2|)) (-15 -4164 ((-2 (|:| -3450 |#2|) (|:| -4002 |#2|)) |#2| |#2|)) (-15 -3138 (|#1| |#1| |#1| (-708))) (-15 -3853 (|#2| |#2| |#1| |#1| (-708))) (-15 -1328 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1244 (|#1| |#2| |#2|)) (-15 -3918 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2908 |#1|)) |#2| |#2|)) (-15 -2486 ((-2 (|:| |coef2| |#2|) (|:| -2908 |#1|)) |#2| |#2|))) (-514) (-1142 |#1|)) (T -897)) -((-2486 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2908 *4))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-3918 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2908 *4))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-1244 (*1 *2 *3 *3) (-12 (-4 *2 (-514)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1142 *2)))) (-1328 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-514)) (-5 *1 (-897 *3 *2)) (-4 *2 (-1142 *3)))) (-3853 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-708)) (-4 *3 (-514)) (-5 *1 (-897 *3 *2)) (-4 *2 (-1142 *3)))) (-3138 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-708)) (-4 *2 (-514)) (-5 *1 (-897 *2 *4)) (-4 *4 (-1142 *2)))) (-4164 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| -3450 *3) (|:| -4002 *3))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-3370 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| -3112 *4) (|:| -3450 *3) (|:| -4002 *3))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-2276 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1142 *3)) (-4 *3 (-514)) (-5 *1 (-897 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1142 *3)) (-4 *3 (-514)) (-5 *1 (-897 *3 *4)))) (-2308 (*1 *2 *2 *2) (-12 (-4 *3 (-426)) (-4 *3 (-514)) (-5 *1 (-897 *3 *2)) (-4 *2 (-1142 *3)))) (-3126 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1920 *4))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-1960 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1920 *4))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-1920 (*1 *2 *3 *3) (-12 (-4 *2 (-514)) (-4 *2 (-426)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1142 *2)))) (-2392 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-588 (-708))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-3971 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-588 *3)) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-3705 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1615 *4))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-3539 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1615 *4))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-1615 (*1 *2 *3) (-12 (-4 *2 (-514)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1142 *2)))) (-3504 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2308 *3))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-3781 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2308 *3))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-3665 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2308 *3))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-3485 (*1 *2 *2 *2) (-12 (-4 *3 (-514)) (-5 *1 (-897 *3 *2)) (-4 *2 (-1142 *3)))) (-3618 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-1483 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-1998 (*1 *2 *2 *2) (-12 (-4 *3 (-514)) (-5 *1 (-897 *3 *2)) (-4 *2 (-1142 *3)))) (-1514 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-708)) (-4 *5 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-897 *5 *3)) (-4 *3 (-1142 *5)))) (-2660 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-708)) (-4 *5 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-897 *5 *3)) (-4 *3 (-1142 *5)))) (-2322 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-708)) (-4 *4 (-514)) (-5 *1 (-897 *4 *2)) (-4 *2 (-1142 *4)))) (-2015 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-708)) (-4 *5 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-897 *5 *3)) (-4 *3 (-1142 *5)))) (-3175 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-708)) (-4 *5 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-897 *5 *3)) (-4 *3 (-1142 *5)))) (-2358 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-708)) (-4 *4 (-514)) (-5 *1 (-897 *4 *2)) (-4 *2 (-1142 *4)))) (-3803 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2908 *4))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-2044 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2908 *4))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-3256 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2908 *4))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-2908 (*1 *2 *3 *3) (-12 (-4 *2 (-514)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1142 *2))))) -(-10 -7 (-15 -2908 (|#1| |#2| |#2|)) (-15 -3256 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2908 |#1|)) |#2| |#2|)) (-15 -2044 ((-2 (|:| |coef2| |#2|) (|:| -2908 |#1|)) |#2| |#2|)) (-15 -3803 ((-2 (|:| |coef1| |#2|) (|:| -2908 |#1|)) |#2| |#2|)) (-15 -2358 (|#2| |#2| |#2| (-708))) (-15 -3175 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708))) (-15 -2015 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708))) (-15 -2322 (|#2| |#2| |#2| (-708))) (-15 -2660 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708))) (-15 -1514 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708))) (-15 -1998 (|#2| |#2| |#2|)) (-15 -1483 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3618 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3485 (|#2| |#2| |#2|)) (-15 -3665 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2308 |#2|)) |#2| |#2|)) (-15 -3781 ((-2 (|:| |coef2| |#2|) (|:| -2308 |#2|)) |#2| |#2|)) (-15 -3504 ((-2 (|:| |coef1| |#2|) (|:| -2308 |#2|)) |#2| |#2|)) (-15 -1615 (|#1| |#2|)) (-15 -3539 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1615 |#1|)) |#2|)) (-15 -3705 ((-2 (|:| |coef2| |#2|) (|:| -1615 |#1|)) |#2|)) (-15 -3971 ((-588 |#2|) |#2| |#2|)) (-15 -2392 ((-588 (-708)) |#2| |#2|)) (IF (|has| |#1| (-426)) (PROGN (-15 -1920 (|#1| |#2| |#2|)) (-15 -1960 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1920 |#1|)) |#2| |#2|)) (-15 -3126 ((-2 (|:| |coef2| |#2|) (|:| -1920 |#1|)) |#2| |#2|)) (-15 -2308 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1166 |#2|) |#1| (-1166 |#2|))) (-15 -2276 ((-1166 |#2|) (-1166 |#2|) |#1|)) (-15 -3370 ((-2 (|:| -3112 |#1|) (|:| -3450 |#2|) (|:| -4002 |#2|)) |#2| |#2|)) (-15 -4164 ((-2 (|:| -3450 |#2|) (|:| -4002 |#2|)) |#2| |#2|)) (-15 -3138 (|#1| |#1| |#1| (-708))) (-15 -3853 (|#2| |#2| |#1| |#1| (-708))) (-15 -1328 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1244 (|#1| |#2| |#2|)) (-15 -3918 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2908 |#1|)) |#2| |#2|)) (-15 -2486 ((-2 (|:| |coef2| |#2|) (|:| -2908 |#1|)) |#2| |#2|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) 27)) (-3367 (($) NIL T CONST)) (-2438 (((-588 (-588 (-522))) (-588 (-522))) 29)) (-3109 (((-522) $) 45)) (-1292 (($ (-588 (-522))) 17)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-3873 (((-588 (-522)) $) 11)) (-2983 (($ $) 32)) (-2217 (((-792) $) 43) (((-588 (-522)) $) 9)) (-3697 (($) 7 T CONST)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 20)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 19)) (-1661 (($ $ $) 21)) (* (($ (-708) $) 25) (($ (-850) $) NIL))) -(((-898) (-13 (-732) (-563 (-588 (-522))) (-10 -8 (-15 -1292 ($ (-588 (-522)))) (-15 -2438 ((-588 (-588 (-522))) (-588 (-522)))) (-15 -3109 ((-522) $)) (-15 -2983 ($ $)) (-15 -2217 ((-588 (-522)) $))))) (T -898)) -((-1292 (*1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-898)))) (-2438 (*1 *2 *3) (-12 (-5 *2 (-588 (-588 (-522)))) (-5 *1 (-898)) (-5 *3 (-588 (-522))))) (-3109 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-898)))) (-2983 (*1 *1 *1) (-5 *1 (-898))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-898))))) -(-13 (-732) (-563 (-588 (-522))) (-10 -8 (-15 -1292 ($ (-588 (-522)))) (-15 -2438 ((-588 (-588 (-522))) (-588 (-522)))) (-15 -3109 ((-522) $)) (-15 -2983 ($ $)) (-15 -2217 ((-588 (-522)) $)))) -((-1682 (($ $ |#2|) 30)) (-1672 (($ $) 22) (($ $ $) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-382 (-522)) $) 26) (($ $ (-382 (-522))) 28))) -(((-899 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-382 (-522)))) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 -1682 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 -1672 (|#1| |#1| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|))) (-900 |#2| |#3| |#4|) (-971) (-729) (-784)) (T -899)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-382 (-522)))) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 -1682 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 -1672 (|#1| |#1| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3533 (((-588 |#3|) $) 74)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 51 (|has| |#1| (-514)))) (-2298 (($ $) 52 (|has| |#1| (-514)))) (-3007 (((-108) $) 54 (|has| |#1| (-514)))) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3241 (($ $) 60)) (-3920 (((-3 $ "failed") $) 34)) (-3672 (((-108) $) 73)) (-2859 (((-108) $) 31)) (-1374 (((-108) $) 62)) (-3500 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-588 |#3|) (-588 |#2|)) 75)) (-3810 (($ (-1 |#1| |#1|) $) 63)) (-3216 (($ $) 65)) (-3224 ((|#1| $) 66)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2276 (((-3 $ "failed") $ $) 50 (|has| |#1| (-514)))) (-2487 ((|#2| $) 64)) (-1944 (($ $) 72)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ (-382 (-522))) 57 (|has| |#1| (-37 (-382 (-522))))) (($ $) 49 (|has| |#1| (-514))) (($ |#1|) 47 (|has| |#1| (-157)))) (-1643 ((|#1| $ |#2|) 59)) (-3040 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-2742 (((-708)) 29)) (-1407 (((-108) $ $) 53 (|has| |#1| (-514)))) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1682 (($ $ |#1|) 58 (|has| |#1| (-338)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-382 (-522)) $) 56 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 55 (|has| |#1| (-37 (-382 (-522))))))) -(((-900 |#1| |#2| |#3|) (-1197) (-971) (-729) (-784)) (T -900)) -((-3224 (*1 *2 *1) (-12 (-4 *1 (-900 *2 *3 *4)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-971)))) (-3216 (*1 *1 *1) (-12 (-4 *1 (-900 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-729)) (-4 *4 (-784)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-900 *3 *2 *4)) (-4 *3 (-971)) (-4 *4 (-784)) (-4 *2 (-729)))) (-3500 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-900 *4 *3 *2)) (-4 *4 (-971)) (-4 *3 (-729)) (-4 *2 (-784)))) (-3500 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 *6)) (-5 *3 (-588 *5)) (-4 *1 (-900 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-729)) (-4 *6 (-784)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-900 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-588 *5)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-900 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108)))) (-1944 (*1 *1 *1) (-12 (-4 *1 (-900 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-729)) (-4 *4 (-784))))) -(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -3500 ($ $ |t#3| |t#2|)) (-15 -3500 ($ $ (-588 |t#3|) (-588 |t#2|))) (-15 -3216 ($ $)) (-15 -3224 (|t#1| $)) (-15 -2487 (|t#2| $)) (-15 -3533 ((-588 |t#3|) $)) (-15 -3672 ((-108) $)) (-15 -1944 ($ $)))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-514)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-382 (-522)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3844 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3844 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-266) |has| |#1| (-514)) ((-514) |has| |#1| (-514)) ((-590 #0#) |has| |#1| (-37 (-382 (-522)))) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #0#) |has| |#1| (-37 (-382 (-522)))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) |has| |#1| (-514)) ((-664) . T) ((-977 #0#) |has| |#1| (-37 (-382 (-522)))) ((-977 |#1|) . T) ((-977 $) -3844 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-2380 (((-1009 (-202)) $) 8)) (-2366 (((-1009 (-202)) $) 9)) (-2351 (((-1009 (-202)) $) 10)) (-1414 (((-588 (-588 (-872 (-202)))) $) 11)) (-2217 (((-792) $) 6))) -(((-901) (-1197)) (T -901)) -((-1414 (*1 *2 *1) (-12 (-4 *1 (-901)) (-5 *2 (-588 (-588 (-872 (-202))))))) (-2351 (*1 *2 *1) (-12 (-4 *1 (-901)) (-5 *2 (-1009 (-202))))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-901)) (-5 *2 (-1009 (-202))))) (-2380 (*1 *2 *1) (-12 (-4 *1 (-901)) (-5 *2 (-1009 (-202)))))) -(-13 (-562 (-792)) (-10 -8 (-15 -1414 ((-588 (-588 (-872 (-202)))) $)) (-15 -2351 ((-1009 (-202)) $)) (-15 -2366 ((-1009 (-202)) $)) (-15 -2380 ((-1009 (-202)) $)))) -(((-562 (-792)) . T)) -((-3533 (((-588 |#4|) $) 23)) (-2161 (((-108) $) 48)) (-2702 (((-108) $) 47)) (-3296 (((-2 (|:| |under| $) (|:| -3592 $) (|:| |upper| $)) $ |#4|) 36)) (-1298 (((-108) $) 49)) (-1657 (((-108) $ $) 55)) (-3598 (((-108) $ $) 58)) (-2818 (((-108) $) 53)) (-3461 (((-588 |#5|) (-588 |#5|) $) 90)) (-3668 (((-588 |#5|) (-588 |#5|) $) 87)) (-4002 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2714 (((-588 |#4|) $) 27)) (-3826 (((-108) |#4| $) 30)) (-2507 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-2271 (($ $ |#4|) 33)) (-2154 (($ $ |#4|) 32)) (-2773 (($ $ |#4|) 34)) (-1562 (((-108) $ $) 40))) -(((-902 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2702 ((-108) |#1|)) (-15 -3461 ((-588 |#5|) (-588 |#5|) |#1|)) (-15 -3668 ((-588 |#5|) (-588 |#5|) |#1|)) (-15 -4002 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2507 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1298 ((-108) |#1|)) (-15 -3598 ((-108) |#1| |#1|)) (-15 -1657 ((-108) |#1| |#1|)) (-15 -2818 ((-108) |#1|)) (-15 -2161 ((-108) |#1|)) (-15 -3296 ((-2 (|:| |under| |#1|) (|:| -3592 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2271 (|#1| |#1| |#4|)) (-15 -2773 (|#1| |#1| |#4|)) (-15 -2154 (|#1| |#1| |#4|)) (-15 -3826 ((-108) |#4| |#1|)) (-15 -2714 ((-588 |#4|) |#1|)) (-15 -3533 ((-588 |#4|) |#1|)) (-15 -1562 ((-108) |#1| |#1|))) (-903 |#2| |#3| |#4| |#5|) (-971) (-730) (-784) (-985 |#2| |#3| |#4|)) (T -902)) -NIL -(-10 -8 (-15 -2702 ((-108) |#1|)) (-15 -3461 ((-588 |#5|) (-588 |#5|) |#1|)) (-15 -3668 ((-588 |#5|) (-588 |#5|) |#1|)) (-15 -4002 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2507 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1298 ((-108) |#1|)) (-15 -3598 ((-108) |#1| |#1|)) (-15 -1657 ((-108) |#1| |#1|)) (-15 -2818 ((-108) |#1|)) (-15 -2161 ((-108) |#1|)) (-15 -3296 ((-2 (|:| |under| |#1|) (|:| -3592 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2271 (|#1| |#1| |#4|)) (-15 -2773 (|#1| |#1| |#4|)) (-15 -2154 (|#1| |#1| |#4|)) (-15 -3826 ((-108) |#4| |#1|)) (-15 -2714 ((-588 |#4|) |#1|)) (-15 -3533 ((-588 |#4|) |#1|)) (-15 -1562 ((-108) |#1| |#1|))) -((-1419 (((-108) $ $) 7)) (-3533 (((-588 |#3|) $) 33)) (-2161 (((-108) $) 26)) (-2702 (((-108) $) 17 (|has| |#1| (-514)))) (-3296 (((-2 (|:| |under| $) (|:| -3592 $) (|:| |upper| $)) $ |#3|) 27)) (-2717 (((-108) $ (-708)) 44)) (-1696 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4238)))) (-3367 (($) 45 T CONST)) (-1298 (((-108) $) 22 (|has| |#1| (-514)))) (-1657 (((-108) $ $) 24 (|has| |#1| (-514)))) (-3598 (((-108) $ $) 23 (|has| |#1| (-514)))) (-2818 (((-108) $) 25 (|has| |#1| (-514)))) (-3461 (((-588 |#4|) (-588 |#4|) $) 18 (|has| |#1| (-514)))) (-3668 (((-588 |#4|) (-588 |#4|) $) 19 (|has| |#1| (-514)))) (-3700 (((-3 $ "failed") (-588 |#4|)) 36)) (-1478 (($ (-588 |#4|)) 35)) (-2379 (($ $) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-1424 (($ |#4| $) 67 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4238)))) (-4002 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-514)))) (-2153 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4238)))) (-2395 (((-588 |#4|) $) 52 (|has| $ (-6 -4238)))) (-1933 ((|#3| $) 34)) (-1480 (((-108) $ (-708)) 43)) (-4084 (((-588 |#4|) $) 53 (|has| $ (-6 -4238)))) (-4176 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#4| |#4|) $) 47)) (-2714 (((-588 |#3|) $) 32)) (-3826 (((-108) |#3| $) 31)) (-3309 (((-108) $ (-708)) 42)) (-2311 (((-1068) $) 9)) (-2507 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-514)))) (-4174 (((-1032) $) 10)) (-2187 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3487 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 |#4|) (-588 |#4|)) 59 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) 57 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) 56 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-2065 (((-108) $ $) 38)) (-3494 (((-108) $) 41)) (-3298 (($) 40)) (-4187 (((-708) |#4| $) 54 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4238)))) (-2463 (($ $) 39)) (-3873 (((-498) $) 69 (|has| |#4| (-563 (-498))))) (-2227 (($ (-588 |#4|)) 60)) (-2271 (($ $ |#3|) 28)) (-2154 (($ $ |#3|) 30)) (-2773 (($ $ |#3|) 29)) (-2217 (((-792) $) 11) (((-588 |#4|) $) 37)) (-1381 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 6)) (-3591 (((-708) $) 46 (|has| $ (-6 -4238))))) -(((-903 |#1| |#2| |#3| |#4|) (-1197) (-971) (-730) (-784) (-985 |t#1| |t#2| |t#3|)) (T -903)) -((-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *1 (-903 *3 *4 *5 *6)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *1 (-903 *3 *4 *5 *6)))) (-1933 (*1 *2 *1) (-12 (-4 *1 (-903 *3 *4 *2 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-985 *3 *4 *2)) (-4 *2 (-784)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-588 *5)))) (-2714 (*1 *2 *1) (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-588 *5)))) (-3826 (*1 *2 *3 *1) (-12 (-4 *1 (-903 *4 *5 *3 *6)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) (-4 *6 (-985 *4 *5 *3)) (-5 *2 (-108)))) (-2154 (*1 *1 *1 *2) (-12 (-4 *1 (-903 *3 *4 *2 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)) (-4 *5 (-985 *3 *4 *2)))) (-2773 (*1 *1 *1 *2) (-12 (-4 *1 (-903 *3 *4 *2 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)) (-4 *5 (-985 *3 *4 *2)))) (-2271 (*1 *1 *1 *2) (-12 (-4 *1 (-903 *3 *4 *2 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)) (-4 *5 (-985 *3 *4 *2)))) (-3296 (*1 *2 *1 *3) (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) (-4 *6 (-985 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3592 *1) (|:| |upper| *1))) (-4 *1 (-903 *4 *5 *3 *6)))) (-2161 (*1 *2 *1) (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-5 *2 (-108)))) (-1657 (*1 *2 *1 *1) (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-5 *2 (-108)))) (-3598 (*1 *2 *1 *1) (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-5 *2 (-108)))) (-1298 (*1 *2 *1) (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-5 *2 (-108)))) (-2507 (*1 *2 *3 *1) (-12 (-4 *1 (-903 *4 *5 *6 *3)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-4 *4 (-514)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-4002 (*1 *2 *3 *1) (-12 (-4 *1 (-903 *4 *5 *6 *3)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-4 *4 (-514)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3668 (*1 *2 *2 *1) (-12 (-5 *2 (-588 *6)) (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)))) (-3461 (*1 *2 *2 *1) (-12 (-5 *2 (-588 *6)) (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)))) (-2702 (*1 *2 *1) (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-5 *2 (-108))))) -(-13 (-1014) (-139 |t#4|) (-562 (-588 |t#4|)) (-10 -8 (-6 -4238) (-15 -3700 ((-3 $ "failed") (-588 |t#4|))) (-15 -1478 ($ (-588 |t#4|))) (-15 -1933 (|t#3| $)) (-15 -3533 ((-588 |t#3|) $)) (-15 -2714 ((-588 |t#3|) $)) (-15 -3826 ((-108) |t#3| $)) (-15 -2154 ($ $ |t#3|)) (-15 -2773 ($ $ |t#3|)) (-15 -2271 ($ $ |t#3|)) (-15 -3296 ((-2 (|:| |under| $) (|:| -3592 $) (|:| |upper| $)) $ |t#3|)) (-15 -2161 ((-108) $)) (IF (|has| |t#1| (-514)) (PROGN (-15 -2818 ((-108) $)) (-15 -1657 ((-108) $ $)) (-15 -3598 ((-108) $ $)) (-15 -1298 ((-108) $)) (-15 -2507 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4002 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3668 ((-588 |t#4|) (-588 |t#4|) $)) (-15 -3461 ((-588 |t#4|) (-588 |t#4|) $)) (-15 -2702 ((-108) $))) |%noBranch|))) -(((-33) . T) ((-97) . T) ((-562 (-588 |#4|)) . T) ((-562 (-792)) . T) ((-139 |#4|) . T) ((-563 (-498)) |has| |#4| (-563 (-498))) ((-285 |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-461 |#4|) . T) ((-483 |#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-1014) . T) ((-1120) . T)) -((-2222 (((-588 |#4|) |#4| |#4|) 115)) (-3580 (((-588 |#4|) (-588 |#4|) (-108)) 104 (|has| |#1| (-426))) (((-588 |#4|) (-588 |#4|)) 105 (|has| |#1| (-426)))) (-3674 (((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|)) 35)) (-2056 (((-108) |#4|) 34)) (-3987 (((-588 |#4|) |#4|) 101 (|has| |#1| (-426)))) (-2427 (((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-1 (-108) |#4|) (-588 |#4|)) 20)) (-1411 (((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 (-1 (-108) |#4|)) (-588 |#4|)) 22)) (-1215 (((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 (-1 (-108) |#4|)) (-588 |#4|)) 23)) (-2926 (((-3 (-2 (|:| |bas| (-450 |#1| |#2| |#3| |#4|)) (|:| -1322 (-588 |#4|))) "failed") (-588 |#4|)) 73)) (-1265 (((-588 |#4|) (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-1677 (((-588 |#4|) (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 108)) (-2177 (((-588 |#4|) (-588 |#4|)) 107)) (-3669 (((-588 |#4|) (-588 |#4|) (-588 |#4|) (-108)) 48) (((-588 |#4|) (-588 |#4|) (-588 |#4|)) 50)) (-2802 ((|#4| |#4| (-588 |#4|)) 49)) (-2042 (((-588 |#4|) (-588 |#4|) (-588 |#4|)) 111 (|has| |#1| (-426)))) (-3654 (((-588 |#4|) (-588 |#4|) (-588 |#4|)) 114 (|has| |#1| (-426)))) (-4175 (((-588 |#4|) (-588 |#4|) (-588 |#4|)) 113 (|has| |#1| (-426)))) (-3325 (((-588 |#4|) (-588 |#4|) (-588 |#4|) (-1 (-588 |#4|) (-588 |#4|))) 87) (((-588 |#4|) (-588 |#4|) (-588 |#4|)) 89) (((-588 |#4|) (-588 |#4|) |#4|) 118) (((-588 |#4|) |#4| |#4|) 116) (((-588 |#4|) (-588 |#4|)) 88)) (-1735 (((-588 |#4|) (-588 |#4|) (-588 |#4|)) 98 (-12 (|has| |#1| (-135)) (|has| |#1| (-283))))) (-4163 (((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|)) 41)) (-1812 (((-108) (-588 |#4|)) 62)) (-3465 (((-108) (-588 |#4|) (-588 (-588 |#4|))) 53)) (-3902 (((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|)) 29)) (-2390 (((-108) |#4|) 28)) (-2472 (((-588 |#4|) (-588 |#4|)) 97 (-12 (|has| |#1| (-135)) (|has| |#1| (-283))))) (-3888 (((-588 |#4|) (-588 |#4|)) 96 (-12 (|has| |#1| (-135)) (|has| |#1| (-283))))) (-3919 (((-588 |#4|) (-588 |#4|)) 66)) (-3939 (((-588 |#4|) (-588 |#4|)) 79)) (-1804 (((-108) (-588 |#4|) (-588 |#4|)) 51)) (-3660 (((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|)) 39)) (-2346 (((-108) |#4|) 36))) -(((-904 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3325 ((-588 |#4|) (-588 |#4|))) (-15 -3325 ((-588 |#4|) |#4| |#4|)) (-15 -2177 ((-588 |#4|) (-588 |#4|))) (-15 -2222 ((-588 |#4|) |#4| |#4|)) (-15 -3325 ((-588 |#4|) (-588 |#4|) |#4|)) (-15 -3325 ((-588 |#4|) (-588 |#4|) (-588 |#4|))) (-15 -3325 ((-588 |#4|) (-588 |#4|) (-588 |#4|) (-1 (-588 |#4|) (-588 |#4|)))) (-15 -1804 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -3465 ((-108) (-588 |#4|) (-588 (-588 |#4|)))) (-15 -1812 ((-108) (-588 |#4|))) (-15 -2427 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-1 (-108) |#4|) (-588 |#4|))) (-15 -1411 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 (-1 (-108) |#4|)) (-588 |#4|))) (-15 -1215 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 (-1 (-108) |#4|)) (-588 |#4|))) (-15 -4163 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|))) (-15 -2056 ((-108) |#4|)) (-15 -3674 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|))) (-15 -2390 ((-108) |#4|)) (-15 -3902 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|))) (-15 -2346 ((-108) |#4|)) (-15 -3660 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|))) (-15 -3669 ((-588 |#4|) (-588 |#4|) (-588 |#4|))) (-15 -3669 ((-588 |#4|) (-588 |#4|) (-588 |#4|) (-108))) (-15 -2802 (|#4| |#4| (-588 |#4|))) (-15 -3919 ((-588 |#4|) (-588 |#4|))) (-15 -2926 ((-3 (-2 (|:| |bas| (-450 |#1| |#2| |#3| |#4|)) (|:| -1322 (-588 |#4|))) "failed") (-588 |#4|))) (-15 -3939 ((-588 |#4|) (-588 |#4|))) (-15 -1265 ((-588 |#4|) (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1677 ((-588 |#4|) (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-426)) (PROGN (-15 -3987 ((-588 |#4|) |#4|)) (-15 -3580 ((-588 |#4|) (-588 |#4|))) (-15 -3580 ((-588 |#4|) (-588 |#4|) (-108))) (-15 -2042 ((-588 |#4|) (-588 |#4|) (-588 |#4|))) (-15 -4175 ((-588 |#4|) (-588 |#4|) (-588 |#4|))) (-15 -3654 ((-588 |#4|) (-588 |#4|) (-588 |#4|)))) |%noBranch|) (IF (|has| |#1| (-283)) (IF (|has| |#1| (-135)) (PROGN (-15 -3888 ((-588 |#4|) (-588 |#4|))) (-15 -2472 ((-588 |#4|) (-588 |#4|))) (-15 -1735 ((-588 |#4|) (-588 |#4|) (-588 |#4|)))) |%noBranch|) |%noBranch|)) (-514) (-730) (-784) (-985 |#1| |#2| |#3|)) (T -904)) -((-1735 (*1 *2 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-135)) (-4 *3 (-283)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-2472 (*1 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-135)) (-4 *3 (-283)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-135)) (-4 *3 (-283)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-3654 (*1 *2 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-426)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-4175 (*1 *2 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-426)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-2042 (*1 *2 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-426)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-3580 (*1 *2 *2 *3) (-12 (-5 *2 (-588 *7)) (-5 *3 (-108)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-904 *4 *5 *6 *7)))) (-3580 (*1 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-426)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-3987 (*1 *2 *3) (-12 (-4 *4 (-426)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *3)) (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6)))) (-1677 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-588 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-904 *5 *6 *7 *8)))) (-1265 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-588 *9)) (-5 *3 (-1 (-108) *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-985 *6 *7 *8)) (-4 *6 (-514)) (-4 *7 (-730)) (-4 *8 (-784)) (-5 *1 (-904 *6 *7 *8 *9)))) (-3939 (*1 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-2926 (*1 *2 *3) (|partial| -12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-450 *4 *5 *6 *7)) (|:| -1322 (-588 *7)))) (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-588 *7)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-2802 (*1 *2 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-985 *4 *5 *6)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-904 *4 *5 *6 *2)))) (-3669 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-588 *7)) (-5 *3 (-108)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-904 *4 *5 *6 *7)))) (-3669 (*1 *2 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-3660 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-588 *7)) (|:| |badPols| (-588 *7)))) (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-588 *7)))) (-2346 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6)))) (-3902 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-588 *7)) (|:| |badPols| (-588 *7)))) (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-588 *7)))) (-2390 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6)))) (-3674 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-588 *7)) (|:| |badPols| (-588 *7)))) (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-588 *7)))) (-2056 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6)))) (-4163 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-588 *7)) (|:| |badPols| (-588 *7)))) (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-588 *7)))) (-1215 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-1 (-108) *8))) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-2 (|:| |goodPols| (-588 *8)) (|:| |badPols| (-588 *8)))) (-5 *1 (-904 *5 *6 *7 *8)) (-5 *4 (-588 *8)))) (-1411 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-1 (-108) *8))) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-2 (|:| |goodPols| (-588 *8)) (|:| |badPols| (-588 *8)))) (-5 *1 (-904 *5 *6 *7 *8)) (-5 *4 (-588 *8)))) (-2427 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-2 (|:| |goodPols| (-588 *8)) (|:| |badPols| (-588 *8)))) (-5 *1 (-904 *5 *6 *7 *8)) (-5 *4 (-588 *8)))) (-1812 (*1 *2 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-904 *4 *5 *6 *7)))) (-3465 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-588 *8))) (-5 *3 (-588 *8)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-108)) (-5 *1 (-904 *5 *6 *7 *8)))) (-1804 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-904 *4 *5 *6 *7)))) (-3325 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-588 *7) (-588 *7))) (-5 *2 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-904 *4 *5 *6 *7)))) (-3325 (*1 *2 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-3325 (*1 *2 *2 *3) (-12 (-5 *2 (-588 *3)) (-4 *3 (-985 *4 *5 *6)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-904 *4 *5 *6 *3)))) (-2222 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *3)) (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6)))) (-2177 (*1 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-3325 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *3)) (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6)))) (-3325 (*1 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6))))) -(-10 -7 (-15 -3325 ((-588 |#4|) (-588 |#4|))) (-15 -3325 ((-588 |#4|) |#4| |#4|)) (-15 -2177 ((-588 |#4|) (-588 |#4|))) (-15 -2222 ((-588 |#4|) |#4| |#4|)) (-15 -3325 ((-588 |#4|) (-588 |#4|) |#4|)) (-15 -3325 ((-588 |#4|) (-588 |#4|) (-588 |#4|))) (-15 -3325 ((-588 |#4|) (-588 |#4|) (-588 |#4|) (-1 (-588 |#4|) (-588 |#4|)))) (-15 -1804 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -3465 ((-108) (-588 |#4|) (-588 (-588 |#4|)))) (-15 -1812 ((-108) (-588 |#4|))) (-15 -2427 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-1 (-108) |#4|) (-588 |#4|))) (-15 -1411 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 (-1 (-108) |#4|)) (-588 |#4|))) (-15 -1215 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 (-1 (-108) |#4|)) (-588 |#4|))) (-15 -4163 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|))) (-15 -2056 ((-108) |#4|)) (-15 -3674 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|))) (-15 -2390 ((-108) |#4|)) (-15 -3902 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|))) (-15 -2346 ((-108) |#4|)) (-15 -3660 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|))) (-15 -3669 ((-588 |#4|) (-588 |#4|) (-588 |#4|))) (-15 -3669 ((-588 |#4|) (-588 |#4|) (-588 |#4|) (-108))) (-15 -2802 (|#4| |#4| (-588 |#4|))) (-15 -3919 ((-588 |#4|) (-588 |#4|))) (-15 -2926 ((-3 (-2 (|:| |bas| (-450 |#1| |#2| |#3| |#4|)) (|:| -1322 (-588 |#4|))) "failed") (-588 |#4|))) (-15 -3939 ((-588 |#4|) (-588 |#4|))) (-15 -1265 ((-588 |#4|) (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1677 ((-588 |#4|) (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-426)) (PROGN (-15 -3987 ((-588 |#4|) |#4|)) (-15 -3580 ((-588 |#4|) (-588 |#4|))) (-15 -3580 ((-588 |#4|) (-588 |#4|) (-108))) (-15 -2042 ((-588 |#4|) (-588 |#4|) (-588 |#4|))) (-15 -4175 ((-588 |#4|) (-588 |#4|) (-588 |#4|))) (-15 -3654 ((-588 |#4|) (-588 |#4|) (-588 |#4|)))) |%noBranch|) (IF (|has| |#1| (-283)) (IF (|has| |#1| (-135)) (PROGN (-15 -3888 ((-588 |#4|) (-588 |#4|))) (-15 -2472 ((-588 |#4|) (-588 |#4|))) (-15 -1735 ((-588 |#4|) (-588 |#4|) (-588 |#4|)))) |%noBranch|) |%noBranch|)) -((-2068 (((-2 (|:| R (-628 |#1|)) (|:| A (-628 |#1|)) (|:| |Ainv| (-628 |#1|))) (-628 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-1421 (((-588 (-2 (|:| C (-628 |#1|)) (|:| |g| (-1166 |#1|)))) (-628 |#1|) (-1166 |#1|)) 36)) (-3719 (((-628 |#1|) (-628 |#1|) (-628 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16))) -(((-905 |#1|) (-10 -7 (-15 -2068 ((-2 (|:| R (-628 |#1|)) (|:| A (-628 |#1|)) (|:| |Ainv| (-628 |#1|))) (-628 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3719 ((-628 |#1|) (-628 |#1|) (-628 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1421 ((-588 (-2 (|:| C (-628 |#1|)) (|:| |g| (-1166 |#1|)))) (-628 |#1|) (-1166 |#1|)))) (-338)) (T -905)) -((-1421 (*1 *2 *3 *4) (-12 (-4 *5 (-338)) (-5 *2 (-588 (-2 (|:| C (-628 *5)) (|:| |g| (-1166 *5))))) (-5 *1 (-905 *5)) (-5 *3 (-628 *5)) (-5 *4 (-1166 *5)))) (-3719 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-628 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-338)) (-5 *1 (-905 *5)))) (-2068 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-338)) (-5 *2 (-2 (|:| R (-628 *6)) (|:| A (-628 *6)) (|:| |Ainv| (-628 *6)))) (-5 *1 (-905 *6)) (-5 *3 (-628 *6))))) -(-10 -7 (-15 -2068 ((-2 (|:| R (-628 |#1|)) (|:| A (-628 |#1|)) (|:| |Ainv| (-628 |#1|))) (-628 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3719 ((-628 |#1|) (-628 |#1|) (-628 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1421 ((-588 (-2 (|:| C (-628 |#1|)) (|:| |g| (-1166 |#1|)))) (-628 |#1|) (-1166 |#1|)))) -((-3133 (((-393 |#4|) |#4|) 47))) -(((-906 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3133 ((-393 |#4|) |#4|))) (-784) (-730) (-426) (-878 |#3| |#2| |#1|)) (T -906)) -((-3133 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-730)) (-4 *6 (-426)) (-5 *2 (-393 *3)) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-878 *6 *5 *4))))) -(-10 -7 (-15 -3133 ((-393 |#4|) |#4|))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-1785 (($ (-708)) 112 (|has| |#1| (-23)))) (-3883 (((-1171) $ (-522) (-522)) 40 (|has| $ (-6 -4239)))) (-1866 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-784)))) (-2806 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4239))) (($ $) 88 (-12 (|has| |#1| (-784)) (|has| $ (-6 -4239))))) (-3296 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-784)))) (-2717 (((-108) $ (-708)) 8)) (-2437 ((|#1| $ (-522) |#1|) 52 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) 58 (|has| $ (-6 -4239)))) (-1696 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4238)))) (-3367 (($) 7 T CONST)) (-2465 (($ $) 90 (|has| $ (-6 -4239)))) (-1939 (($ $) 100)) (-2379 (($ $) 78 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1424 (($ |#1| $) 77 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4238)))) (-2411 ((|#1| $ (-522) |#1|) 53 (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-522)) 51)) (-3314 (((-522) (-1 (-108) |#1|) $) 97) (((-522) |#1| $) 96 (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) 95 (|has| |#1| (-1014)))) (-1239 (($ (-588 |#1|)) 118)) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-4043 (((-628 |#1|) $ $) 105 (|has| |#1| (-971)))) (-1893 (($ (-708) |#1|) 69)) (-1480 (((-108) $ (-708)) 9)) (-3496 (((-522) $) 43 (|has| (-522) (-784)))) (-1308 (($ $ $) 87 (|has| |#1| (-784)))) (-3164 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-784)))) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2201 (((-522) $) 44 (|has| (-522) (-784)))) (-2524 (($ $ $) 86 (|has| |#1| (-784)))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4113 ((|#1| $) 102 (-12 (|has| |#1| (-971)) (|has| |#1| (-928))))) (-3309 (((-108) $ (-708)) 10)) (-4030 ((|#1| $) 103 (-12 (|has| |#1| (-971)) (|has| |#1| (-928))))) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1731 (($ |#1| $ (-522)) 60) (($ $ $ (-522)) 59)) (-2130 (((-588 (-522)) $) 46)) (-2103 (((-108) (-522) $) 47)) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2337 ((|#1| $) 42 (|has| (-522) (-784)))) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1972 (($ $ |#1|) 41 (|has| $ (-6 -4239)))) (-3934 (($ $ (-588 |#1|)) 115)) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3434 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) 48)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 ((|#1| $ (-522) |#1|) 50) ((|#1| $ (-522)) 49) (($ $ (-1133 (-522))) 63)) (-4024 ((|#1| $ $) 106 (|has| |#1| (-971)))) (-3222 (((-850) $) 117)) (-3835 (($ $ (-522)) 62) (($ $ (-1133 (-522))) 61)) (-2791 (($ $ $) 104)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3629 (($ $ $ (-522)) 91 (|has| $ (-6 -4239)))) (-2463 (($ $) 13)) (-3873 (((-498) $) 79 (|has| |#1| (-563 (-498)))) (($ (-588 |#1|)) 116)) (-2227 (($ (-588 |#1|)) 70)) (-4170 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-588 $)) 65)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1623 (((-108) $ $) 84 (|has| |#1| (-784)))) (-1597 (((-108) $ $) 83 (|has| |#1| (-784)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-1609 (((-108) $ $) 85 (|has| |#1| (-784)))) (-1587 (((-108) $ $) 82 (|has| |#1| (-784)))) (-1672 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1661 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-522) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-664))) (($ $ |#1|) 107 (|has| |#1| (-664)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-907 |#1|) (-1197) (-971)) (T -907)) -((-1239 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-971)) (-4 *1 (-907 *3)))) (-3222 (*1 *2 *1) (-12 (-4 *1 (-907 *3)) (-4 *3 (-971)) (-5 *2 (-850)))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-971)) (-4 *1 (-907 *3)))) (-2791 (*1 *1 *1 *1) (-12 (-4 *1 (-907 *2)) (-4 *2 (-971)))) (-3934 (*1 *1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *1 (-907 *3)) (-4 *3 (-971))))) -(-13 (-1164 |t#1|) (-10 -8 (-15 -1239 ($ (-588 |t#1|))) (-15 -3222 ((-850) $)) (-15 -3873 ($ (-588 |t#1|))) (-15 -2791 ($ $ $)) (-15 -3934 ($ $ (-588 |t#1|))))) -(((-33) . T) ((-97) -3844 (|has| |#1| (-1014)) (|has| |#1| (-784))) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-784)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-262 #0=(-522) |#1|) . T) ((-264 #0# |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-348 |#1|) . T) ((-461 |#1|) . T) ((-555 #0# |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-593 |#1|) . T) ((-19 |#1|) . T) ((-784) |has| |#1| (-784)) ((-1014) -3844 (|has| |#1| (-1014)) (|has| |#1| (-784))) ((-1120) . T) ((-1164 |#1|) . T)) -((-3810 (((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)) 17))) -(((-908 |#1| |#2|) (-10 -7 (-15 -3810 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)))) (-971) (-971)) (T -908)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-971)) (-4 *6 (-971)) (-5 *2 (-872 *6)) (-5 *1 (-908 *5 *6))))) -(-10 -7 (-15 -3810 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)))) -((-2250 ((|#1| (-872 |#1|)) 13)) (-3323 ((|#1| (-872 |#1|)) 12)) (-3727 ((|#1| (-872 |#1|)) 11)) (-3005 ((|#1| (-872 |#1|)) 15)) (-3167 ((|#1| (-872 |#1|)) 21)) (-1918 ((|#1| (-872 |#1|)) 14)) (-4006 ((|#1| (-872 |#1|)) 16)) (-2137 ((|#1| (-872 |#1|)) 20)) (-1344 ((|#1| (-872 |#1|)) 19))) -(((-909 |#1|) (-10 -7 (-15 -3727 (|#1| (-872 |#1|))) (-15 -3323 (|#1| (-872 |#1|))) (-15 -2250 (|#1| (-872 |#1|))) (-15 -1918 (|#1| (-872 |#1|))) (-15 -3005 (|#1| (-872 |#1|))) (-15 -4006 (|#1| (-872 |#1|))) (-15 -1344 (|#1| (-872 |#1|))) (-15 -2137 (|#1| (-872 |#1|))) (-15 -3167 (|#1| (-872 |#1|)))) (-971)) (T -909)) -((-3167 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))) (-3005 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))) (-1918 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))) (-3323 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971))))) -(-10 -7 (-15 -3727 (|#1| (-872 |#1|))) (-15 -3323 (|#1| (-872 |#1|))) (-15 -2250 (|#1| (-872 |#1|))) (-15 -1918 (|#1| (-872 |#1|))) (-15 -3005 (|#1| (-872 |#1|))) (-15 -4006 (|#1| (-872 |#1|))) (-15 -1344 (|#1| (-872 |#1|))) (-15 -2137 (|#1| (-872 |#1|))) (-15 -3167 (|#1| (-872 |#1|)))) -((-1509 (((-3 |#1| "failed") |#1|) 18)) (-3380 (((-3 |#1| "failed") |#1|) 6)) (-2808 (((-3 |#1| "failed") |#1|) 16)) (-2364 (((-3 |#1| "failed") |#1|) 4)) (-1737 (((-3 |#1| "failed") |#1|) 20)) (-4026 (((-3 |#1| "failed") |#1|) 8)) (-3417 (((-3 |#1| "failed") |#1| (-708)) 1)) (-4117 (((-3 |#1| "failed") |#1|) 3)) (-3466 (((-3 |#1| "failed") |#1|) 2)) (-4037 (((-3 |#1| "failed") |#1|) 21)) (-2434 (((-3 |#1| "failed") |#1|) 9)) (-2378 (((-3 |#1| "failed") |#1|) 19)) (-2642 (((-3 |#1| "failed") |#1|) 7)) (-3063 (((-3 |#1| "failed") |#1|) 17)) (-4143 (((-3 |#1| "failed") |#1|) 5)) (-3877 (((-3 |#1| "failed") |#1|) 24)) (-3161 (((-3 |#1| "failed") |#1|) 12)) (-2657 (((-3 |#1| "failed") |#1|) 22)) (-1338 (((-3 |#1| "failed") |#1|) 10)) (-2129 (((-3 |#1| "failed") |#1|) 26)) (-2239 (((-3 |#1| "failed") |#1|) 14)) (-2105 (((-3 |#1| "failed") |#1|) 27)) (-2032 (((-3 |#1| "failed") |#1|) 15)) (-3293 (((-3 |#1| "failed") |#1|) 25)) (-2304 (((-3 |#1| "failed") |#1|) 13)) (-2194 (((-3 |#1| "failed") |#1|) 23)) (-2339 (((-3 |#1| "failed") |#1|) 11))) -(((-910 |#1|) (-1197) (-1106)) (T -910)) -((-2105 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-2129 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-3293 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-3877 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-2194 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-2657 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-4037 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-1737 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-2378 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-1509 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-3063 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-2808 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-2032 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-2239 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-2304 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-3161 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-2339 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-1338 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-2434 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-4026 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-2642 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-3380 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-4143 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-2364 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-4117 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-3466 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-3417 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-708)) (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(-13 (-10 -7 (-15 -3417 ((-3 |t#1| "failed") |t#1| (-708))) (-15 -3466 ((-3 |t#1| "failed") |t#1|)) (-15 -4117 ((-3 |t#1| "failed") |t#1|)) (-15 -2364 ((-3 |t#1| "failed") |t#1|)) (-15 -4143 ((-3 |t#1| "failed") |t#1|)) (-15 -3380 ((-3 |t#1| "failed") |t#1|)) (-15 -2642 ((-3 |t#1| "failed") |t#1|)) (-15 -4026 ((-3 |t#1| "failed") |t#1|)) (-15 -2434 ((-3 |t#1| "failed") |t#1|)) (-15 -1338 ((-3 |t#1| "failed") |t#1|)) (-15 -2339 ((-3 |t#1| "failed") |t#1|)) (-15 -3161 ((-3 |t#1| "failed") |t#1|)) (-15 -2304 ((-3 |t#1| "failed") |t#1|)) (-15 -2239 ((-3 |t#1| "failed") |t#1|)) (-15 -2032 ((-3 |t#1| "failed") |t#1|)) (-15 -2808 ((-3 |t#1| "failed") |t#1|)) (-15 -3063 ((-3 |t#1| "failed") |t#1|)) (-15 -1509 ((-3 |t#1| "failed") |t#1|)) (-15 -2378 ((-3 |t#1| "failed") |t#1|)) (-15 -1737 ((-3 |t#1| "failed") |t#1|)) (-15 -4037 ((-3 |t#1| "failed") |t#1|)) (-15 -2657 ((-3 |t#1| "failed") |t#1|)) (-15 -2194 ((-3 |t#1| "failed") |t#1|)) (-15 -3877 ((-3 |t#1| "failed") |t#1|)) (-15 -3293 ((-3 |t#1| "failed") |t#1|)) (-15 -2129 ((-3 |t#1| "failed") |t#1|)) (-15 -2105 ((-3 |t#1| "failed") |t#1|)))) -((-2788 ((|#4| |#4| (-588 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-2678 ((|#4| |#4| (-588 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-3810 ((|#4| (-1 |#4| (-881 |#1|)) |#4|) 30))) -(((-911 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2678 (|#4| |#4| |#3|)) (-15 -2678 (|#4| |#4| (-588 |#3|))) (-15 -2788 (|#4| |#4| |#3|)) (-15 -2788 (|#4| |#4| (-588 |#3|))) (-15 -3810 (|#4| (-1 |#4| (-881 |#1|)) |#4|))) (-971) (-730) (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $)) (-15 -1660 ((-3 $ "failed") (-1085))))) (-878 (-881 |#1|) |#2| |#3|)) (T -911)) -((-3810 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-881 *4))) (-4 *4 (-971)) (-4 *2 (-878 (-881 *4) *5 *6)) (-4 *5 (-730)) (-4 *6 (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $)) (-15 -1660 ((-3 $ "failed") (-1085)))))) (-5 *1 (-911 *4 *5 *6 *2)))) (-2788 (*1 *2 *2 *3) (-12 (-5 *3 (-588 *6)) (-4 *6 (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $)) (-15 -1660 ((-3 $ "failed") (-1085)))))) (-4 *4 (-971)) (-4 *5 (-730)) (-5 *1 (-911 *4 *5 *6 *2)) (-4 *2 (-878 (-881 *4) *5 *6)))) (-2788 (*1 *2 *2 *3) (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $)) (-15 -1660 ((-3 $ "failed") (-1085)))))) (-5 *1 (-911 *4 *5 *3 *2)) (-4 *2 (-878 (-881 *4) *5 *3)))) (-2678 (*1 *2 *2 *3) (-12 (-5 *3 (-588 *6)) (-4 *6 (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $)) (-15 -1660 ((-3 $ "failed") (-1085)))))) (-4 *4 (-971)) (-4 *5 (-730)) (-5 *1 (-911 *4 *5 *6 *2)) (-4 *2 (-878 (-881 *4) *5 *6)))) (-2678 (*1 *2 *2 *3) (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $)) (-15 -1660 ((-3 $ "failed") (-1085)))))) (-5 *1 (-911 *4 *5 *3 *2)) (-4 *2 (-878 (-881 *4) *5 *3))))) -(-10 -7 (-15 -2678 (|#4| |#4| |#3|)) (-15 -2678 (|#4| |#4| (-588 |#3|))) (-15 -2788 (|#4| |#4| |#3|)) (-15 -2788 (|#4| |#4| (-588 |#3|))) (-15 -3810 (|#4| (-1 |#4| (-881 |#1|)) |#4|))) -((-3489 ((|#2| |#3|) 34)) (-3387 (((-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) |#2|) 71)) (-1886 (((-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|)))) 86))) -(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1886 ((-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))))) (-15 -3387 ((-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) |#2|)) (-15 -3489 (|#2| |#3|))) (-324) (-1142 |#1|) (-1142 |#2|) (-662 |#2| |#3|)) (T -912)) -((-3489 (*1 *2 *3) (-12 (-4 *3 (-1142 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-912 *4 *2 *3 *5)) (-4 *4 (-324)) (-4 *5 (-662 *2 *3)))) (-3387 (*1 *2 *3) (-12 (-4 *4 (-324)) (-4 *3 (-1142 *4)) (-4 *5 (-1142 *3)) (-5 *2 (-2 (|:| -2905 (-628 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-628 *3)))) (-5 *1 (-912 *4 *3 *5 *6)) (-4 *6 (-662 *3 *5)))) (-1886 (*1 *2) (-12 (-4 *3 (-324)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 *4)) (-5 *2 (-2 (|:| -2905 (-628 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-628 *4)))) (-5 *1 (-912 *3 *4 *5 *6)) (-4 *6 (-662 *4 *5))))) -(-10 -7 (-15 -1886 ((-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))))) (-15 -3387 ((-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) |#2|)) (-15 -3489 (|#2| |#3|))) -((-3513 (((-914 (-382 (-522)) (-794 |#1|) (-217 |#2| (-708)) (-224 |#1| (-382 (-522)))) (-914 (-382 (-522)) (-794 |#1|) (-217 |#2| (-708)) (-224 |#1| (-382 (-522))))) 65))) -(((-913 |#1| |#2|) (-10 -7 (-15 -3513 ((-914 (-382 (-522)) (-794 |#1|) (-217 |#2| (-708)) (-224 |#1| (-382 (-522)))) (-914 (-382 (-522)) (-794 |#1|) (-217 |#2| (-708)) (-224 |#1| (-382 (-522))))))) (-588 (-1085)) (-708)) (T -913)) -((-3513 (*1 *2 *2) (-12 (-5 *2 (-914 (-382 (-522)) (-794 *3) (-217 *4 (-708)) (-224 *3 (-382 (-522))))) (-14 *3 (-588 (-1085))) (-14 *4 (-708)) (-5 *1 (-913 *3 *4))))) -(-10 -7 (-15 -3513 ((-914 (-382 (-522)) (-794 |#1|) (-217 |#2| (-708)) (-224 |#1| (-382 (-522)))) (-914 (-382 (-522)) (-794 |#1|) (-217 |#2| (-708)) (-224 |#1| (-382 (-522))))))) -((-1419 (((-108) $ $) NIL)) (-2972 (((-3 (-108) "failed") $) 67)) (-1667 (($ $) 35 (-12 (|has| |#1| (-135)) (|has| |#1| (-283))))) (-1262 (($ $ (-3 (-108) "failed")) 68)) (-2499 (($ (-588 |#4|) |#4|) 24)) (-2311 (((-1068) $) NIL)) (-3547 (($ $) 65)) (-4174 (((-1032) $) NIL)) (-3494 (((-108) $) 66)) (-3298 (($) 29)) (-3248 ((|#4| $) 70)) (-3517 (((-588 |#4|) $) 69)) (-2217 (((-792) $) 64)) (-1562 (((-108) $ $) NIL))) -(((-914 |#1| |#2| |#3| |#4|) (-13 (-1014) (-562 (-792)) (-10 -8 (-15 -3298 ($)) (-15 -2499 ($ (-588 |#4|) |#4|)) (-15 -2972 ((-3 (-108) "failed") $)) (-15 -1262 ($ $ (-3 (-108) "failed"))) (-15 -3494 ((-108) $)) (-15 -3517 ((-588 |#4|) $)) (-15 -3248 (|#4| $)) (-15 -3547 ($ $)) (IF (|has| |#1| (-283)) (IF (|has| |#1| (-135)) (-15 -1667 ($ $)) |%noBranch|) |%noBranch|))) (-426) (-784) (-730) (-878 |#1| |#3| |#2|)) (T -914)) -((-3298 (*1 *1) (-12 (-4 *2 (-426)) (-4 *3 (-784)) (-4 *4 (-730)) (-5 *1 (-914 *2 *3 *4 *5)) (-4 *5 (-878 *2 *4 *3)))) (-2499 (*1 *1 *2 *3) (-12 (-5 *2 (-588 *3)) (-4 *3 (-878 *4 *6 *5)) (-4 *4 (-426)) (-4 *5 (-784)) (-4 *6 (-730)) (-5 *1 (-914 *4 *5 *6 *3)))) (-2972 (*1 *2 *1) (|partial| -12 (-4 *3 (-426)) (-4 *4 (-784)) (-4 *5 (-730)) (-5 *2 (-108)) (-5 *1 (-914 *3 *4 *5 *6)) (-4 *6 (-878 *3 *5 *4)))) (-1262 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-426)) (-4 *4 (-784)) (-4 *5 (-730)) (-5 *1 (-914 *3 *4 *5 *6)) (-4 *6 (-878 *3 *5 *4)))) (-3494 (*1 *2 *1) (-12 (-4 *3 (-426)) (-4 *4 (-784)) (-4 *5 (-730)) (-5 *2 (-108)) (-5 *1 (-914 *3 *4 *5 *6)) (-4 *6 (-878 *3 *5 *4)))) (-3517 (*1 *2 *1) (-12 (-4 *3 (-426)) (-4 *4 (-784)) (-4 *5 (-730)) (-5 *2 (-588 *6)) (-5 *1 (-914 *3 *4 *5 *6)) (-4 *6 (-878 *3 *5 *4)))) (-3248 (*1 *2 *1) (-12 (-4 *2 (-878 *3 *5 *4)) (-5 *1 (-914 *3 *4 *5 *2)) (-4 *3 (-426)) (-4 *4 (-784)) (-4 *5 (-730)))) (-3547 (*1 *1 *1) (-12 (-4 *2 (-426)) (-4 *3 (-784)) (-4 *4 (-730)) (-5 *1 (-914 *2 *3 *4 *5)) (-4 *5 (-878 *2 *4 *3)))) (-1667 (*1 *1 *1) (-12 (-4 *2 (-135)) (-4 *2 (-283)) (-4 *2 (-426)) (-4 *3 (-784)) (-4 *4 (-730)) (-5 *1 (-914 *2 *3 *4 *5)) (-4 *5 (-878 *2 *4 *3))))) -(-13 (-1014) (-562 (-792)) (-10 -8 (-15 -3298 ($)) (-15 -2499 ($ (-588 |#4|) |#4|)) (-15 -2972 ((-3 (-108) "failed") $)) (-15 -1262 ($ $ (-3 (-108) "failed"))) (-15 -3494 ((-108) $)) (-15 -3517 ((-588 |#4|) $)) (-15 -3248 (|#4| $)) (-15 -3547 ($ $)) (IF (|has| |#1| (-283)) (IF (|has| |#1| (-135)) (-15 -1667 ($ $)) |%noBranch|) |%noBranch|))) -((-3840 (((-108) |#5| |#5|) 38)) (-3130 (((-108) |#5| |#5|) 52)) (-2080 (((-108) |#5| (-588 |#5|)) 74) (((-108) |#5| |#5|) 61)) (-1400 (((-108) (-588 |#4|) (-588 |#4|)) 58)) (-2115 (((-108) (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|)) (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) 63)) (-1324 (((-1171)) 33)) (-4052 (((-1171) (-1068) (-1068) (-1068)) 29)) (-1954 (((-588 |#5|) (-588 |#5|)) 81)) (-3041 (((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|)))) 79)) (-2342 (((-588 (-2 (|:| -3277 (-588 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-588 |#4|)))) (-588 |#4|) (-588 |#5|) (-108) (-108)) 101)) (-3055 (((-108) |#5| |#5|) 47)) (-2494 (((-3 (-108) "failed") |#5| |#5|) 71)) (-4067 (((-108) (-588 |#4|) (-588 |#4|)) 57)) (-3474 (((-108) (-588 |#4|) (-588 |#4|)) 59)) (-1517 (((-108) (-588 |#4|) (-588 |#4|)) 60)) (-3882 (((-3 (-2 (|:| -3277 (-588 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-588 |#4|))) "failed") (-588 |#4|) |#5| (-588 |#4|) (-108) (-108) (-108) (-108) (-108)) 97)) (-2868 (((-588 |#5|) (-588 |#5|)) 43))) -(((-915 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4052 ((-1171) (-1068) (-1068) (-1068))) (-15 -1324 ((-1171))) (-15 -3840 ((-108) |#5| |#5|)) (-15 -2868 ((-588 |#5|) (-588 |#5|))) (-15 -3055 ((-108) |#5| |#5|)) (-15 -3130 ((-108) |#5| |#5|)) (-15 -1400 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -4067 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -3474 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -1517 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -2494 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2080 ((-108) |#5| |#5|)) (-15 -2080 ((-108) |#5| (-588 |#5|))) (-15 -1954 ((-588 |#5|) (-588 |#5|))) (-15 -2115 ((-108) (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|)) (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|)))) (-15 -3041 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) (-15 -2342 ((-588 (-2 (|:| -3277 (-588 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-588 |#4|)))) (-588 |#4|) (-588 |#5|) (-108) (-108))) (-15 -3882 ((-3 (-2 (|:| -3277 (-588 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-588 |#4|))) "failed") (-588 |#4|) |#5| (-588 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-426) (-730) (-784) (-985 |#1| |#2| |#3|) (-990 |#1| |#2| |#3| |#4|)) (T -915)) -((-3882 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *9 (-985 *6 *7 *8)) (-5 *2 (-2 (|:| -3277 (-588 *9)) (|:| -1974 *4) (|:| |ineq| (-588 *9)))) (-5 *1 (-915 *6 *7 *8 *9 *4)) (-5 *3 (-588 *9)) (-4 *4 (-990 *6 *7 *8 *9)))) (-2342 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-588 *10)) (-5 *5 (-108)) (-4 *10 (-990 *6 *7 *8 *9)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *9 (-985 *6 *7 *8)) (-5 *2 (-588 (-2 (|:| -3277 (-588 *9)) (|:| -1974 *10) (|:| |ineq| (-588 *9))))) (-5 *1 (-915 *6 *7 *8 *9 *10)) (-5 *3 (-588 *9)))) (-3041 (*1 *2 *2) (-12 (-5 *2 (-588 (-2 (|:| |val| (-588 *6)) (|:| -1974 *7)))) (-4 *6 (-985 *3 *4 *5)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-915 *3 *4 *5 *6 *7)))) (-2115 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-588 *7)) (|:| -1974 *8))) (-4 *7 (-985 *4 *5 *6)) (-4 *8 (-990 *4 *5 *6 *7)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *8)))) (-1954 (*1 *2 *2) (-12 (-5 *2 (-588 *7)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *1 (-915 *3 *4 *5 *6 *7)))) (-2080 (*1 *2 *3 *4) (-12 (-5 *4 (-588 *3)) (-4 *3 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-915 *5 *6 *7 *8 *3)))) (-2080 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) (-2494 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) (-1517 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) (-3474 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) (-4067 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) (-1400 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) (-3130 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) (-3055 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) (-2868 (*1 *2 *2) (-12 (-5 *2 (-588 *7)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *1 (-915 *3 *4 *5 *6 *7)))) (-3840 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) (-1324 (*1 *2) (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171)) (-5 *1 (-915 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6)))) (-4052 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171)) (-5 *1 (-915 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7))))) -(-10 -7 (-15 -4052 ((-1171) (-1068) (-1068) (-1068))) (-15 -1324 ((-1171))) (-15 -3840 ((-108) |#5| |#5|)) (-15 -2868 ((-588 |#5|) (-588 |#5|))) (-15 -3055 ((-108) |#5| |#5|)) (-15 -3130 ((-108) |#5| |#5|)) (-15 -1400 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -4067 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -3474 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -1517 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -2494 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2080 ((-108) |#5| |#5|)) (-15 -2080 ((-108) |#5| (-588 |#5|))) (-15 -1954 ((-588 |#5|) (-588 |#5|))) (-15 -2115 ((-108) (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|)) (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|)))) (-15 -3041 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) (-15 -2342 ((-588 (-2 (|:| -3277 (-588 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-588 |#4|)))) (-588 |#4|) (-588 |#5|) (-108) (-108))) (-15 -3882 ((-3 (-2 (|:| -3277 (-588 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-588 |#4|))) "failed") (-588 |#4|) |#5| (-588 |#4|) (-108) (-108) (-108) (-108) (-108)))) -((-1660 (((-1085) $) 15)) (-3526 (((-1068) $) 16)) (-1656 (($ (-1085) (-1068)) 14)) (-2217 (((-792) $) 13))) -(((-916) (-13 (-562 (-792)) (-10 -8 (-15 -1656 ($ (-1085) (-1068))) (-15 -1660 ((-1085) $)) (-15 -3526 ((-1068) $))))) (T -916)) -((-1656 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1068)) (-5 *1 (-916)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-916)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-916))))) -(-13 (-562 (-792)) (-10 -8 (-15 -1656 ($ (-1085) (-1068))) (-15 -1660 ((-1085) $)) (-15 -3526 ((-1068) $)))) -((-3810 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3810 (|#4| (-1 |#2| |#1|) |#3|))) (-514) (-514) (-919 |#1|) (-919 |#2|)) (T -917)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-514)) (-4 *6 (-514)) (-4 *2 (-919 *6)) (-5 *1 (-917 *5 *6 *4 *2)) (-4 *4 (-919 *5))))) -(-10 -7 (-15 -3810 (|#4| (-1 |#2| |#1|) |#3|))) -((-3700 (((-3 |#2| "failed") $) NIL) (((-3 (-1085) "failed") $) 65) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 (-522) "failed") $) 95)) (-1478 ((|#2| $) NIL) (((-1085) $) 60) (((-382 (-522)) $) NIL) (((-522) $) 92)) (-1226 (((-628 (-522)) (-628 $)) NIL) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) 112) (((-628 |#2|) (-628 $)) 28)) (-3344 (($) 98)) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 74) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 83)) (-1558 (($ $) 10)) (-4208 (((-3 $ "failed") $) 20)) (-3810 (($ (-1 |#2| |#2|) $) 22)) (-3937 (($) 16)) (-4194 (($ $) 54)) (-2731 (($ $) NIL) (($ $ (-708)) NIL) (($ $ (-1085)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2762 (($ $) 12)) (-3873 (((-821 (-522)) $) 69) (((-821 (-354)) $) 78) (((-498) $) 40) (((-354) $) 44) (((-202) $) 47)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) 90) (($ |#2|) NIL) (($ (-1085)) 57)) (-2742 (((-708)) 31)) (-1587 (((-108) $ $) 50))) -(((-918 |#1| |#2|) (-10 -8 (-15 -1587 ((-108) |#1| |#1|)) (-15 -3937 (|#1|)) (-15 -4208 ((-3 |#1| "failed") |#1|)) (-15 -1478 ((-522) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -3873 ((-202) |#1|)) (-15 -3873 ((-354) |#1|)) (-15 -3873 ((-498) |#1|)) (-15 -1478 ((-1085) |#1|)) (-15 -3700 ((-3 (-1085) "failed") |#1|)) (-15 -2217 (|#1| (-1085))) (-15 -3344 (|#1|)) (-15 -4194 (|#1| |#1|)) (-15 -2762 (|#1| |#1|)) (-15 -1558 (|#1| |#1|)) (-15 -3738 ((-818 (-354) |#1|) |#1| (-821 (-354)) (-818 (-354) |#1|))) (-15 -3738 ((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|))) (-15 -3873 ((-821 (-354)) |#1|)) (-15 -3873 ((-821 (-522)) |#1|)) (-15 -1226 ((-628 |#2|) (-628 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 |#1|) (-1166 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -1226 ((-628 (-522)) (-628 |#1|))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1| (-708))) (-15 -2731 (|#1| |#1|)) (-15 -3810 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1478 (|#2| |#1|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -2217 (|#1| |#1|)) (-15 -2217 (|#1| (-522))) (-15 -2742 ((-708))) (-15 -2217 ((-792) |#1|))) (-919 |#2|) (-514)) (T -918)) -((-2742 (*1 *2) (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-918 *3 *4)) (-4 *3 (-919 *4))))) -(-10 -8 (-15 -1587 ((-108) |#1| |#1|)) (-15 -3937 (|#1|)) (-15 -4208 ((-3 |#1| "failed") |#1|)) (-15 -1478 ((-522) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -3873 ((-202) |#1|)) (-15 -3873 ((-354) |#1|)) (-15 -3873 ((-498) |#1|)) (-15 -1478 ((-1085) |#1|)) (-15 -3700 ((-3 (-1085) "failed") |#1|)) (-15 -2217 (|#1| (-1085))) (-15 -3344 (|#1|)) (-15 -4194 (|#1| |#1|)) (-15 -2762 (|#1| |#1|)) (-15 -1558 (|#1| |#1|)) (-15 -3738 ((-818 (-354) |#1|) |#1| (-821 (-354)) (-818 (-354) |#1|))) (-15 -3738 ((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|))) (-15 -3873 ((-821 (-354)) |#1|)) (-15 -3873 ((-821 (-522)) |#1|)) (-15 -1226 ((-628 |#2|) (-628 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 |#1|) (-1166 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -1226 ((-628 (-522)) (-628 |#1|))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1| (-708))) (-15 -2731 (|#1| |#1|)) (-15 -3810 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1478 (|#2| |#1|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -2217 (|#1| |#1|)) (-15 -2217 (|#1| (-522))) (-15 -2742 ((-708))) (-15 -2217 ((-792) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3049 ((|#1| $) 139 (|has| |#1| (-283)))) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2298 (($ $) 40)) (-3007 (((-108) $) 38)) (-2265 (((-3 $ "failed") $ $) 19)) (-3543 (((-393 (-1081 $)) (-1081 $)) 130 (|has| |#1| (-838)))) (-2961 (($ $) 73)) (-3133 (((-393 $) $) 72)) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 133 (|has| |#1| (-838)))) (-2805 (((-108) $ $) 59)) (-3355 (((-522) $) 120 (|has| |#1| (-757)))) (-3367 (($) 17 T CONST)) (-3700 (((-3 |#1| "failed") $) 178) (((-3 (-1085) "failed") $) 128 (|has| |#1| (-962 (-1085)))) (((-3 (-382 (-522)) "failed") $) 112 (|has| |#1| (-962 (-522)))) (((-3 (-522) "failed") $) 110 (|has| |#1| (-962 (-522))))) (-1478 ((|#1| $) 177) (((-1085) $) 127 (|has| |#1| (-962 (-1085)))) (((-382 (-522)) $) 111 (|has| |#1| (-962 (-522)))) (((-522) $) 109 (|has| |#1| (-962 (-522))))) (-2333 (($ $ $) 55)) (-1226 (((-628 (-522)) (-628 $)) 152 (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 151 (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 150) (((-628 |#1|) (-628 $)) 149)) (-3920 (((-3 $ "failed") $) 34)) (-3344 (($) 137 (|has| |#1| (-507)))) (-2303 (($ $ $) 56)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 51)) (-2725 (((-108) $) 71)) (-3603 (((-108) $) 122 (|has| |#1| (-757)))) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 146 (|has| |#1| (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 145 (|has| |#1| (-815 (-354))))) (-2859 (((-108) $) 31)) (-1558 (($ $) 141)) (-2947 ((|#1| $) 143)) (-4208 (((-3 $ "failed") $) 108 (|has| |#1| (-1061)))) (-3740 (((-108) $) 121 (|has| |#1| (-757)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-1308 (($ $ $) 118 (|has| |#1| (-784)))) (-2524 (($ $ $) 117 (|has| |#1| (-784)))) (-3810 (($ (-1 |#1| |#1|) $) 169)) (-2267 (($ $ $) 46) (($ (-588 $)) 45)) (-2311 (((-1068) $) 9)) (-3193 (($ $) 70)) (-3937 (($) 107 (|has| |#1| (-1061)) CONST)) (-4174 (((-1032) $) 10)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2308 (($ $ $) 48) (($ (-588 $)) 47)) (-4194 (($ $) 138 (|has| |#1| (-283)))) (-3592 ((|#1| $) 135 (|has| |#1| (-507)))) (-4022 (((-393 (-1081 $)) (-1081 $)) 132 (|has| |#1| (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) 131 (|has| |#1| (-838)))) (-2006 (((-393 $) $) 74)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2276 (((-3 $ "failed") $ $) 42)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-2330 (($ $ (-588 |#1|) (-588 |#1|)) 175 (|has| |#1| (-285 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-285 |#1|))) (($ $ (-270 |#1|)) 173 (|has| |#1| (-285 |#1|))) (($ $ (-588 (-270 |#1|))) 172 (|has| |#1| (-285 |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) 171 (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-1085) |#1|) 170 (|has| |#1| (-483 (-1085) |#1|)))) (-4031 (((-708) $) 58)) (-2683 (($ $ |#1|) 176 (|has| |#1| (-262 |#1| |#1|)))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 57)) (-2731 (($ $) 168 (|has| |#1| (-210))) (($ $ (-708)) 166 (|has| |#1| (-210))) (($ $ (-1085)) 164 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 163 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 162 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) 161 (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-2762 (($ $) 140)) (-2959 ((|#1| $) 142)) (-3873 (((-821 (-522)) $) 148 (|has| |#1| (-563 (-821 (-522))))) (((-821 (-354)) $) 147 (|has| |#1| (-563 (-821 (-354))))) (((-498) $) 125 (|has| |#1| (-563 (-498)))) (((-354) $) 124 (|has| |#1| (-947))) (((-202) $) 123 (|has| |#1| (-947)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) 134 (-4079 (|has| $ (-133)) (|has| |#1| (-838))))) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-382 (-522))) 65) (($ |#1|) 181) (($ (-1085)) 129 (|has| |#1| (-962 (-1085))))) (-3040 (((-3 $ "failed") $) 126 (-3844 (|has| |#1| (-133)) (-4079 (|has| $ (-133)) (|has| |#1| (-838)))))) (-2742 (((-708)) 29)) (-1379 ((|#1| $) 136 (|has| |#1| (-507)))) (-1407 (((-108) $ $) 39)) (-4126 (($ $) 119 (|has| |#1| (-757)))) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 69)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $) 167 (|has| |#1| (-210))) (($ $ (-708)) 165 (|has| |#1| (-210))) (($ $ (-1085)) 160 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 159 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 158 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) 157 (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-1623 (((-108) $ $) 115 (|has| |#1| (-784)))) (-1597 (((-108) $ $) 114 (|has| |#1| (-784)))) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 116 (|has| |#1| (-784)))) (-1587 (((-108) $ $) 113 (|has| |#1| (-784)))) (-1682 (($ $ $) 64) (($ |#1| |#1|) 144)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 68)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 67) (($ (-382 (-522)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179))) -(((-919 |#1|) (-1197) (-514)) (T -919)) -((-1682 (*1 *1 *2 *2) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)))) (-2947 (*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)))) (-2959 (*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)))) (-1558 (*1 *1 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)))) (-2762 (*1 *1 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)))) (-3049 (*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)) (-4 *2 (-283)))) (-4194 (*1 *1 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)) (-4 *2 (-283)))) (-3344 (*1 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-507)) (-4 *2 (-514)))) (-1379 (*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)) (-4 *2 (-507)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)) (-4 *2 (-507))))) -(-13 (-338) (-37 |t#1|) (-962 |t#1|) (-313 |t#1|) (-208 |t#1|) (-352 |t#1|) (-813 |t#1|) (-375 |t#1|) (-10 -8 (-15 -1682 ($ |t#1| |t#1|)) (-15 -2947 (|t#1| $)) (-15 -2959 (|t#1| $)) (-15 -1558 ($ $)) (-15 -2762 ($ $)) (IF (|has| |t#1| (-1061)) (-6 (-1061)) |%noBranch|) (IF (|has| |t#1| (-962 (-522))) (PROGN (-6 (-962 (-522))) (-6 (-962 (-382 (-522))))) |%noBranch|) (IF (|has| |t#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-947)) (-6 (-947)) |%noBranch|) (IF (|has| |t#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-962 (-1085))) (-6 (-962 (-1085))) |%noBranch|) (IF (|has| |t#1| (-283)) (PROGN (-15 -3049 (|t#1| $)) (-15 -4194 ($ $))) |%noBranch|) (IF (|has| |t#1| (-507)) (PROGN (-15 -3344 ($)) (-15 -1379 (|t#1| $)) (-15 -3592 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-838)) (-6 (-838)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) . T) ((-563 (-202)) |has| |#1| (-947)) ((-563 (-354)) |has| |#1| (-947)) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-563 (-821 (-354))) |has| |#1| (-563 (-821 (-354)))) ((-563 (-821 (-522))) |has| |#1| (-563 (-821 (-522)))) ((-208 |#1|) . T) ((-210) |has| |#1| (-210)) ((-220) . T) ((-262 |#1| $) |has| |#1| (-262 |#1| |#1|)) ((-266) . T) ((-283) . T) ((-285 |#1|) |has| |#1| (-285 |#1|)) ((-338) . T) ((-313 |#1|) . T) ((-352 |#1|) . T) ((-375 |#1|) . T) ((-426) . T) ((-483 (-1085) |#1|) |has| |#1| (-483 (-1085) |#1|)) ((-483 |#1| |#1|) |has| |#1| (-285 |#1|)) ((-514) . T) ((-590 #0#) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-584 (-522)) |has| |#1| (-584 (-522))) ((-584 |#1|) . T) ((-655 #0#) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-728) |has| |#1| (-757)) ((-729) |has| |#1| (-757)) ((-731) |has| |#1| (-757)) ((-732) |has| |#1| (-757)) ((-757) |has| |#1| (-757)) ((-782) |has| |#1| (-757)) ((-784) -3844 (|has| |#1| (-784)) (|has| |#1| (-757))) ((-829 (-1085)) |has| |#1| (-829 (-1085))) ((-815 (-354)) |has| |#1| (-815 (-354))) ((-815 (-522)) |has| |#1| (-815 (-522))) ((-813 |#1|) . T) ((-838) |has| |#1| (-838)) ((-849) . T) ((-947) |has| |#1| (-947)) ((-962 (-382 (-522))) |has| |#1| (-962 (-522))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 (-1085)) |has| |#1| (-962 (-1085))) ((-962 |#1|) . T) ((-977 #0#) . T) ((-977 |#1|) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1061) |has| |#1| (-1061)) ((-1120) . T) ((-1124) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3120 (($ (-1052 |#1| |#2|)) 11)) (-1347 (((-1052 |#1| |#2|) $) 12)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2683 ((|#2| $ (-217 |#1| |#2|)) 16)) (-2217 (((-792) $) NIL)) (-3697 (($) NIL T CONST)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL))) -(((-920 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3120 ($ (-1052 |#1| |#2|))) (-15 -1347 ((-1052 |#1| |#2|) $)) (-15 -2683 (|#2| $ (-217 |#1| |#2|))))) (-850) (-338)) (T -920)) -((-3120 (*1 *1 *2) (-12 (-5 *2 (-1052 *3 *4)) (-14 *3 (-850)) (-4 *4 (-338)) (-5 *1 (-920 *3 *4)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-1052 *3 *4)) (-5 *1 (-920 *3 *4)) (-14 *3 (-850)) (-4 *4 (-338)))) (-2683 (*1 *2 *1 *3) (-12 (-5 *3 (-217 *4 *2)) (-14 *4 (-850)) (-4 *2 (-338)) (-5 *1 (-920 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -3120 ($ (-1052 |#1| |#2|))) (-15 -1347 ((-1052 |#1| |#2|) $)) (-15 -2683 (|#2| $ (-217 |#1| |#2|))))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-2717 (((-108) $ (-708)) 8)) (-3367 (($) 7 T CONST)) (-2876 (($ $) 46)) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) 9)) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35)) (-3309 (((-108) $ (-708)) 10)) (-4030 (((-708) $) 45)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1431 ((|#1| $) 39)) (-3365 (($ |#1| $) 40)) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-4056 ((|#1| $) 44)) (-3295 ((|#1| $) 41)) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3036 ((|#1| |#1| $) 48)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-1402 ((|#1| $) 47)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-2501 (($ (-588 |#1|)) 42)) (-2653 ((|#1| $) 43)) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-921 |#1|) (-1197) (-1120)) (T -921)) -((-3036 (*1 *2 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-1120)))) (-1402 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-1120)))) (-2876 (*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-1120)))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-921 *3)) (-4 *3 (-1120)) (-5 *2 (-708)))) (-4056 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-1120)))) (-2653 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-1120))))) -(-13 (-102 |t#1|) (-10 -8 (-6 -4238) (-15 -3036 (|t#1| |t#1| $)) (-15 -1402 (|t#1| $)) (-15 -2876 ($ $)) (-15 -4030 ((-708) $)) (-15 -4056 (|t#1| $)) (-15 -2653 (|t#1| $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T)) -((-2944 (((-108) $) 42)) (-3700 (((-3 (-522) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-1478 (((-522) $) NIL) (((-382 (-522)) $) NIL) ((|#2| $) 43)) (-2549 (((-3 (-382 (-522)) "failed") $) 78)) (-3519 (((-108) $) 72)) (-1699 (((-382 (-522)) $) 76)) (-2859 (((-108) $) 41)) (-1269 ((|#2| $) 22)) (-3810 (($ (-1 |#2| |#2|) $) 19)) (-3193 (($ $) 61)) (-2731 (($ $) NIL) (($ $ (-708)) NIL) (($ $ (-1085)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3873 (((-498) $) 67)) (-2983 (($ $) 17)) (-2217 (((-792) $) 56) (($ (-522)) 38) (($ |#2|) 36) (($ (-382 (-522))) NIL)) (-2742 (((-708)) 10)) (-4126 ((|#2| $) 71)) (-1562 (((-108) $ $) 25)) (-1587 (((-108) $ $) 69)) (-1672 (($ $) 29) (($ $ $) 28)) (-1661 (($ $ $) 26)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL))) -(((-922 |#1| |#2|) (-10 -8 (-15 -2217 (|#1| (-382 (-522)))) (-15 -1587 ((-108) |#1| |#1|)) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 * (|#1| |#1| (-382 (-522)))) (-15 -3193 (|#1| |#1|)) (-15 -3873 ((-498) |#1|)) (-15 -2549 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1699 ((-382 (-522)) |#1|)) (-15 -3519 ((-108) |#1|)) (-15 -4126 (|#2| |#1|)) (-15 -1269 (|#2| |#1|)) (-15 -2983 (|#1| |#1|)) (-15 -3810 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1| (-708))) (-15 -2731 (|#1| |#1|)) (-15 -1478 (|#2| |#1|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-522) |#1|)) (-15 -2217 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2217 (|#1| (-522))) (-15 -2742 ((-708))) (-15 -2859 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 -1672 (|#1| |#1| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 -2944 ((-108) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -1661 (|#1| |#1| |#1|)) (-15 -2217 ((-792) |#1|)) (-15 -1562 ((-108) |#1| |#1|))) (-923 |#2|) (-157)) (T -922)) -((-2742 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-708)) (-5 *1 (-922 *3 *4)) (-4 *3 (-923 *4))))) -(-10 -8 (-15 -2217 (|#1| (-382 (-522)))) (-15 -1587 ((-108) |#1| |#1|)) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 * (|#1| |#1| (-382 (-522)))) (-15 -3193 (|#1| |#1|)) (-15 -3873 ((-498) |#1|)) (-15 -2549 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1699 ((-382 (-522)) |#1|)) (-15 -3519 ((-108) |#1|)) (-15 -4126 (|#2| |#1|)) (-15 -1269 (|#2| |#1|)) (-15 -2983 (|#1| |#1|)) (-15 -3810 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1| (-708))) (-15 -2731 (|#1| |#1|)) (-15 -1478 (|#2| |#1|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-522) |#1|)) (-15 -2217 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2217 (|#1| (-522))) (-15 -2742 ((-708))) (-15 -2859 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 -1672 (|#1| |#1| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 -2944 ((-108) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -1661 (|#1| |#1| |#1|)) (-15 -2217 ((-792) |#1|)) (-15 -1562 ((-108) |#1| |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3700 (((-3 (-522) "failed") $) 119 (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) 117 (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 116)) (-1478 (((-522) $) 120 (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) 118 (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) 115)) (-1226 (((-628 (-522)) (-628 $)) 90 (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 89 (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 88) (((-628 |#1|) (-628 $)) 87)) (-3920 (((-3 $ "failed") $) 34)) (-2025 ((|#1| $) 80)) (-2549 (((-3 (-382 (-522)) "failed") $) 76 (|has| |#1| (-507)))) (-3519 (((-108) $) 78 (|has| |#1| (-507)))) (-1699 (((-382 (-522)) $) 77 (|has| |#1| (-507)))) (-1875 (($ |#1| |#1| |#1| |#1|) 81)) (-2859 (((-108) $) 31)) (-1269 ((|#1| $) 82)) (-1308 (($ $ $) 68 (|has| |#1| (-784)))) (-2524 (($ $ $) 67 (|has| |#1| (-784)))) (-3810 (($ (-1 |#1| |#1|) $) 91)) (-2311 (((-1068) $) 9)) (-3193 (($ $) 73 (|has| |#1| (-338)))) (-2965 ((|#1| $) 83)) (-2412 ((|#1| $) 84)) (-1773 ((|#1| $) 85)) (-4174 (((-1032) $) 10)) (-2330 (($ $ (-588 |#1|) (-588 |#1|)) 97 (|has| |#1| (-285 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-285 |#1|))) (($ $ (-270 |#1|)) 95 (|has| |#1| (-285 |#1|))) (($ $ (-588 (-270 |#1|))) 94 (|has| |#1| (-285 |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) 93 (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-1085) |#1|) 92 (|has| |#1| (-483 (-1085) |#1|)))) (-2683 (($ $ |#1|) 98 (|has| |#1| (-262 |#1| |#1|)))) (-2731 (($ $) 114 (|has| |#1| (-210))) (($ $ (-708)) 112 (|has| |#1| (-210))) (($ $ (-1085)) 110 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 109 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 108 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) 107 (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-3873 (((-498) $) 74 (|has| |#1| (-563 (-498))))) (-2983 (($ $) 86)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 37) (($ (-382 (-522))) 62 (-3844 (|has| |#1| (-338)) (|has| |#1| (-962 (-382 (-522))))))) (-3040 (((-3 $ "failed") $) 75 (|has| |#1| (-133)))) (-2742 (((-708)) 29)) (-4126 ((|#1| $) 79 (|has| |#1| (-980)))) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 72 (|has| |#1| (-338)))) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $) 113 (|has| |#1| (-210))) (($ $ (-708)) 111 (|has| |#1| (-210))) (($ $ (-1085)) 106 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 105 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 104 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) 103 (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-1623 (((-108) $ $) 65 (|has| |#1| (-784)))) (-1597 (((-108) $ $) 64 (|has| |#1| (-784)))) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 66 (|has| |#1| (-784)))) (-1587 (((-108) $ $) 63 (|has| |#1| (-784)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 71 (|has| |#1| (-338)))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-382 (-522))) 70 (|has| |#1| (-338))) (($ (-382 (-522)) $) 69 (|has| |#1| (-338))))) -(((-923 |#1|) (-1197) (-157)) (T -923)) -((-2983 (*1 *1 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)))) (-1773 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)))) (-2965 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)))) (-1269 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)))) (-1875 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)))) (-2025 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)) (-4 *2 (-980)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-108)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-382 (-522))))) (-2549 (*1 *2 *1) (|partial| -12 (-4 *1 (-923 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-382 (-522)))))) -(-13 (-37 |t#1|) (-386 |t#1|) (-208 |t#1|) (-313 |t#1|) (-352 |t#1|) (-10 -8 (-15 -2983 ($ $)) (-15 -1773 (|t#1| $)) (-15 -2412 (|t#1| $)) (-15 -2965 (|t#1| $)) (-15 -1269 (|t#1| $)) (-15 -1875 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2025 (|t#1| $)) (IF (|has| |t#1| (-266)) (-6 (-266)) |%noBranch|) (IF (|has| |t#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#1| (-338)) (-6 (-220)) |%noBranch|) (IF (|has| |t#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-980)) (-15 -4126 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-507)) (PROGN (-15 -3519 ((-108) $)) (-15 -1699 ((-382 (-522)) $)) (-15 -2549 ((-3 (-382 (-522)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) |has| |#1| (-338)) ((-37 |#1|) . T) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-338)) ((-107 |#1| |#1|) . T) ((-107 $ $) -3844 (|has| |#1| (-338)) (|has| |#1| (-266))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-208 |#1|) . T) ((-210) |has| |#1| (-210)) ((-220) |has| |#1| (-338)) ((-262 |#1| $) |has| |#1| (-262 |#1| |#1|)) ((-266) -3844 (|has| |#1| (-338)) (|has| |#1| (-266))) ((-285 |#1|) |has| |#1| (-285 |#1|)) ((-313 |#1|) . T) ((-352 |#1|) . T) ((-386 |#1|) . T) ((-483 (-1085) |#1|) |has| |#1| (-483 (-1085) |#1|)) ((-483 |#1| |#1|) |has| |#1| (-285 |#1|)) ((-590 #0#) |has| |#1| (-338)) ((-590 |#1|) . T) ((-590 $) . T) ((-584 (-522)) |has| |#1| (-584 (-522))) ((-584 |#1|) . T) ((-655 #0#) |has| |#1| (-338)) ((-655 |#1|) . T) ((-664) . T) ((-784) |has| |#1| (-784)) ((-829 (-1085)) |has| |#1| (-829 (-1085))) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T) ((-977 #0#) |has| |#1| (-338)) ((-977 |#1|) . T) ((-977 $) -3844 (|has| |#1| (-338)) (|has| |#1| (-266))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-3810 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-924 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3810 (|#3| (-1 |#4| |#2|) |#1|))) (-923 |#2|) (-157) (-923 |#4|) (-157)) (T -924)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-4 *2 (-923 *6)) (-5 *1 (-924 *4 *5 *2 *6)) (-4 *4 (-923 *5))))) -(-10 -7 (-15 -3810 (|#3| (-1 |#4| |#2|) |#1|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) NIL)) (-1478 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2025 ((|#1| $) 12)) (-2549 (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-507)))) (-3519 (((-108) $) NIL (|has| |#1| (-507)))) (-1699 (((-382 (-522)) $) NIL (|has| |#1| (-507)))) (-1875 (($ |#1| |#1| |#1| |#1|) 16)) (-2859 (((-108) $) NIL)) (-1269 ((|#1| $) NIL)) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL (|has| |#1| (-338)))) (-2965 ((|#1| $) 15)) (-2412 ((|#1| $) 14)) (-1773 ((|#1| $) 13)) (-4174 (((-1032) $) NIL)) (-2330 (($ $ (-588 |#1|) (-588 |#1|)) NIL (|has| |#1| (-285 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-285 |#1|))) (($ $ (-270 |#1|)) NIL (|has| |#1| (-285 |#1|))) (($ $ (-588 (-270 |#1|))) NIL (|has| |#1| (-285 |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) NIL (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-1085) |#1|) NIL (|has| |#1| (-483 (-1085) |#1|)))) (-2683 (($ $ |#1|) NIL (|has| |#1| (-262 |#1| |#1|)))) (-2731 (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3873 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-2983 (($ $) NIL)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL) (($ (-382 (-522))) NIL (-3844 (|has| |#1| (-338)) (|has| |#1| (-962 (-382 (-522))))))) (-3040 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2742 (((-708)) NIL)) (-4126 ((|#1| $) NIL (|has| |#1| (-980)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3697 (($) 8 T CONST)) (-3709 (($) 10 T CONST)) (-2252 (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-382 (-522))) NIL (|has| |#1| (-338))) (($ (-382 (-522)) $) NIL (|has| |#1| (-338))))) -(((-925 |#1|) (-923 |#1|) (-157)) (T -925)) -NIL -(-923 |#1|) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2717 (((-108) $ (-708)) NIL)) (-3367 (($) NIL T CONST)) (-2876 (($ $) 20)) (-3333 (($ (-588 |#1|)) 29)) (-2395 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) NIL)) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2397 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-4030 (((-708) $) 22)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1431 ((|#1| $) 24)) (-3365 (($ |#1| $) 15)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-4056 ((|#1| $) 23)) (-3295 ((|#1| $) 19)) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3036 ((|#1| |#1| $) 14)) (-3494 (((-108) $) 17)) (-3298 (($) NIL)) (-1402 ((|#1| $) 18)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) NIL)) (-2217 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-2501 (($ (-588 |#1|)) NIL)) (-2653 ((|#1| $) 26)) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-926 |#1|) (-13 (-921 |#1|) (-10 -8 (-15 -3333 ($ (-588 |#1|))))) (-1014)) (T -926)) -((-3333 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-926 *3))))) -(-13 (-921 |#1|) (-10 -8 (-15 -3333 ($ (-588 |#1|))))) -((-2016 (($ $) 12)) (-1811 (($ $ (-522)) 13))) -(((-927 |#1|) (-10 -8 (-15 -2016 (|#1| |#1|)) (-15 -1811 (|#1| |#1| (-522)))) (-928)) (T -927)) -NIL -(-10 -8 (-15 -2016 (|#1| |#1|)) (-15 -1811 (|#1| |#1| (-522)))) -((-2016 (($ $) 6)) (-1811 (($ $ (-522)) 7)) (** (($ $ (-382 (-522))) 8))) -(((-928) (-1197)) (T -928)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-382 (-522))))) (-1811 (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-522)))) (-2016 (*1 *1 *1) (-4 *1 (-928)))) -(-13 (-10 -8 (-15 -2016 ($ $)) (-15 -1811 ($ $ (-522))) (-15 ** ($ $ (-382 (-522)))))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-1228 (((-2 (|:| |num| (-1166 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| (-382 |#2|) (-338)))) (-2298 (($ $) NIL (|has| (-382 |#2|) (-338)))) (-3007 (((-108) $) NIL (|has| (-382 |#2|) (-338)))) (-3356 (((-628 (-382 |#2|)) (-1166 $)) NIL) (((-628 (-382 |#2|))) NIL)) (-1945 (((-382 |#2|) $) NIL)) (-3833 (((-1094 (-850) (-708)) (-522)) NIL (|has| (-382 |#2|) (-324)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL (|has| (-382 |#2|) (-338)))) (-3133 (((-393 $) $) NIL (|has| (-382 |#2|) (-338)))) (-2805 (((-108) $ $) NIL (|has| (-382 |#2|) (-338)))) (-1685 (((-708)) NIL (|has| (-382 |#2|) (-343)))) (-2856 (((-108)) NIL)) (-1508 (((-108) |#1|) 147) (((-108) |#2|) 152)) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) NIL (|has| (-382 |#2|) (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| (-382 |#2|) (-962 (-382 (-522))))) (((-3 (-382 |#2|) "failed") $) NIL)) (-1478 (((-522) $) NIL (|has| (-382 |#2|) (-962 (-522)))) (((-382 (-522)) $) NIL (|has| (-382 |#2|) (-962 (-382 (-522))))) (((-382 |#2|) $) NIL)) (-3225 (($ (-1166 (-382 |#2|)) (-1166 $)) NIL) (($ (-1166 (-382 |#2|))) 70) (($ (-1166 |#2|) |#2|) NIL)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-382 |#2|) (-324)))) (-2333 (($ $ $) NIL (|has| (-382 |#2|) (-338)))) (-1359 (((-628 (-382 |#2|)) $ (-1166 $)) NIL) (((-628 (-382 |#2|)) $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| (-382 |#2|) (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| (-382 |#2|) (-584 (-522)))) (((-2 (|:| -2149 (-628 (-382 |#2|))) (|:| |vec| (-1166 (-382 |#2|)))) (-628 $) (-1166 $)) NIL) (((-628 (-382 |#2|)) (-628 $)) NIL)) (-1315 (((-1166 $) (-1166 $)) NIL)) (-2153 (($ |#3|) 65) (((-3 $ "failed") (-382 |#3|)) NIL (|has| (-382 |#2|) (-338)))) (-3920 (((-3 $ "failed") $) NIL)) (-2230 (((-588 (-588 |#1|))) NIL (|has| |#1| (-343)))) (-2477 (((-108) |#1| |#1|) NIL)) (-1692 (((-850)) NIL)) (-3344 (($) NIL (|has| (-382 |#2|) (-343)))) (-3148 (((-108)) NIL)) (-2207 (((-108) |#1|) 56) (((-108) |#2|) 149)) (-2303 (($ $ $) NIL (|has| (-382 |#2|) (-338)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL (|has| (-382 |#2|) (-338)))) (-2883 (($ $) NIL)) (-2160 (($) NIL (|has| (-382 |#2|) (-324)))) (-2087 (((-108) $) NIL (|has| (-382 |#2|) (-324)))) (-1380 (($ $ (-708)) NIL (|has| (-382 |#2|) (-324))) (($ $) NIL (|has| (-382 |#2|) (-324)))) (-2725 (((-108) $) NIL (|has| (-382 |#2|) (-338)))) (-3872 (((-850) $) NIL (|has| (-382 |#2|) (-324))) (((-770 (-850)) $) NIL (|has| (-382 |#2|) (-324)))) (-2859 (((-108) $) NIL)) (-1366 (((-708)) NIL)) (-3349 (((-1166 $) (-1166 $)) NIL)) (-1269 (((-382 |#2|) $) NIL)) (-1742 (((-588 (-881 |#1|)) (-1085)) NIL (|has| |#1| (-338)))) (-4208 (((-3 $ "failed") $) NIL (|has| (-382 |#2|) (-324)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| (-382 |#2|) (-338)))) (-4199 ((|#3| $) NIL (|has| (-382 |#2|) (-338)))) (-1475 (((-850) $) NIL (|has| (-382 |#2|) (-343)))) (-2142 ((|#3| $) NIL)) (-2267 (($ (-588 $)) NIL (|has| (-382 |#2|) (-338))) (($ $ $) NIL (|has| (-382 |#2|) (-338)))) (-2311 (((-1068) $) NIL)) (-2094 (((-628 (-382 |#2|))) 52)) (-1791 (((-628 (-382 |#2|))) 51)) (-3193 (($ $) NIL (|has| (-382 |#2|) (-338)))) (-2464 (($ (-1166 |#2|) |#2|) 71)) (-2286 (((-628 (-382 |#2|))) 50)) (-4203 (((-628 (-382 |#2|))) 49)) (-3385 (((-2 (|:| |num| (-628 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-3146 (((-2 (|:| |num| (-1166 |#2|)) (|:| |den| |#2|)) $) 77)) (-3664 (((-1166 $)) 46)) (-1886 (((-1166 $)) 45)) (-3142 (((-108) $) NIL)) (-2010 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-3937 (($) NIL (|has| (-382 |#2|) (-324)) CONST)) (-2882 (($ (-850)) NIL (|has| (-382 |#2|) (-343)))) (-2951 (((-3 |#2| "failed")) 63)) (-4174 (((-1032) $) NIL)) (-1243 (((-708)) NIL)) (-1368 (($) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| (-382 |#2|) (-338)))) (-2308 (($ (-588 $)) NIL (|has| (-382 |#2|) (-338))) (($ $ $) NIL (|has| (-382 |#2|) (-338)))) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) NIL (|has| (-382 |#2|) (-324)))) (-2006 (((-393 $) $) NIL (|has| (-382 |#2|) (-338)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-382 |#2|) (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| (-382 |#2|) (-338)))) (-2276 (((-3 $ "failed") $ $) NIL (|has| (-382 |#2|) (-338)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| (-382 |#2|) (-338)))) (-4031 (((-708) $) NIL (|has| (-382 |#2|) (-338)))) (-2683 ((|#1| $ |#1| |#1|) NIL)) (-3223 (((-3 |#2| "failed")) 62)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| (-382 |#2|) (-338)))) (-1615 (((-382 |#2|) (-1166 $)) NIL) (((-382 |#2|)) 42)) (-1304 (((-708) $) NIL (|has| (-382 |#2|) (-324))) (((-3 (-708) "failed") $ $) NIL (|has| (-382 |#2|) (-324)))) (-2731 (($ $ (-1 (-382 |#2|) (-382 |#2|)) (-708)) NIL (|has| (-382 |#2|) (-338))) (($ $ (-1 (-382 |#2|) (-382 |#2|))) NIL (|has| (-382 |#2|) (-338))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-708)) NIL (-3844 (-12 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324)))) (($ $) NIL (-3844 (-12 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324))))) (-2620 (((-628 (-382 |#2|)) (-1166 $) (-1 (-382 |#2|) (-382 |#2|))) NIL (|has| (-382 |#2|) (-338)))) (-1579 ((|#3|) 53)) (-2670 (($) NIL (|has| (-382 |#2|) (-324)))) (-3510 (((-1166 (-382 |#2|)) $ (-1166 $)) NIL) (((-628 (-382 |#2|)) (-1166 $) (-1166 $)) NIL) (((-1166 (-382 |#2|)) $) 72) (((-628 (-382 |#2|)) (-1166 $)) NIL)) (-3873 (((-1166 (-382 |#2|)) $) NIL) (($ (-1166 (-382 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| (-382 |#2|) (-324)))) (-2200 (((-1166 $) (-1166 $)) NIL)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ (-382 |#2|)) NIL) (($ (-382 (-522))) NIL (-3844 (|has| (-382 |#2|) (-962 (-382 (-522)))) (|has| (-382 |#2|) (-338)))) (($ $) NIL (|has| (-382 |#2|) (-338)))) (-3040 (($ $) NIL (|has| (-382 |#2|) (-324))) (((-3 $ "failed") $) NIL (|has| (-382 |#2|) (-133)))) (-2645 ((|#3| $) NIL)) (-2742 (((-708)) NIL)) (-2745 (((-108)) 60)) (-2950 (((-108) |#1|) 153) (((-108) |#2|) 154)) (-2905 (((-1166 $)) 124)) (-1407 (((-108) $ $) NIL (|has| (-382 |#2|) (-338)))) (-3827 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2747 (((-108)) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| (-382 |#2|) (-338)))) (-3697 (($) 94 T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $ (-1 (-382 |#2|) (-382 |#2|)) (-708)) NIL (|has| (-382 |#2|) (-338))) (($ $ (-1 (-382 |#2|) (-382 |#2|))) NIL (|has| (-382 |#2|) (-338))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-708)) NIL (-3844 (-12 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324)))) (($ $) NIL (-3844 (-12 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324))))) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ $) NIL (|has| (-382 |#2|) (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| (-382 |#2|) (-338)))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 |#2|)) NIL) (($ (-382 |#2|) $) NIL) (($ (-382 (-522)) $) NIL (|has| (-382 |#2|) (-338))) (($ $ (-382 (-522))) NIL (|has| (-382 |#2|) (-338))))) -(((-929 |#1| |#2| |#3| |#4| |#5|) (-317 |#1| |#2| |#3|) (-1124) (-1142 |#1|) (-1142 (-382 |#2|)) (-382 |#2|) (-708)) (T -929)) -NIL -(-317 |#1| |#2| |#3|) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-4057 (((-588 (-522)) $) 54)) (-2619 (($ (-588 (-522))) 62)) (-3049 (((-522) $) 40 (|has| (-522) (-283)))) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-2805 (((-108) $ $) NIL)) (-3355 (((-522) $) NIL (|has| (-522) (-757)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) 49) (((-3 (-1085) "failed") $) NIL (|has| (-522) (-962 (-1085)))) (((-3 (-382 (-522)) "failed") $) 47 (|has| (-522) (-962 (-522)))) (((-3 (-522) "failed") $) 49 (|has| (-522) (-962 (-522))))) (-1478 (((-522) $) NIL) (((-1085) $) NIL (|has| (-522) (-962 (-1085)))) (((-382 (-522)) $) NIL (|has| (-522) (-962 (-522)))) (((-522) $) NIL (|has| (-522) (-962 (-522))))) (-2333 (($ $ $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| (-522) (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| (-522) (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-628 (-522)) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3344 (($) NIL (|has| (-522) (-507)))) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-2569 (((-588 (-522)) $) 60)) (-3603 (((-108) $) NIL (|has| (-522) (-757)))) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| (-522) (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| (-522) (-815 (-354))))) (-2859 (((-108) $) NIL)) (-1558 (($ $) NIL)) (-2947 (((-522) $) 37)) (-4208 (((-3 $ "failed") $) NIL (|has| (-522) (-1061)))) (-3740 (((-108) $) NIL (|has| (-522) (-757)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1308 (($ $ $) NIL (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (|has| (-522) (-784)))) (-3810 (($ (-1 (-522) (-522)) $) NIL)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL)) (-3937 (($) NIL (|has| (-522) (-1061)) CONST)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4194 (($ $) NIL (|has| (-522) (-283))) (((-382 (-522)) $) 42)) (-4019 (((-1066 (-522)) $) 59)) (-4083 (($ (-588 (-522)) (-588 (-522))) 63)) (-3592 (((-522) $) 53 (|has| (-522) (-507)))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-2006 (((-393 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2330 (($ $ (-588 (-522)) (-588 (-522))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-522) (-522)) NIL (|has| (-522) (-285 (-522)))) (($ $ (-270 (-522))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-588 (-270 (-522)))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-588 (-1085)) (-588 (-522))) NIL (|has| (-522) (-483 (-1085) (-522)))) (($ $ (-1085) (-522)) NIL (|has| (-522) (-483 (-1085) (-522))))) (-4031 (((-708) $) NIL)) (-2683 (($ $ (-522)) NIL (|has| (-522) (-262 (-522) (-522))))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-2731 (($ $) 11 (|has| (-522) (-210))) (($ $ (-708)) NIL (|has| (-522) (-210))) (($ $ (-1085)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1 (-522) (-522)) (-708)) NIL) (($ $ (-1 (-522) (-522))) NIL)) (-2762 (($ $) NIL)) (-2959 (((-522) $) 39)) (-3404 (((-588 (-522)) $) 61)) (-3873 (((-821 (-522)) $) NIL (|has| (-522) (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| (-522) (-563 (-821 (-354))))) (((-498) $) NIL (|has| (-522) (-563 (-498)))) (((-354) $) NIL (|has| (-522) (-947))) (((-202) $) NIL (|has| (-522) (-947)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| (-522) (-838))))) (-2217 (((-792) $) 77) (($ (-522)) 43) (($ $) NIL) (($ (-382 (-522))) 19) (($ (-522)) 43) (($ (-1085)) NIL (|has| (-522) (-962 (-1085)))) (((-382 (-522)) $) 17)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| (-522) (-838))) (|has| (-522) (-133))))) (-2742 (((-708)) 9)) (-1379 (((-522) $) 51 (|has| (-522) (-507)))) (-1407 (((-108) $ $) NIL)) (-4126 (($ $) NIL (|has| (-522) (-757)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) 10 T CONST)) (-3709 (($) 12 T CONST)) (-2252 (($ $) NIL (|has| (-522) (-210))) (($ $ (-708)) NIL (|has| (-522) (-210))) (($ $ (-1085)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1 (-522) (-522)) (-708)) NIL) (($ $ (-1 (-522) (-522))) NIL)) (-1623 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1597 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1562 (((-108) $ $) 14)) (-1609 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1587 (((-108) $ $) 33 (|has| (-522) (-784)))) (-1682 (($ $ $) 29) (($ (-522) (-522)) 31)) (-1672 (($ $) 15) (($ $ $) 22)) (-1661 (($ $ $) 20)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 25) (($ $ $) 27) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ (-522) $) 25) (($ $ (-522)) NIL))) -(((-930 |#1|) (-13 (-919 (-522)) (-10 -8 (-15 -2217 ((-382 (-522)) $)) (-15 -4194 ((-382 (-522)) $)) (-15 -4057 ((-588 (-522)) $)) (-15 -4019 ((-1066 (-522)) $)) (-15 -2569 ((-588 (-522)) $)) (-15 -3404 ((-588 (-522)) $)) (-15 -2619 ($ (-588 (-522)))) (-15 -4083 ($ (-588 (-522)) (-588 (-522)))))) (-522)) (T -930)) -((-2217 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))) (-4194 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))) (-4057 (*1 *2 *1) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))) (-4019 (*1 *2 *1) (-12 (-5 *2 (-1066 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))) (-2569 (*1 *2 *1) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))) (-2619 (*1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))) (-4083 (*1 *1 *2 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522))))) -(-13 (-919 (-522)) (-10 -8 (-15 -2217 ((-382 (-522)) $)) (-15 -4194 ((-382 (-522)) $)) (-15 -4057 ((-588 (-522)) $)) (-15 -4019 ((-1066 (-522)) $)) (-15 -2569 ((-588 (-522)) $)) (-15 -3404 ((-588 (-522)) $)) (-15 -2619 ($ (-588 (-522)))) (-15 -4083 ($ (-588 (-522)) (-588 (-522)))))) -((-2150 (((-51) (-382 (-522)) (-522)) 9))) -(((-931) (-10 -7 (-15 -2150 ((-51) (-382 (-522)) (-522))))) (T -931)) -((-2150 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-522))) (-5 *4 (-522)) (-5 *2 (-51)) (-5 *1 (-931))))) -(-10 -7 (-15 -2150 ((-51) (-382 (-522)) (-522)))) -((-1685 (((-522)) 13)) (-2759 (((-522)) 16)) (-3997 (((-1171) (-522)) 15)) (-2586 (((-522) (-522)) 17) (((-522)) 12))) -(((-932) (-10 -7 (-15 -2586 ((-522))) (-15 -1685 ((-522))) (-15 -2586 ((-522) (-522))) (-15 -3997 ((-1171) (-522))) (-15 -2759 ((-522))))) (T -932)) -((-2759 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-932)))) (-3997 (*1 *2 *3) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-932)))) (-2586 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-932)))) (-1685 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-932)))) (-2586 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-932))))) -(-10 -7 (-15 -2586 ((-522))) (-15 -1685 ((-522))) (-15 -2586 ((-522) (-522))) (-15 -3997 ((-1171) (-522))) (-15 -2759 ((-522)))) -((-3903 (((-393 |#1|) |#1|) 40)) (-2006 (((-393 |#1|) |#1|) 39))) -(((-933 |#1|) (-10 -7 (-15 -2006 ((-393 |#1|) |#1|)) (-15 -3903 ((-393 |#1|) |#1|))) (-1142 (-382 (-522)))) (T -933)) -((-3903 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-933 *3)) (-4 *3 (-1142 (-382 (-522)))))) (-2006 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-933 *3)) (-4 *3 (-1142 (-382 (-522))))))) -(-10 -7 (-15 -2006 ((-393 |#1|) |#1|)) (-15 -3903 ((-393 |#1|) |#1|))) -((-2549 (((-3 (-382 (-522)) "failed") |#1|) 14)) (-3519 (((-108) |#1|) 13)) (-1699 (((-382 (-522)) |#1|) 9))) -(((-934 |#1|) (-10 -7 (-15 -1699 ((-382 (-522)) |#1|)) (-15 -3519 ((-108) |#1|)) (-15 -2549 ((-3 (-382 (-522)) "failed") |#1|))) (-962 (-382 (-522)))) (T -934)) -((-2549 (*1 *2 *3) (|partial| -12 (-5 *2 (-382 (-522))) (-5 *1 (-934 *3)) (-4 *3 (-962 *2)))) (-3519 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-934 *3)) (-4 *3 (-962 (-382 (-522)))))) (-1699 (*1 *2 *3) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-934 *3)) (-4 *3 (-962 *2))))) -(-10 -7 (-15 -1699 ((-382 (-522)) |#1|)) (-15 -3519 ((-108) |#1|)) (-15 -2549 ((-3 (-382 (-522)) "failed") |#1|))) -((-2437 ((|#2| $ "value" |#2|) 12)) (-2683 ((|#2| $ "value") 10)) (-3294 (((-108) $ $) 18))) -(((-935 |#1| |#2|) (-10 -8 (-15 -2437 (|#2| |#1| "value" |#2|)) (-15 -3294 ((-108) |#1| |#1|)) (-15 -2683 (|#2| |#1| "value"))) (-936 |#2|) (-1120)) (T -935)) -NIL -(-10 -8 (-15 -2437 (|#2| |#1| "value" |#2|)) (-15 -3294 ((-108) |#1| |#1|)) (-15 -2683 (|#2| |#1| "value"))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3526 ((|#1| $) 48)) (-2717 (((-108) $ (-708)) 8)) (-1198 ((|#1| $ |#1|) 39 (|has| $ (-6 -4239)))) (-2437 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4239)))) (-2684 (($ $ (-588 $)) 41 (|has| $ (-6 -4239)))) (-3367 (($) 7 T CONST)) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-2674 (((-588 $) $) 50)) (-2402 (((-108) $ $) 42 (|has| |#1| (-1014)))) (-1480 (((-108) $ (-708)) 9)) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35)) (-3309 (((-108) $ (-708)) 10)) (-2548 (((-588 |#1|) $) 45)) (-3394 (((-108) $) 49)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 ((|#1| $ "value") 47)) (-3381 (((-522) $ $) 44)) (-3395 (((-108) $) 46)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1515 (((-588 $) $) 51)) (-3294 (((-108) $ $) 43 (|has| |#1| (-1014)))) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-936 |#1|) (-1197) (-1120)) (T -936)) -((-1515 (*1 *2 *1) (-12 (-4 *3 (-1120)) (-5 *2 (-588 *1)) (-4 *1 (-936 *3)))) (-2674 (*1 *2 *1) (-12 (-4 *3 (-1120)) (-5 *2 (-588 *1)) (-4 *1 (-936 *3)))) (-3394 (*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-5 *2 (-108)))) (-3526 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1120)))) (-2683 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-936 *2)) (-4 *2 (-1120)))) (-3395 (*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-5 *2 (-108)))) (-2548 (*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-5 *2 (-588 *3)))) (-3381 (*1 *2 *1 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-5 *2 (-522)))) (-3294 (*1 *2 *1 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-4 *3 (-1014)) (-5 *2 (-108)))) (-2402 (*1 *2 *1 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-4 *3 (-1014)) (-5 *2 (-108)))) (-2684 (*1 *1 *1 *2) (-12 (-5 *2 (-588 *1)) (|has| *1 (-6 -4239)) (-4 *1 (-936 *3)) (-4 *3 (-1120)))) (-2437 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4239)) (-4 *1 (-936 *2)) (-4 *2 (-1120)))) (-1198 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-936 *2)) (-4 *2 (-1120))))) -(-13 (-461 |t#1|) (-10 -8 (-15 -1515 ((-588 $) $)) (-15 -2674 ((-588 $) $)) (-15 -3394 ((-108) $)) (-15 -3526 (|t#1| $)) (-15 -2683 (|t#1| $ "value")) (-15 -3395 ((-108) $)) (-15 -2548 ((-588 |t#1|) $)) (-15 -3381 ((-522) $ $)) (IF (|has| |t#1| (-1014)) (PROGN (-15 -3294 ((-108) $ $)) (-15 -2402 ((-108) $ $))) |%noBranch|) (IF (|has| $ (-6 -4239)) (PROGN (-15 -2684 ($ $ (-588 $))) (-15 -2437 (|t#1| $ "value" |t#1|)) (-15 -1198 (|t#1| $ |t#1|))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T)) -((-2016 (($ $) 9) (($ $ (-708)) 43) (($ (-382 (-522))) 12) (($ (-522)) 15)) (-1275 (((-3 $ "failed") (-1081 $) (-850) (-792)) 23) (((-3 $ "failed") (-1081 $) (-850)) 28)) (-1811 (($ $ (-522)) 49)) (-2742 (((-708)) 16)) (-3068 (((-588 $) (-1081 $)) NIL) (((-588 $) (-1081 (-382 (-522)))) 54) (((-588 $) (-1081 (-522))) 59) (((-588 $) (-881 $)) 63) (((-588 $) (-881 (-382 (-522)))) 67) (((-588 $) (-881 (-522))) 71)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL) (($ $ (-382 (-522))) 47))) -(((-937 |#1|) (-10 -8 (-15 -2016 (|#1| (-522))) (-15 -2016 (|#1| (-382 (-522)))) (-15 -2016 (|#1| |#1| (-708))) (-15 -3068 ((-588 |#1|) (-881 (-522)))) (-15 -3068 ((-588 |#1|) (-881 (-382 (-522))))) (-15 -3068 ((-588 |#1|) (-881 |#1|))) (-15 -3068 ((-588 |#1|) (-1081 (-522)))) (-15 -3068 ((-588 |#1|) (-1081 (-382 (-522))))) (-15 -3068 ((-588 |#1|) (-1081 |#1|))) (-15 -1275 ((-3 |#1| "failed") (-1081 |#1|) (-850))) (-15 -1275 ((-3 |#1| "failed") (-1081 |#1|) (-850) (-792))) (-15 ** (|#1| |#1| (-382 (-522)))) (-15 -1811 (|#1| |#1| (-522))) (-15 -2016 (|#1| |#1|)) (-15 ** (|#1| |#1| (-522))) (-15 -2742 ((-708))) (-15 ** (|#1| |#1| (-708))) (-15 ** (|#1| |#1| (-850)))) (-938)) (T -937)) -((-2742 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-937 *3)) (-4 *3 (-938))))) -(-10 -8 (-15 -2016 (|#1| (-522))) (-15 -2016 (|#1| (-382 (-522)))) (-15 -2016 (|#1| |#1| (-708))) (-15 -3068 ((-588 |#1|) (-881 (-522)))) (-15 -3068 ((-588 |#1|) (-881 (-382 (-522))))) (-15 -3068 ((-588 |#1|) (-881 |#1|))) (-15 -3068 ((-588 |#1|) (-1081 (-522)))) (-15 -3068 ((-588 |#1|) (-1081 (-382 (-522))))) (-15 -3068 ((-588 |#1|) (-1081 |#1|))) (-15 -1275 ((-3 |#1| "failed") (-1081 |#1|) (-850))) (-15 -1275 ((-3 |#1| "failed") (-1081 |#1|) (-850) (-792))) (-15 ** (|#1| |#1| (-382 (-522)))) (-15 -1811 (|#1| |#1| (-522))) (-15 -2016 (|#1| |#1|)) (-15 ** (|#1| |#1| (-522))) (-15 -2742 ((-708))) (-15 ** (|#1| |#1| (-708))) (-15 ** (|#1| |#1| (-850)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 89)) (-2298 (($ $) 90)) (-3007 (((-108) $) 92)) (-2265 (((-3 $ "failed") $ $) 19)) (-2961 (($ $) 109)) (-3133 (((-393 $) $) 110)) (-2016 (($ $) 73) (($ $ (-708)) 59) (($ (-382 (-522))) 58) (($ (-522)) 57)) (-2805 (((-108) $ $) 100)) (-3355 (((-522) $) 127)) (-3367 (($) 17 T CONST)) (-1275 (((-3 $ "failed") (-1081 $) (-850) (-792)) 67) (((-3 $ "failed") (-1081 $) (-850)) 66)) (-3700 (((-3 (-522) "failed") $) 85 (|has| (-382 (-522)) (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) 83 (|has| (-382 (-522)) (-962 (-382 (-522))))) (((-3 (-382 (-522)) "failed") $) 81)) (-1478 (((-522) $) 86 (|has| (-382 (-522)) (-962 (-522)))) (((-382 (-522)) $) 84 (|has| (-382 (-522)) (-962 (-382 (-522))))) (((-382 (-522)) $) 80)) (-2173 (($ $ (-792)) 56)) (-1942 (($ $ (-792)) 55)) (-2333 (($ $ $) 104)) (-3920 (((-3 $ "failed") $) 34)) (-2303 (($ $ $) 103)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 98)) (-2725 (((-108) $) 111)) (-3603 (((-108) $) 125)) (-2859 (((-108) $) 31)) (-1811 (($ $ (-522)) 72)) (-3740 (((-108) $) 126)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 107)) (-1308 (($ $ $) 124)) (-2524 (($ $ $) 123)) (-1247 (((-3 (-1081 $) "failed") $) 68)) (-1748 (((-3 (-792) "failed") $) 70)) (-1622 (((-3 (-1081 $) "failed") $) 69)) (-2267 (($ (-588 $)) 96) (($ $ $) 95)) (-2311 (((-1068) $) 9)) (-3193 (($ $) 112)) (-4174 (((-1032) $) 10)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 97)) (-2308 (($ (-588 $)) 94) (($ $ $) 93)) (-2006 (((-393 $) $) 108)) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 105)) (-2276 (((-3 $ "failed") $ $) 88)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 99)) (-4031 (((-708) $) 101)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 102)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ (-382 (-522))) 117) (($ $) 87) (($ (-382 (-522))) 82) (($ (-522)) 79) (($ (-382 (-522))) 76)) (-2742 (((-708)) 29)) (-1407 (((-108) $ $) 91)) (-3996 (((-382 (-522)) $ $) 54)) (-3068 (((-588 $) (-1081 $)) 65) (((-588 $) (-1081 (-382 (-522)))) 64) (((-588 $) (-1081 (-522))) 63) (((-588 $) (-881 $)) 62) (((-588 $) (-881 (-382 (-522)))) 61) (((-588 $) (-881 (-522))) 60)) (-4126 (($ $) 128)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 113)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1623 (((-108) $ $) 121)) (-1597 (((-108) $ $) 120)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 122)) (-1587 (((-108) $ $) 119)) (-1682 (($ $ $) 118)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 114) (($ $ (-382 (-522))) 71)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ (-382 (-522)) $) 116) (($ $ (-382 (-522))) 115) (($ (-522) $) 78) (($ $ (-522)) 77) (($ (-382 (-522)) $) 75) (($ $ (-382 (-522))) 74))) -(((-938) (-1197)) (T -938)) -((-2016 (*1 *1 *1) (-4 *1 (-938))) (-1748 (*1 *2 *1) (|partial| -12 (-4 *1 (-938)) (-5 *2 (-792)))) (-1622 (*1 *2 *1) (|partial| -12 (-5 *2 (-1081 *1)) (-4 *1 (-938)))) (-1247 (*1 *2 *1) (|partial| -12 (-5 *2 (-1081 *1)) (-4 *1 (-938)))) (-1275 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1081 *1)) (-5 *3 (-850)) (-5 *4 (-792)) (-4 *1 (-938)))) (-1275 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1081 *1)) (-5 *3 (-850)) (-4 *1 (-938)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-1081 *1)) (-4 *1 (-938)) (-5 *2 (-588 *1)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-1081 (-382 (-522)))) (-5 *2 (-588 *1)) (-4 *1 (-938)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-1081 (-522))) (-5 *2 (-588 *1)) (-4 *1 (-938)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-881 *1)) (-4 *1 (-938)) (-5 *2 (-588 *1)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-881 (-382 (-522)))) (-5 *2 (-588 *1)) (-4 *1 (-938)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-881 (-522))) (-5 *2 (-588 *1)) (-4 *1 (-938)))) (-2016 (*1 *1 *1 *2) (-12 (-4 *1 (-938)) (-5 *2 (-708)))) (-2016 (*1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-4 *1 (-938)))) (-2016 (*1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-938)))) (-2173 (*1 *1 *1 *2) (-12 (-4 *1 (-938)) (-5 *2 (-792)))) (-1942 (*1 *1 *1 *2) (-12 (-4 *1 (-938)) (-5 *2 (-792)))) (-3996 (*1 *2 *1 *1) (-12 (-4 *1 (-938)) (-5 *2 (-382 (-522)))))) -(-13 (-135) (-782) (-157) (-338) (-386 (-382 (-522))) (-37 (-522)) (-37 (-382 (-522))) (-928) (-10 -8 (-15 -1748 ((-3 (-792) "failed") $)) (-15 -1622 ((-3 (-1081 $) "failed") $)) (-15 -1247 ((-3 (-1081 $) "failed") $)) (-15 -1275 ((-3 $ "failed") (-1081 $) (-850) (-792))) (-15 -1275 ((-3 $ "failed") (-1081 $) (-850))) (-15 -3068 ((-588 $) (-1081 $))) (-15 -3068 ((-588 $) (-1081 (-382 (-522))))) (-15 -3068 ((-588 $) (-1081 (-522)))) (-15 -3068 ((-588 $) (-881 $))) (-15 -3068 ((-588 $) (-881 (-382 (-522))))) (-15 -3068 ((-588 $) (-881 (-522)))) (-15 -2016 ($ $ (-708))) (-15 -2016 ($ $)) (-15 -2016 ($ (-382 (-522)))) (-15 -2016 ($ (-522))) (-15 -2173 ($ $ (-792))) (-15 -1942 ($ $ (-792))) (-15 -3996 ((-382 (-522)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 #1=(-522)) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-562 (-792)) . T) ((-157) . T) ((-220) . T) ((-266) . T) ((-283) . T) ((-338) . T) ((-386 (-382 (-522))) . T) ((-426) . T) ((-514) . T) ((-590 #0#) . T) ((-590 #1#) . T) ((-590 $) . T) ((-655 #0#) . T) ((-655 #1#) . T) ((-655 $) . T) ((-664) . T) ((-728) . T) ((-729) . T) ((-731) . T) ((-732) . T) ((-782) . T) ((-784) . T) ((-849) . T) ((-928) . T) ((-962 (-382 (-522))) . T) ((-962 (-522)) |has| (-382 (-522)) (-962 (-522))) ((-977 #0#) . T) ((-977 #1#) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) . T)) -((-2050 (((-2 (|:| |ans| |#2|) (|:| -2002 |#2|) (|:| |sol?| (-108))) (-522) |#2| |#2| (-1085) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-588 |#2|)) (-1 (-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 62))) -(((-939 |#1| |#2|) (-10 -7 (-15 -2050 ((-2 (|:| |ans| |#2|) (|:| -2002 |#2|) (|:| |sol?| (-108))) (-522) |#2| |#2| (-1085) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-588 |#2|)) (-1 (-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522))) (-13 (-1106) (-27) (-405 |#1|))) (T -939)) -((-2050 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1085)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-588 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2585 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1106) (-27) (-405 *8))) (-4 *8 (-13 (-426) (-784) (-135) (-962 *3) (-584 *3))) (-5 *3 (-522)) (-5 *2 (-2 (|:| |ans| *4) (|:| -2002 *4) (|:| |sol?| (-108)))) (-5 *1 (-939 *8 *4))))) -(-10 -7 (-15 -2050 ((-2 (|:| |ans| |#2|) (|:| -2002 |#2|) (|:| |sol?| (-108))) (-522) |#2| |#2| (-1085) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-588 |#2|)) (-1 (-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-2062 (((-3 (-588 |#2|) "failed") (-522) |#2| |#2| |#2| (-1085) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-588 |#2|)) (-1 (-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47))) -(((-940 |#1| |#2|) (-10 -7 (-15 -2062 ((-3 (-588 |#2|) "failed") (-522) |#2| |#2| |#2| (-1085) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-588 |#2|)) (-1 (-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522))) (-13 (-1106) (-27) (-405 |#1|))) (T -940)) -((-2062 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1085)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-588 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2585 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1106) (-27) (-405 *8))) (-4 *8 (-13 (-426) (-784) (-135) (-962 *3) (-584 *3))) (-5 *3 (-522)) (-5 *2 (-588 *4)) (-5 *1 (-940 *8 *4))))) -(-10 -7 (-15 -2062 ((-3 (-588 |#2|) "failed") (-522) |#2| |#2| |#2| (-1085) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-588 |#2|)) (-1 (-3 (-2 (|:| -2585 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3613 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3277 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-522)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-522) (-1 |#2| |#2|)) 30)) (-2017 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-382 |#2|)) (|:| |c| (-382 |#2|)) (|:| -1704 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-1 |#2| |#2|)) 57)) (-2752 (((-2 (|:| |ans| (-382 |#2|)) (|:| |nosol| (-108))) (-382 |#2|) (-382 |#2|)) 62))) -(((-941 |#1| |#2|) (-10 -7 (-15 -2017 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-382 |#2|)) (|:| |c| (-382 |#2|)) (|:| -1704 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-1 |#2| |#2|))) (-15 -2752 ((-2 (|:| |ans| (-382 |#2|)) (|:| |nosol| (-108))) (-382 |#2|) (-382 |#2|))) (-15 -3613 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3277 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-522)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-522) (-1 |#2| |#2|)))) (-13 (-338) (-135) (-962 (-522))) (-1142 |#1|)) (T -941)) -((-3613 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1142 *6)) (-4 *6 (-13 (-338) (-135) (-962 *4))) (-5 *4 (-522)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) (|:| -3277 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-941 *6 *3)))) (-2752 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-338) (-135) (-962 (-522)))) (-4 *5 (-1142 *4)) (-5 *2 (-2 (|:| |ans| (-382 *5)) (|:| |nosol| (-108)))) (-5 *1 (-941 *4 *5)) (-5 *3 (-382 *5)))) (-2017 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-13 (-338) (-135) (-962 (-522)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-382 *6)) (|:| |c| (-382 *6)) (|:| -1704 *6))) (-5 *1 (-941 *5 *6)) (-5 *3 (-382 *6))))) -(-10 -7 (-15 -2017 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-382 |#2|)) (|:| |c| (-382 |#2|)) (|:| -1704 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-1 |#2| |#2|))) (-15 -2752 ((-2 (|:| |ans| (-382 |#2|)) (|:| |nosol| (-108))) (-382 |#2|) (-382 |#2|))) (-15 -3613 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3277 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-522)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-522) (-1 |#2| |#2|)))) -((-3191 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-382 |#2|)) (|:| |h| |#2|) (|:| |c1| (-382 |#2|)) (|:| |c2| (-382 |#2|)) (|:| -1704 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|) (-1 |#2| |#2|)) 22)) (-3878 (((-3 (-588 (-382 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|)) 32))) -(((-942 |#1| |#2|) (-10 -7 (-15 -3191 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-382 |#2|)) (|:| |h| |#2|) (|:| |c1| (-382 |#2|)) (|:| |c2| (-382 |#2|)) (|:| -1704 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|) (-1 |#2| |#2|))) (-15 -3878 ((-3 (-588 (-382 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|)))) (-13 (-338) (-135) (-962 (-522))) (-1142 |#1|)) (T -942)) -((-3878 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-338) (-135) (-962 (-522)))) (-4 *5 (-1142 *4)) (-5 *2 (-588 (-382 *5))) (-5 *1 (-942 *4 *5)) (-5 *3 (-382 *5)))) (-3191 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-13 (-338) (-135) (-962 (-522)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-382 *6)) (|:| |h| *6) (|:| |c1| (-382 *6)) (|:| |c2| (-382 *6)) (|:| -1704 *6))) (-5 *1 (-942 *5 *6)) (-5 *3 (-382 *6))))) -(-10 -7 (-15 -3191 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-382 |#2|)) (|:| |h| |#2|) (|:| |c1| (-382 |#2|)) (|:| |c2| (-382 |#2|)) (|:| -1704 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|) (-1 |#2| |#2|))) (-15 -3878 ((-3 (-588 (-382 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|)))) -((-2860 (((-1 |#1|) (-588 (-2 (|:| -3526 |#1|) (|:| -3192 (-522))))) 37)) (-1577 (((-1 |#1|) (-1016 |#1|)) 45)) (-2244 (((-1 |#1|) (-1166 |#1|) (-1166 (-522)) (-522)) 34))) -(((-943 |#1|) (-10 -7 (-15 -1577 ((-1 |#1|) (-1016 |#1|))) (-15 -2860 ((-1 |#1|) (-588 (-2 (|:| -3526 |#1|) (|:| -3192 (-522)))))) (-15 -2244 ((-1 |#1|) (-1166 |#1|) (-1166 (-522)) (-522)))) (-1014)) (T -943)) -((-2244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 *6)) (-5 *4 (-1166 (-522))) (-5 *5 (-522)) (-4 *6 (-1014)) (-5 *2 (-1 *6)) (-5 *1 (-943 *6)))) (-2860 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| -3526 *4) (|:| -3192 (-522))))) (-4 *4 (-1014)) (-5 *2 (-1 *4)) (-5 *1 (-943 *4)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-1016 *4)) (-4 *4 (-1014)) (-5 *2 (-1 *4)) (-5 *1 (-943 *4))))) -(-10 -7 (-15 -1577 ((-1 |#1|) (-1016 |#1|))) (-15 -2860 ((-1 |#1|) (-588 (-2 (|:| -3526 |#1|) (|:| -3192 (-522)))))) (-15 -2244 ((-1 |#1|) (-1166 |#1|) (-1166 (-522)) (-522)))) -((-3872 (((-708) (-311 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-944 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3872 ((-708) (-311 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-338) (-1142 |#1|) (-1142 (-382 |#2|)) (-317 |#1| |#2| |#3|) (-13 (-343) (-338))) (T -944)) -((-3872 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-338)) (-4 *7 (-1142 *6)) (-4 *4 (-1142 (-382 *7))) (-4 *8 (-317 *6 *7 *4)) (-4 *9 (-13 (-343) (-338))) (-5 *2 (-708)) (-5 *1 (-944 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -3872 ((-708) (-311 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-1776 (((-3 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) "failed") |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) 31) (((-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) (-382 (-522))) 28)) (-3711 (((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) (-382 (-522))) 33) (((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1| (-382 (-522))) 29) (((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) 32) (((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1|) 27)) (-3955 (((-588 (-382 (-522))) (-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) 19)) (-3848 (((-382 (-522)) (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) 16))) -(((-945 |#1|) (-10 -7 (-15 -3711 ((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1|)) (-15 -3711 ((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) (-15 -3711 ((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1| (-382 (-522)))) (-15 -3711 ((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) (-382 (-522)))) (-15 -1776 ((-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) (-382 (-522)))) (-15 -1776 ((-3 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) "failed") |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) (-15 -3848 ((-382 (-522)) (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) (-15 -3955 ((-588 (-382 (-522))) (-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))))) (-1142 (-522))) (T -945)) -((-3955 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) (-5 *2 (-588 (-382 (-522)))) (-5 *1 (-945 *4)) (-4 *4 (-1142 (-522))))) (-3848 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) (-5 *2 (-382 (-522))) (-5 *1 (-945 *4)) (-4 *4 (-1142 (-522))))) (-1776 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522))))) (-1776 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) (-5 *4 (-382 (-522))) (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522))))) (-3711 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-382 (-522))) (-5 *2 (-588 (-2 (|:| -1993 *5) (|:| -2002 *5)))) (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522))) (-5 *4 (-2 (|:| -1993 *5) (|:| -2002 *5))))) (-3711 (*1 *2 *3 *4) (-12 (-5 *2 (-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522))) (-5 *4 (-382 (-522))))) (-3711 (*1 *2 *3 *4) (-12 (-5 *2 (-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522))) (-5 *4 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))))) (-3711 (*1 *2 *3) (-12 (-5 *2 (-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522)))))) -(-10 -7 (-15 -3711 ((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1|)) (-15 -3711 ((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) (-15 -3711 ((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1| (-382 (-522)))) (-15 -3711 ((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) (-382 (-522)))) (-15 -1776 ((-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) (-382 (-522)))) (-15 -1776 ((-3 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) "failed") |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) (-15 -3848 ((-382 (-522)) (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) (-15 -3955 ((-588 (-382 (-522))) (-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))))) -((-1776 (((-3 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) "failed") |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) 35) (((-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) (-382 (-522))) 32)) (-3711 (((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) (-382 (-522))) 30) (((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1| (-382 (-522))) 26) (((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) 28) (((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1|) 24))) -(((-946 |#1|) (-10 -7 (-15 -3711 ((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1|)) (-15 -3711 ((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) (-15 -3711 ((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1| (-382 (-522)))) (-15 -3711 ((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) (-382 (-522)))) (-15 -1776 ((-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) (-382 (-522)))) (-15 -1776 ((-3 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) "failed") |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))))) (-1142 (-382 (-522)))) (T -946)) -((-1776 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) (-5 *1 (-946 *3)) (-4 *3 (-1142 (-382 (-522)))))) (-1776 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) (-5 *4 (-382 (-522))) (-5 *1 (-946 *3)) (-4 *3 (-1142 *4)))) (-3711 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-382 (-522))) (-5 *2 (-588 (-2 (|:| -1993 *5) (|:| -2002 *5)))) (-5 *1 (-946 *3)) (-4 *3 (-1142 *5)) (-5 *4 (-2 (|:| -1993 *5) (|:| -2002 *5))))) (-3711 (*1 *2 *3 *4) (-12 (-5 *4 (-382 (-522))) (-5 *2 (-588 (-2 (|:| -1993 *4) (|:| -2002 *4)))) (-5 *1 (-946 *3)) (-4 *3 (-1142 *4)))) (-3711 (*1 *2 *3 *4) (-12 (-5 *2 (-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) (-5 *1 (-946 *3)) (-4 *3 (-1142 (-382 (-522)))) (-5 *4 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))))) (-3711 (*1 *2 *3) (-12 (-5 *2 (-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) (-5 *1 (-946 *3)) (-4 *3 (-1142 (-382 (-522))))))) -(-10 -7 (-15 -3711 ((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1|)) (-15 -3711 ((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) (-15 -3711 ((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1| (-382 (-522)))) (-15 -3711 ((-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) (-382 (-522)))) (-15 -1776 ((-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) (-382 (-522)))) (-15 -1776 ((-3 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) "failed") |#1| (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))) (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))))) -((-3873 (((-202) $) 6) (((-354) $) 9))) -(((-947) (-1197)) (T -947)) -NIL -(-13 (-563 (-202)) (-563 (-354))) -(((-563 (-202)) . T) ((-563 (-354)) . T)) -((-2925 (((-588 (-354)) (-881 (-522)) (-354)) 27) (((-588 (-354)) (-881 (-382 (-522))) (-354)) 26)) (-1760 (((-588 (-588 (-354))) (-588 (-881 (-522))) (-588 (-1085)) (-354)) 36))) -(((-948) (-10 -7 (-15 -2925 ((-588 (-354)) (-881 (-382 (-522))) (-354))) (-15 -2925 ((-588 (-354)) (-881 (-522)) (-354))) (-15 -1760 ((-588 (-588 (-354))) (-588 (-881 (-522))) (-588 (-1085)) (-354))))) (T -948)) -((-1760 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-588 (-881 (-522)))) (-5 *4 (-588 (-1085))) (-5 *2 (-588 (-588 (-354)))) (-5 *1 (-948)) (-5 *5 (-354)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-881 (-522))) (-5 *2 (-588 (-354))) (-5 *1 (-948)) (-5 *4 (-354)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-881 (-382 (-522)))) (-5 *2 (-588 (-354))) (-5 *1 (-948)) (-5 *4 (-354))))) -(-10 -7 (-15 -2925 ((-588 (-354)) (-881 (-382 (-522))) (-354))) (-15 -2925 ((-588 (-354)) (-881 (-522)) (-354))) (-15 -1760 ((-588 (-588 (-354))) (-588 (-881 (-522))) (-588 (-1085)) (-354)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 70)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2016 (($ $) NIL) (($ $ (-708)) NIL) (($ (-382 (-522))) NIL) (($ (-522)) NIL)) (-2805 (((-108) $ $) NIL)) (-3355 (((-522) $) 65)) (-3367 (($) NIL T CONST)) (-1275 (((-3 $ "failed") (-1081 $) (-850) (-792)) NIL) (((-3 $ "failed") (-1081 $) (-850)) 49)) (-3700 (((-3 (-382 (-522)) "failed") $) NIL (|has| (-382 (-522)) (-962 (-382 (-522))))) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 |#1| "failed") $) 108) (((-3 (-522) "failed") $) NIL (-3844 (|has| (-382 (-522)) (-962 (-522))) (|has| |#1| (-962 (-522)))))) (-1478 (((-382 (-522)) $) 14 (|has| (-382 (-522)) (-962 (-382 (-522))))) (((-382 (-522)) $) 14) ((|#1| $) 109) (((-522) $) NIL (-3844 (|has| (-382 (-522)) (-962 (-522))) (|has| |#1| (-962 (-522)))))) (-2173 (($ $ (-792)) 40)) (-1942 (($ $ (-792)) 41)) (-2333 (($ $ $) NIL)) (-1549 (((-382 (-522)) $ $) 18)) (-3920 (((-3 $ "failed") $) 83)) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-3603 (((-108) $) 60)) (-2859 (((-108) $) NIL)) (-1811 (($ $ (-522)) NIL)) (-3740 (((-108) $) 63)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-1247 (((-3 (-1081 $) "failed") $) 78)) (-1748 (((-3 (-792) "failed") $) 77)) (-1622 (((-3 (-1081 $) "failed") $) 75)) (-3511 (((-3 (-981 $ (-1081 $)) "failed") $) 73)) (-2267 (($ (-588 $)) NIL) (($ $ $) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) 84)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ (-588 $)) NIL) (($ $ $) NIL)) (-2006 (((-393 $) $) NIL)) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-2217 (((-792) $) 82) (($ (-522)) NIL) (($ (-382 (-522))) NIL) (($ $) 57) (($ (-382 (-522))) NIL) (($ (-522)) NIL) (($ (-382 (-522))) NIL) (($ |#1|) 111)) (-2742 (((-708)) NIL)) (-1407 (((-108) $ $) NIL)) (-3996 (((-382 (-522)) $ $) 24)) (-3068 (((-588 $) (-1081 $)) 55) (((-588 $) (-1081 (-382 (-522)))) NIL) (((-588 $) (-1081 (-522))) NIL) (((-588 $) (-881 $)) NIL) (((-588 $) (-881 (-382 (-522)))) NIL) (((-588 $) (-881 (-522))) NIL)) (-3105 (($ (-981 $ (-1081 $)) (-792)) 39)) (-4126 (($ $) 19)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3697 (($) 28 T CONST)) (-3709 (($) 34 T CONST)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 71)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 21)) (-1682 (($ $ $) 32)) (-1672 (($ $) 33) (($ $ $) 69)) (-1661 (($ $ $) 104)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL) (($ $ (-382 (-522))) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 92) (($ $ $) 97) (($ (-382 (-522)) $) NIL) (($ $ (-382 (-522))) NIL) (($ (-522) $) 92) (($ $ (-522)) NIL) (($ (-382 (-522)) $) NIL) (($ $ (-382 (-522))) NIL) (($ |#1| $) 96) (($ $ |#1|) NIL))) -(((-949 |#1|) (-13 (-938) (-386 |#1|) (-37 |#1|) (-10 -8 (-15 -3105 ($ (-981 $ (-1081 $)) (-792))) (-15 -3511 ((-3 (-981 $ (-1081 $)) "failed") $)) (-15 -1549 ((-382 (-522)) $ $)))) (-13 (-782) (-338) (-947))) (T -949)) -((-3105 (*1 *1 *2 *3) (-12 (-5 *2 (-981 (-949 *4) (-1081 (-949 *4)))) (-5 *3 (-792)) (-5 *1 (-949 *4)) (-4 *4 (-13 (-782) (-338) (-947))))) (-3511 (*1 *2 *1) (|partial| -12 (-5 *2 (-981 (-949 *3) (-1081 (-949 *3)))) (-5 *1 (-949 *3)) (-4 *3 (-13 (-782) (-338) (-947))))) (-1549 (*1 *2 *1 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-949 *3)) (-4 *3 (-13 (-782) (-338) (-947)))))) -(-13 (-938) (-386 |#1|) (-37 |#1|) (-10 -8 (-15 -3105 ($ (-981 $ (-1081 $)) (-792))) (-15 -3511 ((-3 (-981 $ (-1081 $)) "failed") $)) (-15 -1549 ((-382 (-522)) $ $)))) -((-1531 (((-2 (|:| -3277 |#2|) (|:| -1410 (-588 |#1|))) |#2| (-588 |#1|)) 20) ((|#2| |#2| |#1|) 15))) -(((-950 |#1| |#2|) (-10 -7 (-15 -1531 (|#2| |#2| |#1|)) (-15 -1531 ((-2 (|:| -3277 |#2|) (|:| -1410 (-588 |#1|))) |#2| (-588 |#1|)))) (-338) (-598 |#1|)) (T -950)) -((-1531 (*1 *2 *3 *4) (-12 (-4 *5 (-338)) (-5 *2 (-2 (|:| -3277 *3) (|:| -1410 (-588 *5)))) (-5 *1 (-950 *5 *3)) (-5 *4 (-588 *5)) (-4 *3 (-598 *5)))) (-1531 (*1 *2 *2 *3) (-12 (-4 *3 (-338)) (-5 *1 (-950 *3 *2)) (-4 *2 (-598 *3))))) -(-10 -7 (-15 -1531 (|#2| |#2| |#1|)) (-15 -1531 ((-2 (|:| -3277 |#2|) (|:| -1410 (-588 |#1|))) |#2| (-588 |#1|)))) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1632 ((|#1| $ |#1|) 14)) (-2437 ((|#1| $ |#1|) 12)) (-3647 (($ |#1|) 10)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2683 ((|#1| $) 11)) (-1778 ((|#1| $) 13)) (-2217 (((-792) $) 21 (|has| |#1| (-1014)))) (-1562 (((-108) $ $) 9))) -(((-951 |#1|) (-13 (-1120) (-10 -8 (-15 -3647 ($ |#1|)) (-15 -2683 (|#1| $)) (-15 -2437 (|#1| $ |#1|)) (-15 -1778 (|#1| $)) (-15 -1632 (|#1| $ |#1|)) (-15 -1562 ((-108) $ $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|))) (-1120)) (T -951)) -((-3647 (*1 *1 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-1120)))) (-2683 (*1 *2 *1) (-12 (-5 *1 (-951 *2)) (-4 *2 (-1120)))) (-2437 (*1 *2 *1 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-1120)))) (-1778 (*1 *2 *1) (-12 (-5 *1 (-951 *2)) (-4 *2 (-1120)))) (-1632 (*1 *2 *1 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-1120)))) (-1562 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-951 *3)) (-4 *3 (-1120))))) -(-13 (-1120) (-10 -8 (-15 -3647 ($ |#1|)) (-15 -2683 (|#1| $)) (-15 -2437 (|#1| $ |#1|)) (-15 -1778 (|#1| $)) (-15 -1632 (|#1| $ |#1|)) (-15 -1562 ((-108) $ $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|))) -((-1419 (((-108) $ $) NIL)) (-3829 (((-588 (-2 (|:| -1720 $) (|:| -1566 (-588 |#4|)))) (-588 |#4|)) NIL)) (-2510 (((-588 $) (-588 |#4|)) 105) (((-588 $) (-588 |#4|) (-108)) 106) (((-588 $) (-588 |#4|) (-108) (-108)) 104) (((-588 $) (-588 |#4|) (-108) (-108) (-108) (-108)) 107)) (-3533 (((-588 |#3|) $) NIL)) (-2161 (((-108) $) NIL)) (-2702 (((-108) $) NIL (|has| |#1| (-514)))) (-1900 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2163 ((|#4| |#4| $) NIL)) (-2961 (((-588 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| $) 99)) (-3296 (((-2 (|:| |under| $) (|:| -3592 $) (|:| |upper| $)) $ |#3|) NIL)) (-2717 (((-108) $ (-708)) NIL)) (-1696 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238))) (((-3 |#4| "failed") $ |#3|) 54)) (-3367 (($) NIL T CONST)) (-1298 (((-108) $) 26 (|has| |#1| (-514)))) (-1657 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3598 (((-108) $ $) NIL (|has| |#1| (-514)))) (-2818 (((-108) $) NIL (|has| |#1| (-514)))) (-3090 (((-588 |#4|) (-588 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3461 (((-588 |#4|) (-588 |#4|) $) NIL (|has| |#1| (-514)))) (-3668 (((-588 |#4|) (-588 |#4|) $) NIL (|has| |#1| (-514)))) (-3700 (((-3 $ "failed") (-588 |#4|)) NIL)) (-1478 (($ (-588 |#4|)) NIL)) (-2352 (((-3 $ "failed") $) 39)) (-2625 ((|#4| |#4| $) 57)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-1424 (($ |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-4002 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-514)))) (-1426 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2918 ((|#4| |#4| $) NIL)) (-2153 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4238))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1199 (((-2 (|:| -1720 (-588 |#4|)) (|:| -1566 (-588 |#4|))) $) NIL)) (-2396 (((-108) |#4| $) NIL)) (-3039 (((-108) |#4| $) NIL)) (-2278 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1721 (((-2 (|:| |val| (-588 |#4|)) (|:| |towers| (-588 $))) (-588 |#4|) (-108) (-108)) 119)) (-2395 (((-588 |#4|) $) 16 (|has| $ (-6 -4238)))) (-1384 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1933 ((|#3| $) 33)) (-1480 (((-108) $ (-708)) NIL)) (-4084 (((-588 |#4|) $) 17 (|has| $ (-6 -4238)))) (-4176 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-2397 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#4| |#4|) $) 21)) (-2714 (((-588 |#3|) $) NIL)) (-3826 (((-108) |#3| $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL)) (-1418 (((-3 |#4| (-588 $)) |#4| |#4| $) NIL)) (-1998 (((-588 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| |#4| $) 97)) (-1442 (((-3 |#4| "failed") $) 37)) (-1468 (((-588 $) |#4| $) 80)) (-1892 (((-3 (-108) (-588 $)) |#4| $) NIL)) (-1862 (((-588 (-2 (|:| |val| (-108)) (|:| -1974 $))) |#4| $) 90) (((-108) |#4| $) 52)) (-2251 (((-588 $) |#4| $) 102) (((-588 $) (-588 |#4|) $) NIL) (((-588 $) (-588 |#4|) (-588 $)) 103) (((-588 $) |#4| (-588 $)) NIL)) (-3862 (((-588 $) (-588 |#4|) (-108) (-108) (-108)) 114)) (-2953 (($ |#4| $) 70) (($ (-588 |#4|) $) 71) (((-588 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 67)) (-4138 (((-588 |#4|) $) NIL)) (-3864 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2556 ((|#4| |#4| $) NIL)) (-1517 (((-108) $ $) NIL)) (-2507 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-514)))) (-3060 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3896 ((|#4| |#4| $) NIL)) (-4174 (((-1032) $) NIL)) (-2337 (((-3 |#4| "failed") $) 35)) (-2187 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-4078 (((-3 $ "failed") $ |#4|) 48)) (-3934 (($ $ |#4|) NIL) (((-588 $) |#4| $) 82) (((-588 $) |#4| (-588 $)) NIL) (((-588 $) (-588 |#4|) $) NIL) (((-588 $) (-588 |#4|) (-588 $)) 77)) (-3487 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 |#4|) (-588 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) 15)) (-3298 (($) 13)) (-2487 (((-708) $) NIL)) (-4187 (((-708) |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) (((-708) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2463 (($ $) 12)) (-3873 (((-498) $) NIL (|has| |#4| (-563 (-498))))) (-2227 (($ (-588 |#4|)) 20)) (-2271 (($ $ |#3|) 42)) (-2154 (($ $ |#3|) 44)) (-1524 (($ $) NIL)) (-2773 (($ $ |#3|) NIL)) (-2217 (((-792) $) 31) (((-588 |#4|) $) 40)) (-3111 (((-708) $) NIL (|has| |#3| (-343)))) (-3538 (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2102 (((-108) $ (-1 (-108) |#4| (-588 |#4|))) NIL)) (-3386 (((-588 $) |#4| $) 79) (((-588 $) |#4| (-588 $)) NIL) (((-588 $) (-588 |#4|) $) NIL) (((-588 $) (-588 |#4|) (-588 $)) NIL)) (-1381 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-1982 (((-588 |#3|) $) NIL)) (-1336 (((-108) |#4| $) NIL)) (-1711 (((-108) |#3| $) 53)) (-1562 (((-108) $ $) NIL)) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-952 |#1| |#2| |#3| |#4|) (-13 (-990 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2953 ((-588 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -2510 ((-588 $) (-588 |#4|) (-108) (-108))) (-15 -2510 ((-588 $) (-588 |#4|) (-108) (-108) (-108) (-108))) (-15 -3862 ((-588 $) (-588 |#4|) (-108) (-108) (-108))) (-15 -1721 ((-2 (|:| |val| (-588 |#4|)) (|:| |towers| (-588 $))) (-588 |#4|) (-108) (-108))))) (-426) (-730) (-784) (-985 |#1| |#2| |#3|)) (T -952)) -((-2953 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 (-952 *5 *6 *7 *3))) (-5 *1 (-952 *5 *6 *7 *3)) (-4 *3 (-985 *5 *6 *7)))) (-2510 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 (-952 *5 *6 *7 *8))) (-5 *1 (-952 *5 *6 *7 *8)))) (-2510 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 (-952 *5 *6 *7 *8))) (-5 *1 (-952 *5 *6 *7 *8)))) (-3862 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 (-952 *5 *6 *7 *8))) (-5 *1 (-952 *5 *6 *7 *8)))) (-1721 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-588 *8)) (|:| |towers| (-588 (-952 *5 *6 *7 *8))))) (-5 *1 (-952 *5 *6 *7 *8)) (-5 *3 (-588 *8))))) -(-13 (-990 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2953 ((-588 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -2510 ((-588 $) (-588 |#4|) (-108) (-108))) (-15 -2510 ((-588 $) (-588 |#4|) (-108) (-108) (-108) (-108))) (-15 -3862 ((-588 $) (-588 |#4|) (-108) (-108) (-108))) (-15 -1721 ((-2 (|:| |val| (-588 |#4|)) (|:| |towers| (-588 $))) (-588 |#4|) (-108) (-108))))) -((-2237 (((-588 (-628 |#1|)) (-588 (-628 |#1|))) 57) (((-628 |#1|) (-628 |#1|)) 56) (((-588 (-628 |#1|)) (-588 (-628 |#1|)) (-588 (-628 |#1|))) 55) (((-628 |#1|) (-628 |#1|) (-628 |#1|)) 52)) (-3796 (((-588 (-628 |#1|)) (-588 (-628 |#1|)) (-850)) 51) (((-628 |#1|) (-628 |#1|) (-850)) 50)) (-4069 (((-588 (-628 (-522))) (-588 (-588 (-522)))) 67) (((-588 (-628 (-522))) (-588 (-834 (-522))) (-522)) 66) (((-628 (-522)) (-588 (-522))) 63) (((-628 (-522)) (-834 (-522)) (-522)) 62)) (-1910 (((-628 (-881 |#1|)) (-708)) 80)) (-3103 (((-588 (-628 |#1|)) (-588 (-628 |#1|)) (-850)) 36 (|has| |#1| (-6 (-4240 "*")))) (((-628 |#1|) (-628 |#1|) (-850)) 34 (|has| |#1| (-6 (-4240 "*")))))) -(((-953 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4240 "*"))) (-15 -3103 ((-628 |#1|) (-628 |#1|) (-850))) |%noBranch|) (IF (|has| |#1| (-6 (-4240 "*"))) (-15 -3103 ((-588 (-628 |#1|)) (-588 (-628 |#1|)) (-850))) |%noBranch|) (-15 -1910 ((-628 (-881 |#1|)) (-708))) (-15 -3796 ((-628 |#1|) (-628 |#1|) (-850))) (-15 -3796 ((-588 (-628 |#1|)) (-588 (-628 |#1|)) (-850))) (-15 -2237 ((-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -2237 ((-588 (-628 |#1|)) (-588 (-628 |#1|)) (-588 (-628 |#1|)))) (-15 -2237 ((-628 |#1|) (-628 |#1|))) (-15 -2237 ((-588 (-628 |#1|)) (-588 (-628 |#1|)))) (-15 -4069 ((-628 (-522)) (-834 (-522)) (-522))) (-15 -4069 ((-628 (-522)) (-588 (-522)))) (-15 -4069 ((-588 (-628 (-522))) (-588 (-834 (-522))) (-522))) (-15 -4069 ((-588 (-628 (-522))) (-588 (-588 (-522)))))) (-971)) (T -953)) -((-4069 (*1 *2 *3) (-12 (-5 *3 (-588 (-588 (-522)))) (-5 *2 (-588 (-628 (-522)))) (-5 *1 (-953 *4)) (-4 *4 (-971)))) (-4069 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-834 (-522)))) (-5 *4 (-522)) (-5 *2 (-588 (-628 *4))) (-5 *1 (-953 *5)) (-4 *5 (-971)))) (-4069 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-628 (-522))) (-5 *1 (-953 *4)) (-4 *4 (-971)))) (-4069 (*1 *2 *3 *4) (-12 (-5 *3 (-834 (-522))) (-5 *4 (-522)) (-5 *2 (-628 *4)) (-5 *1 (-953 *5)) (-4 *5 (-971)))) (-2237 (*1 *2 *2) (-12 (-5 *2 (-588 (-628 *3))) (-4 *3 (-971)) (-5 *1 (-953 *3)))) (-2237 (*1 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-953 *3)))) (-2237 (*1 *2 *2 *2) (-12 (-5 *2 (-588 (-628 *3))) (-4 *3 (-971)) (-5 *1 (-953 *3)))) (-2237 (*1 *2 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-953 *3)))) (-3796 (*1 *2 *2 *3) (-12 (-5 *2 (-588 (-628 *4))) (-5 *3 (-850)) (-4 *4 (-971)) (-5 *1 (-953 *4)))) (-3796 (*1 *2 *2 *3) (-12 (-5 *2 (-628 *4)) (-5 *3 (-850)) (-4 *4 (-971)) (-5 *1 (-953 *4)))) (-1910 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-628 (-881 *4))) (-5 *1 (-953 *4)) (-4 *4 (-971)))) (-3103 (*1 *2 *2 *3) (-12 (-5 *2 (-588 (-628 *4))) (-5 *3 (-850)) (|has| *4 (-6 (-4240 "*"))) (-4 *4 (-971)) (-5 *1 (-953 *4)))) (-3103 (*1 *2 *2 *3) (-12 (-5 *2 (-628 *4)) (-5 *3 (-850)) (|has| *4 (-6 (-4240 "*"))) (-4 *4 (-971)) (-5 *1 (-953 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4240 "*"))) (-15 -3103 ((-628 |#1|) (-628 |#1|) (-850))) |%noBranch|) (IF (|has| |#1| (-6 (-4240 "*"))) (-15 -3103 ((-588 (-628 |#1|)) (-588 (-628 |#1|)) (-850))) |%noBranch|) (-15 -1910 ((-628 (-881 |#1|)) (-708))) (-15 -3796 ((-628 |#1|) (-628 |#1|) (-850))) (-15 -3796 ((-588 (-628 |#1|)) (-588 (-628 |#1|)) (-850))) (-15 -2237 ((-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -2237 ((-588 (-628 |#1|)) (-588 (-628 |#1|)) (-588 (-628 |#1|)))) (-15 -2237 ((-628 |#1|) (-628 |#1|))) (-15 -2237 ((-588 (-628 |#1|)) (-588 (-628 |#1|)))) (-15 -4069 ((-628 (-522)) (-834 (-522)) (-522))) (-15 -4069 ((-628 (-522)) (-588 (-522)))) (-15 -4069 ((-588 (-628 (-522))) (-588 (-834 (-522))) (-522))) (-15 -4069 ((-588 (-628 (-522))) (-588 (-588 (-522)))))) -((-1678 (((-628 |#1|) (-588 (-628 |#1|)) (-1166 |#1|)) 50 (|has| |#1| (-283)))) (-3428 (((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-1166 (-1166 |#1|))) 73 (|has| |#1| (-338))) (((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-1166 |#1|)) 71 (|has| |#1| (-338)))) (-3183 (((-1166 |#1|) (-588 (-1166 |#1|)) (-522)) 75 (-12 (|has| |#1| (-338)) (|has| |#1| (-343))))) (-2096 (((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-850)) 80 (-12 (|has| |#1| (-338)) (|has| |#1| (-343)))) (((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-108)) 78 (-12 (|has| |#1| (-338)) (|has| |#1| (-343)))) (((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|))) 77 (-12 (|has| |#1| (-338)) (|has| |#1| (-343)))) (((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-108) (-522) (-522)) 76 (-12 (|has| |#1| (-338)) (|has| |#1| (-343))))) (-3418 (((-108) (-588 (-628 |#1|))) 69 (|has| |#1| (-338))) (((-108) (-588 (-628 |#1|)) (-522)) 68 (|has| |#1| (-338)))) (-2899 (((-1166 (-1166 |#1|)) (-588 (-628 |#1|)) (-1166 |#1|)) 48 (|has| |#1| (-283)))) (-1878 (((-628 |#1|) (-588 (-628 |#1|)) (-628 |#1|)) 33)) (-1209 (((-628 |#1|) (-1166 (-1166 |#1|))) 30)) (-1931 (((-628 |#1|) (-588 (-628 |#1|)) (-588 (-628 |#1|)) (-522)) 64 (|has| |#1| (-338))) (((-628 |#1|) (-588 (-628 |#1|)) (-588 (-628 |#1|))) 63 (|has| |#1| (-338))) (((-628 |#1|) (-588 (-628 |#1|)) (-588 (-628 |#1|)) (-108) (-522)) 62 (|has| |#1| (-338))))) -(((-954 |#1|) (-10 -7 (-15 -1209 ((-628 |#1|) (-1166 (-1166 |#1|)))) (-15 -1878 ((-628 |#1|) (-588 (-628 |#1|)) (-628 |#1|))) (IF (|has| |#1| (-283)) (PROGN (-15 -2899 ((-1166 (-1166 |#1|)) (-588 (-628 |#1|)) (-1166 |#1|))) (-15 -1678 ((-628 |#1|) (-588 (-628 |#1|)) (-1166 |#1|)))) |%noBranch|) (IF (|has| |#1| (-338)) (PROGN (-15 -1931 ((-628 |#1|) (-588 (-628 |#1|)) (-588 (-628 |#1|)) (-108) (-522))) (-15 -1931 ((-628 |#1|) (-588 (-628 |#1|)) (-588 (-628 |#1|)))) (-15 -1931 ((-628 |#1|) (-588 (-628 |#1|)) (-588 (-628 |#1|)) (-522))) (-15 -3418 ((-108) (-588 (-628 |#1|)) (-522))) (-15 -3418 ((-108) (-588 (-628 |#1|)))) (-15 -3428 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-1166 |#1|))) (-15 -3428 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-1166 (-1166 |#1|))))) |%noBranch|) (IF (|has| |#1| (-343)) (IF (|has| |#1| (-338)) (PROGN (-15 -2096 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-108) (-522) (-522))) (-15 -2096 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)))) (-15 -2096 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-108))) (-15 -2096 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-850))) (-15 -3183 ((-1166 |#1|) (-588 (-1166 |#1|)) (-522)))) |%noBranch|) |%noBranch|)) (-971)) (T -954)) -((-3183 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-1166 *5))) (-5 *4 (-522)) (-5 *2 (-1166 *5)) (-5 *1 (-954 *5)) (-4 *5 (-338)) (-4 *5 (-343)) (-4 *5 (-971)))) (-2096 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-4 *5 (-338)) (-4 *5 (-343)) (-4 *5 (-971)) (-5 *2 (-588 (-588 (-628 *5)))) (-5 *1 (-954 *5)) (-5 *3 (-588 (-628 *5))))) (-2096 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-338)) (-4 *5 (-343)) (-4 *5 (-971)) (-5 *2 (-588 (-588 (-628 *5)))) (-5 *1 (-954 *5)) (-5 *3 (-588 (-628 *5))))) (-2096 (*1 *2 *3) (-12 (-4 *4 (-338)) (-4 *4 (-343)) (-4 *4 (-971)) (-5 *2 (-588 (-588 (-628 *4)))) (-5 *1 (-954 *4)) (-5 *3 (-588 (-628 *4))))) (-2096 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-108)) (-5 *5 (-522)) (-4 *6 (-338)) (-4 *6 (-343)) (-4 *6 (-971)) (-5 *2 (-588 (-588 (-628 *6)))) (-5 *1 (-954 *6)) (-5 *3 (-588 (-628 *6))))) (-3428 (*1 *2 *3 *4) (-12 (-5 *4 (-1166 (-1166 *5))) (-4 *5 (-338)) (-4 *5 (-971)) (-5 *2 (-588 (-588 (-628 *5)))) (-5 *1 (-954 *5)) (-5 *3 (-588 (-628 *5))))) (-3428 (*1 *2 *3 *4) (-12 (-5 *4 (-1166 *5)) (-4 *5 (-338)) (-4 *5 (-971)) (-5 *2 (-588 (-588 (-628 *5)))) (-5 *1 (-954 *5)) (-5 *3 (-588 (-628 *5))))) (-3418 (*1 *2 *3) (-12 (-5 *3 (-588 (-628 *4))) (-4 *4 (-338)) (-4 *4 (-971)) (-5 *2 (-108)) (-5 *1 (-954 *4)))) (-3418 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-628 *5))) (-5 *4 (-522)) (-4 *5 (-338)) (-4 *5 (-971)) (-5 *2 (-108)) (-5 *1 (-954 *5)))) (-1931 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-588 (-628 *5))) (-5 *4 (-522)) (-5 *2 (-628 *5)) (-5 *1 (-954 *5)) (-4 *5 (-338)) (-4 *5 (-971)))) (-1931 (*1 *2 *3 *3) (-12 (-5 *3 (-588 (-628 *4))) (-5 *2 (-628 *4)) (-5 *1 (-954 *4)) (-4 *4 (-338)) (-4 *4 (-971)))) (-1931 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-588 (-628 *6))) (-5 *4 (-108)) (-5 *5 (-522)) (-5 *2 (-628 *6)) (-5 *1 (-954 *6)) (-4 *6 (-338)) (-4 *6 (-971)))) (-1678 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-628 *5))) (-5 *4 (-1166 *5)) (-4 *5 (-283)) (-4 *5 (-971)) (-5 *2 (-628 *5)) (-5 *1 (-954 *5)))) (-2899 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-628 *5))) (-4 *5 (-283)) (-4 *5 (-971)) (-5 *2 (-1166 (-1166 *5))) (-5 *1 (-954 *5)) (-5 *4 (-1166 *5)))) (-1878 (*1 *2 *3 *2) (-12 (-5 *3 (-588 (-628 *4))) (-5 *2 (-628 *4)) (-4 *4 (-971)) (-5 *1 (-954 *4)))) (-1209 (*1 *2 *3) (-12 (-5 *3 (-1166 (-1166 *4))) (-4 *4 (-971)) (-5 *2 (-628 *4)) (-5 *1 (-954 *4))))) -(-10 -7 (-15 -1209 ((-628 |#1|) (-1166 (-1166 |#1|)))) (-15 -1878 ((-628 |#1|) (-588 (-628 |#1|)) (-628 |#1|))) (IF (|has| |#1| (-283)) (PROGN (-15 -2899 ((-1166 (-1166 |#1|)) (-588 (-628 |#1|)) (-1166 |#1|))) (-15 -1678 ((-628 |#1|) (-588 (-628 |#1|)) (-1166 |#1|)))) |%noBranch|) (IF (|has| |#1| (-338)) (PROGN (-15 -1931 ((-628 |#1|) (-588 (-628 |#1|)) (-588 (-628 |#1|)) (-108) (-522))) (-15 -1931 ((-628 |#1|) (-588 (-628 |#1|)) (-588 (-628 |#1|)))) (-15 -1931 ((-628 |#1|) (-588 (-628 |#1|)) (-588 (-628 |#1|)) (-522))) (-15 -3418 ((-108) (-588 (-628 |#1|)) (-522))) (-15 -3418 ((-108) (-588 (-628 |#1|)))) (-15 -3428 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-1166 |#1|))) (-15 -3428 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-1166 (-1166 |#1|))))) |%noBranch|) (IF (|has| |#1| (-343)) (IF (|has| |#1| (-338)) (PROGN (-15 -2096 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-108) (-522) (-522))) (-15 -2096 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)))) (-15 -2096 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-108))) (-15 -2096 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-850))) (-15 -3183 ((-1166 |#1|) (-588 (-1166 |#1|)) (-522)))) |%noBranch|) |%noBranch|)) -((-3471 ((|#1| (-850) |#1|) 9))) -(((-955 |#1|) (-10 -7 (-15 -3471 (|#1| (-850) |#1|))) (-13 (-1014) (-10 -8 (-15 -1661 ($ $ $))))) (T -955)) -((-3471 (*1 *2 *3 *2) (-12 (-5 *3 (-850)) (-5 *1 (-955 *2)) (-4 *2 (-13 (-1014) (-10 -8 (-15 -1661 ($ $ $)))))))) -(-10 -7 (-15 -3471 (|#1| (-850) |#1|))) -((-1212 (((-588 (-2 (|:| |radval| (-291 (-522))) (|:| |radmult| (-522)) (|:| |radvect| (-588 (-628 (-291 (-522))))))) (-628 (-382 (-881 (-522))))) 58)) (-2738 (((-588 (-628 (-291 (-522)))) (-291 (-522)) (-628 (-382 (-881 (-522))))) 48)) (-1464 (((-588 (-291 (-522))) (-628 (-382 (-881 (-522))))) 41)) (-3736 (((-588 (-628 (-291 (-522)))) (-628 (-382 (-881 (-522))))) 68)) (-1567 (((-628 (-291 (-522))) (-628 (-291 (-522)))) 33)) (-3017 (((-588 (-628 (-291 (-522)))) (-588 (-628 (-291 (-522))))) 61)) (-3076 (((-3 (-628 (-291 (-522))) "failed") (-628 (-382 (-881 (-522))))) 65))) -(((-956) (-10 -7 (-15 -1212 ((-588 (-2 (|:| |radval| (-291 (-522))) (|:| |radmult| (-522)) (|:| |radvect| (-588 (-628 (-291 (-522))))))) (-628 (-382 (-881 (-522)))))) (-15 -2738 ((-588 (-628 (-291 (-522)))) (-291 (-522)) (-628 (-382 (-881 (-522)))))) (-15 -1464 ((-588 (-291 (-522))) (-628 (-382 (-881 (-522)))))) (-15 -3076 ((-3 (-628 (-291 (-522))) "failed") (-628 (-382 (-881 (-522)))))) (-15 -1567 ((-628 (-291 (-522))) (-628 (-291 (-522))))) (-15 -3017 ((-588 (-628 (-291 (-522)))) (-588 (-628 (-291 (-522)))))) (-15 -3736 ((-588 (-628 (-291 (-522)))) (-628 (-382 (-881 (-522)))))))) (T -956)) -((-3736 (*1 *2 *3) (-12 (-5 *3 (-628 (-382 (-881 (-522))))) (-5 *2 (-588 (-628 (-291 (-522))))) (-5 *1 (-956)))) (-3017 (*1 *2 *2) (-12 (-5 *2 (-588 (-628 (-291 (-522))))) (-5 *1 (-956)))) (-1567 (*1 *2 *2) (-12 (-5 *2 (-628 (-291 (-522)))) (-5 *1 (-956)))) (-3076 (*1 *2 *3) (|partial| -12 (-5 *3 (-628 (-382 (-881 (-522))))) (-5 *2 (-628 (-291 (-522)))) (-5 *1 (-956)))) (-1464 (*1 *2 *3) (-12 (-5 *3 (-628 (-382 (-881 (-522))))) (-5 *2 (-588 (-291 (-522)))) (-5 *1 (-956)))) (-2738 (*1 *2 *3 *4) (-12 (-5 *4 (-628 (-382 (-881 (-522))))) (-5 *2 (-588 (-628 (-291 (-522))))) (-5 *1 (-956)) (-5 *3 (-291 (-522))))) (-1212 (*1 *2 *3) (-12 (-5 *3 (-628 (-382 (-881 (-522))))) (-5 *2 (-588 (-2 (|:| |radval| (-291 (-522))) (|:| |radmult| (-522)) (|:| |radvect| (-588 (-628 (-291 (-522)))))))) (-5 *1 (-956))))) -(-10 -7 (-15 -1212 ((-588 (-2 (|:| |radval| (-291 (-522))) (|:| |radmult| (-522)) (|:| |radvect| (-588 (-628 (-291 (-522))))))) (-628 (-382 (-881 (-522)))))) (-15 -2738 ((-588 (-628 (-291 (-522)))) (-291 (-522)) (-628 (-382 (-881 (-522)))))) (-15 -1464 ((-588 (-291 (-522))) (-628 (-382 (-881 (-522)))))) (-15 -3076 ((-3 (-628 (-291 (-522))) "failed") (-628 (-382 (-881 (-522)))))) (-15 -1567 ((-628 (-291 (-522))) (-628 (-291 (-522))))) (-15 -3017 ((-588 (-628 (-291 (-522)))) (-588 (-628 (-291 (-522)))))) (-15 -3736 ((-588 (-628 (-291 (-522)))) (-628 (-382 (-881 (-522))))))) -((-2170 ((|#1| |#1| (-850)) 9))) -(((-957 |#1|) (-10 -7 (-15 -2170 (|#1| |#1| (-850)))) (-13 (-1014) (-10 -8 (-15 * ($ $ $))))) (T -957)) -((-2170 (*1 *2 *2 *3) (-12 (-5 *3 (-850)) (-5 *1 (-957 *2)) (-4 *2 (-13 (-1014) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -2170 (|#1| |#1| (-850)))) -((-2217 ((|#1| (-287)) 11) (((-1171) |#1|) 9))) -(((-958 |#1|) (-10 -7 (-15 -2217 ((-1171) |#1|)) (-15 -2217 (|#1| (-287)))) (-1120)) (T -958)) -((-2217 (*1 *2 *3) (-12 (-5 *3 (-287)) (-5 *1 (-958 *2)) (-4 *2 (-1120)))) (-2217 (*1 *2 *3) (-12 (-5 *2 (-1171)) (-5 *1 (-958 *3)) (-4 *3 (-1120))))) -(-10 -7 (-15 -2217 ((-1171) |#1|)) (-15 -2217 (|#1| (-287)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-2153 (($ |#4|) 25)) (-3920 (((-3 $ "failed") $) NIL)) (-2859 (((-108) $) NIL)) (-2142 ((|#4| $) 27)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 46) (($ (-522)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2742 (((-708)) 43)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 21 T CONST)) (-3709 (($) 23 T CONST)) (-1562 (((-108) $ $) 40)) (-1672 (($ $) 31) (($ $ $) NIL)) (-1661 (($ $ $) 29)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-959 |#1| |#2| |#3| |#4| |#5|) (-13 (-157) (-37 |#1|) (-10 -8 (-15 -2153 ($ |#4|)) (-15 -2217 ($ |#4|)) (-15 -2142 (|#4| $)))) (-338) (-730) (-784) (-878 |#1| |#2| |#3|) (-588 |#4|)) (T -959)) -((-2153 (*1 *1 *2) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-959 *3 *4 *5 *2 *6)) (-4 *2 (-878 *3 *4 *5)) (-14 *6 (-588 *2)))) (-2217 (*1 *1 *2) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-959 *3 *4 *5 *2 *6)) (-4 *2 (-878 *3 *4 *5)) (-14 *6 (-588 *2)))) (-2142 (*1 *2 *1) (-12 (-4 *2 (-878 *3 *4 *5)) (-5 *1 (-959 *3 *4 *5 *2 *6)) (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-14 *6 (-588 *2))))) -(-13 (-157) (-37 |#1|) (-10 -8 (-15 -2153 ($ |#4|)) (-15 -2217 ($ |#4|)) (-15 -2142 (|#4| $)))) -((-1419 (((-108) $ $) NIL (-3844 (|has| (-51) (-1014)) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014))))) (-1883 (($) NIL) (($ (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))))) NIL)) (-3883 (((-1171) $ (-1085) (-1085)) NIL (|has| $ (-6 -4239)))) (-2717 (((-108) $ (-708)) NIL)) (-4130 (((-108) (-108)) 39)) (-1329 (((-108) (-108)) 38)) (-2437 (((-51) $ (-1085) (-51)) NIL)) (-1213 (($ (-1 (-108) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-4011 (((-3 (-51) "failed") (-1085) $) NIL)) (-3367 (($) NIL T CONST)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014))))) (-1700 (($ (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-3 (-51) "failed") (-1085) $) NIL)) (-1424 (($ (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014)))) (($ (-1 (-108) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-2153 (((-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $ (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014)))) (((-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $ (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-2411 (((-51) $ (-1085) (-51)) NIL (|has| $ (-6 -4239)))) (-2186 (((-51) $ (-1085)) NIL)) (-2395 (((-588 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-588 (-51)) $) NIL (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-1085) $) NIL (|has| (-1085) (-784)))) (-4084 (((-588 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-588 (-51)) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-51) (-1014))))) (-2201 (((-1085) $) NIL (|has| (-1085) (-784)))) (-2397 (($ (-1 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4239))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (-3844 (|has| (-51) (-1014)) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014))))) (-2562 (((-588 (-1085)) $) 34)) (-2241 (((-108) (-1085) $) NIL)) (-1431 (((-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) $) NIL)) (-3365 (($ (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) $) NIL)) (-2130 (((-588 (-1085)) $) NIL)) (-2103 (((-108) (-1085) $) NIL)) (-4174 (((-1032) $) NIL (-3844 (|has| (-51) (-1014)) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014))))) (-2337 (((-51) $) NIL (|has| (-1085) (-784)))) (-2187 (((-3 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) "failed") (-1 (-108) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL)) (-1972 (($ $ (-51)) NIL (|has| $ (-6 -4239)))) (-3295 (((-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) $) NIL)) (-3487 (((-108) (-1 (-108) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))))) NIL (-12 (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-285 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))))) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014)))) (($ $ (-270 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))))) NIL (-12 (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-285 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))))) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014)))) (($ $ (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) NIL (-12 (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-285 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))))) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014)))) (($ $ (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))))) NIL (-12 (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-285 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))))) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014)))) (($ $ (-588 (-51)) (-588 (-51))) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014)))) (($ $ (-270 (-51))) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014)))) (($ $ (-588 (-270 (-51)))) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-51) (-1014))))) (-1973 (((-588 (-51)) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 (((-51) $ (-1085)) 35) (((-51) $ (-1085) (-51)) NIL)) (-3546 (($) NIL) (($ (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))))) NIL)) (-4187 (((-708) (-1 (-108) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014)))) (((-708) (-51) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-51) (-1014)))) (((-708) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4238)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-563 (-498))))) (-2227 (($ (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))))) NIL)) (-2217 (((-792) $) 37 (-3844 (|has| (-51) (-562 (-792))) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-562 (-792)))))) (-2501 (($ (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))))) NIL)) (-1381 (((-108) (-1 (-108) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) NIL (-3844 (|has| (-51) (-1014)) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014))))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-960) (-13 (-1097 (-1085) (-51)) (-10 -7 (-15 -4130 ((-108) (-108))) (-15 -1329 ((-108) (-108))) (-6 -4238)))) (T -960)) -((-4130 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-960)))) (-1329 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-960))))) -(-13 (-1097 (-1085) (-51)) (-10 -7 (-15 -4130 ((-108) (-108))) (-15 -1329 ((-108) (-108))) (-6 -4238))) -((-1478 ((|#2| $) 10))) -(((-961 |#1| |#2|) (-10 -8 (-15 -1478 (|#2| |#1|))) (-962 |#2|) (-1120)) (T -961)) -NIL -(-10 -8 (-15 -1478 (|#2| |#1|))) -((-3700 (((-3 |#1| "failed") $) 7)) (-1478 ((|#1| $) 8)) (-2217 (($ |#1|) 6))) -(((-962 |#1|) (-1197) (-1120)) (T -962)) -((-1478 (*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-1120)))) (-3700 (*1 *2 *1) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1120)))) (-2217 (*1 *1 *2) (-12 (-4 *1 (-962 *2)) (-4 *2 (-1120))))) -(-13 (-10 -8 (-15 -2217 ($ |t#1|)) (-15 -3700 ((-3 |t#1| "failed") $)) (-15 -1478 (|t#1| $)))) -((-2796 (((-588 (-588 (-270 (-382 (-881 |#2|))))) (-588 (-881 |#2|)) (-588 (-1085))) 35))) -(((-963 |#1| |#2|) (-10 -7 (-15 -2796 ((-588 (-588 (-270 (-382 (-881 |#2|))))) (-588 (-881 |#2|)) (-588 (-1085))))) (-514) (-13 (-514) (-962 |#1|))) (T -963)) -((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-881 *6))) (-5 *4 (-588 (-1085))) (-4 *6 (-13 (-514) (-962 *5))) (-4 *5 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *6)))))) (-5 *1 (-963 *5 *6))))) -(-10 -7 (-15 -2796 ((-588 (-588 (-270 (-382 (-881 |#2|))))) (-588 (-881 |#2|)) (-588 (-1085))))) -((-3854 (((-354)) 15)) (-1577 (((-1 (-354)) (-354) (-354)) 20)) (-1704 (((-1 (-354)) (-708)) 43)) (-2977 (((-354)) 34)) (-3798 (((-1 (-354)) (-354) (-354)) 35)) (-2299 (((-354)) 26)) (-2643 (((-1 (-354)) (-354)) 27)) (-3139 (((-354) (-708)) 38)) (-1565 (((-1 (-354)) (-708)) 39)) (-4102 (((-1 (-354)) (-708) (-708)) 42)) (-2288 (((-1 (-354)) (-708) (-708)) 40))) -(((-964) (-10 -7 (-15 -3854 ((-354))) (-15 -2977 ((-354))) (-15 -2299 ((-354))) (-15 -3139 ((-354) (-708))) (-15 -1577 ((-1 (-354)) (-354) (-354))) (-15 -3798 ((-1 (-354)) (-354) (-354))) (-15 -2643 ((-1 (-354)) (-354))) (-15 -1565 ((-1 (-354)) (-708))) (-15 -2288 ((-1 (-354)) (-708) (-708))) (-15 -4102 ((-1 (-354)) (-708) (-708))) (-15 -1704 ((-1 (-354)) (-708))))) (T -964)) -((-1704 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1 (-354))) (-5 *1 (-964)))) (-4102 (*1 *2 *3 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1 (-354))) (-5 *1 (-964)))) (-2288 (*1 *2 *3 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1 (-354))) (-5 *1 (-964)))) (-1565 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1 (-354))) (-5 *1 (-964)))) (-2643 (*1 *2 *3) (-12 (-5 *2 (-1 (-354))) (-5 *1 (-964)) (-5 *3 (-354)))) (-3798 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-354))) (-5 *1 (-964)) (-5 *3 (-354)))) (-1577 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-354))) (-5 *1 (-964)) (-5 *3 (-354)))) (-3139 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-354)) (-5 *1 (-964)))) (-2299 (*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-964)))) (-2977 (*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-964)))) (-3854 (*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-964))))) -(-10 -7 (-15 -3854 ((-354))) (-15 -2977 ((-354))) (-15 -2299 ((-354))) (-15 -3139 ((-354) (-708))) (-15 -1577 ((-1 (-354)) (-354) (-354))) (-15 -3798 ((-1 (-354)) (-354) (-354))) (-15 -2643 ((-1 (-354)) (-354))) (-15 -1565 ((-1 (-354)) (-708))) (-15 -2288 ((-1 (-354)) (-708) (-708))) (-15 -4102 ((-1 (-354)) (-708) (-708))) (-15 -1704 ((-1 (-354)) (-708)))) -((-2006 (((-393 |#1|) |#1|) 31))) -(((-965 |#1|) (-10 -7 (-15 -2006 ((-393 |#1|) |#1|))) (-1142 (-382 (-881 (-522))))) (T -965)) -((-2006 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-965 *3)) (-4 *3 (-1142 (-382 (-881 (-522)))))))) -(-10 -7 (-15 -2006 ((-393 |#1|) |#1|))) -((-1836 (((-382 (-393 (-881 |#1|))) (-382 (-881 |#1|))) 14))) -(((-966 |#1|) (-10 -7 (-15 -1836 ((-382 (-393 (-881 |#1|))) (-382 (-881 |#1|))))) (-283)) (T -966)) -((-1836 (*1 *2 *3) (-12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-283)) (-5 *2 (-382 (-393 (-881 *4)))) (-5 *1 (-966 *4))))) -(-10 -7 (-15 -1836 ((-382 (-393 (-881 |#1|))) (-382 (-881 |#1|))))) -((-3533 (((-588 (-1085)) (-382 (-881 |#1|))) 15)) (-1264 (((-382 (-1081 (-382 (-881 |#1|)))) (-382 (-881 |#1|)) (-1085)) 22)) (-3520 (((-382 (-881 |#1|)) (-382 (-1081 (-382 (-881 |#1|)))) (-1085)) 24)) (-3155 (((-3 (-1085) "failed") (-382 (-881 |#1|))) 18)) (-2330 (((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-588 (-270 (-382 (-881 |#1|))))) 29) (((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|)))) 31) (((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-588 (-1085)) (-588 (-382 (-881 |#1|)))) 26) (((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-1085) (-382 (-881 |#1|))) 27)) (-2217 (((-382 (-881 |#1|)) |#1|) 11))) -(((-967 |#1|) (-10 -7 (-15 -3533 ((-588 (-1085)) (-382 (-881 |#1|)))) (-15 -3155 ((-3 (-1085) "failed") (-382 (-881 |#1|)))) (-15 -1264 ((-382 (-1081 (-382 (-881 |#1|)))) (-382 (-881 |#1|)) (-1085))) (-15 -3520 ((-382 (-881 |#1|)) (-382 (-1081 (-382 (-881 |#1|)))) (-1085))) (-15 -2330 ((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-1085) (-382 (-881 |#1|)))) (-15 -2330 ((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-588 (-1085)) (-588 (-382 (-881 |#1|))))) (-15 -2330 ((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|))))) (-15 -2330 ((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-588 (-270 (-382 (-881 |#1|)))))) (-15 -2217 ((-382 (-881 |#1|)) |#1|))) (-514)) (T -967)) -((-2217 (*1 *2 *3) (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-967 *3)) (-4 *3 (-514)))) (-2330 (*1 *2 *2 *3) (-12 (-5 *3 (-588 (-270 (-382 (-881 *4))))) (-5 *2 (-382 (-881 *4))) (-4 *4 (-514)) (-5 *1 (-967 *4)))) (-2330 (*1 *2 *2 *3) (-12 (-5 *3 (-270 (-382 (-881 *4)))) (-5 *2 (-382 (-881 *4))) (-4 *4 (-514)) (-5 *1 (-967 *4)))) (-2330 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-588 (-1085))) (-5 *4 (-588 (-382 (-881 *5)))) (-5 *2 (-382 (-881 *5))) (-4 *5 (-514)) (-5 *1 (-967 *5)))) (-2330 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-382 (-881 *4))) (-5 *3 (-1085)) (-4 *4 (-514)) (-5 *1 (-967 *4)))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-1081 (-382 (-881 *5))))) (-5 *4 (-1085)) (-5 *2 (-382 (-881 *5))) (-5 *1 (-967 *5)) (-4 *5 (-514)))) (-1264 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-514)) (-5 *2 (-382 (-1081 (-382 (-881 *5))))) (-5 *1 (-967 *5)) (-5 *3 (-382 (-881 *5))))) (-3155 (*1 *2 *3) (|partial| -12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514)) (-5 *2 (-1085)) (-5 *1 (-967 *4)))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514)) (-5 *2 (-588 (-1085))) (-5 *1 (-967 *4))))) -(-10 -7 (-15 -3533 ((-588 (-1085)) (-382 (-881 |#1|)))) (-15 -3155 ((-3 (-1085) "failed") (-382 (-881 |#1|)))) (-15 -1264 ((-382 (-1081 (-382 (-881 |#1|)))) (-382 (-881 |#1|)) (-1085))) (-15 -3520 ((-382 (-881 |#1|)) (-382 (-1081 (-382 (-881 |#1|)))) (-1085))) (-15 -2330 ((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-1085) (-382 (-881 |#1|)))) (-15 -2330 ((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-588 (-1085)) (-588 (-382 (-881 |#1|))))) (-15 -2330 ((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|))))) (-15 -2330 ((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-588 (-270 (-382 (-881 |#1|)))))) (-15 -2217 ((-382 (-881 |#1|)) |#1|))) -((-1419 (((-108) $ $) NIL)) (-3829 (((-588 (-2 (|:| -1720 $) (|:| -1566 (-588 (-717 |#1| (-794 |#2|)))))) (-588 (-717 |#1| (-794 |#2|)))) NIL)) (-2510 (((-588 $) (-588 (-717 |#1| (-794 |#2|)))) NIL) (((-588 $) (-588 (-717 |#1| (-794 |#2|))) (-108)) NIL) (((-588 $) (-588 (-717 |#1| (-794 |#2|))) (-108) (-108)) NIL)) (-3533 (((-588 (-794 |#2|)) $) NIL)) (-2161 (((-108) $) NIL)) (-2702 (((-108) $) NIL (|has| |#1| (-514)))) (-1900 (((-108) (-717 |#1| (-794 |#2|)) $) NIL) (((-108) $) NIL)) (-2163 (((-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) $) NIL)) (-2961 (((-588 (-2 (|:| |val| (-717 |#1| (-794 |#2|))) (|:| -1974 $))) (-717 |#1| (-794 |#2|)) $) NIL)) (-3296 (((-2 (|:| |under| $) (|:| -3592 $) (|:| |upper| $)) $ (-794 |#2|)) NIL)) (-2717 (((-108) $ (-708)) NIL)) (-1696 (($ (-1 (-108) (-717 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-3 (-717 |#1| (-794 |#2|)) "failed") $ (-794 |#2|)) NIL)) (-3367 (($) NIL T CONST)) (-1298 (((-108) $) NIL (|has| |#1| (-514)))) (-1657 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3598 (((-108) $ $) NIL (|has| |#1| (-514)))) (-2818 (((-108) $) NIL (|has| |#1| (-514)))) (-3090 (((-588 (-717 |#1| (-794 |#2|))) (-588 (-717 |#1| (-794 |#2|))) $ (-1 (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|))) (-1 (-108) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)))) NIL)) (-3461 (((-588 (-717 |#1| (-794 |#2|))) (-588 (-717 |#1| (-794 |#2|))) $) NIL (|has| |#1| (-514)))) (-3668 (((-588 (-717 |#1| (-794 |#2|))) (-588 (-717 |#1| (-794 |#2|))) $) NIL (|has| |#1| (-514)))) (-3700 (((-3 $ "failed") (-588 (-717 |#1| (-794 |#2|)))) NIL)) (-1478 (($ (-588 (-717 |#1| (-794 |#2|)))) NIL)) (-2352 (((-3 $ "failed") $) NIL)) (-2625 (((-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) $) NIL)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-717 |#1| (-794 |#2|)) (-1014))))) (-1424 (($ (-717 |#1| (-794 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-717 |#1| (-794 |#2|)) (-1014)))) (($ (-1 (-108) (-717 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-4002 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-717 |#1| (-794 |#2|))) (|:| |den| |#1|)) (-717 |#1| (-794 |#2|)) $) NIL (|has| |#1| (-514)))) (-1426 (((-108) (-717 |#1| (-794 |#2|)) $ (-1 (-108) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)))) NIL)) (-2918 (((-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) $) NIL)) (-2153 (((-717 |#1| (-794 |#2|)) (-1 (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|))) $ (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-717 |#1| (-794 |#2|)) (-1014)))) (((-717 |#1| (-794 |#2|)) (-1 (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|))) $ (-717 |#1| (-794 |#2|))) NIL (|has| $ (-6 -4238))) (((-717 |#1| (-794 |#2|)) (-1 (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) $ (-1 (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|))) (-1 (-108) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)))) NIL)) (-1199 (((-2 (|:| -1720 (-588 (-717 |#1| (-794 |#2|)))) (|:| -1566 (-588 (-717 |#1| (-794 |#2|))))) $) NIL)) (-2396 (((-108) (-717 |#1| (-794 |#2|)) $) NIL)) (-3039 (((-108) (-717 |#1| (-794 |#2|)) $) NIL)) (-2278 (((-108) (-717 |#1| (-794 |#2|)) $) NIL) (((-108) $) NIL)) (-2395 (((-588 (-717 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-1384 (((-108) (-717 |#1| (-794 |#2|)) $) NIL) (((-108) $) NIL)) (-1933 (((-794 |#2|) $) NIL)) (-1480 (((-108) $ (-708)) NIL)) (-4084 (((-588 (-717 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) (-717 |#1| (-794 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-717 |#1| (-794 |#2|)) (-1014))))) (-2397 (($ (-1 (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|))) $) NIL)) (-2714 (((-588 (-794 |#2|)) $) NIL)) (-3826 (((-108) (-794 |#2|) $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL)) (-1418 (((-3 (-717 |#1| (-794 |#2|)) (-588 $)) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) $) NIL)) (-1998 (((-588 (-2 (|:| |val| (-717 |#1| (-794 |#2|))) (|:| -1974 $))) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) $) NIL)) (-1442 (((-3 (-717 |#1| (-794 |#2|)) "failed") $) NIL)) (-1468 (((-588 $) (-717 |#1| (-794 |#2|)) $) NIL)) (-1892 (((-3 (-108) (-588 $)) (-717 |#1| (-794 |#2|)) $) NIL)) (-1862 (((-588 (-2 (|:| |val| (-108)) (|:| -1974 $))) (-717 |#1| (-794 |#2|)) $) NIL) (((-108) (-717 |#1| (-794 |#2|)) $) NIL)) (-2251 (((-588 $) (-717 |#1| (-794 |#2|)) $) NIL) (((-588 $) (-588 (-717 |#1| (-794 |#2|))) $) NIL) (((-588 $) (-588 (-717 |#1| (-794 |#2|))) (-588 $)) NIL) (((-588 $) (-717 |#1| (-794 |#2|)) (-588 $)) NIL)) (-2953 (($ (-717 |#1| (-794 |#2|)) $) NIL) (($ (-588 (-717 |#1| (-794 |#2|))) $) NIL)) (-4138 (((-588 (-717 |#1| (-794 |#2|))) $) NIL)) (-3864 (((-108) (-717 |#1| (-794 |#2|)) $) NIL) (((-108) $) NIL)) (-2556 (((-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) $) NIL)) (-1517 (((-108) $ $) NIL)) (-2507 (((-2 (|:| |num| (-717 |#1| (-794 |#2|))) (|:| |den| |#1|)) (-717 |#1| (-794 |#2|)) $) NIL (|has| |#1| (-514)))) (-3060 (((-108) (-717 |#1| (-794 |#2|)) $) NIL) (((-108) $) NIL)) (-3896 (((-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) $) NIL)) (-4174 (((-1032) $) NIL)) (-2337 (((-3 (-717 |#1| (-794 |#2|)) "failed") $) NIL)) (-2187 (((-3 (-717 |#1| (-794 |#2|)) "failed") (-1 (-108) (-717 |#1| (-794 |#2|))) $) NIL)) (-4078 (((-3 $ "failed") $ (-717 |#1| (-794 |#2|))) NIL)) (-3934 (($ $ (-717 |#1| (-794 |#2|))) NIL) (((-588 $) (-717 |#1| (-794 |#2|)) $) NIL) (((-588 $) (-717 |#1| (-794 |#2|)) (-588 $)) NIL) (((-588 $) (-588 (-717 |#1| (-794 |#2|))) $) NIL) (((-588 $) (-588 (-717 |#1| (-794 |#2|))) (-588 $)) NIL)) (-3487 (((-108) (-1 (-108) (-717 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-717 |#1| (-794 |#2|))) (-588 (-717 |#1| (-794 |#2|)))) NIL (-12 (|has| (-717 |#1| (-794 |#2|)) (-285 (-717 |#1| (-794 |#2|)))) (|has| (-717 |#1| (-794 |#2|)) (-1014)))) (($ $ (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|))) NIL (-12 (|has| (-717 |#1| (-794 |#2|)) (-285 (-717 |#1| (-794 |#2|)))) (|has| (-717 |#1| (-794 |#2|)) (-1014)))) (($ $ (-270 (-717 |#1| (-794 |#2|)))) NIL (-12 (|has| (-717 |#1| (-794 |#2|)) (-285 (-717 |#1| (-794 |#2|)))) (|has| (-717 |#1| (-794 |#2|)) (-1014)))) (($ $ (-588 (-270 (-717 |#1| (-794 |#2|))))) NIL (-12 (|has| (-717 |#1| (-794 |#2|)) (-285 (-717 |#1| (-794 |#2|)))) (|has| (-717 |#1| (-794 |#2|)) (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2487 (((-708) $) NIL)) (-4187 (((-708) (-717 |#1| (-794 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-717 |#1| (-794 |#2|)) (-1014)))) (((-708) (-1 (-108) (-717 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| (-717 |#1| (-794 |#2|)) (-563 (-498))))) (-2227 (($ (-588 (-717 |#1| (-794 |#2|)))) NIL)) (-2271 (($ $ (-794 |#2|)) NIL)) (-2154 (($ $ (-794 |#2|)) NIL)) (-1524 (($ $) NIL)) (-2773 (($ $ (-794 |#2|)) NIL)) (-2217 (((-792) $) NIL) (((-588 (-717 |#1| (-794 |#2|))) $) NIL)) (-3111 (((-708) $) NIL (|has| (-794 |#2|) (-343)))) (-3538 (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 (-717 |#1| (-794 |#2|))))) "failed") (-588 (-717 |#1| (-794 |#2|))) (-1 (-108) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 (-717 |#1| (-794 |#2|))))) "failed") (-588 (-717 |#1| (-794 |#2|))) (-1 (-108) (-717 |#1| (-794 |#2|))) (-1 (-108) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)))) NIL)) (-2102 (((-108) $ (-1 (-108) (-717 |#1| (-794 |#2|)) (-588 (-717 |#1| (-794 |#2|))))) NIL)) (-3386 (((-588 $) (-717 |#1| (-794 |#2|)) $) NIL) (((-588 $) (-717 |#1| (-794 |#2|)) (-588 $)) NIL) (((-588 $) (-588 (-717 |#1| (-794 |#2|))) $) NIL) (((-588 $) (-588 (-717 |#1| (-794 |#2|))) (-588 $)) NIL)) (-1381 (((-108) (-1 (-108) (-717 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-1982 (((-588 (-794 |#2|)) $) NIL)) (-1336 (((-108) (-717 |#1| (-794 |#2|)) $) NIL)) (-1711 (((-108) (-794 |#2|) $) NIL)) (-1562 (((-108) $ $) NIL)) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-968 |#1| |#2|) (-13 (-990 |#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|))) (-10 -8 (-15 -2510 ((-588 $) (-588 (-717 |#1| (-794 |#2|))) (-108) (-108))))) (-426) (-588 (-1085))) (T -968)) -((-2510 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-588 (-717 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-426)) (-14 *6 (-588 (-1085))) (-5 *2 (-588 (-968 *5 *6))) (-5 *1 (-968 *5 *6))))) -(-13 (-990 |#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|))) (-10 -8 (-15 -2510 ((-588 $) (-588 (-717 |#1| (-794 |#2|))) (-108) (-108))))) -((-1577 (((-1 (-522)) (-1009 (-522))) 33)) (-2991 (((-522) (-522) (-522) (-522) (-522)) 30)) (-1715 (((-1 (-522)) |RationalNumber|) NIL)) (-1941 (((-1 (-522)) |RationalNumber|) NIL)) (-1591 (((-1 (-522)) (-522) |RationalNumber|) NIL))) -(((-969) (-10 -7 (-15 -1577 ((-1 (-522)) (-1009 (-522)))) (-15 -1591 ((-1 (-522)) (-522) |RationalNumber|)) (-15 -1715 ((-1 (-522)) |RationalNumber|)) (-15 -1941 ((-1 (-522)) |RationalNumber|)) (-15 -2991 ((-522) (-522) (-522) (-522) (-522))))) (T -969)) -((-2991 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-969)))) (-1941 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-522))) (-5 *1 (-969)))) (-1715 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-522))) (-5 *1 (-969)))) (-1591 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-522))) (-5 *1 (-969)) (-5 *3 (-522)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-1009 (-522))) (-5 *2 (-1 (-522))) (-5 *1 (-969))))) -(-10 -7 (-15 -1577 ((-1 (-522)) (-1009 (-522)))) (-15 -1591 ((-1 (-522)) (-522) |RationalNumber|)) (-15 -1715 ((-1 (-522)) |RationalNumber|)) (-15 -1941 ((-1 (-522)) |RationalNumber|)) (-15 -2991 ((-522) (-522) (-522) (-522) (-522)))) -((-2217 (((-792) $) NIL) (($ (-522)) 10))) -(((-970 |#1|) (-10 -8 (-15 -2217 (|#1| (-522))) (-15 -2217 ((-792) |#1|))) (-971)) (T -970)) -NIL -(-10 -8 (-15 -2217 (|#1| (-522))) (-15 -2217 ((-792) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3920 (((-3 $ "failed") $) 34)) (-2859 (((-108) $) 31)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11) (($ (-522)) 28)) (-2742 (((-708)) 29)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-971) (-1197)) (T -971)) -((-2742 (*1 *2) (-12 (-4 *1 (-971)) (-5 *2 (-708)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-971))))) -(-13 (-978) (-664) (-590 $) (-10 -8 (-15 -2742 ((-708))) (-15 -2217 ($ (-522))) (-6 -4235))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 $) . T) ((-664) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-3288 (((-382 (-881 |#2|)) (-588 |#2|) (-588 |#2|) (-708) (-708)) 45))) -(((-972 |#1| |#2|) (-10 -7 (-15 -3288 ((-382 (-881 |#2|)) (-588 |#2|) (-588 |#2|) (-708) (-708)))) (-1085) (-338)) (T -972)) -((-3288 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-588 *6)) (-5 *4 (-708)) (-4 *6 (-338)) (-5 *2 (-382 (-881 *6))) (-5 *1 (-972 *5 *6)) (-14 *5 (-1085))))) -(-10 -7 (-15 -3288 ((-382 (-881 |#2|)) (-588 |#2|) (-588 |#2|) (-708) (-708)))) -((-3455 (((-108) $) 28)) (-2208 (((-108) $) 16)) (-2949 (((-708) $) 13)) (-2960 (((-708) $) 14)) (-3498 (((-108) $) 26)) (-4047 (((-108) $) 30))) -(((-973 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2960 ((-708) |#1|)) (-15 -2949 ((-708) |#1|)) (-15 -4047 ((-108) |#1|)) (-15 -3455 ((-108) |#1|)) (-15 -3498 ((-108) |#1|)) (-15 -2208 ((-108) |#1|))) (-974 |#2| |#3| |#4| |#5| |#6|) (-708) (-708) (-971) (-215 |#3| |#4|) (-215 |#2| |#4|)) (T -973)) -NIL -(-10 -8 (-15 -2960 ((-708) |#1|)) (-15 -2949 ((-708) |#1|)) (-15 -4047 ((-108) |#1|)) (-15 -3455 ((-108) |#1|)) (-15 -3498 ((-108) |#1|)) (-15 -2208 ((-108) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3455 (((-108) $) 51)) (-2265 (((-3 $ "failed") $ $) 19)) (-2208 (((-108) $) 53)) (-2717 (((-108) $ (-708)) 61)) (-3367 (($) 17 T CONST)) (-2091 (($ $) 34 (|has| |#3| (-283)))) (-2635 ((|#4| $ (-522)) 39)) (-1692 (((-708) $) 33 (|has| |#3| (-514)))) (-2186 ((|#3| $ (-522) (-522)) 41)) (-2395 (((-588 |#3|) $) 68 (|has| $ (-6 -4238)))) (-2336 (((-708) $) 32 (|has| |#3| (-514)))) (-2819 (((-588 |#5|) $) 31 (|has| |#3| (-514)))) (-2949 (((-708) $) 45)) (-2960 (((-708) $) 44)) (-1480 (((-108) $ (-708)) 60)) (-2604 (((-522) $) 49)) (-4042 (((-522) $) 47)) (-4084 (((-588 |#3|) $) 69 (|has| $ (-6 -4238)))) (-4176 (((-108) |#3| $) 71 (-12 (|has| |#3| (-1014)) (|has| $ (-6 -4238))))) (-1925 (((-522) $) 48)) (-2595 (((-522) $) 46)) (-1347 (($ (-588 (-588 |#3|))) 54)) (-2397 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-2862 (((-588 (-588 |#3|)) $) 43)) (-3309 (((-108) $ (-708)) 59)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2276 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-514)))) (-3487 (((-108) (-1 (-108) |#3|) $) 66 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 |#3|) (-588 |#3|)) 75 (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ (-270 |#3|)) 73 (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ (-588 (-270 |#3|))) 72 (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014))))) (-2065 (((-108) $ $) 55)) (-3494 (((-108) $) 58)) (-3298 (($) 57)) (-2683 ((|#3| $ (-522) (-522)) 42) ((|#3| $ (-522) (-522) |#3|) 40)) (-3498 (((-108) $) 52)) (-4187 (((-708) |#3| $) 70 (-12 (|has| |#3| (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) |#3|) $) 67 (|has| $ (-6 -4238)))) (-2463 (($ $) 56)) (-2223 ((|#5| $ (-522)) 38)) (-2217 (((-792) $) 11)) (-1381 (((-108) (-1 (-108) |#3|) $) 65 (|has| $ (-6 -4238)))) (-4047 (((-108) $) 50)) (-3697 (($) 18 T CONST)) (-1562 (((-108) $ $) 6)) (-1682 (($ $ |#3|) 35 (|has| |#3| (-338)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3591 (((-708) $) 62 (|has| $ (-6 -4238))))) -(((-974 |#1| |#2| |#3| |#4| |#5|) (-1197) (-708) (-708) (-971) (-215 |t#2| |t#3|) (-215 |t#1| |t#3|)) (T -974)) -((-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)))) (-1347 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 *5))) (-4 *5 (-971)) (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)))) (-2208 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))) (-3498 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))) (-3455 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))) (-4047 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-522)))) (-1925 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-522)))) (-4042 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-522)))) (-2595 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-522)))) (-2949 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-708)))) (-2960 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-708)))) (-2862 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-588 (-588 *5))))) (-2683 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-522)) (-4 *1 (-974 *4 *5 *2 *6 *7)) (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2)) (-4 *2 (-971)))) (-2186 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-522)) (-4 *1 (-974 *4 *5 *2 *6 *7)) (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2)) (-4 *2 (-971)))) (-2683 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-522)) (-4 *1 (-974 *4 *5 *2 *6 *7)) (-4 *2 (-971)) (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2)))) (-2635 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-974 *4 *5 *6 *2 *7)) (-4 *6 (-971)) (-4 *7 (-215 *4 *6)) (-4 *2 (-215 *5 *6)))) (-2223 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-974 *4 *5 *6 *7 *2)) (-4 *6 (-971)) (-4 *7 (-215 *5 *6)) (-4 *2 (-215 *4 *6)))) (-3810 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)))) (-2276 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-974 *3 *4 *2 *5 *6)) (-4 *2 (-971)) (-4 *5 (-215 *4 *2)) (-4 *6 (-215 *3 *2)) (-4 *2 (-514)))) (-1682 (*1 *1 *1 *2) (-12 (-4 *1 (-974 *3 *4 *2 *5 *6)) (-4 *2 (-971)) (-4 *5 (-215 *4 *2)) (-4 *6 (-215 *3 *2)) (-4 *2 (-338)))) (-2091 (*1 *1 *1) (-12 (-4 *1 (-974 *2 *3 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *2 *4)) (-4 *4 (-283)))) (-1692 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-514)) (-5 *2 (-708)))) (-2336 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-514)) (-5 *2 (-708)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-514)) (-5 *2 (-588 *7))))) -(-13 (-107 |t#3| |t#3|) (-461 |t#3|) (-10 -8 (-6 -4238) (IF (|has| |t#3| (-157)) (-6 (-655 |t#3|)) |%noBranch|) (-15 -1347 ($ (-588 (-588 |t#3|)))) (-15 -2208 ((-108) $)) (-15 -3498 ((-108) $)) (-15 -3455 ((-108) $)) (-15 -4047 ((-108) $)) (-15 -2604 ((-522) $)) (-15 -1925 ((-522) $)) (-15 -4042 ((-522) $)) (-15 -2595 ((-522) $)) (-15 -2949 ((-708) $)) (-15 -2960 ((-708) $)) (-15 -2862 ((-588 (-588 |t#3|)) $)) (-15 -2683 (|t#3| $ (-522) (-522))) (-15 -2186 (|t#3| $ (-522) (-522))) (-15 -2683 (|t#3| $ (-522) (-522) |t#3|)) (-15 -2635 (|t#4| $ (-522))) (-15 -2223 (|t#5| $ (-522))) (-15 -3810 ($ (-1 |t#3| |t#3|) $)) (-15 -3810 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-514)) (-15 -2276 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-338)) (-15 -1682 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-283)) (-15 -2091 ($ $)) |%noBranch|) (IF (|has| |t#3| (-514)) (PROGN (-15 -1692 ((-708) $)) (-15 -2336 ((-708) $)) (-15 -2819 ((-588 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-107 |#3| |#3|) . T) ((-124) . T) ((-562 (-792)) . T) ((-285 |#3|) -12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014))) ((-461 |#3|) . T) ((-483 |#3| |#3|) -12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014))) ((-590 |#3|) . T) ((-655 |#3|) |has| |#3| (-157)) ((-977 |#3|) . T) ((-1014) . T) ((-1120) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3455 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-2208 (((-108) $) NIL)) (-2717 (((-108) $ (-708)) NIL)) (-3367 (($) NIL T CONST)) (-2091 (($ $) 40 (|has| |#3| (-283)))) (-2635 (((-217 |#2| |#3|) $ (-522)) 29)) (-3305 (($ (-628 |#3|)) 38)) (-1692 (((-708) $) 42 (|has| |#3| (-514)))) (-2186 ((|#3| $ (-522) (-522)) NIL)) (-2395 (((-588 |#3|) $) NIL (|has| $ (-6 -4238)))) (-2336 (((-708) $) 44 (|has| |#3| (-514)))) (-2819 (((-588 (-217 |#1| |#3|)) $) 48 (|has| |#3| (-514)))) (-2949 (((-708) $) NIL)) (-2960 (((-708) $) NIL)) (-1480 (((-108) $ (-708)) NIL)) (-2604 (((-522) $) NIL)) (-4042 (((-522) $) NIL)) (-4084 (((-588 |#3|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#3| (-1014))))) (-1925 (((-522) $) NIL)) (-2595 (((-522) $) NIL)) (-1347 (($ (-588 (-588 |#3|))) 24)) (-2397 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2862 (((-588 (-588 |#3|)) $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2276 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-514)))) (-3487 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 |#3|) (-588 |#3|)) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ (-270 |#3|)) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ (-588 (-270 |#3|))) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#3| $ (-522) (-522)) NIL) ((|#3| $ (-522) (-522) |#3|) NIL)) (-3222 (((-126)) 51 (|has| |#3| (-338)))) (-3498 (((-108) $) NIL)) (-4187 (((-708) |#3| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#3| (-1014)))) (((-708) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4238)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) 60 (|has| |#3| (-563 (-498))))) (-2223 (((-217 |#1| |#3|) $ (-522)) 33)) (-2217 (((-792) $) 16) (((-628 |#3|) $) 35)) (-1381 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4238)))) (-4047 (((-108) $) NIL)) (-3697 (($) 13 T CONST)) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ |#3|) NIL (|has| |#3| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-975 |#1| |#2| |#3|) (-13 (-974 |#1| |#2| |#3| (-217 |#2| |#3|) (-217 |#1| |#3|)) (-562 (-628 |#3|)) (-10 -8 (IF (|has| |#3| (-338)) (-6 (-1173 |#3|)) |%noBranch|) (IF (|has| |#3| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) (-15 -3305 ($ (-628 |#3|))) (-15 -2217 ((-628 |#3|) $)))) (-708) (-708) (-971)) (T -975)) -((-2217 (*1 *2 *1) (-12 (-5 *2 (-628 *5)) (-5 *1 (-975 *3 *4 *5)) (-14 *3 (-708)) (-14 *4 (-708)) (-4 *5 (-971)))) (-3305 (*1 *1 *2) (-12 (-5 *2 (-628 *5)) (-4 *5 (-971)) (-5 *1 (-975 *3 *4 *5)) (-14 *3 (-708)) (-14 *4 (-708))))) -(-13 (-974 |#1| |#2| |#3| (-217 |#2| |#3|) (-217 |#1| |#3|)) (-562 (-628 |#3|)) (-10 -8 (IF (|has| |#3| (-338)) (-6 (-1173 |#3|)) |%noBranch|) (IF (|has| |#3| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) (-15 -3305 ($ (-628 |#3|))) (-15 -2217 ((-628 |#3|) $)))) -((-2153 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-3810 ((|#10| (-1 |#7| |#3|) |#6|) 32))) -(((-976 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3810 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2153 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-708) (-708) (-971) (-215 |#2| |#3|) (-215 |#1| |#3|) (-974 |#1| |#2| |#3| |#4| |#5|) (-971) (-215 |#2| |#7|) (-215 |#1| |#7|) (-974 |#1| |#2| |#7| |#8| |#9|)) (T -976)) -((-2153 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-971)) (-4 *2 (-971)) (-14 *5 (-708)) (-14 *6 (-708)) (-4 *8 (-215 *6 *7)) (-4 *9 (-215 *5 *7)) (-4 *10 (-215 *6 *2)) (-4 *11 (-215 *5 *2)) (-5 *1 (-976 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-974 *5 *6 *7 *8 *9)) (-4 *12 (-974 *5 *6 *2 *10 *11)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-971)) (-4 *10 (-971)) (-14 *5 (-708)) (-14 *6 (-708)) (-4 *8 (-215 *6 *7)) (-4 *9 (-215 *5 *7)) (-4 *2 (-974 *5 *6 *10 *11 *12)) (-5 *1 (-976 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-974 *5 *6 *7 *8 *9)) (-4 *11 (-215 *6 *10)) (-4 *12 (-215 *5 *10))))) -(-10 -7 (-15 -3810 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2153 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-3697 (($) 18 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ |#1|) 23))) -(((-977 |#1|) (-1197) (-978)) (T -977)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-977 *2)) (-4 *2 (-978))))) +((-1373 (($ $ (-1009 $)) 7) (($ $ (-1087)) 6))) +(((-889) (-129)) (T -889)) +((-1373 (*1 *1 *1 *2) (-12 (-5 *2 (-1009 *1)) (-4 *1 (-889)))) (-1373 (*1 *1 *1 *2) (-12 (-4 *1 (-889)) (-5 *2 (-1087))))) +(-13 (-10 -8 (-15 -1373 ($ $ (-1087))) (-15 -1373 ($ $ (-1009 $))))) +((-1996 (((-2 (|:| -2935 (-589 (-523))) (|:| |poly| (-589 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-589 (-883 |#1|)) (-589 (-1087)) (-1087)) 23) (((-2 (|:| -2935 (-589 (-523))) (|:| |poly| (-589 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-589 (-883 |#1|)) (-589 (-1087))) 24) (((-2 (|:| |coef1| (-523)) (|:| |coef2| (-523)) (|:| |prim| (-1083 |#1|))) (-883 |#1|) (-1087) (-883 |#1|) (-1087)) 41))) +(((-890 |#1|) (-10 -7 (-15 -1996 ((-2 (|:| |coef1| (-523)) (|:| |coef2| (-523)) (|:| |prim| (-1083 |#1|))) (-883 |#1|) (-1087) (-883 |#1|) (-1087))) (-15 -1996 ((-2 (|:| -2935 (-589 (-523))) (|:| |poly| (-589 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -1996 ((-2 (|:| -2935 (-589 (-523))) (|:| |poly| (-589 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-589 (-883 |#1|)) (-589 (-1087)) (-1087)))) (-13 (-339) (-136))) (T -890)) +((-1996 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 (-883 *6))) (-5 *4 (-589 (-1087))) (-5 *5 (-1087)) (-4 *6 (-13 (-339) (-136))) (-5 *2 (-2 (|:| -2935 (-589 (-523))) (|:| |poly| (-589 (-1083 *6))) (|:| |prim| (-1083 *6)))) (-5 *1 (-890 *6)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-589 (-1087))) (-4 *5 (-13 (-339) (-136))) (-5 *2 (-2 (|:| -2935 (-589 (-523))) (|:| |poly| (-589 (-1083 *5))) (|:| |prim| (-1083 *5)))) (-5 *1 (-890 *5)))) (-1996 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-883 *5)) (-5 *4 (-1087)) (-4 *5 (-13 (-339) (-136))) (-5 *2 (-2 (|:| |coef1| (-523)) (|:| |coef2| (-523)) (|:| |prim| (-1083 *5)))) (-5 *1 (-890 *5))))) +(-10 -7 (-15 -1996 ((-2 (|:| |coef1| (-523)) (|:| |coef2| (-523)) (|:| |prim| (-1083 |#1|))) (-883 |#1|) (-1087) (-883 |#1|) (-1087))) (-15 -1996 ((-2 (|:| -2935 (-589 (-523))) (|:| |poly| (-589 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-589 (-883 |#1|)) (-589 (-1087)))) (-15 -1996 ((-2 (|:| -2935 (-589 (-523))) (|:| |poly| (-589 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-589 (-883 |#1|)) (-589 (-1087)) (-1087)))) +((-1608 (((-589 |#1|) |#1| |#1|) 42)) (-2657 (((-108) |#1|) 39)) (-2517 ((|#1| |#1|) 65)) (-1408 ((|#1| |#1|) 64))) +(((-891 |#1|) (-10 -7 (-15 -2657 ((-108) |#1|)) (-15 -1408 (|#1| |#1|)) (-15 -2517 (|#1| |#1|)) (-15 -1608 ((-589 |#1|) |#1| |#1|))) (-508)) (T -891)) +((-1608 (*1 *2 *3 *3) (-12 (-5 *2 (-589 *3)) (-5 *1 (-891 *3)) (-4 *3 (-508)))) (-2517 (*1 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-508)))) (-1408 (*1 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-508)))) (-2657 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-891 *3)) (-4 *3 (-508))))) +(-10 -7 (-15 -2657 ((-108) |#1|)) (-15 -1408 (|#1| |#1|)) (-15 -2517 (|#1| |#1|)) (-15 -1608 ((-589 |#1|) |#1| |#1|))) +((-2948 (((-1173) (-794)) 9))) +(((-892) (-10 -7 (-15 -2948 ((-1173) (-794))))) (T -892)) +((-2948 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1173)) (-5 *1 (-892))))) +(-10 -7 (-15 -2948 ((-1173) (-794)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 63 (|has| |#1| (-515)))) (-3345 (($ $) 64 (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 28)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-3810 (($ $) 24)) (-2121 (((-3 $ "failed") $) 35)) (-2528 (($ $) NIL (|has| |#1| (-427)))) (-1284 (($ $ |#1| |#2| $) 48)) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) 16)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| |#2|) NIL)) (-1575 ((|#2| $) 19)) (-3782 (($ (-1 |#2| |#2|) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-3774 (($ $) 23)) (-3786 ((|#1| $) 21)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) 40)) (-3760 ((|#1| $) NIL)) (-4034 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-124)) (|has| |#1| (-515))))) (-3746 (((-3 $ "failed") $ $) 74 (|has| |#1| (-515))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-515)))) (-2299 ((|#2| $) 17)) (-2438 ((|#1| $) NIL (|has| |#1| (-427)))) (-1458 (((-794) $) NIL) (($ (-523)) 39) (($ $) NIL (|has| |#1| (-515))) (($ |#1|) 34) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ |#2|) 31)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) 15)) (-2276 (($ $ $ (-710)) 59 (|has| |#1| (-158)))) (-1704 (((-108) $ $) 69 (|has| |#1| (-515)))) (-2364 (($ $ (-852)) 55) (($ $ (-710)) 56)) (-2756 (($) 22 T CONST)) (-2767 (($) 12 T CONST)) (-3983 (((-108) $ $) 68)) (-4098 (($ $ |#1|) 75 (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) 54) (($ $ (-710)) 52)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-893 |#1| |#2|) (-13 (-302 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-515)) (IF (|has| |#2| (-124)) (-15 -4034 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4242)) (-6 -4242) |%noBranch|))) (-973) (-731)) (T -893)) +((-4034 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-893 *3 *2)) (-4 *2 (-124)) (-4 *3 (-515)) (-4 *3 (-973)) (-4 *2 (-731))))) +(-13 (-302 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-515)) (IF (|has| |#2| (-124)) (-15 -4034 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4242)) (-6 -4242) |%noBranch|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL (-3262 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))))) (-3596 (($ $ $) 63 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))))) (-3212 (((-3 $ "failed") $ $) 50 (-3262 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))))) (-1703 (((-710)) 34 (-12 (|has| |#1| (-344)) (|has| |#2| (-344))))) (-1490 ((|#2| $) 21)) (-2869 ((|#1| $) 20)) (-2518 (($) NIL (-3262 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))) CONST)) (-2121 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666)))))) (-4032 (($) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-344))))) (-2023 (((-108) $) NIL (-3262 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666)))))) (-2454 (($ $ $) NIL (-3262 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-786)) (|has| |#2| (-786)))))) (-2062 (($ $ $) NIL (-3262 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-786)) (|has| |#2| (-786)))))) (-3211 (($ |#1| |#2|) 19)) (-2072 (((-852) $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-344))))) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 37 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))))) (-3878 (($ (-852)) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-344))))) (-2783 (((-1034) $) NIL)) (-3208 (($ $ $) NIL (-12 (|has| |#1| (-448)) (|has| |#2| (-448))))) (-1714 (($ $ $) NIL (-12 (|has| |#1| (-448)) (|has| |#2| (-448))))) (-1458 (((-794) $) 14)) (-2364 (($ $ (-523)) NIL (-12 (|has| |#1| (-448)) (|has| |#2| (-448)))) (($ $ (-710)) NIL (-3262 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666))))) (($ $ (-852)) NIL (-3262 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666)))))) (-2756 (($) 40 (-3262 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))) CONST)) (-2767 (($) 24 (-3262 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666)))) CONST)) (-4043 (((-108) $ $) NIL (-3262 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-786)) (|has| |#2| (-786)))))) (-4019 (((-108) $ $) NIL (-3262 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-786)) (|has| |#2| (-786)))))) (-3983 (((-108) $ $) 18)) (-4030 (((-108) $ $) NIL (-3262 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-786)) (|has| |#2| (-786)))))) (-4007 (((-108) $ $) 66 (-3262 (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-786)) (|has| |#2| (-786)))))) (-4098 (($ $ $) NIL (-12 (|has| |#1| (-448)) (|has| |#2| (-448))))) (-4087 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4075 (($ $ $) 43 (-3262 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))))) (** (($ $ (-523)) NIL (-12 (|has| |#1| (-448)) (|has| |#2| (-448)))) (($ $ (-710)) 31 (-3262 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666))))) (($ $ (-852)) NIL (-3262 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666)))))) (* (($ (-523) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-710) $) 46 (-3262 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732))))) (($ (-852) $) NIL (-3262 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732))))) (($ $ $) 27 (-3262 (-12 (|has| |#1| (-448)) (|has| |#2| (-448))) (-12 (|has| |#1| (-666)) (|has| |#2| (-666))))))) +(((-894 |#1| |#2|) (-13 (-1016) (-10 -8 (IF (|has| |#1| (-344)) (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-666)) (IF (|has| |#2| (-666)) (-6 (-666)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-124)) (IF (|has| |#2| (-124)) (-6 (-124)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-448)) (IF (|has| |#2| (-448)) (-6 (-448)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-732)) (IF (|has| |#2| (-732)) (-6 (-732)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-786)) (IF (|has| |#2| (-786)) (-6 (-786)) |%noBranch|) |%noBranch|) (-15 -3211 ($ |#1| |#2|)) (-15 -2869 (|#1| $)) (-15 -1490 (|#2| $)))) (-1016) (-1016)) (T -894)) +((-3211 (*1 *1 *2 *3) (-12 (-5 *1 (-894 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-2869 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-894 *2 *3)) (-4 *3 (-1016)))) (-1490 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-894 *3 *2)) (-4 *3 (-1016))))) +(-13 (-1016) (-10 -8 (IF (|has| |#1| (-344)) (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-666)) (IF (|has| |#2| (-666)) (-6 (-666)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-124)) (IF (|has| |#2| (-124)) (-6 (-124)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-448)) (IF (|has| |#2| (-448)) (-6 (-448)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-732)) (IF (|has| |#2| (-732)) (-6 (-732)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-786)) (IF (|has| |#2| (-786)) (-6 (-786)) |%noBranch|) |%noBranch|) (-15 -3211 ($ |#1| |#2|)) (-15 -2869 (|#1| $)) (-15 -1490 (|#2| $)))) +((-1733 (((-1020) $) 12)) (-3108 (($ (-1087) (-1020)) 13)) (-4038 (((-1087) $) 10)) (-1458 (((-794) $) 24))) +(((-895) (-13 (-563 (-794)) (-10 -8 (-15 -4038 ((-1087) $)) (-15 -1733 ((-1020) $)) (-15 -3108 ($ (-1087) (-1020)))))) (T -895)) +((-4038 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-895)))) (-1733 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-895)))) (-3108 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1020)) (-5 *1 (-895))))) +(-13 (-563 (-794)) (-10 -8 (-15 -4038 ((-1087) $)) (-15 -1733 ((-1020) $)) (-15 -3108 ($ (-1087) (-1020))))) +((-1957 (((-1018 (-1087)) $) 19)) (-3677 (((-108) $) 26)) (-2700 (((-1087) $) 27)) (-3400 (((-108) $) 24)) (-2397 ((|#1| $) 25)) (-4044 (((-804 $ $) $) 34)) (-1834 (((-108) $) 33)) (-4090 (($ $ $) 12)) (-2664 (($ $) 29)) (-3705 (((-108) $) 28)) (-3900 (($ $) 10)) (-3092 (((-804 $ $) $) 36)) (-3003 (((-108) $) 35)) (-1971 (($ $ $) 13)) (-3017 (((-804 $ $) $) 38)) (-2849 (((-108) $) 37)) (-2471 (($ $ $) 14)) (-1458 (($ |#1|) 7) (($ (-1087)) 9) (((-794) $) 40 (|has| |#1| (-563 (-794))))) (-2884 (((-804 $ $) $) 32)) (-3632 (((-108) $) 30)) (-4099 (($ $ $) 11))) +(((-896 |#1|) (-13 (-897) (-10 -8 (IF (|has| |#1| (-563 (-794))) (-6 (-563 (-794))) |%noBranch|) (-15 -1458 ($ |#1|)) (-15 -1458 ($ (-1087))) (-15 -1957 ((-1018 (-1087)) $)) (-15 -3400 ((-108) $)) (-15 -2397 (|#1| $)) (-15 -3677 ((-108) $)) (-15 -2700 ((-1087) $)) (-15 -3705 ((-108) $)) (-15 -2664 ($ $)) (-15 -3632 ((-108) $)) (-15 -2884 ((-804 $ $) $)) (-15 -1834 ((-108) $)) (-15 -4044 ((-804 $ $) $)) (-15 -3003 ((-108) $)) (-15 -3092 ((-804 $ $) $)) (-15 -2849 ((-108) $)) (-15 -3017 ((-804 $ $) $)))) (-897)) (T -896)) +((-1458 (*1 *1 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-897)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-1957 (*1 *2 *1) (-12 (-5 *2 (-1018 (-1087))) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-2397 (*1 *2 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-897)))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-2700 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-2664 (*1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-897)))) (-3632 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-1834 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-3092 (*1 *2 *1) (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) (-4 *3 (-897))))) +(-13 (-897) (-10 -8 (IF (|has| |#1| (-563 (-794))) (-6 (-563 (-794))) |%noBranch|) (-15 -1458 ($ |#1|)) (-15 -1458 ($ (-1087))) (-15 -1957 ((-1018 (-1087)) $)) (-15 -3400 ((-108) $)) (-15 -2397 (|#1| $)) (-15 -3677 ((-108) $)) (-15 -2700 ((-1087) $)) (-15 -3705 ((-108) $)) (-15 -2664 ($ $)) (-15 -3632 ((-108) $)) (-15 -2884 ((-804 $ $) $)) (-15 -1834 ((-108) $)) (-15 -4044 ((-804 $ $) $)) (-15 -3003 ((-108) $)) (-15 -3092 ((-804 $ $) $)) (-15 -2849 ((-108) $)) (-15 -3017 ((-804 $ $) $)))) +((-4090 (($ $ $) 8)) (-3900 (($ $) 6)) (-1971 (($ $ $) 9)) (-2471 (($ $ $) 10)) (-4099 (($ $ $) 7))) +(((-897) (-129)) (T -897)) +((-2471 (*1 *1 *1 *1) (-4 *1 (-897))) (-1971 (*1 *1 *1 *1) (-4 *1 (-897))) (-4090 (*1 *1 *1 *1) (-4 *1 (-897))) (-4099 (*1 *1 *1 *1) (-4 *1 (-897))) (-3900 (*1 *1 *1) (-4 *1 (-897)))) +(-13 (-10 -8 (-15 -3900 ($ $)) (-15 -4099 ($ $ $)) (-15 -4090 ($ $ $)) (-15 -1971 ($ $ $)) (-15 -2471 ($ $ $)))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) 8)) (-2518 (($) 7 T CONST)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2158 (($ $ $) 43)) (-2178 (($ $ $) 44)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2062 ((|#1| $) 45)) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1934 ((|#1| $) 39)) (-3450 (($ |#1| $) 40)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) 42)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-898 |#1|) (-129) (-786)) (T -898)) +((-2062 (*1 *2 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-786)))) (-2178 (*1 *1 *1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-786)))) (-2158 (*1 *1 *1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-786))))) +(-13 (-102 |t#1|) (-10 -8 (-6 -4244) (-15 -2062 (|t#1| $)) (-15 -2178 ($ $ $)) (-15 -2158 ($ $ $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) +((-2470 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3278 |#2|)) |#2| |#2|) 85)) (-2407 ((|#2| |#2| |#2|) 83)) (-2693 (((-2 (|:| |coef2| |#2|) (|:| -3278 |#2|)) |#2| |#2|) 87)) (-3535 (((-2 (|:| |coef1| |#2|) (|:| -3278 |#2|)) |#2| |#2|) 89)) (-1310 (((-2 (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2| |#2|) 107 (|has| |#1| (-427)))) (-2183 (((-2 (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|) 46)) (-3563 (((-2 (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|) 64)) (-4146 (((-2 (|:| |coef1| |#2|) (|:| -3078 |#1|)) |#2| |#2|) 66)) (-1551 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-3473 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710)) 71)) (-3733 (((-2 (|:| |coef2| |#2|) (|:| -3549 |#1|)) |#2|) 97)) (-2191 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710)) 74)) (-2913 (((-589 (-710)) |#2| |#2|) 82)) (-3310 ((|#1| |#2| |#2|) 42)) (-3479 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2| |#2|) 105 (|has| |#1| (-427)))) (-4117 ((|#1| |#2| |#2|) 103 (|has| |#1| (-427)))) (-1879 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|) 44)) (-3126 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|) 63)) (-3078 ((|#1| |#2| |#2|) 61)) (-2815 (((-2 (|:| -2935 |#1|) (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2|) 35)) (-1582 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-1302 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-1611 ((|#2| |#2| |#2|) 75)) (-1799 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710)) 69)) (-3023 ((|#2| |#2| |#2| (-710)) 67)) (-3278 ((|#2| |#2| |#2|) 111 (|has| |#1| (-427)))) (-3746 (((-1168 |#2|) (-1168 |#2|) |#1|) 21)) (-3462 (((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2|) 39)) (-3958 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3549 |#1|)) |#2|) 95)) (-3549 ((|#1| |#2|) 92)) (-3768 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710)) 73)) (-3606 ((|#2| |#2| |#2| (-710)) 72)) (-3360 (((-589 |#2|) |#2| |#2|) 80)) (-3500 ((|#2| |#2| |#1| |#1| (-710)) 50)) (-4048 ((|#1| |#1| |#1| (-710)) 49)) (* (((-1168 |#2|) |#1| (-1168 |#2|)) 16))) +(((-899 |#1| |#2|) (-10 -7 (-15 -3078 (|#1| |#2| |#2|)) (-15 -3126 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|)) (-15 -3563 ((-2 (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|)) (-15 -4146 ((-2 (|:| |coef1| |#2|) (|:| -3078 |#1|)) |#2| |#2|)) (-15 -3023 (|#2| |#2| |#2| (-710))) (-15 -1799 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -3473 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -3606 (|#2| |#2| |#2| (-710))) (-15 -3768 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -2191 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -1611 (|#2| |#2| |#2|)) (-15 -1302 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1551 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2407 (|#2| |#2| |#2|)) (-15 -2470 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3278 |#2|)) |#2| |#2|)) (-15 -2693 ((-2 (|:| |coef2| |#2|) (|:| -3278 |#2|)) |#2| |#2|)) (-15 -3535 ((-2 (|:| |coef1| |#2|) (|:| -3278 |#2|)) |#2| |#2|)) (-15 -3549 (|#1| |#2|)) (-15 -3958 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3549 |#1|)) |#2|)) (-15 -3733 ((-2 (|:| |coef2| |#2|) (|:| -3549 |#1|)) |#2|)) (-15 -3360 ((-589 |#2|) |#2| |#2|)) (-15 -2913 ((-589 (-710)) |#2| |#2|)) (IF (|has| |#1| (-427)) (PROGN (-15 -4117 (|#1| |#2| |#2|)) (-15 -3479 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2| |#2|)) (-15 -1310 ((-2 (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2| |#2|)) (-15 -3278 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1168 |#2|) |#1| (-1168 |#2|))) (-15 -3746 ((-1168 |#2|) (-1168 |#2|) |#1|)) (-15 -2815 ((-2 (|:| -2935 |#1|) (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2|)) (-15 -3462 ((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2|)) (-15 -4048 (|#1| |#1| |#1| (-710))) (-15 -3500 (|#2| |#2| |#1| |#1| (-710))) (-15 -1582 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3310 (|#1| |#2| |#2|)) (-15 -1879 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|)) (-15 -2183 ((-2 (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|))) (-515) (-1144 |#1|)) (T -899)) +((-2183 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3078 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-1879 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3078 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-3310 (*1 *2 *3 *3) (-12 (-4 *2 (-515)) (-5 *1 (-899 *2 *3)) (-4 *3 (-1144 *2)))) (-1582 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1144 *3)))) (-3500 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-710)) (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1144 *3)))) (-4048 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-710)) (-4 *2 (-515)) (-5 *1 (-899 *2 *4)) (-4 *4 (-1144 *2)))) (-3462 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-2815 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| -2935 *4) (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-3746 (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-515)) (-5 *1 (-899 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1168 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-515)) (-5 *1 (-899 *3 *4)))) (-3278 (*1 *2 *2 *2) (-12 (-4 *3 (-427)) (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1144 *3)))) (-1310 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4117 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-3479 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4117 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-4117 (*1 *2 *3 *3) (-12 (-4 *2 (-515)) (-4 *2 (-427)) (-5 *1 (-899 *2 *3)) (-4 *3 (-1144 *2)))) (-2913 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-589 (-710))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-3360 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-589 *3)) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3549 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-3958 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3549 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-3549 (*1 *2 *3) (-12 (-4 *2 (-515)) (-5 *1 (-899 *2 *3)) (-4 *3 (-1144 *2)))) (-3535 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3278 *3))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-2693 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3278 *3))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-2470 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3278 *3))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-2407 (*1 *2 *2 *2) (-12 (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1144 *3)))) (-1551 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-1302 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-1611 (*1 *2 *2 *2) (-12 (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1144 *3)))) (-2191 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-899 *5 *3)) (-4 *3 (-1144 *5)))) (-3768 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-899 *5 *3)) (-4 *3 (-1144 *5)))) (-3606 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-515)) (-5 *1 (-899 *4 *2)) (-4 *2 (-1144 *4)))) (-3473 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-899 *5 *3)) (-4 *3 (-1144 *5)))) (-1799 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-899 *5 *3)) (-4 *3 (-1144 *5)))) (-3023 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-515)) (-5 *1 (-899 *4 *2)) (-4 *2 (-1144 *4)))) (-4146 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3078 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-3563 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3078 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-3126 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3078 *4))) (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) (-3078 (*1 *2 *3 *3) (-12 (-4 *2 (-515)) (-5 *1 (-899 *2 *3)) (-4 *3 (-1144 *2))))) +(-10 -7 (-15 -3078 (|#1| |#2| |#2|)) (-15 -3126 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|)) (-15 -3563 ((-2 (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|)) (-15 -4146 ((-2 (|:| |coef1| |#2|) (|:| -3078 |#1|)) |#2| |#2|)) (-15 -3023 (|#2| |#2| |#2| (-710))) (-15 -1799 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -3473 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -3606 (|#2| |#2| |#2| (-710))) (-15 -3768 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -2191 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-710))) (-15 -1611 (|#2| |#2| |#2|)) (-15 -1302 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1551 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2407 (|#2| |#2| |#2|)) (-15 -2470 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3278 |#2|)) |#2| |#2|)) (-15 -2693 ((-2 (|:| |coef2| |#2|) (|:| -3278 |#2|)) |#2| |#2|)) (-15 -3535 ((-2 (|:| |coef1| |#2|) (|:| -3278 |#2|)) |#2| |#2|)) (-15 -3549 (|#1| |#2|)) (-15 -3958 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3549 |#1|)) |#2|)) (-15 -3733 ((-2 (|:| |coef2| |#2|) (|:| -3549 |#1|)) |#2|)) (-15 -3360 ((-589 |#2|) |#2| |#2|)) (-15 -2913 ((-589 (-710)) |#2| |#2|)) (IF (|has| |#1| (-427)) (PROGN (-15 -4117 (|#1| |#2| |#2|)) (-15 -3479 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2| |#2|)) (-15 -1310 ((-2 (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2| |#2|)) (-15 -3278 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1168 |#2|) |#1| (-1168 |#2|))) (-15 -3746 ((-1168 |#2|) (-1168 |#2|) |#1|)) (-15 -2815 ((-2 (|:| -2935 |#1|) (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2|)) (-15 -3462 ((-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) |#2| |#2|)) (-15 -4048 (|#1| |#1| |#1| (-710))) (-15 -3500 (|#2| |#2| |#1| |#1| (-710))) (-15 -1582 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3310 (|#1| |#2| |#2|)) (-15 -1879 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|)) (-15 -2183 ((-2 (|:| |coef2| |#2|) (|:| -3078 |#1|)) |#2| |#2|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) 27)) (-2518 (($) NIL T CONST)) (-2325 (((-589 (-589 (-523))) (-589 (-523))) 29)) (-2464 (((-523) $) 45)) (-4199 (($ (-589 (-523))) 17)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3663 (((-589 (-523)) $) 11)) (-3208 (($ $) 32)) (-1458 (((-794) $) 43) (((-589 (-523)) $) 9)) (-2756 (($) 7 T CONST)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 20)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 19)) (-4075 (($ $ $) 21)) (* (($ (-710) $) 25) (($ (-852) $) NIL))) +(((-900) (-13 (-734) (-564 (-589 (-523))) (-10 -8 (-15 -4199 ($ (-589 (-523)))) (-15 -2325 ((-589 (-589 (-523))) (-589 (-523)))) (-15 -2464 ((-523) $)) (-15 -3208 ($ $)) (-15 -1458 ((-589 (-523)) $))))) (T -900)) +((-4199 (*1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-900)))) (-2325 (*1 *2 *3) (-12 (-5 *2 (-589 (-589 (-523)))) (-5 *1 (-900)) (-5 *3 (-589 (-523))))) (-2464 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-900)))) (-3208 (*1 *1 *1) (-5 *1 (-900))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-900))))) +(-13 (-734) (-564 (-589 (-523))) (-10 -8 (-15 -4199 ($ (-589 (-523)))) (-15 -2325 ((-589 (-589 (-523))) (-589 (-523)))) (-15 -2464 ((-523) $)) (-15 -3208 ($ $)) (-15 -1458 ((-589 (-523)) $)))) +((-4098 (($ $ |#2|) 30)) (-4087 (($ $) 22) (($ $ $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-383 (-523)) $) 26) (($ $ (-383 (-523))) 28))) +(((-901 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -4098 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) (-902 |#2| |#3| |#4|) (-973) (-731) (-786)) (T -901)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-383 (-523)))) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 -4098 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 * (|#1| (-852) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1957 (((-589 |#3|) $) 74)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3345 (($ $) 52 (|has| |#1| (-515)))) (-3331 (((-108) $) 54 (|has| |#1| (-515)))) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3810 (($ $) 60)) (-2121 (((-3 $ "failed") $) 34)) (-2003 (((-108) $) 73)) (-2023 (((-108) $) 31)) (-2620 (((-108) $) 62)) (-1933 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-589 |#3|) (-589 |#2|)) 75)) (-3612 (($ (-1 |#1| |#1|) $) 63)) (-3774 (($ $) 65)) (-3786 ((|#1| $) 66)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3746 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-2299 ((|#2| $) 64)) (-1353 (($ $) 72)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515))) (($ |#1|) 47 (|has| |#1| (-158)))) (-2365 ((|#1| $ |#2|) 59)) (-3901 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 53 (|has| |#1| (-515)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 58 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) +(((-902 |#1| |#2| |#3|) (-129) (-973) (-731) (-786)) (T -902)) +((-3786 (*1 *2 *1) (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *3 (-731)) (-4 *4 (-786)) (-4 *2 (-973)))) (-3774 (*1 *1 *1) (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-731)) (-4 *4 (-786)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *2 *4)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *2 (-731)))) (-1933 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-902 *4 *3 *2)) (-4 *4 (-973)) (-4 *3 (-731)) (-4 *2 (-786)))) (-1933 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 *6)) (-5 *3 (-589 *5)) (-4 *1 (-902 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-731)) (-4 *6 (-786)))) (-1957 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-731)) (-4 *5 (-786)) (-5 *2 (-589 *5)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-731)) (-4 *5 (-786)) (-5 *2 (-108)))) (-1353 (*1 *1 *1) (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-731)) (-4 *4 (-786))))) +(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -1933 ($ $ |t#3| |t#2|)) (-15 -1933 ($ $ (-589 |t#3|) (-589 |t#2|))) (-15 -3774 ($ $)) (-15 -3786 (|t#1| $)) (-15 -2299 (|t#2| $)) (-15 -1957 ((-589 |t#3|) $)) (-15 -2003 ((-108) $)) (-15 -1353 ($ $)))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) |has| |#1| (-515)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-267) |has| |#1| (-515)) ((-515) |has| |#1| (-515)) ((-591 #0#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #0#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) |has| |#1| (-515)) ((-666) . T) ((-979 #0#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-2842 (((-1011 (-203)) $) 8)) (-2831 (((-1011 (-203)) $) 9)) (-2817 (((-1011 (-203)) $) 10)) (-4068 (((-589 (-589 (-874 (-203)))) $) 11)) (-1458 (((-794) $) 6))) +(((-903) (-129)) (T -903)) +((-4068 (*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-589 (-589 (-874 (-203))))))) (-2817 (*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-1011 (-203))))) (-2831 (*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-1011 (-203))))) (-2842 (*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-1011 (-203)))))) +(-13 (-563 (-794)) (-10 -8 (-15 -4068 ((-589 (-589 (-874 (-203)))) $)) (-15 -2817 ((-1011 (-203)) $)) (-15 -2831 ((-1011 (-203)) $)) (-15 -2842 ((-1011 (-203)) $)))) +(((-563 (-794)) . T)) +((-1957 (((-589 |#4|) $) 23)) (-2100 (((-108) $) 48)) (-2376 (((-108) $) 47)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#4|) 36)) (-3595 (((-108) $) 49)) (-4017 (((-108) $ $) 55)) (-3225 (((-108) $ $) 58)) (-3393 (((-108) $) 53)) (-3956 (((-589 |#5|) (-589 |#5|) $) 90)) (-2771 (((-589 |#5|) (-589 |#5|) $) 87)) (-3282 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-4055 (((-589 |#4|) $) 27)) (-1357 (((-108) |#4| $) 30)) (-1644 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-2621 (($ $ |#4|) 33)) (-2624 (($ $ |#4|) 32)) (-3076 (($ $ |#4|) 34)) (-3983 (((-108) $ $) 40))) +(((-904 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2376 ((-108) |#1|)) (-15 -3956 ((-589 |#5|) (-589 |#5|) |#1|)) (-15 -2771 ((-589 |#5|) (-589 |#5|) |#1|)) (-15 -3282 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1644 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3595 ((-108) |#1|)) (-15 -3225 ((-108) |#1| |#1|)) (-15 -4017 ((-108) |#1| |#1|)) (-15 -3393 ((-108) |#1|)) (-15 -2100 ((-108) |#1|)) (-15 -3974 ((-2 (|:| |under| |#1|) (|:| -3722 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2621 (|#1| |#1| |#4|)) (-15 -3076 (|#1| |#1| |#4|)) (-15 -2624 (|#1| |#1| |#4|)) (-15 -1357 ((-108) |#4| |#1|)) (-15 -4055 ((-589 |#4|) |#1|)) (-15 -1957 ((-589 |#4|) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) (-905 |#2| |#3| |#4| |#5|) (-973) (-732) (-786) (-987 |#2| |#3| |#4|)) (T -904)) +NIL +(-10 -8 (-15 -2376 ((-108) |#1|)) (-15 -3956 ((-589 |#5|) (-589 |#5|) |#1|)) (-15 -2771 ((-589 |#5|) (-589 |#5|) |#1|)) (-15 -3282 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1644 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3595 ((-108) |#1|)) (-15 -3225 ((-108) |#1| |#1|)) (-15 -4017 ((-108) |#1| |#1|)) (-15 -3393 ((-108) |#1|)) (-15 -2100 ((-108) |#1|)) (-15 -3974 ((-2 (|:| |under| |#1|) (|:| -3722 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2621 (|#1| |#1| |#4|)) (-15 -3076 (|#1| |#1| |#4|)) (-15 -2624 (|#1| |#1| |#4|)) (-15 -1357 ((-108) |#4| |#1|)) (-15 -4055 ((-589 |#4|) |#1|)) (-15 -1957 ((-589 |#4|) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) +((-3924 (((-108) $ $) 7)) (-1957 (((-589 |#3|) $) 33)) (-2100 (((-108) $) 26)) (-2376 (((-108) $) 17 (|has| |#1| (-515)))) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) 27)) (-3079 (((-108) $ (-710)) 44)) (-3724 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4244)))) (-2518 (($) 45 T CONST)) (-3595 (((-108) $) 22 (|has| |#1| (-515)))) (-4017 (((-108) $ $) 24 (|has| |#1| (-515)))) (-3225 (((-108) $ $) 23 (|has| |#1| (-515)))) (-3393 (((-108) $) 25 (|has| |#1| (-515)))) (-3956 (((-589 |#4|) (-589 |#4|) $) 18 (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) 19 (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) 36)) (-3474 (($ (-589 |#4|)) 35)) (-1773 (($ $) 68 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#4| $) 67 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-515)))) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4244)))) (-1666 (((-589 |#4|) $) 52 (|has| $ (-6 -4244)))) (-2907 ((|#3| $) 34)) (-2346 (((-108) $ (-710)) 43)) (-2136 (((-589 |#4|) $) 53 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) 47)) (-4055 (((-589 |#3|) $) 32)) (-1357 (((-108) |#3| $) 31)) (-2866 (((-108) $ (-710)) 42)) (-3779 (((-1070) $) 9)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-515)))) (-2783 (((-1034) $) 10)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-1327 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) 59 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) 57 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) 56 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) 38)) (-3883 (((-108) $) 41)) (-3988 (($) 40)) (-2792 (((-710) |#4| $) 54 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4244)))) (-1664 (($ $) 39)) (-3663 (((-499) $) 69 (|has| |#4| (-564 (-499))))) (-1472 (($ (-589 |#4|)) 60)) (-2621 (($ $ |#3|) 28)) (-2624 (($ $ |#3|) 30)) (-3076 (($ $ |#3|) 29)) (-1458 (((-794) $) 11) (((-589 |#4|) $) 37)) (-2096 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 6)) (-2676 (((-710) $) 46 (|has| $ (-6 -4244))))) +(((-905 |#1| |#2| |#3| |#4|) (-129) (-973) (-732) (-786) (-987 |t#1| |t#2| |t#3|)) (T -905)) +((-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *1 (-905 *3 *4 *5 *6)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *1 (-905 *3 *4 *5 *6)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-987 *3 *4 *2)) (-4 *2 (-786)))) (-1957 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *5)))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *5)))) (-1357 (*1 *2 *3 *1) (-12 (-4 *1 (-905 *4 *5 *3 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-4 *6 (-987 *4 *5 *3)) (-5 *2 (-108)))) (-2624 (*1 *1 *1 *2) (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)) (-4 *5 (-987 *3 *4 *2)))) (-3076 (*1 *1 *1 *2) (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)) (-4 *5 (-987 *3 *4 *2)))) (-2621 (*1 *1 *1 *2) (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)) (-4 *5 (-987 *3 *4 *2)))) (-3974 (*1 *2 *1 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-4 *6 (-987 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3722 *1) (|:| |upper| *1))) (-4 *1 (-905 *4 *5 *3 *6)))) (-2100 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) (-3393 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-5 *2 (-108)))) (-4017 (*1 *2 *1 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-5 *2 (-108)))) (-3225 (*1 *2 *1 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-5 *2 (-108)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-5 *2 (-108)))) (-1644 (*1 *2 *3 *1) (-12 (-4 *1 (-905 *4 *5 *6 *3)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-4 *4 (-515)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3282 (*1 *2 *3 *1) (-12 (-4 *1 (-905 *4 *5 *6 *3)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-4 *4 (-515)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2771 (*1 *2 *2 *1) (-12 (-5 *2 (-589 *6)) (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)))) (-3956 (*1 *2 *2 *1) (-12 (-5 *2 (-589 *6)) (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-5 *2 (-108))))) +(-13 (-1016) (-140 |t#4|) (-563 (-589 |t#4|)) (-10 -8 (-6 -4244) (-15 -3517 ((-3 $ "failed") (-589 |t#4|))) (-15 -3474 ($ (-589 |t#4|))) (-15 -2907 (|t#3| $)) (-15 -1957 ((-589 |t#3|) $)) (-15 -4055 ((-589 |t#3|) $)) (-15 -1357 ((-108) |t#3| $)) (-15 -2624 ($ $ |t#3|)) (-15 -3076 ($ $ |t#3|)) (-15 -2621 ($ $ |t#3|)) (-15 -3974 ((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |t#3|)) (-15 -2100 ((-108) $)) (IF (|has| |t#1| (-515)) (PROGN (-15 -3393 ((-108) $)) (-15 -4017 ((-108) $ $)) (-15 -3225 ((-108) $ $)) (-15 -3595 ((-108) $)) (-15 -1644 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3282 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2771 ((-589 |t#4|) (-589 |t#4|) $)) (-15 -3956 ((-589 |t#4|) (-589 |t#4|) $)) (-15 -2376 ((-108) $))) |%noBranch|))) +(((-33) . T) ((-97) . T) ((-563 (-589 |#4|)) . T) ((-563 (-794)) . T) ((-140 |#4|) . T) ((-564 (-499)) |has| |#4| (-564 (-499))) ((-286 |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-462 |#4|) . T) ((-484 |#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-1016) . T) ((-1122) . T)) +((-1482 (((-589 |#4|) |#4| |#4|) 115)) (-1667 (((-589 |#4|) (-589 |#4|) (-108)) 104 (|has| |#1| (-427))) (((-589 |#4|) (-589 |#4|)) 105 (|has| |#1| (-427)))) (-2222 (((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|)) 35)) (-3416 (((-108) |#4|) 34)) (-1337 (((-589 |#4|) |#4|) 101 (|has| |#1| (-427)))) (-1977 (((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-1 (-108) |#4|) (-589 |#4|)) 20)) (-3802 (((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 (-1 (-108) |#4|)) (-589 |#4|)) 22)) (-2458 (((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 (-1 (-108) |#4|)) (-589 |#4|)) 23)) (-2047 (((-3 (-2 (|:| |bas| (-451 |#1| |#2| |#3| |#4|)) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|)) 73)) (-1626 (((-589 |#4|) (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-1756 (((-589 |#4|) (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 108)) (-2229 (((-589 |#4|) (-589 |#4|)) 107)) (-2886 (((-589 |#4|) (-589 |#4|) (-589 |#4|) (-108)) 48) (((-589 |#4|) (-589 |#4|) (-589 |#4|)) 50)) (-3836 ((|#4| |#4| (-589 |#4|)) 49)) (-1522 (((-589 |#4|) (-589 |#4|) (-589 |#4|)) 111 (|has| |#1| (-427)))) (-3621 (((-589 |#4|) (-589 |#4|) (-589 |#4|)) 114 (|has| |#1| (-427)))) (-3049 (((-589 |#4|) (-589 |#4|) (-589 |#4|)) 113 (|has| |#1| (-427)))) (-3864 (((-589 |#4|) (-589 |#4|) (-589 |#4|) (-1 (-589 |#4|) (-589 |#4|))) 87) (((-589 |#4|) (-589 |#4|) (-589 |#4|)) 89) (((-589 |#4|) (-589 |#4|) |#4|) 118) (((-589 |#4|) |#4| |#4|) 116) (((-589 |#4|) (-589 |#4|)) 88)) (-1450 (((-589 |#4|) (-589 |#4|) (-589 |#4|)) 98 (-12 (|has| |#1| (-136)) (|has| |#1| (-284))))) (-3364 (((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|)) 41)) (-1530 (((-108) (-589 |#4|)) 62)) (-3133 (((-108) (-589 |#4|) (-589 (-589 |#4|))) 53)) (-3803 (((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|)) 29)) (-2715 (((-108) |#4|) 28)) (-2359 (((-589 |#4|) (-589 |#4|)) 97 (-12 (|has| |#1| (-136)) (|has| |#1| (-284))))) (-1631 (((-589 |#4|) (-589 |#4|)) 96 (-12 (|has| |#1| (-136)) (|has| |#1| (-284))))) (-2004 (((-589 |#4|) (-589 |#4|)) 66)) (-3307 (((-589 |#4|) (-589 |#4|)) 79)) (-2220 (((-108) (-589 |#4|) (-589 |#4|)) 51)) (-3081 (((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|)) 39)) (-1380 (((-108) |#4|) 36))) +(((-906 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3864 ((-589 |#4|) (-589 |#4|))) (-15 -3864 ((-589 |#4|) |#4| |#4|)) (-15 -2229 ((-589 |#4|) (-589 |#4|))) (-15 -1482 ((-589 |#4|) |#4| |#4|)) (-15 -3864 ((-589 |#4|) (-589 |#4|) |#4|)) (-15 -3864 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -3864 ((-589 |#4|) (-589 |#4|) (-589 |#4|) (-1 (-589 |#4|) (-589 |#4|)))) (-15 -2220 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -3133 ((-108) (-589 |#4|) (-589 (-589 |#4|)))) (-15 -1530 ((-108) (-589 |#4|))) (-15 -1977 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-1 (-108) |#4|) (-589 |#4|))) (-15 -3802 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 (-1 (-108) |#4|)) (-589 |#4|))) (-15 -2458 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 (-1 (-108) |#4|)) (-589 |#4|))) (-15 -3364 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -3416 ((-108) |#4|)) (-15 -2222 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -2715 ((-108) |#4|)) (-15 -3803 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -1380 ((-108) |#4|)) (-15 -3081 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -2886 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -2886 ((-589 |#4|) (-589 |#4|) (-589 |#4|) (-108))) (-15 -3836 (|#4| |#4| (-589 |#4|))) (-15 -2004 ((-589 |#4|) (-589 |#4|))) (-15 -2047 ((-3 (-2 (|:| |bas| (-451 |#1| |#2| |#3| |#4|)) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|))) (-15 -3307 ((-589 |#4|) (-589 |#4|))) (-15 -1626 ((-589 |#4|) (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1756 ((-589 |#4|) (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-427)) (PROGN (-15 -1337 ((-589 |#4|) |#4|)) (-15 -1667 ((-589 |#4|) (-589 |#4|))) (-15 -1667 ((-589 |#4|) (-589 |#4|) (-108))) (-15 -1522 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -3049 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -3621 ((-589 |#4|) (-589 |#4|) (-589 |#4|)))) |%noBranch|) (IF (|has| |#1| (-284)) (IF (|has| |#1| (-136)) (PROGN (-15 -1631 ((-589 |#4|) (-589 |#4|))) (-15 -2359 ((-589 |#4|) (-589 |#4|))) (-15 -1450 ((-589 |#4|) (-589 |#4|) (-589 |#4|)))) |%noBranch|) |%noBranch|)) (-515) (-732) (-786) (-987 |#1| |#2| |#3|)) (T -906)) +((-1450 (*1 *2 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-136)) (-4 *3 (-284)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-2359 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-136)) (-4 *3 (-284)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-1631 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-136)) (-4 *3 (-284)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-3621 (*1 *2 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-3049 (*1 *2 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-1522 (*1 *2 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-1667 (*1 *2 *2 *3) (-12 (-5 *2 (-589 *7)) (-5 *3 (-108)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-906 *4 *5 *6 *7)))) (-1667 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-1337 (*1 *2 *3) (-12 (-4 *4 (-427)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *3)) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6)))) (-1756 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-589 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-906 *5 *6 *7 *8)))) (-1626 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-589 *9)) (-5 *3 (-1 (-108) *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-987 *6 *7 *8)) (-4 *6 (-515)) (-4 *7 (-732)) (-4 *8 (-786)) (-5 *1 (-906 *6 *7 *8 *9)))) (-3307 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-2047 (*1 *2 *3) (|partial| -12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-451 *4 *5 *6 *7)) (|:| -3125 (-589 *7)))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-2004 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-3836 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-906 *4 *5 *6 *2)))) (-2886 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-589 *7)) (-5 *3 (-108)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-906 *4 *5 *6 *7)))) (-2886 (*1 *2 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-3081 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-1380 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6)))) (-3803 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-2715 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6)))) (-2222 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-3416 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6)))) (-3364 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) (-2458 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-1 (-108) *8))) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-2 (|:| |goodPols| (-589 *8)) (|:| |badPols| (-589 *8)))) (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-589 *8)))) (-3802 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-1 (-108) *8))) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-2 (|:| |goodPols| (-589 *8)) (|:| |badPols| (-589 *8)))) (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-589 *8)))) (-1977 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-2 (|:| |goodPols| (-589 *8)) (|:| |badPols| (-589 *8)))) (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-589 *8)))) (-1530 (*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-906 *4 *5 *6 *7)))) (-3133 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-589 *8))) (-5 *3 (-589 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-108)) (-5 *1 (-906 *5 *6 *7 *8)))) (-2220 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-906 *4 *5 *6 *7)))) (-3864 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-589 *7) (-589 *7))) (-5 *2 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-906 *4 *5 *6 *7)))) (-3864 (*1 *2 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-3864 (*1 *2 *2 *3) (-12 (-5 *2 (-589 *3)) (-4 *3 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-906 *4 *5 *6 *3)))) (-1482 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *3)) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6)))) (-2229 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) (-3864 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *3)) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6)))) (-3864 (*1 *2 *2) (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6))))) +(-10 -7 (-15 -3864 ((-589 |#4|) (-589 |#4|))) (-15 -3864 ((-589 |#4|) |#4| |#4|)) (-15 -2229 ((-589 |#4|) (-589 |#4|))) (-15 -1482 ((-589 |#4|) |#4| |#4|)) (-15 -3864 ((-589 |#4|) (-589 |#4|) |#4|)) (-15 -3864 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -3864 ((-589 |#4|) (-589 |#4|) (-589 |#4|) (-1 (-589 |#4|) (-589 |#4|)))) (-15 -2220 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -3133 ((-108) (-589 |#4|) (-589 (-589 |#4|)))) (-15 -1530 ((-108) (-589 |#4|))) (-15 -1977 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-1 (-108) |#4|) (-589 |#4|))) (-15 -3802 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 (-1 (-108) |#4|)) (-589 |#4|))) (-15 -2458 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 (-1 (-108) |#4|)) (-589 |#4|))) (-15 -3364 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -3416 ((-108) |#4|)) (-15 -2222 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -2715 ((-108) |#4|)) (-15 -3803 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -1380 ((-108) |#4|)) (-15 -3081 ((-2 (|:| |goodPols| (-589 |#4|)) (|:| |badPols| (-589 |#4|))) (-589 |#4|))) (-15 -2886 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -2886 ((-589 |#4|) (-589 |#4|) (-589 |#4|) (-108))) (-15 -3836 (|#4| |#4| (-589 |#4|))) (-15 -2004 ((-589 |#4|) (-589 |#4|))) (-15 -2047 ((-3 (-2 (|:| |bas| (-451 |#1| |#2| |#3| |#4|)) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|))) (-15 -3307 ((-589 |#4|) (-589 |#4|))) (-15 -1626 ((-589 |#4|) (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1756 ((-589 |#4|) (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-427)) (PROGN (-15 -1337 ((-589 |#4|) |#4|)) (-15 -1667 ((-589 |#4|) (-589 |#4|))) (-15 -1667 ((-589 |#4|) (-589 |#4|) (-108))) (-15 -1522 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -3049 ((-589 |#4|) (-589 |#4|) (-589 |#4|))) (-15 -3621 ((-589 |#4|) (-589 |#4|) (-589 |#4|)))) |%noBranch|) (IF (|has| |#1| (-284)) (IF (|has| |#1| (-136)) (PROGN (-15 -1631 ((-589 |#4|) (-589 |#4|))) (-15 -2359 ((-589 |#4|) (-589 |#4|))) (-15 -1450 ((-589 |#4|) (-589 |#4|) (-589 |#4|)))) |%noBranch|) |%noBranch|)) +((-4078 (((-2 (|:| R (-629 |#1|)) (|:| A (-629 |#1|)) (|:| |Ainv| (-629 |#1|))) (-629 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-3432 (((-589 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1168 |#1|)))) (-629 |#1|) (-1168 |#1|)) 36)) (-3492 (((-629 |#1|) (-629 |#1|) (-629 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16))) +(((-907 |#1|) (-10 -7 (-15 -4078 ((-2 (|:| R (-629 |#1|)) (|:| A (-629 |#1|)) (|:| |Ainv| (-629 |#1|))) (-629 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3492 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3432 ((-589 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1168 |#1|)))) (-629 |#1|) (-1168 |#1|)))) (-339)) (T -907)) +((-3432 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-5 *2 (-589 (-2 (|:| C (-629 *5)) (|:| |g| (-1168 *5))))) (-5 *1 (-907 *5)) (-5 *3 (-629 *5)) (-5 *4 (-1168 *5)))) (-3492 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-629 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-339)) (-5 *1 (-907 *5)))) (-4078 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-339)) (-5 *2 (-2 (|:| R (-629 *6)) (|:| A (-629 *6)) (|:| |Ainv| (-629 *6)))) (-5 *1 (-907 *6)) (-5 *3 (-629 *6))))) +(-10 -7 (-15 -4078 ((-2 (|:| R (-629 |#1|)) (|:| A (-629 |#1|)) (|:| |Ainv| (-629 |#1|))) (-629 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3492 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3432 ((-589 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1168 |#1|)))) (-629 |#1|) (-1168 |#1|)))) +((-3614 (((-394 |#4|) |#4|) 47))) +(((-908 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3614 ((-394 |#4|) |#4|))) (-786) (-732) (-427) (-880 |#3| |#2| |#1|)) (T -908)) +((-3614 (*1 *2 *3) (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-427)) (-5 *2 (-394 *3)) (-5 *1 (-908 *4 *5 *6 *3)) (-4 *3 (-880 *6 *5 *4))))) +(-10 -7 (-15 -3614 ((-394 |#4|) |#4|))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-2821 (($ (-710)) 112 (|has| |#1| (-23)))) (-4207 (((-1173) $ (-523) (-523)) 40 (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4245))) (($ $) 88 (-12 (|has| |#1| (-786)) (|has| $ (-6 -4245))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) 8)) (-1641 ((|#1| $ (-523) |#1|) 52 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) 58 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-2867 (($ $) 90 (|has| $ (-6 -4245)))) (-3631 (($ $) 100)) (-1773 (($ $) 78 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#1| $) 77 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) 53 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 51)) (-1479 (((-523) (-1 (-108) |#1|) $) 97) (((-523) |#1| $) 96 (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) 95 (|has| |#1| (-1016)))) (-2388 (($ (-589 |#1|)) 118)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-1777 (((-629 |#1|) $ $) 105 (|has| |#1| (-973)))) (-3052 (($ (-710) |#1|) 69)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 43 (|has| (-523) (-786)))) (-2454 (($ $ $) 87 (|has| |#1| (-786)))) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 44 (|has| (-523) (-786)))) (-2062 (($ $ $) 86 (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3798 ((|#1| $) 102 (-12 (|has| |#1| (-973)) (|has| |#1| (-930))))) (-2866 (((-108) $ (-710)) 10)) (-2996 ((|#1| $) 103 (-12 (|has| |#1| (-973)) (|has| |#1| (-930))))) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) 60) (($ $ $ (-523)) 59)) (-2412 (((-589 (-523)) $) 46)) (-4135 (((-108) (-523) $) 47)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1738 ((|#1| $) 42 (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-4203 (($ $ |#1|) 41 (|has| $ (-6 -4245)))) (-4097 (($ $ (-589 |#1|)) 115)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ (-523) |#1|) 50) ((|#1| $ (-523)) 49) (($ $ (-1135 (-523))) 63)) (-3269 ((|#1| $ $) 106 (|has| |#1| (-973)))) (-3203 (((-852) $) 117)) (-1469 (($ $ (-523)) 62) (($ $ (-1135 (-523))) 61)) (-2240 (($ $ $) 104)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3160 (($ $ $ (-523)) 91 (|has| $ (-6 -4245)))) (-1664 (($ $) 13)) (-3663 (((-499) $) 79 (|has| |#1| (-564 (-499)))) (($ (-589 |#1|)) 116)) (-1472 (($ (-589 |#1|)) 70)) (-2326 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) 84 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 83 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-4030 (((-108) $ $) 85 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 82 (|has| |#1| (-786)))) (-4087 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4075 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-523) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-666))) (($ $ |#1|) 107 (|has| |#1| (-666)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-909 |#1|) (-129) (-973)) (T -909)) +((-2388 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-973)) (-4 *1 (-909 *3)))) (-3203 (*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-973)) (-5 *2 (-852)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-973)) (-4 *1 (-909 *3)))) (-2240 (*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-973)))) (-4097 (*1 *1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *1 (-909 *3)) (-4 *3 (-973))))) +(-13 (-1166 |t#1|) (-10 -8 (-15 -2388 ($ (-589 |t#1|))) (-15 -3203 ((-852) $)) (-15 -3663 ($ (-589 |t#1|))) (-15 -2240 ($ $ $)) (-15 -4097 ($ $ (-589 |t#1|))))) +(((-33) . T) ((-97) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-349 |#1|) . T) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-19 |#1|) . T) ((-786) |has| |#1| (-786)) ((-1016) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-1122) . T) ((-1166 |#1|) . T)) +((-3612 (((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)) 17))) +(((-910 |#1| |#2|) (-10 -7 (-15 -3612 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) (-973) (-973)) (T -910)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-973)) (-4 *6 (-973)) (-5 *2 (-874 *6)) (-5 *1 (-910 *5 *6))))) +(-10 -7 (-15 -3612 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) +((-1224 ((|#1| (-874 |#1|)) 13)) (-3638 ((|#1| (-874 |#1|)) 12)) (-2649 ((|#1| (-874 |#1|)) 11)) (-2342 ((|#1| (-874 |#1|)) 15)) (-2398 ((|#1| (-874 |#1|)) 21)) (-3902 ((|#1| (-874 |#1|)) 14)) (-2448 ((|#1| (-874 |#1|)) 16)) (-1804 ((|#1| (-874 |#1|)) 20)) (-2413 ((|#1| (-874 |#1|)) 19))) +(((-911 |#1|) (-10 -7 (-15 -2649 (|#1| (-874 |#1|))) (-15 -3638 (|#1| (-874 |#1|))) (-15 -1224 (|#1| (-874 |#1|))) (-15 -3902 (|#1| (-874 |#1|))) (-15 -2342 (|#1| (-874 |#1|))) (-15 -2448 (|#1| (-874 |#1|))) (-15 -2413 (|#1| (-874 |#1|))) (-15 -1804 (|#1| (-874 |#1|))) (-15 -2398 (|#1| (-874 |#1|)))) (-973)) (T -911)) +((-2398 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-2413 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-2342 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-1224 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-3638 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973)))) (-2649 (*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) +(-10 -7 (-15 -2649 (|#1| (-874 |#1|))) (-15 -3638 (|#1| (-874 |#1|))) (-15 -1224 (|#1| (-874 |#1|))) (-15 -3902 (|#1| (-874 |#1|))) (-15 -2342 (|#1| (-874 |#1|))) (-15 -2448 (|#1| (-874 |#1|))) (-15 -2413 (|#1| (-874 |#1|))) (-15 -1804 (|#1| (-874 |#1|))) (-15 -2398 (|#1| (-874 |#1|)))) +((-2977 (((-3 |#1| "failed") |#1|) 18)) (-1434 (((-3 |#1| "failed") |#1|) 6)) (-1742 (((-3 |#1| "failed") |#1|) 16)) (-2409 (((-3 |#1| "failed") |#1|) 4)) (-1542 (((-3 |#1| "failed") |#1|) 20)) (-3443 (((-3 |#1| "failed") |#1|) 8)) (-2054 (((-3 |#1| "failed") |#1| (-710)) 1)) (-4214 (((-3 |#1| "failed") |#1|) 3)) (-3214 (((-3 |#1| "failed") |#1|) 2)) (-2601 (((-3 |#1| "failed") |#1|) 21)) (-1378 (((-3 |#1| "failed") |#1|) 9)) (-3143 (((-3 |#1| "failed") |#1|) 19)) (-2838 (((-3 |#1| "failed") |#1|) 7)) (-2313 (((-3 |#1| "failed") |#1|) 17)) (-1591 (((-3 |#1| "failed") |#1|) 5)) (-1837 (((-3 |#1| "failed") |#1|) 24)) (-1947 (((-3 |#1| "failed") |#1|) 12)) (-1648 (((-3 |#1| "failed") |#1|) 22)) (-1908 (((-3 |#1| "failed") |#1|) 10)) (-2355 (((-3 |#1| "failed") |#1|) 26)) (-2609 (((-3 |#1| "failed") |#1|) 14)) (-3170 (((-3 |#1| "failed") |#1|) 27)) (-2107 (((-3 |#1| "failed") |#1|) 15)) (-1716 (((-3 |#1| "failed") |#1|) 25)) (-2718 (((-3 |#1| "failed") |#1|) 13)) (-1588 (((-3 |#1| "failed") |#1|) 23)) (-1955 (((-3 |#1| "failed") |#1|) 11))) +(((-912 |#1|) (-129) (-1108)) (T -912)) +((-3170 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-2355 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1716 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1837 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1588 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1648 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-2601 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1542 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-3143 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-2977 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-2313 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1742 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-2107 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-2609 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-2718 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1947 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1955 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1908 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1378 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-3443 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-2838 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1434 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-1591 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-2409 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-4214 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-3214 (*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108)))) (-2054 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-710)) (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(-13 (-10 -7 (-15 -2054 ((-3 |t#1| "failed") |t#1| (-710))) (-15 -3214 ((-3 |t#1| "failed") |t#1|)) (-15 -4214 ((-3 |t#1| "failed") |t#1|)) (-15 -2409 ((-3 |t#1| "failed") |t#1|)) (-15 -1591 ((-3 |t#1| "failed") |t#1|)) (-15 -1434 ((-3 |t#1| "failed") |t#1|)) (-15 -2838 ((-3 |t#1| "failed") |t#1|)) (-15 -3443 ((-3 |t#1| "failed") |t#1|)) (-15 -1378 ((-3 |t#1| "failed") |t#1|)) (-15 -1908 ((-3 |t#1| "failed") |t#1|)) (-15 -1955 ((-3 |t#1| "failed") |t#1|)) (-15 -1947 ((-3 |t#1| "failed") |t#1|)) (-15 -2718 ((-3 |t#1| "failed") |t#1|)) (-15 -2609 ((-3 |t#1| "failed") |t#1|)) (-15 -2107 ((-3 |t#1| "failed") |t#1|)) (-15 -1742 ((-3 |t#1| "failed") |t#1|)) (-15 -2313 ((-3 |t#1| "failed") |t#1|)) (-15 -2977 ((-3 |t#1| "failed") |t#1|)) (-15 -3143 ((-3 |t#1| "failed") |t#1|)) (-15 -1542 ((-3 |t#1| "failed") |t#1|)) (-15 -2601 ((-3 |t#1| "failed") |t#1|)) (-15 -1648 ((-3 |t#1| "failed") |t#1|)) (-15 -1588 ((-3 |t#1| "failed") |t#1|)) (-15 -1837 ((-3 |t#1| "failed") |t#1|)) (-15 -1716 ((-3 |t#1| "failed") |t#1|)) (-15 -2355 ((-3 |t#1| "failed") |t#1|)) (-15 -3170 ((-3 |t#1| "failed") |t#1|)))) +((-1939 ((|#4| |#4| (-589 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-1791 ((|#4| |#4| (-589 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-3612 ((|#4| (-1 |#4| (-883 |#1|)) |#4|) 30))) +(((-913 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1791 (|#4| |#4| |#3|)) (-15 -1791 (|#4| |#4| (-589 |#3|))) (-15 -1939 (|#4| |#4| |#3|)) (-15 -1939 (|#4| |#4| (-589 |#3|))) (-15 -3612 (|#4| (-1 |#4| (-883 |#1|)) |#4|))) (-973) (-732) (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)) (-15 -2700 ((-3 $ "failed") (-1087))))) (-880 (-883 |#1|) |#2| |#3|)) (T -913)) +((-3612 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-883 *4))) (-4 *4 (-973)) (-4 *2 (-880 (-883 *4) *5 *6)) (-4 *5 (-732)) (-4 *6 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)) (-15 -2700 ((-3 $ "failed") (-1087)))))) (-5 *1 (-913 *4 *5 *6 *2)))) (-1939 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *6)) (-4 *6 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)) (-15 -2700 ((-3 $ "failed") (-1087)))))) (-4 *4 (-973)) (-4 *5 (-732)) (-5 *1 (-913 *4 *5 *6 *2)) (-4 *2 (-880 (-883 *4) *5 *6)))) (-1939 (*1 *2 *2 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)) (-15 -2700 ((-3 $ "failed") (-1087)))))) (-5 *1 (-913 *4 *5 *3 *2)) (-4 *2 (-880 (-883 *4) *5 *3)))) (-1791 (*1 *2 *2 *3) (-12 (-5 *3 (-589 *6)) (-4 *6 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)) (-15 -2700 ((-3 $ "failed") (-1087)))))) (-4 *4 (-973)) (-4 *5 (-732)) (-5 *1 (-913 *4 *5 *6 *2)) (-4 *2 (-880 (-883 *4) *5 *6)))) (-1791 (*1 *2 *2 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)) (-15 -2700 ((-3 $ "failed") (-1087)))))) (-5 *1 (-913 *4 *5 *3 *2)) (-4 *2 (-880 (-883 *4) *5 *3))))) +(-10 -7 (-15 -1791 (|#4| |#4| |#3|)) (-15 -1791 (|#4| |#4| (-589 |#3|))) (-15 -1939 (|#4| |#4| |#3|)) (-15 -1939 (|#4| |#4| (-589 |#3|))) (-15 -3612 (|#4| (-1 |#4| (-883 |#1|)) |#4|))) +((-1524 ((|#2| |#3|) 34)) (-4029 (((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|) 71)) (-4158 (((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) 86))) +(((-914 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4158 ((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))))) (-15 -4029 ((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|)) (-15 -1524 (|#2| |#3|))) (-325) (-1144 |#1|) (-1144 |#2|) (-664 |#2| |#3|)) (T -914)) +((-1524 (*1 *2 *3) (-12 (-4 *3 (-1144 *2)) (-4 *2 (-1144 *4)) (-5 *1 (-914 *4 *2 *3 *5)) (-4 *4 (-325)) (-4 *5 (-664 *2 *3)))) (-4029 (*1 *2 *3) (-12 (-4 *4 (-325)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 *3)) (-5 *2 (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-5 *1 (-914 *4 *3 *5 *6)) (-4 *6 (-664 *3 *5)))) (-4158 (*1 *2) (-12 (-4 *3 (-325)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| -4041 (-629 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-629 *4)))) (-5 *1 (-914 *3 *4 *5 *6)) (-4 *6 (-664 *4 *5))))) +(-10 -7 (-15 -4158 ((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))))) (-15 -4029 ((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|)) (-15 -1524 (|#2| |#3|))) +((-2073 (((-916 (-383 (-523)) (-796 |#1|) (-218 |#2| (-710)) (-225 |#1| (-383 (-523)))) (-916 (-383 (-523)) (-796 |#1|) (-218 |#2| (-710)) (-225 |#1| (-383 (-523))))) 65))) +(((-915 |#1| |#2|) (-10 -7 (-15 -2073 ((-916 (-383 (-523)) (-796 |#1|) (-218 |#2| (-710)) (-225 |#1| (-383 (-523)))) (-916 (-383 (-523)) (-796 |#1|) (-218 |#2| (-710)) (-225 |#1| (-383 (-523))))))) (-589 (-1087)) (-710)) (T -915)) +((-2073 (*1 *2 *2) (-12 (-5 *2 (-916 (-383 (-523)) (-796 *3) (-218 *4 (-710)) (-225 *3 (-383 (-523))))) (-14 *3 (-589 (-1087))) (-14 *4 (-710)) (-5 *1 (-915 *3 *4))))) +(-10 -7 (-15 -2073 ((-916 (-383 (-523)) (-796 |#1|) (-218 |#2| (-710)) (-225 |#1| (-383 (-523)))) (-916 (-383 (-523)) (-796 |#1|) (-218 |#2| (-710)) (-225 |#1| (-383 (-523))))))) +((-3924 (((-108) $ $) NIL)) (-2688 (((-3 (-108) "failed") $) 67)) (-2267 (($ $) 35 (-12 (|has| |#1| (-136)) (|has| |#1| (-284))))) (-1404 (($ $ (-3 (-108) "failed")) 68)) (-2195 (($ (-589 |#4|) |#4|) 24)) (-3779 (((-1070) $) NIL)) (-3518 (($ $) 65)) (-2783 (((-1034) $) NIL)) (-3883 (((-108) $) 66)) (-3988 (($) 29)) (-3574 ((|#4| $) 70)) (-2450 (((-589 |#4|) $) 69)) (-1458 (((-794) $) 64)) (-3983 (((-108) $ $) NIL))) +(((-916 |#1| |#2| |#3| |#4|) (-13 (-1016) (-563 (-794)) (-10 -8 (-15 -3988 ($)) (-15 -2195 ($ (-589 |#4|) |#4|)) (-15 -2688 ((-3 (-108) "failed") $)) (-15 -1404 ($ $ (-3 (-108) "failed"))) (-15 -3883 ((-108) $)) (-15 -2450 ((-589 |#4|) $)) (-15 -3574 (|#4| $)) (-15 -3518 ($ $)) (IF (|has| |#1| (-284)) (IF (|has| |#1| (-136)) (-15 -2267 ($ $)) |%noBranch|) |%noBranch|))) (-427) (-786) (-732) (-880 |#1| |#3| |#2|)) (T -916)) +((-3988 (*1 *1) (-12 (-4 *2 (-427)) (-4 *3 (-786)) (-4 *4 (-732)) (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-880 *2 *4 *3)))) (-2195 (*1 *1 *2 *3) (-12 (-5 *2 (-589 *3)) (-4 *3 (-880 *4 *6 *5)) (-4 *4 (-427)) (-4 *5 (-786)) (-4 *6 (-732)) (-5 *1 (-916 *4 *5 *6 *3)))) (-2688 (*1 *2 *1) (|partial| -12 (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)) (-5 *2 (-108)) (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-880 *3 *5 *4)))) (-1404 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)) (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-880 *3 *5 *4)))) (-3883 (*1 *2 *1) (-12 (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)) (-5 *2 (-108)) (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-880 *3 *5 *4)))) (-2450 (*1 *2 *1) (-12 (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)) (-5 *2 (-589 *6)) (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-880 *3 *5 *4)))) (-3574 (*1 *2 *1) (-12 (-4 *2 (-880 *3 *5 *4)) (-5 *1 (-916 *3 *4 *5 *2)) (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)))) (-3518 (*1 *1 *1) (-12 (-4 *2 (-427)) (-4 *3 (-786)) (-4 *4 (-732)) (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-880 *2 *4 *3)))) (-2267 (*1 *1 *1) (-12 (-4 *2 (-136)) (-4 *2 (-284)) (-4 *2 (-427)) (-4 *3 (-786)) (-4 *4 (-732)) (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-880 *2 *4 *3))))) +(-13 (-1016) (-563 (-794)) (-10 -8 (-15 -3988 ($)) (-15 -2195 ($ (-589 |#4|) |#4|)) (-15 -2688 ((-3 (-108) "failed") $)) (-15 -1404 ($ $ (-3 (-108) "failed"))) (-15 -3883 ((-108) $)) (-15 -2450 ((-589 |#4|) $)) (-15 -3574 (|#4| $)) (-15 -3518 ($ $)) (IF (|has| |#1| (-284)) (IF (|has| |#1| (-136)) (-15 -2267 ($ $)) |%noBranch|) |%noBranch|))) +((-1718 (((-108) |#5| |#5|) 38)) (-1589 (((-108) |#5| |#5|) 52)) (-2683 (((-108) |#5| (-589 |#5|)) 74) (((-108) |#5| |#5|) 61)) (-2323 (((-108) (-589 |#4|) (-589 |#4|)) 58)) (-2998 (((-108) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) 63)) (-1255 (((-1173)) 33)) (-1304 (((-1173) (-1070) (-1070) (-1070)) 29)) (-2983 (((-589 |#5|) (-589 |#5|)) 81)) (-4008 (((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)))) 79)) (-2280 (((-589 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|)))) (-589 |#4|) (-589 |#5|) (-108) (-108)) 101)) (-2709 (((-108) |#5| |#5|) 47)) (-1475 (((-3 (-108) "failed") |#5| |#5|) 71)) (-3124 (((-108) (-589 |#4|) (-589 |#4|)) 57)) (-2724 (((-108) (-589 |#4|) (-589 |#4|)) 59)) (-2391 (((-108) (-589 |#4|) (-589 |#4|)) 60)) (-2353 (((-3 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|))) "failed") (-589 |#4|) |#5| (-589 |#4|) (-108) (-108) (-108) (-108) (-108)) 97)) (-1642 (((-589 |#5|) (-589 |#5|)) 43))) +(((-917 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1304 ((-1173) (-1070) (-1070) (-1070))) (-15 -1255 ((-1173))) (-15 -1718 ((-108) |#5| |#5|)) (-15 -1642 ((-589 |#5|) (-589 |#5|))) (-15 -2709 ((-108) |#5| |#5|)) (-15 -1589 ((-108) |#5| |#5|)) (-15 -2323 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -3124 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2724 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2391 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -1475 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2683 ((-108) |#5| |#5|)) (-15 -2683 ((-108) |#5| (-589 |#5|))) (-15 -2983 ((-589 |#5|) (-589 |#5|))) (-15 -2998 ((-108) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)))) (-15 -4008 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) (-15 -2280 ((-589 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|)))) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -2353 ((-3 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|))) "failed") (-589 |#4|) |#5| (-589 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-992 |#1| |#2| |#3| |#4|)) (T -917)) +((-2353 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| -1710 (-589 *9)) (|:| -3072 *4) (|:| |ineq| (-589 *9)))) (-5 *1 (-917 *6 *7 *8 *9 *4)) (-5 *3 (-589 *9)) (-4 *4 (-992 *6 *7 *8 *9)))) (-2280 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-589 *10)) (-5 *5 (-108)) (-4 *10 (-992 *6 *7 *8 *9)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) (-5 *2 (-589 (-2 (|:| -1710 (-589 *9)) (|:| -3072 *10) (|:| |ineq| (-589 *9))))) (-5 *1 (-917 *6 *7 *8 *9 *10)) (-5 *3 (-589 *9)))) (-4008 (*1 *2 *2) (-12 (-5 *2 (-589 (-2 (|:| |val| (-589 *6)) (|:| -3072 *7)))) (-4 *6 (-987 *3 *4 *5)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-917 *3 *4 *5 *6 *7)))) (-2998 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3072 *8))) (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *8)))) (-2983 (*1 *2 *2) (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *1 (-917 *3 *4 *5 *6 *7)))) (-2683 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *3)) (-4 *3 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-917 *5 *6 *7 *8 *3)))) (-2683 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-1475 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-2391 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-2724 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-3124 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-2323 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-1589 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-2709 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-1642 (*1 *2 *2) (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *1 (-917 *3 *4 *5 *6 *7)))) (-1718 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-1255 (*1 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) (-5 *1 (-917 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) (-1304 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) +(-10 -7 (-15 -1304 ((-1173) (-1070) (-1070) (-1070))) (-15 -1255 ((-1173))) (-15 -1718 ((-108) |#5| |#5|)) (-15 -1642 ((-589 |#5|) (-589 |#5|))) (-15 -2709 ((-108) |#5| |#5|)) (-15 -1589 ((-108) |#5| |#5|)) (-15 -2323 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -3124 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2724 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2391 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -1475 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2683 ((-108) |#5| |#5|)) (-15 -2683 ((-108) |#5| (-589 |#5|))) (-15 -2983 ((-589 |#5|) (-589 |#5|))) (-15 -2998 ((-108) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)))) (-15 -4008 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) (-15 -2280 ((-589 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|)))) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -2353 ((-3 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|))) "failed") (-589 |#4|) |#5| (-589 |#4|) (-108) (-108) (-108) (-108) (-108)))) +((-2700 (((-1087) $) 15)) (-1733 (((-1070) $) 16)) (-1915 (($ (-1087) (-1070)) 14)) (-1458 (((-794) $) 13))) +(((-918) (-13 (-563 (-794)) (-10 -8 (-15 -1915 ($ (-1087) (-1070))) (-15 -2700 ((-1087) $)) (-15 -1733 ((-1070) $))))) (T -918)) +((-1915 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1070)) (-5 *1 (-918)))) (-2700 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-918)))) (-1733 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-918))))) +(-13 (-563 (-794)) (-10 -8 (-15 -1915 ($ (-1087) (-1070))) (-15 -2700 ((-1087) $)) (-15 -1733 ((-1070) $)))) +((-3612 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-919 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 (|#4| (-1 |#2| |#1|) |#3|))) (-515) (-515) (-921 |#1|) (-921 |#2|)) (T -919)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-515)) (-4 *6 (-515)) (-4 *2 (-921 *6)) (-5 *1 (-919 *5 *6 *4 *2)) (-4 *4 (-921 *5))))) +(-10 -7 (-15 -3612 (|#4| (-1 |#2| |#1|) |#3|))) +((-3517 (((-3 |#2| "failed") $) NIL) (((-3 (-1087) "failed") $) 65) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 (-523) "failed") $) 95)) (-3474 ((|#2| $) NIL) (((-1087) $) 60) (((-383 (-523)) $) NIL) (((-523) $) 92)) (-2381 (((-629 (-523)) (-629 $)) NIL) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) 112) (((-629 |#2|) (-629 $)) 28)) (-4032 (($) 98)) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 74) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 83)) (-2531 (($ $) 10)) (-4058 (((-3 $ "failed") $) 20)) (-3612 (($ (-1 |#2| |#2|) $) 22)) (-2262 (($) 16)) (-2206 (($ $) 54)) (-3523 (($ $) NIL) (($ $ (-710)) NIL) (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3414 (($ $) 12)) (-3663 (((-823 (-523)) $) 69) (((-823 (-355)) $) 78) (((-499) $) 40) (((-355) $) 44) (((-203) $) 47)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) 90) (($ |#2|) NIL) (($ (-1087)) 57)) (-1621 (((-710)) 31)) (-4007 (((-108) $ $) 50))) +(((-920 |#1| |#2|) (-10 -8 (-15 -4007 ((-108) |#1| |#1|)) (-15 -2262 (|#1|)) (-15 -4058 ((-3 |#1| "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3663 ((-203) |#1|)) (-15 -3663 ((-355) |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3474 ((-1087) |#1|)) (-15 -3517 ((-3 (-1087) "failed") |#1|)) (-15 -1458 (|#1| (-1087))) (-15 -4032 (|#1|)) (-15 -2206 (|#1| |#1|)) (-15 -3414 (|#1| |#1|)) (-15 -2531 (|#1| |#1|)) (-15 -2130 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -2130 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -2381 ((-629 |#2|) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| |#1|)) (-15 -1458 (|#1| (-523))) (-15 -1621 ((-710))) (-15 -1458 ((-794) |#1|))) (-921 |#2|) (-515)) (T -920)) +((-1621 (*1 *2) (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-920 *3 *4)) (-4 *3 (-921 *4))))) +(-10 -8 (-15 -4007 ((-108) |#1| |#1|)) (-15 -2262 (|#1|)) (-15 -4058 ((-3 |#1| "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3663 ((-203) |#1|)) (-15 -3663 ((-355) |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3474 ((-1087) |#1|)) (-15 -3517 ((-3 (-1087) "failed") |#1|)) (-15 -1458 (|#1| (-1087))) (-15 -4032 (|#1|)) (-15 -2206 (|#1| |#1|)) (-15 -3414 (|#1| |#1|)) (-15 -2531 (|#1| |#1|)) (-15 -2130 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -2130 ((-820 (-523) |#1|) |#1| (-823 (-523)) (-820 (-523) |#1|))) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -2381 ((-629 |#2|) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| |#1|)) (-15 -1458 (|#1| (-523))) (-15 -1621 ((-710))) (-15 -1458 ((-794) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3458 ((|#1| $) 139 (|has| |#1| (-284)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-3156 (((-394 (-1083 $)) (-1083 $)) 130 (|has| |#1| (-840)))) (-2291 (($ $) 73)) (-3614 (((-394 $) $) 72)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 133 (|has| |#1| (-840)))) (-1387 (((-108) $ $) 59)) (-3671 (((-523) $) 120 (|has| |#1| (-759)))) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#1| "failed") $) 178) (((-3 (-1087) "failed") $) 128 (|has| |#1| (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) 112 (|has| |#1| (-964 (-523)))) (((-3 (-523) "failed") $) 110 (|has| |#1| (-964 (-523))))) (-3474 ((|#1| $) 177) (((-1087) $) 127 (|has| |#1| (-964 (-1087)))) (((-383 (-523)) $) 111 (|has| |#1| (-964 (-523)))) (((-523) $) 109 (|has| |#1| (-964 (-523))))) (-3796 (($ $ $) 55)) (-2381 (((-629 (-523)) (-629 $)) 152 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 151 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 150) (((-629 |#1|) (-629 $)) 149)) (-2121 (((-3 $ "failed") $) 34)) (-4032 (($) 137 (|has| |#1| (-508)))) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-2657 (((-108) $) 71)) (-2604 (((-108) $) 122 (|has| |#1| (-759)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 146 (|has| |#1| (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 145 (|has| |#1| (-817 (-355))))) (-2023 (((-108) $) 31)) (-2531 (($ $) 141)) (-2785 ((|#1| $) 143)) (-4058 (((-3 $ "failed") $) 108 (|has| |#1| (-1063)))) (-4114 (((-108) $) 121 (|has| |#1| (-759)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-2454 (($ $ $) 118 (|has| |#1| (-786)))) (-2062 (($ $ $) 117 (|has| |#1| (-786)))) (-3612 (($ (-1 |#1| |#1|) $) 169)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 70)) (-2262 (($) 107 (|has| |#1| (-1063)) CONST)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-2206 (($ $) 138 (|has| |#1| (-284)))) (-3722 ((|#1| $) 135 (|has| |#1| (-508)))) (-1219 (((-394 (-1083 $)) (-1083 $)) 132 (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) 131 (|has| |#1| (-840)))) (-1820 (((-394 $) $) 74)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-2679 (($ $ (-589 |#1|) (-589 |#1|)) 175 (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) 173 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) 172 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) 171 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) 170 (|has| |#1| (-484 (-1087) |#1|)))) (-1972 (((-710) $) 58)) (-3223 (($ $ |#1|) 176 (|has| |#1| (-263 |#1| |#1|)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-3523 (($ $) 168 (|has| |#1| (-211))) (($ $ (-710)) 166 (|has| |#1| (-211))) (($ $ (-1087)) 164 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 163 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 162 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 161 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-3414 (($ $) 140)) (-2797 ((|#1| $) 142)) (-3663 (((-823 (-523)) $) 148 (|has| |#1| (-564 (-823 (-523))))) (((-823 (-355)) $) 147 (|has| |#1| (-564 (-823 (-355))))) (((-499) $) 125 (|has| |#1| (-564 (-499)))) (((-355) $) 124 (|has| |#1| (-949))) (((-203) $) 123 (|has| |#1| (-949)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 134 (-4099 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65) (($ |#1|) 181) (($ (-1087)) 129 (|has| |#1| (-964 (-1087))))) (-3901 (((-3 $ "failed") $) 126 (-3262 (|has| |#1| (-134)) (-4099 (|has| $ (-134)) (|has| |#1| (-840)))))) (-1621 (((-710)) 29)) (-1886 ((|#1| $) 136 (|has| |#1| (-508)))) (-1704 (((-108) $ $) 39)) (-2619 (($ $) 119 (|has| |#1| (-759)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $) 167 (|has| |#1| (-211))) (($ $ (-710)) 165 (|has| |#1| (-211))) (($ $ (-1087)) 160 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 159 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 158 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 157 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-4043 (((-108) $ $) 115 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 114 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 116 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 113 (|has| |#1| (-786)))) (-4098 (($ $ $) 64) (($ |#1| |#1|) 144)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179))) +(((-921 |#1|) (-129) (-515)) (T -921)) +((-4098 (*1 *1 *2 *2) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)))) (-2785 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)))) (-2797 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)))) (-2531 (*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)))) (-3414 (*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-284)))) (-2206 (*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-284)))) (-4032 (*1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-508)) (-4 *2 (-515)))) (-1886 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-508)))) (-3722 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-508))))) +(-13 (-339) (-37 |t#1|) (-964 |t#1|) (-314 |t#1|) (-209 |t#1|) (-353 |t#1|) (-815 |t#1|) (-376 |t#1|) (-10 -8 (-15 -4098 ($ |t#1| |t#1|)) (-15 -2785 (|t#1| $)) (-15 -2797 (|t#1| $)) (-15 -2531 ($ $)) (-15 -3414 ($ $)) (IF (|has| |t#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |t#1| (-964 (-523))) (PROGN (-6 (-964 (-523))) (-6 (-964 (-383 (-523))))) |%noBranch|) (IF (|has| |t#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |t#1| (-759)) (-6 (-759)) |%noBranch|) (IF (|has| |t#1| (-949)) (-6 (-949)) |%noBranch|) (IF (|has| |t#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-964 (-1087))) (-6 (-964 (-1087))) |%noBranch|) (IF (|has| |t#1| (-284)) (PROGN (-15 -3458 (|t#1| $)) (-15 -2206 ($ $))) |%noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-15 -4032 ($)) (-15 -1886 (|t#1| $)) (-15 -3722 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-840)) (-6 (-840)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) . T) ((-564 (-203)) |has| |#1| (-949)) ((-564 (-355)) |has| |#1| (-949)) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-564 (-823 (-355))) |has| |#1| (-564 (-823 (-355)))) ((-564 (-823 (-523))) |has| |#1| (-564 (-823 (-523)))) ((-209 |#1|) . T) ((-211) |has| |#1| (-211)) ((-221) . T) ((-263 |#1| $) |has| |#1| (-263 |#1| |#1|)) ((-267) . T) ((-284) . T) ((-286 |#1|) |has| |#1| (-286 |#1|)) ((-339) . T) ((-314 |#1|) . T) ((-353 |#1|) . T) ((-376 |#1|) . T) ((-427) . T) ((-484 (-1087) |#1|) |has| |#1| (-484 (-1087) |#1|)) ((-484 |#1| |#1|) |has| |#1| (-286 |#1|)) ((-515) . T) ((-591 #0#) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #0#) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-666) . T) ((-730) |has| |#1| (-759)) ((-731) |has| |#1| (-759)) ((-733) |has| |#1| (-759)) ((-734) |has| |#1| (-759)) ((-759) |has| |#1| (-759)) ((-784) |has| |#1| (-759)) ((-786) -3262 (|has| |#1| (-786)) (|has| |#1| (-759))) ((-831 (-1087)) |has| |#1| (-831 (-1087))) ((-817 (-355)) |has| |#1| (-817 (-355))) ((-817 (-523)) |has| |#1| (-817 (-523))) ((-815 |#1|) . T) ((-840) |has| |#1| (-840)) ((-851) . T) ((-949) |has| |#1| (-949)) ((-964 (-383 (-523))) |has| |#1| (-964 (-523))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 (-1087)) |has| |#1| (-964 (-1087))) ((-964 |#1|) . T) ((-979 #0#) . T) ((-979 |#1|) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) |has| |#1| (-1063)) ((-1122) . T) ((-1126) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2009 (($ (-1054 |#1| |#2|)) 11)) (-3068 (((-1054 |#1| |#2|) $) 12)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3223 ((|#2| $ (-218 |#1| |#2|)) 16)) (-1458 (((-794) $) NIL)) (-2756 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL))) +(((-922 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2009 ($ (-1054 |#1| |#2|))) (-15 -3068 ((-1054 |#1| |#2|) $)) (-15 -3223 (|#2| $ (-218 |#1| |#2|))))) (-852) (-339)) (T -922)) +((-2009 (*1 *1 *2) (-12 (-5 *2 (-1054 *3 *4)) (-14 *3 (-852)) (-4 *4 (-339)) (-5 *1 (-922 *3 *4)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-1054 *3 *4)) (-5 *1 (-922 *3 *4)) (-14 *3 (-852)) (-4 *4 (-339)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-218 *4 *2)) (-14 *4 (-852)) (-4 *2 (-339)) (-5 *1 (-922 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -2009 ($ (-1054 |#1| |#2|))) (-15 -3068 ((-1054 |#1| |#2|) $)) (-15 -3223 (|#2| $ (-218 |#1| |#2|))))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) 8)) (-2518 (($) 7 T CONST)) (-3152 (($ $) 46)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-2996 (((-710) $) 45)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1934 ((|#1| $) 39)) (-3450 (($ |#1| $) 40)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1592 ((|#1| $) 44)) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1651 ((|#1| |#1| $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-1234 ((|#1| $) 47)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) 42)) (-1348 ((|#1| $) 43)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-923 |#1|) (-129) (-1122)) (T -923)) +((-1651 (*1 *2 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1122)))) (-1234 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1122)))) (-3152 (*1 *1 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1122)))) (-2996 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-710)))) (-1592 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1122)))) (-1348 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1122))))) +(-13 (-102 |t#1|) (-10 -8 (-6 -4244) (-15 -1651 (|t#1| |t#1| $)) (-15 -1234 (|t#1| $)) (-15 -3152 ($ $)) (-15 -2996 ((-710) $)) (-15 -1592 (|t#1| $)) (-15 -1348 (|t#1| $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) +((-2295 (((-108) $) 42)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3474 (((-523) $) NIL) (((-383 (-523)) $) NIL) ((|#2| $) 43)) (-3346 (((-3 (-383 (-523)) "failed") $) 78)) (-1292 (((-108) $) 72)) (-2146 (((-383 (-523)) $) 76)) (-2023 (((-108) $) 41)) (-3892 ((|#2| $) 22)) (-3612 (($ (-1 |#2| |#2|) $) 19)) (-3738 (($ $) 61)) (-3523 (($ $) NIL) (($ $ (-710)) NIL) (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3663 (((-499) $) 67)) (-3208 (($ $) 17)) (-1458 (((-794) $) 56) (($ (-523)) 38) (($ |#2|) 36) (($ (-383 (-523))) NIL)) (-1621 (((-710)) 10)) (-2619 ((|#2| $) 71)) (-3983 (((-108) $ $) 25)) (-4007 (((-108) $ $) 69)) (-4087 (($ $) 29) (($ $ $) 28)) (-4075 (($ $ $) 26)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL))) +(((-924 |#1| |#2|) (-10 -8 (-15 -1458 (|#1| (-383 (-523)))) (-15 -4007 ((-108) |#1| |#1|)) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 * (|#1| |#1| (-383 (-523)))) (-15 -3738 (|#1| |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3346 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -2146 ((-383 (-523)) |#1|)) (-15 -1292 ((-108) |#1|)) (-15 -2619 (|#2| |#1|)) (-15 -3892 (|#2| |#1|)) (-15 -3208 (|#1| |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -1458 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 -1621 ((-710))) (-15 -2023 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 -2295 ((-108) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -4075 (|#1| |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) (-925 |#2|) (-158)) (T -924)) +((-1621 (*1 *2) (-12 (-4 *4 (-158)) (-5 *2 (-710)) (-5 *1 (-924 *3 *4)) (-4 *3 (-925 *4))))) +(-10 -8 (-15 -1458 (|#1| (-383 (-523)))) (-15 -4007 ((-108) |#1| |#1|)) (-15 * (|#1| (-383 (-523)) |#1|)) (-15 * (|#1| |#1| (-383 (-523)))) (-15 -3738 (|#1| |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3346 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -2146 ((-383 (-523)) |#1|)) (-15 -1292 ((-108) |#1|)) (-15 -2619 (|#2| |#1|)) (-15 -3892 (|#2| |#1|)) (-15 -3208 (|#1| |#1|)) (-15 -3612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -1458 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1458 (|#1| (-523))) (-15 -1621 ((-710))) (-15 -2023 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 * (|#1| (-710) |#1|)) (-15 -2295 ((-108) |#1|)) (-15 * (|#1| (-852) |#1|)) (-15 -4075 (|#1| |#1| |#1|)) (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3517 (((-3 (-523) "failed") $) 119 (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 117 (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) 116)) (-3474 (((-523) $) 120 (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) 118 (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) 115)) (-2381 (((-629 (-523)) (-629 $)) 90 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 89 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 88) (((-629 |#1|) (-629 $)) 87)) (-2121 (((-3 $ "failed") $) 34)) (-1842 ((|#1| $) 80)) (-3346 (((-3 (-383 (-523)) "failed") $) 76 (|has| |#1| (-508)))) (-1292 (((-108) $) 78 (|has| |#1| (-508)))) (-2146 (((-383 (-523)) $) 77 (|has| |#1| (-508)))) (-1311 (($ |#1| |#1| |#1| |#1|) 81)) (-2023 (((-108) $) 31)) (-3892 ((|#1| $) 82)) (-2454 (($ $ $) 68 (|has| |#1| (-786)))) (-2062 (($ $ $) 67 (|has| |#1| (-786)))) (-3612 (($ (-1 |#1| |#1|) $) 91)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 73 (|has| |#1| (-339)))) (-1401 ((|#1| $) 83)) (-3972 ((|#1| $) 84)) (-1605 ((|#1| $) 85)) (-2783 (((-1034) $) 10)) (-2679 (($ $ (-589 |#1|) (-589 |#1|)) 97 (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) 95 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) 94 (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) 93 (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) 92 (|has| |#1| (-484 (-1087) |#1|)))) (-3223 (($ $ |#1|) 98 (|has| |#1| (-263 |#1| |#1|)))) (-3523 (($ $) 114 (|has| |#1| (-211))) (($ $ (-710)) 112 (|has| |#1| (-211))) (($ $ (-1087)) 110 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 109 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 108 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 107 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-3663 (((-499) $) 74 (|has| |#1| (-564 (-499))))) (-3208 (($ $) 86)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 37) (($ (-383 (-523))) 62 (-3262 (|has| |#1| (-339)) (|has| |#1| (-964 (-383 (-523))))))) (-3901 (((-3 $ "failed") $) 75 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-2619 ((|#1| $) 79 (|has| |#1| (-982)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 72 (|has| |#1| (-339)))) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $) 113 (|has| |#1| (-211))) (($ $ (-710)) 111 (|has| |#1| (-211))) (($ $ (-1087)) 106 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 105 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 104 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 103 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-4043 (((-108) $ $) 65 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 64 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 66 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 63 (|has| |#1| (-786)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 71 (|has| |#1| (-339)))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-383 (-523))) 70 (|has| |#1| (-339))) (($ (-383 (-523)) $) 69 (|has| |#1| (-339))))) +(((-925 |#1|) (-129) (-158)) (T -925)) +((-3208 (*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) (-1605 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) (-1401 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) (-1311 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) (-2619 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)) (-4 *2 (-982)))) (-1292 (*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-108)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-383 (-523))))) (-3346 (*1 *2 *1) (|partial| -12 (-4 *1 (-925 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-383 (-523)))))) +(-13 (-37 |t#1|) (-387 |t#1|) (-209 |t#1|) (-314 |t#1|) (-353 |t#1|) (-10 -8 (-15 -3208 ($ $)) (-15 -1605 (|t#1| $)) (-15 -3972 (|t#1| $)) (-15 -1401 (|t#1| $)) (-15 -3892 (|t#1| $)) (-15 -1311 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1842 (|t#1| $)) (IF (|has| |t#1| (-267)) (-6 (-267)) |%noBranch|) (IF (|has| |t#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |t#1| (-339)) (-6 (-221)) |%noBranch|) (IF (|has| |t#1| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-982)) (-15 -2619 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-15 -1292 ((-108) $)) (-15 -2146 ((-383 (-523)) $)) (-15 -3346 ((-3 (-383 (-523)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-339)) ((-37 |#1|) . T) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-339)) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-339)) (|has| |#1| (-267))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-209 |#1|) . T) ((-211) |has| |#1| (-211)) ((-221) |has| |#1| (-339)) ((-263 |#1| $) |has| |#1| (-263 |#1| |#1|)) ((-267) -3262 (|has| |#1| (-339)) (|has| |#1| (-267))) ((-286 |#1|) |has| |#1| (-286 |#1|)) ((-314 |#1|) . T) ((-353 |#1|) . T) ((-387 |#1|) . T) ((-484 (-1087) |#1|) |has| |#1| (-484 (-1087) |#1|)) ((-484 |#1| |#1|) |has| |#1| (-286 |#1|)) ((-591 #0#) |has| |#1| (-339)) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #0#) |has| |#1| (-339)) ((-657 |#1|) . T) ((-666) . T) ((-786) |has| |#1| (-786)) ((-831 (-1087)) |has| |#1| (-831 (-1087))) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-979 #0#) |has| |#1| (-339)) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-339)) (|has| |#1| (-267))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-3612 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-926 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 (|#3| (-1 |#4| |#2|) |#1|))) (-925 |#2|) (-158) (-925 |#4|) (-158)) (T -926)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-158)) (-4 *6 (-158)) (-4 *2 (-925 *6)) (-5 *1 (-926 *4 *5 *2 *6)) (-4 *4 (-925 *5))))) +(-10 -7 (-15 -3612 (|#3| (-1 |#4| |#2|) |#1|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-1842 ((|#1| $) 12)) (-3346 (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-508)))) (-1292 (((-108) $) NIL (|has| |#1| (-508)))) (-2146 (((-383 (-523)) $) NIL (|has| |#1| (-508)))) (-1311 (($ |#1| |#1| |#1| |#1|) 16)) (-2023 (((-108) $) NIL)) (-3892 ((|#1| $) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| |#1| (-339)))) (-1401 ((|#1| $) 15)) (-3972 ((|#1| $) 14)) (-1605 ((|#1| $) 13)) (-2783 (((-1034) $) NIL)) (-2679 (($ $ (-589 |#1|) (-589 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-286 |#1|))) (($ $ (-271 |#1|)) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-271 |#1|))) NIL (|has| |#1| (-286 |#1|))) (($ $ (-589 (-1087)) (-589 |#1|)) NIL (|has| |#1| (-484 (-1087) |#1|))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-484 (-1087) |#1|)))) (-3223 (($ $ |#1|) NIL (|has| |#1| (-263 |#1| |#1|)))) (-3523 (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-3208 (($ $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-339)) (|has| |#1| (-964 (-383 (-523))))))) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-2619 ((|#1| $) NIL (|has| |#1| (-982)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) 8 T CONST)) (-2767 (($) 10 T CONST)) (-2862 (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-383 (-523))) NIL (|has| |#1| (-339))) (($ (-383 (-523)) $) NIL (|has| |#1| (-339))))) +(((-927 |#1|) (-925 |#1|) (-158)) (T -927)) +NIL +(-925 |#1|) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3079 (((-108) $ (-710)) NIL)) (-2518 (($) NIL T CONST)) (-3152 (($ $) 20)) (-3468 (($ (-589 |#1|)) 29)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-2996 (((-710) $) 22)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1934 ((|#1| $) 24)) (-3450 (($ |#1| $) 15)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1592 ((|#1| $) 23)) (-3761 ((|#1| $) 19)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1651 ((|#1| |#1| $) 14)) (-3883 (((-108) $) 17)) (-3988 (($) NIL)) (-1234 ((|#1| $) 18)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) NIL)) (-1348 ((|#1| $) 26)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-928 |#1|) (-13 (-923 |#1|) (-10 -8 (-15 -3468 ($ (-589 |#1|))))) (-1016)) (T -928)) +((-3468 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-928 *3))))) +(-13 (-923 |#1|) (-10 -8 (-15 -3468 ($ (-589 |#1|))))) +((-1832 (($ $) 12)) (-1420 (($ $ (-523)) 13))) +(((-929 |#1|) (-10 -8 (-15 -1832 (|#1| |#1|)) (-15 -1420 (|#1| |#1| (-523)))) (-930)) (T -929)) +NIL +(-10 -8 (-15 -1832 (|#1| |#1|)) (-15 -1420 (|#1| |#1| (-523)))) +((-1832 (($ $) 6)) (-1420 (($ $ (-523)) 7)) (** (($ $ (-383 (-523))) 8))) +(((-930) (-129)) (T -930)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-383 (-523))))) (-1420 (*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-523)))) (-1832 (*1 *1 *1) (-4 *1 (-930)))) +(-13 (-10 -8 (-15 -1832 ($ $)) (-15 -1420 ($ $ (-523))) (-15 ** ($ $ (-383 (-523)))))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1207 (((-2 (|:| |num| (-1168 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| (-383 |#2|) (-339)))) (-3345 (($ $) NIL (|has| (-383 |#2|) (-339)))) (-3331 (((-108) $) NIL (|has| (-383 |#2|) (-339)))) (-3750 (((-629 (-383 |#2|)) (-1168 $)) NIL) (((-629 (-383 |#2|))) NIL)) (-4187 (((-383 |#2|) $) NIL)) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| (-383 |#2|) (-325)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL (|has| (-383 |#2|) (-339)))) (-3614 (((-394 $) $) NIL (|has| (-383 |#2|) (-339)))) (-1387 (((-108) $ $) NIL (|has| (-383 |#2|) (-339)))) (-1703 (((-710)) NIL (|has| (-383 |#2|) (-344)))) (-2957 (((-108)) NIL)) (-2898 (((-108) |#1|) 147) (((-108) |#2|) 152)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| (-383 |#2|) (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-383 |#2|) (-964 (-383 (-523))))) (((-3 (-383 |#2|) "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| (-383 |#2|) (-964 (-523)))) (((-383 (-523)) $) NIL (|has| (-383 |#2|) (-964 (-383 (-523))))) (((-383 |#2|) $) NIL)) (-3409 (($ (-1168 (-383 |#2|)) (-1168 $)) NIL) (($ (-1168 (-383 |#2|))) 70) (($ (-1168 |#2|) |#2|) NIL)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-383 |#2|) (-325)))) (-3796 (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-4079 (((-629 (-383 |#2|)) $ (-1168 $)) NIL) (((-629 (-383 |#2|)) $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| (-383 |#2|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| (-383 |#2|) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-383 |#2|))) (|:| |vec| (-1168 (-383 |#2|)))) (-629 $) (-1168 $)) NIL) (((-629 (-383 |#2|)) (-629 $)) NIL)) (-2851 (((-1168 $) (-1168 $)) NIL)) (-2437 (($ |#3|) 65) (((-3 $ "failed") (-383 |#3|)) NIL (|has| (-383 |#2|) (-339)))) (-2121 (((-3 $ "failed") $) NIL)) (-4072 (((-589 (-589 |#1|))) NIL (|has| |#1| (-344)))) (-1374 (((-108) |#1| |#1|) NIL)) (-1319 (((-852)) NIL)) (-4032 (($) NIL (|has| (-383 |#2|) (-344)))) (-4189 (((-108)) NIL)) (-2539 (((-108) |#1|) 56) (((-108) |#2|) 149)) (-3769 (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| (-383 |#2|) (-339)))) (-2528 (($ $) NIL)) (-1996 (($) NIL (|has| (-383 |#2|) (-325)))) (-2155 (((-108) $) NIL (|has| (-383 |#2|) (-325)))) (-1991 (($ $ (-710)) NIL (|has| (-383 |#2|) (-325))) (($ $) NIL (|has| (-383 |#2|) (-325)))) (-2657 (((-108) $) NIL (|has| (-383 |#2|) (-339)))) (-1640 (((-852) $) NIL (|has| (-383 |#2|) (-325))) (((-772 (-852)) $) NIL (|has| (-383 |#2|) (-325)))) (-2023 (((-108) $) NIL)) (-3552 (((-710)) NIL)) (-1215 (((-1168 $) (-1168 $)) NIL)) (-3892 (((-383 |#2|) $) NIL)) (-3844 (((-589 (-883 |#1|)) (-1087)) NIL (|has| |#1| (-339)))) (-4058 (((-3 $ "failed") $) NIL (|has| (-383 |#2|) (-325)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| (-383 |#2|) (-339)))) (-1397 ((|#3| $) NIL (|has| (-383 |#2|) (-339)))) (-2072 (((-852) $) NIL (|has| (-383 |#2|) (-344)))) (-2428 ((|#3| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| (-383 |#2|) (-339))) (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-3779 (((-1070) $) NIL)) (-1467 (((-629 (-383 |#2|))) 52)) (-2860 (((-629 (-383 |#2|))) 51)) (-3738 (($ $) NIL (|has| (-383 |#2|) (-339)))) (-2764 (($ (-1168 |#2|) |#2|) 71)) (-1535 (((-629 (-383 |#2|))) 50)) (-3603 (((-629 (-383 |#2|))) 49)) (-3807 (((-2 (|:| |num| (-629 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-4077 (((-2 (|:| |num| (-1168 |#2|)) (|:| |den| |#2|)) $) 77)) (-3496 (((-1168 $)) 46)) (-4158 (((-1168 $)) 45)) (-3613 (((-108) $) NIL)) (-4181 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-2262 (($) NIL (|has| (-383 |#2|) (-325)) CONST)) (-3878 (($ (-852)) NIL (|has| (-383 |#2|) (-344)))) (-2779 (((-3 |#2| "failed")) 63)) (-2783 (((-1034) $) NIL)) (-3204 (((-710)) NIL)) (-3441 (($) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| (-383 |#2|) (-339)))) (-3278 (($ (-589 $)) NIL (|has| (-383 |#2|) (-339))) (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| (-383 |#2|) (-325)))) (-1820 (((-394 $) $) NIL (|has| (-383 |#2|) (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-383 |#2|) (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| (-383 |#2|) (-339)))) (-3746 (((-3 $ "failed") $ $) NIL (|has| (-383 |#2|) (-339)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| (-383 |#2|) (-339)))) (-1972 (((-710) $) NIL (|has| (-383 |#2|) (-339)))) (-3223 ((|#1| $ |#1| |#1|) NIL)) (-3308 (((-3 |#2| "failed")) 62)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| (-383 |#2|) (-339)))) (-3549 (((-383 |#2|) (-1168 $)) NIL) (((-383 |#2|)) 42)) (-2974 (((-710) $) NIL (|has| (-383 |#2|) (-325))) (((-3 (-710) "failed") $ $) NIL (|has| (-383 |#2|) (-325)))) (-3523 (($ $ (-1 (-383 |#2|) (-383 |#2|)) (-710)) NIL (|has| (-383 |#2|) (-339))) (($ $ (-1 (-383 |#2|) (-383 |#2|))) NIL (|has| (-383 |#2|) (-339))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-710)) NIL (-3262 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325)))) (($ $) NIL (-3262 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325))))) (-1976 (((-629 (-383 |#2|)) (-1168 $) (-1 (-383 |#2|) (-383 |#2|))) NIL (|has| (-383 |#2|) (-339)))) (-3727 ((|#3|) 53)) (-3425 (($) NIL (|has| (-383 |#2|) (-325)))) (-2966 (((-1168 (-383 |#2|)) $ (-1168 $)) NIL) (((-629 (-383 |#2|)) (-1168 $) (-1168 $)) NIL) (((-1168 (-383 |#2|)) $) 72) (((-629 (-383 |#2|)) (-1168 $)) NIL)) (-3663 (((-1168 (-383 |#2|)) $) NIL) (($ (-1168 (-383 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| (-383 |#2|) (-325)))) (-4110 (((-1168 $) (-1168 $)) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 |#2|)) NIL) (($ (-383 (-523))) NIL (-3262 (|has| (-383 |#2|) (-964 (-383 (-523)))) (|has| (-383 |#2|) (-339)))) (($ $) NIL (|has| (-383 |#2|) (-339)))) (-3901 (($ $) NIL (|has| (-383 |#2|) (-325))) (((-3 $ "failed") $) NIL (|has| (-383 |#2|) (-134)))) (-1807 ((|#3| $) NIL)) (-1621 (((-710)) NIL)) (-2423 (((-108)) 60)) (-2691 (((-108) |#1|) 153) (((-108) |#2|) 154)) (-4041 (((-1168 $)) 124)) (-1704 (((-108) $ $) NIL (|has| (-383 |#2|) (-339)))) (-1451 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1323 (((-108)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| (-383 |#2|) (-339)))) (-2756 (($) 94 T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-1 (-383 |#2|) (-383 |#2|)) (-710)) NIL (|has| (-383 |#2|) (-339))) (($ $ (-1 (-383 |#2|) (-383 |#2|))) NIL (|has| (-383 |#2|) (-339))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| (-383 |#2|) (-339)) (|has| (-383 |#2|) (-831 (-1087))))) (($ $ (-710)) NIL (-3262 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325)))) (($ $) NIL (-3262 (-12 (|has| (-383 |#2|) (-211)) (|has| (-383 |#2|) (-339))) (|has| (-383 |#2|) (-325))))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ $) NIL (|has| (-383 |#2|) (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| (-383 |#2|) (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 |#2|)) NIL) (($ (-383 |#2|) $) NIL) (($ (-383 (-523)) $) NIL (|has| (-383 |#2|) (-339))) (($ $ (-383 (-523))) NIL (|has| (-383 |#2|) (-339))))) +(((-931 |#1| |#2| |#3| |#4| |#5|) (-318 |#1| |#2| |#3|) (-1126) (-1144 |#1|) (-1144 (-383 |#2|)) (-383 |#2|) (-710)) (T -931)) +NIL +(-318 |#1| |#2| |#3|) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3533 (((-589 (-523)) $) 54)) (-1862 (($ (-589 (-523))) 62)) (-3458 (((-523) $) 40 (|has| (-523) (-284)))) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL (|has| (-523) (-759)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) 49) (((-3 (-1087) "failed") $) NIL (|has| (-523) (-964 (-1087)))) (((-3 (-383 (-523)) "failed") $) 47 (|has| (-523) (-964 (-523)))) (((-3 (-523) "failed") $) 49 (|has| (-523) (-964 (-523))))) (-3474 (((-523) $) NIL) (((-1087) $) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) NIL (|has| (-523) (-964 (-523)))) (((-523) $) NIL (|has| (-523) (-964 (-523))))) (-3796 (($ $ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| (-523) (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-629 (-523)) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4032 (($) NIL (|has| (-523) (-508)))) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-1364 (((-589 (-523)) $) 60)) (-2604 (((-108) $) NIL (|has| (-523) (-759)))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (|has| (-523) (-817 (-523)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (|has| (-523) (-817 (-355))))) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL)) (-2785 (((-523) $) 37)) (-4058 (((-3 $ "failed") $) NIL (|has| (-523) (-1063)))) (-4114 (((-108) $) NIL (|has| (-523) (-759)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| (-523) (-786)))) (-3612 (($ (-1 (-523) (-523)) $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL)) (-2262 (($) NIL (|has| (-523) (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-2206 (($ $) NIL (|has| (-523) (-284))) (((-383 (-523)) $) 42)) (-2372 (((-1068 (-523)) $) 59)) (-2056 (($ (-589 (-523)) (-589 (-523))) 63)) (-3722 (((-523) $) 53 (|has| (-523) (-508)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| (-523) (-840)))) (-1820 (((-394 $) $) NIL)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2679 (($ $ (-589 (-523)) (-589 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-523) (-523)) NIL (|has| (-523) (-286 (-523)))) (($ $ (-271 (-523))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-271 (-523)))) NIL (|has| (-523) (-286 (-523)))) (($ $ (-589 (-1087)) (-589 (-523))) NIL (|has| (-523) (-484 (-1087) (-523)))) (($ $ (-1087) (-523)) NIL (|has| (-523) (-484 (-1087) (-523))))) (-1972 (((-710) $) NIL)) (-3223 (($ $ (-523)) NIL (|has| (-523) (-263 (-523) (-523))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $) 11 (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-3414 (($ $) NIL)) (-2797 (((-523) $) 39)) (-3766 (((-589 (-523)) $) 61)) (-3663 (((-823 (-523)) $) NIL (|has| (-523) (-564 (-823 (-523))))) (((-823 (-355)) $) NIL (|has| (-523) (-564 (-823 (-355))))) (((-499) $) NIL (|has| (-523) (-564 (-499)))) (((-355) $) NIL (|has| (-523) (-949))) (((-203) $) NIL (|has| (-523) (-949)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-523) (-840))))) (-1458 (((-794) $) 77) (($ (-523)) 43) (($ $) NIL) (($ (-383 (-523))) 19) (($ (-523)) 43) (($ (-1087)) NIL (|has| (-523) (-964 (-1087)))) (((-383 (-523)) $) 17)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| (-523) (-840))) (|has| (-523) (-134))))) (-1621 (((-710)) 9)) (-1886 (((-523) $) 51 (|has| (-523) (-508)))) (-1704 (((-108) $ $) NIL)) (-2619 (($ $) NIL (|has| (-523) (-759)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 10 T CONST)) (-2767 (($) 12 T CONST)) (-2862 (($ $) NIL (|has| (-523) (-211))) (($ $ (-710)) NIL (|has| (-523) (-211))) (($ $ (-1087)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| (-523) (-831 (-1087)))) (($ $ (-1 (-523) (-523)) (-710)) NIL) (($ $ (-1 (-523) (-523))) NIL)) (-4043 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4019 (((-108) $ $) NIL (|has| (-523) (-786)))) (-3983 (((-108) $ $) 14)) (-4030 (((-108) $ $) NIL (|has| (-523) (-786)))) (-4007 (((-108) $ $) 33 (|has| (-523) (-786)))) (-4098 (($ $ $) 29) (($ (-523) (-523)) 31)) (-4087 (($ $) 15) (($ $ $) 22)) (-4075 (($ $ $) 20)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 25) (($ $ $) 27) (($ $ (-383 (-523))) NIL) (($ (-383 (-523)) $) NIL) (($ (-523) $) 25) (($ $ (-523)) NIL))) +(((-932 |#1|) (-13 (-921 (-523)) (-10 -8 (-15 -1458 ((-383 (-523)) $)) (-15 -2206 ((-383 (-523)) $)) (-15 -3533 ((-589 (-523)) $)) (-15 -2372 ((-1068 (-523)) $)) (-15 -1364 ((-589 (-523)) $)) (-15 -3766 ((-589 (-523)) $)) (-15 -1862 ($ (-589 (-523)))) (-15 -2056 ($ (-589 (-523)) (-589 (-523)))))) (-523)) (T -932)) +((-1458 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) (-3533 (*1 *2 *1) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) (-2372 (*1 *2 *1) (-12 (-5 *2 (-1068 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) (-3766 (*1 *2 *1) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) (-1862 (*1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) (-2056 (*1 *1 *2 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523))))) +(-13 (-921 (-523)) (-10 -8 (-15 -1458 ((-383 (-523)) $)) (-15 -2206 ((-383 (-523)) $)) (-15 -3533 ((-589 (-523)) $)) (-15 -2372 ((-1068 (-523)) $)) (-15 -1364 ((-589 (-523)) $)) (-15 -3766 ((-589 (-523)) $)) (-15 -1862 ($ (-589 (-523)))) (-15 -2056 ($ (-589 (-523)) (-589 (-523)))))) +((-3483 (((-51) (-383 (-523)) (-523)) 9))) +(((-933) (-10 -7 (-15 -3483 ((-51) (-383 (-523)) (-523))))) (T -933)) +((-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-523))) (-5 *4 (-523)) (-5 *2 (-51)) (-5 *1 (-933))))) +(-10 -7 (-15 -3483 ((-51) (-383 (-523)) (-523)))) +((-1703 (((-523)) 13)) (-3135 (((-523)) 16)) (-4053 (((-1173) (-523)) 15)) (-2568 (((-523) (-523)) 17) (((-523)) 12))) +(((-934) (-10 -7 (-15 -2568 ((-523))) (-15 -1703 ((-523))) (-15 -2568 ((-523) (-523))) (-15 -4053 ((-1173) (-523))) (-15 -3135 ((-523))))) (T -934)) +((-3135 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-934)))) (-2568 (*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934)))) (-1703 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934)))) (-2568 (*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934))))) +(-10 -7 (-15 -2568 ((-523))) (-15 -1703 ((-523))) (-15 -2568 ((-523) (-523))) (-15 -4053 ((-1173) (-523))) (-15 -3135 ((-523)))) +((-3906 (((-394 |#1|) |#1|) 40)) (-1820 (((-394 |#1|) |#1|) 39))) +(((-935 |#1|) (-10 -7 (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3906 ((-394 |#1|) |#1|))) (-1144 (-383 (-523)))) (T -935)) +((-3906 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-935 *3)) (-4 *3 (-1144 (-383 (-523)))))) (-1820 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-935 *3)) (-4 *3 (-1144 (-383 (-523))))))) +(-10 -7 (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3906 ((-394 |#1|) |#1|))) +((-3346 (((-3 (-383 (-523)) "failed") |#1|) 14)) (-1292 (((-108) |#1|) 13)) (-2146 (((-383 (-523)) |#1|) 9))) +(((-936 |#1|) (-10 -7 (-15 -2146 ((-383 (-523)) |#1|)) (-15 -1292 ((-108) |#1|)) (-15 -3346 ((-3 (-383 (-523)) "failed") |#1|))) (-964 (-383 (-523)))) (T -936)) +((-3346 (*1 *2 *3) (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-936 *3)) (-4 *3 (-964 *2)))) (-1292 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-936 *3)) (-4 *3 (-964 (-383 (-523)))))) (-2146 (*1 *2 *3) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-936 *3)) (-4 *3 (-964 *2))))) +(-10 -7 (-15 -2146 ((-383 (-523)) |#1|)) (-15 -1292 ((-108) |#1|)) (-15 -3346 ((-3 (-383 (-523)) "failed") |#1|))) +((-1641 ((|#2| $ "value" |#2|) 12)) (-3223 ((|#2| $ "value") 10)) (-3653 (((-108) $ $) 18))) +(((-937 |#1| |#2|) (-10 -8 (-15 -1641 (|#2| |#1| "value" |#2|)) (-15 -3653 ((-108) |#1| |#1|)) (-15 -3223 (|#2| |#1| "value"))) (-938 |#2|) (-1122)) (T -937)) +NIL +(-10 -8 (-15 -1641 (|#2| |#1| "value" |#2|)) (-15 -3653 ((-108) |#1| |#1|)) (-15 -3223 (|#2| |#1| "value"))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1733 ((|#1| $) 48)) (-3079 (((-108) $ (-710)) 8)) (-1823 ((|#1| $ |#1|) 39 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 41 (|has| $ (-6 -4245)))) (-2518 (($) 7 T CONST)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) 50)) (-1238 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-2726 (((-589 |#1|) $) 45)) (-3555 (((-108) $) 49)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ "value") 47)) (-1549 (((-523) $ $) 44)) (-2524 (((-108) $) 46)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) 51)) (-3653 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-938 |#1|) (-129) (-1122)) (T -938)) +((-2296 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-5 *2 (-589 *1)) (-4 *1 (-938 *3)))) (-2645 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-5 *2 (-589 *1)) (-4 *1 (-938 *3)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-5 *2 (-108)))) (-1733 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-1122)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-938 *2)) (-4 *2 (-1122)))) (-2524 (*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-5 *2 (-108)))) (-2726 (*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-5 *2 (-589 *3)))) (-1549 (*1 *2 *1 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-5 *2 (-523)))) (-3653 (*1 *2 *1 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-4 *3 (-1016)) (-5 *2 (-108)))) (-1238 (*1 *2 *1 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-4 *3 (-1016)) (-5 *2 (-108)))) (-3100 (*1 *1 *1 *2) (-12 (-5 *2 (-589 *1)) (|has| *1 (-6 -4245)) (-4 *1 (-938 *3)) (-4 *3 (-1122)))) (-1641 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4245)) (-4 *1 (-938 *2)) (-4 *2 (-1122)))) (-1823 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-938 *2)) (-4 *2 (-1122))))) +(-13 (-462 |t#1|) (-10 -8 (-15 -2296 ((-589 $) $)) (-15 -2645 ((-589 $) $)) (-15 -3555 ((-108) $)) (-15 -1733 (|t#1| $)) (-15 -3223 (|t#1| $ "value")) (-15 -2524 ((-108) $)) (-15 -2726 ((-589 |t#1|) $)) (-15 -1549 ((-523) $ $)) (IF (|has| |t#1| (-1016)) (PROGN (-15 -3653 ((-108) $ $)) (-15 -1238 ((-108) $ $))) |%noBranch|) (IF (|has| $ (-6 -4245)) (PROGN (-15 -3100 ($ $ (-589 $))) (-15 -1641 (|t#1| $ "value" |t#1|)) (-15 -1823 (|t#1| $ |t#1|))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) +((-1832 (($ $) 9) (($ $ (-710)) 43) (($ (-383 (-523))) 12) (($ (-523)) 15)) (-3313 (((-3 $ "failed") (-1083 $) (-852) (-794)) 23) (((-3 $ "failed") (-1083 $) (-852)) 28)) (-1420 (($ $ (-523)) 49)) (-1621 (((-710)) 16)) (-1409 (((-589 $) (-1083 $)) NIL) (((-589 $) (-1083 (-383 (-523)))) 54) (((-589 $) (-1083 (-523))) 59) (((-589 $) (-883 $)) 63) (((-589 $) (-883 (-383 (-523)))) 67) (((-589 $) (-883 (-523))) 71)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL) (($ $ (-383 (-523))) 47))) +(((-939 |#1|) (-10 -8 (-15 -1832 (|#1| (-523))) (-15 -1832 (|#1| (-383 (-523)))) (-15 -1832 (|#1| |#1| (-710))) (-15 -1409 ((-589 |#1|) (-883 (-523)))) (-15 -1409 ((-589 |#1|) (-883 (-383 (-523))))) (-15 -1409 ((-589 |#1|) (-883 |#1|))) (-15 -1409 ((-589 |#1|) (-1083 (-523)))) (-15 -1409 ((-589 |#1|) (-1083 (-383 (-523))))) (-15 -1409 ((-589 |#1|) (-1083 |#1|))) (-15 -3313 ((-3 |#1| "failed") (-1083 |#1|) (-852))) (-15 -3313 ((-3 |#1| "failed") (-1083 |#1|) (-852) (-794))) (-15 ** (|#1| |#1| (-383 (-523)))) (-15 -1420 (|#1| |#1| (-523))) (-15 -1832 (|#1| |#1|)) (-15 ** (|#1| |#1| (-523))) (-15 -1621 ((-710))) (-15 ** (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-852)))) (-940)) (T -939)) +((-1621 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-939 *3)) (-4 *3 (-940))))) +(-10 -8 (-15 -1832 (|#1| (-523))) (-15 -1832 (|#1| (-383 (-523)))) (-15 -1832 (|#1| |#1| (-710))) (-15 -1409 ((-589 |#1|) (-883 (-523)))) (-15 -1409 ((-589 |#1|) (-883 (-383 (-523))))) (-15 -1409 ((-589 |#1|) (-883 |#1|))) (-15 -1409 ((-589 |#1|) (-1083 (-523)))) (-15 -1409 ((-589 |#1|) (-1083 (-383 (-523))))) (-15 -1409 ((-589 |#1|) (-1083 |#1|))) (-15 -3313 ((-3 |#1| "failed") (-1083 |#1|) (-852))) (-15 -3313 ((-3 |#1| "failed") (-1083 |#1|) (-852) (-794))) (-15 ** (|#1| |#1| (-383 (-523)))) (-15 -1420 (|#1| |#1| (-523))) (-15 -1832 (|#1| |#1|)) (-15 ** (|#1| |#1| (-523))) (-15 -1621 ((-710))) (-15 ** (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-852)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 89)) (-3345 (($ $) 90)) (-3331 (((-108) $) 92)) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 109)) (-3614 (((-394 $) $) 110)) (-1832 (($ $) 73) (($ $ (-710)) 59) (($ (-383 (-523))) 58) (($ (-523)) 57)) (-1387 (((-108) $ $) 100)) (-3671 (((-523) $) 127)) (-2518 (($) 17 T CONST)) (-3313 (((-3 $ "failed") (-1083 $) (-852) (-794)) 67) (((-3 $ "failed") (-1083 $) (-852)) 66)) (-3517 (((-3 (-523) "failed") $) 85 (|has| (-383 (-523)) (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 83 (|has| (-383 (-523)) (-964 (-383 (-523))))) (((-3 (-383 (-523)) "failed") $) 81)) (-3474 (((-523) $) 86 (|has| (-383 (-523)) (-964 (-523)))) (((-383 (-523)) $) 84 (|has| (-383 (-523)) (-964 (-383 (-523))))) (((-383 (-523)) $) 80)) (-1928 (($ $ (-794)) 56)) (-4206 (($ $ (-794)) 55)) (-3796 (($ $ $) 104)) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 103)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 98)) (-2657 (((-108) $) 111)) (-2604 (((-108) $) 125)) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 72)) (-4114 (((-108) $) 126)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 107)) (-2454 (($ $ $) 124)) (-2062 (($ $ $) 123)) (-2480 (((-3 (-1083 $) "failed") $) 68)) (-3191 (((-3 (-794) "failed") $) 70)) (-3109 (((-3 (-1083 $) "failed") $) 69)) (-3244 (($ (-589 $)) 96) (($ $ $) 95)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 112)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 97)) (-3278 (($ (-589 $)) 94) (($ $ $) 93)) (-1820 (((-394 $) $) 108)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 105)) (-3746 (((-3 $ "failed") $ $) 88)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 99)) (-1972 (((-710) $) 101)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 102)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 117) (($ $) 87) (($ (-383 (-523))) 82) (($ (-523)) 79) (($ (-383 (-523))) 76)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 91)) (-2562 (((-383 (-523)) $ $) 54)) (-1409 (((-589 $) (-1083 $)) 65) (((-589 $) (-1083 (-383 (-523)))) 64) (((-589 $) (-1083 (-523))) 63) (((-589 $) (-883 $)) 62) (((-589 $) (-883 (-383 (-523)))) 61) (((-589 $) (-883 (-523))) 60)) (-2619 (($ $) 128)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 113)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-4043 (((-108) $ $) 121)) (-4019 (((-108) $ $) 120)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 122)) (-4007 (((-108) $ $) 119)) (-4098 (($ $ $) 118)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 114) (($ $ (-383 (-523))) 71)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ (-383 (-523)) $) 116) (($ $ (-383 (-523))) 115) (($ (-523) $) 78) (($ $ (-523)) 77) (($ (-383 (-523)) $) 75) (($ $ (-383 (-523))) 74))) +(((-940) (-129)) (T -940)) +((-1832 (*1 *1 *1) (-4 *1 (-940))) (-3191 (*1 *2 *1) (|partial| -12 (-4 *1 (-940)) (-5 *2 (-794)))) (-3109 (*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-940)))) (-2480 (*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-940)))) (-3313 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-852)) (-5 *4 (-794)) (-4 *1 (-940)))) (-3313 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-852)) (-4 *1 (-940)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-940)) (-5 *2 (-589 *1)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-1083 (-383 (-523)))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-1083 (-523))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-883 *1)) (-4 *1 (-940)) (-5 *2 (-589 *1)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-883 (-383 (-523)))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-883 (-523))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) (-1832 (*1 *1 *1 *2) (-12 (-4 *1 (-940)) (-5 *2 (-710)))) (-1832 (*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-4 *1 (-940)))) (-1832 (*1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-940)))) (-1928 (*1 *1 *1 *2) (-12 (-4 *1 (-940)) (-5 *2 (-794)))) (-4206 (*1 *1 *1 *2) (-12 (-4 *1 (-940)) (-5 *2 (-794)))) (-2562 (*1 *2 *1 *1) (-12 (-4 *1 (-940)) (-5 *2 (-383 (-523)))))) +(-13 (-136) (-784) (-158) (-339) (-387 (-383 (-523))) (-37 (-523)) (-37 (-383 (-523))) (-930) (-10 -8 (-15 -3191 ((-3 (-794) "failed") $)) (-15 -3109 ((-3 (-1083 $) "failed") $)) (-15 -2480 ((-3 (-1083 $) "failed") $)) (-15 -3313 ((-3 $ "failed") (-1083 $) (-852) (-794))) (-15 -3313 ((-3 $ "failed") (-1083 $) (-852))) (-15 -1409 ((-589 $) (-1083 $))) (-15 -1409 ((-589 $) (-1083 (-383 (-523))))) (-15 -1409 ((-589 $) (-1083 (-523)))) (-15 -1409 ((-589 $) (-883 $))) (-15 -1409 ((-589 $) (-883 (-383 (-523))))) (-15 -1409 ((-589 $) (-883 (-523)))) (-15 -1832 ($ $ (-710))) (-15 -1832 ($ $)) (-15 -1832 ($ (-383 (-523)))) (-15 -1832 ($ (-523))) (-15 -1928 ($ $ (-794))) (-15 -4206 ($ $ (-794))) (-15 -2562 ((-383 (-523)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 #1=(-523)) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-124) . T) ((-136) . T) ((-563 (-794)) . T) ((-158) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-339) . T) ((-387 (-383 (-523))) . T) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 #1#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 #1#) . T) ((-657 $) . T) ((-666) . T) ((-730) . T) ((-731) . T) ((-733) . T) ((-734) . T) ((-784) . T) ((-786) . T) ((-851) . T) ((-930) . T) ((-964 (-383 (-523))) . T) ((-964 (-523)) |has| (-383 (-523)) (-964 (-523))) ((-979 #0#) . T) ((-979 #1#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) . T)) +((-2978 (((-2 (|:| |ans| |#2|) (|:| -3159 |#2|) (|:| |sol?| (-108))) (-523) |#2| |#2| (-1087) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-589 |#2|)) (-1 (-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 62))) +(((-941 |#1| |#2|) (-10 -7 (-15 -2978 ((-2 (|:| |ans| |#2|) (|:| -3159 |#2|) (|:| |sol?| (-108))) (-523) |#2| |#2| (-1087) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-589 |#2|)) (-1 (-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-1108) (-27) (-406 |#1|))) (T -941)) +((-2978 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1087)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-589 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2462 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1108) (-27) (-406 *8))) (-4 *8 (-13 (-427) (-786) (-136) (-964 *3) (-585 *3))) (-5 *3 (-523)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3159 *4) (|:| |sol?| (-108)))) (-5 *1 (-941 *8 *4))))) +(-10 -7 (-15 -2978 ((-2 (|:| |ans| |#2|) (|:| -3159 |#2|) (|:| |sol?| (-108))) (-523) |#2| |#2| (-1087) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-589 |#2|)) (-1 (-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-1717 (((-3 (-589 |#2|) "failed") (-523) |#2| |#2| |#2| (-1087) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-589 |#2|)) (-1 (-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47))) +(((-942 |#1| |#2|) (-10 -7 (-15 -1717 ((-3 (-589 |#2|) "failed") (-523) |#2| |#2| |#2| (-1087) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-589 |#2|)) (-1 (-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523))) (-13 (-1108) (-27) (-406 |#1|))) (T -942)) +((-1717 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1087)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-589 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2462 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1108) (-27) (-406 *8))) (-4 *8 (-13 (-427) (-786) (-136) (-964 *3) (-585 *3))) (-5 *3 (-523)) (-5 *2 (-589 *4)) (-5 *1 (-942 *8 *4))))) +(-10 -7 (-15 -1717 ((-3 (-589 |#2|) "failed") (-523) |#2| |#2| |#2| (-1087) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-589 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-589 |#2|)) (-1 (-3 (-2 (|:| -2462 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2367 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -1710 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-523)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-523) (-1 |#2| |#2|)) 30)) (-3561 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-383 |#2|)) (|:| |c| (-383 |#2|)) (|:| -4081 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-1 |#2| |#2|)) 57)) (-1829 (((-2 (|:| |ans| (-383 |#2|)) (|:| |nosol| (-108))) (-383 |#2|) (-383 |#2|)) 62))) +(((-943 |#1| |#2|) (-10 -7 (-15 -3561 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-383 |#2|)) (|:| |c| (-383 |#2|)) (|:| -4081 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-1 |#2| |#2|))) (-15 -1829 ((-2 (|:| |ans| (-383 |#2|)) (|:| |nosol| (-108))) (-383 |#2|) (-383 |#2|))) (-15 -2367 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -1710 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-523)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-523) (-1 |#2| |#2|)))) (-13 (-339) (-136) (-964 (-523))) (-1144 |#1|)) (T -943)) +((-2367 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1144 *6)) (-4 *6 (-13 (-339) (-136) (-964 *4))) (-5 *4 (-523)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) (|:| -1710 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-943 *6 *3)))) (-1829 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| |ans| (-383 *5)) (|:| |nosol| (-108)))) (-5 *1 (-943 *4 *5)) (-5 *3 (-383 *5)))) (-3561 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-383 *6)) (|:| |c| (-383 *6)) (|:| -4081 *6))) (-5 *1 (-943 *5 *6)) (-5 *3 (-383 *6))))) +(-10 -7 (-15 -3561 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-383 |#2|)) (|:| |c| (-383 |#2|)) (|:| -4081 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-1 |#2| |#2|))) (-15 -1829 ((-2 (|:| |ans| (-383 |#2|)) (|:| |nosol| (-108))) (-383 |#2|) (-383 |#2|))) (-15 -2367 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -1710 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-523)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-523) (-1 |#2| |#2|)))) +((-2577 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-383 |#2|)) (|:| |h| |#2|) (|:| |c1| (-383 |#2|)) (|:| |c2| (-383 |#2|)) (|:| -4081 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|) (-1 |#2| |#2|)) 22)) (-1952 (((-3 (-589 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|)) 32))) +(((-944 |#1| |#2|) (-10 -7 (-15 -2577 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-383 |#2|)) (|:| |h| |#2|) (|:| |c1| (-383 |#2|)) (|:| |c2| (-383 |#2|)) (|:| -4081 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|) (-1 |#2| |#2|))) (-15 -1952 ((-3 (-589 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|)))) (-13 (-339) (-136) (-964 (-523))) (-1144 |#1|)) (T -944)) +((-1952 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) (-4 *5 (-1144 *4)) (-5 *2 (-589 (-383 *5))) (-5 *1 (-944 *4 *5)) (-5 *3 (-383 *5)))) (-2577 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-383 *6)) (|:| |h| *6) (|:| |c1| (-383 *6)) (|:| |c2| (-383 *6)) (|:| -4081 *6))) (-5 *1 (-944 *5 *6)) (-5 *3 (-383 *6))))) +(-10 -7 (-15 -2577 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-383 |#2|)) (|:| |h| |#2|) (|:| |c1| (-383 |#2|)) (|:| |c2| (-383 |#2|)) (|:| -4081 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|) (-1 |#2| |#2|))) (-15 -1952 ((-3 (-589 (-383 |#2|)) "failed") (-383 |#2|) (-383 |#2|) (-383 |#2|)))) +((-2106 (((-1 |#1|) (-589 (-2 (|:| -1733 |#1|) (|:| -2656 (-523))))) 37)) (-1688 (((-1 |#1|) (-1018 |#1|)) 45)) (-1914 (((-1 |#1|) (-1168 |#1|) (-1168 (-523)) (-523)) 34))) +(((-945 |#1|) (-10 -7 (-15 -1688 ((-1 |#1|) (-1018 |#1|))) (-15 -2106 ((-1 |#1|) (-589 (-2 (|:| -1733 |#1|) (|:| -2656 (-523)))))) (-15 -1914 ((-1 |#1|) (-1168 |#1|) (-1168 (-523)) (-523)))) (-1016)) (T -945)) +((-1914 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1168 *6)) (-5 *4 (-1168 (-523))) (-5 *5 (-523)) (-4 *6 (-1016)) (-5 *2 (-1 *6)) (-5 *1 (-945 *6)))) (-2106 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -1733 *4) (|:| -2656 (-523))))) (-4 *4 (-1016)) (-5 *2 (-1 *4)) (-5 *1 (-945 *4)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-1018 *4)) (-4 *4 (-1016)) (-5 *2 (-1 *4)) (-5 *1 (-945 *4))))) +(-10 -7 (-15 -1688 ((-1 |#1|) (-1018 |#1|))) (-15 -2106 ((-1 |#1|) (-589 (-2 (|:| -1733 |#1|) (|:| -2656 (-523)))))) (-15 -1914 ((-1 |#1|) (-1168 |#1|) (-1168 (-523)) (-523)))) +((-1640 (((-710) (-312 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-946 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1640 ((-710) (-312 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-339) (-1144 |#1|) (-1144 (-383 |#2|)) (-318 |#1| |#2| |#3|) (-13 (-344) (-339))) (T -946)) +((-1640 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-312 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-339)) (-4 *7 (-1144 *6)) (-4 *4 (-1144 (-383 *7))) (-4 *8 (-318 *6 *7 *4)) (-4 *9 (-13 (-344) (-339))) (-5 *2 (-710)) (-5 *1 (-946 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -1640 ((-710) (-312 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-3747 (((-3 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) "failed") |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) 31) (((-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523))) 28)) (-4113 (((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523))) 33) (((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-383 (-523))) 29) (((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) 32) (((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1|) 27)) (-1240 (((-589 (-383 (-523))) (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) 19)) (-4210 (((-383 (-523)) (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) 16))) +(((-947 |#1|) (-10 -7 (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1|)) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-383 (-523)))) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523)))) (-15 -3747 ((-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523)))) (-15 -3747 ((-3 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) "failed") |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-15 -4210 ((-383 (-523)) (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-15 -1240 ((-589 (-383 (-523))) (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))))) (-1144 (-523))) (T -947)) +((-1240 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-5 *2 (-589 (-383 (-523)))) (-5 *1 (-947 *4)) (-4 *4 (-1144 (-523))))) (-4210 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) (-5 *2 (-383 (-523))) (-5 *1 (-947 *4)) (-4 *4 (-1144 (-523))))) (-3747 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523))))) (-3747 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) (-5 *4 (-383 (-523))) (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523))))) (-4113 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-383 (-523))) (-5 *2 (-589 (-2 (|:| -3149 *5) (|:| -3159 *5)))) (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523))) (-5 *4 (-2 (|:| -3149 *5) (|:| -3159 *5))))) (-4113 (*1 *2 *3 *4) (-12 (-5 *2 (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523))) (-5 *4 (-383 (-523))))) (-4113 (*1 *2 *3 *4) (-12 (-5 *2 (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523))) (-5 *4 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))))) (-4113 (*1 *2 *3) (-12 (-5 *2 (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523)))))) +(-10 -7 (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1|)) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-383 (-523)))) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523)))) (-15 -3747 ((-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523)))) (-15 -3747 ((-3 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) "failed") |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-15 -4210 ((-383 (-523)) (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-15 -1240 ((-589 (-383 (-523))) (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))))) +((-3747 (((-3 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) "failed") |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) 35) (((-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523))) 32)) (-4113 (((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523))) 30) (((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-383 (-523))) 26) (((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) 28) (((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1|) 24))) +(((-948 |#1|) (-10 -7 (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1|)) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-383 (-523)))) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523)))) (-15 -3747 ((-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523)))) (-15 -3747 ((-3 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) "failed") |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))))) (-1144 (-383 (-523)))) (T -948)) +((-3747 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) (-5 *1 (-948 *3)) (-4 *3 (-1144 (-383 (-523)))))) (-3747 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) (-5 *4 (-383 (-523))) (-5 *1 (-948 *3)) (-4 *3 (-1144 *4)))) (-4113 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-383 (-523))) (-5 *2 (-589 (-2 (|:| -3149 *5) (|:| -3159 *5)))) (-5 *1 (-948 *3)) (-4 *3 (-1144 *5)) (-5 *4 (-2 (|:| -3149 *5) (|:| -3159 *5))))) (-4113 (*1 *2 *3 *4) (-12 (-5 *4 (-383 (-523))) (-5 *2 (-589 (-2 (|:| -3149 *4) (|:| -3159 *4)))) (-5 *1 (-948 *3)) (-4 *3 (-1144 *4)))) (-4113 (*1 *2 *3 *4) (-12 (-5 *2 (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-5 *1 (-948 *3)) (-4 *3 (-1144 (-383 (-523)))) (-5 *4 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))))) (-4113 (*1 *2 *3) (-12 (-5 *2 (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-5 *1 (-948 *3)) (-4 *3 (-1144 (-383 (-523))))))) +(-10 -7 (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1|)) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-383 (-523)))) (-15 -4113 ((-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523)))) (-15 -3747 ((-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-383 (-523)))) (-15 -3747 ((-3 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) "failed") |#1| (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))) (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))))) +((-3663 (((-203) $) 6) (((-355) $) 9))) +(((-949) (-129)) (T -949)) +NIL +(-13 (-564 (-203)) (-564 (-355))) +(((-564 (-203)) . T) ((-564 (-355)) . T)) +((-1940 (((-589 (-355)) (-883 (-523)) (-355)) 27) (((-589 (-355)) (-883 (-383 (-523))) (-355)) 26)) (-2897 (((-589 (-589 (-355))) (-589 (-883 (-523))) (-589 (-1087)) (-355)) 36))) +(((-950) (-10 -7 (-15 -1940 ((-589 (-355)) (-883 (-383 (-523))) (-355))) (-15 -1940 ((-589 (-355)) (-883 (-523)) (-355))) (-15 -2897 ((-589 (-589 (-355))) (-589 (-883 (-523))) (-589 (-1087)) (-355))))) (T -950)) +((-2897 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-589 (-1087))) (-5 *2 (-589 (-589 (-355)))) (-5 *1 (-950)) (-5 *5 (-355)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-883 (-523))) (-5 *2 (-589 (-355))) (-5 *1 (-950)) (-5 *4 (-355)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-883 (-383 (-523)))) (-5 *2 (-589 (-355))) (-5 *1 (-950)) (-5 *4 (-355))))) +(-10 -7 (-15 -1940 ((-589 (-355)) (-883 (-383 (-523))) (-355))) (-15 -1940 ((-589 (-355)) (-883 (-523)) (-355))) (-15 -2897 ((-589 (-589 (-355))) (-589 (-883 (-523))) (-589 (-1087)) (-355)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 70)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1832 (($ $) NIL) (($ $ (-710)) NIL) (($ (-383 (-523))) NIL) (($ (-523)) NIL)) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) 65)) (-2518 (($) NIL T CONST)) (-3313 (((-3 $ "failed") (-1083 $) (-852) (-794)) NIL) (((-3 $ "failed") (-1083 $) (-852)) 49)) (-3517 (((-3 (-383 (-523)) "failed") $) NIL (|has| (-383 (-523)) (-964 (-383 (-523))))) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 |#1| "failed") $) 108) (((-3 (-523) "failed") $) NIL (-3262 (|has| (-383 (-523)) (-964 (-523))) (|has| |#1| (-964 (-523)))))) (-3474 (((-383 (-523)) $) 14 (|has| (-383 (-523)) (-964 (-383 (-523))))) (((-383 (-523)) $) 14) ((|#1| $) 109) (((-523) $) NIL (-3262 (|has| (-383 (-523)) (-964 (-523))) (|has| |#1| (-964 (-523)))))) (-1928 (($ $ (-794)) 40)) (-4206 (($ $ (-794)) 41)) (-3796 (($ $ $) NIL)) (-3877 (((-383 (-523)) $ $) 18)) (-2121 (((-3 $ "failed") $) 83)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2604 (((-108) $) 60)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL)) (-4114 (((-108) $) 63)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-2480 (((-3 (-1083 $) "failed") $) 78)) (-3191 (((-3 (-794) "failed") $) 77)) (-3109 (((-3 (-1083 $) "failed") $) 75)) (-3054 (((-3 (-983 $ (-1083 $)) "failed") $) 73)) (-3244 (($ (-589 $)) NIL) (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 84)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ (-589 $)) NIL) (($ $ $) NIL)) (-1820 (((-394 $) $) NIL)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-1458 (((-794) $) 82) (($ (-523)) NIL) (($ (-383 (-523))) NIL) (($ $) 57) (($ (-383 (-523))) NIL) (($ (-523)) NIL) (($ (-383 (-523))) NIL) (($ |#1|) 111)) (-1621 (((-710)) NIL)) (-1704 (((-108) $ $) NIL)) (-2562 (((-383 (-523)) $ $) 24)) (-1409 (((-589 $) (-1083 $)) 55) (((-589 $) (-1083 (-383 (-523)))) NIL) (((-589 $) (-1083 (-523))) NIL) (((-589 $) (-883 $)) NIL) (((-589 $) (-883 (-383 (-523)))) NIL) (((-589 $) (-883 (-523))) NIL)) (-2168 (($ (-983 $ (-1083 $)) (-794)) 39)) (-2619 (($ $) 19)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL)) (-2756 (($) 28 T CONST)) (-2767 (($) 34 T CONST)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 71)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 21)) (-4098 (($ $ $) 32)) (-4087 (($ $) 33) (($ $ $) 69)) (-4075 (($ $ $) 104)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL) (($ $ (-383 (-523))) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 92) (($ $ $) 97) (($ (-383 (-523)) $) NIL) (($ $ (-383 (-523))) NIL) (($ (-523) $) 92) (($ $ (-523)) NIL) (($ (-383 (-523)) $) NIL) (($ $ (-383 (-523))) NIL) (($ |#1| $) 96) (($ $ |#1|) NIL))) +(((-951 |#1|) (-13 (-940) (-387 |#1|) (-37 |#1|) (-10 -8 (-15 -2168 ($ (-983 $ (-1083 $)) (-794))) (-15 -3054 ((-3 (-983 $ (-1083 $)) "failed") $)) (-15 -3877 ((-383 (-523)) $ $)))) (-13 (-784) (-339) (-949))) (T -951)) +((-2168 (*1 *1 *2 *3) (-12 (-5 *2 (-983 (-951 *4) (-1083 (-951 *4)))) (-5 *3 (-794)) (-5 *1 (-951 *4)) (-4 *4 (-13 (-784) (-339) (-949))))) (-3054 (*1 *2 *1) (|partial| -12 (-5 *2 (-983 (-951 *3) (-1083 (-951 *3)))) (-5 *1 (-951 *3)) (-4 *3 (-13 (-784) (-339) (-949))))) (-3877 (*1 *2 *1 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-951 *3)) (-4 *3 (-13 (-784) (-339) (-949)))))) +(-13 (-940) (-387 |#1|) (-37 |#1|) (-10 -8 (-15 -2168 ($ (-983 $ (-1083 $)) (-794))) (-15 -3054 ((-3 (-983 $ (-1083 $)) "failed") $)) (-15 -3877 ((-383 (-523)) $ $)))) +((-2598 (((-2 (|:| -1710 |#2|) (|:| -3013 (-589 |#1|))) |#2| (-589 |#1|)) 20) ((|#2| |#2| |#1|) 15))) +(((-952 |#1| |#2|) (-10 -7 (-15 -2598 (|#2| |#2| |#1|)) (-15 -2598 ((-2 (|:| -1710 |#2|) (|:| -3013 (-589 |#1|))) |#2| (-589 |#1|)))) (-339) (-599 |#1|)) (T -952)) +((-2598 (*1 *2 *3 *4) (-12 (-4 *5 (-339)) (-5 *2 (-2 (|:| -1710 *3) (|:| -3013 (-589 *5)))) (-5 *1 (-952 *5 *3)) (-5 *4 (-589 *5)) (-4 *3 (-599 *5)))) (-2598 (*1 *2 *2 *3) (-12 (-4 *3 (-339)) (-5 *1 (-952 *3 *2)) (-4 *2 (-599 *3))))) +(-10 -7 (-15 -2598 (|#2| |#2| |#1|)) (-15 -2598 ((-2 (|:| -1710 |#2|) (|:| -3013 (-589 |#1|))) |#2| (-589 |#1|)))) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2602 ((|#1| $ |#1|) 14)) (-1641 ((|#1| $ |#1|) 12)) (-4147 (($ |#1|) 10)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3223 ((|#1| $) 11)) (-3962 ((|#1| $) 13)) (-1458 (((-794) $) 21 (|has| |#1| (-1016)))) (-3983 (((-108) $ $) 9))) +(((-953 |#1|) (-13 (-1122) (-10 -8 (-15 -4147 ($ |#1|)) (-15 -3223 (|#1| $)) (-15 -1641 (|#1| $ |#1|)) (-15 -3962 (|#1| $)) (-15 -2602 (|#1| $ |#1|)) (-15 -3983 ((-108) $ $)) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|))) (-1122)) (T -953)) +((-4147 (*1 *1 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1122)))) (-3223 (*1 *2 *1) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1122)))) (-1641 (*1 *2 *1 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1122)))) (-3962 (*1 *2 *1) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1122)))) (-2602 (*1 *2 *1 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1122)))) (-3983 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-953 *3)) (-4 *3 (-1122))))) +(-13 (-1122) (-10 -8 (-15 -4147 ($ |#1|)) (-15 -3223 (|#1| $)) (-15 -1641 (|#1| $ |#1|)) (-15 -3962 (|#1| $)) (-15 -2602 (|#1| $ |#1|)) (-15 -3983 ((-108) $ $)) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|))) +((-3924 (((-108) $ $) NIL)) (-1633 (((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 |#4|)))) (-589 |#4|)) NIL)) (-3846 (((-589 $) (-589 |#4|)) 105) (((-589 $) (-589 |#4|) (-108)) 106) (((-589 $) (-589 |#4|) (-108) (-108)) 104) (((-589 $) (-589 |#4|) (-108) (-108) (-108) (-108)) 107)) (-1957 (((-589 |#3|) $) NIL)) (-2100 (((-108) $) NIL)) (-2376 (((-108) $) NIL (|has| |#1| (-515)))) (-2694 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2308 ((|#4| |#4| $) NIL)) (-2291 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| $) 99)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-3724 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244))) (((-3 |#4| "failed") $ |#3|) 54)) (-2518 (($) NIL T CONST)) (-3595 (((-108) $) 26 (|has| |#1| (-515)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3225 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3393 (((-108) $) NIL (|has| |#1| (-515)))) (-3375 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3956 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) NIL)) (-3474 (($ (-589 |#4|)) NIL)) (-1751 (((-3 $ "failed") $) 39)) (-4014 ((|#4| |#4| $) 57)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-2557 (($ |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-515)))) (-2663 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2636 ((|#4| |#4| $) NIL)) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4244))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3737 (((-2 (|:| -3952 (-589 |#4|)) (|:| -2625 (-589 |#4|))) $) NIL)) (-2005 (((-108) |#4| $) NIL)) (-3785 (((-108) |#4| $) NIL)) (-1944 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3591 (((-2 (|:| |val| (-589 |#4|)) (|:| |towers| (-589 $))) (-589 |#4|) (-108) (-108)) 119)) (-1666 (((-589 |#4|) $) 16 (|has| $ (-6 -4244)))) (-4172 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2907 ((|#3| $) 33)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#4|) $) 17 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-2852 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) 21)) (-4055 (((-589 |#3|) $) NIL)) (-1357 (((-108) |#3| $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-3246 (((-3 |#4| (-589 $)) |#4| |#4| $) NIL)) (-1611 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| |#4| $) 97)) (-2579 (((-3 |#4| "failed") $) 37)) (-2668 (((-589 $) |#4| $) 80)) (-3320 (((-3 (-108) (-589 $)) |#4| $) NIL)) (-2870 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 $))) |#4| $) 90) (((-108) |#4| $) 52)) (-1309 (((-589 $) |#4| $) 102) (((-589 $) (-589 |#4|) $) NIL) (((-589 $) (-589 |#4|) (-589 $)) 103) (((-589 $) |#4| (-589 $)) NIL)) (-3085 (((-589 $) (-589 |#4|) (-108) (-108) (-108)) 114)) (-1770 (($ |#4| $) 70) (($ (-589 |#4|) $) 71) (((-589 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 67)) (-2404 (((-589 |#4|) $) NIL)) (-2112 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2648 ((|#4| |#4| $) NIL)) (-2391 (((-108) $ $) NIL)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-2001 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1398 ((|#4| |#4| $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 (((-3 |#4| "failed") $) 35)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2890 (((-3 $ "failed") $ |#4|) 48)) (-4097 (($ $ |#4|) NIL) (((-589 $) |#4| $) 82) (((-589 $) |#4| (-589 $)) NIL) (((-589 $) (-589 |#4|) $) NIL) (((-589 $) (-589 |#4|) (-589 $)) 77)) (-1327 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 15)) (-3988 (($) 13)) (-2299 (((-710) $) NIL)) (-2792 (((-710) |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) (((-710) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) 12)) (-3663 (((-499) $) NIL (|has| |#4| (-564 (-499))))) (-1472 (($ (-589 |#4|)) 20)) (-2621 (($ $ |#3|) 42)) (-2624 (($ $ |#3|) 44)) (-1824 (($ $) NIL)) (-3076 (($ $ |#3|) NIL)) (-1458 (((-794) $) 31) (((-589 |#4|) $) 40)) (-1395 (((-710) $) NIL (|has| |#3| (-344)))) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4031 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) NIL)) (-3910 (((-589 $) |#4| $) 79) (((-589 $) |#4| (-589 $)) NIL) (((-589 $) (-589 |#4|) $) NIL) (((-589 $) (-589 |#4|) (-589 $)) NIL)) (-2096 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-3862 (((-589 |#3|) $) NIL)) (-4062 (((-108) |#4| $) NIL)) (-2153 (((-108) |#3| $) 53)) (-3983 (((-108) $ $) NIL)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-954 |#1| |#2| |#3| |#4|) (-13 (-992 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1770 ((-589 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3846 ((-589 $) (-589 |#4|) (-108) (-108))) (-15 -3846 ((-589 $) (-589 |#4|) (-108) (-108) (-108) (-108))) (-15 -3085 ((-589 $) (-589 |#4|) (-108) (-108) (-108))) (-15 -3591 ((-2 (|:| |val| (-589 |#4|)) (|:| |towers| (-589 $))) (-589 |#4|) (-108) (-108))))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|)) (T -954)) +((-1770 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-954 *5 *6 *7 *3))) (-5 *1 (-954 *5 *6 *7 *3)) (-4 *3 (-987 *5 *6 *7)))) (-3846 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-954 *5 *6 *7 *8))) (-5 *1 (-954 *5 *6 *7 *8)))) (-3846 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-954 *5 *6 *7 *8))) (-5 *1 (-954 *5 *6 *7 *8)))) (-3085 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-954 *5 *6 *7 *8))) (-5 *1 (-954 *5 *6 *7 *8)))) (-3591 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-589 *8)) (|:| |towers| (-589 (-954 *5 *6 *7 *8))))) (-5 *1 (-954 *5 *6 *7 *8)) (-5 *3 (-589 *8))))) +(-13 (-992 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1770 ((-589 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3846 ((-589 $) (-589 |#4|) (-108) (-108))) (-15 -3846 ((-589 $) (-589 |#4|) (-108) (-108) (-108) (-108))) (-15 -3085 ((-589 $) (-589 |#4|) (-108) (-108) (-108))) (-15 -3591 ((-2 (|:| |val| (-589 |#4|)) (|:| |towers| (-589 $))) (-589 |#4|) (-108) (-108))))) +((-3557 (((-589 (-629 |#1|)) (-589 (-629 |#1|))) 57) (((-629 |#1|) (-629 |#1|)) 56) (((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-589 (-629 |#1|))) 55) (((-629 |#1|) (-629 |#1|) (-629 |#1|)) 52)) (-1701 (((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-852)) 51) (((-629 |#1|) (-629 |#1|) (-852)) 50)) (-3304 (((-589 (-629 (-523))) (-589 (-589 (-523)))) 67) (((-589 (-629 (-523))) (-589 (-836 (-523))) (-523)) 66) (((-629 (-523)) (-589 (-523))) 63) (((-629 (-523)) (-836 (-523)) (-523)) 62)) (-1307 (((-629 (-883 |#1|)) (-710)) 80)) (-1949 (((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-852)) 36 (|has| |#1| (-6 (-4246 "*")))) (((-629 |#1|) (-629 |#1|) (-852)) 34 (|has| |#1| (-6 (-4246 "*")))))) +(((-955 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4246 "*"))) (-15 -1949 ((-629 |#1|) (-629 |#1|) (-852))) |%noBranch|) (IF (|has| |#1| (-6 (-4246 "*"))) (-15 -1949 ((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-852))) |%noBranch|) (-15 -1307 ((-629 (-883 |#1|)) (-710))) (-15 -1701 ((-629 |#1|) (-629 |#1|) (-852))) (-15 -1701 ((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-852))) (-15 -3557 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3557 ((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -3557 ((-629 |#1|) (-629 |#1|))) (-15 -3557 ((-589 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -3304 ((-629 (-523)) (-836 (-523)) (-523))) (-15 -3304 ((-629 (-523)) (-589 (-523)))) (-15 -3304 ((-589 (-629 (-523))) (-589 (-836 (-523))) (-523))) (-15 -3304 ((-589 (-629 (-523))) (-589 (-589 (-523)))))) (-973)) (T -955)) +((-3304 (*1 *2 *3) (-12 (-5 *3 (-589 (-589 (-523)))) (-5 *2 (-589 (-629 (-523)))) (-5 *1 (-955 *4)) (-4 *4 (-973)))) (-3304 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-836 (-523)))) (-5 *4 (-523)) (-5 *2 (-589 (-629 *4))) (-5 *1 (-955 *5)) (-4 *5 (-973)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-629 (-523))) (-5 *1 (-955 *4)) (-4 *4 (-973)))) (-3304 (*1 *2 *3 *4) (-12 (-5 *3 (-836 (-523))) (-5 *4 (-523)) (-5 *2 (-629 *4)) (-5 *1 (-955 *5)) (-4 *5 (-973)))) (-3557 (*1 *2 *2) (-12 (-5 *2 (-589 (-629 *3))) (-4 *3 (-973)) (-5 *1 (-955 *3)))) (-3557 (*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-955 *3)))) (-3557 (*1 *2 *2 *2) (-12 (-5 *2 (-589 (-629 *3))) (-4 *3 (-973)) (-5 *1 (-955 *3)))) (-3557 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-955 *3)))) (-1701 (*1 *2 *2 *3) (-12 (-5 *2 (-589 (-629 *4))) (-5 *3 (-852)) (-4 *4 (-973)) (-5 *1 (-955 *4)))) (-1701 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *4)) (-5 *3 (-852)) (-4 *4 (-973)) (-5 *1 (-955 *4)))) (-1307 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-629 (-883 *4))) (-5 *1 (-955 *4)) (-4 *4 (-973)))) (-1949 (*1 *2 *2 *3) (-12 (-5 *2 (-589 (-629 *4))) (-5 *3 (-852)) (|has| *4 (-6 (-4246 "*"))) (-4 *4 (-973)) (-5 *1 (-955 *4)))) (-1949 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *4)) (-5 *3 (-852)) (|has| *4 (-6 (-4246 "*"))) (-4 *4 (-973)) (-5 *1 (-955 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4246 "*"))) (-15 -1949 ((-629 |#1|) (-629 |#1|) (-852))) |%noBranch|) (IF (|has| |#1| (-6 (-4246 "*"))) (-15 -1949 ((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-852))) |%noBranch|) (-15 -1307 ((-629 (-883 |#1|)) (-710))) (-15 -1701 ((-629 |#1|) (-629 |#1|) (-852))) (-15 -1701 ((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-852))) (-15 -3557 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3557 ((-589 (-629 |#1|)) (-589 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -3557 ((-629 |#1|) (-629 |#1|))) (-15 -3557 ((-589 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -3304 ((-629 (-523)) (-836 (-523)) (-523))) (-15 -3304 ((-629 (-523)) (-589 (-523)))) (-15 -3304 ((-589 (-629 (-523))) (-589 (-836 (-523))) (-523))) (-15 -3304 ((-589 (-629 (-523))) (-589 (-589 (-523)))))) +((-1851 (((-629 |#1|) (-589 (-629 |#1|)) (-1168 |#1|)) 50 (|has| |#1| (-284)))) (-2063 (((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-1168 (-1168 |#1|))) 73 (|has| |#1| (-339))) (((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-1168 |#1|)) 71 (|has| |#1| (-339)))) (-3080 (((-1168 |#1|) (-589 (-1168 |#1|)) (-523)) 75 (-12 (|has| |#1| (-339)) (|has| |#1| (-344))))) (-1675 (((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-852)) 80 (-12 (|has| |#1| (-339)) (|has| |#1| (-344)))) (((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-108)) 78 (-12 (|has| |#1| (-339)) (|has| |#1| (-344)))) (((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|))) 77 (-12 (|has| |#1| (-339)) (|has| |#1| (-344)))) (((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-108) (-523) (-523)) 76 (-12 (|has| |#1| (-339)) (|has| |#1| (-344))))) (-2169 (((-108) (-589 (-629 |#1|))) 69 (|has| |#1| (-339))) (((-108) (-589 (-629 |#1|)) (-523)) 68 (|has| |#1| (-339)))) (-3618 (((-1168 (-1168 |#1|)) (-589 (-629 |#1|)) (-1168 |#1|)) 48 (|has| |#1| (-284)))) (-1529 (((-629 |#1|) (-589 (-629 |#1|)) (-629 |#1|)) 33)) (-3601 (((-629 |#1|) (-1168 (-1168 |#1|))) 30)) (-2717 (((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)) (-523)) 64 (|has| |#1| (-339))) (((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|))) 63 (|has| |#1| (-339))) (((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)) (-108) (-523)) 62 (|has| |#1| (-339))))) +(((-956 |#1|) (-10 -7 (-15 -3601 ((-629 |#1|) (-1168 (-1168 |#1|)))) (-15 -1529 ((-629 |#1|) (-589 (-629 |#1|)) (-629 |#1|))) (IF (|has| |#1| (-284)) (PROGN (-15 -3618 ((-1168 (-1168 |#1|)) (-589 (-629 |#1|)) (-1168 |#1|))) (-15 -1851 ((-629 |#1|) (-589 (-629 |#1|)) (-1168 |#1|)))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-15 -2717 ((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)) (-108) (-523))) (-15 -2717 ((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -2717 ((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)) (-523))) (-15 -2169 ((-108) (-589 (-629 |#1|)) (-523))) (-15 -2169 ((-108) (-589 (-629 |#1|)))) (-15 -2063 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-1168 |#1|))) (-15 -2063 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-1168 (-1168 |#1|))))) |%noBranch|) (IF (|has| |#1| (-344)) (IF (|has| |#1| (-339)) (PROGN (-15 -1675 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-108) (-523) (-523))) (-15 -1675 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)))) (-15 -1675 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-108))) (-15 -1675 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-852))) (-15 -3080 ((-1168 |#1|) (-589 (-1168 |#1|)) (-523)))) |%noBranch|) |%noBranch|)) (-973)) (T -956)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-1168 *5))) (-5 *4 (-523)) (-5 *2 (-1168 *5)) (-5 *1 (-956 *5)) (-4 *5 (-339)) (-4 *5 (-344)) (-4 *5 (-973)))) (-1675 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-4 *5 (-339)) (-4 *5 (-344)) (-4 *5 (-973)) (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) (-5 *3 (-589 (-629 *5))))) (-1675 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-339)) (-4 *5 (-344)) (-4 *5 (-973)) (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) (-5 *3 (-589 (-629 *5))))) (-1675 (*1 *2 *3) (-12 (-4 *4 (-339)) (-4 *4 (-344)) (-4 *4 (-973)) (-5 *2 (-589 (-589 (-629 *4)))) (-5 *1 (-956 *4)) (-5 *3 (-589 (-629 *4))))) (-1675 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-108)) (-5 *5 (-523)) (-4 *6 (-339)) (-4 *6 (-344)) (-4 *6 (-973)) (-5 *2 (-589 (-589 (-629 *6)))) (-5 *1 (-956 *6)) (-5 *3 (-589 (-629 *6))))) (-2063 (*1 *2 *3 *4) (-12 (-5 *4 (-1168 (-1168 *5))) (-4 *5 (-339)) (-4 *5 (-973)) (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) (-5 *3 (-589 (-629 *5))))) (-2063 (*1 *2 *3 *4) (-12 (-5 *4 (-1168 *5)) (-4 *5 (-339)) (-4 *5 (-973)) (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) (-5 *3 (-589 (-629 *5))))) (-2169 (*1 *2 *3) (-12 (-5 *3 (-589 (-629 *4))) (-4 *4 (-339)) (-4 *4 (-973)) (-5 *2 (-108)) (-5 *1 (-956 *4)))) (-2169 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-629 *5))) (-5 *4 (-523)) (-4 *5 (-339)) (-4 *5 (-973)) (-5 *2 (-108)) (-5 *1 (-956 *5)))) (-2717 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-589 (-629 *5))) (-5 *4 (-523)) (-5 *2 (-629 *5)) (-5 *1 (-956 *5)) (-4 *5 (-339)) (-4 *5 (-973)))) (-2717 (*1 *2 *3 *3) (-12 (-5 *3 (-589 (-629 *4))) (-5 *2 (-629 *4)) (-5 *1 (-956 *4)) (-4 *4 (-339)) (-4 *4 (-973)))) (-2717 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-589 (-629 *6))) (-5 *4 (-108)) (-5 *5 (-523)) (-5 *2 (-629 *6)) (-5 *1 (-956 *6)) (-4 *6 (-339)) (-4 *6 (-973)))) (-1851 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-629 *5))) (-5 *4 (-1168 *5)) (-4 *5 (-284)) (-4 *5 (-973)) (-5 *2 (-629 *5)) (-5 *1 (-956 *5)))) (-3618 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-629 *5))) (-4 *5 (-284)) (-4 *5 (-973)) (-5 *2 (-1168 (-1168 *5))) (-5 *1 (-956 *5)) (-5 *4 (-1168 *5)))) (-1529 (*1 *2 *3 *2) (-12 (-5 *3 (-589 (-629 *4))) (-5 *2 (-629 *4)) (-4 *4 (-973)) (-5 *1 (-956 *4)))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-1168 (-1168 *4))) (-4 *4 (-973)) (-5 *2 (-629 *4)) (-5 *1 (-956 *4))))) +(-10 -7 (-15 -3601 ((-629 |#1|) (-1168 (-1168 |#1|)))) (-15 -1529 ((-629 |#1|) (-589 (-629 |#1|)) (-629 |#1|))) (IF (|has| |#1| (-284)) (PROGN (-15 -3618 ((-1168 (-1168 |#1|)) (-589 (-629 |#1|)) (-1168 |#1|))) (-15 -1851 ((-629 |#1|) (-589 (-629 |#1|)) (-1168 |#1|)))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-15 -2717 ((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)) (-108) (-523))) (-15 -2717 ((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -2717 ((-629 |#1|) (-589 (-629 |#1|)) (-589 (-629 |#1|)) (-523))) (-15 -2169 ((-108) (-589 (-629 |#1|)) (-523))) (-15 -2169 ((-108) (-589 (-629 |#1|)))) (-15 -2063 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-1168 |#1|))) (-15 -2063 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-1168 (-1168 |#1|))))) |%noBranch|) (IF (|has| |#1| (-344)) (IF (|has| |#1| (-339)) (PROGN (-15 -1675 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-108) (-523) (-523))) (-15 -1675 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)))) (-15 -1675 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-108))) (-15 -1675 ((-589 (-589 (-629 |#1|))) (-589 (-629 |#1|)) (-852))) (-15 -3080 ((-1168 |#1|) (-589 (-1168 |#1|)) (-523)))) |%noBranch|) |%noBranch|)) +((-2443 ((|#1| (-852) |#1|) 9))) +(((-957 |#1|) (-10 -7 (-15 -2443 (|#1| (-852) |#1|))) (-13 (-1016) (-10 -8 (-15 -4075 ($ $ $))))) (T -957)) +((-2443 (*1 *2 *3 *2) (-12 (-5 *3 (-852)) (-5 *1 (-957 *2)) (-4 *2 (-13 (-1016) (-10 -8 (-15 -4075 ($ $ $)))))))) +(-10 -7 (-15 -2443 (|#1| (-852) |#1|))) +((-3294 (((-589 (-2 (|:| |radval| (-292 (-523))) (|:| |radmult| (-523)) (|:| |radvect| (-589 (-629 (-292 (-523))))))) (-629 (-383 (-883 (-523))))) 58)) (-1262 (((-589 (-629 (-292 (-523)))) (-292 (-523)) (-629 (-383 (-883 (-523))))) 48)) (-3536 (((-589 (-292 (-523))) (-629 (-383 (-883 (-523))))) 41)) (-1919 (((-589 (-629 (-292 (-523)))) (-629 (-383 (-883 (-523))))) 68)) (-2076 (((-629 (-292 (-523))) (-629 (-292 (-523)))) 33)) (-2830 (((-589 (-629 (-292 (-523)))) (-589 (-629 (-292 (-523))))) 61)) (-1452 (((-3 (-629 (-292 (-523))) "failed") (-629 (-383 (-883 (-523))))) 65))) +(((-958) (-10 -7 (-15 -3294 ((-589 (-2 (|:| |radval| (-292 (-523))) (|:| |radmult| (-523)) (|:| |radvect| (-589 (-629 (-292 (-523))))))) (-629 (-383 (-883 (-523)))))) (-15 -1262 ((-589 (-629 (-292 (-523)))) (-292 (-523)) (-629 (-383 (-883 (-523)))))) (-15 -3536 ((-589 (-292 (-523))) (-629 (-383 (-883 (-523)))))) (-15 -1452 ((-3 (-629 (-292 (-523))) "failed") (-629 (-383 (-883 (-523)))))) (-15 -2076 ((-629 (-292 (-523))) (-629 (-292 (-523))))) (-15 -2830 ((-589 (-629 (-292 (-523)))) (-589 (-629 (-292 (-523)))))) (-15 -1919 ((-589 (-629 (-292 (-523)))) (-629 (-383 (-883 (-523)))))))) (T -958)) +((-1919 (*1 *2 *3) (-12 (-5 *3 (-629 (-383 (-883 (-523))))) (-5 *2 (-589 (-629 (-292 (-523))))) (-5 *1 (-958)))) (-2830 (*1 *2 *2) (-12 (-5 *2 (-589 (-629 (-292 (-523))))) (-5 *1 (-958)))) (-2076 (*1 *2 *2) (-12 (-5 *2 (-629 (-292 (-523)))) (-5 *1 (-958)))) (-1452 (*1 *2 *3) (|partial| -12 (-5 *3 (-629 (-383 (-883 (-523))))) (-5 *2 (-629 (-292 (-523)))) (-5 *1 (-958)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-629 (-383 (-883 (-523))))) (-5 *2 (-589 (-292 (-523)))) (-5 *1 (-958)))) (-1262 (*1 *2 *3 *4) (-12 (-5 *4 (-629 (-383 (-883 (-523))))) (-5 *2 (-589 (-629 (-292 (-523))))) (-5 *1 (-958)) (-5 *3 (-292 (-523))))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-629 (-383 (-883 (-523))))) (-5 *2 (-589 (-2 (|:| |radval| (-292 (-523))) (|:| |radmult| (-523)) (|:| |radvect| (-589 (-629 (-292 (-523)))))))) (-5 *1 (-958))))) +(-10 -7 (-15 -3294 ((-589 (-2 (|:| |radval| (-292 (-523))) (|:| |radmult| (-523)) (|:| |radvect| (-589 (-629 (-292 (-523))))))) (-629 (-383 (-883 (-523)))))) (-15 -1262 ((-589 (-629 (-292 (-523)))) (-292 (-523)) (-629 (-383 (-883 (-523)))))) (-15 -3536 ((-589 (-292 (-523))) (-629 (-383 (-883 (-523)))))) (-15 -1452 ((-3 (-629 (-292 (-523))) "failed") (-629 (-383 (-883 (-523)))))) (-15 -2076 ((-629 (-292 (-523))) (-629 (-292 (-523))))) (-15 -2830 ((-589 (-629 (-292 (-523)))) (-589 (-629 (-292 (-523)))))) (-15 -1919 ((-589 (-629 (-292 (-523)))) (-629 (-383 (-883 (-523))))))) +((-1725 ((|#1| |#1| (-852)) 9))) +(((-959 |#1|) (-10 -7 (-15 -1725 (|#1| |#1| (-852)))) (-13 (-1016) (-10 -8 (-15 * ($ $ $))))) (T -959)) +((-1725 (*1 *2 *2 *3) (-12 (-5 *3 (-852)) (-5 *1 (-959 *2)) (-4 *2 (-13 (-1016) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -1725 (|#1| |#1| (-852)))) +((-1458 ((|#1| (-288)) 11) (((-1173) |#1|) 9))) +(((-960 |#1|) (-10 -7 (-15 -1458 ((-1173) |#1|)) (-15 -1458 (|#1| (-288)))) (-1122)) (T -960)) +((-1458 (*1 *2 *3) (-12 (-5 *3 (-288)) (-5 *1 (-960 *2)) (-4 *2 (-1122)))) (-1458 (*1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *1 (-960 *3)) (-4 *3 (-1122))))) +(-10 -7 (-15 -1458 ((-1173) |#1|)) (-15 -1458 (|#1| (-288)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2437 (($ |#4|) 25)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-2428 ((|#4| $) 27)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 46) (($ (-523)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1621 (((-710)) 43)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 21 T CONST)) (-2767 (($) 23 T CONST)) (-3983 (((-108) $ $) 40)) (-4087 (($ $) 31) (($ $ $) NIL)) (-4075 (($ $ $) 29)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-961 |#1| |#2| |#3| |#4| |#5|) (-13 (-158) (-37 |#1|) (-10 -8 (-15 -2437 ($ |#4|)) (-15 -1458 ($ |#4|)) (-15 -2428 (|#4| $)))) (-339) (-732) (-786) (-880 |#1| |#2| |#3|) (-589 |#4|)) (T -961)) +((-2437 (*1 *1 *2) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-961 *3 *4 *5 *2 *6)) (-4 *2 (-880 *3 *4 *5)) (-14 *6 (-589 *2)))) (-1458 (*1 *1 *2) (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-961 *3 *4 *5 *2 *6)) (-4 *2 (-880 *3 *4 *5)) (-14 *6 (-589 *2)))) (-2428 (*1 *2 *1) (-12 (-4 *2 (-880 *3 *4 *5)) (-5 *1 (-961 *3 *4 *5 *2 *6)) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-14 *6 (-589 *2))))) +(-13 (-158) (-37 |#1|) (-10 -8 (-15 -2437 ($ |#4|)) (-15 -1458 ($ |#4|)) (-15 -2428 (|#4| $)))) +((-3924 (((-108) $ $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016))))) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL)) (-4207 (((-1173) $ (-1087) (-1087)) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-2893 (((-108) (-108)) 39)) (-1699 (((-108) (-108)) 38)) (-1641 (((-51) $ (-1087) (-51)) NIL)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-2243 (((-3 (-51) "failed") (-1087) $) NIL)) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016))))) (-2249 (($ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-3 (-51) "failed") (-1087) $) NIL)) (-2557 (($ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (((-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-2863 (((-51) $ (-1087) (-51)) NIL (|has| $ (-6 -4245)))) (-2795 (((-51) $ (-1087)) NIL)) (-1666 (((-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-589 (-51)) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-1087) $) NIL (|has| (-1087) (-786)))) (-2136 (((-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-589 (-51)) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-51) (-1016))))) (-3056 (((-1087) $) NIL (|has| (-1087) (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4245))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016))))) (-1330 (((-589 (-1087)) $) 34)) (-2777 (((-108) (-1087) $) NIL)) (-1934 (((-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL)) (-3450 (($ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL)) (-2412 (((-589 (-1087)) $) NIL)) (-4135 (((-108) (-1087) $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016))))) (-1738 (((-51) $) NIL (|has| (-1087) (-786)))) (-2114 (((-3 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) "failed") (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL)) (-4203 (($ $ (-51)) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))))) NIL (-12 (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (($ $ (-271 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL (-12 (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (($ $ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) NIL (-12 (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (($ $ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL (-12 (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (($ $ (-589 (-51)) (-589 (-51))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-271 (-51))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-589 (-271 (-51)))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-51) (-1016))))) (-1264 (((-589 (-51)) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 (((-51) $ (-1087)) 35) (((-51) $ (-1087) (-51)) NIL)) (-3433 (($) NIL) (($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (((-710) (-51) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-51) (-1016)))) (((-710) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL)) (-1458 (((-794) $) 37 (-3262 (|has| (-51) (-563 (-794))) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-563 (-794)))))) (-2401 (($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016))))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-962) (-13 (-1099 (-1087) (-51)) (-10 -7 (-15 -2893 ((-108) (-108))) (-15 -1699 ((-108) (-108))) (-6 -4244)))) (T -962)) +((-2893 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-962)))) (-1699 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-962))))) +(-13 (-1099 (-1087) (-51)) (-10 -7 (-15 -2893 ((-108) (-108))) (-15 -1699 ((-108) (-108))) (-6 -4244))) +((-3474 ((|#2| $) 10))) +(((-963 |#1| |#2|) (-10 -8 (-15 -3474 (|#2| |#1|))) (-964 |#2|) (-1122)) (T -963)) +NIL +(-10 -8 (-15 -3474 (|#2| |#1|))) +((-3517 (((-3 |#1| "failed") $) 7)) (-3474 ((|#1| $) 8)) (-1458 (($ |#1|) 6))) +(((-964 |#1|) (-129) (-1122)) (T -964)) +((-3474 (*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1122)))) (-3517 (*1 *2 *1) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1122)))) (-1458 (*1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1122))))) +(-13 (-10 -8 (-15 -1458 ($ |t#1|)) (-15 -3517 ((-3 |t#1| "failed") $)) (-15 -3474 (|t#1| $)))) +((-1440 (((-589 (-589 (-271 (-383 (-883 |#2|))))) (-589 (-883 |#2|)) (-589 (-1087))) 35))) +(((-965 |#1| |#2|) (-10 -7 (-15 -1440 ((-589 (-589 (-271 (-383 (-883 |#2|))))) (-589 (-883 |#2|)) (-589 (-1087))))) (-515) (-13 (-515) (-964 |#1|))) (T -965)) +((-1440 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-883 *6))) (-5 *4 (-589 (-1087))) (-4 *6 (-13 (-515) (-964 *5))) (-4 *5 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *6)))))) (-5 *1 (-965 *5 *6))))) +(-10 -7 (-15 -1440 ((-589 (-589 (-271 (-383 (-883 |#2|))))) (-589 (-883 |#2|)) (-589 (-1087))))) +((-3589 (((-355)) 15)) (-1688 (((-1 (-355)) (-355) (-355)) 20)) (-4081 (((-1 (-355)) (-710)) 43)) (-4015 (((-355)) 34)) (-3127 (((-1 (-355)) (-355) (-355)) 35)) (-3447 (((-355)) 26)) (-1708 (((-1 (-355)) (-355)) 27)) (-4138 (((-355) (-710)) 38)) (-1959 (((-1 (-355)) (-710)) 39)) (-2315 (((-1 (-355)) (-710) (-710)) 42)) (-3599 (((-1 (-355)) (-710) (-710)) 40))) +(((-966) (-10 -7 (-15 -3589 ((-355))) (-15 -4015 ((-355))) (-15 -3447 ((-355))) (-15 -4138 ((-355) (-710))) (-15 -1688 ((-1 (-355)) (-355) (-355))) (-15 -3127 ((-1 (-355)) (-355) (-355))) (-15 -1708 ((-1 (-355)) (-355))) (-15 -1959 ((-1 (-355)) (-710))) (-15 -3599 ((-1 (-355)) (-710) (-710))) (-15 -2315 ((-1 (-355)) (-710) (-710))) (-15 -4081 ((-1 (-355)) (-710))))) (T -966)) +((-4081 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966)))) (-2315 (*1 *2 *3 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966)))) (-3599 (*1 *2 *3 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966)))) (-1959 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966)))) (-1708 (*1 *2 *3) (-12 (-5 *2 (-1 (-355))) (-5 *1 (-966)) (-5 *3 (-355)))) (-3127 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-355))) (-5 *1 (-966)) (-5 *3 (-355)))) (-1688 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-355))) (-5 *1 (-966)) (-5 *3 (-355)))) (-4138 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-355)) (-5 *1 (-966)))) (-3447 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-966)))) (-4015 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-966)))) (-3589 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-966))))) +(-10 -7 (-15 -3589 ((-355))) (-15 -4015 ((-355))) (-15 -3447 ((-355))) (-15 -4138 ((-355) (-710))) (-15 -1688 ((-1 (-355)) (-355) (-355))) (-15 -3127 ((-1 (-355)) (-355) (-355))) (-15 -1708 ((-1 (-355)) (-355))) (-15 -1959 ((-1 (-355)) (-710))) (-15 -3599 ((-1 (-355)) (-710) (-710))) (-15 -2315 ((-1 (-355)) (-710) (-710))) (-15 -4081 ((-1 (-355)) (-710)))) +((-1820 (((-394 |#1|) |#1|) 31))) +(((-967 |#1|) (-10 -7 (-15 -1820 ((-394 |#1|) |#1|))) (-1144 (-383 (-883 (-523))))) (T -967)) +((-1820 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-967 *3)) (-4 *3 (-1144 (-383 (-883 (-523)))))))) +(-10 -7 (-15 -1820 ((-394 |#1|) |#1|))) +((-1937 (((-383 (-394 (-883 |#1|))) (-383 (-883 |#1|))) 14))) +(((-968 |#1|) (-10 -7 (-15 -1937 ((-383 (-394 (-883 |#1|))) (-383 (-883 |#1|))))) (-284)) (T -968)) +((-1937 (*1 *2 *3) (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-284)) (-5 *2 (-383 (-394 (-883 *4)))) (-5 *1 (-968 *4))))) +(-10 -7 (-15 -1937 ((-383 (-394 (-883 |#1|))) (-383 (-883 |#1|))))) +((-1957 (((-589 (-1087)) (-383 (-883 |#1|))) 15)) (-1786 (((-383 (-1083 (-383 (-883 |#1|)))) (-383 (-883 |#1|)) (-1087)) 22)) (-1945 (((-383 (-883 |#1|)) (-383 (-1083 (-383 (-883 |#1|)))) (-1087)) 24)) (-2520 (((-3 (-1087) "failed") (-383 (-883 |#1|))) 18)) (-2679 (((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-589 (-271 (-383 (-883 |#1|))))) 29) (((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|)))) 31) (((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-589 (-1087)) (-589 (-383 (-883 |#1|)))) 26) (((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|))) 27)) (-1458 (((-383 (-883 |#1|)) |#1|) 11))) +(((-969 |#1|) (-10 -7 (-15 -1957 ((-589 (-1087)) (-383 (-883 |#1|)))) (-15 -2520 ((-3 (-1087) "failed") (-383 (-883 |#1|)))) (-15 -1786 ((-383 (-1083 (-383 (-883 |#1|)))) (-383 (-883 |#1|)) (-1087))) (-15 -1945 ((-383 (-883 |#1|)) (-383 (-1083 (-383 (-883 |#1|)))) (-1087))) (-15 -2679 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|)))) (-15 -2679 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-589 (-1087)) (-589 (-383 (-883 |#1|))))) (-15 -2679 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))))) (-15 -2679 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-589 (-271 (-383 (-883 |#1|)))))) (-15 -1458 ((-383 (-883 |#1|)) |#1|))) (-515)) (T -969)) +((-1458 (*1 *2 *3) (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-969 *3)) (-4 *3 (-515)))) (-2679 (*1 *2 *2 *3) (-12 (-5 *3 (-589 (-271 (-383 (-883 *4))))) (-5 *2 (-383 (-883 *4))) (-4 *4 (-515)) (-5 *1 (-969 *4)))) (-2679 (*1 *2 *2 *3) (-12 (-5 *3 (-271 (-383 (-883 *4)))) (-5 *2 (-383 (-883 *4))) (-4 *4 (-515)) (-5 *1 (-969 *4)))) (-2679 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-589 (-1087))) (-5 *4 (-589 (-383 (-883 *5)))) (-5 *2 (-383 (-883 *5))) (-4 *5 (-515)) (-5 *1 (-969 *5)))) (-2679 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-383 (-883 *4))) (-5 *3 (-1087)) (-4 *4 (-515)) (-5 *1 (-969 *4)))) (-1945 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-1083 (-383 (-883 *5))))) (-5 *4 (-1087)) (-5 *2 (-383 (-883 *5))) (-5 *1 (-969 *5)) (-4 *5 (-515)))) (-1786 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-515)) (-5 *2 (-383 (-1083 (-383 (-883 *5))))) (-5 *1 (-969 *5)) (-5 *3 (-383 (-883 *5))))) (-2520 (*1 *2 *3) (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-5 *2 (-1087)) (-5 *1 (-969 *4)))) (-1957 (*1 *2 *3) (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-5 *2 (-589 (-1087))) (-5 *1 (-969 *4))))) +(-10 -7 (-15 -1957 ((-589 (-1087)) (-383 (-883 |#1|)))) (-15 -2520 ((-3 (-1087) "failed") (-383 (-883 |#1|)))) (-15 -1786 ((-383 (-1083 (-383 (-883 |#1|)))) (-383 (-883 |#1|)) (-1087))) (-15 -1945 ((-383 (-883 |#1|)) (-383 (-1083 (-383 (-883 |#1|)))) (-1087))) (-15 -2679 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|)))) (-15 -2679 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-589 (-1087)) (-589 (-383 (-883 |#1|))))) (-15 -2679 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-271 (-383 (-883 |#1|))))) (-15 -2679 ((-383 (-883 |#1|)) (-383 (-883 |#1|)) (-589 (-271 (-383 (-883 |#1|)))))) (-15 -1458 ((-383 (-883 |#1|)) |#1|))) +((-3924 (((-108) $ $) NIL)) (-1633 (((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 (-719 |#1| (-796 |#2|)))))) (-589 (-719 |#1| (-796 |#2|)))) NIL)) (-3846 (((-589 $) (-589 (-719 |#1| (-796 |#2|)))) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) (-108)) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) (-108) (-108)) NIL)) (-1957 (((-589 (-796 |#2|)) $) NIL)) (-2100 (((-108) $) NIL)) (-2376 (((-108) $) NIL (|has| |#1| (-515)))) (-2694 (((-108) (-719 |#1| (-796 |#2|)) $) NIL) (((-108) $) NIL)) (-2308 (((-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $) NIL)) (-2291 (((-589 (-2 (|:| |val| (-719 |#1| (-796 |#2|))) (|:| -3072 $))) (-719 |#1| (-796 |#2|)) $) NIL)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ (-796 |#2|)) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-3724 (($ (-1 (-108) (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-3 (-719 |#1| (-796 |#2|)) "failed") $ (-796 |#2|)) NIL)) (-2518 (($) NIL T CONST)) (-3595 (((-108) $) NIL (|has| |#1| (-515)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3225 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3393 (((-108) $) NIL (|has| |#1| (-515)))) (-3375 (((-589 (-719 |#1| (-796 |#2|))) (-589 (-719 |#1| (-796 |#2|))) $ (-1 (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) (-1 (-108) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)))) NIL)) (-3956 (((-589 (-719 |#1| (-796 |#2|))) (-589 (-719 |#1| (-796 |#2|))) $) NIL (|has| |#1| (-515)))) (-2771 (((-589 (-719 |#1| (-796 |#2|))) (-589 (-719 |#1| (-796 |#2|))) $) NIL (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 (-719 |#1| (-796 |#2|)))) NIL)) (-3474 (($ (-589 (-719 |#1| (-796 |#2|)))) NIL)) (-1751 (((-3 $ "failed") $) NIL)) (-4014 (((-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-719 |#1| (-796 |#2|)) (-1016))))) (-2557 (($ (-719 |#1| (-796 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-719 |#1| (-796 |#2|)) (-1016)))) (($ (-1 (-108) (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-719 |#1| (-796 |#2|))) (|:| |den| |#1|)) (-719 |#1| (-796 |#2|)) $) NIL (|has| |#1| (-515)))) (-2663 (((-108) (-719 |#1| (-796 |#2|)) $ (-1 (-108) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)))) NIL)) (-2636 (((-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $) NIL)) (-2437 (((-719 |#1| (-796 |#2|)) (-1 (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) $ (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-719 |#1| (-796 |#2|)) (-1016)))) (((-719 |#1| (-796 |#2|)) (-1 (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) $ (-719 |#1| (-796 |#2|))) NIL (|has| $ (-6 -4244))) (((-719 |#1| (-796 |#2|)) (-1 (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $ (-1 (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) (-1 (-108) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)))) NIL)) (-3737 (((-2 (|:| -3952 (-589 (-719 |#1| (-796 |#2|)))) (|:| -2625 (-589 (-719 |#1| (-796 |#2|))))) $) NIL)) (-2005 (((-108) (-719 |#1| (-796 |#2|)) $) NIL)) (-3785 (((-108) (-719 |#1| (-796 |#2|)) $) NIL)) (-1944 (((-108) (-719 |#1| (-796 |#2|)) $) NIL) (((-108) $) NIL)) (-1666 (((-589 (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-4172 (((-108) (-719 |#1| (-796 |#2|)) $) NIL) (((-108) $) NIL)) (-2907 (((-796 |#2|) $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-719 |#1| (-796 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-719 |#1| (-796 |#2|)) (-1016))))) (-2852 (($ (-1 (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) $) NIL)) (-4055 (((-589 (-796 |#2|)) $) NIL)) (-1357 (((-108) (-796 |#2|) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-3246 (((-3 (-719 |#1| (-796 |#2|)) (-589 $)) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $) NIL)) (-1611 (((-589 (-2 (|:| |val| (-719 |#1| (-796 |#2|))) (|:| -3072 $))) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $) NIL)) (-2579 (((-3 (-719 |#1| (-796 |#2|)) "failed") $) NIL)) (-2668 (((-589 $) (-719 |#1| (-796 |#2|)) $) NIL)) (-3320 (((-3 (-108) (-589 $)) (-719 |#1| (-796 |#2|)) $) NIL)) (-2870 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 $))) (-719 |#1| (-796 |#2|)) $) NIL) (((-108) (-719 |#1| (-796 |#2|)) $) NIL)) (-1309 (((-589 $) (-719 |#1| (-796 |#2|)) $) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) $) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) (-589 $)) NIL) (((-589 $) (-719 |#1| (-796 |#2|)) (-589 $)) NIL)) (-1770 (($ (-719 |#1| (-796 |#2|)) $) NIL) (($ (-589 (-719 |#1| (-796 |#2|))) $) NIL)) (-2404 (((-589 (-719 |#1| (-796 |#2|))) $) NIL)) (-2112 (((-108) (-719 |#1| (-796 |#2|)) $) NIL) (((-108) $) NIL)) (-2648 (((-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $) NIL)) (-2391 (((-108) $ $) NIL)) (-1644 (((-2 (|:| |num| (-719 |#1| (-796 |#2|))) (|:| |den| |#1|)) (-719 |#1| (-796 |#2|)) $) NIL (|has| |#1| (-515)))) (-2001 (((-108) (-719 |#1| (-796 |#2|)) $) NIL) (((-108) $) NIL)) (-1398 (((-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)) $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 (((-3 (-719 |#1| (-796 |#2|)) "failed") $) NIL)) (-2114 (((-3 (-719 |#1| (-796 |#2|)) "failed") (-1 (-108) (-719 |#1| (-796 |#2|))) $) NIL)) (-2890 (((-3 $ "failed") $ (-719 |#1| (-796 |#2|))) NIL)) (-4097 (($ $ (-719 |#1| (-796 |#2|))) NIL) (((-589 $) (-719 |#1| (-796 |#2|)) $) NIL) (((-589 $) (-719 |#1| (-796 |#2|)) (-589 $)) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) $) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) (-589 $)) NIL)) (-1327 (((-108) (-1 (-108) (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-719 |#1| (-796 |#2|))) (-589 (-719 |#1| (-796 |#2|)))) NIL (-12 (|has| (-719 |#1| (-796 |#2|)) (-286 (-719 |#1| (-796 |#2|)))) (|has| (-719 |#1| (-796 |#2|)) (-1016)))) (($ $ (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|))) NIL (-12 (|has| (-719 |#1| (-796 |#2|)) (-286 (-719 |#1| (-796 |#2|)))) (|has| (-719 |#1| (-796 |#2|)) (-1016)))) (($ $ (-271 (-719 |#1| (-796 |#2|)))) NIL (-12 (|has| (-719 |#1| (-796 |#2|)) (-286 (-719 |#1| (-796 |#2|)))) (|has| (-719 |#1| (-796 |#2|)) (-1016)))) (($ $ (-589 (-271 (-719 |#1| (-796 |#2|))))) NIL (-12 (|has| (-719 |#1| (-796 |#2|)) (-286 (-719 |#1| (-796 |#2|)))) (|has| (-719 |#1| (-796 |#2|)) (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-2299 (((-710) $) NIL)) (-2792 (((-710) (-719 |#1| (-796 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-719 |#1| (-796 |#2|)) (-1016)))) (((-710) (-1 (-108) (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-719 |#1| (-796 |#2|)) (-564 (-499))))) (-1472 (($ (-589 (-719 |#1| (-796 |#2|)))) NIL)) (-2621 (($ $ (-796 |#2|)) NIL)) (-2624 (($ $ (-796 |#2|)) NIL)) (-1824 (($ $) NIL)) (-3076 (($ $ (-796 |#2|)) NIL)) (-1458 (((-794) $) NIL) (((-589 (-719 |#1| (-796 |#2|))) $) NIL)) (-1395 (((-710) $) NIL (|has| (-796 |#2|) (-344)))) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 (-719 |#1| (-796 |#2|))))) "failed") (-589 (-719 |#1| (-796 |#2|))) (-1 (-108) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 (-719 |#1| (-796 |#2|))))) "failed") (-589 (-719 |#1| (-796 |#2|))) (-1 (-108) (-719 |#1| (-796 |#2|))) (-1 (-108) (-719 |#1| (-796 |#2|)) (-719 |#1| (-796 |#2|)))) NIL)) (-4031 (((-108) $ (-1 (-108) (-719 |#1| (-796 |#2|)) (-589 (-719 |#1| (-796 |#2|))))) NIL)) (-3910 (((-589 $) (-719 |#1| (-796 |#2|)) $) NIL) (((-589 $) (-719 |#1| (-796 |#2|)) (-589 $)) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) $) NIL) (((-589 $) (-589 (-719 |#1| (-796 |#2|))) (-589 $)) NIL)) (-2096 (((-108) (-1 (-108) (-719 |#1| (-796 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-3862 (((-589 (-796 |#2|)) $) NIL)) (-4062 (((-108) (-719 |#1| (-796 |#2|)) $) NIL)) (-2153 (((-108) (-796 |#2|) $) NIL)) (-3983 (((-108) $ $) NIL)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-970 |#1| |#2|) (-13 (-992 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|))) (-10 -8 (-15 -3846 ((-589 $) (-589 (-719 |#1| (-796 |#2|))) (-108) (-108))))) (-427) (-589 (-1087))) (T -970)) +((-3846 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-970 *5 *6))) (-5 *1 (-970 *5 *6))))) +(-13 (-992 |#1| (-495 (-796 |#2|)) (-796 |#2|) (-719 |#1| (-796 |#2|))) (-10 -8 (-15 -3846 ((-589 $) (-589 (-719 |#1| (-796 |#2|))) (-108) (-108))))) +((-1688 (((-1 (-523)) (-1011 (-523))) 33)) (-2512 (((-523) (-523) (-523) (-523) (-523)) 30)) (-1263 (((-1 (-523)) |RationalNumber|) NIL)) (-4137 (((-1 (-523)) |RationalNumber|) NIL)) (-2574 (((-1 (-523)) (-523) |RationalNumber|) NIL))) +(((-971) (-10 -7 (-15 -1688 ((-1 (-523)) (-1011 (-523)))) (-15 -2574 ((-1 (-523)) (-523) |RationalNumber|)) (-15 -1263 ((-1 (-523)) |RationalNumber|)) (-15 -4137 ((-1 (-523)) |RationalNumber|)) (-15 -2512 ((-523) (-523) (-523) (-523) (-523))))) (T -971)) +((-2512 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-971)))) (-4137 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-523))) (-5 *1 (-971)))) (-1263 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-523))) (-5 *1 (-971)))) (-2574 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-523))) (-5 *1 (-971)) (-5 *3 (-523)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-1011 (-523))) (-5 *2 (-1 (-523))) (-5 *1 (-971))))) +(-10 -7 (-15 -1688 ((-1 (-523)) (-1011 (-523)))) (-15 -2574 ((-1 (-523)) (-523) |RationalNumber|)) (-15 -1263 ((-1 (-523)) |RationalNumber|)) (-15 -4137 ((-1 (-523)) |RationalNumber|)) (-15 -2512 ((-523) (-523) (-523) (-523) (-523)))) +((-1458 (((-794) $) NIL) (($ (-523)) 10))) +(((-972 |#1|) (-10 -8 (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) (-973)) (T -972)) +NIL +(-10 -8 (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-973) (-129)) (T -973)) +((-1621 (*1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-710)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-973))))) +(-13 (-980) (-666) (-591 $) (-10 -8 (-15 -1621 ((-710))) (-15 -1458 ($ (-523))) (-6 -4241))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 $) . T) ((-666) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-1201 (((-383 (-883 |#2|)) (-589 |#2|) (-589 |#2|) (-710) (-710)) 45))) +(((-974 |#1| |#2|) (-10 -7 (-15 -1201 ((-383 (-883 |#2|)) (-589 |#2|) (-589 |#2|) (-710) (-710)))) (-1087) (-339)) (T -974)) +((-1201 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-589 *6)) (-5 *4 (-710)) (-4 *6 (-339)) (-5 *2 (-383 (-883 *6))) (-5 *1 (-974 *5 *6)) (-14 *5 (-1087))))) +(-10 -7 (-15 -1201 ((-383 (-883 |#2|)) (-589 |#2|) (-589 |#2|) (-710) (-710)))) +((-2606 (((-108) $) 28)) (-2651 (((-108) $) 16)) (-2803 (((-710) $) 13)) (-2813 (((-710) $) 14)) (-3117 (((-108) $) 26)) (-2175 (((-108) $) 30))) +(((-975 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2813 ((-710) |#1|)) (-15 -2803 ((-710) |#1|)) (-15 -2175 ((-108) |#1|)) (-15 -2606 ((-108) |#1|)) (-15 -3117 ((-108) |#1|)) (-15 -2651 ((-108) |#1|))) (-976 |#2| |#3| |#4| |#5| |#6|) (-710) (-710) (-973) (-216 |#3| |#4|) (-216 |#2| |#4|)) (T -975)) +NIL +(-10 -8 (-15 -2813 ((-710) |#1|)) (-15 -2803 ((-710) |#1|)) (-15 -2175 ((-108) |#1|)) (-15 -2606 ((-108) |#1|)) (-15 -3117 ((-108) |#1|)) (-15 -2651 ((-108) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-2606 (((-108) $) 51)) (-3212 (((-3 $ "failed") $ $) 19)) (-2651 (((-108) $) 53)) (-3079 (((-108) $ (-710)) 61)) (-2518 (($) 17 T CONST)) (-2445 (($ $) 34 (|has| |#3| (-284)))) (-2031 ((|#4| $ (-523)) 39)) (-1319 (((-710) $) 33 (|has| |#3| (-515)))) (-2795 ((|#3| $ (-523) (-523)) 41)) (-1666 (((-589 |#3|) $) 68 (|has| $ (-6 -4244)))) (-1867 (((-710) $) 32 (|has| |#3| (-515)))) (-3498 (((-589 |#5|) $) 31 (|has| |#3| (-515)))) (-2803 (((-710) $) 45)) (-2813 (((-710) $) 44)) (-2346 (((-108) $ (-710)) 60)) (-3871 (((-523) $) 49)) (-1758 (((-523) $) 47)) (-2136 (((-589 |#3|) $) 69 (|has| $ (-6 -4244)))) (-1973 (((-108) |#3| $) 71 (-12 (|has| |#3| (-1016)) (|has| $ (-6 -4244))))) (-3338 (((-523) $) 48)) (-2347 (((-523) $) 46)) (-3068 (($ (-589 (-589 |#3|))) 54)) (-2852 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-2289 (((-589 (-589 |#3|)) $) 43)) (-2866 (((-108) $ (-710)) 59)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3746 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-515)))) (-1327 (((-108) (-1 (-108) |#3|) $) 66 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#3|) (-589 |#3|)) 75 (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-271 |#3|)) 73 (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-589 (-271 |#3|))) 72 (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016))))) (-3811 (((-108) $ $) 55)) (-3883 (((-108) $) 58)) (-3988 (($) 57)) (-3223 ((|#3| $ (-523) (-523)) 42) ((|#3| $ (-523) (-523) |#3|) 40)) (-3117 (((-108) $) 52)) (-2792 (((-710) |#3| $) 70 (-12 (|has| |#3| (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) |#3|) $) 67 (|has| $ (-6 -4244)))) (-1664 (($ $) 56)) (-1595 ((|#5| $ (-523)) 38)) (-1458 (((-794) $) 11)) (-2096 (((-108) (-1 (-108) |#3|) $) 65 (|has| $ (-6 -4244)))) (-2175 (((-108) $) 50)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#3|) 35 (|has| |#3| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2676 (((-710) $) 62 (|has| $ (-6 -4244))))) +(((-976 |#1| |#2| |#3| |#4| |#5|) (-129) (-710) (-710) (-973) (-216 |t#2| |t#3|) (-216 |t#1| |t#3|)) (T -976)) +((-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)))) (-3068 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 *5))) (-4 *5 (-973)) (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)))) (-2651 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108)))) (-2175 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523)))) (-3338 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523)))) (-1758 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-710)))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-710)))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-589 (-589 *5))))) (-3223 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *2 *6 *7)) (-4 *6 (-216 *5 *2)) (-4 *7 (-216 *4 *2)) (-4 *2 (-973)))) (-2795 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *2 *6 *7)) (-4 *6 (-216 *5 *2)) (-4 *7 (-216 *4 *2)) (-4 *2 (-973)))) (-3223 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *2 *6 *7)) (-4 *2 (-973)) (-4 *6 (-216 *5 *2)) (-4 *7 (-216 *4 *2)))) (-2031 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *6 *2 *7)) (-4 *6 (-973)) (-4 *7 (-216 *4 *6)) (-4 *2 (-216 *5 *6)))) (-1595 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *6 *7 *2)) (-4 *6 (-973)) (-4 *7 (-216 *5 *6)) (-4 *2 (-216 *4 *6)))) (-3612 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)))) (-3746 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-976 *3 *4 *2 *5 *6)) (-4 *2 (-973)) (-4 *5 (-216 *4 *2)) (-4 *6 (-216 *3 *2)) (-4 *2 (-515)))) (-4098 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2 *5 *6)) (-4 *2 (-973)) (-4 *5 (-216 *4 *2)) (-4 *6 (-216 *3 *2)) (-4 *2 (-339)))) (-2445 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-216 *3 *4)) (-4 *6 (-216 *2 *4)) (-4 *4 (-284)))) (-1319 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-4 *5 (-515)) (-5 *2 (-710)))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-4 *5 (-515)) (-5 *2 (-710)))) (-3498 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-4 *5 (-515)) (-5 *2 (-589 *7))))) +(-13 (-107 |t#3| |t#3|) (-462 |t#3|) (-10 -8 (-6 -4244) (IF (|has| |t#3| (-158)) (-6 (-657 |t#3|)) |%noBranch|) (-15 -3068 ($ (-589 (-589 |t#3|)))) (-15 -2651 ((-108) $)) (-15 -3117 ((-108) $)) (-15 -2606 ((-108) $)) (-15 -2175 ((-108) $)) (-15 -3871 ((-523) $)) (-15 -3338 ((-523) $)) (-15 -1758 ((-523) $)) (-15 -2347 ((-523) $)) (-15 -2803 ((-710) $)) (-15 -2813 ((-710) $)) (-15 -2289 ((-589 (-589 |t#3|)) $)) (-15 -3223 (|t#3| $ (-523) (-523))) (-15 -2795 (|t#3| $ (-523) (-523))) (-15 -3223 (|t#3| $ (-523) (-523) |t#3|)) (-15 -2031 (|t#4| $ (-523))) (-15 -1595 (|t#5| $ (-523))) (-15 -3612 ($ (-1 |t#3| |t#3|) $)) (-15 -3612 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-515)) (-15 -3746 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-339)) (-15 -4098 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-284)) (-15 -2445 ($ $)) |%noBranch|) (IF (|has| |t#3| (-515)) (PROGN (-15 -1319 ((-710) $)) (-15 -1867 ((-710) $)) (-15 -3498 ((-589 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-107 |#3| |#3|) . T) ((-124) . T) ((-563 (-794)) . T) ((-286 |#3|) -12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016))) ((-462 |#3|) . T) ((-484 |#3| |#3|) -12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016))) ((-591 |#3|) . T) ((-657 |#3|) |has| |#3| (-158)) ((-979 |#3|) . T) ((-1016) . T) ((-1122) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2606 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2651 (((-108) $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-2518 (($) NIL T CONST)) (-2445 (($ $) 40 (|has| |#3| (-284)))) (-2031 (((-218 |#2| |#3|) $ (-523)) 29)) (-3578 (($ (-629 |#3|)) 38)) (-1319 (((-710) $) 42 (|has| |#3| (-515)))) (-2795 ((|#3| $ (-523) (-523)) NIL)) (-1666 (((-589 |#3|) $) NIL (|has| $ (-6 -4244)))) (-1867 (((-710) $) 44 (|has| |#3| (-515)))) (-3498 (((-589 (-218 |#1| |#3|)) $) 48 (|has| |#3| (-515)))) (-2803 (((-710) $) NIL)) (-2813 (((-710) $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-3871 (((-523) $) NIL)) (-1758 (((-523) $) NIL)) (-2136 (((-589 |#3|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#3| (-1016))))) (-3338 (((-523) $) NIL)) (-2347 (((-523) $) NIL)) (-3068 (($ (-589 (-589 |#3|))) 24)) (-2852 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2289 (((-589 (-589 |#3|)) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3746 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-515)))) (-1327 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#3|) (-589 |#3|)) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-271 |#3|)) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-589 (-271 |#3|))) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#3| $ (-523) (-523)) NIL) ((|#3| $ (-523) (-523) |#3|) NIL)) (-3203 (((-126)) 51 (|has| |#3| (-339)))) (-3117 (((-108) $) NIL)) (-2792 (((-710) |#3| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#3| (-1016)))) (((-710) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) 60 (|has| |#3| (-564 (-499))))) (-1595 (((-218 |#1| |#3|) $ (-523)) 33)) (-1458 (((-794) $) 16) (((-629 |#3|) $) 35)) (-2096 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4244)))) (-2175 (((-108) $) NIL)) (-2756 (($) 13 T CONST)) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ |#3|) NIL (|has| |#3| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-977 |#1| |#2| |#3|) (-13 (-976 |#1| |#2| |#3| (-218 |#2| |#3|) (-218 |#1| |#3|)) (-563 (-629 |#3|)) (-10 -8 (IF (|has| |#3| (-339)) (-6 (-1175 |#3|)) |%noBranch|) (IF (|has| |#3| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (-15 -3578 ($ (-629 |#3|))) (-15 -1458 ((-629 |#3|) $)))) (-710) (-710) (-973)) (T -977)) +((-1458 (*1 *2 *1) (-12 (-5 *2 (-629 *5)) (-5 *1 (-977 *3 *4 *5)) (-14 *3 (-710)) (-14 *4 (-710)) (-4 *5 (-973)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-629 *5)) (-4 *5 (-973)) (-5 *1 (-977 *3 *4 *5)) (-14 *3 (-710)) (-14 *4 (-710))))) +(-13 (-976 |#1| |#2| |#3| (-218 |#2| |#3|) (-218 |#1| |#3|)) (-563 (-629 |#3|)) (-10 -8 (IF (|has| |#3| (-339)) (-6 (-1175 |#3|)) |%noBranch|) (IF (|has| |#3| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|) (-15 -3578 ($ (-629 |#3|))) (-15 -1458 ((-629 |#3|) $)))) +((-2437 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-3612 ((|#10| (-1 |#7| |#3|) |#6|) 32))) +(((-978 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3612 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2437 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-710) (-710) (-973) (-216 |#2| |#3|) (-216 |#1| |#3|) (-976 |#1| |#2| |#3| |#4| |#5|) (-973) (-216 |#2| |#7|) (-216 |#1| |#7|) (-976 |#1| |#2| |#7| |#8| |#9|)) (T -978)) +((-2437 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-973)) (-4 *2 (-973)) (-14 *5 (-710)) (-14 *6 (-710)) (-4 *8 (-216 *6 *7)) (-4 *9 (-216 *5 *7)) (-4 *10 (-216 *6 *2)) (-4 *11 (-216 *5 *2)) (-5 *1 (-978 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-976 *5 *6 *7 *8 *9)) (-4 *12 (-976 *5 *6 *2 *10 *11)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-973)) (-4 *10 (-973)) (-14 *5 (-710)) (-14 *6 (-710)) (-4 *8 (-216 *6 *7)) (-4 *9 (-216 *5 *7)) (-4 *2 (-976 *5 *6 *10 *11 *12)) (-5 *1 (-978 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-976 *5 *6 *7 *8 *9)) (-4 *11 (-216 *6 *10)) (-4 *12 (-216 *5 *10))))) +(-10 -7 (-15 -3612 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2437 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ |#1|) 23))) +(((-979 |#1|) (-129) (-980)) (T -979)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-979 *2)) (-4 *2 (-980))))) (-13 (-21) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-3622 (($ $ (-850)) 26)) (-3697 (($) 18 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-978) (-1197)) (T -978)) -NIL -(-13 (-21) (-1026)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-1026) . T) ((-1014) . T)) -((-3495 (($ $) 16)) (-1943 (($ $) 22)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 49)) (-1269 (($ $) 24)) (-4194 (($ $) 11)) (-3592 (($ $) 38)) (-3873 (((-354) $) NIL) (((-202) $) NIL) (((-821 (-354)) $) 33)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) 28) (($ (-522)) NIL) (($ (-382 (-522))) 28)) (-2742 (((-708)) 8)) (-1379 (($ $) 39))) -(((-979 |#1|) (-10 -8 (-15 -1943 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -4194 (|#1| |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -1379 (|#1| |#1|)) (-15 -1269 (|#1| |#1|)) (-15 -3738 ((-818 (-354) |#1|) |#1| (-821 (-354)) (-818 (-354) |#1|))) (-15 -3873 ((-821 (-354)) |#1|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -2217 (|#1| (-522))) (-15 -3873 ((-202) |#1|)) (-15 -3873 ((-354) |#1|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -2217 (|#1| |#1|)) (-15 -2217 (|#1| (-522))) (-15 -2742 ((-708))) (-15 -2217 ((-792) |#1|))) (-980)) (T -979)) -((-2742 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-979 *3)) (-4 *3 (-980))))) -(-10 -8 (-15 -1943 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -4194 (|#1| |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -1379 (|#1| |#1|)) (-15 -1269 (|#1| |#1|)) (-15 -3738 ((-818 (-354) |#1|) |#1| (-821 (-354)) (-818 (-354) |#1|))) (-15 -3873 ((-821 (-354)) |#1|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -2217 (|#1| (-522))) (-15 -3873 ((-202) |#1|)) (-15 -3873 ((-354) |#1|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -2217 (|#1| |#1|)) (-15 -2217 (|#1| (-522))) (-15 -2742 ((-708))) (-15 -2217 ((-792) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3049 (((-522) $) 89)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2298 (($ $) 40)) (-3007 (((-108) $) 38)) (-3495 (($ $) 87)) (-2265 (((-3 $ "failed") $ $) 19)) (-2961 (($ $) 73)) (-3133 (((-393 $) $) 72)) (-2016 (($ $) 97)) (-2805 (((-108) $ $) 59)) (-3355 (((-522) $) 114)) (-3367 (($) 17 T CONST)) (-1943 (($ $) 86)) (-3700 (((-3 (-522) "failed") $) 102) (((-3 (-382 (-522)) "failed") $) 99)) (-1478 (((-522) $) 101) (((-382 (-522)) $) 98)) (-2333 (($ $ $) 55)) (-3920 (((-3 $ "failed") $) 34)) (-2303 (($ $ $) 56)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 51)) (-2725 (((-108) $) 71)) (-3603 (((-108) $) 112)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 93)) (-2859 (((-108) $) 31)) (-1811 (($ $ (-522)) 96)) (-1269 (($ $) 92)) (-3740 (((-108) $) 113)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-1308 (($ $ $) 111)) (-2524 (($ $ $) 110)) (-2267 (($ $ $) 46) (($ (-588 $)) 45)) (-2311 (((-1068) $) 9)) (-3193 (($ $) 70)) (-4174 (((-1032) $) 10)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2308 (($ $ $) 48) (($ (-588 $)) 47)) (-4194 (($ $) 88)) (-3592 (($ $) 90)) (-2006 (((-393 $) $) 74)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2276 (((-3 $ "failed") $ $) 42)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-4031 (((-708) $) 58)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 57)) (-3873 (((-354) $) 105) (((-202) $) 104) (((-821 (-354)) $) 94)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-382 (-522))) 65) (($ (-522)) 103) (($ (-382 (-522))) 100)) (-2742 (((-708)) 29)) (-1379 (($ $) 91)) (-1407 (((-108) $ $) 39)) (-4126 (($ $) 115)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 69)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1623 (((-108) $ $) 108)) (-1597 (((-108) $ $) 107)) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 109)) (-1587 (((-108) $ $) 106)) (-1682 (($ $ $) 64)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 68) (($ $ (-382 (-522))) 95)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 67) (($ (-382 (-522)) $) 66))) -(((-980) (-1197)) (T -980)) -((-4126 (*1 *1 *1) (-4 *1 (-980))) (-1269 (*1 *1 *1) (-4 *1 (-980))) (-1379 (*1 *1 *1) (-4 *1 (-980))) (-3592 (*1 *1 *1) (-4 *1 (-980))) (-3049 (*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-522)))) (-4194 (*1 *1 *1) (-4 *1 (-980))) (-3495 (*1 *1 *1) (-4 *1 (-980))) (-1943 (*1 *1 *1) (-4 *1 (-980)))) -(-13 (-338) (-782) (-947) (-962 (-522)) (-962 (-382 (-522))) (-928) (-563 (-821 (-354))) (-815 (-354)) (-135) (-10 -8 (-15 -1269 ($ $)) (-15 -1379 ($ $)) (-15 -3592 ($ $)) (-15 -3049 ((-522) $)) (-15 -4194 ($ $)) (-15 -3495 ($ $)) (-15 -1943 ($ $)) (-15 -4126 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-562 (-792)) . T) ((-157) . T) ((-563 (-202)) . T) ((-563 (-354)) . T) ((-563 (-821 (-354))) . T) ((-220) . T) ((-266) . T) ((-283) . T) ((-338) . T) ((-426) . T) ((-514) . T) ((-590 #0#) . T) ((-590 $) . T) ((-655 #0#) . T) ((-655 $) . T) ((-664) . T) ((-728) . T) ((-729) . T) ((-731) . T) ((-732) . T) ((-782) . T) ((-784) . T) ((-815 (-354)) . T) ((-849) . T) ((-928) . T) ((-947) . T) ((-962 (-382 (-522))) . T) ((-962 (-522)) . T) ((-977 #0#) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) |#2| $) 23)) (-1685 ((|#1| $) 10)) (-3355 (((-522) |#2| $) 89)) (-1275 (((-3 $ "failed") |#2| (-850)) 58)) (-2002 ((|#1| $) 28)) (-1549 ((|#1| |#2| $ |#1|) 37)) (-1776 (($ $) 25)) (-3920 (((-3 |#2| "failed") |#2| $) 88)) (-3603 (((-108) |#2| $) NIL)) (-3740 (((-108) |#2| $) NIL)) (-2897 (((-108) |#2| $) 24)) (-1439 ((|#1| $) 90)) (-1993 ((|#1| $) 27)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-1579 ((|#2| $) 80)) (-2217 (((-792) $) 71)) (-3996 ((|#1| |#2| $ |#1|) 38)) (-3068 (((-588 $) |#2|) 60)) (-1562 (((-108) $ $) 75))) -(((-981 |#1| |#2|) (-13 (-987 |#1| |#2|) (-10 -8 (-15 -1993 (|#1| $)) (-15 -2002 (|#1| $)) (-15 -1685 (|#1| $)) (-15 -1439 (|#1| $)) (-15 -1776 ($ $)) (-15 -2897 ((-108) |#2| $)) (-15 -1549 (|#1| |#2| $ |#1|)))) (-13 (-782) (-338)) (-1142 |#1|)) (T -981)) -((-1549 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3)) (-4 *3 (-1142 *2)))) (-1993 (*1 *2 *1) (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3)) (-4 *3 (-1142 *2)))) (-2002 (*1 *2 *1) (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3)) (-4 *3 (-1142 *2)))) (-1685 (*1 *2 *1) (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3)) (-4 *3 (-1142 *2)))) (-1439 (*1 *2 *1) (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3)) (-4 *3 (-1142 *2)))) (-1776 (*1 *1 *1) (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3)) (-4 *3 (-1142 *2)))) (-2897 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-782) (-338))) (-5 *2 (-108)) (-5 *1 (-981 *4 *3)) (-4 *3 (-1142 *4))))) -(-13 (-987 |#1| |#2|) (-10 -8 (-15 -1993 (|#1| $)) (-15 -2002 (|#1| $)) (-15 -1685 (|#1| $)) (-15 -1439 (|#1| $)) (-15 -1776 ($ $)) (-15 -2897 ((-108) |#2| $)) (-15 -1549 (|#1| |#2| $ |#1|)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-1805 (($ $ $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3372 (($ $ $ $) NIL)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2805 (((-108) $ $) NIL)) (-3355 (((-522) $) NIL)) (-1736 (($ $ $) NIL)) (-3367 (($) NIL T CONST)) (-3652 (($ (-1085)) 10) (($ (-522)) 7)) (-3700 (((-3 (-522) "failed") $) NIL)) (-1478 (((-522) $) NIL)) (-2333 (($ $ $) NIL)) (-1226 (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-628 (-522)) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2549 (((-3 (-382 (-522)) "failed") $) NIL)) (-3519 (((-108) $) NIL)) (-1699 (((-382 (-522)) $) NIL)) (-3344 (($) NIL) (($ $) NIL)) (-2303 (($ $ $) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-3859 (($ $ $ $) NIL)) (-1968 (($ $ $) NIL)) (-3603 (((-108) $) NIL)) (-2634 (($ $ $) NIL)) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL)) (-2859 (((-108) $) NIL)) (-3077 (((-108) $) NIL)) (-4208 (((-3 $ "failed") $) NIL)) (-3740 (((-108) $) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2037 (($ $ $ $) NIL)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-4000 (($ $) NIL)) (-4030 (($ $) NIL)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-1988 (($ $ $) NIL)) (-3937 (($) NIL T CONST)) (-3092 (($ $) NIL)) (-4174 (((-1032) $) NIL) (($ $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) NIL) (($ (-588 $)) NIL)) (-1274 (($ $) NIL)) (-2006 (((-393 $) $) NIL)) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2626 (((-108) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-2731 (($ $ (-708)) NIL) (($ $) NIL)) (-3518 (($ $) NIL)) (-2463 (($ $) NIL)) (-3873 (((-522) $) 16) (((-498) $) NIL) (((-821 (-522)) $) NIL) (((-354) $) NIL) (((-202) $) NIL) (($ (-1085)) 9)) (-2217 (((-792) $) 20) (($ (-522)) 6) (($ $) NIL) (($ (-522)) 6)) (-2742 (((-708)) NIL)) (-1763 (((-108) $ $) NIL)) (-1591 (($ $ $) NIL)) (-1897 (($) NIL)) (-1407 (((-108) $ $) NIL)) (-3673 (($ $ $ $) NIL)) (-4126 (($ $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $ (-708)) NIL) (($ $) NIL)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) NIL)) (-1672 (($ $) 19) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL))) -(((-982) (-13 (-507) (-10 -8 (-6 -4225) (-6 -4230) (-6 -4226) (-15 -3873 ($ (-1085))) (-15 -3652 ($ (-1085))) (-15 -3652 ($ (-522)))))) (T -982)) -((-3873 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-982)))) (-3652 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-982)))) (-3652 (*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-982))))) -(-13 (-507) (-10 -8 (-6 -4225) (-6 -4230) (-6 -4226) (-15 -3873 ($ (-1085))) (-15 -3652 ($ (-1085))) (-15 -3652 ($ (-522))))) -((-1419 (((-108) $ $) NIL (-3844 (|has| (-51) (-1014)) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014))))) (-1883 (($) NIL) (($ (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))))) NIL)) (-3883 (((-1171) $ (-1085) (-1085)) NIL (|has| $ (-6 -4239)))) (-2717 (((-108) $ (-708)) NIL)) (-1951 (($) 9)) (-2437 (((-51) $ (-1085) (-51)) NIL)) (-3492 (($ $) 23)) (-1441 (($ $) 21)) (-1560 (($ $) 20)) (-3981 (($ $) 22)) (-1772 (($ $) 25)) (-3135 (($ $) 26)) (-3739 (($ $) 19)) (-3470 (($ $) 24)) (-1213 (($ (-1 (-108) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) 18 (|has| $ (-6 -4238)))) (-4011 (((-3 (-51) "failed") (-1085) $) 34)) (-3367 (($) NIL T CONST)) (-1301 (($) 7)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014))))) (-1700 (($ (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) $) 46 (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-3 (-51) "failed") (-1085) $) NIL)) (-1424 (($ (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014)))) (($ (-1 (-108) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-2153 (((-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $ (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014)))) (((-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $ (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-3228 (((-3 (-1068) "failed") $ (-1068) (-522)) 59)) (-2411 (((-51) $ (-1085) (-51)) NIL (|has| $ (-6 -4239)))) (-2186 (((-51) $ (-1085)) NIL)) (-2395 (((-588 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-588 (-51)) $) NIL (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-1085) $) NIL (|has| (-1085) (-784)))) (-4084 (((-588 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) 28 (|has| $ (-6 -4238))) (((-588 (-51)) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-51) (-1014))))) (-2201 (((-1085) $) NIL (|has| (-1085) (-784)))) (-2397 (($ (-1 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4239))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (-3844 (|has| (-51) (-1014)) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014))))) (-2562 (((-588 (-1085)) $) NIL)) (-2241 (((-108) (-1085) $) NIL)) (-1431 (((-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) $) NIL)) (-3365 (($ (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) $) 37)) (-2130 (((-588 (-1085)) $) NIL)) (-2103 (((-108) (-1085) $) NIL)) (-4174 (((-1032) $) NIL (-3844 (|has| (-51) (-1014)) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014))))) (-2694 (((-354) $ (-1085)) 45)) (-3430 (((-588 (-1068)) $ (-1068)) 60)) (-2337 (((-51) $) NIL (|has| (-1085) (-784)))) (-2187 (((-3 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) "failed") (-1 (-108) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL)) (-1972 (($ $ (-51)) NIL (|has| $ (-6 -4239)))) (-3295 (((-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) $) NIL)) (-3487 (((-108) (-1 (-108) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))))) NIL (-12 (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-285 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))))) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014)))) (($ $ (-270 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))))) NIL (-12 (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-285 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))))) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014)))) (($ $ (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) NIL (-12 (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-285 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))))) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014)))) (($ $ (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))))) NIL (-12 (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-285 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))))) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014)))) (($ $ (-588 (-51)) (-588 (-51))) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014)))) (($ $ (-270 (-51))) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014)))) (($ $ (-588 (-270 (-51)))) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-51) (-1014))))) (-1973 (((-588 (-51)) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 (((-51) $ (-1085)) NIL) (((-51) $ (-1085) (-51)) NIL)) (-3546 (($) NIL) (($ (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))))) NIL)) (-3119 (($ $ (-1085)) 47)) (-4187 (((-708) (-1 (-108) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014)))) (((-708) (-51) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-51) (-1014)))) (((-708) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4238)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-563 (-498))))) (-2227 (($ (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))))) 30)) (-4170 (($ $ $) 31)) (-2217 (((-792) $) NIL (-3844 (|has| (-51) (-562 (-792))) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-562 (-792)))))) (-1460 (($ $ (-1085) (-354)) 43)) (-3585 (($ $ (-1085) (-354)) 44)) (-2501 (($ (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))))) NIL)) (-1381 (((-108) (-1 (-108) (-2 (|:| -2644 (-1085)) (|:| -3149 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) NIL (-3844 (|has| (-51) (-1014)) (|has| (-2 (|:| -2644 (-1085)) (|:| -3149 (-51))) (-1014))))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-983) (-13 (-1097 (-1085) (-51)) (-10 -8 (-15 -4170 ($ $ $)) (-15 -1301 ($)) (-15 -3739 ($ $)) (-15 -1560 ($ $)) (-15 -1441 ($ $)) (-15 -3981 ($ $)) (-15 -3470 ($ $)) (-15 -3492 ($ $)) (-15 -1772 ($ $)) (-15 -3135 ($ $)) (-15 -1460 ($ $ (-1085) (-354))) (-15 -3585 ($ $ (-1085) (-354))) (-15 -2694 ((-354) $ (-1085))) (-15 -3430 ((-588 (-1068)) $ (-1068))) (-15 -3119 ($ $ (-1085))) (-15 -1951 ($)) (-15 -3228 ((-3 (-1068) "failed") $ (-1068) (-522))) (-6 -4238)))) (T -983)) -((-4170 (*1 *1 *1 *1) (-5 *1 (-983))) (-1301 (*1 *1) (-5 *1 (-983))) (-3739 (*1 *1 *1) (-5 *1 (-983))) (-1560 (*1 *1 *1) (-5 *1 (-983))) (-1441 (*1 *1 *1) (-5 *1 (-983))) (-3981 (*1 *1 *1) (-5 *1 (-983))) (-3470 (*1 *1 *1) (-5 *1 (-983))) (-3492 (*1 *1 *1) (-5 *1 (-983))) (-1772 (*1 *1 *1) (-5 *1 (-983))) (-3135 (*1 *1 *1) (-5 *1 (-983))) (-1460 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-354)) (-5 *1 (-983)))) (-3585 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-354)) (-5 *1 (-983)))) (-2694 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-354)) (-5 *1 (-983)))) (-3430 (*1 *2 *1 *3) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-983)) (-5 *3 (-1068)))) (-3119 (*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-983)))) (-1951 (*1 *1) (-5 *1 (-983))) (-3228 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1068)) (-5 *3 (-522)) (-5 *1 (-983))))) -(-13 (-1097 (-1085) (-51)) (-10 -8 (-15 -4170 ($ $ $)) (-15 -1301 ($)) (-15 -3739 ($ $)) (-15 -1560 ($ $)) (-15 -1441 ($ $)) (-15 -3981 ($ $)) (-15 -3470 ($ $)) (-15 -3492 ($ $)) (-15 -1772 ($ $)) (-15 -3135 ($ $)) (-15 -1460 ($ $ (-1085) (-354))) (-15 -3585 ($ $ (-1085) (-354))) (-15 -2694 ((-354) $ (-1085))) (-15 -3430 ((-588 (-1068)) $ (-1068))) (-15 -3119 ($ $ (-1085))) (-15 -1951 ($)) (-15 -3228 ((-3 (-1068) "failed") $ (-1068) (-522))) (-6 -4238))) -((-3961 (($ $) 45)) (-2942 (((-108) $ $) 74)) (-3700 (((-3 |#2| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 (-522) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-881 (-382 (-522)))) 227) (((-3 $ "failed") (-881 (-522))) 226) (((-3 $ "failed") (-881 |#2|)) 229)) (-1478 ((|#2| $) NIL) (((-382 (-522)) $) NIL) (((-522) $) NIL) ((|#4| $) NIL) (($ (-881 (-382 (-522)))) 215) (($ (-881 (-522))) 211) (($ (-881 |#2|)) 231)) (-3241 (($ $) NIL) (($ $ |#4|) 43)) (-1426 (((-108) $ $) 112) (((-108) $ (-588 $)) 113)) (-2184 (((-108) $) 56)) (-3370 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 107)) (-2563 (($ $) 138)) (-2948 (($ $) 134)) (-1510 (($ $) 133)) (-4107 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3168 (($ $ $) 82) (($ $ $ |#4|) 86)) (-1384 (((-108) $ $) 121) (((-108) $ (-588 $)) 122)) (-1933 ((|#4| $) 33)) (-3556 (($ $ $) 110)) (-1257 (((-108) $) 55)) (-2059 (((-708) $) 35)) (-2894 (($ $) 152)) (-2408 (($ $) 149)) (-2697 (((-588 $) $) 68)) (-3110 (($ $) 57)) (-1840 (($ $) 145)) (-3814 (((-588 $) $) 65)) (-3409 (($ $) 59)) (-3224 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3816 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4062 (-708))) $ $) 111)) (-1456 (((-2 (|:| -3112 $) (|:| |gap| (-708)) (|:| -3450 $) (|:| -4002 $)) $ $) 108) (((-2 (|:| -3112 $) (|:| |gap| (-708)) (|:| -3450 $) (|:| -4002 $)) $ $ |#4|) 109)) (-2038 (((-2 (|:| -3112 $) (|:| |gap| (-708)) (|:| -4002 $)) $ $) 104) (((-2 (|:| -3112 $) (|:| |gap| (-708)) (|:| -4002 $)) $ $ |#4|) 105)) (-3968 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3787 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3946 (((-588 $) $) 51)) (-3864 (((-108) $ $) 118) (((-108) $ (-588 $)) 119)) (-2556 (($ $ $) 103)) (-3937 (($ $) 37)) (-1517 (((-108) $ $) 72)) (-3060 (((-108) $ $) 114) (((-108) $ (-588 $)) 116)) (-3896 (($ $ $) 101)) (-3655 (($ $) 40)) (-2308 ((|#2| |#2| $) 142) (($ (-588 $)) NIL) (($ $ $) NIL)) (-4139 (($ $ |#2|) NIL) (($ $ $) 131)) (-2376 (($ $ |#2|) 126) (($ $ $) 129)) (-2581 (($ $) 48)) (-2209 (($ $) 52)) (-3873 (((-821 (-354)) $) NIL) (((-821 (-522)) $) NIL) (((-498) $) NIL) (($ (-881 (-382 (-522)))) 217) (($ (-881 (-522))) 213) (($ (-881 |#2|)) 228) (((-1068) $) 250) (((-881 |#2|) $) 162)) (-2217 (((-792) $) 30) (($ (-522)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-881 |#2|) $) 163) (($ (-382 (-522))) NIL) (($ $) NIL)) (-1679 (((-3 (-108) "failed") $ $) 71))) -(((-984 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2217 (|#1| |#1|)) (-15 -2308 (|#1| |#1| |#1|)) (-15 -2308 (|#1| (-588 |#1|))) (-15 -2217 (|#1| (-382 (-522)))) (-15 -2217 ((-881 |#2|) |#1|)) (-15 -3873 ((-881 |#2|) |#1|)) (-15 -3873 ((-1068) |#1|)) (-15 -2894 (|#1| |#1|)) (-15 -2408 (|#1| |#1|)) (-15 -1840 (|#1| |#1|)) (-15 -2563 (|#1| |#1|)) (-15 -2308 (|#2| |#2| |#1|)) (-15 -4139 (|#1| |#1| |#1|)) (-15 -2376 (|#1| |#1| |#1|)) (-15 -4139 (|#1| |#1| |#2|)) (-15 -2376 (|#1| |#1| |#2|)) (-15 -2948 (|#1| |#1|)) (-15 -1510 (|#1| |#1|)) (-15 -3873 (|#1| (-881 |#2|))) (-15 -1478 (|#1| (-881 |#2|))) (-15 -3700 ((-3 |#1| "failed") (-881 |#2|))) (-15 -3873 (|#1| (-881 (-522)))) (-15 -1478 (|#1| (-881 (-522)))) (-15 -3700 ((-3 |#1| "failed") (-881 (-522)))) (-15 -3873 (|#1| (-881 (-382 (-522))))) (-15 -1478 (|#1| (-881 (-382 (-522))))) (-15 -3700 ((-3 |#1| "failed") (-881 (-382 (-522))))) (-15 -2556 (|#1| |#1| |#1|)) (-15 -3896 (|#1| |#1| |#1|)) (-15 -3816 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4062 (-708))) |#1| |#1|)) (-15 -3556 (|#1| |#1| |#1|)) (-15 -3370 ((-2 (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1|)) (-15 -1456 ((-2 (|:| -3112 |#1|) (|:| |gap| (-708)) (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1| |#4|)) (-15 -1456 ((-2 (|:| -3112 |#1|) (|:| |gap| (-708)) (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1|)) (-15 -2038 ((-2 (|:| -3112 |#1|) (|:| |gap| (-708)) (|:| -4002 |#1|)) |#1| |#1| |#4|)) (-15 -2038 ((-2 (|:| -3112 |#1|) (|:| |gap| (-708)) (|:| -4002 |#1|)) |#1| |#1|)) (-15 -3787 (|#1| |#1| |#1| |#4|)) (-15 -3968 (|#1| |#1| |#1| |#4|)) (-15 -3787 (|#1| |#1| |#1|)) (-15 -3968 (|#1| |#1| |#1|)) (-15 -3168 (|#1| |#1| |#1| |#4|)) (-15 -4107 (|#1| |#1| |#1| |#4|)) (-15 -3168 (|#1| |#1| |#1|)) (-15 -4107 (|#1| |#1| |#1|)) (-15 -1384 ((-108) |#1| (-588 |#1|))) (-15 -1384 ((-108) |#1| |#1|)) (-15 -3864 ((-108) |#1| (-588 |#1|))) (-15 -3864 ((-108) |#1| |#1|)) (-15 -3060 ((-108) |#1| (-588 |#1|))) (-15 -3060 ((-108) |#1| |#1|)) (-15 -1426 ((-108) |#1| (-588 |#1|))) (-15 -1426 ((-108) |#1| |#1|)) (-15 -2942 ((-108) |#1| |#1|)) (-15 -1517 ((-108) |#1| |#1|)) (-15 -1679 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2697 ((-588 |#1|) |#1|)) (-15 -3814 ((-588 |#1|) |#1|)) (-15 -3409 (|#1| |#1|)) (-15 -3110 (|#1| |#1|)) (-15 -2184 ((-108) |#1|)) (-15 -1257 ((-108) |#1|)) (-15 -3241 (|#1| |#1| |#4|)) (-15 -3224 (|#1| |#1| |#4|)) (-15 -2209 (|#1| |#1|)) (-15 -3946 ((-588 |#1|) |#1|)) (-15 -2581 (|#1| |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -3655 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -2059 ((-708) |#1|)) (-15 -1933 (|#4| |#1|)) (-15 -3873 ((-498) |#1|)) (-15 -3873 ((-821 (-522)) |#1|)) (-15 -3873 ((-821 (-354)) |#1|)) (-15 -1478 (|#4| |#1|)) (-15 -3700 ((-3 |#4| "failed") |#1|)) (-15 -2217 (|#1| |#4|)) (-15 -3224 (|#2| |#1|)) (-15 -3241 (|#1| |#1|)) (-15 -1478 ((-522) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -1478 (|#2| |#1|)) (-15 -2217 (|#1| (-522))) (-15 -2217 ((-792) |#1|))) (-985 |#2| |#3| |#4|) (-971) (-730) (-784)) (T -984)) -NIL -(-10 -8 (-15 -2217 (|#1| |#1|)) (-15 -2308 (|#1| |#1| |#1|)) (-15 -2308 (|#1| (-588 |#1|))) (-15 -2217 (|#1| (-382 (-522)))) (-15 -2217 ((-881 |#2|) |#1|)) (-15 -3873 ((-881 |#2|) |#1|)) (-15 -3873 ((-1068) |#1|)) (-15 -2894 (|#1| |#1|)) (-15 -2408 (|#1| |#1|)) (-15 -1840 (|#1| |#1|)) (-15 -2563 (|#1| |#1|)) (-15 -2308 (|#2| |#2| |#1|)) (-15 -4139 (|#1| |#1| |#1|)) (-15 -2376 (|#1| |#1| |#1|)) (-15 -4139 (|#1| |#1| |#2|)) (-15 -2376 (|#1| |#1| |#2|)) (-15 -2948 (|#1| |#1|)) (-15 -1510 (|#1| |#1|)) (-15 -3873 (|#1| (-881 |#2|))) (-15 -1478 (|#1| (-881 |#2|))) (-15 -3700 ((-3 |#1| "failed") (-881 |#2|))) (-15 -3873 (|#1| (-881 (-522)))) (-15 -1478 (|#1| (-881 (-522)))) (-15 -3700 ((-3 |#1| "failed") (-881 (-522)))) (-15 -3873 (|#1| (-881 (-382 (-522))))) (-15 -1478 (|#1| (-881 (-382 (-522))))) (-15 -3700 ((-3 |#1| "failed") (-881 (-382 (-522))))) (-15 -2556 (|#1| |#1| |#1|)) (-15 -3896 (|#1| |#1| |#1|)) (-15 -3816 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4062 (-708))) |#1| |#1|)) (-15 -3556 (|#1| |#1| |#1|)) (-15 -3370 ((-2 (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1|)) (-15 -1456 ((-2 (|:| -3112 |#1|) (|:| |gap| (-708)) (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1| |#4|)) (-15 -1456 ((-2 (|:| -3112 |#1|) (|:| |gap| (-708)) (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1|)) (-15 -2038 ((-2 (|:| -3112 |#1|) (|:| |gap| (-708)) (|:| -4002 |#1|)) |#1| |#1| |#4|)) (-15 -2038 ((-2 (|:| -3112 |#1|) (|:| |gap| (-708)) (|:| -4002 |#1|)) |#1| |#1|)) (-15 -3787 (|#1| |#1| |#1| |#4|)) (-15 -3968 (|#1| |#1| |#1| |#4|)) (-15 -3787 (|#1| |#1| |#1|)) (-15 -3968 (|#1| |#1| |#1|)) (-15 -3168 (|#1| |#1| |#1| |#4|)) (-15 -4107 (|#1| |#1| |#1| |#4|)) (-15 -3168 (|#1| |#1| |#1|)) (-15 -4107 (|#1| |#1| |#1|)) (-15 -1384 ((-108) |#1| (-588 |#1|))) (-15 -1384 ((-108) |#1| |#1|)) (-15 -3864 ((-108) |#1| (-588 |#1|))) (-15 -3864 ((-108) |#1| |#1|)) (-15 -3060 ((-108) |#1| (-588 |#1|))) (-15 -3060 ((-108) |#1| |#1|)) (-15 -1426 ((-108) |#1| (-588 |#1|))) (-15 -1426 ((-108) |#1| |#1|)) (-15 -2942 ((-108) |#1| |#1|)) (-15 -1517 ((-108) |#1| |#1|)) (-15 -1679 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2697 ((-588 |#1|) |#1|)) (-15 -3814 ((-588 |#1|) |#1|)) (-15 -3409 (|#1| |#1|)) (-15 -3110 (|#1| |#1|)) (-15 -2184 ((-108) |#1|)) (-15 -1257 ((-108) |#1|)) (-15 -3241 (|#1| |#1| |#4|)) (-15 -3224 (|#1| |#1| |#4|)) (-15 -2209 (|#1| |#1|)) (-15 -3946 ((-588 |#1|) |#1|)) (-15 -2581 (|#1| |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -3655 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -2059 ((-708) |#1|)) (-15 -1933 (|#4| |#1|)) (-15 -3873 ((-498) |#1|)) (-15 -3873 ((-821 (-522)) |#1|)) (-15 -3873 ((-821 (-354)) |#1|)) (-15 -1478 (|#4| |#1|)) (-15 -3700 ((-3 |#4| "failed") |#1|)) (-15 -2217 (|#1| |#4|)) (-15 -3224 (|#2| |#1|)) (-15 -3241 (|#1| |#1|)) (-15 -1478 ((-522) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -1478 (|#2| |#1|)) (-15 -2217 (|#1| (-522))) (-15 -2217 ((-792) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3533 (((-588 |#3|) $) 110)) (-1264 (((-1081 $) $ |#3|) 125) (((-1081 |#1|) $) 124)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 87 (|has| |#1| (-514)))) (-2298 (($ $) 88 (|has| |#1| (-514)))) (-3007 (((-108) $) 90 (|has| |#1| (-514)))) (-3358 (((-708) $) 112) (((-708) $ (-588 |#3|)) 111)) (-3961 (($ $) 271)) (-2942 (((-108) $ $) 257)) (-2265 (((-3 $ "failed") $ $) 19)) (-3485 (($ $ $) 216 (|has| |#1| (-514)))) (-2817 (((-588 $) $ $) 211 (|has| |#1| (-514)))) (-3543 (((-393 (-1081 $)) (-1081 $)) 100 (|has| |#1| (-838)))) (-2961 (($ $) 98 (|has| |#1| (-426)))) (-3133 (((-393 $) $) 97 (|has| |#1| (-426)))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 103 (|has| |#1| (-838)))) (-3367 (($) 17 T CONST)) (-3700 (((-3 |#1| "failed") $) 164) (((-3 (-382 (-522)) "failed") $) 162 (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) 160 (|has| |#1| (-962 (-522)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-881 (-382 (-522)))) 231 (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#3| (-563 (-1085))))) (((-3 $ "failed") (-881 (-522))) 228 (-3844 (-12 (-2473 (|has| |#1| (-37 (-382 (-522))))) (|has| |#1| (-37 (-522))) (|has| |#3| (-563 (-1085)))) (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#3| (-563 (-1085)))))) (((-3 $ "failed") (-881 |#1|)) 225 (-3844 (-12 (-2473 (|has| |#1| (-37 (-382 (-522))))) (-2473 (|has| |#1| (-37 (-522)))) (|has| |#3| (-563 (-1085)))) (-12 (-2473 (|has| |#1| (-507))) (-2473 (|has| |#1| (-37 (-382 (-522))))) (|has| |#1| (-37 (-522))) (|has| |#3| (-563 (-1085)))) (-12 (-2473 (|has| |#1| (-919 (-522)))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#3| (-563 (-1085))))))) (-1478 ((|#1| $) 165) (((-382 (-522)) $) 161 (|has| |#1| (-962 (-382 (-522))))) (((-522) $) 159 (|has| |#1| (-962 (-522)))) ((|#3| $) 135) (($ (-881 (-382 (-522)))) 230 (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#3| (-563 (-1085))))) (($ (-881 (-522))) 227 (-3844 (-12 (-2473 (|has| |#1| (-37 (-382 (-522))))) (|has| |#1| (-37 (-522))) (|has| |#3| (-563 (-1085)))) (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#3| (-563 (-1085)))))) (($ (-881 |#1|)) 224 (-3844 (-12 (-2473 (|has| |#1| (-37 (-382 (-522))))) (-2473 (|has| |#1| (-37 (-522)))) (|has| |#3| (-563 (-1085)))) (-12 (-2473 (|has| |#1| (-507))) (-2473 (|has| |#1| (-37 (-382 (-522))))) (|has| |#1| (-37 (-522))) (|has| |#3| (-563 (-1085)))) (-12 (-2473 (|has| |#1| (-919 (-522)))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#3| (-563 (-1085))))))) (-2908 (($ $ $ |#3|) 108 (|has| |#1| (-157))) (($ $ $) 212 (|has| |#1| (-514)))) (-3241 (($ $) 154) (($ $ |#3|) 266)) (-1226 (((-628 (-522)) (-628 $)) 134 (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 133 (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 132) (((-628 |#1|) (-628 $)) 131)) (-1426 (((-108) $ $) 256) (((-108) $ (-588 $)) 255)) (-3920 (((-3 $ "failed") $) 34)) (-2184 (((-108) $) 264)) (-3370 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 236)) (-2563 (($ $) 205 (|has| |#1| (-426)))) (-2883 (($ $) 176 (|has| |#1| (-426))) (($ $ |#3|) 105 (|has| |#1| (-426)))) (-3232 (((-588 $) $) 109)) (-2725 (((-108) $) 96 (|has| |#1| (-838)))) (-2948 (($ $) 221 (|has| |#1| (-514)))) (-1510 (($ $) 222 (|has| |#1| (-514)))) (-4107 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3168 (($ $ $) 247) (($ $ $ |#3|) 245)) (-3792 (($ $ |#1| |#2| $) 172)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 84 (-12 (|has| |#3| (-815 (-354))) (|has| |#1| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 83 (-12 (|has| |#3| (-815 (-522))) (|has| |#1| (-815 (-522)))))) (-2859 (((-108) $) 31)) (-1391 (((-708) $) 169)) (-1384 (((-108) $ $) 250) (((-108) $ (-588 $)) 249)) (-2662 (($ $ $ $ $) 207 (|has| |#1| (-514)))) (-1933 ((|#3| $) 275)) (-3520 (($ (-1081 |#1|) |#3|) 117) (($ (-1081 $) |#3|) 116)) (-3038 (((-588 $) $) 126)) (-1374 (((-108) $) 152)) (-3500 (($ |#1| |#2|) 153) (($ $ |#3| (-708)) 119) (($ $ (-588 |#3|) (-588 (-708))) 118)) (-3556 (($ $ $) 235)) (-3058 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $ |#3|) 120)) (-1257 (((-108) $) 265)) (-3564 ((|#2| $) 170) (((-708) $ |#3|) 122) (((-588 (-708)) $ (-588 |#3|)) 121)) (-1308 (($ $ $) 79 (|has| |#1| (-784)))) (-2059 (((-708) $) 274)) (-2524 (($ $ $) 78 (|has| |#1| (-784)))) (-1723 (($ (-1 |#2| |#2|) $) 171)) (-3810 (($ (-1 |#1| |#1|) $) 151)) (-3155 (((-3 |#3| "failed") $) 123)) (-2894 (($ $) 202 (|has| |#1| (-426)))) (-2408 (($ $) 203 (|has| |#1| (-426)))) (-2697 (((-588 $) $) 260)) (-3110 (($ $) 263)) (-1840 (($ $) 204 (|has| |#1| (-426)))) (-3814 (((-588 $) $) 261)) (-3409 (($ $) 262)) (-3216 (($ $) 149)) (-3224 ((|#1| $) 148) (($ $ |#3|) 267)) (-2267 (($ (-588 $)) 94 (|has| |#1| (-426))) (($ $ $) 93 (|has| |#1| (-426)))) (-3816 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4062 (-708))) $ $) 234)) (-1456 (((-2 (|:| -3112 $) (|:| |gap| (-708)) (|:| -3450 $) (|:| -4002 $)) $ $) 238) (((-2 (|:| -3112 $) (|:| |gap| (-708)) (|:| -3450 $) (|:| -4002 $)) $ $ |#3|) 237)) (-2038 (((-2 (|:| -3112 $) (|:| |gap| (-708)) (|:| -4002 $)) $ $) 240) (((-2 (|:| -3112 $) (|:| |gap| (-708)) (|:| -4002 $)) $ $ |#3|) 239)) (-3968 (($ $ $) 244) (($ $ $ |#3|) 242)) (-3787 (($ $ $) 243) (($ $ $ |#3|) 241)) (-2311 (((-1068) $) 9)) (-1998 (($ $ $) 210 (|has| |#1| (-514)))) (-3946 (((-588 $) $) 269)) (-2760 (((-3 (-588 $) "failed") $) 114)) (-1919 (((-3 (-588 $) "failed") $) 115)) (-2024 (((-3 (-2 (|:| |var| |#3|) (|:| -3858 (-708))) "failed") $) 113)) (-3864 (((-108) $ $) 252) (((-108) $ (-588 $)) 251)) (-2556 (($ $ $) 232)) (-3937 (($ $) 273)) (-1517 (((-108) $ $) 258)) (-3060 (((-108) $ $) 254) (((-108) $ (-588 $)) 253)) (-3896 (($ $ $) 233)) (-3655 (($ $) 272)) (-4174 (((-1032) $) 10)) (-3214 (((-2 (|:| -2308 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-514)))) (-2997 (((-2 (|:| -2308 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-514)))) (-3199 (((-108) $) 166)) (-3207 ((|#1| $) 167)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 95 (|has| |#1| (-426)))) (-2308 ((|#1| |#1| $) 206 (|has| |#1| (-426))) (($ (-588 $)) 92 (|has| |#1| (-426))) (($ $ $) 91 (|has| |#1| (-426)))) (-4022 (((-393 (-1081 $)) (-1081 $)) 102 (|has| |#1| (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) 101 (|has| |#1| (-838)))) (-2006 (((-393 $) $) 99 (|has| |#1| (-838)))) (-2078 (((-2 (|:| -2308 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-514)))) (-2276 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-514))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-514)))) (-4139 (($ $ |#1|) 219 (|has| |#1| (-514))) (($ $ $) 217 (|has| |#1| (-514)))) (-2376 (($ $ |#1|) 220 (|has| |#1| (-514))) (($ $ $) 218 (|has| |#1| (-514)))) (-2330 (($ $ (-588 (-270 $))) 145) (($ $ (-270 $)) 144) (($ $ $ $) 143) (($ $ (-588 $) (-588 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-588 |#3|) (-588 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-588 |#3|) (-588 $)) 138)) (-1615 (($ $ |#3|) 107 (|has| |#1| (-157)))) (-2731 (($ $ |#3|) 42) (($ $ (-588 |#3|)) 41) (($ $ |#3| (-708)) 40) (($ $ (-588 |#3|) (-588 (-708))) 39)) (-2487 ((|#2| $) 150) (((-708) $ |#3|) 130) (((-588 (-708)) $ (-588 |#3|)) 129)) (-2581 (($ $) 270)) (-2209 (($ $) 268)) (-3873 (((-821 (-354)) $) 82 (-12 (|has| |#3| (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354)))))) (((-821 (-522)) $) 81 (-12 (|has| |#3| (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522)))))) (((-498) $) 80 (-12 (|has| |#3| (-563 (-498))) (|has| |#1| (-563 (-498))))) (($ (-881 (-382 (-522)))) 229 (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#3| (-563 (-1085))))) (($ (-881 (-522))) 226 (-3844 (-12 (-2473 (|has| |#1| (-37 (-382 (-522))))) (|has| |#1| (-37 (-522))) (|has| |#3| (-563 (-1085)))) (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#3| (-563 (-1085)))))) (($ (-881 |#1|)) 223 (|has| |#3| (-563 (-1085)))) (((-1068) $) 201 (-12 (|has| |#1| (-962 (-522))) (|has| |#3| (-563 (-1085))))) (((-881 |#1|) $) 200 (|has| |#3| (-563 (-1085))))) (-2988 ((|#1| $) 175 (|has| |#1| (-426))) (($ $ |#3|) 106 (|has| |#1| (-426)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) 104 (-4079 (|has| $ (-133)) (|has| |#1| (-838))))) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-881 |#1|) $) 199 (|has| |#3| (-563 (-1085)))) (($ (-382 (-522))) 72 (-3844 (|has| |#1| (-962 (-382 (-522)))) (|has| |#1| (-37 (-382 (-522)))))) (($ $) 85 (|has| |#1| (-514)))) (-2180 (((-588 |#1|) $) 168)) (-1643 ((|#1| $ |#2|) 155) (($ $ |#3| (-708)) 128) (($ $ (-588 |#3|) (-588 (-708))) 127)) (-3040 (((-3 $ "failed") $) 73 (-3844 (-4079 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2742 (((-708)) 29)) (-1225 (($ $ $ (-708)) 173 (|has| |#1| (-157)))) (-1407 (((-108) $ $) 89 (|has| |#1| (-514)))) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-1679 (((-3 (-108) "failed") $ $) 259)) (-3709 (($) 30 T CONST)) (-2580 (($ $ $ $ (-708)) 208 (|has| |#1| (-514)))) (-2575 (($ $ $ (-708)) 209 (|has| |#1| (-514)))) (-2252 (($ $ |#3|) 38) (($ $ (-588 |#3|)) 37) (($ $ |#3| (-708)) 36) (($ $ (-588 |#3|) (-588 (-708))) 35)) (-1623 (((-108) $ $) 76 (|has| |#1| (-784)))) (-1597 (((-108) $ $) 75 (|has| |#1| (-784)))) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 77 (|has| |#1| (-784)))) (-1587 (((-108) $ $) 74 (|has| |#1| (-784)))) (-1682 (($ $ |#1|) 156 (|has| |#1| (-338)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 158 (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) 157 (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-985 |#1| |#2| |#3|) (-1197) (-971) (-730) (-784)) (T -985)) -((-1933 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)))) (-2059 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-708)))) (-3937 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-3655 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-3961 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-2581 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-3946 (*1 *2 *1) (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-985 *3 *4 *5)))) (-2209 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-3224 (*1 *1 *1 *2) (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)))) (-3241 (*1 *1 *1 *2) (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)))) (-1257 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)))) (-2184 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)))) (-3110 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-3409 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-3814 (*1 *2 *1) (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-985 *3 *4 *5)))) (-2697 (*1 *2 *1) (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-985 *3 *4 *5)))) (-1679 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)))) (-1517 (*1 *2 *1 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)))) (-2942 (*1 *2 *1 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)))) (-1426 (*1 *2 *1 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)))) (-1426 (*1 *2 *1 *3) (-12 (-5 *3 (-588 *1)) (-4 *1 (-985 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)))) (-3060 (*1 *2 *1 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)))) (-3060 (*1 *2 *1 *3) (-12 (-5 *3 (-588 *1)) (-4 *1 (-985 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)))) (-3864 (*1 *2 *1 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)))) (-3864 (*1 *2 *1 *3) (-12 (-5 *3 (-588 *1)) (-4 *1 (-985 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)))) (-1384 (*1 *2 *1 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)))) (-1384 (*1 *2 *1 *3) (-12 (-5 *3 (-588 *1)) (-4 *1 (-985 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)))) (-4107 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-3168 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-4107 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)))) (-3168 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)))) (-3968 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-3787 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-3968 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)))) (-3787 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)))) (-2038 (*1 *2 *1 *1) (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-2 (|:| -3112 *1) (|:| |gap| (-708)) (|:| -4002 *1))) (-4 *1 (-985 *3 *4 *5)))) (-2038 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) (-5 *2 (-2 (|:| -3112 *1) (|:| |gap| (-708)) (|:| -4002 *1))) (-4 *1 (-985 *4 *5 *3)))) (-1456 (*1 *2 *1 *1) (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-2 (|:| -3112 *1) (|:| |gap| (-708)) (|:| -3450 *1) (|:| -4002 *1))) (-4 *1 (-985 *3 *4 *5)))) (-1456 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) (-5 *2 (-2 (|:| -3112 *1) (|:| |gap| (-708)) (|:| -3450 *1) (|:| -4002 *1))) (-4 *1 (-985 *4 *5 *3)))) (-3370 (*1 *2 *1 *1) (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-2 (|:| -3450 *1) (|:| -4002 *1))) (-4 *1 (-985 *3 *4 *5)))) (-3556 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-3816 (*1 *2 *1 *1) (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4062 (-708)))) (-4 *1 (-985 *3 *4 *5)))) (-3896 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-2556 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-3700 (*1 *1 *2) (|partial| -12 (-5 *2 (-881 (-382 (-522)))) (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085))) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-881 (-382 (-522)))) (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085))) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-881 (-382 (-522)))) (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085))) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)))) (-3700 (*1 *1 *2) (|partial| -3844 (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5)) (-12 (-2473 (-4 *3 (-37 (-382 (-522))))) (-4 *3 (-37 (-522))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))) (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5)) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))))) (-1478 (*1 *1 *2) (-3844 (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5)) (-12 (-2473 (-4 *3 (-37 (-382 (-522))))) (-4 *3 (-37 (-522))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))) (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5)) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))))) (-3873 (*1 *1 *2) (-3844 (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5)) (-12 (-2473 (-4 *3 (-37 (-382 (-522))))) (-4 *3 (-37 (-522))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))) (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5)) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))))) (-3700 (*1 *1 *2) (|partial| -3844 (-12 (-5 *2 (-881 *3)) (-12 (-2473 (-4 *3 (-37 (-382 (-522))))) (-2473 (-4 *3 (-37 (-522)))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730)) (-4 *5 (-784))) (-12 (-5 *2 (-881 *3)) (-12 (-2473 (-4 *3 (-507))) (-2473 (-4 *3 (-37 (-382 (-522))))) (-4 *3 (-37 (-522))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730)) (-4 *5 (-784))) (-12 (-5 *2 (-881 *3)) (-12 (-2473 (-4 *3 (-919 (-522)))) (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730)) (-4 *5 (-784))))) (-1478 (*1 *1 *2) (-3844 (-12 (-5 *2 (-881 *3)) (-12 (-2473 (-4 *3 (-37 (-382 (-522))))) (-2473 (-4 *3 (-37 (-522)))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730)) (-4 *5 (-784))) (-12 (-5 *2 (-881 *3)) (-12 (-2473 (-4 *3 (-507))) (-2473 (-4 *3 (-37 (-382 (-522))))) (-4 *3 (-37 (-522))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730)) (-4 *5 (-784))) (-12 (-5 *2 (-881 *3)) (-12 (-2473 (-4 *3 (-919 (-522)))) (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730)) (-4 *5 (-784))))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *5 (-563 (-1085))) (-4 *4 (-730)) (-4 *5 (-784)))) (-1510 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-514)))) (-2948 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-514)))) (-2376 (*1 *1 *1 *2) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-514)))) (-4139 (*1 *1 *1 *2) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-514)))) (-2376 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-514)))) (-4139 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-514)))) (-3485 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-514)))) (-2078 (*1 *2 *1 *1) (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-2 (|:| -2308 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-985 *3 *4 *5)))) (-2997 (*1 *2 *1 *1) (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-2 (|:| -2308 *1) (|:| |coef1| *1))) (-4 *1 (-985 *3 *4 *5)))) (-3214 (*1 *2 *1 *1) (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-2 (|:| -2308 *1) (|:| |coef2| *1))) (-4 *1 (-985 *3 *4 *5)))) (-2908 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-514)))) (-2817 (*1 *2 *1 *1) (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-985 *3 *4 *5)))) (-1998 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-514)))) (-2575 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *3 (-514)))) (-2580 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *3 (-514)))) (-2662 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-514)))) (-2308 (*1 *2 *2 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-426)))) (-2563 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-426)))) (-1840 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-426)))) (-2408 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-426)))) (-2894 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-426))))) -(-13 (-878 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1933 (|t#3| $)) (-15 -2059 ((-708) $)) (-15 -3937 ($ $)) (-15 -3655 ($ $)) (-15 -3961 ($ $)) (-15 -2581 ($ $)) (-15 -3946 ((-588 $) $)) (-15 -2209 ($ $)) (-15 -3224 ($ $ |t#3|)) (-15 -3241 ($ $ |t#3|)) (-15 -1257 ((-108) $)) (-15 -2184 ((-108) $)) (-15 -3110 ($ $)) (-15 -3409 ($ $)) (-15 -3814 ((-588 $) $)) (-15 -2697 ((-588 $) $)) (-15 -1679 ((-3 (-108) "failed") $ $)) (-15 -1517 ((-108) $ $)) (-15 -2942 ((-108) $ $)) (-15 -1426 ((-108) $ $)) (-15 -1426 ((-108) $ (-588 $))) (-15 -3060 ((-108) $ $)) (-15 -3060 ((-108) $ (-588 $))) (-15 -3864 ((-108) $ $)) (-15 -3864 ((-108) $ (-588 $))) (-15 -1384 ((-108) $ $)) (-15 -1384 ((-108) $ (-588 $))) (-15 -4107 ($ $ $)) (-15 -3168 ($ $ $)) (-15 -4107 ($ $ $ |t#3|)) (-15 -3168 ($ $ $ |t#3|)) (-15 -3968 ($ $ $)) (-15 -3787 ($ $ $)) (-15 -3968 ($ $ $ |t#3|)) (-15 -3787 ($ $ $ |t#3|)) (-15 -2038 ((-2 (|:| -3112 $) (|:| |gap| (-708)) (|:| -4002 $)) $ $)) (-15 -2038 ((-2 (|:| -3112 $) (|:| |gap| (-708)) (|:| -4002 $)) $ $ |t#3|)) (-15 -1456 ((-2 (|:| -3112 $) (|:| |gap| (-708)) (|:| -3450 $) (|:| -4002 $)) $ $)) (-15 -1456 ((-2 (|:| -3112 $) (|:| |gap| (-708)) (|:| -3450 $) (|:| -4002 $)) $ $ |t#3|)) (-15 -3370 ((-2 (|:| -3450 $) (|:| -4002 $)) $ $)) (-15 -3556 ($ $ $)) (-15 -3816 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4062 (-708))) $ $)) (-15 -3896 ($ $ $)) (-15 -2556 ($ $ $)) (IF (|has| |t#3| (-563 (-1085))) (PROGN (-6 (-562 (-881 |t#1|))) (-6 (-563 (-881 |t#1|))) (IF (|has| |t#1| (-37 (-382 (-522)))) (PROGN (-15 -3700 ((-3 $ "failed") (-881 (-382 (-522))))) (-15 -1478 ($ (-881 (-382 (-522))))) (-15 -3873 ($ (-881 (-382 (-522))))) (-15 -3700 ((-3 $ "failed") (-881 (-522)))) (-15 -1478 ($ (-881 (-522)))) (-15 -3873 ($ (-881 (-522)))) (IF (|has| |t#1| (-919 (-522))) |%noBranch| (PROGN (-15 -3700 ((-3 $ "failed") (-881 |t#1|))) (-15 -1478 ($ (-881 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-522))) (IF (|has| |t#1| (-37 (-382 (-522)))) |%noBranch| (PROGN (-15 -3700 ((-3 $ "failed") (-881 (-522)))) (-15 -1478 ($ (-881 (-522)))) (-15 -3873 ($ (-881 (-522)))) (IF (|has| |t#1| (-507)) |%noBranch| (PROGN (-15 -3700 ((-3 $ "failed") (-881 |t#1|))) (-15 -1478 ($ (-881 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-522))) |%noBranch| (IF (|has| |t#1| (-37 (-382 (-522)))) |%noBranch| (PROGN (-15 -3700 ((-3 $ "failed") (-881 |t#1|))) (-15 -1478 ($ (-881 |t#1|)))))) (-15 -3873 ($ (-881 |t#1|))) (IF (|has| |t#1| (-962 (-522))) (-6 (-563 (-1068))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-514)) (PROGN (-15 -1510 ($ $)) (-15 -2948 ($ $)) (-15 -2376 ($ $ |t#1|)) (-15 -4139 ($ $ |t#1|)) (-15 -2376 ($ $ $)) (-15 -4139 ($ $ $)) (-15 -3485 ($ $ $)) (-15 -2078 ((-2 (|:| -2308 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2997 ((-2 (|:| -2308 $) (|:| |coef1| $)) $ $)) (-15 -3214 ((-2 (|:| -2308 $) (|:| |coef2| $)) $ $)) (-15 -2908 ($ $ $)) (-15 -2817 ((-588 $) $ $)) (-15 -1998 ($ $ $)) (-15 -2575 ($ $ $ (-708))) (-15 -2580 ($ $ $ $ (-708))) (-15 -2662 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-426)) (PROGN (-15 -2308 (|t#1| |t#1| $)) (-15 -2563 ($ $)) (-15 -1840 ($ $)) (-15 -2408 ($ $)) (-15 -2894 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-382 (-522)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-562 (-881 |#1|)) |has| |#3| (-563 (-1085))) ((-157) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-157))) ((-563 (-498)) -12 (|has| |#1| (-563 (-498))) (|has| |#3| (-563 (-498)))) ((-563 (-821 (-354))) -12 (|has| |#1| (-563 (-821 (-354)))) (|has| |#3| (-563 (-821 (-354))))) ((-563 (-821 (-522))) -12 (|has| |#1| (-563 (-821 (-522)))) (|has| |#3| (-563 (-821 (-522))))) ((-563 (-881 |#1|)) |has| |#3| (-563 (-1085))) ((-563 (-1068)) -12 (|has| |#1| (-962 (-522))) (|has| |#3| (-563 (-1085)))) ((-266) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-285 $) . T) ((-301 |#1| |#2|) . T) ((-352 |#1|) . T) ((-386 |#1|) . T) ((-426) -3844 (|has| |#1| (-838)) (|has| |#1| (-426))) ((-483 |#3| |#1|) . T) ((-483 |#3| $) . T) ((-483 $ $) . T) ((-514) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-590 #0#) |has| |#1| (-37 (-382 (-522)))) ((-590 |#1|) . T) ((-590 $) . T) ((-584 (-522)) |has| |#1| (-584 (-522))) ((-584 |#1|) . T) ((-655 #0#) |has| |#1| (-37 (-382 (-522)))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-664) . T) ((-784) |has| |#1| (-784)) ((-829 |#3|) . T) ((-815 (-354)) -12 (|has| |#1| (-815 (-354))) (|has| |#3| (-815 (-354)))) ((-815 (-522)) -12 (|has| |#1| (-815 (-522))) (|has| |#3| (-815 (-522)))) ((-878 |#1| |#2| |#3|) . T) ((-838) |has| |#1| (-838)) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T) ((-962 |#3|) . T) ((-977 #0#) |has| |#1| (-37 (-382 (-522)))) ((-977 |#1|) . T) ((-977 $) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) |has| |#1| (-838))) -((-2944 (((-108) |#3| $) 13)) (-1275 (((-3 $ "failed") |#3| (-850)) 23)) (-3920 (((-3 |#3| "failed") |#3| $) 37)) (-3603 (((-108) |#3| $) 16)) (-3740 (((-108) |#3| $) 14))) -(((-986 |#1| |#2| |#3|) (-10 -8 (-15 -1275 ((-3 |#1| "failed") |#3| (-850))) (-15 -3920 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3603 ((-108) |#3| |#1|)) (-15 -3740 ((-108) |#3| |#1|)) (-15 -2944 ((-108) |#3| |#1|))) (-987 |#2| |#3|) (-13 (-782) (-338)) (-1142 |#2|)) (T -986)) -NIL -(-10 -8 (-15 -1275 ((-3 |#1| "failed") |#3| (-850))) (-15 -3920 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3603 ((-108) |#3| |#1|)) (-15 -3740 ((-108) |#3| |#1|)) (-15 -2944 ((-108) |#3| |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) |#2| $) 21)) (-3355 (((-522) |#2| $) 22)) (-1275 (((-3 $ "failed") |#2| (-850)) 15)) (-1549 ((|#1| |#2| $ |#1|) 13)) (-3920 (((-3 |#2| "failed") |#2| $) 18)) (-3603 (((-108) |#2| $) 19)) (-3740 (((-108) |#2| $) 20)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-1579 ((|#2| $) 17)) (-2217 (((-792) $) 11)) (-3996 ((|#1| |#2| $ |#1|) 14)) (-3068 (((-588 $) |#2|) 16)) (-1562 (((-108) $ $) 6))) -(((-987 |#1| |#2|) (-1197) (-13 (-782) (-338)) (-1142 |t#1|)) (T -987)) -((-3355 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *3)) (-4 *4 (-13 (-782) (-338))) (-4 *3 (-1142 *4)) (-5 *2 (-522)))) (-2944 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *3)) (-4 *4 (-13 (-782) (-338))) (-4 *3 (-1142 *4)) (-5 *2 (-108)))) (-3740 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *3)) (-4 *4 (-13 (-782) (-338))) (-4 *3 (-1142 *4)) (-5 *2 (-108)))) (-3603 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *3)) (-4 *4 (-13 (-782) (-338))) (-4 *3 (-1142 *4)) (-5 *2 (-108)))) (-3920 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-987 *3 *2)) (-4 *3 (-13 (-782) (-338))) (-4 *2 (-1142 *3)))) (-1579 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *2)) (-4 *3 (-13 (-782) (-338))) (-4 *2 (-1142 *3)))) (-3068 (*1 *2 *3) (-12 (-4 *4 (-13 (-782) (-338))) (-4 *3 (-1142 *4)) (-5 *2 (-588 *1)) (-4 *1 (-987 *4 *3)))) (-1275 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-850)) (-4 *4 (-13 (-782) (-338))) (-4 *1 (-987 *4 *2)) (-4 *2 (-1142 *4)))) (-3996 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-987 *2 *3)) (-4 *2 (-13 (-782) (-338))) (-4 *3 (-1142 *2)))) (-1549 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-987 *2 *3)) (-4 *2 (-13 (-782) (-338))) (-4 *3 (-1142 *2))))) -(-13 (-1014) (-10 -8 (-15 -3355 ((-522) |t#2| $)) (-15 -2944 ((-108) |t#2| $)) (-15 -3740 ((-108) |t#2| $)) (-15 -3603 ((-108) |t#2| $)) (-15 -3920 ((-3 |t#2| "failed") |t#2| $)) (-15 -1579 (|t#2| $)) (-15 -3068 ((-588 $) |t#2|)) (-15 -1275 ((-3 $ "failed") |t#2| (-850))) (-15 -3996 (|t#1| |t#2| $ |t#1|)) (-15 -1549 (|t#1| |t#2| $ |t#1|)))) -(((-97) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-1358 (((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-588 |#4|) (-588 |#5|) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) (-708)) 96)) (-2357 (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-708)) 55)) (-3245 (((-1171) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-708)) 87)) (-3423 (((-708) (-588 |#4|) (-588 |#5|)) 27)) (-2132 (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-708)) 57) (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-708) (-108)) 59)) (-2327 (((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108) (-108) (-108) (-108)) 78) (((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108)) 79)) (-3873 (((-1068) (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) 82)) (-4013 (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-108)) 54)) (-2253 (((-708) (-588 |#4|) (-588 |#5|)) 19))) -(((-988 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2253 ((-708) (-588 |#4|) (-588 |#5|))) (-15 -3423 ((-708) (-588 |#4|) (-588 |#5|))) (-15 -4013 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-108))) (-15 -2357 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-708))) (-15 -2357 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|)) (-15 -2132 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-708) (-108))) (-15 -2132 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-708))) (-15 -2132 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|)) (-15 -2327 ((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108))) (-15 -2327 ((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1358 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-588 |#4|) (-588 |#5|) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) (-708))) (-15 -3873 ((-1068) (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|)))) (-15 -3245 ((-1171) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-708)))) (-426) (-730) (-784) (-985 |#1| |#2| |#3|) (-990 |#1| |#2| |#3| |#4|)) (T -988)) -((-3245 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-2 (|:| |val| (-588 *8)) (|:| -1974 *9)))) (-5 *4 (-708)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-1171)) (-5 *1 (-988 *5 *6 *7 *8 *9)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-588 *7)) (|:| -1974 *8))) (-4 *7 (-985 *4 *5 *6)) (-4 *8 (-990 *4 *5 *6 *7)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-1068)) (-5 *1 (-988 *4 *5 *6 *7 *8)))) (-1358 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-588 *11)) (|:| |todo| (-588 (-2 (|:| |val| *3) (|:| -1974 *11)))))) (-5 *6 (-708)) (-5 *2 (-588 (-2 (|:| |val| (-588 *10)) (|:| -1974 *11)))) (-5 *3 (-588 *10)) (-5 *4 (-588 *11)) (-4 *10 (-985 *7 *8 *9)) (-4 *11 (-990 *7 *8 *9 *10)) (-4 *7 (-426)) (-4 *8 (-730)) (-4 *9 (-784)) (-5 *1 (-988 *7 *8 *9 *10 *11)))) (-2327 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-588 *9)) (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-988 *5 *6 *7 *8 *9)))) (-2327 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-588 *9)) (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-988 *5 *6 *7 *8 *9)))) (-2132 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-2132 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-708)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *3 (-985 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) (-5 *1 (-988 *6 *7 *8 *3 *4)) (-4 *4 (-990 *6 *7 *8 *3)))) (-2132 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-708)) (-5 *6 (-108)) (-4 *7 (-426)) (-4 *8 (-730)) (-4 *9 (-784)) (-4 *3 (-985 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) (-5 *1 (-988 *7 *8 *9 *3 *4)) (-4 *4 (-990 *7 *8 *9 *3)))) (-2357 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-2357 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-708)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *3 (-985 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) (-5 *1 (-988 *6 *7 *8 *3 *4)) (-4 *4 (-990 *6 *7 *8 *3)))) (-4013 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *3 (-985 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) (-5 *1 (-988 *6 *7 *8 *3 *4)) (-4 *4 (-990 *6 *7 *8 *3)))) (-3423 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 *9)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-708)) (-5 *1 (-988 *5 *6 *7 *8 *9)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 *9)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-708)) (-5 *1 (-988 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -2253 ((-708) (-588 |#4|) (-588 |#5|))) (-15 -3423 ((-708) (-588 |#4|) (-588 |#5|))) (-15 -4013 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-108))) (-15 -2357 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-708))) (-15 -2357 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|)) (-15 -2132 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-708) (-108))) (-15 -2132 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-708))) (-15 -2132 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|)) (-15 -2327 ((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108))) (-15 -2327 ((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1358 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-588 |#4|) (-588 |#5|) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) (-708))) (-15 -3873 ((-1068) (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|)))) (-15 -3245 ((-1171) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-708)))) -((-2396 (((-108) |#5| $) 21)) (-3039 (((-108) |#5| $) 24)) (-2278 (((-108) |#5| $) 16) (((-108) $) 45)) (-2251 (((-588 $) |#5| $) NIL) (((-588 $) (-588 |#5|) $) 77) (((-588 $) (-588 |#5|) (-588 $)) 75) (((-588 $) |#5| (-588 $)) 78)) (-3934 (($ $ |#5|) NIL) (((-588 $) |#5| $) NIL) (((-588 $) |#5| (-588 $)) 60) (((-588 $) (-588 |#5|) $) 62) (((-588 $) (-588 |#5|) (-588 $)) 64)) (-3386 (((-588 $) |#5| $) NIL) (((-588 $) |#5| (-588 $)) 54) (((-588 $) (-588 |#5|) $) 56) (((-588 $) (-588 |#5|) (-588 $)) 58)) (-1336 (((-108) |#5| $) 27))) -(((-989 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3934 ((-588 |#1|) (-588 |#5|) (-588 |#1|))) (-15 -3934 ((-588 |#1|) (-588 |#5|) |#1|)) (-15 -3934 ((-588 |#1|) |#5| (-588 |#1|))) (-15 -3934 ((-588 |#1|) |#5| |#1|)) (-15 -3386 ((-588 |#1|) (-588 |#5|) (-588 |#1|))) (-15 -3386 ((-588 |#1|) (-588 |#5|) |#1|)) (-15 -3386 ((-588 |#1|) |#5| (-588 |#1|))) (-15 -3386 ((-588 |#1|) |#5| |#1|)) (-15 -2251 ((-588 |#1|) |#5| (-588 |#1|))) (-15 -2251 ((-588 |#1|) (-588 |#5|) (-588 |#1|))) (-15 -2251 ((-588 |#1|) (-588 |#5|) |#1|)) (-15 -2251 ((-588 |#1|) |#5| |#1|)) (-15 -3039 ((-108) |#5| |#1|)) (-15 -2278 ((-108) |#1|)) (-15 -1336 ((-108) |#5| |#1|)) (-15 -2396 ((-108) |#5| |#1|)) (-15 -2278 ((-108) |#5| |#1|)) (-15 -3934 (|#1| |#1| |#5|))) (-990 |#2| |#3| |#4| |#5|) (-426) (-730) (-784) (-985 |#2| |#3| |#4|)) (T -989)) -NIL -(-10 -8 (-15 -3934 ((-588 |#1|) (-588 |#5|) (-588 |#1|))) (-15 -3934 ((-588 |#1|) (-588 |#5|) |#1|)) (-15 -3934 ((-588 |#1|) |#5| (-588 |#1|))) (-15 -3934 ((-588 |#1|) |#5| |#1|)) (-15 -3386 ((-588 |#1|) (-588 |#5|) (-588 |#1|))) (-15 -3386 ((-588 |#1|) (-588 |#5|) |#1|)) (-15 -3386 ((-588 |#1|) |#5| (-588 |#1|))) (-15 -3386 ((-588 |#1|) |#5| |#1|)) (-15 -2251 ((-588 |#1|) |#5| (-588 |#1|))) (-15 -2251 ((-588 |#1|) (-588 |#5|) (-588 |#1|))) (-15 -2251 ((-588 |#1|) (-588 |#5|) |#1|)) (-15 -2251 ((-588 |#1|) |#5| |#1|)) (-15 -3039 ((-108) |#5| |#1|)) (-15 -2278 ((-108) |#1|)) (-15 -1336 ((-108) |#5| |#1|)) (-15 -2396 ((-108) |#5| |#1|)) (-15 -2278 ((-108) |#5| |#1|)) (-15 -3934 (|#1| |#1| |#5|))) -((-1419 (((-108) $ $) 7)) (-3829 (((-588 (-2 (|:| -1720 $) (|:| -1566 (-588 |#4|)))) (-588 |#4|)) 85)) (-2510 (((-588 $) (-588 |#4|)) 86) (((-588 $) (-588 |#4|) (-108)) 111)) (-3533 (((-588 |#3|) $) 33)) (-2161 (((-108) $) 26)) (-2702 (((-108) $) 17 (|has| |#1| (-514)))) (-1900 (((-108) |#4| $) 101) (((-108) $) 97)) (-2163 ((|#4| |#4| $) 92)) (-2961 (((-588 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| $) 126)) (-3296 (((-2 (|:| |under| $) (|:| -3592 $) (|:| |upper| $)) $ |#3|) 27)) (-2717 (((-108) $ (-708)) 44)) (-1696 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4238))) (((-3 |#4| "failed") $ |#3|) 79)) (-3367 (($) 45 T CONST)) (-1298 (((-108) $) 22 (|has| |#1| (-514)))) (-1657 (((-108) $ $) 24 (|has| |#1| (-514)))) (-3598 (((-108) $ $) 23 (|has| |#1| (-514)))) (-2818 (((-108) $) 25 (|has| |#1| (-514)))) (-3090 (((-588 |#4|) (-588 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3461 (((-588 |#4|) (-588 |#4|) $) 18 (|has| |#1| (-514)))) (-3668 (((-588 |#4|) (-588 |#4|) $) 19 (|has| |#1| (-514)))) (-3700 (((-3 $ "failed") (-588 |#4|)) 36)) (-1478 (($ (-588 |#4|)) 35)) (-2352 (((-3 $ "failed") $) 82)) (-2625 ((|#4| |#4| $) 89)) (-2379 (($ $) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-1424 (($ |#4| $) 67 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4238)))) (-4002 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-514)))) (-1426 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2918 ((|#4| |#4| $) 87)) (-2153 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4238))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-1199 (((-2 (|:| -1720 (-588 |#4|)) (|:| -1566 (-588 |#4|))) $) 105)) (-2396 (((-108) |#4| $) 136)) (-3039 (((-108) |#4| $) 133)) (-2278 (((-108) |#4| $) 137) (((-108) $) 134)) (-2395 (((-588 |#4|) $) 52 (|has| $ (-6 -4238)))) (-1384 (((-108) |#4| $) 104) (((-108) $) 103)) (-1933 ((|#3| $) 34)) (-1480 (((-108) $ (-708)) 43)) (-4084 (((-588 |#4|) $) 53 (|has| $ (-6 -4238)))) (-4176 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#4| |#4|) $) 47)) (-2714 (((-588 |#3|) $) 32)) (-3826 (((-108) |#3| $) 31)) (-3309 (((-108) $ (-708)) 42)) (-2311 (((-1068) $) 9)) (-1418 (((-3 |#4| (-588 $)) |#4| |#4| $) 128)) (-1998 (((-588 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| |#4| $) 127)) (-1442 (((-3 |#4| "failed") $) 83)) (-1468 (((-588 $) |#4| $) 129)) (-1892 (((-3 (-108) (-588 $)) |#4| $) 132)) (-1862 (((-588 (-2 (|:| |val| (-108)) (|:| -1974 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2251 (((-588 $) |#4| $) 125) (((-588 $) (-588 |#4|) $) 124) (((-588 $) (-588 |#4|) (-588 $)) 123) (((-588 $) |#4| (-588 $)) 122)) (-2953 (($ |#4| $) 117) (($ (-588 |#4|) $) 116)) (-4138 (((-588 |#4|) $) 107)) (-3864 (((-108) |#4| $) 99) (((-108) $) 95)) (-2556 ((|#4| |#4| $) 90)) (-1517 (((-108) $ $) 110)) (-2507 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-514)))) (-3060 (((-108) |#4| $) 100) (((-108) $) 96)) (-3896 ((|#4| |#4| $) 91)) (-4174 (((-1032) $) 10)) (-2337 (((-3 |#4| "failed") $) 84)) (-2187 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-4078 (((-3 $ "failed") $ |#4|) 78)) (-3934 (($ $ |#4|) 77) (((-588 $) |#4| $) 115) (((-588 $) |#4| (-588 $)) 114) (((-588 $) (-588 |#4|) $) 113) (((-588 $) (-588 |#4|) (-588 $)) 112)) (-3487 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 |#4|) (-588 |#4|)) 59 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) 57 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) 56 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-2065 (((-108) $ $) 38)) (-3494 (((-108) $) 41)) (-3298 (($) 40)) (-2487 (((-708) $) 106)) (-4187 (((-708) |#4| $) 54 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4238)))) (-2463 (($ $) 39)) (-3873 (((-498) $) 69 (|has| |#4| (-563 (-498))))) (-2227 (($ (-588 |#4|)) 60)) (-2271 (($ $ |#3|) 28)) (-2154 (($ $ |#3|) 30)) (-1524 (($ $) 88)) (-2773 (($ $ |#3|) 29)) (-2217 (((-792) $) 11) (((-588 |#4|) $) 37)) (-3111 (((-708) $) 76 (|has| |#3| (-343)))) (-3538 (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-2102 (((-108) $ (-1 (-108) |#4| (-588 |#4|))) 98)) (-3386 (((-588 $) |#4| $) 121) (((-588 $) |#4| (-588 $)) 120) (((-588 $) (-588 |#4|) $) 119) (((-588 $) (-588 |#4|) (-588 $)) 118)) (-1381 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4238)))) (-1982 (((-588 |#3|) $) 81)) (-1336 (((-108) |#4| $) 135)) (-1711 (((-108) |#3| $) 80)) (-1562 (((-108) $ $) 6)) (-3591 (((-708) $) 46 (|has| $ (-6 -4238))))) -(((-990 |#1| |#2| |#3| |#4|) (-1197) (-426) (-730) (-784) (-985 |t#1| |t#2| |t#3|)) (T -990)) -((-2278 (*1 *2 *3 *1) (-12 (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))) (-2396 (*1 *2 *3 *1) (-12 (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))) (-1336 (*1 *2 *3 *1) (-12 (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))) (-2278 (*1 *2 *1) (-12 (-4 *1 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108)))) (-3039 (*1 *2 *3 *1) (-12 (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))) (-1892 (*1 *2 *3 *1) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-3 (-108) (-588 *1))) (-4 *1 (-990 *4 *5 *6 *3)))) (-1862 (*1 *2 *3 *1) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1974 *1)))) (-4 *1 (-990 *4 *5 *6 *3)))) (-1862 (*1 *2 *3 *1) (-12 (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))) (-1468 (*1 *2 *3 *1) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *3)))) (-1418 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-3 *3 (-588 *1))) (-4 *1 (-990 *4 *5 *6 *3)))) (-1998 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *1)))) (-4 *1 (-990 *4 *5 *6 *3)))) (-2961 (*1 *2 *3 *1) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *1)))) (-4 *1 (-990 *4 *5 *6 *3)))) (-2251 (*1 *2 *3 *1) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *3)))) (-2251 (*1 *2 *3 *1) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *7)))) (-2251 (*1 *2 *3 *2) (-12 (-5 *2 (-588 *1)) (-5 *3 (-588 *7)) (-4 *1 (-990 *4 *5 *6 *7)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)))) (-2251 (*1 *2 *3 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)))) (-3386 (*1 *2 *3 *1) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *3)))) (-3386 (*1 *2 *3 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)))) (-3386 (*1 *2 *3 *1) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *7)))) (-3386 (*1 *2 *3 *2) (-12 (-5 *2 (-588 *1)) (-5 *3 (-588 *7)) (-4 *1 (-990 *4 *5 *6 *7)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)))) (-2953 (*1 *1 *2 *1) (-12 (-4 *1 (-990 *3 *4 *5 *2)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) (-2953 (*1 *1 *2 *1) (-12 (-5 *2 (-588 *6)) (-4 *1 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)))) (-3934 (*1 *2 *3 *1) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *3)))) (-3934 (*1 *2 *3 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)))) (-3934 (*1 *2 *3 *1) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *7)))) (-3934 (*1 *2 *3 *2) (-12 (-5 *2 (-588 *1)) (-5 *3 (-588 *7)) (-4 *1 (-990 *4 *5 *6 *7)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-990 *5 *6 *7 *8))))) -(-13 (-1114 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2278 ((-108) |t#4| $)) (-15 -2396 ((-108) |t#4| $)) (-15 -1336 ((-108) |t#4| $)) (-15 -2278 ((-108) $)) (-15 -3039 ((-108) |t#4| $)) (-15 -1892 ((-3 (-108) (-588 $)) |t#4| $)) (-15 -1862 ((-588 (-2 (|:| |val| (-108)) (|:| -1974 $))) |t#4| $)) (-15 -1862 ((-108) |t#4| $)) (-15 -1468 ((-588 $) |t#4| $)) (-15 -1418 ((-3 |t#4| (-588 $)) |t#4| |t#4| $)) (-15 -1998 ((-588 (-2 (|:| |val| |t#4|) (|:| -1974 $))) |t#4| |t#4| $)) (-15 -2961 ((-588 (-2 (|:| |val| |t#4|) (|:| -1974 $))) |t#4| $)) (-15 -2251 ((-588 $) |t#4| $)) (-15 -2251 ((-588 $) (-588 |t#4|) $)) (-15 -2251 ((-588 $) (-588 |t#4|) (-588 $))) (-15 -2251 ((-588 $) |t#4| (-588 $))) (-15 -3386 ((-588 $) |t#4| $)) (-15 -3386 ((-588 $) |t#4| (-588 $))) (-15 -3386 ((-588 $) (-588 |t#4|) $)) (-15 -3386 ((-588 $) (-588 |t#4|) (-588 $))) (-15 -2953 ($ |t#4| $)) (-15 -2953 ($ (-588 |t#4|) $)) (-15 -3934 ((-588 $) |t#4| $)) (-15 -3934 ((-588 $) |t#4| (-588 $))) (-15 -3934 ((-588 $) (-588 |t#4|) $)) (-15 -3934 ((-588 $) (-588 |t#4|) (-588 $))) (-15 -2510 ((-588 $) (-588 |t#4|) (-108))))) -(((-33) . T) ((-97) . T) ((-562 (-588 |#4|)) . T) ((-562 (-792)) . T) ((-139 |#4|) . T) ((-563 (-498)) |has| |#4| (-563 (-498))) ((-285 |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-461 |#4|) . T) ((-483 |#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-903 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1114 |#1| |#2| |#3| |#4|) . T) ((-1120) . T)) -((-2061 (((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#5|) 81)) (-2599 (((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|) 113)) (-1505 (((-588 |#5|) |#4| |#5|) 70)) (-3421 (((-588 (-2 (|:| |val| (-108)) (|:| -1974 |#5|))) |#4| |#5|) 44) (((-108) |#4| |#5|) 52)) (-2274 (((-1171)) 35)) (-2231 (((-1171)) 25)) (-2168 (((-1171) (-1068) (-1068) (-1068)) 31)) (-1832 (((-1171) (-1068) (-1068) (-1068)) 20)) (-4090 (((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) |#4| |#4| |#5|) 96)) (-3160 (((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) |#3| (-108)) 107) (((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5| (-108) (-108)) 49)) (-1469 (((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|) 102))) -(((-991 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1832 ((-1171) (-1068) (-1068) (-1068))) (-15 -2231 ((-1171))) (-15 -2168 ((-1171) (-1068) (-1068) (-1068))) (-15 -2274 ((-1171))) (-15 -4090 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -3160 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3160 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) |#3| (-108))) (-15 -1469 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -2599 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -3421 ((-108) |#4| |#5|)) (-15 -3421 ((-588 (-2 (|:| |val| (-108)) (|:| -1974 |#5|))) |#4| |#5|)) (-15 -1505 ((-588 |#5|) |#4| |#5|)) (-15 -2061 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#5|))) (-426) (-730) (-784) (-985 |#1| |#2| |#3|) (-990 |#1| |#2| |#3| |#4|)) (T -991)) -((-2061 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *4)))) (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-1505 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 *4)) (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-3421 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1974 *4)))) (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-3421 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-2599 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *4)))) (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-1469 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *4)))) (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-3160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-588 (-2 (|:| |val| (-588 *8)) (|:| -1974 *9)))) (-5 *5 (-108)) (-4 *8 (-985 *6 *7 *4)) (-4 *9 (-990 *6 *7 *4 *8)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *4 (-784)) (-5 *2 (-588 (-2 (|:| |val| *8) (|:| -1974 *9)))) (-5 *1 (-991 *6 *7 *4 *8 *9)))) (-3160 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *3 (-985 *6 *7 *8)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *4)))) (-5 *1 (-991 *6 *7 *8 *3 *4)) (-4 *4 (-990 *6 *7 *8 *3)))) (-4090 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))) (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-2274 (*1 *2) (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171)) (-5 *1 (-991 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6)))) (-2168 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171)) (-5 *1 (-991 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) (-2231 (*1 *2) (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171)) (-5 *1 (-991 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6)))) (-1832 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171)) (-5 *1 (-991 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7))))) -(-10 -7 (-15 -1832 ((-1171) (-1068) (-1068) (-1068))) (-15 -2231 ((-1171))) (-15 -2168 ((-1171) (-1068) (-1068) (-1068))) (-15 -2274 ((-1171))) (-15 -4090 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -3160 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3160 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) |#3| (-108))) (-15 -1469 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -2599 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -3421 ((-108) |#4| |#5|)) (-15 -3421 ((-588 (-2 (|:| |val| (-108)) (|:| -1974 |#5|))) |#4| |#5|)) (-15 -1505 ((-588 |#5|) |#4| |#5|)) (-15 -2061 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#5|))) -((-1419 (((-108) $ $) NIL)) (-3015 (((-1085) $) 8)) (-2311 (((-1068) $) 16)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 11)) (-1562 (((-108) $ $) 13))) -(((-992 |#1|) (-13 (-1014) (-10 -8 (-15 -3015 ((-1085) $)))) (-1085)) (T -992)) -((-3015 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-992 *3)) (-14 *3 *2)))) -(-13 (-1014) (-10 -8 (-15 -3015 ((-1085) $)))) -((-1419 (((-108) $ $) NIL)) (-1958 (($ $ (-588 (-1085)) (-1 (-108) (-588 |#3|))) 29)) (-1343 (($ |#3| |#3|) 21) (($ |#3| |#3| (-588 (-1085))) 19)) (-3728 ((|#3| $) 13)) (-3700 (((-3 (-270 |#3|) "failed") $) 56)) (-1478 (((-270 |#3|) $) NIL)) (-3403 (((-588 (-1085)) $) 15)) (-1352 (((-821 |#1|) $) 11)) (-3717 ((|#3| $) 12)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2683 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-850)) 36)) (-2217 (((-792) $) 85) (($ (-270 |#3|)) 20)) (-1562 (((-108) $ $) 33))) -(((-993 |#1| |#2| |#3|) (-13 (-1014) (-262 |#3| |#3|) (-962 (-270 |#3|)) (-10 -8 (-15 -1343 ($ |#3| |#3|)) (-15 -1343 ($ |#3| |#3| (-588 (-1085)))) (-15 -1958 ($ $ (-588 (-1085)) (-1 (-108) (-588 |#3|)))) (-15 -1352 ((-821 |#1|) $)) (-15 -3717 (|#3| $)) (-15 -3728 (|#3| $)) (-15 -2683 (|#3| $ |#3| (-850))) (-15 -3403 ((-588 (-1085)) $)))) (-1014) (-13 (-971) (-815 |#1|) (-784) (-563 (-821 |#1|))) (-13 (-405 |#2|) (-815 |#1|) (-563 (-821 |#1|)))) (T -993)) -((-1343 (*1 *1 *2 *2) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3)))) (-5 *1 (-993 *3 *4 *2)) (-4 *2 (-13 (-405 *4) (-815 *3) (-563 (-821 *3)))))) (-1343 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-588 (-1085))) (-4 *4 (-1014)) (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4)))) (-5 *1 (-993 *4 *5 *2)) (-4 *2 (-13 (-405 *5) (-815 *4) (-563 (-821 *4)))))) (-1958 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-1 (-108) (-588 *6))) (-4 *6 (-13 (-405 *5) (-815 *4) (-563 (-821 *4)))) (-4 *4 (-1014)) (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4)))) (-5 *1 (-993 *4 *5 *6)))) (-1352 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 *2))) (-5 *2 (-821 *3)) (-5 *1 (-993 *3 *4 *5)) (-4 *5 (-13 (-405 *4) (-815 *3) (-563 *2))))) (-3717 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *2 (-13 (-405 *4) (-815 *3) (-563 (-821 *3)))) (-5 *1 (-993 *3 *4 *2)) (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3)))))) (-3728 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *2 (-13 (-405 *4) (-815 *3) (-563 (-821 *3)))) (-5 *1 (-993 *3 *4 *2)) (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3)))))) (-2683 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-850)) (-4 *4 (-1014)) (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4)))) (-5 *1 (-993 *4 *5 *2)) (-4 *2 (-13 (-405 *5) (-815 *4) (-563 (-821 *4)))))) (-3403 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3)))) (-5 *2 (-588 (-1085))) (-5 *1 (-993 *3 *4 *5)) (-4 *5 (-13 (-405 *4) (-815 *3) (-563 (-821 *3))))))) -(-13 (-1014) (-262 |#3| |#3|) (-962 (-270 |#3|)) (-10 -8 (-15 -1343 ($ |#3| |#3|)) (-15 -1343 ($ |#3| |#3| (-588 (-1085)))) (-15 -1958 ($ $ (-588 (-1085)) (-1 (-108) (-588 |#3|)))) (-15 -1352 ((-821 |#1|) $)) (-15 -3717 (|#3| $)) (-15 -3728 (|#3| $)) (-15 -2683 (|#3| $ |#3| (-850))) (-15 -3403 ((-588 (-1085)) $)))) -((-1419 (((-108) $ $) NIL)) (-1926 (($ (-588 (-993 |#1| |#2| |#3|))) 12)) (-3398 (((-588 (-993 |#1| |#2| |#3|)) $) 19)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2683 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-850)) 25)) (-2217 (((-792) $) 15)) (-1562 (((-108) $ $) 18))) -(((-994 |#1| |#2| |#3|) (-13 (-1014) (-262 |#3| |#3|) (-10 -8 (-15 -1926 ($ (-588 (-993 |#1| |#2| |#3|)))) (-15 -3398 ((-588 (-993 |#1| |#2| |#3|)) $)) (-15 -2683 (|#3| $ |#3| (-850))))) (-1014) (-13 (-971) (-815 |#1|) (-784) (-563 (-821 |#1|))) (-13 (-405 |#2|) (-815 |#1|) (-563 (-821 |#1|)))) (T -994)) -((-1926 (*1 *1 *2) (-12 (-5 *2 (-588 (-993 *3 *4 *5))) (-4 *3 (-1014)) (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3)))) (-4 *5 (-13 (-405 *4) (-815 *3) (-563 (-821 *3)))) (-5 *1 (-994 *3 *4 *5)))) (-3398 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3)))) (-5 *2 (-588 (-993 *3 *4 *5))) (-5 *1 (-994 *3 *4 *5)) (-4 *5 (-13 (-405 *4) (-815 *3) (-563 (-821 *3)))))) (-2683 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-850)) (-4 *4 (-1014)) (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4)))) (-5 *1 (-994 *4 *5 *2)) (-4 *2 (-13 (-405 *5) (-815 *4) (-563 (-821 *4))))))) -(-13 (-1014) (-262 |#3| |#3|) (-10 -8 (-15 -1926 ($ (-588 (-993 |#1| |#2| |#3|)))) (-15 -3398 ((-588 (-993 |#1| |#2| |#3|)) $)) (-15 -2683 (|#3| $ |#3| (-850))))) -((-3452 (((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108) (-108)) 74) (((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-588 (-881 |#1|))) 76) (((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108)) 75))) -(((-995 |#1| |#2|) (-10 -7 (-15 -3452 ((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108))) (-15 -3452 ((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-588 (-881 |#1|)))) (-15 -3452 ((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108) (-108)))) (-13 (-283) (-135)) (-588 (-1085))) (T -995)) -((-3452 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) (-5 *2 (-588 (-2 (|:| -3769 (-1081 *5)) (|:| -3510 (-588 (-881 *5)))))) (-5 *1 (-995 *5 *6)) (-5 *3 (-588 (-881 *5))) (-14 *6 (-588 (-1085))))) (-3452 (*1 *2 *3) (-12 (-4 *4 (-13 (-283) (-135))) (-5 *2 (-588 (-2 (|:| -3769 (-1081 *4)) (|:| -3510 (-588 (-881 *4)))))) (-5 *1 (-995 *4 *5)) (-5 *3 (-588 (-881 *4))) (-14 *5 (-588 (-1085))))) (-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) (-5 *2 (-588 (-2 (|:| -3769 (-1081 *5)) (|:| -3510 (-588 (-881 *5)))))) (-5 *1 (-995 *5 *6)) (-5 *3 (-588 (-881 *5))) (-14 *6 (-588 (-1085)))))) -(-10 -7 (-15 -3452 ((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108))) (-15 -3452 ((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-588 (-881 |#1|)))) (-15 -3452 ((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108) (-108)))) -((-2006 (((-393 |#3|) |#3|) 16))) -(((-996 |#1| |#2| |#3|) (-10 -7 (-15 -2006 ((-393 |#3|) |#3|))) (-1142 (-382 (-522))) (-13 (-338) (-135) (-662 (-382 (-522)) |#1|)) (-1142 |#2|)) (T -996)) -((-2006 (*1 *2 *3) (-12 (-4 *4 (-1142 (-382 (-522)))) (-4 *5 (-13 (-338) (-135) (-662 (-382 (-522)) *4))) (-5 *2 (-393 *3)) (-5 *1 (-996 *4 *5 *3)) (-4 *3 (-1142 *5))))) -(-10 -7 (-15 -2006 ((-393 |#3|) |#3|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 125)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-338)))) (-2298 (($ $) NIL (|has| |#1| (-338)))) (-3007 (((-108) $) NIL (|has| |#1| (-338)))) (-3356 (((-628 |#1|) (-1166 $)) NIL) (((-628 |#1|)) 115)) (-1945 ((|#1| $) 119)) (-3833 (((-1094 (-850) (-708)) (-522)) NIL (|has| |#1| (-324)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL (|has| |#1| (-338)))) (-3133 (((-393 $) $) NIL (|has| |#1| (-338)))) (-2805 (((-108) $ $) NIL (|has| |#1| (-338)))) (-1685 (((-708)) 40 (|has| |#1| (-343)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) NIL)) (-1478 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) NIL)) (-3225 (($ (-1166 |#1|) (-1166 $)) NIL) (($ (-1166 |#1|)) 43)) (-1576 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-324)))) (-2333 (($ $ $) NIL (|has| |#1| (-338)))) (-1359 (((-628 |#1|) $ (-1166 $)) NIL) (((-628 |#1|) $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 106) (((-628 |#1|) (-628 $)) 100)) (-2153 (($ |#2|) 61) (((-3 $ "failed") (-382 |#2|)) NIL (|has| |#1| (-338)))) (-3920 (((-3 $ "failed") $) NIL)) (-1692 (((-850)) 77)) (-3344 (($) 44 (|has| |#1| (-343)))) (-2303 (($ $ $) NIL (|has| |#1| (-338)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2160 (($) NIL (|has| |#1| (-324)))) (-2087 (((-108) $) NIL (|has| |#1| (-324)))) (-1380 (($ $ (-708)) NIL (|has| |#1| (-324))) (($ $) NIL (|has| |#1| (-324)))) (-2725 (((-108) $) NIL (|has| |#1| (-338)))) (-3872 (((-850) $) NIL (|has| |#1| (-324))) (((-770 (-850)) $) NIL (|has| |#1| (-324)))) (-2859 (((-108) $) NIL)) (-1269 ((|#1| $) NIL)) (-4208 (((-3 $ "failed") $) NIL (|has| |#1| (-324)))) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-4199 ((|#2| $) 84 (|has| |#1| (-338)))) (-1475 (((-850) $) 130 (|has| |#1| (-343)))) (-2142 ((|#2| $) 58)) (-2267 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL (|has| |#1| (-338)))) (-3937 (($) NIL (|has| |#1| (-324)) CONST)) (-2882 (($ (-850)) 124 (|has| |#1| (-343)))) (-4174 (((-1032) $) NIL)) (-1368 (($) 121)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-338)))) (-2308 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-1799 (((-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522))))) NIL (|has| |#1| (-324)))) (-2006 (((-393 $) $) NIL (|has| |#1| (-338)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-338)))) (-2276 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-4031 (((-708) $) NIL (|has| |#1| (-338)))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-338)))) (-1615 ((|#1| (-1166 $)) NIL) ((|#1|) 109)) (-1304 (((-708) $) NIL (|has| |#1| (-324))) (((-3 (-708) "failed") $ $) NIL (|has| |#1| (-324)))) (-2731 (($ $) NIL (-3844 (-12 (|has| |#1| (-210)) (|has| |#1| (-338))) (|has| |#1| (-324)))) (($ $ (-708)) NIL (-3844 (-12 (|has| |#1| (-210)) (|has| |#1| (-338))) (|has| |#1| (-324)))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))))) (($ $ (-1 |#1| |#1|) (-708)) NIL (|has| |#1| (-338))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-338)))) (-2620 (((-628 |#1|) (-1166 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-338)))) (-1579 ((|#2|) 73)) (-2670 (($) NIL (|has| |#1| (-324)))) (-3510 (((-1166 |#1|) $ (-1166 $)) 89) (((-628 |#1|) (-1166 $) (-1166 $)) NIL) (((-1166 |#1|) $) 71) (((-628 |#1|) (-1166 $)) 85)) (-3873 (((-1166 |#1|) $) NIL) (($ (-1166 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| |#1| (-324)))) (-2217 (((-792) $) 57) (($ (-522)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-338))) (($ (-382 (-522))) NIL (-3844 (|has| |#1| (-338)) (|has| |#1| (-962 (-382 (-522))))))) (-3040 (($ $) NIL (|has| |#1| (-324))) (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2645 ((|#2| $) 82)) (-2742 (((-708)) 75)) (-2905 (((-1166 $)) 81)) (-1407 (((-108) $ $) NIL (|has| |#1| (-338)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3697 (($) 30 T CONST)) (-3709 (($) 19 T CONST)) (-2252 (($ $) NIL (-3844 (-12 (|has| |#1| (-210)) (|has| |#1| (-338))) (|has| |#1| (-324)))) (($ $ (-708)) NIL (-3844 (-12 (|has| |#1| (-210)) (|has| |#1| (-338))) (|has| |#1| (-324)))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))))) (($ $ (-1 |#1| |#1|) (-708)) NIL (|has| |#1| (-338))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-338)))) (-1562 (((-108) $ $) 63)) (-1682 (($ $ $) NIL (|has| |#1| (-338)))) (-1672 (($ $) 67) (($ $ $) NIL)) (-1661 (($ $ $) 65)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-382 (-522)) $) NIL (|has| |#1| (-338))) (($ $ (-382 (-522))) NIL (|has| |#1| (-338))))) -(((-997 |#1| |#2| |#3|) (-662 |#1| |#2|) (-157) (-1142 |#1|) |#2|) (T -997)) -NIL -(-662 |#1| |#2|) -((-2006 (((-393 |#3|) |#3|) 16))) -(((-998 |#1| |#2| |#3|) (-10 -7 (-15 -2006 ((-393 |#3|) |#3|))) (-1142 (-382 (-881 (-522)))) (-13 (-338) (-135) (-662 (-382 (-881 (-522))) |#1|)) (-1142 |#2|)) (T -998)) -((-2006 (*1 *2 *3) (-12 (-4 *4 (-1142 (-382 (-881 (-522))))) (-4 *5 (-13 (-338) (-135) (-662 (-382 (-881 (-522))) *4))) (-5 *2 (-393 *3)) (-5 *1 (-998 *4 *5 *3)) (-4 *3 (-1142 *5))))) -(-10 -7 (-15 -2006 ((-393 |#3|) |#3|))) -((-1419 (((-108) $ $) NIL)) (-1308 (($ $ $) 14)) (-2524 (($ $ $) 15)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-3269 (($) 6)) (-3873 (((-1085) $) 18)) (-2217 (((-792) $) 12)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 13)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 8))) -(((-999) (-13 (-784) (-10 -8 (-15 -3269 ($)) (-15 -3873 ((-1085) $))))) (T -999)) -((-3269 (*1 *1) (-5 *1 (-999))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-999))))) -(-13 (-784) (-10 -8 (-15 -3269 ($)) (-15 -3873 ((-1085) $)))) -((-3052 ((|#1| |#1| (-1 (-522) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-108) |#1|)) 20)) (-1575 (((-1171)) 15)) (-3003 (((-588 |#1|)) 9))) -(((-1000 |#1|) (-10 -7 (-15 -1575 ((-1171))) (-15 -3003 ((-588 |#1|))) (-15 -3052 (|#1| |#1| (-1 (-108) |#1|))) (-15 -3052 (|#1| |#1| (-1 (-522) |#1| |#1|)))) (-125)) (T -1000)) -((-3052 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-522) *2 *2)) (-4 *2 (-125)) (-5 *1 (-1000 *2)))) (-3052 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-125)) (-5 *1 (-1000 *2)))) (-3003 (*1 *2) (-12 (-5 *2 (-588 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-125)))) (-1575 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1000 *3)) (-4 *3 (-125))))) -(-10 -7 (-15 -1575 ((-1171))) (-15 -3003 ((-588 |#1|))) (-15 -3052 (|#1| |#1| (-1 (-108) |#1|))) (-15 -3052 (|#1| |#1| (-1 (-522) |#1| |#1|)))) -((-3260 (($ (-104) $) 15)) (-2040 (((-3 (-104) "failed") (-1085) $) 13)) (-3298 (($) 6)) (-1924 (($) 16)) (-2282 (($) 17)) (-1390 (((-588 (-159)) $) 8)) (-2217 (((-792) $) 20))) -(((-1001) (-13 (-562 (-792)) (-10 -8 (-15 -3298 ($)) (-15 -1390 ((-588 (-159)) $)) (-15 -2040 ((-3 (-104) "failed") (-1085) $)) (-15 -3260 ($ (-104) $)) (-15 -1924 ($)) (-15 -2282 ($))))) (T -1001)) -((-3298 (*1 *1) (-5 *1 (-1001))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-588 (-159))) (-5 *1 (-1001)))) (-2040 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-104)) (-5 *1 (-1001)))) (-3260 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1001)))) (-1924 (*1 *1) (-5 *1 (-1001))) (-2282 (*1 *1) (-5 *1 (-1001)))) -(-13 (-562 (-792)) (-10 -8 (-15 -3298 ($)) (-15 -1390 ((-588 (-159)) $)) (-15 -2040 ((-3 (-104) "failed") (-1085) $)) (-15 -3260 ($ (-104) $)) (-15 -1924 ($)) (-15 -2282 ($)))) -((-3690 (((-1166 (-628 |#1|)) (-588 (-628 |#1|))) 41) (((-1166 (-628 (-881 |#1|))) (-588 (-1085)) (-628 (-881 |#1|))) 61) (((-1166 (-628 (-382 (-881 |#1|)))) (-588 (-1085)) (-628 (-382 (-881 |#1|)))) 77)) (-3510 (((-1166 |#1|) (-628 |#1|) (-588 (-628 |#1|))) 35))) -(((-1002 |#1|) (-10 -7 (-15 -3690 ((-1166 (-628 (-382 (-881 |#1|)))) (-588 (-1085)) (-628 (-382 (-881 |#1|))))) (-15 -3690 ((-1166 (-628 (-881 |#1|))) (-588 (-1085)) (-628 (-881 |#1|)))) (-15 -3690 ((-1166 (-628 |#1|)) (-588 (-628 |#1|)))) (-15 -3510 ((-1166 |#1|) (-628 |#1|) (-588 (-628 |#1|))))) (-338)) (T -1002)) -((-3510 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-628 *5))) (-5 *3 (-628 *5)) (-4 *5 (-338)) (-5 *2 (-1166 *5)) (-5 *1 (-1002 *5)))) (-3690 (*1 *2 *3) (-12 (-5 *3 (-588 (-628 *4))) (-4 *4 (-338)) (-5 *2 (-1166 (-628 *4))) (-5 *1 (-1002 *4)))) (-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-1085))) (-4 *5 (-338)) (-5 *2 (-1166 (-628 (-881 *5)))) (-5 *1 (-1002 *5)) (-5 *4 (-628 (-881 *5))))) (-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-1085))) (-4 *5 (-338)) (-5 *2 (-1166 (-628 (-382 (-881 *5))))) (-5 *1 (-1002 *5)) (-5 *4 (-628 (-382 (-881 *5))))))) -(-10 -7 (-15 -3690 ((-1166 (-628 (-382 (-881 |#1|)))) (-588 (-1085)) (-628 (-382 (-881 |#1|))))) (-15 -3690 ((-1166 (-628 (-881 |#1|))) (-588 (-1085)) (-628 (-881 |#1|)))) (-15 -3690 ((-1166 (-628 |#1|)) (-588 (-628 |#1|)))) (-15 -3510 ((-1166 |#1|) (-628 |#1|) (-588 (-628 |#1|))))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-4044 (((-588 (-708)) $) NIL) (((-588 (-708)) $ (-1085)) NIL)) (-3192 (((-708) $) NIL) (((-708) $ (-1085)) NIL)) (-3533 (((-588 (-1004 (-1085))) $) NIL)) (-1264 (((-1081 $) $ (-1004 (-1085))) NIL) (((-1081 |#1|) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) NIL (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-3358 (((-708) $) NIL) (((-708) $ (-588 (-1004 (-1085)))) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2961 (($ $) NIL (|has| |#1| (-426)))) (-3133 (((-393 $) $) NIL (|has| |#1| (-426)))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-1646 (($ $) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-1004 (-1085)) "failed") $) NIL) (((-3 (-1085) "failed") $) NIL) (((-3 (-1037 |#1| (-1085)) "failed") $) NIL)) (-1478 ((|#1| $) NIL) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-1004 (-1085)) $) NIL) (((-1085) $) NIL) (((-1037 |#1| (-1085)) $) NIL)) (-2908 (($ $ $ (-1004 (-1085))) NIL (|has| |#1| (-157)))) (-3241 (($ $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2883 (($ $) NIL (|has| |#1| (-426))) (($ $ (-1004 (-1085))) NIL (|has| |#1| (-426)))) (-3232 (((-588 $) $) NIL)) (-2725 (((-108) $) NIL (|has| |#1| (-838)))) (-3792 (($ $ |#1| (-494 (-1004 (-1085))) $) NIL)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-1004 (-1085)) (-815 (-354))) (|has| |#1| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-1004 (-1085)) (-815 (-522))) (|has| |#1| (-815 (-522)))))) (-3872 (((-708) $ (-1085)) NIL) (((-708) $) NIL)) (-2859 (((-108) $) NIL)) (-1391 (((-708) $) NIL)) (-3520 (($ (-1081 |#1|) (-1004 (-1085))) NIL) (($ (-1081 $) (-1004 (-1085))) NIL)) (-3038 (((-588 $) $) NIL)) (-1374 (((-108) $) NIL)) (-3500 (($ |#1| (-494 (-1004 (-1085)))) NIL) (($ $ (-1004 (-1085)) (-708)) NIL) (($ $ (-588 (-1004 (-1085))) (-588 (-708))) NIL)) (-3058 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $ (-1004 (-1085))) NIL)) (-3564 (((-494 (-1004 (-1085))) $) NIL) (((-708) $ (-1004 (-1085))) NIL) (((-588 (-708)) $ (-588 (-1004 (-1085)))) NIL)) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-1723 (($ (-1 (-494 (-1004 (-1085))) (-494 (-1004 (-1085)))) $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-2718 (((-1 $ (-708)) (-1085)) NIL) (((-1 $ (-708)) $) NIL (|has| |#1| (-210)))) (-3155 (((-3 (-1004 (-1085)) "failed") $) NIL)) (-3216 (($ $) NIL)) (-3224 ((|#1| $) NIL)) (-1611 (((-1004 (-1085)) $) NIL)) (-2267 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-2311 (((-1068) $) NIL)) (-1717 (((-108) $) NIL)) (-2760 (((-3 (-588 $) "failed") $) NIL)) (-1919 (((-3 (-588 $) "failed") $) NIL)) (-2024 (((-3 (-2 (|:| |var| (-1004 (-1085))) (|:| -3858 (-708))) "failed") $) NIL)) (-1992 (($ $) NIL)) (-4174 (((-1032) $) NIL)) (-3199 (((-108) $) NIL)) (-3207 ((|#1| $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-426)))) (-2308 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2006 (((-393 $) $) NIL (|has| |#1| (-838)))) (-2276 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-2330 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-1004 (-1085)) |#1|) NIL) (($ $ (-588 (-1004 (-1085))) (-588 |#1|)) NIL) (($ $ (-1004 (-1085)) $) NIL) (($ $ (-588 (-1004 (-1085))) (-588 $)) NIL) (($ $ (-1085) $) NIL (|has| |#1| (-210))) (($ $ (-588 (-1085)) (-588 $)) NIL (|has| |#1| (-210))) (($ $ (-1085) |#1|) NIL (|has| |#1| (-210))) (($ $ (-588 (-1085)) (-588 |#1|)) NIL (|has| |#1| (-210)))) (-1615 (($ $ (-1004 (-1085))) NIL (|has| |#1| (-157)))) (-2731 (($ $ (-1004 (-1085))) NIL) (($ $ (-588 (-1004 (-1085)))) NIL) (($ $ (-1004 (-1085)) (-708)) NIL) (($ $ (-588 (-1004 (-1085))) (-588 (-708))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1266 (((-588 (-1085)) $) NIL)) (-2487 (((-494 (-1004 (-1085))) $) NIL) (((-708) $ (-1004 (-1085))) NIL) (((-588 (-708)) $ (-588 (-1004 (-1085)))) NIL) (((-708) $ (-1085)) NIL)) (-3873 (((-821 (-354)) $) NIL (-12 (|has| (-1004 (-1085)) (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-1004 (-1085)) (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-1004 (-1085)) (-563 (-498))) (|has| |#1| (-563 (-498)))))) (-2988 ((|#1| $) NIL (|has| |#1| (-426))) (($ $ (-1004 (-1085))) NIL (|has| |#1| (-426)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL) (($ (-1004 (-1085))) NIL) (($ (-1085)) NIL) (($ (-1037 |#1| (-1085))) NIL) (($ (-382 (-522))) NIL (-3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#1| (-514)))) (-2180 (((-588 |#1|) $) NIL)) (-1643 ((|#1| $ (-494 (-1004 (-1085)))) NIL) (($ $ (-1004 (-1085)) (-708)) NIL) (($ $ (-588 (-1004 (-1085))) (-588 (-708))) NIL)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2742 (((-708)) NIL)) (-1225 (($ $ $ (-708)) NIL (|has| |#1| (-157)))) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $ (-1004 (-1085))) NIL) (($ $ (-588 (-1004 (-1085)))) NIL) (($ $ (-1004 (-1085)) (-708)) NIL) (($ $ (-588 (-1004 (-1085))) (-588 (-708))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1003 |#1|) (-13 (-229 |#1| (-1085) (-1004 (-1085)) (-494 (-1004 (-1085)))) (-962 (-1037 |#1| (-1085)))) (-971)) (T -1003)) -NIL -(-13 (-229 |#1| (-1085) (-1004 (-1085)) (-494 (-1004 (-1085)))) (-962 (-1037 |#1| (-1085)))) -((-1419 (((-108) $ $) NIL)) (-3192 (((-708) $) NIL)) (-1660 ((|#1| $) 10)) (-3700 (((-3 |#1| "failed") $) NIL)) (-1478 ((|#1| $) NIL)) (-3872 (((-708) $) 11)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-2718 (($ |#1| (-708)) 9)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2731 (($ $) NIL) (($ $ (-708)) NIL)) (-2217 (((-792) $) NIL) (($ |#1|) NIL)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 15))) -(((-1004 |#1|) (-242 |#1|) (-784)) (T -1004)) -NIL -(-242 |#1|) -((-3810 (((-588 |#2|) (-1 |#2| |#1|) (-1009 |#1|)) 24 (|has| |#1| (-782))) (((-1009 |#2|) (-1 |#2| |#1|) (-1009 |#1|)) 14))) -(((-1005 |#1| |#2|) (-10 -7 (-15 -3810 ((-1009 |#2|) (-1 |#2| |#1|) (-1009 |#1|))) (IF (|has| |#1| (-782)) (-15 -3810 ((-588 |#2|) (-1 |#2| |#1|) (-1009 |#1|))) |%noBranch|)) (-1120) (-1120)) (T -1005)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1009 *5)) (-4 *5 (-782)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-588 *6)) (-5 *1 (-1005 *5 *6)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1009 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1009 *6)) (-5 *1 (-1005 *5 *6))))) -(-10 -7 (-15 -3810 ((-1009 |#2|) (-1 |#2| |#1|) (-1009 |#1|))) (IF (|has| |#1| (-782)) (-15 -3810 ((-588 |#2|) (-1 |#2| |#1|) (-1009 |#1|))) |%noBranch|)) -((-3810 (((-1007 |#2|) (-1 |#2| |#1|) (-1007 |#1|)) 19))) -(((-1006 |#1| |#2|) (-10 -7 (-15 -3810 ((-1007 |#2|) (-1 |#2| |#1|) (-1007 |#1|)))) (-1120) (-1120)) (T -1006)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1007 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1007 *6)) (-5 *1 (-1006 *5 *6))))) -(-10 -7 (-15 -3810 ((-1007 |#2|) (-1 |#2| |#1|) (-1007 |#1|)))) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1660 (((-1085) $) 11)) (-1572 (((-1009 |#1|) $) 12)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-1656 (($ (-1085) (-1009 |#1|)) 10)) (-2217 (((-792) $) 20 (|has| |#1| (-1014)))) (-1562 (((-108) $ $) 15 (|has| |#1| (-1014))))) -(((-1007 |#1|) (-13 (-1120) (-10 -8 (-15 -1656 ($ (-1085) (-1009 |#1|))) (-15 -1660 ((-1085) $)) (-15 -1572 ((-1009 |#1|) $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|))) (-1120)) (T -1007)) -((-1656 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1009 *4)) (-4 *4 (-1120)) (-5 *1 (-1007 *4)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1007 *3)) (-4 *3 (-1120)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-1007 *3)) (-4 *3 (-1120))))) -(-13 (-1120) (-10 -8 (-15 -1656 ($ (-1085) (-1009 |#1|))) (-15 -1660 ((-1085) $)) (-15 -1572 ((-1009 |#1|) $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|))) -((-1572 (($ |#1| |#1|) 7)) (-2430 ((|#1| $) 10)) (-1451 ((|#1| $) 12)) (-1463 (((-522) $) 8)) (-3636 ((|#1| $) 9)) (-1476 ((|#1| $) 11)) (-3873 (($ |#1|) 6)) (-1752 (($ |#1| |#1|) 14)) (-1327 (($ $ (-522)) 13))) -(((-1008 |#1|) (-1197) (-1120)) (T -1008)) -((-1752 (*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120)))) (-1327 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-1008 *3)) (-4 *3 (-1120)))) (-1451 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120)))) (-1476 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120)))) (-2430 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120)))) (-3636 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120)))) (-1463 (*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1120)) (-5 *2 (-522)))) (-1572 (*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120)))) (-3873 (*1 *1 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120))))) -(-13 (-1120) (-10 -8 (-15 -1752 ($ |t#1| |t#1|)) (-15 -1327 ($ $ (-522))) (-15 -1451 (|t#1| $)) (-15 -1476 (|t#1| $)) (-15 -2430 (|t#1| $)) (-15 -3636 (|t#1| $)) (-15 -1463 ((-522) $)) (-15 -1572 ($ |t#1| |t#1|)) (-15 -3873 ($ |t#1|)))) -(((-1120) . T)) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1572 (($ |#1| |#1|) 15)) (-3810 (((-588 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-782)))) (-2430 ((|#1| $) 10)) (-1451 ((|#1| $) 9)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1463 (((-522) $) 14)) (-3636 ((|#1| $) 12)) (-1476 ((|#1| $) 11)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-1663 (((-588 |#1|) $) 36 (|has| |#1| (-782))) (((-588 |#1|) (-588 $)) 35 (|has| |#1| (-782)))) (-3873 (($ |#1|) 26)) (-2217 (((-792) $) 25 (|has| |#1| (-1014)))) (-1752 (($ |#1| |#1|) 8)) (-1327 (($ $ (-522)) 16)) (-1562 (((-108) $ $) 19 (|has| |#1| (-1014))))) -(((-1009 |#1|) (-13 (-1008 |#1|) (-10 -7 (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-1010 |#1| (-588 |#1|))) |%noBranch|))) (-1120)) (T -1009)) -NIL -(-13 (-1008 |#1|) (-10 -7 (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-1010 |#1| (-588 |#1|))) |%noBranch|))) -((-1572 (($ |#1| |#1|) 7)) (-3810 ((|#2| (-1 |#1| |#1|) $) 16)) (-2430 ((|#1| $) 10)) (-1451 ((|#1| $) 12)) (-1463 (((-522) $) 8)) (-3636 ((|#1| $) 9)) (-1476 ((|#1| $) 11)) (-1663 ((|#2| (-588 $)) 18) ((|#2| $) 17)) (-3873 (($ |#1|) 6)) (-1752 (($ |#1| |#1|) 14)) (-1327 (($ $ (-522)) 13))) -(((-1010 |#1| |#2|) (-1197) (-782) (-1059 |t#1|)) (T -1010)) -((-1663 (*1 *2 *3) (-12 (-5 *3 (-588 *1)) (-4 *1 (-1010 *4 *2)) (-4 *4 (-782)) (-4 *2 (-1059 *4)))) (-1663 (*1 *2 *1) (-12 (-4 *1 (-1010 *3 *2)) (-4 *3 (-782)) (-4 *2 (-1059 *3)))) (-3810 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1010 *4 *2)) (-4 *4 (-782)) (-4 *2 (-1059 *4))))) -(-13 (-1008 |t#1|) (-10 -8 (-15 -1663 (|t#2| (-588 $))) (-15 -1663 (|t#2| $)) (-15 -3810 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-1008 |#1|) . T) ((-1120) . T)) -((-2323 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-4099 (($ $ $) 10)) (-3962 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1011 |#1| |#2|) (-10 -8 (-15 -2323 (|#1| |#2| |#1|)) (-15 -2323 (|#1| |#1| |#2|)) (-15 -2323 (|#1| |#1| |#1|)) (-15 -4099 (|#1| |#1| |#1|)) (-15 -3962 (|#1| |#1| |#2|)) (-15 -3962 (|#1| |#1| |#1|))) (-1012 |#2|) (-1014)) (T -1011)) -NIL -(-10 -8 (-15 -2323 (|#1| |#2| |#1|)) (-15 -2323 (|#1| |#1| |#2|)) (-15 -2323 (|#1| |#1| |#1|)) (-15 -4099 (|#1| |#1| |#1|)) (-15 -3962 (|#1| |#1| |#2|)) (-15 -3962 (|#1| |#1| |#1|))) -((-1419 (((-108) $ $) 7)) (-2323 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-4099 (($ $ $) 20)) (-1751 (((-108) $ $) 19)) (-2717 (((-108) $ (-708)) 35)) (-1852 (($) 25) (($ (-588 |#1|)) 24)) (-1696 (($ (-1 (-108) |#1|) $) 56 (|has| $ (-6 -4238)))) (-3367 (($) 36 T CONST)) (-2379 (($ $) 59 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1424 (($ |#1| $) 58 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4238)))) (-2395 (((-588 |#1|) $) 43 (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) 34)) (-4084 (((-588 |#1|) $) 44 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 46 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 38)) (-3309 (((-108) $ (-708)) 33)) (-2311 (((-1068) $) 9)) (-2251 (($ $ $) 23)) (-4174 (((-1032) $) 10)) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 52)) (-3487 (((-108) (-1 (-108) |#1|) $) 41 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 |#1|) (-588 |#1|)) 50 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 48 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 (-270 |#1|))) 47 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 29)) (-3494 (((-108) $) 32)) (-3298 (($) 31)) (-3962 (($ $ $) 22) (($ $ |#1|) 21)) (-4187 (((-708) |#1| $) 45 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) |#1|) $) 42 (|has| $ (-6 -4238)))) (-2463 (($ $) 30)) (-3873 (((-498) $) 60 (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) 51)) (-2217 (((-792) $) 11)) (-3482 (($) 27) (($ (-588 |#1|)) 26)) (-1381 (((-108) (-1 (-108) |#1|) $) 40 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 6)) (-1587 (((-108) $ $) 28)) (-3591 (((-708) $) 37 (|has| $ (-6 -4238))))) -(((-1012 |#1|) (-1197) (-1014)) (T -1012)) -((-1587 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-108)))) (-3482 (*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3482 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3)))) (-1852 (*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-1852 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3)))) (-2251 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3962 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3962 (*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-4099 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-1751 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-108)))) (-2323 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-2323 (*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-2323 (*1 *1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))) -(-13 (-1014) (-139 |t#1|) (-10 -8 (-6 -4228) (-15 -1587 ((-108) $ $)) (-15 -3482 ($)) (-15 -3482 ($ (-588 |t#1|))) (-15 -1852 ($)) (-15 -1852 ($ (-588 |t#1|))) (-15 -2251 ($ $ $)) (-15 -3962 ($ $ $)) (-15 -3962 ($ $ |t#1|)) (-15 -4099 ($ $ $)) (-15 -1751 ((-108) $ $)) (-15 -2323 ($ $ $)) (-15 -2323 ($ $ |t#1|)) (-15 -2323 ($ |t#1| $)))) -(((-33) . T) ((-97) . T) ((-562 (-792)) . T) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) . T) ((-1120) . T)) -((-2311 (((-1068) $) 10)) (-4174 (((-1032) $) 8))) -(((-1013 |#1|) (-10 -8 (-15 -2311 ((-1068) |#1|)) (-15 -4174 ((-1032) |#1|))) (-1014)) (T -1013)) -NIL -(-10 -8 (-15 -2311 ((-1068) |#1|)) (-15 -4174 ((-1032) |#1|))) -((-1419 (((-108) $ $) 7)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-1562 (((-108) $ $) 6))) -(((-1014) (-1197)) (T -1014)) -((-4174 (*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1032)))) (-2311 (*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1068))))) -(-13 (-97) (-562 (-792)) (-10 -8 (-15 -4174 ((-1032) $)) (-15 -2311 ((-1068) $)))) -(((-97) . T) ((-562 (-792)) . T)) -((-1419 (((-108) $ $) NIL)) (-1685 (((-708)) 30)) (-2903 (($ (-588 (-850))) 52)) (-3893 (((-3 $ "failed") $ (-850) (-850)) 57)) (-3344 (($) 32)) (-4176 (((-108) (-850) $) 35)) (-1475 (((-850) $) 50)) (-2311 (((-1068) $) NIL)) (-2882 (($ (-850)) 31)) (-1739 (((-3 $ "failed") $ (-850)) 55)) (-4174 (((-1032) $) NIL)) (-1693 (((-1166 $)) 40)) (-3741 (((-588 (-850)) $) 23)) (-2764 (((-708) $ (-850) (-850)) 56)) (-2217 (((-792) $) 29)) (-1562 (((-108) $ $) 21))) -(((-1015 |#1| |#2|) (-13 (-343) (-10 -8 (-15 -1739 ((-3 $ "failed") $ (-850))) (-15 -3893 ((-3 $ "failed") $ (-850) (-850))) (-15 -3741 ((-588 (-850)) $)) (-15 -2903 ($ (-588 (-850)))) (-15 -1693 ((-1166 $))) (-15 -4176 ((-108) (-850) $)) (-15 -2764 ((-708) $ (-850) (-850))))) (-850) (-850)) (T -1015)) -((-1739 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-850)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3893 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-850)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3741 (*1 *2 *1) (-12 (-5 *2 (-588 (-850))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850)))) (-2903 (*1 *1 *2) (-12 (-5 *2 (-588 (-850))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850)))) (-1693 (*1 *2) (-12 (-5 *2 (-1166 (-1015 *3 *4))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850)))) (-4176 (*1 *2 *3 *1) (-12 (-5 *3 (-850)) (-5 *2 (-108)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2764 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-850)) (-5 *2 (-708)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-343) (-10 -8 (-15 -1739 ((-3 $ "failed") $ (-850))) (-15 -3893 ((-3 $ "failed") $ (-850) (-850))) (-15 -3741 ((-588 (-850)) $)) (-15 -2903 ($ (-588 (-850)))) (-15 -1693 ((-1166 $))) (-15 -4176 ((-108) (-850) $)) (-15 -2764 ((-708) $ (-850) (-850))))) -((-1419 (((-108) $ $) NIL)) (-3641 (($) NIL (|has| |#1| (-343)))) (-2323 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-4099 (($ $ $) 72)) (-1751 (((-108) $ $) 73)) (-2717 (((-108) $ (-708)) NIL)) (-1685 (((-708)) NIL (|has| |#1| (-343)))) (-1852 (($ (-588 |#1|)) NIL) (($) 13)) (-1213 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3367 (($) NIL T CONST)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1700 (($ |#1| $) 67 (|has| $ (-6 -4238))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1424 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4238)))) (-3344 (($) NIL (|has| |#1| (-343)))) (-2395 (((-588 |#1|) $) 19 (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) NIL)) (-1308 ((|#1| $) 57 (|has| |#1| (-784)))) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 66 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2524 ((|#1| $) 55 (|has| |#1| (-784)))) (-2397 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 34)) (-1475 (((-850) $) NIL (|has| |#1| (-343)))) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL)) (-2251 (($ $ $) 70)) (-1431 ((|#1| $) 25)) (-3365 (($ |#1| $) 65)) (-2882 (($ (-850)) NIL (|has| |#1| (-343)))) (-4174 (((-1032) $) NIL)) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 31)) (-3295 ((|#1| $) 27)) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) 21)) (-3298 (($) 11)) (-3962 (($ $ |#1|) NIL) (($ $ $) 71)) (-3546 (($) NIL) (($ (-588 |#1|)) NIL)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) 16)) (-3873 (((-498) $) 52 (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) 61)) (-3201 (($ $) NIL (|has| |#1| (-343)))) (-2217 (((-792) $) NIL)) (-2847 (((-708) $) NIL)) (-3482 (($ (-588 |#1|)) NIL) (($) 12)) (-2501 (($ (-588 |#1|)) NIL)) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 54)) (-1587 (((-108) $ $) NIL)) (-3591 (((-708) $) 10 (|has| $ (-6 -4238))))) -(((-1016 |#1|) (-400 |#1|) (-1014)) (T -1016)) -NIL -(-400 |#1|) -((-1419 (((-108) $ $) 7)) (-2415 (((-108) $) 32)) (-1488 ((|#2| $) 27)) (-1355 (((-108) $) 33)) (-1513 ((|#1| $) 28)) (-1430 (((-108) $) 35)) (-2591 (((-108) $) 37)) (-3037 (((-108) $) 34)) (-2311 (((-1068) $) 9)) (-3871 (((-108) $) 31)) (-1516 ((|#3| $) 26)) (-4174 (((-1032) $) 10)) (-3186 (((-108) $) 30)) (-3173 ((|#4| $) 25)) (-1610 ((|#5| $) 24)) (-3277 (((-108) $ $) 38)) (-2683 (($ $ (-522)) 14) (($ $ (-588 (-522))) 13)) (-2058 (((-588 $) $) 29)) (-3873 (($ (-588 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2217 (((-792) $) 11)) (-3281 (($ $) 16)) (-3271 (($ $) 17)) (-1519 (((-108) $) 36)) (-1562 (((-108) $ $) 6)) (-3591 (((-522) $) 15))) -(((-1017 |#1| |#2| |#3| |#4| |#5|) (-1197) (-1014) (-1014) (-1014) (-1014) (-1014)) (T -1017)) -((-3277 (*1 *2 *1 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))) (-2591 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))) (-1430 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))) (-3037 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))) (-2058 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-588 *1)) (-4 *1 (-1017 *3 *4 *5 *6 *7)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *2 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *2 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *2 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-1610 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *2)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)))) (-3873 (*1 *1 *2) (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) (-3873 (*1 *1 *2) (-12 (-4 *1 (-1017 *3 *2 *4 *5 *6)) (-4 *3 (-1014)) (-4 *2 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) (-3873 (*1 *1 *2) (-12 (-4 *1 (-1017 *3 *4 *2 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *2 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) (-3873 (*1 *1 *2) (-12 (-4 *1 (-1017 *3 *4 *5 *2 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *2 (-1014)) (-4 *6 (-1014)))) (-3873 (*1 *1 *2) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *2)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3271 (*1 *1 *1) (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) (-3281 (*1 *1 *1) (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) (-3591 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-522)))) (-2683 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)))) (-2683 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014))))) -(-13 (-1014) (-10 -8 (-15 -3277 ((-108) $ $)) (-15 -2591 ((-108) $)) (-15 -1519 ((-108) $)) (-15 -1430 ((-108) $)) (-15 -3037 ((-108) $)) (-15 -1355 ((-108) $)) (-15 -2415 ((-108) $)) (-15 -3871 ((-108) $)) (-15 -3186 ((-108) $)) (-15 -2058 ((-588 $) $)) (-15 -1513 (|t#1| $)) (-15 -1488 (|t#2| $)) (-15 -1516 (|t#3| $)) (-15 -3173 (|t#4| $)) (-15 -1610 (|t#5| $)) (-15 -3873 ($ (-588 $))) (-15 -3873 ($ |t#1|)) (-15 -3873 ($ |t#2|)) (-15 -3873 ($ |t#3|)) (-15 -3873 ($ |t#4|)) (-15 -3873 ($ |t#5|)) (-15 -3271 ($ $)) (-15 -3281 ($ $)) (-15 -3591 ((-522) $)) (-15 -2683 ($ $ (-522))) (-15 -2683 ($ $ (-588 (-522)))))) -(((-97) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-2415 (((-108) $) NIL)) (-1488 (((-1085) $) NIL)) (-1355 (((-108) $) NIL)) (-1513 (((-1068) $) NIL)) (-1430 (((-108) $) NIL)) (-2591 (((-108) $) NIL)) (-3037 (((-108) $) NIL)) (-2311 (((-1068) $) NIL)) (-3871 (((-108) $) NIL)) (-1516 (((-522) $) NIL)) (-4174 (((-1032) $) NIL)) (-3186 (((-108) $) NIL)) (-3173 (((-202) $) NIL)) (-1610 (((-792) $) NIL)) (-3277 (((-108) $ $) NIL)) (-2683 (($ $ (-522)) NIL) (($ $ (-588 (-522))) NIL)) (-2058 (((-588 $) $) NIL)) (-3873 (($ (-588 $)) NIL) (($ (-1068)) NIL) (($ (-1085)) NIL) (($ (-522)) NIL) (($ (-202)) NIL) (($ (-792)) NIL)) (-2217 (((-792) $) NIL)) (-3281 (($ $) NIL)) (-3271 (($ $) NIL)) (-1519 (((-108) $) NIL)) (-1562 (((-108) $ $) NIL)) (-3591 (((-522) $) NIL))) -(((-1018) (-1017 (-1068) (-1085) (-522) (-202) (-792))) (T -1018)) -NIL -(-1017 (-1068) (-1085) (-522) (-202) (-792)) -((-1419 (((-108) $ $) NIL)) (-2415 (((-108) $) 38)) (-1488 ((|#2| $) 42)) (-1355 (((-108) $) 37)) (-1513 ((|#1| $) 41)) (-1430 (((-108) $) 35)) (-2591 (((-108) $) 14)) (-3037 (((-108) $) 36)) (-2311 (((-1068) $) NIL)) (-3871 (((-108) $) 39)) (-1516 ((|#3| $) 44)) (-4174 (((-1032) $) NIL)) (-3186 (((-108) $) 40)) (-3173 ((|#4| $) 43)) (-1610 ((|#5| $) 45)) (-3277 (((-108) $ $) 34)) (-2683 (($ $ (-522)) 56) (($ $ (-588 (-522))) 58)) (-2058 (((-588 $) $) 22)) (-3873 (($ (-588 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-2217 (((-792) $) 23)) (-3281 (($ $) 21)) (-3271 (($ $) 52)) (-1519 (((-108) $) 18)) (-1562 (((-108) $ $) 33)) (-3591 (((-522) $) 54))) -(((-1019 |#1| |#2| |#3| |#4| |#5|) (-1017 |#1| |#2| |#3| |#4| |#5|) (-1014) (-1014) (-1014) (-1014) (-1014)) (T -1019)) -NIL -(-1017 |#1| |#2| |#3| |#4| |#5|) -((-2550 (((-1171) $) 23)) (-1465 (($ (-1085) (-409) |#2|) 11)) (-2217 (((-792) $) 16))) -(((-1020 |#1| |#2|) (-13 (-370) (-10 -8 (-15 -1465 ($ (-1085) (-409) |#2|)))) (-784) (-405 |#1|)) (T -1020)) -((-1465 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1085)) (-5 *3 (-409)) (-4 *5 (-784)) (-5 *1 (-1020 *5 *4)) (-4 *4 (-405 *5))))) -(-13 (-370) (-10 -8 (-15 -1465 ($ (-1085) (-409) |#2|)))) -((-3840 (((-108) |#5| |#5|) 38)) (-3130 (((-108) |#5| |#5|) 52)) (-2080 (((-108) |#5| (-588 |#5|)) 75) (((-108) |#5| |#5|) 61)) (-1400 (((-108) (-588 |#4|) (-588 |#4|)) 58)) (-2115 (((-108) (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|)) (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) 63)) (-1324 (((-1171)) 33)) (-4052 (((-1171) (-1068) (-1068) (-1068)) 29)) (-1954 (((-588 |#5|) (-588 |#5|)) 82)) (-3041 (((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|)))) 80)) (-2342 (((-588 (-2 (|:| -3277 (-588 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-588 |#4|)))) (-588 |#4|) (-588 |#5|) (-108) (-108)) 102)) (-3055 (((-108) |#5| |#5|) 47)) (-2494 (((-3 (-108) "failed") |#5| |#5|) 71)) (-4067 (((-108) (-588 |#4|) (-588 |#4|)) 57)) (-3474 (((-108) (-588 |#4|) (-588 |#4|)) 59)) (-1517 (((-108) (-588 |#4|) (-588 |#4|)) 60)) (-3882 (((-3 (-2 (|:| -3277 (-588 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-588 |#4|))) "failed") (-588 |#4|) |#5| (-588 |#4|) (-108) (-108) (-108) (-108) (-108)) 98)) (-2868 (((-588 |#5|) (-588 |#5|)) 43))) -(((-1021 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4052 ((-1171) (-1068) (-1068) (-1068))) (-15 -1324 ((-1171))) (-15 -3840 ((-108) |#5| |#5|)) (-15 -2868 ((-588 |#5|) (-588 |#5|))) (-15 -3055 ((-108) |#5| |#5|)) (-15 -3130 ((-108) |#5| |#5|)) (-15 -1400 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -4067 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -3474 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -1517 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -2494 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2080 ((-108) |#5| |#5|)) (-15 -2080 ((-108) |#5| (-588 |#5|))) (-15 -1954 ((-588 |#5|) (-588 |#5|))) (-15 -2115 ((-108) (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|)) (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|)))) (-15 -3041 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) (-15 -2342 ((-588 (-2 (|:| -3277 (-588 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-588 |#4|)))) (-588 |#4|) (-588 |#5|) (-108) (-108))) (-15 -3882 ((-3 (-2 (|:| -3277 (-588 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-588 |#4|))) "failed") (-588 |#4|) |#5| (-588 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-426) (-730) (-784) (-985 |#1| |#2| |#3|) (-990 |#1| |#2| |#3| |#4|)) (T -1021)) -((-3882 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *9 (-985 *6 *7 *8)) (-5 *2 (-2 (|:| -3277 (-588 *9)) (|:| -1974 *4) (|:| |ineq| (-588 *9)))) (-5 *1 (-1021 *6 *7 *8 *9 *4)) (-5 *3 (-588 *9)) (-4 *4 (-990 *6 *7 *8 *9)))) (-2342 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-588 *10)) (-5 *5 (-108)) (-4 *10 (-990 *6 *7 *8 *9)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *9 (-985 *6 *7 *8)) (-5 *2 (-588 (-2 (|:| -3277 (-588 *9)) (|:| -1974 *10) (|:| |ineq| (-588 *9))))) (-5 *1 (-1021 *6 *7 *8 *9 *10)) (-5 *3 (-588 *9)))) (-3041 (*1 *2 *2) (-12 (-5 *2 (-588 (-2 (|:| |val| (-588 *6)) (|:| -1974 *7)))) (-4 *6 (-985 *3 *4 *5)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-1021 *3 *4 *5 *6 *7)))) (-2115 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-588 *7)) (|:| -1974 *8))) (-4 *7 (-985 *4 *5 *6)) (-4 *8 (-990 *4 *5 *6 *7)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5 *6 *7 *8)))) (-1954 (*1 *2 *2) (-12 (-5 *2 (-588 *7)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *1 (-1021 *3 *4 *5 *6 *7)))) (-2080 (*1 *2 *3 *4) (-12 (-5 *4 (-588 *3)) (-4 *3 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1021 *5 *6 *7 *8 *3)))) (-2080 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) (-2494 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) (-1517 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) (-3474 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) (-4067 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) (-1400 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) (-3130 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) (-3055 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) (-2868 (*1 *2 *2) (-12 (-5 *2 (-588 *7)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *1 (-1021 *3 *4 *5 *6 *7)))) (-3840 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) (-1324 (*1 *2) (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171)) (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6)))) (-4052 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7))))) -(-10 -7 (-15 -4052 ((-1171) (-1068) (-1068) (-1068))) (-15 -1324 ((-1171))) (-15 -3840 ((-108) |#5| |#5|)) (-15 -2868 ((-588 |#5|) (-588 |#5|))) (-15 -3055 ((-108) |#5| |#5|)) (-15 -3130 ((-108) |#5| |#5|)) (-15 -1400 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -4067 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -3474 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -1517 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -2494 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2080 ((-108) |#5| |#5|)) (-15 -2080 ((-108) |#5| (-588 |#5|))) (-15 -1954 ((-588 |#5|) (-588 |#5|))) (-15 -2115 ((-108) (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|)) (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|)))) (-15 -3041 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) (-15 -2342 ((-588 (-2 (|:| -3277 (-588 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-588 |#4|)))) (-588 |#4|) (-588 |#5|) (-108) (-108))) (-15 -3882 ((-3 (-2 (|:| -3277 (-588 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-588 |#4|))) "failed") (-588 |#4|) |#5| (-588 |#4|) (-108) (-108) (-108) (-108) (-108)))) -((-2146 (((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#5|) 95)) (-3685 (((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) |#4| |#4| |#5|) 71)) (-1537 (((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|) 89)) (-3341 (((-588 |#5|) |#4| |#5|) 110)) (-3336 (((-588 |#5|) |#4| |#5|) 117)) (-1647 (((-588 |#5|) |#4| |#5|) 118)) (-3057 (((-588 (-2 (|:| |val| (-108)) (|:| -1974 |#5|))) |#4| |#5|) 96)) (-3601 (((-588 (-2 (|:| |val| (-108)) (|:| -1974 |#5|))) |#4| |#5|) 116)) (-3565 (((-588 (-2 (|:| |val| (-108)) (|:| -1974 |#5|))) |#4| |#5|) 44) (((-108) |#4| |#5|) 52)) (-1458 (((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) |#3| (-108)) 83) (((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5| (-108) (-108)) 49)) (-3046 (((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|) 78)) (-2274 (((-1171)) 35)) (-2231 (((-1171)) 25)) (-2168 (((-1171) (-1068) (-1068) (-1068)) 31)) (-1832 (((-1171) (-1068) (-1068) (-1068)) 20))) -(((-1022 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1832 ((-1171) (-1068) (-1068) (-1068))) (-15 -2231 ((-1171))) (-15 -2168 ((-1171) (-1068) (-1068) (-1068))) (-15 -2274 ((-1171))) (-15 -3685 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -1458 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -1458 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) |#3| (-108))) (-15 -3046 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -1537 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -3565 ((-108) |#4| |#5|)) (-15 -3057 ((-588 (-2 (|:| |val| (-108)) (|:| -1974 |#5|))) |#4| |#5|)) (-15 -3341 ((-588 |#5|) |#4| |#5|)) (-15 -3601 ((-588 (-2 (|:| |val| (-108)) (|:| -1974 |#5|))) |#4| |#5|)) (-15 -3336 ((-588 |#5|) |#4| |#5|)) (-15 -3565 ((-588 (-2 (|:| |val| (-108)) (|:| -1974 |#5|))) |#4| |#5|)) (-15 -1647 ((-588 |#5|) |#4| |#5|)) (-15 -2146 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#5|))) (-426) (-730) (-784) (-985 |#1| |#2| |#3|) (-990 |#1| |#2| |#3| |#4|)) (T -1022)) -((-2146 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *4)))) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-1647 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 *4)) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-3565 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1974 *4)))) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-3336 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 *4)) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-3601 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1974 *4)))) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-3341 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 *4)) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-3057 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1974 *4)))) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-3565 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-1537 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *4)))) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-3046 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *4)))) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-1458 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-588 (-2 (|:| |val| (-588 *8)) (|:| -1974 *9)))) (-5 *5 (-108)) (-4 *8 (-985 *6 *7 *4)) (-4 *9 (-990 *6 *7 *4 *8)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *4 (-784)) (-5 *2 (-588 (-2 (|:| |val| *8) (|:| -1974 *9)))) (-5 *1 (-1022 *6 *7 *4 *8 *9)))) (-1458 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *3 (-985 *6 *7 *8)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *4)))) (-5 *1 (-1022 *6 *7 *8 *3 *4)) (-4 *4 (-990 *6 *7 *8 *3)))) (-3685 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-2274 (*1 *2) (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171)) (-5 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6)))) (-2168 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171)) (-5 *1 (-1022 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) (-2231 (*1 *2) (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171)) (-5 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6)))) (-1832 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171)) (-5 *1 (-1022 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7))))) -(-10 -7 (-15 -1832 ((-1171) (-1068) (-1068) (-1068))) (-15 -2231 ((-1171))) (-15 -2168 ((-1171) (-1068) (-1068) (-1068))) (-15 -2274 ((-1171))) (-15 -3685 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -1458 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -1458 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) |#3| (-108))) (-15 -3046 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -1537 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -3565 ((-108) |#4| |#5|)) (-15 -3057 ((-588 (-2 (|:| |val| (-108)) (|:| -1974 |#5|))) |#4| |#5|)) (-15 -3341 ((-588 |#5|) |#4| |#5|)) (-15 -3601 ((-588 (-2 (|:| |val| (-108)) (|:| -1974 |#5|))) |#4| |#5|)) (-15 -3336 ((-588 |#5|) |#4| |#5|)) (-15 -3565 ((-588 (-2 (|:| |val| (-108)) (|:| -1974 |#5|))) |#4| |#5|)) (-15 -1647 ((-588 |#5|) |#4| |#5|)) (-15 -2146 ((-588 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#5|))) -((-1419 (((-108) $ $) 7)) (-3829 (((-588 (-2 (|:| -1720 $) (|:| -1566 (-588 |#4|)))) (-588 |#4|)) 85)) (-2510 (((-588 $) (-588 |#4|)) 86) (((-588 $) (-588 |#4|) (-108)) 111)) (-3533 (((-588 |#3|) $) 33)) (-2161 (((-108) $) 26)) (-2702 (((-108) $) 17 (|has| |#1| (-514)))) (-1900 (((-108) |#4| $) 101) (((-108) $) 97)) (-2163 ((|#4| |#4| $) 92)) (-2961 (((-588 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| $) 126)) (-3296 (((-2 (|:| |under| $) (|:| -3592 $) (|:| |upper| $)) $ |#3|) 27)) (-2717 (((-108) $ (-708)) 44)) (-1696 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4238))) (((-3 |#4| "failed") $ |#3|) 79)) (-3367 (($) 45 T CONST)) (-1298 (((-108) $) 22 (|has| |#1| (-514)))) (-1657 (((-108) $ $) 24 (|has| |#1| (-514)))) (-3598 (((-108) $ $) 23 (|has| |#1| (-514)))) (-2818 (((-108) $) 25 (|has| |#1| (-514)))) (-3090 (((-588 |#4|) (-588 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3461 (((-588 |#4|) (-588 |#4|) $) 18 (|has| |#1| (-514)))) (-3668 (((-588 |#4|) (-588 |#4|) $) 19 (|has| |#1| (-514)))) (-3700 (((-3 $ "failed") (-588 |#4|)) 36)) (-1478 (($ (-588 |#4|)) 35)) (-2352 (((-3 $ "failed") $) 82)) (-2625 ((|#4| |#4| $) 89)) (-2379 (($ $) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-1424 (($ |#4| $) 67 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4238)))) (-4002 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-514)))) (-1426 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2918 ((|#4| |#4| $) 87)) (-2153 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4238))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-1199 (((-2 (|:| -1720 (-588 |#4|)) (|:| -1566 (-588 |#4|))) $) 105)) (-2396 (((-108) |#4| $) 136)) (-3039 (((-108) |#4| $) 133)) (-2278 (((-108) |#4| $) 137) (((-108) $) 134)) (-2395 (((-588 |#4|) $) 52 (|has| $ (-6 -4238)))) (-1384 (((-108) |#4| $) 104) (((-108) $) 103)) (-1933 ((|#3| $) 34)) (-1480 (((-108) $ (-708)) 43)) (-4084 (((-588 |#4|) $) 53 (|has| $ (-6 -4238)))) (-4176 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#4| |#4|) $) 47)) (-2714 (((-588 |#3|) $) 32)) (-3826 (((-108) |#3| $) 31)) (-3309 (((-108) $ (-708)) 42)) (-2311 (((-1068) $) 9)) (-1418 (((-3 |#4| (-588 $)) |#4| |#4| $) 128)) (-1998 (((-588 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| |#4| $) 127)) (-1442 (((-3 |#4| "failed") $) 83)) (-1468 (((-588 $) |#4| $) 129)) (-1892 (((-3 (-108) (-588 $)) |#4| $) 132)) (-1862 (((-588 (-2 (|:| |val| (-108)) (|:| -1974 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2251 (((-588 $) |#4| $) 125) (((-588 $) (-588 |#4|) $) 124) (((-588 $) (-588 |#4|) (-588 $)) 123) (((-588 $) |#4| (-588 $)) 122)) (-2953 (($ |#4| $) 117) (($ (-588 |#4|) $) 116)) (-4138 (((-588 |#4|) $) 107)) (-3864 (((-108) |#4| $) 99) (((-108) $) 95)) (-2556 ((|#4| |#4| $) 90)) (-1517 (((-108) $ $) 110)) (-2507 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-514)))) (-3060 (((-108) |#4| $) 100) (((-108) $) 96)) (-3896 ((|#4| |#4| $) 91)) (-4174 (((-1032) $) 10)) (-2337 (((-3 |#4| "failed") $) 84)) (-2187 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-4078 (((-3 $ "failed") $ |#4|) 78)) (-3934 (($ $ |#4|) 77) (((-588 $) |#4| $) 115) (((-588 $) |#4| (-588 $)) 114) (((-588 $) (-588 |#4|) $) 113) (((-588 $) (-588 |#4|) (-588 $)) 112)) (-3487 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 |#4|) (-588 |#4|)) 59 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) 57 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) 56 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-2065 (((-108) $ $) 38)) (-3494 (((-108) $) 41)) (-3298 (($) 40)) (-2487 (((-708) $) 106)) (-4187 (((-708) |#4| $) 54 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4238)))) (-2463 (($ $) 39)) (-3873 (((-498) $) 69 (|has| |#4| (-563 (-498))))) (-2227 (($ (-588 |#4|)) 60)) (-2271 (($ $ |#3|) 28)) (-2154 (($ $ |#3|) 30)) (-1524 (($ $) 88)) (-2773 (($ $ |#3|) 29)) (-2217 (((-792) $) 11) (((-588 |#4|) $) 37)) (-3111 (((-708) $) 76 (|has| |#3| (-343)))) (-3538 (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-2102 (((-108) $ (-1 (-108) |#4| (-588 |#4|))) 98)) (-3386 (((-588 $) |#4| $) 121) (((-588 $) |#4| (-588 $)) 120) (((-588 $) (-588 |#4|) $) 119) (((-588 $) (-588 |#4|) (-588 $)) 118)) (-1381 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4238)))) (-1982 (((-588 |#3|) $) 81)) (-1336 (((-108) |#4| $) 135)) (-1711 (((-108) |#3| $) 80)) (-1562 (((-108) $ $) 6)) (-3591 (((-708) $) 46 (|has| $ (-6 -4238))))) -(((-1023 |#1| |#2| |#3| |#4|) (-1197) (-426) (-730) (-784) (-985 |t#1| |t#2| |t#3|)) (T -1023)) -NIL -(-13 (-990 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-97) . T) ((-562 (-588 |#4|)) . T) ((-562 (-792)) . T) ((-139 |#4|) . T) ((-563 (-498)) |has| |#4| (-563 (-498))) ((-285 |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-461 |#4|) . T) ((-483 |#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-903 |#1| |#2| |#3| |#4|) . T) ((-990 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1114 |#1| |#2| |#3| |#4|) . T) ((-1120) . T)) -((-2779 (((-588 (-522)) (-522) (-522) (-522)) 22)) (-4050 (((-588 (-522)) (-522) (-522) (-522)) 12)) (-3197 (((-588 (-522)) (-522) (-522) (-522)) 18)) (-4155 (((-522) (-522) (-522)) 9)) (-2621 (((-1166 (-522)) (-588 (-522)) (-1166 (-522)) (-522)) 45) (((-1166 (-522)) (-1166 (-522)) (-1166 (-522)) (-522)) 40)) (-2343 (((-588 (-522)) (-588 (-522)) (-588 (-522)) (-108)) 27)) (-3910 (((-628 (-522)) (-588 (-522)) (-588 (-522)) (-628 (-522))) 44)) (-3324 (((-628 (-522)) (-588 (-522)) (-588 (-522))) 32)) (-3145 (((-588 (-628 (-522))) (-588 (-522))) 34)) (-1636 (((-588 (-522)) (-588 (-522)) (-588 (-522)) (-628 (-522))) 47)) (-3807 (((-628 (-522)) (-588 (-522)) (-588 (-522)) (-588 (-522))) 55))) -(((-1024) (-10 -7 (-15 -3807 ((-628 (-522)) (-588 (-522)) (-588 (-522)) (-588 (-522)))) (-15 -1636 ((-588 (-522)) (-588 (-522)) (-588 (-522)) (-628 (-522)))) (-15 -3145 ((-588 (-628 (-522))) (-588 (-522)))) (-15 -3324 ((-628 (-522)) (-588 (-522)) (-588 (-522)))) (-15 -3910 ((-628 (-522)) (-588 (-522)) (-588 (-522)) (-628 (-522)))) (-15 -2343 ((-588 (-522)) (-588 (-522)) (-588 (-522)) (-108))) (-15 -2621 ((-1166 (-522)) (-1166 (-522)) (-1166 (-522)) (-522))) (-15 -2621 ((-1166 (-522)) (-588 (-522)) (-1166 (-522)) (-522))) (-15 -4155 ((-522) (-522) (-522))) (-15 -3197 ((-588 (-522)) (-522) (-522) (-522))) (-15 -4050 ((-588 (-522)) (-522) (-522) (-522))) (-15 -2779 ((-588 (-522)) (-522) (-522) (-522))))) (T -1024)) -((-2779 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-1024)) (-5 *3 (-522)))) (-4050 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-1024)) (-5 *3 (-522)))) (-3197 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-1024)) (-5 *3 (-522)))) (-4155 (*1 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-1024)))) (-2621 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1166 (-522))) (-5 *3 (-588 (-522))) (-5 *4 (-522)) (-5 *1 (-1024)))) (-2621 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1166 (-522))) (-5 *3 (-522)) (-5 *1 (-1024)))) (-2343 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-588 (-522))) (-5 *3 (-108)) (-5 *1 (-1024)))) (-3910 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-628 (-522))) (-5 *3 (-588 (-522))) (-5 *1 (-1024)))) (-3324 (*1 *2 *3 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-628 (-522))) (-5 *1 (-1024)))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-588 (-628 (-522)))) (-5 *1 (-1024)))) (-1636 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-588 (-522))) (-5 *3 (-628 (-522))) (-5 *1 (-1024)))) (-3807 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-628 (-522))) (-5 *1 (-1024))))) -(-10 -7 (-15 -3807 ((-628 (-522)) (-588 (-522)) (-588 (-522)) (-588 (-522)))) (-15 -1636 ((-588 (-522)) (-588 (-522)) (-588 (-522)) (-628 (-522)))) (-15 -3145 ((-588 (-628 (-522))) (-588 (-522)))) (-15 -3324 ((-628 (-522)) (-588 (-522)) (-588 (-522)))) (-15 -3910 ((-628 (-522)) (-588 (-522)) (-588 (-522)) (-628 (-522)))) (-15 -2343 ((-588 (-522)) (-588 (-522)) (-588 (-522)) (-108))) (-15 -2621 ((-1166 (-522)) (-1166 (-522)) (-1166 (-522)) (-522))) (-15 -2621 ((-1166 (-522)) (-588 (-522)) (-1166 (-522)) (-522))) (-15 -4155 ((-522) (-522) (-522))) (-15 -3197 ((-588 (-522)) (-522) (-522) (-522))) (-15 -4050 ((-588 (-522)) (-522) (-522) (-522))) (-15 -2779 ((-588 (-522)) (-522) (-522) (-522)))) -((-3622 (($ $ (-850)) 12)) (** (($ $ (-850)) 10))) -(((-1025 |#1|) (-10 -8 (-15 -3622 (|#1| |#1| (-850))) (-15 ** (|#1| |#1| (-850)))) (-1026)) (T -1025)) -NIL -(-10 -8 (-15 -3622 (|#1| |#1| (-850))) (-15 ** (|#1| |#1| (-850)))) -((-1419 (((-108) $ $) 7)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-3622 (($ $ (-850)) 13)) (-1562 (((-108) $ $) 6)) (** (($ $ (-850)) 14)) (* (($ $ $) 15))) -(((-1026) (-1197)) (T -1026)) -((* (*1 *1 *1 *1) (-4 *1 (-1026))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1026)) (-5 *2 (-850)))) (-3622 (*1 *1 *1 *2) (-12 (-4 *1 (-1026)) (-5 *2 (-850))))) -(-13 (-1014) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-850))) (-15 -3622 ($ $ (-850))))) -(((-97) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL (|has| |#3| (-1014)))) (-2944 (((-108) $) NIL (|has| |#3| (-124)))) (-2826 (($ (-850)) NIL (|has| |#3| (-971)))) (-3883 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1827 (($ $ $) NIL (|has| |#3| (-730)))) (-2265 (((-3 $ "failed") $ $) NIL (|has| |#3| (-124)))) (-2717 (((-108) $ (-708)) NIL)) (-1685 (((-708)) NIL (|has| |#3| (-343)))) (-3355 (((-522) $) NIL (|has| |#3| (-782)))) (-2437 ((|#3| $ (-522) |#3|) NIL (|has| $ (-6 -4239)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) NIL (-12 (|has| |#3| (-962 (-522))) (|has| |#3| (-1014)))) (((-3 (-382 (-522)) "failed") $) NIL (-12 (|has| |#3| (-962 (-382 (-522)))) (|has| |#3| (-1014)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1014)))) (-1478 (((-522) $) NIL (-12 (|has| |#3| (-962 (-522))) (|has| |#3| (-1014)))) (((-382 (-522)) $) NIL (-12 (|has| |#3| (-962 (-382 (-522)))) (|has| |#3| (-1014)))) ((|#3| $) NIL (|has| |#3| (-1014)))) (-1226 (((-628 (-522)) (-628 $)) NIL (-12 (|has| |#3| (-584 (-522))) (|has| |#3| (-971)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (-12 (|has| |#3| (-584 (-522))) (|has| |#3| (-971)))) (((-2 (|:| -2149 (-628 |#3|)) (|:| |vec| (-1166 |#3|))) (-628 $) (-1166 $)) NIL (|has| |#3| (-971))) (((-628 |#3|) (-628 $)) NIL (|has| |#3| (-971)))) (-3920 (((-3 $ "failed") $) NIL (|has| |#3| (-971)))) (-3344 (($) NIL (|has| |#3| (-343)))) (-2411 ((|#3| $ (-522) |#3|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#3| $ (-522)) 12)) (-3603 (((-108) $) NIL (|has| |#3| (-782)))) (-2395 (((-588 |#3|) $) NIL (|has| $ (-6 -4238)))) (-2859 (((-108) $) NIL (|has| |#3| (-971)))) (-3740 (((-108) $) NIL (|has| |#3| (-782)))) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) NIL (|has| (-522) (-784)))) (-1308 (($ $ $) NIL (-3844 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-4084 (((-588 |#3|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#3| (-1014))))) (-2201 (((-522) $) NIL (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (-3844 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-2397 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#3| |#3|) $) NIL)) (-1475 (((-850) $) NIL (|has| |#3| (-343)))) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (|has| |#3| (-1014)))) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) NIL)) (-2882 (($ (-850)) NIL (|has| |#3| (-343)))) (-4174 (((-1032) $) NIL (|has| |#3| (-1014)))) (-2337 ((|#3| $) NIL (|has| (-522) (-784)))) (-1972 (($ $ |#3|) NIL (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#3|))) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ (-270 |#3|)) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ (-588 |#3|) (-588 |#3|)) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#3| (-1014))))) (-1973 (((-588 |#3|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#3| $ (-522) |#3|) NIL) ((|#3| $ (-522)) NIL)) (-4024 ((|#3| $ $) NIL (|has| |#3| (-971)))) (-2041 (($ (-1166 |#3|)) NIL)) (-3222 (((-126)) NIL (|has| |#3| (-338)))) (-2731 (($ $) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-1 |#3| |#3|) (-708)) NIL (|has| |#3| (-971))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-971)))) (-4187 (((-708) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4238))) (((-708) |#3| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#3| (-1014))))) (-2463 (($ $) NIL)) (-2217 (((-1166 |#3|) $) NIL) (($ (-522)) NIL (-3844 (-12 (|has| |#3| (-962 (-522))) (|has| |#3| (-1014))) (|has| |#3| (-971)))) (($ (-382 (-522))) NIL (-12 (|has| |#3| (-962 (-382 (-522)))) (|has| |#3| (-1014)))) (($ |#3|) NIL (|has| |#3| (-1014))) (((-792) $) NIL (|has| |#3| (-562 (-792))))) (-2742 (((-708)) NIL (|has| |#3| (-971)))) (-1381 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4238)))) (-4126 (($ $) NIL (|has| |#3| (-782)))) (-3622 (($ $ (-708)) NIL (|has| |#3| (-971))) (($ $ (-850)) NIL (|has| |#3| (-971)))) (-3697 (($) NIL (|has| |#3| (-124)) CONST)) (-3709 (($) NIL (|has| |#3| (-971)) CONST)) (-2252 (($ $) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-1 |#3| |#3|) (-708)) NIL (|has| |#3| (-971))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-971)))) (-1623 (((-108) $ $) NIL (-3844 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-1597 (((-108) $ $) NIL (-3844 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-1562 (((-108) $ $) NIL (|has| |#3| (-1014)))) (-1609 (((-108) $ $) NIL (-3844 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-1587 (((-108) $ $) 17 (-3844 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-1682 (($ $ |#3|) NIL (|has| |#3| (-338)))) (-1672 (($ $ $) NIL (|has| |#3| (-971))) (($ $) NIL (|has| |#3| (-971)))) (-1661 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-708)) NIL (|has| |#3| (-971))) (($ $ (-850)) NIL (|has| |#3| (-971)))) (* (($ $ $) NIL (|has| |#3| (-971))) (($ (-522) $) NIL (|has| |#3| (-971))) (($ $ |#3|) NIL (|has| |#3| (-664))) (($ |#3| $) NIL (|has| |#3| (-664))) (($ (-708) $) NIL (|has| |#3| (-124))) (($ (-850) $) NIL (|has| |#3| (-25)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-1027 |#1| |#2| |#3|) (-215 |#1| |#3|) (-708) (-708) (-730)) (T -1027)) -NIL -(-215 |#1| |#3|) -((-1522 (((-588 (-1139 |#2| |#1|)) (-1139 |#2| |#1|) (-1139 |#2| |#1|)) 37)) (-2995 (((-522) (-1139 |#2| |#1|)) 68 (|has| |#1| (-426)))) (-3701 (((-522) (-1139 |#2| |#1|)) 54)) (-3956 (((-588 (-1139 |#2| |#1|)) (-1139 |#2| |#1|) (-1139 |#2| |#1|)) 45)) (-1529 (((-522) (-1139 |#2| |#1|) (-1139 |#2| |#1|)) 56 (|has| |#1| (-426)))) (-2213 (((-588 |#1|) (-1139 |#2| |#1|) (-1139 |#2| |#1|)) 48)) (-1207 (((-522) (-1139 |#2| |#1|) (-1139 |#2| |#1|)) 53))) -(((-1028 |#1| |#2|) (-10 -7 (-15 -1522 ((-588 (-1139 |#2| |#1|)) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -3956 ((-588 (-1139 |#2| |#1|)) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -2213 ((-588 |#1|) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -1207 ((-522) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -3701 ((-522) (-1139 |#2| |#1|))) (IF (|has| |#1| (-426)) (PROGN (-15 -1529 ((-522) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -2995 ((-522) (-1139 |#2| |#1|)))) |%noBranch|)) (-757) (-1085)) (T -1028)) -((-2995 (*1 *2 *3) (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-426)) (-4 *4 (-757)) (-14 *5 (-1085)) (-5 *2 (-522)) (-5 *1 (-1028 *4 *5)))) (-1529 (*1 *2 *3 *3) (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-426)) (-4 *4 (-757)) (-14 *5 (-1085)) (-5 *2 (-522)) (-5 *1 (-1028 *4 *5)))) (-3701 (*1 *2 *3) (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-757)) (-14 *5 (-1085)) (-5 *2 (-522)) (-5 *1 (-1028 *4 *5)))) (-1207 (*1 *2 *3 *3) (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-757)) (-14 *5 (-1085)) (-5 *2 (-522)) (-5 *1 (-1028 *4 *5)))) (-2213 (*1 *2 *3 *3) (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-757)) (-14 *5 (-1085)) (-5 *2 (-588 *4)) (-5 *1 (-1028 *4 *5)))) (-3956 (*1 *2 *3 *3) (-12 (-4 *4 (-757)) (-14 *5 (-1085)) (-5 *2 (-588 (-1139 *5 *4))) (-5 *1 (-1028 *4 *5)) (-5 *3 (-1139 *5 *4)))) (-1522 (*1 *2 *3 *3) (-12 (-4 *4 (-757)) (-14 *5 (-1085)) (-5 *2 (-588 (-1139 *5 *4))) (-5 *1 (-1028 *4 *5)) (-5 *3 (-1139 *5 *4))))) -(-10 -7 (-15 -1522 ((-588 (-1139 |#2| |#1|)) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -3956 ((-588 (-1139 |#2| |#1|)) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -2213 ((-588 |#1|) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -1207 ((-522) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -3701 ((-522) (-1139 |#2| |#1|))) (IF (|has| |#1| (-426)) (PROGN (-15 -1529 ((-522) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -2995 ((-522) (-1139 |#2| |#1|)))) |%noBranch|)) -((-3355 (((-3 (-522) "failed") |#2| (-1085) |#2| (-1068)) 16) (((-3 (-522) "failed") |#2| (-1085) (-777 |#2|)) 14) (((-3 (-522) "failed") |#2|) 51))) -(((-1029 |#1| |#2|) (-10 -7 (-15 -3355 ((-3 (-522) "failed") |#2|)) (-15 -3355 ((-3 (-522) "failed") |#2| (-1085) (-777 |#2|))) (-15 -3355 ((-3 (-522) "failed") |#2| (-1085) |#2| (-1068)))) (-13 (-514) (-784) (-962 (-522)) (-584 (-522)) (-426)) (-13 (-27) (-1106) (-405 |#1|))) (T -1029)) -((-3355 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-1068)) (-4 *6 (-13 (-514) (-784) (-962 *2) (-584 *2) (-426))) (-5 *2 (-522)) (-5 *1 (-1029 *6 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *6))))) (-3355 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-777 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-514) (-784) (-962 *2) (-584 *2) (-426))) (-5 *2 (-522)) (-5 *1 (-1029 *6 *3)))) (-3355 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-514) (-784) (-962 *2) (-584 *2) (-426))) (-5 *2 (-522)) (-5 *1 (-1029 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *4)))))) -(-10 -7 (-15 -3355 ((-3 (-522) "failed") |#2|)) (-15 -3355 ((-3 (-522) "failed") |#2| (-1085) (-777 |#2|))) (-15 -3355 ((-3 (-522) "failed") |#2| (-1085) |#2| (-1068)))) -((-3355 (((-3 (-522) "failed") (-382 (-881 |#1|)) (-1085) (-382 (-881 |#1|)) (-1068)) 34) (((-3 (-522) "failed") (-382 (-881 |#1|)) (-1085) (-777 (-382 (-881 |#1|)))) 29) (((-3 (-522) "failed") (-382 (-881 |#1|))) 12))) -(((-1030 |#1|) (-10 -7 (-15 -3355 ((-3 (-522) "failed") (-382 (-881 |#1|)))) (-15 -3355 ((-3 (-522) "failed") (-382 (-881 |#1|)) (-1085) (-777 (-382 (-881 |#1|))))) (-15 -3355 ((-3 (-522) "failed") (-382 (-881 |#1|)) (-1085) (-382 (-881 |#1|)) (-1068)))) (-426)) (T -1030)) -((-3355 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-382 (-881 *6))) (-5 *4 (-1085)) (-5 *5 (-1068)) (-4 *6 (-426)) (-5 *2 (-522)) (-5 *1 (-1030 *6)))) (-3355 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-777 (-382 (-881 *6)))) (-5 *3 (-382 (-881 *6))) (-4 *6 (-426)) (-5 *2 (-522)) (-5 *1 (-1030 *6)))) (-3355 (*1 *2 *3) (|partial| -12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-426)) (-5 *2 (-522)) (-5 *1 (-1030 *4))))) -(-10 -7 (-15 -3355 ((-3 (-522) "failed") (-382 (-881 |#1|)))) (-15 -3355 ((-3 (-522) "failed") (-382 (-881 |#1|)) (-1085) (-777 (-382 (-881 |#1|))))) (-15 -3355 ((-3 (-522) "failed") (-382 (-881 |#1|)) (-1085) (-382 (-881 |#1|)) (-1068)))) -((-1667 (((-291 (-522)) (-47)) 11))) -(((-1031) (-10 -7 (-15 -1667 ((-291 (-522)) (-47))))) (T -1031)) -((-1667 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-291 (-522))) (-5 *1 (-1031))))) -(-10 -7 (-15 -1667 ((-291 (-522)) (-47)))) -((-1419 (((-108) $ $) NIL)) (-1504 (($ $) 41)) (-2944 (((-108) $) 65)) (-3454 (($ $ $) 48)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 84)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-1805 (($ $ $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3372 (($ $ $ $) 74)) (-2961 (($ $) NIL)) (-3133 (((-393 $) $) NIL)) (-2805 (((-108) $ $) NIL)) (-3355 (((-522) $) NIL)) (-1736 (($ $ $) 71)) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) NIL)) (-1478 (((-522) $) NIL)) (-2333 (($ $ $) 59)) (-1226 (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 78) (((-628 (-522)) (-628 $)) 28)) (-3920 (((-3 $ "failed") $) NIL)) (-2549 (((-3 (-382 (-522)) "failed") $) NIL)) (-3519 (((-108) $) NIL)) (-1699 (((-382 (-522)) $) NIL)) (-3344 (($) 81) (($ $) 82)) (-2303 (($ $ $) 58)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL)) (-2725 (((-108) $) NIL)) (-3859 (($ $ $ $) NIL)) (-1968 (($ $ $) 79)) (-3603 (((-108) $) NIL)) (-2634 (($ $ $) NIL)) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL)) (-2859 (((-108) $) 66)) (-3077 (((-108) $) 64)) (-2473 (($ $) 42)) (-4208 (((-3 $ "failed") $) NIL)) (-3740 (((-108) $) 75)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2037 (($ $ $ $) 72)) (-1308 (($ $ $) 68) (($) 39)) (-2524 (($ $ $) 67) (($) 38)) (-4000 (($ $) NIL)) (-4030 (($ $) 70)) (-2267 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2311 (((-1068) $) NIL)) (-1988 (($ $ $) NIL)) (-3937 (($) NIL T CONST)) (-3092 (($ $) 50)) (-4174 (((-1032) $) NIL) (($ $) 69)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2308 (($ $ $) 62) (($ (-588 $)) NIL)) (-1274 (($ $) NIL)) (-2006 (((-393 $) $) NIL)) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL)) (-2276 (((-3 $ "failed") $ $) NIL)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2626 (((-108) $) NIL)) (-4031 (((-708) $) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 61)) (-2731 (($ $ (-708)) NIL) (($ $) NIL)) (-3518 (($ $) 51)) (-2463 (($ $) NIL)) (-3873 (((-522) $) 32) (((-498) $) NIL) (((-821 (-522)) $) NIL) (((-354) $) NIL) (((-202) $) NIL)) (-2217 (((-792) $) 31) (($ (-522)) 80) (($ $) NIL) (($ (-522)) 80)) (-2742 (((-708)) NIL)) (-1763 (((-108) $ $) NIL)) (-1591 (($ $ $) NIL)) (-1897 (($) 37)) (-1407 (((-108) $ $) NIL)) (-3673 (($ $ $ $) 73)) (-4126 (($ $) 63)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-2920 (($ $ $) 44)) (-3697 (($) 35 T CONST)) (-3616 (($ $ $) 47)) (-3709 (($) 36 T CONST)) (-2810 (((-1068) $) 21) (((-1068) $ (-108)) 23) (((-1171) (-759) $) 24) (((-1171) (-759) $ (-108)) 25)) (-3628 (($ $) 45)) (-2252 (($ $ (-708)) NIL) (($ $) NIL)) (-3604 (($ $ $) 46)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 40)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 49)) (-2388 (($ $ $) 43)) (-1672 (($ $) 52) (($ $ $) 54)) (-1661 (($ $ $) 53)) (** (($ $ (-850)) NIL) (($ $ (-708)) 57)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 34) (($ $ $) 55))) -(((-1032) (-13 (-507) (-603) (-765) (-10 -8 (-6 -4225) (-6 -4230) (-6 -4226) (-15 -2524 ($)) (-15 -1308 ($)) (-15 -2473 ($ $)) (-15 -1504 ($ $)) (-15 -2388 ($ $ $)) (-15 -2920 ($ $ $)) (-15 -3454 ($ $ $)) (-15 -3628 ($ $)) (-15 -3604 ($ $ $)) (-15 -3616 ($ $ $))))) (T -1032)) -((-2920 (*1 *1 *1 *1) (-5 *1 (-1032))) (-2388 (*1 *1 *1 *1) (-5 *1 (-1032))) (-1504 (*1 *1 *1) (-5 *1 (-1032))) (-2524 (*1 *1) (-5 *1 (-1032))) (-1308 (*1 *1) (-5 *1 (-1032))) (-2473 (*1 *1 *1) (-5 *1 (-1032))) (-3454 (*1 *1 *1 *1) (-5 *1 (-1032))) (-3628 (*1 *1 *1) (-5 *1 (-1032))) (-3604 (*1 *1 *1 *1) (-5 *1 (-1032))) (-3616 (*1 *1 *1 *1) (-5 *1 (-1032)))) -(-13 (-507) (-603) (-765) (-10 -8 (-6 -4225) (-6 -4230) (-6 -4226) (-15 -2524 ($)) (-15 -1308 ($)) (-15 -2473 ($ $)) (-15 -1504 ($ $)) (-15 -2388 ($ $ $)) (-15 -2920 ($ $ $)) (-15 -3454 ($ $ $)) (-15 -3628 ($ $)) (-15 -3604 ($ $ $)) (-15 -3616 ($ $ $)))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-1322 ((|#1| $) 44)) (-2717 (((-108) $ (-708)) 8)) (-3367 (($) 7 T CONST)) (-2622 ((|#1| |#1| $) 46)) (-2956 ((|#1| $) 45)) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) 9)) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35)) (-3309 (((-108) $ (-708)) 10)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1431 ((|#1| $) 39)) (-3365 (($ |#1| $) 40)) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-3295 ((|#1| $) 41)) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-3735 (((-708) $) 43)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-2501 (($ (-588 |#1|)) 42)) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-1033 |#1|) (-1197) (-1120)) (T -1033)) -((-2622 (*1 *2 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1120)))) (-2956 (*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1120)))) (-1322 (*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1120)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-1033 *3)) (-4 *3 (-1120)) (-5 *2 (-708))))) -(-13 (-102 |t#1|) (-10 -8 (-6 -4238) (-15 -2622 (|t#1| |t#1| $)) (-15 -2956 (|t#1| $)) (-15 -1322 (|t#1| $)) (-15 -3735 ((-708) $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T)) -((-1945 ((|#3| $) 76)) (-3700 (((-3 (-522) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-1478 (((-522) $) NIL) (((-382 (-522)) $) NIL) ((|#3| $) 37)) (-1226 (((-628 (-522)) (-628 $)) NIL) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-2 (|:| -2149 (-628 |#3|)) (|:| |vec| (-1166 |#3|))) (-628 $) (-1166 $)) 73) (((-628 |#3|) (-628 $)) 65)) (-2731 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085)) NIL) (($ $ (-708)) NIL) (($ $) NIL)) (-4147 ((|#3| $) 78)) (-1828 ((|#4| $) 32)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ (-382 (-522))) NIL) (($ |#3|) 16)) (** (($ $ (-850)) NIL) (($ $ (-708)) 15) (($ $ (-522)) 82))) -(((-1034 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-522))) (-15 -4147 (|#3| |#1|)) (-15 -1945 (|#3| |#1|)) (-15 -1828 (|#4| |#1|)) (-15 -1226 ((-628 |#3|) (-628 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 |#3|)) (|:| |vec| (-1166 |#3|))) (-628 |#1|) (-1166 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -1226 ((-628 (-522)) (-628 |#1|))) (-15 -1478 (|#3| |#1|)) (-15 -3700 ((-3 |#3| "failed") |#1|)) (-15 -2217 (|#1| |#3|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-522) |#1|)) (-15 -2731 (|#1| |#1|)) (-15 -2731 (|#1| |#1| (-708))) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2731 (|#1| |#1| (-1 |#3| |#3|) (-708))) (-15 -2731 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2217 (|#1| (-522))) (-15 ** (|#1| |#1| (-708))) (-15 ** (|#1| |#1| (-850))) (-15 -2217 ((-792) |#1|))) (-1035 |#2| |#3| |#4| |#5|) (-708) (-971) (-215 |#2| |#3|) (-215 |#2| |#3|)) (T -1034)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-522))) (-15 -4147 (|#3| |#1|)) (-15 -1945 (|#3| |#1|)) (-15 -1828 (|#4| |#1|)) (-15 -1226 ((-628 |#3|) (-628 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 |#3|)) (|:| |vec| (-1166 |#3|))) (-628 |#1|) (-1166 |#1|))) (-15 -1226 ((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -1226 ((-628 (-522)) (-628 |#1|))) (-15 -1478 (|#3| |#1|)) (-15 -3700 ((-3 |#3| "failed") |#1|)) (-15 -2217 (|#1| |#3|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-522) |#1|)) (-15 -2731 (|#1| |#1|)) (-15 -2731 (|#1| |#1| (-708))) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2731 (|#1| |#1| (-1 |#3| |#3|) (-708))) (-15 -2731 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2217 (|#1| (-522))) (-15 ** (|#1| |#1| (-708))) (-15 ** (|#1| |#1| (-850))) (-15 -2217 ((-792) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-1945 ((|#2| $) 72)) (-3455 (((-108) $) 112)) (-2265 (((-3 $ "failed") $ $) 19)) (-2208 (((-108) $) 110)) (-2717 (((-108) $ (-708)) 102)) (-1348 (($ |#2|) 75)) (-3367 (($) 17 T CONST)) (-2091 (($ $) 129 (|has| |#2| (-283)))) (-2635 ((|#3| $ (-522)) 124)) (-3700 (((-3 (-522) "failed") $) 86 (|has| |#2| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) 84 (|has| |#2| (-962 (-382 (-522))))) (((-3 |#2| "failed") $) 81)) (-1478 (((-522) $) 87 (|has| |#2| (-962 (-522)))) (((-382 (-522)) $) 85 (|has| |#2| (-962 (-382 (-522))))) ((|#2| $) 80)) (-1226 (((-628 (-522)) (-628 $)) 79 (|has| |#2| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 78 (|has| |#2| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) 77) (((-628 |#2|) (-628 $)) 76)) (-3920 (((-3 $ "failed") $) 34)) (-1692 (((-708) $) 130 (|has| |#2| (-514)))) (-2186 ((|#2| $ (-522) (-522)) 122)) (-2395 (((-588 |#2|) $) 95 (|has| $ (-6 -4238)))) (-2859 (((-108) $) 31)) (-2336 (((-708) $) 131 (|has| |#2| (-514)))) (-2819 (((-588 |#4|) $) 132 (|has| |#2| (-514)))) (-2949 (((-708) $) 118)) (-2960 (((-708) $) 119)) (-1480 (((-108) $ (-708)) 103)) (-3721 ((|#2| $) 67 (|has| |#2| (-6 (-4240 "*"))))) (-2604 (((-522) $) 114)) (-4042 (((-522) $) 116)) (-4084 (((-588 |#2|) $) 94 (|has| $ (-6 -4238)))) (-4176 (((-108) |#2| $) 92 (-12 (|has| |#2| (-1014)) (|has| $ (-6 -4238))))) (-1925 (((-522) $) 115)) (-2595 (((-522) $) 117)) (-1347 (($ (-588 (-588 |#2|))) 109)) (-2397 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-2862 (((-588 (-588 |#2|)) $) 120)) (-3309 (((-108) $ (-708)) 104)) (-2311 (((-1068) $) 9)) (-3073 (((-3 $ "failed") $) 66 (|has| |#2| (-338)))) (-4174 (((-1032) $) 10)) (-2276 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-514)))) (-3487 (((-108) (-1 (-108) |#2|) $) 97 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#2|))) 91 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) 90 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) 88 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-2065 (((-108) $ $) 108)) (-3494 (((-108) $) 105)) (-3298 (($) 106)) (-2683 ((|#2| $ (-522) (-522) |#2|) 123) ((|#2| $ (-522) (-522)) 121)) (-2731 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-708)) 51) (($ $ (-588 (-1085)) (-588 (-708))) 44 (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) 43 (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) 42 (|has| |#2| (-829 (-1085)))) (($ $ (-1085)) 41 (|has| |#2| (-829 (-1085)))) (($ $ (-708)) 39 (|has| |#2| (-210))) (($ $) 37 (|has| |#2| (-210)))) (-4147 ((|#2| $) 71)) (-3215 (($ (-588 |#2|)) 74)) (-3498 (((-108) $) 111)) (-1828 ((|#3| $) 73)) (-2500 ((|#2| $) 68 (|has| |#2| (-6 (-4240 "*"))))) (-4187 (((-708) (-1 (-108) |#2|) $) 96 (|has| $ (-6 -4238))) (((-708) |#2| $) 93 (-12 (|has| |#2| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 107)) (-2223 ((|#4| $ (-522)) 125)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ (-382 (-522))) 83 (|has| |#2| (-962 (-382 (-522))))) (($ |#2|) 82)) (-2742 (((-708)) 29)) (-1381 (((-108) (-1 (-108) |#2|) $) 98 (|has| $ (-6 -4238)))) (-4047 (((-108) $) 113)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-708)) 49) (($ $ (-588 (-1085)) (-588 (-708))) 48 (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) 47 (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) 46 (|has| |#2| (-829 (-1085)))) (($ $ (-1085)) 45 (|has| |#2| (-829 (-1085)))) (($ $ (-708)) 40 (|has| |#2| (-210))) (($ $) 38 (|has| |#2| (-210)))) (-1562 (((-108) $ $) 6)) (-1682 (($ $ |#2|) 128 (|has| |#2| (-338)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 65 (|has| |#2| (-338)))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-3591 (((-708) $) 101 (|has| $ (-6 -4238))))) -(((-1035 |#1| |#2| |#3| |#4|) (-1197) (-708) (-971) (-215 |t#1| |t#2|) (-215 |t#1| |t#2|)) (T -1035)) -((-1348 (*1 *1 *2) (-12 (-4 *2 (-971)) (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) (-4 *5 (-215 *3 *2)))) (-3215 (*1 *1 *2) (-12 (-5 *2 (-588 *4)) (-4 *4 (-971)) (-4 *1 (-1035 *3 *4 *5 *6)) (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *3 *4)))) (-1828 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *4 *2 *5)) (-4 *4 (-971)) (-4 *5 (-215 *3 *4)) (-4 *2 (-215 *3 *4)))) (-1945 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) (-4 *5 (-215 *3 *2)) (-4 *2 (-971)))) (-4147 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) (-4 *5 (-215 *3 *2)) (-4 *2 (-971)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1035 *3 *4 *5 *2)) (-4 *4 (-971)) (-4 *5 (-215 *3 *4)) (-4 *2 (-215 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1035 *3 *4 *2 *5)) (-4 *4 (-971)) (-4 *2 (-215 *3 *4)) (-4 *5 (-215 *3 *4)))) (-2500 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) (-4 *5 (-215 *3 *2)) (|has| *2 (-6 (-4240 "*"))) (-4 *2 (-971)))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) (-4 *5 (-215 *3 *2)) (|has| *2 (-6 (-4240 "*"))) (-4 *2 (-971)))) (-3073 (*1 *1 *1) (|partial| -12 (-4 *1 (-1035 *2 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-215 *2 *3)) (-4 *5 (-215 *2 *3)) (-4 *3 (-338)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-1035 *3 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *3 *4)) (-4 *4 (-338))))) -(-13 (-208 |t#2|) (-107 |t#2| |t#2|) (-974 |t#1| |t#1| |t#2| |t#3| |t#4|) (-386 |t#2|) (-352 |t#2|) (-10 -8 (IF (|has| |t#2| (-157)) (-6 (-655 |t#2|)) |%noBranch|) (-15 -1348 ($ |t#2|)) (-15 -3215 ($ (-588 |t#2|))) (-15 -1828 (|t#3| $)) (-15 -1945 (|t#2| $)) (-15 -4147 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4240 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -2500 (|t#2| $)) (-15 -3721 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-338)) (PROGN (-15 -3073 ((-3 $ "failed") $)) (-15 ** ($ $ (-522)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4240 "*"))) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-562 (-792)) . T) ((-208 |#2|) . T) ((-210) |has| |#2| (-210)) ((-285 |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((-352 |#2|) . T) ((-386 |#2|) . T) ((-461 |#2|) . T) ((-483 |#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((-590 |#2|) . T) ((-590 $) . T) ((-584 (-522)) |has| |#2| (-584 (-522))) ((-584 |#2|) . T) ((-655 |#2|) -3844 (|has| |#2| (-157)) (|has| |#2| (-6 (-4240 "*")))) ((-664) . T) ((-829 (-1085)) |has| |#2| (-829 (-1085))) ((-974 |#1| |#1| |#2| |#3| |#4|) . T) ((-962 (-382 (-522))) |has| |#2| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#2| (-962 (-522))) ((-962 |#2|) . T) ((-977 |#2|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1120) . T)) -((-1950 ((|#4| |#4|) 68)) (-1813 ((|#4| |#4|) 63)) (-2513 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2905 (-588 |#3|))) |#4| |#3|) 76)) (-3942 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 67)) (-3999 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 65))) -(((-1036 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1813 (|#4| |#4|)) (-15 -3999 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1950 (|#4| |#4|)) (-15 -3942 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2513 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2905 (-588 |#3|))) |#4| |#3|))) (-283) (-348 |#1|) (-348 |#1|) (-626 |#1| |#2| |#3|)) (T -1036)) -((-2513 (*1 *2 *3 *4) (-12 (-4 *5 (-283)) (-4 *6 (-348 *5)) (-4 *4 (-348 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2905 (-588 *4)))) (-5 *1 (-1036 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4)))) (-3942 (*1 *2 *3) (-12 (-4 *4 (-283)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1036 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-1950 (*1 *2 *2) (-12 (-4 *3 (-283)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-1036 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-3999 (*1 *2 *3) (-12 (-4 *4 (-283)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1036 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-1813 (*1 *2 *2) (-12 (-4 *3 (-283)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-1036 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5))))) -(-10 -7 (-15 -1813 (|#4| |#4|)) (-15 -3999 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1950 (|#4| |#4|)) (-15 -3942 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2513 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2905 (-588 |#3|))) |#4| |#3|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 17)) (-3533 (((-588 |#2|) $) 160)) (-1264 (((-1081 $) $ |#2|) 53) (((-1081 |#1|) $) 42)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 109 (|has| |#1| (-514)))) (-2298 (($ $) 111 (|has| |#1| (-514)))) (-3007 (((-108) $) 113 (|has| |#1| (-514)))) (-3358 (((-708) $) NIL) (((-708) $ (-588 |#2|)) 194)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2961 (($ $) NIL (|has| |#1| (-426)))) (-3133 (((-393 $) $) NIL (|has| |#1| (-426)))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) 157) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 |#2| "failed") $) NIL)) (-1478 ((|#1| $) 155) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#1| (-962 (-522)))) ((|#2| $) NIL)) (-2908 (($ $ $ |#2|) NIL (|has| |#1| (-157)))) (-3241 (($ $) 198)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) 81)) (-2883 (($ $) NIL (|has| |#1| (-426))) (($ $ |#2|) NIL (|has| |#1| (-426)))) (-3232 (((-588 $) $) NIL)) (-2725 (((-108) $) NIL (|has| |#1| (-838)))) (-3792 (($ $ |#1| (-494 |#2|) $) NIL)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| |#1| (-815 (-354))) (|has| |#2| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| |#1| (-815 (-522))) (|has| |#2| (-815 (-522)))))) (-2859 (((-108) $) 19)) (-1391 (((-708) $) 26)) (-3520 (($ (-1081 |#1|) |#2|) 47) (($ (-1081 $) |#2|) 63)) (-3038 (((-588 $) $) NIL)) (-1374 (((-108) $) 31)) (-3500 (($ |#1| (-494 |#2|)) 70) (($ $ |#2| (-708)) 51) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-3058 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $ |#2|) NIL)) (-3564 (((-494 |#2|) $) 187) (((-708) $ |#2|) 188) (((-588 (-708)) $ (-588 |#2|)) 189)) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-1723 (($ (-1 (-494 |#2|) (-494 |#2|)) $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) 121)) (-3155 (((-3 |#2| "failed") $) 162)) (-3216 (($ $) 197)) (-3224 ((|#1| $) 36)) (-2267 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-2311 (((-1068) $) NIL)) (-2760 (((-3 (-588 $) "failed") $) NIL)) (-1919 (((-3 (-588 $) "failed") $) NIL)) (-2024 (((-3 (-2 (|:| |var| |#2|) (|:| -3858 (-708))) "failed") $) NIL)) (-4174 (((-1032) $) NIL)) (-3199 (((-108) $) 32)) (-3207 ((|#1| $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 139 (|has| |#1| (-426)))) (-2308 (($ (-588 $)) 144 (|has| |#1| (-426))) (($ $ $) 131 (|has| |#1| (-426)))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-2006 (((-393 $) $) NIL (|has| |#1| (-838)))) (-2276 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514))) (((-3 $ "failed") $ $) 119 (|has| |#1| (-514)))) (-2330 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ |#2| |#1|) 165) (($ $ (-588 |#2|) (-588 |#1|)) 178) (($ $ |#2| $) 164) (($ $ (-588 |#2|) (-588 $)) 177)) (-1615 (($ $ |#2|) NIL (|has| |#1| (-157)))) (-2731 (($ $ |#2|) 196) (($ $ (-588 |#2|)) NIL) (($ $ |#2| (-708)) NIL) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-2487 (((-494 |#2|) $) 183) (((-708) $ |#2|) 179) (((-588 (-708)) $ (-588 |#2|)) 181)) (-3873 (((-821 (-354)) $) NIL (-12 (|has| |#1| (-563 (-821 (-354)))) (|has| |#2| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| |#1| (-563 (-821 (-522)))) (|has| |#2| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| |#1| (-563 (-498))) (|has| |#2| (-563 (-498)))))) (-2988 ((|#1| $) 127 (|has| |#1| (-426))) (($ $ |#2|) 130 (|has| |#1| (-426)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2217 (((-792) $) 150) (($ (-522)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-514))) (($ (-382 (-522))) NIL (-3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522))))))) (-2180 (((-588 |#1|) $) 153)) (-1643 ((|#1| $ (-494 |#2|)) 72) (($ $ |#2| (-708)) NIL) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2742 (((-708)) 78)) (-1225 (($ $ $ (-708)) NIL (|has| |#1| (-157)))) (-1407 (((-108) $ $) 116 (|has| |#1| (-514)))) (-3622 (($ $ (-850)) 101) (($ $ (-708)) 103)) (-3697 (($) 12 T CONST)) (-3709 (($) 14 T CONST)) (-2252 (($ $ |#2|) NIL) (($ $ (-588 |#2|)) NIL) (($ $ |#2| (-708)) NIL) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) 96)) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1682 (($ $ |#1|) 125 (|has| |#1| (-338)))) (-1672 (($ $) 84) (($ $ $) 94)) (-1661 (($ $ $) 48)) (** (($ $ (-850)) 102) (($ $ (-708)) 99)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 87) (($ $ $) 64) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 89) (($ $ |#1|) NIL))) -(((-1037 |#1| |#2|) (-878 |#1| (-494 |#2|) |#2|) (-971) (-784)) (T -1037)) -NIL -(-878 |#1| (-494 |#2|) |#2|) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3533 (((-588 |#2|) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) NIL (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-3044 (($ $) 142 (|has| |#1| (-37 (-382 (-522)))))) (-2923 (($ $) 118 (|has| |#1| (-37 (-382 (-522)))))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2016 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3023 (($ $) 138 (|has| |#1| (-37 (-382 (-522)))))) (-2906 (($ $) 114 (|has| |#1| (-37 (-382 (-522)))))) (-3066 (($ $) 146 (|has| |#1| (-37 (-382 (-522)))))) (-2936 (($ $) 122 (|has| |#1| (-37 (-382 (-522)))))) (-3367 (($) NIL T CONST)) (-3241 (($ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3710 (((-881 |#1|) $ (-708)) NIL) (((-881 |#1|) $ (-708) (-708)) NIL)) (-3672 (((-108) $) NIL)) (-2980 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3872 (((-708) $ |#2|) NIL) (((-708) $ |#2| (-708)) NIL)) (-2859 (((-108) $) NIL)) (-1811 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1374 (((-108) $) NIL)) (-3500 (($ $ (-588 |#2|) (-588 (-494 |#2|))) NIL) (($ $ |#2| (-494 |#2|)) NIL) (($ |#1| (-494 |#2|)) NIL) (($ $ |#2| (-708)) 58) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-1238 (($ $) 112 (|has| |#1| (-37 (-382 (-522)))))) (-3216 (($ $) NIL)) (-3224 ((|#1| $) NIL)) (-2311 (((-1068) $) NIL)) (-2611 (($ $ |#2|) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ |#2| |#1|) 165 (|has| |#1| (-37 (-382 (-522)))))) (-4174 (((-1032) $) NIL)) (-3922 (($ (-1 $) |#2| |#1|) 164 (|has| |#1| (-37 (-382 (-522)))))) (-3934 (($ $ (-708)) 15)) (-2276 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-3357 (($ $) 110 (|has| |#1| (-37 (-382 (-522)))))) (-2330 (($ $ |#2| $) 96) (($ $ (-588 |#2|) (-588 $)) 89) (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL)) (-2731 (($ $ |#2|) 99) (($ $ (-588 |#2|)) NIL) (($ $ |#2| (-708)) NIL) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-2487 (((-494 |#2|) $) NIL)) (-2491 (((-1 (-1066 |#3|) |#3|) (-588 |#2|) (-588 (-1066 |#3|))) 79)) (-1831 (($ $) 148 (|has| |#1| (-37 (-382 (-522)))))) (-2946 (($ $) 124 (|has| |#1| (-37 (-382 (-522)))))) (-3054 (($ $) 144 (|has| |#1| (-37 (-382 (-522)))))) (-2928 (($ $) 120 (|has| |#1| (-37 (-382 (-522)))))) (-3035 (($ $) 140 (|has| |#1| (-37 (-382 (-522)))))) (-2915 (($ $) 116 (|has| |#1| (-37 (-382 (-522)))))) (-1944 (($ $) 17)) (-2217 (((-792) $) 180) (($ (-522)) NIL) (($ |#1|) 44 (|has| |#1| (-157))) (($ $) NIL (|has| |#1| (-514))) (($ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#2|) 65) (($ |#3|) 63)) (-1643 ((|#1| $ (-494 |#2|)) NIL) (($ $ |#2| (-708)) NIL) (($ $ (-588 |#2|) (-588 (-708))) NIL) ((|#3| $ (-708)) 42)) (-3040 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2742 (((-708)) NIL)) (-1856 (($ $) 154 (|has| |#1| (-37 (-382 (-522)))))) (-2976 (($ $) 130 (|has| |#1| (-37 (-382 (-522)))))) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1839 (($ $) 150 (|has| |#1| (-37 (-382 (-522)))))) (-2957 (($ $) 126 (|has| |#1| (-37 (-382 (-522)))))) (-1873 (($ $) 158 (|has| |#1| (-37 (-382 (-522)))))) (-3001 (($ $) 134 (|has| |#1| (-37 (-382 (-522)))))) (-2476 (($ $) 160 (|has| |#1| (-37 (-382 (-522)))))) (-3011 (($ $) 136 (|has| |#1| (-37 (-382 (-522)))))) (-1864 (($ $) 156 (|has| |#1| (-37 (-382 (-522)))))) (-2989 (($ $) 132 (|has| |#1| (-37 (-382 (-522)))))) (-1849 (($ $) 152 (|has| |#1| (-37 (-382 (-522)))))) (-2966 (($ $) 128 (|has| |#1| (-37 (-382 (-522)))))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 18 T CONST)) (-3709 (($) 10 T CONST)) (-2252 (($ $ |#2|) NIL) (($ $ (-588 |#2|)) NIL) (($ $ |#2| (-708)) NIL) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ |#1|) 182 (|has| |#1| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) 61)) (** (($ $ (-850)) NIL) (($ $ (-708)) 70) (($ $ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 102 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 60) (($ $ (-382 (-522))) 107 (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) 105 (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46))) -(((-1038 |#1| |#2| |#3|) (-13 (-678 |#1| |#2|) (-10 -8 (-15 -1643 (|#3| $ (-708))) (-15 -2217 ($ |#2|)) (-15 -2217 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2491 ((-1 (-1066 |#3|) |#3|) (-588 |#2|) (-588 (-1066 |#3|)))) (IF (|has| |#1| (-37 (-382 (-522)))) (PROGN (-15 -2611 ($ $ |#2| |#1|)) (-15 -3922 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-971) (-784) (-878 |#1| (-494 |#2|) |#2|)) (T -1038)) -((-1643 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-4 *2 (-878 *4 (-494 *5) *5)) (-5 *1 (-1038 *4 *5 *2)) (-4 *4 (-971)) (-4 *5 (-784)))) (-2217 (*1 *1 *2) (-12 (-4 *3 (-971)) (-4 *2 (-784)) (-5 *1 (-1038 *3 *2 *4)) (-4 *4 (-878 *3 (-494 *2) *2)))) (-2217 (*1 *1 *2) (-12 (-4 *3 (-971)) (-4 *4 (-784)) (-5 *1 (-1038 *3 *4 *2)) (-4 *2 (-878 *3 (-494 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-971)) (-4 *4 (-784)) (-5 *1 (-1038 *3 *4 *2)) (-4 *2 (-878 *3 (-494 *4) *4)))) (-2491 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *6)) (-5 *4 (-588 (-1066 *7))) (-4 *6 (-784)) (-4 *7 (-878 *5 (-494 *6) *6)) (-4 *5 (-971)) (-5 *2 (-1 (-1066 *7) *7)) (-5 *1 (-1038 *5 *6 *7)))) (-2611 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-4 *2 (-784)) (-5 *1 (-1038 *3 *2 *4)) (-4 *4 (-878 *3 (-494 *2) *2)))) (-3922 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1038 *4 *3 *5))) (-4 *4 (-37 (-382 (-522)))) (-4 *4 (-971)) (-4 *3 (-784)) (-5 *1 (-1038 *4 *3 *5)) (-4 *5 (-878 *4 (-494 *3) *3))))) -(-13 (-678 |#1| |#2|) (-10 -8 (-15 -1643 (|#3| $ (-708))) (-15 -2217 ($ |#2|)) (-15 -2217 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2491 ((-1 (-1066 |#3|) |#3|) (-588 |#2|) (-588 (-1066 |#3|)))) (IF (|has| |#1| (-37 (-382 (-522)))) (PROGN (-15 -2611 ($ $ |#2| |#1|)) (-15 -3922 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-1419 (((-108) $ $) 7)) (-3829 (((-588 (-2 (|:| -1720 $) (|:| -1566 (-588 |#4|)))) (-588 |#4|)) 85)) (-2510 (((-588 $) (-588 |#4|)) 86) (((-588 $) (-588 |#4|) (-108)) 111)) (-3533 (((-588 |#3|) $) 33)) (-2161 (((-108) $) 26)) (-2702 (((-108) $) 17 (|has| |#1| (-514)))) (-1900 (((-108) |#4| $) 101) (((-108) $) 97)) (-2163 ((|#4| |#4| $) 92)) (-2961 (((-588 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| $) 126)) (-3296 (((-2 (|:| |under| $) (|:| -3592 $) (|:| |upper| $)) $ |#3|) 27)) (-2717 (((-108) $ (-708)) 44)) (-1696 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4238))) (((-3 |#4| "failed") $ |#3|) 79)) (-3367 (($) 45 T CONST)) (-1298 (((-108) $) 22 (|has| |#1| (-514)))) (-1657 (((-108) $ $) 24 (|has| |#1| (-514)))) (-3598 (((-108) $ $) 23 (|has| |#1| (-514)))) (-2818 (((-108) $) 25 (|has| |#1| (-514)))) (-3090 (((-588 |#4|) (-588 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3461 (((-588 |#4|) (-588 |#4|) $) 18 (|has| |#1| (-514)))) (-3668 (((-588 |#4|) (-588 |#4|) $) 19 (|has| |#1| (-514)))) (-3700 (((-3 $ "failed") (-588 |#4|)) 36)) (-1478 (($ (-588 |#4|)) 35)) (-2352 (((-3 $ "failed") $) 82)) (-2625 ((|#4| |#4| $) 89)) (-2379 (($ $) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-1424 (($ |#4| $) 67 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4238)))) (-4002 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-514)))) (-1426 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2918 ((|#4| |#4| $) 87)) (-2153 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4238))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-1199 (((-2 (|:| -1720 (-588 |#4|)) (|:| -1566 (-588 |#4|))) $) 105)) (-2396 (((-108) |#4| $) 136)) (-3039 (((-108) |#4| $) 133)) (-2278 (((-108) |#4| $) 137) (((-108) $) 134)) (-2395 (((-588 |#4|) $) 52 (|has| $ (-6 -4238)))) (-1384 (((-108) |#4| $) 104) (((-108) $) 103)) (-1933 ((|#3| $) 34)) (-1480 (((-108) $ (-708)) 43)) (-4084 (((-588 |#4|) $) 53 (|has| $ (-6 -4238)))) (-4176 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#4| |#4|) $) 47)) (-2714 (((-588 |#3|) $) 32)) (-3826 (((-108) |#3| $) 31)) (-3309 (((-108) $ (-708)) 42)) (-2311 (((-1068) $) 9)) (-1418 (((-3 |#4| (-588 $)) |#4| |#4| $) 128)) (-1998 (((-588 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| |#4| $) 127)) (-1442 (((-3 |#4| "failed") $) 83)) (-1468 (((-588 $) |#4| $) 129)) (-1892 (((-3 (-108) (-588 $)) |#4| $) 132)) (-1862 (((-588 (-2 (|:| |val| (-108)) (|:| -1974 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2251 (((-588 $) |#4| $) 125) (((-588 $) (-588 |#4|) $) 124) (((-588 $) (-588 |#4|) (-588 $)) 123) (((-588 $) |#4| (-588 $)) 122)) (-2953 (($ |#4| $) 117) (($ (-588 |#4|) $) 116)) (-4138 (((-588 |#4|) $) 107)) (-3864 (((-108) |#4| $) 99) (((-108) $) 95)) (-2556 ((|#4| |#4| $) 90)) (-1517 (((-108) $ $) 110)) (-2507 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-514)))) (-3060 (((-108) |#4| $) 100) (((-108) $) 96)) (-3896 ((|#4| |#4| $) 91)) (-4174 (((-1032) $) 10)) (-2337 (((-3 |#4| "failed") $) 84)) (-2187 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-4078 (((-3 $ "failed") $ |#4|) 78)) (-3934 (($ $ |#4|) 77) (((-588 $) |#4| $) 115) (((-588 $) |#4| (-588 $)) 114) (((-588 $) (-588 |#4|) $) 113) (((-588 $) (-588 |#4|) (-588 $)) 112)) (-3487 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 |#4|) (-588 |#4|)) 59 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) 57 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) 56 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-2065 (((-108) $ $) 38)) (-3494 (((-108) $) 41)) (-3298 (($) 40)) (-2487 (((-708) $) 106)) (-4187 (((-708) |#4| $) 54 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4238)))) (-2463 (($ $) 39)) (-3873 (((-498) $) 69 (|has| |#4| (-563 (-498))))) (-2227 (($ (-588 |#4|)) 60)) (-2271 (($ $ |#3|) 28)) (-2154 (($ $ |#3|) 30)) (-1524 (($ $) 88)) (-2773 (($ $ |#3|) 29)) (-2217 (((-792) $) 11) (((-588 |#4|) $) 37)) (-3111 (((-708) $) 76 (|has| |#3| (-343)))) (-3538 (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-2102 (((-108) $ (-1 (-108) |#4| (-588 |#4|))) 98)) (-3386 (((-588 $) |#4| $) 121) (((-588 $) |#4| (-588 $)) 120) (((-588 $) (-588 |#4|) $) 119) (((-588 $) (-588 |#4|) (-588 $)) 118)) (-1381 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4238)))) (-1982 (((-588 |#3|) $) 81)) (-1336 (((-108) |#4| $) 135)) (-1711 (((-108) |#3| $) 80)) (-1562 (((-108) $ $) 6)) (-3591 (((-708) $) 46 (|has| $ (-6 -4238))))) -(((-1039 |#1| |#2| |#3| |#4|) (-1197) (-426) (-730) (-784) (-985 |t#1| |t#2| |t#3|)) (T -1039)) -NIL -(-13 (-1023 |t#1| |t#2| |t#3| |t#4|) (-721 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-97) . T) ((-562 (-588 |#4|)) . T) ((-562 (-792)) . T) ((-139 |#4|) . T) ((-563 (-498)) |has| |#4| (-563 (-498))) ((-285 |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-461 |#4|) . T) ((-483 |#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-721 |#1| |#2| |#3| |#4|) . T) ((-903 |#1| |#2| |#3| |#4|) . T) ((-990 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1023 |#1| |#2| |#3| |#4|) . T) ((-1114 |#1| |#2| |#3| |#4|) . T) ((-1120) . T)) -((-2925 (((-588 |#2|) |#1|) 12)) (-2159 (((-588 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-588 |#2|) |#1|) 47)) (-3230 (((-588 |#2|) |#2| |#2| |#2|) 35) (((-588 |#2|) |#1|) 45)) (-2786 ((|#2| |#1|) 42)) (-2590 (((-2 (|:| |solns| (-588 |#2|)) (|:| |maps| (-588 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-3687 (((-588 |#2|) |#2| |#2|) 34) (((-588 |#2|) |#1|) 44)) (-2101 (((-588 |#2|) |#2| |#2| |#2| |#2|) 36) (((-588 |#2|) |#1|) 46)) (-2756 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-2969 ((|#2| |#2| |#2| |#2|) 39)) (-2832 ((|#2| |#2| |#2|) 38)) (-2593 ((|#2| |#2| |#2| |#2| |#2|) 40))) -(((-1040 |#1| |#2|) (-10 -7 (-15 -2925 ((-588 |#2|) |#1|)) (-15 -2786 (|#2| |#1|)) (-15 -2590 ((-2 (|:| |solns| (-588 |#2|)) (|:| |maps| (-588 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3687 ((-588 |#2|) |#1|)) (-15 -3230 ((-588 |#2|) |#1|)) (-15 -2101 ((-588 |#2|) |#1|)) (-15 -2159 ((-588 |#2|) |#1|)) (-15 -3687 ((-588 |#2|) |#2| |#2|)) (-15 -3230 ((-588 |#2|) |#2| |#2| |#2|)) (-15 -2101 ((-588 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2159 ((-588 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2832 (|#2| |#2| |#2|)) (-15 -2969 (|#2| |#2| |#2| |#2|)) (-15 -2593 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2756 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1142 |#2|) (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (T -1040)) -((-2756 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1142 *2)))) (-2593 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1142 *2)))) (-2969 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1142 *2)))) (-2832 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1142 *2)))) (-2159 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *2 (-588 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1142 *3)))) (-2101 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *2 (-588 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1142 *3)))) (-3230 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *2 (-588 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1142 *3)))) (-3687 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *2 (-588 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1142 *3)))) (-2159 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *2 (-588 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1142 *4)))) (-2101 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *2 (-588 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1142 *4)))) (-3230 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *2 (-588 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1142 *4)))) (-3687 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *2 (-588 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1142 *4)))) (-2590 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *2 (-2 (|:| |solns| (-588 *5)) (|:| |maps| (-588 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1040 *3 *5)) (-4 *3 (-1142 *5)))) (-2786 (*1 *2 *3) (-12 (-4 *2 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1142 *2)))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *2 (-588 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1142 *4))))) -(-10 -7 (-15 -2925 ((-588 |#2|) |#1|)) (-15 -2786 (|#2| |#1|)) (-15 -2590 ((-2 (|:| |solns| (-588 |#2|)) (|:| |maps| (-588 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3687 ((-588 |#2|) |#1|)) (-15 -3230 ((-588 |#2|) |#1|)) (-15 -2101 ((-588 |#2|) |#1|)) (-15 -2159 ((-588 |#2|) |#1|)) (-15 -3687 ((-588 |#2|) |#2| |#2|)) (-15 -3230 ((-588 |#2|) |#2| |#2| |#2|)) (-15 -2101 ((-588 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2159 ((-588 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2832 (|#2| |#2| |#2|)) (-15 -2969 (|#2| |#2| |#2| |#2|)) (-15 -2593 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2756 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-2967 (((-588 (-588 (-270 (-291 |#1|)))) (-588 (-270 (-382 (-881 |#1|))))) 95) (((-588 (-588 (-270 (-291 |#1|)))) (-588 (-270 (-382 (-881 |#1|)))) (-588 (-1085))) 94) (((-588 (-588 (-270 (-291 |#1|)))) (-588 (-382 (-881 |#1|)))) 92) (((-588 (-588 (-270 (-291 |#1|)))) (-588 (-382 (-881 |#1|))) (-588 (-1085))) 90) (((-588 (-270 (-291 |#1|))) (-270 (-382 (-881 |#1|)))) 76) (((-588 (-270 (-291 |#1|))) (-270 (-382 (-881 |#1|))) (-1085)) 77) (((-588 (-270 (-291 |#1|))) (-382 (-881 |#1|))) 71) (((-588 (-270 (-291 |#1|))) (-382 (-881 |#1|)) (-1085)) 60)) (-2124 (((-588 (-588 (-291 |#1|))) (-588 (-382 (-881 |#1|))) (-588 (-1085))) 88) (((-588 (-291 |#1|)) (-382 (-881 |#1|)) (-1085)) 43)) (-3931 (((-1075 (-588 (-291 |#1|)) (-588 (-270 (-291 |#1|)))) (-382 (-881 |#1|)) (-1085)) 98) (((-1075 (-588 (-291 |#1|)) (-588 (-270 (-291 |#1|)))) (-270 (-382 (-881 |#1|))) (-1085)) 97))) -(((-1041 |#1|) (-10 -7 (-15 -2967 ((-588 (-270 (-291 |#1|))) (-382 (-881 |#1|)) (-1085))) (-15 -2967 ((-588 (-270 (-291 |#1|))) (-382 (-881 |#1|)))) (-15 -2967 ((-588 (-270 (-291 |#1|))) (-270 (-382 (-881 |#1|))) (-1085))) (-15 -2967 ((-588 (-270 (-291 |#1|))) (-270 (-382 (-881 |#1|))))) (-15 -2967 ((-588 (-588 (-270 (-291 |#1|)))) (-588 (-382 (-881 |#1|))) (-588 (-1085)))) (-15 -2967 ((-588 (-588 (-270 (-291 |#1|)))) (-588 (-382 (-881 |#1|))))) (-15 -2967 ((-588 (-588 (-270 (-291 |#1|)))) (-588 (-270 (-382 (-881 |#1|)))) (-588 (-1085)))) (-15 -2967 ((-588 (-588 (-270 (-291 |#1|)))) (-588 (-270 (-382 (-881 |#1|)))))) (-15 -2124 ((-588 (-291 |#1|)) (-382 (-881 |#1|)) (-1085))) (-15 -2124 ((-588 (-588 (-291 |#1|))) (-588 (-382 (-881 |#1|))) (-588 (-1085)))) (-15 -3931 ((-1075 (-588 (-291 |#1|)) (-588 (-270 (-291 |#1|)))) (-270 (-382 (-881 |#1|))) (-1085))) (-15 -3931 ((-1075 (-588 (-291 |#1|)) (-588 (-270 (-291 |#1|)))) (-382 (-881 |#1|)) (-1085)))) (-13 (-283) (-784) (-135))) (T -1041)) -((-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085)) (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-1075 (-588 (-291 *5)) (-588 (-270 (-291 *5))))) (-5 *1 (-1041 *5)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-270 (-382 (-881 *5)))) (-5 *4 (-1085)) (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-1075 (-588 (-291 *5)) (-588 (-270 (-291 *5))))) (-5 *1 (-1041 *5)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-382 (-881 *5)))) (-5 *4 (-588 (-1085))) (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-588 (-291 *5)))) (-5 *1 (-1041 *5)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085)) (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-291 *5))) (-5 *1 (-1041 *5)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-588 (-270 (-382 (-881 *4))))) (-4 *4 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-588 (-270 (-291 *4))))) (-5 *1 (-1041 *4)))) (-2967 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-270 (-382 (-881 *5))))) (-5 *4 (-588 (-1085))) (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-588 (-270 (-291 *5))))) (-5 *1 (-1041 *5)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-588 (-382 (-881 *4)))) (-4 *4 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-588 (-270 (-291 *4))))) (-5 *1 (-1041 *4)))) (-2967 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-382 (-881 *5)))) (-5 *4 (-588 (-1085))) (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-588 (-270 (-291 *5))))) (-5 *1 (-1041 *5)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-270 (-382 (-881 *4)))) (-4 *4 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-270 (-291 *4)))) (-5 *1 (-1041 *4)))) (-2967 (*1 *2 *3 *4) (-12 (-5 *3 (-270 (-382 (-881 *5)))) (-5 *4 (-1085)) (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-270 (-291 *5)))) (-5 *1 (-1041 *5)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-270 (-291 *4)))) (-5 *1 (-1041 *4)))) (-2967 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085)) (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-270 (-291 *5)))) (-5 *1 (-1041 *5))))) -(-10 -7 (-15 -2967 ((-588 (-270 (-291 |#1|))) (-382 (-881 |#1|)) (-1085))) (-15 -2967 ((-588 (-270 (-291 |#1|))) (-382 (-881 |#1|)))) (-15 -2967 ((-588 (-270 (-291 |#1|))) (-270 (-382 (-881 |#1|))) (-1085))) (-15 -2967 ((-588 (-270 (-291 |#1|))) (-270 (-382 (-881 |#1|))))) (-15 -2967 ((-588 (-588 (-270 (-291 |#1|)))) (-588 (-382 (-881 |#1|))) (-588 (-1085)))) (-15 -2967 ((-588 (-588 (-270 (-291 |#1|)))) (-588 (-382 (-881 |#1|))))) (-15 -2967 ((-588 (-588 (-270 (-291 |#1|)))) (-588 (-270 (-382 (-881 |#1|)))) (-588 (-1085)))) (-15 -2967 ((-588 (-588 (-270 (-291 |#1|)))) (-588 (-270 (-382 (-881 |#1|)))))) (-15 -2124 ((-588 (-291 |#1|)) (-382 (-881 |#1|)) (-1085))) (-15 -2124 ((-588 (-588 (-291 |#1|))) (-588 (-382 (-881 |#1|))) (-588 (-1085)))) (-15 -3931 ((-1075 (-588 (-291 |#1|)) (-588 (-270 (-291 |#1|)))) (-270 (-382 (-881 |#1|))) (-1085))) (-15 -3931 ((-1075 (-588 (-291 |#1|)) (-588 (-270 (-291 |#1|)))) (-382 (-881 |#1|)) (-1085)))) -((-2030 (((-382 (-1081 (-291 |#1|))) (-1166 (-291 |#1|)) (-382 (-1081 (-291 |#1|))) (-522)) 27)) (-2145 (((-382 (-1081 (-291 |#1|))) (-382 (-1081 (-291 |#1|))) (-382 (-1081 (-291 |#1|))) (-382 (-1081 (-291 |#1|)))) 39))) -(((-1042 |#1|) (-10 -7 (-15 -2145 ((-382 (-1081 (-291 |#1|))) (-382 (-1081 (-291 |#1|))) (-382 (-1081 (-291 |#1|))) (-382 (-1081 (-291 |#1|))))) (-15 -2030 ((-382 (-1081 (-291 |#1|))) (-1166 (-291 |#1|)) (-382 (-1081 (-291 |#1|))) (-522)))) (-13 (-514) (-784))) (T -1042)) -((-2030 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-382 (-1081 (-291 *5)))) (-5 *3 (-1166 (-291 *5))) (-5 *4 (-522)) (-4 *5 (-13 (-514) (-784))) (-5 *1 (-1042 *5)))) (-2145 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-382 (-1081 (-291 *3)))) (-4 *3 (-13 (-514) (-784))) (-5 *1 (-1042 *3))))) -(-10 -7 (-15 -2145 ((-382 (-1081 (-291 |#1|))) (-382 (-1081 (-291 |#1|))) (-382 (-1081 (-291 |#1|))) (-382 (-1081 (-291 |#1|))))) (-15 -2030 ((-382 (-1081 (-291 |#1|))) (-1166 (-291 |#1|)) (-382 (-1081 (-291 |#1|))) (-522)))) -((-2925 (((-588 (-588 (-270 (-291 |#1|)))) (-588 (-270 (-291 |#1|))) (-588 (-1085))) 217) (((-588 (-270 (-291 |#1|))) (-291 |#1|) (-1085)) 20) (((-588 (-270 (-291 |#1|))) (-270 (-291 |#1|)) (-1085)) 26) (((-588 (-270 (-291 |#1|))) (-270 (-291 |#1|))) 25) (((-588 (-270 (-291 |#1|))) (-291 |#1|)) 21))) -(((-1043 |#1|) (-10 -7 (-15 -2925 ((-588 (-270 (-291 |#1|))) (-291 |#1|))) (-15 -2925 ((-588 (-270 (-291 |#1|))) (-270 (-291 |#1|)))) (-15 -2925 ((-588 (-270 (-291 |#1|))) (-270 (-291 |#1|)) (-1085))) (-15 -2925 ((-588 (-270 (-291 |#1|))) (-291 |#1|) (-1085))) (-15 -2925 ((-588 (-588 (-270 (-291 |#1|)))) (-588 (-270 (-291 |#1|))) (-588 (-1085))))) (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (T -1043)) -((-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-1085))) (-4 *5 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-588 (-588 (-270 (-291 *5))))) (-5 *1 (-1043 *5)) (-5 *3 (-588 (-270 (-291 *5)))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-588 (-270 (-291 *5)))) (-5 *1 (-1043 *5)) (-5 *3 (-291 *5)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-588 (-270 (-291 *5)))) (-5 *1 (-1043 *5)) (-5 *3 (-270 (-291 *5))))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-588 (-270 (-291 *4)))) (-5 *1 (-1043 *4)) (-5 *3 (-270 (-291 *4))))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-588 (-270 (-291 *4)))) (-5 *1 (-1043 *4)) (-5 *3 (-291 *4))))) -(-10 -7 (-15 -2925 ((-588 (-270 (-291 |#1|))) (-291 |#1|))) (-15 -2925 ((-588 (-270 (-291 |#1|))) (-270 (-291 |#1|)))) (-15 -2925 ((-588 (-270 (-291 |#1|))) (-270 (-291 |#1|)) (-1085))) (-15 -2925 ((-588 (-270 (-291 |#1|))) (-291 |#1|) (-1085))) (-15 -2925 ((-588 (-588 (-270 (-291 |#1|)))) (-588 (-270 (-291 |#1|))) (-588 (-1085))))) -((-2558 ((|#2| |#2|) 20 (|has| |#1| (-784))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 16)) (-2846 ((|#2| |#2|) 19 (|has| |#1| (-784))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 15))) -(((-1044 |#1| |#2|) (-10 -7 (-15 -2846 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -2558 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-784)) (PROGN (-15 -2846 (|#2| |#2|)) (-15 -2558 (|#2| |#2|))) |%noBranch|)) (-1120) (-13 (-555 (-522) |#1|) (-10 -7 (-6 -4238) (-6 -4239)))) (T -1044)) -((-2558 (*1 *2 *2) (-12 (-4 *3 (-784)) (-4 *3 (-1120)) (-5 *1 (-1044 *3 *2)) (-4 *2 (-13 (-555 (-522) *3) (-10 -7 (-6 -4238) (-6 -4239)))))) (-2846 (*1 *2 *2) (-12 (-4 *3 (-784)) (-4 *3 (-1120)) (-5 *1 (-1044 *3 *2)) (-4 *2 (-13 (-555 (-522) *3) (-10 -7 (-6 -4238) (-6 -4239)))))) (-2558 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-1044 *4 *2)) (-4 *2 (-13 (-555 (-522) *4) (-10 -7 (-6 -4238) (-6 -4239)))))) (-2846 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-1044 *4 *2)) (-4 *2 (-13 (-555 (-522) *4) (-10 -7 (-6 -4238) (-6 -4239))))))) -(-10 -7 (-15 -2846 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -2558 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-784)) (PROGN (-15 -2846 (|#2| |#2|)) (-15 -2558 (|#2| |#2|))) |%noBranch|)) -((-1419 (((-108) $ $) NIL)) (-1584 (((-1074 3 |#1|) $) 106)) (-2428 (((-108) $) 72)) (-2672 (($ $ (-588 (-872 |#1|))) 20) (($ $ (-588 (-588 |#1|))) 75) (($ (-588 (-872 |#1|))) 74) (((-588 (-872 |#1|)) $) 73)) (-3828 (((-108) $) 41)) (-1239 (($ $ (-872 |#1|)) 46) (($ $ (-588 |#1|)) 51) (($ $ (-708)) 53) (($ (-872 |#1|)) 47) (((-872 |#1|) $) 45)) (-1887 (((-2 (|:| -3748 (-708)) (|:| |curves| (-708)) (|:| |polygons| (-708)) (|:| |constructs| (-708))) $) 104)) (-2152 (((-708) $) 26)) (-1366 (((-708) $) 25)) (-3151 (($ $ (-708) (-872 |#1|)) 39)) (-1658 (((-108) $) 82)) (-2888 (($ $ (-588 (-588 (-872 |#1|))) (-588 (-156)) (-156)) 89) (($ $ (-588 (-588 (-588 |#1|))) (-588 (-156)) (-156)) 91) (($ $ (-588 (-588 (-872 |#1|))) (-108) (-108)) 85) (($ $ (-588 (-588 (-588 |#1|))) (-108) (-108)) 93) (($ (-588 (-588 (-872 |#1|)))) 86) (($ (-588 (-588 (-872 |#1|))) (-108) (-108)) 87) (((-588 (-588 (-872 |#1|))) $) 84)) (-3164 (($ (-588 $)) 28) (($ $ $) 29)) (-2247 (((-588 (-156)) $) 102)) (-4098 (((-588 (-872 |#1|)) $) 97)) (-3549 (((-588 (-588 (-156))) $) 101)) (-1796 (((-588 (-588 (-588 (-872 |#1|)))) $) NIL)) (-2256 (((-588 (-588 (-588 (-708)))) $) 99)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2748 (((-708) $ (-588 (-872 |#1|))) 37)) (-1787 (((-108) $) 54)) (-3364 (($ $ (-588 (-872 |#1|))) 56) (($ $ (-588 (-588 |#1|))) 62) (($ (-588 (-872 |#1|))) 57) (((-588 (-872 |#1|)) $) 55)) (-4195 (($) 23) (($ (-1074 3 |#1|)) 24)) (-2463 (($ $) 35)) (-4095 (((-588 $) $) 34)) (-3884 (($ (-588 $)) 31)) (-2834 (((-588 $) $) 33)) (-2217 (((-792) $) 110)) (-3568 (((-108) $) 64)) (-1231 (($ $ (-588 (-872 |#1|))) 66) (($ $ (-588 (-588 |#1|))) 69) (($ (-588 (-872 |#1|))) 67) (((-588 (-872 |#1|)) $) 65)) (-2181 (($ $) 105)) (-1562 (((-108) $ $) NIL))) -(((-1045 |#1|) (-1046 |#1|) (-971)) (T -1045)) -NIL -(-1046 |#1|) -((-1419 (((-108) $ $) 7)) (-1584 (((-1074 3 |#1|) $) 13)) (-2428 (((-108) $) 29)) (-2672 (($ $ (-588 (-872 |#1|))) 33) (($ $ (-588 (-588 |#1|))) 32) (($ (-588 (-872 |#1|))) 31) (((-588 (-872 |#1|)) $) 30)) (-3828 (((-108) $) 44)) (-1239 (($ $ (-872 |#1|)) 49) (($ $ (-588 |#1|)) 48) (($ $ (-708)) 47) (($ (-872 |#1|)) 46) (((-872 |#1|) $) 45)) (-1887 (((-2 (|:| -3748 (-708)) (|:| |curves| (-708)) (|:| |polygons| (-708)) (|:| |constructs| (-708))) $) 15)) (-2152 (((-708) $) 58)) (-1366 (((-708) $) 59)) (-3151 (($ $ (-708) (-872 |#1|)) 50)) (-1658 (((-108) $) 21)) (-2888 (($ $ (-588 (-588 (-872 |#1|))) (-588 (-156)) (-156)) 28) (($ $ (-588 (-588 (-588 |#1|))) (-588 (-156)) (-156)) 27) (($ $ (-588 (-588 (-872 |#1|))) (-108) (-108)) 26) (($ $ (-588 (-588 (-588 |#1|))) (-108) (-108)) 25) (($ (-588 (-588 (-872 |#1|)))) 24) (($ (-588 (-588 (-872 |#1|))) (-108) (-108)) 23) (((-588 (-588 (-872 |#1|))) $) 22)) (-3164 (($ (-588 $)) 57) (($ $ $) 56)) (-2247 (((-588 (-156)) $) 16)) (-4098 (((-588 (-872 |#1|)) $) 20)) (-3549 (((-588 (-588 (-156))) $) 17)) (-1796 (((-588 (-588 (-588 (-872 |#1|)))) $) 18)) (-2256 (((-588 (-588 (-588 (-708)))) $) 19)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2748 (((-708) $ (-588 (-872 |#1|))) 51)) (-1787 (((-108) $) 39)) (-3364 (($ $ (-588 (-872 |#1|))) 43) (($ $ (-588 (-588 |#1|))) 42) (($ (-588 (-872 |#1|))) 41) (((-588 (-872 |#1|)) $) 40)) (-4195 (($) 61) (($ (-1074 3 |#1|)) 60)) (-2463 (($ $) 52)) (-4095 (((-588 $) $) 53)) (-3884 (($ (-588 $)) 55)) (-2834 (((-588 $) $) 54)) (-2217 (((-792) $) 11)) (-3568 (((-108) $) 34)) (-1231 (($ $ (-588 (-872 |#1|))) 38) (($ $ (-588 (-588 |#1|))) 37) (($ (-588 (-872 |#1|))) 36) (((-588 (-872 |#1|)) $) 35)) (-2181 (($ $) 14)) (-1562 (((-108) $ $) 6))) -(((-1046 |#1|) (-1197) (-971)) (T -1046)) -((-2217 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-792)))) (-4195 (*1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-971)))) (-4195 (*1 *1 *2) (-12 (-5 *2 (-1074 3 *3)) (-4 *3 (-971)) (-4 *1 (-1046 *3)))) (-1366 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-708)))) (-2152 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-708)))) (-3164 (*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-3164 (*1 *1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-971)))) (-3884 (*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-2834 (*1 *2 *1) (-12 (-4 *3 (-971)) (-5 *2 (-588 *1)) (-4 *1 (-1046 *3)))) (-4095 (*1 *2 *1) (-12 (-4 *3 (-971)) (-5 *2 (-588 *1)) (-4 *1 (-1046 *3)))) (-2463 (*1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-971)))) (-2748 (*1 *2 *1 *3) (-12 (-5 *3 (-588 (-872 *4))) (-4 *1 (-1046 *4)) (-4 *4 (-971)) (-5 *2 (-708)))) (-3151 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-708)) (-5 *3 (-872 *4)) (-4 *1 (-1046 *4)) (-4 *4 (-971)))) (-1239 (*1 *1 *1 *2) (-12 (-5 *2 (-872 *3)) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-1239 (*1 *1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-1239 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-1239 (*1 *1 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-971)) (-4 *1 (-1046 *3)))) (-1239 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-872 *3)))) (-3828 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-108)))) (-3364 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-872 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-3364 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-588 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-3364 (*1 *1 *2) (-12 (-5 *2 (-588 (-872 *3))) (-4 *3 (-971)) (-4 *1 (-1046 *3)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-872 *3))))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-108)))) (-1231 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-872 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-1231 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-588 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-1231 (*1 *1 *2) (-12 (-5 *2 (-588 (-872 *3))) (-4 *3 (-971)) (-4 *1 (-1046 *3)))) (-1231 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-872 *3))))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-108)))) (-2672 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-872 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-2672 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-588 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-2672 (*1 *1 *2) (-12 (-5 *2 (-588 (-872 *3))) (-4 *3 (-971)) (-4 *1 (-1046 *3)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-872 *3))))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-108)))) (-2888 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-588 (-588 (-872 *5)))) (-5 *3 (-588 (-156))) (-5 *4 (-156)) (-4 *1 (-1046 *5)) (-4 *5 (-971)))) (-2888 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-588 (-588 (-588 *5)))) (-5 *3 (-588 (-156))) (-5 *4 (-156)) (-4 *1 (-1046 *5)) (-4 *5 (-971)))) (-2888 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-588 (-588 (-872 *4)))) (-5 *3 (-108)) (-4 *1 (-1046 *4)) (-4 *4 (-971)))) (-2888 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-588 (-588 (-588 *4)))) (-5 *3 (-108)) (-4 *1 (-1046 *4)) (-4 *4 (-971)))) (-2888 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 (-872 *3)))) (-4 *3 (-971)) (-4 *1 (-1046 *3)))) (-2888 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-588 (-588 (-872 *4)))) (-5 *3 (-108)) (-4 *4 (-971)) (-4 *1 (-1046 *4)))) (-2888 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-588 (-872 *3)))))) (-1658 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-108)))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-872 *3))))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-588 (-588 (-708))))))) (-1796 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-588 (-588 (-872 *3))))))) (-3549 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-588 (-156)))))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-156))))) (-1887 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-2 (|:| -3748 (-708)) (|:| |curves| (-708)) (|:| |polygons| (-708)) (|:| |constructs| (-708)))))) (-2181 (*1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-971)))) (-1584 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-1074 3 *3))))) -(-13 (-1014) (-10 -8 (-15 -4195 ($)) (-15 -4195 ($ (-1074 3 |t#1|))) (-15 -1366 ((-708) $)) (-15 -2152 ((-708) $)) (-15 -3164 ($ (-588 $))) (-15 -3164 ($ $ $)) (-15 -3884 ($ (-588 $))) (-15 -2834 ((-588 $) $)) (-15 -4095 ((-588 $) $)) (-15 -2463 ($ $)) (-15 -2748 ((-708) $ (-588 (-872 |t#1|)))) (-15 -3151 ($ $ (-708) (-872 |t#1|))) (-15 -1239 ($ $ (-872 |t#1|))) (-15 -1239 ($ $ (-588 |t#1|))) (-15 -1239 ($ $ (-708))) (-15 -1239 ($ (-872 |t#1|))) (-15 -1239 ((-872 |t#1|) $)) (-15 -3828 ((-108) $)) (-15 -3364 ($ $ (-588 (-872 |t#1|)))) (-15 -3364 ($ $ (-588 (-588 |t#1|)))) (-15 -3364 ($ (-588 (-872 |t#1|)))) (-15 -3364 ((-588 (-872 |t#1|)) $)) (-15 -1787 ((-108) $)) (-15 -1231 ($ $ (-588 (-872 |t#1|)))) (-15 -1231 ($ $ (-588 (-588 |t#1|)))) (-15 -1231 ($ (-588 (-872 |t#1|)))) (-15 -1231 ((-588 (-872 |t#1|)) $)) (-15 -3568 ((-108) $)) (-15 -2672 ($ $ (-588 (-872 |t#1|)))) (-15 -2672 ($ $ (-588 (-588 |t#1|)))) (-15 -2672 ($ (-588 (-872 |t#1|)))) (-15 -2672 ((-588 (-872 |t#1|)) $)) (-15 -2428 ((-108) $)) (-15 -2888 ($ $ (-588 (-588 (-872 |t#1|))) (-588 (-156)) (-156))) (-15 -2888 ($ $ (-588 (-588 (-588 |t#1|))) (-588 (-156)) (-156))) (-15 -2888 ($ $ (-588 (-588 (-872 |t#1|))) (-108) (-108))) (-15 -2888 ($ $ (-588 (-588 (-588 |t#1|))) (-108) (-108))) (-15 -2888 ($ (-588 (-588 (-872 |t#1|))))) (-15 -2888 ($ (-588 (-588 (-872 |t#1|))) (-108) (-108))) (-15 -2888 ((-588 (-588 (-872 |t#1|))) $)) (-15 -1658 ((-108) $)) (-15 -4098 ((-588 (-872 |t#1|)) $)) (-15 -2256 ((-588 (-588 (-588 (-708)))) $)) (-15 -1796 ((-588 (-588 (-588 (-872 |t#1|)))) $)) (-15 -3549 ((-588 (-588 (-156))) $)) (-15 -2247 ((-588 (-156)) $)) (-15 -1887 ((-2 (|:| -3748 (-708)) (|:| |curves| (-708)) (|:| |polygons| (-708)) (|:| |constructs| (-708))) $)) (-15 -2181 ($ $)) (-15 -1584 ((-1074 3 |t#1|) $)) (-15 -2217 ((-792) $)))) -(((-97) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-2730 (((-588 (-1090)) (-1068)) 8))) -(((-1047) (-10 -7 (-15 -2730 ((-588 (-1090)) (-1068))))) (T -1047)) -((-2730 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-588 (-1090))) (-5 *1 (-1047))))) -(-10 -7 (-15 -2730 ((-588 (-1090)) (-1068)))) -((-1412 (((-1171) (-588 (-792))) 23) (((-1171) (-792)) 22)) (-1882 (((-1171) (-588 (-792))) 21) (((-1171) (-792)) 20)) (-2550 (((-1171) (-588 (-792))) 19) (((-1171) (-792)) 11) (((-1171) (-1068) (-792)) 17))) -(((-1048) (-10 -7 (-15 -2550 ((-1171) (-1068) (-792))) (-15 -2550 ((-1171) (-792))) (-15 -1882 ((-1171) (-792))) (-15 -1412 ((-1171) (-792))) (-15 -2550 ((-1171) (-588 (-792)))) (-15 -1882 ((-1171) (-588 (-792)))) (-15 -1412 ((-1171) (-588 (-792)))))) (T -1048)) -((-1412 (*1 *2 *3) (-12 (-5 *3 (-588 (-792))) (-5 *2 (-1171)) (-5 *1 (-1048)))) (-1882 (*1 *2 *3) (-12 (-5 *3 (-588 (-792))) (-5 *2 (-1171)) (-5 *1 (-1048)))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-588 (-792))) (-5 *2 (-1171)) (-5 *1 (-1048)))) (-1412 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1171)) (-5 *1 (-1048)))) (-1882 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1171)) (-5 *1 (-1048)))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1171)) (-5 *1 (-1048)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1068)) (-5 *4 (-792)) (-5 *2 (-1171)) (-5 *1 (-1048))))) -(-10 -7 (-15 -2550 ((-1171) (-1068) (-792))) (-15 -2550 ((-1171) (-792))) (-15 -1882 ((-1171) (-792))) (-15 -1412 ((-1171) (-792))) (-15 -2550 ((-1171) (-588 (-792)))) (-15 -1882 ((-1171) (-588 (-792)))) (-15 -1412 ((-1171) (-588 (-792))))) -((-3056 (($ $ $) 10)) (-2852 (($ $) 9)) (-2248 (($ $ $) 13)) (-1551 (($ $ $) 15)) (-3047 (($ $ $) 12)) (-2039 (($ $ $) 14)) (-3799 (($ $) 17)) (-2022 (($ $) 16)) (-4126 (($ $) 6)) (-2245 (($ $ $) 11) (($ $) 7)) (-2288 (($ $ $) 8))) -(((-1049) (-1197)) (T -1049)) -((-3799 (*1 *1 *1) (-4 *1 (-1049))) (-2022 (*1 *1 *1) (-4 *1 (-1049))) (-1551 (*1 *1 *1 *1) (-4 *1 (-1049))) (-2039 (*1 *1 *1 *1) (-4 *1 (-1049))) (-2248 (*1 *1 *1 *1) (-4 *1 (-1049))) (-3047 (*1 *1 *1 *1) (-4 *1 (-1049))) (-2245 (*1 *1 *1 *1) (-4 *1 (-1049))) (-3056 (*1 *1 *1 *1) (-4 *1 (-1049))) (-2852 (*1 *1 *1) (-4 *1 (-1049))) (-2288 (*1 *1 *1 *1) (-4 *1 (-1049))) (-2245 (*1 *1 *1) (-4 *1 (-1049))) (-4126 (*1 *1 *1) (-4 *1 (-1049)))) -(-13 (-10 -8 (-15 -4126 ($ $)) (-15 -2245 ($ $)) (-15 -2288 ($ $ $)) (-15 -2852 ($ $)) (-15 -3056 ($ $ $)) (-15 -2245 ($ $ $)) (-15 -3047 ($ $ $)) (-15 -2248 ($ $ $)) (-15 -2039 ($ $ $)) (-15 -1551 ($ $ $)) (-15 -2022 ($ $)) (-15 -3799 ($ $)))) -((-1419 (((-108) $ $) 41)) (-3526 ((|#1| $) 15)) (-2845 (((-108) $ $ (-1 (-108) |#2| |#2|)) 36)) (-2972 (((-108) $) 17)) (-2459 (($ $ |#1|) 28)) (-2596 (($ $ (-108)) 30)) (-1205 (($ $) 31)) (-2291 (($ $ |#2|) 29)) (-2311 (((-1068) $) NIL)) (-4074 (((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|)) 35)) (-4174 (((-1032) $) NIL)) (-3494 (((-108) $) 14)) (-3298 (($) 10)) (-2463 (($ $) 27)) (-2227 (($ |#1| |#2| (-108)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1974 |#2|))) 21) (((-588 $) (-588 (-2 (|:| |val| |#1|) (|:| -1974 |#2|)))) 24) (((-588 $) |#1| (-588 |#2|)) 26)) (-1755 ((|#2| $) 16)) (-2217 (((-792) $) 50)) (-1562 (((-108) $ $) 39))) -(((-1050 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3298 ($)) (-15 -3494 ((-108) $)) (-15 -3526 (|#1| $)) (-15 -1755 (|#2| $)) (-15 -2972 ((-108) $)) (-15 -2227 ($ |#1| |#2| (-108))) (-15 -2227 ($ |#1| |#2|)) (-15 -2227 ($ (-2 (|:| |val| |#1|) (|:| -1974 |#2|)))) (-15 -2227 ((-588 $) (-588 (-2 (|:| |val| |#1|) (|:| -1974 |#2|))))) (-15 -2227 ((-588 $) |#1| (-588 |#2|))) (-15 -2463 ($ $)) (-15 -2459 ($ $ |#1|)) (-15 -2291 ($ $ |#2|)) (-15 -2596 ($ $ (-108))) (-15 -1205 ($ $)) (-15 -4074 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -2845 ((-108) $ $ (-1 (-108) |#2| |#2|))))) (-13 (-1014) (-33)) (-13 (-1014) (-33))) (T -1050)) -((-3298 (*1 *1) (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33))))) (-3494 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))))) (-3526 (*1 *2 *1) (-12 (-4 *2 (-13 (-1014) (-33))) (-5 *1 (-1050 *2 *3)) (-4 *3 (-13 (-1014) (-33))))) (-1755 (*1 *2 *1) (-12 (-4 *2 (-13 (-1014) (-33))) (-5 *1 (-1050 *3 *2)) (-4 *3 (-13 (-1014) (-33))))) (-2972 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))))) (-2227 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33))))) (-2227 (*1 *1 *2 *3) (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33))))) (-2227 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1974 *4))) (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))) (-5 *1 (-1050 *3 *4)))) (-2227 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| |val| *4) (|:| -1974 *5)))) (-4 *4 (-13 (-1014) (-33))) (-4 *5 (-13 (-1014) (-33))) (-5 *2 (-588 (-1050 *4 *5))) (-5 *1 (-1050 *4 *5)))) (-2227 (*1 *2 *3 *4) (-12 (-5 *4 (-588 *5)) (-4 *5 (-13 (-1014) (-33))) (-5 *2 (-588 (-1050 *3 *5))) (-5 *1 (-1050 *3 *5)) (-4 *3 (-13 (-1014) (-33))))) (-2463 (*1 *1 *1) (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33))))) (-2459 (*1 *1 *1 *2) (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33))))) (-2291 (*1 *1 *1 *2) (-12 (-5 *1 (-1050 *3 *2)) (-4 *3 (-13 (-1014) (-33))) (-4 *2 (-13 (-1014) (-33))))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))))) (-1205 (*1 *1 *1) (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33))))) (-4074 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1014) (-33))) (-4 *6 (-13 (-1014) (-33))) (-5 *2 (-108)) (-5 *1 (-1050 *5 *6)))) (-2845 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1014) (-33))) (-5 *2 (-108)) (-5 *1 (-1050 *4 *5)) (-4 *4 (-13 (-1014) (-33)))))) -(-13 (-1014) (-10 -8 (-15 -3298 ($)) (-15 -3494 ((-108) $)) (-15 -3526 (|#1| $)) (-15 -1755 (|#2| $)) (-15 -2972 ((-108) $)) (-15 -2227 ($ |#1| |#2| (-108))) (-15 -2227 ($ |#1| |#2|)) (-15 -2227 ($ (-2 (|:| |val| |#1|) (|:| -1974 |#2|)))) (-15 -2227 ((-588 $) (-588 (-2 (|:| |val| |#1|) (|:| -1974 |#2|))))) (-15 -2227 ((-588 $) |#1| (-588 |#2|))) (-15 -2463 ($ $)) (-15 -2459 ($ $ |#1|)) (-15 -2291 ($ $ |#2|)) (-15 -2596 ($ $ (-108))) (-15 -1205 ($ $)) (-15 -4074 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -2845 ((-108) $ $ (-1 (-108) |#2| |#2|))))) -((-1419 (((-108) $ $) NIL (|has| (-1050 |#1| |#2|) (-1014)))) (-3526 (((-1050 |#1| |#2|) $) 25)) (-2111 (($ $) 76)) (-3026 (((-108) (-1050 |#1| |#2|) $ (-1 (-108) |#2| |#2|)) 85)) (-1487 (($ $ $ (-588 (-1050 |#1| |#2|))) 90) (($ $ $ (-588 (-1050 |#1| |#2|)) (-1 (-108) |#2| |#2|)) 91)) (-2717 (((-108) $ (-708)) NIL)) (-1198 (((-1050 |#1| |#2|) $ (-1050 |#1| |#2|)) 43 (|has| $ (-6 -4239)))) (-2437 (((-1050 |#1| |#2|) $ "value" (-1050 |#1| |#2|)) NIL (|has| $ (-6 -4239)))) (-2684 (($ $ (-588 $)) 41 (|has| $ (-6 -4239)))) (-3367 (($) NIL T CONST)) (-1830 (((-588 (-2 (|:| |val| |#1|) (|:| -1974 |#2|))) $) 80)) (-1700 (($ (-1050 |#1| |#2|) $) 39)) (-1424 (($ (-1050 |#1| |#2|) $) 31)) (-2395 (((-588 (-1050 |#1| |#2|)) $) NIL (|has| $ (-6 -4238)))) (-2674 (((-588 $) $) 51)) (-2064 (((-108) (-1050 |#1| |#2|) $) 82)) (-2402 (((-108) $ $) NIL (|has| (-1050 |#1| |#2|) (-1014)))) (-1480 (((-108) $ (-708)) NIL)) (-4084 (((-588 (-1050 |#1| |#2|)) $) 55 (|has| $ (-6 -4238)))) (-4176 (((-108) (-1050 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-1050 |#1| |#2|) (-1014))))) (-2397 (($ (-1 (-1050 |#1| |#2|) (-1050 |#1| |#2|)) $) 47 (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-1050 |#1| |#2|) (-1050 |#1| |#2|)) $) 46)) (-3309 (((-108) $ (-708)) NIL)) (-2548 (((-588 (-1050 |#1| |#2|)) $) 53)) (-3394 (((-108) $) 42)) (-2311 (((-1068) $) NIL (|has| (-1050 |#1| |#2|) (-1014)))) (-4174 (((-1032) $) NIL (|has| (-1050 |#1| |#2|) (-1014)))) (-2350 (((-3 $ "failed") $) 75)) (-3487 (((-108) (-1 (-108) (-1050 |#1| |#2|)) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 (-1050 |#1| |#2|)))) NIL (-12 (|has| (-1050 |#1| |#2|) (-285 (-1050 |#1| |#2|))) (|has| (-1050 |#1| |#2|) (-1014)))) (($ $ (-270 (-1050 |#1| |#2|))) NIL (-12 (|has| (-1050 |#1| |#2|) (-285 (-1050 |#1| |#2|))) (|has| (-1050 |#1| |#2|) (-1014)))) (($ $ (-1050 |#1| |#2|) (-1050 |#1| |#2|)) NIL (-12 (|has| (-1050 |#1| |#2|) (-285 (-1050 |#1| |#2|))) (|has| (-1050 |#1| |#2|) (-1014)))) (($ $ (-588 (-1050 |#1| |#2|)) (-588 (-1050 |#1| |#2|))) NIL (-12 (|has| (-1050 |#1| |#2|) (-285 (-1050 |#1| |#2|))) (|has| (-1050 |#1| |#2|) (-1014))))) (-2065 (((-108) $ $) 50)) (-3494 (((-108) $) 22)) (-3298 (($) 24)) (-2683 (((-1050 |#1| |#2|) $ "value") NIL)) (-3381 (((-522) $ $) NIL)) (-3395 (((-108) $) 44)) (-4187 (((-708) (-1 (-108) (-1050 |#1| |#2|)) $) NIL (|has| $ (-6 -4238))) (((-708) (-1050 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-1050 |#1| |#2|) (-1014))))) (-2463 (($ $) 49)) (-2227 (($ (-1050 |#1| |#2|)) 9) (($ |#1| |#2| (-588 $)) 12) (($ |#1| |#2| (-588 (-1050 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-588 |#2|)) 17)) (-4157 (((-588 |#2|) $) 81)) (-2217 (((-792) $) 73 (|has| (-1050 |#1| |#2|) (-562 (-792))))) (-1515 (((-588 $) $) 28)) (-3294 (((-108) $ $) NIL (|has| (-1050 |#1| |#2|) (-1014)))) (-1381 (((-108) (-1 (-108) (-1050 |#1| |#2|)) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 64 (|has| (-1050 |#1| |#2|) (-1014)))) (-3591 (((-708) $) 58 (|has| $ (-6 -4238))))) -(((-1051 |#1| |#2|) (-13 (-936 (-1050 |#1| |#2|)) (-10 -8 (-6 -4239) (-6 -4238) (-15 -2350 ((-3 $ "failed") $)) (-15 -2111 ($ $)) (-15 -2227 ($ (-1050 |#1| |#2|))) (-15 -2227 ($ |#1| |#2| (-588 $))) (-15 -2227 ($ |#1| |#2| (-588 (-1050 |#1| |#2|)))) (-15 -2227 ($ |#1| |#2| |#1| (-588 |#2|))) (-15 -4157 ((-588 |#2|) $)) (-15 -1830 ((-588 (-2 (|:| |val| |#1|) (|:| -1974 |#2|))) $)) (-15 -2064 ((-108) (-1050 |#1| |#2|) $)) (-15 -3026 ((-108) (-1050 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -1424 ($ (-1050 |#1| |#2|) $)) (-15 -1700 ($ (-1050 |#1| |#2|) $)) (-15 -1487 ($ $ $ (-588 (-1050 |#1| |#2|)))) (-15 -1487 ($ $ $ (-588 (-1050 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) (-13 (-1014) (-33)) (-13 (-1014) (-33))) (T -1051)) -((-2350 (*1 *1 *1) (|partial| -12 (-5 *1 (-1051 *2 *3)) (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33))))) (-2111 (*1 *1 *1) (-12 (-5 *1 (-1051 *2 *3)) (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33))))) (-2227 (*1 *1 *2) (-12 (-5 *2 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))) (-5 *1 (-1051 *3 *4)))) (-2227 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-588 (-1051 *2 *3))) (-5 *1 (-1051 *2 *3)) (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33))))) (-2227 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-588 (-1050 *2 *3))) (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33))) (-5 *1 (-1051 *2 *3)))) (-2227 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-588 *3)) (-4 *3 (-13 (-1014) (-33))) (-5 *1 (-1051 *2 *3)) (-4 *2 (-13 (-1014) (-33))))) (-4157 (*1 *2 *1) (-12 (-5 *2 (-588 *4)) (-5 *1 (-1051 *3 *4)) (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))))) (-1830 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *4)))) (-5 *1 (-1051 *3 *4)) (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))))) (-2064 (*1 *2 *3 *1) (-12 (-5 *3 (-1050 *4 *5)) (-4 *4 (-13 (-1014) (-33))) (-4 *5 (-13 (-1014) (-33))) (-5 *2 (-108)) (-5 *1 (-1051 *4 *5)))) (-3026 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1050 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1014) (-33))) (-4 *6 (-13 (-1014) (-33))) (-5 *2 (-108)) (-5 *1 (-1051 *5 *6)))) (-1424 (*1 *1 *2 *1) (-12 (-5 *2 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))) (-5 *1 (-1051 *3 *4)))) (-1700 (*1 *1 *2 *1) (-12 (-5 *2 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))) (-5 *1 (-1051 *3 *4)))) (-1487 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-588 (-1050 *3 *4))) (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))) (-5 *1 (-1051 *3 *4)))) (-1487 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-1050 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) (-4 *4 (-13 (-1014) (-33))) (-4 *5 (-13 (-1014) (-33))) (-5 *1 (-1051 *4 *5))))) -(-13 (-936 (-1050 |#1| |#2|)) (-10 -8 (-6 -4239) (-6 -4238) (-15 -2350 ((-3 $ "failed") $)) (-15 -2111 ($ $)) (-15 -2227 ($ (-1050 |#1| |#2|))) (-15 -2227 ($ |#1| |#2| (-588 $))) (-15 -2227 ($ |#1| |#2| (-588 (-1050 |#1| |#2|)))) (-15 -2227 ($ |#1| |#2| |#1| (-588 |#2|))) (-15 -4157 ((-588 |#2|) $)) (-15 -1830 ((-588 (-2 (|:| |val| |#1|) (|:| -1974 |#2|))) $)) (-15 -2064 ((-108) (-1050 |#1| |#2|) $)) (-15 -3026 ((-108) (-1050 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -1424 ($ (-1050 |#1| |#2|) $)) (-15 -1700 ($ (-1050 |#1| |#2|) $)) (-15 -1487 ($ $ $ (-588 (-1050 |#1| |#2|)))) (-15 -1487 ($ $ $ (-588 (-1050 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2682 (($ $) NIL)) (-1945 ((|#2| $) NIL)) (-3455 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-4177 (($ (-628 |#2|)) 45)) (-2208 (((-108) $) NIL)) (-2717 (((-108) $ (-708)) NIL)) (-1348 (($ |#2|) 9)) (-3367 (($) NIL T CONST)) (-2091 (($ $) 58 (|has| |#2| (-283)))) (-2635 (((-217 |#1| |#2|) $ (-522)) 31)) (-3700 (((-3 (-522) "failed") $) NIL (|has| |#2| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-3 |#2| "failed") $) NIL)) (-1478 (((-522) $) NIL (|has| |#2| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#2| (-962 (-382 (-522))))) ((|#2| $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL) (((-628 |#2|) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) 72)) (-1692 (((-708) $) 60 (|has| |#2| (-514)))) (-2186 ((|#2| $ (-522) (-522)) NIL)) (-2395 (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-2859 (((-108) $) NIL)) (-2336 (((-708) $) 62 (|has| |#2| (-514)))) (-2819 (((-588 (-217 |#1| |#2|)) $) 66 (|has| |#2| (-514)))) (-2949 (((-708) $) NIL)) (-2960 (((-708) $) NIL)) (-1480 (((-108) $ (-708)) NIL)) (-3721 ((|#2| $) 56 (|has| |#2| (-6 (-4240 "*"))))) (-2604 (((-522) $) NIL)) (-4042 (((-522) $) NIL)) (-4084 (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1925 (((-522) $) NIL)) (-2595 (((-522) $) NIL)) (-1347 (($ (-588 (-588 |#2|))) 26)) (-2397 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2862 (((-588 (-588 |#2|)) $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL)) (-3073 (((-3 $ "failed") $) 69 (|has| |#2| (-338)))) (-4174 (((-1032) $) NIL)) (-2276 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-514)))) (-3487 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#2| $ (-522) (-522) |#2|) NIL) ((|#2| $ (-522) (-522)) NIL)) (-2731 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-708)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-4147 ((|#2| $) NIL)) (-3215 (($ (-588 |#2|)) 40)) (-3498 (((-108) $) NIL)) (-1828 (((-217 |#1| |#2|) $) NIL)) (-2500 ((|#2| $) 54 (|has| |#2| (-6 (-4240 "*"))))) (-4187 (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2463 (($ $) NIL)) (-3873 (((-498) $) 81 (|has| |#2| (-563 (-498))))) (-2223 (((-217 |#1| |#2|) $ (-522)) 33)) (-2217 (((-792) $) 36) (($ (-522)) NIL) (($ (-382 (-522))) NIL (|has| |#2| (-962 (-382 (-522))))) (($ |#2|) NIL) (((-628 |#2|) $) 42)) (-2742 (((-708)) 17)) (-1381 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-4047 (((-108) $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 11 T CONST)) (-3709 (($) 14 T CONST)) (-2252 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-708)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ |#2|) NIL (|has| |#2| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) 52) (($ $ (-522)) 71 (|has| |#2| (-338)))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-217 |#1| |#2|) $ (-217 |#1| |#2|)) 48) (((-217 |#1| |#2|) (-217 |#1| |#2|) $) 50)) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-1052 |#1| |#2|) (-13 (-1035 |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) (-562 (-628 |#2|)) (-10 -8 (-15 -2682 ($ $)) (-15 -4177 ($ (-628 |#2|))) (-15 -2217 ((-628 |#2|) $)) (IF (|has| |#2| (-6 (-4240 "*"))) (-6 -4227) |%noBranch|) (IF (|has| |#2| (-6 (-4240 "*"))) (IF (|has| |#2| (-6 -4235)) (-6 -4235) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|))) (-708) (-971)) (T -1052)) -((-2217 (*1 *2 *1) (-12 (-5 *2 (-628 *4)) (-5 *1 (-1052 *3 *4)) (-14 *3 (-708)) (-4 *4 (-971)))) (-2682 (*1 *1 *1) (-12 (-5 *1 (-1052 *2 *3)) (-14 *2 (-708)) (-4 *3 (-971)))) (-4177 (*1 *1 *2) (-12 (-5 *2 (-628 *4)) (-4 *4 (-971)) (-5 *1 (-1052 *3 *4)) (-14 *3 (-708))))) -(-13 (-1035 |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) (-562 (-628 |#2|)) (-10 -8 (-15 -2682 ($ $)) (-15 -4177 ($ (-628 |#2|))) (-15 -2217 ((-628 |#2|) $)) (IF (|has| |#2| (-6 (-4240 "*"))) (-6 -4227) |%noBranch|) (IF (|has| |#2| (-6 (-4240 "*"))) (IF (|has| |#2| (-6 -4235)) (-6 -4235) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|))) -((-4140 (($ $) 19)) (-2334 (($ $ (-132)) 10) (($ $ (-129)) 14)) (-3928 (((-108) $ $) 24)) (-2369 (($ $) 17)) (-2683 (((-132) $ (-522) (-132)) NIL) (((-132) $ (-522)) NIL) (($ $ (-1133 (-522))) NIL) (($ $ $) 29)) (-2217 (($ (-132)) 27) (((-792) $) NIL))) -(((-1053 |#1|) (-10 -8 (-15 -2217 ((-792) |#1|)) (-15 -2683 (|#1| |#1| |#1|)) (-15 -2334 (|#1| |#1| (-129))) (-15 -2334 (|#1| |#1| (-132))) (-15 -2217 (|#1| (-132))) (-15 -3928 ((-108) |#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -2369 (|#1| |#1|)) (-15 -2683 (|#1| |#1| (-1133 (-522)))) (-15 -2683 ((-132) |#1| (-522))) (-15 -2683 ((-132) |#1| (-522) (-132)))) (-1054)) (T -1053)) -NIL -(-10 -8 (-15 -2217 ((-792) |#1|)) (-15 -2683 (|#1| |#1| |#1|)) (-15 -2334 (|#1| |#1| (-129))) (-15 -2334 (|#1| |#1| (-132))) (-15 -2217 (|#1| (-132))) (-15 -3928 ((-108) |#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -2369 (|#1| |#1|)) (-15 -2683 (|#1| |#1| (-1133 (-522)))) (-15 -2683 ((-132) |#1| (-522))) (-15 -2683 ((-132) |#1| (-522) (-132)))) -((-1419 (((-108) $ $) 19 (|has| (-132) (-1014)))) (-2828 (($ $) 120)) (-4140 (($ $) 121)) (-2334 (($ $ (-132)) 108) (($ $ (-129)) 107)) (-3883 (((-1171) $ (-522) (-522)) 40 (|has| $ (-6 -4239)))) (-3900 (((-108) $ $) 118)) (-3876 (((-108) $ $ (-522)) 117)) (-3428 (((-588 $) $ (-132)) 110) (((-588 $) $ (-129)) 109)) (-1866 (((-108) (-1 (-108) (-132) (-132)) $) 98) (((-108) $) 92 (|has| (-132) (-784)))) (-2806 (($ (-1 (-108) (-132) (-132)) $) 89 (|has| $ (-6 -4239))) (($ $) 88 (-12 (|has| (-132) (-784)) (|has| $ (-6 -4239))))) (-3296 (($ (-1 (-108) (-132) (-132)) $) 99) (($ $) 93 (|has| (-132) (-784)))) (-2717 (((-108) $ (-708)) 8)) (-2437 (((-132) $ (-522) (-132)) 52 (|has| $ (-6 -4239))) (((-132) $ (-1133 (-522)) (-132)) 58 (|has| $ (-6 -4239)))) (-1696 (($ (-1 (-108) (-132)) $) 75 (|has| $ (-6 -4238)))) (-3367 (($) 7 T CONST)) (-2979 (($ $ (-132)) 104) (($ $ (-129)) 103)) (-2465 (($ $) 90 (|has| $ (-6 -4239)))) (-1939 (($ $) 100)) (-4029 (($ $ (-1133 (-522)) $) 114)) (-2379 (($ $) 78 (-12 (|has| (-132) (-1014)) (|has| $ (-6 -4238))))) (-1424 (($ (-132) $) 77 (-12 (|has| (-132) (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) (-132)) $) 74 (|has| $ (-6 -4238)))) (-2153 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) 76 (-12 (|has| (-132) (-1014)) (|has| $ (-6 -4238)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) 73 (|has| $ (-6 -4238))) (((-132) (-1 (-132) (-132) (-132)) $) 72 (|has| $ (-6 -4238)))) (-2411 (((-132) $ (-522) (-132)) 53 (|has| $ (-6 -4239)))) (-2186 (((-132) $ (-522)) 51)) (-3928 (((-108) $ $) 119)) (-3314 (((-522) (-1 (-108) (-132)) $) 97) (((-522) (-132) $) 96 (|has| (-132) (-1014))) (((-522) (-132) $ (-522)) 95 (|has| (-132) (-1014))) (((-522) $ $ (-522)) 113) (((-522) (-129) $ (-522)) 112)) (-2395 (((-588 (-132)) $) 30 (|has| $ (-6 -4238)))) (-1893 (($ (-708) (-132)) 69)) (-1480 (((-108) $ (-708)) 9)) (-3496 (((-522) $) 43 (|has| (-522) (-784)))) (-1308 (($ $ $) 87 (|has| (-132) (-784)))) (-3164 (($ (-1 (-108) (-132) (-132)) $ $) 101) (($ $ $) 94 (|has| (-132) (-784)))) (-4084 (((-588 (-132)) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) (-132) $) 27 (-12 (|has| (-132) (-1014)) (|has| $ (-6 -4238))))) (-2201 (((-522) $) 44 (|has| (-522) (-784)))) (-2524 (($ $ $) 86 (|has| (-132) (-784)))) (-1445 (((-108) $ $ (-132)) 115)) (-4171 (((-708) $ $ (-132)) 116)) (-2397 (($ (-1 (-132) (-132)) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-132) (-132)) $) 35) (($ (-1 (-132) (-132) (-132)) $ $) 64)) (-1219 (($ $) 122)) (-2369 (($ $) 123)) (-3309 (((-108) $ (-708)) 10)) (-2992 (($ $ (-132)) 106) (($ $ (-129)) 105)) (-2311 (((-1068) $) 22 (|has| (-132) (-1014)))) (-1731 (($ (-132) $ (-522)) 60) (($ $ $ (-522)) 59)) (-2130 (((-588 (-522)) $) 46)) (-2103 (((-108) (-522) $) 47)) (-4174 (((-1032) $) 21 (|has| (-132) (-1014)))) (-2337 (((-132) $) 42 (|has| (-522) (-784)))) (-2187 (((-3 (-132) "failed") (-1 (-108) (-132)) $) 71)) (-1972 (($ $ (-132)) 41 (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) (-132)) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 (-132)))) 26 (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-270 (-132))) 25 (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-132) (-132)) 24 (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-588 (-132)) (-588 (-132))) 23 (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014))))) (-2065 (((-108) $ $) 14)) (-3434 (((-108) (-132) $) 45 (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-1973 (((-588 (-132)) $) 48)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 (((-132) $ (-522) (-132)) 50) (((-132) $ (-522)) 49) (($ $ (-1133 (-522))) 63) (($ $ $) 102)) (-3835 (($ $ (-522)) 62) (($ $ (-1133 (-522))) 61)) (-4187 (((-708) (-1 (-108) (-132)) $) 31 (|has| $ (-6 -4238))) (((-708) (-132) $) 28 (-12 (|has| (-132) (-1014)) (|has| $ (-6 -4238))))) (-3629 (($ $ $ (-522)) 91 (|has| $ (-6 -4239)))) (-2463 (($ $) 13)) (-3873 (((-498) $) 79 (|has| (-132) (-563 (-498))))) (-2227 (($ (-588 (-132))) 70)) (-4170 (($ $ (-132)) 68) (($ (-132) $) 67) (($ $ $) 66) (($ (-588 $)) 65)) (-2217 (($ (-132)) 111) (((-792) $) 18 (|has| (-132) (-562 (-792))))) (-1381 (((-108) (-1 (-108) (-132)) $) 33 (|has| $ (-6 -4238)))) (-1623 (((-108) $ $) 84 (|has| (-132) (-784)))) (-1597 (((-108) $ $) 83 (|has| (-132) (-784)))) (-1562 (((-108) $ $) 20 (|has| (-132) (-1014)))) (-1609 (((-108) $ $) 85 (|has| (-132) (-784)))) (-1587 (((-108) $ $) 82 (|has| (-132) (-784)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-1054) (-1197)) (T -1054)) -((-2369 (*1 *1 *1) (-4 *1 (-1054))) (-1219 (*1 *1 *1) (-4 *1 (-1054))) (-4140 (*1 *1 *1) (-4 *1 (-1054))) (-2828 (*1 *1 *1) (-4 *1 (-1054))) (-3928 (*1 *2 *1 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-108)))) (-3900 (*1 *2 *1 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-108)))) (-3876 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1054)) (-5 *3 (-522)) (-5 *2 (-108)))) (-4171 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1054)) (-5 *3 (-132)) (-5 *2 (-708)))) (-1445 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1054)) (-5 *3 (-132)) (-5 *2 (-108)))) (-4029 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-1133 (-522))))) (-3314 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-522)))) (-3314 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-522)) (-5 *3 (-129)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-132)) (-4 *1 (-1054)))) (-3428 (*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-588 *1)) (-4 *1 (-1054)))) (-3428 (*1 *2 *1 *3) (-12 (-5 *3 (-129)) (-5 *2 (-588 *1)) (-4 *1 (-1054)))) (-2334 (*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-132)))) (-2334 (*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-129)))) (-2992 (*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-132)))) (-2992 (*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-129)))) (-2979 (*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-132)))) (-2979 (*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-129)))) (-2683 (*1 *1 *1 *1) (-4 *1 (-1054)))) -(-13 (-19 (-132)) (-10 -8 (-15 -2369 ($ $)) (-15 -1219 ($ $)) (-15 -4140 ($ $)) (-15 -2828 ($ $)) (-15 -3928 ((-108) $ $)) (-15 -3900 ((-108) $ $)) (-15 -3876 ((-108) $ $ (-522))) (-15 -4171 ((-708) $ $ (-132))) (-15 -1445 ((-108) $ $ (-132))) (-15 -4029 ($ $ (-1133 (-522)) $)) (-15 -3314 ((-522) $ $ (-522))) (-15 -3314 ((-522) (-129) $ (-522))) (-15 -2217 ($ (-132))) (-15 -3428 ((-588 $) $ (-132))) (-15 -3428 ((-588 $) $ (-129))) (-15 -2334 ($ $ (-132))) (-15 -2334 ($ $ (-129))) (-15 -2992 ($ $ (-132))) (-15 -2992 ($ $ (-129))) (-15 -2979 ($ $ (-132))) (-15 -2979 ($ $ (-129))) (-15 -2683 ($ $ $)))) -(((-33) . T) ((-97) -3844 (|has| (-132) (-1014)) (|has| (-132) (-784))) ((-562 (-792)) -3844 (|has| (-132) (-1014)) (|has| (-132) (-784)) (|has| (-132) (-562 (-792)))) ((-139 #0=(-132)) . T) ((-563 (-498)) |has| (-132) (-563 (-498))) ((-262 #1=(-522) #0#) . T) ((-264 #1# #0#) . T) ((-285 #0#) -12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014))) ((-348 #0#) . T) ((-461 #0#) . T) ((-555 #1# #0#) . T) ((-483 #0# #0#) -12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014))) ((-593 #0#) . T) ((-19 #0#) . T) ((-784) |has| (-132) (-784)) ((-1014) -3844 (|has| (-132) (-1014)) (|has| (-132) (-784))) ((-1120) . T)) -((-1358 (((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-588 |#4|) (-588 |#5|) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) (-708)) 94)) (-2357 (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-708)) 53)) (-3245 (((-1171) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-708)) 85)) (-3423 (((-708) (-588 |#4|) (-588 |#5|)) 27)) (-2132 (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-708)) 55) (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-708) (-108)) 57)) (-2327 (((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108) (-108) (-108) (-108)) 76) (((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108)) 77)) (-3873 (((-1068) (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) 80)) (-4013 (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|) 52)) (-2253 (((-708) (-588 |#4|) (-588 |#5|)) 19))) -(((-1055 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2253 ((-708) (-588 |#4|) (-588 |#5|))) (-15 -3423 ((-708) (-588 |#4|) (-588 |#5|))) (-15 -4013 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|)) (-15 -2357 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-708))) (-15 -2357 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|)) (-15 -2132 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-708) (-108))) (-15 -2132 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-708))) (-15 -2132 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|)) (-15 -2327 ((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108))) (-15 -2327 ((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1358 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-588 |#4|) (-588 |#5|) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) (-708))) (-15 -3873 ((-1068) (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|)))) (-15 -3245 ((-1171) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-708)))) (-426) (-730) (-784) (-985 |#1| |#2| |#3|) (-1023 |#1| |#2| |#3| |#4|)) (T -1055)) -((-3245 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-2 (|:| |val| (-588 *8)) (|:| -1974 *9)))) (-5 *4 (-708)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-1023 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-1171)) (-5 *1 (-1055 *5 *6 *7 *8 *9)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-588 *7)) (|:| -1974 *8))) (-4 *7 (-985 *4 *5 *6)) (-4 *8 (-1023 *4 *5 *6 *7)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-1068)) (-5 *1 (-1055 *4 *5 *6 *7 *8)))) (-1358 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-588 *11)) (|:| |todo| (-588 (-2 (|:| |val| *3) (|:| -1974 *11)))))) (-5 *6 (-708)) (-5 *2 (-588 (-2 (|:| |val| (-588 *10)) (|:| -1974 *11)))) (-5 *3 (-588 *10)) (-5 *4 (-588 *11)) (-4 *10 (-985 *7 *8 *9)) (-4 *11 (-1023 *7 *8 *9 *10)) (-4 *7 (-426)) (-4 *8 (-730)) (-4 *9 (-784)) (-5 *1 (-1055 *7 *8 *9 *10 *11)))) (-2327 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-588 *9)) (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-1023 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-1055 *5 *6 *7 *8 *9)))) (-2327 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-588 *9)) (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-1023 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-1055 *5 *6 *7 *8 *9)))) (-2132 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1023 *5 *6 *7 *3)))) (-2132 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-708)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *3 (-985 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) (-5 *1 (-1055 *6 *7 *8 *3 *4)) (-4 *4 (-1023 *6 *7 *8 *3)))) (-2132 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-708)) (-5 *6 (-108)) (-4 *7 (-426)) (-4 *8 (-730)) (-4 *9 (-784)) (-4 *3 (-985 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) (-5 *1 (-1055 *7 *8 *9 *3 *4)) (-4 *4 (-1023 *7 *8 *9 *3)))) (-2357 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1023 *5 *6 *7 *3)))) (-2357 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-708)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *3 (-985 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) (-5 *1 (-1055 *6 *7 *8 *3 *4)) (-4 *4 (-1023 *6 *7 *8 *3)))) (-4013 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1023 *5 *6 *7 *3)))) (-3423 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 *9)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-1023 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-708)) (-5 *1 (-1055 *5 *6 *7 *8 *9)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 *9)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-1023 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-708)) (-5 *1 (-1055 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -2253 ((-708) (-588 |#4|) (-588 |#5|))) (-15 -3423 ((-708) (-588 |#4|) (-588 |#5|))) (-15 -4013 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|)) (-15 -2357 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-708))) (-15 -2357 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|)) (-15 -2132 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-708) (-108))) (-15 -2132 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-708))) (-15 -2132 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|)) (-15 -2327 ((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108))) (-15 -2327 ((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1358 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-588 |#4|) (-588 |#5|) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))))) (-708))) (-15 -3873 ((-1068) (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|)))) (-15 -3245 ((-1171) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1974 |#5|))) (-708)))) -((-1419 (((-108) $ $) NIL)) (-3829 (((-588 (-2 (|:| -1720 $) (|:| -1566 (-588 |#4|)))) (-588 |#4|)) NIL)) (-2510 (((-588 $) (-588 |#4|)) 110) (((-588 $) (-588 |#4|) (-108)) 111) (((-588 $) (-588 |#4|) (-108) (-108)) 109) (((-588 $) (-588 |#4|) (-108) (-108) (-108) (-108)) 112)) (-3533 (((-588 |#3|) $) NIL)) (-2161 (((-108) $) NIL)) (-2702 (((-108) $) NIL (|has| |#1| (-514)))) (-1900 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2163 ((|#4| |#4| $) NIL)) (-2961 (((-588 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| $) 84)) (-3296 (((-2 (|:| |under| $) (|:| -3592 $) (|:| |upper| $)) $ |#3|) NIL)) (-2717 (((-108) $ (-708)) NIL)) (-1696 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238))) (((-3 |#4| "failed") $ |#3|) 62)) (-3367 (($) NIL T CONST)) (-1298 (((-108) $) 26 (|has| |#1| (-514)))) (-1657 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3598 (((-108) $ $) NIL (|has| |#1| (-514)))) (-2818 (((-108) $) NIL (|has| |#1| (-514)))) (-3090 (((-588 |#4|) (-588 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3461 (((-588 |#4|) (-588 |#4|) $) NIL (|has| |#1| (-514)))) (-3668 (((-588 |#4|) (-588 |#4|) $) NIL (|has| |#1| (-514)))) (-3700 (((-3 $ "failed") (-588 |#4|)) NIL)) (-1478 (($ (-588 |#4|)) NIL)) (-2352 (((-3 $ "failed") $) 39)) (-2625 ((|#4| |#4| $) 65)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-1424 (($ |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-4002 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-514)))) (-1426 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2918 ((|#4| |#4| $) NIL)) (-2153 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4238))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1199 (((-2 (|:| -1720 (-588 |#4|)) (|:| -1566 (-588 |#4|))) $) NIL)) (-2396 (((-108) |#4| $) NIL)) (-3039 (((-108) |#4| $) NIL)) (-2278 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1721 (((-2 (|:| |val| (-588 |#4|)) (|:| |towers| (-588 $))) (-588 |#4|) (-108) (-108)) 124)) (-2395 (((-588 |#4|) $) 16 (|has| $ (-6 -4238)))) (-1384 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1933 ((|#3| $) 33)) (-1480 (((-108) $ (-708)) NIL)) (-4084 (((-588 |#4|) $) 17 (|has| $ (-6 -4238)))) (-4176 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-2397 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#4| |#4|) $) 21)) (-2714 (((-588 |#3|) $) NIL)) (-3826 (((-108) |#3| $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL)) (-1418 (((-3 |#4| (-588 $)) |#4| |#4| $) NIL)) (-1998 (((-588 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| |#4| $) 103)) (-1442 (((-3 |#4| "failed") $) 37)) (-1468 (((-588 $) |#4| $) 88)) (-1892 (((-3 (-108) (-588 $)) |#4| $) NIL)) (-1862 (((-588 (-2 (|:| |val| (-108)) (|:| -1974 $))) |#4| $) 98) (((-108) |#4| $) 53)) (-2251 (((-588 $) |#4| $) 107) (((-588 $) (-588 |#4|) $) NIL) (((-588 $) (-588 |#4|) (-588 $)) 108) (((-588 $) |#4| (-588 $)) NIL)) (-3862 (((-588 $) (-588 |#4|) (-108) (-108) (-108)) 119)) (-2953 (($ |#4| $) 75) (($ (-588 |#4|) $) 76) (((-588 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 74)) (-4138 (((-588 |#4|) $) NIL)) (-3864 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2556 ((|#4| |#4| $) NIL)) (-1517 (((-108) $ $) NIL)) (-2507 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-514)))) (-3060 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3896 ((|#4| |#4| $) NIL)) (-4174 (((-1032) $) NIL)) (-2337 (((-3 |#4| "failed") $) 35)) (-2187 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-4078 (((-3 $ "failed") $ |#4|) 48)) (-3934 (($ $ |#4|) NIL) (((-588 $) |#4| $) 90) (((-588 $) |#4| (-588 $)) NIL) (((-588 $) (-588 |#4|) $) NIL) (((-588 $) (-588 |#4|) (-588 $)) 86)) (-3487 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 |#4|) (-588 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) 15)) (-3298 (($) 13)) (-2487 (((-708) $) NIL)) (-4187 (((-708) |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) (((-708) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2463 (($ $) 12)) (-3873 (((-498) $) NIL (|has| |#4| (-563 (-498))))) (-2227 (($ (-588 |#4|)) 20)) (-2271 (($ $ |#3|) 42)) (-2154 (($ $ |#3|) 44)) (-1524 (($ $) NIL)) (-2773 (($ $ |#3|) NIL)) (-2217 (((-792) $) 31) (((-588 |#4|) $) 40)) (-3111 (((-708) $) NIL (|has| |#3| (-343)))) (-3538 (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2102 (((-108) $ (-1 (-108) |#4| (-588 |#4|))) NIL)) (-3386 (((-588 $) |#4| $) 54) (((-588 $) |#4| (-588 $)) NIL) (((-588 $) (-588 |#4|) $) NIL) (((-588 $) (-588 |#4|) (-588 $)) NIL)) (-1381 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-1982 (((-588 |#3|) $) NIL)) (-1336 (((-108) |#4| $) NIL)) (-1711 (((-108) |#3| $) 61)) (-1562 (((-108) $ $) NIL)) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-1056 |#1| |#2| |#3| |#4|) (-13 (-1023 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2953 ((-588 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -2510 ((-588 $) (-588 |#4|) (-108) (-108))) (-15 -2510 ((-588 $) (-588 |#4|) (-108) (-108) (-108) (-108))) (-15 -3862 ((-588 $) (-588 |#4|) (-108) (-108) (-108))) (-15 -1721 ((-2 (|:| |val| (-588 |#4|)) (|:| |towers| (-588 $))) (-588 |#4|) (-108) (-108))))) (-426) (-730) (-784) (-985 |#1| |#2| |#3|)) (T -1056)) -((-2953 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 (-1056 *5 *6 *7 *3))) (-5 *1 (-1056 *5 *6 *7 *3)) (-4 *3 (-985 *5 *6 *7)))) (-2510 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 (-1056 *5 *6 *7 *8))) (-5 *1 (-1056 *5 *6 *7 *8)))) (-2510 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 (-1056 *5 *6 *7 *8))) (-5 *1 (-1056 *5 *6 *7 *8)))) (-3862 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 (-1056 *5 *6 *7 *8))) (-5 *1 (-1056 *5 *6 *7 *8)))) (-1721 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-588 *8)) (|:| |towers| (-588 (-1056 *5 *6 *7 *8))))) (-5 *1 (-1056 *5 *6 *7 *8)) (-5 *3 (-588 *8))))) -(-13 (-1023 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2953 ((-588 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -2510 ((-588 $) (-588 |#4|) (-108) (-108))) (-15 -2510 ((-588 $) (-588 |#4|) (-108) (-108) (-108) (-108))) (-15 -3862 ((-588 $) (-588 |#4|) (-108) (-108) (-108))) (-15 -1721 ((-2 (|:| |val| (-588 |#4|)) (|:| |towers| (-588 $))) (-588 |#4|) (-108) (-108))))) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1322 ((|#1| $) 34)) (-4058 (($ (-588 |#1|)) 39)) (-2717 (((-108) $ (-708)) NIL)) (-3367 (($) NIL T CONST)) (-2622 ((|#1| |#1| $) 36)) (-2956 ((|#1| $) 32)) (-2395 (((-588 |#1|) $) 18 (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) NIL)) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2397 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 22)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1431 ((|#1| $) 35)) (-3365 (($ |#1| $) 37)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3295 ((|#1| $) 33)) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) 31)) (-3298 (($) 38)) (-3735 (((-708) $) 29)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) 27)) (-2217 (((-792) $) 14 (|has| |#1| (-562 (-792))))) (-2501 (($ (-588 |#1|)) NIL)) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 17 (|has| |#1| (-1014)))) (-3591 (((-708) $) 30 (|has| $ (-6 -4238))))) -(((-1057 |#1|) (-13 (-1033 |#1|) (-10 -8 (-15 -4058 ($ (-588 |#1|))))) (-1120)) (T -1057)) -((-4058 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-1057 *3))))) -(-13 (-1033 |#1|) (-10 -8 (-15 -4058 ($ (-588 |#1|))))) -((-2437 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1133 (-522)) |#2|) 44) ((|#2| $ (-522) |#2|) 41)) (-3614 (((-108) $) 12)) (-2397 (($ (-1 |#2| |#2|) $) 39)) (-2337 ((|#2| $) NIL) (($ $ (-708)) 17)) (-1972 (($ $ |#2|) 40)) (-4196 (((-108) $) 11)) (-2683 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1133 (-522))) 31) ((|#2| $ (-522)) 23) ((|#2| $ (-522) |#2|) NIL)) (-2335 (($ $ $) 47) (($ $ |#2|) NIL)) (-4170 (($ $ $) 33) (($ |#2| $) NIL) (($ (-588 $)) 36) (($ $ |#2|) NIL))) -(((-1058 |#1| |#2|) (-10 -8 (-15 -3614 ((-108) |#1|)) (-15 -4196 ((-108) |#1|)) (-15 -2437 (|#2| |#1| (-522) |#2|)) (-15 -2683 (|#2| |#1| (-522) |#2|)) (-15 -2683 (|#2| |#1| (-522))) (-15 -1972 (|#1| |#1| |#2|)) (-15 -4170 (|#1| |#1| |#2|)) (-15 -4170 (|#1| (-588 |#1|))) (-15 -2683 (|#1| |#1| (-1133 (-522)))) (-15 -2437 (|#2| |#1| (-1133 (-522)) |#2|)) (-15 -2437 (|#2| |#1| "last" |#2|)) (-15 -2437 (|#1| |#1| "rest" |#1|)) (-15 -2437 (|#2| |#1| "first" |#2|)) (-15 -2335 (|#1| |#1| |#2|)) (-15 -2335 (|#1| |#1| |#1|)) (-15 -2683 (|#2| |#1| "last")) (-15 -2683 (|#1| |#1| "rest")) (-15 -2337 (|#1| |#1| (-708))) (-15 -2683 (|#2| |#1| "first")) (-15 -2337 (|#2| |#1|)) (-15 -4170 (|#1| |#2| |#1|)) (-15 -4170 (|#1| |#1| |#1|)) (-15 -2437 (|#2| |#1| "value" |#2|)) (-15 -2683 (|#2| |#1| "value")) (-15 -2397 (|#1| (-1 |#2| |#2|) |#1|))) (-1059 |#2|) (-1120)) (T -1058)) -NIL -(-10 -8 (-15 -3614 ((-108) |#1|)) (-15 -4196 ((-108) |#1|)) (-15 -2437 (|#2| |#1| (-522) |#2|)) (-15 -2683 (|#2| |#1| (-522) |#2|)) (-15 -2683 (|#2| |#1| (-522))) (-15 -1972 (|#1| |#1| |#2|)) (-15 -4170 (|#1| |#1| |#2|)) (-15 -4170 (|#1| (-588 |#1|))) (-15 -2683 (|#1| |#1| (-1133 (-522)))) (-15 -2437 (|#2| |#1| (-1133 (-522)) |#2|)) (-15 -2437 (|#2| |#1| "last" |#2|)) (-15 -2437 (|#1| |#1| "rest" |#1|)) (-15 -2437 (|#2| |#1| "first" |#2|)) (-15 -2335 (|#1| |#1| |#2|)) (-15 -2335 (|#1| |#1| |#1|)) (-15 -2683 (|#2| |#1| "last")) (-15 -2683 (|#1| |#1| "rest")) (-15 -2337 (|#1| |#1| (-708))) (-15 -2683 (|#2| |#1| "first")) (-15 -2337 (|#2| |#1|)) (-15 -4170 (|#1| |#2| |#1|)) (-15 -4170 (|#1| |#1| |#1|)) (-15 -2437 (|#2| |#1| "value" |#2|)) (-15 -2683 (|#2| |#1| "value")) (-15 -2397 (|#1| (-1 |#2| |#2|) |#1|))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3526 ((|#1| $) 48)) (-2126 ((|#1| $) 65)) (-3961 (($ $) 67)) (-3883 (((-1171) $ (-522) (-522)) 97 (|has| $ (-6 -4239)))) (-2211 (($ $ (-522)) 52 (|has| $ (-6 -4239)))) (-2717 (((-108) $ (-708)) 8)) (-1198 ((|#1| $ |#1|) 39 (|has| $ (-6 -4239)))) (-2398 (($ $ $) 56 (|has| $ (-6 -4239)))) (-2631 ((|#1| $ |#1|) 54 (|has| $ (-6 -4239)))) (-3393 ((|#1| $ |#1|) 58 (|has| $ (-6 -4239)))) (-2437 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4239))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4239))) (($ $ "rest" $) 55 (|has| $ (-6 -4239))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) 117 (|has| $ (-6 -4239))) ((|#1| $ (-522) |#1|) 86 (|has| $ (-6 -4239)))) (-2684 (($ $ (-588 $)) 41 (|has| $ (-6 -4239)))) (-1696 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4238)))) (-2116 ((|#1| $) 66)) (-3367 (($) 7 T CONST)) (-2352 (($ $) 73) (($ $ (-708)) 71)) (-2379 (($ $) 99 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1424 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4238))) (($ |#1| $) 100 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2411 ((|#1| $ (-522) |#1|) 85 (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-522)) 87)) (-3614 (((-108) $) 83)) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-2674 (((-588 $) $) 50)) (-2402 (((-108) $ $) 42 (|has| |#1| (-1014)))) (-1893 (($ (-708) |#1|) 108)) (-1480 (((-108) $ (-708)) 9)) (-3496 (((-522) $) 95 (|has| (-522) (-784)))) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2201 (((-522) $) 94 (|has| (-522) (-784)))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3309 (((-108) $ (-708)) 10)) (-2548 (((-588 |#1|) $) 45)) (-3394 (((-108) $) 49)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1442 ((|#1| $) 70) (($ $ (-708)) 68)) (-1731 (($ $ $ (-522)) 116) (($ |#1| $ (-522)) 115)) (-2130 (((-588 (-522)) $) 92)) (-2103 (((-108) (-522) $) 91)) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2337 ((|#1| $) 76) (($ $ (-708)) 74)) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-1972 (($ $ |#1|) 96 (|has| $ (-6 -4239)))) (-4196 (((-108) $) 84)) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3434 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) 90)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1133 (-522))) 112) ((|#1| $ (-522)) 89) ((|#1| $ (-522) |#1|) 88)) (-3381 (((-522) $ $) 44)) (-3835 (($ $ (-1133 (-522))) 114) (($ $ (-522)) 113)) (-3395 (((-108) $) 46)) (-2885 (($ $) 62)) (-1668 (($ $) 59 (|has| $ (-6 -4239)))) (-1321 (((-708) $) 63)) (-1502 (($ $) 64)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-3873 (((-498) $) 98 (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) 107)) (-2335 (($ $ $) 61 (|has| $ (-6 -4239))) (($ $ |#1|) 60 (|has| $ (-6 -4239)))) (-4170 (($ $ $) 78) (($ |#1| $) 77) (($ (-588 $)) 110) (($ $ |#1|) 109)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1515 (((-588 $) $) 51)) (-3294 (((-108) $ $) 43 (|has| |#1| (-1014)))) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-1059 |#1|) (-1197) (-1120)) (T -1059)) -((-4196 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-1120)) (-5 *2 (-108)))) (-3614 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-1120)) (-5 *2 (-108))))) -(-13 (-1154 |t#1|) (-593 |t#1|) (-10 -8 (-15 -4196 ((-108) $)) (-15 -3614 ((-108) $)))) -(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-262 #0=(-522) |#1|) . T) ((-264 #0# |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-555 #0# |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-593 |#1|) . T) ((-936 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1120) . T) ((-1154 |#1|) . T)) -((-1419 (((-108) $ $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-1883 (($) NIL) (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-3883 (((-1171) $ |#1| |#1|) NIL (|has| $ (-6 -4239)))) (-2717 (((-108) $ (-708)) NIL)) (-2437 ((|#2| $ |#1| |#2|) NIL)) (-1213 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-4011 (((-3 |#2| "failed") |#1| $) NIL)) (-3367 (($) NIL T CONST)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))))) (-1700 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-3 |#2| "failed") |#1| $) NIL)) (-1424 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2153 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2411 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#2| $ |#1|) NIL)) (-2395 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) NIL)) (-3496 ((|#1| $) NIL (|has| |#1| (-784)))) (-4084 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2201 ((|#1| $) NIL (|has| |#1| (-784)))) (-2397 (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4239))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2562 (((-588 |#1|) $) NIL)) (-2241 (((-108) |#1| $) NIL)) (-1431 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-3365 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-2130 (((-588 |#1|) $) NIL)) (-2103 (((-108) |#1| $) NIL)) (-4174 (((-1032) $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2337 ((|#2| $) NIL (|has| |#1| (-784)))) (-2187 (((-3 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) "failed") (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL)) (-1972 (($ $ |#2|) NIL (|has| $ (-6 -4239)))) (-3295 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-3487 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1973 (((-588 |#2|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3546 (($) NIL) (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-4187 (((-708) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014)))) (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-563 (-498))))) (-2227 (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-2217 (((-792) $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-562 (-792))) (|has| |#2| (-562 (-792)))))) (-2501 (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-1381 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-1060 |#1| |#2| |#3|) (-1097 |#1| |#2|) (-1014) (-1014) |#2|) (T -1060)) -NIL -(-1097 |#1| |#2|) -((-1419 (((-108) $ $) 7)) (-4208 (((-3 $ "failed") $) 13)) (-2311 (((-1068) $) 9)) (-3937 (($) 14 T CONST)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11)) (-1562 (((-108) $ $) 6))) -(((-1061) (-1197)) (T -1061)) -((-3937 (*1 *1) (-4 *1 (-1061))) (-4208 (*1 *1 *1) (|partial| -4 *1 (-1061)))) -(-13 (-1014) (-10 -8 (-15 -3937 ($) -2855) (-15 -4208 ((-3 $ "failed") $)))) -(((-97) . T) ((-562 (-792)) . T) ((-1014) . T)) -((-2202 (((-1066 |#1|) (-1066 |#1|)) 17)) (-1484 (((-1066 |#1|) (-1066 |#1|)) 13)) (-3586 (((-1066 |#1|) (-1066 |#1|) (-522) (-522)) 20)) (-2404 (((-1066 |#1|) (-1066 |#1|)) 15))) -(((-1062 |#1|) (-10 -7 (-15 -1484 ((-1066 |#1|) (-1066 |#1|))) (-15 -2404 ((-1066 |#1|) (-1066 |#1|))) (-15 -2202 ((-1066 |#1|) (-1066 |#1|))) (-15 -3586 ((-1066 |#1|) (-1066 |#1|) (-522) (-522)))) (-13 (-514) (-135))) (T -1062)) -((-3586 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1066 *4)) (-5 *3 (-522)) (-4 *4 (-13 (-514) (-135))) (-5 *1 (-1062 *4)))) (-2202 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-13 (-514) (-135))) (-5 *1 (-1062 *3)))) (-2404 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-13 (-514) (-135))) (-5 *1 (-1062 *3)))) (-1484 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-13 (-514) (-135))) (-5 *1 (-1062 *3))))) -(-10 -7 (-15 -1484 ((-1066 |#1|) (-1066 |#1|))) (-15 -2404 ((-1066 |#1|) (-1066 |#1|))) (-15 -2202 ((-1066 |#1|) (-1066 |#1|))) (-15 -3586 ((-1066 |#1|) (-1066 |#1|) (-522) (-522)))) -((-4170 (((-1066 |#1|) (-1066 (-1066 |#1|))) 15))) -(((-1063 |#1|) (-10 -7 (-15 -4170 ((-1066 |#1|) (-1066 (-1066 |#1|))))) (-1120)) (T -1063)) -((-4170 (*1 *2 *3) (-12 (-5 *3 (-1066 (-1066 *4))) (-5 *2 (-1066 *4)) (-5 *1 (-1063 *4)) (-4 *4 (-1120))))) -(-10 -7 (-15 -4170 ((-1066 |#1|) (-1066 (-1066 |#1|))))) -((-3639 (((-1066 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1066 |#1|)) 25)) (-2153 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1066 |#1|)) 26)) (-3810 (((-1066 |#2|) (-1 |#2| |#1|) (-1066 |#1|)) 16))) -(((-1064 |#1| |#2|) (-10 -7 (-15 -3810 ((-1066 |#2|) (-1 |#2| |#1|) (-1066 |#1|))) (-15 -3639 ((-1066 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1066 |#1|))) (-15 -2153 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1066 |#1|)))) (-1120) (-1120)) (T -1064)) -((-2153 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1066 *5)) (-4 *5 (-1120)) (-4 *2 (-1120)) (-5 *1 (-1064 *5 *2)))) (-3639 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1066 *6)) (-4 *6 (-1120)) (-4 *3 (-1120)) (-5 *2 (-1066 *3)) (-5 *1 (-1064 *6 *3)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1066 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1066 *6)) (-5 *1 (-1064 *5 *6))))) -(-10 -7 (-15 -3810 ((-1066 |#2|) (-1 |#2| |#1|) (-1066 |#1|))) (-15 -3639 ((-1066 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1066 |#1|))) (-15 -2153 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1066 |#1|)))) -((-3810 (((-1066 |#3|) (-1 |#3| |#1| |#2|) (-1066 |#1|) (-1066 |#2|)) 21))) -(((-1065 |#1| |#2| |#3|) (-10 -7 (-15 -3810 ((-1066 |#3|) (-1 |#3| |#1| |#2|) (-1066 |#1|) (-1066 |#2|)))) (-1120) (-1120) (-1120)) (T -1065)) -((-3810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1066 *6)) (-5 *5 (-1066 *7)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-1066 *8)) (-5 *1 (-1065 *6 *7 *8))))) -(-10 -7 (-15 -3810 ((-1066 |#3|) (-1 |#3| |#1| |#2|) (-1066 |#1|) (-1066 |#2|)))) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3526 ((|#1| $) NIL)) (-2126 ((|#1| $) NIL)) (-3961 (($ $) 49)) (-3883 (((-1171) $ (-522) (-522)) 74 (|has| $ (-6 -4239)))) (-2211 (($ $ (-522)) 108 (|has| $ (-6 -4239)))) (-2717 (((-108) $ (-708)) NIL)) (-2627 (((-792) $) 38 (|has| |#1| (-1014)))) (-4016 (((-108)) 39 (|has| |#1| (-1014)))) (-1198 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-2398 (($ $ $) 96 (|has| $ (-6 -4239))) (($ $ (-522) $) 118)) (-2631 ((|#1| $ |#1|) 105 (|has| $ (-6 -4239)))) (-3393 ((|#1| $ |#1|) 100 (|has| $ (-6 -4239)))) (-2437 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ "first" |#1|) 102 (|has| $ (-6 -4239))) (($ $ "rest" $) 104 (|has| $ (-6 -4239))) ((|#1| $ "last" |#1|) 107 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) 87 (|has| $ (-6 -4239))) ((|#1| $ (-522) |#1|) 53 (|has| $ (-6 -4239)))) (-2684 (($ $ (-588 $)) NIL (|has| $ (-6 -4239)))) (-1696 (($ (-1 (-108) |#1|) $) 56)) (-2116 ((|#1| $) NIL)) (-3367 (($) NIL T CONST)) (-3441 (($ $) 14)) (-2352 (($ $) 29) (($ $ (-708)) 86)) (-2573 (((-108) (-588 |#1|) $) 113 (|has| |#1| (-1014)))) (-1901 (($ (-588 |#1|)) 110)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1424 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) 55)) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2411 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-522)) NIL)) (-3614 (((-108) $) NIL)) (-2395 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-1637 (((-1171) (-522) $) 117 (|has| |#1| (-1014)))) (-3847 (((-708) $) 115)) (-2674 (((-588 $) $) NIL)) (-2402 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1893 (($ (-708) |#1|) NIL)) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) NIL (|has| (-522) (-784)))) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2201 (((-522) $) NIL (|has| (-522) (-784)))) (-2397 (($ (-1 |#1| |#1|) $) 71 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3309 (((-108) $ (-708)) NIL)) (-2548 (((-588 |#1|) $) NIL)) (-3394 (((-108) $) NIL)) (-3136 (($ $) 88)) (-3789 (((-108) $) 13)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1442 ((|#1| $) NIL) (($ $ (-708)) NIL)) (-1731 (($ $ $ (-522)) NIL) (($ |#1| $ (-522)) NIL)) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) 72)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-1626 (($ (-1 |#1|)) 120) (($ (-1 |#1| |#1|) |#1|) 121)) (-1578 ((|#1| $) 10)) (-2337 ((|#1| $) 28) (($ $ (-708)) 47)) (-1559 (((-2 (|:| |cycle?| (-108)) (|:| -3476 (-708)) (|:| |period| (-708))) (-708) $) 25)) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1674 (($ (-1 (-108) |#1|) $) 122)) (-1684 (($ (-1 (-108) |#1|) $) 123)) (-1972 (($ $ |#1|) 66 (|has| $ (-6 -4239)))) (-3934 (($ $ (-522)) 32)) (-4196 (((-108) $) 70)) (-3963 (((-108) $) 12)) (-3726 (((-108) $) 114)) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 20)) (-3434 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) NIL)) (-3494 (((-108) $) 15)) (-3298 (($) 41)) (-2683 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1133 (-522))) NIL) ((|#1| $ (-522)) 52) ((|#1| $ (-522) |#1|) NIL)) (-3381 (((-522) $ $) 46)) (-3835 (($ $ (-1133 (-522))) NIL) (($ $ (-522)) NIL)) (-1995 (($ (-1 $)) 45)) (-3395 (((-108) $) 67)) (-2885 (($ $) 68)) (-1668 (($ $) 97 (|has| $ (-6 -4239)))) (-1321 (((-708) $) NIL)) (-1502 (($ $) NIL)) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) 42)) (-3873 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) 51)) (-3019 (($ |#1| $) 95)) (-2335 (($ $ $) 98 (|has| $ (-6 -4239))) (($ $ |#1|) 99 (|has| $ (-6 -4239)))) (-4170 (($ $ $) 76) (($ |#1| $) 43) (($ (-588 $)) 81) (($ $ |#1|) 75)) (-1944 (($ $) 48)) (-2217 (($ (-588 |#1|)) 109) (((-792) $) 40 (|has| |#1| (-562 (-792))))) (-1515 (((-588 $) $) NIL)) (-3294 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 112 (|has| |#1| (-1014)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-1066 |#1|) (-13 (-615 |#1|) (-10 -8 (-6 -4239) (-15 -2217 ($ (-588 |#1|))) (-15 -1901 ($ (-588 |#1|))) (IF (|has| |#1| (-1014)) (-15 -2573 ((-108) (-588 |#1|) $)) |%noBranch|) (-15 -1559 ((-2 (|:| |cycle?| (-108)) (|:| -3476 (-708)) (|:| |period| (-708))) (-708) $)) (-15 -1995 ($ (-1 $))) (-15 -3019 ($ |#1| $)) (IF (|has| |#1| (-1014)) (PROGN (-15 -1637 ((-1171) (-522) $)) (-15 -2627 ((-792) $)) (-15 -4016 ((-108)))) |%noBranch|) (-15 -2398 ($ $ (-522) $)) (-15 -1626 ($ (-1 |#1|))) (-15 -1626 ($ (-1 |#1| |#1|) |#1|)) (-15 -1674 ($ (-1 (-108) |#1|) $)) (-15 -1684 ($ (-1 (-108) |#1|) $)))) (-1120)) (T -1066)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3)))) (-1901 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3)))) (-2573 (*1 *2 *3 *1) (-12 (-5 *3 (-588 *4)) (-4 *4 (-1014)) (-4 *4 (-1120)) (-5 *2 (-108)) (-5 *1 (-1066 *4)))) (-1559 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-108)) (|:| -3476 (-708)) (|:| |period| (-708)))) (-5 *1 (-1066 *4)) (-4 *4 (-1120)) (-5 *3 (-708)))) (-1995 (*1 *1 *2) (-12 (-5 *2 (-1 (-1066 *3))) (-5 *1 (-1066 *3)) (-4 *3 (-1120)))) (-3019 (*1 *1 *2 *1) (-12 (-5 *1 (-1066 *2)) (-4 *2 (-1120)))) (-1637 (*1 *2 *3 *1) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-1066 *4)) (-4 *4 (-1014)) (-4 *4 (-1120)))) (-2627 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1066 *3)) (-4 *3 (-1014)) (-4 *3 (-1120)))) (-4016 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1066 *3)) (-4 *3 (-1014)) (-4 *3 (-1120)))) (-2398 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1066 *3)) (-4 *3 (-1120)))) (-1626 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3)))) (-1626 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3)))) (-1674 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3)))) (-1684 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3))))) -(-13 (-615 |#1|) (-10 -8 (-6 -4239) (-15 -2217 ($ (-588 |#1|))) (-15 -1901 ($ (-588 |#1|))) (IF (|has| |#1| (-1014)) (-15 -2573 ((-108) (-588 |#1|) $)) |%noBranch|) (-15 -1559 ((-2 (|:| |cycle?| (-108)) (|:| -3476 (-708)) (|:| |period| (-708))) (-708) $)) (-15 -1995 ($ (-1 $))) (-15 -3019 ($ |#1| $)) (IF (|has| |#1| (-1014)) (PROGN (-15 -1637 ((-1171) (-522) $)) (-15 -2627 ((-792) $)) (-15 -4016 ((-108)))) |%noBranch|) (-15 -2398 ($ $ (-522) $)) (-15 -1626 ($ (-1 |#1|))) (-15 -1626 ($ (-1 |#1| |#1|) |#1|)) (-15 -1674 ($ (-1 (-108) |#1|) $)) (-15 -1684 ($ (-1 (-108) |#1|) $)))) -((-1419 (((-108) $ $) 19)) (-2828 (($ $) 120)) (-4140 (($ $) 121)) (-2334 (($ $ (-132)) 108) (($ $ (-129)) 107)) (-3883 (((-1171) $ (-522) (-522)) 40 (|has| $ (-6 -4239)))) (-3900 (((-108) $ $) 118)) (-3876 (((-108) $ $ (-522)) 117)) (-1513 (($ (-522)) 127)) (-3428 (((-588 $) $ (-132)) 110) (((-588 $) $ (-129)) 109)) (-1866 (((-108) (-1 (-108) (-132) (-132)) $) 98) (((-108) $) 92 (|has| (-132) (-784)))) (-2806 (($ (-1 (-108) (-132) (-132)) $) 89 (|has| $ (-6 -4239))) (($ $) 88 (-12 (|has| (-132) (-784)) (|has| $ (-6 -4239))))) (-3296 (($ (-1 (-108) (-132) (-132)) $) 99) (($ $) 93 (|has| (-132) (-784)))) (-2717 (((-108) $ (-708)) 8)) (-2437 (((-132) $ (-522) (-132)) 52 (|has| $ (-6 -4239))) (((-132) $ (-1133 (-522)) (-132)) 58 (|has| $ (-6 -4239)))) (-1696 (($ (-1 (-108) (-132)) $) 75 (|has| $ (-6 -4238)))) (-3367 (($) 7 T CONST)) (-2979 (($ $ (-132)) 104) (($ $ (-129)) 103)) (-2465 (($ $) 90 (|has| $ (-6 -4239)))) (-1939 (($ $) 100)) (-4029 (($ $ (-1133 (-522)) $) 114)) (-2379 (($ $) 78 (-12 (|has| (-132) (-1014)) (|has| $ (-6 -4238))))) (-1424 (($ (-132) $) 77 (-12 (|has| (-132) (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) (-132)) $) 74 (|has| $ (-6 -4238)))) (-2153 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) 76 (-12 (|has| (-132) (-1014)) (|has| $ (-6 -4238)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) 73 (|has| $ (-6 -4238))) (((-132) (-1 (-132) (-132) (-132)) $) 72 (|has| $ (-6 -4238)))) (-2411 (((-132) $ (-522) (-132)) 53 (|has| $ (-6 -4239)))) (-2186 (((-132) $ (-522)) 51)) (-3928 (((-108) $ $) 119)) (-3314 (((-522) (-1 (-108) (-132)) $) 97) (((-522) (-132) $) 96 (|has| (-132) (-1014))) (((-522) (-132) $ (-522)) 95 (|has| (-132) (-1014))) (((-522) $ $ (-522)) 113) (((-522) (-129) $ (-522)) 112)) (-2395 (((-588 (-132)) $) 30 (|has| $ (-6 -4238)))) (-1893 (($ (-708) (-132)) 69)) (-1480 (((-108) $ (-708)) 9)) (-3496 (((-522) $) 43 (|has| (-522) (-784)))) (-1308 (($ $ $) 87 (|has| (-132) (-784)))) (-3164 (($ (-1 (-108) (-132) (-132)) $ $) 101) (($ $ $) 94 (|has| (-132) (-784)))) (-4084 (((-588 (-132)) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) (-132) $) 27 (-12 (|has| (-132) (-1014)) (|has| $ (-6 -4238))))) (-2201 (((-522) $) 44 (|has| (-522) (-784)))) (-2524 (($ $ $) 86 (|has| (-132) (-784)))) (-1445 (((-108) $ $ (-132)) 115)) (-4171 (((-708) $ $ (-132)) 116)) (-2397 (($ (-1 (-132) (-132)) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-132) (-132)) $) 35) (($ (-1 (-132) (-132) (-132)) $ $) 64)) (-1219 (($ $) 122)) (-2369 (($ $) 123)) (-3309 (((-108) $ (-708)) 10)) (-2992 (($ $ (-132)) 106) (($ $ (-129)) 105)) (-2311 (((-1068) $) 22)) (-1731 (($ (-132) $ (-522)) 60) (($ $ $ (-522)) 59)) (-2130 (((-588 (-522)) $) 46)) (-2103 (((-108) (-522) $) 47)) (-4174 (((-1032) $) 21)) (-2337 (((-132) $) 42 (|has| (-522) (-784)))) (-2187 (((-3 (-132) "failed") (-1 (-108) (-132)) $) 71)) (-1972 (($ $ (-132)) 41 (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) (-132)) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 (-132)))) 26 (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-270 (-132))) 25 (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-132) (-132)) 24 (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-588 (-132)) (-588 (-132))) 23 (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014))))) (-2065 (((-108) $ $) 14)) (-3434 (((-108) (-132) $) 45 (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-1973 (((-588 (-132)) $) 48)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 (((-132) $ (-522) (-132)) 50) (((-132) $ (-522)) 49) (($ $ (-1133 (-522))) 63) (($ $ $) 102)) (-3835 (($ $ (-522)) 62) (($ $ (-1133 (-522))) 61)) (-4187 (((-708) (-1 (-108) (-132)) $) 31 (|has| $ (-6 -4238))) (((-708) (-132) $) 28 (-12 (|has| (-132) (-1014)) (|has| $ (-6 -4238))))) (-3629 (($ $ $ (-522)) 91 (|has| $ (-6 -4239)))) (-2463 (($ $) 13)) (-3873 (((-498) $) 79 (|has| (-132) (-563 (-498))))) (-2227 (($ (-588 (-132))) 70)) (-4170 (($ $ (-132)) 68) (($ (-132) $) 67) (($ $ $) 66) (($ (-588 $)) 65)) (-2217 (($ (-132)) 111) (((-792) $) 18)) (-1381 (((-108) (-1 (-108) (-132)) $) 33 (|has| $ (-6 -4238)))) (-2810 (((-1068) $) 131) (((-1068) $ (-108)) 130) (((-1171) (-759) $) 129) (((-1171) (-759) $ (-108)) 128)) (-1623 (((-108) $ $) 84 (|has| (-132) (-784)))) (-1597 (((-108) $ $) 83 (|has| (-132) (-784)))) (-1562 (((-108) $ $) 20)) (-1609 (((-108) $ $) 85 (|has| (-132) (-784)))) (-1587 (((-108) $ $) 82 (|has| (-132) (-784)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-1067) (-1197)) (T -1067)) -((-1513 (*1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-1067))))) -(-13 (-1054) (-1014) (-765) (-10 -8 (-15 -1513 ($ (-522))))) -(((-33) . T) ((-97) . T) ((-562 (-792)) . T) ((-139 #0=(-132)) . T) ((-563 (-498)) |has| (-132) (-563 (-498))) ((-262 #1=(-522) #0#) . T) ((-264 #1# #0#) . T) ((-285 #0#) -12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014))) ((-348 #0#) . T) ((-461 #0#) . T) ((-555 #1# #0#) . T) ((-483 #0# #0#) -12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014))) ((-593 #0#) . T) ((-19 #0#) . T) ((-765) . T) ((-784) |has| (-132) (-784)) ((-1014) . T) ((-1054) . T) ((-1120) . T)) -((-1419 (((-108) $ $) NIL)) (-2828 (($ $) NIL)) (-4140 (($ $) NIL)) (-2334 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-3883 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-3900 (((-108) $ $) NIL)) (-3876 (((-108) $ $ (-522)) NIL)) (-1513 (($ (-522)) 7)) (-3428 (((-588 $) $ (-132)) NIL) (((-588 $) $ (-129)) NIL)) (-1866 (((-108) (-1 (-108) (-132) (-132)) $) NIL) (((-108) $) NIL (|has| (-132) (-784)))) (-2806 (($ (-1 (-108) (-132) (-132)) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| (-132) (-784))))) (-3296 (($ (-1 (-108) (-132) (-132)) $) NIL) (($ $) NIL (|has| (-132) (-784)))) (-2717 (((-108) $ (-708)) NIL)) (-2437 (((-132) $ (-522) (-132)) NIL (|has| $ (-6 -4239))) (((-132) $ (-1133 (-522)) (-132)) NIL (|has| $ (-6 -4239)))) (-1696 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-3367 (($) NIL T CONST)) (-2979 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-2465 (($ $) NIL (|has| $ (-6 -4239)))) (-1939 (($ $) NIL)) (-4029 (($ $ (-1133 (-522)) $) NIL)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-1424 (($ (-132) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014)))) (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-2153 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) NIL (|has| $ (-6 -4238))) (((-132) (-1 (-132) (-132) (-132)) $) NIL (|has| $ (-6 -4238)))) (-2411 (((-132) $ (-522) (-132)) NIL (|has| $ (-6 -4239)))) (-2186 (((-132) $ (-522)) NIL)) (-3928 (((-108) $ $) NIL)) (-3314 (((-522) (-1 (-108) (-132)) $) NIL) (((-522) (-132) $) NIL (|has| (-132) (-1014))) (((-522) (-132) $ (-522)) NIL (|has| (-132) (-1014))) (((-522) $ $ (-522)) NIL) (((-522) (-129) $ (-522)) NIL)) (-2395 (((-588 (-132)) $) NIL (|has| $ (-6 -4238)))) (-1893 (($ (-708) (-132)) NIL)) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) NIL (|has| (-522) (-784)))) (-1308 (($ $ $) NIL (|has| (-132) (-784)))) (-3164 (($ (-1 (-108) (-132) (-132)) $ $) NIL) (($ $ $) NIL (|has| (-132) (-784)))) (-4084 (((-588 (-132)) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-2201 (((-522) $) NIL (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (|has| (-132) (-784)))) (-1445 (((-108) $ $ (-132)) NIL)) (-4171 (((-708) $ $ (-132)) NIL)) (-2397 (($ (-1 (-132) (-132)) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-132) (-132)) $) NIL) (($ (-1 (-132) (-132) (-132)) $ $) NIL)) (-1219 (($ $) NIL)) (-2369 (($ $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2992 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-2311 (((-1068) $) NIL)) (-1731 (($ (-132) $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) NIL)) (-4174 (((-1032) $) NIL)) (-2337 (((-132) $) NIL (|has| (-522) (-784)))) (-2187 (((-3 (-132) "failed") (-1 (-108) (-132)) $) NIL)) (-1972 (($ $ (-132)) NIL (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 (-132)))) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-270 (-132))) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-132) (-132)) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-588 (-132)) (-588 (-132))) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-1973 (((-588 (-132)) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 (((-132) $ (-522) (-132)) NIL) (((-132) $ (-522)) NIL) (($ $ (-1133 (-522))) NIL) (($ $ $) NIL)) (-3835 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-4187 (((-708) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238))) (((-708) (-132) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-3629 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| (-132) (-563 (-498))))) (-2227 (($ (-588 (-132))) NIL)) (-4170 (($ $ (-132)) NIL) (($ (-132) $) NIL) (($ $ $) NIL) (($ (-588 $)) NIL)) (-2217 (($ (-132)) NIL) (((-792) $) NIL)) (-1381 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-2810 (((-1068) $) 18) (((-1068) $ (-108)) 20) (((-1171) (-759) $) 21) (((-1171) (-759) $ (-108)) 22)) (-1623 (((-108) $ $) NIL (|has| (-132) (-784)))) (-1597 (((-108) $ $) NIL (|has| (-132) (-784)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| (-132) (-784)))) (-1587 (((-108) $ $) NIL (|has| (-132) (-784)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-1068) (-1067)) (T -1068)) -NIL -(-1067) -((-1419 (((-108) $ $) NIL (-3844 (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014)) (|has| |#1| (-1014))))) (-1883 (($) NIL) (($ (-588 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)))) NIL)) (-3883 (((-1171) $ (-1068) (-1068)) NIL (|has| $ (-6 -4239)))) (-2717 (((-108) $ (-708)) NIL)) (-2437 ((|#1| $ (-1068) |#1|) NIL)) (-1213 (($ (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-4011 (((-3 |#1| "failed") (-1068) $) NIL)) (-3367 (($) NIL T CONST)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014))))) (-1700 (($ (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4238))) (((-3 |#1| "failed") (-1068) $) NIL)) (-1424 (($ (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014)))) (($ (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-2153 (((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $ (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014)))) (((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $ (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-2411 ((|#1| $ (-1068) |#1|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-1068)) NIL)) (-2395 (((-588 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-1068) $) NIL (|has| (-1068) (-784)))) (-4084 (((-588 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014)))) (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2201 (((-1068) $) NIL (|has| (-1068) (-784)))) (-2397 (($ (-1 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4239))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (-3844 (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014)) (|has| |#1| (-1014))))) (-2562 (((-588 (-1068)) $) NIL)) (-2241 (((-108) (-1068) $) NIL)) (-1431 (((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) $) NIL)) (-3365 (($ (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) $) NIL)) (-2130 (((-588 (-1068)) $) NIL)) (-2103 (((-108) (-1068) $) NIL)) (-4174 (((-1032) $) NIL (-3844 (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014)) (|has| |#1| (-1014))))) (-2337 ((|#1| $) NIL (|has| (-1068) (-784)))) (-2187 (((-3 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) "failed") (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL)) (-1972 (($ $ |#1|) NIL (|has| $ (-6 -4239)))) (-3295 (((-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) $) NIL)) (-3487 (((-108) (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))))) NIL (-12 (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-285 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)))) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014)))) (($ $ (-270 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)))) NIL (-12 (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-285 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)))) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014)))) (($ $ (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) NIL (-12 (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-285 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)))) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014)))) (($ $ (-588 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) (-588 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)))) NIL (-12 (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-285 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)))) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#1| $ (-1068)) NIL) ((|#1| $ (-1068) |#1|) NIL)) (-3546 (($) NIL) (($ (-588 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)))) NIL)) (-4187 (((-708) (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014)))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-563 (-498))))) (-2227 (($ (-588 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)))) NIL)) (-2217 (((-792) $) NIL (-3844 (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-562 (-792))) (|has| |#1| (-562 (-792)))))) (-2501 (($ (-588 (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)))) NIL)) (-1381 (((-108) (-1 (-108) (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) NIL (-3844 (|has| (-2 (|:| -2644 (-1068)) (|:| -3149 |#1|)) (-1014)) (|has| |#1| (-1014))))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-1069 |#1|) (-13 (-1097 (-1068) |#1|) (-10 -7 (-6 -4238))) (-1014)) (T -1069)) -NIL -(-13 (-1097 (-1068) |#1|) (-10 -7 (-6 -4238))) -((-2706 (((-1066 |#1|) (-1066 |#1|)) 77)) (-3920 (((-3 (-1066 |#1|) "failed") (-1066 |#1|)) 37)) (-3366 (((-1066 |#1|) (-382 (-522)) (-1066 |#1|)) 117 (|has| |#1| (-37 (-382 (-522)))))) (-4062 (((-1066 |#1|) |#1| (-1066 |#1|)) 121 (|has| |#1| (-338)))) (-3550 (((-1066 |#1|) (-1066 |#1|)) 90)) (-1320 (((-1066 (-522)) (-522)) 57)) (-1422 (((-1066 |#1|) (-1066 (-1066 |#1|))) 108 (|has| |#1| (-37 (-382 (-522)))))) (-2515 (((-1066 |#1|) (-522) (-522) (-1066 |#1|)) 95)) (-2623 (((-1066 |#1|) |#1| (-522)) 45)) (-1727 (((-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) 60)) (-3342 (((-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) 119 (|has| |#1| (-338)))) (-2985 (((-1066 |#1|) |#1| (-1 (-1066 |#1|))) 107 (|has| |#1| (-37 (-382 (-522)))))) (-3029 (((-1066 |#1|) (-1 |#1| (-522)) |#1| (-1 (-1066 |#1|))) 120 (|has| |#1| (-338)))) (-1843 (((-1066 |#1|) (-1066 |#1|)) 89)) (-1962 (((-1066 |#1|) (-1066 |#1|)) 76)) (-2968 (((-1066 |#1|) (-522) (-522) (-1066 |#1|)) 96)) (-2611 (((-1066 |#1|) |#1| (-1066 |#1|)) 105 (|has| |#1| (-37 (-382 (-522)))))) (-2614 (((-1066 (-522)) (-522)) 56)) (-4149 (((-1066 |#1|) |#1|) 59)) (-1815 (((-1066 |#1|) (-1066 |#1|) (-522) (-522)) 92)) (-1985 (((-1066 |#1|) (-1 |#1| (-522)) (-1066 |#1|)) 66)) (-2276 (((-3 (-1066 |#1|) "failed") (-1066 |#1|) (-1066 |#1|)) 35)) (-3143 (((-1066 |#1|) (-1066 |#1|)) 91)) (-2330 (((-1066 |#1|) (-1066 |#1|) |#1|) 71)) (-3760 (((-1066 |#1|) (-1066 |#1|)) 62)) (-2262 (((-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) 72)) (-2217 (((-1066 |#1|) |#1|) 67)) (-3332 (((-1066 |#1|) (-1066 (-1066 |#1|))) 82)) (-1682 (((-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) 36)) (-1672 (((-1066 |#1|) (-1066 |#1|)) 21) (((-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) 23)) (-1661 (((-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) 17)) (* (((-1066 |#1|) (-1066 |#1|) |#1|) 29) (((-1066 |#1|) |#1| (-1066 |#1|)) 26) (((-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) 27))) -(((-1070 |#1|) (-10 -7 (-15 -1661 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -1672 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -1672 ((-1066 |#1|) (-1066 |#1|))) (-15 * ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 * ((-1066 |#1|) |#1| (-1066 |#1|))) (-15 * ((-1066 |#1|) (-1066 |#1|) |#1|)) (-15 -2276 ((-3 (-1066 |#1|) "failed") (-1066 |#1|) (-1066 |#1|))) (-15 -1682 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -3920 ((-3 (-1066 |#1|) "failed") (-1066 |#1|))) (-15 -2623 ((-1066 |#1|) |#1| (-522))) (-15 -2614 ((-1066 (-522)) (-522))) (-15 -1320 ((-1066 (-522)) (-522))) (-15 -4149 ((-1066 |#1|) |#1|)) (-15 -1727 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -3760 ((-1066 |#1|) (-1066 |#1|))) (-15 -1985 ((-1066 |#1|) (-1 |#1| (-522)) (-1066 |#1|))) (-15 -2217 ((-1066 |#1|) |#1|)) (-15 -2330 ((-1066 |#1|) (-1066 |#1|) |#1|)) (-15 -2262 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -1962 ((-1066 |#1|) (-1066 |#1|))) (-15 -2706 ((-1066 |#1|) (-1066 |#1|))) (-15 -3332 ((-1066 |#1|) (-1066 (-1066 |#1|)))) (-15 -1843 ((-1066 |#1|) (-1066 |#1|))) (-15 -3550 ((-1066 |#1|) (-1066 |#1|))) (-15 -3143 ((-1066 |#1|) (-1066 |#1|))) (-15 -1815 ((-1066 |#1|) (-1066 |#1|) (-522) (-522))) (-15 -2515 ((-1066 |#1|) (-522) (-522) (-1066 |#1|))) (-15 -2968 ((-1066 |#1|) (-522) (-522) (-1066 |#1|))) (IF (|has| |#1| (-37 (-382 (-522)))) (PROGN (-15 -2611 ((-1066 |#1|) |#1| (-1066 |#1|))) (-15 -2985 ((-1066 |#1|) |#1| (-1 (-1066 |#1|)))) (-15 -1422 ((-1066 |#1|) (-1066 (-1066 |#1|)))) (-15 -3366 ((-1066 |#1|) (-382 (-522)) (-1066 |#1|)))) |%noBranch|) (IF (|has| |#1| (-338)) (PROGN (-15 -3342 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -3029 ((-1066 |#1|) (-1 |#1| (-522)) |#1| (-1 (-1066 |#1|)))) (-15 -4062 ((-1066 |#1|) |#1| (-1066 |#1|)))) |%noBranch|)) (-971)) (T -1070)) -((-4062 (*1 *2 *3 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-338)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-3029 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-522))) (-5 *5 (-1 (-1066 *4))) (-4 *4 (-338)) (-4 *4 (-971)) (-5 *2 (-1066 *4)) (-5 *1 (-1070 *4)))) (-3342 (*1 *2 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-338)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-3366 (*1 *2 *3 *2) (-12 (-5 *2 (-1066 *4)) (-4 *4 (-37 *3)) (-4 *4 (-971)) (-5 *3 (-382 (-522))) (-5 *1 (-1070 *4)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-1066 (-1066 *4))) (-5 *2 (-1066 *4)) (-5 *1 (-1070 *4)) (-4 *4 (-37 (-382 (-522)))) (-4 *4 (-971)))) (-2985 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1066 *3))) (-5 *2 (-1066 *3)) (-5 *1 (-1070 *3)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)))) (-2611 (*1 *2 *3 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-2968 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1066 *4)) (-5 *3 (-522)) (-4 *4 (-971)) (-5 *1 (-1070 *4)))) (-2515 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1066 *4)) (-5 *3 (-522)) (-4 *4 (-971)) (-5 *1 (-1070 *4)))) (-1815 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1066 *4)) (-5 *3 (-522)) (-4 *4 (-971)) (-5 *1 (-1070 *4)))) (-3143 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-3550 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-1843 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-1066 (-1066 *4))) (-5 *2 (-1066 *4)) (-5 *1 (-1070 *4)) (-4 *4 (-971)))) (-2706 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-1962 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-2262 (*1 *2 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-2330 (*1 *2 *2 *3) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-2217 (*1 *2 *3) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-1070 *3)) (-4 *3 (-971)))) (-1985 (*1 *2 *3 *2) (-12 (-5 *2 (-1066 *4)) (-5 *3 (-1 *4 (-522))) (-4 *4 (-971)) (-5 *1 (-1070 *4)))) (-3760 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-1727 (*1 *2 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-4149 (*1 *2 *3) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-1070 *3)) (-4 *3 (-971)))) (-1320 (*1 *2 *3) (-12 (-5 *2 (-1066 (-522))) (-5 *1 (-1070 *4)) (-4 *4 (-971)) (-5 *3 (-522)))) (-2614 (*1 *2 *3) (-12 (-5 *2 (-1066 (-522))) (-5 *1 (-1070 *4)) (-4 *4 (-971)) (-5 *3 (-522)))) (-2623 (*1 *2 *3 *4) (-12 (-5 *4 (-522)) (-5 *2 (-1066 *3)) (-5 *1 (-1070 *3)) (-4 *3 (-971)))) (-3920 (*1 *2 *2) (|partial| -12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-1682 (*1 *2 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-2276 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-1672 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-1672 (*1 *2 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-1661 (*1 *2 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3))))) -(-10 -7 (-15 -1661 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -1672 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -1672 ((-1066 |#1|) (-1066 |#1|))) (-15 * ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 * ((-1066 |#1|) |#1| (-1066 |#1|))) (-15 * ((-1066 |#1|) (-1066 |#1|) |#1|)) (-15 -2276 ((-3 (-1066 |#1|) "failed") (-1066 |#1|) (-1066 |#1|))) (-15 -1682 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -3920 ((-3 (-1066 |#1|) "failed") (-1066 |#1|))) (-15 -2623 ((-1066 |#1|) |#1| (-522))) (-15 -2614 ((-1066 (-522)) (-522))) (-15 -1320 ((-1066 (-522)) (-522))) (-15 -4149 ((-1066 |#1|) |#1|)) (-15 -1727 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -3760 ((-1066 |#1|) (-1066 |#1|))) (-15 -1985 ((-1066 |#1|) (-1 |#1| (-522)) (-1066 |#1|))) (-15 -2217 ((-1066 |#1|) |#1|)) (-15 -2330 ((-1066 |#1|) (-1066 |#1|) |#1|)) (-15 -2262 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -1962 ((-1066 |#1|) (-1066 |#1|))) (-15 -2706 ((-1066 |#1|) (-1066 |#1|))) (-15 -3332 ((-1066 |#1|) (-1066 (-1066 |#1|)))) (-15 -1843 ((-1066 |#1|) (-1066 |#1|))) (-15 -3550 ((-1066 |#1|) (-1066 |#1|))) (-15 -3143 ((-1066 |#1|) (-1066 |#1|))) (-15 -1815 ((-1066 |#1|) (-1066 |#1|) (-522) (-522))) (-15 -2515 ((-1066 |#1|) (-522) (-522) (-1066 |#1|))) (-15 -2968 ((-1066 |#1|) (-522) (-522) (-1066 |#1|))) (IF (|has| |#1| (-37 (-382 (-522)))) (PROGN (-15 -2611 ((-1066 |#1|) |#1| (-1066 |#1|))) (-15 -2985 ((-1066 |#1|) |#1| (-1 (-1066 |#1|)))) (-15 -1422 ((-1066 |#1|) (-1066 (-1066 |#1|)))) (-15 -3366 ((-1066 |#1|) (-382 (-522)) (-1066 |#1|)))) |%noBranch|) (IF (|has| |#1| (-338)) (PROGN (-15 -3342 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -3029 ((-1066 |#1|) (-1 |#1| (-522)) |#1| (-1 (-1066 |#1|)))) (-15 -4062 ((-1066 |#1|) |#1| (-1066 |#1|)))) |%noBranch|)) -((-3044 (((-1066 |#1|) (-1066 |#1|)) 57)) (-2923 (((-1066 |#1|) (-1066 |#1|)) 39)) (-3023 (((-1066 |#1|) (-1066 |#1|)) 53)) (-2906 (((-1066 |#1|) (-1066 |#1|)) 35)) (-3066 (((-1066 |#1|) (-1066 |#1|)) 60)) (-2936 (((-1066 |#1|) (-1066 |#1|)) 42)) (-1238 (((-1066 |#1|) (-1066 |#1|)) 31)) (-3357 (((-1066 |#1|) (-1066 |#1|)) 27)) (-1831 (((-1066 |#1|) (-1066 |#1|)) 61)) (-2946 (((-1066 |#1|) (-1066 |#1|)) 43)) (-3054 (((-1066 |#1|) (-1066 |#1|)) 58)) (-2928 (((-1066 |#1|) (-1066 |#1|)) 40)) (-3035 (((-1066 |#1|) (-1066 |#1|)) 55)) (-2915 (((-1066 |#1|) (-1066 |#1|)) 37)) (-1856 (((-1066 |#1|) (-1066 |#1|)) 65)) (-2976 (((-1066 |#1|) (-1066 |#1|)) 47)) (-1839 (((-1066 |#1|) (-1066 |#1|)) 63)) (-2957 (((-1066 |#1|) (-1066 |#1|)) 45)) (-1873 (((-1066 |#1|) (-1066 |#1|)) 68)) (-3001 (((-1066 |#1|) (-1066 |#1|)) 50)) (-2476 (((-1066 |#1|) (-1066 |#1|)) 69)) (-3011 (((-1066 |#1|) (-1066 |#1|)) 51)) (-1864 (((-1066 |#1|) (-1066 |#1|)) 67)) (-2989 (((-1066 |#1|) (-1066 |#1|)) 49)) (-1849 (((-1066 |#1|) (-1066 |#1|)) 66)) (-2966 (((-1066 |#1|) (-1066 |#1|)) 48)) (** (((-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) 33))) -(((-1071 |#1|) (-10 -7 (-15 -3357 ((-1066 |#1|) (-1066 |#1|))) (-15 -1238 ((-1066 |#1|) (-1066 |#1|))) (-15 ** ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -2906 ((-1066 |#1|) (-1066 |#1|))) (-15 -2915 ((-1066 |#1|) (-1066 |#1|))) (-15 -2923 ((-1066 |#1|) (-1066 |#1|))) (-15 -2928 ((-1066 |#1|) (-1066 |#1|))) (-15 -2936 ((-1066 |#1|) (-1066 |#1|))) (-15 -2946 ((-1066 |#1|) (-1066 |#1|))) (-15 -2957 ((-1066 |#1|) (-1066 |#1|))) (-15 -2966 ((-1066 |#1|) (-1066 |#1|))) (-15 -2976 ((-1066 |#1|) (-1066 |#1|))) (-15 -2989 ((-1066 |#1|) (-1066 |#1|))) (-15 -3001 ((-1066 |#1|) (-1066 |#1|))) (-15 -3011 ((-1066 |#1|) (-1066 |#1|))) (-15 -3023 ((-1066 |#1|) (-1066 |#1|))) (-15 -3035 ((-1066 |#1|) (-1066 |#1|))) (-15 -3044 ((-1066 |#1|) (-1066 |#1|))) (-15 -3054 ((-1066 |#1|) (-1066 |#1|))) (-15 -3066 ((-1066 |#1|) (-1066 |#1|))) (-15 -1831 ((-1066 |#1|) (-1066 |#1|))) (-15 -1839 ((-1066 |#1|) (-1066 |#1|))) (-15 -1849 ((-1066 |#1|) (-1066 |#1|))) (-15 -1856 ((-1066 |#1|) (-1066 |#1|))) (-15 -1864 ((-1066 |#1|) (-1066 |#1|))) (-15 -1873 ((-1066 |#1|) (-1066 |#1|))) (-15 -2476 ((-1066 |#1|) (-1066 |#1|)))) (-37 (-382 (-522)))) (T -1071)) -((-2476 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-1873 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-1864 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-1856 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-1849 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-1831 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-3066 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-3054 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-3044 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-3035 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-3023 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-3011 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-3001 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2989 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2976 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2966 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2957 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2946 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2936 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2928 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2923 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2915 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2906 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-1238 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-3357 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3))))) -(-10 -7 (-15 -3357 ((-1066 |#1|) (-1066 |#1|))) (-15 -1238 ((-1066 |#1|) (-1066 |#1|))) (-15 ** ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -2906 ((-1066 |#1|) (-1066 |#1|))) (-15 -2915 ((-1066 |#1|) (-1066 |#1|))) (-15 -2923 ((-1066 |#1|) (-1066 |#1|))) (-15 -2928 ((-1066 |#1|) (-1066 |#1|))) (-15 -2936 ((-1066 |#1|) (-1066 |#1|))) (-15 -2946 ((-1066 |#1|) (-1066 |#1|))) (-15 -2957 ((-1066 |#1|) (-1066 |#1|))) (-15 -2966 ((-1066 |#1|) (-1066 |#1|))) (-15 -2976 ((-1066 |#1|) (-1066 |#1|))) (-15 -2989 ((-1066 |#1|) (-1066 |#1|))) (-15 -3001 ((-1066 |#1|) (-1066 |#1|))) (-15 -3011 ((-1066 |#1|) (-1066 |#1|))) (-15 -3023 ((-1066 |#1|) (-1066 |#1|))) (-15 -3035 ((-1066 |#1|) (-1066 |#1|))) (-15 -3044 ((-1066 |#1|) (-1066 |#1|))) (-15 -3054 ((-1066 |#1|) (-1066 |#1|))) (-15 -3066 ((-1066 |#1|) (-1066 |#1|))) (-15 -1831 ((-1066 |#1|) (-1066 |#1|))) (-15 -1839 ((-1066 |#1|) (-1066 |#1|))) (-15 -1849 ((-1066 |#1|) (-1066 |#1|))) (-15 -1856 ((-1066 |#1|) (-1066 |#1|))) (-15 -1864 ((-1066 |#1|) (-1066 |#1|))) (-15 -1873 ((-1066 |#1|) (-1066 |#1|))) (-15 -2476 ((-1066 |#1|) (-1066 |#1|)))) -((-3044 (((-1066 |#1|) (-1066 |#1|)) 100)) (-2923 (((-1066 |#1|) (-1066 |#1|)) 64)) (-3633 (((-2 (|:| -3023 (-1066 |#1|)) (|:| -3035 (-1066 |#1|))) (-1066 |#1|)) 96)) (-3023 (((-1066 |#1|) (-1066 |#1|)) 97)) (-3067 (((-2 (|:| -2906 (-1066 |#1|)) (|:| -2915 (-1066 |#1|))) (-1066 |#1|)) 53)) (-2906 (((-1066 |#1|) (-1066 |#1|)) 54)) (-3066 (((-1066 |#1|) (-1066 |#1|)) 102)) (-2936 (((-1066 |#1|) (-1066 |#1|)) 71)) (-1238 (((-1066 |#1|) (-1066 |#1|)) 39)) (-3357 (((-1066 |#1|) (-1066 |#1|)) 36)) (-1831 (((-1066 |#1|) (-1066 |#1|)) 103)) (-2946 (((-1066 |#1|) (-1066 |#1|)) 72)) (-3054 (((-1066 |#1|) (-1066 |#1|)) 101)) (-2928 (((-1066 |#1|) (-1066 |#1|)) 67)) (-3035 (((-1066 |#1|) (-1066 |#1|)) 98)) (-2915 (((-1066 |#1|) (-1066 |#1|)) 55)) (-1856 (((-1066 |#1|) (-1066 |#1|)) 111)) (-2976 (((-1066 |#1|) (-1066 |#1|)) 86)) (-1839 (((-1066 |#1|) (-1066 |#1|)) 105)) (-2957 (((-1066 |#1|) (-1066 |#1|)) 82)) (-1873 (((-1066 |#1|) (-1066 |#1|)) 115)) (-3001 (((-1066 |#1|) (-1066 |#1|)) 90)) (-2476 (((-1066 |#1|) (-1066 |#1|)) 117)) (-3011 (((-1066 |#1|) (-1066 |#1|)) 92)) (-1864 (((-1066 |#1|) (-1066 |#1|)) 113)) (-2989 (((-1066 |#1|) (-1066 |#1|)) 88)) (-1849 (((-1066 |#1|) (-1066 |#1|)) 107)) (-2966 (((-1066 |#1|) (-1066 |#1|)) 84)) (** (((-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) 40))) -(((-1072 |#1|) (-10 -7 (-15 -3357 ((-1066 |#1|) (-1066 |#1|))) (-15 -1238 ((-1066 |#1|) (-1066 |#1|))) (-15 ** ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -3067 ((-2 (|:| -2906 (-1066 |#1|)) (|:| -2915 (-1066 |#1|))) (-1066 |#1|))) (-15 -2906 ((-1066 |#1|) (-1066 |#1|))) (-15 -2915 ((-1066 |#1|) (-1066 |#1|))) (-15 -2923 ((-1066 |#1|) (-1066 |#1|))) (-15 -2928 ((-1066 |#1|) (-1066 |#1|))) (-15 -2936 ((-1066 |#1|) (-1066 |#1|))) (-15 -2946 ((-1066 |#1|) (-1066 |#1|))) (-15 -2957 ((-1066 |#1|) (-1066 |#1|))) (-15 -2966 ((-1066 |#1|) (-1066 |#1|))) (-15 -2976 ((-1066 |#1|) (-1066 |#1|))) (-15 -2989 ((-1066 |#1|) (-1066 |#1|))) (-15 -3001 ((-1066 |#1|) (-1066 |#1|))) (-15 -3011 ((-1066 |#1|) (-1066 |#1|))) (-15 -3633 ((-2 (|:| -3023 (-1066 |#1|)) (|:| -3035 (-1066 |#1|))) (-1066 |#1|))) (-15 -3023 ((-1066 |#1|) (-1066 |#1|))) (-15 -3035 ((-1066 |#1|) (-1066 |#1|))) (-15 -3044 ((-1066 |#1|) (-1066 |#1|))) (-15 -3054 ((-1066 |#1|) (-1066 |#1|))) (-15 -3066 ((-1066 |#1|) (-1066 |#1|))) (-15 -1831 ((-1066 |#1|) (-1066 |#1|))) (-15 -1839 ((-1066 |#1|) (-1066 |#1|))) (-15 -1849 ((-1066 |#1|) (-1066 |#1|))) (-15 -1856 ((-1066 |#1|) (-1066 |#1|))) (-15 -1864 ((-1066 |#1|) (-1066 |#1|))) (-15 -1873 ((-1066 |#1|) (-1066 |#1|))) (-15 -2476 ((-1066 |#1|) (-1066 |#1|)))) (-37 (-382 (-522)))) (T -1072)) -((-2476 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-1873 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-1864 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-1856 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-1849 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-1831 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-3066 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-3054 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-3044 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-3035 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-3023 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-3633 (*1 *2 *3) (-12 (-4 *4 (-37 (-382 (-522)))) (-5 *2 (-2 (|:| -3023 (-1066 *4)) (|:| -3035 (-1066 *4)))) (-5 *1 (-1072 *4)) (-5 *3 (-1066 *4)))) (-3011 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-3001 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2989 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2976 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2966 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2957 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2946 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2936 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2928 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2923 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2915 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2906 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-3067 (*1 *2 *3) (-12 (-4 *4 (-37 (-382 (-522)))) (-5 *2 (-2 (|:| -2906 (-1066 *4)) (|:| -2915 (-1066 *4)))) (-5 *1 (-1072 *4)) (-5 *3 (-1066 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-1238 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-3357 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3))))) -(-10 -7 (-15 -3357 ((-1066 |#1|) (-1066 |#1|))) (-15 -1238 ((-1066 |#1|) (-1066 |#1|))) (-15 ** ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -3067 ((-2 (|:| -2906 (-1066 |#1|)) (|:| -2915 (-1066 |#1|))) (-1066 |#1|))) (-15 -2906 ((-1066 |#1|) (-1066 |#1|))) (-15 -2915 ((-1066 |#1|) (-1066 |#1|))) (-15 -2923 ((-1066 |#1|) (-1066 |#1|))) (-15 -2928 ((-1066 |#1|) (-1066 |#1|))) (-15 -2936 ((-1066 |#1|) (-1066 |#1|))) (-15 -2946 ((-1066 |#1|) (-1066 |#1|))) (-15 -2957 ((-1066 |#1|) (-1066 |#1|))) (-15 -2966 ((-1066 |#1|) (-1066 |#1|))) (-15 -2976 ((-1066 |#1|) (-1066 |#1|))) (-15 -2989 ((-1066 |#1|) (-1066 |#1|))) (-15 -3001 ((-1066 |#1|) (-1066 |#1|))) (-15 -3011 ((-1066 |#1|) (-1066 |#1|))) (-15 -3633 ((-2 (|:| -3023 (-1066 |#1|)) (|:| -3035 (-1066 |#1|))) (-1066 |#1|))) (-15 -3023 ((-1066 |#1|) (-1066 |#1|))) (-15 -3035 ((-1066 |#1|) (-1066 |#1|))) (-15 -3044 ((-1066 |#1|) (-1066 |#1|))) (-15 -3054 ((-1066 |#1|) (-1066 |#1|))) (-15 -3066 ((-1066 |#1|) (-1066 |#1|))) (-15 -1831 ((-1066 |#1|) (-1066 |#1|))) (-15 -1839 ((-1066 |#1|) (-1066 |#1|))) (-15 -1849 ((-1066 |#1|) (-1066 |#1|))) (-15 -1856 ((-1066 |#1|) (-1066 |#1|))) (-15 -1864 ((-1066 |#1|) (-1066 |#1|))) (-15 -1873 ((-1066 |#1|) (-1066 |#1|))) (-15 -2476 ((-1066 |#1|) (-1066 |#1|)))) -((-1296 (((-886 |#2|) |#2| |#2|) 36)) (-2883 ((|#2| |#2| |#1|) 19 (|has| |#1| (-283))))) -(((-1073 |#1| |#2|) (-10 -7 (-15 -1296 ((-886 |#2|) |#2| |#2|)) (IF (|has| |#1| (-283)) (-15 -2883 (|#2| |#2| |#1|)) |%noBranch|)) (-514) (-1142 |#1|)) (T -1073)) -((-2883 (*1 *2 *2 *3) (-12 (-4 *3 (-283)) (-4 *3 (-514)) (-5 *1 (-1073 *3 *2)) (-4 *2 (-1142 *3)))) (-1296 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-886 *3)) (-5 *1 (-1073 *4 *3)) (-4 *3 (-1142 *4))))) -(-10 -7 (-15 -1296 ((-886 |#2|) |#2| |#2|)) (IF (|has| |#1| (-283)) (-15 -2883 (|#2| |#2| |#1|)) |%noBranch|)) -((-1419 (((-108) $ $) NIL)) (-3261 (($ $ (-588 (-708))) 67)) (-1584 (($) 26)) (-2164 (($ $) 42)) (-2458 (((-588 $) $) 51)) (-2095 (((-108) $) 16)) (-2909 (((-588 (-872 |#2|)) $) 74)) (-2799 (($ $) 68)) (-3708 (((-708) $) 37)) (-1893 (($) 25)) (-1908 (($ $ (-588 (-708)) (-872 |#2|)) 60) (($ $ (-588 (-708)) (-708)) 61) (($ $ (-708) (-872 |#2|)) 63)) (-3164 (($ $ $) 48) (($ (-588 $)) 50)) (-1592 (((-708) $) 75)) (-3394 (((-108) $) 15)) (-2311 (((-1068) $) NIL)) (-3973 (((-108) $) 18)) (-4174 (((-1032) $) NIL)) (-3217 (((-156) $) 73)) (-3670 (((-872 |#2|) $) 69)) (-3783 (((-708) $) 70)) (-2978 (((-108) $) 72)) (-3345 (($ $ (-588 (-708)) (-156)) 66)) (-1353 (($ $) 43)) (-2217 (((-792) $) 85)) (-1224 (($ $ (-588 (-708)) (-108)) 65)) (-1515 (((-588 $) $) 11)) (-1758 (($ $ (-708)) 36)) (-4204 (($ $) 32)) (-1621 (($ $ $ (-872 |#2|) (-708)) 56)) (-4211 (($ $ (-872 |#2|)) 55)) (-3282 (($ $ (-588 (-708)) (-872 |#2|)) 54) (($ $ (-588 (-708)) (-708)) 58) (((-708) $ (-872 |#2|)) 59)) (-1562 (((-108) $ $) 79))) -(((-1074 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3394 ((-108) $)) (-15 -2095 ((-108) $)) (-15 -3973 ((-108) $)) (-15 -1893 ($)) (-15 -1584 ($)) (-15 -4204 ($ $)) (-15 -1758 ($ $ (-708))) (-15 -1515 ((-588 $) $)) (-15 -3708 ((-708) $)) (-15 -2164 ($ $)) (-15 -1353 ($ $)) (-15 -3164 ($ $ $)) (-15 -3164 ($ (-588 $))) (-15 -2458 ((-588 $) $)) (-15 -3282 ($ $ (-588 (-708)) (-872 |#2|))) (-15 -4211 ($ $ (-872 |#2|))) (-15 -1621 ($ $ $ (-872 |#2|) (-708))) (-15 -1908 ($ $ (-588 (-708)) (-872 |#2|))) (-15 -3282 ($ $ (-588 (-708)) (-708))) (-15 -1908 ($ $ (-588 (-708)) (-708))) (-15 -3282 ((-708) $ (-872 |#2|))) (-15 -1908 ($ $ (-708) (-872 |#2|))) (-15 -1224 ($ $ (-588 (-708)) (-108))) (-15 -3345 ($ $ (-588 (-708)) (-156))) (-15 -3261 ($ $ (-588 (-708)))) (-15 -3670 ((-872 |#2|) $)) (-15 -3783 ((-708) $)) (-15 -2978 ((-108) $)) (-15 -3217 ((-156) $)) (-15 -1592 ((-708) $)) (-15 -2799 ($ $)) (-15 -2909 ((-588 (-872 |#2|)) $)))) (-850) (-971)) (T -1074)) -((-3394 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-2095 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-1893 (*1 *1) (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971)))) (-1584 (*1 *1) (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971)))) (-4204 (*1 *1 *1) (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971)))) (-1758 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-1515 (*1 *2 *1) (-12 (-5 *2 (-588 (-1074 *3 *4))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971)))) (-1353 (*1 *1 *1) (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971)))) (-3164 (*1 *1 *1 *1) (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971)))) (-3164 (*1 *1 *2) (-12 (-5 *2 (-588 (-1074 *3 *4))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-2458 (*1 *2 *1) (-12 (-5 *2 (-588 (-1074 *3 *4))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-3282 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-708))) (-5 *3 (-872 *5)) (-4 *5 (-971)) (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)))) (-4211 (*1 *1 *1 *2) (-12 (-5 *2 (-872 *4)) (-4 *4 (-971)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)))) (-1621 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-872 *5)) (-5 *3 (-708)) (-4 *5 (-971)) (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)))) (-1908 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-708))) (-5 *3 (-872 *5)) (-4 *5 (-971)) (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)))) (-3282 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-708))) (-5 *3 (-708)) (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)) (-4 *5 (-971)))) (-1908 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-708))) (-5 *3 (-708)) (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)) (-4 *5 (-971)))) (-3282 (*1 *2 *1 *3) (-12 (-5 *3 (-872 *5)) (-4 *5 (-971)) (-5 *2 (-708)) (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)))) (-1908 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-708)) (-5 *3 (-872 *5)) (-4 *5 (-971)) (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)))) (-1224 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-708))) (-5 *3 (-108)) (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)) (-4 *5 (-971)))) (-3345 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-708))) (-5 *3 (-156)) (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)) (-4 *5 (-971)))) (-3261 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-708))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-3670 (*1 *2 *1) (-12 (-5 *2 (-872 *4)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-2978 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-3217 (*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-1592 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-2799 (*1 *1 *1) (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971)))) (-2909 (*1 *2 *1) (-12 (-5 *2 (-588 (-872 *4))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971))))) -(-13 (-1014) (-10 -8 (-15 -3394 ((-108) $)) (-15 -2095 ((-108) $)) (-15 -3973 ((-108) $)) (-15 -1893 ($)) (-15 -1584 ($)) (-15 -4204 ($ $)) (-15 -1758 ($ $ (-708))) (-15 -1515 ((-588 $) $)) (-15 -3708 ((-708) $)) (-15 -2164 ($ $)) (-15 -1353 ($ $)) (-15 -3164 ($ $ $)) (-15 -3164 ($ (-588 $))) (-15 -2458 ((-588 $) $)) (-15 -3282 ($ $ (-588 (-708)) (-872 |#2|))) (-15 -4211 ($ $ (-872 |#2|))) (-15 -1621 ($ $ $ (-872 |#2|) (-708))) (-15 -1908 ($ $ (-588 (-708)) (-872 |#2|))) (-15 -3282 ($ $ (-588 (-708)) (-708))) (-15 -1908 ($ $ (-588 (-708)) (-708))) (-15 -3282 ((-708) $ (-872 |#2|))) (-15 -1908 ($ $ (-708) (-872 |#2|))) (-15 -1224 ($ $ (-588 (-708)) (-108))) (-15 -3345 ($ $ (-588 (-708)) (-156))) (-15 -3261 ($ $ (-588 (-708)))) (-15 -3670 ((-872 |#2|) $)) (-15 -3783 ((-708) $)) (-15 -2978 ((-108) $)) (-15 -3217 ((-156) $)) (-15 -1592 ((-708) $)) (-15 -2799 ($ $)) (-15 -2909 ((-588 (-872 |#2|)) $)))) -((-1419 (((-108) $ $) NIL)) (-3728 ((|#2| $) 11)) (-3717 ((|#1| $) 10)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2227 (($ |#1| |#2|) 9)) (-2217 (((-792) $) 16)) (-1562 (((-108) $ $) NIL))) -(((-1075 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -2227 ($ |#1| |#2|)) (-15 -3717 (|#1| $)) (-15 -3728 (|#2| $)))) (-1014) (-1014)) (T -1075)) -((-2227 (*1 *1 *2 *3) (-12 (-5 *1 (-1075 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3717 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-1075 *2 *3)) (-4 *3 (-1014)))) (-3728 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-1075 *3 *2)) (-4 *3 (-1014))))) -(-13 (-1014) (-10 -8 (-15 -2227 ($ |#1| |#2|)) (-15 -3717 (|#1| $)) (-15 -3728 (|#2| $)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3049 (((-1083 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-283)) (|has| |#1| (-338))))) (-3533 (((-588 (-999)) $) NIL)) (-1660 (((-1085) $) 11)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514))))) (-2298 (($ $) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514))))) (-3007 (((-108) $) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514))))) (-3495 (($ $ (-522)) NIL) (($ $ (-522) (-522)) 66)) (-3024 (((-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) $) NIL)) (-1201 (((-1083 |#1| |#2| |#3|) $) 36)) (-1413 (((-3 (-1083 |#1| |#2| |#3|) "failed") $) 29)) (-3162 (((-1083 |#1| |#2| |#3|) $) 30)) (-3044 (($ $) 107 (|has| |#1| (-37 (-382 (-522)))))) (-2923 (($ $) 83 (|has| |#1| (-37 (-382 (-522)))))) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))))) (-2961 (($ $) NIL (|has| |#1| (-338)))) (-3133 (((-393 $) $) NIL (|has| |#1| (-338)))) (-2016 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))))) (-2805 (((-108) $ $) NIL (|has| |#1| (-338)))) (-3023 (($ $) 103 (|has| |#1| (-37 (-382 (-522)))))) (-2906 (($ $) 79 (|has| |#1| (-37 (-382 (-522)))))) (-3355 (((-522) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))))) (-1270 (($ (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|)))) NIL)) (-3066 (($ $) 111 (|has| |#1| (-37 (-382 (-522)))))) (-2936 (($ $) 87 (|has| |#1| (-37 (-382 (-522)))))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-1083 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1085) "failed") $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-962 (-1085))) (|has| |#1| (-338)))) (((-3 (-382 (-522)) "failed") $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-962 (-522))) (|has| |#1| (-338)))) (((-3 (-522) "failed") $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-962 (-522))) (|has| |#1| (-338))))) (-1478 (((-1083 |#1| |#2| |#3|) $) 131) (((-1085) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-962 (-1085))) (|has| |#1| (-338)))) (((-382 (-522)) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-962 (-522))) (|has| |#1| (-338)))) (((-522) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-962 (-522))) (|has| |#1| (-338))))) (-3734 (($ $) 34) (($ (-522) $) 35)) (-2333 (($ $ $) NIL (|has| |#1| (-338)))) (-3241 (($ $) NIL)) (-1226 (((-628 (-1083 |#1| |#2| |#3|)) (-628 $)) NIL (|has| |#1| (-338))) (((-2 (|:| -2149 (-628 (-1083 |#1| |#2| |#3|))) (|:| |vec| (-1166 (-1083 |#1| |#2| |#3|)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-338))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-584 (-522))) (|has| |#1| (-338)))) (((-628 (-522)) (-628 $)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-584 (-522))) (|has| |#1| (-338))))) (-3920 (((-3 $ "failed") $) 48)) (-1749 (((-382 (-881 |#1|)) $ (-522)) 65 (|has| |#1| (-514))) (((-382 (-881 |#1|)) $ (-522) (-522)) 67 (|has| |#1| (-514)))) (-3344 (($) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-507)) (|has| |#1| (-338))))) (-2303 (($ $ $) NIL (|has| |#1| (-338)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2725 (((-108) $) NIL (|has| |#1| (-338)))) (-3603 (((-108) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))))) (-3672 (((-108) $) 25)) (-2980 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-815 (-522))) (|has| |#1| (-338)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-815 (-354))) (|has| |#1| (-338))))) (-3872 (((-522) $) NIL) (((-522) $ (-522)) 24)) (-2859 (((-108) $) NIL)) (-1558 (($ $) NIL (|has| |#1| (-338)))) (-2947 (((-1083 |#1| |#2| |#3|) $) 38 (|has| |#1| (-338)))) (-1811 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-4208 (((-3 $ "failed") $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-1061)) (|has| |#1| (-338))))) (-3740 (((-108) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))))) (-2895 (($ $ (-850)) NIL)) (-1332 (($ (-1 |#1| (-522)) $) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-1374 (((-108) $) NIL)) (-3500 (($ |#1| (-522)) 18) (($ $ (-999) (-522)) NIL) (($ $ (-588 (-999)) (-588 (-522))) NIL)) (-1308 (($ $ $) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-2524 (($ $ $) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-3810 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1083 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-338)))) (-1238 (($ $) 72 (|has| |#1| (-37 (-382 (-522)))))) (-3216 (($ $) NIL)) (-3224 ((|#1| $) NIL)) (-2267 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-3170 (($ (-522) (-1083 |#1| |#2| |#3|)) 33)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL (|has| |#1| (-338)))) (-2611 (($ $) 70 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) NIL (-3844 (-12 (|has| |#1| (-15 -2611 (|#1| |#1| (-1085)))) (|has| |#1| (-15 -3533 ((-588 (-1085)) |#1|))) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-887)) (|has| |#1| (-1106))))) (($ $ (-1162 |#2|)) 71 (|has| |#1| (-37 (-382 (-522)))))) (-3937 (($) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-1061)) (|has| |#1| (-338))) CONST)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-338)))) (-2308 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-4194 (($ $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-283)) (|has| |#1| (-338))))) (-3592 (((-1083 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-507)) (|has| |#1| (-338))))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))))) (-2006 (((-393 $) $) NIL (|has| |#1| (-338)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-338)))) (-3934 (($ $ (-522)) 145)) (-2276 (((-3 $ "failed") $ $) 49 (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514))))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3357 (($ $) 73 (|has| |#1| (-37 (-382 (-522)))))) (-2330 (((-1066 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-522))))) (($ $ (-1085) (-1083 |#1| |#2| |#3|)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-483 (-1085) (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338)))) (($ $ (-588 (-1085)) (-588 (-1083 |#1| |#2| |#3|))) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-483 (-1085) (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338)))) (($ $ (-588 (-270 (-1083 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-285 (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338)))) (($ $ (-270 (-1083 |#1| |#2| |#3|))) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-285 (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338)))) (($ $ (-1083 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3|)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-285 (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338)))) (($ $ (-588 (-1083 |#1| |#2| |#3|)) (-588 (-1083 |#1| |#2| |#3|))) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-285 (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338))))) (-4031 (((-708) $) NIL (|has| |#1| (-338)))) (-2683 ((|#1| $ (-522)) NIL) (($ $ $) 54 (|has| (-522) (-1026))) (($ $ (-1083 |#1| |#2| |#3|)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-262 (-1083 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338))))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-338)))) (-2731 (($ $ (-1 (-1083 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3|))) NIL (|has| |#1| (-338))) (($ $ (-1 (-1083 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3|)) (-708)) NIL (|has| |#1| (-338))) (($ $ (-1162 |#2|)) 51) (($ $ (-708)) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $) 50 (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085) (-708)) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-588 (-1085))) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085)) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))))) (-2762 (($ $) NIL (|has| |#1| (-338)))) (-2959 (((-1083 |#1| |#2| |#3|) $) 41 (|has| |#1| (-338)))) (-2487 (((-522) $) 37)) (-1831 (($ $) 113 (|has| |#1| (-37 (-382 (-522)))))) (-2946 (($ $) 89 (|has| |#1| (-37 (-382 (-522)))))) (-3054 (($ $) 109 (|has| |#1| (-37 (-382 (-522)))))) (-2928 (($ $) 85 (|has| |#1| (-37 (-382 (-522)))))) (-3035 (($ $) 105 (|has| |#1| (-37 (-382 (-522)))))) (-2915 (($ $) 81 (|has| |#1| (-37 (-382 (-522)))))) (-3873 (((-498) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-563 (-498))) (|has| |#1| (-338)))) (((-354) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-947)) (|has| |#1| (-338)))) (((-202) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-947)) (|has| |#1| (-338)))) (((-821 (-354)) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-563 (-821 (-354)))) (|has| |#1| (-338)))) (((-821 (-522)) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-563 (-821 (-522)))) (|has| |#1| (-338))))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))))) (-1944 (($ $) NIL)) (-2217 (((-792) $) 149) (($ (-522)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1083 |#1| |#2| |#3|)) 27) (($ (-1162 |#2|)) 23) (($ (-1085)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-962 (-1085))) (|has| |#1| (-338)))) (($ $) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514)))) (($ (-382 (-522))) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-962 (-522))) (|has| |#1| (-338))) (|has| |#1| (-37 (-382 (-522))))))) (-1643 ((|#1| $ (-522)) 68)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-133)) (|has| |#1| (-338))) (|has| |#1| (-133))))) (-2742 (((-708)) NIL)) (-1980 ((|#1| $) 12)) (-1379 (((-1083 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-507)) (|has| |#1| (-338))))) (-1856 (($ $) 119 (|has| |#1| (-37 (-382 (-522)))))) (-2976 (($ $) 95 (|has| |#1| (-37 (-382 (-522)))))) (-1407 (((-108) $ $) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514))))) (-1839 (($ $) 115 (|has| |#1| (-37 (-382 (-522)))))) (-2957 (($ $) 91 (|has| |#1| (-37 (-382 (-522)))))) (-1873 (($ $) 123 (|has| |#1| (-37 (-382 (-522)))))) (-3001 (($ $) 99 (|has| |#1| (-37 (-382 (-522)))))) (-3996 ((|#1| $ (-522)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-522)))) (|has| |#1| (-15 -2217 (|#1| (-1085))))))) (-2476 (($ $) 125 (|has| |#1| (-37 (-382 (-522)))))) (-3011 (($ $) 101 (|has| |#1| (-37 (-382 (-522)))))) (-1864 (($ $) 121 (|has| |#1| (-37 (-382 (-522)))))) (-2989 (($ $) 97 (|has| |#1| (-37 (-382 (-522)))))) (-1849 (($ $) 117 (|has| |#1| (-37 (-382 (-522)))))) (-2966 (($ $) 93 (|has| |#1| (-37 (-382 (-522)))))) (-4126 (($ $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3697 (($) 20 T CONST)) (-3709 (($) 16 T CONST)) (-2252 (($ $ (-1 (-1083 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3|))) NIL (|has| |#1| (-338))) (($ $ (-1 (-1083 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3|)) (-708)) NIL (|has| |#1| (-338))) (($ $ (-708)) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085) (-708)) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-588 (-1085))) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085)) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))))) (-1623 (((-108) $ $) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-1597 (((-108) $ $) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-1587 (((-108) $ $) NIL (-3844 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338))) (($ $ $) 44 (|has| |#1| (-338))) (($ (-1083 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3|)) 45 (|has| |#1| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) 21)) (** (($ $ (-850)) NIL) (($ $ (-708)) 53) (($ $ (-522)) NIL (|has| |#1| (-338))) (($ $ $) 74 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 128 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1083 |#1| |#2| |#3|)) 43 (|has| |#1| (-338))) (($ (-1083 |#1| |#2| |#3|) $) 42 (|has| |#1| (-338))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))))) -(((-1076 |#1| |#2| |#3|) (-13 (-1128 |#1| (-1083 |#1| |#2| |#3|)) (-10 -8 (-15 -2217 ($ (-1162 |#2|))) (-15 -2731 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -2611 ($ $ (-1162 |#2|))) |%noBranch|))) (-971) (-1085) |#1|) (T -1076)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1076 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1076 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-2611 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1076 *3 *4 *5)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3)))) -(-13 (-1128 |#1| (-1083 |#1| |#2| |#3|)) (-10 -8 (-15 -2217 ($ (-1162 |#2|))) (-15 -2731 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -2611 ($ $ (-1162 |#2|))) |%noBranch|))) -((-3640 ((|#2| |#2| (-1007 |#2|)) 26) ((|#2| |#2| (-1085)) 28))) -(((-1077 |#1| |#2|) (-10 -7 (-15 -3640 (|#2| |#2| (-1085))) (-15 -3640 (|#2| |#2| (-1007 |#2|)))) (-13 (-514) (-784) (-962 (-522)) (-584 (-522))) (-13 (-405 |#1|) (-146) (-27) (-1106))) (T -1077)) -((-3640 (*1 *2 *2 *3) (-12 (-5 *3 (-1007 *2)) (-4 *2 (-13 (-405 *4) (-146) (-27) (-1106))) (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-1077 *4 *2)))) (-3640 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-1077 *4 *2)) (-4 *2 (-13 (-405 *4) (-146) (-27) (-1106)))))) -(-10 -7 (-15 -3640 (|#2| |#2| (-1085))) (-15 -3640 (|#2| |#2| (-1007 |#2|)))) -((-3640 (((-3 (-382 (-881 |#1|)) (-291 |#1|)) (-382 (-881 |#1|)) (-1007 (-382 (-881 |#1|)))) 30) (((-382 (-881 |#1|)) (-881 |#1|) (-1007 (-881 |#1|))) 44) (((-3 (-382 (-881 |#1|)) (-291 |#1|)) (-382 (-881 |#1|)) (-1085)) 32) (((-382 (-881 |#1|)) (-881 |#1|) (-1085)) 36))) -(((-1078 |#1|) (-10 -7 (-15 -3640 ((-382 (-881 |#1|)) (-881 |#1|) (-1085))) (-15 -3640 ((-3 (-382 (-881 |#1|)) (-291 |#1|)) (-382 (-881 |#1|)) (-1085))) (-15 -3640 ((-382 (-881 |#1|)) (-881 |#1|) (-1007 (-881 |#1|)))) (-15 -3640 ((-3 (-382 (-881 |#1|)) (-291 |#1|)) (-382 (-881 |#1|)) (-1007 (-382 (-881 |#1|)))))) (-13 (-514) (-784) (-962 (-522)))) (T -1078)) -((-3640 (*1 *2 *3 *4) (-12 (-5 *4 (-1007 (-382 (-881 *5)))) (-5 *3 (-382 (-881 *5))) (-4 *5 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-3 *3 (-291 *5))) (-5 *1 (-1078 *5)))) (-3640 (*1 *2 *3 *4) (-12 (-5 *4 (-1007 (-881 *5))) (-5 *3 (-881 *5)) (-4 *5 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-382 *3)) (-5 *1 (-1078 *5)))) (-3640 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-3 (-382 (-881 *5)) (-291 *5))) (-5 *1 (-1078 *5)) (-5 *3 (-382 (-881 *5))))) (-3640 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-382 (-881 *5))) (-5 *1 (-1078 *5)) (-5 *3 (-881 *5))))) -(-10 -7 (-15 -3640 ((-382 (-881 |#1|)) (-881 |#1|) (-1085))) (-15 -3640 ((-3 (-382 (-881 |#1|)) (-291 |#1|)) (-382 (-881 |#1|)) (-1085))) (-15 -3640 ((-382 (-881 |#1|)) (-881 |#1|) (-1007 (-881 |#1|)))) (-15 -3640 ((-3 (-382 (-881 |#1|)) (-291 |#1|)) (-382 (-881 |#1|)) (-1007 (-382 (-881 |#1|)))))) -((-3810 (((-1081 |#2|) (-1 |#2| |#1|) (-1081 |#1|)) 13))) -(((-1079 |#1| |#2|) (-10 -7 (-15 -3810 ((-1081 |#2|) (-1 |#2| |#1|) (-1081 |#1|)))) (-971) (-971)) (T -1079)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1081 *5)) (-4 *5 (-971)) (-4 *6 (-971)) (-5 *2 (-1081 *6)) (-5 *1 (-1079 *5 *6))))) -(-10 -7 (-15 -3810 ((-1081 |#2|) (-1 |#2| |#1|) (-1081 |#1|)))) -((-3133 (((-393 (-1081 (-382 |#4|))) (-1081 (-382 |#4|))) 50)) (-2006 (((-393 (-1081 (-382 |#4|))) (-1081 (-382 |#4|))) 51))) -(((-1080 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2006 ((-393 (-1081 (-382 |#4|))) (-1081 (-382 |#4|)))) (-15 -3133 ((-393 (-1081 (-382 |#4|))) (-1081 (-382 |#4|))))) (-730) (-784) (-426) (-878 |#3| |#1| |#2|)) (T -1080)) -((-3133 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-426)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-393 (-1081 (-382 *7)))) (-5 *1 (-1080 *4 *5 *6 *7)) (-5 *3 (-1081 (-382 *7))))) (-2006 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-426)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-393 (-1081 (-382 *7)))) (-5 *1 (-1080 *4 *5 *6 *7)) (-5 *3 (-1081 (-382 *7)))))) -(-10 -7 (-15 -2006 ((-393 (-1081 (-382 |#4|))) (-1081 (-382 |#4|)))) (-15 -3133 ((-393 (-1081 (-382 |#4|))) (-1081 (-382 |#4|))))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 30)) (-1428 (((-1166 |#1|) $ (-708)) NIL)) (-3533 (((-588 (-999)) $) NIL)) (-2264 (($ (-1081 |#1|)) NIL)) (-1264 (((-1081 $) $ (-999)) 59) (((-1081 |#1|) $) 48)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) 133 (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-3358 (((-708) $) NIL) (((-708) $ (-588 (-999))) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3485 (($ $ $) 127 (|has| |#1| (-514)))) (-3543 (((-393 (-1081 $)) (-1081 $)) 72 (|has| |#1| (-838)))) (-2961 (($ $) NIL (|has| |#1| (-426)))) (-3133 (((-393 $) $) NIL (|has| |#1| (-426)))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 92 (|has| |#1| (-838)))) (-2805 (((-108) $ $) NIL (|has| |#1| (-338)))) (-1633 (($ $ (-708)) 42)) (-2165 (($ $ (-708)) 43)) (-2458 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-426)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#1| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-999) "failed") $) NIL)) (-1478 ((|#1| $) NIL) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-999) $) NIL)) (-2908 (($ $ $ (-999)) NIL (|has| |#1| (-157))) ((|#1| $ $) 129 (|has| |#1| (-157)))) (-2333 (($ $ $) NIL (|has| |#1| (-338)))) (-3241 (($ $) 57)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2303 (($ $ $) NIL (|has| |#1| (-338)))) (-2659 (($ $ $) 105)) (-2830 (($ $ $) NIL (|has| |#1| (-514)))) (-3370 (((-2 (|:| -3112 |#1|) (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-514)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2883 (($ $) 134 (|has| |#1| (-426))) (($ $ (-999)) NIL (|has| |#1| (-426)))) (-3232 (((-588 $) $) NIL)) (-2725 (((-108) $) NIL (|has| |#1| (-838)))) (-3792 (($ $ |#1| (-708) $) 46)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-999) (-815 (-354))) (|has| |#1| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-999) (-815 (-522))) (|has| |#1| (-815 (-522)))))) (-3094 (((-792) $ (-792)) 118)) (-3872 (((-708) $ $) NIL (|has| |#1| (-514)))) (-2859 (((-108) $) 32)) (-1391 (((-708) $) NIL)) (-4208 (((-3 $ "failed") $) NIL (|has| |#1| (-1061)))) (-3520 (($ (-1081 |#1|) (-999)) 50) (($ (-1081 $) (-999)) 66)) (-2895 (($ $ (-708)) 34)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3038 (((-588 $) $) NIL)) (-1374 (((-108) $) NIL)) (-3500 (($ |#1| (-708)) 64) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-3058 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $ (-999)) NIL) (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 122)) (-3564 (((-708) $) NIL) (((-708) $ (-999)) NIL) (((-588 (-708)) $ (-588 (-999))) NIL)) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-1723 (($ (-1 (-708) (-708)) $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-4178 (((-1081 |#1|) $) NIL)) (-3155 (((-3 (-999) "failed") $) NIL)) (-3216 (($ $) NIL)) (-3224 ((|#1| $) 53)) (-2267 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-2311 (((-1068) $) NIL)) (-2927 (((-2 (|:| -3450 $) (|:| -4002 $)) $ (-708)) 41)) (-2760 (((-3 (-588 $) "failed") $) NIL)) (-1919 (((-3 (-588 $) "failed") $) NIL)) (-2024 (((-3 (-2 (|:| |var| (-999)) (|:| -3858 (-708))) "failed") $) NIL)) (-2611 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3937 (($) NIL (|has| |#1| (-1061)) CONST)) (-4174 (((-1032) $) NIL)) (-3199 (((-108) $) 33)) (-3207 ((|#1| $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 80 (|has| |#1| (-426)))) (-2308 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) 136 (|has| |#1| (-426)))) (-1953 (($ $ (-708) |#1| $) 100)) (-4022 (((-393 (-1081 $)) (-1081 $)) 78 (|has| |#1| (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) 77 (|has| |#1| (-838)))) (-2006 (((-393 $) $) 85 (|has| |#1| (-838)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-338)))) (-2276 (((-3 $ "failed") $ |#1|) 132 (|has| |#1| (-514))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-514)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-2330 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-999) |#1|) NIL) (($ $ (-588 (-999)) (-588 |#1|)) NIL) (($ $ (-999) $) NIL) (($ $ (-588 (-999)) (-588 $)) NIL)) (-4031 (((-708) $) NIL (|has| |#1| (-338)))) (-2683 ((|#1| $ |#1|) 120) (($ $ $) 121) (((-382 $) (-382 $) (-382 $)) NIL (|has| |#1| (-514))) ((|#1| (-382 $) |#1|) NIL (|has| |#1| (-338))) (((-382 $) $ (-382 $)) NIL (|has| |#1| (-514)))) (-2877 (((-3 $ "failed") $ (-708)) 37)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 139 (|has| |#1| (-338)))) (-1615 (($ $ (-999)) NIL (|has| |#1| (-157))) ((|#1| $) 125 (|has| |#1| (-157)))) (-2731 (($ $ (-999)) NIL) (($ $ (-588 (-999))) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL) (($ $ (-708)) NIL) (($ $) NIL) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2487 (((-708) $) 55) (((-708) $ (-999)) NIL) (((-588 (-708)) $ (-588 (-999))) NIL)) (-3873 (((-821 (-354)) $) NIL (-12 (|has| (-999) (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-999) (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-999) (-563 (-498))) (|has| |#1| (-563 (-498)))))) (-2988 ((|#1| $) 131 (|has| |#1| (-426))) (($ $ (-999)) NIL (|has| |#1| (-426)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-3884 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514))) (((-3 (-382 $) "failed") (-382 $) $) NIL (|has| |#1| (-514)))) (-2217 (((-792) $) 119) (($ (-522)) NIL) (($ |#1|) 54) (($ (-999)) NIL) (($ (-382 (-522))) NIL (-3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#1| (-514)))) (-2180 (((-588 |#1|) $) NIL)) (-1643 ((|#1| $ (-708)) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2742 (((-708)) NIL)) (-1225 (($ $ $ (-708)) 28 (|has| |#1| (-157)))) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3622 (($ $ (-850)) 15) (($ $ (-708)) 16)) (-3697 (($) 17 T CONST)) (-3709 (($) 18 T CONST)) (-2252 (($ $ (-999)) NIL) (($ $ (-588 (-999))) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL) (($ $ (-708)) NIL) (($ $) NIL) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) 97)) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1682 (($ $ |#1|) 140 (|has| |#1| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) 67)) (** (($ $ (-850)) 14) (($ $ (-708)) 12)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 27) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 103) (($ $ |#1|) NIL))) -(((-1081 |#1|) (-13 (-1142 |#1|) (-10 -8 (-15 -3094 ((-792) $ (-792))) (-15 -1953 ($ $ (-708) |#1| $)))) (-971)) (T -1081)) -((-3094 (*1 *2 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1081 *3)) (-4 *3 (-971)))) (-1953 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-708)) (-5 *1 (-1081 *3)) (-4 *3 (-971))))) -(-13 (-1142 |#1|) (-10 -8 (-15 -3094 ((-792) $ (-792))) (-15 -1953 ($ $ (-708) |#1| $)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3533 (((-588 (-999)) $) NIL)) (-1660 (((-1085) $) 11)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) NIL (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-3495 (($ $ (-382 (-522))) NIL) (($ $ (-382 (-522)) (-382 (-522))) NIL)) (-3024 (((-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|))) $) NIL)) (-3044 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2923 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL (|has| |#1| (-338)))) (-3133 (((-393 $) $) NIL (|has| |#1| (-338)))) (-2016 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2805 (((-108) $ $) NIL (|has| |#1| (-338)))) (-3023 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2906 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1270 (($ (-708) (-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|)))) NIL)) (-3066 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2936 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-1076 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1083 |#1| |#2| |#3|) "failed") $) 35)) (-1478 (((-1076 |#1| |#2| |#3|) $) NIL) (((-1083 |#1| |#2| |#3|) $) NIL)) (-2333 (($ $ $) NIL (|has| |#1| (-338)))) (-3241 (($ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3515 (((-382 (-522)) $) 55)) (-2303 (($ $ $) NIL (|has| |#1| (-338)))) (-3178 (($ (-382 (-522)) (-1076 |#1| |#2| |#3|)) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2725 (((-108) $) NIL (|has| |#1| (-338)))) (-3672 (((-108) $) NIL)) (-2980 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3872 (((-382 (-522)) $) NIL) (((-382 (-522)) $ (-382 (-522))) NIL)) (-2859 (((-108) $) NIL)) (-1811 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2895 (($ $ (-850)) NIL) (($ $ (-382 (-522))) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-1374 (((-108) $) NIL)) (-3500 (($ |#1| (-382 (-522))) 19) (($ $ (-999) (-382 (-522))) NIL) (($ $ (-588 (-999)) (-588 (-382 (-522)))) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-1238 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3216 (($ $) NIL)) (-3224 ((|#1| $) NIL)) (-2267 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-3602 (((-1076 |#1| |#2| |#3|) $) 40)) (-3830 (((-3 (-1076 |#1| |#2| |#3|) "failed") $) NIL)) (-3170 (((-1076 |#1| |#2| |#3|) $) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL (|has| |#1| (-338)))) (-2611 (($ $) 38 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) NIL (-3844 (-12 (|has| |#1| (-15 -2611 (|#1| |#1| (-1085)))) (|has| |#1| (-15 -3533 ((-588 (-1085)) |#1|))) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-887)) (|has| |#1| (-1106))))) (($ $ (-1162 |#2|)) 39 (|has| |#1| (-37 (-382 (-522)))))) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-338)))) (-2308 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-2006 (((-393 $) $) NIL (|has| |#1| (-338)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-338)))) (-3934 (($ $ (-382 (-522))) NIL)) (-2276 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3357 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2330 (((-1066 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))))) (-4031 (((-708) $) NIL (|has| |#1| (-338)))) (-2683 ((|#1| $ (-382 (-522))) NIL) (($ $ $) NIL (|has| (-382 (-522)) (-1026)))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-338)))) (-2731 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $ (-1162 |#2|)) 37)) (-2487 (((-382 (-522)) $) NIL)) (-1831 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2946 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3054 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2928 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3035 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2915 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1944 (($ $) NIL)) (-2217 (((-792) $) 58) (($ (-522)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1076 |#1| |#2| |#3|)) 29) (($ (-1083 |#1| |#2| |#3|)) 30) (($ (-1162 |#2|)) 25) (($ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $) NIL (|has| |#1| (-514)))) (-1643 ((|#1| $ (-382 (-522))) NIL)) (-3040 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2742 (((-708)) NIL)) (-1980 ((|#1| $) 12)) (-1856 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2976 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1839 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2957 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1873 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3001 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3996 ((|#1| $ (-382 (-522))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))) (|has| |#1| (-15 -2217 (|#1| (-1085))))))) (-2476 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3011 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1864 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2989 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1849 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2966 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3697 (($) 21 T CONST)) (-3709 (($) 16 T CONST)) (-2252 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) 23)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))))) -(((-1082 |#1| |#2| |#3|) (-13 (-1149 |#1| (-1076 |#1| |#2| |#3|)) (-962 (-1083 |#1| |#2| |#3|)) (-10 -8 (-15 -2217 ($ (-1162 |#2|))) (-15 -2731 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -2611 ($ $ (-1162 |#2|))) |%noBranch|))) (-971) (-1085) |#1|) (T -1082)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1082 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1082 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-2611 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1082 *3 *4 *5)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3)))) -(-13 (-1149 |#1| (-1076 |#1| |#2| |#3|)) (-962 (-1083 |#1| |#2| |#3|)) (-10 -8 (-15 -2217 ($ (-1162 |#2|))) (-15 -2731 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -2611 ($ $ (-1162 |#2|))) |%noBranch|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 125)) (-3533 (((-588 (-999)) $) NIL)) (-1660 (((-1085) $) 116)) (-3610 (((-1139 |#2| |#1|) $ (-708)) 63)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) NIL (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-3495 (($ $ (-708)) 79) (($ $ (-708) (-708)) 76)) (-3024 (((-1066 (-2 (|:| |k| (-708)) (|:| |c| |#1|))) $) 102)) (-3044 (($ $) 169 (|has| |#1| (-37 (-382 (-522)))))) (-2923 (($ $) 145 (|has| |#1| (-37 (-382 (-522)))))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2016 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3023 (($ $) 165 (|has| |#1| (-37 (-382 (-522)))))) (-2906 (($ $) 141 (|has| |#1| (-37 (-382 (-522)))))) (-1270 (($ (-1066 (-2 (|:| |k| (-708)) (|:| |c| |#1|)))) 115) (($ (-1066 |#1|)) 110)) (-3066 (($ $) 173 (|has| |#1| (-37 (-382 (-522)))))) (-2936 (($ $) 149 (|has| |#1| (-37 (-382 (-522)))))) (-3367 (($) NIL T CONST)) (-3241 (($ $) NIL)) (-3920 (((-3 $ "failed") $) 23)) (-2889 (($ $) 26)) (-3710 (((-881 |#1|) $ (-708)) 75) (((-881 |#1|) $ (-708) (-708)) 77)) (-3672 (((-108) $) 120)) (-2980 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3872 (((-708) $) 122) (((-708) $ (-708)) 124)) (-2859 (((-108) $) NIL)) (-1811 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2895 (($ $ (-850)) NIL)) (-1332 (($ (-1 |#1| (-522)) $) NIL)) (-1374 (((-108) $) NIL)) (-3500 (($ |#1| (-708)) 13) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-1238 (($ $) 131 (|has| |#1| (-37 (-382 (-522)))))) (-3216 (($ $) NIL)) (-3224 ((|#1| $) NIL)) (-2311 (((-1068) $) NIL)) (-2611 (($ $) 129 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) NIL (-3844 (-12 (|has| |#1| (-15 -2611 (|#1| |#1| (-1085)))) (|has| |#1| (-15 -3533 ((-588 (-1085)) |#1|))) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-887)) (|has| |#1| (-1106))))) (($ $ (-1162 |#2|)) 130 (|has| |#1| (-37 (-382 (-522)))))) (-4174 (((-1032) $) NIL)) (-3934 (($ $ (-708)) 15)) (-2276 (((-3 $ "failed") $ $) 24 (|has| |#1| (-514)))) (-3357 (($ $) 133 (|has| |#1| (-37 (-382 (-522)))))) (-2330 (((-1066 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-708)))))) (-2683 ((|#1| $ (-708)) 119) (($ $ $) 128 (|has| (-708) (-1026)))) (-2731 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-708) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-708) |#1|)))) (($ $ (-1162 |#2|)) 29)) (-2487 (((-708) $) NIL)) (-1831 (($ $) 175 (|has| |#1| (-37 (-382 (-522)))))) (-2946 (($ $) 151 (|has| |#1| (-37 (-382 (-522)))))) (-3054 (($ $) 171 (|has| |#1| (-37 (-382 (-522)))))) (-2928 (($ $) 147 (|has| |#1| (-37 (-382 (-522)))))) (-3035 (($ $) 167 (|has| |#1| (-37 (-382 (-522)))))) (-2915 (($ $) 143 (|has| |#1| (-37 (-382 (-522)))))) (-1944 (($ $) NIL)) (-2217 (((-792) $) 201) (($ (-522)) NIL) (($ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $) NIL (|has| |#1| (-514))) (($ |#1|) 126 (|has| |#1| (-157))) (($ (-1139 |#2| |#1|)) 51) (($ (-1162 |#2|)) 32)) (-2180 (((-1066 |#1|) $) 98)) (-1643 ((|#1| $ (-708)) 118)) (-3040 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2742 (((-708)) NIL)) (-1980 ((|#1| $) 54)) (-1856 (($ $) 181 (|has| |#1| (-37 (-382 (-522)))))) (-2976 (($ $) 157 (|has| |#1| (-37 (-382 (-522)))))) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1839 (($ $) 177 (|has| |#1| (-37 (-382 (-522)))))) (-2957 (($ $) 153 (|has| |#1| (-37 (-382 (-522)))))) (-1873 (($ $) 185 (|has| |#1| (-37 (-382 (-522)))))) (-3001 (($ $) 161 (|has| |#1| (-37 (-382 (-522)))))) (-3996 ((|#1| $ (-708)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-708)))) (|has| |#1| (-15 -2217 (|#1| (-1085))))))) (-2476 (($ $) 187 (|has| |#1| (-37 (-382 (-522)))))) (-3011 (($ $) 163 (|has| |#1| (-37 (-382 (-522)))))) (-1864 (($ $) 183 (|has| |#1| (-37 (-382 (-522)))))) (-2989 (($ $) 159 (|has| |#1| (-37 (-382 (-522)))))) (-1849 (($ $) 179 (|has| |#1| (-37 (-382 (-522)))))) (-2966 (($ $) 155 (|has| |#1| (-37 (-382 (-522)))))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 17 T CONST)) (-3709 (($) 19 T CONST)) (-2252 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-708) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1672 (($ $) NIL) (($ $ $) 194)) (-1661 (($ $ $) 31)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ |#1|) 198 (|has| |#1| (-338))) (($ $ $) 134 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 137 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))))) -(((-1083 |#1| |#2| |#3|) (-13 (-1157 |#1|) (-10 -8 (-15 -2217 ($ (-1139 |#2| |#1|))) (-15 -3610 ((-1139 |#2| |#1|) $ (-708))) (-15 -2217 ($ (-1162 |#2|))) (-15 -2731 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -2611 ($ $ (-1162 |#2|))) |%noBranch|))) (-971) (-1085) |#1|) (T -1083)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1139 *4 *3)) (-4 *3 (-971)) (-14 *4 (-1085)) (-14 *5 *3) (-5 *1 (-1083 *3 *4 *5)))) (-3610 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1139 *5 *4)) (-5 *1 (-1083 *4 *5 *6)) (-4 *4 (-971)) (-14 *5 (-1085)) (-14 *6 *4))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-2611 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3)))) -(-13 (-1157 |#1|) (-10 -8 (-15 -2217 ($ (-1139 |#2| |#1|))) (-15 -3610 ((-1139 |#2| |#1|) $ (-708))) (-15 -2217 ($ (-1162 |#2|))) (-15 -2731 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -2611 ($ $ (-1162 |#2|))) |%noBranch|))) -((-2217 (((-792) $) 22) (($ (-1085)) 24)) (-3844 (($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $))) 35)) (-3832 (($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $))) 28) (($ $) 29)) (-3262 (($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $))) 30)) (-3253 (($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $))) 32)) (-3244 (($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $))) 31)) (-3235 (($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $))) 33)) (-3185 (($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $))) 34))) -(((-1084) (-13 (-562 (-792)) (-10 -8 (-15 -2217 ($ (-1085))) (-15 -3262 ($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3244 ($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3253 ($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3235 ($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3844 ($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3185 ($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3832 ($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3832 ($ $))))) (T -1084)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1084)))) (-3262 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) (-5 *1 (-1084)))) (-3244 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) (-5 *1 (-1084)))) (-3253 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) (-5 *1 (-1084)))) (-3235 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) (-5 *1 (-1084)))) (-3844 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) (-5 *1 (-1084)))) (-3185 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) (-5 *1 (-1084)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) (-5 *1 (-1084)))) (-3832 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) (-5 *1 (-1084)))) (-3832 (*1 *1 *1) (-5 *1 (-1084)))) -(-13 (-562 (-792)) (-10 -8 (-15 -2217 ($ (-1085))) (-15 -3262 ($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3244 ($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3253 ($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3235 ($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3844 ($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3185 ($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3832 ($ (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3832 ($ $)))) -((-1419 (((-108) $ $) NIL)) (-4145 (($ $ (-588 (-792))) 58)) (-2309 (($ $ (-588 (-792))) 56)) (-1513 (((-1068) $) 82)) (-4039 (((-2 (|:| -1949 (-588 (-792))) (|:| -1827 (-588 (-792))) (|:| |presup| (-588 (-792))) (|:| -2482 (-588 (-792))) (|:| |args| (-588 (-792)))) $) 85)) (-3977 (((-108) $) 21)) (-1630 (($ $ (-588 (-588 (-792)))) 54) (($ $ (-2 (|:| -1949 (-588 (-792))) (|:| -1827 (-588 (-792))) (|:| |presup| (-588 (-792))) (|:| -2482 (-588 (-792))) (|:| |args| (-588 (-792))))) 80)) (-3367 (($) 123 T CONST)) (-4184 (((-1171)) 104)) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 65) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 71)) (-1893 (($) 93) (($ $) 99)) (-3015 (($ $) 81)) (-1308 (($ $ $) NIL)) (-2524 (($ $ $) NIL)) (-1614 (((-588 $) $) 105)) (-2311 (((-1068) $) 88)) (-4174 (((-1032) $) NIL)) (-2683 (($ $ (-588 (-792))) 57)) (-3873 (((-498) $) 45) (((-1085) $) 46) (((-821 (-522)) $) 75) (((-821 (-354)) $) 73)) (-2217 (((-792) $) 52) (($ (-1068)) 47)) (-2695 (($ $ (-588 (-792))) 59)) (-2810 (((-1068) $) 33) (((-1068) $ (-108)) 34) (((-1171) (-759) $) 35) (((-1171) (-759) $ (-108)) 36)) (-1623 (((-108) $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1562 (((-108) $ $) 48)) (-1609 (((-108) $ $) NIL)) (-1587 (((-108) $ $) 49))) -(((-1085) (-13 (-784) (-563 (-498)) (-765) (-563 (-1085)) (-563 (-821 (-522))) (-563 (-821 (-354))) (-815 (-522)) (-815 (-354)) (-10 -8 (-15 -1893 ($)) (-15 -1893 ($ $)) (-15 -4184 ((-1171))) (-15 -2217 ($ (-1068))) (-15 -3015 ($ $)) (-15 -3977 ((-108) $)) (-15 -4039 ((-2 (|:| -1949 (-588 (-792))) (|:| -1827 (-588 (-792))) (|:| |presup| (-588 (-792))) (|:| -2482 (-588 (-792))) (|:| |args| (-588 (-792)))) $)) (-15 -1630 ($ $ (-588 (-588 (-792))))) (-15 -1630 ($ $ (-2 (|:| -1949 (-588 (-792))) (|:| -1827 (-588 (-792))) (|:| |presup| (-588 (-792))) (|:| -2482 (-588 (-792))) (|:| |args| (-588 (-792)))))) (-15 -2309 ($ $ (-588 (-792)))) (-15 -4145 ($ $ (-588 (-792)))) (-15 -2695 ($ $ (-588 (-792)))) (-15 -2683 ($ $ (-588 (-792)))) (-15 -1513 ((-1068) $)) (-15 -1614 ((-588 $) $)) (-15 -3367 ($) -2855)))) (T -1085)) -((-1893 (*1 *1) (-5 *1 (-1085))) (-1893 (*1 *1 *1) (-5 *1 (-1085))) (-4184 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1085)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1085)))) (-3015 (*1 *1 *1) (-5 *1 (-1085))) (-3977 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1085)))) (-4039 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1949 (-588 (-792))) (|:| -1827 (-588 (-792))) (|:| |presup| (-588 (-792))) (|:| -2482 (-588 (-792))) (|:| |args| (-588 (-792))))) (-5 *1 (-1085)))) (-1630 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-588 (-792)))) (-5 *1 (-1085)))) (-1630 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1949 (-588 (-792))) (|:| -1827 (-588 (-792))) (|:| |presup| (-588 (-792))) (|:| -2482 (-588 (-792))) (|:| |args| (-588 (-792))))) (-5 *1 (-1085)))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-1085)))) (-4145 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-1085)))) (-2695 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-1085)))) (-2683 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-1085)))) (-1513 (*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-1085)))) (-1614 (*1 *2 *1) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-1085)))) (-3367 (*1 *1) (-5 *1 (-1085)))) -(-13 (-784) (-563 (-498)) (-765) (-563 (-1085)) (-563 (-821 (-522))) (-563 (-821 (-354))) (-815 (-522)) (-815 (-354)) (-10 -8 (-15 -1893 ($)) (-15 -1893 ($ $)) (-15 -4184 ((-1171))) (-15 -2217 ($ (-1068))) (-15 -3015 ($ $)) (-15 -3977 ((-108) $)) (-15 -4039 ((-2 (|:| -1949 (-588 (-792))) (|:| -1827 (-588 (-792))) (|:| |presup| (-588 (-792))) (|:| -2482 (-588 (-792))) (|:| |args| (-588 (-792)))) $)) (-15 -1630 ($ $ (-588 (-588 (-792))))) (-15 -1630 ($ $ (-2 (|:| -1949 (-588 (-792))) (|:| -1827 (-588 (-792))) (|:| |presup| (-588 (-792))) (|:| -2482 (-588 (-792))) (|:| |args| (-588 (-792)))))) (-15 -2309 ($ $ (-588 (-792)))) (-15 -4145 ($ $ (-588 (-792)))) (-15 -2695 ($ $ (-588 (-792)))) (-15 -2683 ($ $ (-588 (-792)))) (-15 -1513 ((-1068) $)) (-15 -1614 ((-588 $) $)) (-15 -3367 ($) -2855))) -((-3176 (((-1166 |#1|) |#1| (-850)) 16) (((-1166 |#1|) (-588 |#1|)) 20))) -(((-1086 |#1|) (-10 -7 (-15 -3176 ((-1166 |#1|) (-588 |#1|))) (-15 -3176 ((-1166 |#1|) |#1| (-850)))) (-971)) (T -1086)) -((-3176 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-5 *2 (-1166 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-971)))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-588 *4)) (-4 *4 (-971)) (-5 *2 (-1166 *4)) (-5 *1 (-1086 *4))))) -(-10 -7 (-15 -3176 ((-1166 |#1|) (-588 |#1|))) (-15 -3176 ((-1166 |#1|) |#1| (-850)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) NIL (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) NIL)) (-1478 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) NIL)) (-3241 (($ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2883 (($ $) NIL (|has| |#1| (-426)))) (-3792 (($ $ |#1| (-898) $) NIL)) (-2859 (((-108) $) NIL)) (-1391 (((-708) $) NIL)) (-1374 (((-108) $) NIL)) (-3500 (($ |#1| (-898)) NIL)) (-3564 (((-898) $) NIL)) (-1723 (($ (-1 (-898) (-898)) $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-3216 (($ $) NIL)) (-3224 ((|#1| $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-3199 (((-108) $) NIL)) (-3207 ((|#1| $) NIL)) (-1953 (($ $ (-898) |#1| $) NIL (-12 (|has| (-898) (-124)) (|has| |#1| (-514))))) (-2276 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514)))) (-2487 (((-898) $) NIL)) (-2988 ((|#1| $) NIL (|has| |#1| (-426)))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL (|has| |#1| (-514))) (($ |#1|) NIL) (($ (-382 (-522))) NIL (-3844 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522))))))) (-2180 (((-588 |#1|) $) NIL)) (-1643 ((|#1| $ (-898)) NIL)) (-3040 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2742 (((-708)) NIL)) (-1225 (($ $ $ (-708)) NIL (|has| |#1| (-157)))) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 9 T CONST)) (-3709 (($) 14 T CONST)) (-1562 (((-108) $ $) 16)) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) 19)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))))) -(((-1087 |#1|) (-13 (-301 |#1| (-898)) (-10 -8 (IF (|has| |#1| (-514)) (IF (|has| (-898) (-124)) (-15 -1953 ($ $ (-898) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4236)) (-6 -4236) |%noBranch|))) (-971)) (T -1087)) -((-1953 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-898)) (-4 *2 (-124)) (-5 *1 (-1087 *3)) (-4 *3 (-514)) (-4 *3 (-971))))) -(-13 (-301 |#1| (-898)) (-10 -8 (IF (|has| |#1| (-514)) (IF (|has| (-898) (-124)) (-15 -1953 ($ $ (-898) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4236)) (-6 -4236) |%noBranch|))) -((-2316 (((-1089) (-1085) $) 24)) (-2283 (($) 28)) (-2108 (((-3 (|:| |fst| (-409)) (|:| -1350 "void")) (-1085) $) 21)) (-2931 (((-1171) (-1085) (-3 (|:| |fst| (-409)) (|:| -1350 "void")) $) 40) (((-1171) (-1085) (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) 41) (((-1171) (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) 42)) (-2688 (((-1171) (-1085)) 57)) (-4169 (((-1171) (-1085) $) 54) (((-1171) (-1085)) 55) (((-1171)) 56)) (-1235 (((-1171) (-1085)) 36)) (-4091 (((-1085)) 35)) (-3298 (($) 33)) (-3528 (((-412) (-1085) (-412) (-1085) $) 44) (((-412) (-588 (-1085)) (-412) (-1085) $) 48) (((-412) (-1085) (-412)) 45) (((-412) (-1085) (-412) (-1085)) 49)) (-4097 (((-1085)) 34)) (-2217 (((-792) $) 27)) (-2128 (((-1171)) 29) (((-1171) (-1085)) 32)) (-1461 (((-588 (-1085)) (-1085) $) 23)) (-1853 (((-1171) (-1085) (-588 (-1085)) $) 37) (((-1171) (-1085) (-588 (-1085))) 38) (((-1171) (-588 (-1085))) 39))) -(((-1088) (-13 (-562 (-792)) (-10 -8 (-15 -2283 ($)) (-15 -2128 ((-1171))) (-15 -2128 ((-1171) (-1085))) (-15 -3528 ((-412) (-1085) (-412) (-1085) $)) (-15 -3528 ((-412) (-588 (-1085)) (-412) (-1085) $)) (-15 -3528 ((-412) (-1085) (-412))) (-15 -3528 ((-412) (-1085) (-412) (-1085))) (-15 -1235 ((-1171) (-1085))) (-15 -4097 ((-1085))) (-15 -4091 ((-1085))) (-15 -1853 ((-1171) (-1085) (-588 (-1085)) $)) (-15 -1853 ((-1171) (-1085) (-588 (-1085)))) (-15 -1853 ((-1171) (-588 (-1085)))) (-15 -2931 ((-1171) (-1085) (-3 (|:| |fst| (-409)) (|:| -1350 "void")) $)) (-15 -2931 ((-1171) (-1085) (-3 (|:| |fst| (-409)) (|:| -1350 "void")))) (-15 -2931 ((-1171) (-3 (|:| |fst| (-409)) (|:| -1350 "void")))) (-15 -4169 ((-1171) (-1085) $)) (-15 -4169 ((-1171) (-1085))) (-15 -4169 ((-1171))) (-15 -2688 ((-1171) (-1085))) (-15 -3298 ($)) (-15 -2108 ((-3 (|:| |fst| (-409)) (|:| -1350 "void")) (-1085) $)) (-15 -1461 ((-588 (-1085)) (-1085) $)) (-15 -2316 ((-1089) (-1085) $))))) (T -1088)) -((-2283 (*1 *1) (-5 *1 (-1088))) (-2128 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1088)))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-3528 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-412)) (-5 *3 (-1085)) (-5 *1 (-1088)))) (-3528 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-412)) (-5 *3 (-588 (-1085))) (-5 *4 (-1085)) (-5 *1 (-1088)))) (-3528 (*1 *2 *3 *2) (-12 (-5 *2 (-412)) (-5 *3 (-1085)) (-5 *1 (-1088)))) (-3528 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-412)) (-5 *3 (-1085)) (-5 *1 (-1088)))) (-1235 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-4097 (*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1088)))) (-4091 (*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1088)))) (-1853 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-588 (-1085))) (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-1853 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-1085))) (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-588 (-1085))) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-2931 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1085)) (-5 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-2931 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-2931 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-4169 (*1 *2 *3 *1) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-4169 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-4169 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1088)))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-3298 (*1 *1) (-5 *1 (-1088))) (-2108 (*1 *2 *3 *1) (-12 (-5 *3 (-1085)) (-5 *2 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-5 *1 (-1088)))) (-1461 (*1 *2 *3 *1) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-1088)) (-5 *3 (-1085)))) (-2316 (*1 *2 *3 *1) (-12 (-5 *3 (-1085)) (-5 *2 (-1089)) (-5 *1 (-1088))))) -(-13 (-562 (-792)) (-10 -8 (-15 -2283 ($)) (-15 -2128 ((-1171))) (-15 -2128 ((-1171) (-1085))) (-15 -3528 ((-412) (-1085) (-412) (-1085) $)) (-15 -3528 ((-412) (-588 (-1085)) (-412) (-1085) $)) (-15 -3528 ((-412) (-1085) (-412))) (-15 -3528 ((-412) (-1085) (-412) (-1085))) (-15 -1235 ((-1171) (-1085))) (-15 -4097 ((-1085))) (-15 -4091 ((-1085))) (-15 -1853 ((-1171) (-1085) (-588 (-1085)) $)) (-15 -1853 ((-1171) (-1085) (-588 (-1085)))) (-15 -1853 ((-1171) (-588 (-1085)))) (-15 -2931 ((-1171) (-1085) (-3 (|:| |fst| (-409)) (|:| -1350 "void")) $)) (-15 -2931 ((-1171) (-1085) (-3 (|:| |fst| (-409)) (|:| -1350 "void")))) (-15 -2931 ((-1171) (-3 (|:| |fst| (-409)) (|:| -1350 "void")))) (-15 -4169 ((-1171) (-1085) $)) (-15 -4169 ((-1171) (-1085))) (-15 -4169 ((-1171))) (-15 -2688 ((-1171) (-1085))) (-15 -3298 ($)) (-15 -2108 ((-3 (|:| |fst| (-409)) (|:| -1350 "void")) (-1085) $)) (-15 -1461 ((-588 (-1085)) (-1085) $)) (-15 -2316 ((-1089) (-1085) $)))) -((-2082 (((-588 (-588 (-3 (|:| -3015 (-1085)) (|:| |bounds| (-588 (-3 (|:| S (-1085)) (|:| P (-881 (-522))))))))) $) 57)) (-3048 (((-588 (-3 (|:| -3015 (-1085)) (|:| |bounds| (-588 (-3 (|:| S (-1085)) (|:| P (-881 (-522)))))))) (-409) $) 40)) (-2492 (($ (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 (-412))))) 15)) (-2688 (((-1171) $) 65)) (-2729 (((-588 (-1085)) $) 20)) (-2886 (((-1018) $) 53)) (-3642 (((-412) (-1085) $) 27)) (-3491 (((-588 (-1085)) $) 30)) (-3298 (($) 17)) (-3528 (((-412) (-588 (-1085)) (-412) $) 25) (((-412) (-1085) (-412) $) 24)) (-2217 (((-792) $) 9) (((-1094 (-1085) (-412)) $) 11))) -(((-1089) (-13 (-562 (-792)) (-10 -8 (-15 -2217 ((-1094 (-1085) (-412)) $)) (-15 -3298 ($)) (-15 -3528 ((-412) (-588 (-1085)) (-412) $)) (-15 -3528 ((-412) (-1085) (-412) $)) (-15 -3642 ((-412) (-1085) $)) (-15 -2729 ((-588 (-1085)) $)) (-15 -3048 ((-588 (-3 (|:| -3015 (-1085)) (|:| |bounds| (-588 (-3 (|:| S (-1085)) (|:| P (-881 (-522)))))))) (-409) $)) (-15 -3491 ((-588 (-1085)) $)) (-15 -2082 ((-588 (-588 (-3 (|:| -3015 (-1085)) (|:| |bounds| (-588 (-3 (|:| S (-1085)) (|:| P (-881 (-522))))))))) $)) (-15 -2886 ((-1018) $)) (-15 -2688 ((-1171) $)) (-15 -2492 ($ (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 (-412))))))))) (T -1089)) -((-2217 (*1 *2 *1) (-12 (-5 *2 (-1094 (-1085) (-412))) (-5 *1 (-1089)))) (-3298 (*1 *1) (-5 *1 (-1089))) (-3528 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-412)) (-5 *3 (-588 (-1085))) (-5 *1 (-1089)))) (-3528 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-412)) (-5 *3 (-1085)) (-5 *1 (-1089)))) (-3642 (*1 *2 *3 *1) (-12 (-5 *3 (-1085)) (-5 *2 (-412)) (-5 *1 (-1089)))) (-2729 (*1 *2 *1) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-1089)))) (-3048 (*1 *2 *3 *1) (-12 (-5 *3 (-409)) (-5 *2 (-588 (-3 (|:| -3015 (-1085)) (|:| |bounds| (-588 (-3 (|:| S (-1085)) (|:| P (-881 (-522))))))))) (-5 *1 (-1089)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-1089)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-588 (-588 (-3 (|:| -3015 (-1085)) (|:| |bounds| (-588 (-3 (|:| S (-1085)) (|:| P (-881 (-522)))))))))) (-5 *1 (-1089)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-1089)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1089)))) (-2492 (*1 *1 *2) (-12 (-5 *2 (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 (-412))))) (-5 *1 (-1089))))) -(-13 (-562 (-792)) (-10 -8 (-15 -2217 ((-1094 (-1085) (-412)) $)) (-15 -3298 ($)) (-15 -3528 ((-412) (-588 (-1085)) (-412) $)) (-15 -3528 ((-412) (-1085) (-412) $)) (-15 -3642 ((-412) (-1085) $)) (-15 -2729 ((-588 (-1085)) $)) (-15 -3048 ((-588 (-3 (|:| -3015 (-1085)) (|:| |bounds| (-588 (-3 (|:| S (-1085)) (|:| P (-881 (-522)))))))) (-409) $)) (-15 -3491 ((-588 (-1085)) $)) (-15 -2082 ((-588 (-588 (-3 (|:| -3015 (-1085)) (|:| |bounds| (-588 (-3 (|:| S (-1085)) (|:| P (-881 (-522))))))))) $)) (-15 -2886 ((-1018) $)) (-15 -2688 ((-1171) $)) (-15 -2492 ($ (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 (-412)))))))) -((-1419 (((-108) $ $) NIL)) (-1233 (((-108) $) 42)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-3906 (((-3 (-522) (-202) (-1085) (-1068) $) $) 50)) (-1220 (((-588 $) $) 55)) (-3873 (((-1018) $) 20) (($ (-1018)) 21)) (-3866 (((-108) $) 52)) (-2217 (((-792) $) NIL) (($ (-522)) 23) (((-522) $) 25) (($ (-202)) 27) (((-202) $) 29) (($ (-1085)) 31) (((-1085) $) 33) (($ (-1068)) 35) (((-1068) $) 37)) (-2215 (((-108) $ (|[\|\|]| (-522))) 10) (((-108) $ (|[\|\|]| (-202))) 13) (((-108) $ (|[\|\|]| (-1085))) 19) (((-108) $ (|[\|\|]| (-1068))) 16)) (-1881 (($ (-1085) (-588 $)) 39) (($ $ (-588 $)) 40)) (-2503 (((-522) $) 24) (((-202) $) 28) (((-1085) $) 32) (((-1068) $) 36)) (-1562 (((-108) $ $) 7))) -(((-1090) (-13 (-1161) (-1014) (-10 -8 (-15 -3873 ((-1018) $)) (-15 -3873 ($ (-1018))) (-15 -2217 ($ (-522))) (-15 -2217 ((-522) $)) (-15 -2503 ((-522) $)) (-15 -2217 ($ (-202))) (-15 -2217 ((-202) $)) (-15 -2503 ((-202) $)) (-15 -2217 ($ (-1085))) (-15 -2217 ((-1085) $)) (-15 -2503 ((-1085) $)) (-15 -2217 ($ (-1068))) (-15 -2217 ((-1068) $)) (-15 -2503 ((-1068) $)) (-15 -1881 ($ (-1085) (-588 $))) (-15 -1881 ($ $ (-588 $))) (-15 -1233 ((-108) $)) (-15 -3906 ((-3 (-522) (-202) (-1085) (-1068) $) $)) (-15 -1220 ((-588 $) $)) (-15 -3866 ((-108) $)) (-15 -2215 ((-108) $ (|[\|\|]| (-522)))) (-15 -2215 ((-108) $ (|[\|\|]| (-202)))) (-15 -2215 ((-108) $ (|[\|\|]| (-1085)))) (-15 -2215 ((-108) $ (|[\|\|]| (-1068))))))) (T -1090)) -((-3873 (*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-1090)))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-1090)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-1090)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1090)))) (-2503 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1090)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-1090)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-1090)))) (-2503 (*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-1090)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1090)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1090)))) (-2503 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1090)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1090)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-1090)))) (-2503 (*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-1090)))) (-1881 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-1090))) (-5 *1 (-1090)))) (-1881 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-1090))) (-5 *1 (-1090)))) (-1233 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1090)))) (-3906 (*1 *2 *1) (-12 (-5 *2 (-3 (-522) (-202) (-1085) (-1068) (-1090))) (-5 *1 (-1090)))) (-1220 (*1 *2 *1) (-12 (-5 *2 (-588 (-1090))) (-5 *1 (-1090)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1090)))) (-2215 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-108)) (-5 *1 (-1090)))) (-2215 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-202))) (-5 *2 (-108)) (-5 *1 (-1090)))) (-2215 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-108)) (-5 *1 (-1090)))) (-2215 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-108)) (-5 *1 (-1090))))) -(-13 (-1161) (-1014) (-10 -8 (-15 -3873 ((-1018) $)) (-15 -3873 ($ (-1018))) (-15 -2217 ($ (-522))) (-15 -2217 ((-522) $)) (-15 -2503 ((-522) $)) (-15 -2217 ($ (-202))) (-15 -2217 ((-202) $)) (-15 -2503 ((-202) $)) (-15 -2217 ($ (-1085))) (-15 -2217 ((-1085) $)) (-15 -2503 ((-1085) $)) (-15 -2217 ($ (-1068))) (-15 -2217 ((-1068) $)) (-15 -2503 ((-1068) $)) (-15 -1881 ($ (-1085) (-588 $))) (-15 -1881 ($ $ (-588 $))) (-15 -1233 ((-108) $)) (-15 -3906 ((-3 (-522) (-202) (-1085) (-1068) $) $)) (-15 -1220 ((-588 $) $)) (-15 -3866 ((-108) $)) (-15 -2215 ((-108) $ (|[\|\|]| (-522)))) (-15 -2215 ((-108) $ (|[\|\|]| (-202)))) (-15 -2215 ((-108) $ (|[\|\|]| (-1085)))) (-15 -2215 ((-108) $ (|[\|\|]| (-1068)))))) -((-1574 (((-588 (-588 (-881 |#1|))) (-588 (-382 (-881 |#1|))) (-588 (-1085))) 55)) (-2925 (((-588 (-270 (-382 (-881 |#1|)))) (-270 (-382 (-881 |#1|)))) 67) (((-588 (-270 (-382 (-881 |#1|)))) (-382 (-881 |#1|))) 63) (((-588 (-270 (-382 (-881 |#1|)))) (-270 (-382 (-881 |#1|))) (-1085)) 68) (((-588 (-270 (-382 (-881 |#1|)))) (-382 (-881 |#1|)) (-1085)) 62) (((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-270 (-382 (-881 |#1|))))) 92) (((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-382 (-881 |#1|)))) 91) (((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-270 (-382 (-881 |#1|)))) (-588 (-1085))) 93) (((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-382 (-881 |#1|))) (-588 (-1085))) 90))) -(((-1091 |#1|) (-10 -7 (-15 -2925 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-382 (-881 |#1|))) (-588 (-1085)))) (-15 -2925 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-270 (-382 (-881 |#1|)))) (-588 (-1085)))) (-15 -2925 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-382 (-881 |#1|))))) (-15 -2925 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-270 (-382 (-881 |#1|)))))) (-15 -2925 ((-588 (-270 (-382 (-881 |#1|)))) (-382 (-881 |#1|)) (-1085))) (-15 -2925 ((-588 (-270 (-382 (-881 |#1|)))) (-270 (-382 (-881 |#1|))) (-1085))) (-15 -2925 ((-588 (-270 (-382 (-881 |#1|)))) (-382 (-881 |#1|)))) (-15 -2925 ((-588 (-270 (-382 (-881 |#1|)))) (-270 (-382 (-881 |#1|))))) (-15 -1574 ((-588 (-588 (-881 |#1|))) (-588 (-382 (-881 |#1|))) (-588 (-1085))))) (-514)) (T -1091)) -((-1574 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-382 (-881 *5)))) (-5 *4 (-588 (-1085))) (-4 *5 (-514)) (-5 *2 (-588 (-588 (-881 *5)))) (-5 *1 (-1091 *5)))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-588 (-270 (-382 (-881 *4))))) (-5 *1 (-1091 *4)) (-5 *3 (-270 (-382 (-881 *4)))))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-588 (-270 (-382 (-881 *4))))) (-5 *1 (-1091 *4)) (-5 *3 (-382 (-881 *4))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-514)) (-5 *2 (-588 (-270 (-382 (-881 *5))))) (-5 *1 (-1091 *5)) (-5 *3 (-270 (-382 (-881 *5)))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-514)) (-5 *2 (-588 (-270 (-382 (-881 *5))))) (-5 *1 (-1091 *5)) (-5 *3 (-382 (-881 *5))))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *4)))))) (-5 *1 (-1091 *4)) (-5 *3 (-588 (-270 (-382 (-881 *4))))))) (-2925 (*1 *2 *3) (-12 (-5 *3 (-588 (-382 (-881 *4)))) (-4 *4 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *4)))))) (-5 *1 (-1091 *4)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-1085))) (-4 *5 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *5)))))) (-5 *1 (-1091 *5)) (-5 *3 (-588 (-270 (-382 (-881 *5))))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-382 (-881 *5)))) (-5 *4 (-588 (-1085))) (-4 *5 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *5)))))) (-5 *1 (-1091 *5))))) -(-10 -7 (-15 -2925 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-382 (-881 |#1|))) (-588 (-1085)))) (-15 -2925 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-270 (-382 (-881 |#1|)))) (-588 (-1085)))) (-15 -2925 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-382 (-881 |#1|))))) (-15 -2925 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-270 (-382 (-881 |#1|)))))) (-15 -2925 ((-588 (-270 (-382 (-881 |#1|)))) (-382 (-881 |#1|)) (-1085))) (-15 -2925 ((-588 (-270 (-382 (-881 |#1|)))) (-270 (-382 (-881 |#1|))) (-1085))) (-15 -2925 ((-588 (-270 (-382 (-881 |#1|)))) (-382 (-881 |#1|)))) (-15 -2925 ((-588 (-270 (-382 (-881 |#1|)))) (-270 (-382 (-881 |#1|))))) (-15 -1574 ((-588 (-588 (-881 |#1|))) (-588 (-382 (-881 |#1|))) (-588 (-1085))))) -((-3634 (((-588 (-588 |#1|)) (-588 (-588 |#1|)) (-588 (-588 (-588 |#1|)))) 38)) (-1795 (((-588 (-588 (-588 |#1|))) (-588 (-588 |#1|))) 24)) (-2023 (((-1093 (-588 |#1|)) (-588 |#1|)) 34)) (-2705 (((-588 (-588 |#1|)) (-588 |#1|)) 30)) (-4014 (((-2 (|:| |f1| (-588 |#1|)) (|:| |f2| (-588 (-588 (-588 |#1|)))) (|:| |f3| (-588 (-588 |#1|))) (|:| |f4| (-588 (-588 (-588 |#1|))))) (-588 (-588 (-588 |#1|)))) 37)) (-2257 (((-2 (|:| |f1| (-588 |#1|)) (|:| |f2| (-588 (-588 (-588 |#1|)))) (|:| |f3| (-588 (-588 |#1|))) (|:| |f4| (-588 (-588 (-588 |#1|))))) (-588 |#1|) (-588 (-588 (-588 |#1|))) (-588 (-588 |#1|)) (-588 (-588 (-588 |#1|))) (-588 (-588 (-588 |#1|))) (-588 (-588 (-588 |#1|)))) 36)) (-4093 (((-588 (-588 |#1|)) (-588 (-588 |#1|))) 28)) (-3073 (((-588 |#1|) (-588 |#1|)) 31)) (-3180 (((-588 (-588 (-588 |#1|))) (-588 |#1|) (-588 (-588 (-588 |#1|)))) 18)) (-1913 (((-588 (-588 (-588 |#1|))) (-1 (-108) |#1| |#1|) (-588 |#1|) (-588 (-588 (-588 |#1|)))) 15)) (-2081 (((-2 (|:| |fs| (-108)) (|:| |sd| (-588 |#1|)) (|:| |td| (-588 (-588 |#1|)))) (-1 (-108) |#1| |#1|) (-588 |#1|) (-588 (-588 |#1|))) 13)) (-3125 (((-588 (-588 |#1|)) (-588 (-588 (-588 |#1|)))) 39)) (-1557 (((-588 (-588 |#1|)) (-1093 (-588 |#1|))) 41))) -(((-1092 |#1|) (-10 -7 (-15 -2081 ((-2 (|:| |fs| (-108)) (|:| |sd| (-588 |#1|)) (|:| |td| (-588 (-588 |#1|)))) (-1 (-108) |#1| |#1|) (-588 |#1|) (-588 (-588 |#1|)))) (-15 -1913 ((-588 (-588 (-588 |#1|))) (-1 (-108) |#1| |#1|) (-588 |#1|) (-588 (-588 (-588 |#1|))))) (-15 -3180 ((-588 (-588 (-588 |#1|))) (-588 |#1|) (-588 (-588 (-588 |#1|))))) (-15 -3634 ((-588 (-588 |#1|)) (-588 (-588 |#1|)) (-588 (-588 (-588 |#1|))))) (-15 -3125 ((-588 (-588 |#1|)) (-588 (-588 (-588 |#1|))))) (-15 -1557 ((-588 (-588 |#1|)) (-1093 (-588 |#1|)))) (-15 -1795 ((-588 (-588 (-588 |#1|))) (-588 (-588 |#1|)))) (-15 -2023 ((-1093 (-588 |#1|)) (-588 |#1|))) (-15 -4093 ((-588 (-588 |#1|)) (-588 (-588 |#1|)))) (-15 -2705 ((-588 (-588 |#1|)) (-588 |#1|))) (-15 -3073 ((-588 |#1|) (-588 |#1|))) (-15 -2257 ((-2 (|:| |f1| (-588 |#1|)) (|:| |f2| (-588 (-588 (-588 |#1|)))) (|:| |f3| (-588 (-588 |#1|))) (|:| |f4| (-588 (-588 (-588 |#1|))))) (-588 |#1|) (-588 (-588 (-588 |#1|))) (-588 (-588 |#1|)) (-588 (-588 (-588 |#1|))) (-588 (-588 (-588 |#1|))) (-588 (-588 (-588 |#1|))))) (-15 -4014 ((-2 (|:| |f1| (-588 |#1|)) (|:| |f2| (-588 (-588 (-588 |#1|)))) (|:| |f3| (-588 (-588 |#1|))) (|:| |f4| (-588 (-588 (-588 |#1|))))) (-588 (-588 (-588 |#1|)))))) (-784)) (T -1092)) -((-4014 (*1 *2 *3) (-12 (-4 *4 (-784)) (-5 *2 (-2 (|:| |f1| (-588 *4)) (|:| |f2| (-588 (-588 (-588 *4)))) (|:| |f3| (-588 (-588 *4))) (|:| |f4| (-588 (-588 (-588 *4)))))) (-5 *1 (-1092 *4)) (-5 *3 (-588 (-588 (-588 *4)))))) (-2257 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-784)) (-5 *3 (-588 *6)) (-5 *5 (-588 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-588 *5)) (|:| |f3| *5) (|:| |f4| (-588 *5)))) (-5 *1 (-1092 *6)) (-5 *4 (-588 *5)))) (-3073 (*1 *2 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-1092 *3)))) (-2705 (*1 *2 *3) (-12 (-4 *4 (-784)) (-5 *2 (-588 (-588 *4))) (-5 *1 (-1092 *4)) (-5 *3 (-588 *4)))) (-4093 (*1 *2 *2) (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-784)) (-5 *1 (-1092 *3)))) (-2023 (*1 *2 *3) (-12 (-4 *4 (-784)) (-5 *2 (-1093 (-588 *4))) (-5 *1 (-1092 *4)) (-5 *3 (-588 *4)))) (-1795 (*1 *2 *3) (-12 (-4 *4 (-784)) (-5 *2 (-588 (-588 (-588 *4)))) (-5 *1 (-1092 *4)) (-5 *3 (-588 (-588 *4))))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-1093 (-588 *4))) (-4 *4 (-784)) (-5 *2 (-588 (-588 *4))) (-5 *1 (-1092 *4)))) (-3125 (*1 *2 *3) (-12 (-5 *3 (-588 (-588 (-588 *4)))) (-5 *2 (-588 (-588 *4))) (-5 *1 (-1092 *4)) (-4 *4 (-784)))) (-3634 (*1 *2 *2 *3) (-12 (-5 *3 (-588 (-588 (-588 *4)))) (-5 *2 (-588 (-588 *4))) (-4 *4 (-784)) (-5 *1 (-1092 *4)))) (-3180 (*1 *2 *3 *2) (-12 (-5 *2 (-588 (-588 (-588 *4)))) (-5 *3 (-588 *4)) (-4 *4 (-784)) (-5 *1 (-1092 *4)))) (-1913 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-588 (-588 (-588 *5)))) (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-588 *5)) (-4 *5 (-784)) (-5 *1 (-1092 *5)))) (-2081 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-784)) (-5 *4 (-588 *6)) (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-588 *4)))) (-5 *1 (-1092 *6)) (-5 *5 (-588 *4))))) -(-10 -7 (-15 -2081 ((-2 (|:| |fs| (-108)) (|:| |sd| (-588 |#1|)) (|:| |td| (-588 (-588 |#1|)))) (-1 (-108) |#1| |#1|) (-588 |#1|) (-588 (-588 |#1|)))) (-15 -1913 ((-588 (-588 (-588 |#1|))) (-1 (-108) |#1| |#1|) (-588 |#1|) (-588 (-588 (-588 |#1|))))) (-15 -3180 ((-588 (-588 (-588 |#1|))) (-588 |#1|) (-588 (-588 (-588 |#1|))))) (-15 -3634 ((-588 (-588 |#1|)) (-588 (-588 |#1|)) (-588 (-588 (-588 |#1|))))) (-15 -3125 ((-588 (-588 |#1|)) (-588 (-588 (-588 |#1|))))) (-15 -1557 ((-588 (-588 |#1|)) (-1093 (-588 |#1|)))) (-15 -1795 ((-588 (-588 (-588 |#1|))) (-588 (-588 |#1|)))) (-15 -2023 ((-1093 (-588 |#1|)) (-588 |#1|))) (-15 -4093 ((-588 (-588 |#1|)) (-588 (-588 |#1|)))) (-15 -2705 ((-588 (-588 |#1|)) (-588 |#1|))) (-15 -3073 ((-588 |#1|) (-588 |#1|))) (-15 -2257 ((-2 (|:| |f1| (-588 |#1|)) (|:| |f2| (-588 (-588 (-588 |#1|)))) (|:| |f3| (-588 (-588 |#1|))) (|:| |f4| (-588 (-588 (-588 |#1|))))) (-588 |#1|) (-588 (-588 (-588 |#1|))) (-588 (-588 |#1|)) (-588 (-588 (-588 |#1|))) (-588 (-588 (-588 |#1|))) (-588 (-588 (-588 |#1|))))) (-15 -4014 ((-2 (|:| |f1| (-588 |#1|)) (|:| |f2| (-588 (-588 (-588 |#1|)))) (|:| |f3| (-588 (-588 |#1|))) (|:| |f4| (-588 (-588 (-588 |#1|))))) (-588 (-588 (-588 |#1|)))))) -((-2594 (($ (-588 (-588 |#1|))) 9)) (-2862 (((-588 (-588 |#1|)) $) 10)) (-2217 (((-792) $) 25))) -(((-1093 |#1|) (-10 -8 (-15 -2594 ($ (-588 (-588 |#1|)))) (-15 -2862 ((-588 (-588 |#1|)) $)) (-15 -2217 ((-792) $))) (-1014)) (T -1093)) -((-2217 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1093 *3)) (-4 *3 (-1014)))) (-2862 (*1 *2 *1) (-12 (-5 *2 (-588 (-588 *3))) (-5 *1 (-1093 *3)) (-4 *3 (-1014)))) (-2594 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-1014)) (-5 *1 (-1093 *3))))) -(-10 -8 (-15 -2594 ($ (-588 (-588 |#1|)))) (-15 -2862 ((-588 (-588 |#1|)) $)) (-15 -2217 ((-792) $))) -((-1419 (((-108) $ $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-1883 (($) NIL) (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-3883 (((-1171) $ |#1| |#1|) NIL (|has| $ (-6 -4239)))) (-2717 (((-108) $ (-708)) NIL)) (-2437 ((|#2| $ |#1| |#2|) NIL)) (-1213 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-4011 (((-3 |#2| "failed") |#1| $) NIL)) (-3367 (($) NIL T CONST)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))))) (-1700 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-3 |#2| "failed") |#1| $) NIL)) (-1424 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2153 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2411 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#2| $ |#1|) NIL)) (-2395 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) NIL)) (-3496 ((|#1| $) NIL (|has| |#1| (-784)))) (-4084 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2201 ((|#1| $) NIL (|has| |#1| (-784)))) (-2397 (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4239))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2562 (((-588 |#1|) $) NIL)) (-2241 (((-108) |#1| $) NIL)) (-1431 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-3365 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-2130 (((-588 |#1|) $) NIL)) (-2103 (((-108) |#1| $) NIL)) (-4174 (((-1032) $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2337 ((|#2| $) NIL (|has| |#1| (-784)))) (-2187 (((-3 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) "failed") (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL)) (-1972 (($ $ |#2|) NIL (|has| $ (-6 -4239)))) (-3295 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL)) (-3487 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1973 (((-588 |#2|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3546 (($) NIL) (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-4187 (((-708) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014)))) (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-563 (-498))))) (-2227 (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-2217 (((-792) $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-562 (-792))) (|has| |#2| (-562 (-792)))))) (-2501 (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) NIL)) (-1381 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) NIL (-3844 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-1094 |#1| |#2|) (-13 (-1097 |#1| |#2|) (-10 -7 (-6 -4238))) (-1014) (-1014)) (T -1094)) -NIL -(-13 (-1097 |#1| |#2|) (-10 -7 (-6 -4238))) -((-2084 ((|#1| (-588 |#1|)) 32)) (-4100 ((|#1| |#1| (-522)) 18)) (-2795 (((-1081 |#1|) |#1| (-850)) 15))) -(((-1095 |#1|) (-10 -7 (-15 -2084 (|#1| (-588 |#1|))) (-15 -2795 ((-1081 |#1|) |#1| (-850))) (-15 -4100 (|#1| |#1| (-522)))) (-338)) (T -1095)) -((-4100 (*1 *2 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-1095 *2)) (-4 *2 (-338)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-5 *2 (-1081 *3)) (-5 *1 (-1095 *3)) (-4 *3 (-338)))) (-2084 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-5 *1 (-1095 *2)) (-4 *2 (-338))))) -(-10 -7 (-15 -2084 (|#1| (-588 |#1|))) (-15 -2795 ((-1081 |#1|) |#1| (-850))) (-15 -4100 (|#1| |#1| (-522)))) -((-1883 (($) 10) (($ (-588 (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)))) 14)) (-1700 (($ (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) $) 60) (($ (-1 (-108) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2395 (((-588 (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) $) 39) (((-588 |#3|) $) 41)) (-2397 (($ (-1 (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) $) 52) (($ (-1 |#3| |#3|) $) 33)) (-3810 (($ (-1 (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) $) 50) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1431 (((-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) $) 53)) (-3365 (($ (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) $) 16)) (-2130 (((-588 |#2|) $) 19)) (-2103 (((-108) |#2| $) 58)) (-2187 (((-3 (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) "failed") (-1 (-108) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) $) 57)) (-3295 (((-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) $) 62)) (-3487 (((-108) (-1 (-108) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 66)) (-1973 (((-588 |#3|) $) 43)) (-2683 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-4187 (((-708) (-1 (-108) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) $) NIL) (((-708) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) $) NIL) (((-708) |#3| $) NIL) (((-708) (-1 (-108) |#3|) $) 67)) (-2217 (((-792) $) 27)) (-1381 (((-108) (-1 (-108) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 64)) (-1562 (((-108) $ $) 48))) -(((-1096 |#1| |#2| |#3|) (-10 -8 (-15 -2217 ((-792) |#1|)) (-15 -1562 ((-108) |#1| |#1|)) (-15 -3810 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1883 (|#1| (-588 (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))))) (-15 -1883 (|#1|)) (-15 -3810 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2397 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1381 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -3487 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -4187 ((-708) (-1 (-108) |#3|) |#1|)) (-15 -2395 ((-588 |#3|) |#1|)) (-15 -4187 ((-708) |#3| |#1|)) (-15 -2683 (|#3| |#1| |#2| |#3|)) (-15 -2683 (|#3| |#1| |#2|)) (-15 -1973 ((-588 |#3|) |#1|)) (-15 -2103 ((-108) |#2| |#1|)) (-15 -2130 ((-588 |#2|) |#1|)) (-15 -1700 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1700 (|#1| (-1 (-108) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) |#1|)) (-15 -1700 (|#1| (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) |#1|)) (-15 -2187 ((-3 (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) "failed") (-1 (-108) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) |#1|)) (-15 -1431 ((-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) |#1|)) (-15 -3365 (|#1| (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) |#1|)) (-15 -3295 ((-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) |#1|)) (-15 -4187 ((-708) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) |#1|)) (-15 -2395 ((-588 (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) |#1|)) (-15 -4187 ((-708) (-1 (-108) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) |#1|)) (-15 -3487 ((-108) (-1 (-108) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) |#1|)) (-15 -1381 ((-108) (-1 (-108) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) |#1|)) (-15 -2397 (|#1| (-1 (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) |#1|)) (-15 -3810 (|#1| (-1 (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) |#1|))) (-1097 |#2| |#3|) (-1014) (-1014)) (T -1096)) -NIL -(-10 -8 (-15 -2217 ((-792) |#1|)) (-15 -1562 ((-108) |#1| |#1|)) (-15 -3810 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1883 (|#1| (-588 (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))))) (-15 -1883 (|#1|)) (-15 -3810 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2397 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1381 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -3487 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -4187 ((-708) (-1 (-108) |#3|) |#1|)) (-15 -2395 ((-588 |#3|) |#1|)) (-15 -4187 ((-708) |#3| |#1|)) (-15 -2683 (|#3| |#1| |#2| |#3|)) (-15 -2683 (|#3| |#1| |#2|)) (-15 -1973 ((-588 |#3|) |#1|)) (-15 -2103 ((-108) |#2| |#1|)) (-15 -2130 ((-588 |#2|) |#1|)) (-15 -1700 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1700 (|#1| (-1 (-108) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) |#1|)) (-15 -1700 (|#1| (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) |#1|)) (-15 -2187 ((-3 (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) "failed") (-1 (-108) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) |#1|)) (-15 -1431 ((-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) |#1|)) (-15 -3365 (|#1| (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) |#1|)) (-15 -3295 ((-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) |#1|)) (-15 -4187 ((-708) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) |#1|)) (-15 -2395 ((-588 (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) |#1|)) (-15 -4187 ((-708) (-1 (-108) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) |#1|)) (-15 -3487 ((-108) (-1 (-108) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) |#1|)) (-15 -1381 ((-108) (-1 (-108) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) |#1|)) (-15 -2397 (|#1| (-1 (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) |#1|)) (-15 -3810 (|#1| (-1 (-2 (|:| -2644 |#2|) (|:| -3149 |#3|)) (-2 (|:| -2644 |#2|) (|:| -3149 |#3|))) |#1|))) -((-1419 (((-108) $ $) 19 (-3844 (|has| |#2| (-1014)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))))) (-1883 (($) 72) (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) 71)) (-3883 (((-1171) $ |#1| |#1|) 99 (|has| $ (-6 -4239)))) (-2717 (((-108) $ (-708)) 8)) (-2437 ((|#2| $ |#1| |#2|) 73)) (-1213 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 45 (|has| $ (-6 -4238)))) (-1696 (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 55 (|has| $ (-6 -4238)))) (-4011 (((-3 |#2| "failed") |#1| $) 61)) (-3367 (($) 7 T CONST)) (-2379 (($ $) 58 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| $ (-6 -4238))))) (-1700 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 47 (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 46 (|has| $ (-6 -4238))) (((-3 |#2| "failed") |#1| $) 62)) (-1424 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 54 (|has| $ (-6 -4238)))) (-2153 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 56 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 53 (|has| $ (-6 -4238))) (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 52 (|has| $ (-6 -4238)))) (-2411 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4239)))) (-2186 ((|#2| $ |#1|) 88)) (-2395 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 30 (|has| $ (-6 -4238))) (((-588 |#2|) $) 79 (|has| $ (-6 -4238)))) (-1480 (((-108) $ (-708)) 9)) (-3496 ((|#1| $) 96 (|has| |#1| (-784)))) (-4084 (((-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 29 (|has| $ (-6 -4238))) (((-588 |#2|) $) 80 (|has| $ (-6 -4238)))) (-4176 (((-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1014)) (|has| $ (-6 -4238))))) (-2201 ((|#1| $) 95 (|has| |#1| (-784)))) (-2397 (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 34 (|has| $ (-6 -4239))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4239)))) (-3810 (($ (-1 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3309 (((-108) $ (-708)) 10)) (-2311 (((-1068) $) 22 (-3844 (|has| |#2| (-1014)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))))) (-2562 (((-588 |#1|) $) 63)) (-2241 (((-108) |#1| $) 64)) (-1431 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 39)) (-3365 (($ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 40)) (-2130 (((-588 |#1|) $) 93)) (-2103 (((-108) |#1| $) 92)) (-4174 (((-1032) $) 21 (-3844 (|has| |#2| (-1014)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))))) (-2337 ((|#2| $) 97 (|has| |#1| (-784)))) (-2187 (((-3 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) "failed") (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 51)) (-1972 (($ $ |#2|) 98 (|has| $ (-6 -4239)))) (-3295 (((-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 41)) (-3487 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 32 (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))))) 26 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) 25 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) 24 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) 23 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) 86 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) 84 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-270 |#2|))) 83 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-2065 (((-108) $ $) 14)) (-3434 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1973 (((-588 |#2|) $) 91)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3546 (($) 49) (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) 48)) (-4187 (((-708) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 31 (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (((-708) |#2| $) 81 (-12 (|has| |#2| (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4238)))) (-2463 (($ $) 13)) (-3873 (((-498) $) 59 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-563 (-498))))) (-2227 (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) 50)) (-2217 (((-792) $) 18 (-3844 (|has| |#2| (-562 (-792))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-562 (-792)))))) (-2501 (($ (-588 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) 42)) (-1381 (((-108) (-1 (-108) (-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) $) 33 (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (-3844 (|has| |#2| (-1014)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-1097 |#1| |#2|) (-1197) (-1014) (-1014)) (T -1097)) -((-2437 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1097 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-1883 (*1 *1) (-12 (-4 *1 (-1097 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-1883 (*1 *1 *2) (-12 (-5 *2 (-588 (-2 (|:| -2644 *3) (|:| -3149 *4)))) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *1 (-1097 *3 *4)))) (-3810 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1097 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) -(-13 (-559 |t#1| |t#2|) (-555 |t#1| |t#2|) (-10 -8 (-15 -2437 (|t#2| $ |t#1| |t#2|)) (-15 -1883 ($)) (-15 -1883 ($ (-588 (-2 (|:| -2644 |t#1|) (|:| -3149 |t#2|))))) (-15 -3810 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-33) . T) ((-102 #0=(-2 (|:| -2644 |#1|) (|:| -3149 |#2|))) . T) ((-97) -3844 (|has| |#2| (-1014)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))) ((-562 (-792)) -3844 (|has| |#2| (-1014)) (|has| |#2| (-562 (-792))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-562 (-792)))) ((-139 #0#) . T) ((-563 (-498)) |has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-563 (-498))) ((-206 #0#) . T) ((-212 #0#) . T) ((-262 |#1| |#2|) . T) ((-264 |#1| |#2|) . T) ((-285 #0#) -12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))) ((-285 |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((-461 #0#) . T) ((-461 |#2|) . T) ((-555 |#1| |#2|) . T) ((-483 #0# #0#) -12 (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-285 (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)))) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))) ((-483 |#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((-559 |#1| |#2|) . T) ((-1014) -3844 (|has| |#2| (-1014)) (|has| (-2 (|:| -2644 |#1|) (|:| -3149 |#2|)) (-1014))) ((-1120) . T)) -((-1285 (((-108)) 24)) (-3819 (((-1171) (-1068)) 26)) (-3243 (((-108)) 36)) (-1318 (((-1171)) 34)) (-4129 (((-1171) (-1068) (-1068)) 25)) (-1479 (((-108)) 37)) (-3365 (((-1171) |#1| |#2|) 44)) (-1761 (((-1171)) 20)) (-1722 (((-3 |#2| "failed") |#1|) 42)) (-1865 (((-1171)) 35))) -(((-1098 |#1| |#2|) (-10 -7 (-15 -1761 ((-1171))) (-15 -4129 ((-1171) (-1068) (-1068))) (-15 -3819 ((-1171) (-1068))) (-15 -1318 ((-1171))) (-15 -1865 ((-1171))) (-15 -1285 ((-108))) (-15 -3243 ((-108))) (-15 -1479 ((-108))) (-15 -1722 ((-3 |#2| "failed") |#1|)) (-15 -3365 ((-1171) |#1| |#2|))) (-1014) (-1014)) (T -1098)) -((-3365 (*1 *2 *3 *4) (-12 (-5 *2 (-1171)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-1722 (*1 *2 *3) (|partial| -12 (-4 *2 (-1014)) (-5 *1 (-1098 *3 *2)) (-4 *3 (-1014)))) (-1479 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3243 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-1285 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-1865 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-1318 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1098 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)))) (-4129 (*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1098 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)))) (-1761 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) -(-10 -7 (-15 -1761 ((-1171))) (-15 -4129 ((-1171) (-1068) (-1068))) (-15 -3819 ((-1171) (-1068))) (-15 -1318 ((-1171))) (-15 -1865 ((-1171))) (-15 -1285 ((-108))) (-15 -3243 ((-108))) (-15 -1479 ((-108))) (-15 -1722 ((-3 |#2| "failed") |#1|)) (-15 -3365 ((-1171) |#1| |#2|))) -((-3879 (((-1068) (-1068)) 18)) (-4121 (((-51) (-1068)) 21))) -(((-1099) (-10 -7 (-15 -4121 ((-51) (-1068))) (-15 -3879 ((-1068) (-1068))))) (T -1099)) -((-3879 (*1 *2 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1099)))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-51)) (-5 *1 (-1099))))) -(-10 -7 (-15 -4121 ((-51) (-1068))) (-15 -3879 ((-1068) (-1068)))) -((-2217 (((-1101) |#1|) 11))) -(((-1100 |#1|) (-10 -7 (-15 -2217 ((-1101) |#1|))) (-1014)) (T -1100)) -((-2217 (*1 *2 *3) (-12 (-5 *2 (-1101)) (-5 *1 (-1100 *3)) (-4 *3 (-1014))))) -(-10 -7 (-15 -2217 ((-1101) |#1|))) -((-1419 (((-108) $ $) NIL)) (-1698 (((-588 (-1068)) $) 33)) (-2284 (((-588 (-1068)) $ (-588 (-1068))) 36)) (-2716 (((-588 (-1068)) $ (-588 (-1068))) 35)) (-2034 (((-588 (-1068)) $ (-588 (-1068))) 37)) (-3506 (((-588 (-1068)) $) 32)) (-1893 (($) 22)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-3359 (((-588 (-1068)) $) 34)) (-1757 (((-1171) $ (-522)) 29) (((-1171) $) 30)) (-3873 (($ (-792) (-522)) 26) (($ (-792) (-522) (-792)) NIL)) (-2217 (((-792) $) 39) (($ (-792)) 24)) (-1562 (((-108) $ $) NIL))) -(((-1101) (-13 (-1014) (-10 -8 (-15 -2217 ($ (-792))) (-15 -3873 ($ (-792) (-522))) (-15 -3873 ($ (-792) (-522) (-792))) (-15 -1757 ((-1171) $ (-522))) (-15 -1757 ((-1171) $)) (-15 -3359 ((-588 (-1068)) $)) (-15 -1698 ((-588 (-1068)) $)) (-15 -1893 ($)) (-15 -3506 ((-588 (-1068)) $)) (-15 -2034 ((-588 (-1068)) $ (-588 (-1068)))) (-15 -2284 ((-588 (-1068)) $ (-588 (-1068)))) (-15 -2716 ((-588 (-1068)) $ (-588 (-1068))))))) (T -1101)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1101)))) (-3873 (*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-522)) (-5 *1 (-1101)))) (-3873 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-792)) (-5 *3 (-522)) (-5 *1 (-1101)))) (-1757 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-1101)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1101)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101)))) (-1698 (*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101)))) (-1893 (*1 *1) (-5 *1 (-1101))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101)))) (-2034 (*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101)))) (-2284 (*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101)))) (-2716 (*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101))))) -(-13 (-1014) (-10 -8 (-15 -2217 ($ (-792))) (-15 -3873 ($ (-792) (-522))) (-15 -3873 ($ (-792) (-522) (-792))) (-15 -1757 ((-1171) $ (-522))) (-15 -1757 ((-1171) $)) (-15 -3359 ((-588 (-1068)) $)) (-15 -1698 ((-588 (-1068)) $)) (-15 -1893 ($)) (-15 -3506 ((-588 (-1068)) $)) (-15 -2034 ((-588 (-1068)) $ (-588 (-1068)))) (-15 -2284 ((-588 (-1068)) $ (-588 (-1068)))) (-15 -2716 ((-588 (-1068)) $ (-588 (-1068)))))) -((-1419 (((-108) $ $) NIL)) (-2864 (((-1068) $ (-1068)) 15) (((-1068) $) 14)) (-2710 (((-1068) $ (-1068)) 13)) (-3813 (($ $ (-1068)) NIL)) (-1561 (((-3 (-1068) "failed") $) 11)) (-2566 (((-1068) $) 8)) (-3688 (((-3 (-1068) "failed") $) 12)) (-2982 (((-1068) $) 9)) (-1566 (($ (-363)) NIL) (($ (-363) (-1068)) NIL)) (-3015 (((-363) $) NIL)) (-2311 (((-1068) $) NIL)) (-3270 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-3764 (((-108) $) 17)) (-2217 (((-792) $) NIL)) (-3116 (($ $) NIL)) (-1562 (((-108) $ $) NIL))) -(((-1102) (-13 (-339 (-363) (-1068)) (-10 -8 (-15 -2864 ((-1068) $ (-1068))) (-15 -2864 ((-1068) $)) (-15 -2566 ((-1068) $)) (-15 -1561 ((-3 (-1068) "failed") $)) (-15 -3688 ((-3 (-1068) "failed") $)) (-15 -3764 ((-108) $))))) (T -1102)) -((-2864 (*1 *2 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1102)))) (-2864 (*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-1102)))) (-2566 (*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-1102)))) (-1561 (*1 *2 *1) (|partial| -12 (-5 *2 (-1068)) (-5 *1 (-1102)))) (-3688 (*1 *2 *1) (|partial| -12 (-5 *2 (-1068)) (-5 *1 (-1102)))) (-3764 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1102))))) -(-13 (-339 (-363) (-1068)) (-10 -8 (-15 -2864 ((-1068) $ (-1068))) (-15 -2864 ((-1068) $)) (-15 -2566 ((-1068) $)) (-15 -1561 ((-3 (-1068) "failed") $)) (-15 -3688 ((-3 (-1068) "failed") $)) (-15 -3764 ((-108) $)))) -((-3355 (((-3 (-522) "failed") |#1|) 19)) (-1857 (((-3 (-522) "failed") |#1|) 13)) (-2454 (((-522) (-1068)) 28))) -(((-1103 |#1|) (-10 -7 (-15 -3355 ((-3 (-522) "failed") |#1|)) (-15 -1857 ((-3 (-522) "failed") |#1|)) (-15 -2454 ((-522) (-1068)))) (-971)) (T -1103)) -((-2454 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-522)) (-5 *1 (-1103 *4)) (-4 *4 (-971)))) (-1857 (*1 *2 *3) (|partial| -12 (-5 *2 (-522)) (-5 *1 (-1103 *3)) (-4 *3 (-971)))) (-3355 (*1 *2 *3) (|partial| -12 (-5 *2 (-522)) (-5 *1 (-1103 *3)) (-4 *3 (-971))))) -(-10 -7 (-15 -3355 ((-3 (-522) "failed") |#1|)) (-15 -1857 ((-3 (-522) "failed") |#1|)) (-15 -2454 ((-522) (-1068)))) -((-2628 (((-1045 (-202))) 8))) -(((-1104) (-10 -7 (-15 -2628 ((-1045 (-202)))))) (T -1104)) -((-2628 (*1 *2) (-12 (-5 *2 (-1045 (-202))) (-5 *1 (-1104))))) -(-10 -7 (-15 -2628 ((-1045 (-202))))) -((-2980 (($) 11)) (-1856 (($ $) 35)) (-1839 (($ $) 33)) (-2957 (($ $) 25)) (-1873 (($ $) 17)) (-2476 (($ $) 15)) (-1864 (($ $) 19)) (-2989 (($ $) 30)) (-1849 (($ $) 34)) (-2966 (($ $) 29))) -(((-1105 |#1|) (-10 -8 (-15 -2980 (|#1|)) (-15 -1856 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1873 (|#1| |#1|)) (-15 -2476 (|#1| |#1|)) (-15 -1864 (|#1| |#1|)) (-15 -1849 (|#1| |#1|)) (-15 -2957 (|#1| |#1|)) (-15 -2989 (|#1| |#1|)) (-15 -2966 (|#1| |#1|))) (-1106)) (T -1105)) -NIL -(-10 -8 (-15 -2980 (|#1|)) (-15 -1856 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1873 (|#1| |#1|)) (-15 -2476 (|#1| |#1|)) (-15 -1864 (|#1| |#1|)) (-15 -1849 (|#1| |#1|)) (-15 -2957 (|#1| |#1|)) (-15 -2989 (|#1| |#1|)) (-15 -2966 (|#1| |#1|))) -((-3044 (($ $) 26)) (-2923 (($ $) 11)) (-3023 (($ $) 27)) (-2906 (($ $) 10)) (-3066 (($ $) 28)) (-2936 (($ $) 9)) (-2980 (($) 16)) (-1238 (($ $) 19)) (-3357 (($ $) 18)) (-1831 (($ $) 29)) (-2946 (($ $) 8)) (-3054 (($ $) 30)) (-2928 (($ $) 7)) (-3035 (($ $) 31)) (-2915 (($ $) 6)) (-1856 (($ $) 20)) (-2976 (($ $) 32)) (-1839 (($ $) 21)) (-2957 (($ $) 33)) (-1873 (($ $) 22)) (-3001 (($ $) 34)) (-2476 (($ $) 23)) (-3011 (($ $) 35)) (-1864 (($ $) 24)) (-2989 (($ $) 36)) (-1849 (($ $) 25)) (-2966 (($ $) 37)) (** (($ $ $) 17))) -(((-1106) (-1197)) (T -1106)) -((-2980 (*1 *1) (-4 *1 (-1106)))) -(-13 (-1109) (-91) (-463) (-34) (-260) (-10 -8 (-15 -2980 ($)))) -(((-34) . T) ((-91) . T) ((-260) . T) ((-463) . T) ((-1109) . T)) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3526 ((|#1| $) 17)) (-3570 (($ |#1| (-588 $)) 23) (($ (-588 |#1|)) 27) (($ |#1|) 25)) (-2717 (((-108) $ (-708)) 48)) (-1198 ((|#1| $ |#1|) 14 (|has| $ (-6 -4239)))) (-2437 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4239)))) (-2684 (($ $ (-588 $)) 13 (|has| $ (-6 -4239)))) (-3367 (($) NIL T CONST)) (-2395 (((-588 |#1|) $) 52 (|has| $ (-6 -4238)))) (-2674 (((-588 $) $) 43)) (-2402 (((-108) $ $) 33 (|has| |#1| (-1014)))) (-1480 (((-108) $ (-708)) 41)) (-4084 (((-588 |#1|) $) 53 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 51 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2397 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 22)) (-3309 (((-108) $ (-708)) 40)) (-2548 (((-588 |#1|) $) 37)) (-3394 (((-108) $) 36)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3487 (((-108) (-1 (-108) |#1|) $) 50 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 74)) (-3494 (((-108) $) 9)) (-3298 (($) 10)) (-2683 ((|#1| $ "value") NIL)) (-3381 (((-522) $ $) 32)) (-1837 (((-588 $) $) 59)) (-2907 (((-108) $ $) 76)) (-2993 (((-588 $) $) 72)) (-1349 (($ $) 73)) (-3395 (((-108) $) 56)) (-4187 (((-708) (-1 (-108) |#1|) $) 20 (|has| $ (-6 -4238))) (((-708) |#1| $) 16 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2463 (($ $) 58)) (-2217 (((-792) $) 61 (|has| |#1| (-562 (-792))))) (-1515 (((-588 $) $) 12)) (-3294 (((-108) $ $) 29 (|has| |#1| (-1014)))) (-1381 (((-108) (-1 (-108) |#1|) $) 49 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 28 (|has| |#1| (-1014)))) (-3591 (((-708) $) 39 (|has| $ (-6 -4238))))) -(((-1107 |#1|) (-13 (-936 |#1|) (-10 -8 (-6 -4238) (-6 -4239) (-15 -3570 ($ |#1| (-588 $))) (-15 -3570 ($ (-588 |#1|))) (-15 -3570 ($ |#1|)) (-15 -3395 ((-108) $)) (-15 -1349 ($ $)) (-15 -2993 ((-588 $) $)) (-15 -2907 ((-108) $ $)) (-15 -1837 ((-588 $) $)))) (-1014)) (T -1107)) -((-3395 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1107 *3)) (-4 *3 (-1014)))) (-3570 (*1 *1 *2 *3) (-12 (-5 *3 (-588 (-1107 *2))) (-5 *1 (-1107 *2)) (-4 *2 (-1014)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-1107 *3)))) (-3570 (*1 *1 *2) (-12 (-5 *1 (-1107 *2)) (-4 *2 (-1014)))) (-1349 (*1 *1 *1) (-12 (-5 *1 (-1107 *2)) (-4 *2 (-1014)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-588 (-1107 *3))) (-5 *1 (-1107 *3)) (-4 *3 (-1014)))) (-2907 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1107 *3)) (-4 *3 (-1014)))) (-1837 (*1 *2 *1) (-12 (-5 *2 (-588 (-1107 *3))) (-5 *1 (-1107 *3)) (-4 *3 (-1014))))) -(-13 (-936 |#1|) (-10 -8 (-6 -4238) (-6 -4239) (-15 -3570 ($ |#1| (-588 $))) (-15 -3570 ($ (-588 |#1|))) (-15 -3570 ($ |#1|)) (-15 -3395 ((-108) $)) (-15 -1349 ($ $)) (-15 -2993 ((-588 $) $)) (-15 -2907 ((-108) $ $)) (-15 -1837 ((-588 $) $)))) -((-2923 (($ $) 15)) (-2936 (($ $) 12)) (-2946 (($ $) 10)) (-2928 (($ $) 17))) -(((-1108 |#1|) (-10 -8 (-15 -2928 (|#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -2936 (|#1| |#1|)) (-15 -2923 (|#1| |#1|))) (-1109)) (T -1108)) -NIL -(-10 -8 (-15 -2928 (|#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -2936 (|#1| |#1|)) (-15 -2923 (|#1| |#1|))) -((-2923 (($ $) 11)) (-2906 (($ $) 10)) (-2936 (($ $) 9)) (-2946 (($ $) 8)) (-2928 (($ $) 7)) (-2915 (($ $) 6))) -(((-1109) (-1197)) (T -1109)) -((-2923 (*1 *1 *1) (-4 *1 (-1109))) (-2906 (*1 *1 *1) (-4 *1 (-1109))) (-2936 (*1 *1 *1) (-4 *1 (-1109))) (-2946 (*1 *1 *1) (-4 *1 (-1109))) (-2928 (*1 *1 *1) (-4 *1 (-1109))) (-2915 (*1 *1 *1) (-4 *1 (-1109)))) -(-13 (-10 -8 (-15 -2915 ($ $)) (-15 -2928 ($ $)) (-15 -2946 ($ $)) (-15 -2936 ($ $)) (-15 -2906 ($ $)) (-15 -2923 ($ $)))) -((-1829 ((|#2| |#2|) 85)) (-1408 (((-108) |#2|) 25)) (-2025 ((|#2| |#2|) 29)) (-2033 ((|#2| |#2|) 31)) (-2854 ((|#2| |#2| (-1085)) 79) ((|#2| |#2|) 80)) (-2902 (((-154 |#2|) |#2|) 27)) (-1254 ((|#2| |#2| (-1085)) 81) ((|#2| |#2|) 82))) -(((-1110 |#1| |#2|) (-10 -7 (-15 -2854 (|#2| |#2|)) (-15 -2854 (|#2| |#2| (-1085))) (-15 -1254 (|#2| |#2|)) (-15 -1254 (|#2| |#2| (-1085))) (-15 -1829 (|#2| |#2|)) (-15 -2025 (|#2| |#2|)) (-15 -2033 (|#2| |#2|)) (-15 -1408 ((-108) |#2|)) (-15 -2902 ((-154 |#2|) |#2|))) (-13 (-426) (-784) (-962 (-522)) (-584 (-522))) (-13 (-27) (-1106) (-405 |#1|))) (T -1110)) -((-2902 (*1 *2 *3) (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-154 *3)) (-5 *1 (-1110 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *4))))) (-1408 (*1 *2 *3) (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-108)) (-5 *1 (-1110 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *4))))) (-2033 (*1 *2 *2) (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3))))) (-2025 (*1 *2 *2) (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3))))) (-1829 (*1 *2 *2) (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3))))) (-1254 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-1110 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4))))) (-1254 (*1 *2 *2) (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3))))) (-2854 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-1110 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4))))) (-2854 (*1 *2 *2) (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3)))))) -(-10 -7 (-15 -2854 (|#2| |#2|)) (-15 -2854 (|#2| |#2| (-1085))) (-15 -1254 (|#2| |#2|)) (-15 -1254 (|#2| |#2| (-1085))) (-15 -1829 (|#2| |#2|)) (-15 -2025 (|#2| |#2|)) (-15 -2033 (|#2| |#2|)) (-15 -1408 ((-108) |#2|)) (-15 -2902 ((-154 |#2|) |#2|))) -((-3921 ((|#4| |#4| |#1|) 27)) (-4072 ((|#4| |#4| |#1|) 28))) -(((-1111 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3921 (|#4| |#4| |#1|)) (-15 -4072 (|#4| |#4| |#1|))) (-514) (-348 |#1|) (-348 |#1|) (-626 |#1| |#2| |#3|)) (T -1111)) -((-4072 (*1 *2 *2 *3) (-12 (-4 *3 (-514)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-1111 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-3921 (*1 *2 *2 *3) (-12 (-4 *3 (-514)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-1111 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5))))) -(-10 -7 (-15 -3921 (|#4| |#4| |#1|)) (-15 -4072 (|#4| |#4| |#1|))) -((-1423 ((|#2| |#2|) 132)) (-2468 ((|#2| |#2|) 129)) (-2269 ((|#2| |#2|) 120)) (-3698 ((|#2| |#2|) 117)) (-1360 ((|#2| |#2|) 125)) (-3422 ((|#2| |#2|) 113)) (-2047 ((|#2| |#2|) 42)) (-4007 ((|#2| |#2|) 93)) (-1667 ((|#2| |#2|) 73)) (-2432 ((|#2| |#2|) 127)) (-3970 ((|#2| |#2|) 115)) (-3229 ((|#2| |#2|) 137)) (-3838 ((|#2| |#2|) 135)) (-1392 ((|#2| |#2|) 136)) (-3649 ((|#2| |#2|) 134)) (-3846 ((|#2| |#2|) 146)) (-1904 ((|#2| |#2|) 30 (-12 (|has| |#2| (-563 (-821 |#1|))) (|has| |#2| (-815 |#1|)) (|has| |#1| (-563 (-821 |#1|))) (|has| |#1| (-815 |#1|))))) (-1750 ((|#2| |#2|) 74)) (-2143 ((|#2| |#2|) 138)) (-1663 ((|#2| |#2|) 139)) (-1541 ((|#2| |#2|) 126)) (-2162 ((|#2| |#2|) 114)) (-3299 ((|#2| |#2|) 133)) (-1365 ((|#2| |#2|) 131)) (-2849 ((|#2| |#2|) 121)) (-4111 ((|#2| |#2|) 119)) (-3483 ((|#2| |#2|) 123)) (-2254 ((|#2| |#2|) 111))) -(((-1112 |#1| |#2|) (-10 -7 (-15 -1663 (|#2| |#2|)) (-15 -1667 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -4007 (|#2| |#2|)) (-15 -2047 (|#2| |#2|)) (-15 -1750 (|#2| |#2|)) (-15 -2143 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -2849 (|#2| |#2|)) (-15 -3299 (|#2| |#2|)) (-15 -2162 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -3970 (|#2| |#2|)) (-15 -2432 (|#2| |#2|)) (-15 -3422 (|#2| |#2|)) (-15 -1360 (|#2| |#2|)) (-15 -2269 (|#2| |#2|)) (-15 -1423 (|#2| |#2|)) (-15 -3698 (|#2| |#2|)) (-15 -2468 (|#2| |#2|)) (-15 -4111 (|#2| |#2|)) (-15 -1365 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -3838 (|#2| |#2|)) (-15 -1392 (|#2| |#2|)) (-15 -3229 (|#2| |#2|)) (IF (|has| |#1| (-815 |#1|)) (IF (|has| |#1| (-563 (-821 |#1|))) (IF (|has| |#2| (-563 (-821 |#1|))) (IF (|has| |#2| (-815 |#1|)) (-15 -1904 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-784) (-426)) (-13 (-405 |#1|) (-1106))) (T -1112)) -((-1904 (*1 *2 *2) (-12 (-4 *3 (-563 (-821 *3))) (-4 *3 (-815 *3)) (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-563 (-821 *3))) (-4 *2 (-815 *3)) (-4 *2 (-13 (-405 *3) (-1106))))) (-3229 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-1392 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-1365 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-4111 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-3698 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-1423 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-2269 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-1360 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-3422 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-2432 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-3970 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-2162 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-3299 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-2849 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-2254 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-2143 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-1750 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-2047 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-4007 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-3846 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-1667 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-1663 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106)))))) -(-10 -7 (-15 -1663 (|#2| |#2|)) (-15 -1667 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -4007 (|#2| |#2|)) (-15 -2047 (|#2| |#2|)) (-15 -1750 (|#2| |#2|)) (-15 -2143 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -2849 (|#2| |#2|)) (-15 -3299 (|#2| |#2|)) (-15 -2162 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -3970 (|#2| |#2|)) (-15 -2432 (|#2| |#2|)) (-15 -3422 (|#2| |#2|)) (-15 -1360 (|#2| |#2|)) (-15 -2269 (|#2| |#2|)) (-15 -1423 (|#2| |#2|)) (-15 -3698 (|#2| |#2|)) (-15 -2468 (|#2| |#2|)) (-15 -4111 (|#2| |#2|)) (-15 -1365 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -3838 (|#2| |#2|)) (-15 -1392 (|#2| |#2|)) (-15 -3229 (|#2| |#2|)) (IF (|has| |#1| (-815 |#1|)) (IF (|has| |#1| (-563 (-821 |#1|))) (IF (|has| |#2| (-563 (-821 |#1|))) (IF (|has| |#2| (-815 |#1|)) (-15 -1904 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-1900 (((-108) |#5| $) 60) (((-108) $) 102)) (-2163 ((|#5| |#5| $) 75)) (-1696 (($ (-1 (-108) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-3090 (((-588 |#5|) (-588 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 73)) (-3700 (((-3 $ "failed") (-588 |#5|)) 126)) (-2352 (((-3 $ "failed") $) 112)) (-2625 ((|#5| |#5| $) 94)) (-1426 (((-108) |#5| $ (-1 (-108) |#5| |#5|)) 31)) (-2918 ((|#5| |#5| $) 98)) (-2153 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 69)) (-1199 (((-2 (|:| -1720 (-588 |#5|)) (|:| -1566 (-588 |#5|))) $) 55)) (-1384 (((-108) |#5| $) 58) (((-108) $) 103)) (-1933 ((|#4| $) 108)) (-1442 (((-3 |#5| "failed") $) 110)) (-4138 (((-588 |#5|) $) 49)) (-3864 (((-108) |#5| $) 67) (((-108) $) 107)) (-2556 ((|#5| |#5| $) 81)) (-1517 (((-108) $ $) 27)) (-3060 (((-108) |#5| $) 63) (((-108) $) 105)) (-3896 ((|#5| |#5| $) 78)) (-2337 (((-3 |#5| "failed") $) 109)) (-3934 (($ $ |#5|) 127)) (-2487 (((-708) $) 52)) (-2227 (($ (-588 |#5|)) 124)) (-2271 (($ $ |#4|) 122)) (-2154 (($ $ |#4|) 121)) (-1524 (($ $) 120)) (-2217 (((-792) $) NIL) (((-588 |#5|) $) 113)) (-3111 (((-708) $) 130)) (-3538 (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |#5|))) "failed") (-588 |#5|) (-1 (-108) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |#5|))) "failed") (-588 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|)) 45)) (-2102 (((-108) $ (-1 (-108) |#5| (-588 |#5|))) 100)) (-1982 (((-588 |#4|) $) 115)) (-1711 (((-108) |#4| $) 118)) (-1562 (((-108) $ $) 19))) -(((-1113 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3111 ((-708) |#1|)) (-15 -3934 (|#1| |#1| |#5|)) (-15 -1696 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1711 ((-108) |#4| |#1|)) (-15 -1982 ((-588 |#4|) |#1|)) (-15 -2352 ((-3 |#1| "failed") |#1|)) (-15 -1442 ((-3 |#5| "failed") |#1|)) (-15 -2337 ((-3 |#5| "failed") |#1|)) (-15 -2918 (|#5| |#5| |#1|)) (-15 -1524 (|#1| |#1|)) (-15 -2625 (|#5| |#5| |#1|)) (-15 -2556 (|#5| |#5| |#1|)) (-15 -3896 (|#5| |#5| |#1|)) (-15 -2163 (|#5| |#5| |#1|)) (-15 -3090 ((-588 |#5|) (-588 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2153 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3864 ((-108) |#1|)) (-15 -3060 ((-108) |#1|)) (-15 -1900 ((-108) |#1|)) (-15 -2102 ((-108) |#1| (-1 (-108) |#5| (-588 |#5|)))) (-15 -3864 ((-108) |#5| |#1|)) (-15 -3060 ((-108) |#5| |#1|)) (-15 -1900 ((-108) |#5| |#1|)) (-15 -1426 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -1384 ((-108) |#1|)) (-15 -1384 ((-108) |#5| |#1|)) (-15 -1199 ((-2 (|:| -1720 (-588 |#5|)) (|:| -1566 (-588 |#5|))) |#1|)) (-15 -2487 ((-708) |#1|)) (-15 -4138 ((-588 |#5|) |#1|)) (-15 -3538 ((-3 (-2 (|:| |bas| |#1|) (|:| -1322 (-588 |#5|))) "failed") (-588 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -3538 ((-3 (-2 (|:| |bas| |#1|) (|:| -1322 (-588 |#5|))) "failed") (-588 |#5|) (-1 (-108) |#5| |#5|))) (-15 -1517 ((-108) |#1| |#1|)) (-15 -2271 (|#1| |#1| |#4|)) (-15 -2154 (|#1| |#1| |#4|)) (-15 -1933 (|#4| |#1|)) (-15 -3700 ((-3 |#1| "failed") (-588 |#5|))) (-15 -2217 ((-588 |#5|) |#1|)) (-15 -2227 (|#1| (-588 |#5|))) (-15 -2153 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2153 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1696 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -2153 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2217 ((-792) |#1|)) (-15 -1562 ((-108) |#1| |#1|))) (-1114 |#2| |#3| |#4| |#5|) (-514) (-730) (-784) (-985 |#2| |#3| |#4|)) (T -1113)) -NIL -(-10 -8 (-15 -3111 ((-708) |#1|)) (-15 -3934 (|#1| |#1| |#5|)) (-15 -1696 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1711 ((-108) |#4| |#1|)) (-15 -1982 ((-588 |#4|) |#1|)) (-15 -2352 ((-3 |#1| "failed") |#1|)) (-15 -1442 ((-3 |#5| "failed") |#1|)) (-15 -2337 ((-3 |#5| "failed") |#1|)) (-15 -2918 (|#5| |#5| |#1|)) (-15 -1524 (|#1| |#1|)) (-15 -2625 (|#5| |#5| |#1|)) (-15 -2556 (|#5| |#5| |#1|)) (-15 -3896 (|#5| |#5| |#1|)) (-15 -2163 (|#5| |#5| |#1|)) (-15 -3090 ((-588 |#5|) (-588 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2153 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3864 ((-108) |#1|)) (-15 -3060 ((-108) |#1|)) (-15 -1900 ((-108) |#1|)) (-15 -2102 ((-108) |#1| (-1 (-108) |#5| (-588 |#5|)))) (-15 -3864 ((-108) |#5| |#1|)) (-15 -3060 ((-108) |#5| |#1|)) (-15 -1900 ((-108) |#5| |#1|)) (-15 -1426 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -1384 ((-108) |#1|)) (-15 -1384 ((-108) |#5| |#1|)) (-15 -1199 ((-2 (|:| -1720 (-588 |#5|)) (|:| -1566 (-588 |#5|))) |#1|)) (-15 -2487 ((-708) |#1|)) (-15 -4138 ((-588 |#5|) |#1|)) (-15 -3538 ((-3 (-2 (|:| |bas| |#1|) (|:| -1322 (-588 |#5|))) "failed") (-588 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -3538 ((-3 (-2 (|:| |bas| |#1|) (|:| -1322 (-588 |#5|))) "failed") (-588 |#5|) (-1 (-108) |#5| |#5|))) (-15 -1517 ((-108) |#1| |#1|)) (-15 -2271 (|#1| |#1| |#4|)) (-15 -2154 (|#1| |#1| |#4|)) (-15 -1933 (|#4| |#1|)) (-15 -3700 ((-3 |#1| "failed") (-588 |#5|))) (-15 -2217 ((-588 |#5|) |#1|)) (-15 -2227 (|#1| (-588 |#5|))) (-15 -2153 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2153 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1696 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -2153 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2217 ((-792) |#1|)) (-15 -1562 ((-108) |#1| |#1|))) -((-1419 (((-108) $ $) 7)) (-3829 (((-588 (-2 (|:| -1720 $) (|:| -1566 (-588 |#4|)))) (-588 |#4|)) 85)) (-2510 (((-588 $) (-588 |#4|)) 86)) (-3533 (((-588 |#3|) $) 33)) (-2161 (((-108) $) 26)) (-2702 (((-108) $) 17 (|has| |#1| (-514)))) (-1900 (((-108) |#4| $) 101) (((-108) $) 97)) (-2163 ((|#4| |#4| $) 92)) (-3296 (((-2 (|:| |under| $) (|:| -3592 $) (|:| |upper| $)) $ |#3|) 27)) (-2717 (((-108) $ (-708)) 44)) (-1696 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4238))) (((-3 |#4| "failed") $ |#3|) 79)) (-3367 (($) 45 T CONST)) (-1298 (((-108) $) 22 (|has| |#1| (-514)))) (-1657 (((-108) $ $) 24 (|has| |#1| (-514)))) (-3598 (((-108) $ $) 23 (|has| |#1| (-514)))) (-2818 (((-108) $) 25 (|has| |#1| (-514)))) (-3090 (((-588 |#4|) (-588 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3461 (((-588 |#4|) (-588 |#4|) $) 18 (|has| |#1| (-514)))) (-3668 (((-588 |#4|) (-588 |#4|) $) 19 (|has| |#1| (-514)))) (-3700 (((-3 $ "failed") (-588 |#4|)) 36)) (-1478 (($ (-588 |#4|)) 35)) (-2352 (((-3 $ "failed") $) 82)) (-2625 ((|#4| |#4| $) 89)) (-2379 (($ $) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-1424 (($ |#4| $) 67 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4238)))) (-4002 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-514)))) (-1426 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2918 ((|#4| |#4| $) 87)) (-2153 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4238))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-1199 (((-2 (|:| -1720 (-588 |#4|)) (|:| -1566 (-588 |#4|))) $) 105)) (-2395 (((-588 |#4|) $) 52 (|has| $ (-6 -4238)))) (-1384 (((-108) |#4| $) 104) (((-108) $) 103)) (-1933 ((|#3| $) 34)) (-1480 (((-108) $ (-708)) 43)) (-4084 (((-588 |#4|) $) 53 (|has| $ (-6 -4238)))) (-4176 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#4| |#4|) $) 47)) (-2714 (((-588 |#3|) $) 32)) (-3826 (((-108) |#3| $) 31)) (-3309 (((-108) $ (-708)) 42)) (-2311 (((-1068) $) 9)) (-1442 (((-3 |#4| "failed") $) 83)) (-4138 (((-588 |#4|) $) 107)) (-3864 (((-108) |#4| $) 99) (((-108) $) 95)) (-2556 ((|#4| |#4| $) 90)) (-1517 (((-108) $ $) 110)) (-2507 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-514)))) (-3060 (((-108) |#4| $) 100) (((-108) $) 96)) (-3896 ((|#4| |#4| $) 91)) (-4174 (((-1032) $) 10)) (-2337 (((-3 |#4| "failed") $) 84)) (-2187 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-4078 (((-3 $ "failed") $ |#4|) 78)) (-3934 (($ $ |#4|) 77)) (-3487 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 |#4|) (-588 |#4|)) 59 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) 57 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) 56 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-2065 (((-108) $ $) 38)) (-3494 (((-108) $) 41)) (-3298 (($) 40)) (-2487 (((-708) $) 106)) (-4187 (((-708) |#4| $) 54 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4238)))) (-2463 (($ $) 39)) (-3873 (((-498) $) 69 (|has| |#4| (-563 (-498))))) (-2227 (($ (-588 |#4|)) 60)) (-2271 (($ $ |#3|) 28)) (-2154 (($ $ |#3|) 30)) (-1524 (($ $) 88)) (-2773 (($ $ |#3|) 29)) (-2217 (((-792) $) 11) (((-588 |#4|) $) 37)) (-3111 (((-708) $) 76 (|has| |#3| (-343)))) (-3538 (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-2102 (((-108) $ (-1 (-108) |#4| (-588 |#4|))) 98)) (-1381 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4238)))) (-1982 (((-588 |#3|) $) 81)) (-1711 (((-108) |#3| $) 80)) (-1562 (((-108) $ $) 6)) (-3591 (((-708) $) 46 (|has| $ (-6 -4238))))) -(((-1114 |#1| |#2| |#3| |#4|) (-1197) (-514) (-730) (-784) (-985 |t#1| |t#2| |t#3|)) (T -1114)) -((-1517 (*1 *2 *1 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108)))) (-3538 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1322 (-588 *8)))) (-5 *3 (-588 *8)) (-4 *1 (-1114 *5 *6 *7 *8)))) (-3538 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) (-4 *9 (-985 *6 *7 *8)) (-4 *6 (-514)) (-4 *7 (-730)) (-4 *8 (-784)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1322 (-588 *9)))) (-5 *3 (-588 *9)) (-4 *1 (-1114 *6 *7 *8 *9)))) (-4138 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-588 *6)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-708)))) (-1199 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-2 (|:| -1720 (-588 *6)) (|:| -1566 (-588 *6)))))) (-1384 (*1 *2 *3 *1) (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))) (-1384 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108)))) (-1426 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1114 *5 *6 *7 *3)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-108)))) (-1900 (*1 *2 *3 *1) (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))) (-3060 (*1 *2 *3 *1) (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))) (-3864 (*1 *2 *3 *1) (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))) (-2102 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-108) *7 (-588 *7))) (-4 *1 (-1114 *4 *5 *6 *7)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)))) (-1900 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108)))) (-3060 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108)))) (-2153 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) (-4 *1 (-1114 *5 *6 *7 *2)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *2 (-985 *5 *6 *7)))) (-3090 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-588 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1114 *5 *6 *7 *8)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7)))) (-2163 (*1 *2 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) (-3896 (*1 *2 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) (-2556 (*1 *2 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) (-2625 (*1 *2 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) (-1524 (*1 *1 *1) (-12 (-4 *1 (-1114 *2 *3 *4 *5)) (-4 *2 (-514)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *5 (-985 *2 *3 *4)))) (-2918 (*1 *2 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-1114 *4 *5 *6 *7)))) (-3829 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-588 (-2 (|:| -1720 *1) (|:| -1566 (-588 *7))))) (-5 *3 (-588 *7)) (-4 *1 (-1114 *4 *5 *6 *7)))) (-2337 (*1 *2 *1) (|partial| -12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) (-1442 (*1 *2 *1) (|partial| -12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) (-2352 (*1 *1 *1) (|partial| -12 (-4 *1 (-1114 *2 *3 *4 *5)) (-4 *2 (-514)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *5 (-985 *2 *3 *4)))) (-1982 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-588 *5)))) (-1711 (*1 *2 *3 *1) (-12 (-4 *1 (-1114 *4 *5 *3 *6)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *3 (-784)) (-4 *6 (-985 *4 *5 *3)) (-5 *2 (-108)))) (-1696 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1114 *4 *5 *3 *2)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *3 (-784)) (-4 *2 (-985 *4 *5 *3)))) (-4078 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) (-3934 (*1 *1 *1 *2) (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) (-3111 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *5 (-343)) (-5 *2 (-708))))) -(-13 (-903 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4238) (-6 -4239) (-15 -1517 ((-108) $ $)) (-15 -3538 ((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |t#4|))) "failed") (-588 |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3538 ((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |t#4|))) "failed") (-588 |t#4|) (-1 (-108) |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -4138 ((-588 |t#4|) $)) (-15 -2487 ((-708) $)) (-15 -1199 ((-2 (|:| -1720 (-588 |t#4|)) (|:| -1566 (-588 |t#4|))) $)) (-15 -1384 ((-108) |t#4| $)) (-15 -1384 ((-108) $)) (-15 -1426 ((-108) |t#4| $ (-1 (-108) |t#4| |t#4|))) (-15 -1900 ((-108) |t#4| $)) (-15 -3060 ((-108) |t#4| $)) (-15 -3864 ((-108) |t#4| $)) (-15 -2102 ((-108) $ (-1 (-108) |t#4| (-588 |t#4|)))) (-15 -1900 ((-108) $)) (-15 -3060 ((-108) $)) (-15 -3864 ((-108) $)) (-15 -2153 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3090 ((-588 |t#4|) (-588 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2163 (|t#4| |t#4| $)) (-15 -3896 (|t#4| |t#4| $)) (-15 -2556 (|t#4| |t#4| $)) (-15 -2625 (|t#4| |t#4| $)) (-15 -1524 ($ $)) (-15 -2918 (|t#4| |t#4| $)) (-15 -2510 ((-588 $) (-588 |t#4|))) (-15 -3829 ((-588 (-2 (|:| -1720 $) (|:| -1566 (-588 |t#4|)))) (-588 |t#4|))) (-15 -2337 ((-3 |t#4| "failed") $)) (-15 -1442 ((-3 |t#4| "failed") $)) (-15 -2352 ((-3 $ "failed") $)) (-15 -1982 ((-588 |t#3|) $)) (-15 -1711 ((-108) |t#3| $)) (-15 -1696 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4078 ((-3 $ "failed") $ |t#4|)) (-15 -3934 ($ $ |t#4|)) (IF (|has| |t#3| (-343)) (-15 -3111 ((-708) $)) |%noBranch|))) -(((-33) . T) ((-97) . T) ((-562 (-588 |#4|)) . T) ((-562 (-792)) . T) ((-139 |#4|) . T) ((-563 (-498)) |has| |#4| (-563 (-498))) ((-285 |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-461 |#4|) . T) ((-483 |#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-903 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1120) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3533 (((-588 (-1085)) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) NIL (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-3044 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2923 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2016 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3023 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2906 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3066 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2936 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3367 (($) NIL T CONST)) (-3241 (($ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3710 (((-881 |#1|) $ (-708)) 17) (((-881 |#1|) $ (-708) (-708)) NIL)) (-3672 (((-108) $) NIL)) (-2980 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3872 (((-708) $ (-1085)) NIL) (((-708) $ (-1085) (-708)) NIL)) (-2859 (((-108) $) NIL)) (-1811 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1374 (((-108) $) NIL)) (-3500 (($ $ (-588 (-1085)) (-588 (-494 (-1085)))) NIL) (($ $ (-1085) (-494 (-1085))) NIL) (($ |#1| (-494 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-1238 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3216 (($ $) NIL)) (-3224 ((|#1| $) NIL)) (-2311 (((-1068) $) NIL)) (-2611 (($ $ (-1085)) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085) |#1|) NIL (|has| |#1| (-37 (-382 (-522)))))) (-4174 (((-1032) $) NIL)) (-3922 (($ (-1 $) (-1085) |#1|) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3934 (($ $ (-708)) NIL)) (-2276 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-3357 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2330 (($ $ (-1085) $) NIL) (($ $ (-588 (-1085)) (-588 $)) NIL) (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL)) (-2731 (($ $ (-1085)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL)) (-2487 (((-494 (-1085)) $) NIL)) (-1831 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2946 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3054 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2928 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3035 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2915 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1944 (($ $) NIL)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ $) NIL (|has| |#1| (-514))) (($ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-1085)) NIL) (($ (-881 |#1|)) NIL)) (-1643 ((|#1| $ (-494 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (((-881 |#1|) $ (-708)) NIL)) (-3040 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2742 (((-708)) NIL)) (-1856 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2976 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1839 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2957 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1873 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3001 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2476 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3011 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1864 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2989 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1849 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2966 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) NIL T CONST)) (-2252 (($ $ (-1085)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL)) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1115 |#1|) (-13 (-678 |#1| (-1085)) (-10 -8 (-15 -1643 ((-881 |#1|) $ (-708))) (-15 -2217 ($ (-1085))) (-15 -2217 ($ (-881 |#1|))) (IF (|has| |#1| (-37 (-382 (-522)))) (PROGN (-15 -2611 ($ $ (-1085) |#1|)) (-15 -3922 ($ (-1 $) (-1085) |#1|))) |%noBranch|))) (-971)) (T -1115)) -((-1643 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *2 (-881 *4)) (-5 *1 (-1115 *4)) (-4 *4 (-971)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1115 *3)) (-4 *3 (-971)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-971)) (-5 *1 (-1115 *3)))) (-2611 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *1 (-1115 *3)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)))) (-3922 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1115 *4))) (-5 *3 (-1085)) (-5 *1 (-1115 *4)) (-4 *4 (-37 (-382 (-522)))) (-4 *4 (-971))))) -(-13 (-678 |#1| (-1085)) (-10 -8 (-15 -1643 ((-881 |#1|) $ (-708))) (-15 -2217 ($ (-1085))) (-15 -2217 ($ (-881 |#1|))) (IF (|has| |#1| (-37 (-382 (-522)))) (PROGN (-15 -2611 ($ $ (-1085) |#1|)) (-15 -3922 ($ (-1 $) (-1085) |#1|))) |%noBranch|))) -((-1530 (($ |#1| (-588 (-588 (-872 (-202)))) (-108)) 16)) (-1397 (((-108) $ (-108)) 15)) (-3914 (((-108) $) 14)) (-1759 (((-588 (-588 (-872 (-202)))) $) 10)) (-1835 ((|#1| $) 8)) (-1947 (((-108) $) 12))) -(((-1116 |#1|) (-10 -8 (-15 -1835 (|#1| $)) (-15 -1759 ((-588 (-588 (-872 (-202)))) $)) (-15 -1947 ((-108) $)) (-15 -3914 ((-108) $)) (-15 -1397 ((-108) $ (-108))) (-15 -1530 ($ |#1| (-588 (-588 (-872 (-202)))) (-108)))) (-901)) (T -1116)) -((-1530 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *4 (-108)) (-5 *1 (-1116 *2)) (-4 *2 (-901)))) (-1397 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1116 *3)) (-4 *3 (-901)))) (-3914 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1116 *3)) (-4 *3 (-901)))) (-1947 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1116 *3)) (-4 *3 (-901)))) (-1759 (*1 *2 *1) (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *1 (-1116 *3)) (-4 *3 (-901)))) (-1835 (*1 *2 *1) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-901))))) -(-10 -8 (-15 -1835 (|#1| $)) (-15 -1759 ((-588 (-588 (-872 (-202)))) $)) (-15 -1947 ((-108) $)) (-15 -3914 ((-108) $)) (-15 -1397 ((-108) $ (-108))) (-15 -1530 ($ |#1| (-588 (-588 (-872 (-202)))) (-108)))) -((-2826 (((-872 (-202)) (-872 (-202))) 25)) (-1239 (((-872 (-202)) (-202) (-202) (-202) (-202)) 10)) (-3117 (((-588 (-872 (-202))) (-872 (-202)) (-872 (-202)) (-872 (-202)) (-202) (-588 (-588 (-202)))) 37)) (-4024 (((-202) (-872 (-202)) (-872 (-202))) 21)) (-2791 (((-872 (-202)) (-872 (-202)) (-872 (-202))) 22)) (-3995 (((-588 (-588 (-202))) (-522)) 31)) (-1672 (((-872 (-202)) (-872 (-202)) (-872 (-202))) 20)) (-1661 (((-872 (-202)) (-872 (-202)) (-872 (-202))) 19)) (* (((-872 (-202)) (-202) (-872 (-202))) 18))) -(((-1117) (-10 -7 (-15 -1239 ((-872 (-202)) (-202) (-202) (-202) (-202))) (-15 * ((-872 (-202)) (-202) (-872 (-202)))) (-15 -1661 ((-872 (-202)) (-872 (-202)) (-872 (-202)))) (-15 -1672 ((-872 (-202)) (-872 (-202)) (-872 (-202)))) (-15 -4024 ((-202) (-872 (-202)) (-872 (-202)))) (-15 -2791 ((-872 (-202)) (-872 (-202)) (-872 (-202)))) (-15 -2826 ((-872 (-202)) (-872 (-202)))) (-15 -3995 ((-588 (-588 (-202))) (-522))) (-15 -3117 ((-588 (-872 (-202))) (-872 (-202)) (-872 (-202)) (-872 (-202)) (-202) (-588 (-588 (-202))))))) (T -1117)) -((-3117 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-588 (-588 (-202)))) (-5 *4 (-202)) (-5 *2 (-588 (-872 *4))) (-5 *1 (-1117)) (-5 *3 (-872 *4)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-522)) (-5 *2 (-588 (-588 (-202)))) (-5 *1 (-1117)))) (-2826 (*1 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1117)))) (-2791 (*1 *2 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1117)))) (-4024 (*1 *2 *3 *3) (-12 (-5 *3 (-872 (-202))) (-5 *2 (-202)) (-5 *1 (-1117)))) (-1672 (*1 *2 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1117)))) (-1661 (*1 *2 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1117)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-872 (-202))) (-5 *3 (-202)) (-5 *1 (-1117)))) (-1239 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1117)) (-5 *3 (-202))))) -(-10 -7 (-15 -1239 ((-872 (-202)) (-202) (-202) (-202) (-202))) (-15 * ((-872 (-202)) (-202) (-872 (-202)))) (-15 -1661 ((-872 (-202)) (-872 (-202)) (-872 (-202)))) (-15 -1672 ((-872 (-202)) (-872 (-202)) (-872 (-202)))) (-15 -4024 ((-202) (-872 (-202)) (-872 (-202)))) (-15 -2791 ((-872 (-202)) (-872 (-202)) (-872 (-202)))) (-15 -2826 ((-872 (-202)) (-872 (-202)))) (-15 -3995 ((-588 (-588 (-202))) (-522))) (-15 -3117 ((-588 (-872 (-202))) (-872 (-202)) (-872 (-202)) (-872 (-202)) (-202) (-588 (-588 (-202)))))) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1696 ((|#1| $ (-708)) 13)) (-4030 (((-708) $) 12)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2217 (((-886 |#1|) $) 10) (($ (-886 |#1|)) 9) (((-792) $) 23 (|has| |#1| (-562 (-792))))) (-1562 (((-108) $ $) 16 (|has| |#1| (-1014))))) -(((-1118 |#1|) (-13 (-562 (-886 |#1|)) (-10 -8 (-15 -2217 ($ (-886 |#1|))) (-15 -1696 (|#1| $ (-708))) (-15 -4030 ((-708) $)) (IF (|has| |#1| (-562 (-792))) (-6 (-562 (-792))) |%noBranch|) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|))) (-1120)) (T -1118)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-1120)) (-5 *1 (-1118 *3)))) (-1696 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *1 (-1118 *2)) (-4 *2 (-1120)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-1118 *3)) (-4 *3 (-1120))))) -(-13 (-562 (-886 |#1|)) (-10 -8 (-15 -2217 ($ (-886 |#1|))) (-15 -1696 (|#1| $ (-708))) (-15 -4030 ((-708) $)) (IF (|has| |#1| (-562 (-792))) (-6 (-562 (-792))) |%noBranch|) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|))) -((-3140 (((-393 (-1081 (-1081 |#1|))) (-1081 (-1081 |#1|)) (-522)) 79)) (-3703 (((-393 (-1081 (-1081 |#1|))) (-1081 (-1081 |#1|))) 73)) (-1489 (((-393 (-1081 (-1081 |#1|))) (-1081 (-1081 |#1|))) 58))) -(((-1119 |#1|) (-10 -7 (-15 -3703 ((-393 (-1081 (-1081 |#1|))) (-1081 (-1081 |#1|)))) (-15 -1489 ((-393 (-1081 (-1081 |#1|))) (-1081 (-1081 |#1|)))) (-15 -3140 ((-393 (-1081 (-1081 |#1|))) (-1081 (-1081 |#1|)) (-522)))) (-324)) (T -1119)) -((-3140 (*1 *2 *3 *4) (-12 (-5 *4 (-522)) (-4 *5 (-324)) (-5 *2 (-393 (-1081 (-1081 *5)))) (-5 *1 (-1119 *5)) (-5 *3 (-1081 (-1081 *5))))) (-1489 (*1 *2 *3) (-12 (-4 *4 (-324)) (-5 *2 (-393 (-1081 (-1081 *4)))) (-5 *1 (-1119 *4)) (-5 *3 (-1081 (-1081 *4))))) (-3703 (*1 *2 *3) (-12 (-4 *4 (-324)) (-5 *2 (-393 (-1081 (-1081 *4)))) (-5 *1 (-1119 *4)) (-5 *3 (-1081 (-1081 *4)))))) -(-10 -7 (-15 -3703 ((-393 (-1081 (-1081 |#1|))) (-1081 (-1081 |#1|)))) (-15 -1489 ((-393 (-1081 (-1081 |#1|))) (-1081 (-1081 |#1|)))) (-15 -3140 ((-393 (-1081 (-1081 |#1|))) (-1081 (-1081 |#1|)) (-522)))) -NIL -(((-1120) (-1197)) (T -1120)) -NIL -(-13 (-10 -7 (-6 -2088))) -((-1511 (((-108)) 15)) (-3463 (((-1171) (-588 |#1|) (-588 |#1|)) 19) (((-1171) (-588 |#1|)) 20)) (-1480 (((-108) |#1| |#1|) 31 (|has| |#1| (-784)))) (-3309 (((-108) |#1| |#1| (-1 (-108) |#1| |#1|)) 27) (((-3 (-108) "failed") |#1| |#1|) 25)) (-1712 ((|#1| (-588 |#1|)) 32 (|has| |#1| (-784))) ((|#1| (-588 |#1|) (-1 (-108) |#1| |#1|)) 28)) (-4150 (((-2 (|:| -2430 (-588 |#1|)) (|:| -3636 (-588 |#1|)))) 17))) -(((-1121 |#1|) (-10 -7 (-15 -3463 ((-1171) (-588 |#1|))) (-15 -3463 ((-1171) (-588 |#1|) (-588 |#1|))) (-15 -4150 ((-2 (|:| -2430 (-588 |#1|)) (|:| -3636 (-588 |#1|))))) (-15 -3309 ((-3 (-108) "failed") |#1| |#1|)) (-15 -3309 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -1712 (|#1| (-588 |#1|) (-1 (-108) |#1| |#1|))) (-15 -1511 ((-108))) (IF (|has| |#1| (-784)) (PROGN (-15 -1712 (|#1| (-588 |#1|))) (-15 -1480 ((-108) |#1| |#1|))) |%noBranch|)) (-1014)) (T -1121)) -((-1480 (*1 *2 *3 *3) (-12 (-5 *2 (-108)) (-5 *1 (-1121 *3)) (-4 *3 (-784)) (-4 *3 (-1014)))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-1014)) (-4 *2 (-784)) (-5 *1 (-1121 *2)))) (-1511 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1121 *3)) (-4 *3 (-1014)))) (-1712 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1121 *2)) (-4 *2 (-1014)))) (-3309 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1014)) (-5 *2 (-108)) (-5 *1 (-1121 *3)))) (-3309 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1121 *3)) (-4 *3 (-1014)))) (-4150 (*1 *2) (-12 (-5 *2 (-2 (|:| -2430 (-588 *3)) (|:| -3636 (-588 *3)))) (-5 *1 (-1121 *3)) (-4 *3 (-1014)))) (-3463 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *4)) (-4 *4 (-1014)) (-5 *2 (-1171)) (-5 *1 (-1121 *4)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-588 *4)) (-4 *4 (-1014)) (-5 *2 (-1171)) (-5 *1 (-1121 *4))))) -(-10 -7 (-15 -3463 ((-1171) (-588 |#1|))) (-15 -3463 ((-1171) (-588 |#1|) (-588 |#1|))) (-15 -4150 ((-2 (|:| -2430 (-588 |#1|)) (|:| -3636 (-588 |#1|))))) (-15 -3309 ((-3 (-108) "failed") |#1| |#1|)) (-15 -3309 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -1712 (|#1| (-588 |#1|) (-1 (-108) |#1| |#1|))) (-15 -1511 ((-108))) (IF (|has| |#1| (-784)) (PROGN (-15 -1712 (|#1| (-588 |#1|))) (-15 -1480 ((-108) |#1| |#1|))) |%noBranch|)) -((-2579 (((-1171) (-588 (-1085)) (-588 (-1085))) 12) (((-1171) (-588 (-1085))) 10)) (-1709 (((-1171)) 13)) (-4218 (((-2 (|:| -3636 (-588 (-1085))) (|:| -2430 (-588 (-1085))))) 17))) -(((-1122) (-10 -7 (-15 -2579 ((-1171) (-588 (-1085)))) (-15 -2579 ((-1171) (-588 (-1085)) (-588 (-1085)))) (-15 -4218 ((-2 (|:| -3636 (-588 (-1085))) (|:| -2430 (-588 (-1085)))))) (-15 -1709 ((-1171))))) (T -1122)) -((-1709 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1122)))) (-4218 (*1 *2) (-12 (-5 *2 (-2 (|:| -3636 (-588 (-1085))) (|:| -2430 (-588 (-1085))))) (-5 *1 (-1122)))) (-2579 (*1 *2 *3 *3) (-12 (-5 *3 (-588 (-1085))) (-5 *2 (-1171)) (-5 *1 (-1122)))) (-2579 (*1 *2 *3) (-12 (-5 *3 (-588 (-1085))) (-5 *2 (-1171)) (-5 *1 (-1122))))) -(-10 -7 (-15 -2579 ((-1171) (-588 (-1085)))) (-15 -2579 ((-1171) (-588 (-1085)) (-588 (-1085)))) (-15 -4218 ((-2 (|:| -3636 (-588 (-1085))) (|:| -2430 (-588 (-1085)))))) (-15 -1709 ((-1171)))) -((-2961 (($ $) 16)) (-2725 (((-108) $) 23))) -(((-1123 |#1|) (-10 -8 (-15 -2961 (|#1| |#1|)) (-15 -2725 ((-108) |#1|))) (-1124)) (T -1123)) -NIL -(-10 -8 (-15 -2961 (|#1| |#1|)) (-15 -2725 ((-108) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2298 (($ $) 40)) (-3007 (((-108) $) 38)) (-2265 (((-3 $ "failed") $ $) 19)) (-2961 (($ $) 51)) (-3133 (((-393 $) $) 52)) (-3367 (($) 17 T CONST)) (-3920 (((-3 $ "failed") $) 34)) (-2725 (((-108) $) 53)) (-2859 (((-108) $) 31)) (-2267 (($ $ $) 46) (($ (-588 $)) 45)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2308 (($ $ $) 48) (($ (-588 $)) 47)) (-2006 (((-393 $) $) 50)) (-2276 (((-3 $ "failed") $ $) 42)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 43)) (-2742 (((-708)) 29)) (-1407 (((-108) $ $) 39)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24))) -(((-1124) (-1197)) (T -1124)) -((-2725 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-108)))) (-3133 (*1 *2 *1) (-12 (-5 *2 (-393 *1)) (-4 *1 (-1124)))) (-2961 (*1 *1 *1) (-4 *1 (-1124))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-393 *1)) (-4 *1 (-1124))))) -(-13 (-426) (-10 -8 (-15 -2725 ((-108) $)) (-15 -3133 ((-393 $) $)) (-15 -2961 ($ $)) (-15 -2006 ((-393 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-266) . T) ((-426) . T) ((-514) . T) ((-590 $) . T) ((-655 $) . T) ((-664) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-3810 (((-1130 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1130 |#1| |#3| |#5|)) 23))) -(((-1125 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3810 ((-1130 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1130 |#1| |#3| |#5|)))) (-971) (-971) (-1085) (-1085) |#1| |#2|) (T -1125)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1130 *5 *7 *9)) (-4 *5 (-971)) (-4 *6 (-971)) (-14 *7 (-1085)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1130 *6 *8 *10)) (-5 *1 (-1125 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1085))))) -(-10 -7 (-15 -3810 ((-1130 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1130 |#1| |#3| |#5|)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3533 (((-588 (-999)) $) 74)) (-1660 (((-1085) $) 103)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 51 (|has| |#1| (-514)))) (-2298 (($ $) 52 (|has| |#1| (-514)))) (-3007 (((-108) $) 54 (|has| |#1| (-514)))) (-3495 (($ $ (-522)) 98) (($ $ (-522) (-522)) 97)) (-3024 (((-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) $) 105)) (-3044 (($ $) 135 (|has| |#1| (-37 (-382 (-522)))))) (-2923 (($ $) 118 (|has| |#1| (-37 (-382 (-522)))))) (-2265 (((-3 $ "failed") $ $) 19)) (-2961 (($ $) 162 (|has| |#1| (-338)))) (-3133 (((-393 $) $) 163 (|has| |#1| (-338)))) (-2016 (($ $) 117 (|has| |#1| (-37 (-382 (-522)))))) (-2805 (((-108) $ $) 153 (|has| |#1| (-338)))) (-3023 (($ $) 134 (|has| |#1| (-37 (-382 (-522)))))) (-2906 (($ $) 119 (|has| |#1| (-37 (-382 (-522)))))) (-1270 (($ (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|)))) 174)) (-3066 (($ $) 133 (|has| |#1| (-37 (-382 (-522)))))) (-2936 (($ $) 120 (|has| |#1| (-37 (-382 (-522)))))) (-3367 (($) 17 T CONST)) (-2333 (($ $ $) 157 (|has| |#1| (-338)))) (-3241 (($ $) 60)) (-3920 (((-3 $ "failed") $) 34)) (-1749 (((-382 (-881 |#1|)) $ (-522)) 172 (|has| |#1| (-514))) (((-382 (-881 |#1|)) $ (-522) (-522)) 171 (|has| |#1| (-514)))) (-2303 (($ $ $) 156 (|has| |#1| (-338)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 151 (|has| |#1| (-338)))) (-2725 (((-108) $) 164 (|has| |#1| (-338)))) (-3672 (((-108) $) 73)) (-2980 (($) 145 (|has| |#1| (-37 (-382 (-522)))))) (-3872 (((-522) $) 100) (((-522) $ (-522)) 99)) (-2859 (((-108) $) 31)) (-1811 (($ $ (-522)) 116 (|has| |#1| (-37 (-382 (-522)))))) (-2895 (($ $ (-850)) 101)) (-1332 (($ (-1 |#1| (-522)) $) 173)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 160 (|has| |#1| (-338)))) (-1374 (((-108) $) 62)) (-3500 (($ |#1| (-522)) 61) (($ $ (-999) (-522)) 76) (($ $ (-588 (-999)) (-588 (-522))) 75)) (-3810 (($ (-1 |#1| |#1|) $) 63)) (-1238 (($ $) 142 (|has| |#1| (-37 (-382 (-522)))))) (-3216 (($ $) 65)) (-3224 ((|#1| $) 66)) (-2267 (($ (-588 $)) 149 (|has| |#1| (-338))) (($ $ $) 148 (|has| |#1| (-338)))) (-2311 (((-1068) $) 9)) (-3193 (($ $) 165 (|has| |#1| (-338)))) (-2611 (($ $) 170 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) 169 (-3844 (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-887)) (|has| |#1| (-1106)) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-15 -3533 ((-588 (-1085)) |#1|))) (|has| |#1| (-15 -2611 (|#1| |#1| (-1085)))) (|has| |#1| (-37 (-382 (-522)))))))) (-4174 (((-1032) $) 10)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 150 (|has| |#1| (-338)))) (-2308 (($ (-588 $)) 147 (|has| |#1| (-338))) (($ $ $) 146 (|has| |#1| (-338)))) (-2006 (((-393 $) $) 161 (|has| |#1| (-338)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 158 (|has| |#1| (-338)))) (-3934 (($ $ (-522)) 95)) (-2276 (((-3 $ "failed") $ $) 50 (|has| |#1| (-514)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 152 (|has| |#1| (-338)))) (-3357 (($ $) 143 (|has| |#1| (-37 (-382 (-522)))))) (-2330 (((-1066 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-522)))))) (-4031 (((-708) $) 154 (|has| |#1| (-338)))) (-2683 ((|#1| $ (-522)) 104) (($ $ $) 81 (|has| (-522) (-1026)))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 155 (|has| |#1| (-338)))) (-2731 (($ $ (-588 (-1085)) (-588 (-708))) 89 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-1085) (-708)) 88 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-588 (-1085))) 87 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-1085)) 86 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-708)) 84 (|has| |#1| (-15 * (|#1| (-522) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (-2487 (((-522) $) 64)) (-1831 (($ $) 132 (|has| |#1| (-37 (-382 (-522)))))) (-2946 (($ $) 121 (|has| |#1| (-37 (-382 (-522)))))) (-3054 (($ $) 131 (|has| |#1| (-37 (-382 (-522)))))) (-2928 (($ $) 122 (|has| |#1| (-37 (-382 (-522)))))) (-3035 (($ $) 130 (|has| |#1| (-37 (-382 (-522)))))) (-2915 (($ $) 123 (|has| |#1| (-37 (-382 (-522)))))) (-1944 (($ $) 72)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ (-382 (-522))) 57 (|has| |#1| (-37 (-382 (-522))))) (($ $) 49 (|has| |#1| (-514)))) (-1643 ((|#1| $ (-522)) 59)) (-3040 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-2742 (((-708)) 29)) (-1980 ((|#1| $) 102)) (-1856 (($ $) 141 (|has| |#1| (-37 (-382 (-522)))))) (-2976 (($ $) 129 (|has| |#1| (-37 (-382 (-522)))))) (-1407 (((-108) $ $) 53 (|has| |#1| (-514)))) (-1839 (($ $) 140 (|has| |#1| (-37 (-382 (-522)))))) (-2957 (($ $) 128 (|has| |#1| (-37 (-382 (-522)))))) (-1873 (($ $) 139 (|has| |#1| (-37 (-382 (-522)))))) (-3001 (($ $) 127 (|has| |#1| (-37 (-382 (-522)))))) (-3996 ((|#1| $ (-522)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-522)))) (|has| |#1| (-15 -2217 (|#1| (-1085))))))) (-2476 (($ $) 138 (|has| |#1| (-37 (-382 (-522)))))) (-3011 (($ $) 126 (|has| |#1| (-37 (-382 (-522)))))) (-1864 (($ $) 137 (|has| |#1| (-37 (-382 (-522)))))) (-2989 (($ $) 125 (|has| |#1| (-37 (-382 (-522)))))) (-1849 (($ $) 136 (|has| |#1| (-37 (-382 (-522)))))) (-2966 (($ $) 124 (|has| |#1| (-37 (-382 (-522)))))) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 166 (|has| |#1| (-338)))) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $ (-588 (-1085)) (-588 (-708))) 93 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-1085) (-708)) 92 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-588 (-1085))) 91 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-1085)) 90 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-708)) 85 (|has| |#1| (-15 * (|#1| (-522) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (-1562 (((-108) $ $) 6)) (-1682 (($ $ |#1|) 58 (|has| |#1| (-338))) (($ $ $) 168 (|has| |#1| (-338)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 167 (|has| |#1| (-338))) (($ $ $) 144 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 115 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-382 (-522)) $) 56 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 55 (|has| |#1| (-37 (-382 (-522))))))) -(((-1126 |#1|) (-1197) (-971)) (T -1126)) -((-1270 (*1 *1 *2) (-12 (-5 *2 (-1066 (-2 (|:| |k| (-522)) (|:| |c| *3)))) (-4 *3 (-971)) (-4 *1 (-1126 *3)))) (-1332 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-522))) (-4 *1 (-1126 *3)) (-4 *3 (-971)))) (-1749 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-1126 *4)) (-4 *4 (-971)) (-4 *4 (-514)) (-5 *2 (-382 (-881 *4))))) (-1749 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-522)) (-4 *1 (-1126 *4)) (-4 *4 (-971)) (-4 *4 (-514)) (-5 *2 (-382 (-881 *4))))) (-2611 (*1 *1 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-971)) (-4 *2 (-37 (-382 (-522)))))) (-2611 (*1 *1 *1 *2) (-3844 (-12 (-5 *2 (-1085)) (-4 *1 (-1126 *3)) (-4 *3 (-971)) (-12 (-4 *3 (-29 (-522))) (-4 *3 (-887)) (-4 *3 (-1106)) (-4 *3 (-37 (-382 (-522)))))) (-12 (-5 *2 (-1085)) (-4 *1 (-1126 *3)) (-4 *3 (-971)) (-12 (|has| *3 (-15 -3533 ((-588 *2) *3))) (|has| *3 (-15 -2611 (*3 *3 *2))) (-4 *3 (-37 (-382 (-522))))))))) -(-13 (-1144 |t#1| (-522)) (-10 -8 (-15 -1270 ($ (-1066 (-2 (|:| |k| (-522)) (|:| |c| |t#1|))))) (-15 -1332 ($ (-1 |t#1| (-522)) $)) (IF (|has| |t#1| (-514)) (PROGN (-15 -1749 ((-382 (-881 |t#1|)) $ (-522))) (-15 -1749 ((-382 (-881 |t#1|)) $ (-522) (-522)))) |%noBranch|) (IF (|has| |t#1| (-37 (-382 (-522)))) (PROGN (-15 -2611 ($ $)) (IF (|has| |t#1| (-15 -2611 (|t#1| |t#1| (-1085)))) (IF (|has| |t#1| (-15 -3533 ((-588 (-1085)) |t#1|))) (-15 -2611 ($ $ (-1085))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1106)) (IF (|has| |t#1| (-887)) (IF (|has| |t#1| (-29 (-522))) (-15 -2611 ($ $ (-1085))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-928)) (-6 (-1106))) |%noBranch|) (IF (|has| |t#1| (-338)) (-6 (-338)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-522)) . T) ((-25) . T) ((-37 #1=(-382 (-522))) -3844 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3844 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-34) |has| |#1| (-37 (-382 (-522)))) ((-91) |has| |#1| (-37 (-382 (-522)))) ((-97) . T) ((-107 #1# #1#) -3844 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3844 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3844 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-210) |has| |#1| (-15 * (|#1| (-522) |#1|))) ((-220) |has| |#1| (-338)) ((-260) |has| |#1| (-37 (-382 (-522)))) ((-262 $ $) |has| (-522) (-1026)) ((-266) -3844 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-283) |has| |#1| (-338)) ((-338) |has| |#1| (-338)) ((-426) |has| |#1| (-338)) ((-463) |has| |#1| (-37 (-382 (-522)))) ((-514) -3844 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-590 #1#) -3844 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #1#) -3844 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) -3844 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-664) . T) ((-829 (-1085)) -12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))) ((-900 |#1| #0# (-999)) . T) ((-849) |has| |#1| (-338)) ((-928) |has| |#1| (-37 (-382 (-522)))) ((-977 #1#) -3844 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-977 |#1|) . T) ((-977 $) -3844 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1106) |has| |#1| (-37 (-382 (-522)))) ((-1109) |has| |#1| (-37 (-382 (-522)))) ((-1124) |has| |#1| (-338)) ((-1144 |#1| #0#) . T)) -((-2944 (((-108) $) 12)) (-3700 (((-3 |#3| "failed") $) 17) (((-3 (-1085) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 (-522) "failed") $) NIL)) (-1478 ((|#3| $) 14) (((-1085) $) NIL) (((-382 (-522)) $) NIL) (((-522) $) NIL))) -(((-1127 |#1| |#2| |#3|) (-10 -8 (-15 -1478 ((-522) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1478 ((-1085) |#1|)) (-15 -3700 ((-3 (-1085) "failed") |#1|)) (-15 -1478 (|#3| |#1|)) (-15 -3700 ((-3 |#3| "failed") |#1|)) (-15 -2944 ((-108) |#1|))) (-1128 |#2| |#3|) (-971) (-1157 |#2|)) (T -1127)) -NIL -(-10 -8 (-15 -1478 ((-522) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1478 ((-1085) |#1|)) (-15 -3700 ((-3 (-1085) "failed") |#1|)) (-15 -1478 (|#3| |#1|)) (-15 -3700 ((-3 |#3| "failed") |#1|)) (-15 -2944 ((-108) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3049 ((|#2| $) 231 (-4079 (|has| |#2| (-283)) (|has| |#1| (-338))))) (-3533 (((-588 (-999)) $) 74)) (-1660 (((-1085) $) 103)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 51 (|has| |#1| (-514)))) (-2298 (($ $) 52 (|has| |#1| (-514)))) (-3007 (((-108) $) 54 (|has| |#1| (-514)))) (-3495 (($ $ (-522)) 98) (($ $ (-522) (-522)) 97)) (-3024 (((-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) $) 105)) (-1201 ((|#2| $) 267)) (-1413 (((-3 |#2| "failed") $) 263)) (-3162 ((|#2| $) 264)) (-3044 (($ $) 135 (|has| |#1| (-37 (-382 (-522)))))) (-2923 (($ $) 118 (|has| |#1| (-37 (-382 (-522)))))) (-2265 (((-3 $ "failed") $ $) 19)) (-3543 (((-393 (-1081 $)) (-1081 $)) 240 (-4079 (|has| |#2| (-838)) (|has| |#1| (-338))))) (-2961 (($ $) 162 (|has| |#1| (-338)))) (-3133 (((-393 $) $) 163 (|has| |#1| (-338)))) (-2016 (($ $) 117 (|has| |#1| (-37 (-382 (-522)))))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 237 (-4079 (|has| |#2| (-838)) (|has| |#1| (-338))))) (-2805 (((-108) $ $) 153 (|has| |#1| (-338)))) (-3023 (($ $) 134 (|has| |#1| (-37 (-382 (-522)))))) (-2906 (($ $) 119 (|has| |#1| (-37 (-382 (-522)))))) (-3355 (((-522) $) 249 (-4079 (|has| |#2| (-757)) (|has| |#1| (-338))))) (-1270 (($ (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|)))) 174)) (-3066 (($ $) 133 (|has| |#1| (-37 (-382 (-522)))))) (-2936 (($ $) 120 (|has| |#1| (-37 (-382 (-522)))))) (-3367 (($) 17 T CONST)) (-3700 (((-3 |#2| "failed") $) 270) (((-3 (-522) "failed") $) 259 (-4079 (|has| |#2| (-962 (-522))) (|has| |#1| (-338)))) (((-3 (-382 (-522)) "failed") $) 257 (-4079 (|has| |#2| (-962 (-522))) (|has| |#1| (-338)))) (((-3 (-1085) "failed") $) 242 (-4079 (|has| |#2| (-962 (-1085))) (|has| |#1| (-338))))) (-1478 ((|#2| $) 269) (((-522) $) 260 (-4079 (|has| |#2| (-962 (-522))) (|has| |#1| (-338)))) (((-382 (-522)) $) 258 (-4079 (|has| |#2| (-962 (-522))) (|has| |#1| (-338)))) (((-1085) $) 243 (-4079 (|has| |#2| (-962 (-1085))) (|has| |#1| (-338))))) (-3734 (($ $) 266) (($ (-522) $) 265)) (-2333 (($ $ $) 157 (|has| |#1| (-338)))) (-3241 (($ $) 60)) (-1226 (((-628 |#2|) (-628 $)) 221 (|has| |#1| (-338))) (((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) 220 (|has| |#1| (-338))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 219 (-4079 (|has| |#2| (-584 (-522))) (|has| |#1| (-338)))) (((-628 (-522)) (-628 $)) 218 (-4079 (|has| |#2| (-584 (-522))) (|has| |#1| (-338))))) (-3920 (((-3 $ "failed") $) 34)) (-1749 (((-382 (-881 |#1|)) $ (-522)) 172 (|has| |#1| (-514))) (((-382 (-881 |#1|)) $ (-522) (-522)) 171 (|has| |#1| (-514)))) (-3344 (($) 233 (-4079 (|has| |#2| (-507)) (|has| |#1| (-338))))) (-2303 (($ $ $) 156 (|has| |#1| (-338)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 151 (|has| |#1| (-338)))) (-2725 (((-108) $) 164 (|has| |#1| (-338)))) (-3603 (((-108) $) 247 (-4079 (|has| |#2| (-757)) (|has| |#1| (-338))))) (-3672 (((-108) $) 73)) (-2980 (($) 145 (|has| |#1| (-37 (-382 (-522)))))) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 225 (-4079 (|has| |#2| (-815 (-354))) (|has| |#1| (-338)))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 224 (-4079 (|has| |#2| (-815 (-522))) (|has| |#1| (-338))))) (-3872 (((-522) $) 100) (((-522) $ (-522)) 99)) (-2859 (((-108) $) 31)) (-1558 (($ $) 229 (|has| |#1| (-338)))) (-2947 ((|#2| $) 227 (|has| |#1| (-338)))) (-1811 (($ $ (-522)) 116 (|has| |#1| (-37 (-382 (-522)))))) (-4208 (((-3 $ "failed") $) 261 (-4079 (|has| |#2| (-1061)) (|has| |#1| (-338))))) (-3740 (((-108) $) 248 (-4079 (|has| |#2| (-757)) (|has| |#1| (-338))))) (-2895 (($ $ (-850)) 101)) (-1332 (($ (-1 |#1| (-522)) $) 173)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 160 (|has| |#1| (-338)))) (-1374 (((-108) $) 62)) (-3500 (($ |#1| (-522)) 61) (($ $ (-999) (-522)) 76) (($ $ (-588 (-999)) (-588 (-522))) 75)) (-1308 (($ $ $) 251 (-4079 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-2524 (($ $ $) 252 (-4079 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-3810 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-338)))) (-1238 (($ $) 142 (|has| |#1| (-37 (-382 (-522)))))) (-3216 (($ $) 65)) (-3224 ((|#1| $) 66)) (-2267 (($ (-588 $)) 149 (|has| |#1| (-338))) (($ $ $) 148 (|has| |#1| (-338)))) (-3170 (($ (-522) |#2|) 268)) (-2311 (((-1068) $) 9)) (-3193 (($ $) 165 (|has| |#1| (-338)))) (-2611 (($ $) 170 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) 169 (-3844 (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-887)) (|has| |#1| (-1106)) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-15 -3533 ((-588 (-1085)) |#1|))) (|has| |#1| (-15 -2611 (|#1| |#1| (-1085)))) (|has| |#1| (-37 (-382 (-522)))))))) (-3937 (($) 262 (-4079 (|has| |#2| (-1061)) (|has| |#1| (-338))) CONST)) (-4174 (((-1032) $) 10)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 150 (|has| |#1| (-338)))) (-2308 (($ (-588 $)) 147 (|has| |#1| (-338))) (($ $ $) 146 (|has| |#1| (-338)))) (-4194 (($ $) 232 (-4079 (|has| |#2| (-283)) (|has| |#1| (-338))))) (-3592 ((|#2| $) 235 (-4079 (|has| |#2| (-507)) (|has| |#1| (-338))))) (-4022 (((-393 (-1081 $)) (-1081 $)) 238 (-4079 (|has| |#2| (-838)) (|has| |#1| (-338))))) (-2313 (((-393 (-1081 $)) (-1081 $)) 239 (-4079 (|has| |#2| (-838)) (|has| |#1| (-338))))) (-2006 (((-393 $) $) 161 (|has| |#1| (-338)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 158 (|has| |#1| (-338)))) (-3934 (($ $ (-522)) 95)) (-2276 (((-3 $ "failed") $ $) 50 (|has| |#1| (-514)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 152 (|has| |#1| (-338)))) (-3357 (($ $) 143 (|has| |#1| (-37 (-382 (-522)))))) (-2330 (((-1066 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-522))))) (($ $ (-1085) |#2|) 212 (-4079 (|has| |#2| (-483 (-1085) |#2|)) (|has| |#1| (-338)))) (($ $ (-588 (-1085)) (-588 |#2|)) 211 (-4079 (|has| |#2| (-483 (-1085) |#2|)) (|has| |#1| (-338)))) (($ $ (-588 (-270 |#2|))) 210 (-4079 (|has| |#2| (-285 |#2|)) (|has| |#1| (-338)))) (($ $ (-270 |#2|)) 209 (-4079 (|has| |#2| (-285 |#2|)) (|has| |#1| (-338)))) (($ $ |#2| |#2|) 208 (-4079 (|has| |#2| (-285 |#2|)) (|has| |#1| (-338)))) (($ $ (-588 |#2|) (-588 |#2|)) 207 (-4079 (|has| |#2| (-285 |#2|)) (|has| |#1| (-338))))) (-4031 (((-708) $) 154 (|has| |#1| (-338)))) (-2683 ((|#1| $ (-522)) 104) (($ $ $) 81 (|has| (-522) (-1026))) (($ $ |#2|) 206 (-4079 (|has| |#2| (-262 |#2| |#2|)) (|has| |#1| (-338))))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 155 (|has| |#1| (-338)))) (-2731 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-338))) (($ $ (-1 |#2| |#2|) (-708)) 216 (|has| |#1| (-338))) (($ $ (-708)) 84 (-3844 (-4079 (|has| |#2| (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $) 82 (-3844 (-4079 (|has| |#2| (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-588 (-1085)) (-588 (-708))) 89 (-3844 (-4079 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|)))))) (($ $ (-1085) (-708)) 88 (-3844 (-4079 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|)))))) (($ $ (-588 (-1085))) 87 (-3844 (-4079 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|)))))) (($ $ (-1085)) 86 (-3844 (-4079 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))))) (-2762 (($ $) 230 (|has| |#1| (-338)))) (-2959 ((|#2| $) 228 (|has| |#1| (-338)))) (-2487 (((-522) $) 64)) (-1831 (($ $) 132 (|has| |#1| (-37 (-382 (-522)))))) (-2946 (($ $) 121 (|has| |#1| (-37 (-382 (-522)))))) (-3054 (($ $) 131 (|has| |#1| (-37 (-382 (-522)))))) (-2928 (($ $) 122 (|has| |#1| (-37 (-382 (-522)))))) (-3035 (($ $) 130 (|has| |#1| (-37 (-382 (-522)))))) (-2915 (($ $) 123 (|has| |#1| (-37 (-382 (-522)))))) (-3873 (((-202) $) 246 (-4079 (|has| |#2| (-947)) (|has| |#1| (-338)))) (((-354) $) 245 (-4079 (|has| |#2| (-947)) (|has| |#1| (-338)))) (((-498) $) 244 (-4079 (|has| |#2| (-563 (-498))) (|has| |#1| (-338)))) (((-821 (-354)) $) 223 (-4079 (|has| |#2| (-563 (-821 (-354)))) (|has| |#1| (-338)))) (((-821 (-522)) $) 222 (-4079 (|has| |#2| (-563 (-821 (-522)))) (|has| |#1| (-338))))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) 236 (-4079 (-4079 (|has| $ (-133)) (|has| |#2| (-838))) (|has| |#1| (-338))))) (-1944 (($ $) 72)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ |#2|) 271) (($ (-1085)) 241 (-4079 (|has| |#2| (-962 (-1085))) (|has| |#1| (-338)))) (($ (-382 (-522))) 57 (|has| |#1| (-37 (-382 (-522))))) (($ $) 49 (|has| |#1| (-514)))) (-1643 ((|#1| $ (-522)) 59)) (-3040 (((-3 $ "failed") $) 48 (-3844 (-4079 (-3844 (|has| |#2| (-133)) (-4079 (|has| $ (-133)) (|has| |#2| (-838)))) (|has| |#1| (-338))) (|has| |#1| (-133))))) (-2742 (((-708)) 29)) (-1980 ((|#1| $) 102)) (-1379 ((|#2| $) 234 (-4079 (|has| |#2| (-507)) (|has| |#1| (-338))))) (-1856 (($ $) 141 (|has| |#1| (-37 (-382 (-522)))))) (-2976 (($ $) 129 (|has| |#1| (-37 (-382 (-522)))))) (-1407 (((-108) $ $) 53 (|has| |#1| (-514)))) (-1839 (($ $) 140 (|has| |#1| (-37 (-382 (-522)))))) (-2957 (($ $) 128 (|has| |#1| (-37 (-382 (-522)))))) (-1873 (($ $) 139 (|has| |#1| (-37 (-382 (-522)))))) (-3001 (($ $) 127 (|has| |#1| (-37 (-382 (-522)))))) (-3996 ((|#1| $ (-522)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-522)))) (|has| |#1| (-15 -2217 (|#1| (-1085))))))) (-2476 (($ $) 138 (|has| |#1| (-37 (-382 (-522)))))) (-3011 (($ $) 126 (|has| |#1| (-37 (-382 (-522)))))) (-1864 (($ $) 137 (|has| |#1| (-37 (-382 (-522)))))) (-2989 (($ $) 125 (|has| |#1| (-37 (-382 (-522)))))) (-1849 (($ $) 136 (|has| |#1| (-37 (-382 (-522)))))) (-2966 (($ $) 124 (|has| |#1| (-37 (-382 (-522)))))) (-4126 (($ $) 250 (-4079 (|has| |#2| (-757)) (|has| |#1| (-338))))) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 166 (|has| |#1| (-338)))) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-338))) (($ $ (-1 |#2| |#2|) (-708)) 214 (|has| |#1| (-338))) (($ $ (-708)) 85 (-3844 (-4079 (|has| |#2| (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $) 83 (-3844 (-4079 (|has| |#2| (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-588 (-1085)) (-588 (-708))) 93 (-3844 (-4079 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|)))))) (($ $ (-1085) (-708)) 92 (-3844 (-4079 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|)))))) (($ $ (-588 (-1085))) 91 (-3844 (-4079 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|)))))) (($ $ (-1085)) 90 (-3844 (-4079 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))))) (-1623 (((-108) $ $) 254 (-4079 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-1597 (((-108) $ $) 255 (-4079 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 253 (-4079 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-1587 (((-108) $ $) 256 (-4079 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-1682 (($ $ |#1|) 58 (|has| |#1| (-338))) (($ $ $) 168 (|has| |#1| (-338))) (($ |#2| |#2|) 226 (|has| |#1| (-338)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 167 (|has| |#1| (-338))) (($ $ $) 144 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 115 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-338))) (($ |#2| $) 204 (|has| |#1| (-338))) (($ (-382 (-522)) $) 56 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 55 (|has| |#1| (-37 (-382 (-522))))))) -(((-1128 |#1| |#2|) (-1197) (-971) (-1157 |t#1|)) (T -1128)) -((-2487 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1157 *3)) (-5 *2 (-522)))) (-2217 (*1 *1 *2) (-12 (-4 *3 (-971)) (-4 *1 (-1128 *3 *2)) (-4 *2 (-1157 *3)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-522)) (-4 *4 (-971)) (-4 *1 (-1128 *4 *3)) (-4 *3 (-1157 *4)))) (-1201 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1157 *3)))) (-3734 (*1 *1 *1) (-12 (-4 *1 (-1128 *2 *3)) (-4 *2 (-971)) (-4 *3 (-1157 *2)))) (-3734 (*1 *1 *2 *1) (-12 (-5 *2 (-522)) (-4 *1 (-1128 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1157 *3)))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1157 *3)))) (-1413 (*1 *2 *1) (|partial| -12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1157 *3))))) -(-13 (-1126 |t#1|) (-962 |t#2|) (-10 -8 (-15 -3170 ($ (-522) |t#2|)) (-15 -2487 ((-522) $)) (-15 -1201 (|t#2| $)) (-15 -3734 ($ $)) (-15 -3734 ($ (-522) $)) (-15 -2217 ($ |t#2|)) (-15 -3162 (|t#2| $)) (-15 -1413 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-338)) (-6 (-919 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-522)) . T) ((-25) . T) ((-37 #1=(-382 (-522))) -3844 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 |#2|) |has| |#1| (-338)) ((-37 $) -3844 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-34) |has| |#1| (-37 (-382 (-522)))) ((-91) |has| |#1| (-37 (-382 (-522)))) ((-97) . T) ((-107 #1# #1#) -3844 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-107 |#1| |#1|) . T) ((-107 |#2| |#2|) |has| |#1| (-338)) ((-107 $ $) -3844 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-124) . T) ((-133) -3844 (-12 (|has| |#1| (-338)) (|has| |#2| (-133))) (|has| |#1| (-133))) ((-135) -3844 (-12 (|has| |#1| (-338)) (|has| |#2| (-135))) (|has| |#1| (-135))) ((-562 (-792)) . T) ((-157) -3844 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-563 (-202)) -12 (|has| |#1| (-338)) (|has| |#2| (-947))) ((-563 (-354)) -12 (|has| |#1| (-338)) (|has| |#2| (-947))) ((-563 (-498)) -12 (|has| |#1| (-338)) (|has| |#2| (-563 (-498)))) ((-563 (-821 (-354))) -12 (|has| |#1| (-338)) (|has| |#2| (-563 (-821 (-354))))) ((-563 (-821 (-522))) -12 (|has| |#1| (-338)) (|has| |#2| (-563 (-821 (-522))))) ((-208 |#2|) |has| |#1| (-338)) ((-210) -3844 (-12 (|has| |#1| (-338)) (|has| |#2| (-210))) (|has| |#1| (-15 * (|#1| (-522) |#1|)))) ((-220) |has| |#1| (-338)) ((-260) |has| |#1| (-37 (-382 (-522)))) ((-262 |#2| $) -12 (|has| |#1| (-338)) (|has| |#2| (-262 |#2| |#2|))) ((-262 $ $) |has| (-522) (-1026)) ((-266) -3844 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-283) |has| |#1| (-338)) ((-285 |#2|) -12 (|has| |#1| (-338)) (|has| |#2| (-285 |#2|))) ((-338) |has| |#1| (-338)) ((-313 |#2|) |has| |#1| (-338)) ((-352 |#2|) |has| |#1| (-338)) ((-375 |#2|) |has| |#1| (-338)) ((-426) |has| |#1| (-338)) ((-463) |has| |#1| (-37 (-382 (-522)))) ((-483 (-1085) |#2|) -12 (|has| |#1| (-338)) (|has| |#2| (-483 (-1085) |#2|))) ((-483 |#2| |#2|) -12 (|has| |#1| (-338)) (|has| |#2| (-285 |#2|))) ((-514) -3844 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-590 #1#) -3844 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-590 |#1|) . T) ((-590 |#2|) |has| |#1| (-338)) ((-590 $) . T) ((-584 (-522)) -12 (|has| |#1| (-338)) (|has| |#2| (-584 (-522)))) ((-584 |#2|) |has| |#1| (-338)) ((-655 #1#) -3844 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-655 |#1|) |has| |#1| (-157)) ((-655 |#2|) |has| |#1| (-338)) ((-655 $) -3844 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-664) . T) ((-728) -12 (|has| |#1| (-338)) (|has| |#2| (-757))) ((-729) -12 (|has| |#1| (-338)) (|has| |#2| (-757))) ((-731) -12 (|has| |#1| (-338)) (|has| |#2| (-757))) ((-732) -12 (|has| |#1| (-338)) (|has| |#2| (-757))) ((-757) -12 (|has| |#1| (-338)) (|has| |#2| (-757))) ((-782) -12 (|has| |#1| (-338)) (|has| |#2| (-757))) ((-784) -3844 (-12 (|has| |#1| (-338)) (|has| |#2| (-784))) (-12 (|has| |#1| (-338)) (|has| |#2| (-757)))) ((-829 (-1085)) -3844 (-12 (|has| |#1| (-338)) (|has| |#2| (-829 (-1085)))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))) ((-815 (-354)) -12 (|has| |#1| (-338)) (|has| |#2| (-815 (-354)))) ((-815 (-522)) -12 (|has| |#1| (-338)) (|has| |#2| (-815 (-522)))) ((-813 |#2|) |has| |#1| (-338)) ((-838) -12 (|has| |#1| (-338)) (|has| |#2| (-838))) ((-900 |#1| #0# (-999)) . T) ((-849) |has| |#1| (-338)) ((-919 |#2|) |has| |#1| (-338)) ((-928) |has| |#1| (-37 (-382 (-522)))) ((-947) -12 (|has| |#1| (-338)) (|has| |#2| (-947))) ((-962 (-382 (-522))) -12 (|has| |#1| (-338)) (|has| |#2| (-962 (-522)))) ((-962 (-522)) -12 (|has| |#1| (-338)) (|has| |#2| (-962 (-522)))) ((-962 (-1085)) -12 (|has| |#1| (-338)) (|has| |#2| (-962 (-1085)))) ((-962 |#2|) . T) ((-977 #1#) -3844 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-977 |#1|) . T) ((-977 |#2|) |has| |#1| (-338)) ((-977 $) -3844 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1061) -12 (|has| |#1| (-338)) (|has| |#2| (-1061))) ((-1106) |has| |#1| (-37 (-382 (-522)))) ((-1109) |has| |#1| (-37 (-382 (-522)))) ((-1120) |has| |#1| (-338)) ((-1124) |has| |#1| (-338)) ((-1126 |#1|) . T) ((-1144 |#1| #0#) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 70)) (-3049 ((|#2| $) NIL (-12 (|has| |#2| (-283)) (|has| |#1| (-338))))) (-3533 (((-588 (-999)) $) NIL)) (-1660 (((-1085) $) 88)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) NIL (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-3495 (($ $ (-522)) 97) (($ $ (-522) (-522)) 99)) (-3024 (((-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) $) 47)) (-1201 ((|#2| $) 11)) (-1413 (((-3 |#2| "failed") $) 30)) (-3162 ((|#2| $) 31)) (-3044 (($ $) 192 (|has| |#1| (-37 (-382 (-522)))))) (-2923 (($ $) 168 (|has| |#1| (-37 (-382 (-522)))))) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| |#2| (-838)) (|has| |#1| (-338))))) (-2961 (($ $) NIL (|has| |#1| (-338)))) (-3133 (((-393 $) $) NIL (|has| |#1| (-338)))) (-2016 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (-12 (|has| |#2| (-838)) (|has| |#1| (-338))))) (-2805 (((-108) $ $) NIL (|has| |#1| (-338)))) (-3023 (($ $) 188 (|has| |#1| (-37 (-382 (-522)))))) (-2906 (($ $) 164 (|has| |#1| (-37 (-382 (-522)))))) (-3355 (((-522) $) NIL (-12 (|has| |#2| (-757)) (|has| |#1| (-338))))) (-1270 (($ (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|)))) 57)) (-3066 (($ $) 196 (|has| |#1| (-37 (-382 (-522)))))) (-2936 (($ $) 172 (|has| |#1| (-37 (-382 (-522)))))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#2| "failed") $) 144) (((-3 (-522) "failed") $) NIL (-12 (|has| |#2| (-962 (-522))) (|has| |#1| (-338)))) (((-3 (-382 (-522)) "failed") $) NIL (-12 (|has| |#2| (-962 (-522))) (|has| |#1| (-338)))) (((-3 (-1085) "failed") $) NIL (-12 (|has| |#2| (-962 (-1085))) (|has| |#1| (-338))))) (-1478 ((|#2| $) 143) (((-522) $) NIL (-12 (|has| |#2| (-962 (-522))) (|has| |#1| (-338)))) (((-382 (-522)) $) NIL (-12 (|has| |#2| (-962 (-522))) (|has| |#1| (-338)))) (((-1085) $) NIL (-12 (|has| |#2| (-962 (-1085))) (|has| |#1| (-338))))) (-3734 (($ $) 61) (($ (-522) $) 24)) (-2333 (($ $ $) NIL (|has| |#1| (-338)))) (-3241 (($ $) NIL)) (-1226 (((-628 |#2|) (-628 $)) NIL (|has| |#1| (-338))) (((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL (|has| |#1| (-338))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (-12 (|has| |#2| (-584 (-522))) (|has| |#1| (-338)))) (((-628 (-522)) (-628 $)) NIL (-12 (|has| |#2| (-584 (-522))) (|has| |#1| (-338))))) (-3920 (((-3 $ "failed") $) 77)) (-1749 (((-382 (-881 |#1|)) $ (-522)) 112 (|has| |#1| (-514))) (((-382 (-881 |#1|)) $ (-522) (-522)) 114 (|has| |#1| (-514)))) (-3344 (($) NIL (-12 (|has| |#2| (-507)) (|has| |#1| (-338))))) (-2303 (($ $ $) NIL (|has| |#1| (-338)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2725 (((-108) $) NIL (|has| |#1| (-338)))) (-3603 (((-108) $) NIL (-12 (|has| |#2| (-757)) (|has| |#1| (-338))))) (-3672 (((-108) $) 64)) (-2980 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| |#2| (-815 (-354))) (|has| |#1| (-338)))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| |#2| (-815 (-522))) (|has| |#1| (-338))))) (-3872 (((-522) $) 93) (((-522) $ (-522)) 95)) (-2859 (((-108) $) NIL)) (-1558 (($ $) NIL (|has| |#1| (-338)))) (-2947 ((|#2| $) 151 (|has| |#1| (-338)))) (-1811 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-4208 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1061)) (|has| |#1| (-338))))) (-3740 (((-108) $) NIL (-12 (|has| |#2| (-757)) (|has| |#1| (-338))))) (-2895 (($ $ (-850)) 136)) (-1332 (($ (-1 |#1| (-522)) $) 132)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-1374 (((-108) $) NIL)) (-3500 (($ |#1| (-522)) 19) (($ $ (-999) (-522)) NIL) (($ $ (-588 (-999)) (-588 (-522))) NIL)) (-1308 (($ $ $) NIL (-12 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-2524 (($ $ $) NIL (-12 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-3810 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-338)))) (-1238 (($ $) 162 (|has| |#1| (-37 (-382 (-522)))))) (-3216 (($ $) NIL)) (-3224 ((|#1| $) NIL)) (-2267 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-3170 (($ (-522) |#2|) 10)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) 145 (|has| |#1| (-338)))) (-2611 (($ $) 214 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) 219 (-3844 (-12 (|has| |#1| (-15 -2611 (|#1| |#1| (-1085)))) (|has| |#1| (-15 -3533 ((-588 (-1085)) |#1|))) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-887)) (|has| |#1| (-1106)))))) (-3937 (($) NIL (-12 (|has| |#2| (-1061)) (|has| |#1| (-338))) CONST)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-338)))) (-2308 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-4194 (($ $) NIL (-12 (|has| |#2| (-283)) (|has| |#1| (-338))))) (-3592 ((|#2| $) NIL (-12 (|has| |#2| (-507)) (|has| |#1| (-338))))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| |#2| (-838)) (|has| |#1| (-338))))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| |#2| (-838)) (|has| |#1| (-338))))) (-2006 (((-393 $) $) NIL (|has| |#1| (-338)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-338)))) (-3934 (($ $ (-522)) 126)) (-2276 (((-3 $ "failed") $ $) 116 (|has| |#1| (-514)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3357 (($ $) 160 (|has| |#1| (-37 (-382 (-522)))))) (-2330 (((-1066 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-522))))) (($ $ (-1085) |#2|) NIL (-12 (|has| |#2| (-483 (-1085) |#2|)) (|has| |#1| (-338)))) (($ $ (-588 (-1085)) (-588 |#2|)) NIL (-12 (|has| |#2| (-483 (-1085) |#2|)) (|has| |#1| (-338)))) (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#1| (-338)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#1| (-338)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#1| (-338)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#1| (-338))))) (-4031 (((-708) $) NIL (|has| |#1| (-338)))) (-2683 ((|#1| $ (-522)) 91) (($ $ $) 79 (|has| (-522) (-1026))) (($ $ |#2|) NIL (-12 (|has| |#2| (-262 |#2| |#2|)) (|has| |#1| (-338))))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-338)))) (-2731 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-338))) (($ $ (-1 |#2| |#2|) (-708)) NIL (|has| |#1| (-338))) (($ $ (-708)) NIL (-3844 (-12 (|has| |#2| (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $) 137 (-3844 (-12 (|has| |#2| (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-3844 (-12 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085) (-708)) NIL (-3844 (-12 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-588 (-1085))) NIL (-3844 (-12 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085)) 140 (-3844 (-12 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))))) (-2762 (($ $) NIL (|has| |#1| (-338)))) (-2959 ((|#2| $) 152 (|has| |#1| (-338)))) (-2487 (((-522) $) 12)) (-1831 (($ $) 198 (|has| |#1| (-37 (-382 (-522)))))) (-2946 (($ $) 174 (|has| |#1| (-37 (-382 (-522)))))) (-3054 (($ $) 194 (|has| |#1| (-37 (-382 (-522)))))) (-2928 (($ $) 170 (|has| |#1| (-37 (-382 (-522)))))) (-3035 (($ $) 190 (|has| |#1| (-37 (-382 (-522)))))) (-2915 (($ $) 166 (|has| |#1| (-37 (-382 (-522)))))) (-3873 (((-202) $) NIL (-12 (|has| |#2| (-947)) (|has| |#1| (-338)))) (((-354) $) NIL (-12 (|has| |#2| (-947)) (|has| |#1| (-338)))) (((-498) $) NIL (-12 (|has| |#2| (-563 (-498))) (|has| |#1| (-338)))) (((-821 (-354)) $) NIL (-12 (|has| |#2| (-563 (-821 (-354)))) (|has| |#1| (-338)))) (((-821 (-522)) $) NIL (-12 (|has| |#2| (-563 (-821 (-522)))) (|has| |#1| (-338))))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-838)) (|has| |#1| (-338))))) (-1944 (($ $) 124)) (-2217 (((-792) $) 243) (($ (-522)) 23) (($ |#1|) 21 (|has| |#1| (-157))) (($ |#2|) 20) (($ (-1085)) NIL (-12 (|has| |#2| (-962 (-1085))) (|has| |#1| (-338)))) (($ (-382 (-522))) 155 (|has| |#1| (-37 (-382 (-522))))) (($ $) NIL (|has| |#1| (-514)))) (-1643 ((|#1| $ (-522)) 74)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| |#2| (-838)) (|has| |#1| (-338))) (-12 (|has| |#2| (-133)) (|has| |#1| (-338))) (|has| |#1| (-133))))) (-2742 (((-708)) 142)) (-1980 ((|#1| $) 90)) (-1379 ((|#2| $) NIL (-12 (|has| |#2| (-507)) (|has| |#1| (-338))))) (-1856 (($ $) 204 (|has| |#1| (-37 (-382 (-522)))))) (-2976 (($ $) 180 (|has| |#1| (-37 (-382 (-522)))))) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1839 (($ $) 200 (|has| |#1| (-37 (-382 (-522)))))) (-2957 (($ $) 176 (|has| |#1| (-37 (-382 (-522)))))) (-1873 (($ $) 208 (|has| |#1| (-37 (-382 (-522)))))) (-3001 (($ $) 184 (|has| |#1| (-37 (-382 (-522)))))) (-3996 ((|#1| $ (-522)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-522)))) (|has| |#1| (-15 -2217 (|#1| (-1085))))))) (-2476 (($ $) 210 (|has| |#1| (-37 (-382 (-522)))))) (-3011 (($ $) 186 (|has| |#1| (-37 (-382 (-522)))))) (-1864 (($ $) 206 (|has| |#1| (-37 (-382 (-522)))))) (-2989 (($ $) 182 (|has| |#1| (-37 (-382 (-522)))))) (-1849 (($ $) 202 (|has| |#1| (-37 (-382 (-522)))))) (-2966 (($ $) 178 (|has| |#1| (-37 (-382 (-522)))))) (-4126 (($ $) NIL (-12 (|has| |#2| (-757)) (|has| |#1| (-338))))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3697 (($) 13 T CONST)) (-3709 (($) 17 T CONST)) (-2252 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-338))) (($ $ (-1 |#2| |#2|) (-708)) NIL (|has| |#1| (-338))) (($ $ (-708)) NIL (-3844 (-12 (|has| |#2| (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $) NIL (-3844 (-12 (|has| |#2| (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-3844 (-12 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085) (-708)) NIL (-3844 (-12 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-588 (-1085))) NIL (-3844 (-12 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085)) NIL (-3844 (-12 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))))) (-1623 (((-108) $ $) NIL (-12 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-1597 (((-108) $ $) NIL (-12 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-1562 (((-108) $ $) 63)) (-1609 (((-108) $ $) NIL (-12 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-1587 (((-108) $ $) NIL (-12 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338))) (($ $ $) 149 (|has| |#1| (-338))) (($ |#2| |#2|) 150 (|has| |#1| (-338)))) (-1672 (($ $) 213) (($ $ $) 68)) (-1661 (($ $ $) 66)) (** (($ $ (-850)) NIL) (($ $ (-708)) 73) (($ $ (-522)) 146 (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 158 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-338))) (($ |#2| $) 147 (|has| |#1| (-338))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))))) -(((-1129 |#1| |#2|) (-1128 |#1| |#2|) (-971) (-1157 |#1|)) (T -1129)) -NIL -(-1128 |#1| |#2|) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3049 (((-1158 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-283)) (|has| |#1| (-338))))) (-3533 (((-588 (-999)) $) NIL)) (-1660 (((-1085) $) 10)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514))))) (-2298 (($ $) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514))))) (-3007 (((-108) $) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514))))) (-3495 (($ $ (-522)) NIL) (($ $ (-522) (-522)) NIL)) (-3024 (((-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) $) NIL)) (-1201 (((-1158 |#1| |#2| |#3|) $) NIL)) (-1413 (((-3 (-1158 |#1| |#2| |#3|) "failed") $) NIL)) (-3162 (((-1158 |#1| |#2| |#3|) $) NIL)) (-3044 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2923 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2265 (((-3 $ "failed") $ $) NIL)) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))))) (-2961 (($ $) NIL (|has| |#1| (-338)))) (-3133 (((-393 $) $) NIL (|has| |#1| (-338)))) (-2016 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))))) (-2805 (((-108) $ $) NIL (|has| |#1| (-338)))) (-3023 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2906 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3355 (((-522) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))))) (-1270 (($ (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|)))) NIL)) (-3066 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2936 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-1158 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1085) "failed") $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-962 (-1085))) (|has| |#1| (-338)))) (((-3 (-382 (-522)) "failed") $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-962 (-522))) (|has| |#1| (-338)))) (((-3 (-522) "failed") $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-962 (-522))) (|has| |#1| (-338))))) (-1478 (((-1158 |#1| |#2| |#3|) $) NIL) (((-1085) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-962 (-1085))) (|has| |#1| (-338)))) (((-382 (-522)) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-962 (-522))) (|has| |#1| (-338)))) (((-522) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-962 (-522))) (|has| |#1| (-338))))) (-3734 (($ $) NIL) (($ (-522) $) NIL)) (-2333 (($ $ $) NIL (|has| |#1| (-338)))) (-3241 (($ $) NIL)) (-1226 (((-628 (-1158 |#1| |#2| |#3|)) (-628 $)) NIL (|has| |#1| (-338))) (((-2 (|:| -2149 (-628 (-1158 |#1| |#2| |#3|))) (|:| |vec| (-1166 (-1158 |#1| |#2| |#3|)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-338))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-584 (-522))) (|has| |#1| (-338)))) (((-628 (-522)) (-628 $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-584 (-522))) (|has| |#1| (-338))))) (-3920 (((-3 $ "failed") $) NIL)) (-1749 (((-382 (-881 |#1|)) $ (-522)) NIL (|has| |#1| (-514))) (((-382 (-881 |#1|)) $ (-522) (-522)) NIL (|has| |#1| (-514)))) (-3344 (($) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-507)) (|has| |#1| (-338))))) (-2303 (($ $ $) NIL (|has| |#1| (-338)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2725 (((-108) $) NIL (|has| |#1| (-338)))) (-3603 (((-108) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))))) (-3672 (((-108) $) NIL)) (-2980 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3738 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-815 (-522))) (|has| |#1| (-338)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-815 (-354))) (|has| |#1| (-338))))) (-3872 (((-522) $) NIL) (((-522) $ (-522)) NIL)) (-2859 (((-108) $) NIL)) (-1558 (($ $) NIL (|has| |#1| (-338)))) (-2947 (((-1158 |#1| |#2| |#3|) $) NIL (|has| |#1| (-338)))) (-1811 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-4208 (((-3 $ "failed") $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-1061)) (|has| |#1| (-338))))) (-3740 (((-108) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))))) (-2895 (($ $ (-850)) NIL)) (-1332 (($ (-1 |#1| (-522)) $) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-1374 (((-108) $) NIL)) (-3500 (($ |#1| (-522)) 17) (($ $ (-999) (-522)) NIL) (($ $ (-588 (-999)) (-588 (-522))) NIL)) (-1308 (($ $ $) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-2524 (($ $ $) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-3810 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-338)))) (-1238 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3216 (($ $) NIL)) (-3224 ((|#1| $) NIL)) (-2267 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-3170 (($ (-522) (-1158 |#1| |#2| |#3|)) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL (|has| |#1| (-338)))) (-2611 (($ $) 25 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) NIL (-3844 (-12 (|has| |#1| (-15 -2611 (|#1| |#1| (-1085)))) (|has| |#1| (-15 -3533 ((-588 (-1085)) |#1|))) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-887)) (|has| |#1| (-1106))))) (($ $ (-1162 |#2|)) 26 (|has| |#1| (-37 (-382 (-522)))))) (-3937 (($) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-1061)) (|has| |#1| (-338))) CONST)) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-338)))) (-2308 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-4194 (($ $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-283)) (|has| |#1| (-338))))) (-3592 (((-1158 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-507)) (|has| |#1| (-338))))) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))))) (-2006 (((-393 $) $) NIL (|has| |#1| (-338)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-338)))) (-3934 (($ $ (-522)) NIL)) (-2276 (((-3 $ "failed") $ $) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514))))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3357 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2330 (((-1066 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-522))))) (($ $ (-1085) (-1158 |#1| |#2| |#3|)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-483 (-1085) (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338)))) (($ $ (-588 (-1085)) (-588 (-1158 |#1| |#2| |#3|))) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-483 (-1085) (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338)))) (($ $ (-588 (-270 (-1158 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-285 (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338)))) (($ $ (-270 (-1158 |#1| |#2| |#3|))) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-285 (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338)))) (($ $ (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-285 (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338)))) (($ $ (-588 (-1158 |#1| |#2| |#3|)) (-588 (-1158 |#1| |#2| |#3|))) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-285 (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338))))) (-4031 (((-708) $) NIL (|has| |#1| (-338)))) (-2683 ((|#1| $ (-522)) NIL) (($ $ $) NIL (|has| (-522) (-1026))) (($ $ (-1158 |#1| |#2| |#3|)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-262 (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338))))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-338)))) (-2731 (($ $ (-1 (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|))) NIL (|has| |#1| (-338))) (($ $ (-1 (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|)) (-708)) NIL (|has| |#1| (-338))) (($ $ (-1162 |#2|)) 24) (($ $ (-708)) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $) 23 (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085) (-708)) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-588 (-1085))) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085)) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))))) (-2762 (($ $) NIL (|has| |#1| (-338)))) (-2959 (((-1158 |#1| |#2| |#3|) $) NIL (|has| |#1| (-338)))) (-2487 (((-522) $) NIL)) (-1831 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2946 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3054 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2928 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3035 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2915 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3873 (((-498) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-563 (-498))) (|has| |#1| (-338)))) (((-354) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-947)) (|has| |#1| (-338)))) (((-202) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-947)) (|has| |#1| (-338)))) (((-821 (-354)) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-563 (-821 (-354)))) (|has| |#1| (-338)))) (((-821 (-522)) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-563 (-821 (-522)))) (|has| |#1| (-338))))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))))) (-1944 (($ $) NIL)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1158 |#1| |#2| |#3|)) NIL) (($ (-1162 |#2|)) 22) (($ (-1085)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-962 (-1085))) (|has| |#1| (-338)))) (($ $) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514)))) (($ (-382 (-522))) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-962 (-522))) (|has| |#1| (-338))) (|has| |#1| (-37 (-382 (-522))))))) (-1643 ((|#1| $ (-522)) NIL)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-133)) (|has| |#1| (-338))) (|has| |#1| (-133))))) (-2742 (((-708)) NIL)) (-1980 ((|#1| $) 11)) (-1379 (((-1158 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-507)) (|has| |#1| (-338))))) (-1856 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2976 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1407 (((-108) $ $) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514))))) (-1839 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2957 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1873 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3001 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3996 ((|#1| $ (-522)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-522)))) (|has| |#1| (-15 -2217 (|#1| (-1085))))))) (-2476 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3011 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1864 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2989 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1849 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2966 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-4126 (($ $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3697 (($) 19 T CONST)) (-3709 (($) 15 T CONST)) (-2252 (($ $ (-1 (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|))) NIL (|has| |#1| (-338))) (($ $ (-1 (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|)) (-708)) NIL (|has| |#1| (-338))) (($ $ (-708)) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085) (-708)) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-588 (-1085))) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085)) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))))) (-1623 (((-108) $ $) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-1597 (((-108) $ $) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-1587 (((-108) $ $) NIL (-3844 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338))) (($ (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|)) NIL (|has| |#1| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) 20)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1158 |#1| |#2| |#3|)) NIL (|has| |#1| (-338))) (($ (-1158 |#1| |#2| |#3|) $) NIL (|has| |#1| (-338))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))))) -(((-1130 |#1| |#2| |#3|) (-13 (-1128 |#1| (-1158 |#1| |#2| |#3|)) (-10 -8 (-15 -2217 ($ (-1162 |#2|))) (-15 -2731 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -2611 ($ $ (-1162 |#2|))) |%noBranch|))) (-971) (-1085) |#1|) (T -1130)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1130 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1130 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-2611 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1130 *3 *4 *5)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3)))) -(-13 (-1128 |#1| (-1158 |#1| |#2| |#3|)) (-10 -8 (-15 -2217 ($ (-1162 |#2|))) (-15 -2731 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -2611 ($ $ (-1162 |#2|))) |%noBranch|))) -((-3306 (((-2 (|:| |contp| (-522)) (|:| -4045 (-588 (-2 (|:| |irr| |#1|) (|:| -4160 (-522)))))) |#1| (-108)) 10)) (-3903 (((-393 |#1|) |#1|) 21)) (-2006 (((-393 |#1|) |#1|) 20))) -(((-1131 |#1|) (-10 -7 (-15 -2006 ((-393 |#1|) |#1|)) (-15 -3903 ((-393 |#1|) |#1|)) (-15 -3306 ((-2 (|:| |contp| (-522)) (|:| -4045 (-588 (-2 (|:| |irr| |#1|) (|:| -4160 (-522)))))) |#1| (-108)))) (-1142 (-522))) (T -1131)) -((-3306 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-522)) (|:| -4045 (-588 (-2 (|:| |irr| *3) (|:| -4160 (-522))))))) (-5 *1 (-1131 *3)) (-4 *3 (-1142 (-522))))) (-3903 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-1142 (-522))))) (-2006 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-1142 (-522)))))) -(-10 -7 (-15 -2006 ((-393 |#1|) |#1|)) (-15 -3903 ((-393 |#1|) |#1|)) (-15 -3306 ((-2 (|:| |contp| (-522)) (|:| -4045 (-588 (-2 (|:| |irr| |#1|) (|:| -4160 (-522)))))) |#1| (-108)))) -((-3810 (((-1066 |#2|) (-1 |#2| |#1|) (-1133 |#1|)) 23 (|has| |#1| (-782))) (((-1133 |#2|) (-1 |#2| |#1|) (-1133 |#1|)) 17))) -(((-1132 |#1| |#2|) (-10 -7 (-15 -3810 ((-1133 |#2|) (-1 |#2| |#1|) (-1133 |#1|))) (IF (|has| |#1| (-782)) (-15 -3810 ((-1066 |#2|) (-1 |#2| |#1|) (-1133 |#1|))) |%noBranch|)) (-1120) (-1120)) (T -1132)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1133 *5)) (-4 *5 (-782)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1066 *6)) (-5 *1 (-1132 *5 *6)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1133 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1133 *6)) (-5 *1 (-1132 *5 *6))))) -(-10 -7 (-15 -3810 ((-1133 |#2|) (-1 |#2| |#1|) (-1133 |#1|))) (IF (|has| |#1| (-782)) (-15 -3810 ((-1066 |#2|) (-1 |#2| |#1|) (-1133 |#1|))) |%noBranch|)) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1572 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-3810 (((-1066 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-782)))) (-2430 ((|#1| $) 14)) (-1451 ((|#1| $) 10)) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1463 (((-522) $) 18)) (-3636 ((|#1| $) 17)) (-1476 ((|#1| $) 11)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2436 (((-108) $) 16)) (-1663 (((-1066 |#1|) $) 38 (|has| |#1| (-782))) (((-1066 |#1|) (-588 $)) 37 (|has| |#1| (-782)))) (-3873 (($ |#1|) 25)) (-2217 (($ (-1009 |#1|)) 24) (((-792) $) 34 (|has| |#1| (-1014)))) (-1752 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1327 (($ $ (-522)) 13)) (-1562 (((-108) $ $) 27 (|has| |#1| (-1014))))) -(((-1133 |#1|) (-13 (-1008 |#1|) (-10 -8 (-15 -1752 ($ |#1|)) (-15 -1572 ($ |#1|)) (-15 -2217 ($ (-1009 |#1|))) (-15 -2436 ((-108) $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-1010 |#1| (-1066 |#1|))) |%noBranch|))) (-1120)) (T -1133)) -((-1752 (*1 *1 *2) (-12 (-5 *1 (-1133 *2)) (-4 *2 (-1120)))) (-1572 (*1 *1 *2) (-12 (-5 *1 (-1133 *2)) (-4 *2 (-1120)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1009 *3)) (-4 *3 (-1120)) (-5 *1 (-1133 *3)))) (-2436 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1133 *3)) (-4 *3 (-1120))))) -(-13 (-1008 |#1|) (-10 -8 (-15 -1752 ($ |#1|)) (-15 -1572 ($ |#1|)) (-15 -2217 ($ (-1009 |#1|))) (-15 -2436 ((-108) $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-1010 |#1| (-1066 |#1|))) |%noBranch|))) -((-3810 (((-1139 |#3| |#4|) (-1 |#4| |#2|) (-1139 |#1| |#2|)) 15))) -(((-1134 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3810 ((-1139 |#3| |#4|) (-1 |#4| |#2|) (-1139 |#1| |#2|)))) (-1085) (-971) (-1085) (-971)) (T -1134)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1139 *5 *6)) (-14 *5 (-1085)) (-4 *6 (-971)) (-4 *8 (-971)) (-5 *2 (-1139 *7 *8)) (-5 *1 (-1134 *5 *6 *7 *8)) (-14 *7 (-1085))))) -(-10 -7 (-15 -3810 ((-1139 |#3| |#4|) (-1 |#4| |#2|) (-1139 |#1| |#2|)))) -((-2567 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2460 ((|#1| |#3|) 13)) (-2508 ((|#3| |#3|) 19))) -(((-1135 |#1| |#2| |#3|) (-10 -7 (-15 -2460 (|#1| |#3|)) (-15 -2508 (|#3| |#3|)) (-15 -2567 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-514) (-919 |#1|) (-1142 |#2|)) (T -1135)) -((-2567 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-919 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1135 *4 *5 *3)) (-4 *3 (-1142 *5)))) (-2508 (*1 *2 *2) (-12 (-4 *3 (-514)) (-4 *4 (-919 *3)) (-5 *1 (-1135 *3 *4 *2)) (-4 *2 (-1142 *4)))) (-2460 (*1 *2 *3) (-12 (-4 *4 (-919 *2)) (-4 *2 (-514)) (-5 *1 (-1135 *2 *4 *3)) (-4 *3 (-1142 *4))))) -(-10 -7 (-15 -2460 (|#1| |#3|)) (-15 -2508 (|#3| |#3|)) (-15 -2567 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2520 (((-3 |#2| "failed") |#2| (-708) |#1|) 29)) (-3313 (((-3 |#2| "failed") |#2| (-708)) 30)) (-3198 (((-3 (-2 (|:| -1993 |#2|) (|:| -2002 |#2|)) "failed") |#2|) 43)) (-3493 (((-588 |#2|) |#2|) 45)) (-3446 (((-3 |#2| "failed") |#2| |#2|) 40))) -(((-1136 |#1| |#2|) (-10 -7 (-15 -3313 ((-3 |#2| "failed") |#2| (-708))) (-15 -2520 ((-3 |#2| "failed") |#2| (-708) |#1|)) (-15 -3446 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3198 ((-3 (-2 (|:| -1993 |#2|) (|:| -2002 |#2|)) "failed") |#2|)) (-15 -3493 ((-588 |#2|) |#2|))) (-13 (-514) (-135)) (-1142 |#1|)) (T -1136)) -((-3493 (*1 *2 *3) (-12 (-4 *4 (-13 (-514) (-135))) (-5 *2 (-588 *3)) (-5 *1 (-1136 *4 *3)) (-4 *3 (-1142 *4)))) (-3198 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-514) (-135))) (-5 *2 (-2 (|:| -1993 *3) (|:| -2002 *3))) (-5 *1 (-1136 *4 *3)) (-4 *3 (-1142 *4)))) (-3446 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-514) (-135))) (-5 *1 (-1136 *3 *2)) (-4 *2 (-1142 *3)))) (-2520 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-708)) (-4 *4 (-13 (-514) (-135))) (-5 *1 (-1136 *4 *2)) (-4 *2 (-1142 *4)))) (-3313 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-708)) (-4 *4 (-13 (-514) (-135))) (-5 *1 (-1136 *4 *2)) (-4 *2 (-1142 *4))))) -(-10 -7 (-15 -3313 ((-3 |#2| "failed") |#2| (-708))) (-15 -2520 ((-3 |#2| "failed") |#2| (-708) |#1|)) (-15 -3446 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3198 ((-3 (-2 (|:| -1993 |#2|) (|:| -2002 |#2|)) "failed") |#2|)) (-15 -3493 ((-588 |#2|) |#2|))) -((-3259 (((-3 (-2 (|:| -3450 |#2|) (|:| -4002 |#2|)) "failed") |#2| |#2|) 32))) -(((-1137 |#1| |#2|) (-10 -7 (-15 -3259 ((-3 (-2 (|:| -3450 |#2|) (|:| -4002 |#2|)) "failed") |#2| |#2|))) (-514) (-1142 |#1|)) (T -1137)) -((-3259 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-514)) (-5 *2 (-2 (|:| -3450 *3) (|:| -4002 *3))) (-5 *1 (-1137 *4 *3)) (-4 *3 (-1142 *4))))) -(-10 -7 (-15 -3259 ((-3 (-2 (|:| -3450 |#2|) (|:| -4002 |#2|)) "failed") |#2| |#2|))) -((-1507 ((|#2| |#2| |#2|) 19)) (-3998 ((|#2| |#2| |#2|) 30)) (-1283 ((|#2| |#2| |#2| (-708) (-708)) 36))) -(((-1138 |#1| |#2|) (-10 -7 (-15 -1507 (|#2| |#2| |#2|)) (-15 -3998 (|#2| |#2| |#2|)) (-15 -1283 (|#2| |#2| |#2| (-708) (-708)))) (-971) (-1142 |#1|)) (T -1138)) -((-1283 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-708)) (-4 *4 (-971)) (-5 *1 (-1138 *4 *2)) (-4 *2 (-1142 *4)))) (-3998 (*1 *2 *2 *2) (-12 (-4 *3 (-971)) (-5 *1 (-1138 *3 *2)) (-4 *2 (-1142 *3)))) (-1507 (*1 *2 *2 *2) (-12 (-4 *3 (-971)) (-5 *1 (-1138 *3 *2)) (-4 *2 (-1142 *3))))) -(-10 -7 (-15 -1507 (|#2| |#2| |#2|)) (-15 -3998 (|#2| |#2| |#2|)) (-15 -1283 (|#2| |#2| |#2| (-708) (-708)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-1428 (((-1166 |#2|) $ (-708)) NIL)) (-3533 (((-588 (-999)) $) NIL)) (-2264 (($ (-1081 |#2|)) NIL)) (-1264 (((-1081 $) $ (-999)) NIL) (((-1081 |#2|) $) NIL)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#2| (-514)))) (-2298 (($ $) NIL (|has| |#2| (-514)))) (-3007 (((-108) $) NIL (|has| |#2| (-514)))) (-3358 (((-708) $) NIL) (((-708) $ (-588 (-999))) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3485 (($ $ $) NIL (|has| |#2| (-514)))) (-3543 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-2961 (($ $) NIL (|has| |#2| (-426)))) (-3133 (((-393 $) $) NIL (|has| |#2| (-426)))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-2805 (((-108) $ $) NIL (|has| |#2| (-338)))) (-1633 (($ $ (-708)) NIL)) (-2165 (($ $ (-708)) NIL)) (-2458 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-426)))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#2| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#2| (-962 (-522)))) (((-3 (-999) "failed") $) NIL)) (-1478 ((|#2| $) NIL) (((-382 (-522)) $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#2| (-962 (-522)))) (((-999) $) NIL)) (-2908 (($ $ $ (-999)) NIL (|has| |#2| (-157))) ((|#2| $ $) NIL (|has| |#2| (-157)))) (-2333 (($ $ $) NIL (|has| |#2| (-338)))) (-3241 (($ $) NIL)) (-1226 (((-628 (-522)) (-628 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL) (((-628 |#2|) (-628 $)) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2303 (($ $ $) NIL (|has| |#2| (-338)))) (-2659 (($ $ $) NIL)) (-2830 (($ $ $) NIL (|has| |#2| (-514)))) (-3370 (((-2 (|:| -3112 |#2|) (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#2| (-514)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL (|has| |#2| (-338)))) (-2883 (($ $) NIL (|has| |#2| (-426))) (($ $ (-999)) NIL (|has| |#2| (-426)))) (-3232 (((-588 $) $) NIL)) (-2725 (((-108) $) NIL (|has| |#2| (-838)))) (-3792 (($ $ |#2| (-708) $) NIL)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-999) (-815 (-354))) (|has| |#2| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-999) (-815 (-522))) (|has| |#2| (-815 (-522)))))) (-3872 (((-708) $ $) NIL (|has| |#2| (-514)))) (-2859 (((-108) $) NIL)) (-1391 (((-708) $) NIL)) (-4208 (((-3 $ "failed") $) NIL (|has| |#2| (-1061)))) (-3520 (($ (-1081 |#2|) (-999)) NIL) (($ (-1081 $) (-999)) NIL)) (-2895 (($ $ (-708)) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#2| (-338)))) (-3038 (((-588 $) $) NIL)) (-1374 (((-108) $) NIL)) (-3500 (($ |#2| (-708)) 17) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-3058 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $ (-999)) NIL) (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL)) (-3564 (((-708) $) NIL) (((-708) $ (-999)) NIL) (((-588 (-708)) $ (-588 (-999))) NIL)) (-1308 (($ $ $) NIL (|has| |#2| (-784)))) (-2524 (($ $ $) NIL (|has| |#2| (-784)))) (-1723 (($ (-1 (-708) (-708)) $) NIL)) (-3810 (($ (-1 |#2| |#2|) $) NIL)) (-4178 (((-1081 |#2|) $) NIL)) (-3155 (((-3 (-999) "failed") $) NIL)) (-3216 (($ $) NIL)) (-3224 ((|#2| $) NIL)) (-2267 (($ (-588 $)) NIL (|has| |#2| (-426))) (($ $ $) NIL (|has| |#2| (-426)))) (-2311 (((-1068) $) NIL)) (-2927 (((-2 (|:| -3450 $) (|:| -4002 $)) $ (-708)) NIL)) (-2760 (((-3 (-588 $) "failed") $) NIL)) (-1919 (((-3 (-588 $) "failed") $) NIL)) (-2024 (((-3 (-2 (|:| |var| (-999)) (|:| -3858 (-708))) "failed") $) NIL)) (-2611 (($ $) NIL (|has| |#2| (-37 (-382 (-522)))))) (-3937 (($) NIL (|has| |#2| (-1061)) CONST)) (-4174 (((-1032) $) NIL)) (-3199 (((-108) $) NIL)) (-3207 ((|#2| $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#2| (-426)))) (-2308 (($ (-588 $)) NIL (|has| |#2| (-426))) (($ $ $) NIL (|has| |#2| (-426)))) (-1953 (($ $ (-708) |#2| $) NIL)) (-4022 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-2006 (((-393 $) $) NIL (|has| |#2| (-838)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#2| (-338)))) (-2276 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-514))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-514)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#2| (-338)))) (-2330 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-999) |#2|) NIL) (($ $ (-588 (-999)) (-588 |#2|)) NIL) (($ $ (-999) $) NIL) (($ $ (-588 (-999)) (-588 $)) NIL)) (-4031 (((-708) $) NIL (|has| |#2| (-338)))) (-2683 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-382 $) (-382 $) (-382 $)) NIL (|has| |#2| (-514))) ((|#2| (-382 $) |#2|) NIL (|has| |#2| (-338))) (((-382 $) $ (-382 $)) NIL (|has| |#2| (-514)))) (-2877 (((-3 $ "failed") $ (-708)) NIL)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#2| (-338)))) (-1615 (($ $ (-999)) NIL (|has| |#2| (-157))) ((|#2| $) NIL (|has| |#2| (-157)))) (-2731 (($ $ (-999)) NIL) (($ $ (-588 (-999))) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL) (($ $ (-708)) NIL) (($ $) NIL) (($ $ (-1085)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2487 (((-708) $) NIL) (((-708) $ (-999)) NIL) (((-588 (-708)) $ (-588 (-999))) NIL)) (-3873 (((-821 (-354)) $) NIL (-12 (|has| (-999) (-563 (-821 (-354)))) (|has| |#2| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-999) (-563 (-821 (-522)))) (|has| |#2| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-999) (-563 (-498))) (|has| |#2| (-563 (-498)))))) (-2988 ((|#2| $) NIL (|has| |#2| (-426))) (($ $ (-999)) NIL (|has| |#2| (-426)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-838))))) (-3884 (((-3 $ "failed") $ $) NIL (|has| |#2| (-514))) (((-3 (-382 $) "failed") (-382 $) $) NIL (|has| |#2| (-514)))) (-2217 (((-792) $) 13) (($ (-522)) NIL) (($ |#2|) NIL) (($ (-999)) NIL) (($ (-1162 |#1|)) 19) (($ (-382 (-522))) NIL (-3844 (|has| |#2| (-37 (-382 (-522)))) (|has| |#2| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#2| (-514)))) (-2180 (((-588 |#2|) $) NIL)) (-1643 ((|#2| $ (-708)) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-3040 (((-3 $ "failed") $) NIL (-3844 (-12 (|has| $ (-133)) (|has| |#2| (-838))) (|has| |#2| (-133))))) (-2742 (((-708)) NIL)) (-1225 (($ $ $ (-708)) NIL (|has| |#2| (-157)))) (-1407 (((-108) $ $) NIL (|has| |#2| (-514)))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3709 (($) 14 T CONST)) (-2252 (($ $ (-999)) NIL) (($ $ (-588 (-999))) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL) (($ $ (-708)) NIL) (($ $) NIL) (($ $ (-1085)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1623 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1562 (((-108) $ $) NIL)) (-1609 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1682 (($ $ |#2|) NIL (|has| |#2| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL (|has| |#2| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#2| (-37 (-382 (-522))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1139 |#1| |#2|) (-13 (-1142 |#2|) (-10 -8 (-15 -2217 ($ (-1162 |#1|))) (-15 -1953 ($ $ (-708) |#2| $)))) (-1085) (-971)) (T -1139)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1162 *3)) (-14 *3 (-1085)) (-5 *1 (-1139 *3 *4)) (-4 *4 (-971)))) (-1953 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-708)) (-5 *1 (-1139 *4 *3)) (-14 *4 (-1085)) (-4 *3 (-971))))) -(-13 (-1142 |#2|) (-10 -8 (-15 -2217 ($ (-1162 |#1|))) (-15 -1953 ($ $ (-708) |#2| $)))) -((-3810 ((|#4| (-1 |#3| |#1|) |#2|) 23))) -(((-1140 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3810 (|#4| (-1 |#3| |#1|) |#2|))) (-971) (-1142 |#1|) (-971) (-1142 |#3|)) (T -1140)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-971)) (-4 *6 (-971)) (-4 *2 (-1142 *6)) (-5 *1 (-1140 *5 *4 *6 *2)) (-4 *4 (-1142 *5))))) -(-10 -7 (-15 -3810 (|#4| (-1 |#3| |#1|) |#2|))) -((-1428 (((-1166 |#2|) $ (-708)) 113)) (-3533 (((-588 (-999)) $) 15)) (-2264 (($ (-1081 |#2|)) 66)) (-3358 (((-708) $) NIL) (((-708) $ (-588 (-999))) 18)) (-3543 (((-393 (-1081 $)) (-1081 $)) 184)) (-2961 (($ $) 174)) (-3133 (((-393 $) $) 172)) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 81)) (-1633 (($ $ (-708)) 70)) (-2165 (($ $ (-708)) 72)) (-2458 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-3700 (((-3 |#2| "failed") $) 116) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 (-522) "failed") $) NIL) (((-3 (-999) "failed") $) NIL)) (-1478 ((|#2| $) 114) (((-382 (-522)) $) NIL) (((-522) $) NIL) (((-999) $) NIL)) (-2830 (($ $ $) 150)) (-3370 (((-2 (|:| -3112 |#2|) (|:| -3450 $) (|:| -4002 $)) $ $) 152)) (-3872 (((-708) $ $) 169)) (-4208 (((-3 $ "failed") $) 122)) (-3500 (($ |#2| (-708)) NIL) (($ $ (-999) (-708)) 46) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-3564 (((-708) $) NIL) (((-708) $ (-999)) 41) (((-588 (-708)) $ (-588 (-999))) 42)) (-4178 (((-1081 |#2|) $) 58)) (-3155 (((-3 (-999) "failed") $) 39)) (-2927 (((-2 (|:| -3450 $) (|:| -4002 $)) $ (-708)) 69)) (-2611 (($ $) 195)) (-3937 (($) 118)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 181)) (-4022 (((-393 (-1081 $)) (-1081 $)) 87)) (-2313 (((-393 (-1081 $)) (-1081 $)) 85)) (-2006 (((-393 $) $) 105)) (-2330 (($ $ (-588 (-270 $))) 38) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-999) |#2|) 31) (($ $ (-588 (-999)) (-588 |#2|)) 28) (($ $ (-999) $) 25) (($ $ (-588 (-999)) (-588 $)) 23)) (-4031 (((-708) $) 187)) (-2683 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-382 $) (-382 $) (-382 $)) 146) ((|#2| (-382 $) |#2|) 186) (((-382 $) $ (-382 $)) 168)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 190)) (-2731 (($ $ (-999)) 139) (($ $ (-588 (-999))) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL) (($ $ (-708)) NIL) (($ $) 137) (($ $ (-1085)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-2487 (((-708) $) NIL) (((-708) $ (-999)) 16) (((-588 (-708)) $ (-588 (-999))) 20)) (-2988 ((|#2| $) NIL) (($ $ (-999)) 124)) (-3884 (((-3 $ "failed") $ $) 160) (((-3 (-382 $) "failed") (-382 $) $) 156)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#2|) NIL) (($ (-999)) 50) (($ (-382 (-522))) NIL) (($ $) NIL))) -(((-1141 |#1| |#2|) (-10 -8 (-15 -2217 (|#1| |#1|)) (-15 -1789 ((-1081 |#1|) (-1081 |#1|) (-1081 |#1|))) (-15 -3133 ((-393 |#1|) |#1|)) (-15 -2961 (|#1| |#1|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -3937 (|#1|)) (-15 -4208 ((-3 |#1| "failed") |#1|)) (-15 -2683 ((-382 |#1|) |#1| (-382 |#1|))) (-15 -4031 ((-708) |#1|)) (-15 -4164 ((-2 (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1|)) (-15 -2611 (|#1| |#1|)) (-15 -2683 (|#2| (-382 |#1|) |#2|)) (-15 -2458 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3370 ((-2 (|:| -3112 |#2|) (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1|)) (-15 -2830 (|#1| |#1| |#1|)) (-15 -3884 ((-3 (-382 |#1|) "failed") (-382 |#1|) |#1|)) (-15 -3884 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3872 ((-708) |#1| |#1|)) (-15 -2683 ((-382 |#1|) (-382 |#1|) (-382 |#1|))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2165 (|#1| |#1| (-708))) (-15 -1633 (|#1| |#1| (-708))) (-15 -2927 ((-2 (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| (-708))) (-15 -2264 (|#1| (-1081 |#2|))) (-15 -4178 ((-1081 |#2|) |#1|)) (-15 -1428 ((-1166 |#2|) |#1| (-708))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1|)) (-15 -2731 (|#1| |#1| (-708))) (-15 -2683 (|#1| |#1| |#1|)) (-15 -2683 (|#2| |#1| |#2|)) (-15 -2006 ((-393 |#1|) |#1|)) (-15 -3543 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -2313 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -4022 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -2800 ((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|))) (-15 -2988 (|#1| |#1| (-999))) (-15 -3533 ((-588 (-999)) |#1|)) (-15 -3358 ((-708) |#1| (-588 (-999)))) (-15 -3358 ((-708) |#1|)) (-15 -3500 (|#1| |#1| (-588 (-999)) (-588 (-708)))) (-15 -3500 (|#1| |#1| (-999) (-708))) (-15 -3564 ((-588 (-708)) |#1| (-588 (-999)))) (-15 -3564 ((-708) |#1| (-999))) (-15 -3155 ((-3 (-999) "failed") |#1|)) (-15 -2487 ((-588 (-708)) |#1| (-588 (-999)))) (-15 -2487 ((-708) |#1| (-999))) (-15 -1478 ((-999) |#1|)) (-15 -3700 ((-3 (-999) "failed") |#1|)) (-15 -2217 (|#1| (-999))) (-15 -2330 (|#1| |#1| (-588 (-999)) (-588 |#1|))) (-15 -2330 (|#1| |#1| (-999) |#1|)) (-15 -2330 (|#1| |#1| (-588 (-999)) (-588 |#2|))) (-15 -2330 (|#1| |#1| (-999) |#2|)) (-15 -2330 (|#1| |#1| (-588 |#1|) (-588 |#1|))) (-15 -2330 (|#1| |#1| |#1| |#1|)) (-15 -2330 (|#1| |#1| (-270 |#1|))) (-15 -2330 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -2487 ((-708) |#1|)) (-15 -3500 (|#1| |#2| (-708))) (-15 -1478 ((-522) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -1478 (|#2| |#1|)) (-15 -3564 ((-708) |#1|)) (-15 -2988 (|#2| |#1|)) (-15 -2731 (|#1| |#1| (-588 (-999)) (-588 (-708)))) (-15 -2731 (|#1| |#1| (-999) (-708))) (-15 -2731 (|#1| |#1| (-588 (-999)))) (-15 -2731 (|#1| |#1| (-999))) (-15 -2217 (|#1| (-522))) (-15 -2217 ((-792) |#1|))) (-1142 |#2|) (-971)) (T -1141)) -NIL -(-10 -8 (-15 -2217 (|#1| |#1|)) (-15 -1789 ((-1081 |#1|) (-1081 |#1|) (-1081 |#1|))) (-15 -3133 ((-393 |#1|) |#1|)) (-15 -2961 (|#1| |#1|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -3937 (|#1|)) (-15 -4208 ((-3 |#1| "failed") |#1|)) (-15 -2683 ((-382 |#1|) |#1| (-382 |#1|))) (-15 -4031 ((-708) |#1|)) (-15 -4164 ((-2 (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1|)) (-15 -2611 (|#1| |#1|)) (-15 -2683 (|#2| (-382 |#1|) |#2|)) (-15 -2458 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3370 ((-2 (|:| -3112 |#2|) (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| |#1|)) (-15 -2830 (|#1| |#1| |#1|)) (-15 -3884 ((-3 (-382 |#1|) "failed") (-382 |#1|) |#1|)) (-15 -3884 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3872 ((-708) |#1| |#1|)) (-15 -2683 ((-382 |#1|) (-382 |#1|) (-382 |#1|))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2165 (|#1| |#1| (-708))) (-15 -1633 (|#1| |#1| (-708))) (-15 -2927 ((-2 (|:| -3450 |#1|) (|:| -4002 |#1|)) |#1| (-708))) (-15 -2264 (|#1| (-1081 |#2|))) (-15 -4178 ((-1081 |#2|) |#1|)) (-15 -1428 ((-1166 |#2|) |#1| (-708))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2731 (|#1| |#1| (-1085) (-708))) (-15 -2731 (|#1| |#1| (-588 (-1085)))) (-15 -2731 (|#1| |#1| (-1085))) (-15 -2731 (|#1| |#1|)) (-15 -2731 (|#1| |#1| (-708))) (-15 -2683 (|#1| |#1| |#1|)) (-15 -2683 (|#2| |#1| |#2|)) (-15 -2006 ((-393 |#1|) |#1|)) (-15 -3543 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -2313 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -4022 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -2800 ((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|))) (-15 -2988 (|#1| |#1| (-999))) (-15 -3533 ((-588 (-999)) |#1|)) (-15 -3358 ((-708) |#1| (-588 (-999)))) (-15 -3358 ((-708) |#1|)) (-15 -3500 (|#1| |#1| (-588 (-999)) (-588 (-708)))) (-15 -3500 (|#1| |#1| (-999) (-708))) (-15 -3564 ((-588 (-708)) |#1| (-588 (-999)))) (-15 -3564 ((-708) |#1| (-999))) (-15 -3155 ((-3 (-999) "failed") |#1|)) (-15 -2487 ((-588 (-708)) |#1| (-588 (-999)))) (-15 -2487 ((-708) |#1| (-999))) (-15 -1478 ((-999) |#1|)) (-15 -3700 ((-3 (-999) "failed") |#1|)) (-15 -2217 (|#1| (-999))) (-15 -2330 (|#1| |#1| (-588 (-999)) (-588 |#1|))) (-15 -2330 (|#1| |#1| (-999) |#1|)) (-15 -2330 (|#1| |#1| (-588 (-999)) (-588 |#2|))) (-15 -2330 (|#1| |#1| (-999) |#2|)) (-15 -2330 (|#1| |#1| (-588 |#1|) (-588 |#1|))) (-15 -2330 (|#1| |#1| |#1| |#1|)) (-15 -2330 (|#1| |#1| (-270 |#1|))) (-15 -2330 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -2487 ((-708) |#1|)) (-15 -3500 (|#1| |#2| (-708))) (-15 -1478 ((-522) |#1|)) (-15 -3700 ((-3 (-522) "failed") |#1|)) (-15 -1478 ((-382 (-522)) |#1|)) (-15 -3700 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -3700 ((-3 |#2| "failed") |#1|)) (-15 -1478 (|#2| |#1|)) (-15 -3564 ((-708) |#1|)) (-15 -2988 (|#2| |#1|)) (-15 -2731 (|#1| |#1| (-588 (-999)) (-588 (-708)))) (-15 -2731 (|#1| |#1| (-999) (-708))) (-15 -2731 (|#1| |#1| (-588 (-999)))) (-15 -2731 (|#1| |#1| (-999))) (-15 -2217 (|#1| (-522))) (-15 -2217 ((-792) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-1428 (((-1166 |#1|) $ (-708)) 238)) (-3533 (((-588 (-999)) $) 110)) (-2264 (($ (-1081 |#1|)) 236)) (-1264 (((-1081 $) $ (-999)) 125) (((-1081 |#1|) $) 124)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 87 (|has| |#1| (-514)))) (-2298 (($ $) 88 (|has| |#1| (-514)))) (-3007 (((-108) $) 90 (|has| |#1| (-514)))) (-3358 (((-708) $) 112) (((-708) $ (-588 (-999))) 111)) (-2265 (((-3 $ "failed") $ $) 19)) (-3485 (($ $ $) 223 (|has| |#1| (-514)))) (-3543 (((-393 (-1081 $)) (-1081 $)) 100 (|has| |#1| (-838)))) (-2961 (($ $) 98 (|has| |#1| (-426)))) (-3133 (((-393 $) $) 97 (|has| |#1| (-426)))) (-2800 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 103 (|has| |#1| (-838)))) (-2805 (((-108) $ $) 208 (|has| |#1| (-338)))) (-1633 (($ $ (-708)) 231)) (-2165 (($ $ (-708)) 230)) (-2458 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-426)))) (-3367 (($) 17 T CONST)) (-3700 (((-3 |#1| "failed") $) 164) (((-3 (-382 (-522)) "failed") $) 162 (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) 160 (|has| |#1| (-962 (-522)))) (((-3 (-999) "failed") $) 136)) (-1478 ((|#1| $) 165) (((-382 (-522)) $) 161 (|has| |#1| (-962 (-382 (-522))))) (((-522) $) 159 (|has| |#1| (-962 (-522)))) (((-999) $) 135)) (-2908 (($ $ $ (-999)) 108 (|has| |#1| (-157))) ((|#1| $ $) 226 (|has| |#1| (-157)))) (-2333 (($ $ $) 212 (|has| |#1| (-338)))) (-3241 (($ $) 154)) (-1226 (((-628 (-522)) (-628 $)) 134 (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 133 (|has| |#1| (-584 (-522)))) (((-2 (|:| -2149 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 132) (((-628 |#1|) (-628 $)) 131)) (-3920 (((-3 $ "failed") $) 34)) (-2303 (($ $ $) 211 (|has| |#1| (-338)))) (-2659 (($ $ $) 229)) (-2830 (($ $ $) 220 (|has| |#1| (-514)))) (-3370 (((-2 (|:| -3112 |#1|) (|:| -3450 $) (|:| -4002 $)) $ $) 219 (|has| |#1| (-514)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 206 (|has| |#1| (-338)))) (-2883 (($ $) 176 (|has| |#1| (-426))) (($ $ (-999)) 105 (|has| |#1| (-426)))) (-3232 (((-588 $) $) 109)) (-2725 (((-108) $) 96 (|has| |#1| (-838)))) (-3792 (($ $ |#1| (-708) $) 172)) (-3738 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 84 (-12 (|has| (-999) (-815 (-354))) (|has| |#1| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 83 (-12 (|has| (-999) (-815 (-522))) (|has| |#1| (-815 (-522)))))) (-3872 (((-708) $ $) 224 (|has| |#1| (-514)))) (-2859 (((-108) $) 31)) (-1391 (((-708) $) 169)) (-4208 (((-3 $ "failed") $) 204 (|has| |#1| (-1061)))) (-3520 (($ (-1081 |#1|) (-999)) 117) (($ (-1081 $) (-999)) 116)) (-2895 (($ $ (-708)) 235)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 215 (|has| |#1| (-338)))) (-3038 (((-588 $) $) 126)) (-1374 (((-108) $) 152)) (-3500 (($ |#1| (-708)) 153) (($ $ (-999) (-708)) 119) (($ $ (-588 (-999)) (-588 (-708))) 118)) (-3058 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $ (-999)) 120) (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 233)) (-3564 (((-708) $) 170) (((-708) $ (-999)) 122) (((-588 (-708)) $ (-588 (-999))) 121)) (-1308 (($ $ $) 79 (|has| |#1| (-784)))) (-2524 (($ $ $) 78 (|has| |#1| (-784)))) (-1723 (($ (-1 (-708) (-708)) $) 171)) (-3810 (($ (-1 |#1| |#1|) $) 151)) (-4178 (((-1081 |#1|) $) 237)) (-3155 (((-3 (-999) "failed") $) 123)) (-3216 (($ $) 149)) (-3224 ((|#1| $) 148)) (-2267 (($ (-588 $)) 94 (|has| |#1| (-426))) (($ $ $) 93 (|has| |#1| (-426)))) (-2311 (((-1068) $) 9)) (-2927 (((-2 (|:| -3450 $) (|:| -4002 $)) $ (-708)) 232)) (-2760 (((-3 (-588 $) "failed") $) 114)) (-1919 (((-3 (-588 $) "failed") $) 115)) (-2024 (((-3 (-2 (|:| |var| (-999)) (|:| -3858 (-708))) "failed") $) 113)) (-2611 (($ $) 216 (|has| |#1| (-37 (-382 (-522)))))) (-3937 (($) 203 (|has| |#1| (-1061)) CONST)) (-4174 (((-1032) $) 10)) (-3199 (((-108) $) 166)) (-3207 ((|#1| $) 167)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 95 (|has| |#1| (-426)))) (-2308 (($ (-588 $)) 92 (|has| |#1| (-426))) (($ $ $) 91 (|has| |#1| (-426)))) (-4022 (((-393 (-1081 $)) (-1081 $)) 102 (|has| |#1| (-838)))) (-2313 (((-393 (-1081 $)) (-1081 $)) 101 (|has| |#1| (-838)))) (-2006 (((-393 $) $) 99 (|has| |#1| (-838)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 213 (|has| |#1| (-338)))) (-2276 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-514))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-514)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 207 (|has| |#1| (-338)))) (-2330 (($ $ (-588 (-270 $))) 145) (($ $ (-270 $)) 144) (($ $ $ $) 143) (($ $ (-588 $) (-588 $)) 142) (($ $ (-999) |#1|) 141) (($ $ (-588 (-999)) (-588 |#1|)) 140) (($ $ (-999) $) 139) (($ $ (-588 (-999)) (-588 $)) 138)) (-4031 (((-708) $) 209 (|has| |#1| (-338)))) (-2683 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-382 $) (-382 $) (-382 $)) 225 (|has| |#1| (-514))) ((|#1| (-382 $) |#1|) 217 (|has| |#1| (-338))) (((-382 $) $ (-382 $)) 205 (|has| |#1| (-514)))) (-2877 (((-3 $ "failed") $ (-708)) 234)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 210 (|has| |#1| (-338)))) (-1615 (($ $ (-999)) 107 (|has| |#1| (-157))) ((|#1| $) 227 (|has| |#1| (-157)))) (-2731 (($ $ (-999)) 42) (($ $ (-588 (-999))) 41) (($ $ (-999) (-708)) 40) (($ $ (-588 (-999)) (-588 (-708))) 39) (($ $ (-708)) 253) (($ $) 251) (($ $ (-1085)) 250 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 249 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 248 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) 247 (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-2487 (((-708) $) 150) (((-708) $ (-999)) 130) (((-588 (-708)) $ (-588 (-999))) 129)) (-3873 (((-821 (-354)) $) 82 (-12 (|has| (-999) (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354)))))) (((-821 (-522)) $) 81 (-12 (|has| (-999) (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522)))))) (((-498) $) 80 (-12 (|has| (-999) (-563 (-498))) (|has| |#1| (-563 (-498)))))) (-2988 ((|#1| $) 175 (|has| |#1| (-426))) (($ $ (-999)) 106 (|has| |#1| (-426)))) (-2583 (((-3 (-1166 $) "failed") (-628 $)) 104 (-4079 (|has| $ (-133)) (|has| |#1| (-838))))) (-3884 (((-3 $ "failed") $ $) 222 (|has| |#1| (-514))) (((-3 (-382 $) "failed") (-382 $) $) 221 (|has| |#1| (-514)))) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 163) (($ (-999)) 137) (($ (-382 (-522))) 72 (-3844 (|has| |#1| (-962 (-382 (-522)))) (|has| |#1| (-37 (-382 (-522)))))) (($ $) 85 (|has| |#1| (-514)))) (-2180 (((-588 |#1|) $) 168)) (-1643 ((|#1| $ (-708)) 155) (($ $ (-999) (-708)) 128) (($ $ (-588 (-999)) (-588 (-708))) 127)) (-3040 (((-3 $ "failed") $) 73 (-3844 (-4079 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2742 (((-708)) 29)) (-1225 (($ $ $ (-708)) 173 (|has| |#1| (-157)))) (-1407 (((-108) $ $) 89 (|has| |#1| (-514)))) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $ (-999)) 38) (($ $ (-588 (-999))) 37) (($ $ (-999) (-708)) 36) (($ $ (-588 (-999)) (-588 (-708))) 35) (($ $ (-708)) 254) (($ $) 252) (($ $ (-1085)) 246 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 245 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 244 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) 243 (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1623 (((-108) $ $) 76 (|has| |#1| (-784)))) (-1597 (((-108) $ $) 75 (|has| |#1| (-784)))) (-1562 (((-108) $ $) 6)) (-1609 (((-108) $ $) 77 (|has| |#1| (-784)))) (-1587 (((-108) $ $) 74 (|has| |#1| (-784)))) (-1682 (($ $ |#1|) 156 (|has| |#1| (-338)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 158 (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) 157 (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-1142 |#1|) (-1197) (-971)) (T -1142)) -((-1428 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-4 *1 (-1142 *4)) (-4 *4 (-971)) (-5 *2 (-1166 *4)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-971)) (-5 *2 (-1081 *3)))) (-2264 (*1 *1 *2) (-12 (-5 *2 (-1081 *3)) (-4 *3 (-971)) (-4 *1 (-1142 *3)))) (-2895 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1142 *3)) (-4 *3 (-971)))) (-2877 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-708)) (-4 *1 (-1142 *3)) (-4 *3 (-971)))) (-3058 (*1 *2 *1 *1) (-12 (-4 *3 (-971)) (-5 *2 (-2 (|:| -3450 *1) (|:| -4002 *1))) (-4 *1 (-1142 *3)))) (-2927 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-4 *4 (-971)) (-5 *2 (-2 (|:| -3450 *1) (|:| -4002 *1))) (-4 *1 (-1142 *4)))) (-1633 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1142 *3)) (-4 *3 (-971)))) (-2165 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1142 *3)) (-4 *3 (-971)))) (-2659 (*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)))) (-2731 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1142 *3)) (-4 *3 (-971)))) (-1615 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-157)))) (-2908 (*1 *2 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-157)))) (-2683 (*1 *2 *2 *2) (-12 (-5 *2 (-382 *1)) (-4 *1 (-1142 *3)) (-4 *3 (-971)) (-4 *3 (-514)))) (-3872 (*1 *2 *1 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-971)) (-4 *3 (-514)) (-5 *2 (-708)))) (-3485 (*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-514)))) (-3884 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-514)))) (-3884 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-382 *1)) (-4 *1 (-1142 *3)) (-4 *3 (-971)) (-4 *3 (-514)))) (-2830 (*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-514)))) (-3370 (*1 *2 *1 *1) (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-5 *2 (-2 (|:| -3112 *3) (|:| -3450 *1) (|:| -4002 *1))) (-4 *1 (-1142 *3)))) (-2458 (*1 *2 *1 *1) (-12 (-4 *3 (-426)) (-4 *3 (-971)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1142 *3)))) (-2683 (*1 *2 *3 *2) (-12 (-5 *3 (-382 *1)) (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-2611 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-37 (-382 (-522))))))) -(-13 (-878 |t#1| (-708) (-999)) (-262 |t#1| |t#1|) (-262 $ $) (-210) (-208 |t#1|) (-10 -8 (-15 -1428 ((-1166 |t#1|) $ (-708))) (-15 -4178 ((-1081 |t#1|) $)) (-15 -2264 ($ (-1081 |t#1|))) (-15 -2895 ($ $ (-708))) (-15 -2877 ((-3 $ "failed") $ (-708))) (-15 -3058 ((-2 (|:| -3450 $) (|:| -4002 $)) $ $)) (-15 -2927 ((-2 (|:| -3450 $) (|:| -4002 $)) $ (-708))) (-15 -1633 ($ $ (-708))) (-15 -2165 ($ $ (-708))) (-15 -2659 ($ $ $)) (-15 -2731 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1061)) (-6 (-1061)) |%noBranch|) (IF (|has| |t#1| (-157)) (PROGN (-15 -1615 (|t#1| $)) (-15 -2908 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-514)) (PROGN (-6 (-262 (-382 $) (-382 $))) (-15 -2683 ((-382 $) (-382 $) (-382 $))) (-15 -3872 ((-708) $ $)) (-15 -3485 ($ $ $)) (-15 -3884 ((-3 $ "failed") $ $)) (-15 -3884 ((-3 (-382 $) "failed") (-382 $) $)) (-15 -2830 ($ $ $)) (-15 -3370 ((-2 (|:| -3112 |t#1|) (|:| -3450 $) (|:| -4002 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-426)) (-15 -2458 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-338)) (PROGN (-6 (-283)) (-6 -4234) (-15 -2683 (|t#1| (-382 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-382 (-522)))) (-15 -2611 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-708)) . T) ((-25) . T) ((-37 #1=(-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-338))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-382 (-522)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-563 (-498)) -12 (|has| (-999) (-563 (-498))) (|has| |#1| (-563 (-498)))) ((-563 (-821 (-354))) -12 (|has| (-999) (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354))))) ((-563 (-821 (-522))) -12 (|has| (-999) (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522))))) ((-208 |#1|) . T) ((-210) . T) ((-262 (-382 $) (-382 $)) |has| |#1| (-514)) ((-262 |#1| |#1|) . T) ((-262 $ $) . T) ((-266) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-338))) ((-283) |has| |#1| (-338)) ((-285 $) . T) ((-301 |#1| #0#) . T) ((-352 |#1|) . T) ((-386 |#1|) . T) ((-426) -3844 (|has| |#1| (-838)) (|has| |#1| (-426)) (|has| |#1| (-338))) ((-483 #2=(-999) |#1|) . T) ((-483 #2# $) . T) ((-483 $ $) . T) ((-514) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-338))) ((-590 #1#) |has| |#1| (-37 (-382 (-522)))) ((-590 |#1|) . T) ((-590 $) . T) ((-584 (-522)) |has| |#1| (-584 (-522))) ((-584 |#1|) . T) ((-655 #1#) |has| |#1| (-37 (-382 (-522)))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-338))) ((-664) . T) ((-784) |has| |#1| (-784)) ((-829 #2#) . T) ((-829 (-1085)) |has| |#1| (-829 (-1085))) ((-815 (-354)) -12 (|has| (-999) (-815 (-354))) (|has| |#1| (-815 (-354)))) ((-815 (-522)) -12 (|has| (-999) (-815 (-522))) (|has| |#1| (-815 (-522)))) ((-878 |#1| #0# #2#) . T) ((-838) |has| |#1| (-838)) ((-849) |has| |#1| (-338)) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 #2#) . T) ((-962 |#1|) . T) ((-977 #1#) |has| |#1| (-37 (-382 (-522)))) ((-977 |#1|) . T) ((-977 $) -3844 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1061) |has| |#1| (-1061)) ((-1124) |has| |#1| (-838))) -((-3533 (((-588 (-999)) $) 28)) (-3241 (($ $) 25)) (-3500 (($ |#2| |#3|) NIL) (($ $ (-999) |#3|) 22) (($ $ (-588 (-999)) (-588 |#3|)) 20)) (-3216 (($ $) 14)) (-3224 ((|#2| $) 12)) (-2487 ((|#3| $) 10))) -(((-1143 |#1| |#2| |#3|) (-10 -8 (-15 -3533 ((-588 (-999)) |#1|)) (-15 -3500 (|#1| |#1| (-588 (-999)) (-588 |#3|))) (-15 -3500 (|#1| |#1| (-999) |#3|)) (-15 -3241 (|#1| |#1|)) (-15 -3500 (|#1| |#2| |#3|)) (-15 -2487 (|#3| |#1|)) (-15 -3216 (|#1| |#1|)) (-15 -3224 (|#2| |#1|))) (-1144 |#2| |#3|) (-971) (-729)) (T -1143)) -NIL -(-10 -8 (-15 -3533 ((-588 (-999)) |#1|)) (-15 -3500 (|#1| |#1| (-588 (-999)) (-588 |#3|))) (-15 -3500 (|#1| |#1| (-999) |#3|)) (-15 -3241 (|#1| |#1|)) (-15 -3500 (|#1| |#2| |#3|)) (-15 -2487 (|#3| |#1|)) (-15 -3216 (|#1| |#1|)) (-15 -3224 (|#2| |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3533 (((-588 (-999)) $) 74)) (-1660 (((-1085) $) 103)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 51 (|has| |#1| (-514)))) (-2298 (($ $) 52 (|has| |#1| (-514)))) (-3007 (((-108) $) 54 (|has| |#1| (-514)))) (-3495 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-3024 (((-1066 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3241 (($ $) 60)) (-3920 (((-3 $ "failed") $) 34)) (-3672 (((-108) $) 73)) (-3872 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-2859 (((-108) $) 31)) (-2895 (($ $ (-850)) 101)) (-1374 (((-108) $) 62)) (-3500 (($ |#1| |#2|) 61) (($ $ (-999) |#2|) 76) (($ $ (-588 (-999)) (-588 |#2|)) 75)) (-3810 (($ (-1 |#1| |#1|) $) 63)) (-3216 (($ $) 65)) (-3224 ((|#1| $) 66)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-3934 (($ $ |#2|) 95)) (-2276 (((-3 $ "failed") $ $) 50 (|has| |#1| (-514)))) (-2330 (((-1066 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2683 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1026)))) (-2731 (($ $ (-588 (-1085)) (-588 (-708))) 89 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1085) (-708)) 88 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-588 (-1085))) 87 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1085)) 86 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-708)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2487 ((|#2| $) 64)) (-1944 (($ $) 72)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ (-382 (-522))) 57 (|has| |#1| (-37 (-382 (-522))))) (($ $) 49 (|has| |#1| (-514))) (($ |#1|) 47 (|has| |#1| (-157)))) (-1643 ((|#1| $ |#2|) 59)) (-3040 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-2742 (((-708)) 29)) (-1980 ((|#1| $) 102)) (-1407 (((-108) $ $) 53 (|has| |#1| (-514)))) (-3996 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2217 (|#1| (-1085))))))) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $ (-588 (-1085)) (-588 (-708))) 93 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1085) (-708)) 92 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-588 (-1085))) 91 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1085)) 90 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-708)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1562 (((-108) $ $) 6)) (-1682 (($ $ |#1|) 58 (|has| |#1| (-338)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-382 (-522)) $) 56 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 55 (|has| |#1| (-37 (-382 (-522))))))) -(((-1144 |#1| |#2|) (-1197) (-971) (-729)) (T -1144)) -((-3024 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) (-5 *2 (-1066 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2683 (*1 *2 *1 *3) (-12 (-4 *1 (-1144 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971)))) (-1660 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) (-5 *2 (-1085)))) (-1980 (*1 *2 *1) (-12 (-4 *1 (-1144 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971)))) (-2895 (*1 *1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-1144 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729)))) (-3872 (*1 *2 *1 *2) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729)))) (-3495 (*1 *1 *1 *2) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729)))) (-3495 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729)))) (-3996 (*1 *2 *1 *3) (-12 (-4 *1 (-1144 *2 *3)) (-4 *3 (-729)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2217 (*2 (-1085)))) (-4 *2 (-971)))) (-3934 (*1 *1 *1 *2) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729)))) (-2330 (*1 *2 *1 *3) (-12 (-4 *1 (-1144 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1066 *3))))) -(-13 (-900 |t#1| |t#2| (-999)) (-10 -8 (-15 -3024 ((-1066 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2683 (|t#1| $ |t#2|)) (-15 -1660 ((-1085) $)) (-15 -1980 (|t#1| $)) (-15 -2895 ($ $ (-850))) (-15 -3872 (|t#2| $)) (-15 -3872 (|t#2| $ |t#2|)) (-15 -3495 ($ $ |t#2|)) (-15 -3495 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2217 (|t#1| (-1085)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3996 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3934 ($ $ |t#2|)) (IF (|has| |t#2| (-1026)) (-6 (-262 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-210)) (IF (|has| |t#1| (-829 (-1085))) (-6 (-829 (-1085))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2330 ((-1066 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-514)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-382 (-522)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3844 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3844 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-210) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-262 $ $) |has| |#2| (-1026)) ((-266) |has| |#1| (-514)) ((-514) |has| |#1| (-514)) ((-590 #0#) |has| |#1| (-37 (-382 (-522)))) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #0#) |has| |#1| (-37 (-382 (-522)))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) |has| |#1| (-514)) ((-664) . T) ((-829 (-1085)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-829 (-1085)))) ((-900 |#1| |#2| (-999)) . T) ((-977 #0#) |has| |#1| (-37 (-382 (-522)))) ((-977 |#1|) . T) ((-977 $) -3844 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-2961 ((|#2| |#2|) 12)) (-3133 (((-393 |#2|) |#2|) 14)) (-1927 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-522))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-522)))) 30))) -(((-1145 |#1| |#2|) (-10 -7 (-15 -3133 ((-393 |#2|) |#2|)) (-15 -2961 (|#2| |#2|)) (-15 -1927 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-522))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-522)))))) (-514) (-13 (-1142 |#1|) (-514) (-10 -8 (-15 -2308 ($ $ $))))) (T -1145)) -((-1927 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-522)))) (-4 *4 (-13 (-1142 *3) (-514) (-10 -8 (-15 -2308 ($ $ $))))) (-4 *3 (-514)) (-5 *1 (-1145 *3 *4)))) (-2961 (*1 *2 *2) (-12 (-4 *3 (-514)) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-1142 *3) (-514) (-10 -8 (-15 -2308 ($ $ $))))))) (-3133 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-393 *3)) (-5 *1 (-1145 *4 *3)) (-4 *3 (-13 (-1142 *4) (-514) (-10 -8 (-15 -2308 ($ $ $)))))))) -(-10 -7 (-15 -3133 ((-393 |#2|) |#2|)) (-15 -2961 (|#2| |#2|)) (-15 -1927 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-522))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-522)))))) -((-3810 (((-1151 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1151 |#1| |#3| |#5|)) 23))) -(((-1146 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3810 ((-1151 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1151 |#1| |#3| |#5|)))) (-971) (-971) (-1085) (-1085) |#1| |#2|) (T -1146)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1151 *5 *7 *9)) (-4 *5 (-971)) (-4 *6 (-971)) (-14 *7 (-1085)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1151 *6 *8 *10)) (-5 *1 (-1146 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1085))))) -(-10 -7 (-15 -3810 ((-1151 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1151 |#1| |#3| |#5|)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3533 (((-588 (-999)) $) 74)) (-1660 (((-1085) $) 103)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 51 (|has| |#1| (-514)))) (-2298 (($ $) 52 (|has| |#1| (-514)))) (-3007 (((-108) $) 54 (|has| |#1| (-514)))) (-3495 (($ $ (-382 (-522))) 98) (($ $ (-382 (-522)) (-382 (-522))) 97)) (-3024 (((-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|))) $) 105)) (-3044 (($ $) 135 (|has| |#1| (-37 (-382 (-522)))))) (-2923 (($ $) 118 (|has| |#1| (-37 (-382 (-522)))))) (-2265 (((-3 $ "failed") $ $) 19)) (-2961 (($ $) 162 (|has| |#1| (-338)))) (-3133 (((-393 $) $) 163 (|has| |#1| (-338)))) (-2016 (($ $) 117 (|has| |#1| (-37 (-382 (-522)))))) (-2805 (((-108) $ $) 153 (|has| |#1| (-338)))) (-3023 (($ $) 134 (|has| |#1| (-37 (-382 (-522)))))) (-2906 (($ $) 119 (|has| |#1| (-37 (-382 (-522)))))) (-1270 (($ (-708) (-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|)))) 172)) (-3066 (($ $) 133 (|has| |#1| (-37 (-382 (-522)))))) (-2936 (($ $) 120 (|has| |#1| (-37 (-382 (-522)))))) (-3367 (($) 17 T CONST)) (-2333 (($ $ $) 157 (|has| |#1| (-338)))) (-3241 (($ $) 60)) (-3920 (((-3 $ "failed") $) 34)) (-2303 (($ $ $) 156 (|has| |#1| (-338)))) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 151 (|has| |#1| (-338)))) (-2725 (((-108) $) 164 (|has| |#1| (-338)))) (-3672 (((-108) $) 73)) (-2980 (($) 145 (|has| |#1| (-37 (-382 (-522)))))) (-3872 (((-382 (-522)) $) 100) (((-382 (-522)) $ (-382 (-522))) 99)) (-2859 (((-108) $) 31)) (-1811 (($ $ (-522)) 116 (|has| |#1| (-37 (-382 (-522)))))) (-2895 (($ $ (-850)) 101) (($ $ (-382 (-522))) 171)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 160 (|has| |#1| (-338)))) (-1374 (((-108) $) 62)) (-3500 (($ |#1| (-382 (-522))) 61) (($ $ (-999) (-382 (-522))) 76) (($ $ (-588 (-999)) (-588 (-382 (-522)))) 75)) (-3810 (($ (-1 |#1| |#1|) $) 63)) (-1238 (($ $) 142 (|has| |#1| (-37 (-382 (-522)))))) (-3216 (($ $) 65)) (-3224 ((|#1| $) 66)) (-2267 (($ (-588 $)) 149 (|has| |#1| (-338))) (($ $ $) 148 (|has| |#1| (-338)))) (-2311 (((-1068) $) 9)) (-3193 (($ $) 165 (|has| |#1| (-338)))) (-2611 (($ $) 170 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) 169 (-3844 (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-887)) (|has| |#1| (-1106)) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-15 -3533 ((-588 (-1085)) |#1|))) (|has| |#1| (-15 -2611 (|#1| |#1| (-1085)))) (|has| |#1| (-37 (-382 (-522)))))))) (-4174 (((-1032) $) 10)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 150 (|has| |#1| (-338)))) (-2308 (($ (-588 $)) 147 (|has| |#1| (-338))) (($ $ $) 146 (|has| |#1| (-338)))) (-2006 (((-393 $) $) 161 (|has| |#1| (-338)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 158 (|has| |#1| (-338)))) (-3934 (($ $ (-382 (-522))) 95)) (-2276 (((-3 $ "failed") $ $) 50 (|has| |#1| (-514)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 152 (|has| |#1| (-338)))) (-3357 (($ $) 143 (|has| |#1| (-37 (-382 (-522)))))) (-2330 (((-1066 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))))) (-4031 (((-708) $) 154 (|has| |#1| (-338)))) (-2683 ((|#1| $ (-382 (-522))) 104) (($ $ $) 81 (|has| (-382 (-522)) (-1026)))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 155 (|has| |#1| (-338)))) (-2731 (($ $ (-588 (-1085)) (-588 (-708))) 89 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-1085) (-708)) 88 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-588 (-1085))) 87 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-1085)) 86 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-708)) 84 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-2487 (((-382 (-522)) $) 64)) (-1831 (($ $) 132 (|has| |#1| (-37 (-382 (-522)))))) (-2946 (($ $) 121 (|has| |#1| (-37 (-382 (-522)))))) (-3054 (($ $) 131 (|has| |#1| (-37 (-382 (-522)))))) (-2928 (($ $) 122 (|has| |#1| (-37 (-382 (-522)))))) (-3035 (($ $) 130 (|has| |#1| (-37 (-382 (-522)))))) (-2915 (($ $) 123 (|has| |#1| (-37 (-382 (-522)))))) (-1944 (($ $) 72)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ (-382 (-522))) 57 (|has| |#1| (-37 (-382 (-522))))) (($ $) 49 (|has| |#1| (-514)))) (-1643 ((|#1| $ (-382 (-522))) 59)) (-3040 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-2742 (((-708)) 29)) (-1980 ((|#1| $) 102)) (-1856 (($ $) 141 (|has| |#1| (-37 (-382 (-522)))))) (-2976 (($ $) 129 (|has| |#1| (-37 (-382 (-522)))))) (-1407 (((-108) $ $) 53 (|has| |#1| (-514)))) (-1839 (($ $) 140 (|has| |#1| (-37 (-382 (-522)))))) (-2957 (($ $) 128 (|has| |#1| (-37 (-382 (-522)))))) (-1873 (($ $) 139 (|has| |#1| (-37 (-382 (-522)))))) (-3001 (($ $) 127 (|has| |#1| (-37 (-382 (-522)))))) (-3996 ((|#1| $ (-382 (-522))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))) (|has| |#1| (-15 -2217 (|#1| (-1085))))))) (-2476 (($ $) 138 (|has| |#1| (-37 (-382 (-522)))))) (-3011 (($ $) 126 (|has| |#1| (-37 (-382 (-522)))))) (-1864 (($ $) 137 (|has| |#1| (-37 (-382 (-522)))))) (-2989 (($ $) 125 (|has| |#1| (-37 (-382 (-522)))))) (-1849 (($ $) 136 (|has| |#1| (-37 (-382 (-522)))))) (-2966 (($ $) 124 (|has| |#1| (-37 (-382 (-522)))))) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 166 (|has| |#1| (-338)))) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $ (-588 (-1085)) (-588 (-708))) 93 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-1085) (-708)) 92 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-588 (-1085))) 91 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-1085)) 90 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-708)) 85 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-1562 (((-108) $ $) 6)) (-1682 (($ $ |#1|) 58 (|has| |#1| (-338))) (($ $ $) 168 (|has| |#1| (-338)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 167 (|has| |#1| (-338))) (($ $ $) 144 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 115 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-382 (-522)) $) 56 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 55 (|has| |#1| (-37 (-382 (-522))))))) -(((-1147 |#1|) (-1197) (-971)) (T -1147)) -((-1270 (*1 *1 *2 *3) (-12 (-5 *2 (-708)) (-5 *3 (-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| *4)))) (-4 *4 (-971)) (-4 *1 (-1147 *4)))) (-2895 (*1 *1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-4 *1 (-1147 *3)) (-4 *3 (-971)))) (-2611 (*1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-971)) (-4 *2 (-37 (-382 (-522)))))) (-2611 (*1 *1 *1 *2) (-3844 (-12 (-5 *2 (-1085)) (-4 *1 (-1147 *3)) (-4 *3 (-971)) (-12 (-4 *3 (-29 (-522))) (-4 *3 (-887)) (-4 *3 (-1106)) (-4 *3 (-37 (-382 (-522)))))) (-12 (-5 *2 (-1085)) (-4 *1 (-1147 *3)) (-4 *3 (-971)) (-12 (|has| *3 (-15 -3533 ((-588 *2) *3))) (|has| *3 (-15 -2611 (*3 *3 *2))) (-4 *3 (-37 (-382 (-522))))))))) -(-13 (-1144 |t#1| (-382 (-522))) (-10 -8 (-15 -1270 ($ (-708) (-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |t#1|))))) (-15 -2895 ($ $ (-382 (-522)))) (IF (|has| |t#1| (-37 (-382 (-522)))) (PROGN (-15 -2611 ($ $)) (IF (|has| |t#1| (-15 -2611 (|t#1| |t#1| (-1085)))) (IF (|has| |t#1| (-15 -3533 ((-588 (-1085)) |t#1|))) (-15 -2611 ($ $ (-1085))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1106)) (IF (|has| |t#1| (-887)) (IF (|has| |t#1| (-29 (-522))) (-15 -2611 ($ $ (-1085))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-928)) (-6 (-1106))) |%noBranch|) (IF (|has| |t#1| (-338)) (-6 (-338)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-382 (-522))) . T) ((-25) . T) ((-37 #1=(-382 (-522))) -3844 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3844 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-34) |has| |#1| (-37 (-382 (-522)))) ((-91) |has| |#1| (-37 (-382 (-522)))) ((-97) . T) ((-107 #1# #1#) -3844 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3844 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3844 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-210) |has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) ((-220) |has| |#1| (-338)) ((-260) |has| |#1| (-37 (-382 (-522)))) ((-262 $ $) |has| (-382 (-522)) (-1026)) ((-266) -3844 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-283) |has| |#1| (-338)) ((-338) |has| |#1| (-338)) ((-426) |has| |#1| (-338)) ((-463) |has| |#1| (-37 (-382 (-522)))) ((-514) -3844 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-590 #1#) -3844 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #1#) -3844 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) -3844 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-664) . T) ((-829 (-1085)) -12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085)))) ((-900 |#1| #0# (-999)) . T) ((-849) |has| |#1| (-338)) ((-928) |has| |#1| (-37 (-382 (-522)))) ((-977 #1#) -3844 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-977 |#1|) . T) ((-977 $) -3844 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1106) |has| |#1| (-37 (-382 (-522)))) ((-1109) |has| |#1| (-37 (-382 (-522)))) ((-1124) |has| |#1| (-338)) ((-1144 |#1| #0#) . T)) -((-2944 (((-108) $) 12)) (-3700 (((-3 |#3| "failed") $) 17)) (-1478 ((|#3| $) 14))) -(((-1148 |#1| |#2| |#3|) (-10 -8 (-15 -1478 (|#3| |#1|)) (-15 -3700 ((-3 |#3| "failed") |#1|)) (-15 -2944 ((-108) |#1|))) (-1149 |#2| |#3|) (-971) (-1126 |#2|)) (T -1148)) -NIL -(-10 -8 (-15 -1478 (|#3| |#1|)) (-15 -3700 ((-3 |#3| "failed") |#1|)) (-15 -2944 ((-108) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3533 (((-588 (-999)) $) 74)) (-1660 (((-1085) $) 103)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 51 (|has| |#1| (-514)))) (-2298 (($ $) 52 (|has| |#1| (-514)))) (-3007 (((-108) $) 54 (|has| |#1| (-514)))) (-3495 (($ $ (-382 (-522))) 98) (($ $ (-382 (-522)) (-382 (-522))) 97)) (-3024 (((-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|))) $) 105)) (-3044 (($ $) 135 (|has| |#1| (-37 (-382 (-522)))))) (-2923 (($ $) 118 (|has| |#1| (-37 (-382 (-522)))))) (-2265 (((-3 $ "failed") $ $) 19)) (-2961 (($ $) 162 (|has| |#1| (-338)))) (-3133 (((-393 $) $) 163 (|has| |#1| (-338)))) (-2016 (($ $) 117 (|has| |#1| (-37 (-382 (-522)))))) (-2805 (((-108) $ $) 153 (|has| |#1| (-338)))) (-3023 (($ $) 134 (|has| |#1| (-37 (-382 (-522)))))) (-2906 (($ $) 119 (|has| |#1| (-37 (-382 (-522)))))) (-1270 (($ (-708) (-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|)))) 172)) (-3066 (($ $) 133 (|has| |#1| (-37 (-382 (-522)))))) (-2936 (($ $) 120 (|has| |#1| (-37 (-382 (-522)))))) (-3367 (($) 17 T CONST)) (-3700 (((-3 |#2| "failed") $) 183)) (-1478 ((|#2| $) 182)) (-2333 (($ $ $) 157 (|has| |#1| (-338)))) (-3241 (($ $) 60)) (-3920 (((-3 $ "failed") $) 34)) (-3515 (((-382 (-522)) $) 180)) (-2303 (($ $ $) 156 (|has| |#1| (-338)))) (-3178 (($ (-382 (-522)) |#2|) 181)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 151 (|has| |#1| (-338)))) (-2725 (((-108) $) 164 (|has| |#1| (-338)))) (-3672 (((-108) $) 73)) (-2980 (($) 145 (|has| |#1| (-37 (-382 (-522)))))) (-3872 (((-382 (-522)) $) 100) (((-382 (-522)) $ (-382 (-522))) 99)) (-2859 (((-108) $) 31)) (-1811 (($ $ (-522)) 116 (|has| |#1| (-37 (-382 (-522)))))) (-2895 (($ $ (-850)) 101) (($ $ (-382 (-522))) 171)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 160 (|has| |#1| (-338)))) (-1374 (((-108) $) 62)) (-3500 (($ |#1| (-382 (-522))) 61) (($ $ (-999) (-382 (-522))) 76) (($ $ (-588 (-999)) (-588 (-382 (-522)))) 75)) (-3810 (($ (-1 |#1| |#1|) $) 63)) (-1238 (($ $) 142 (|has| |#1| (-37 (-382 (-522)))))) (-3216 (($ $) 65)) (-3224 ((|#1| $) 66)) (-2267 (($ (-588 $)) 149 (|has| |#1| (-338))) (($ $ $) 148 (|has| |#1| (-338)))) (-3602 ((|#2| $) 179)) (-3830 (((-3 |#2| "failed") $) 177)) (-3170 ((|#2| $) 178)) (-2311 (((-1068) $) 9)) (-3193 (($ $) 165 (|has| |#1| (-338)))) (-2611 (($ $) 170 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) 169 (-3844 (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-887)) (|has| |#1| (-1106)) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-15 -3533 ((-588 (-1085)) |#1|))) (|has| |#1| (-15 -2611 (|#1| |#1| (-1085)))) (|has| |#1| (-37 (-382 (-522)))))))) (-4174 (((-1032) $) 10)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 150 (|has| |#1| (-338)))) (-2308 (($ (-588 $)) 147 (|has| |#1| (-338))) (($ $ $) 146 (|has| |#1| (-338)))) (-2006 (((-393 $) $) 161 (|has| |#1| (-338)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 158 (|has| |#1| (-338)))) (-3934 (($ $ (-382 (-522))) 95)) (-2276 (((-3 $ "failed") $ $) 50 (|has| |#1| (-514)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 152 (|has| |#1| (-338)))) (-3357 (($ $) 143 (|has| |#1| (-37 (-382 (-522)))))) (-2330 (((-1066 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))))) (-4031 (((-708) $) 154 (|has| |#1| (-338)))) (-2683 ((|#1| $ (-382 (-522))) 104) (($ $ $) 81 (|has| (-382 (-522)) (-1026)))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 155 (|has| |#1| (-338)))) (-2731 (($ $ (-588 (-1085)) (-588 (-708))) 89 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-1085) (-708)) 88 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-588 (-1085))) 87 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-1085)) 86 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-708)) 84 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-2487 (((-382 (-522)) $) 64)) (-1831 (($ $) 132 (|has| |#1| (-37 (-382 (-522)))))) (-2946 (($ $) 121 (|has| |#1| (-37 (-382 (-522)))))) (-3054 (($ $) 131 (|has| |#1| (-37 (-382 (-522)))))) (-2928 (($ $) 122 (|has| |#1| (-37 (-382 (-522)))))) (-3035 (($ $) 130 (|has| |#1| (-37 (-382 (-522)))))) (-2915 (($ $) 123 (|has| |#1| (-37 (-382 (-522)))))) (-1944 (($ $) 72)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ |#2|) 184) (($ (-382 (-522))) 57 (|has| |#1| (-37 (-382 (-522))))) (($ $) 49 (|has| |#1| (-514)))) (-1643 ((|#1| $ (-382 (-522))) 59)) (-3040 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-2742 (((-708)) 29)) (-1980 ((|#1| $) 102)) (-1856 (($ $) 141 (|has| |#1| (-37 (-382 (-522)))))) (-2976 (($ $) 129 (|has| |#1| (-37 (-382 (-522)))))) (-1407 (((-108) $ $) 53 (|has| |#1| (-514)))) (-1839 (($ $) 140 (|has| |#1| (-37 (-382 (-522)))))) (-2957 (($ $) 128 (|has| |#1| (-37 (-382 (-522)))))) (-1873 (($ $) 139 (|has| |#1| (-37 (-382 (-522)))))) (-3001 (($ $) 127 (|has| |#1| (-37 (-382 (-522)))))) (-3996 ((|#1| $ (-382 (-522))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))) (|has| |#1| (-15 -2217 (|#1| (-1085))))))) (-2476 (($ $) 138 (|has| |#1| (-37 (-382 (-522)))))) (-3011 (($ $) 126 (|has| |#1| (-37 (-382 (-522)))))) (-1864 (($ $) 137 (|has| |#1| (-37 (-382 (-522)))))) (-2989 (($ $) 125 (|has| |#1| (-37 (-382 (-522)))))) (-1849 (($ $) 136 (|has| |#1| (-37 (-382 (-522)))))) (-2966 (($ $) 124 (|has| |#1| (-37 (-382 (-522)))))) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 166 (|has| |#1| (-338)))) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $ (-588 (-1085)) (-588 (-708))) 93 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-1085) (-708)) 92 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-588 (-1085))) 91 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-1085)) 90 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-708)) 85 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-1562 (((-108) $ $) 6)) (-1682 (($ $ |#1|) 58 (|has| |#1| (-338))) (($ $ $) 168 (|has| |#1| (-338)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 167 (|has| |#1| (-338))) (($ $ $) 144 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 115 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-382 (-522)) $) 56 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 55 (|has| |#1| (-37 (-382 (-522))))))) -(((-1149 |#1| |#2|) (-1197) (-971) (-1126 |t#1|)) (T -1149)) -((-2487 (*1 *2 *1) (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1126 *3)) (-5 *2 (-382 (-522))))) (-2217 (*1 *1 *2) (-12 (-4 *3 (-971)) (-4 *1 (-1149 *3 *2)) (-4 *2 (-1126 *3)))) (-3178 (*1 *1 *2 *3) (-12 (-5 *2 (-382 (-522))) (-4 *4 (-971)) (-4 *1 (-1149 *4 *3)) (-4 *3 (-1126 *4)))) (-3515 (*1 *2 *1) (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1126 *3)) (-5 *2 (-382 (-522))))) (-3602 (*1 *2 *1) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1126 *3)))) (-3170 (*1 *2 *1) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1126 *3)))) (-3830 (*1 *2 *1) (|partial| -12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1126 *3))))) -(-13 (-1147 |t#1|) (-962 |t#2|) (-10 -8 (-15 -3178 ($ (-382 (-522)) |t#2|)) (-15 -3515 ((-382 (-522)) $)) (-15 -3602 (|t#2| $)) (-15 -2487 ((-382 (-522)) $)) (-15 -2217 ($ |t#2|)) (-15 -3170 (|t#2| $)) (-15 -3830 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-382 (-522))) . T) ((-25) . T) ((-37 #1=(-382 (-522))) -3844 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3844 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-34) |has| |#1| (-37 (-382 (-522)))) ((-91) |has| |#1| (-37 (-382 (-522)))) ((-97) . T) ((-107 #1# #1#) -3844 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3844 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3844 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-210) |has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) ((-220) |has| |#1| (-338)) ((-260) |has| |#1| (-37 (-382 (-522)))) ((-262 $ $) |has| (-382 (-522)) (-1026)) ((-266) -3844 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-283) |has| |#1| (-338)) ((-338) |has| |#1| (-338)) ((-426) |has| |#1| (-338)) ((-463) |has| |#1| (-37 (-382 (-522)))) ((-514) -3844 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-590 #1#) -3844 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #1#) -3844 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) -3844 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-664) . T) ((-829 (-1085)) -12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085)))) ((-900 |#1| #0# (-999)) . T) ((-849) |has| |#1| (-338)) ((-928) |has| |#1| (-37 (-382 (-522)))) ((-962 |#2|) . T) ((-977 #1#) -3844 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-977 |#1|) . T) ((-977 $) -3844 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1106) |has| |#1| (-37 (-382 (-522)))) ((-1109) |has| |#1| (-37 (-382 (-522)))) ((-1124) |has| |#1| (-338)) ((-1144 |#1| #0#) . T) ((-1147 |#1|) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3533 (((-588 (-999)) $) NIL)) (-1660 (((-1085) $) 96)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) NIL (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-3495 (($ $ (-382 (-522))) 106) (($ $ (-382 (-522)) (-382 (-522))) 108)) (-3024 (((-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|))) $) 51)) (-3044 (($ $) 179 (|has| |#1| (-37 (-382 (-522)))))) (-2923 (($ $) 155 (|has| |#1| (-37 (-382 (-522)))))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL (|has| |#1| (-338)))) (-3133 (((-393 $) $) NIL (|has| |#1| (-338)))) (-2016 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2805 (((-108) $ $) NIL (|has| |#1| (-338)))) (-3023 (($ $) 175 (|has| |#1| (-37 (-382 (-522)))))) (-2906 (($ $) 151 (|has| |#1| (-37 (-382 (-522)))))) (-1270 (($ (-708) (-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|)))) 61)) (-3066 (($ $) 183 (|has| |#1| (-37 (-382 (-522)))))) (-2936 (($ $) 159 (|has| |#1| (-37 (-382 (-522)))))) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#2| "failed") $) NIL)) (-1478 ((|#2| $) NIL)) (-2333 (($ $ $) NIL (|has| |#1| (-338)))) (-3241 (($ $) NIL)) (-3920 (((-3 $ "failed") $) 79)) (-3515 (((-382 (-522)) $) 12)) (-2303 (($ $ $) NIL (|has| |#1| (-338)))) (-3178 (($ (-382 (-522)) |#2|) 10)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2725 (((-108) $) NIL (|has| |#1| (-338)))) (-3672 (((-108) $) 68)) (-2980 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3872 (((-382 (-522)) $) 103) (((-382 (-522)) $ (-382 (-522))) 104)) (-2859 (((-108) $) NIL)) (-1811 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2895 (($ $ (-850)) 120) (($ $ (-382 (-522))) 118)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-1374 (((-108) $) NIL)) (-3500 (($ |#1| (-382 (-522))) 31) (($ $ (-999) (-382 (-522))) NIL) (($ $ (-588 (-999)) (-588 (-382 (-522)))) NIL)) (-3810 (($ (-1 |#1| |#1|) $) 115)) (-1238 (($ $) 149 (|has| |#1| (-37 (-382 (-522)))))) (-3216 (($ $) NIL)) (-3224 ((|#1| $) NIL)) (-2267 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-3602 ((|#2| $) 11)) (-3830 (((-3 |#2| "failed") $) 41)) (-3170 ((|#2| $) 42)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) 93 (|has| |#1| (-338)))) (-2611 (($ $) 135 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) 140 (-3844 (-12 (|has| |#1| (-15 -2611 (|#1| |#1| (-1085)))) (|has| |#1| (-15 -3533 ((-588 (-1085)) |#1|))) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-887)) (|has| |#1| (-1106)))))) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-338)))) (-2308 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-2006 (((-393 $) $) NIL (|has| |#1| (-338)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-338)))) (-3934 (($ $ (-382 (-522))) 112)) (-2276 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3357 (($ $) 147 (|has| |#1| (-37 (-382 (-522)))))) (-2330 (((-1066 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))))) (-4031 (((-708) $) NIL (|has| |#1| (-338)))) (-2683 ((|#1| $ (-382 (-522))) 100) (($ $ $) 86 (|has| (-382 (-522)) (-1026)))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-338)))) (-2731 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) 127 (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-2487 (((-382 (-522)) $) 16)) (-1831 (($ $) 185 (|has| |#1| (-37 (-382 (-522)))))) (-2946 (($ $) 161 (|has| |#1| (-37 (-382 (-522)))))) (-3054 (($ $) 181 (|has| |#1| (-37 (-382 (-522)))))) (-2928 (($ $) 157 (|has| |#1| (-37 (-382 (-522)))))) (-3035 (($ $) 177 (|has| |#1| (-37 (-382 (-522)))))) (-2915 (($ $) 153 (|has| |#1| (-37 (-382 (-522)))))) (-1944 (($ $) 110)) (-2217 (((-792) $) NIL) (($ (-522)) 35) (($ |#1|) 27 (|has| |#1| (-157))) (($ |#2|) 32) (($ (-382 (-522))) 128 (|has| |#1| (-37 (-382 (-522))))) (($ $) NIL (|has| |#1| (-514)))) (-1643 ((|#1| $ (-382 (-522))) 99)) (-3040 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2742 (((-708)) 117)) (-1980 ((|#1| $) 98)) (-1856 (($ $) 191 (|has| |#1| (-37 (-382 (-522)))))) (-2976 (($ $) 167 (|has| |#1| (-37 (-382 (-522)))))) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1839 (($ $) 187 (|has| |#1| (-37 (-382 (-522)))))) (-2957 (($ $) 163 (|has| |#1| (-37 (-382 (-522)))))) (-1873 (($ $) 195 (|has| |#1| (-37 (-382 (-522)))))) (-3001 (($ $) 171 (|has| |#1| (-37 (-382 (-522)))))) (-3996 ((|#1| $ (-382 (-522))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))) (|has| |#1| (-15 -2217 (|#1| (-1085))))))) (-2476 (($ $) 197 (|has| |#1| (-37 (-382 (-522)))))) (-3011 (($ $) 173 (|has| |#1| (-37 (-382 (-522)))))) (-1864 (($ $) 193 (|has| |#1| (-37 (-382 (-522)))))) (-2989 (($ $) 169 (|has| |#1| (-37 (-382 (-522)))))) (-1849 (($ $) 189 (|has| |#1| (-37 (-382 (-522)))))) (-2966 (($ $) 165 (|has| |#1| (-37 (-382 (-522)))))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3697 (($) 21 T CONST)) (-3709 (($) 17 T CONST)) (-2252 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-1562 (((-108) $ $) 66)) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338))) (($ $ $) 92 (|has| |#1| (-338)))) (-1672 (($ $) 131) (($ $ $) 72)) (-1661 (($ $ $) 70)) (** (($ $ (-850)) NIL) (($ $ (-708)) 76) (($ $ (-522)) 144 (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 145 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))))) -(((-1150 |#1| |#2|) (-1149 |#1| |#2|) (-971) (-1126 |#1|)) (T -1150)) -NIL -(-1149 |#1| |#2|) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3533 (((-588 (-999)) $) NIL)) (-1660 (((-1085) $) 11)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) NIL (|has| |#1| (-514)))) (-3007 (((-108) $) NIL (|has| |#1| (-514)))) (-3495 (($ $ (-382 (-522))) NIL) (($ $ (-382 (-522)) (-382 (-522))) NIL)) (-3024 (((-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|))) $) NIL)) (-3044 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2923 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2961 (($ $) NIL (|has| |#1| (-338)))) (-3133 (((-393 $) $) NIL (|has| |#1| (-338)))) (-2016 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2805 (((-108) $ $) NIL (|has| |#1| (-338)))) (-3023 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2906 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1270 (($ (-708) (-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|)))) NIL)) (-3066 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2936 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-1130 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1158 |#1| |#2| |#3|) "failed") $) 22)) (-1478 (((-1130 |#1| |#2| |#3|) $) NIL) (((-1158 |#1| |#2| |#3|) $) NIL)) (-2333 (($ $ $) NIL (|has| |#1| (-338)))) (-3241 (($ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-3515 (((-382 (-522)) $) 57)) (-2303 (($ $ $) NIL (|has| |#1| (-338)))) (-3178 (($ (-382 (-522)) (-1130 |#1| |#2| |#3|)) NIL)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2725 (((-108) $) NIL (|has| |#1| (-338)))) (-3672 (((-108) $) NIL)) (-2980 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3872 (((-382 (-522)) $) NIL) (((-382 (-522)) $ (-382 (-522))) NIL)) (-2859 (((-108) $) NIL)) (-1811 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2895 (($ $ (-850)) NIL) (($ $ (-382 (-522))) NIL)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-1374 (((-108) $) NIL)) (-3500 (($ |#1| (-382 (-522))) 29) (($ $ (-999) (-382 (-522))) NIL) (($ $ (-588 (-999)) (-588 (-382 (-522)))) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-1238 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3216 (($ $) NIL)) (-3224 ((|#1| $) NIL)) (-2267 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-3602 (((-1130 |#1| |#2| |#3|) $) 60)) (-3830 (((-3 (-1130 |#1| |#2| |#3|) "failed") $) NIL)) (-3170 (((-1130 |#1| |#2| |#3|) $) NIL)) (-2311 (((-1068) $) NIL)) (-3193 (($ $) NIL (|has| |#1| (-338)))) (-2611 (($ $) 38 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) NIL (-3844 (-12 (|has| |#1| (-15 -2611 (|#1| |#1| (-1085)))) (|has| |#1| (-15 -3533 ((-588 (-1085)) |#1|))) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-887)) (|has| |#1| (-1106))))) (($ $ (-1162 |#2|)) 39 (|has| |#1| (-37 (-382 (-522)))))) (-4174 (((-1032) $) NIL)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-338)))) (-2308 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-2006 (((-393 $) $) NIL (|has| |#1| (-338)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) NIL (|has| |#1| (-338)))) (-3934 (($ $ (-382 (-522))) NIL)) (-2276 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-3716 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3357 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2330 (((-1066 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))))) (-4031 (((-708) $) NIL (|has| |#1| (-338)))) (-2683 ((|#1| $ (-382 (-522))) NIL) (($ $ $) NIL (|has| (-382 (-522)) (-1026)))) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) NIL (|has| |#1| (-338)))) (-2731 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $ (-1162 |#2|)) 37)) (-2487 (((-382 (-522)) $) NIL)) (-1831 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2946 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3054 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2928 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3035 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2915 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1944 (($ $) NIL)) (-2217 (((-792) $) 88) (($ (-522)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1130 |#1| |#2| |#3|)) 16) (($ (-1158 |#1| |#2| |#3|)) 17) (($ (-1162 |#2|)) 35) (($ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $) NIL (|has| |#1| (-514)))) (-1643 ((|#1| $ (-382 (-522))) NIL)) (-3040 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2742 (((-708)) NIL)) (-1980 ((|#1| $) 12)) (-1856 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2976 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1839 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2957 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1873 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3001 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3996 ((|#1| $ (-382 (-522))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))) (|has| |#1| (-15 -2217 (|#1| (-1085))))))) (-2476 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3011 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1864 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2989 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1849 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2966 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3697 (($) 31 T CONST)) (-3709 (($) 26 T CONST)) (-2252 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) 33)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))))) -(((-1151 |#1| |#2| |#3|) (-13 (-1149 |#1| (-1130 |#1| |#2| |#3|)) (-962 (-1158 |#1| |#2| |#3|)) (-10 -8 (-15 -2217 ($ (-1162 |#2|))) (-15 -2731 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -2611 ($ $ (-1162 |#2|))) |%noBranch|))) (-971) (-1085) |#1|) (T -1151)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-2611 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3)))) -(-13 (-1149 |#1| (-1130 |#1| |#2| |#3|)) (-962 (-1158 |#1| |#2| |#3|)) (-10 -8 (-15 -2217 ($ (-1162 |#2|))) (-15 -2731 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -2611 ($ $ (-1162 |#2|))) |%noBranch|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 32)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2298 (($ $) NIL)) (-3007 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 (-522) "failed") $) NIL (|has| (-1151 |#2| |#3| |#4|) (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| (-1151 |#2| |#3| |#4|) (-962 (-382 (-522))))) (((-3 (-1151 |#2| |#3| |#4|) "failed") $) 20)) (-1478 (((-522) $) NIL (|has| (-1151 |#2| |#3| |#4|) (-962 (-522)))) (((-382 (-522)) $) NIL (|has| (-1151 |#2| |#3| |#4|) (-962 (-382 (-522))))) (((-1151 |#2| |#3| |#4|) $) NIL)) (-3241 (($ $) 33)) (-3920 (((-3 $ "failed") $) 25)) (-2883 (($ $) NIL (|has| (-1151 |#2| |#3| |#4|) (-426)))) (-3792 (($ $ (-1151 |#2| |#3| |#4|) (-294 |#2| |#3| |#4|) $) NIL)) (-2859 (((-108) $) NIL)) (-1391 (((-708) $) 11)) (-1374 (((-108) $) NIL)) (-3500 (($ (-1151 |#2| |#3| |#4|) (-294 |#2| |#3| |#4|)) 23)) (-3564 (((-294 |#2| |#3| |#4|) $) NIL)) (-1723 (($ (-1 (-294 |#2| |#3| |#4|) (-294 |#2| |#3| |#4|)) $) NIL)) (-3810 (($ (-1 (-1151 |#2| |#3| |#4|) (-1151 |#2| |#3| |#4|)) $) NIL)) (-3134 (((-3 (-777 |#2|) "failed") $) 73)) (-3216 (($ $) NIL)) (-3224 (((-1151 |#2| |#3| |#4|) $) 18)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-3199 (((-108) $) NIL)) (-3207 (((-1151 |#2| |#3| |#4|) $) NIL)) (-2276 (((-3 $ "failed") $ (-1151 |#2| |#3| |#4|)) NIL (|has| (-1151 |#2| |#3| |#4|) (-514))) (((-3 $ "failed") $ $) NIL)) (-1689 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1151 |#2| |#3| |#4|)) (|:| |%expon| (-294 |#2| |#3| |#4|)) (|:| |%expTerms| (-588 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#2|)))))) (|:| |%type| (-1068))) "failed") $) 56)) (-2487 (((-294 |#2| |#3| |#4|) $) 14)) (-2988 (((-1151 |#2| |#3| |#4|) $) NIL (|has| (-1151 |#2| |#3| |#4|) (-426)))) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ (-1151 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL (-3844 (|has| (-1151 |#2| |#3| |#4|) (-37 (-382 (-522)))) (|has| (-1151 |#2| |#3| |#4|) (-962 (-382 (-522))))))) (-2180 (((-588 (-1151 |#2| |#3| |#4|)) $) NIL)) (-1643 (((-1151 |#2| |#3| |#4|) $ (-294 |#2| |#3| |#4|)) NIL)) (-3040 (((-3 $ "failed") $) NIL (|has| (-1151 |#2| |#3| |#4|) (-133)))) (-2742 (((-708)) NIL)) (-1225 (($ $ $ (-708)) NIL (|has| (-1151 |#2| |#3| |#4|) (-157)))) (-1407 (((-108) $ $) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 61 T CONST)) (-3709 (($) NIL T CONST)) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ (-1151 |#2| |#3| |#4|)) NIL (|has| (-1151 |#2| |#3| |#4|) (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-1151 |#2| |#3| |#4|)) NIL) (($ (-1151 |#2| |#3| |#4|) $) NIL) (($ (-382 (-522)) $) NIL (|has| (-1151 |#2| |#3| |#4|) (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| (-1151 |#2| |#3| |#4|) (-37 (-382 (-522))))))) -(((-1152 |#1| |#2| |#3| |#4|) (-13 (-301 (-1151 |#2| |#3| |#4|) (-294 |#2| |#3| |#4|)) (-514) (-10 -8 (-15 -3134 ((-3 (-777 |#2|) "failed") $)) (-15 -1689 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1151 |#2| |#3| |#4|)) (|:| |%expon| (-294 |#2| |#3| |#4|)) (|:| |%expTerms| (-588 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#2|)))))) (|:| |%type| (-1068))) "failed") $)))) (-13 (-784) (-962 (-522)) (-584 (-522)) (-426)) (-13 (-27) (-1106) (-405 |#1|)) (-1085) |#2|) (T -1152)) -((-3134 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-784) (-962 (-522)) (-584 (-522)) (-426))) (-5 *2 (-777 *4)) (-5 *1 (-1152 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1106) (-405 *3))) (-14 *5 (-1085)) (-14 *6 *4))) (-1689 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-784) (-962 (-522)) (-584 (-522)) (-426))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1151 *4 *5 *6)) (|:| |%expon| (-294 *4 *5 *6)) (|:| |%expTerms| (-588 (-2 (|:| |k| (-382 (-522))) (|:| |c| *4)))))) (|:| |%type| (-1068)))) (-5 *1 (-1152 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1106) (-405 *3))) (-14 *5 (-1085)) (-14 *6 *4)))) -(-13 (-301 (-1151 |#2| |#3| |#4|) (-294 |#2| |#3| |#4|)) (-514) (-10 -8 (-15 -3134 ((-3 (-777 |#2|) "failed") $)) (-15 -1689 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1151 |#2| |#3| |#4|)) (|:| |%expon| (-294 |#2| |#3| |#4|)) (|:| |%expTerms| (-588 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#2|)))))) (|:| |%type| (-1068))) "failed") $)))) -((-3526 ((|#2| $) 29)) (-2126 ((|#2| $) 18)) (-3961 (($ $) 36)) (-2211 (($ $ (-522)) 64)) (-2717 (((-108) $ (-708)) 33)) (-1198 ((|#2| $ |#2|) 61)) (-2631 ((|#2| $ |#2|) 59)) (-2437 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-2684 (($ $ (-588 $)) 60)) (-2116 ((|#2| $) 17)) (-2352 (($ $) NIL) (($ $ (-708)) 42)) (-2674 (((-588 $) $) 26)) (-2402 (((-108) $ $) 50)) (-1480 (((-108) $ (-708)) 32)) (-3309 (((-108) $ (-708)) 31)) (-3394 (((-108) $) 28)) (-1442 ((|#2| $) 24) (($ $ (-708)) 46)) (-2683 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3395 (((-108) $) 22)) (-2885 (($ $) 39)) (-1668 (($ $) 65)) (-1321 (((-708) $) 41)) (-1502 (($ $) 40)) (-4170 (($ $ $) 58) (($ |#2| $) NIL)) (-1515 (((-588 $) $) 27)) (-1562 (((-108) $ $) 48)) (-3591 (((-708) $) 35))) -(((-1153 |#1| |#2|) (-10 -8 (-15 -2211 (|#1| |#1| (-522))) (-15 -2437 (|#2| |#1| "last" |#2|)) (-15 -2631 (|#2| |#1| |#2|)) (-15 -2437 (|#1| |#1| "rest" |#1|)) (-15 -2437 (|#2| |#1| "first" |#2|)) (-15 -1668 (|#1| |#1|)) (-15 -2885 (|#1| |#1|)) (-15 -1321 ((-708) |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -2126 (|#2| |#1|)) (-15 -2116 (|#2| |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -1442 (|#1| |#1| (-708))) (-15 -2683 (|#2| |#1| "last")) (-15 -1442 (|#2| |#1|)) (-15 -2352 (|#1| |#1| (-708))) (-15 -2683 (|#1| |#1| "rest")) (-15 -2352 (|#1| |#1|)) (-15 -2683 (|#2| |#1| "first")) (-15 -4170 (|#1| |#2| |#1|)) (-15 -4170 (|#1| |#1| |#1|)) (-15 -1198 (|#2| |#1| |#2|)) (-15 -2437 (|#2| |#1| "value" |#2|)) (-15 -2684 (|#1| |#1| (-588 |#1|))) (-15 -2402 ((-108) |#1| |#1|)) (-15 -3395 ((-108) |#1|)) (-15 -2683 (|#2| |#1| "value")) (-15 -3526 (|#2| |#1|)) (-15 -3394 ((-108) |#1|)) (-15 -2674 ((-588 |#1|) |#1|)) (-15 -1515 ((-588 |#1|) |#1|)) (-15 -1562 ((-108) |#1| |#1|)) (-15 -3591 ((-708) |#1|)) (-15 -2717 ((-108) |#1| (-708))) (-15 -1480 ((-108) |#1| (-708))) (-15 -3309 ((-108) |#1| (-708)))) (-1154 |#2|) (-1120)) (T -1153)) -NIL -(-10 -8 (-15 -2211 (|#1| |#1| (-522))) (-15 -2437 (|#2| |#1| "last" |#2|)) (-15 -2631 (|#2| |#1| |#2|)) (-15 -2437 (|#1| |#1| "rest" |#1|)) (-15 -2437 (|#2| |#1| "first" |#2|)) (-15 -1668 (|#1| |#1|)) (-15 -2885 (|#1| |#1|)) (-15 -1321 ((-708) |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -2126 (|#2| |#1|)) (-15 -2116 (|#2| |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -1442 (|#1| |#1| (-708))) (-15 -2683 (|#2| |#1| "last")) (-15 -1442 (|#2| |#1|)) (-15 -2352 (|#1| |#1| (-708))) (-15 -2683 (|#1| |#1| "rest")) (-15 -2352 (|#1| |#1|)) (-15 -2683 (|#2| |#1| "first")) (-15 -4170 (|#1| |#2| |#1|)) (-15 -4170 (|#1| |#1| |#1|)) (-15 -1198 (|#2| |#1| |#2|)) (-15 -2437 (|#2| |#1| "value" |#2|)) (-15 -2684 (|#1| |#1| (-588 |#1|))) (-15 -2402 ((-108) |#1| |#1|)) (-15 -3395 ((-108) |#1|)) (-15 -2683 (|#2| |#1| "value")) (-15 -3526 (|#2| |#1|)) (-15 -3394 ((-108) |#1|)) (-15 -2674 ((-588 |#1|) |#1|)) (-15 -1515 ((-588 |#1|) |#1|)) (-15 -1562 ((-108) |#1| |#1|)) (-15 -3591 ((-708) |#1|)) (-15 -2717 ((-108) |#1| (-708))) (-15 -1480 ((-108) |#1| (-708))) (-15 -3309 ((-108) |#1| (-708)))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3526 ((|#1| $) 48)) (-2126 ((|#1| $) 65)) (-3961 (($ $) 67)) (-2211 (($ $ (-522)) 52 (|has| $ (-6 -4239)))) (-2717 (((-108) $ (-708)) 8)) (-1198 ((|#1| $ |#1|) 39 (|has| $ (-6 -4239)))) (-2398 (($ $ $) 56 (|has| $ (-6 -4239)))) (-2631 ((|#1| $ |#1|) 54 (|has| $ (-6 -4239)))) (-3393 ((|#1| $ |#1|) 58 (|has| $ (-6 -4239)))) (-2437 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4239))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4239))) (($ $ "rest" $) 55 (|has| $ (-6 -4239))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4239)))) (-2684 (($ $ (-588 $)) 41 (|has| $ (-6 -4239)))) (-2116 ((|#1| $) 66)) (-3367 (($) 7 T CONST)) (-2352 (($ $) 73) (($ $ (-708)) 71)) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-2674 (((-588 $) $) 50)) (-2402 (((-108) $ $) 42 (|has| |#1| (-1014)))) (-1480 (((-108) $ (-708)) 9)) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35)) (-3309 (((-108) $ (-708)) 10)) (-2548 (((-588 |#1|) $) 45)) (-3394 (((-108) $) 49)) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1442 ((|#1| $) 70) (($ $ (-708)) 68)) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2337 ((|#1| $) 76) (($ $ (-708)) 74)) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3381 (((-522) $ $) 44)) (-3395 (((-108) $) 46)) (-2885 (($ $) 62)) (-1668 (($ $) 59 (|has| $ (-6 -4239)))) (-1321 (((-708) $) 63)) (-1502 (($ $) 64)) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2463 (($ $) 13)) (-2335 (($ $ $) 61 (|has| $ (-6 -4239))) (($ $ |#1|) 60 (|has| $ (-6 -4239)))) (-4170 (($ $ $) 78) (($ |#1| $) 77)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1515 (((-588 $) $) 51)) (-3294 (((-108) $ $) 43 (|has| |#1| (-1014)))) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-1154 |#1|) (-1197) (-1120)) (T -1154)) -((-4170 (*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-4170 (*1 *1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2337 (*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2683 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2337 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1154 *3)) (-4 *3 (-1120)))) (-2352 (*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2683 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1154 *3)) (-4 *3 (-1120)))) (-2352 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1154 *3)) (-4 *3 (-1120)))) (-1442 (*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2683 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-1442 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1154 *3)) (-4 *3 (-1120)))) (-3961 (*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2116 (*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2126 (*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-1502 (*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-1321 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1120)) (-5 *2 (-708)))) (-2885 (*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2335 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2335 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-1668 (*1 *1 *1) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-3393 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2437 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2398 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2437 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4239)) (-4 *1 (-1154 *3)) (-4 *3 (-1120)))) (-2631 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2437 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2211 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (|has| *1 (-6 -4239)) (-4 *1 (-1154 *3)) (-4 *3 (-1120))))) -(-13 (-936 |t#1|) (-10 -8 (-15 -4170 ($ $ $)) (-15 -4170 ($ |t#1| $)) (-15 -2337 (|t#1| $)) (-15 -2683 (|t#1| $ "first")) (-15 -2337 ($ $ (-708))) (-15 -2352 ($ $)) (-15 -2683 ($ $ "rest")) (-15 -2352 ($ $ (-708))) (-15 -1442 (|t#1| $)) (-15 -2683 (|t#1| $ "last")) (-15 -1442 ($ $ (-708))) (-15 -3961 ($ $)) (-15 -2116 (|t#1| $)) (-15 -2126 (|t#1| $)) (-15 -1502 ($ $)) (-15 -1321 ((-708) $)) (-15 -2885 ($ $)) (IF (|has| $ (-6 -4239)) (PROGN (-15 -2335 ($ $ $)) (-15 -2335 ($ $ |t#1|)) (-15 -1668 ($ $)) (-15 -3393 (|t#1| $ |t#1|)) (-15 -2437 (|t#1| $ "first" |t#1|)) (-15 -2398 ($ $ $)) (-15 -2437 ($ $ "rest" $)) (-15 -2631 (|t#1| $ |t#1|)) (-15 -2437 (|t#1| $ "last" |t#1|)) (-15 -2211 ($ $ (-522)))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-936 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1120) . T)) -((-3810 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1155 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3810 (|#4| (-1 |#2| |#1|) |#3|))) (-971) (-971) (-1157 |#1|) (-1157 |#2|)) (T -1155)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-971)) (-4 *6 (-971)) (-4 *2 (-1157 *6)) (-5 *1 (-1155 *5 *6 *4 *2)) (-4 *4 (-1157 *5))))) -(-10 -7 (-15 -3810 (|#4| (-1 |#2| |#1|) |#3|))) -((-2944 (((-108) $) 15)) (-3044 (($ $) 91)) (-2923 (($ $) 67)) (-3023 (($ $) 87)) (-2906 (($ $) 63)) (-3066 (($ $) 95)) (-2936 (($ $) 71)) (-1238 (($ $) 61)) (-3357 (($ $) 59)) (-1831 (($ $) 97)) (-2946 (($ $) 73)) (-3054 (($ $) 93)) (-2928 (($ $) 69)) (-3035 (($ $) 89)) (-2915 (($ $) 65)) (-2217 (((-792) $) 47) (($ (-522)) NIL) (($ (-382 (-522))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1856 (($ $) 103)) (-2976 (($ $) 79)) (-1839 (($ $) 99)) (-2957 (($ $) 75)) (-1873 (($ $) 107)) (-3001 (($ $) 83)) (-2476 (($ $) 109)) (-3011 (($ $) 85)) (-1864 (($ $) 105)) (-2989 (($ $) 81)) (-1849 (($ $) 101)) (-2966 (($ $) 77)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-382 (-522))) 57))) -(((-1156 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-382 (-522)))) (-15 -2923 (|#1| |#1|)) (-15 -2906 (|#1| |#1|)) (-15 -2936 (|#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -2928 (|#1| |#1|)) (-15 -2915 (|#1| |#1|)) (-15 -2966 (|#1| |#1|)) (-15 -2989 (|#1| |#1|)) (-15 -3011 (|#1| |#1|)) (-15 -3001 (|#1| |#1|)) (-15 -2957 (|#1| |#1|)) (-15 -2976 (|#1| |#1|)) (-15 -3035 (|#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 -1831 (|#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 -1849 (|#1| |#1|)) (-15 -1864 (|#1| |#1|)) (-15 -2476 (|#1| |#1|)) (-15 -1873 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1856 (|#1| |#1|)) (-15 -1238 (|#1| |#1|)) (-15 -3357 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2217 (|#1| |#2|)) (-15 -2217 (|#1| |#1|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -2217 (|#1| (-522))) (-15 ** (|#1| |#1| (-708))) (-15 ** (|#1| |#1| (-850))) (-15 -2944 ((-108) |#1|)) (-15 -2217 ((-792) |#1|))) (-1157 |#2|) (-971)) (T -1156)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-382 (-522)))) (-15 -2923 (|#1| |#1|)) (-15 -2906 (|#1| |#1|)) (-15 -2936 (|#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -2928 (|#1| |#1|)) (-15 -2915 (|#1| |#1|)) (-15 -2966 (|#1| |#1|)) (-15 -2989 (|#1| |#1|)) (-15 -3011 (|#1| |#1|)) (-15 -3001 (|#1| |#1|)) (-15 -2957 (|#1| |#1|)) (-15 -2976 (|#1| |#1|)) (-15 -3035 (|#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 -1831 (|#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 -1849 (|#1| |#1|)) (-15 -1864 (|#1| |#1|)) (-15 -2476 (|#1| |#1|)) (-15 -1873 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1856 (|#1| |#1|)) (-15 -1238 (|#1| |#1|)) (-15 -3357 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2217 (|#1| |#2|)) (-15 -2217 (|#1| |#1|)) (-15 -2217 (|#1| (-382 (-522)))) (-15 -2217 (|#1| (-522))) (-15 ** (|#1| |#1| (-708))) (-15 ** (|#1| |#1| (-850))) (-15 -2944 ((-108) |#1|)) (-15 -2217 ((-792) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3533 (((-588 (-999)) $) 74)) (-1660 (((-1085) $) 103)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 51 (|has| |#1| (-514)))) (-2298 (($ $) 52 (|has| |#1| (-514)))) (-3007 (((-108) $) 54 (|has| |#1| (-514)))) (-3495 (($ $ (-708)) 98) (($ $ (-708) (-708)) 97)) (-3024 (((-1066 (-2 (|:| |k| (-708)) (|:| |c| |#1|))) $) 105)) (-3044 (($ $) 135 (|has| |#1| (-37 (-382 (-522)))))) (-2923 (($ $) 118 (|has| |#1| (-37 (-382 (-522)))))) (-2265 (((-3 $ "failed") $ $) 19)) (-2016 (($ $) 117 (|has| |#1| (-37 (-382 (-522)))))) (-3023 (($ $) 134 (|has| |#1| (-37 (-382 (-522)))))) (-2906 (($ $) 119 (|has| |#1| (-37 (-382 (-522)))))) (-1270 (($ (-1066 (-2 (|:| |k| (-708)) (|:| |c| |#1|)))) 155) (($ (-1066 |#1|)) 153)) (-3066 (($ $) 133 (|has| |#1| (-37 (-382 (-522)))))) (-2936 (($ $) 120 (|has| |#1| (-37 (-382 (-522)))))) (-3367 (($) 17 T CONST)) (-3241 (($ $) 60)) (-3920 (((-3 $ "failed") $) 34)) (-2889 (($ $) 152)) (-3710 (((-881 |#1|) $ (-708)) 150) (((-881 |#1|) $ (-708) (-708)) 149)) (-3672 (((-108) $) 73)) (-2980 (($) 145 (|has| |#1| (-37 (-382 (-522)))))) (-3872 (((-708) $) 100) (((-708) $ (-708)) 99)) (-2859 (((-108) $) 31)) (-1811 (($ $ (-522)) 116 (|has| |#1| (-37 (-382 (-522)))))) (-2895 (($ $ (-850)) 101)) (-1332 (($ (-1 |#1| (-522)) $) 151)) (-1374 (((-108) $) 62)) (-3500 (($ |#1| (-708)) 61) (($ $ (-999) (-708)) 76) (($ $ (-588 (-999)) (-588 (-708))) 75)) (-3810 (($ (-1 |#1| |#1|) $) 63)) (-1238 (($ $) 142 (|has| |#1| (-37 (-382 (-522)))))) (-3216 (($ $) 65)) (-3224 ((|#1| $) 66)) (-2311 (((-1068) $) 9)) (-2611 (($ $) 147 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) 146 (-3844 (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-887)) (|has| |#1| (-1106)) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-15 -3533 ((-588 (-1085)) |#1|))) (|has| |#1| (-15 -2611 (|#1| |#1| (-1085)))) (|has| |#1| (-37 (-382 (-522)))))))) (-4174 (((-1032) $) 10)) (-3934 (($ $ (-708)) 95)) (-2276 (((-3 $ "failed") $ $) 50 (|has| |#1| (-514)))) (-3357 (($ $) 143 (|has| |#1| (-37 (-382 (-522)))))) (-2330 (((-1066 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-708)))))) (-2683 ((|#1| $ (-708)) 104) (($ $ $) 81 (|has| (-708) (-1026)))) (-2731 (($ $ (-588 (-1085)) (-588 (-708))) 89 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (($ $ (-1085) (-708)) 88 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (($ $ (-588 (-1085))) 87 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (($ $ (-1085)) 86 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (($ $ (-708)) 84 (|has| |#1| (-15 * (|#1| (-708) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (-2487 (((-708) $) 64)) (-1831 (($ $) 132 (|has| |#1| (-37 (-382 (-522)))))) (-2946 (($ $) 121 (|has| |#1| (-37 (-382 (-522)))))) (-3054 (($ $) 131 (|has| |#1| (-37 (-382 (-522)))))) (-2928 (($ $) 122 (|has| |#1| (-37 (-382 (-522)))))) (-3035 (($ $) 130 (|has| |#1| (-37 (-382 (-522)))))) (-2915 (($ $) 123 (|has| |#1| (-37 (-382 (-522)))))) (-1944 (($ $) 72)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ (-382 (-522))) 57 (|has| |#1| (-37 (-382 (-522))))) (($ $) 49 (|has| |#1| (-514))) (($ |#1|) 47 (|has| |#1| (-157)))) (-2180 (((-1066 |#1|) $) 154)) (-1643 ((|#1| $ (-708)) 59)) (-3040 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-2742 (((-708)) 29)) (-1980 ((|#1| $) 102)) (-1856 (($ $) 141 (|has| |#1| (-37 (-382 (-522)))))) (-2976 (($ $) 129 (|has| |#1| (-37 (-382 (-522)))))) (-1407 (((-108) $ $) 53 (|has| |#1| (-514)))) (-1839 (($ $) 140 (|has| |#1| (-37 (-382 (-522)))))) (-2957 (($ $) 128 (|has| |#1| (-37 (-382 (-522)))))) (-1873 (($ $) 139 (|has| |#1| (-37 (-382 (-522)))))) (-3001 (($ $) 127 (|has| |#1| (-37 (-382 (-522)))))) (-3996 ((|#1| $ (-708)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-708)))) (|has| |#1| (-15 -2217 (|#1| (-1085))))))) (-2476 (($ $) 138 (|has| |#1| (-37 (-382 (-522)))))) (-3011 (($ $) 126 (|has| |#1| (-37 (-382 (-522)))))) (-1864 (($ $) 137 (|has| |#1| (-37 (-382 (-522)))))) (-2989 (($ $) 125 (|has| |#1| (-37 (-382 (-522)))))) (-1849 (($ $) 136 (|has| |#1| (-37 (-382 (-522)))))) (-2966 (($ $) 124 (|has| |#1| (-37 (-382 (-522)))))) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2252 (($ $ (-588 (-1085)) (-588 (-708))) 93 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (($ $ (-1085) (-708)) 92 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (($ $ (-588 (-1085))) 91 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (($ $ (-1085)) 90 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (($ $ (-708)) 85 (|has| |#1| (-15 * (|#1| (-708) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (-1562 (((-108) $ $) 6)) (-1682 (($ $ |#1|) 58 (|has| |#1| (-338)))) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ |#1|) 148 (|has| |#1| (-338))) (($ $ $) 144 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 115 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-382 (-522)) $) 56 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 55 (|has| |#1| (-37 (-382 (-522))))))) -(((-1157 |#1|) (-1197) (-971)) (T -1157)) -((-1270 (*1 *1 *2) (-12 (-5 *2 (-1066 (-2 (|:| |k| (-708)) (|:| |c| *3)))) (-4 *3 (-971)) (-4 *1 (-1157 *3)))) (-2180 (*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-971)) (-5 *2 (-1066 *3)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-4 *1 (-1157 *3)))) (-2889 (*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-971)))) (-1332 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-522))) (-4 *1 (-1157 *3)) (-4 *3 (-971)))) (-3710 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-4 *1 (-1157 *4)) (-4 *4 (-971)) (-5 *2 (-881 *4)))) (-3710 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-708)) (-4 *1 (-1157 *4)) (-4 *4 (-971)) (-5 *2 (-881 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-2611 (*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-971)) (-4 *2 (-37 (-382 (-522)))))) (-2611 (*1 *1 *1 *2) (-3844 (-12 (-5 *2 (-1085)) (-4 *1 (-1157 *3)) (-4 *3 (-971)) (-12 (-4 *3 (-29 (-522))) (-4 *3 (-887)) (-4 *3 (-1106)) (-4 *3 (-37 (-382 (-522)))))) (-12 (-5 *2 (-1085)) (-4 *1 (-1157 *3)) (-4 *3 (-971)) (-12 (|has| *3 (-15 -3533 ((-588 *2) *3))) (|has| *3 (-15 -2611 (*3 *3 *2))) (-4 *3 (-37 (-382 (-522))))))))) -(-13 (-1144 |t#1| (-708)) (-10 -8 (-15 -1270 ($ (-1066 (-2 (|:| |k| (-708)) (|:| |c| |t#1|))))) (-15 -2180 ((-1066 |t#1|) $)) (-15 -1270 ($ (-1066 |t#1|))) (-15 -2889 ($ $)) (-15 -1332 ($ (-1 |t#1| (-522)) $)) (-15 -3710 ((-881 |t#1|) $ (-708))) (-15 -3710 ((-881 |t#1|) $ (-708) (-708))) (IF (|has| |t#1| (-338)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-382 (-522)))) (PROGN (-15 -2611 ($ $)) (IF (|has| |t#1| (-15 -2611 (|t#1| |t#1| (-1085)))) (IF (|has| |t#1| (-15 -3533 ((-588 (-1085)) |t#1|))) (-15 -2611 ($ $ (-1085))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1106)) (IF (|has| |t#1| (-887)) (IF (|has| |t#1| (-29 (-522))) (-15 -2611 ($ $ (-1085))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-928)) (-6 (-1106))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-708)) . T) ((-25) . T) ((-37 #1=(-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-514)) ((-34) |has| |#1| (-37 (-382 (-522)))) ((-91) |has| |#1| (-37 (-382 (-522)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-382 (-522)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3844 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3844 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-210) |has| |#1| (-15 * (|#1| (-708) |#1|))) ((-260) |has| |#1| (-37 (-382 (-522)))) ((-262 $ $) |has| (-708) (-1026)) ((-266) |has| |#1| (-514)) ((-463) |has| |#1| (-37 (-382 (-522)))) ((-514) |has| |#1| (-514)) ((-590 #1#) |has| |#1| (-37 (-382 (-522)))) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #1#) |has| |#1| (-37 (-382 (-522)))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) |has| |#1| (-514)) ((-664) . T) ((-829 (-1085)) -12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085)))) ((-900 |#1| #0# (-999)) . T) ((-928) |has| |#1| (-37 (-382 (-522)))) ((-977 #1#) |has| |#1| (-37 (-382 (-522)))) ((-977 |#1|) . T) ((-977 $) -3844 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1106) |has| |#1| (-37 (-382 (-522)))) ((-1109) |has| |#1| (-37 (-382 (-522)))) ((-1144 |#1| #0#) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-3533 (((-588 (-999)) $) NIL)) (-1660 (((-1085) $) 87)) (-3610 (((-1139 |#2| |#1|) $ (-708)) 73)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2298 (($ $) NIL (|has| |#1| (-514)))) (-3007 (((-108) $) 136 (|has| |#1| (-514)))) (-3495 (($ $ (-708)) 121) (($ $ (-708) (-708)) 123)) (-3024 (((-1066 (-2 (|:| |k| (-708)) (|:| |c| |#1|))) $) 42)) (-3044 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2923 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2265 (((-3 $ "failed") $ $) NIL)) (-2016 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3023 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2906 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1270 (($ (-1066 (-2 (|:| |k| (-708)) (|:| |c| |#1|)))) 53) (($ (-1066 |#1|)) NIL)) (-3066 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2936 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3367 (($) NIL T CONST)) (-2706 (($ $) 127)) (-3241 (($ $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2889 (($ $) 134)) (-3710 (((-881 |#1|) $ (-708)) 63) (((-881 |#1|) $ (-708) (-708)) 65)) (-3672 (((-108) $) NIL)) (-2980 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3872 (((-708) $) NIL) (((-708) $ (-708)) NIL)) (-2859 (((-108) $) NIL)) (-3550 (($ $) 111)) (-1811 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2515 (($ (-522) (-522) $) 129)) (-2895 (($ $ (-850)) 133)) (-1332 (($ (-1 |#1| (-522)) $) 105)) (-1374 (((-108) $) NIL)) (-3500 (($ |#1| (-708)) 15) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-3810 (($ (-1 |#1| |#1|) $) 93)) (-1238 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3216 (($ $) NIL)) (-3224 ((|#1| $) NIL)) (-2311 (((-1068) $) NIL)) (-1843 (($ $) 109)) (-1962 (($ $) 107)) (-2968 (($ (-522) (-522) $) 131)) (-2611 (($ $) 144 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) 150 (-3844 (-12 (|has| |#1| (-15 -2611 (|#1| |#1| (-1085)))) (|has| |#1| (-15 -3533 ((-588 (-1085)) |#1|))) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-887)) (|has| |#1| (-1106))))) (($ $ (-1162 |#2|)) 145 (|has| |#1| (-37 (-382 (-522)))))) (-4174 (((-1032) $) NIL)) (-1815 (($ $ (-522) (-522)) 115)) (-3934 (($ $ (-708)) 117)) (-2276 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-3357 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3143 (($ $) 113)) (-2330 (((-1066 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-708)))))) (-2683 ((|#1| $ (-708)) 90) (($ $ $) 125 (|has| (-708) (-1026)))) (-2731 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) 102 (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-708) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-708) |#1|)))) (($ $ (-1162 |#2|)) 98)) (-2487 (((-708) $) NIL)) (-1831 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2946 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3054 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2928 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3035 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2915 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1944 (($ $) 119)) (-2217 (((-792) $) NIL) (($ (-522)) 24) (($ (-382 (-522))) 142 (|has| |#1| (-37 (-382 (-522))))) (($ $) NIL (|has| |#1| (-514))) (($ |#1|) 23 (|has| |#1| (-157))) (($ (-1139 |#2| |#1|)) 80) (($ (-1162 |#2|)) 20)) (-2180 (((-1066 |#1|) $) NIL)) (-1643 ((|#1| $ (-708)) 89)) (-3040 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2742 (((-708)) NIL)) (-1980 ((|#1| $) 88)) (-1856 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2976 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1407 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1839 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2957 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1873 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3001 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3996 ((|#1| $ (-708)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-708)))) (|has| |#1| (-15 -2217 (|#1| (-1085))))))) (-2476 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3011 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1864 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2989 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1849 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2966 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 17 T CONST)) (-3709 (($) 13 T CONST)) (-2252 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-708) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (-1562 (((-108) $ $) NIL)) (-1682 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1672 (($ $) NIL) (($ $ $) 101)) (-1661 (($ $ $) 18)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ |#1|) 139 (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))))) -(((-1158 |#1| |#2| |#3|) (-13 (-1157 |#1|) (-10 -8 (-15 -2217 ($ (-1139 |#2| |#1|))) (-15 -3610 ((-1139 |#2| |#1|) $ (-708))) (-15 -2217 ($ (-1162 |#2|))) (-15 -2731 ($ $ (-1162 |#2|))) (-15 -1962 ($ $)) (-15 -1843 ($ $)) (-15 -3550 ($ $)) (-15 -3143 ($ $)) (-15 -1815 ($ $ (-522) (-522))) (-15 -2706 ($ $)) (-15 -2515 ($ (-522) (-522) $)) (-15 -2968 ($ (-522) (-522) $)) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -2611 ($ $ (-1162 |#2|))) |%noBranch|))) (-971) (-1085) |#1|) (T -1158)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-1139 *4 *3)) (-4 *3 (-971)) (-14 *4 (-1085)) (-14 *5 *3) (-5 *1 (-1158 *3 *4 *5)))) (-3610 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1139 *5 *4)) (-5 *1 (-1158 *4 *5 *6)) (-4 *4 (-971)) (-14 *5 (-1085)) (-14 *6 *4))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-1962 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-971)) (-14 *3 (-1085)) (-14 *4 *2))) (-1843 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-971)) (-14 *3 (-1085)) (-14 *4 *2))) (-3550 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-971)) (-14 *3 (-1085)) (-14 *4 *2))) (-3143 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-971)) (-14 *3 (-1085)) (-14 *4 *2))) (-1815 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-971)) (-14 *4 (-1085)) (-14 *5 *3))) (-2706 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-971)) (-14 *3 (-1085)) (-14 *4 *2))) (-2515 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-971)) (-14 *4 (-1085)) (-14 *5 *3))) (-2968 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-971)) (-14 *4 (-1085)) (-14 *5 *3))) (-2611 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3)))) -(-13 (-1157 |#1|) (-10 -8 (-15 -2217 ($ (-1139 |#2| |#1|))) (-15 -3610 ((-1139 |#2| |#1|) $ (-708))) (-15 -2217 ($ (-1162 |#2|))) (-15 -2731 ($ $ (-1162 |#2|))) (-15 -1962 ($ $)) (-15 -1843 ($ $)) (-15 -3550 ($ $)) (-15 -3143 ($ $)) (-15 -1815 ($ $ (-522) (-522))) (-15 -2706 ($ $)) (-15 -2515 ($ (-522) (-522) $)) (-15 -2968 ($ (-522) (-522) $)) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -2611 ($ $ (-1162 |#2|))) |%noBranch|))) -((-2816 (((-1 (-1066 |#1|) (-588 (-1066 |#1|))) (-1 |#2| (-588 |#2|))) 24)) (-1363 (((-1 (-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2701 (((-1 (-1066 |#1|) (-1066 |#1|)) (-1 |#2| |#2|)) 13)) (-1833 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1969 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3949 ((|#2| (-1 |#2| (-588 |#2|)) (-588 |#1|)) 54)) (-3521 (((-588 |#2|) (-588 |#1|) (-588 (-1 |#2| (-588 |#2|)))) 61)) (-2917 ((|#2| |#2| |#2|) 43))) -(((-1159 |#1| |#2|) (-10 -7 (-15 -2701 ((-1 (-1066 |#1|) (-1066 |#1|)) (-1 |#2| |#2|))) (-15 -1363 ((-1 (-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2816 ((-1 (-1066 |#1|) (-588 (-1066 |#1|))) (-1 |#2| (-588 |#2|)))) (-15 -2917 (|#2| |#2| |#2|)) (-15 -1969 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1833 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3949 (|#2| (-1 |#2| (-588 |#2|)) (-588 |#1|))) (-15 -3521 ((-588 |#2|) (-588 |#1|) (-588 (-1 |#2| (-588 |#2|)))))) (-37 (-382 (-522))) (-1157 |#1|)) (T -1159)) -((-3521 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *5)) (-5 *4 (-588 (-1 *6 (-588 *6)))) (-4 *5 (-37 (-382 (-522)))) (-4 *6 (-1157 *5)) (-5 *2 (-588 *6)) (-5 *1 (-1159 *5 *6)))) (-3949 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-588 *2))) (-5 *4 (-588 *5)) (-4 *5 (-37 (-382 (-522)))) (-4 *2 (-1157 *5)) (-5 *1 (-1159 *5 *2)))) (-1833 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-1159 *4 *2)) (-4 *4 (-37 (-382 (-522)))))) (-1969 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-1159 *4 *2)) (-4 *4 (-37 (-382 (-522)))))) (-2917 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1159 *3 *2)) (-4 *2 (-1157 *3)))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-588 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-37 (-382 (-522)))) (-5 *2 (-1 (-1066 *4) (-588 (-1066 *4)))) (-5 *1 (-1159 *4 *5)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-37 (-382 (-522)))) (-5 *2 (-1 (-1066 *4) (-1066 *4) (-1066 *4))) (-5 *1 (-1159 *4 *5)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-37 (-382 (-522)))) (-5 *2 (-1 (-1066 *4) (-1066 *4))) (-5 *1 (-1159 *4 *5))))) -(-10 -7 (-15 -2701 ((-1 (-1066 |#1|) (-1066 |#1|)) (-1 |#2| |#2|))) (-15 -1363 ((-1 (-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2816 ((-1 (-1066 |#1|) (-588 (-1066 |#1|))) (-1 |#2| (-588 |#2|)))) (-15 -2917 (|#2| |#2| |#2|)) (-15 -1969 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1833 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3949 (|#2| (-1 |#2| (-588 |#2|)) (-588 |#1|))) (-15 -3521 ((-588 |#2|) (-588 |#1|) (-588 (-1 |#2| (-588 |#2|)))))) -((-3300 ((|#2| |#4| (-708)) 30)) (-2325 ((|#4| |#2|) 25)) (-2814 ((|#4| (-382 |#2|)) 51 (|has| |#1| (-514)))) (-2887 (((-1 |#4| (-588 |#4|)) |#3|) 45))) -(((-1160 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2325 (|#4| |#2|)) (-15 -3300 (|#2| |#4| (-708))) (-15 -2887 ((-1 |#4| (-588 |#4|)) |#3|)) (IF (|has| |#1| (-514)) (-15 -2814 (|#4| (-382 |#2|))) |%noBranch|)) (-971) (-1142 |#1|) (-598 |#2|) (-1157 |#1|)) (T -1160)) -((-2814 (*1 *2 *3) (-12 (-5 *3 (-382 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-514)) (-4 *4 (-971)) (-4 *2 (-1157 *4)) (-5 *1 (-1160 *4 *5 *6 *2)) (-4 *6 (-598 *5)))) (-2887 (*1 *2 *3) (-12 (-4 *4 (-971)) (-4 *5 (-1142 *4)) (-5 *2 (-1 *6 (-588 *6))) (-5 *1 (-1160 *4 *5 *3 *6)) (-4 *3 (-598 *5)) (-4 *6 (-1157 *4)))) (-3300 (*1 *2 *3 *4) (-12 (-5 *4 (-708)) (-4 *5 (-971)) (-4 *2 (-1142 *5)) (-5 *1 (-1160 *5 *2 *6 *3)) (-4 *6 (-598 *2)) (-4 *3 (-1157 *5)))) (-2325 (*1 *2 *3) (-12 (-4 *4 (-971)) (-4 *3 (-1142 *4)) (-4 *2 (-1157 *4)) (-5 *1 (-1160 *4 *3 *5 *2)) (-4 *5 (-598 *3))))) -(-10 -7 (-15 -2325 (|#4| |#2|)) (-15 -3300 (|#2| |#4| (-708))) (-15 -2887 ((-1 |#4| (-588 |#4|)) |#3|)) (IF (|has| |#1| (-514)) (-15 -2814 (|#4| (-382 |#2|))) |%noBranch|)) -NIL -(((-1161) (-1197)) (T -1161)) -NIL -(-13 (-10 -7 (-6 -2088))) -((-1419 (((-108) $ $) NIL)) (-1660 (((-1085)) 12)) (-2311 (((-1068) $) 17)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 11) (((-1085) $) 8)) (-1562 (((-108) $ $) 14))) -(((-1162 |#1|) (-13 (-1014) (-562 (-1085)) (-10 -8 (-15 -2217 ((-1085) $)) (-15 -1660 ((-1085))))) (-1085)) (T -1162)) -((-2217 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1162 *3)) (-14 *3 *2))) (-1660 (*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1162 *3)) (-14 *3 *2)))) -(-13 (-1014) (-562 (-1085)) (-10 -8 (-15 -2217 ((-1085) $)) (-15 -1660 ((-1085))))) -((-1785 (($ (-708)) 16)) (-4043 (((-628 |#2|) $ $) 37)) (-4113 ((|#2| $) 46)) (-4030 ((|#2| $) 45)) (-4024 ((|#2| $ $) 33)) (-2791 (($ $ $) 42)) (-1672 (($ $) 20) (($ $ $) 26)) (-1661 (($ $ $) 13)) (* (($ (-522) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28))) -(((-1163 |#1| |#2|) (-10 -8 (-15 -4113 (|#2| |#1|)) (-15 -4030 (|#2| |#1|)) (-15 -2791 (|#1| |#1| |#1|)) (-15 -4043 ((-628 |#2|) |#1| |#1|)) (-15 -4024 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 -1672 (|#1| |#1| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 -1785 (|#1| (-708))) (-15 -1661 (|#1| |#1| |#1|))) (-1164 |#2|) (-1120)) (T -1163)) -NIL -(-10 -8 (-15 -4113 (|#2| |#1|)) (-15 -4030 (|#2| |#1|)) (-15 -2791 (|#1| |#1| |#1|)) (-15 -4043 ((-628 |#2|) |#1| |#1|)) (-15 -4024 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 -1672 (|#1| |#1| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 -1785 (|#1| (-708))) (-15 -1661 (|#1| |#1| |#1|))) -((-1419 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-1785 (($ (-708)) 112 (|has| |#1| (-23)))) (-3883 (((-1171) $ (-522) (-522)) 40 (|has| $ (-6 -4239)))) (-1866 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-784)))) (-2806 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4239))) (($ $) 88 (-12 (|has| |#1| (-784)) (|has| $ (-6 -4239))))) (-3296 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-784)))) (-2717 (((-108) $ (-708)) 8)) (-2437 ((|#1| $ (-522) |#1|) 52 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) 58 (|has| $ (-6 -4239)))) (-1696 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4238)))) (-3367 (($) 7 T CONST)) (-2465 (($ $) 90 (|has| $ (-6 -4239)))) (-1939 (($ $) 100)) (-2379 (($ $) 78 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1424 (($ |#1| $) 77 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4238)))) (-2411 ((|#1| $ (-522) |#1|) 53 (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-522)) 51)) (-3314 (((-522) (-1 (-108) |#1|) $) 97) (((-522) |#1| $) 96 (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) 95 (|has| |#1| (-1014)))) (-2395 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-4043 (((-628 |#1|) $ $) 105 (|has| |#1| (-971)))) (-1893 (($ (-708) |#1|) 69)) (-1480 (((-108) $ (-708)) 9)) (-3496 (((-522) $) 43 (|has| (-522) (-784)))) (-1308 (($ $ $) 87 (|has| |#1| (-784)))) (-3164 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-784)))) (-4084 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2201 (((-522) $) 44 (|has| (-522) (-784)))) (-2524 (($ $ $) 86 (|has| |#1| (-784)))) (-2397 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4113 ((|#1| $) 102 (-12 (|has| |#1| (-971)) (|has| |#1| (-928))))) (-3309 (((-108) $ (-708)) 10)) (-4030 ((|#1| $) 103 (-12 (|has| |#1| (-971)) (|has| |#1| (-928))))) (-2311 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1731 (($ |#1| $ (-522)) 60) (($ $ $ (-522)) 59)) (-2130 (((-588 (-522)) $) 46)) (-2103 (((-108) (-522) $) 47)) (-4174 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2337 ((|#1| $) 42 (|has| (-522) (-784)))) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1972 (($ $ |#1|) 41 (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) 14)) (-3434 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) 48)) (-3494 (((-108) $) 11)) (-3298 (($) 12)) (-2683 ((|#1| $ (-522) |#1|) 50) ((|#1| $ (-522)) 49) (($ $ (-1133 (-522))) 63)) (-4024 ((|#1| $ $) 106 (|has| |#1| (-971)))) (-3835 (($ $ (-522)) 62) (($ $ (-1133 (-522))) 61)) (-2791 (($ $ $) 104 (|has| |#1| (-971)))) (-4187 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3629 (($ $ $ (-522)) 91 (|has| $ (-6 -4239)))) (-2463 (($ $) 13)) (-3873 (((-498) $) 79 (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) 70)) (-4170 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-588 $)) 65)) (-2217 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1623 (((-108) $ $) 84 (|has| |#1| (-784)))) (-1597 (((-108) $ $) 83 (|has| |#1| (-784)))) (-1562 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-1609 (((-108) $ $) 85 (|has| |#1| (-784)))) (-1587 (((-108) $ $) 82 (|has| |#1| (-784)))) (-1672 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1661 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-522) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-664))) (($ $ |#1|) 107 (|has| |#1| (-664)))) (-3591 (((-708) $) 6 (|has| $ (-6 -4238))))) -(((-1164 |#1|) (-1197) (-1120)) (T -1164)) -((-1661 (*1 *1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-25)))) (-1785 (*1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1164 *3)) (-4 *3 (-23)) (-4 *3 (-1120)))) (-1672 (*1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-21)))) (-1672 (*1 *1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-522)) (-4 *1 (-1164 *3)) (-4 *3 (-1120)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-664)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-664)))) (-4024 (*1 *2 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-971)))) (-4043 (*1 *2 *1 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1120)) (-4 *3 (-971)) (-5 *2 (-628 *3)))) (-2791 (*1 *1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-971)))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-928)) (-4 *2 (-971)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-928)) (-4 *2 (-971))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1661 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -1785 ($ (-708))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1672 ($ $)) (-15 -1672 ($ $ $)) (-15 * ($ (-522) $))) |%noBranch|) (IF (|has| |t#1| (-664)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-971)) (PROGN (-15 -4024 (|t#1| $ $)) (-15 -4043 ((-628 |t#1|) $ $)) (-15 -2791 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-928)) (IF (|has| |t#1| (-971)) (PROGN (-15 -4030 (|t#1| $)) (-15 -4113 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-33) . T) ((-97) -3844 (|has| |#1| (-1014)) (|has| |#1| (-784))) ((-562 (-792)) -3844 (|has| |#1| (-1014)) (|has| |#1| (-784)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-262 #0=(-522) |#1|) . T) ((-264 #0# |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-348 |#1|) . T) ((-461 |#1|) . T) ((-555 #0# |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-593 |#1|) . T) ((-19 |#1|) . T) ((-784) |has| |#1| (-784)) ((-1014) -3844 (|has| |#1| (-1014)) (|has| |#1| (-784))) ((-1120) . T)) -((-3639 (((-1166 |#2|) (-1 |#2| |#1| |#2|) (-1166 |#1|) |#2|) 13)) (-2153 ((|#2| (-1 |#2| |#1| |#2|) (-1166 |#1|) |#2|) 15)) (-3810 (((-3 (-1166 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1166 |#1|)) 28) (((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|)) 18))) -(((-1165 |#1| |#2|) (-10 -7 (-15 -3639 ((-1166 |#2|) (-1 |#2| |#1| |#2|) (-1166 |#1|) |#2|)) (-15 -2153 (|#2| (-1 |#2| |#1| |#2|) (-1166 |#1|) |#2|)) (-15 -3810 ((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|))) (-15 -3810 ((-3 (-1166 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1166 |#1|)))) (-1120) (-1120)) (T -1165)) -((-3810 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1166 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1166 *6)) (-5 *1 (-1165 *5 *6)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1166 *6)) (-5 *1 (-1165 *5 *6)))) (-2153 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1166 *5)) (-4 *5 (-1120)) (-4 *2 (-1120)) (-5 *1 (-1165 *5 *2)))) (-3639 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1166 *6)) (-4 *6 (-1120)) (-4 *5 (-1120)) (-5 *2 (-1166 *5)) (-5 *1 (-1165 *6 *5))))) -(-10 -7 (-15 -3639 ((-1166 |#2|) (-1 |#2| |#1| |#2|) (-1166 |#1|) |#2|)) (-15 -2153 (|#2| (-1 |#2| |#1| |#2|) (-1166 |#1|) |#2|)) (-15 -3810 ((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|))) (-15 -3810 ((-3 (-1166 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1166 |#1|)))) -((-1419 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1785 (($ (-708)) NIL (|has| |#1| (-23)))) (-2713 (($ (-588 |#1|)) 9)) (-3883 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1866 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-2806 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784))))) (-3296 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-2717 (((-108) $ (-708)) NIL)) (-2437 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239)))) (-1696 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3367 (($) NIL T CONST)) (-2465 (($ $) NIL (|has| $ (-6 -4239)))) (-1939 (($ $) NIL)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1424 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2153 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238)))) (-2411 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-2186 ((|#1| $ (-522)) NIL)) (-3314 (((-522) (-1 (-108) |#1|) $) NIL) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014)))) (-2395 (((-588 |#1|) $) 15 (|has| $ (-6 -4238)))) (-4043 (((-628 |#1|) $ $) NIL (|has| |#1| (-971)))) (-1893 (($ (-708) |#1|) NIL)) (-1480 (((-108) $ (-708)) NIL)) (-3496 (((-522) $) NIL (|has| (-522) (-784)))) (-1308 (($ $ $) NIL (|has| |#1| (-784)))) (-3164 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-784)))) (-4084 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4176 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2201 (((-522) $) NIL (|has| (-522) (-784)))) (-2524 (($ $ $) NIL (|has| |#1| (-784)))) (-2397 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4113 ((|#1| $) NIL (-12 (|has| |#1| (-928)) (|has| |#1| (-971))))) (-3309 (((-108) $ (-708)) NIL)) (-4030 ((|#1| $) NIL (-12 (|has| |#1| (-928)) (|has| |#1| (-971))))) (-2311 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1731 (($ |#1| $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-2130 (((-588 (-522)) $) NIL)) (-2103 (((-108) (-522) $) NIL)) (-4174 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2337 ((|#1| $) NIL (|has| (-522) (-784)))) (-2187 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1972 (($ $ |#1|) NIL (|has| $ (-6 -4239)))) (-3487 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3434 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1973 (((-588 |#1|) $) NIL)) (-3494 (((-108) $) NIL)) (-3298 (($) NIL)) (-2683 ((|#1| $ (-522) |#1|) NIL) ((|#1| $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-4024 ((|#1| $ $) NIL (|has| |#1| (-971)))) (-3835 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-2791 (($ $ $) NIL (|has| |#1| (-971)))) (-4187 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3629 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) 19 (|has| |#1| (-563 (-498))))) (-2227 (($ (-588 |#1|)) 8)) (-4170 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-588 $)) NIL)) (-2217 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1381 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1623 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1562 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1609 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1587 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1672 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1661 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-522) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-664))) (($ $ |#1|) NIL (|has| |#1| (-664)))) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-1166 |#1|) (-13 (-1164 |#1|) (-10 -8 (-15 -2713 ($ (-588 |#1|))))) (-1120)) (T -1166)) -((-2713 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-1166 *3))))) -(-13 (-1164 |#1|) (-10 -8 (-15 -2713 ($ (-588 |#1|))))) -((-1419 (((-108) $ $) NIL)) (-4048 (((-1068) $ (-1068)) 87) (((-1068) $ (-1068) (-1068)) 85) (((-1068) $ (-1068) (-588 (-1068))) 84)) (-1211 (($) 56)) (-3257 (((-1171) $ (-442) (-850)) 42)) (-2035 (((-1171) $ (-850) (-1068)) 70) (((-1171) $ (-850) (-803)) 71)) (-2555 (((-1171) $ (-850) (-354) (-354)) 45)) (-3082 (((-1171) $ (-1068)) 66)) (-1922 (((-1171) $ (-850) (-1068)) 75)) (-3808 (((-1171) $ (-850) (-354) (-354)) 46)) (-2360 (((-1171) $ (-850) (-850)) 43)) (-4032 (((-1171) $) 67)) (-2067 (((-1171) $ (-850) (-1068)) 74)) (-4063 (((-1171) $ (-442) (-850)) 30)) (-3748 (((-1171) $ (-850) (-1068)) 73)) (-2654 (((-588 (-239)) $) 22) (($ $ (-588 (-239))) 23)) (-2560 (((-1171) $ (-708) (-708)) 40)) (-1793 (($ $) 57) (($ (-442) (-588 (-239))) 58)) (-2311 (((-1068) $) NIL)) (-2644 (((-522) $) 37)) (-4174 (((-1032) $) NIL)) (-2083 (((-1166 (-3 (-442) "undefined")) $) 36)) (-1923 (((-1166 (-2 (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)) (|:| -3748 (-522)) (|:| -2294 (-522)) (|:| |spline| (-522)) (|:| -1605 (-522)) (|:| |axesColor| (-803)) (|:| -2035 (-522)) (|:| |unitsColor| (-803)) (|:| |showing| (-522)))) $) 35)) (-2521 (((-1171) $ (-850) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-522) (-803) (-522) (-803) (-522)) 65)) (-2445 (((-588 (-872 (-202))) $) NIL)) (-4125 (((-442) $ (-850)) 32)) (-4021 (((-1171) $ (-708) (-708) (-850) (-850)) 39)) (-2532 (((-1171) $ (-1068)) 76)) (-2294 (((-1171) $ (-850) (-1068)) 72)) (-2217 (((-792) $) 82)) (-1720 (((-1171) $) 77)) (-1605 (((-1171) $ (-850) (-1068)) 68) (((-1171) $ (-850) (-803)) 69)) (-1562 (((-108) $ $) NIL))) -(((-1167) (-13 (-1014) (-10 -8 (-15 -2445 ((-588 (-872 (-202))) $)) (-15 -1211 ($)) (-15 -1793 ($ $)) (-15 -2654 ((-588 (-239)) $)) (-15 -2654 ($ $ (-588 (-239)))) (-15 -1793 ($ (-442) (-588 (-239)))) (-15 -2521 ((-1171) $ (-850) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-522) (-803) (-522) (-803) (-522))) (-15 -1923 ((-1166 (-2 (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)) (|:| -3748 (-522)) (|:| -2294 (-522)) (|:| |spline| (-522)) (|:| -1605 (-522)) (|:| |axesColor| (-803)) (|:| -2035 (-522)) (|:| |unitsColor| (-803)) (|:| |showing| (-522)))) $)) (-15 -2083 ((-1166 (-3 (-442) "undefined")) $)) (-15 -3082 ((-1171) $ (-1068))) (-15 -4063 ((-1171) $ (-442) (-850))) (-15 -4125 ((-442) $ (-850))) (-15 -1605 ((-1171) $ (-850) (-1068))) (-15 -1605 ((-1171) $ (-850) (-803))) (-15 -2035 ((-1171) $ (-850) (-1068))) (-15 -2035 ((-1171) $ (-850) (-803))) (-15 -3748 ((-1171) $ (-850) (-1068))) (-15 -2067 ((-1171) $ (-850) (-1068))) (-15 -2294 ((-1171) $ (-850) (-1068))) (-15 -2532 ((-1171) $ (-1068))) (-15 -1720 ((-1171) $)) (-15 -4021 ((-1171) $ (-708) (-708) (-850) (-850))) (-15 -3808 ((-1171) $ (-850) (-354) (-354))) (-15 -2555 ((-1171) $ (-850) (-354) (-354))) (-15 -1922 ((-1171) $ (-850) (-1068))) (-15 -2560 ((-1171) $ (-708) (-708))) (-15 -3257 ((-1171) $ (-442) (-850))) (-15 -2360 ((-1171) $ (-850) (-850))) (-15 -4048 ((-1068) $ (-1068))) (-15 -4048 ((-1068) $ (-1068) (-1068))) (-15 -4048 ((-1068) $ (-1068) (-588 (-1068)))) (-15 -4032 ((-1171) $)) (-15 -2644 ((-522) $)) (-15 -2217 ((-792) $))))) (T -1167)) -((-2217 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1167)))) (-2445 (*1 *2 *1) (-12 (-5 *2 (-588 (-872 (-202)))) (-5 *1 (-1167)))) (-1211 (*1 *1) (-5 *1 (-1167))) (-1793 (*1 *1 *1) (-5 *1 (-1167))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-588 (-239))) (-5 *1 (-1167)))) (-2654 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-239))) (-5 *1 (-1167)))) (-1793 (*1 *1 *2 *3) (-12 (-5 *2 (-442)) (-5 *3 (-588 (-239))) (-5 *1 (-1167)))) (-2521 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-850)) (-5 *4 (-202)) (-5 *5 (-522)) (-5 *6 (-803)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-1923 (*1 *2 *1) (-12 (-5 *2 (-1166 (-2 (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)) (|:| -3748 (-522)) (|:| -2294 (-522)) (|:| |spline| (-522)) (|:| -1605 (-522)) (|:| |axesColor| (-803)) (|:| -2035 (-522)) (|:| |unitsColor| (-803)) (|:| |showing| (-522))))) (-5 *1 (-1167)))) (-2083 (*1 *2 *1) (-12 (-5 *2 (-1166 (-3 (-442) "undefined"))) (-5 *1 (-1167)))) (-3082 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-4063 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-442)) (-5 *4 (-850)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-4125 (*1 *2 *1 *3) (-12 (-5 *3 (-850)) (-5 *2 (-442)) (-5 *1 (-1167)))) (-1605 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-1605 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-803)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-2035 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-2035 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-803)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-3748 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-2067 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-2294 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-2532 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-1720 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1167)))) (-4021 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-708)) (-5 *4 (-850)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-3808 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-850)) (-5 *4 (-354)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-2555 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-850)) (-5 *4 (-354)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-1922 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-2560 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-3257 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-442)) (-5 *4 (-850)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-2360 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-4048 (*1 *2 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1167)))) (-4048 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1167)))) (-4048 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-1068)) (-5 *1 (-1167)))) (-4032 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1167)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1167))))) -(-13 (-1014) (-10 -8 (-15 -2445 ((-588 (-872 (-202))) $)) (-15 -1211 ($)) (-15 -1793 ($ $)) (-15 -2654 ((-588 (-239)) $)) (-15 -2654 ($ $ (-588 (-239)))) (-15 -1793 ($ (-442) (-588 (-239)))) (-15 -2521 ((-1171) $ (-850) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-522) (-803) (-522) (-803) (-522))) (-15 -1923 ((-1166 (-2 (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)) (|:| -3748 (-522)) (|:| -2294 (-522)) (|:| |spline| (-522)) (|:| -1605 (-522)) (|:| |axesColor| (-803)) (|:| -2035 (-522)) (|:| |unitsColor| (-803)) (|:| |showing| (-522)))) $)) (-15 -2083 ((-1166 (-3 (-442) "undefined")) $)) (-15 -3082 ((-1171) $ (-1068))) (-15 -4063 ((-1171) $ (-442) (-850))) (-15 -4125 ((-442) $ (-850))) (-15 -1605 ((-1171) $ (-850) (-1068))) (-15 -1605 ((-1171) $ (-850) (-803))) (-15 -2035 ((-1171) $ (-850) (-1068))) (-15 -2035 ((-1171) $ (-850) (-803))) (-15 -3748 ((-1171) $ (-850) (-1068))) (-15 -2067 ((-1171) $ (-850) (-1068))) (-15 -2294 ((-1171) $ (-850) (-1068))) (-15 -2532 ((-1171) $ (-1068))) (-15 -1720 ((-1171) $)) (-15 -4021 ((-1171) $ (-708) (-708) (-850) (-850))) (-15 -3808 ((-1171) $ (-850) (-354) (-354))) (-15 -2555 ((-1171) $ (-850) (-354) (-354))) (-15 -1922 ((-1171) $ (-850) (-1068))) (-15 -2560 ((-1171) $ (-708) (-708))) (-15 -3257 ((-1171) $ (-442) (-850))) (-15 -2360 ((-1171) $ (-850) (-850))) (-15 -4048 ((-1068) $ (-1068))) (-15 -4048 ((-1068) $ (-1068) (-1068))) (-15 -4048 ((-1068) $ (-1068) (-588 (-1068)))) (-15 -4032 ((-1171) $)) (-15 -2644 ((-522) $)) (-15 -2217 ((-792) $)))) -((-1419 (((-108) $ $) NIL)) (-2843 (((-1171) $ (-354)) 138) (((-1171) $ (-354) (-354) (-354)) 139)) (-4048 (((-1068) $ (-1068)) 146) (((-1068) $ (-1068) (-1068)) 144) (((-1068) $ (-1068) (-588 (-1068))) 143)) (-2112 (($) 49)) (-1210 (((-1171) $ (-354) (-354) (-354) (-354) (-354)) 114) (((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) $) 112) (((-1171) $ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) 113) (((-1171) $ (-522) (-522) (-354) (-354) (-354)) 115) (((-1171) $ (-354) (-354)) 116) (((-1171) $ (-354) (-354) (-354)) 123)) (-1253 (((-354)) 96) (((-354) (-354)) 97)) (-3437 (((-354)) 91) (((-354) (-354)) 93)) (-2775 (((-354)) 94) (((-354) (-354)) 95)) (-1635 (((-354)) 100) (((-354) (-354)) 101)) (-2809 (((-354)) 98) (((-354) (-354)) 99)) (-2555 (((-1171) $ (-354) (-354)) 140)) (-3082 (((-1171) $ (-1068)) 124)) (-1584 (((-1045 (-202)) $) 50) (($ $ (-1045 (-202))) 51)) (-3933 (((-1171) $ (-1068)) 152)) (-2199 (((-1171) $ (-1068)) 153)) (-4209 (((-1171) $ (-354) (-354)) 122) (((-1171) $ (-522) (-522)) 137)) (-2360 (((-1171) $ (-850) (-850)) 130)) (-4032 (((-1171) $) 110)) (-1639 (((-1171) $ (-1068)) 151)) (-3289 (((-1171) $ (-1068)) 107)) (-2654 (((-588 (-239)) $) 52) (($ $ (-588 (-239))) 53)) (-2560 (((-1171) $ (-708) (-708)) 129)) (-3151 (((-1171) $ (-708) (-872 (-202))) 158)) (-2637 (($ $) 56) (($ (-1045 (-202)) (-1068)) 57) (($ (-1045 (-202)) (-588 (-239))) 58)) (-1627 (((-1171) $ (-354) (-354) (-354)) 104)) (-2311 (((-1068) $) NIL)) (-2644 (((-522) $) 102)) (-2292 (((-1171) $ (-354)) 141)) (-1817 (((-1171) $ (-354)) 156)) (-4174 (((-1032) $) NIL)) (-3650 (((-1171) $ (-354)) 155)) (-3303 (((-1171) $ (-1068)) 109)) (-4021 (((-1171) $ (-708) (-708) (-850) (-850)) 128)) (-1312 (((-1171) $ (-1068)) 106)) (-2532 (((-1171) $ (-1068)) 108)) (-2258 (((-1171) $ (-143) (-143)) 127)) (-2217 (((-792) $) 135)) (-1720 (((-1171) $) 111)) (-4161 (((-1171) $ (-1068)) 154)) (-1605 (((-1171) $ (-1068)) 105)) (-1562 (((-108) $ $) NIL))) -(((-1168) (-13 (-1014) (-10 -8 (-15 -3437 ((-354))) (-15 -3437 ((-354) (-354))) (-15 -2775 ((-354))) (-15 -2775 ((-354) (-354))) (-15 -1253 ((-354))) (-15 -1253 ((-354) (-354))) (-15 -2809 ((-354))) (-15 -2809 ((-354) (-354))) (-15 -1635 ((-354))) (-15 -1635 ((-354) (-354))) (-15 -2112 ($)) (-15 -2637 ($ $)) (-15 -2637 ($ (-1045 (-202)) (-1068))) (-15 -2637 ($ (-1045 (-202)) (-588 (-239)))) (-15 -1584 ((-1045 (-202)) $)) (-15 -1584 ($ $ (-1045 (-202)))) (-15 -3151 ((-1171) $ (-708) (-872 (-202)))) (-15 -2654 ((-588 (-239)) $)) (-15 -2654 ($ $ (-588 (-239)))) (-15 -2560 ((-1171) $ (-708) (-708))) (-15 -2360 ((-1171) $ (-850) (-850))) (-15 -3082 ((-1171) $ (-1068))) (-15 -4021 ((-1171) $ (-708) (-708) (-850) (-850))) (-15 -1210 ((-1171) $ (-354) (-354) (-354) (-354) (-354))) (-15 -1210 ((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) $)) (-15 -1210 ((-1171) $ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -1210 ((-1171) $ (-522) (-522) (-354) (-354) (-354))) (-15 -1210 ((-1171) $ (-354) (-354))) (-15 -1210 ((-1171) $ (-354) (-354) (-354))) (-15 -2532 ((-1171) $ (-1068))) (-15 -1605 ((-1171) $ (-1068))) (-15 -1312 ((-1171) $ (-1068))) (-15 -3289 ((-1171) $ (-1068))) (-15 -3303 ((-1171) $ (-1068))) (-15 -4209 ((-1171) $ (-354) (-354))) (-15 -4209 ((-1171) $ (-522) (-522))) (-15 -2843 ((-1171) $ (-354))) (-15 -2843 ((-1171) $ (-354) (-354) (-354))) (-15 -2555 ((-1171) $ (-354) (-354))) (-15 -1639 ((-1171) $ (-1068))) (-15 -3650 ((-1171) $ (-354))) (-15 -1817 ((-1171) $ (-354))) (-15 -3933 ((-1171) $ (-1068))) (-15 -2199 ((-1171) $ (-1068))) (-15 -4161 ((-1171) $ (-1068))) (-15 -1627 ((-1171) $ (-354) (-354) (-354))) (-15 -2292 ((-1171) $ (-354))) (-15 -4032 ((-1171) $)) (-15 -2258 ((-1171) $ (-143) (-143))) (-15 -4048 ((-1068) $ (-1068))) (-15 -4048 ((-1068) $ (-1068) (-1068))) (-15 -4048 ((-1068) $ (-1068) (-588 (-1068)))) (-15 -1720 ((-1171) $)) (-15 -2644 ((-522) $))))) (T -1168)) -((-3437 (*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) (-3437 (*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) (-2775 (*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) (-2775 (*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) (-1253 (*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) (-1253 (*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) (-2809 (*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) (-2809 (*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) (-1635 (*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) (-1635 (*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) (-2112 (*1 *1) (-5 *1 (-1168))) (-2637 (*1 *1 *1) (-5 *1 (-1168))) (-2637 (*1 *1 *2 *3) (-12 (-5 *2 (-1045 (-202))) (-5 *3 (-1068)) (-5 *1 (-1168)))) (-2637 (*1 *1 *2 *3) (-12 (-5 *2 (-1045 (-202))) (-5 *3 (-588 (-239))) (-5 *1 (-1168)))) (-1584 (*1 *2 *1) (-12 (-5 *2 (-1045 (-202))) (-5 *1 (-1168)))) (-1584 (*1 *1 *1 *2) (-12 (-5 *2 (-1045 (-202))) (-5 *1 (-1168)))) (-3151 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-708)) (-5 *4 (-872 (-202))) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-588 (-239))) (-5 *1 (-1168)))) (-2654 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-239))) (-5 *1 (-1168)))) (-2560 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-2360 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-3082 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-4021 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-708)) (-5 *4 (-850)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1210 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1210 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) (-5 *1 (-1168)))) (-1210 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1210 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-522)) (-5 *4 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1210 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1210 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-2532 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1605 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1312 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-3289 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-3303 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-4209 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-4209 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-2843 (*1 *2 *1 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-2843 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-2555 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1639 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-3650 (*1 *2 *1 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1817 (*1 *2 *1 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-3933 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-2199 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-4161 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1627 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-2292 (*1 *2 *1 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-4032 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1168)))) (-2258 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-143)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-4048 (*1 *2 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1168)))) (-4048 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1168)))) (-4048 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-1068)) (-5 *1 (-1168)))) (-1720 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1168)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1168))))) -(-13 (-1014) (-10 -8 (-15 -3437 ((-354))) (-15 -3437 ((-354) (-354))) (-15 -2775 ((-354))) (-15 -2775 ((-354) (-354))) (-15 -1253 ((-354))) (-15 -1253 ((-354) (-354))) (-15 -2809 ((-354))) (-15 -2809 ((-354) (-354))) (-15 -1635 ((-354))) (-15 -1635 ((-354) (-354))) (-15 -2112 ($)) (-15 -2637 ($ $)) (-15 -2637 ($ (-1045 (-202)) (-1068))) (-15 -2637 ($ (-1045 (-202)) (-588 (-239)))) (-15 -1584 ((-1045 (-202)) $)) (-15 -1584 ($ $ (-1045 (-202)))) (-15 -3151 ((-1171) $ (-708) (-872 (-202)))) (-15 -2654 ((-588 (-239)) $)) (-15 -2654 ($ $ (-588 (-239)))) (-15 -2560 ((-1171) $ (-708) (-708))) (-15 -2360 ((-1171) $ (-850) (-850))) (-15 -3082 ((-1171) $ (-1068))) (-15 -4021 ((-1171) $ (-708) (-708) (-850) (-850))) (-15 -1210 ((-1171) $ (-354) (-354) (-354) (-354) (-354))) (-15 -1210 ((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) $)) (-15 -1210 ((-1171) $ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -1210 ((-1171) $ (-522) (-522) (-354) (-354) (-354))) (-15 -1210 ((-1171) $ (-354) (-354))) (-15 -1210 ((-1171) $ (-354) (-354) (-354))) (-15 -2532 ((-1171) $ (-1068))) (-15 -1605 ((-1171) $ (-1068))) (-15 -1312 ((-1171) $ (-1068))) (-15 -3289 ((-1171) $ (-1068))) (-15 -3303 ((-1171) $ (-1068))) (-15 -4209 ((-1171) $ (-354) (-354))) (-15 -4209 ((-1171) $ (-522) (-522))) (-15 -2843 ((-1171) $ (-354))) (-15 -2843 ((-1171) $ (-354) (-354) (-354))) (-15 -2555 ((-1171) $ (-354) (-354))) (-15 -1639 ((-1171) $ (-1068))) (-15 -3650 ((-1171) $ (-354))) (-15 -1817 ((-1171) $ (-354))) (-15 -3933 ((-1171) $ (-1068))) (-15 -2199 ((-1171) $ (-1068))) (-15 -4161 ((-1171) $ (-1068))) (-15 -1627 ((-1171) $ (-354) (-354) (-354))) (-15 -2292 ((-1171) $ (-354))) (-15 -4032 ((-1171) $)) (-15 -2258 ((-1171) $ (-143) (-143))) (-15 -4048 ((-1068) $ (-1068))) (-15 -4048 ((-1068) $ (-1068) (-1068))) (-15 -4048 ((-1068) $ (-1068) (-588 (-1068)))) (-15 -1720 ((-1171) $)) (-15 -2644 ((-522) $)))) -((-1371 (((-588 (-1068)) (-588 (-1068))) 94) (((-588 (-1068))) 89)) (-2981 (((-588 (-1068))) 87)) (-1543 (((-588 (-850)) (-588 (-850))) 62) (((-588 (-850))) 59)) (-1370 (((-588 (-708)) (-588 (-708))) 56) (((-588 (-708))) 52)) (-1586 (((-1171)) 64)) (-1631 (((-850) (-850)) 80) (((-850)) 79)) (-3626 (((-850) (-850)) 78) (((-850)) 77)) (-3662 (((-803) (-803)) 74) (((-803)) 73)) (-3304 (((-202)) 84) (((-202) (-354)) 86)) (-3575 (((-850)) 81) (((-850) (-850)) 82)) (-1694 (((-850) (-850)) 76) (((-850)) 75)) (-3718 (((-803) (-803)) 68) (((-803)) 66)) (-2673 (((-803) (-803)) 70) (((-803)) 69)) (-2958 (((-803) (-803)) 72) (((-803)) 71))) -(((-1169) (-10 -7 (-15 -3718 ((-803))) (-15 -3718 ((-803) (-803))) (-15 -2673 ((-803))) (-15 -2673 ((-803) (-803))) (-15 -2958 ((-803))) (-15 -2958 ((-803) (-803))) (-15 -3662 ((-803))) (-15 -3662 ((-803) (-803))) (-15 -1694 ((-850))) (-15 -1694 ((-850) (-850))) (-15 -1370 ((-588 (-708)))) (-15 -1370 ((-588 (-708)) (-588 (-708)))) (-15 -1543 ((-588 (-850)))) (-15 -1543 ((-588 (-850)) (-588 (-850)))) (-15 -1586 ((-1171))) (-15 -1371 ((-588 (-1068)))) (-15 -1371 ((-588 (-1068)) (-588 (-1068)))) (-15 -2981 ((-588 (-1068)))) (-15 -3626 ((-850))) (-15 -1631 ((-850))) (-15 -3626 ((-850) (-850))) (-15 -1631 ((-850) (-850))) (-15 -3575 ((-850) (-850))) (-15 -3575 ((-850))) (-15 -3304 ((-202) (-354))) (-15 -3304 ((-202))))) (T -1169)) -((-3304 (*1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-1169)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-354)) (-5 *2 (-202)) (-5 *1 (-1169)))) (-3575 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))) (-3575 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))) (-1631 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))) (-3626 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))) (-1631 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))) (-3626 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))) (-2981 (*1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1169)))) (-1371 (*1 *2 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1169)))) (-1371 (*1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1169)))) (-1586 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1169)))) (-1543 (*1 *2 *2) (-12 (-5 *2 (-588 (-850))) (-5 *1 (-1169)))) (-1543 (*1 *2) (-12 (-5 *2 (-588 (-850))) (-5 *1 (-1169)))) (-1370 (*1 *2 *2) (-12 (-5 *2 (-588 (-708))) (-5 *1 (-1169)))) (-1370 (*1 *2) (-12 (-5 *2 (-588 (-708))) (-5 *1 (-1169)))) (-1694 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))) (-1694 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))) (-3662 (*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))) (-3662 (*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))) (-2958 (*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))) (-2958 (*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))) (-2673 (*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))) (-2673 (*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))) (-3718 (*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))) (-3718 (*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169))))) -(-10 -7 (-15 -3718 ((-803))) (-15 -3718 ((-803) (-803))) (-15 -2673 ((-803))) (-15 -2673 ((-803) (-803))) (-15 -2958 ((-803))) (-15 -2958 ((-803) (-803))) (-15 -3662 ((-803))) (-15 -3662 ((-803) (-803))) (-15 -1694 ((-850))) (-15 -1694 ((-850) (-850))) (-15 -1370 ((-588 (-708)))) (-15 -1370 ((-588 (-708)) (-588 (-708)))) (-15 -1543 ((-588 (-850)))) (-15 -1543 ((-588 (-850)) (-588 (-850)))) (-15 -1586 ((-1171))) (-15 -1371 ((-588 (-1068)))) (-15 -1371 ((-588 (-1068)) (-588 (-1068)))) (-15 -2981 ((-588 (-1068)))) (-15 -3626 ((-850))) (-15 -1631 ((-850))) (-15 -3626 ((-850) (-850))) (-15 -1631 ((-850) (-850))) (-15 -3575 ((-850) (-850))) (-15 -3575 ((-850))) (-15 -3304 ((-202) (-354))) (-15 -3304 ((-202)))) -((-3096 (((-442) (-588 (-588 (-872 (-202)))) (-588 (-239))) 17) (((-442) (-588 (-588 (-872 (-202))))) 16) (((-442) (-588 (-588 (-872 (-202)))) (-803) (-803) (-850) (-588 (-239))) 15)) (-2781 (((-1167) (-588 (-588 (-872 (-202)))) (-588 (-239))) 23) (((-1167) (-588 (-588 (-872 (-202)))) (-803) (-803) (-850) (-588 (-239))) 22)) (-2217 (((-1167) (-442)) 34))) -(((-1170) (-10 -7 (-15 -3096 ((-442) (-588 (-588 (-872 (-202)))) (-803) (-803) (-850) (-588 (-239)))) (-15 -3096 ((-442) (-588 (-588 (-872 (-202)))))) (-15 -3096 ((-442) (-588 (-588 (-872 (-202)))) (-588 (-239)))) (-15 -2781 ((-1167) (-588 (-588 (-872 (-202)))) (-803) (-803) (-850) (-588 (-239)))) (-15 -2781 ((-1167) (-588 (-588 (-872 (-202)))) (-588 (-239)))) (-15 -2217 ((-1167) (-442))))) (T -1170)) -((-2217 (*1 *2 *3) (-12 (-5 *3 (-442)) (-5 *2 (-1167)) (-5 *1 (-1170)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *4 (-588 (-239))) (-5 *2 (-1167)) (-5 *1 (-1170)))) (-2781 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *4 (-803)) (-5 *5 (-850)) (-5 *6 (-588 (-239))) (-5 *2 (-1167)) (-5 *1 (-1170)))) (-3096 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *4 (-588 (-239))) (-5 *2 (-442)) (-5 *1 (-1170)))) (-3096 (*1 *2 *3) (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *2 (-442)) (-5 *1 (-1170)))) (-3096 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *4 (-803)) (-5 *5 (-850)) (-5 *6 (-588 (-239))) (-5 *2 (-442)) (-5 *1 (-1170))))) -(-10 -7 (-15 -3096 ((-442) (-588 (-588 (-872 (-202)))) (-803) (-803) (-850) (-588 (-239)))) (-15 -3096 ((-442) (-588 (-588 (-872 (-202)))))) (-15 -3096 ((-442) (-588 (-588 (-872 (-202)))) (-588 (-239)))) (-15 -2781 ((-1167) (-588 (-588 (-872 (-202)))) (-803) (-803) (-850) (-588 (-239)))) (-15 -2781 ((-1167) (-588 (-588 (-872 (-202)))) (-588 (-239)))) (-15 -2217 ((-1167) (-442)))) -((-1350 (($) 7)) (-2217 (((-792) $) 10))) -(((-1171) (-10 -8 (-15 -1350 ($)) (-15 -2217 ((-792) $)))) (T -1171)) -((-2217 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1171)))) (-1350 (*1 *1) (-5 *1 (-1171)))) -(-10 -8 (-15 -1350 ($)) (-15 -2217 ((-792) $))) -((-1682 (($ $ |#2|) 10))) -(((-1172 |#1| |#2|) (-10 -8 (-15 -1682 (|#1| |#1| |#2|))) (-1173 |#2|) (-338)) (T -1172)) -NIL -(-10 -8 (-15 -1682 (|#1| |#1| |#2|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-3222 (((-126)) 28)) (-2217 (((-792) $) 11)) (-3697 (($) 18 T CONST)) (-1562 (((-108) $ $) 6)) (-1682 (($ $ |#1|) 29)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-1173 |#1|) (-1197) (-338)) (T -1173)) -((-1682 (*1 *1 *1 *2) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-338)))) (-3222 (*1 *2) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-338)) (-5 *2 (-126))))) -(-13 (-655 |t#1|) (-10 -8 (-15 -1682 ($ $ |t#1|)) (-15 -3222 ((-126))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-655 |#1|) . T) ((-977 |#1|) . T) ((-1014) . T)) -((-2850 (((-588 (-1115 |#1|)) (-1085) (-1115 |#1|)) 78)) (-1289 (((-1066 (-1066 (-881 |#1|))) (-1085) (-1066 (-881 |#1|))) 57)) (-4189 (((-1 (-1066 (-1115 |#1|)) (-1066 (-1115 |#1|))) (-708) (-1115 |#1|) (-1066 (-1115 |#1|))) 68)) (-3436 (((-1 (-1066 (-881 |#1|)) (-1066 (-881 |#1|))) (-708)) 59)) (-3694 (((-1 (-1081 (-881 |#1|)) (-881 |#1|)) (-1085)) 27)) (-3399 (((-1 (-1066 (-881 |#1|)) (-1066 (-881 |#1|))) (-708)) 58))) -(((-1174 |#1|) (-10 -7 (-15 -3436 ((-1 (-1066 (-881 |#1|)) (-1066 (-881 |#1|))) (-708))) (-15 -3399 ((-1 (-1066 (-881 |#1|)) (-1066 (-881 |#1|))) (-708))) (-15 -1289 ((-1066 (-1066 (-881 |#1|))) (-1085) (-1066 (-881 |#1|)))) (-15 -3694 ((-1 (-1081 (-881 |#1|)) (-881 |#1|)) (-1085))) (-15 -2850 ((-588 (-1115 |#1|)) (-1085) (-1115 |#1|))) (-15 -4189 ((-1 (-1066 (-1115 |#1|)) (-1066 (-1115 |#1|))) (-708) (-1115 |#1|) (-1066 (-1115 |#1|))))) (-338)) (T -1174)) -((-4189 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-708)) (-4 *6 (-338)) (-5 *4 (-1115 *6)) (-5 *2 (-1 (-1066 *4) (-1066 *4))) (-5 *1 (-1174 *6)) (-5 *5 (-1066 *4)))) (-2850 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-4 *5 (-338)) (-5 *2 (-588 (-1115 *5))) (-5 *1 (-1174 *5)) (-5 *4 (-1115 *5)))) (-3694 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1 (-1081 (-881 *4)) (-881 *4))) (-5 *1 (-1174 *4)) (-4 *4 (-338)))) (-1289 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-4 *5 (-338)) (-5 *2 (-1066 (-1066 (-881 *5)))) (-5 *1 (-1174 *5)) (-5 *4 (-1066 (-881 *5))))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1 (-1066 (-881 *4)) (-1066 (-881 *4)))) (-5 *1 (-1174 *4)) (-4 *4 (-338)))) (-3436 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1 (-1066 (-881 *4)) (-1066 (-881 *4)))) (-5 *1 (-1174 *4)) (-4 *4 (-338))))) -(-10 -7 (-15 -3436 ((-1 (-1066 (-881 |#1|)) (-1066 (-881 |#1|))) (-708))) (-15 -3399 ((-1 (-1066 (-881 |#1|)) (-1066 (-881 |#1|))) (-708))) (-15 -1289 ((-1066 (-1066 (-881 |#1|))) (-1085) (-1066 (-881 |#1|)))) (-15 -3694 ((-1 (-1081 (-881 |#1|)) (-881 |#1|)) (-1085))) (-15 -2850 ((-588 (-1115 |#1|)) (-1085) (-1115 |#1|))) (-15 -4189 ((-1 (-1066 (-1115 |#1|)) (-1066 (-1115 |#1|))) (-708) (-1115 |#1|) (-1066 (-1115 |#1|))))) -((-3387 (((-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) |#2|) 74)) (-1886 (((-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|)))) 73))) -(((-1175 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1886 ((-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))))) (-15 -3387 ((-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) |#2|))) (-324) (-1142 |#1|) (-1142 |#2|) (-384 |#2| |#3|)) (T -1175)) -((-3387 (*1 *2 *3) (-12 (-4 *4 (-324)) (-4 *3 (-1142 *4)) (-4 *5 (-1142 *3)) (-5 *2 (-2 (|:| -2905 (-628 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-628 *3)))) (-5 *1 (-1175 *4 *3 *5 *6)) (-4 *6 (-384 *3 *5)))) (-1886 (*1 *2) (-12 (-4 *3 (-324)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 *4)) (-5 *2 (-2 (|:| -2905 (-628 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-628 *4)))) (-5 *1 (-1175 *3 *4 *5 *6)) (-4 *6 (-384 *4 *5))))) -(-10 -7 (-15 -1886 ((-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))))) (-15 -3387 ((-2 (|:| -2905 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) |#2|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 42)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3920 (((-3 $ "failed") $) NIL)) (-2859 (((-108) $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2217 (((-792) $) 63) (($ (-522)) NIL) ((|#4| $) 53) (($ |#4|) 48) (($ |#1|) NIL (|has| |#1| (-157)))) (-2742 (((-708)) NIL)) (-3860 (((-1171) (-708)) 16)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 27 T CONST)) (-3709 (($) 66 T CONST)) (-1562 (((-108) $ $) 68)) (-1682 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-1672 (($ $) 70) (($ $ $) NIL)) (-1661 (($ $ $) 46)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157))))) -(((-1176 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-971) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2217 (|#4| $)) (IF (|has| |#1| (-338)) (-15 -1682 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2217 ($ |#4|)) (-15 -3860 ((-1171) (-708))))) (-971) (-784) (-730) (-878 |#1| |#3| |#2|) (-588 |#2|) (-588 (-708)) (-708)) (T -1176)) -((-2217 (*1 *2 *1) (-12 (-4 *2 (-878 *3 *5 *4)) (-5 *1 (-1176 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-730)) (-14 *6 (-588 *4)) (-14 *7 (-588 (-708))) (-14 *8 (-708)))) (-1682 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-338)) (-4 *2 (-971)) (-4 *3 (-784)) (-4 *4 (-730)) (-14 *6 (-588 *3)) (-5 *1 (-1176 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-878 *2 *4 *3)) (-14 *7 (-588 (-708))) (-14 *8 (-708)))) (-2217 (*1 *1 *2) (-12 (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-730)) (-14 *6 (-588 *4)) (-5 *1 (-1176 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-878 *3 *5 *4)) (-14 *7 (-588 (-708))) (-14 *8 (-708)))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-708)) (-4 *4 (-971)) (-4 *5 (-784)) (-4 *6 (-730)) (-14 *8 (-588 *5)) (-5 *2 (-1171)) (-5 *1 (-1176 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-878 *4 *6 *5)) (-14 *9 (-588 *3)) (-14 *10 *3)))) -(-13 (-971) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2217 (|#4| $)) (IF (|has| |#1| (-338)) (-15 -1682 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2217 ($ |#4|)) (-15 -3860 ((-1171) (-708))))) -((-1419 (((-108) $ $) NIL)) (-3829 (((-588 (-2 (|:| -1720 $) (|:| -1566 (-588 |#4|)))) (-588 |#4|)) NIL)) (-2510 (((-588 $) (-588 |#4|)) 88)) (-3533 (((-588 |#3|) $) NIL)) (-2161 (((-108) $) NIL)) (-2702 (((-108) $) NIL (|has| |#1| (-514)))) (-1900 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2163 ((|#4| |#4| $) NIL)) (-3296 (((-2 (|:| |under| $) (|:| -3592 $) (|:| |upper| $)) $ |#3|) NIL)) (-2717 (((-108) $ (-708)) NIL)) (-1696 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3367 (($) NIL T CONST)) (-1298 (((-108) $) NIL (|has| |#1| (-514)))) (-1657 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3598 (((-108) $ $) NIL (|has| |#1| (-514)))) (-2818 (((-108) $) NIL (|has| |#1| (-514)))) (-3090 (((-588 |#4|) (-588 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 28)) (-3461 (((-588 |#4|) (-588 |#4|) $) 25 (|has| |#1| (-514)))) (-3668 (((-588 |#4|) (-588 |#4|) $) NIL (|has| |#1| (-514)))) (-3700 (((-3 $ "failed") (-588 |#4|)) NIL)) (-1478 (($ (-588 |#4|)) NIL)) (-2352 (((-3 $ "failed") $) 70)) (-2625 ((|#4| |#4| $) 75)) (-2379 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-1424 (($ |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-4002 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-514)))) (-1426 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2918 ((|#4| |#4| $) NIL)) (-2153 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4238))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1199 (((-2 (|:| -1720 (-588 |#4|)) (|:| -1566 (-588 |#4|))) $) NIL)) (-2395 (((-588 |#4|) $) NIL (|has| $ (-6 -4238)))) (-1384 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1933 ((|#3| $) 76)) (-1480 (((-108) $ (-708)) NIL)) (-4084 (((-588 |#4|) $) 29 (|has| $ (-6 -4238)))) (-4176 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-4103 (((-3 $ "failed") (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-588 |#4|)) 35)) (-2397 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4239)))) (-3810 (($ (-1 |#4| |#4|) $) NIL)) (-2714 (((-588 |#3|) $) NIL)) (-3826 (((-108) |#3| $) NIL)) (-3309 (((-108) $ (-708)) NIL)) (-2311 (((-1068) $) NIL)) (-1442 (((-3 |#4| "failed") $) NIL)) (-4138 (((-588 |#4|) $) 50)) (-3864 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2556 ((|#4| |#4| $) 74)) (-1517 (((-108) $ $) 85)) (-2507 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-514)))) (-3060 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3896 ((|#4| |#4| $) NIL)) (-4174 (((-1032) $) NIL)) (-2337 (((-3 |#4| "failed") $) 69)) (-2187 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-4078 (((-3 $ "failed") $ |#4|) NIL)) (-3934 (($ $ |#4|) NIL)) (-3487 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2330 (($ $ (-588 |#4|) (-588 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-2065 (((-108) $ $) NIL)) (-3494 (((-108) $) 67)) (-3298 (($) 42)) (-2487 (((-708) $) NIL)) (-4187 (((-708) |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) (((-708) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2463 (($ $) NIL)) (-3873 (((-498) $) NIL (|has| |#4| (-563 (-498))))) (-2227 (($ (-588 |#4|)) NIL)) (-2271 (($ $ |#3|) NIL)) (-2154 (($ $ |#3|) NIL)) (-1524 (($ $) NIL)) (-2773 (($ $ |#3|) NIL)) (-2217 (((-792) $) NIL) (((-588 |#4|) $) 57)) (-3111 (((-708) $) NIL (|has| |#3| (-343)))) (-3571 (((-3 $ "failed") (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-588 |#4|)) 41)) (-3978 (((-588 $) (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-588 $) (-588 |#4|)) 66)) (-3538 (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -1322 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2102 (((-108) $ (-1 (-108) |#4| (-588 |#4|))) NIL)) (-1381 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-1982 (((-588 |#3|) $) NIL)) (-1711 (((-108) |#3| $) NIL)) (-1562 (((-108) $ $) NIL)) (-3591 (((-708) $) NIL (|has| $ (-6 -4238))))) -(((-1177 |#1| |#2| |#3| |#4|) (-13 (-1114 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4103 ((-3 $ "failed") (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4103 ((-3 $ "failed") (-588 |#4|))) (-15 -3571 ((-3 $ "failed") (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3571 ((-3 $ "failed") (-588 |#4|))) (-15 -3978 ((-588 $) (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3978 ((-588 $) (-588 |#4|))))) (-514) (-730) (-784) (-985 |#1| |#2| |#3|)) (T -1177)) -((-4103 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-588 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-1177 *5 *6 *7 *8)))) (-4103 (*1 *1 *2) (|partial| -12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-1177 *3 *4 *5 *6)))) (-3571 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-588 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-1177 *5 *6 *7 *8)))) (-3571 (*1 *1 *2) (|partial| -12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-1177 *3 *4 *5 *6)))) (-3978 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-588 *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-985 *6 *7 *8)) (-4 *6 (-514)) (-4 *7 (-730)) (-4 *8 (-784)) (-5 *2 (-588 (-1177 *6 *7 *8 *9))) (-5 *1 (-1177 *6 *7 *8 *9)))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 (-1177 *4 *5 *6 *7))) (-5 *1 (-1177 *4 *5 *6 *7))))) -(-13 (-1114 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4103 ((-3 $ "failed") (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4103 ((-3 $ "failed") (-588 |#4|))) (-15 -3571 ((-3 $ "failed") (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3571 ((-3 $ "failed") (-588 |#4|))) (-15 -3978 ((-588 $) (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3978 ((-588 $) (-588 |#4|))))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-2265 (((-3 $ "failed") $ $) 19)) (-3367 (($) 17 T CONST)) (-3920 (((-3 $ "failed") $) 34)) (-2859 (((-108) $) 31)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 38)) (-2742 (((-708)) 29)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-1178 |#1|) (-1197) (-971)) (T -1178)) -((-2217 (*1 *1 *2) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-971))))) -(-13 (-971) (-107 |t#1| |t#1|) (-10 -8 (-15 -2217 ($ |t#1|)) (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-655 |#1|) |has| |#1| (-157)) ((-664) . T) ((-977 |#1|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-4127 (((-588 |#1|) $) 45)) (-3331 (($ $ (-708)) 39)) (-2265 (((-3 $ "failed") $ $) NIL)) (-1437 (($ $ (-708)) 17 (|has| |#2| (-157))) (($ $ $) 18 (|has| |#2| (-157)))) (-3367 (($) NIL T CONST)) (-1745 (($ $ $) 62) (($ $ (-756 |#1|)) 49) (($ $ |#1|) 53)) (-3700 (((-3 (-756 |#1|) "failed") $) NIL)) (-1478 (((-756 |#1|) $) NIL)) (-3241 (($ $) 32)) (-3920 (((-3 $ "failed") $) NIL)) (-2664 (((-108) $) NIL)) (-3208 (($ $) NIL)) (-2859 (((-108) $) NIL)) (-1391 (((-708) $) NIL)) (-3038 (((-588 $) $) NIL)) (-1374 (((-108) $) NIL)) (-2623 (($ (-756 |#1|) |#2|) 31)) (-2182 (($ $) 33)) (-1500 (((-2 (|:| |k| (-756 |#1|)) (|:| |c| |#2|)) $) 11)) (-2565 (((-756 |#1|) $) NIL)) (-2114 (((-756 |#1|) $) 34)) (-3810 (($ (-1 |#2| |#2|) $) NIL)) (-4038 (($ $ $) 61) (($ $ (-756 |#1|)) 51) (($ $ |#1|) 55)) (-2893 (((-2 (|:| |k| (-756 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3216 (((-756 |#1|) $) 28)) (-3224 ((|#2| $) 30)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-2487 (((-708) $) 36)) (-1967 (((-108) $) 40)) (-2855 ((|#2| $) NIL)) (-2217 (((-792) $) NIL) (($ (-756 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-522)) NIL)) (-2180 (((-588 |#2|) $) NIL)) (-1643 ((|#2| $ (-756 |#1|)) NIL)) (-3112 ((|#2| $ $) 64) ((|#2| $ (-756 |#1|)) NIL)) (-2742 (((-708)) NIL)) (-3622 (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (-3697 (($) 12 T CONST)) (-3709 (($) 14 T CONST)) (-1738 (((-588 (-2 (|:| |k| (-756 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1562 (((-108) $ $) 38)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) 21)) (** (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 60) (($ |#2| (-756 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) -(((-1179 |#1| |#2|) (-13 (-357 |#2| (-756 |#1|)) (-1185 |#1| |#2|)) (-784) (-971)) (T -1179)) -NIL -(-13 (-357 |#2| (-756 |#1|)) (-1185 |#1| |#2|)) -((-1238 ((|#3| |#3| (-708)) 23)) (-3357 ((|#3| |#3| (-708)) 28)) (-3141 ((|#3| |#3| |#3| (-708)) 29))) -(((-1180 |#1| |#2| |#3|) (-10 -7 (-15 -3357 (|#3| |#3| (-708))) (-15 -1238 (|#3| |#3| (-708))) (-15 -3141 (|#3| |#3| |#3| (-708)))) (-13 (-971) (-655 (-382 (-522)))) (-784) (-1185 |#2| |#1|)) (T -1180)) -((-3141 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-708)) (-4 *4 (-13 (-971) (-655 (-382 (-522))))) (-4 *5 (-784)) (-5 *1 (-1180 *4 *5 *2)) (-4 *2 (-1185 *5 *4)))) (-1238 (*1 *2 *2 *3) (-12 (-5 *3 (-708)) (-4 *4 (-13 (-971) (-655 (-382 (-522))))) (-4 *5 (-784)) (-5 *1 (-1180 *4 *5 *2)) (-4 *2 (-1185 *5 *4)))) (-3357 (*1 *2 *2 *3) (-12 (-5 *3 (-708)) (-4 *4 (-13 (-971) (-655 (-382 (-522))))) (-4 *5 (-784)) (-5 *1 (-1180 *4 *5 *2)) (-4 *2 (-1185 *5 *4))))) -(-10 -7 (-15 -3357 (|#3| |#3| (-708))) (-15 -1238 (|#3| |#3| (-708))) (-15 -3141 (|#3| |#3| |#3| (-708)))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-4127 (((-588 |#1|) $) 40)) (-2265 (((-3 $ "failed") $ $) 19)) (-1437 (($ $ $) 43 (|has| |#2| (-157))) (($ $ (-708)) 42 (|has| |#2| (-157)))) (-3367 (($) 17 T CONST)) (-1745 (($ $ |#1|) 54) (($ $ (-756 |#1|)) 53) (($ $ $) 52)) (-3700 (((-3 (-756 |#1|) "failed") $) 64)) (-1478 (((-756 |#1|) $) 63)) (-3920 (((-3 $ "failed") $) 34)) (-2664 (((-108) $) 45)) (-3208 (($ $) 44)) (-2859 (((-108) $) 31)) (-1374 (((-108) $) 50)) (-2623 (($ (-756 |#1|) |#2|) 51)) (-2182 (($ $) 49)) (-1500 (((-2 (|:| |k| (-756 |#1|)) (|:| |c| |#2|)) $) 60)) (-2565 (((-756 |#1|) $) 61)) (-3810 (($ (-1 |#2| |#2|) $) 41)) (-4038 (($ $ |#1|) 57) (($ $ (-756 |#1|)) 56) (($ $ $) 55)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-1967 (((-108) $) 47)) (-2855 ((|#2| $) 46)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ |#2|) 68) (($ (-756 |#1|)) 65) (($ |#1|) 48)) (-3112 ((|#2| $ (-756 |#1|)) 59) ((|#2| $ $) 58)) (-2742 (((-708)) 29)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62))) -(((-1181 |#1| |#2|) (-1197) (-784) (-971)) (T -1181)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-784)) (-4 *2 (-971)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) (-5 *2 (-756 *3)))) (-1500 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) (-5 *2 (-2 (|:| |k| (-756 *3)) (|:| |c| *4))))) (-3112 (*1 *2 *1 *3) (-12 (-5 *3 (-756 *4)) (-4 *1 (-1181 *4 *2)) (-4 *4 (-784)) (-4 *2 (-971)))) (-3112 (*1 *2 *1 *1) (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-784)) (-4 *2 (-971)))) (-4038 (*1 *1 *1 *2) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))) (-4038 (*1 *1 *1 *2) (-12 (-5 *2 (-756 *3)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)))) (-4038 (*1 *1 *1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))) (-1745 (*1 *1 *1 *2) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))) (-1745 (*1 *1 *1 *2) (-12 (-5 *2 (-756 *3)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)))) (-1745 (*1 *1 *1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))) (-2623 (*1 *1 *2 *3) (-12 (-5 *2 (-756 *4)) (-4 *4 (-784)) (-4 *1 (-1181 *4 *3)) (-4 *3 (-971)))) (-1374 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) (-5 *2 (-108)))) (-2182 (*1 *1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))) (-2217 (*1 *1 *2) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))) (-1967 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) (-5 *2 (-108)))) (-2855 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-784)) (-4 *2 (-971)))) (-2664 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) (-5 *2 (-108)))) (-3208 (*1 *1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))) (-1437 (*1 *1 *1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)) (-4 *3 (-157)))) (-1437 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) (-4 *4 (-157)))) (-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) (-5 *2 (-588 *3))))) -(-13 (-971) (-1178 |t#2|) (-962 (-756 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2565 ((-756 |t#1|) $)) (-15 -1500 ((-2 (|:| |k| (-756 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3112 (|t#2| $ (-756 |t#1|))) (-15 -3112 (|t#2| $ $)) (-15 -4038 ($ $ |t#1|)) (-15 -4038 ($ $ (-756 |t#1|))) (-15 -4038 ($ $ $)) (-15 -1745 ($ $ |t#1|)) (-15 -1745 ($ $ (-756 |t#1|))) (-15 -1745 ($ $ $)) (-15 -2623 ($ (-756 |t#1|) |t#2|)) (-15 -1374 ((-108) $)) (-15 -2182 ($ $)) (-15 -2217 ($ |t#1|)) (-15 -1967 ((-108) $)) (-15 -2855 (|t#2| $)) (-15 -2664 ((-108) $)) (-15 -3208 ($ $)) (IF (|has| |t#2| (-157)) (PROGN (-15 -1437 ($ $ $)) (-15 -1437 ($ $ (-708)))) |%noBranch|) (-15 -3810 ($ (-1 |t#2| |t#2|) $)) (-15 -4127 ((-588 |t#1|) $)) (IF (|has| |t#2| (-6 -4231)) (-6 -4231) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-157)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-655 |#2|) |has| |#2| (-157)) ((-664) . T) ((-962 (-756 |#1|)) . T) ((-977 |#2|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1178 |#2|) . T)) -((-2400 (((-108) $) 14)) (-1711 (((-108) $) 13)) (-2938 (($ $) 18) (($ $ (-708)) 19))) -(((-1182 |#1| |#2|) (-10 -8 (-15 -2938 (|#1| |#1| (-708))) (-15 -2938 (|#1| |#1|)) (-15 -2400 ((-108) |#1|)) (-15 -1711 ((-108) |#1|))) (-1183 |#2|) (-338)) (T -1182)) -NIL -(-10 -8 (-15 -2938 (|#1| |#1| (-708))) (-15 -2938 (|#1| |#1|)) (-15 -2400 ((-108) |#1|)) (-15 -1711 ((-108) |#1|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-3401 (((-2 (|:| -2541 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2298 (($ $) 40)) (-3007 (((-108) $) 38)) (-2400 (((-108) $) 94)) (-1593 (((-708)) 90)) (-2265 (((-3 $ "failed") $ $) 19)) (-2961 (($ $) 73)) (-3133 (((-393 $) $) 72)) (-2805 (((-108) $ $) 59)) (-3367 (($) 17 T CONST)) (-3700 (((-3 |#1| "failed") $) 101)) (-1478 ((|#1| $) 100)) (-2333 (($ $ $) 55)) (-3920 (((-3 $ "failed") $) 34)) (-2303 (($ $ $) 56)) (-2135 (((-2 (|:| -3112 (-588 $)) (|:| -1368 $)) (-588 $)) 51)) (-1380 (($ $ (-708)) 87 (-3844 (|has| |#1| (-133)) (|has| |#1| (-343)))) (($ $) 86 (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2725 (((-108) $) 71)) (-3872 (((-770 (-850)) $) 84 (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2859 (((-108) $) 31)) (-4180 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-2267 (($ $ $) 46) (($ (-588 $)) 45)) (-2311 (((-1068) $) 9)) (-3193 (($ $) 70)) (-2804 (((-108) $) 93)) (-4174 (((-1032) $) 10)) (-1789 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2308 (($ $ $) 48) (($ (-588 $)) 47)) (-2006 (((-393 $) $) 74)) (-1713 (((-770 (-850))) 91)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1368 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2276 (((-3 $ "failed") $ $) 42)) (-3716 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-4031 (((-708) $) 58)) (-4164 (((-2 (|:| -3450 $) (|:| -4002 $)) $ $) 57)) (-1304 (((-3 (-708) "failed") $ $) 85 (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-3222 (((-126)) 99)) (-2487 (((-770 (-850)) $) 92)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-382 (-522))) 65) (($ |#1|) 102)) (-3040 (((-3 $ "failed") $) 83 (-3844 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2742 (((-708)) 29)) (-1407 (((-108) $ $) 39)) (-1711 (((-108) $) 95)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 69)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-2938 (($ $) 89 (|has| |#1| (-343))) (($ $ (-708)) 88 (|has| |#1| (-343)))) (-1562 (((-108) $ $) 6)) (-1682 (($ $ $) 64) (($ $ |#1|) 98)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 68)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 67) (($ (-382 (-522)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96))) -(((-1183 |#1|) (-1197) (-338)) (T -1183)) -((-1711 (*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-108)))) (-2400 (*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-108)))) (-2804 (*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-108)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-770 (-850))))) (-1713 (*1 *2) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-770 (-850))))) (-1593 (*1 *2) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-708)))) (-2938 (*1 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-338)) (-4 *2 (-343)))) (-2938 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-4 *3 (-343))))) -(-13 (-338) (-962 |t#1|) (-1173 |t#1|) (-10 -8 (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-377)) |%noBranch|) (-15 -1711 ((-108) $)) (-15 -2400 ((-108) $)) (-15 -2804 ((-108) $)) (-15 -2487 ((-770 (-850)) $)) (-15 -1713 ((-770 (-850)))) (-15 -1593 ((-708))) (IF (|has| |t#1| (-343)) (PROGN (-6 (-377)) (-15 -2938 ($ $)) (-15 -2938 ($ $ (-708)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3844 (|has| |#1| (-343)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) . T) ((-220) . T) ((-266) . T) ((-283) . T) ((-338) . T) ((-377) -3844 (|has| |#1| (-343)) (|has| |#1| (-133))) ((-426) . T) ((-514) . T) ((-590 #0#) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #0#) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-849) . T) ((-962 |#1|) . T) ((-977 #0#) . T) ((-977 |#1|) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) . T) ((-1173 |#1|) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-4127 (((-588 |#1|) $) 85)) (-3331 (($ $ (-708)) 88)) (-2265 (((-3 $ "failed") $ $) NIL)) (-1437 (($ $ $) NIL (|has| |#2| (-157))) (($ $ (-708)) NIL (|has| |#2| (-157)))) (-3367 (($) NIL T CONST)) (-1745 (($ $ |#1|) NIL) (($ $ (-756 |#1|)) NIL) (($ $ $) NIL)) (-3700 (((-3 (-756 |#1|) "failed") $) NIL) (((-3 (-822 |#1|) "failed") $) NIL)) (-1478 (((-756 |#1|) $) NIL) (((-822 |#1|) $) NIL)) (-3241 (($ $) 87)) (-3920 (((-3 $ "failed") $) NIL)) (-2664 (((-108) $) 76)) (-3208 (($ $) 80)) (-3589 (($ $ $ (-708)) 89)) (-2859 (((-108) $) NIL)) (-1391 (((-708) $) NIL)) (-3038 (((-588 $) $) NIL)) (-1374 (((-108) $) NIL)) (-2623 (($ (-756 |#1|) |#2|) NIL) (($ (-822 |#1|) |#2|) 26)) (-2182 (($ $) 102)) (-1500 (((-2 (|:| |k| (-756 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2565 (((-756 |#1|) $) NIL)) (-2114 (((-756 |#1|) $) NIL)) (-3810 (($ (-1 |#2| |#2|) $) NIL)) (-4038 (($ $ |#1|) NIL) (($ $ (-756 |#1|)) NIL) (($ $ $) NIL)) (-1238 (($ $ (-708)) 96 (|has| |#2| (-655 (-382 (-522)))))) (-2893 (((-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3216 (((-822 |#1|) $) 70)) (-3224 ((|#2| $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-3357 (($ $ (-708)) 93 (|has| |#2| (-655 (-382 (-522)))))) (-2487 (((-708) $) 86)) (-1967 (((-108) $) 71)) (-2855 ((|#2| $) 75)) (-2217 (((-792) $) 57) (($ (-522)) NIL) (($ |#2|) 51) (($ (-756 |#1|)) NIL) (($ |#1|) 59) (($ (-822 |#1|)) NIL) (($ (-606 |#1| |#2|)) 43) (((-1179 |#1| |#2|) $) 64) (((-1188 |#1| |#2|) $) 69)) (-2180 (((-588 |#2|) $) NIL)) (-1643 ((|#2| $ (-822 |#1|)) NIL)) (-3112 ((|#2| $ (-756 |#1|)) NIL) ((|#2| $ $) NIL)) (-2742 (((-708)) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 21 T CONST)) (-3709 (($) 25 T CONST)) (-1738 (((-588 (-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3600 (((-3 (-606 |#1| |#2|) "failed") $) 101)) (-1562 (((-108) $ $) 65)) (-1672 (($ $) 95) (($ $ $) 94)) (-1661 (($ $ $) 20)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-822 |#1|)) NIL))) -(((-1184 |#1| |#2|) (-13 (-1185 |#1| |#2|) (-357 |#2| (-822 |#1|)) (-10 -8 (-15 -2217 ($ (-606 |#1| |#2|))) (-15 -2217 ((-1179 |#1| |#2|) $)) (-15 -2217 ((-1188 |#1| |#2|) $)) (-15 -3600 ((-3 (-606 |#1| |#2|) "failed") $)) (-15 -3589 ($ $ $ (-708))) (IF (|has| |#2| (-655 (-382 (-522)))) (PROGN (-15 -3357 ($ $ (-708))) (-15 -1238 ($ $ (-708)))) |%noBranch|))) (-784) (-157)) (T -1184)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) (-5 *1 (-1184 *3 *4)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-1179 *3 *4)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-1188 *3 *4)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)))) (-3600 (*1 *2 *1) (|partial| -12 (-5 *2 (-606 *3 *4)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)))) (-3589 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)))) (-3357 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-1184 *3 *4)) (-4 *4 (-655 (-382 (-522)))) (-4 *3 (-784)) (-4 *4 (-157)))) (-1238 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-1184 *3 *4)) (-4 *4 (-655 (-382 (-522)))) (-4 *3 (-784)) (-4 *4 (-157))))) -(-13 (-1185 |#1| |#2|) (-357 |#2| (-822 |#1|)) (-10 -8 (-15 -2217 ($ (-606 |#1| |#2|))) (-15 -2217 ((-1179 |#1| |#2|) $)) (-15 -2217 ((-1188 |#1| |#2|) $)) (-15 -3600 ((-3 (-606 |#1| |#2|) "failed") $)) (-15 -3589 ($ $ $ (-708))) (IF (|has| |#2| (-655 (-382 (-522)))) (PROGN (-15 -3357 ($ $ (-708))) (-15 -1238 ($ $ (-708)))) |%noBranch|))) -((-1419 (((-108) $ $) 7)) (-2944 (((-108) $) 16)) (-4127 (((-588 |#1|) $) 40)) (-3331 (($ $ (-708)) 73)) (-2265 (((-3 $ "failed") $ $) 19)) (-1437 (($ $ $) 43 (|has| |#2| (-157))) (($ $ (-708)) 42 (|has| |#2| (-157)))) (-3367 (($) 17 T CONST)) (-1745 (($ $ |#1|) 54) (($ $ (-756 |#1|)) 53) (($ $ $) 52)) (-3700 (((-3 (-756 |#1|) "failed") $) 64)) (-1478 (((-756 |#1|) $) 63)) (-3920 (((-3 $ "failed") $) 34)) (-2664 (((-108) $) 45)) (-3208 (($ $) 44)) (-2859 (((-108) $) 31)) (-1374 (((-108) $) 50)) (-2623 (($ (-756 |#1|) |#2|) 51)) (-2182 (($ $) 49)) (-1500 (((-2 (|:| |k| (-756 |#1|)) (|:| |c| |#2|)) $) 60)) (-2565 (((-756 |#1|) $) 61)) (-2114 (((-756 |#1|) $) 75)) (-3810 (($ (-1 |#2| |#2|) $) 41)) (-4038 (($ $ |#1|) 57) (($ $ (-756 |#1|)) 56) (($ $ $) 55)) (-2311 (((-1068) $) 9)) (-4174 (((-1032) $) 10)) (-2487 (((-708) $) 74)) (-1967 (((-108) $) 47)) (-2855 ((|#2| $) 46)) (-2217 (((-792) $) 11) (($ (-522)) 28) (($ |#2|) 68) (($ (-756 |#1|)) 65) (($ |#1|) 48)) (-3112 ((|#2| $ (-756 |#1|)) 59) ((|#2| $ $) 58)) (-2742 (((-708)) 29)) (-3622 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3697 (($) 18 T CONST)) (-3709 (($) 30 T CONST)) (-1562 (((-108) $ $) 6)) (-1672 (($ $) 22) (($ $ $) 21)) (-1661 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62))) -(((-1185 |#1| |#2|) (-1197) (-784) (-971)) (T -1185)) -((-2114 (*1 *2 *1) (-12 (-4 *1 (-1185 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) (-5 *2 (-756 *3)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-1185 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) (-5 *2 (-708)))) (-3331 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1185 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971))))) -(-13 (-1181 |t#1| |t#2|) (-10 -8 (-15 -2114 ((-756 |t#1|) $)) (-15 -2487 ((-708) $)) (-15 -3331 ($ $ (-708))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-157)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-655 |#2|) |has| |#2| (-157)) ((-664) . T) ((-962 (-756 |#1|)) . T) ((-977 |#2|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1178 |#2|) . T) ((-1181 |#1| |#2|) . T)) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-4127 (((-588 (-1085)) $) NIL)) (-3772 (($ (-1179 (-1085) |#1|)) NIL)) (-3331 (($ $ (-708)) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-1437 (($ $ $) NIL (|has| |#1| (-157))) (($ $ (-708)) NIL (|has| |#1| (-157)))) (-3367 (($) NIL T CONST)) (-1745 (($ $ (-1085)) NIL) (($ $ (-756 (-1085))) NIL) (($ $ $) NIL)) (-3700 (((-3 (-756 (-1085)) "failed") $) NIL)) (-1478 (((-756 (-1085)) $) NIL)) (-3920 (((-3 $ "failed") $) NIL)) (-2664 (((-108) $) NIL)) (-3208 (($ $) NIL)) (-2859 (((-108) $) NIL)) (-1374 (((-108) $) NIL)) (-2623 (($ (-756 (-1085)) |#1|) NIL)) (-2182 (($ $) NIL)) (-1500 (((-2 (|:| |k| (-756 (-1085))) (|:| |c| |#1|)) $) NIL)) (-2565 (((-756 (-1085)) $) NIL)) (-2114 (((-756 (-1085)) $) NIL)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (($ $ (-1085)) NIL) (($ $ (-756 (-1085))) NIL) (($ $ $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-1663 (((-1179 (-1085) |#1|) $) NIL)) (-2487 (((-708) $) NIL)) (-1967 (((-108) $) NIL)) (-2855 ((|#1| $) NIL)) (-2217 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL) (($ (-756 (-1085))) NIL) (($ (-1085)) NIL)) (-3112 ((|#1| $ (-756 (-1085))) NIL) ((|#1| $ $) NIL)) (-2742 (((-708)) NIL)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) NIL T CONST)) (-3405 (((-588 (-2 (|:| |k| (-1085)) (|:| |c| $))) $) NIL)) (-3709 (($) NIL T CONST)) (-1562 (((-108) $ $) NIL)) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1085) $) NIL))) -(((-1186 |#1|) (-13 (-1185 (-1085) |#1|) (-10 -8 (-15 -1663 ((-1179 (-1085) |#1|) $)) (-15 -3772 ($ (-1179 (-1085) |#1|))) (-15 -3405 ((-588 (-2 (|:| |k| (-1085)) (|:| |c| $))) $)))) (-971)) (T -1186)) -((-1663 (*1 *2 *1) (-12 (-5 *2 (-1179 (-1085) *3)) (-5 *1 (-1186 *3)) (-4 *3 (-971)))) (-3772 (*1 *1 *2) (-12 (-5 *2 (-1179 (-1085) *3)) (-4 *3 (-971)) (-5 *1 (-1186 *3)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |k| (-1085)) (|:| |c| (-1186 *3))))) (-5 *1 (-1186 *3)) (-4 *3 (-971))))) -(-13 (-1185 (-1085) |#1|) (-10 -8 (-15 -1663 ((-1179 (-1085) |#1|) $)) (-15 -3772 ($ (-1179 (-1085) |#1|))) (-15 -3405 ((-588 (-2 (|:| |k| (-1085)) (|:| |c| $))) $)))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-2265 (((-3 $ "failed") $ $) NIL)) (-3367 (($) NIL T CONST)) (-3700 (((-3 |#2| "failed") $) NIL)) (-1478 ((|#2| $) NIL)) (-3241 (($ $) NIL)) (-3920 (((-3 $ "failed") $) 35)) (-2664 (((-108) $) 30)) (-3208 (($ $) 31)) (-2859 (((-108) $) NIL)) (-1391 (((-708) $) NIL)) (-3038 (((-588 $) $) NIL)) (-1374 (((-108) $) NIL)) (-2623 (($ |#2| |#1|) NIL)) (-2565 ((|#2| $) 19)) (-2114 ((|#2| $) 16)) (-3810 (($ (-1 |#1| |#1|) $) NIL)) (-2893 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3216 ((|#2| $) NIL)) (-3224 ((|#1| $) NIL)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-1967 (((-108) $) 27)) (-2855 ((|#1| $) 28)) (-2217 (((-792) $) 54) (($ (-522)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-2180 (((-588 |#1|) $) NIL)) (-1643 ((|#1| $ |#2|) NIL)) (-3112 ((|#1| $ |#2|) 24)) (-2742 (((-708)) 14)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 25 T CONST)) (-3709 (($) 11 T CONST)) (-1738 (((-588 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1562 (((-108) $ $) 26)) (-1682 (($ $ |#1|) 56 (|has| |#1| (-338)))) (-1672 (($ $) NIL) (($ $ $) NIL)) (-1661 (($ $ $) 43)) (** (($ $ (-850)) NIL) (($ $ (-708)) 45)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3591 (((-708) $) 15))) -(((-1187 |#1| |#2|) (-13 (-971) (-1178 |#1|) (-357 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3591 ((-708) $)) (-15 -2217 ($ |#2|)) (-15 -2114 (|#2| $)) (-15 -2565 (|#2| $)) (-15 -3241 ($ $)) (-15 -3112 (|#1| $ |#2|)) (-15 -1967 ((-108) $)) (-15 -2855 (|#1| $)) (-15 -2664 ((-108) $)) (-15 -3208 ($ $)) (-15 -3810 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-338)) (-15 -1682 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4231)) (-6 -4231) |%noBranch|) (IF (|has| |#1| (-6 -4235)) (-6 -4235) |%noBranch|) (IF (|has| |#1| (-6 -4236)) (-6 -4236) |%noBranch|))) (-971) (-780)) (T -1187)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-971)) (-4 *3 (-780)))) (-3241 (*1 *1 *1) (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-971)) (-4 *3 (-780)))) (-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-1187 *3 *4)) (-4 *4 (-780)))) (-2217 (*1 *1 *2) (-12 (-5 *1 (-1187 *3 *2)) (-4 *3 (-971)) (-4 *2 (-780)))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-971)) (-4 *4 (-780)))) (-2114 (*1 *2 *1) (-12 (-4 *2 (-780)) (-5 *1 (-1187 *3 *2)) (-4 *3 (-971)))) (-2565 (*1 *2 *1) (-12 (-4 *2 (-780)) (-5 *1 (-1187 *3 *2)) (-4 *3 (-971)))) (-3112 (*1 *2 *1 *3) (-12 (-4 *2 (-971)) (-5 *1 (-1187 *2 *3)) (-4 *3 (-780)))) (-1967 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-971)) (-4 *4 (-780)))) (-2855 (*1 *2 *1) (-12 (-4 *2 (-971)) (-5 *1 (-1187 *2 *3)) (-4 *3 (-780)))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-971)) (-4 *4 (-780)))) (-3208 (*1 *1 *1) (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-971)) (-4 *3 (-780)))) (-1682 (*1 *1 *1 *2) (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-338)) (-4 *2 (-971)) (-4 *3 (-780))))) -(-13 (-971) (-1178 |#1|) (-357 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3591 ((-708) $)) (-15 -2217 ($ |#2|)) (-15 -2114 (|#2| $)) (-15 -2565 (|#2| $)) (-15 -3241 ($ $)) (-15 -3112 (|#1| $ |#2|)) (-15 -1967 ((-108) $)) (-15 -2855 (|#1| $)) (-15 -2664 ((-108) $)) (-15 -3208 ($ $)) (-15 -3810 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-338)) (-15 -1682 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4231)) (-6 -4231) |%noBranch|) (IF (|has| |#1| (-6 -4235)) (-6 -4235) |%noBranch|) (IF (|has| |#1| (-6 -4236)) (-6 -4236) |%noBranch|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) NIL)) (-4127 (((-588 |#1|) $) 120)) (-3772 (($ (-1179 |#1| |#2|)) 44)) (-3331 (($ $ (-708)) 32)) (-2265 (((-3 $ "failed") $ $) NIL)) (-1437 (($ $ $) 48 (|has| |#2| (-157))) (($ $ (-708)) 46 (|has| |#2| (-157)))) (-3367 (($) NIL T CONST)) (-1745 (($ $ |#1|) 102) (($ $ (-756 |#1|)) 103) (($ $ $) 25)) (-3700 (((-3 (-756 |#1|) "failed") $) NIL)) (-1478 (((-756 |#1|) $) NIL)) (-3920 (((-3 $ "failed") $) 110)) (-2664 (((-108) $) 105)) (-3208 (($ $) 106)) (-2859 (((-108) $) NIL)) (-1374 (((-108) $) NIL)) (-2623 (($ (-756 |#1|) |#2|) 19)) (-2182 (($ $) NIL)) (-1500 (((-2 (|:| |k| (-756 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2565 (((-756 |#1|) $) 111)) (-2114 (((-756 |#1|) $) 114)) (-3810 (($ (-1 |#2| |#2|) $) 119)) (-4038 (($ $ |#1|) 100) (($ $ (-756 |#1|)) 101) (($ $ $) 56)) (-2311 (((-1068) $) NIL)) (-4174 (((-1032) $) NIL)) (-1663 (((-1179 |#1| |#2|) $) 84)) (-2487 (((-708) $) 117)) (-1967 (((-108) $) 70)) (-2855 ((|#2| $) 28)) (-2217 (((-792) $) 63) (($ (-522)) 77) (($ |#2|) 74) (($ (-756 |#1|)) 17) (($ |#1|) 73)) (-3112 ((|#2| $ (-756 |#1|)) 104) ((|#2| $ $) 27)) (-2742 (((-708)) 108)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 14 T CONST)) (-3405 (((-588 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3709 (($) 29 T CONST)) (-1562 (((-108) $ $) 13)) (-1672 (($ $) 88) (($ $ $) 91)) (-1661 (($ $ $) 55)) (** (($ $ (-850)) NIL) (($ $ (-708)) 49)) (* (($ (-850) $) NIL) (($ (-708) $) 47) (($ (-522) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) -(((-1188 |#1| |#2|) (-13 (-1185 |#1| |#2|) (-10 -8 (-15 -1663 ((-1179 |#1| |#2|) $)) (-15 -3772 ($ (-1179 |#1| |#2|))) (-15 -3405 ((-588 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-784) (-971)) (T -1188)) -((-1663 (*1 *2 *1) (-12 (-5 *2 (-1179 *3 *4)) (-5 *1 (-1188 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)))) (-3772 (*1 *1 *2) (-12 (-5 *2 (-1179 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) (-5 *1 (-1188 *3 *4)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |k| *3) (|:| |c| (-1188 *3 *4))))) (-5 *1 (-1188 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971))))) -(-13 (-1185 |#1| |#2|) (-10 -8 (-15 -1663 ((-1179 |#1| |#2|) $)) (-15 -3772 ($ (-1179 |#1| |#2|))) (-15 -3405 ((-588 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-1330 (((-588 (-1066 |#1|)) (-1 (-588 (-1066 |#1|)) (-588 (-1066 |#1|))) (-522)) 15) (((-1066 |#1|) (-1 (-1066 |#1|) (-1066 |#1|))) 11))) -(((-1189 |#1|) (-10 -7 (-15 -1330 ((-1066 |#1|) (-1 (-1066 |#1|) (-1066 |#1|)))) (-15 -1330 ((-588 (-1066 |#1|)) (-1 (-588 (-1066 |#1|)) (-588 (-1066 |#1|))) (-522)))) (-1120)) (T -1189)) -((-1330 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-588 (-1066 *5)) (-588 (-1066 *5)))) (-5 *4 (-522)) (-5 *2 (-588 (-1066 *5))) (-5 *1 (-1189 *5)) (-4 *5 (-1120)))) (-1330 (*1 *2 *3) (-12 (-5 *3 (-1 (-1066 *4) (-1066 *4))) (-5 *2 (-1066 *4)) (-5 *1 (-1189 *4)) (-4 *4 (-1120))))) -(-10 -7 (-15 -1330 ((-1066 |#1|) (-1 (-1066 |#1|) (-1066 |#1|)))) (-15 -1330 ((-588 (-1066 |#1|)) (-1 (-588 (-1066 |#1|)) (-588 (-1066 |#1|))) (-522)))) -((-3881 (((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-588 (-881 |#1|))) 146) (((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108)) 145) (((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108) (-108)) 144) (((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108) (-108) (-108)) 143) (((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-968 |#1| |#2|)) 128)) (-1860 (((-588 (-968 |#1| |#2|)) (-588 (-881 |#1|))) 71) (((-588 (-968 |#1| |#2|)) (-588 (-881 |#1|)) (-108)) 70) (((-588 (-968 |#1| |#2|)) (-588 (-881 |#1|)) (-108) (-108)) 69)) (-3133 (((-588 (-1056 |#1| (-494 (-794 |#3|)) (-794 |#3|) (-717 |#1| (-794 |#3|)))) (-968 |#1| |#2|)) 60)) (-1760 (((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|))) 113) (((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108)) 112) (((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108) (-108)) 111) (((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108) (-108) (-108)) 110) (((-588 (-588 (-949 (-382 |#1|)))) (-968 |#1| |#2|)) 105)) (-1248 (((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|))) 118) (((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108)) 117) (((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108) (-108)) 116) (((-588 (-588 (-949 (-382 |#1|)))) (-968 |#1| |#2|)) 115)) (-3873 (((-588 (-717 |#1| (-794 |#3|))) (-1056 |#1| (-494 (-794 |#3|)) (-794 |#3|) (-717 |#1| (-794 |#3|)))) 97) (((-1081 (-949 (-382 |#1|))) (-1081 |#1|)) 88) (((-881 (-949 (-382 |#1|))) (-717 |#1| (-794 |#3|))) 95) (((-881 (-949 (-382 |#1|))) (-881 |#1|)) 93) (((-717 |#1| (-794 |#3|)) (-717 |#1| (-794 |#2|))) 33))) -(((-1190 |#1| |#2| |#3|) (-10 -7 (-15 -1860 ((-588 (-968 |#1| |#2|)) (-588 (-881 |#1|)) (-108) (-108))) (-15 -1860 ((-588 (-968 |#1| |#2|)) (-588 (-881 |#1|)) (-108))) (-15 -1860 ((-588 (-968 |#1| |#2|)) (-588 (-881 |#1|)))) (-15 -3881 ((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-968 |#1| |#2|))) (-15 -3881 ((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108) (-108) (-108))) (-15 -3881 ((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108) (-108))) (-15 -3881 ((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108))) (-15 -3881 ((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-588 (-881 |#1|)))) (-15 -1760 ((-588 (-588 (-949 (-382 |#1|)))) (-968 |#1| |#2|))) (-15 -1760 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108) (-108) (-108))) (-15 -1760 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108) (-108))) (-15 -1760 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108))) (-15 -1760 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)))) (-15 -1248 ((-588 (-588 (-949 (-382 |#1|)))) (-968 |#1| |#2|))) (-15 -1248 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108) (-108))) (-15 -1248 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108))) (-15 -1248 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)))) (-15 -3133 ((-588 (-1056 |#1| (-494 (-794 |#3|)) (-794 |#3|) (-717 |#1| (-794 |#3|)))) (-968 |#1| |#2|))) (-15 -3873 ((-717 |#1| (-794 |#3|)) (-717 |#1| (-794 |#2|)))) (-15 -3873 ((-881 (-949 (-382 |#1|))) (-881 |#1|))) (-15 -3873 ((-881 (-949 (-382 |#1|))) (-717 |#1| (-794 |#3|)))) (-15 -3873 ((-1081 (-949 (-382 |#1|))) (-1081 |#1|))) (-15 -3873 ((-588 (-717 |#1| (-794 |#3|))) (-1056 |#1| (-494 (-794 |#3|)) (-794 |#3|) (-717 |#1| (-794 |#3|)))))) (-13 (-782) (-283) (-135) (-947)) (-588 (-1085)) (-588 (-1085))) (T -1190)) -((-3873 (*1 *2 *3) (-12 (-5 *3 (-1056 *4 (-494 (-794 *6)) (-794 *6) (-717 *4 (-794 *6)))) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-14 *6 (-588 (-1085))) (-5 *2 (-588 (-717 *4 (-794 *6)))) (-5 *1 (-1190 *4 *5 *6)) (-14 *5 (-588 (-1085))))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-1081 *4)) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-1081 (-949 (-382 *4)))) (-5 *1 (-1190 *4 *5 *6)) (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085))))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-717 *4 (-794 *6))) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-14 *6 (-588 (-1085))) (-5 *2 (-881 (-949 (-382 *4)))) (-5 *1 (-1190 *4 *5 *6)) (-14 *5 (-588 (-1085))))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-881 *4)) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-881 (-949 (-382 *4)))) (-5 *1 (-1190 *4 *5 *6)) (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085))))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-717 *4 (-794 *5))) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-14 *5 (-588 (-1085))) (-5 *2 (-717 *4 (-794 *6))) (-5 *1 (-1190 *4 *5 *6)) (-14 *6 (-588 (-1085))))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-968 *4 *5)) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-14 *5 (-588 (-1085))) (-5 *2 (-588 (-1056 *4 (-494 (-794 *6)) (-794 *6) (-717 *4 (-794 *6))))) (-5 *1 (-1190 *4 *5 *6)) (-14 *6 (-588 (-1085))))) (-1248 (*1 *2 *3) (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-588 (-949 (-382 *4))))) (-5 *1 (-1190 *4 *5 *6)) (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085))))) (-1248 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-588 (-949 (-382 *5))))) (-5 *1 (-1190 *5 *6 *7)) (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) (-1248 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-588 (-949 (-382 *5))))) (-5 *1 (-1190 *5 *6 *7)) (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) (-1248 (*1 *2 *3) (-12 (-5 *3 (-968 *4 *5)) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-14 *5 (-588 (-1085))) (-5 *2 (-588 (-588 (-949 (-382 *4))))) (-5 *1 (-1190 *4 *5 *6)) (-14 *6 (-588 (-1085))))) (-1760 (*1 *2 *3) (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-588 (-949 (-382 *4))))) (-5 *1 (-1190 *4 *5 *6)) (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085))))) (-1760 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-588 (-949 (-382 *5))))) (-5 *1 (-1190 *5 *6 *7)) (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) (-1760 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-588 (-949 (-382 *5))))) (-5 *1 (-1190 *5 *6 *7)) (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) (-1760 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-588 (-949 (-382 *5))))) (-5 *1 (-1190 *5 *6 *7)) (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) (-1760 (*1 *2 *3) (-12 (-5 *3 (-968 *4 *5)) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-14 *5 (-588 (-1085))) (-5 *2 (-588 (-588 (-949 (-382 *4))))) (-5 *1 (-1190 *4 *5 *6)) (-14 *6 (-588 (-1085))))) (-3881 (*1 *2 *3) (-12 (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-2 (|:| -3769 (-1081 *4)) (|:| -3510 (-588 (-881 *4)))))) (-5 *1 (-1190 *4 *5 *6)) (-5 *3 (-588 (-881 *4))) (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085))))) (-3881 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-2 (|:| -3769 (-1081 *5)) (|:| -3510 (-588 (-881 *5)))))) (-5 *1 (-1190 *5 *6 *7)) (-5 *3 (-588 (-881 *5))) (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) (-3881 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-2 (|:| -3769 (-1081 *5)) (|:| -3510 (-588 (-881 *5)))))) (-5 *1 (-1190 *5 *6 *7)) (-5 *3 (-588 (-881 *5))) (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) (-3881 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-2 (|:| -3769 (-1081 *5)) (|:| -3510 (-588 (-881 *5)))))) (-5 *1 (-1190 *5 *6 *7)) (-5 *3 (-588 (-881 *5))) (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) (-3881 (*1 *2 *3) (-12 (-5 *3 (-968 *4 *5)) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-14 *5 (-588 (-1085))) (-5 *2 (-588 (-2 (|:| -3769 (-1081 *4)) (|:| -3510 (-588 (-881 *4)))))) (-5 *1 (-1190 *4 *5 *6)) (-14 *6 (-588 (-1085))))) (-1860 (*1 *2 *3) (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-968 *4 *5))) (-5 *1 (-1190 *4 *5 *6)) (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085))))) (-1860 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-968 *5 *6))) (-5 *1 (-1190 *5 *6 *7)) (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) (-1860 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-968 *5 *6))) (-5 *1 (-1190 *5 *6 *7)) (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085)))))) -(-10 -7 (-15 -1860 ((-588 (-968 |#1| |#2|)) (-588 (-881 |#1|)) (-108) (-108))) (-15 -1860 ((-588 (-968 |#1| |#2|)) (-588 (-881 |#1|)) (-108))) (-15 -1860 ((-588 (-968 |#1| |#2|)) (-588 (-881 |#1|)))) (-15 -3881 ((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-968 |#1| |#2|))) (-15 -3881 ((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108) (-108) (-108))) (-15 -3881 ((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108) (-108))) (-15 -3881 ((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108))) (-15 -3881 ((-588 (-2 (|:| -3769 (-1081 |#1|)) (|:| -3510 (-588 (-881 |#1|))))) (-588 (-881 |#1|)))) (-15 -1760 ((-588 (-588 (-949 (-382 |#1|)))) (-968 |#1| |#2|))) (-15 -1760 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108) (-108) (-108))) (-15 -1760 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108) (-108))) (-15 -1760 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108))) (-15 -1760 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)))) (-15 -1248 ((-588 (-588 (-949 (-382 |#1|)))) (-968 |#1| |#2|))) (-15 -1248 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108) (-108))) (-15 -1248 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108))) (-15 -1248 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)))) (-15 -3133 ((-588 (-1056 |#1| (-494 (-794 |#3|)) (-794 |#3|) (-717 |#1| (-794 |#3|)))) (-968 |#1| |#2|))) (-15 -3873 ((-717 |#1| (-794 |#3|)) (-717 |#1| (-794 |#2|)))) (-15 -3873 ((-881 (-949 (-382 |#1|))) (-881 |#1|))) (-15 -3873 ((-881 (-949 (-382 |#1|))) (-717 |#1| (-794 |#3|)))) (-15 -3873 ((-1081 (-949 (-382 |#1|))) (-1081 |#1|))) (-15 -3873 ((-588 (-717 |#1| (-794 |#3|))) (-1056 |#1| (-494 (-794 |#3|)) (-794 |#3|) (-717 |#1| (-794 |#3|)))))) -((-3438 (((-3 (-1166 (-382 (-522))) "failed") (-1166 |#1|) |#1|) 17)) (-2306 (((-108) (-1166 |#1|)) 11)) (-3137 (((-3 (-1166 (-522)) "failed") (-1166 |#1|)) 14))) -(((-1191 |#1|) (-10 -7 (-15 -2306 ((-108) (-1166 |#1|))) (-15 -3137 ((-3 (-1166 (-522)) "failed") (-1166 |#1|))) (-15 -3438 ((-3 (-1166 (-382 (-522))) "failed") (-1166 |#1|) |#1|))) (-584 (-522))) (T -1191)) -((-3438 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1166 *4)) (-4 *4 (-584 (-522))) (-5 *2 (-1166 (-382 (-522)))) (-5 *1 (-1191 *4)))) (-3137 (*1 *2 *3) (|partial| -12 (-5 *3 (-1166 *4)) (-4 *4 (-584 (-522))) (-5 *2 (-1166 (-522))) (-5 *1 (-1191 *4)))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-584 (-522))) (-5 *2 (-108)) (-5 *1 (-1191 *4))))) -(-10 -7 (-15 -2306 ((-108) (-1166 |#1|))) (-15 -3137 ((-3 (-1166 (-522)) "failed") (-1166 |#1|))) (-15 -3438 ((-3 (-1166 (-382 (-522))) "failed") (-1166 |#1|) |#1|))) -((-1419 (((-108) $ $) NIL)) (-2944 (((-108) $) 11)) (-2265 (((-3 $ "failed") $ $) NIL)) (-1685 (((-708)) 8)) (-3367 (($) NIL T CONST)) (-3920 (((-3 $ "failed") $) 43)) (-3344 (($) 36)) (-2859 (((-108) $) NIL)) (-4208 (((-3 $ "failed") $) 29)) (-1475 (((-850) $) 15)) (-2311 (((-1068) $) NIL)) (-3937 (($) 25 T CONST)) (-2882 (($ (-850)) 37)) (-4174 (((-1032) $) NIL)) (-3873 (((-522) $) 13)) (-2217 (((-792) $) 22) (($ (-522)) 19)) (-2742 (((-708)) 9)) (-3622 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3697 (($) 23 T CONST)) (-3709 (($) 24 T CONST)) (-1562 (((-108) $ $) 27)) (-1672 (($ $) 38) (($ $ $) 35)) (-1661 (($ $ $) 26)) (** (($ $ (-850)) NIL) (($ $ (-708)) 40)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 32) (($ $ $) 31))) -(((-1192 |#1|) (-13 (-157) (-343) (-563 (-522)) (-1061)) (-850)) (T -1192)) -NIL -(-13 (-157) (-343) (-563 (-522)) (-1061)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-1197 3137810 3137815 3137820 "NIL" NIL T NIL (NIL) NIL NIL NIL) (-3 3137795 3137800 3137805 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-2 3137780 3137785 3137790 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1 3137765 3137770 3137775 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (0 3137750 3137755 3137760 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1192 3136880 3137625 3137702 "ZMOD" 3137707 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1191 3135990 3136154 3136363 "ZLINDEP" 3136712 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1190 3125394 3127139 3129091 "ZDSOLVE" 3134139 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1189 3124640 3124781 3124970 "YSTREAM" 3125240 NIL YSTREAM (NIL T) -7 NIL NIL) (-1188 3122408 3123945 3124148 "XRPOLY" 3124483 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1187 3118870 3120199 3120781 "XPR" 3121872 NIL XPR (NIL T T) -8 NIL NIL) (-1186 3116584 3118205 3118408 "XPOLY" 3118701 NIL XPOLY (NIL T) -8 NIL NIL) (-1185 3114397 3115775 3115830 "XPOLYC" 3116115 NIL XPOLYC (NIL T T) -9 NIL 3116228) (-1184 3110769 3112914 3113302 "XPBWPOLY" 3114055 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1183 3106696 3109009 3109052 "XF" 3109673 NIL XF (NIL T) -9 NIL 3110072) (-1182 3106317 3106405 3106574 "XF-" 3106579 NIL XF- (NIL T T) -8 NIL NIL) (-1181 3101696 3102995 3103050 "XFALG" 3105198 NIL XFALG (NIL T T) -9 NIL 3105985) (-1180 3100833 3100937 3101141 "XEXPPKG" 3101588 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1179 3098931 3100684 3100779 "XDPOLY" 3100784 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1178 3097809 3098419 3098462 "XALG" 3098524 NIL XALG (NIL T) -9 NIL 3098643) (-1177 3091285 3095793 3096286 "WUTSET" 3097401 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1176 3089097 3089904 3090255 "WP" 3091067 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1175 3087983 3088181 3088476 "WFFINTBS" 3088894 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1174 3085887 3086314 3086776 "WEIER" 3087555 NIL WEIER (NIL T) -7 NIL NIL) (-1173 3085035 3085459 3085502 "VSPACE" 3085638 NIL VSPACE (NIL T) -9 NIL 3085712) (-1172 3084873 3084900 3084991 "VSPACE-" 3084996 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1171 3084619 3084662 3084733 "VOID" 3084824 T VOID (NIL) -8 NIL NIL) (-1170 3082755 3083114 3083520 "VIEW" 3084235 T VIEW (NIL) -7 NIL NIL) (-1169 3079180 3079818 3080555 "VIEWDEF" 3082040 T VIEWDEF (NIL) -7 NIL NIL) (-1168 3068519 3070728 3072901 "VIEW3D" 3077029 T VIEW3D (NIL) -8 NIL NIL) (-1167 3060801 3062430 3064009 "VIEW2D" 3066962 T VIEW2D (NIL) -8 NIL NIL) (-1166 3056210 3060571 3060663 "VECTOR" 3060744 NIL VECTOR (NIL T) -8 NIL NIL) (-1165 3054787 3055046 3055364 "VECTOR2" 3055940 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1164 3048326 3052578 3052622 "VECTCAT" 3053610 NIL VECTCAT (NIL T) -9 NIL 3054194) (-1163 3047340 3047594 3047984 "VECTCAT-" 3047989 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1162 3046821 3046991 3047111 "VARIABLE" 3047255 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1161 3046753 3046758 3046789 "UTYPE" 3046794 T UTYPE (NIL) -9 NIL NIL) (-1160 3045588 3045742 3046003 "UTSODETL" 3046579 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1159 3043028 3043488 3044012 "UTSODE" 3045129 NIL UTSODE (NIL T T) -7 NIL NIL) (-1158 3034875 3040668 3041156 "UTS" 3042597 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1157 3026223 3031585 3031628 "UTSCAT" 3032729 NIL UTSCAT (NIL T) -9 NIL 3033486) (-1156 3023579 3024294 3025282 "UTSCAT-" 3025287 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1155 3023210 3023253 3023384 "UTS2" 3023530 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1154 3017485 3020050 3020094 "URAGG" 3022164 NIL URAGG (NIL T) -9 NIL 3022886) (-1153 3014424 3015287 3016410 "URAGG-" 3016415 NIL URAGG- (NIL T T) -8 NIL NIL) (-1152 3010110 3013041 3013512 "UPXSSING" 3014088 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1151 3002004 3009231 3009511 "UPXS" 3009887 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1150 2995036 3001909 3001980 "UPXSCONS" 3001985 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1149 2985328 2992155 2992217 "UPXSCCA" 2992866 NIL UPXSCCA (NIL T T) -9 NIL 2993107) (-1148 2984967 2985052 2985225 "UPXSCCA-" 2985230 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1147 2975181 2981781 2981824 "UPXSCAT" 2982467 NIL UPXSCAT (NIL T) -9 NIL 2983075) (-1146 2974615 2974694 2974871 "UPXS2" 2975096 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1145 2973269 2973522 2973873 "UPSQFREE" 2974358 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1144 2967164 2970216 2970271 "UPSCAT" 2971420 NIL UPSCAT (NIL T T) -9 NIL 2972193) (-1143 2966378 2966582 2966905 "UPSCAT-" 2966910 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1142 2952510 2960507 2960550 "UPOLYC" 2962628 NIL UPOLYC (NIL T) -9 NIL 2963848) (-1141 2943903 2946307 2949432 "UPOLYC-" 2949437 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1140 2943534 2943577 2943708 "UPOLYC2" 2943854 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1139 2934993 2943103 2943240 "UP" 2943444 NIL UP (NIL NIL T) -8 NIL NIL) (-1138 2934336 2934443 2934606 "UPMP" 2934882 NIL UPMP (NIL T T) -7 NIL NIL) (-1137 2933889 2933970 2934109 "UPDIVP" 2934249 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1136 2932457 2932706 2933022 "UPDECOMP" 2933638 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1135 2931692 2931804 2931989 "UPCDEN" 2932341 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1134 2931215 2931284 2931431 "UP2" 2931617 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1133 2929732 2930419 2930696 "UNISEG" 2930973 NIL UNISEG (NIL T) -8 NIL NIL) (-1132 2928947 2929074 2929279 "UNISEG2" 2929575 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1131 2928007 2928187 2928413 "UNIFACT" 2928763 NIL UNIFACT (NIL T) -7 NIL NIL) (-1130 2911906 2927188 2927438 "ULS" 2927814 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1129 2899874 2911811 2911882 "ULSCONS" 2911887 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1128 2882627 2894637 2894699 "ULSCCAT" 2895411 NIL ULSCCAT (NIL T T) -9 NIL 2895707) (-1127 2881678 2881923 2882310 "ULSCCAT-" 2882315 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1126 2871671 2878185 2878228 "ULSCAT" 2879084 NIL ULSCAT (NIL T) -9 NIL 2879814) (-1125 2871105 2871184 2871361 "ULS2" 2871586 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1124 2869502 2870469 2870500 "UFD" 2870712 T UFD (NIL) -9 NIL 2870826) (-1123 2869296 2869342 2869437 "UFD-" 2869442 NIL UFD- (NIL T) -8 NIL NIL) (-1122 2868378 2868561 2868777 "UDVO" 2869102 T UDVO (NIL) -7 NIL NIL) (-1121 2866194 2866603 2867074 "UDPO" 2867942 NIL UDPO (NIL T) -7 NIL NIL) (-1120 2866126 2866131 2866162 "TYPE" 2866167 T TYPE (NIL) -9 NIL NIL) (-1119 2865097 2865299 2865539 "TWOFACT" 2865920 NIL TWOFACT (NIL T) -7 NIL NIL) (-1118 2864035 2864372 2864635 "TUPLE" 2864869 NIL TUPLE (NIL T) -8 NIL NIL) (-1117 2861726 2862245 2862784 "TUBETOOL" 2863518 T TUBETOOL (NIL) -7 NIL NIL) (-1116 2860575 2860780 2861021 "TUBE" 2861519 NIL TUBE (NIL T) -8 NIL NIL) (-1115 2855299 2859553 2859835 "TS" 2860327 NIL TS (NIL T) -8 NIL NIL) (-1114 2844002 2848094 2848191 "TSETCAT" 2853425 NIL TSETCAT (NIL T T T T) -9 NIL 2854956) (-1113 2838737 2840335 2842225 "TSETCAT-" 2842230 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1112 2833000 2833846 2834788 "TRMANIP" 2837873 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1111 2832441 2832504 2832667 "TRIMAT" 2832932 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1110 2830247 2830484 2830847 "TRIGMNIP" 2832190 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1109 2829766 2829879 2829910 "TRIGCAT" 2830123 T TRIGCAT (NIL) -9 NIL NIL) (-1108 2829435 2829514 2829655 "TRIGCAT-" 2829660 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1107 2826334 2828295 2828575 "TREE" 2829190 NIL TREE (NIL T) -8 NIL NIL) (-1106 2825607 2826135 2826166 "TRANFUN" 2826201 T TRANFUN (NIL) -9 NIL 2826267) (-1105 2824886 2825077 2825357 "TRANFUN-" 2825362 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1104 2824690 2824722 2824783 "TOPSP" 2824847 T TOPSP (NIL) -7 NIL NIL) (-1103 2824042 2824157 2824310 "TOOLSIGN" 2824571 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1102 2822703 2823219 2823458 "TEXTFILE" 2823825 T TEXTFILE (NIL) -8 NIL NIL) (-1101 2820568 2821082 2821520 "TEX" 2822287 T TEX (NIL) -8 NIL NIL) (-1100 2820349 2820380 2820452 "TEX1" 2820531 NIL TEX1 (NIL T) -7 NIL NIL) (-1099 2819997 2820060 2820150 "TEMUTL" 2820281 T TEMUTL (NIL) -7 NIL NIL) (-1098 2818151 2818431 2818756 "TBCMPPK" 2819720 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1097 2810039 2816311 2816368 "TBAGG" 2816768 NIL TBAGG (NIL T T) -9 NIL 2816979) (-1096 2805109 2806597 2808351 "TBAGG-" 2808356 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1095 2804493 2804600 2804745 "TANEXP" 2804998 NIL TANEXP (NIL T) -7 NIL NIL) (-1094 2797994 2804350 2804443 "TABLE" 2804448 NIL TABLE (NIL T T) -8 NIL NIL) (-1093 2797407 2797505 2797643 "TABLEAU" 2797891 NIL TABLEAU (NIL T) -8 NIL NIL) (-1092 2792015 2793235 2794483 "TABLBUMP" 2796193 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1091 2788478 2789173 2789956 "SYSSOLP" 2791266 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1090 2784769 2785477 2786211 "SYNTAX" 2787766 T SYNTAX (NIL) -8 NIL NIL) (-1089 2781903 2782511 2783149 "SYMTAB" 2784153 T SYMTAB (NIL) -8 NIL NIL) (-1088 2777152 2778054 2779037 "SYMS" 2780942 T SYMS (NIL) -8 NIL NIL) (-1087 2774385 2776612 2776841 "SYMPOLY" 2776957 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1086 2773905 2773980 2774102 "SYMFUNC" 2774297 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1085 2769883 2771142 2771964 "SYMBOL" 2773105 T SYMBOL (NIL) -8 NIL NIL) (-1084 2763422 2765111 2766831 "SWITCH" 2768185 T SWITCH (NIL) -8 NIL NIL) (-1083 2756655 2762249 2762551 "SUTS" 2763177 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1082 2748548 2755776 2756056 "SUPXS" 2756432 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1081 2740080 2748169 2748294 "SUP" 2748457 NIL SUP (NIL T) -8 NIL NIL) (-1080 2739239 2739366 2739583 "SUPFRACF" 2739948 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1079 2738864 2738923 2739034 "SUP2" 2739174 NIL SUP2 (NIL T T) -7 NIL NIL) (-1078 2737282 2737556 2737918 "SUMRF" 2738563 NIL SUMRF (NIL T) -7 NIL NIL) (-1077 2736599 2736665 2736863 "SUMFS" 2737203 NIL SUMFS (NIL T T) -7 NIL NIL) (-1076 2720538 2735780 2736030 "SULS" 2736406 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1075 2719860 2720063 2720203 "SUCH" 2720446 NIL SUCH (NIL T T) -8 NIL NIL) (-1074 2713787 2714799 2715757 "SUBSPACE" 2718948 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1073 2713217 2713307 2713471 "SUBRESP" 2713675 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1072 2706586 2707882 2709193 "STTF" 2711953 NIL STTF (NIL T) -7 NIL NIL) (-1071 2700759 2701879 2703026 "STTFNC" 2705486 NIL STTFNC (NIL T) -7 NIL NIL) (-1070 2692110 2693977 2695770 "STTAYLOR" 2699000 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1069 2685354 2691974 2692057 "STRTBL" 2692062 NIL STRTBL (NIL T) -8 NIL NIL) (-1068 2680745 2685309 2685340 "STRING" 2685345 T STRING (NIL) -8 NIL NIL) (-1067 2675633 2680118 2680149 "STRICAT" 2680208 T STRICAT (NIL) -9 NIL 2680270) (-1066 2668349 2673156 2673776 "STREAM" 2675048 NIL STREAM (NIL T) -8 NIL NIL) (-1065 2667859 2667936 2668080 "STREAM3" 2668266 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1064 2666841 2667024 2667259 "STREAM2" 2667672 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1063 2666529 2666581 2666674 "STREAM1" 2666783 NIL STREAM1 (NIL T) -7 NIL NIL) (-1062 2665545 2665726 2665957 "STINPROD" 2666345 NIL STINPROD (NIL T) -7 NIL NIL) (-1061 2665123 2665307 2665338 "STEP" 2665418 T STEP (NIL) -9 NIL 2665496) (-1060 2658666 2665022 2665099 "STBL" 2665104 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1059 2653841 2657888 2657932 "STAGG" 2658085 NIL STAGG (NIL T) -9 NIL 2658174) (-1058 2651543 2652145 2653017 "STAGG-" 2653022 NIL STAGG- (NIL T T) -8 NIL NIL) (-1057 2649738 2651313 2651405 "STACK" 2651486 NIL STACK (NIL T) -8 NIL NIL) (-1056 2642469 2647885 2648340 "SREGSET" 2649368 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1055 2634909 2636277 2637789 "SRDCMPK" 2641075 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1054 2627876 2632349 2632380 "SRAGG" 2633683 T SRAGG (NIL) -9 NIL 2634291) (-1053 2626893 2627148 2627527 "SRAGG-" 2627532 NIL SRAGG- (NIL T) -8 NIL NIL) (-1052 2621342 2625812 2626239 "SQMATRIX" 2626512 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1051 2615094 2618062 2618788 "SPLTREE" 2620688 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1050 2611084 2611750 2612396 "SPLNODE" 2614520 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1049 2610130 2610363 2610394 "SPFCAT" 2610838 T SPFCAT (NIL) -9 NIL NIL) (-1048 2608867 2609077 2609341 "SPECOUT" 2609888 T SPECOUT (NIL) -7 NIL NIL) (-1047 2608628 2608668 2608737 "SPADPRSR" 2608820 T SPADPRSR (NIL) -7 NIL NIL) (-1046 2600650 2602397 2602440 "SPACEC" 2606763 NIL SPACEC (NIL T) -9 NIL 2608579) (-1045 2598822 2600583 2600631 "SPACE3" 2600636 NIL SPACE3 (NIL T) -8 NIL NIL) (-1044 2597574 2597745 2598036 "SORTPAK" 2598627 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1043 2595630 2595933 2596351 "SOLVETRA" 2597238 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1042 2594641 2594863 2595137 "SOLVESER" 2595403 NIL SOLVESER (NIL T) -7 NIL NIL) (-1041 2589861 2590742 2591744 "SOLVERAD" 2593693 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1040 2585676 2586285 2587014 "SOLVEFOR" 2589228 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1039 2579975 2585027 2585124 "SNTSCAT" 2585129 NIL SNTSCAT (NIL T T T T) -9 NIL 2585199) (-1038 2574080 2578306 2578696 "SMTS" 2579665 NIL SMTS (NIL T T T) -8 NIL NIL) (-1037 2568491 2573969 2574045 "SMP" 2574050 NIL SMP (NIL T T) -8 NIL NIL) (-1036 2566650 2566951 2567349 "SMITH" 2568188 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1035 2559614 2563810 2563913 "SMATCAT" 2565253 NIL SMATCAT (NIL NIL T T T) -9 NIL 2565802) (-1034 2556555 2557378 2558555 "SMATCAT-" 2558560 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1033 2554268 2555791 2555835 "SKAGG" 2556096 NIL SKAGG (NIL T) -9 NIL 2556231) (-1032 2550326 2553372 2553650 "SINT" 2554012 T SINT (NIL) -8 NIL NIL) (-1031 2550098 2550136 2550202 "SIMPAN" 2550282 T SIMPAN (NIL) -7 NIL NIL) (-1030 2548936 2549157 2549432 "SIGNRF" 2549857 NIL SIGNRF (NIL T) -7 NIL NIL) (-1029 2547745 2547896 2548186 "SIGNEF" 2548765 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1028 2545435 2545889 2546395 "SHP" 2547286 NIL SHP (NIL T NIL) -7 NIL NIL) (-1027 2539288 2545336 2545412 "SHDP" 2545417 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1026 2538777 2538969 2539000 "SGROUP" 2539152 T SGROUP (NIL) -9 NIL 2539239) (-1025 2538547 2538599 2538703 "SGROUP-" 2538708 NIL SGROUP- (NIL T) -8 NIL NIL) (-1024 2535383 2536080 2536803 "SGCF" 2537846 T SGCF (NIL) -7 NIL NIL) (-1023 2529781 2534833 2534930 "SFRTCAT" 2534935 NIL SFRTCAT (NIL T T T T) -9 NIL 2534973) (-1022 2523241 2524256 2525390 "SFRGCD" 2528764 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1021 2516407 2517478 2518662 "SFQCMPK" 2522174 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1020 2516029 2516118 2516228 "SFORT" 2516348 NIL SFORT (NIL T T) -8 NIL NIL) (-1019 2515174 2515869 2515990 "SEXOF" 2515995 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1018 2514308 2515055 2515123 "SEX" 2515128 T SEX (NIL) -8 NIL NIL) (-1017 2509084 2509773 2509869 "SEXCAT" 2513640 NIL SEXCAT (NIL T T T T T) -9 NIL 2514259) (-1016 2506264 2509018 2509066 "SET" 2509071 NIL SET (NIL T) -8 NIL NIL) (-1015 2504515 2504977 2505282 "SETMN" 2506005 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1014 2504122 2504248 2504279 "SETCAT" 2504396 T SETCAT (NIL) -9 NIL 2504480) (-1013 2503902 2503954 2504053 "SETCAT-" 2504058 NIL SETCAT- (NIL T) -8 NIL NIL) (-1012 2500289 2502363 2502407 "SETAGG" 2503277 NIL SETAGG (NIL T) -9 NIL 2503617) (-1011 2499747 2499863 2500100 "SETAGG-" 2500105 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1010 2498950 2499243 2499305 "SEGXCAT" 2499591 NIL SEGXCAT (NIL T T) -9 NIL 2499711) (-1009 2498006 2498616 2498798 "SEG" 2498803 NIL SEG (NIL T) -8 NIL NIL) (-1008 2496912 2497125 2497169 "SEGCAT" 2497751 NIL SEGCAT (NIL T) -9 NIL 2497989) (-1007 2495961 2496291 2496491 "SEGBIND" 2496747 NIL SEGBIND (NIL T) -8 NIL NIL) (-1006 2495582 2495641 2495754 "SEGBIND2" 2495896 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1005 2494801 2494927 2495131 "SEG2" 2495426 NIL SEG2 (NIL T T) -7 NIL NIL) (-1004 2494238 2494736 2494783 "SDVAR" 2494788 NIL SDVAR (NIL T) -8 NIL NIL) (-1003 2486490 2494011 2494139 "SDPOL" 2494144 NIL SDPOL (NIL T) -8 NIL NIL) (-1002 2485083 2485349 2485668 "SCPKG" 2486205 NIL SCPKG (NIL T) -7 NIL NIL) (-1001 2484220 2484399 2484599 "SCOPE" 2484905 T SCOPE (NIL) -8 NIL NIL) (-1000 2483441 2483574 2483753 "SCACHE" 2484075 NIL SCACHE (NIL T) -7 NIL NIL) (-999 2482884 2483205 2483288 "SAOS" 2483378 T SAOS (NIL) -8 NIL NIL) (-998 2482452 2482487 2482658 "SAERFFC" 2482843 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-997 2476348 2482351 2482429 "SAE" 2482434 NIL SAE (NIL T T NIL) -8 NIL NIL) (-996 2475944 2475979 2476136 "SAEFACT" 2476307 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-995 2474270 2474584 2474983 "RURPK" 2475610 NIL RURPK (NIL T NIL) -7 NIL NIL) (-994 2472923 2473200 2473507 "RULESET" 2474106 NIL RULESET (NIL T T T) -8 NIL NIL) (-993 2470131 2470634 2471095 "RULE" 2472605 NIL RULE (NIL T T T) -8 NIL NIL) (-992 2469773 2469928 2470009 "RULECOLD" 2470083 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-991 2464665 2465459 2466375 "RSETGCD" 2468972 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-990 2453979 2459031 2459126 "RSETCAT" 2463191 NIL RSETCAT (NIL T T T T) -9 NIL 2464288) (-989 2451910 2452449 2453269 "RSETCAT-" 2453274 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-988 2444340 2445715 2447231 "RSDCMPK" 2450509 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-987 2442357 2442798 2442871 "RRCC" 2443947 NIL RRCC (NIL T T) -9 NIL 2444291) (-986 2441711 2441885 2442161 "RRCC-" 2442166 NIL RRCC- (NIL T T T) -8 NIL NIL) (-985 2416077 2425702 2425767 "RPOLCAT" 2436269 NIL RPOLCAT (NIL T T T) -9 NIL 2439427) (-984 2407581 2409919 2413037 "RPOLCAT-" 2413042 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-983 2398647 2405811 2406291 "ROUTINE" 2407121 T ROUTINE (NIL) -8 NIL NIL) (-982 2395352 2398203 2398350 "ROMAN" 2398520 T ROMAN (NIL) -8 NIL NIL) (-981 2393638 2394223 2394480 "ROIRC" 2395158 NIL ROIRC (NIL T T) -8 NIL NIL) (-980 2390042 2392346 2392375 "RNS" 2392671 T RNS (NIL) -9 NIL 2392941) (-979 2388556 2388939 2389470 "RNS-" 2389543 NIL RNS- (NIL T) -8 NIL NIL) (-978 2387981 2388389 2388418 "RNG" 2388423 T RNG (NIL) -9 NIL 2388444) (-977 2387378 2387740 2387781 "RMODULE" 2387841 NIL RMODULE (NIL T) -9 NIL 2387883) (-976 2386230 2386324 2386654 "RMCAT2" 2387279 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-975 2382944 2385413 2385734 "RMATRIX" 2385965 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-974 2375940 2378174 2378287 "RMATCAT" 2381596 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2382578) (-973 2375319 2375466 2375769 "RMATCAT-" 2375774 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-972 2374889 2374964 2375090 "RINTERP" 2375238 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-971 2373939 2374503 2374532 "RING" 2374642 T RING (NIL) -9 NIL 2374736) (-970 2373734 2373778 2373872 "RING-" 2373877 NIL RING- (NIL T) -8 NIL NIL) (-969 2372582 2372819 2373075 "RIDIST" 2373498 T RIDIST (NIL) -7 NIL NIL) (-968 2363904 2372056 2372259 "RGCHAIN" 2372431 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-967 2360909 2361523 2362191 "RF" 2363268 NIL RF (NIL T) -7 NIL NIL) (-966 2360558 2360621 2360722 "RFFACTOR" 2360840 NIL RFFACTOR (NIL T) -7 NIL NIL) (-965 2360286 2360321 2360416 "RFFACT" 2360517 NIL RFFACT (NIL T) -7 NIL NIL) (-964 2358416 2358780 2359160 "RFDIST" 2359926 T RFDIST (NIL) -7 NIL NIL) (-963 2357874 2357966 2358126 "RETSOL" 2358318 NIL RETSOL (NIL T T) -7 NIL NIL) (-962 2357466 2357546 2357588 "RETRACT" 2357778 NIL RETRACT (NIL T) -9 NIL NIL) (-961 2357318 2357343 2357427 "RETRACT-" 2357432 NIL RETRACT- (NIL T T) -8 NIL NIL) (-960 2350176 2356975 2357100 "RESULT" 2357213 T RESULT (NIL) -8 NIL NIL) (-959 2348761 2349450 2349647 "RESRING" 2350079 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-958 2348401 2348450 2348546 "RESLATC" 2348698 NIL RESLATC (NIL T) -7 NIL NIL) (-957 2348110 2348144 2348249 "REPSQ" 2348360 NIL REPSQ (NIL T) -7 NIL NIL) (-956 2345541 2346121 2346721 "REP" 2347530 T REP (NIL) -7 NIL NIL) (-955 2345242 2345276 2345385 "REPDB" 2345500 NIL REPDB (NIL T) -7 NIL NIL) (-954 2339187 2340566 2341786 "REP2" 2344054 NIL REP2 (NIL T) -7 NIL NIL) (-953 2335593 2336274 2337079 "REP1" 2338414 NIL REP1 (NIL T) -7 NIL NIL) (-952 2328339 2333754 2334206 "REGSET" 2335224 NIL REGSET (NIL T T T T) -8 NIL NIL) (-951 2327160 2327495 2327743 "REF" 2328124 NIL REF (NIL T) -8 NIL NIL) (-950 2326541 2326644 2326809 "REDORDER" 2327044 NIL REDORDER (NIL T T) -7 NIL NIL) (-949 2322510 2325775 2325996 "RECLOS" 2326372 NIL RECLOS (NIL T) -8 NIL NIL) (-948 2321567 2321748 2321961 "REALSOLV" 2322317 T REALSOLV (NIL) -7 NIL NIL) (-947 2321414 2321455 2321484 "REAL" 2321489 T REAL (NIL) -9 NIL 2321524) (-946 2317905 2318707 2319589 "REAL0Q" 2320579 NIL REAL0Q (NIL T) -7 NIL NIL) (-945 2313516 2314504 2315563 "REAL0" 2316886 NIL REAL0 (NIL T) -7 NIL NIL) (-944 2312924 2312996 2313201 "RDIV" 2313438 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-943 2311997 2312171 2312382 "RDIST" 2312746 NIL RDIST (NIL T) -7 NIL NIL) (-942 2310601 2310888 2311257 "RDETRS" 2311705 NIL RDETRS (NIL T T) -7 NIL NIL) (-941 2308422 2308876 2309411 "RDETR" 2310143 NIL RDETR (NIL T T) -7 NIL NIL) (-940 2307038 2307316 2307717 "RDEEFS" 2308138 NIL RDEEFS (NIL T T) -7 NIL NIL) (-939 2305538 2305844 2306273 "RDEEF" 2306726 NIL RDEEF (NIL T T) -7 NIL NIL) (-938 2299822 2302754 2302783 "RCFIELD" 2304060 T RCFIELD (NIL) -9 NIL 2304790) (-937 2297891 2298395 2299088 "RCFIELD-" 2299161 NIL RCFIELD- (NIL T) -8 NIL NIL) (-936 2294222 2296007 2296049 "RCAGG" 2297120 NIL RCAGG (NIL T) -9 NIL 2297585) (-935 2293853 2293947 2294107 "RCAGG-" 2294112 NIL RCAGG- (NIL T T) -8 NIL NIL) (-934 2293198 2293309 2293471 "RATRET" 2293737 NIL RATRET (NIL T) -7 NIL NIL) (-933 2292755 2292822 2292941 "RATFACT" 2293126 NIL RATFACT (NIL T) -7 NIL NIL) (-932 2292070 2292190 2292340 "RANDSRC" 2292625 T RANDSRC (NIL) -7 NIL NIL) (-931 2291807 2291851 2291922 "RADUTIL" 2292019 T RADUTIL (NIL) -7 NIL NIL) (-930 2284814 2290550 2290867 "RADIX" 2291522 NIL RADIX (NIL NIL) -8 NIL NIL) (-929 2276384 2284658 2284786 "RADFF" 2284791 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-928 2276035 2276110 2276139 "RADCAT" 2276296 T RADCAT (NIL) -9 NIL NIL) (-927 2275820 2275868 2275965 "RADCAT-" 2275970 NIL RADCAT- (NIL T) -8 NIL NIL) (-926 2273971 2275595 2275684 "QUEUE" 2275764 NIL QUEUE (NIL T) -8 NIL NIL) (-925 2270468 2273908 2273953 "QUAT" 2273958 NIL QUAT (NIL T) -8 NIL NIL) (-924 2270106 2270149 2270276 "QUATCT2" 2270419 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-923 2263899 2267279 2267320 "QUATCAT" 2268099 NIL QUATCAT (NIL T) -9 NIL 2268864) (-922 2260043 2261080 2262467 "QUATCAT-" 2262561 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-921 2257563 2259127 2259169 "QUAGG" 2259544 NIL QUAGG (NIL T) -9 NIL 2259719) (-920 2256488 2256961 2257133 "QFORM" 2257435 NIL QFORM (NIL NIL T) -8 NIL NIL) (-919 2247784 2253042 2253083 "QFCAT" 2253741 NIL QFCAT (NIL T) -9 NIL 2254734) (-918 2243356 2244557 2246148 "QFCAT-" 2246242 NIL QFCAT- (NIL T T) -8 NIL NIL) (-917 2242994 2243037 2243164 "QFCAT2" 2243307 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-916 2242454 2242564 2242694 "QEQUAT" 2242884 T QEQUAT (NIL) -8 NIL NIL) (-915 2235640 2236711 2237893 "QCMPACK" 2241387 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-914 2233216 2233637 2234065 "QALGSET" 2235295 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-913 2232461 2232635 2232867 "QALGSET2" 2233036 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-912 2231152 2231375 2231692 "PWFFINTB" 2232234 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-911 2229340 2229508 2229861 "PUSHVAR" 2230966 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-910 2225257 2226311 2226353 "PTRANFN" 2228237 NIL PTRANFN (NIL T) -9 NIL NIL) (-909 2223669 2223960 2224281 "PTPACK" 2224968 NIL PTPACK (NIL T) -7 NIL NIL) (-908 2223305 2223362 2223469 "PTFUNC2" 2223606 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-907 2217781 2222122 2222163 "PTCAT" 2222531 NIL PTCAT (NIL T) -9 NIL 2222693) (-906 2217439 2217474 2217598 "PSQFR" 2217740 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-905 2216034 2216332 2216666 "PSEUDLIN" 2217137 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-904 2202842 2205206 2207529 "PSETPK" 2213794 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-903 2195928 2198642 2198737 "PSETCAT" 2201718 NIL PSETCAT (NIL T T T T) -9 NIL 2202532) (-902 2193766 2194400 2195219 "PSETCAT-" 2195224 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-901 2193114 2193279 2193308 "PSCURVE" 2193576 T PSCURVE (NIL) -9 NIL 2193743) (-900 2189565 2191091 2191156 "PSCAT" 2191992 NIL PSCAT (NIL T T T) -9 NIL 2192232) (-899 2188629 2188845 2189244 "PSCAT-" 2189249 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-898 2187282 2187914 2188128 "PRTITION" 2188435 T PRTITION (NIL) -8 NIL NIL) (-897 2176380 2178586 2180774 "PRS" 2185144 NIL PRS (NIL T T) -7 NIL NIL) (-896 2174238 2175730 2175771 "PRQAGG" 2175954 NIL PRQAGG (NIL T) -9 NIL 2176056) (-895 2173808 2173910 2173939 "PROPLOG" 2174124 T PROPLOG (NIL) -9 NIL NIL) (-894 2170931 2171496 2172023 "PROPFRML" 2173313 NIL PROPFRML (NIL T) -8 NIL NIL) (-893 2170391 2170501 2170631 "PROPERTY" 2170821 T PROPERTY (NIL) -8 NIL NIL) (-892 2164165 2168557 2169377 "PRODUCT" 2169617 NIL PRODUCT (NIL T T) -8 NIL NIL) (-891 2161441 2163625 2163858 "PR" 2163976 NIL PR (NIL T T) -8 NIL NIL) (-890 2161237 2161269 2161328 "PRINT" 2161402 T PRINT (NIL) -7 NIL NIL) (-889 2160577 2160694 2160846 "PRIMES" 2161117 NIL PRIMES (NIL T) -7 NIL NIL) (-888 2158642 2159043 2159509 "PRIMELT" 2160156 NIL PRIMELT (NIL T) -7 NIL NIL) (-887 2158370 2158419 2158448 "PRIMCAT" 2158572 T PRIMCAT (NIL) -9 NIL NIL) (-886 2154531 2158308 2158353 "PRIMARR" 2158358 NIL PRIMARR (NIL T) -8 NIL NIL) (-885 2153538 2153716 2153944 "PRIMARR2" 2154349 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-884 2153181 2153237 2153348 "PREASSOC" 2153476 NIL PREASSOC (NIL T T) -7 NIL NIL) (-883 2152655 2152788 2152817 "PPCURVE" 2153022 T PPCURVE (NIL) -9 NIL 2153158) (-882 2150014 2150413 2151005 "POLYROOT" 2152236 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-881 2143920 2149620 2149779 "POLY" 2149887 NIL POLY (NIL T) -8 NIL NIL) (-880 2143305 2143363 2143596 "POLYLIFT" 2143856 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-879 2139590 2140039 2140667 "POLYCATQ" 2142850 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-878 2126630 2132027 2132092 "POLYCAT" 2135577 NIL POLYCAT (NIL T T T) -9 NIL 2137504) (-877 2120081 2121942 2124325 "POLYCAT-" 2124330 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-876 2119670 2119738 2119857 "POLY2UP" 2120007 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-875 2119306 2119363 2119470 "POLY2" 2119607 NIL POLY2 (NIL T T) -7 NIL NIL) (-874 2117991 2118230 2118506 "POLUTIL" 2119080 NIL POLUTIL (NIL T T) -7 NIL NIL) (-873 2116353 2116630 2116960 "POLTOPOL" 2117713 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-872 2111876 2116290 2116335 "POINT" 2116340 NIL POINT (NIL T) -8 NIL NIL) (-871 2110063 2110420 2110795 "PNTHEORY" 2111521 T PNTHEORY (NIL) -7 NIL NIL) (-870 2108491 2108788 2109197 "PMTOOLS" 2109761 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-869 2108084 2108162 2108279 "PMSYM" 2108407 NIL PMSYM (NIL T) -7 NIL NIL) (-868 2107594 2107663 2107837 "PMQFCAT" 2108009 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-867 2106949 2107059 2107215 "PMPRED" 2107471 NIL PMPRED (NIL T) -7 NIL NIL) (-866 2106345 2106431 2106592 "PMPREDFS" 2106850 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-865 2104991 2105199 2105583 "PMPLCAT" 2106107 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-864 2104523 2104602 2104754 "PMLSAGG" 2104906 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-863 2104000 2104076 2104256 "PMKERNEL" 2104441 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-862 2103617 2103692 2103805 "PMINS" 2103919 NIL PMINS (NIL T) -7 NIL NIL) (-861 2103047 2103116 2103331 "PMFS" 2103542 NIL PMFS (NIL T T T) -7 NIL NIL) (-860 2102278 2102396 2102600 "PMDOWN" 2102924 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-859 2101441 2101600 2101782 "PMASS" 2102116 T PMASS (NIL) -7 NIL NIL) (-858 2100715 2100826 2100989 "PMASSFS" 2101327 NIL PMASSFS (NIL T T) -7 NIL NIL) (-857 2100370 2100438 2100532 "PLOTTOOL" 2100641 T PLOTTOOL (NIL) -7 NIL NIL) (-856 2094992 2096181 2097329 "PLOT" 2099242 T PLOT (NIL) -8 NIL NIL) (-855 2090806 2091840 2092761 "PLOT3D" 2094091 T PLOT3D (NIL) -8 NIL NIL) (-854 2089718 2089895 2090130 "PLOT1" 2090610 NIL PLOT1 (NIL T) -7 NIL NIL) (-853 2065113 2069784 2074635 "PLEQN" 2084984 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-852 2064431 2064553 2064733 "PINTERP" 2064978 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-851 2064124 2064171 2064274 "PINTERPA" 2064378 NIL PINTERPA (NIL T T) -7 NIL NIL) (-850 2063351 2063918 2064011 "PI" 2064051 T PI (NIL) -8 NIL NIL) (-849 2061742 2062727 2062756 "PID" 2062938 T PID (NIL) -9 NIL 2063072) (-848 2061467 2061504 2061592 "PICOERCE" 2061699 NIL PICOERCE (NIL T) -7 NIL NIL) (-847 2060788 2060926 2061102 "PGROEB" 2061323 NIL PGROEB (NIL T) -7 NIL NIL) (-846 2056375 2057189 2058094 "PGE" 2059903 T PGE (NIL) -7 NIL NIL) (-845 2054499 2054745 2055111 "PGCD" 2056092 NIL PGCD (NIL T T T T) -7 NIL NIL) (-844 2053837 2053940 2054101 "PFRPAC" 2054383 NIL PFRPAC (NIL T) -7 NIL NIL) (-843 2050452 2052385 2052738 "PFR" 2053516 NIL PFR (NIL T) -8 NIL NIL) (-842 2048841 2049085 2049410 "PFOTOOLS" 2050199 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-841 2047374 2047613 2047964 "PFOQ" 2048598 NIL PFOQ (NIL T T T) -7 NIL NIL) (-840 2045851 2046063 2046425 "PFO" 2047158 NIL PFO (NIL T T T T T) -7 NIL NIL) (-839 2042374 2045740 2045809 "PF" 2045814 NIL PF (NIL NIL) -8 NIL NIL) (-838 2039802 2041083 2041112 "PFECAT" 2041697 T PFECAT (NIL) -9 NIL 2042081) (-837 2039247 2039401 2039615 "PFECAT-" 2039620 NIL PFECAT- (NIL T) -8 NIL NIL) (-836 2037851 2038102 2038403 "PFBRU" 2038996 NIL PFBRU (NIL T T) -7 NIL NIL) (-835 2035718 2036069 2036501 "PFBR" 2037502 NIL PFBR (NIL T T T T) -7 NIL NIL) (-834 2031570 2033094 2033770 "PERM" 2035075 NIL PERM (NIL T) -8 NIL NIL) (-833 2026836 2027777 2028647 "PERMGRP" 2030733 NIL PERMGRP (NIL T) -8 NIL NIL) (-832 2024906 2025899 2025941 "PERMCAT" 2026387 NIL PERMCAT (NIL T) -9 NIL 2026692) (-831 2024561 2024602 2024725 "PERMAN" 2024859 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-830 2022001 2024130 2024261 "PENDTREE" 2024463 NIL PENDTREE (NIL T) -8 NIL NIL) (-829 2020073 2020851 2020893 "PDRING" 2021550 NIL PDRING (NIL T) -9 NIL 2021835) (-828 2019176 2019394 2019756 "PDRING-" 2019761 NIL PDRING- (NIL T T) -8 NIL NIL) (-827 2016318 2017068 2017759 "PDEPROB" 2018505 T PDEPROB (NIL) -8 NIL NIL) (-826 2013889 2014385 2014934 "PDEPACK" 2015789 T PDEPACK (NIL) -7 NIL NIL) (-825 2012801 2012991 2013242 "PDECOMP" 2013688 NIL PDECOMP (NIL T T) -7 NIL NIL) (-824 2010412 2011227 2011256 "PDECAT" 2012041 T PDECAT (NIL) -9 NIL 2012752) (-823 2010165 2010198 2010287 "PCOMP" 2010373 NIL PCOMP (NIL T T) -7 NIL NIL) (-822 2008372 2008968 2009264 "PBWLB" 2009895 NIL PBWLB (NIL T) -8 NIL NIL) (-821 2000881 2002449 2003785 "PATTERN" 2007057 NIL PATTERN (NIL T) -8 NIL NIL) (-820 2000513 2000570 2000679 "PATTERN2" 2000818 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-819 1998270 1998658 1999115 "PATTERN1" 2000102 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-818 1995665 1996219 1996700 "PATRES" 1997835 NIL PATRES (NIL T T) -8 NIL NIL) (-817 1995229 1995296 1995428 "PATRES2" 1995592 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-816 1993126 1993526 1993931 "PATMATCH" 1994898 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-815 1992662 1992845 1992887 "PATMAB" 1992994 NIL PATMAB (NIL T) -9 NIL 1993077) (-814 1991207 1991516 1991774 "PATLRES" 1992467 NIL PATLRES (NIL T T T) -8 NIL NIL) (-813 1990752 1990875 1990917 "PATAB" 1990922 NIL PATAB (NIL T) -9 NIL 1991094) (-812 1988233 1988765 1989338 "PARTPERM" 1990199 T PARTPERM (NIL) -7 NIL NIL) (-811 1987854 1987917 1988019 "PARSURF" 1988164 NIL PARSURF (NIL T) -8 NIL NIL) (-810 1987486 1987543 1987652 "PARSU2" 1987791 NIL PARSU2 (NIL T T) -7 NIL NIL) (-809 1987250 1987290 1987357 "PARSER" 1987439 T PARSER (NIL) -7 NIL NIL) (-808 1986871 1986934 1987036 "PARSCURV" 1987181 NIL PARSCURV (NIL T) -8 NIL NIL) (-807 1986503 1986560 1986669 "PARSC2" 1986808 NIL PARSC2 (NIL T T) -7 NIL NIL) (-806 1986142 1986200 1986297 "PARPCURV" 1986439 NIL PARPCURV (NIL T) -8 NIL NIL) (-805 1985774 1985831 1985940 "PARPC2" 1986079 NIL PARPC2 (NIL T T) -7 NIL NIL) (-804 1985294 1985380 1985499 "PAN2EXPR" 1985675 T PAN2EXPR (NIL) -7 NIL NIL) (-803 1984100 1984415 1984643 "PALETTE" 1985086 T PALETTE (NIL) -8 NIL NIL) (-802 1982568 1983105 1983465 "PAIR" 1983786 NIL PAIR (NIL T T) -8 NIL NIL) (-801 1976418 1981827 1982021 "PADICRC" 1982423 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-800 1969626 1975764 1975948 "PADICRAT" 1976266 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-799 1967930 1969563 1969608 "PADIC" 1969613 NIL PADIC (NIL NIL) -8 NIL NIL) (-798 1965134 1966708 1966749 "PADICCT" 1967330 NIL PADICCT (NIL NIL) -9 NIL 1967612) (-797 1964091 1964291 1964559 "PADEPAC" 1964921 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-796 1963303 1963436 1963642 "PADE" 1963953 NIL PADE (NIL T T T) -7 NIL NIL) (-795 1961314 1962146 1962461 "OWP" 1963071 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-794 1960423 1960919 1961091 "OVAR" 1961182 NIL OVAR (NIL NIL) -8 NIL NIL) (-793 1959687 1959808 1959969 "OUT" 1960282 T OUT (NIL) -7 NIL NIL) (-792 1948733 1950912 1953082 "OUTFORM" 1957537 T OUTFORM (NIL) -8 NIL NIL) (-791 1948141 1948462 1948551 "OSI" 1948664 T OSI (NIL) -8 NIL NIL) (-790 1946886 1947113 1947398 "ORTHPOL" 1947888 NIL ORTHPOL (NIL T) -7 NIL NIL) (-789 1944257 1946547 1946685 "OREUP" 1946829 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-788 1941653 1943950 1944076 "ORESUP" 1944199 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-787 1939188 1939688 1940248 "OREPCTO" 1941142 NIL OREPCTO (NIL T T) -7 NIL NIL) (-786 1933097 1935303 1935344 "OREPCAT" 1937665 NIL OREPCAT (NIL T) -9 NIL 1938768) (-785 1930245 1931027 1932084 "OREPCAT-" 1932089 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-784 1929422 1929694 1929723 "ORDSET" 1930032 T ORDSET (NIL) -9 NIL 1930196) (-783 1928941 1929063 1929256 "ORDSET-" 1929261 NIL ORDSET- (NIL T) -8 NIL NIL) (-782 1927554 1928355 1928384 "ORDRING" 1928586 T ORDRING (NIL) -9 NIL 1928710) (-781 1927199 1927293 1927437 "ORDRING-" 1927442 NIL ORDRING- (NIL T) -8 NIL NIL) (-780 1926574 1927055 1927084 "ORDMON" 1927089 T ORDMON (NIL) -9 NIL 1927110) (-779 1925736 1925883 1926078 "ORDFUNS" 1926423 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-778 1925247 1925606 1925635 "ORDFIN" 1925640 T ORDFIN (NIL) -9 NIL 1925661) (-777 1921759 1923833 1924242 "ORDCOMP" 1924871 NIL ORDCOMP (NIL T) -8 NIL NIL) (-776 1921025 1921152 1921338 "ORDCOMP2" 1921619 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-775 1917533 1918415 1919252 "OPTPROB" 1920208 T OPTPROB (NIL) -8 NIL NIL) (-774 1914375 1915004 1915698 "OPTPACK" 1916859 T OPTPACK (NIL) -7 NIL NIL) (-773 1912100 1912836 1912865 "OPTCAT" 1913680 T OPTCAT (NIL) -9 NIL 1914326) (-772 1911868 1911907 1911973 "OPQUERY" 1912054 T OPQUERY (NIL) -7 NIL NIL) (-771 1909004 1910195 1910695 "OP" 1911400 NIL OP (NIL T) -8 NIL NIL) (-770 1905769 1907801 1908170 "ONECOMP" 1908668 NIL ONECOMP (NIL T) -8 NIL NIL) (-769 1905074 1905189 1905363 "ONECOMP2" 1905641 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-768 1904493 1904599 1904729 "OMSERVER" 1904964 T OMSERVER (NIL) -7 NIL NIL) (-767 1901381 1903933 1903974 "OMSAGG" 1904035 NIL OMSAGG (NIL T) -9 NIL 1904099) (-766 1900004 1900267 1900549 "OMPKG" 1901119 T OMPKG (NIL) -7 NIL NIL) (-765 1899433 1899536 1899565 "OM" 1899864 T OM (NIL) -9 NIL NIL) (-764 1897972 1898985 1899153 "OMLO" 1899314 NIL OMLO (NIL T T) -8 NIL NIL) (-763 1896902 1897049 1897275 "OMEXPR" 1897798 NIL OMEXPR (NIL T) -7 NIL NIL) (-762 1896220 1896448 1896584 "OMERR" 1896786 T OMERR (NIL) -8 NIL NIL) (-761 1895398 1895641 1895801 "OMERRK" 1896080 T OMERRK (NIL) -8 NIL NIL) (-760 1894876 1895075 1895183 "OMENC" 1895310 T OMENC (NIL) -8 NIL NIL) (-759 1888771 1889956 1891127 "OMDEV" 1893725 T OMDEV (NIL) -8 NIL NIL) (-758 1887840 1888011 1888205 "OMCONN" 1888597 T OMCONN (NIL) -8 NIL NIL) (-757 1886455 1887441 1887470 "OINTDOM" 1887475 T OINTDOM (NIL) -9 NIL 1887496) (-756 1882217 1883447 1884162 "OFMONOID" 1885772 NIL OFMONOID (NIL T) -8 NIL NIL) (-755 1881655 1882154 1882199 "ODVAR" 1882204 NIL ODVAR (NIL T) -8 NIL NIL) (-754 1878780 1881152 1881337 "ODR" 1881530 NIL ODR (NIL T T NIL) -8 NIL NIL) (-753 1871086 1878559 1878683 "ODPOL" 1878688 NIL ODPOL (NIL T) -8 NIL NIL) (-752 1864909 1870958 1871063 "ODP" 1871068 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-751 1863675 1863890 1864165 "ODETOOLS" 1864683 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-750 1860644 1861300 1862016 "ODESYS" 1863008 NIL ODESYS (NIL T T) -7 NIL NIL) (-749 1855548 1856456 1857479 "ODERTRIC" 1859719 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-748 1854974 1855056 1855250 "ODERED" 1855460 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-747 1851876 1852424 1853099 "ODERAT" 1854397 NIL ODERAT (NIL T T) -7 NIL NIL) (-746 1848844 1849308 1849904 "ODEPRRIC" 1851405 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-745 1846715 1847282 1847791 "ODEPROB" 1848355 T ODEPROB (NIL) -8 NIL NIL) (-744 1843247 1843730 1844376 "ODEPRIM" 1846194 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-743 1842500 1842602 1842860 "ODEPAL" 1843139 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-742 1838702 1839483 1840337 "ODEPACK" 1841666 T ODEPACK (NIL) -7 NIL NIL) (-741 1837739 1837846 1838074 "ODEINT" 1838591 NIL ODEINT (NIL T T) -7 NIL NIL) (-740 1831840 1833265 1834712 "ODEIFTBL" 1836312 T ODEIFTBL (NIL) -8 NIL NIL) (-739 1827184 1827970 1828928 "ODEEF" 1830999 NIL ODEEF (NIL T T) -7 NIL NIL) (-738 1826521 1826610 1826839 "ODECONST" 1827089 NIL ODECONST (NIL T T T) -7 NIL NIL) (-737 1824678 1825311 1825340 "ODECAT" 1825943 T ODECAT (NIL) -9 NIL 1826472) (-736 1821550 1824390 1824509 "OCT" 1824591 NIL OCT (NIL T) -8 NIL NIL) (-735 1821188 1821231 1821358 "OCTCT2" 1821501 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-734 1816021 1818459 1818500 "OC" 1819596 NIL OC (NIL T) -9 NIL 1820453) (-733 1813248 1813996 1814986 "OC-" 1815080 NIL OC- (NIL T T) -8 NIL NIL) (-732 1812626 1813068 1813097 "OCAMON" 1813102 T OCAMON (NIL) -9 NIL 1813123) (-731 1812079 1812486 1812515 "OASGP" 1812520 T OASGP (NIL) -9 NIL 1812540) (-730 1811366 1811829 1811858 "OAMONS" 1811898 T OAMONS (NIL) -9 NIL 1811941) (-729 1810806 1811213 1811242 "OAMON" 1811247 T OAMON (NIL) -9 NIL 1811267) (-728 1810110 1810602 1810631 "OAGROUP" 1810636 T OAGROUP (NIL) -9 NIL 1810656) (-727 1809800 1809850 1809938 "NUMTUBE" 1810054 NIL NUMTUBE (NIL T) -7 NIL NIL) (-726 1803373 1804891 1806427 "NUMQUAD" 1808284 T NUMQUAD (NIL) -7 NIL NIL) (-725 1799129 1800117 1801142 "NUMODE" 1802368 T NUMODE (NIL) -7 NIL NIL) (-724 1796532 1797378 1797407 "NUMINT" 1798324 T NUMINT (NIL) -9 NIL 1799080) (-723 1795480 1795677 1795895 "NUMFMT" 1796334 T NUMFMT (NIL) -7 NIL NIL) (-722 1781862 1784796 1787326 "NUMERIC" 1792989 NIL NUMERIC (NIL T) -7 NIL NIL) (-721 1776262 1781314 1781409 "NTSCAT" 1781414 NIL NTSCAT (NIL T T T T) -9 NIL 1781452) (-720 1775456 1775621 1775814 "NTPOLFN" 1776101 NIL NTPOLFN (NIL T) -7 NIL NIL) (-719 1763312 1772298 1773108 "NSUP" 1774678 NIL NSUP (NIL T) -8 NIL NIL) (-718 1762948 1763005 1763112 "NSUP2" 1763249 NIL NSUP2 (NIL T T) -7 NIL NIL) (-717 1752910 1762727 1762857 "NSMP" 1762862 NIL NSMP (NIL T T) -8 NIL NIL) (-716 1751342 1751643 1752000 "NREP" 1752598 NIL NREP (NIL T) -7 NIL NIL) (-715 1749933 1750185 1750543 "NPCOEF" 1751085 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-714 1748999 1749114 1749330 "NORMRETR" 1749814 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-713 1747052 1747342 1747749 "NORMPK" 1748707 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-712 1746737 1746765 1746889 "NORMMA" 1747018 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-711 1746564 1746694 1746723 "NONE" 1746728 T NONE (NIL) -8 NIL NIL) (-710 1746353 1746382 1746451 "NONE1" 1746528 NIL NONE1 (NIL T) -7 NIL NIL) (-709 1745838 1745900 1746085 "NODE1" 1746285 NIL NODE1 (NIL T T) -7 NIL NIL) (-708 1744131 1745001 1745256 "NNI" 1745603 T NNI (NIL) -8 NIL NIL) (-707 1742551 1742864 1743228 "NLINSOL" 1743799 NIL NLINSOL (NIL T) -7 NIL NIL) (-706 1738719 1739686 1740608 "NIPROB" 1741649 T NIPROB (NIL) -8 NIL NIL) (-705 1737476 1737710 1738012 "NFINTBAS" 1738481 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-704 1736184 1736415 1736696 "NCODIV" 1737244 NIL NCODIV (NIL T T) -7 NIL NIL) (-703 1735946 1735983 1736058 "NCNTFRAC" 1736141 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-702 1734126 1734490 1734910 "NCEP" 1735571 NIL NCEP (NIL T) -7 NIL NIL) (-701 1733037 1733776 1733805 "NASRING" 1733915 T NASRING (NIL) -9 NIL 1733989) (-700 1732832 1732876 1732970 "NASRING-" 1732975 NIL NASRING- (NIL T) -8 NIL NIL) (-699 1731985 1732484 1732513 "NARNG" 1732630 T NARNG (NIL) -9 NIL 1732721) (-698 1731677 1731744 1731878 "NARNG-" 1731883 NIL NARNG- (NIL T) -8 NIL NIL) (-697 1730556 1730763 1730998 "NAGSP" 1731462 T NAGSP (NIL) -7 NIL NIL) (-696 1721980 1723626 1725261 "NAGS" 1728941 T NAGS (NIL) -7 NIL NIL) (-695 1720544 1720848 1721175 "NAGF07" 1721673 T NAGF07 (NIL) -7 NIL NIL) (-694 1715126 1716406 1717702 "NAGF04" 1719268 T NAGF04 (NIL) -7 NIL NIL) (-693 1708158 1709756 1711373 "NAGF02" 1713529 T NAGF02 (NIL) -7 NIL NIL) (-692 1703422 1704512 1705619 "NAGF01" 1707071 T NAGF01 (NIL) -7 NIL NIL) (-691 1697082 1698640 1700217 "NAGE04" 1701865 T NAGE04 (NIL) -7 NIL NIL) (-690 1688323 1690426 1692538 "NAGE02" 1694990 T NAGE02 (NIL) -7 NIL NIL) (-689 1684316 1685253 1686207 "NAGE01" 1687389 T NAGE01 (NIL) -7 NIL NIL) (-688 1682123 1682654 1683209 "NAGD03" 1683781 T NAGD03 (NIL) -7 NIL NIL) (-687 1673909 1675828 1677773 "NAGD02" 1680198 T NAGD02 (NIL) -7 NIL NIL) (-686 1667768 1669181 1670609 "NAGD01" 1672501 T NAGD01 (NIL) -7 NIL NIL) (-685 1664025 1664835 1665660 "NAGC06" 1666963 T NAGC06 (NIL) -7 NIL NIL) (-684 1662502 1662831 1663184 "NAGC05" 1663692 T NAGC05 (NIL) -7 NIL NIL) (-683 1661886 1662003 1662145 "NAGC02" 1662380 T NAGC02 (NIL) -7 NIL NIL) (-682 1660947 1661504 1661545 "NAALG" 1661624 NIL NAALG (NIL T) -9 NIL 1661685) (-681 1660782 1660811 1660901 "NAALG-" 1660906 NIL NAALG- (NIL T T) -8 NIL NIL) (-680 1654732 1655840 1657027 "MULTSQFR" 1659678 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-679 1654051 1654126 1654310 "MULTFACT" 1654644 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-678 1647244 1651155 1651208 "MTSCAT" 1652268 NIL MTSCAT (NIL T T) -9 NIL 1652782) (-677 1646956 1647010 1647102 "MTHING" 1647184 NIL MTHING (NIL T) -7 NIL NIL) (-676 1646748 1646781 1646841 "MSYSCMD" 1646916 T MSYSCMD (NIL) -7 NIL NIL) (-675 1642860 1645503 1645823 "MSET" 1646461 NIL MSET (NIL T) -8 NIL NIL) (-674 1639955 1642421 1642463 "MSETAGG" 1642468 NIL MSETAGG (NIL T) -9 NIL 1642502) (-673 1635811 1637353 1638094 "MRING" 1639258 NIL MRING (NIL T T) -8 NIL NIL) (-672 1635381 1635448 1635577 "MRF2" 1635738 NIL MRF2 (NIL T T T) -7 NIL NIL) (-671 1634999 1635034 1635178 "MRATFAC" 1635340 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-670 1632611 1632906 1633337 "MPRFF" 1634704 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-669 1626631 1632466 1632562 "MPOLY" 1632567 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-668 1626121 1626156 1626364 "MPCPF" 1626590 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-667 1625637 1625680 1625863 "MPC3" 1626072 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-666 1624838 1624919 1625138 "MPC2" 1625552 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-665 1623139 1623476 1623866 "MONOTOOL" 1624498 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-664 1622263 1622598 1622627 "MONOID" 1622904 T MONOID (NIL) -9 NIL 1623076) (-663 1621641 1621804 1622047 "MONOID-" 1622052 NIL MONOID- (NIL T) -8 NIL NIL) (-662 1612621 1618607 1618667 "MONOGEN" 1619341 NIL MONOGEN (NIL T T) -9 NIL 1619797) (-661 1609839 1610574 1611574 "MONOGEN-" 1611693 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-660 1608698 1609118 1609147 "MONADWU" 1609539 T MONADWU (NIL) -9 NIL 1609777) (-659 1608070 1608229 1608477 "MONADWU-" 1608482 NIL MONADWU- (NIL T) -8 NIL NIL) (-658 1607455 1607673 1607702 "MONAD" 1607909 T MONAD (NIL) -9 NIL 1608021) (-657 1607140 1607218 1607350 "MONAD-" 1607355 NIL MONAD- (NIL T) -8 NIL NIL) (-656 1605391 1606053 1606332 "MOEBIUS" 1606893 NIL MOEBIUS (NIL T) -8 NIL NIL) (-655 1604784 1605162 1605203 "MODULE" 1605208 NIL MODULE (NIL T) -9 NIL 1605234) (-654 1604352 1604448 1604638 "MODULE-" 1604643 NIL MODULE- (NIL T T) -8 NIL NIL) (-653 1602023 1602718 1603044 "MODRING" 1604177 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-652 1598979 1600144 1600661 "MODOP" 1601555 NIL MODOP (NIL T T) -8 NIL NIL) (-651 1597166 1597618 1597959 "MODMONOM" 1598778 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-650 1586884 1595370 1595792 "MODMON" 1596794 NIL MODMON (NIL T T) -8 NIL NIL) (-649 1584010 1585728 1586004 "MODFIELD" 1586759 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-648 1583536 1583579 1583758 "MMAP" 1583961 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-647 1581772 1582549 1582590 "MLO" 1583007 NIL MLO (NIL T) -9 NIL 1583248) (-646 1579139 1579654 1580256 "MLIFT" 1581253 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-645 1578530 1578614 1578768 "MKUCFUNC" 1579050 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-644 1578129 1578199 1578322 "MKRECORD" 1578453 NIL MKRECORD (NIL T T) -7 NIL NIL) (-643 1577177 1577338 1577566 "MKFUNC" 1577940 NIL MKFUNC (NIL T) -7 NIL NIL) (-642 1576565 1576669 1576825 "MKFLCFN" 1577060 NIL MKFLCFN (NIL T) -7 NIL NIL) (-641 1575991 1576358 1576447 "MKCHSET" 1576509 NIL MKCHSET (NIL T) -8 NIL NIL) (-640 1575268 1575370 1575555 "MKBCFUNC" 1575884 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-639 1571952 1574822 1574958 "MINT" 1575152 T MINT (NIL) -8 NIL NIL) (-638 1570764 1571007 1571284 "MHROWRED" 1571707 NIL MHROWRED (NIL T) -7 NIL NIL) (-637 1566035 1569209 1569633 "MFLOAT" 1570360 T MFLOAT (NIL) -8 NIL NIL) (-636 1565392 1565468 1565639 "MFINFACT" 1565947 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-635 1561707 1562555 1563439 "MESH" 1564528 T MESH (NIL) -7 NIL NIL) (-634 1560097 1560409 1560762 "MDDFACT" 1561394 NIL MDDFACT (NIL T) -7 NIL NIL) (-633 1556939 1559256 1559298 "MDAGG" 1559553 NIL MDAGG (NIL T) -9 NIL 1559696) (-632 1546637 1556232 1556439 "MCMPLX" 1556752 T MCMPLX (NIL) -8 NIL NIL) (-631 1545778 1545924 1546124 "MCDEN" 1546486 NIL MCDEN (NIL T T) -7 NIL NIL) (-630 1543668 1543938 1544318 "MCALCFN" 1545508 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-629 1541290 1541813 1542374 "MATSTOR" 1543139 NIL MATSTOR (NIL T) -7 NIL NIL) (-628 1537298 1540665 1540912 "MATRIX" 1541075 NIL MATRIX (NIL T) -8 NIL NIL) (-627 1533068 1533771 1534507 "MATLIN" 1536655 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-626 1523265 1526403 1526480 "MATCAT" 1531318 NIL MATCAT (NIL T T T) -9 NIL 1532735) (-625 1519630 1520643 1521998 "MATCAT-" 1522003 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-624 1518232 1518385 1518716 "MATCAT2" 1519465 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-623 1516344 1516668 1517052 "MAPPKG3" 1517907 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-622 1515325 1515498 1515720 "MAPPKG2" 1516168 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-621 1513824 1514108 1514435 "MAPPKG1" 1515031 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-620 1513435 1513493 1513616 "MAPHACK3" 1513760 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-619 1513027 1513088 1513202 "MAPHACK2" 1513367 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-618 1512465 1512568 1512710 "MAPHACK1" 1512918 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-617 1510573 1511167 1511470 "MAGMA" 1512194 NIL MAGMA (NIL T) -8 NIL NIL) (-616 1507047 1508817 1509277 "M3D" 1510146 NIL M3D (NIL T) -8 NIL NIL) (-615 1501202 1505417 1505459 "LZSTAGG" 1506241 NIL LZSTAGG (NIL T) -9 NIL 1506536) (-614 1497175 1498333 1499790 "LZSTAGG-" 1499795 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-613 1494291 1495068 1495554 "LWORD" 1496721 NIL LWORD (NIL T) -8 NIL NIL) (-612 1487451 1494062 1494196 "LSQM" 1494201 NIL LSQM (NIL NIL T) -8 NIL NIL) (-611 1486675 1486814 1487042 "LSPP" 1487306 NIL LSPP (NIL T T T T) -7 NIL NIL) (-610 1484487 1484788 1485244 "LSMP" 1486364 NIL LSMP (NIL T T T T) -7 NIL NIL) (-609 1481266 1481940 1482670 "LSMP1" 1483789 NIL LSMP1 (NIL T) -7 NIL NIL) (-608 1475192 1480434 1480476 "LSAGG" 1480538 NIL LSAGG (NIL T) -9 NIL 1480616) (-607 1471887 1472811 1474024 "LSAGG-" 1474029 NIL LSAGG- (NIL T T) -8 NIL NIL) (-606 1469513 1471031 1471280 "LPOLY" 1471682 NIL LPOLY (NIL T T) -8 NIL NIL) (-605 1469095 1469180 1469303 "LPEFRAC" 1469422 NIL LPEFRAC (NIL T) -7 NIL NIL) (-604 1467442 1468189 1468442 "LO" 1468927 NIL LO (NIL T T T) -8 NIL NIL) (-603 1467095 1467207 1467236 "LOGIC" 1467347 T LOGIC (NIL) -9 NIL 1467427) (-602 1466957 1466980 1467051 "LOGIC-" 1467056 NIL LOGIC- (NIL T) -8 NIL NIL) (-601 1466150 1466290 1466483 "LODOOPS" 1466813 NIL LODOOPS (NIL T T) -7 NIL NIL) (-600 1463568 1466067 1466132 "LODO" 1466137 NIL LODO (NIL T NIL) -8 NIL NIL) (-599 1462114 1462349 1462700 "LODOF" 1463315 NIL LODOF (NIL T T) -7 NIL NIL) (-598 1458533 1460969 1461010 "LODOCAT" 1461442 NIL LODOCAT (NIL T) -9 NIL 1461653) (-597 1458267 1458325 1458451 "LODOCAT-" 1458456 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-596 1455581 1458108 1458226 "LODO2" 1458231 NIL LODO2 (NIL T T) -8 NIL NIL) (-595 1453010 1455518 1455563 "LODO1" 1455568 NIL LODO1 (NIL T) -8 NIL NIL) (-594 1451873 1452038 1452349 "LODEEF" 1452833 NIL LODEEF (NIL T T T) -7 NIL NIL) (-593 1447159 1450003 1450045 "LNAGG" 1450992 NIL LNAGG (NIL T) -9 NIL 1451436) (-592 1446306 1446520 1446862 "LNAGG-" 1446867 NIL LNAGG- (NIL T T) -8 NIL NIL) (-591 1442471 1443233 1443871 "LMOPS" 1445722 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-590 1441868 1442230 1442271 "LMODULE" 1442331 NIL LMODULE (NIL T) -9 NIL 1442373) (-589 1439114 1441513 1441636 "LMDICT" 1441778 NIL LMDICT (NIL T) -8 NIL NIL) (-588 1432341 1438060 1438358 "LIST" 1438849 NIL LIST (NIL T) -8 NIL NIL) (-587 1431866 1431940 1432079 "LIST3" 1432261 NIL LIST3 (NIL T T T) -7 NIL NIL) (-586 1430873 1431051 1431279 "LIST2" 1431684 NIL LIST2 (NIL T T) -7 NIL NIL) (-585 1429007 1429319 1429718 "LIST2MAP" 1430520 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-584 1427719 1428399 1428440 "LINEXP" 1428693 NIL LINEXP (NIL T) -9 NIL 1428841) (-583 1426366 1426626 1426923 "LINDEP" 1427471 NIL LINDEP (NIL T T) -7 NIL NIL) (-582 1423133 1423852 1424629 "LIMITRF" 1425621 NIL LIMITRF (NIL T) -7 NIL NIL) (-581 1421413 1421708 1422123 "LIMITPS" 1422828 NIL LIMITPS (NIL T T) -7 NIL NIL) (-580 1415868 1420924 1421152 "LIE" 1421234 NIL LIE (NIL T T) -8 NIL NIL) (-579 1414918 1415361 1415402 "LIECAT" 1415542 NIL LIECAT (NIL T) -9 NIL 1415693) (-578 1414759 1414786 1414874 "LIECAT-" 1414879 NIL LIECAT- (NIL T T) -8 NIL NIL) (-577 1407371 1414208 1414373 "LIB" 1414614 T LIB (NIL) -8 NIL NIL) (-576 1403008 1403889 1404824 "LGROBP" 1406488 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-575 1400874 1401148 1401510 "LF" 1402729 NIL LF (NIL T T) -7 NIL NIL) (-574 1399713 1400405 1400434 "LFCAT" 1400641 T LFCAT (NIL) -9 NIL 1400780) (-573 1396625 1397251 1397937 "LEXTRIPK" 1399079 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-572 1393331 1394195 1394698 "LEXP" 1396205 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-571 1391729 1392042 1392443 "LEADCDET" 1393013 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-570 1390925 1390999 1391226 "LAZM3PK" 1391650 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-569 1385841 1389004 1389541 "LAUPOL" 1390438 NIL LAUPOL (NIL T T) -8 NIL NIL) (-568 1385408 1385452 1385619 "LAPLACE" 1385791 NIL LAPLACE (NIL T T) -7 NIL NIL) (-567 1383336 1384509 1384760 "LA" 1385241 NIL LA (NIL T T T) -8 NIL NIL) (-566 1382398 1382992 1383033 "LALG" 1383094 NIL LALG (NIL T) -9 NIL 1383152) (-565 1382113 1382172 1382307 "LALG-" 1382312 NIL LALG- (NIL T T) -8 NIL NIL) (-564 1381023 1381210 1381507 "KOVACIC" 1381913 NIL KOVACIC (NIL T T) -7 NIL NIL) (-563 1380857 1380881 1380923 "KONVERT" 1380985 NIL KONVERT (NIL T) -9 NIL NIL) (-562 1380691 1380715 1380757 "KOERCE" 1380819 NIL KOERCE (NIL T) -9 NIL NIL) (-561 1378425 1379185 1379578 "KERNEL" 1380330 NIL KERNEL (NIL T) -8 NIL NIL) (-560 1377927 1378008 1378138 "KERNEL2" 1378339 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-559 1371778 1376466 1376521 "KDAGG" 1376898 NIL KDAGG (NIL T T) -9 NIL 1377104) (-558 1371307 1371431 1371636 "KDAGG-" 1371641 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-557 1364482 1370968 1371123 "KAFILE" 1371185 NIL KAFILE (NIL T) -8 NIL NIL) (-556 1358937 1363993 1364221 "JORDAN" 1364303 NIL JORDAN (NIL T T) -8 NIL NIL) (-555 1355236 1357142 1357197 "IXAGG" 1358126 NIL IXAGG (NIL T T) -9 NIL 1358585) (-554 1354155 1354461 1354880 "IXAGG-" 1354885 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-553 1349740 1354077 1354136 "IVECTOR" 1354141 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-552 1348506 1348743 1349009 "ITUPLE" 1349507 NIL ITUPLE (NIL T) -8 NIL NIL) (-551 1346942 1347119 1347425 "ITRIGMNP" 1348328 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-550 1345687 1345891 1346174 "ITFUN3" 1346718 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-549 1345319 1345376 1345485 "ITFUN2" 1345624 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-548 1343121 1344192 1344489 "ITAYLOR" 1345054 NIL ITAYLOR (NIL T) -8 NIL NIL) (-547 1332112 1337307 1338466 "ISUPS" 1341994 NIL ISUPS (NIL T) -8 NIL NIL) (-546 1331216 1331356 1331592 "ISUMP" 1331959 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-545 1326480 1331017 1331096 "ISTRING" 1331169 NIL ISTRING (NIL NIL) -8 NIL NIL) (-544 1325693 1325774 1325989 "IRURPK" 1326394 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-543 1324629 1324830 1325070 "IRSN" 1325473 T IRSN (NIL) -7 NIL NIL) (-542 1322664 1323019 1323454 "IRRF2F" 1324267 NIL IRRF2F (NIL T) -7 NIL NIL) (-541 1322411 1322449 1322525 "IRREDFFX" 1322620 NIL IRREDFFX (NIL T) -7 NIL NIL) (-540 1321026 1321285 1321584 "IROOT" 1322144 NIL IROOT (NIL T) -7 NIL NIL) (-539 1317664 1318715 1319405 "IR" 1320368 NIL IR (NIL T) -8 NIL NIL) (-538 1315277 1315772 1316338 "IR2" 1317142 NIL IR2 (NIL T T) -7 NIL NIL) (-537 1314353 1314466 1314686 "IR2F" 1315160 NIL IR2F (NIL T T) -7 NIL NIL) (-536 1314144 1314178 1314238 "IPRNTPK" 1314313 T IPRNTPK (NIL) -7 NIL NIL) (-535 1310698 1314033 1314102 "IPF" 1314107 NIL IPF (NIL NIL) -8 NIL NIL) (-534 1309015 1310623 1310680 "IPADIC" 1310685 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-533 1308514 1308572 1308761 "INVLAPLA" 1308951 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-532 1298163 1300516 1302902 "INTTR" 1306178 NIL INTTR (NIL T T) -7 NIL NIL) (-531 1294511 1295252 1296115 "INTTOOLS" 1297349 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-530 1294097 1294188 1294305 "INTSLPE" 1294414 T INTSLPE (NIL) -7 NIL NIL) (-529 1292047 1294020 1294079 "INTRVL" 1294084 NIL INTRVL (NIL T) -8 NIL NIL) (-528 1289654 1290166 1290740 "INTRF" 1291532 NIL INTRF (NIL T) -7 NIL NIL) (-527 1289069 1289166 1289307 "INTRET" 1289552 NIL INTRET (NIL T) -7 NIL NIL) (-526 1287071 1287460 1287929 "INTRAT" 1288677 NIL INTRAT (NIL T T) -7 NIL NIL) (-525 1284304 1284887 1285512 "INTPM" 1286556 NIL INTPM (NIL T T) -7 NIL NIL) (-524 1281013 1281612 1282356 "INTPAF" 1283690 NIL INTPAF (NIL T T T) -7 NIL NIL) (-523 1276256 1277202 1278237 "INTPACK" 1279998 T INTPACK (NIL) -7 NIL NIL) (-522 1273110 1275985 1276112 "INT" 1276149 T INT (NIL) -8 NIL NIL) (-521 1272362 1272514 1272722 "INTHERTR" 1272952 NIL INTHERTR (NIL T T) -7 NIL NIL) (-520 1271801 1271881 1272069 "INTHERAL" 1272276 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-519 1269647 1270090 1270547 "INTHEORY" 1271364 T INTHEORY (NIL) -7 NIL NIL) (-518 1260970 1262590 1264368 "INTG0" 1267999 NIL INTG0 (NIL T T T) -7 NIL NIL) (-517 1241543 1246333 1251143 "INTFTBL" 1256180 T INTFTBL (NIL) -8 NIL NIL) (-516 1240792 1240930 1241103 "INTFACT" 1241402 NIL INTFACT (NIL T) -7 NIL NIL) (-515 1238183 1238629 1239192 "INTEF" 1240346 NIL INTEF (NIL T T) -7 NIL NIL) (-514 1236644 1237393 1237422 "INTDOM" 1237723 T INTDOM (NIL) -9 NIL 1237930) (-513 1236013 1236187 1236429 "INTDOM-" 1236434 NIL INTDOM- (NIL T) -8 NIL NIL) (-512 1232505 1234437 1234492 "INTCAT" 1235291 NIL INTCAT (NIL T) -9 NIL 1235610) (-511 1231978 1232080 1232208 "INTBIT" 1232397 T INTBIT (NIL) -7 NIL NIL) (-510 1230653 1230807 1231120 "INTALG" 1231823 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-509 1230110 1230200 1230370 "INTAF" 1230557 NIL INTAF (NIL T T) -7 NIL NIL) (-508 1223564 1229920 1230060 "INTABL" 1230065 NIL INTABL (NIL T T T) -8 NIL NIL) (-507 1218514 1221243 1221272 "INS" 1222240 T INS (NIL) -9 NIL 1222921) (-506 1215754 1216525 1217499 "INS-" 1217572 NIL INS- (NIL T) -8 NIL NIL) (-505 1214533 1214760 1215057 "INPSIGN" 1215507 NIL INPSIGN (NIL T T) -7 NIL NIL) (-504 1213651 1213768 1213965 "INPRODPF" 1214413 NIL INPRODPF (NIL T T) -7 NIL NIL) (-503 1212545 1212662 1212899 "INPRODFF" 1213531 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-502 1211545 1211697 1211957 "INNMFACT" 1212381 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-501 1210742 1210839 1211027 "INMODGCD" 1211444 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-500 1209251 1209495 1209819 "INFSP" 1210487 NIL INFSP (NIL T T T) -7 NIL NIL) (-499 1208435 1208552 1208735 "INFPROD0" 1209131 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-498 1205445 1206604 1207095 "INFORM" 1207952 T INFORM (NIL) -8 NIL NIL) (-497 1205055 1205115 1205213 "INFORM1" 1205380 NIL INFORM1 (NIL T) -7 NIL NIL) (-496 1204578 1204667 1204781 "INFINITY" 1204961 T INFINITY (NIL) -7 NIL NIL) (-495 1203196 1203444 1203765 "INEP" 1204326 NIL INEP (NIL T T T) -7 NIL NIL) (-494 1202472 1203093 1203158 "INDE" 1203163 NIL INDE (NIL T) -8 NIL NIL) (-493 1202036 1202104 1202221 "INCRMAPS" 1202399 NIL INCRMAPS (NIL T) -7 NIL NIL) (-492 1197347 1198272 1199216 "INBFF" 1201124 NIL INBFF (NIL T) -7 NIL NIL) (-491 1193842 1197192 1197295 "IMATRIX" 1197300 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-490 1192554 1192677 1192992 "IMATQF" 1193698 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-489 1190774 1191001 1191338 "IMATLIN" 1192310 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-488 1185400 1190698 1190756 "ILIST" 1190761 NIL ILIST (NIL T NIL) -8 NIL NIL) (-487 1183353 1185260 1185373 "IIARRAY2" 1185378 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-486 1178721 1183264 1183328 "IFF" 1183333 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-485 1173764 1178013 1178201 "IFARRAY" 1178578 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-484 1172971 1173668 1173741 "IFAMON" 1173746 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-483 1172554 1172619 1172674 "IEVALAB" 1172881 NIL IEVALAB (NIL T T) -9 NIL NIL) (-482 1172229 1172297 1172457 "IEVALAB-" 1172462 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-481 1171887 1172143 1172206 "IDPO" 1172211 NIL IDPO (NIL T T) -8 NIL NIL) (-480 1171164 1171776 1171851 "IDPOAMS" 1171856 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-479 1170498 1171053 1171128 "IDPOAM" 1171133 NIL IDPOAM (NIL T T) -8 NIL NIL) (-478 1169583 1169833 1169887 "IDPC" 1170300 NIL IDPC (NIL T T) -9 NIL 1170449) (-477 1169079 1169475 1169548 "IDPAM" 1169553 NIL IDPAM (NIL T T) -8 NIL NIL) (-476 1168482 1168971 1169044 "IDPAG" 1169049 NIL IDPAG (NIL T T) -8 NIL NIL) (-475 1164737 1165585 1166480 "IDECOMP" 1167639 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-474 1157611 1158660 1159707 "IDEAL" 1163773 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-473 1156775 1156887 1157086 "ICDEN" 1157495 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-472 1155874 1156255 1156402 "ICARD" 1156648 T ICARD (NIL) -8 NIL NIL) (-471 1153946 1154259 1154662 "IBPTOOLS" 1155551 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-470 1149560 1153566 1153679 "IBITS" 1153865 NIL IBITS (NIL NIL) -8 NIL NIL) (-469 1146283 1146859 1147554 "IBATOOL" 1148977 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-468 1144063 1144524 1145057 "IBACHIN" 1145818 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-467 1141940 1143909 1144012 "IARRAY2" 1144017 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-466 1138093 1141866 1141923 "IARRAY1" 1141928 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-465 1132032 1136511 1136989 "IAN" 1137635 T IAN (NIL) -8 NIL NIL) (-464 1131543 1131600 1131773 "IALGFACT" 1131969 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-463 1131070 1131183 1131212 "HYPCAT" 1131419 T HYPCAT (NIL) -9 NIL NIL) (-462 1130608 1130725 1130911 "HYPCAT-" 1130916 NIL HYPCAT- (NIL T) -8 NIL NIL) (-461 1127287 1128618 1128660 "HOAGG" 1129641 NIL HOAGG (NIL T) -9 NIL 1130320) (-460 1125881 1126280 1126806 "HOAGG-" 1126811 NIL HOAGG- (NIL T T) -8 NIL NIL) (-459 1119712 1125322 1125488 "HEXADEC" 1125735 T HEXADEC (NIL) -8 NIL NIL) (-458 1118460 1118682 1118945 "HEUGCD" 1119489 NIL HEUGCD (NIL T) -7 NIL NIL) (-457 1117563 1118297 1118427 "HELLFDIV" 1118432 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-456 1115791 1117340 1117428 "HEAP" 1117507 NIL HEAP (NIL T) -8 NIL NIL) (-455 1109658 1115706 1115768 "HDP" 1115773 NIL HDP (NIL NIL T) -8 NIL NIL) (-454 1103370 1109295 1109446 "HDMP" 1109559 NIL HDMP (NIL NIL T) -8 NIL NIL) (-453 1102695 1102834 1102998 "HB" 1103226 T HB (NIL) -7 NIL NIL) (-452 1096192 1102541 1102645 "HASHTBL" 1102650 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-451 1093945 1095820 1095999 "HACKPI" 1096033 T HACKPI (NIL) -8 NIL NIL) (-450 1089641 1093799 1093911 "GTSET" 1093916 NIL GTSET (NIL T T T T) -8 NIL NIL) (-449 1083167 1089519 1089617 "GSTBL" 1089622 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-448 1075403 1082203 1082467 "GSERIES" 1082958 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-447 1074425 1074878 1074907 "GROUP" 1075168 T GROUP (NIL) -9 NIL 1075327) (-446 1073541 1073764 1074108 "GROUP-" 1074113 NIL GROUP- (NIL T) -8 NIL NIL) (-445 1071910 1072229 1072616 "GROEBSOL" 1073218 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-444 1070850 1071112 1071164 "GRMOD" 1071693 NIL GRMOD (NIL T T) -9 NIL 1071861) (-443 1070618 1070654 1070782 "GRMOD-" 1070787 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-442 1065946 1066972 1067972 "GRIMAGE" 1069638 T GRIMAGE (NIL) -8 NIL NIL) (-441 1064413 1064673 1064997 "GRDEF" 1065642 T GRDEF (NIL) -7 NIL NIL) (-440 1063857 1063973 1064114 "GRAY" 1064292 T GRAY (NIL) -7 NIL NIL) (-439 1063090 1063470 1063522 "GRALG" 1063675 NIL GRALG (NIL T T) -9 NIL 1063767) (-438 1062751 1062824 1062987 "GRALG-" 1062992 NIL GRALG- (NIL T T T) -8 NIL NIL) (-437 1059559 1062340 1062516 "GPOLSET" 1062658 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-436 1058915 1058972 1059229 "GOSPER" 1059496 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-435 1054674 1055353 1055879 "GMODPOL" 1058614 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-434 1053679 1053863 1054101 "GHENSEL" 1054486 NIL GHENSEL (NIL T T) -7 NIL NIL) (-433 1047745 1048588 1049614 "GENUPS" 1052763 NIL GENUPS (NIL T T) -7 NIL NIL) (-432 1047442 1047493 1047582 "GENUFACT" 1047688 NIL GENUFACT (NIL T) -7 NIL NIL) (-431 1046854 1046931 1047096 "GENPGCD" 1047360 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-430 1046328 1046363 1046576 "GENMFACT" 1046813 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-429 1044896 1045151 1045458 "GENEEZ" 1046071 NIL GENEEZ (NIL T T) -7 NIL NIL) (-428 1038770 1044509 1044670 "GDMP" 1044819 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-427 1028152 1032541 1033647 "GCNAALG" 1037753 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-426 1026573 1027445 1027474 "GCDDOM" 1027729 T GCDDOM (NIL) -9 NIL 1027886) (-425 1026043 1026170 1026385 "GCDDOM-" 1026390 NIL GCDDOM- (NIL T) -8 NIL NIL) (-424 1024715 1024900 1025204 "GB" 1025822 NIL GB (NIL T T T T) -7 NIL NIL) (-423 1013335 1015661 1018053 "GBINTERN" 1022406 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-422 1011172 1011464 1011885 "GBF" 1013010 NIL GBF (NIL T T T T) -7 NIL NIL) (-421 1009953 1010118 1010385 "GBEUCLID" 1010988 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-420 1009302 1009427 1009576 "GAUSSFAC" 1009824 T GAUSSFAC (NIL) -7 NIL NIL) (-419 1007679 1007981 1008294 "GALUTIL" 1009021 NIL GALUTIL (NIL T) -7 NIL NIL) (-418 1005996 1006270 1006593 "GALPOLYU" 1007406 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-417 1003385 1003675 1004080 "GALFACTU" 1005693 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-416 995191 996690 998298 "GALFACT" 1001817 NIL GALFACT (NIL T) -7 NIL NIL) (-415 992578 993236 993265 "FVFUN" 994421 T FVFUN (NIL) -9 NIL 995141) (-414 991843 992025 992054 "FVC" 992345 T FVC (NIL) -9 NIL 992528) (-413 991485 991640 991721 "FUNCTION" 991795 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-412 989155 989706 990195 "FT" 991016 T FT (NIL) -8 NIL NIL) (-411 987973 988456 988659 "FTEM" 988972 T FTEM (NIL) -8 NIL NIL) (-410 986238 986526 986928 "FSUPFACT" 987665 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-409 984635 984924 985256 "FST" 985926 T FST (NIL) -8 NIL NIL) (-408 983810 983916 984110 "FSRED" 984517 NIL FSRED (NIL T T) -7 NIL NIL) (-407 982489 982744 983098 "FSPRMELT" 983525 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-406 979574 980012 980511 "FSPECF" 982052 NIL FSPECF (NIL T T) -7 NIL NIL) (-405 961947 970504 970545 "FS" 974383 NIL FS (NIL T) -9 NIL 976665) (-404 950597 953587 957643 "FS-" 957940 NIL FS- (NIL T T) -8 NIL NIL) (-403 950113 950167 950343 "FSINT" 950538 NIL FSINT (NIL T T) -7 NIL NIL) (-402 948394 949106 949409 "FSERIES" 949892 NIL FSERIES (NIL T T) -8 NIL NIL) (-401 947412 947528 947758 "FSCINT" 948274 NIL FSCINT (NIL T T) -7 NIL NIL) (-400 943646 946356 946398 "FSAGG" 946768 NIL FSAGG (NIL T) -9 NIL 947027) (-399 941408 942009 942805 "FSAGG-" 942900 NIL FSAGG- (NIL T T) -8 NIL NIL) (-398 940450 940593 940820 "FSAGG2" 941261 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-397 938109 938388 938941 "FS2UPS" 940168 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-396 937695 937738 937891 "FS2" 938060 NIL FS2 (NIL T T T T) -7 NIL NIL) (-395 936555 936726 937034 "FS2EXPXP" 937520 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-394 935981 936096 936248 "FRUTIL" 936435 NIL FRUTIL (NIL T) -7 NIL NIL) (-393 927402 931480 932836 "FR" 934657 NIL FR (NIL T) -8 NIL NIL) (-392 922478 925121 925162 "FRNAALG" 926558 NIL FRNAALG (NIL T) -9 NIL 927165) (-391 918157 919227 920502 "FRNAALG-" 921252 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-390 917795 917838 917965 "FRNAAF2" 918108 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-389 916160 916652 916946 "FRMOD" 917608 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-388 913883 914551 914867 "FRIDEAL" 915951 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-387 913082 913169 913456 "FRIDEAL2" 913790 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-386 912339 912747 912789 "FRETRCT" 912794 NIL FRETRCT (NIL T) -9 NIL 912965) (-385 911451 911682 912033 "FRETRCT-" 912038 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-384 908660 909880 909940 "FRAMALG" 910822 NIL FRAMALG (NIL T T) -9 NIL 911114) (-383 906793 907249 907879 "FRAMALG-" 908102 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-382 900695 906268 906544 "FRAC" 906549 NIL FRAC (NIL T) -8 NIL NIL) (-381 900331 900388 900495 "FRAC2" 900632 NIL FRAC2 (NIL T T) -7 NIL NIL) (-380 899967 900024 900131 "FR2" 900268 NIL FR2 (NIL T T) -7 NIL NIL) (-379 894640 897553 897582 "FPS" 898701 T FPS (NIL) -9 NIL 899257) (-378 894089 894198 894362 "FPS-" 894508 NIL FPS- (NIL T) -8 NIL NIL) (-377 891537 893234 893263 "FPC" 893488 T FPC (NIL) -9 NIL 893630) (-376 891330 891370 891467 "FPC-" 891472 NIL FPC- (NIL T) -8 NIL NIL) (-375 890208 890818 890860 "FPATMAB" 890865 NIL FPATMAB (NIL T) -9 NIL 891017) (-374 887908 888384 888810 "FPARFRAC" 889845 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-373 883303 883800 884482 "FORTRAN" 887340 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-372 881019 881519 882058 "FORT" 882784 T FORT (NIL) -7 NIL NIL) (-371 878694 879256 879285 "FORTFN" 880345 T FORTFN (NIL) -9 NIL 880969) (-370 878457 878507 878536 "FORTCAT" 878595 T FORTCAT (NIL) -9 NIL 878657) (-369 876517 877000 877399 "FORMULA" 878078 T FORMULA (NIL) -8 NIL NIL) (-368 876305 876335 876404 "FORMULA1" 876481 NIL FORMULA1 (NIL T) -7 NIL NIL) (-367 875828 875880 876053 "FORDER" 876247 NIL FORDER (NIL T T T T) -7 NIL NIL) (-366 874924 875088 875281 "FOP" 875655 T FOP (NIL) -7 NIL NIL) (-365 873532 874204 874378 "FNLA" 874806 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-364 872200 872589 872618 "FNCAT" 873190 T FNCAT (NIL) -9 NIL 873483) (-363 871766 872159 872187 "FNAME" 872192 T FNAME (NIL) -8 NIL NIL) (-362 870425 871398 871427 "FMTC" 871432 T FMTC (NIL) -9 NIL 871467) (-361 866743 867950 868578 "FMONOID" 869830 NIL FMONOID (NIL T) -8 NIL NIL) (-360 865963 866486 866634 "FM" 866639 NIL FM (NIL T T) -8 NIL NIL) (-359 863386 864032 864061 "FMFUN" 865205 T FMFUN (NIL) -9 NIL 865913) (-358 862654 862835 862864 "FMC" 863154 T FMC (NIL) -9 NIL 863336) (-357 859883 860717 860771 "FMCAT" 861953 NIL FMCAT (NIL T T) -9 NIL 862447) (-356 858778 859651 859750 "FM1" 859828 NIL FM1 (NIL T T) -8 NIL NIL) (-355 856552 856968 857462 "FLOATRP" 858329 NIL FLOATRP (NIL T) -7 NIL NIL) (-354 850038 854208 854838 "FLOAT" 855942 T FLOAT (NIL) -8 NIL NIL) (-353 847476 847976 848554 "FLOATCP" 849505 NIL FLOATCP (NIL T) -7 NIL NIL) (-352 846264 847112 847153 "FLINEXP" 847158 NIL FLINEXP (NIL T) -9 NIL 847251) (-351 845419 845654 845981 "FLINEXP-" 845986 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-350 844495 844639 844863 "FLASORT" 845271 NIL FLASORT (NIL T T) -7 NIL NIL) (-349 841713 842555 842608 "FLALG" 843835 NIL FLALG (NIL T T) -9 NIL 844302) (-348 835497 839199 839241 "FLAGG" 840503 NIL FLAGG (NIL T) -9 NIL 841155) (-347 834223 834562 835052 "FLAGG-" 835057 NIL FLAGG- (NIL T T) -8 NIL NIL) (-346 833265 833408 833635 "FLAGG2" 834076 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-345 830237 831255 831315 "FINRALG" 832443 NIL FINRALG (NIL T T) -9 NIL 832951) (-344 829397 829626 829965 "FINRALG-" 829970 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-343 828803 829016 829045 "FINITE" 829241 T FINITE (NIL) -9 NIL 829348) (-342 821262 823423 823464 "FINAALG" 827131 NIL FINAALG (NIL T) -9 NIL 828584) (-341 816603 817644 818788 "FINAALG-" 820167 NIL FINAALG- (NIL T T) -8 NIL NIL) (-340 815998 816358 816461 "FILE" 816533 NIL FILE (NIL T) -8 NIL NIL) (-339 814682 814994 815049 "FILECAT" 815733 NIL FILECAT (NIL T T) -9 NIL 815949) (-338 812544 814100 814129 "FIELD" 814169 T FIELD (NIL) -9 NIL 814249) (-337 811164 811549 812060 "FIELD-" 812065 NIL FIELD- (NIL T) -8 NIL NIL) (-336 808979 809801 810147 "FGROUP" 810851 NIL FGROUP (NIL T) -8 NIL NIL) (-335 808069 808233 808453 "FGLMICPK" 808811 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-334 803871 807994 808051 "FFX" 808056 NIL FFX (NIL T NIL) -8 NIL NIL) (-333 803472 803533 803668 "FFSLPE" 803804 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-332 799467 800244 801040 "FFPOLY" 802708 NIL FFPOLY (NIL T) -7 NIL NIL) (-331 798971 799007 799216 "FFPOLY2" 799425 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-330 794793 798890 798953 "FFP" 798958 NIL FFP (NIL T NIL) -8 NIL NIL) (-329 790161 794704 794768 "FF" 794773 NIL FF (NIL NIL NIL) -8 NIL NIL) (-328 785257 789504 789694 "FFNBX" 790015 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-327 780167 784392 784650 "FFNBP" 785111 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-326 774770 779451 779662 "FFNB" 780000 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-325 773602 773800 774115 "FFINTBAS" 774567 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-324 769825 772065 772094 "FFIELDC" 772714 T FFIELDC (NIL) -9 NIL 773090) (-323 768488 768858 769355 "FFIELDC-" 769360 NIL FFIELDC- (NIL T) -8 NIL NIL) (-322 768058 768103 768227 "FFHOM" 768430 NIL FFHOM (NIL T T T) -7 NIL NIL) (-321 765756 766240 766757 "FFF" 767573 NIL FFF (NIL T) -7 NIL NIL) (-320 761344 765498 765599 "FFCGX" 765699 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-319 756946 761076 761183 "FFCGP" 761287 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-318 752099 756673 756781 "FFCG" 756882 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-317 734044 743167 743254 "FFCAT" 748419 NIL FFCAT (NIL T T T) -9 NIL 749906) (-316 729242 730289 731603 "FFCAT-" 732833 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-315 728653 728696 728931 "FFCAT2" 729193 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-314 717853 721643 722860 "FEXPR" 727508 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-313 716852 717287 717329 "FEVALAB" 717413 NIL FEVALAB (NIL T) -9 NIL 717674) (-312 716011 716221 716559 "FEVALAB-" 716564 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-311 714604 715394 715597 "FDIV" 715910 NIL FDIV (NIL T T T T) -8 NIL NIL) (-310 711670 712385 712501 "FDIVCAT" 714069 NIL FDIVCAT (NIL T T T T) -9 NIL 714506) (-309 711432 711459 711629 "FDIVCAT-" 711634 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-308 710652 710739 711016 "FDIV2" 711339 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-307 709338 709597 709886 "FCPAK1" 710383 T FCPAK1 (NIL) -7 NIL NIL) (-306 708466 708838 708979 "FCOMP" 709229 NIL FCOMP (NIL T) -8 NIL NIL) (-305 692094 695509 699072 "FC" 704923 T FC (NIL) -8 NIL NIL) (-304 684689 688735 688776 "FAXF" 690578 NIL FAXF (NIL T) -9 NIL 691269) (-303 681968 682623 683448 "FAXF-" 683913 NIL FAXF- (NIL T T) -8 NIL NIL) (-302 677068 681344 681520 "FARRAY" 681825 NIL FARRAY (NIL T) -8 NIL NIL) (-301 672458 674529 674582 "FAMR" 675594 NIL FAMR (NIL T T) -9 NIL 676054) (-300 671349 671651 672085 "FAMR-" 672090 NIL FAMR- (NIL T T T) -8 NIL NIL) (-299 670545 671271 671324 "FAMONOID" 671329 NIL FAMONOID (NIL T) -8 NIL NIL) (-298 668377 669061 669115 "FAMONC" 670056 NIL FAMONC (NIL T T) -9 NIL 670441) (-297 667069 668131 668268 "FAGROUP" 668273 NIL FAGROUP (NIL T) -8 NIL NIL) (-296 664872 665191 665593 "FACUTIL" 666750 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-295 663971 664156 664378 "FACTFUNC" 664682 NIL FACTFUNC (NIL T) -7 NIL NIL) (-294 656294 663222 663434 "EXPUPXS" 663827 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-293 653777 654317 654903 "EXPRTUBE" 655728 T EXPRTUBE (NIL) -7 NIL NIL) (-292 649971 650563 651300 "EXPRODE" 653116 NIL EXPRODE (NIL T T) -7 NIL NIL) (-291 635130 648630 649056 "EXPR" 649577 NIL EXPR (NIL T) -8 NIL NIL) (-290 629558 630145 630957 "EXPR2UPS" 634428 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-289 629194 629251 629358 "EXPR2" 629495 NIL EXPR2 (NIL T T) -7 NIL NIL) (-288 620548 628331 628626 "EXPEXPAN" 629032 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-287 620375 620505 620534 "EXIT" 620539 T EXIT (NIL) -8 NIL NIL) (-286 620002 620064 620177 "EVALCYC" 620307 NIL EVALCYC (NIL T) -7 NIL NIL) (-285 619542 619660 619702 "EVALAB" 619872 NIL EVALAB (NIL T) -9 NIL 619976) (-284 619023 619145 619366 "EVALAB-" 619371 NIL EVALAB- (NIL T T) -8 NIL NIL) (-283 616485 617797 617826 "EUCDOM" 618381 T EUCDOM (NIL) -9 NIL 618731) (-282 614890 615332 615922 "EUCDOM-" 615927 NIL EUCDOM- (NIL T) -8 NIL NIL) (-281 602468 605216 607956 "ESTOOLS" 612170 T ESTOOLS (NIL) -7 NIL NIL) (-280 602104 602161 602268 "ESTOOLS2" 602405 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-279 601855 601897 601977 "ESTOOLS1" 602056 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-278 595792 597516 597545 "ES" 600309 T ES (NIL) -9 NIL 601715) (-277 590740 592026 593843 "ES-" 594007 NIL ES- (NIL T) -8 NIL NIL) (-276 587115 587875 588655 "ESCONT" 589980 T ESCONT (NIL) -7 NIL NIL) (-275 586860 586892 586974 "ESCONT1" 587077 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-274 586535 586585 586685 "ES2" 586804 NIL ES2 (NIL T T) -7 NIL NIL) (-273 586165 586223 586332 "ES1" 586471 NIL ES1 (NIL T T) -7 NIL NIL) (-272 585381 585510 585686 "ERROR" 586009 T ERROR (NIL) -7 NIL NIL) (-271 578884 585240 585331 "EQTBL" 585336 NIL EQTBL (NIL T T) -8 NIL NIL) (-270 571321 574202 575649 "EQ" 577470 NIL -3185 (NIL T) -8 NIL NIL) (-269 570953 571010 571119 "EQ2" 571258 NIL EQ2 (NIL T T) -7 NIL NIL) (-268 566245 567291 568384 "EP" 569892 NIL EP (NIL T) -7 NIL NIL) (-267 564828 565128 565445 "ENV" 565948 T ENV (NIL) -8 NIL NIL) (-266 563987 564551 564580 "ENTIRER" 564585 T ENTIRER (NIL) -9 NIL 564630) (-265 560443 561942 562312 "EMR" 563786 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-264 559586 559771 559826 "ELTAGG" 560206 NIL ELTAGG (NIL T T) -9 NIL 560417) (-263 559305 559367 559508 "ELTAGG-" 559513 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-262 559093 559122 559177 "ELTAB" 559261 NIL ELTAB (NIL T T) -9 NIL NIL) (-261 558219 558365 558564 "ELFUTS" 558944 NIL ELFUTS (NIL T T) -7 NIL NIL) (-260 557960 558016 558045 "ELEMFUN" 558150 T ELEMFUN (NIL) -9 NIL NIL) (-259 557830 557851 557919 "ELEMFUN-" 557924 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-258 552721 555930 555972 "ELAGG" 556912 NIL ELAGG (NIL T) -9 NIL 557375) (-257 551006 551440 552103 "ELAGG-" 552108 NIL ELAGG- (NIL T T) -8 NIL NIL) (-256 549662 549943 550238 "ELABEXPR" 550731 T ELABEXPR (NIL) -8 NIL NIL) (-255 542530 544329 545156 "EFUPXS" 548938 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-254 535980 537781 538591 "EFULS" 541806 NIL EFULS (NIL T T T) -8 NIL NIL) (-253 533411 533769 534247 "EFSTRUC" 535612 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-252 522483 524048 525608 "EF" 531926 NIL EF (NIL T T) -7 NIL NIL) (-251 521584 521968 522117 "EAB" 522354 T EAB (NIL) -8 NIL NIL) (-250 520797 521543 521571 "E04UCFA" 521576 T E04UCFA (NIL) -8 NIL NIL) (-249 520010 520756 520784 "E04NAFA" 520789 T E04NAFA (NIL) -8 NIL NIL) (-248 519223 519969 519997 "E04MBFA" 520002 T E04MBFA (NIL) -8 NIL NIL) (-247 518436 519182 519210 "E04JAFA" 519215 T E04JAFA (NIL) -8 NIL NIL) (-246 517651 518395 518423 "E04GCFA" 518428 T E04GCFA (NIL) -8 NIL NIL) (-245 516866 517610 517638 "E04FDFA" 517643 T E04FDFA (NIL) -8 NIL NIL) (-244 516079 516825 516853 "E04DGFA" 516858 T E04DGFA (NIL) -8 NIL NIL) (-243 510264 511609 512971 "E04AGNT" 514737 T E04AGNT (NIL) -7 NIL NIL) (-242 508990 509470 509511 "DVARCAT" 509986 NIL DVARCAT (NIL T) -9 NIL 510184) (-241 508194 508406 508720 "DVARCAT-" 508725 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-240 501056 507996 508123 "DSMP" 508128 NIL DSMP (NIL T T T) -8 NIL NIL) (-239 495866 497001 498069 "DROPT" 500008 T DROPT (NIL) -8 NIL NIL) (-238 495531 495590 495688 "DROPT1" 495801 NIL DROPT1 (NIL T) -7 NIL NIL) (-237 490646 491772 492909 "DROPT0" 494414 T DROPT0 (NIL) -7 NIL NIL) (-236 488991 489316 489702 "DRAWPT" 490280 T DRAWPT (NIL) -7 NIL NIL) (-235 483578 484501 485580 "DRAW" 487965 NIL DRAW (NIL T) -7 NIL NIL) (-234 483211 483264 483382 "DRAWHACK" 483519 NIL DRAWHACK (NIL T) -7 NIL NIL) (-233 481942 482211 482502 "DRAWCX" 482940 T DRAWCX (NIL) -7 NIL NIL) (-232 481460 481528 481678 "DRAWCURV" 481868 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-231 471932 473890 476005 "DRAWCFUN" 479365 T DRAWCFUN (NIL) -7 NIL NIL) (-230 468745 470627 470669 "DQAGG" 471298 NIL DQAGG (NIL T) -9 NIL 471571) (-229 457251 463989 464072 "DPOLCAT" 465910 NIL DPOLCAT (NIL T T T T) -9 NIL 466454) (-228 452091 453437 455394 "DPOLCAT-" 455399 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-227 446175 451953 452050 "DPMO" 452055 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-226 440162 445956 446122 "DPMM" 446127 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-225 439675 439773 439893 "DOMAIN" 440062 T DOMAIN (NIL) -8 NIL NIL) (-224 433387 439312 439463 "DMP" 439576 NIL DMP (NIL NIL T) -8 NIL NIL) (-223 432987 433043 433187 "DLP" 433325 NIL DLP (NIL T) -7 NIL NIL) (-222 426631 432088 432315 "DLIST" 432792 NIL DLIST (NIL T) -8 NIL NIL) (-221 423477 425486 425528 "DLAGG" 426078 NIL DLAGG (NIL T) -9 NIL 426307) (-220 422186 422878 422907 "DIVRING" 423057 T DIVRING (NIL) -9 NIL 423165) (-219 421174 421427 421820 "DIVRING-" 421825 NIL DIVRING- (NIL T) -8 NIL NIL) (-218 419276 419633 420039 "DISPLAY" 420788 T DISPLAY (NIL) -7 NIL NIL) (-217 413165 419190 419253 "DIRPROD" 419258 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-216 412013 412216 412481 "DIRPROD2" 412958 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-215 401643 407648 407702 "DIRPCAT" 408110 NIL DIRPCAT (NIL NIL T) -9 NIL 408937) (-214 398969 399611 400492 "DIRPCAT-" 400829 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-213 398256 398416 398602 "DIOSP" 398803 T DIOSP (NIL) -7 NIL NIL) (-212 394958 397168 397210 "DIOPS" 397644 NIL DIOPS (NIL T) -9 NIL 397873) (-211 394507 394621 394812 "DIOPS-" 394817 NIL DIOPS- (NIL T T) -8 NIL NIL) (-210 393378 394016 394045 "DIFRING" 394232 T DIFRING (NIL) -9 NIL 394341) (-209 393024 393101 393253 "DIFRING-" 393258 NIL DIFRING- (NIL T) -8 NIL NIL) (-208 390813 392095 392136 "DIFEXT" 392495 NIL DIFEXT (NIL T) -9 NIL 392788) (-207 389099 389527 390192 "DIFEXT-" 390197 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-206 386421 388631 388673 "DIAGG" 388678 NIL DIAGG (NIL T) -9 NIL 388698) (-205 385805 385962 386214 "DIAGG-" 386219 NIL DIAGG- (NIL T T) -8 NIL NIL) (-204 381270 384764 385041 "DHMATRIX" 385574 NIL DHMATRIX (NIL T) -8 NIL NIL) (-203 376882 377791 378801 "DFSFUN" 380280 T DFSFUN (NIL) -7 NIL NIL) (-202 371668 375596 375961 "DFLOAT" 376537 T DFLOAT (NIL) -8 NIL NIL) (-201 369901 370182 370577 "DFINTTLS" 371376 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-200 366934 367936 368334 "DERHAM" 369568 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-199 364783 366709 366798 "DEQUEUE" 366878 NIL DEQUEUE (NIL T) -8 NIL NIL) (-198 364001 364134 364329 "DEGRED" 364645 NIL DEGRED (NIL T T) -7 NIL NIL) (-197 360401 361146 361998 "DEFINTRF" 363229 NIL DEFINTRF (NIL T) -7 NIL NIL) (-196 357932 358401 358999 "DEFINTEF" 359920 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-195 351763 357373 357539 "DECIMAL" 357786 T DECIMAL (NIL) -8 NIL NIL) (-194 349275 349733 350239 "DDFACT" 351307 NIL DDFACT (NIL T T) -7 NIL NIL) (-193 348871 348914 349065 "DBLRESP" 349226 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-192 346581 346915 347284 "DBASE" 348629 NIL DBASE (NIL T) -8 NIL NIL) (-191 345716 346540 346568 "D03FAFA" 346573 T D03FAFA (NIL) -8 NIL NIL) (-190 344852 345675 345703 "D03EEFA" 345708 T D03EEFA (NIL) -8 NIL NIL) (-189 342802 343268 343757 "D03AGNT" 344383 T D03AGNT (NIL) -7 NIL NIL) (-188 342120 342761 342789 "D02EJFA" 342794 T D02EJFA (NIL) -8 NIL NIL) (-187 341438 342079 342107 "D02CJFA" 342112 T D02CJFA (NIL) -8 NIL NIL) (-186 340756 341397 341425 "D02BHFA" 341430 T D02BHFA (NIL) -8 NIL NIL) (-185 340074 340715 340743 "D02BBFA" 340748 T D02BBFA (NIL) -8 NIL NIL) (-184 333272 334860 336466 "D02AGNT" 338488 T D02AGNT (NIL) -7 NIL NIL) (-183 331041 331563 332109 "D01WGTS" 332746 T D01WGTS (NIL) -7 NIL NIL) (-182 330144 331000 331028 "D01TRNS" 331033 T D01TRNS (NIL) -8 NIL NIL) (-181 329247 330103 330131 "D01GBFA" 330136 T D01GBFA (NIL) -8 NIL NIL) (-180 328350 329206 329234 "D01FCFA" 329239 T D01FCFA (NIL) -8 NIL NIL) (-179 327453 328309 328337 "D01ASFA" 328342 T D01ASFA (NIL) -8 NIL NIL) (-178 326556 327412 327440 "D01AQFA" 327445 T D01AQFA (NIL) -8 NIL NIL) (-177 325659 326515 326543 "D01APFA" 326548 T D01APFA (NIL) -8 NIL NIL) (-176 324762 325618 325646 "D01ANFA" 325651 T D01ANFA (NIL) -8 NIL NIL) (-175 323865 324721 324749 "D01AMFA" 324754 T D01AMFA (NIL) -8 NIL NIL) (-174 322968 323824 323852 "D01ALFA" 323857 T D01ALFA (NIL) -8 NIL NIL) (-173 322071 322927 322955 "D01AKFA" 322960 T D01AKFA (NIL) -8 NIL NIL) (-172 321174 322030 322058 "D01AJFA" 322063 T D01AJFA (NIL) -8 NIL NIL) (-171 314478 316027 317586 "D01AGNT" 319635 T D01AGNT (NIL) -7 NIL NIL) (-170 313815 313943 314095 "CYCLOTOM" 314346 T CYCLOTOM (NIL) -7 NIL NIL) (-169 310550 311263 311990 "CYCLES" 313108 T CYCLES (NIL) -7 NIL NIL) (-168 309862 309996 310167 "CVMP" 310411 NIL CVMP (NIL T) -7 NIL NIL) (-167 307644 307901 308276 "CTRIGMNP" 309590 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-166 307249 307332 307437 "CTORCALL" 307559 T CTORCALL (NIL) -8 NIL NIL) (-165 306623 306722 306875 "CSTTOOLS" 307146 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-164 302422 303079 303837 "CRFP" 305935 NIL CRFP (NIL T T) -7 NIL NIL) (-163 301469 301654 301882 "CRAPACK" 302226 NIL CRAPACK (NIL T) -7 NIL NIL) (-162 300853 300954 301158 "CPMATCH" 301345 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-161 300578 300606 300712 "CPIMA" 300819 NIL CPIMA (NIL T T T) -7 NIL NIL) (-160 296942 297614 298332 "COORDSYS" 299913 NIL COORDSYS (NIL T) -7 NIL NIL) (-159 296326 296455 296605 "CONTOUR" 296812 T CONTOUR (NIL) -8 NIL NIL) (-158 292187 294329 294821 "CONTFRAC" 295866 NIL CONTFRAC (NIL T) -8 NIL NIL) (-157 291340 291904 291933 "COMRING" 291938 T COMRING (NIL) -9 NIL 291989) (-156 290421 290698 290882 "COMPPROP" 291176 T COMPPROP (NIL) -8 NIL NIL) (-155 290082 290117 290245 "COMPLPAT" 290380 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-154 280063 289891 290000 "COMPLEX" 290005 NIL COMPLEX (NIL T) -8 NIL NIL) (-153 279699 279756 279863 "COMPLEX2" 280000 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-152 279417 279452 279550 "COMPFACT" 279658 NIL COMPFACT (NIL T T) -7 NIL NIL) (-151 263751 274045 274086 "COMPCAT" 275088 NIL COMPCAT (NIL T) -9 NIL 276481) (-150 253266 256190 259817 "COMPCAT-" 260173 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-149 252997 253025 253127 "COMMUPC" 253232 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-148 252792 252825 252884 "COMMONOP" 252958 T COMMONOP (NIL) -7 NIL NIL) (-147 252375 252543 252630 "COMM" 252725 T COMM (NIL) -8 NIL NIL) (-146 251623 251817 251846 "COMBOPC" 252184 T COMBOPC (NIL) -9 NIL 252359) (-145 250519 250729 250971 "COMBINAT" 251413 NIL COMBINAT (NIL T) -7 NIL NIL) (-144 246717 247290 247930 "COMBF" 249941 NIL COMBF (NIL T T) -7 NIL NIL) (-143 245503 245833 246068 "COLOR" 246502 T COLOR (NIL) -8 NIL NIL) (-142 245143 245190 245315 "CMPLXRT" 245450 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-141 240645 241673 242753 "CLIP" 244083 T CLIP (NIL) -7 NIL NIL) (-140 238983 239753 239991 "CLIF" 240473 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-139 235205 237129 237171 "CLAGG" 238100 NIL CLAGG (NIL T) -9 NIL 238636) (-138 233627 234084 234667 "CLAGG-" 234672 NIL CLAGG- (NIL T T) -8 NIL NIL) (-137 233171 233256 233396 "CINTSLPE" 233536 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-136 230672 231143 231691 "CHVAR" 232699 NIL CHVAR (NIL T T T) -7 NIL NIL) (-135 229894 230458 230487 "CHARZ" 230492 T CHARZ (NIL) -9 NIL 230506) (-134 229648 229688 229766 "CHARPOL" 229848 NIL CHARPOL (NIL T) -7 NIL NIL) (-133 228754 229351 229380 "CHARNZ" 229427 T CHARNZ (NIL) -9 NIL 229482) (-132 226777 227444 227779 "CHAR" 228439 T CHAR (NIL) -8 NIL NIL) (-131 226502 226563 226592 "CFCAT" 226703 T CFCAT (NIL) -9 NIL NIL) (-130 225747 225858 226040 "CDEN" 226386 NIL CDEN (NIL T T T) -7 NIL NIL) (-129 221739 224900 225180 "CCLASS" 225487 T CCLASS (NIL) -8 NIL NIL) (-128 216792 217768 218521 "CARTEN" 221042 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-127 215900 216048 216269 "CARTEN2" 216639 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-126 214197 215052 215308 "CARD" 215664 T CARD (NIL) -8 NIL NIL) (-125 213569 213897 213926 "CACHSET" 214058 T CACHSET (NIL) -9 NIL 214135) (-124 213065 213361 213390 "CABMON" 213440 T CABMON (NIL) -9 NIL 213496) (-123 210622 212757 212864 "BTREE" 212991 NIL BTREE (NIL T) -8 NIL NIL) (-122 208120 210270 210392 "BTOURN" 210532 NIL BTOURN (NIL T) -8 NIL NIL) (-121 205538 207591 207633 "BTCAT" 207701 NIL BTCAT (NIL T) -9 NIL 207778) (-120 205205 205285 205434 "BTCAT-" 205439 NIL BTCAT- (NIL T T) -8 NIL NIL) (-119 200425 204296 204325 "BTAGG" 204581 T BTAGG (NIL) -9 NIL 204760) (-118 199848 199992 200222 "BTAGG-" 200227 NIL BTAGG- (NIL T) -8 NIL NIL) (-117 196892 199126 199341 "BSTREE" 199665 NIL BSTREE (NIL T) -8 NIL NIL) (-116 196030 196156 196340 "BRILL" 196748 NIL BRILL (NIL T) -7 NIL NIL) (-115 192731 194758 194800 "BRAGG" 195449 NIL BRAGG (NIL T) -9 NIL 195706) (-114 191260 191666 192221 "BRAGG-" 192226 NIL BRAGG- (NIL T T) -8 NIL NIL) (-113 184468 190606 190790 "BPADICRT" 191108 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-112 182772 184405 184450 "BPADIC" 184455 NIL BPADIC (NIL NIL) -8 NIL NIL) (-111 182472 182502 182615 "BOUNDZRO" 182736 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-110 177987 179078 179945 "BOP" 181625 T BOP (NIL) -8 NIL NIL) (-109 175608 176052 176572 "BOP1" 177500 NIL BOP1 (NIL T) -7 NIL NIL) (-108 174227 174938 175161 "BOOLEAN" 175405 T BOOLEAN (NIL) -8 NIL NIL) (-107 173593 173971 174024 "BMODULE" 174029 NIL BMODULE (NIL T T) -9 NIL 174093) (-106 169403 173391 173464 "BITS" 173540 T BITS (NIL) -8 NIL NIL) (-105 168500 168935 169087 "BINFILE" 169271 T BINFILE (NIL) -8 NIL NIL) (-104 167912 168034 168176 "BINDING" 168378 T BINDING (NIL) -8 NIL NIL) (-103 161747 167356 167521 "BINARY" 167767 T BINARY (NIL) -8 NIL NIL) (-102 159574 161002 161044 "BGAGG" 161304 NIL BGAGG (NIL T) -9 NIL 161441) (-101 159405 159437 159528 "BGAGG-" 159533 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 158503 158789 158994 "BFUNCT" 159220 T BFUNCT (NIL) -8 NIL NIL) (-99 157204 157382 157667 "BEZOUT" 158327 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 153729 156064 156392 "BBTREE" 156907 NIL BBTREE (NIL T) -8 NIL NIL) (-97 153466 153519 153546 "BASTYPE" 153663 T BASTYPE (NIL) -9 NIL NIL) (-96 153321 153350 153420 "BASTYPE-" 153425 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 152759 152835 152985 "BALFACT" 153232 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 151581 152178 152363 "AUTOMOR" 152604 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151306 151311 151338 "ATTREG" 151343 T ATTREG (NIL) -9 NIL NIL) (-92 149585 150003 150355 "ATTRBUT" 150972 T ATTRBUT (NIL) -8 NIL NIL) (-91 149120 149233 149260 "ATRIG" 149461 T ATRIG (NIL) -9 NIL NIL) (-90 148929 148970 149057 "ATRIG-" 149062 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147126 148705 148793 "ASTACK" 148872 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145631 145928 146293 "ASSOCEQ" 146808 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144663 145290 145414 "ASP9" 145538 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144427 144611 144650 "ASP8" 144655 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143297 144032 144174 "ASP80" 144316 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142196 142932 143064 "ASP7" 143196 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141152 141873 141991 "ASP78" 142109 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140123 140832 140949 "ASP77" 141066 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139038 139761 139892 "ASP74" 140023 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 137939 138673 138805 "ASP73" 138937 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 136894 137616 137734 "ASP6" 137852 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 135843 136571 136689 "ASP55" 136807 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 134793 135517 135636 "ASP50" 135755 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 133881 134494 134604 "ASP4" 134714 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 132969 133582 133692 "ASP49" 133802 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 131754 132508 132676 "ASP42" 132858 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130532 131287 131457 "ASP41" 131641 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129484 130209 130327 "ASP35" 130445 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129249 129432 129471 "ASP34" 129476 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 128986 129053 129129 "ASP33" 129204 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 127882 128621 128753 "ASP31" 128885 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127647 127830 127869 "ASP30" 127874 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127382 127451 127527 "ASP29" 127602 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127147 127330 127369 "ASP28" 127374 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 126912 127095 127134 "ASP27" 127139 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 125996 126610 126721 "ASP24" 126832 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 124913 125637 125767 "ASP20" 125897 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124001 124614 124724 "ASP1" 124834 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 122945 123675 123794 "ASP19" 123913 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122682 122749 122825 "ASP12" 122900 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121535 122281 122425 "ASP10" 122569 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119434 121379 121470 "ARRAY2" 121475 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115250 119082 119196 "ARRAY1" 119351 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114282 114455 114676 "ARRAY12" 115073 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108641 110512 110588 "ARR2CAT" 113218 NIL ARR2CAT (NIL T T T) -9 NIL 113976) (-54 106075 106819 107773 "ARR2CAT-" 107778 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 104835 104985 105288 "APPRULE" 105913 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104488 104536 104654 "APPLYORE" 104781 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103462 103753 103948 "ANY" 104311 T ANY (NIL) -8 NIL NIL) (-50 102740 102863 103020 "ANY1" 103336 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100272 101190 101515 "ANTISYM" 102465 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100099 100231 100258 "ANON" 100263 T ANON (NIL) -8 NIL NIL) (-47 94176 98644 99095 "AN" 99666 T AN (NIL) -8 NIL NIL) (-46 90529 91927 91978 "AMR" 92717 NIL AMR (NIL T T) -9 NIL 93316) (-45 89642 89863 90225 "AMR-" 90230 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74192 89559 89620 "ALIST" 89625 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71029 73786 73955 "ALGSC" 74110 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67585 68139 68746 "ALGPKG" 70469 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66862 66963 67147 "ALGMFACT" 67471 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62612 63292 63946 "ALGMANIP" 66386 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53931 62238 62388 "ALGFF" 62545 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53127 53258 53437 "ALGFACT" 53789 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52117 52727 52766 "ALGEBRA" 52826 NIL ALGEBRA (NIL T) -9 NIL 52884) (-36 51835 51894 52026 "ALGEBRA-" 52031 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34095 49838 49891 "ALAGG" 50027 NIL ALAGG (NIL T T) -9 NIL 50188) (-34 33630 33743 33770 "AHYP" 33971 T AHYP (NIL) -9 NIL NIL) (-33 32560 32808 32835 "AGG" 33334 T AGG (NIL) -9 NIL 33613) (-32 31994 32156 32370 "AGG-" 32375 NIL AGG- (NIL T) -8 NIL NIL) (-31 29681 30099 30516 "AF" 31637 NIL AF (NIL T T) -7 NIL NIL) (-30 28950 29208 29364 "ACPLOT" 29543 T ACPLOT (NIL) -8 NIL NIL) (-29 18416 26362 26414 "ACFS" 27125 NIL ACFS (NIL T) -9 NIL 27364) (-28 16430 16920 17695 "ACFS-" 17700 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14653 14680 "ACF" 15559 T ACF (NIL) -9 NIL 15971) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11195 "ABELSG" 11287 T ABELSG (NIL) -9 NIL 11352) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10523 "ABELMON" 10693 T ABELMON (NIL) -9 NIL 10805) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9606 "ABELGRP" 9731 T ABELGRP (NIL) -9 NIL 9813) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8075 "A1AGG" 8080 NIL A1AGG (NIL T) -9 NIL 8120) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2364 (($ $ (-852)) 26)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-980) (-129)) (T -980)) +NIL +(-13 (-21) (-1028)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-563 (-794)) . T) ((-1028) . T) ((-1016) . T)) +((-3984 (($ $) 16)) (-1258 (($ $) 22)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 49)) (-3892 (($ $) 24)) (-2206 (($ $) 11)) (-3722 (($ $) 38)) (-3663 (((-355) $) NIL) (((-203) $) NIL) (((-823 (-355)) $) 33)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL) (($ (-383 (-523))) 28) (($ (-523)) NIL) (($ (-383 (-523))) 28)) (-1621 (((-710)) 8)) (-1886 (($ $) 39))) +(((-981 |#1|) (-10 -8 (-15 -1258 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -2206 (|#1| |#1|)) (-15 -3722 (|#1| |#1|)) (-15 -1886 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -2130 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| (-523))) (-15 -3663 ((-203) |#1|)) (-15 -3663 ((-355) |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| |#1|)) (-15 -1458 (|#1| (-523))) (-15 -1621 ((-710))) (-15 -1458 ((-794) |#1|))) (-982)) (T -981)) +((-1621 (*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-981 *3)) (-4 *3 (-982))))) +(-10 -8 (-15 -1258 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -2206 (|#1| |#1|)) (-15 -3722 (|#1| |#1|)) (-15 -1886 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -2130 ((-820 (-355) |#1|) |#1| (-823 (-355)) (-820 (-355) |#1|))) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| (-523))) (-15 -3663 ((-203) |#1|)) (-15 -3663 ((-355) |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| |#1|)) (-15 -1458 (|#1| (-523))) (-15 -1621 ((-710))) (-15 -1458 ((-794) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3458 (((-523) $) 89)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3984 (($ $) 87)) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 73)) (-3614 (((-394 $) $) 72)) (-1832 (($ $) 97)) (-1387 (((-108) $ $) 59)) (-3671 (((-523) $) 114)) (-2518 (($) 17 T CONST)) (-1258 (($ $) 86)) (-3517 (((-3 (-523) "failed") $) 102) (((-3 (-383 (-523)) "failed") $) 99)) (-3474 (((-523) $) 101) (((-383 (-523)) $) 98)) (-3796 (($ $ $) 55)) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-2657 (((-108) $) 71)) (-2604 (((-108) $) 112)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 93)) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 96)) (-3892 (($ $) 92)) (-4114 (((-108) $) 113)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-2454 (($ $ $) 111)) (-2062 (($ $ $) 110)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 70)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-2206 (($ $) 88)) (-3722 (($ $) 90)) (-1820 (((-394 $) $) 74)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1972 (((-710) $) 58)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-3663 (((-355) $) 105) (((-203) $) 104) (((-823 (-355)) $) 94)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65) (($ (-523)) 103) (($ (-383 (-523))) 100)) (-1621 (((-710)) 29)) (-1886 (($ $) 91)) (-1704 (((-108) $ $) 39)) (-2619 (($ $) 115)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-4043 (((-108) $ $) 108)) (-4019 (((-108) $ $) 107)) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 109)) (-4007 (((-108) $ $) 106)) (-4098 (($ $ $) 64)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68) (($ $ (-383 (-523))) 95)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66))) +(((-982) (-129)) (T -982)) +((-2619 (*1 *1 *1) (-4 *1 (-982))) (-3892 (*1 *1 *1) (-4 *1 (-982))) (-1886 (*1 *1 *1) (-4 *1 (-982))) (-3722 (*1 *1 *1) (-4 *1 (-982))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-523)))) (-2206 (*1 *1 *1) (-4 *1 (-982))) (-3984 (*1 *1 *1) (-4 *1 (-982))) (-1258 (*1 *1 *1) (-4 *1 (-982)))) +(-13 (-339) (-784) (-949) (-964 (-523)) (-964 (-383 (-523))) (-930) (-564 (-823 (-355))) (-817 (-355)) (-136) (-10 -8 (-15 -3892 ($ $)) (-15 -1886 ($ $)) (-15 -3722 ($ $)) (-15 -3458 ((-523) $)) (-15 -2206 ($ $)) (-15 -3984 ($ $)) (-15 -1258 ($ $)) (-15 -2619 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-136) . T) ((-563 (-794)) . T) ((-158) . T) ((-564 (-203)) . T) ((-564 (-355)) . T) ((-564 (-823 (-355))) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-339) . T) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-666) . T) ((-730) . T) ((-731) . T) ((-733) . T) ((-734) . T) ((-784) . T) ((-786) . T) ((-817 (-355)) . T) ((-851) . T) ((-930) . T) ((-949) . T) ((-964 (-383 (-523))) . T) ((-964 (-523)) . T) ((-979 #0#) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) |#2| $) 23)) (-1703 ((|#1| $) 10)) (-3671 (((-523) |#2| $) 89)) (-3313 (((-3 $ "failed") |#2| (-852)) 58)) (-3159 ((|#1| $) 28)) (-3877 ((|#1| |#2| $ |#1|) 37)) (-3747 (($ $) 25)) (-2121 (((-3 |#2| "failed") |#2| $) 88)) (-2604 (((-108) |#2| $) NIL)) (-4114 (((-108) |#2| $) NIL)) (-1571 (((-108) |#2| $) 24)) (-1362 ((|#1| $) 90)) (-3149 ((|#1| $) 27)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3727 ((|#2| $) 80)) (-1458 (((-794) $) 71)) (-2562 ((|#1| |#2| $ |#1|) 38)) (-1409 (((-589 $) |#2|) 60)) (-3983 (((-108) $ $) 75))) +(((-983 |#1| |#2|) (-13 (-989 |#1| |#2|) (-10 -8 (-15 -3149 (|#1| $)) (-15 -3159 (|#1| $)) (-15 -1703 (|#1| $)) (-15 -1362 (|#1| $)) (-15 -3747 ($ $)) (-15 -1571 ((-108) |#2| $)) (-15 -3877 (|#1| |#2| $ |#1|)))) (-13 (-784) (-339)) (-1144 |#1|)) (T -983)) +((-3877 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) (-4 *3 (-1144 *2)))) (-3149 (*1 *2 *1) (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) (-4 *3 (-1144 *2)))) (-3159 (*1 *2 *1) (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) (-4 *3 (-1144 *2)))) (-1703 (*1 *2 *1) (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) (-4 *3 (-1144 *2)))) (-1362 (*1 *2 *1) (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) (-4 *3 (-1144 *2)))) (-3747 (*1 *1 *1) (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) (-4 *3 (-1144 *2)))) (-1571 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-784) (-339))) (-5 *2 (-108)) (-5 *1 (-983 *4 *3)) (-4 *3 (-1144 *4))))) +(-13 (-989 |#1| |#2|) (-10 -8 (-15 -3149 (|#1| $)) (-15 -3159 (|#1| $)) (-15 -1703 (|#1| $)) (-15 -1362 (|#1| $)) (-15 -3747 ($ $)) (-15 -1571 ((-108) |#2| $)) (-15 -3877 (|#1| |#2| $ |#1|)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2312 (($ $ $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1808 (($ $ $ $) NIL)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL)) (-2041 (($ $ $) NIL)) (-2518 (($) NIL T CONST)) (-1576 (($ (-1087)) 10) (($ (-523)) 7)) (-3517 (((-3 (-523) "failed") $) NIL)) (-3474 (((-523) $) NIL)) (-3796 (($ $ $) NIL)) (-2381 (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-629 (-523)) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3346 (((-3 (-383 (-523)) "failed") $) NIL)) (-1292 (((-108) $) NIL)) (-2146 (((-383 (-523)) $) NIL)) (-4032 (($) NIL) (($ $) NIL)) (-3769 (($ $ $) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2819 (($ $ $ $) NIL)) (-1980 (($ $ $) NIL)) (-2604 (((-108) $) NIL)) (-3654 (($ $ $) NIL)) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL)) (-2023 (((-108) $) NIL)) (-1557 (((-108) $) NIL)) (-4058 (((-3 $ "failed") $) NIL)) (-4114 (((-108) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4183 (($ $ $ $) NIL)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-1647 (($ $) NIL)) (-2996 (($ $) NIL)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3305 (($ $ $) NIL)) (-2262 (($) NIL T CONST)) (-3201 (($ $) NIL)) (-2783 (((-1034) $) NIL) (($ $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3217 (($ $) NIL)) (-1820 (((-394 $) $) NIL)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4104 (((-108) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-3523 (($ $ (-710)) NIL) (($ $) NIL)) (-2029 (($ $) NIL)) (-1664 (($ $) NIL)) (-3663 (((-523) $) 16) (((-499) $) NIL) (((-823 (-523)) $) NIL) (((-355) $) NIL) (((-203) $) NIL) (($ (-1087)) 9)) (-1458 (((-794) $) 20) (($ (-523)) 6) (($ $) NIL) (($ (-523)) 6)) (-1621 (((-710)) NIL)) (-1981 (((-108) $ $) NIL)) (-2574 (($ $ $) NIL)) (-3007 (($) NIL)) (-1704 (((-108) $ $) NIL)) (-2108 (($ $ $ $) NIL)) (-2619 (($ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-710)) NIL) (($ $) NIL)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) NIL)) (-4087 (($ $) 19) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL))) +(((-984) (-13 (-508) (-10 -8 (-6 -4231) (-6 -4236) (-6 -4232) (-15 -3663 ($ (-1087))) (-15 -1576 ($ (-1087))) (-15 -1576 ($ (-523)))))) (T -984)) +((-3663 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-984)))) (-1576 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-984)))) (-1576 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-984))))) +(-13 (-508) (-10 -8 (-6 -4231) (-6 -4236) (-6 -4232) (-15 -3663 ($ (-1087))) (-15 -1576 ($ (-1087))) (-15 -1576 ($ (-523))))) +((-3924 (((-108) $ $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016))))) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL)) (-4207 (((-1173) $ (-1087) (-1087)) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-3824 (($) 9)) (-1641 (((-51) $ (-1087) (-51)) NIL)) (-3648 (($ $) 23)) (-1561 (($ $) 21)) (-2734 (($ $) 20)) (-2075 (($ $) 22)) (-1502 (($ $) 25)) (-3791 (($ $) 26)) (-2232 (($ $) 19)) (-3579 (($ $) 24)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) 18 (|has| $ (-6 -4244)))) (-2243 (((-3 (-51) "failed") (-1087) $) 34)) (-2518 (($) NIL T CONST)) (-3812 (($) 7)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016))))) (-2249 (($ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) 46 (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-3 (-51) "failed") (-1087) $) NIL)) (-2557 (($ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (((-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244)))) (-2580 (((-3 (-1070) "failed") $ (-1070) (-523)) 59)) (-2863 (((-51) $ (-1087) (-51)) NIL (|has| $ (-6 -4245)))) (-2795 (((-51) $ (-1087)) NIL)) (-1666 (((-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-589 (-51)) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-1087) $) NIL (|has| (-1087) (-786)))) (-2136 (((-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) 28 (|has| $ (-6 -4244))) (((-589 (-51)) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-51) (-1016))))) (-3056 (((-1087) $) NIL (|has| (-1087) (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4245))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016))))) (-1330 (((-589 (-1087)) $) NIL)) (-2777 (((-108) (-1087) $) NIL)) (-1934 (((-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL)) (-3450 (($ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) 37)) (-2412 (((-589 (-1087)) $) NIL)) (-4135 (((-108) (-1087) $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016))))) (-2782 (((-355) $ (-1087)) 45)) (-2268 (((-589 (-1070)) $ (-1070)) 60)) (-1738 (((-51) $) NIL (|has| (-1087) (-786)))) (-2114 (((-3 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) "failed") (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL)) (-4203 (($ $ (-51)) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))))) NIL (-12 (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (($ $ (-271 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL (-12 (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (($ $ (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) NIL (-12 (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (($ $ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL (-12 (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-286 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (($ $ (-589 (-51)) (-589 (-51))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-271 (-51))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016)))) (($ $ (-589 (-271 (-51)))) NIL (-12 (|has| (-51) (-286 (-51))) (|has| (-51) (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-51) (-1016))))) (-1264 (((-589 (-51)) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 (((-51) $ (-1087)) NIL) (((-51) $ (-1087) (-51)) NIL)) (-3433 (($) NIL) (($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL)) (-1905 (($ $ (-1087)) 47)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016)))) (((-710) (-51) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-51) (-1016)))) (((-710) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) 30)) (-2326 (($ $ $) 31)) (-1458 (((-794) $) NIL (-3262 (|has| (-51) (-563 (-794))) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-563 (-794)))))) (-2629 (($ $ (-1087) (-355)) 43)) (-1235 (($ $ (-1087) (-355)) 44)) (-2401 (($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))))) NIL)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 (-1087)) (|:| -2433 (-51)))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (-3262 (|has| (-51) (-1016)) (|has| (-2 (|:| -1853 (-1087)) (|:| -2433 (-51))) (-1016))))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-985) (-13 (-1099 (-1087) (-51)) (-10 -8 (-15 -2326 ($ $ $)) (-15 -3812 ($)) (-15 -2232 ($ $)) (-15 -2734 ($ $)) (-15 -1561 ($ $)) (-15 -2075 ($ $)) (-15 -3579 ($ $)) (-15 -3648 ($ $)) (-15 -1502 ($ $)) (-15 -3791 ($ $)) (-15 -2629 ($ $ (-1087) (-355))) (-15 -1235 ($ $ (-1087) (-355))) (-15 -2782 ((-355) $ (-1087))) (-15 -2268 ((-589 (-1070)) $ (-1070))) (-15 -1905 ($ $ (-1087))) (-15 -3824 ($)) (-15 -2580 ((-3 (-1070) "failed") $ (-1070) (-523))) (-6 -4244)))) (T -985)) +((-2326 (*1 *1 *1 *1) (-5 *1 (-985))) (-3812 (*1 *1) (-5 *1 (-985))) (-2232 (*1 *1 *1) (-5 *1 (-985))) (-2734 (*1 *1 *1) (-5 *1 (-985))) (-1561 (*1 *1 *1) (-5 *1 (-985))) (-2075 (*1 *1 *1) (-5 *1 (-985))) (-3579 (*1 *1 *1) (-5 *1 (-985))) (-3648 (*1 *1 *1) (-5 *1 (-985))) (-1502 (*1 *1 *1) (-5 *1 (-985))) (-3791 (*1 *1 *1) (-5 *1 (-985))) (-2629 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-355)) (-5 *1 (-985)))) (-1235 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-355)) (-5 *1 (-985)))) (-2782 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-355)) (-5 *1 (-985)))) (-2268 (*1 *2 *1 *3) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-985)) (-5 *3 (-1070)))) (-1905 (*1 *1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-985)))) (-3824 (*1 *1) (-5 *1 (-985))) (-2580 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1070)) (-5 *3 (-523)) (-5 *1 (-985))))) +(-13 (-1099 (-1087) (-51)) (-10 -8 (-15 -2326 ($ $ $)) (-15 -3812 ($)) (-15 -2232 ($ $)) (-15 -2734 ($ $)) (-15 -1561 ($ $)) (-15 -2075 ($ $)) (-15 -3579 ($ $)) (-15 -3648 ($ $)) (-15 -1502 ($ $)) (-15 -3791 ($ $)) (-15 -2629 ($ $ (-1087) (-355))) (-15 -1235 ($ $ (-1087) (-355))) (-15 -2782 ((-355) $ (-1087))) (-15 -2268 ((-589 (-1070)) $ (-1070))) (-15 -1905 ($ $ (-1087))) (-15 -3824 ($)) (-15 -2580 ((-3 (-1070) "failed") $ (-1070) (-523))) (-6 -4244))) +((-4039 (($ $) 45)) (-2090 (((-108) $ $) 74)) (-3517 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 (-523) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-883 (-383 (-523)))) 227) (((-3 $ "failed") (-883 (-523))) 226) (((-3 $ "failed") (-883 |#2|)) 229)) (-3474 ((|#2| $) NIL) (((-383 (-523)) $) NIL) (((-523) $) NIL) ((|#4| $) NIL) (($ (-883 (-383 (-523)))) 215) (($ (-883 (-523))) 211) (($ (-883 |#2|)) 231)) (-3810 (($ $) NIL) (($ $ |#4|) 43)) (-2663 (((-108) $ $) 112) (((-108) $ (-589 $)) 113)) (-1906 (((-108) $) 56)) (-2815 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 107)) (-1978 (($ $) 138)) (-2611 (($ $) 134)) (-3058 (($ $) 133)) (-1351 (($ $ $) 79) (($ $ $ |#4|) 84)) (-1239 (($ $ $) 82) (($ $ $ |#4|) 86)) (-4172 (((-108) $ $) 121) (((-108) $ (-589 $)) 122)) (-2907 ((|#4| $) 33)) (-2055 (($ $ $) 110)) (-2132 (((-108) $) 55)) (-2457 (((-710) $) 35)) (-1246 (($ $) 152)) (-3661 (($ $) 149)) (-1871 (((-589 $) $) 68)) (-1298 (($ $) 57)) (-2236 (($ $) 145)) (-2748 (((-589 $) $) 65)) (-4220 (($ $) 59)) (-3786 ((|#2| $) NIL) (($ $ |#4|) 38)) (-2929 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3829 (-710))) $ $) 111)) (-3369 (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $) 108) (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $ |#4|) 109)) (-1236 (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3282 $)) $ $) 104) (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3282 $)) $ $ |#4|) 105)) (-3055 (($ $ $) 89) (($ $ $ |#4|) 95)) (-2077 (($ $ $) 90) (($ $ $ |#4|) 96)) (-2800 (((-589 $) $) 51)) (-2112 (((-108) $ $) 118) (((-108) $ (-589 $)) 119)) (-2648 (($ $ $) 103)) (-2262 (($ $) 37)) (-2391 (((-108) $ $) 72)) (-2001 (((-108) $ $) 114) (((-108) $ (-589 $)) 116)) (-1398 (($ $ $) 101)) (-3729 (($ $) 40)) (-3278 ((|#2| |#2| $) 142) (($ (-589 $)) NIL) (($ $ $) NIL)) (-2477 (($ $ |#2|) NIL) (($ $ $) 131)) (-4119 (($ $ |#2|) 126) (($ $ $) 129)) (-3190 (($ $) 48)) (-2752 (($ $) 52)) (-3663 (((-823 (-355)) $) NIL) (((-823 (-523)) $) NIL) (((-499) $) NIL) (($ (-883 (-383 (-523)))) 217) (($ (-883 (-523))) 213) (($ (-883 |#2|)) 228) (((-1070) $) 250) (((-883 |#2|) $) 162)) (-1458 (((-794) $) 30) (($ (-523)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-883 |#2|) $) 163) (($ (-383 (-523))) NIL) (($ $) NIL)) (-3754 (((-3 (-108) "failed") $ $) 71))) +(((-986 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1458 (|#1| |#1|)) (-15 -3278 (|#1| |#1| |#1|)) (-15 -3278 (|#1| (-589 |#1|))) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 ((-883 |#2|) |#1|)) (-15 -3663 ((-883 |#2|) |#1|)) (-15 -3663 ((-1070) |#1|)) (-15 -1246 (|#1| |#1|)) (-15 -3661 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -3278 (|#2| |#2| |#1|)) (-15 -2477 (|#1| |#1| |#1|)) (-15 -4119 (|#1| |#1| |#1|)) (-15 -2477 (|#1| |#1| |#2|)) (-15 -4119 (|#1| |#1| |#2|)) (-15 -2611 (|#1| |#1|)) (-15 -3058 (|#1| |#1|)) (-15 -3663 (|#1| (-883 |#2|))) (-15 -3474 (|#1| (-883 |#2|))) (-15 -3517 ((-3 |#1| "failed") (-883 |#2|))) (-15 -3663 (|#1| (-883 (-523)))) (-15 -3474 (|#1| (-883 (-523)))) (-15 -3517 ((-3 |#1| "failed") (-883 (-523)))) (-15 -3663 (|#1| (-883 (-383 (-523))))) (-15 -3474 (|#1| (-883 (-383 (-523))))) (-15 -3517 ((-3 |#1| "failed") (-883 (-383 (-523))))) (-15 -2648 (|#1| |#1| |#1|)) (-15 -1398 (|#1| |#1| |#1|)) (-15 -2929 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3829 (-710))) |#1| |#1|)) (-15 -2055 (|#1| |#1| |#1|)) (-15 -2815 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -3369 ((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1| |#4|)) (-15 -3369 ((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -1236 ((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3282 |#1|)) |#1| |#1| |#4|)) (-15 -1236 ((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -2077 (|#1| |#1| |#1| |#4|)) (-15 -3055 (|#1| |#1| |#1| |#4|)) (-15 -2077 (|#1| |#1| |#1|)) (-15 -3055 (|#1| |#1| |#1|)) (-15 -1239 (|#1| |#1| |#1| |#4|)) (-15 -1351 (|#1| |#1| |#1| |#4|)) (-15 -1239 (|#1| |#1| |#1|)) (-15 -1351 (|#1| |#1| |#1|)) (-15 -4172 ((-108) |#1| (-589 |#1|))) (-15 -4172 ((-108) |#1| |#1|)) (-15 -2112 ((-108) |#1| (-589 |#1|))) (-15 -2112 ((-108) |#1| |#1|)) (-15 -2001 ((-108) |#1| (-589 |#1|))) (-15 -2001 ((-108) |#1| |#1|)) (-15 -2663 ((-108) |#1| (-589 |#1|))) (-15 -2663 ((-108) |#1| |#1|)) (-15 -2090 ((-108) |#1| |#1|)) (-15 -2391 ((-108) |#1| |#1|)) (-15 -3754 ((-3 (-108) "failed") |#1| |#1|)) (-15 -1871 ((-589 |#1|) |#1|)) (-15 -2748 ((-589 |#1|) |#1|)) (-15 -4220 (|#1| |#1|)) (-15 -1298 (|#1| |#1|)) (-15 -1906 ((-108) |#1|)) (-15 -2132 ((-108) |#1|)) (-15 -3810 (|#1| |#1| |#4|)) (-15 -3786 (|#1| |#1| |#4|)) (-15 -2752 (|#1| |#1|)) (-15 -2800 ((-589 |#1|) |#1|)) (-15 -3190 (|#1| |#1|)) (-15 -4039 (|#1| |#1|)) (-15 -3729 (|#1| |#1|)) (-15 -2262 (|#1| |#1|)) (-15 -2457 ((-710) |#1|)) (-15 -2907 (|#4| |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -3474 (|#4| |#1|)) (-15 -3517 ((-3 |#4| "failed") |#1|)) (-15 -1458 (|#1| |#4|)) (-15 -3786 (|#2| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) (-987 |#2| |#3| |#4|) (-973) (-732) (-786)) (T -986)) +NIL +(-10 -8 (-15 -1458 (|#1| |#1|)) (-15 -3278 (|#1| |#1| |#1|)) (-15 -3278 (|#1| (-589 |#1|))) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 ((-883 |#2|) |#1|)) (-15 -3663 ((-883 |#2|) |#1|)) (-15 -3663 ((-1070) |#1|)) (-15 -1246 (|#1| |#1|)) (-15 -3661 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -3278 (|#2| |#2| |#1|)) (-15 -2477 (|#1| |#1| |#1|)) (-15 -4119 (|#1| |#1| |#1|)) (-15 -2477 (|#1| |#1| |#2|)) (-15 -4119 (|#1| |#1| |#2|)) (-15 -2611 (|#1| |#1|)) (-15 -3058 (|#1| |#1|)) (-15 -3663 (|#1| (-883 |#2|))) (-15 -3474 (|#1| (-883 |#2|))) (-15 -3517 ((-3 |#1| "failed") (-883 |#2|))) (-15 -3663 (|#1| (-883 (-523)))) (-15 -3474 (|#1| (-883 (-523)))) (-15 -3517 ((-3 |#1| "failed") (-883 (-523)))) (-15 -3663 (|#1| (-883 (-383 (-523))))) (-15 -3474 (|#1| (-883 (-383 (-523))))) (-15 -3517 ((-3 |#1| "failed") (-883 (-383 (-523))))) (-15 -2648 (|#1| |#1| |#1|)) (-15 -1398 (|#1| |#1| |#1|)) (-15 -2929 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3829 (-710))) |#1| |#1|)) (-15 -2055 (|#1| |#1| |#1|)) (-15 -2815 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -3369 ((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1| |#4|)) (-15 -3369 ((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -1236 ((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3282 |#1|)) |#1| |#1| |#4|)) (-15 -1236 ((-2 (|:| -2935 |#1|) (|:| |gap| (-710)) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -2077 (|#1| |#1| |#1| |#4|)) (-15 -3055 (|#1| |#1| |#1| |#4|)) (-15 -2077 (|#1| |#1| |#1|)) (-15 -3055 (|#1| |#1| |#1|)) (-15 -1239 (|#1| |#1| |#1| |#4|)) (-15 -1351 (|#1| |#1| |#1| |#4|)) (-15 -1239 (|#1| |#1| |#1|)) (-15 -1351 (|#1| |#1| |#1|)) (-15 -4172 ((-108) |#1| (-589 |#1|))) (-15 -4172 ((-108) |#1| |#1|)) (-15 -2112 ((-108) |#1| (-589 |#1|))) (-15 -2112 ((-108) |#1| |#1|)) (-15 -2001 ((-108) |#1| (-589 |#1|))) (-15 -2001 ((-108) |#1| |#1|)) (-15 -2663 ((-108) |#1| (-589 |#1|))) (-15 -2663 ((-108) |#1| |#1|)) (-15 -2090 ((-108) |#1| |#1|)) (-15 -2391 ((-108) |#1| |#1|)) (-15 -3754 ((-3 (-108) "failed") |#1| |#1|)) (-15 -1871 ((-589 |#1|) |#1|)) (-15 -2748 ((-589 |#1|) |#1|)) (-15 -4220 (|#1| |#1|)) (-15 -1298 (|#1| |#1|)) (-15 -1906 ((-108) |#1|)) (-15 -2132 ((-108) |#1|)) (-15 -3810 (|#1| |#1| |#4|)) (-15 -3786 (|#1| |#1| |#4|)) (-15 -2752 (|#1| |#1|)) (-15 -2800 ((-589 |#1|) |#1|)) (-15 -3190 (|#1| |#1|)) (-15 -4039 (|#1| |#1|)) (-15 -3729 (|#1| |#1|)) (-15 -2262 (|#1| |#1|)) (-15 -2457 ((-710) |#1|)) (-15 -2907 (|#4| |#1|)) (-15 -3663 ((-499) |#1|)) (-15 -3663 ((-823 (-523)) |#1|)) (-15 -3663 ((-823 (-355)) |#1|)) (-15 -3474 (|#4| |#1|)) (-15 -3517 ((-3 |#4| "failed") |#1|)) (-15 -1458 (|#1| |#4|)) (-15 -3786 (|#2| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1957 (((-589 |#3|) $) 110)) (-1786 (((-1083 $) $ |#3|) 125) (((-1083 |#1|) $) 124)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 87 (|has| |#1| (-515)))) (-3345 (($ $) 88 (|has| |#1| (-515)))) (-3331 (((-108) $) 90 (|has| |#1| (-515)))) (-3893 (((-710) $) 112) (((-710) $ (-589 |#3|)) 111)) (-4039 (($ $) 271)) (-2090 (((-108) $ $) 257)) (-3212 (((-3 $ "failed") $ $) 19)) (-2407 (($ $ $) 216 (|has| |#1| (-515)))) (-3301 (((-589 $) $ $) 211 (|has| |#1| (-515)))) (-3156 (((-394 (-1083 $)) (-1083 $)) 100 (|has| |#1| (-840)))) (-2291 (($ $) 98 (|has| |#1| (-427)))) (-3614 (((-394 $) $) 97 (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 103 (|has| |#1| (-840)))) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#1| "failed") $) 164) (((-3 (-383 (-523)) "failed") $) 162 (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) 160 (|has| |#1| (-964 (-523)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-883 (-383 (-523)))) 231 (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087))))) (((-3 $ "failed") (-883 (-523))) 228 (-3262 (-12 (-3900 (|has| |#1| (-37 (-383 (-523))))) (|has| |#1| (-37 (-523))) (|has| |#3| (-564 (-1087)))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087)))))) (((-3 $ "failed") (-883 |#1|)) 225 (-3262 (-12 (-3900 (|has| |#1| (-37 (-383 (-523))))) (-3900 (|has| |#1| (-37 (-523)))) (|has| |#3| (-564 (-1087)))) (-12 (-3900 (|has| |#1| (-508))) (-3900 (|has| |#1| (-37 (-383 (-523))))) (|has| |#1| (-37 (-523))) (|has| |#3| (-564 (-1087)))) (-12 (-3900 (|has| |#1| (-921 (-523)))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087))))))) (-3474 ((|#1| $) 165) (((-383 (-523)) $) 161 (|has| |#1| (-964 (-383 (-523))))) (((-523) $) 159 (|has| |#1| (-964 (-523)))) ((|#3| $) 135) (($ (-883 (-383 (-523)))) 230 (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087))))) (($ (-883 (-523))) 227 (-3262 (-12 (-3900 (|has| |#1| (-37 (-383 (-523))))) (|has| |#1| (-37 (-523))) (|has| |#3| (-564 (-1087)))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087)))))) (($ (-883 |#1|)) 224 (-3262 (-12 (-3900 (|has| |#1| (-37 (-383 (-523))))) (-3900 (|has| |#1| (-37 (-523)))) (|has| |#3| (-564 (-1087)))) (-12 (-3900 (|has| |#1| (-508))) (-3900 (|has| |#1| (-37 (-383 (-523))))) (|has| |#1| (-37 (-523))) (|has| |#3| (-564 (-1087)))) (-12 (-3900 (|has| |#1| (-921 (-523)))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087))))))) (-3078 (($ $ $ |#3|) 108 (|has| |#1| (-158))) (($ $ $) 212 (|has| |#1| (-515)))) (-3810 (($ $) 154) (($ $ |#3|) 266)) (-2381 (((-629 (-523)) (-629 $)) 134 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 133 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 132) (((-629 |#1|) (-629 $)) 131)) (-2663 (((-108) $ $) 256) (((-108) $ (-589 $)) 255)) (-2121 (((-3 $ "failed") $) 34)) (-1906 (((-108) $) 264)) (-2815 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 236)) (-1978 (($ $) 205 (|has| |#1| (-427)))) (-2528 (($ $) 176 (|has| |#1| (-427))) (($ $ |#3|) 105 (|has| |#1| (-427)))) (-3799 (((-589 $) $) 109)) (-2657 (((-108) $) 96 (|has| |#1| (-840)))) (-2611 (($ $) 221 (|has| |#1| (-515)))) (-3058 (($ $) 222 (|has| |#1| (-515)))) (-1351 (($ $ $) 248) (($ $ $ |#3|) 246)) (-1239 (($ $ $) 247) (($ $ $ |#3|) 245)) (-1284 (($ $ |#1| |#2| $) 172)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 84 (-12 (|has| |#3| (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 83 (-12 (|has| |#3| (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-2023 (((-108) $) 31)) (-3554 (((-710) $) 169)) (-4172 (((-108) $ $) 250) (((-108) $ (-589 $)) 249)) (-3870 (($ $ $ $ $) 207 (|has| |#1| (-515)))) (-2907 ((|#3| $) 275)) (-1945 (($ (-1083 |#1|) |#3|) 117) (($ (-1083 $) |#3|) 116)) (-3679 (((-589 $) $) 126)) (-2620 (((-108) $) 152)) (-1933 (($ |#1| |#2|) 153) (($ $ |#3| (-710)) 119) (($ $ (-589 |#3|) (-589 (-710))) 118)) (-2055 (($ $ $) 235)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ |#3|) 120)) (-2132 (((-108) $) 265)) (-1575 ((|#2| $) 170) (((-710) $ |#3|) 122) (((-589 (-710)) $ (-589 |#3|)) 121)) (-2454 (($ $ $) 79 (|has| |#1| (-786)))) (-2457 (((-710) $) 274)) (-2062 (($ $ $) 78 (|has| |#1| (-786)))) (-3782 (($ (-1 |#2| |#2|) $) 171)) (-3612 (($ (-1 |#1| |#1|) $) 151)) (-2520 (((-3 |#3| "failed") $) 123)) (-1246 (($ $) 202 (|has| |#1| (-427)))) (-3661 (($ $) 203 (|has| |#1| (-427)))) (-1871 (((-589 $) $) 260)) (-1298 (($ $) 263)) (-2236 (($ $) 204 (|has| |#1| (-427)))) (-2748 (((-589 $) $) 261)) (-4220 (($ $) 262)) (-3774 (($ $) 149)) (-3786 ((|#1| $) 148) (($ $ |#3|) 267)) (-3244 (($ (-589 $)) 94 (|has| |#1| (-427))) (($ $ $) 93 (|has| |#1| (-427)))) (-2929 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3829 (-710))) $ $) 234)) (-3369 (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $) 238) (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $ |#3|) 237)) (-1236 (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3282 $)) $ $) 240) (((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3282 $)) $ $ |#3|) 239)) (-3055 (($ $ $) 244) (($ $ $ |#3|) 242)) (-2077 (($ $ $) 243) (($ $ $ |#3|) 241)) (-3779 (((-1070) $) 9)) (-1611 (($ $ $) 210 (|has| |#1| (-515)))) (-2800 (((-589 $) $) 269)) (-3226 (((-3 (-589 $) "failed") $) 114)) (-4006 (((-3 (-589 $) "failed") $) 115)) (-2630 (((-3 (-2 (|:| |var| |#3|) (|:| -2735 (-710))) "failed") $) 113)) (-2112 (((-108) $ $) 252) (((-108) $ (-589 $)) 251)) (-2648 (($ $ $) 232)) (-2262 (($ $) 273)) (-2391 (((-108) $ $) 258)) (-2001 (((-108) $ $) 254) (((-108) $ (-589 $)) 253)) (-1398 (($ $ $) 233)) (-3729 (($ $) 272)) (-2783 (((-1034) $) 10)) (-3630 (((-2 (|:| -3278 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-515)))) (-1740 (((-2 (|:| -3278 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-515)))) (-3749 (((-108) $) 166)) (-3760 ((|#1| $) 167)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 95 (|has| |#1| (-427)))) (-3278 ((|#1| |#1| $) 206 (|has| |#1| (-427))) (($ (-589 $)) 92 (|has| |#1| (-427))) (($ $ $) 91 (|has| |#1| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) 102 (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) 101 (|has| |#1| (-840)))) (-1820 (((-394 $) $) 99 (|has| |#1| (-840)))) (-2490 (((-2 (|:| -3278 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-515)))) (-3746 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-515))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-515)))) (-2477 (($ $ |#1|) 219 (|has| |#1| (-515))) (($ $ $) 217 (|has| |#1| (-515)))) (-4119 (($ $ |#1|) 220 (|has| |#1| (-515))) (($ $ $) 218 (|has| |#1| (-515)))) (-2679 (($ $ (-589 (-271 $))) 145) (($ $ (-271 $)) 144) (($ $ $ $) 143) (($ $ (-589 $) (-589 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-589 |#3|) (-589 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-589 |#3|) (-589 $)) 138)) (-3549 (($ $ |#3|) 107 (|has| |#1| (-158)))) (-3523 (($ $ |#3|) 42) (($ $ (-589 |#3|)) 41) (($ $ |#3| (-710)) 40) (($ $ (-589 |#3|) (-589 (-710))) 39)) (-2299 ((|#2| $) 150) (((-710) $ |#3|) 130) (((-589 (-710)) $ (-589 |#3|)) 129)) (-3190 (($ $) 270)) (-2752 (($ $) 268)) (-3663 (((-823 (-355)) $) 82 (-12 (|has| |#3| (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) 81 (-12 (|has| |#3| (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) 80 (-12 (|has| |#3| (-564 (-499))) (|has| |#1| (-564 (-499))))) (($ (-883 (-383 (-523)))) 229 (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087))))) (($ (-883 (-523))) 226 (-3262 (-12 (-3900 (|has| |#1| (-37 (-383 (-523))))) (|has| |#1| (-37 (-523))) (|has| |#3| (-564 (-1087)))) (-12 (|has| |#1| (-37 (-383 (-523)))) (|has| |#3| (-564 (-1087)))))) (($ (-883 |#1|)) 223 (|has| |#3| (-564 (-1087)))) (((-1070) $) 201 (-12 (|has| |#1| (-964 (-523))) (|has| |#3| (-564 (-1087))))) (((-883 |#1|) $) 200 (|has| |#3| (-564 (-1087))))) (-2438 ((|#1| $) 175 (|has| |#1| (-427))) (($ $ |#3|) 106 (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 104 (-4099 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-883 |#1|) $) 199 (|has| |#3| (-564 (-1087)))) (($ (-383 (-523))) 72 (-3262 (|has| |#1| (-964 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))))) (($ $) 85 (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) 168)) (-2365 ((|#1| $ |#2|) 155) (($ $ |#3| (-710)) 128) (($ $ (-589 |#3|) (-589 (-710))) 127)) (-3901 (((-3 $ "failed") $) 73 (-3262 (-4099 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) 29)) (-2276 (($ $ $ (-710)) 173 (|has| |#1| (-158)))) (-1704 (((-108) $ $) 89 (|has| |#1| (-515)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-3754 (((-3 (-108) "failed") $ $) 259)) (-2767 (($) 30 T CONST)) (-3090 (($ $ $ $ (-710)) 208 (|has| |#1| (-515)))) (-3720 (($ $ $ (-710)) 209 (|has| |#1| (-515)))) (-2862 (($ $ |#3|) 38) (($ $ (-589 |#3|)) 37) (($ $ |#3| (-710)) 36) (($ $ (-589 |#3|) (-589 (-710))) 35)) (-4043 (((-108) $ $) 76 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 75 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 77 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 74 (|has| |#1| (-786)))) (-4098 (($ $ |#1|) 156 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 158 (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) 157 (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-987 |#1| |#2| |#3|) (-129) (-973) (-732) (-786)) (T -987)) +((-2907 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-2457 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-710)))) (-2262 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-3729 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-4039 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-3190 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-2800 (*1 *2 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-987 *3 *4 *5)))) (-2752 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-3786 (*1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-3810 (*1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-2132 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-1906 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-1298 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-4220 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-2748 (*1 *2 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-987 *3 *4 *5)))) (-1871 (*1 *2 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-987 *3 *4 *5)))) (-3754 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-2391 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-2090 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-2663 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-2663 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) (-2001 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-2001 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) (-2112 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-2112 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) (-4172 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)))) (-4172 (*1 *2 *1 *3) (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) (-1351 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-1239 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-1351 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-1239 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-3055 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-2077 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-3055 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-2077 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *2 (-786)))) (-1236 (*1 *2 *1 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| -2935 *1) (|:| |gap| (-710)) (|:| -3282 *1))) (-4 *1 (-987 *3 *4 *5)))) (-1236 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-5 *2 (-2 (|:| -2935 *1) (|:| |gap| (-710)) (|:| -3282 *1))) (-4 *1 (-987 *4 *5 *3)))) (-3369 (*1 *2 *1 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| -2935 *1) (|:| |gap| (-710)) (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-987 *3 *4 *5)))) (-3369 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-5 *2 (-2 (|:| -2935 *1) (|:| |gap| (-710)) (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-987 *4 *5 *3)))) (-2815 (*1 *2 *1 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-987 *3 *4 *5)))) (-2055 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-2929 (*1 *2 *1 *1) (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3829 (-710)))) (-4 *1 (-987 *3 *4 *5)))) (-1398 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-2648 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)))) (-3517 (*1 *1 *2) (|partial| -12 (-5 *2 (-883 (-383 (-523)))) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-883 (-383 (-523)))) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-883 (-383 (-523)))) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)))) (-3517 (*1 *1 *2) (|partial| -3262 (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) (-12 (-3900 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))))) (-3474 (*1 *1 *2) (-3262 (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) (-12 (-3900 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))))) (-3663 (*1 *1 *2) (-3262 (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) (-12 (-3900 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))))) (-3517 (*1 *1 *2) (|partial| -3262 (-12 (-5 *2 (-883 *3)) (-12 (-3900 (-4 *3 (-37 (-383 (-523))))) (-3900 (-4 *3 (-37 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 *3)) (-12 (-3900 (-4 *3 (-508))) (-3900 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 *3)) (-12 (-3900 (-4 *3 (-921 (-523)))) (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786))))) (-3474 (*1 *1 *2) (-3262 (-12 (-5 *2 (-883 *3)) (-12 (-3900 (-4 *3 (-37 (-383 (-523))))) (-3900 (-4 *3 (-37 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 *3)) (-12 (-3900 (-4 *3 (-508))) (-3900 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786))) (-12 (-5 *2 (-883 *3)) (-12 (-3900 (-4 *3 (-921 (-523)))) (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) (-4 *5 (-786))))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-883 *3)) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *5 (-564 (-1087))) (-4 *4 (-732)) (-4 *5 (-786)))) (-3058 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-2611 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-4119 (*1 *1 *1 *2) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-2477 (*1 *1 *1 *2) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-4119 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-2477 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-2407 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-2490 (*1 *2 *1 *1) (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| -3278 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-987 *3 *4 *5)))) (-1740 (*1 *2 *1 *1) (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| -3278 *1) (|:| |coef1| *1))) (-4 *1 (-987 *3 *4 *5)))) (-3630 (*1 *2 *1 *1) (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-2 (|:| -3278 *1) (|:| |coef2| *1))) (-4 *1 (-987 *3 *4 *5)))) (-3078 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-3301 (*1 *2 *1 *1) (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-987 *3 *4 *5)))) (-1611 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-3720 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *3 (-515)))) (-3090 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *3 (-515)))) (-3870 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-515)))) (-3278 (*1 *2 *2 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-427)))) (-1978 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-427)))) (-2236 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-427)))) (-3661 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-427)))) (-1246 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-427))))) +(-13 (-880 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2907 (|t#3| $)) (-15 -2457 ((-710) $)) (-15 -2262 ($ $)) (-15 -3729 ($ $)) (-15 -4039 ($ $)) (-15 -3190 ($ $)) (-15 -2800 ((-589 $) $)) (-15 -2752 ($ $)) (-15 -3786 ($ $ |t#3|)) (-15 -3810 ($ $ |t#3|)) (-15 -2132 ((-108) $)) (-15 -1906 ((-108) $)) (-15 -1298 ($ $)) (-15 -4220 ($ $)) (-15 -2748 ((-589 $) $)) (-15 -1871 ((-589 $) $)) (-15 -3754 ((-3 (-108) "failed") $ $)) (-15 -2391 ((-108) $ $)) (-15 -2090 ((-108) $ $)) (-15 -2663 ((-108) $ $)) (-15 -2663 ((-108) $ (-589 $))) (-15 -2001 ((-108) $ $)) (-15 -2001 ((-108) $ (-589 $))) (-15 -2112 ((-108) $ $)) (-15 -2112 ((-108) $ (-589 $))) (-15 -4172 ((-108) $ $)) (-15 -4172 ((-108) $ (-589 $))) (-15 -1351 ($ $ $)) (-15 -1239 ($ $ $)) (-15 -1351 ($ $ $ |t#3|)) (-15 -1239 ($ $ $ |t#3|)) (-15 -3055 ($ $ $)) (-15 -2077 ($ $ $)) (-15 -3055 ($ $ $ |t#3|)) (-15 -2077 ($ $ $ |t#3|)) (-15 -1236 ((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3282 $)) $ $)) (-15 -1236 ((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3282 $)) $ $ |t#3|)) (-15 -3369 ((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -3369 ((-2 (|:| -2935 $) (|:| |gap| (-710)) (|:| -3445 $) (|:| -3282 $)) $ $ |t#3|)) (-15 -2815 ((-2 (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -2055 ($ $ $)) (-15 -2929 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3829 (-710))) $ $)) (-15 -1398 ($ $ $)) (-15 -2648 ($ $ $)) (IF (|has| |t#3| (-564 (-1087))) (PROGN (-6 (-563 (-883 |t#1|))) (-6 (-564 (-883 |t#1|))) (IF (|has| |t#1| (-37 (-383 (-523)))) (PROGN (-15 -3517 ((-3 $ "failed") (-883 (-383 (-523))))) (-15 -3474 ($ (-883 (-383 (-523))))) (-15 -3663 ($ (-883 (-383 (-523))))) (-15 -3517 ((-3 $ "failed") (-883 (-523)))) (-15 -3474 ($ (-883 (-523)))) (-15 -3663 ($ (-883 (-523)))) (IF (|has| |t#1| (-921 (-523))) |%noBranch| (PROGN (-15 -3517 ((-3 $ "failed") (-883 |t#1|))) (-15 -3474 ($ (-883 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-523))) (IF (|has| |t#1| (-37 (-383 (-523)))) |%noBranch| (PROGN (-15 -3517 ((-3 $ "failed") (-883 (-523)))) (-15 -3474 ($ (-883 (-523)))) (-15 -3663 ($ (-883 (-523)))) (IF (|has| |t#1| (-508)) |%noBranch| (PROGN (-15 -3517 ((-3 $ "failed") (-883 |t#1|))) (-15 -3474 ($ (-883 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-523))) |%noBranch| (IF (|has| |t#1| (-37 (-383 (-523)))) |%noBranch| (PROGN (-15 -3517 ((-3 $ "failed") (-883 |t#1|))) (-15 -3474 ($ (-883 |t#1|)))))) (-15 -3663 ($ (-883 |t#1|))) (IF (|has| |t#1| (-964 (-523))) (-6 (-564 (-1070))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -3058 ($ $)) (-15 -2611 ($ $)) (-15 -4119 ($ $ |t#1|)) (-15 -2477 ($ $ |t#1|)) (-15 -4119 ($ $ $)) (-15 -2477 ($ $ $)) (-15 -2407 ($ $ $)) (-15 -2490 ((-2 (|:| -3278 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1740 ((-2 (|:| -3278 $) (|:| |coef1| $)) $ $)) (-15 -3630 ((-2 (|:| -3278 $) (|:| |coef2| $)) $ $)) (-15 -3078 ($ $ $)) (-15 -3301 ((-589 $) $ $)) (-15 -1611 ($ $ $)) (-15 -3720 ($ $ $ (-710))) (-15 -3090 ($ $ $ $ (-710))) (-15 -3870 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-427)) (PROGN (-15 -3278 (|t#1| |t#1| $)) (-15 -1978 ($ $)) (-15 -2236 ($ $)) (-15 -3661 ($ $)) (-15 -1246 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-563 (-883 |#1|)) |has| |#3| (-564 (-1087))) ((-158) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-564 (-499)) -12 (|has| |#1| (-564 (-499))) (|has| |#3| (-564 (-499)))) ((-564 (-823 (-355))) -12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#3| (-564 (-823 (-355))))) ((-564 (-823 (-523))) -12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#3| (-564 (-823 (-523))))) ((-564 (-883 |#1|)) |has| |#3| (-564 (-1087))) ((-564 (-1070)) -12 (|has| |#1| (-964 (-523))) (|has| |#3| (-564 (-1087)))) ((-267) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-286 $) . T) ((-302 |#1| |#2|) . T) ((-353 |#1|) . T) ((-387 |#1|) . T) ((-427) -3262 (|has| |#1| (-840)) (|has| |#1| (-427))) ((-484 |#3| |#1|) . T) ((-484 |#3| $) . T) ((-484 $ $) . T) ((-515) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-591 #0#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #0#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427))) ((-666) . T) ((-786) |has| |#1| (-786)) ((-831 |#3|) . T) ((-817 (-355)) -12 (|has| |#1| (-817 (-355))) (|has| |#3| (-817 (-355)))) ((-817 (-523)) -12 (|has| |#1| (-817 (-523))) (|has| |#3| (-817 (-523)))) ((-880 |#1| |#2| |#3|) . T) ((-840) |has| |#1| (-840)) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 |#1|) . T) ((-964 |#3|) . T) ((-979 #0#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) |has| |#1| (-840))) +((-2295 (((-108) |#3| $) 13)) (-3313 (((-3 $ "failed") |#3| (-852)) 23)) (-2121 (((-3 |#3| "failed") |#3| $) 37)) (-2604 (((-108) |#3| $) 16)) (-4114 (((-108) |#3| $) 14))) +(((-988 |#1| |#2| |#3|) (-10 -8 (-15 -3313 ((-3 |#1| "failed") |#3| (-852))) (-15 -2121 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2604 ((-108) |#3| |#1|)) (-15 -4114 ((-108) |#3| |#1|)) (-15 -2295 ((-108) |#3| |#1|))) (-989 |#2| |#3|) (-13 (-784) (-339)) (-1144 |#2|)) (T -988)) +NIL +(-10 -8 (-15 -3313 ((-3 |#1| "failed") |#3| (-852))) (-15 -2121 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2604 ((-108) |#3| |#1|)) (-15 -4114 ((-108) |#3| |#1|)) (-15 -2295 ((-108) |#3| |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) |#2| $) 21)) (-3671 (((-523) |#2| $) 22)) (-3313 (((-3 $ "failed") |#2| (-852)) 15)) (-3877 ((|#1| |#2| $ |#1|) 13)) (-2121 (((-3 |#2| "failed") |#2| $) 18)) (-2604 (((-108) |#2| $) 19)) (-4114 (((-108) |#2| $) 20)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3727 ((|#2| $) 17)) (-1458 (((-794) $) 11)) (-2562 ((|#1| |#2| $ |#1|) 14)) (-1409 (((-589 $) |#2|) 16)) (-3983 (((-108) $ $) 6))) +(((-989 |#1| |#2|) (-129) (-13 (-784) (-339)) (-1144 |t#1|)) (T -989)) +((-3671 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) (-4 *3 (-1144 *4)) (-5 *2 (-523)))) (-2295 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) (-4 *3 (-1144 *4)) (-5 *2 (-108)))) (-4114 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) (-4 *3 (-1144 *4)) (-5 *2 (-108)))) (-2604 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) (-4 *3 (-1144 *4)) (-5 *2 (-108)))) (-2121 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-989 *3 *2)) (-4 *3 (-13 (-784) (-339))) (-4 *2 (-1144 *3)))) (-3727 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *2)) (-4 *3 (-13 (-784) (-339))) (-4 *2 (-1144 *3)))) (-1409 (*1 *2 *3) (-12 (-4 *4 (-13 (-784) (-339))) (-4 *3 (-1144 *4)) (-5 *2 (-589 *1)) (-4 *1 (-989 *4 *3)))) (-3313 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-852)) (-4 *4 (-13 (-784) (-339))) (-4 *1 (-989 *4 *2)) (-4 *2 (-1144 *4)))) (-2562 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-989 *2 *3)) (-4 *2 (-13 (-784) (-339))) (-4 *3 (-1144 *2)))) (-3877 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-989 *2 *3)) (-4 *2 (-13 (-784) (-339))) (-4 *3 (-1144 *2))))) +(-13 (-1016) (-10 -8 (-15 -3671 ((-523) |t#2| $)) (-15 -2295 ((-108) |t#2| $)) (-15 -4114 ((-108) |t#2| $)) (-15 -2604 ((-108) |t#2| $)) (-15 -2121 ((-3 |t#2| "failed") |t#2| $)) (-15 -3727 (|t#2| $)) (-15 -1409 ((-589 $) |t#2|)) (-15 -3313 ((-3 $ "failed") |t#2| (-852))) (-15 -2562 (|t#1| |t#2| $ |t#1|)) (-15 -3877 (|t#1| |t#2| $ |t#1|)))) +(((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-3980 (((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 |#4|) (-589 |#5|) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) (-710)) 96)) (-2944 (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710)) 55)) (-3431 (((-1173) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-710)) 87)) (-2770 (((-710) (-589 |#4|) (-589 |#5|)) 27)) (-1312 (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710)) 57) (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710) (-108)) 59)) (-2274 (((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108) (-108) (-108) (-108)) 78) (((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108)) 79)) (-3663 (((-1070) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) 82)) (-1827 (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-108)) 54)) (-1417 (((-710) (-589 |#4|) (-589 |#5|)) 19))) +(((-990 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1417 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -2770 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -1827 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-108))) (-15 -2944 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710))) (-15 -2944 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|)) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710) (-108))) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710))) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|)) (-15 -2274 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -2274 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3980 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 |#4|) (-589 |#5|) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) (-710))) (-15 -3663 ((-1070) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)))) (-15 -3431 ((-1173) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-710)))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-992 |#1| |#2| |#3| |#4|)) (T -990)) +((-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3072 *9)))) (-5 *4 (-710)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-1173)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3072 *8))) (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1070)) (-5 *1 (-990 *4 *5 *6 *7 *8)))) (-3980 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-589 *11)) (|:| |todo| (-589 (-2 (|:| |val| *3) (|:| -3072 *11)))))) (-5 *6 (-710)) (-5 *2 (-589 (-2 (|:| |val| (-589 *10)) (|:| -3072 *11)))) (-5 *3 (-589 *10)) (-5 *4 (-589 *11)) (-4 *10 (-987 *7 *8 *9)) (-4 *11 (-992 *7 *8 *9 *10)) (-4 *7 (-427)) (-4 *8 (-732)) (-4 *9 (-786)) (-5 *1 (-990 *7 *8 *9 *10 *11)))) (-2274 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) (-2274 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) (-1312 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-1312 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-990 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) (-1312 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-710)) (-5 *6 (-108)) (-4 *7 (-427)) (-4 *8 (-732)) (-4 *9 (-786)) (-4 *3 (-987 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-990 *7 *8 *9 *3 *4)) (-4 *4 (-992 *7 *8 *9 *3)))) (-2944 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2944 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-990 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) (-1827 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-990 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) (-1417 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-990 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -1417 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -2770 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -1827 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-108))) (-15 -2944 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710))) (-15 -2944 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|)) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710) (-108))) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710))) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|)) (-15 -2274 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -2274 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3980 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 |#4|) (-589 |#5|) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) (-710))) (-15 -3663 ((-1070) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)))) (-15 -3431 ((-1173) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-710)))) +((-2005 (((-108) |#5| $) 21)) (-3785 (((-108) |#5| $) 24)) (-1944 (((-108) |#5| $) 16) (((-108) $) 45)) (-1309 (((-589 $) |#5| $) NIL) (((-589 $) (-589 |#5|) $) 77) (((-589 $) (-589 |#5|) (-589 $)) 75) (((-589 $) |#5| (-589 $)) 78)) (-4097 (($ $ |#5|) NIL) (((-589 $) |#5| $) NIL) (((-589 $) |#5| (-589 $)) 60) (((-589 $) (-589 |#5|) $) 62) (((-589 $) (-589 |#5|) (-589 $)) 64)) (-3910 (((-589 $) |#5| $) NIL) (((-589 $) |#5| (-589 $)) 54) (((-589 $) (-589 |#5|) $) 56) (((-589 $) (-589 |#5|) (-589 $)) 58)) (-4062 (((-108) |#5| $) 27))) +(((-991 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4097 ((-589 |#1|) (-589 |#5|) (-589 |#1|))) (-15 -4097 ((-589 |#1|) (-589 |#5|) |#1|)) (-15 -4097 ((-589 |#1|) |#5| (-589 |#1|))) (-15 -4097 ((-589 |#1|) |#5| |#1|)) (-15 -3910 ((-589 |#1|) (-589 |#5|) (-589 |#1|))) (-15 -3910 ((-589 |#1|) (-589 |#5|) |#1|)) (-15 -3910 ((-589 |#1|) |#5| (-589 |#1|))) (-15 -3910 ((-589 |#1|) |#5| |#1|)) (-15 -1309 ((-589 |#1|) |#5| (-589 |#1|))) (-15 -1309 ((-589 |#1|) (-589 |#5|) (-589 |#1|))) (-15 -1309 ((-589 |#1|) (-589 |#5|) |#1|)) (-15 -1309 ((-589 |#1|) |#5| |#1|)) (-15 -3785 ((-108) |#5| |#1|)) (-15 -1944 ((-108) |#1|)) (-15 -4062 ((-108) |#5| |#1|)) (-15 -2005 ((-108) |#5| |#1|)) (-15 -1944 ((-108) |#5| |#1|)) (-15 -4097 (|#1| |#1| |#5|))) (-992 |#2| |#3| |#4| |#5|) (-427) (-732) (-786) (-987 |#2| |#3| |#4|)) (T -991)) +NIL +(-10 -8 (-15 -4097 ((-589 |#1|) (-589 |#5|) (-589 |#1|))) (-15 -4097 ((-589 |#1|) (-589 |#5|) |#1|)) (-15 -4097 ((-589 |#1|) |#5| (-589 |#1|))) (-15 -4097 ((-589 |#1|) |#5| |#1|)) (-15 -3910 ((-589 |#1|) (-589 |#5|) (-589 |#1|))) (-15 -3910 ((-589 |#1|) (-589 |#5|) |#1|)) (-15 -3910 ((-589 |#1|) |#5| (-589 |#1|))) (-15 -3910 ((-589 |#1|) |#5| |#1|)) (-15 -1309 ((-589 |#1|) |#5| (-589 |#1|))) (-15 -1309 ((-589 |#1|) (-589 |#5|) (-589 |#1|))) (-15 -1309 ((-589 |#1|) (-589 |#5|) |#1|)) (-15 -1309 ((-589 |#1|) |#5| |#1|)) (-15 -3785 ((-108) |#5| |#1|)) (-15 -1944 ((-108) |#1|)) (-15 -4062 ((-108) |#5| |#1|)) (-15 -2005 ((-108) |#5| |#1|)) (-15 -1944 ((-108) |#5| |#1|)) (-15 -4097 (|#1| |#1| |#5|))) +((-3924 (((-108) $ $) 7)) (-1633 (((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 |#4|)))) (-589 |#4|)) 85)) (-3846 (((-589 $) (-589 |#4|)) 86) (((-589 $) (-589 |#4|) (-108)) 111)) (-1957 (((-589 |#3|) $) 33)) (-2100 (((-108) $) 26)) (-2376 (((-108) $) 17 (|has| |#1| (-515)))) (-2694 (((-108) |#4| $) 101) (((-108) $) 97)) (-2308 ((|#4| |#4| $) 92)) (-2291 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| $) 126)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) 27)) (-3079 (((-108) $ (-710)) 44)) (-3724 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4244))) (((-3 |#4| "failed") $ |#3|) 79)) (-2518 (($) 45 T CONST)) (-3595 (((-108) $) 22 (|has| |#1| (-515)))) (-4017 (((-108) $ $) 24 (|has| |#1| (-515)))) (-3225 (((-108) $ $) 23 (|has| |#1| (-515)))) (-3393 (((-108) $) 25 (|has| |#1| (-515)))) (-3375 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3956 (((-589 |#4|) (-589 |#4|) $) 18 (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) 19 (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) 36)) (-3474 (($ (-589 |#4|)) 35)) (-1751 (((-3 $ "failed") $) 82)) (-4014 ((|#4| |#4| $) 89)) (-1773 (($ $) 68 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#4| $) 67 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-515)))) (-2663 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2636 ((|#4| |#4| $) 87)) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4244))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-3737 (((-2 (|:| -3952 (-589 |#4|)) (|:| -2625 (-589 |#4|))) $) 105)) (-2005 (((-108) |#4| $) 136)) (-3785 (((-108) |#4| $) 133)) (-1944 (((-108) |#4| $) 137) (((-108) $) 134)) (-1666 (((-589 |#4|) $) 52 (|has| $ (-6 -4244)))) (-4172 (((-108) |#4| $) 104) (((-108) $) 103)) (-2907 ((|#3| $) 34)) (-2346 (((-108) $ (-710)) 43)) (-2136 (((-589 |#4|) $) 53 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) 47)) (-4055 (((-589 |#3|) $) 32)) (-1357 (((-108) |#3| $) 31)) (-2866 (((-108) $ (-710)) 42)) (-3779 (((-1070) $) 9)) (-3246 (((-3 |#4| (-589 $)) |#4| |#4| $) 128)) (-1611 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| |#4| $) 127)) (-2579 (((-3 |#4| "failed") $) 83)) (-2668 (((-589 $) |#4| $) 129)) (-3320 (((-3 (-108) (-589 $)) |#4| $) 132)) (-2870 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-1309 (((-589 $) |#4| $) 125) (((-589 $) (-589 |#4|) $) 124) (((-589 $) (-589 |#4|) (-589 $)) 123) (((-589 $) |#4| (-589 $)) 122)) (-1770 (($ |#4| $) 117) (($ (-589 |#4|) $) 116)) (-2404 (((-589 |#4|) $) 107)) (-2112 (((-108) |#4| $) 99) (((-108) $) 95)) (-2648 ((|#4| |#4| $) 90)) (-2391 (((-108) $ $) 110)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-515)))) (-2001 (((-108) |#4| $) 100) (((-108) $) 96)) (-1398 ((|#4| |#4| $) 91)) (-2783 (((-1034) $) 10)) (-1738 (((-3 |#4| "failed") $) 84)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2890 (((-3 $ "failed") $ |#4|) 78)) (-4097 (($ $ |#4|) 77) (((-589 $) |#4| $) 115) (((-589 $) |#4| (-589 $)) 114) (((-589 $) (-589 |#4|) $) 113) (((-589 $) (-589 |#4|) (-589 $)) 112)) (-1327 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) 59 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) 57 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) 56 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) 38)) (-3883 (((-108) $) 41)) (-3988 (($) 40)) (-2299 (((-710) $) 106)) (-2792 (((-710) |#4| $) 54 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4244)))) (-1664 (($ $) 39)) (-3663 (((-499) $) 69 (|has| |#4| (-564 (-499))))) (-1472 (($ (-589 |#4|)) 60)) (-2621 (($ $ |#3|) 28)) (-2624 (($ $ |#3|) 30)) (-1824 (($ $) 88)) (-3076 (($ $ |#3|) 29)) (-1458 (((-794) $) 11) (((-589 |#4|) $) 37)) (-1395 (((-710) $) 76 (|has| |#3| (-344)))) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4031 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) 98)) (-3910 (((-589 $) |#4| $) 121) (((-589 $) |#4| (-589 $)) 120) (((-589 $) (-589 |#4|) $) 119) (((-589 $) (-589 |#4|) (-589 $)) 118)) (-2096 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4244)))) (-3862 (((-589 |#3|) $) 81)) (-4062 (((-108) |#4| $) 135)) (-2153 (((-108) |#3| $) 80)) (-3983 (((-108) $ $) 6)) (-2676 (((-710) $) 46 (|has| $ (-6 -4244))))) +(((-992 |#1| |#2| |#3| |#4|) (-129) (-427) (-732) (-786) (-987 |t#1| |t#2| |t#3|)) (T -992)) +((-1944 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-2005 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-4062 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-1944 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) (-3785 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-3320 (*1 *2 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-3 (-108) (-589 *1))) (-4 *1 (-992 *4 *5 *6 *3)))) (-2870 (*1 *2 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *1)))) (-4 *1 (-992 *4 *5 *6 *3)))) (-2870 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-2668 (*1 *2 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)))) (-3246 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-3 *3 (-589 *1))) (-4 *1 (-992 *4 *5 *6 *3)))) (-1611 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *1)))) (-4 *1 (-992 *4 *5 *6 *3)))) (-2291 (*1 *2 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *1)))) (-4 *1 (-992 *4 *5 *6 *3)))) (-1309 (*1 *2 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)))) (-1309 (*1 *2 *3 *1) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *7)))) (-1309 (*1 *2 *3 *2) (-12 (-5 *2 (-589 *1)) (-5 *3 (-589 *7)) (-4 *1 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)))) (-1309 (*1 *2 *3 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)))) (-3910 (*1 *2 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)))) (-3910 (*1 *2 *3 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)))) (-3910 (*1 *2 *3 *1) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *7)))) (-3910 (*1 *2 *3 *2) (-12 (-5 *2 (-589 *1)) (-5 *3 (-589 *7)) (-4 *1 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)))) (-1770 (*1 *1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5 *2)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-1770 (*1 *1 *2 *1) (-12 (-5 *2 (-589 *6)) (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)))) (-4097 (*1 *2 *3 *1) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)))) (-4097 (*1 *2 *3 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)))) (-4097 (*1 *2 *3 *1) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *7)))) (-4097 (*1 *2 *3 *2) (-12 (-5 *2 (-589 *1)) (-5 *3 (-589 *7)) (-4 *1 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-992 *5 *6 *7 *8))))) +(-13 (-1116 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1944 ((-108) |t#4| $)) (-15 -2005 ((-108) |t#4| $)) (-15 -4062 ((-108) |t#4| $)) (-15 -1944 ((-108) $)) (-15 -3785 ((-108) |t#4| $)) (-15 -3320 ((-3 (-108) (-589 $)) |t#4| $)) (-15 -2870 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 $))) |t#4| $)) (-15 -2870 ((-108) |t#4| $)) (-15 -2668 ((-589 $) |t#4| $)) (-15 -3246 ((-3 |t#4| (-589 $)) |t#4| |t#4| $)) (-15 -1611 ((-589 (-2 (|:| |val| |t#4|) (|:| -3072 $))) |t#4| |t#4| $)) (-15 -2291 ((-589 (-2 (|:| |val| |t#4|) (|:| -3072 $))) |t#4| $)) (-15 -1309 ((-589 $) |t#4| $)) (-15 -1309 ((-589 $) (-589 |t#4|) $)) (-15 -1309 ((-589 $) (-589 |t#4|) (-589 $))) (-15 -1309 ((-589 $) |t#4| (-589 $))) (-15 -3910 ((-589 $) |t#4| $)) (-15 -3910 ((-589 $) |t#4| (-589 $))) (-15 -3910 ((-589 $) (-589 |t#4|) $)) (-15 -3910 ((-589 $) (-589 |t#4|) (-589 $))) (-15 -1770 ($ |t#4| $)) (-15 -1770 ($ (-589 |t#4|) $)) (-15 -4097 ((-589 $) |t#4| $)) (-15 -4097 ((-589 $) |t#4| (-589 $))) (-15 -4097 ((-589 $) (-589 |t#4|) $)) (-15 -4097 ((-589 $) (-589 |t#4|) (-589 $))) (-15 -3846 ((-589 $) (-589 |t#4|) (-108))))) +(((-33) . T) ((-97) . T) ((-563 (-589 |#4|)) . T) ((-563 (-794)) . T) ((-140 |#4|) . T) ((-564 (-499)) |has| |#4| (-564 (-499))) ((-286 |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-462 |#4|) . T) ((-484 |#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-905 |#1| |#2| |#3| |#4|) . T) ((-1016) . T) ((-1116 |#1| |#2| |#3| |#4|) . T) ((-1122) . T)) +((-1609 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#5|) 81)) (-1501 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|) 113)) (-2615 (((-589 |#5|) |#4| |#5|) 70)) (-2590 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|) 44) (((-108) |#4| |#5|) 52)) (-2804 (((-1173)) 35)) (-4175 (((-1173)) 25)) (-1515 (((-1173) (-1070) (-1070) (-1070)) 31)) (-2744 (((-1173) (-1070) (-1070) (-1070)) 20)) (-3508 (((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#4| |#4| |#5|) 96)) (-3020 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#3| (-108)) 107) (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5| (-108) (-108)) 49)) (-2758 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|) 102))) +(((-993 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2744 ((-1173) (-1070) (-1070) (-1070))) (-15 -4175 ((-1173))) (-15 -1515 ((-1173) (-1070) (-1070) (-1070))) (-15 -2804 ((-1173))) (-15 -3508 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -3020 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3020 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#3| (-108))) (-15 -2758 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -1501 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -2590 ((-108) |#4| |#5|)) (-15 -2590 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|)) (-15 -2615 ((-589 |#5|) |#4| |#5|)) (-15 -1609 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#5|))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-992 |#1| |#2| |#3| |#4|)) (T -993)) +((-1609 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2615 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2590 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *4)))) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2590 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-1501 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2758 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-3020 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3072 *9)))) (-5 *5 (-108)) (-4 *8 (-987 *6 *7 *4)) (-4 *9 (-992 *6 *7 *4 *8)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *4 (-786)) (-5 *2 (-589 (-2 (|:| |val| *8) (|:| -3072 *9)))) (-5 *1 (-993 *6 *7 *4 *8 *9)))) (-3020 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) (-5 *1 (-993 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) (-3508 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2804 (*1 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) (-5 *1 (-993 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) (-1515 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) (-5 *1 (-993 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-4175 (*1 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) (-5 *1 (-993 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) (-2744 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) (-5 *1 (-993 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) +(-10 -7 (-15 -2744 ((-1173) (-1070) (-1070) (-1070))) (-15 -4175 ((-1173))) (-15 -1515 ((-1173) (-1070) (-1070) (-1070))) (-15 -2804 ((-1173))) (-15 -3508 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -3020 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3020 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#3| (-108))) (-15 -2758 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -1501 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -2590 ((-108) |#4| |#5|)) (-15 -2590 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|)) (-15 -2615 ((-589 |#5|) |#4| |#5|)) (-15 -1609 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#5|))) +((-3924 (((-108) $ $) NIL)) (-4038 (((-1087) $) 8)) (-3779 (((-1070) $) 16)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 13))) +(((-994 |#1|) (-13 (-1016) (-10 -8 (-15 -4038 ((-1087) $)))) (-1087)) (T -994)) +((-4038 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-994 *3)) (-14 *3 *2)))) +(-13 (-1016) (-10 -8 (-15 -4038 ((-1087) $)))) +((-3924 (((-108) $ $) NIL)) (-3547 (($ $ (-589 (-1087)) (-1 (-108) (-589 |#3|))) 29)) (-3861 (($ |#3| |#3|) 21) (($ |#3| |#3| (-589 (-1087))) 19)) (-1797 ((|#3| $) 13)) (-3517 (((-3 (-271 |#3|) "failed") $) 56)) (-3474 (((-271 |#3|) $) NIL)) (-3675 (((-589 (-1087)) $) 15)) (-3781 (((-823 |#1|) $) 11)) (-1787 ((|#3| $) 12)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3223 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-852)) 36)) (-1458 (((-794) $) 85) (($ (-271 |#3|)) 20)) (-3983 (((-108) $ $) 33))) +(((-995 |#1| |#2| |#3|) (-13 (-1016) (-263 |#3| |#3|) (-964 (-271 |#3|)) (-10 -8 (-15 -3861 ($ |#3| |#3|)) (-15 -3861 ($ |#3| |#3| (-589 (-1087)))) (-15 -3547 ($ $ (-589 (-1087)) (-1 (-108) (-589 |#3|)))) (-15 -3781 ((-823 |#1|) $)) (-15 -1787 (|#3| $)) (-15 -1797 (|#3| $)) (-15 -3223 (|#3| $ |#3| (-852))) (-15 -3675 ((-589 (-1087)) $)))) (-1016) (-13 (-973) (-817 |#1|) (-786) (-564 (-823 |#1|))) (-13 (-406 |#2|) (-817 |#1|) (-564 (-823 |#1|)))) (T -995)) +((-3861 (*1 *1 *2 *2) (-12 (-4 *3 (-1016)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) (-5 *1 (-995 *3 *4 *2)) (-4 *2 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))))) (-3861 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-589 (-1087))) (-4 *4 (-1016)) (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) (-5 *1 (-995 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))))) (-3547 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-1 (-108) (-589 *6))) (-4 *6 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))) (-4 *4 (-1016)) (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) (-5 *1 (-995 *4 *5 *6)))) (-3781 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 *2))) (-5 *2 (-823 *3)) (-5 *1 (-995 *3 *4 *5)) (-4 *5 (-13 (-406 *4) (-817 *3) (-564 *2))))) (-1787 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *2 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))) (-5 *1 (-995 *3 *4 *2)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))))) (-1797 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *2 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))) (-5 *1 (-995 *3 *4 *2)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))))) (-3223 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-852)) (-4 *4 (-1016)) (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) (-5 *1 (-995 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))))) (-3675 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) (-5 *2 (-589 (-1087))) (-5 *1 (-995 *3 *4 *5)) (-4 *5 (-13 (-406 *4) (-817 *3) (-564 (-823 *3))))))) +(-13 (-1016) (-263 |#3| |#3|) (-964 (-271 |#3|)) (-10 -8 (-15 -3861 ($ |#3| |#3|)) (-15 -3861 ($ |#3| |#3| (-589 (-1087)))) (-15 -3547 ($ $ (-589 (-1087)) (-1 (-108) (-589 |#3|)))) (-15 -3781 ((-823 |#1|) $)) (-15 -1787 (|#3| $)) (-15 -1797 (|#3| $)) (-15 -3223 (|#3| $ |#3| (-852))) (-15 -3675 ((-589 (-1087)) $)))) +((-3924 (((-108) $ $) NIL)) (-3514 (($ (-589 (-995 |#1| |#2| |#3|))) 12)) (-1697 (((-589 (-995 |#1| |#2| |#3|)) $) 19)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3223 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-852)) 25)) (-1458 (((-794) $) 15)) (-3983 (((-108) $ $) 18))) +(((-996 |#1| |#2| |#3|) (-13 (-1016) (-263 |#3| |#3|) (-10 -8 (-15 -3514 ($ (-589 (-995 |#1| |#2| |#3|)))) (-15 -1697 ((-589 (-995 |#1| |#2| |#3|)) $)) (-15 -3223 (|#3| $ |#3| (-852))))) (-1016) (-13 (-973) (-817 |#1|) (-786) (-564 (-823 |#1|))) (-13 (-406 |#2|) (-817 |#1|) (-564 (-823 |#1|)))) (T -996)) +((-3514 (*1 *1 *2) (-12 (-5 *2 (-589 (-995 *3 *4 *5))) (-4 *3 (-1016)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) (-4 *5 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))) (-5 *1 (-996 *3 *4 *5)))) (-1697 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) (-5 *2 (-589 (-995 *3 *4 *5))) (-5 *1 (-996 *3 *4 *5)) (-4 *5 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))))) (-3223 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-852)) (-4 *4 (-1016)) (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) (-5 *1 (-996 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4))))))) +(-13 (-1016) (-263 |#3| |#3|) (-10 -8 (-15 -3514 ($ (-589 (-995 |#1| |#2| |#3|)))) (-15 -1697 ((-589 (-995 |#1| |#2| |#3|)) $)) (-15 -3223 (|#3| $ |#3| (-852))))) +((-2419 (((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108)) 74) (((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|))) 76) (((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108)) 75))) +(((-997 |#1| |#2|) (-10 -7 (-15 -2419 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108))) (-15 -2419 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)))) (-15 -2419 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108)))) (-13 (-284) (-136)) (-589 (-1087))) (T -997)) +((-2419 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-5 *2 (-589 (-2 (|:| -1986 (-1083 *5)) (|:| -2966 (-589 (-883 *5)))))) (-5 *1 (-997 *5 *6)) (-5 *3 (-589 (-883 *5))) (-14 *6 (-589 (-1087))))) (-2419 (*1 *2 *3) (-12 (-4 *4 (-13 (-284) (-136))) (-5 *2 (-589 (-2 (|:| -1986 (-1083 *4)) (|:| -2966 (-589 (-883 *4)))))) (-5 *1 (-997 *4 *5)) (-5 *3 (-589 (-883 *4))) (-14 *5 (-589 (-1087))))) (-2419 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-5 *2 (-589 (-2 (|:| -1986 (-1083 *5)) (|:| -2966 (-589 (-883 *5)))))) (-5 *1 (-997 *5 *6)) (-5 *3 (-589 (-883 *5))) (-14 *6 (-589 (-1087)))))) +(-10 -7 (-15 -2419 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108))) (-15 -2419 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)))) (-15 -2419 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108)))) +((-1820 (((-394 |#3|) |#3|) 16))) +(((-998 |#1| |#2| |#3|) (-10 -7 (-15 -1820 ((-394 |#3|) |#3|))) (-1144 (-383 (-523))) (-13 (-339) (-136) (-664 (-383 (-523)) |#1|)) (-1144 |#2|)) (T -998)) +((-1820 (*1 *2 *3) (-12 (-4 *4 (-1144 (-383 (-523)))) (-4 *5 (-13 (-339) (-136) (-664 (-383 (-523)) *4))) (-5 *2 (-394 *3)) (-5 *1 (-998 *4 *5 *3)) (-4 *3 (-1144 *5))))) +(-10 -7 (-15 -1820 ((-394 |#3|) |#3|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 125)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-339)))) (-3345 (($ $) NIL (|has| |#1| (-339)))) (-3331 (((-108) $) NIL (|has| |#1| (-339)))) (-3750 (((-629 |#1|) (-1168 $)) NIL) (((-629 |#1|)) 115)) (-4187 ((|#1| $) 119)) (-2430 (((-1096 (-852) (-710)) (-523)) NIL (|has| |#1| (-325)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-339)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1703 (((-710)) 40 (|has| |#1| (-344)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-3409 (($ (-1168 |#1|) (-1168 $)) NIL) (($ (-1168 |#1|)) 43)) (-1572 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-325)))) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-4079 (((-629 |#1|) $ (-1168 $)) NIL) (((-629 |#1|) $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 106) (((-629 |#1|) (-629 $)) 100)) (-2437 (($ |#2|) 61) (((-3 $ "failed") (-383 |#2|)) NIL (|has| |#1| (-339)))) (-2121 (((-3 $ "failed") $) NIL)) (-1319 (((-852)) 77)) (-4032 (($) 44 (|has| |#1| (-344)))) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-1996 (($) NIL (|has| |#1| (-325)))) (-2155 (((-108) $) NIL (|has| |#1| (-325)))) (-1991 (($ $ (-710)) NIL (|has| |#1| (-325))) (($ $) NIL (|has| |#1| (-325)))) (-2657 (((-108) $) NIL (|has| |#1| (-339)))) (-1640 (((-852) $) NIL (|has| |#1| (-325))) (((-772 (-852)) $) NIL (|has| |#1| (-325)))) (-2023 (((-108) $) NIL)) (-3892 ((|#1| $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-325)))) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-1397 ((|#2| $) 84 (|has| |#1| (-339)))) (-2072 (((-852) $) 130 (|has| |#1| (-344)))) (-2428 ((|#2| $) 58)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| |#1| (-339)))) (-2262 (($) NIL (|has| |#1| (-325)) CONST)) (-3878 (($ (-852)) 124 (|has| |#1| (-344)))) (-2783 (((-1034) $) NIL)) (-3441 (($) 121)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-3044 (((-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523))))) NIL (|has| |#1| (-325)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3549 ((|#1| (-1168 $)) NIL) ((|#1|) 109)) (-2974 (((-710) $) NIL (|has| |#1| (-325))) (((-3 (-710) "failed") $ $) NIL (|has| |#1| (-325)))) (-3523 (($ $) NIL (-3262 (-12 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-710)) NIL (-3262 (-12 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-1 |#1| |#1|) (-710)) NIL (|has| |#1| (-339))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-339)))) (-1976 (((-629 |#1|) (-1168 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-339)))) (-3727 ((|#2|) 73)) (-3425 (($) NIL (|has| |#1| (-325)))) (-2966 (((-1168 |#1|) $ (-1168 $)) 89) (((-629 |#1|) (-1168 $) (-1168 $)) NIL) (((-1168 |#1|) $) 71) (((-629 |#1|) (-1168 $)) 85)) (-3663 (((-1168 |#1|) $) NIL) (($ (-1168 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (|has| |#1| (-325)))) (-1458 (((-794) $) 57) (($ (-523)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-339))) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-339)) (|has| |#1| (-964 (-383 (-523))))))) (-3901 (($ $) NIL (|has| |#1| (-325))) (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1807 ((|#2| $) 82)) (-1621 (((-710)) 75)) (-4041 (((-1168 $)) 81)) (-1704 (((-108) $ $) NIL (|has| |#1| (-339)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) 30 T CONST)) (-2767 (($) 19 T CONST)) (-2862 (($ $) NIL (-3262 (-12 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-710)) NIL (-3262 (-12 (|has| |#1| (-211)) (|has| |#1| (-339))) (|has| |#1| (-325)))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-339)) (|has| |#1| (-831 (-1087))))) (($ $ (-1 |#1| |#1|) (-710)) NIL (|has| |#1| (-339))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-339)))) (-3983 (((-108) $ $) 63)) (-4098 (($ $ $) NIL (|has| |#1| (-339)))) (-4087 (($ $) 67) (($ $ $) NIL)) (-4075 (($ $ $) 65)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-383 (-523)) $) NIL (|has| |#1| (-339))) (($ $ (-383 (-523))) NIL (|has| |#1| (-339))))) +(((-999 |#1| |#2| |#3|) (-664 |#1| |#2|) (-158) (-1144 |#1|) |#2|) (T -999)) +NIL +(-664 |#1| |#2|) +((-1820 (((-394 |#3|) |#3|) 16))) +(((-1000 |#1| |#2| |#3|) (-10 -7 (-15 -1820 ((-394 |#3|) |#3|))) (-1144 (-383 (-883 (-523)))) (-13 (-339) (-136) (-664 (-383 (-883 (-523))) |#1|)) (-1144 |#2|)) (T -1000)) +((-1820 (*1 *2 *3) (-12 (-4 *4 (-1144 (-383 (-883 (-523))))) (-4 *5 (-13 (-339) (-136) (-664 (-383 (-883 (-523))) *4))) (-5 *2 (-394 *3)) (-5 *1 (-1000 *4 *5 *3)) (-4 *3 (-1144 *5))))) +(-10 -7 (-15 -1820 ((-394 |#3|) |#3|))) +((-3924 (((-108) $ $) NIL)) (-2454 (($ $ $) 14)) (-2062 (($ $ $) 15)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1883 (($) 6)) (-3663 (((-1087) $) 18)) (-1458 (((-794) $) 12)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 13)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 8))) +(((-1001) (-13 (-786) (-10 -8 (-15 -1883 ($)) (-15 -3663 ((-1087) $))))) (T -1001)) +((-1883 (*1 *1) (-5 *1 (-1001))) (-3663 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1001))))) +(-13 (-786) (-10 -8 (-15 -1883 ($)) (-15 -3663 ((-1087) $)))) +((-2610 ((|#1| |#1| (-1 (-523) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-108) |#1|)) 20)) (-3355 (((-1173)) 15)) (-4020 (((-589 |#1|)) 9))) +(((-1002 |#1|) (-10 -7 (-15 -3355 ((-1173))) (-15 -4020 ((-589 |#1|))) (-15 -2610 (|#1| |#1| (-1 (-108) |#1|))) (-15 -2610 (|#1| |#1| (-1 (-523) |#1| |#1|)))) (-125)) (T -1002)) +((-2610 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-523) *2 *2)) (-4 *2 (-125)) (-5 *1 (-1002 *2)))) (-2610 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-125)) (-5 *1 (-1002 *2)))) (-4020 (*1 *2) (-12 (-5 *2 (-589 *3)) (-5 *1 (-1002 *3)) (-4 *3 (-125)))) (-3355 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1002 *3)) (-4 *3 (-125))))) +(-10 -7 (-15 -3355 ((-1173))) (-15 -4020 ((-589 |#1|))) (-15 -2610 (|#1| |#1| (-1 (-108) |#1|))) (-15 -2610 (|#1| |#1| (-1 (-523) |#1| |#1|)))) +((-3426 (($ (-104) $) 15)) (-1422 (((-3 (-104) "failed") (-1087) $) 13)) (-3988 (($) 6)) (-3231 (($) 16)) (-2387 (($) 17)) (-1612 (((-589 (-160)) $) 8)) (-1458 (((-794) $) 20))) +(((-1003) (-13 (-563 (-794)) (-10 -8 (-15 -3988 ($)) (-15 -1612 ((-589 (-160)) $)) (-15 -1422 ((-3 (-104) "failed") (-1087) $)) (-15 -3426 ($ (-104) $)) (-15 -3231 ($)) (-15 -2387 ($))))) (T -1003)) +((-3988 (*1 *1) (-5 *1 (-1003))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-589 (-160))) (-5 *1 (-1003)))) (-1422 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-104)) (-5 *1 (-1003)))) (-3426 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1003)))) (-3231 (*1 *1) (-5 *1 (-1003))) (-2387 (*1 *1) (-5 *1 (-1003)))) +(-13 (-563 (-794)) (-10 -8 (-15 -3988 ($)) (-15 -1612 ((-589 (-160)) $)) (-15 -1422 ((-3 (-104) "failed") (-1087) $)) (-15 -3426 ($ (-104) $)) (-15 -3231 ($)) (-15 -2387 ($)))) +((-3115 (((-1168 (-629 |#1|)) (-589 (-629 |#1|))) 41) (((-1168 (-629 (-883 |#1|))) (-589 (-1087)) (-629 (-883 |#1|))) 61) (((-1168 (-629 (-383 (-883 |#1|)))) (-589 (-1087)) (-629 (-383 (-883 |#1|)))) 77)) (-2966 (((-1168 |#1|) (-629 |#1|) (-589 (-629 |#1|))) 35))) +(((-1004 |#1|) (-10 -7 (-15 -3115 ((-1168 (-629 (-383 (-883 |#1|)))) (-589 (-1087)) (-629 (-383 (-883 |#1|))))) (-15 -3115 ((-1168 (-629 (-883 |#1|))) (-589 (-1087)) (-629 (-883 |#1|)))) (-15 -3115 ((-1168 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -2966 ((-1168 |#1|) (-629 |#1|) (-589 (-629 |#1|))))) (-339)) (T -1004)) +((-2966 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-629 *5))) (-5 *3 (-629 *5)) (-4 *5 (-339)) (-5 *2 (-1168 *5)) (-5 *1 (-1004 *5)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-589 (-629 *4))) (-4 *4 (-339)) (-5 *2 (-1168 (-629 *4))) (-5 *1 (-1004 *4)))) (-3115 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-1087))) (-4 *5 (-339)) (-5 *2 (-1168 (-629 (-883 *5)))) (-5 *1 (-1004 *5)) (-5 *4 (-629 (-883 *5))))) (-3115 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-1087))) (-4 *5 (-339)) (-5 *2 (-1168 (-629 (-383 (-883 *5))))) (-5 *1 (-1004 *5)) (-5 *4 (-629 (-383 (-883 *5))))))) +(-10 -7 (-15 -3115 ((-1168 (-629 (-383 (-883 |#1|)))) (-589 (-1087)) (-629 (-383 (-883 |#1|))))) (-15 -3115 ((-1168 (-629 (-883 |#1|))) (-589 (-1087)) (-629 (-883 |#1|)))) (-15 -3115 ((-1168 (-629 |#1|)) (-589 (-629 |#1|)))) (-15 -2966 ((-1168 |#1|) (-629 |#1|) (-589 (-629 |#1|))))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1854 (((-589 (-710)) $) NIL) (((-589 (-710)) $ (-1087)) NIL)) (-2656 (((-710) $) NIL) (((-710) $ (-1087)) NIL)) (-1957 (((-589 (-1006 (-1087))) $) NIL)) (-1786 (((-1083 $) $ (-1006 (-1087))) NIL) (((-1083 |#1|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-1006 (-1087)))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2291 (($ $) NIL (|has| |#1| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1413 (($ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-1006 (-1087)) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL) (((-3 (-1039 |#1| (-1087)) "failed") $) NIL)) (-3474 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-1006 (-1087)) $) NIL) (((-1087) $) NIL) (((-1039 |#1| (-1087)) $) NIL)) (-3078 (($ $ $ (-1006 (-1087))) NIL (|has| |#1| (-158)))) (-3810 (($ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#1| (-427))) (($ $ (-1006 (-1087))) NIL (|has| |#1| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#1| (-840)))) (-1284 (($ $ |#1| (-495 (-1006 (-1087))) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1006 (-1087)) (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1006 (-1087)) (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-1640 (((-710) $ (-1087)) NIL) (((-710) $) NIL)) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-1945 (($ (-1083 |#1|) (-1006 (-1087))) NIL) (($ (-1083 $) (-1006 (-1087))) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-495 (-1006 (-1087)))) NIL) (($ $ (-1006 (-1087)) (-710)) NIL) (($ $ (-589 (-1006 (-1087))) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-1006 (-1087))) NIL)) (-1575 (((-495 (-1006 (-1087))) $) NIL) (((-710) $ (-1006 (-1087))) NIL) (((-589 (-710)) $ (-589 (-1006 (-1087)))) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3782 (($ (-1 (-495 (-1006 (-1087))) (-495 (-1006 (-1087)))) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-3178 (((-1 $ (-710)) (-1087)) NIL) (((-1 $ (-710)) $) NIL (|has| |#1| (-211)))) (-2520 (((-3 (-1006 (-1087)) "failed") $) NIL)) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3415 (((-1006 (-1087)) $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-3779 (((-1070) $) NIL)) (-1453 (((-108) $) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-1006 (-1087))) (|:| -2735 (-710))) "failed") $) NIL)) (-3197 (($ $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 ((|#1| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-840)))) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-1006 (-1087)) |#1|) NIL) (($ $ (-589 (-1006 (-1087))) (-589 |#1|)) NIL) (($ $ (-1006 (-1087)) $) NIL) (($ $ (-589 (-1006 (-1087))) (-589 $)) NIL) (($ $ (-1087) $) NIL (|has| |#1| (-211))) (($ $ (-589 (-1087)) (-589 $)) NIL (|has| |#1| (-211))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-211))) (($ $ (-589 (-1087)) (-589 |#1|)) NIL (|has| |#1| (-211)))) (-3549 (($ $ (-1006 (-1087))) NIL (|has| |#1| (-158)))) (-3523 (($ $ (-1006 (-1087))) NIL) (($ $ (-589 (-1006 (-1087)))) NIL) (($ $ (-1006 (-1087)) (-710)) NIL) (($ $ (-589 (-1006 (-1087))) (-589 (-710))) NIL) (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1748 (((-589 (-1087)) $) NIL)) (-2299 (((-495 (-1006 (-1087))) $) NIL) (((-710) $ (-1006 (-1087))) NIL) (((-589 (-710)) $ (-589 (-1006 (-1087)))) NIL) (((-710) $ (-1087)) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-1006 (-1087)) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-1006 (-1087)) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-1006 (-1087)) (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-2438 ((|#1| $) NIL (|has| |#1| (-427))) (($ $ (-1006 (-1087))) NIL (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-1006 (-1087))) NIL) (($ (-1087)) NIL) (($ (-1039 |#1| (-1087))) NIL) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-495 (-1006 (-1087)))) NIL) (($ $ (-1006 (-1087)) (-710)) NIL) (($ $ (-589 (-1006 (-1087))) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-1006 (-1087))) NIL) (($ $ (-589 (-1006 (-1087)))) NIL) (($ $ (-1006 (-1087)) (-710)) NIL) (($ $ (-589 (-1006 (-1087))) (-589 (-710))) NIL) (($ $) NIL (|has| |#1| (-211))) (($ $ (-710)) NIL (|has| |#1| (-211))) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1005 |#1|) (-13 (-230 |#1| (-1087) (-1006 (-1087)) (-495 (-1006 (-1087)))) (-964 (-1039 |#1| (-1087)))) (-973)) (T -1005)) +NIL +(-13 (-230 |#1| (-1087) (-1006 (-1087)) (-495 (-1006 (-1087)))) (-964 (-1039 |#1| (-1087)))) +((-3924 (((-108) $ $) NIL)) (-2656 (((-710) $) NIL)) (-2700 ((|#1| $) 10)) (-3517 (((-3 |#1| "failed") $) NIL)) (-3474 ((|#1| $) NIL)) (-1640 (((-710) $) 11)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3178 (($ |#1| (-710)) 9)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3523 (($ $) NIL) (($ $ (-710)) NIL)) (-1458 (((-794) $) NIL) (($ |#1|) NIL)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 15))) +(((-1006 |#1|) (-243 |#1|) (-786)) (T -1006)) +NIL +(-243 |#1|) +((-3612 (((-589 |#2|) (-1 |#2| |#1|) (-1011 |#1|)) 24 (|has| |#1| (-784))) (((-1011 |#2|) (-1 |#2| |#1|) (-1011 |#1|)) 14))) +(((-1007 |#1| |#2|) (-10 -7 (-15 -3612 ((-1011 |#2|) (-1 |#2| |#1|) (-1011 |#1|))) (IF (|has| |#1| (-784)) (-15 -3612 ((-589 |#2|) (-1 |#2| |#1|) (-1011 |#1|))) |%noBranch|)) (-1122) (-1122)) (T -1007)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1011 *5)) (-4 *5 (-784)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-589 *6)) (-5 *1 (-1007 *5 *6)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1011 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1011 *6)) (-5 *1 (-1007 *5 *6))))) +(-10 -7 (-15 -3612 ((-1011 |#2|) (-1 |#2| |#1|) (-1011 |#1|))) (IF (|has| |#1| (-784)) (-15 -3612 ((-589 |#2|) (-1 |#2| |#1|) (-1011 |#1|))) |%noBranch|)) +((-3612 (((-1009 |#2|) (-1 |#2| |#1|) (-1009 |#1|)) 19))) +(((-1008 |#1| |#2|) (-10 -7 (-15 -3612 ((-1009 |#2|) (-1 |#2| |#1|) (-1009 |#1|)))) (-1122) (-1122)) (T -1008)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1009 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1009 *6)) (-5 *1 (-1008 *5 *6))))) +(-10 -7 (-15 -3612 ((-1009 |#2|) (-1 |#2| |#1|) (-1009 |#1|)))) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2700 (((-1087) $) 11)) (-2644 (((-1011 |#1|) $) 12)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1915 (($ (-1087) (-1011 |#1|)) 10)) (-1458 (((-794) $) 20 (|has| |#1| (-1016)))) (-3983 (((-108) $ $) 15 (|has| |#1| (-1016))))) +(((-1009 |#1|) (-13 (-1122) (-10 -8 (-15 -1915 ($ (-1087) (-1011 |#1|))) (-15 -2700 ((-1087) $)) (-15 -2644 ((-1011 |#1|) $)) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|))) (-1122)) (T -1009)) +((-1915 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1011 *4)) (-4 *4 (-1122)) (-5 *1 (-1009 *4)))) (-2700 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1009 *3)) (-4 *3 (-1122)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-1011 *3)) (-5 *1 (-1009 *3)) (-4 *3 (-1122))))) +(-13 (-1122) (-10 -8 (-15 -1915 ($ (-1087) (-1011 |#1|))) (-15 -2700 ((-1087) $)) (-15 -2644 ((-1011 |#1|) $)) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|))) +((-2644 (($ |#1| |#1|) 7)) (-2279 ((|#1| $) 10)) (-3519 ((|#1| $) 12)) (-3530 (((-523) $) 8)) (-2566 ((|#1| $) 9)) (-3539 ((|#1| $) 11)) (-3663 (($ |#1|) 6)) (-3410 (($ |#1| |#1|) 14)) (-3763 (($ $ (-523)) 13))) +(((-1010 |#1|) (-129) (-1122)) (T -1010)) +((-3410 (*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122)))) (-3763 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-1010 *3)) (-4 *3 (-1122)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122)))) (-3539 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122)))) (-2279 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122)))) (-2566 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122)))) (-3530 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1122)) (-5 *2 (-523)))) (-2644 (*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122)))) (-3663 (*1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122))))) +(-13 (-1122) (-10 -8 (-15 -3410 ($ |t#1| |t#1|)) (-15 -3763 ($ $ (-523))) (-15 -3519 (|t#1| $)) (-15 -3539 (|t#1| $)) (-15 -2279 (|t#1| $)) (-15 -2566 (|t#1| $)) (-15 -3530 ((-523) $)) (-15 -2644 ($ |t#1| |t#1|)) (-15 -3663 ($ |t#1|)))) +(((-1122) . T)) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2644 (($ |#1| |#1|) 15)) (-3612 (((-589 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-784)))) (-2279 ((|#1| $) 10)) (-3519 ((|#1| $) 9)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3530 (((-523) $) 14)) (-2566 ((|#1| $) 12)) (-3539 ((|#1| $) 11)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3686 (((-589 |#1|) $) 36 (|has| |#1| (-784))) (((-589 |#1|) (-589 $)) 35 (|has| |#1| (-784)))) (-3663 (($ |#1|) 26)) (-1458 (((-794) $) 25 (|has| |#1| (-1016)))) (-3410 (($ |#1| |#1|) 8)) (-3763 (($ $ (-523)) 16)) (-3983 (((-108) $ $) 19 (|has| |#1| (-1016))))) +(((-1011 |#1|) (-13 (-1010 |#1|) (-10 -7 (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-1012 |#1| (-589 |#1|))) |%noBranch|))) (-1122)) (T -1011)) +NIL +(-13 (-1010 |#1|) (-10 -7 (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-1012 |#1| (-589 |#1|))) |%noBranch|))) +((-2644 (($ |#1| |#1|) 7)) (-3612 ((|#2| (-1 |#1| |#1|) $) 16)) (-2279 ((|#1| $) 10)) (-3519 ((|#1| $) 12)) (-3530 (((-523) $) 8)) (-2566 ((|#1| $) 9)) (-3539 ((|#1| $) 11)) (-3686 ((|#2| (-589 $)) 18) ((|#2| $) 17)) (-3663 (($ |#1|) 6)) (-3410 (($ |#1| |#1|) 14)) (-3763 (($ $ (-523)) 13))) +(((-1012 |#1| |#2|) (-129) (-784) (-1061 |t#1|)) (T -1012)) +((-3686 (*1 *2 *3) (-12 (-5 *3 (-589 *1)) (-4 *1 (-1012 *4 *2)) (-4 *4 (-784)) (-4 *2 (-1061 *4)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-1012 *3 *2)) (-4 *3 (-784)) (-4 *2 (-1061 *3)))) (-3612 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1012 *4 *2)) (-4 *4 (-784)) (-4 *2 (-1061 *4))))) +(-13 (-1010 |t#1|) (-10 -8 (-15 -3686 (|t#2| (-589 $))) (-15 -3686 (|t#2| $)) (-15 -3612 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-1010 |#1|) . T) ((-1122) . T)) +((-3288 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-1922 (($ $ $) 10)) (-3682 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1013 |#1| |#2|) (-10 -8 (-15 -3288 (|#1| |#2| |#1|)) (-15 -3288 (|#1| |#1| |#2|)) (-15 -3288 (|#1| |#1| |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -3682 (|#1| |#1| |#2|)) (-15 -3682 (|#1| |#1| |#1|))) (-1014 |#2|) (-1016)) (T -1013)) +NIL +(-10 -8 (-15 -3288 (|#1| |#2| |#1|)) (-15 -3288 (|#1| |#1| |#2|)) (-15 -3288 (|#1| |#1| |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -3682 (|#1| |#1| |#2|)) (-15 -3682 (|#1| |#1| |#1|))) +((-3924 (((-108) $ $) 7)) (-3288 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-1922 (($ $ $) 20)) (-3471 (((-108) $ $) 19)) (-3079 (((-108) $ (-710)) 35)) (-4086 (($) 25) (($ (-589 |#1|)) 24)) (-3724 (($ (-1 (-108) |#1|) $) 56 (|has| $ (-6 -4244)))) (-2518 (($) 36 T CONST)) (-1773 (($ $) 59 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#1| $) 58 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4244)))) (-1666 (((-589 |#1|) $) 43 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 34)) (-2136 (((-589 |#1|) $) 44 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 46 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 38)) (-2866 (((-108) $ (-710)) 33)) (-3779 (((-1070) $) 9)) (-1309 (($ $ $) 23)) (-2783 (((-1034) $) 10)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 52)) (-1327 (((-108) (-1 (-108) |#1|) $) 41 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#1|) (-589 |#1|)) 50 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 48 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 (-271 |#1|))) 47 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 29)) (-3883 (((-108) $) 32)) (-3988 (($) 31)) (-3682 (($ $ $) 22) (($ $ |#1|) 21)) (-2792 (((-710) |#1| $) 45 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) |#1|) $) 42 (|has| $ (-6 -4244)))) (-1664 (($ $) 30)) (-3663 (((-499) $) 60 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 51)) (-1458 (((-794) $) 11)) (-1684 (($) 27) (($ (-589 |#1|)) 26)) (-2096 (((-108) (-1 (-108) |#1|) $) 40 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 6)) (-4007 (((-108) $ $) 28)) (-2676 (((-710) $) 37 (|has| $ (-6 -4244))))) +(((-1014 |#1|) (-129) (-1016)) (T -1014)) +((-4007 (*1 *2 *1 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1016)) (-5 *2 (-108)))) (-1684 (*1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-1684 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-1014 *3)))) (-4086 (*1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-4086 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-1014 *3)))) (-1309 (*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-3682 (*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-3682 (*1 *1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-1922 (*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-3471 (*1 *2 *1 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1016)) (-5 *2 (-108)))) (-3288 (*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-3288 (*1 *1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) (-3288 (*1 *1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016))))) +(-13 (-1016) (-140 |t#1|) (-10 -8 (-6 -4234) (-15 -4007 ((-108) $ $)) (-15 -1684 ($)) (-15 -1684 ($ (-589 |t#1|))) (-15 -4086 ($)) (-15 -4086 ($ (-589 |t#1|))) (-15 -1309 ($ $ $)) (-15 -3682 ($ $ $)) (-15 -3682 ($ $ |t#1|)) (-15 -1922 ($ $ $)) (-15 -3471 ((-108) $ $)) (-15 -3288 ($ $ $)) (-15 -3288 ($ $ |t#1|)) (-15 -3288 ($ |t#1| $)))) +(((-33) . T) ((-97) . T) ((-563 (-794)) . T) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) . T) ((-1122) . T)) +((-3779 (((-1070) $) 10)) (-2783 (((-1034) $) 8))) +(((-1015 |#1|) (-10 -8 (-15 -3779 ((-1070) |#1|)) (-15 -2783 ((-1034) |#1|))) (-1016)) (T -1015)) +NIL +(-10 -8 (-15 -3779 ((-1070) |#1|)) (-15 -2783 ((-1034) |#1|))) +((-3924 (((-108) $ $) 7)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 6))) +(((-1016) (-129)) (T -1016)) +((-2783 (*1 *2 *1) (-12 (-4 *1 (-1016)) (-5 *2 (-1034)))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-1016)) (-5 *2 (-1070))))) +(-13 (-97) (-563 (-794)) (-10 -8 (-15 -2783 ((-1034) $)) (-15 -3779 ((-1070) $)))) +(((-97) . T) ((-563 (-794)) . T)) +((-3924 (((-108) $ $) NIL)) (-1703 (((-710)) 30)) (-3840 (($ (-589 (-852))) 52)) (-3927 (((-3 $ "failed") $ (-852) (-852)) 57)) (-4032 (($) 32)) (-1973 (((-108) (-852) $) 35)) (-2072 (((-852) $) 50)) (-3779 (((-1070) $) NIL)) (-3878 (($ (-852)) 31)) (-1755 (((-3 $ "failed") $ (-852)) 55)) (-2783 (((-1034) $) NIL)) (-3522 (((-1168 $)) 40)) (-4202 (((-589 (-852)) $) 23)) (-2594 (((-710) $ (-852) (-852)) 56)) (-1458 (((-794) $) 29)) (-3983 (((-108) $ $) 21))) +(((-1017 |#1| |#2|) (-13 (-344) (-10 -8 (-15 -1755 ((-3 $ "failed") $ (-852))) (-15 -3927 ((-3 $ "failed") $ (-852) (-852))) (-15 -4202 ((-589 (-852)) $)) (-15 -3840 ($ (-589 (-852)))) (-15 -3522 ((-1168 $))) (-15 -1973 ((-108) (-852) $)) (-15 -2594 ((-710) $ (-852) (-852))))) (-852) (-852)) (T -1017)) +((-1755 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-852)) (-5 *1 (-1017 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3927 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-852)) (-5 *1 (-1017 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1017 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852)))) (-3840 (*1 *1 *2) (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1017 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852)))) (-3522 (*1 *2) (-12 (-5 *2 (-1168 (-1017 *3 *4))) (-5 *1 (-1017 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852)))) (-1973 (*1 *2 *3 *1) (-12 (-5 *3 (-852)) (-5 *2 (-108)) (-5 *1 (-1017 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2594 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-852)) (-5 *2 (-710)) (-5 *1 (-1017 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-344) (-10 -8 (-15 -1755 ((-3 $ "failed") $ (-852))) (-15 -3927 ((-3 $ "failed") $ (-852) (-852))) (-15 -4202 ((-589 (-852)) $)) (-15 -3840 ($ (-589 (-852)))) (-15 -3522 ((-1168 $))) (-15 -1973 ((-108) (-852) $)) (-15 -2594 ((-710) $ (-852) (-852))))) +((-3924 (((-108) $ $) NIL)) (-2919 (($) NIL (|has| |#1| (-344)))) (-3288 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-1922 (($ $ $) 72)) (-3471 (((-108) $ $) 73)) (-3079 (((-108) $ (-710)) NIL)) (-1703 (((-710)) NIL (|has| |#1| (-344)))) (-4086 (($ (-589 |#1|)) NIL) (($) 13)) (-3387 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2249 (($ |#1| $) 67 (|has| $ (-6 -4244))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4244)))) (-4032 (($) NIL (|has| |#1| (-344)))) (-1666 (((-589 |#1|) $) 19 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-2454 ((|#1| $) 57 (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 66 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2062 ((|#1| $) 55 (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 34)) (-2072 (((-852) $) NIL (|has| |#1| (-344)))) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-1309 (($ $ $) 70)) (-1934 ((|#1| $) 25)) (-3450 (($ |#1| $) 65)) (-3878 (($ (-852)) NIL (|has| |#1| (-344)))) (-2783 (((-1034) $) NIL)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 31)) (-3761 ((|#1| $) 27)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 21)) (-3988 (($) 11)) (-3682 (($ $ |#1|) NIL) (($ $ $) 71)) (-3433 (($) NIL) (($ (-589 |#1|)) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) 16)) (-3663 (((-499) $) 52 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 61)) (-2059 (($ $) NIL (|has| |#1| (-344)))) (-1458 (((-794) $) NIL)) (-3398 (((-710) $) NIL)) (-1684 (($ (-589 |#1|)) NIL) (($) 12)) (-2401 (($ (-589 |#1|)) NIL)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 54)) (-4007 (((-108) $ $) NIL)) (-2676 (((-710) $) 10 (|has| $ (-6 -4244))))) +(((-1018 |#1|) (-401 |#1|) (-1016)) (T -1018)) +NIL +(-401 |#1|) +((-3924 (((-108) $ $) 7)) (-3129 (((-108) $) 32)) (-3335 ((|#2| $) 27)) (-3708 (((-108) $) 33)) (-3207 ((|#1| $) 28)) (-3021 (((-108) $) 35)) (-1888 (((-108) $) 37)) (-1749 (((-108) $) 34)) (-3779 (((-1070) $) 9)) (-1538 (((-108) $) 31)) (-3356 ((|#3| $) 26)) (-2783 (((-1034) $) 10)) (-3264 (((-108) $) 30)) (-4092 ((|#4| $) 25)) (-2659 ((|#5| $) 24)) (-1710 (((-108) $ $) 38)) (-3223 (($ $ (-523)) 14) (($ $ (-589 (-523))) 13)) (-1887 (((-589 $) $) 29)) (-3663 (($ (-589 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-1458 (((-794) $) 11)) (-1627 (($ $) 16)) (-4003 (($ $) 17)) (-1308 (((-108) $) 36)) (-3983 (((-108) $ $) 6)) (-2676 (((-523) $) 15))) +(((-1019 |#1| |#2| |#3| |#4| |#5|) (-129) (-1016) (-1016) (-1016) (-1016) (-1016)) (T -1019)) +((-1710 (*1 *2 *1 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-1888 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-1308 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-3021 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-1749 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-3708 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108)))) (-1887 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-589 *1)) (-4 *1 (-1019 *3 *4 *5 *6 *7)))) (-3207 (*1 *2 *1) (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) (-3335 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *2 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) (-4092 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) (-2659 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *2)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)))) (-3663 (*1 *1 *2) (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *2 (-1016)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) (-3663 (*1 *1 *2) (-12 (-4 *1 (-1019 *3 *2 *4 *5 *6)) (-4 *3 (-1016)) (-4 *2 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) (-3663 (*1 *1 *2) (-12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *2 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) (-3663 (*1 *1 *2) (-12 (-4 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *2 (-1016)) (-4 *6 (-1016)))) (-3663 (*1 *1 *2) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *2)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) (-4003 (*1 *1 *1) (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *2 (-1016)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) (-1627 (*1 *1 *1) (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *2 (-1016)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) (-2676 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-523)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016))))) +(-13 (-1016) (-10 -8 (-15 -1710 ((-108) $ $)) (-15 -1888 ((-108) $)) (-15 -1308 ((-108) $)) (-15 -3021 ((-108) $)) (-15 -1749 ((-108) $)) (-15 -3708 ((-108) $)) (-15 -3129 ((-108) $)) (-15 -1538 ((-108) $)) (-15 -3264 ((-108) $)) (-15 -1887 ((-589 $) $)) (-15 -3207 (|t#1| $)) (-15 -3335 (|t#2| $)) (-15 -3356 (|t#3| $)) (-15 -4092 (|t#4| $)) (-15 -2659 (|t#5| $)) (-15 -3663 ($ (-589 $))) (-15 -3663 ($ |t#1|)) (-15 -3663 ($ |t#2|)) (-15 -3663 ($ |t#3|)) (-15 -3663 ($ |t#4|)) (-15 -3663 ($ |t#5|)) (-15 -4003 ($ $)) (-15 -1627 ($ $)) (-15 -2676 ((-523) $)) (-15 -3223 ($ $ (-523))) (-15 -3223 ($ $ (-589 (-523)))))) +(((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-3129 (((-108) $) NIL)) (-3335 (((-1087) $) NIL)) (-3708 (((-108) $) NIL)) (-3207 (((-1070) $) NIL)) (-3021 (((-108) $) NIL)) (-1888 (((-108) $) NIL)) (-1749 (((-108) $) NIL)) (-3779 (((-1070) $) NIL)) (-1538 (((-108) $) NIL)) (-3356 (((-523) $) NIL)) (-2783 (((-1034) $) NIL)) (-3264 (((-108) $) NIL)) (-4092 (((-203) $) NIL)) (-2659 (((-794) $) NIL)) (-1710 (((-108) $ $) NIL)) (-3223 (($ $ (-523)) NIL) (($ $ (-589 (-523))) NIL)) (-1887 (((-589 $) $) NIL)) (-3663 (($ (-589 $)) NIL) (($ (-1070)) NIL) (($ (-1087)) NIL) (($ (-523)) NIL) (($ (-203)) NIL) (($ (-794)) NIL)) (-1458 (((-794) $) NIL)) (-1627 (($ $) NIL)) (-4003 (($ $) NIL)) (-1308 (((-108) $) NIL)) (-3983 (((-108) $ $) NIL)) (-2676 (((-523) $) NIL))) +(((-1020) (-1019 (-1070) (-1087) (-523) (-203) (-794))) (T -1020)) +NIL +(-1019 (-1070) (-1087) (-523) (-203) (-794)) +((-3924 (((-108) $ $) NIL)) (-3129 (((-108) $) 38)) (-3335 ((|#2| $) 42)) (-3708 (((-108) $) 37)) (-3207 ((|#1| $) 41)) (-3021 (((-108) $) 35)) (-1888 (((-108) $) 14)) (-1749 (((-108) $) 36)) (-3779 (((-1070) $) NIL)) (-1538 (((-108) $) 39)) (-3356 ((|#3| $) 44)) (-2783 (((-1034) $) NIL)) (-3264 (((-108) $) 40)) (-4092 ((|#4| $) 43)) (-2659 ((|#5| $) 45)) (-1710 (((-108) $ $) 34)) (-3223 (($ $ (-523)) 56) (($ $ (-589 (-523))) 58)) (-1887 (((-589 $) $) 22)) (-3663 (($ (-589 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-1458 (((-794) $) 23)) (-1627 (($ $) 21)) (-4003 (($ $) 52)) (-1308 (((-108) $) 18)) (-3983 (((-108) $ $) 33)) (-2676 (((-523) $) 54))) +(((-1021 |#1| |#2| |#3| |#4| |#5|) (-1019 |#1| |#2| |#3| |#4| |#5|) (-1016) (-1016) (-1016) (-1016) (-1016)) (T -1021)) +NIL +(-1019 |#1| |#2| |#3| |#4| |#5|) +((-3394 (((-1173) $) 23)) (-2925 (($ (-1087) (-410) |#2|) 11)) (-1458 (((-794) $) 16))) +(((-1022 |#1| |#2|) (-13 (-371) (-10 -8 (-15 -2925 ($ (-1087) (-410) |#2|)))) (-786) (-406 |#1|)) (T -1022)) +((-2925 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1087)) (-5 *3 (-410)) (-4 *5 (-786)) (-5 *1 (-1022 *5 *4)) (-4 *4 (-406 *5))))) +(-13 (-371) (-10 -8 (-15 -2925 ($ (-1087) (-410) |#2|)))) +((-1718 (((-108) |#5| |#5|) 38)) (-1589 (((-108) |#5| |#5|) 52)) (-2683 (((-108) |#5| (-589 |#5|)) 75) (((-108) |#5| |#5|) 61)) (-2323 (((-108) (-589 |#4|) (-589 |#4|)) 58)) (-2998 (((-108) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) 63)) (-1255 (((-1173)) 33)) (-1304 (((-1173) (-1070) (-1070) (-1070)) 29)) (-2983 (((-589 |#5|) (-589 |#5|)) 82)) (-4008 (((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)))) 80)) (-2280 (((-589 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|)))) (-589 |#4|) (-589 |#5|) (-108) (-108)) 102)) (-2709 (((-108) |#5| |#5|) 47)) (-1475 (((-3 (-108) "failed") |#5| |#5|) 71)) (-3124 (((-108) (-589 |#4|) (-589 |#4|)) 57)) (-2724 (((-108) (-589 |#4|) (-589 |#4|)) 59)) (-2391 (((-108) (-589 |#4|) (-589 |#4|)) 60)) (-2353 (((-3 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|))) "failed") (-589 |#4|) |#5| (-589 |#4|) (-108) (-108) (-108) (-108) (-108)) 98)) (-1642 (((-589 |#5|) (-589 |#5|)) 43))) +(((-1023 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1304 ((-1173) (-1070) (-1070) (-1070))) (-15 -1255 ((-1173))) (-15 -1718 ((-108) |#5| |#5|)) (-15 -1642 ((-589 |#5|) (-589 |#5|))) (-15 -2709 ((-108) |#5| |#5|)) (-15 -1589 ((-108) |#5| |#5|)) (-15 -2323 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -3124 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2724 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2391 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -1475 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2683 ((-108) |#5| |#5|)) (-15 -2683 ((-108) |#5| (-589 |#5|))) (-15 -2983 ((-589 |#5|) (-589 |#5|))) (-15 -2998 ((-108) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)))) (-15 -4008 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) (-15 -2280 ((-589 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|)))) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -2353 ((-3 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|))) "failed") (-589 |#4|) |#5| (-589 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-992 |#1| |#2| |#3| |#4|)) (T -1023)) +((-2353 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| -1710 (-589 *9)) (|:| -3072 *4) (|:| |ineq| (-589 *9)))) (-5 *1 (-1023 *6 *7 *8 *9 *4)) (-5 *3 (-589 *9)) (-4 *4 (-992 *6 *7 *8 *9)))) (-2280 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-589 *10)) (-5 *5 (-108)) (-4 *10 (-992 *6 *7 *8 *9)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) (-5 *2 (-589 (-2 (|:| -1710 (-589 *9)) (|:| -3072 *10) (|:| |ineq| (-589 *9))))) (-5 *1 (-1023 *6 *7 *8 *9 *10)) (-5 *3 (-589 *9)))) (-4008 (*1 *2 *2) (-12 (-5 *2 (-589 (-2 (|:| |val| (-589 *6)) (|:| -3072 *7)))) (-4 *6 (-987 *3 *4 *5)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-1023 *3 *4 *5 *6 *7)))) (-2998 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3072 *8))) (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *8)))) (-2983 (*1 *2 *2) (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *1 (-1023 *3 *4 *5 *6 *7)))) (-2683 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *3)) (-4 *3 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1023 *5 *6 *7 *8 *3)))) (-2683 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-1475 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-2391 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-2724 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-3124 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-2323 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-1589 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-2709 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-1642 (*1 *2 *2) (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *1 (-1023 *3 *4 *5 *6 *7)))) (-1718 (*1 *2 *3 *3) (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) (-1255 (*1 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) (-5 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) (-1304 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) +(-10 -7 (-15 -1304 ((-1173) (-1070) (-1070) (-1070))) (-15 -1255 ((-1173))) (-15 -1718 ((-108) |#5| |#5|)) (-15 -1642 ((-589 |#5|) (-589 |#5|))) (-15 -2709 ((-108) |#5| |#5|)) (-15 -1589 ((-108) |#5| |#5|)) (-15 -2323 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -3124 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2724 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -2391 ((-108) (-589 |#4|) (-589 |#4|))) (-15 -1475 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2683 ((-108) |#5| |#5|)) (-15 -2683 ((-108) |#5| (-589 |#5|))) (-15 -2983 ((-589 |#5|) (-589 |#5|))) (-15 -2998 ((-108) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)))) (-15 -4008 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) (-15 -2280 ((-589 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|)))) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -2353 ((-3 (-2 (|:| -1710 (-589 |#4|)) (|:| -3072 |#5|) (|:| |ineq| (-589 |#4|))) "failed") (-589 |#4|) |#5| (-589 |#4|) (-108) (-108) (-108) (-108) (-108)))) +((-3113 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#5|) 95)) (-3881 (((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#4| |#4| |#5|) 71)) (-2010 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|) 89)) (-1825 (((-589 |#5|) |#4| |#5|) 110)) (-2516 (((-589 |#5|) |#4| |#5|) 117)) (-1523 (((-589 |#5|) |#4| |#5|) 118)) (-2901 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|) 96)) (-3540 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|) 116)) (-1676 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|) 44) (((-108) |#4| |#5|) 52)) (-3564 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#3| (-108)) 83) (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5| (-108) (-108)) 49)) (-3150 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|) 78)) (-2804 (((-1173)) 35)) (-4175 (((-1173)) 25)) (-1515 (((-1173) (-1070) (-1070) (-1070)) 31)) (-2744 (((-1173) (-1070) (-1070) (-1070)) 20))) +(((-1024 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2744 ((-1173) (-1070) (-1070) (-1070))) (-15 -4175 ((-1173))) (-15 -1515 ((-1173) (-1070) (-1070) (-1070))) (-15 -2804 ((-1173))) (-15 -3881 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -3564 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3564 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#3| (-108))) (-15 -3150 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -2010 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -1676 ((-108) |#4| |#5|)) (-15 -2901 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|)) (-15 -1825 ((-589 |#5|) |#4| |#5|)) (-15 -3540 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|)) (-15 -2516 ((-589 |#5|) |#4| |#5|)) (-15 -1676 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|)) (-15 -1523 ((-589 |#5|) |#4| |#5|)) (-15 -3113 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#5|))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-992 |#1| |#2| |#3| |#4|)) (T -1024)) +((-3113 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-1523 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-1676 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *4)))) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2516 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-3540 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *4)))) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-1825 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2901 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *4)))) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-1676 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2010 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-3150 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-3564 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3072 *9)))) (-5 *5 (-108)) (-4 *8 (-987 *6 *7 *4)) (-4 *9 (-992 *6 *7 *4 *8)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *4 (-786)) (-5 *2 (-589 (-2 (|:| |val| *8) (|:| -3072 *9)))) (-5 *1 (-1024 *6 *7 *4 *8 *9)))) (-3564 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) (-5 *1 (-1024 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) (-3881 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))) (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) (-2804 (*1 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) (-5 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) (-1515 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) (-5 *1 (-1024 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) (-4175 (*1 *2) (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) (-5 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) (-2744 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) (-5 *1 (-1024 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) +(-10 -7 (-15 -2744 ((-1173) (-1070) (-1070) (-1070))) (-15 -4175 ((-1173))) (-15 -1515 ((-1173) (-1070) (-1070) (-1070))) (-15 -2804 ((-1173))) (-15 -3881 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -3564 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3564 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) |#3| (-108))) (-15 -3150 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -2010 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#4| |#5|)) (-15 -1676 ((-108) |#4| |#5|)) (-15 -2901 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|)) (-15 -1825 ((-589 |#5|) |#4| |#5|)) (-15 -3540 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|)) (-15 -2516 ((-589 |#5|) |#4| |#5|)) (-15 -1676 ((-589 (-2 (|:| |val| (-108)) (|:| -3072 |#5|))) |#4| |#5|)) (-15 -1523 ((-589 |#5|) |#4| |#5|)) (-15 -3113 ((-589 (-2 (|:| |val| |#4|) (|:| -3072 |#5|))) |#4| |#5|))) +((-3924 (((-108) $ $) 7)) (-1633 (((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 |#4|)))) (-589 |#4|)) 85)) (-3846 (((-589 $) (-589 |#4|)) 86) (((-589 $) (-589 |#4|) (-108)) 111)) (-1957 (((-589 |#3|) $) 33)) (-2100 (((-108) $) 26)) (-2376 (((-108) $) 17 (|has| |#1| (-515)))) (-2694 (((-108) |#4| $) 101) (((-108) $) 97)) (-2308 ((|#4| |#4| $) 92)) (-2291 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| $) 126)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) 27)) (-3079 (((-108) $ (-710)) 44)) (-3724 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4244))) (((-3 |#4| "failed") $ |#3|) 79)) (-2518 (($) 45 T CONST)) (-3595 (((-108) $) 22 (|has| |#1| (-515)))) (-4017 (((-108) $ $) 24 (|has| |#1| (-515)))) (-3225 (((-108) $ $) 23 (|has| |#1| (-515)))) (-3393 (((-108) $) 25 (|has| |#1| (-515)))) (-3375 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3956 (((-589 |#4|) (-589 |#4|) $) 18 (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) 19 (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) 36)) (-3474 (($ (-589 |#4|)) 35)) (-1751 (((-3 $ "failed") $) 82)) (-4014 ((|#4| |#4| $) 89)) (-1773 (($ $) 68 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#4| $) 67 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-515)))) (-2663 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2636 ((|#4| |#4| $) 87)) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4244))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-3737 (((-2 (|:| -3952 (-589 |#4|)) (|:| -2625 (-589 |#4|))) $) 105)) (-2005 (((-108) |#4| $) 136)) (-3785 (((-108) |#4| $) 133)) (-1944 (((-108) |#4| $) 137) (((-108) $) 134)) (-1666 (((-589 |#4|) $) 52 (|has| $ (-6 -4244)))) (-4172 (((-108) |#4| $) 104) (((-108) $) 103)) (-2907 ((|#3| $) 34)) (-2346 (((-108) $ (-710)) 43)) (-2136 (((-589 |#4|) $) 53 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) 47)) (-4055 (((-589 |#3|) $) 32)) (-1357 (((-108) |#3| $) 31)) (-2866 (((-108) $ (-710)) 42)) (-3779 (((-1070) $) 9)) (-3246 (((-3 |#4| (-589 $)) |#4| |#4| $) 128)) (-1611 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| |#4| $) 127)) (-2579 (((-3 |#4| "failed") $) 83)) (-2668 (((-589 $) |#4| $) 129)) (-3320 (((-3 (-108) (-589 $)) |#4| $) 132)) (-2870 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-1309 (((-589 $) |#4| $) 125) (((-589 $) (-589 |#4|) $) 124) (((-589 $) (-589 |#4|) (-589 $)) 123) (((-589 $) |#4| (-589 $)) 122)) (-1770 (($ |#4| $) 117) (($ (-589 |#4|) $) 116)) (-2404 (((-589 |#4|) $) 107)) (-2112 (((-108) |#4| $) 99) (((-108) $) 95)) (-2648 ((|#4| |#4| $) 90)) (-2391 (((-108) $ $) 110)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-515)))) (-2001 (((-108) |#4| $) 100) (((-108) $) 96)) (-1398 ((|#4| |#4| $) 91)) (-2783 (((-1034) $) 10)) (-1738 (((-3 |#4| "failed") $) 84)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2890 (((-3 $ "failed") $ |#4|) 78)) (-4097 (($ $ |#4|) 77) (((-589 $) |#4| $) 115) (((-589 $) |#4| (-589 $)) 114) (((-589 $) (-589 |#4|) $) 113) (((-589 $) (-589 |#4|) (-589 $)) 112)) (-1327 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) 59 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) 57 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) 56 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) 38)) (-3883 (((-108) $) 41)) (-3988 (($) 40)) (-2299 (((-710) $) 106)) (-2792 (((-710) |#4| $) 54 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4244)))) (-1664 (($ $) 39)) (-3663 (((-499) $) 69 (|has| |#4| (-564 (-499))))) (-1472 (($ (-589 |#4|)) 60)) (-2621 (($ $ |#3|) 28)) (-2624 (($ $ |#3|) 30)) (-1824 (($ $) 88)) (-3076 (($ $ |#3|) 29)) (-1458 (((-794) $) 11) (((-589 |#4|) $) 37)) (-1395 (((-710) $) 76 (|has| |#3| (-344)))) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4031 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) 98)) (-3910 (((-589 $) |#4| $) 121) (((-589 $) |#4| (-589 $)) 120) (((-589 $) (-589 |#4|) $) 119) (((-589 $) (-589 |#4|) (-589 $)) 118)) (-2096 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4244)))) (-3862 (((-589 |#3|) $) 81)) (-4062 (((-108) |#4| $) 135)) (-2153 (((-108) |#3| $) 80)) (-3983 (((-108) $ $) 6)) (-2676 (((-710) $) 46 (|has| $ (-6 -4244))))) +(((-1025 |#1| |#2| |#3| |#4|) (-129) (-427) (-732) (-786) (-987 |t#1| |t#2| |t#3|)) (T -1025)) +NIL +(-13 (-992 |t#1| |t#2| |t#3| |t#4|)) +(((-33) . T) ((-97) . T) ((-563 (-589 |#4|)) . T) ((-563 (-794)) . T) ((-140 |#4|) . T) ((-564 (-499)) |has| |#4| (-564 (-499))) ((-286 |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-462 |#4|) . T) ((-484 |#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-905 |#1| |#2| |#3| |#4|) . T) ((-992 |#1| |#2| |#3| |#4|) . T) ((-1016) . T) ((-1116 |#1| |#2| |#3| |#4|) . T) ((-1122) . T)) +((-2499 (((-589 (-523)) (-523) (-523) (-523)) 22)) (-4161 (((-589 (-523)) (-523) (-523) (-523)) 12)) (-2999 (((-589 (-523)) (-523) (-523) (-523)) 18)) (-3888 (((-523) (-523) (-523)) 9)) (-3743 (((-1168 (-523)) (-589 (-523)) (-1168 (-523)) (-523)) 45) (((-1168 (-523)) (-1168 (-523)) (-1168 (-523)) (-523)) 40)) (-4142 (((-589 (-523)) (-589 (-523)) (-589 (-523)) (-108)) 27)) (-3402 (((-629 (-523)) (-589 (-523)) (-589 (-523)) (-629 (-523))) 44)) (-3748 (((-629 (-523)) (-589 (-523)) (-589 (-523))) 32)) (-3965 (((-589 (-629 (-523))) (-589 (-523))) 34)) (-1821 (((-589 (-523)) (-589 (-523)) (-589 (-523)) (-629 (-523))) 47)) (-3399 (((-629 (-523)) (-589 (-523)) (-589 (-523)) (-589 (-523))) 55))) +(((-1026) (-10 -7 (-15 -3399 ((-629 (-523)) (-589 (-523)) (-589 (-523)) (-589 (-523)))) (-15 -1821 ((-589 (-523)) (-589 (-523)) (-589 (-523)) (-629 (-523)))) (-15 -3965 ((-589 (-629 (-523))) (-589 (-523)))) (-15 -3748 ((-629 (-523)) (-589 (-523)) (-589 (-523)))) (-15 -3402 ((-629 (-523)) (-589 (-523)) (-589 (-523)) (-629 (-523)))) (-15 -4142 ((-589 (-523)) (-589 (-523)) (-589 (-523)) (-108))) (-15 -3743 ((-1168 (-523)) (-1168 (-523)) (-1168 (-523)) (-523))) (-15 -3743 ((-1168 (-523)) (-589 (-523)) (-1168 (-523)) (-523))) (-15 -3888 ((-523) (-523) (-523))) (-15 -2999 ((-589 (-523)) (-523) (-523) (-523))) (-15 -4161 ((-589 (-523)) (-523) (-523) (-523))) (-15 -2499 ((-589 (-523)) (-523) (-523) (-523))))) (T -1026)) +((-2499 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-1026)) (-5 *3 (-523)))) (-4161 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-1026)) (-5 *3 (-523)))) (-2999 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-1026)) (-5 *3 (-523)))) (-3888 (*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-1026)))) (-3743 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1168 (-523))) (-5 *3 (-589 (-523))) (-5 *4 (-523)) (-5 *1 (-1026)))) (-3743 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1168 (-523))) (-5 *3 (-523)) (-5 *1 (-1026)))) (-4142 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-589 (-523))) (-5 *3 (-108)) (-5 *1 (-1026)))) (-3402 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-629 (-523))) (-5 *3 (-589 (-523))) (-5 *1 (-1026)))) (-3748 (*1 *2 *3 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-629 (-523))) (-5 *1 (-1026)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-589 (-629 (-523)))) (-5 *1 (-1026)))) (-1821 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-589 (-523))) (-5 *3 (-629 (-523))) (-5 *1 (-1026)))) (-3399 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-629 (-523))) (-5 *1 (-1026))))) +(-10 -7 (-15 -3399 ((-629 (-523)) (-589 (-523)) (-589 (-523)) (-589 (-523)))) (-15 -1821 ((-589 (-523)) (-589 (-523)) (-589 (-523)) (-629 (-523)))) (-15 -3965 ((-589 (-629 (-523))) (-589 (-523)))) (-15 -3748 ((-629 (-523)) (-589 (-523)) (-589 (-523)))) (-15 -3402 ((-629 (-523)) (-589 (-523)) (-589 (-523)) (-629 (-523)))) (-15 -4142 ((-589 (-523)) (-589 (-523)) (-589 (-523)) (-108))) (-15 -3743 ((-1168 (-523)) (-1168 (-523)) (-1168 (-523)) (-523))) (-15 -3743 ((-1168 (-523)) (-589 (-523)) (-1168 (-523)) (-523))) (-15 -3888 ((-523) (-523) (-523))) (-15 -2999 ((-589 (-523)) (-523) (-523) (-523))) (-15 -4161 ((-589 (-523)) (-523) (-523) (-523))) (-15 -2499 ((-589 (-523)) (-523) (-523) (-523)))) +((-2364 (($ $ (-852)) 12)) (** (($ $ (-852)) 10))) +(((-1027 |#1|) (-10 -8 (-15 -2364 (|#1| |#1| (-852))) (-15 ** (|#1| |#1| (-852)))) (-1028)) (T -1027)) +NIL +(-10 -8 (-15 -2364 (|#1| |#1| (-852))) (-15 ** (|#1| |#1| (-852)))) +((-3924 (((-108) $ $) 7)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-2364 (($ $ (-852)) 13)) (-3983 (((-108) $ $) 6)) (** (($ $ (-852)) 14)) (* (($ $ $) 15))) +(((-1028) (-129)) (T -1028)) +((* (*1 *1 *1 *1) (-4 *1 (-1028))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-852)))) (-2364 (*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-852))))) +(-13 (-1016) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-852))) (-15 -2364 ($ $ (-852))))) +(((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL (|has| |#3| (-1016)))) (-2295 (((-108) $) NIL (|has| |#3| (-124)))) (-1890 (($ (-852)) NIL (|has| |#3| (-973)))) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-3596 (($ $ $) NIL (|has| |#3| (-732)))) (-3212 (((-3 $ "failed") $ $) NIL (|has| |#3| (-124)))) (-3079 (((-108) $ (-710)) NIL)) (-1703 (((-710)) NIL (|has| |#3| (-344)))) (-3671 (((-523) $) NIL (|has| |#3| (-784)))) (-1641 ((|#3| $ (-523) |#3|) NIL (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (-12 (|has| |#3| (-964 (-523))) (|has| |#3| (-1016)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| |#3| (-964 (-383 (-523)))) (|has| |#3| (-1016)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1016)))) (-3474 (((-523) $) NIL (-12 (|has| |#3| (-964 (-523))) (|has| |#3| (-1016)))) (((-383 (-523)) $) NIL (-12 (|has| |#3| (-964 (-383 (-523)))) (|has| |#3| (-1016)))) ((|#3| $) NIL (|has| |#3| (-1016)))) (-2381 (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#3| (-585 (-523))) (|has| |#3| (-973)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (-12 (|has| |#3| (-585 (-523))) (|has| |#3| (-973)))) (((-2 (|:| -3392 (-629 |#3|)) (|:| |vec| (-1168 |#3|))) (-629 $) (-1168 $)) NIL (|has| |#3| (-973))) (((-629 |#3|) (-629 $)) NIL (|has| |#3| (-973)))) (-2121 (((-3 $ "failed") $) NIL (|has| |#3| (-973)))) (-4032 (($) NIL (|has| |#3| (-344)))) (-2863 ((|#3| $ (-523) |#3|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#3| $ (-523)) 12)) (-2604 (((-108) $) NIL (|has| |#3| (-784)))) (-1666 (((-589 |#3|) $) NIL (|has| $ (-6 -4244)))) (-2023 (((-108) $) NIL (|has| |#3| (-973)))) (-4114 (((-108) $) NIL (|has| |#3| (-784)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-2136 (((-589 |#3|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#3| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-2852 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#3| |#3|) $) NIL)) (-2072 (((-852) $) NIL (|has| |#3| (-344)))) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#3| (-1016)))) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-3878 (($ (-852)) NIL (|has| |#3| (-344)))) (-2783 (((-1034) $) NIL (|has| |#3| (-1016)))) (-1738 ((|#3| $) NIL (|has| (-523) (-786)))) (-4203 (($ $ |#3|) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#3|))) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-271 |#3|)) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016)))) (($ $ (-589 |#3|) (-589 |#3|)) NIL (-12 (|has| |#3| (-286 |#3|)) (|has| |#3| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#3| (-1016))))) (-1264 (((-589 |#3|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#3| $ (-523) |#3|) NIL) ((|#3| $ (-523)) NIL)) (-3269 ((|#3| $ $) NIL (|has| |#3| (-973)))) (-1868 (($ (-1168 |#3|)) NIL)) (-3203 (((-126)) NIL (|has| |#3| (-339)))) (-3523 (($ $) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1 |#3| |#3|) (-710)) NIL (|has| |#3| (-973))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-973)))) (-2792 (((-710) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4244))) (((-710) |#3| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#3| (-1016))))) (-1664 (($ $) NIL)) (-1458 (((-1168 |#3|) $) NIL) (($ (-523)) NIL (-3262 (-12 (|has| |#3| (-964 (-523))) (|has| |#3| (-1016))) (|has| |#3| (-973)))) (($ (-383 (-523))) NIL (-12 (|has| |#3| (-964 (-383 (-523)))) (|has| |#3| (-1016)))) (($ |#3|) NIL (|has| |#3| (-1016))) (((-794) $) NIL (|has| |#3| (-563 (-794))))) (-1621 (((-710)) NIL (|has| |#3| (-973)))) (-2096 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4244)))) (-2619 (($ $) NIL (|has| |#3| (-784)))) (-2364 (($ $ (-710)) NIL (|has| |#3| (-973))) (($ $ (-852)) NIL (|has| |#3| (-973)))) (-2756 (($) NIL (|has| |#3| (-124)) CONST)) (-2767 (($) NIL (|has| |#3| (-973)) CONST)) (-2862 (($ $) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973)))) (($ $ (-710)) NIL (-12 (|has| |#3| (-211)) (|has| |#3| (-973)))) (($ $ (-1087)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#3| (-831 (-1087))) (|has| |#3| (-973)))) (($ $ (-1 |#3| |#3|) (-710)) NIL (|has| |#3| (-973))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-973)))) (-4043 (((-108) $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-4019 (((-108) $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-3983 (((-108) $ $) NIL (|has| |#3| (-1016)))) (-4030 (((-108) $ $) NIL (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-4007 (((-108) $ $) 17 (-3262 (|has| |#3| (-732)) (|has| |#3| (-784))))) (-4098 (($ $ |#3|) NIL (|has| |#3| (-339)))) (-4087 (($ $ $) NIL (|has| |#3| (-973))) (($ $) NIL (|has| |#3| (-973)))) (-4075 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-710)) NIL (|has| |#3| (-973))) (($ $ (-852)) NIL (|has| |#3| (-973)))) (* (($ $ $) NIL (|has| |#3| (-973))) (($ (-523) $) NIL (|has| |#3| (-973))) (($ $ |#3|) NIL (|has| |#3| (-666))) (($ |#3| $) NIL (|has| |#3| (-666))) (($ (-710) $) NIL (|has| |#3| (-124))) (($ (-852) $) NIL (|has| |#3| (-25)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-1029 |#1| |#2| |#3|) (-216 |#1| |#3|) (-710) (-710) (-732)) (T -1029)) +NIL +(-216 |#1| |#3|) +((-1606 (((-589 (-1141 |#2| |#1|)) (-1141 |#2| |#1|) (-1141 |#2| |#1|)) 37)) (-2786 (((-523) (-1141 |#2| |#1|)) 68 (|has| |#1| (-427)))) (-2891 (((-523) (-1141 |#2| |#1|)) 54)) (-1320 (((-589 (-1141 |#2| |#1|)) (-1141 |#2| |#1|) (-1141 |#2| |#1|)) 45)) (-3534 (((-523) (-1141 |#2| |#1|) (-1141 |#2| |#1|)) 56 (|has| |#1| (-427)))) (-1982 (((-589 |#1|) (-1141 |#2| |#1|) (-1141 |#2| |#1|)) 48)) (-3408 (((-523) (-1141 |#2| |#1|) (-1141 |#2| |#1|)) 53))) +(((-1030 |#1| |#2|) (-10 -7 (-15 -1606 ((-589 (-1141 |#2| |#1|)) (-1141 |#2| |#1|) (-1141 |#2| |#1|))) (-15 -1320 ((-589 (-1141 |#2| |#1|)) (-1141 |#2| |#1|) (-1141 |#2| |#1|))) (-15 -1982 ((-589 |#1|) (-1141 |#2| |#1|) (-1141 |#2| |#1|))) (-15 -3408 ((-523) (-1141 |#2| |#1|) (-1141 |#2| |#1|))) (-15 -2891 ((-523) (-1141 |#2| |#1|))) (IF (|has| |#1| (-427)) (PROGN (-15 -3534 ((-523) (-1141 |#2| |#1|) (-1141 |#2| |#1|))) (-15 -2786 ((-523) (-1141 |#2| |#1|)))) |%noBranch|)) (-759) (-1087)) (T -1030)) +((-2786 (*1 *2 *3) (-12 (-5 *3 (-1141 *5 *4)) (-4 *4 (-427)) (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-523)) (-5 *1 (-1030 *4 *5)))) (-3534 (*1 *2 *3 *3) (-12 (-5 *3 (-1141 *5 *4)) (-4 *4 (-427)) (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-523)) (-5 *1 (-1030 *4 *5)))) (-2891 (*1 *2 *3) (-12 (-5 *3 (-1141 *5 *4)) (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-523)) (-5 *1 (-1030 *4 *5)))) (-3408 (*1 *2 *3 *3) (-12 (-5 *3 (-1141 *5 *4)) (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-523)) (-5 *1 (-1030 *4 *5)))) (-1982 (*1 *2 *3 *3) (-12 (-5 *3 (-1141 *5 *4)) (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-589 *4)) (-5 *1 (-1030 *4 *5)))) (-1320 (*1 *2 *3 *3) (-12 (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-589 (-1141 *5 *4))) (-5 *1 (-1030 *4 *5)) (-5 *3 (-1141 *5 *4)))) (-1606 (*1 *2 *3 *3) (-12 (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-589 (-1141 *5 *4))) (-5 *1 (-1030 *4 *5)) (-5 *3 (-1141 *5 *4))))) +(-10 -7 (-15 -1606 ((-589 (-1141 |#2| |#1|)) (-1141 |#2| |#1|) (-1141 |#2| |#1|))) (-15 -1320 ((-589 (-1141 |#2| |#1|)) (-1141 |#2| |#1|) (-1141 |#2| |#1|))) (-15 -1982 ((-589 |#1|) (-1141 |#2| |#1|) (-1141 |#2| |#1|))) (-15 -3408 ((-523) (-1141 |#2| |#1|) (-1141 |#2| |#1|))) (-15 -2891 ((-523) (-1141 |#2| |#1|))) (IF (|has| |#1| (-427)) (PROGN (-15 -3534 ((-523) (-1141 |#2| |#1|) (-1141 |#2| |#1|))) (-15 -2786 ((-523) (-1141 |#2| |#1|)))) |%noBranch|)) +((-3671 (((-3 (-523) "failed") |#2| (-1087) |#2| (-1070)) 16) (((-3 (-523) "failed") |#2| (-1087) (-779 |#2|)) 14) (((-3 (-523) "failed") |#2|) 51))) +(((-1031 |#1| |#2|) (-10 -7 (-15 -3671 ((-3 (-523) "failed") |#2|)) (-15 -3671 ((-3 (-523) "failed") |#2| (-1087) (-779 |#2|))) (-15 -3671 ((-3 (-523) "failed") |#2| (-1087) |#2| (-1070)))) (-13 (-515) (-786) (-964 (-523)) (-585 (-523)) (-427)) (-13 (-27) (-1108) (-406 |#1|))) (T -1031)) +((-3671 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-1070)) (-4 *6 (-13 (-515) (-786) (-964 *2) (-585 *2) (-427))) (-5 *2 (-523)) (-5 *1 (-1031 *6 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *6))))) (-3671 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-779 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *6))) (-4 *6 (-13 (-515) (-786) (-964 *2) (-585 *2) (-427))) (-5 *2 (-523)) (-5 *1 (-1031 *6 *3)))) (-3671 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-515) (-786) (-964 *2) (-585 *2) (-427))) (-5 *2 (-523)) (-5 *1 (-1031 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *4)))))) +(-10 -7 (-15 -3671 ((-3 (-523) "failed") |#2|)) (-15 -3671 ((-3 (-523) "failed") |#2| (-1087) (-779 |#2|))) (-15 -3671 ((-3 (-523) "failed") |#2| (-1087) |#2| (-1070)))) +((-3671 (((-3 (-523) "failed") (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|)) (-1070)) 34) (((-3 (-523) "failed") (-383 (-883 |#1|)) (-1087) (-779 (-383 (-883 |#1|)))) 29) (((-3 (-523) "failed") (-383 (-883 |#1|))) 12))) +(((-1032 |#1|) (-10 -7 (-15 -3671 ((-3 (-523) "failed") (-383 (-883 |#1|)))) (-15 -3671 ((-3 (-523) "failed") (-383 (-883 |#1|)) (-1087) (-779 (-383 (-883 |#1|))))) (-15 -3671 ((-3 (-523) "failed") (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|)) (-1070)))) (-427)) (T -1032)) +((-3671 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-383 (-883 *6))) (-5 *4 (-1087)) (-5 *5 (-1070)) (-4 *6 (-427)) (-5 *2 (-523)) (-5 *1 (-1032 *6)))) (-3671 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-779 (-383 (-883 *6)))) (-5 *3 (-383 (-883 *6))) (-4 *6 (-427)) (-5 *2 (-523)) (-5 *1 (-1032 *6)))) (-3671 (*1 *2 *3) (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-427)) (-5 *2 (-523)) (-5 *1 (-1032 *4))))) +(-10 -7 (-15 -3671 ((-3 (-523) "failed") (-383 (-883 |#1|)))) (-15 -3671 ((-3 (-523) "failed") (-383 (-883 |#1|)) (-1087) (-779 (-383 (-883 |#1|))))) (-15 -3671 ((-3 (-523) "failed") (-383 (-883 |#1|)) (-1087) (-383 (-883 |#1|)) (-1070)))) +((-2267 (((-292 (-523)) (-47)) 11))) +(((-1033) (-10 -7 (-15 -2267 ((-292 (-523)) (-47))))) (T -1033)) +((-2267 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-292 (-523))) (-5 *1 (-1033))))) +(-10 -7 (-15 -2267 ((-292 (-523)) (-47)))) +((-3924 (((-108) $ $) NIL)) (-2573 (($ $) 41)) (-2295 (((-108) $) 65)) (-1983 (($ $ $) 48)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 84)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-2312 (($ $ $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1808 (($ $ $ $) 74)) (-2291 (($ $) NIL)) (-3614 (((-394 $) $) NIL)) (-1387 (((-108) $ $) NIL)) (-3671 (((-523) $) NIL)) (-2041 (($ $ $) 71)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL)) (-3474 (((-523) $) NIL)) (-3796 (($ $ $) 59)) (-2381 (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 78) (((-629 (-523)) (-629 $)) 28)) (-2121 (((-3 $ "failed") $) NIL)) (-3346 (((-3 (-383 (-523)) "failed") $) NIL)) (-1292 (((-108) $) NIL)) (-2146 (((-383 (-523)) $) NIL)) (-4032 (($) 81) (($ $) 82)) (-3769 (($ $ $) 58)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL)) (-2657 (((-108) $) NIL)) (-2819 (($ $ $ $) NIL)) (-1980 (($ $ $) 79)) (-2604 (((-108) $) NIL)) (-3654 (($ $ $) NIL)) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL)) (-2023 (((-108) $) 66)) (-1557 (((-108) $) 64)) (-3900 (($ $) 42)) (-4058 (((-3 $ "failed") $) NIL)) (-4114 (((-108) $) 75)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4183 (($ $ $ $) 72)) (-2454 (($ $ $) 68) (($) 39)) (-2062 (($ $ $) 67) (($) 38)) (-1647 (($ $) NIL)) (-2996 (($ $) 70)) (-3244 (($ $ $) NIL) (($ (-589 $)) NIL)) (-3779 (((-1070) $) NIL)) (-3305 (($ $ $) NIL)) (-2262 (($) NIL T CONST)) (-3201 (($ $) 50)) (-2783 (((-1034) $) NIL) (($ $) 69)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL)) (-3278 (($ $ $) 62) (($ (-589 $)) NIL)) (-3217 (($ $) NIL)) (-1820 (((-394 $) $) NIL)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL)) (-3746 (((-3 $ "failed") $ $) NIL)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL)) (-4104 (((-108) $) NIL)) (-1972 (((-710) $) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 61)) (-3523 (($ $ (-710)) NIL) (($ $) NIL)) (-2029 (($ $) 51)) (-1664 (($ $) NIL)) (-3663 (((-523) $) 32) (((-499) $) NIL) (((-823 (-523)) $) NIL) (((-355) $) NIL) (((-203) $) NIL)) (-1458 (((-794) $) 31) (($ (-523)) 80) (($ $) NIL) (($ (-523)) 80)) (-1621 (((-710)) NIL)) (-1981 (((-108) $ $) NIL)) (-2574 (($ $ $) NIL)) (-3007 (($) 37)) (-1704 (((-108) $ $) NIL)) (-2108 (($ $ $ $) 73)) (-2619 (($ $) 63)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-3651 (($ $ $) 44)) (-2756 (($) 35 T CONST)) (-2856 (($ $ $) 47)) (-2767 (($) 36 T CONST)) (-3790 (((-1070) $) 21) (((-1070) $ (-108)) 23) (((-1173) (-761) $) 24) (((-1173) (-761) $ (-108)) 25)) (-1628 (($ $) 45)) (-2862 (($ $ (-710)) NIL) (($ $) NIL)) (-2844 (($ $ $) 46)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 40)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 49)) (-3640 (($ $ $) 43)) (-4087 (($ $) 52) (($ $ $) 54)) (-4075 (($ $ $) 53)) (** (($ $ (-852)) NIL) (($ $ (-710)) 57)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 34) (($ $ $) 55))) +(((-1034) (-13 (-508) (-604) (-767) (-10 -8 (-6 -4231) (-6 -4236) (-6 -4232) (-15 -2062 ($)) (-15 -2454 ($)) (-15 -3900 ($ $)) (-15 -2573 ($ $)) (-15 -3640 ($ $ $)) (-15 -3651 ($ $ $)) (-15 -1983 ($ $ $)) (-15 -1628 ($ $)) (-15 -2844 ($ $ $)) (-15 -2856 ($ $ $))))) (T -1034)) +((-3651 (*1 *1 *1 *1) (-5 *1 (-1034))) (-3640 (*1 *1 *1 *1) (-5 *1 (-1034))) (-2573 (*1 *1 *1) (-5 *1 (-1034))) (-2062 (*1 *1) (-5 *1 (-1034))) (-2454 (*1 *1) (-5 *1 (-1034))) (-3900 (*1 *1 *1) (-5 *1 (-1034))) (-1983 (*1 *1 *1 *1) (-5 *1 (-1034))) (-1628 (*1 *1 *1) (-5 *1 (-1034))) (-2844 (*1 *1 *1 *1) (-5 *1 (-1034))) (-2856 (*1 *1 *1 *1) (-5 *1 (-1034)))) +(-13 (-508) (-604) (-767) (-10 -8 (-6 -4231) (-6 -4236) (-6 -4232) (-15 -2062 ($)) (-15 -2454 ($)) (-15 -3900 ($ $)) (-15 -2573 ($ $)) (-15 -3640 ($ $ $)) (-15 -3651 ($ $ $)) (-15 -1983 ($ $ $)) (-15 -1628 ($ $)) (-15 -2844 ($ $ $)) (-15 -2856 ($ $ $)))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-3125 ((|#1| $) 44)) (-3079 (((-108) $ (-710)) 8)) (-2518 (($) 7 T CONST)) (-3845 ((|#1| |#1| $) 46)) (-2085 ((|#1| $) 45)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-1934 ((|#1| $) 39)) (-3450 (($ |#1| $) 40)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-3761 ((|#1| $) 41)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-1583 (((-710) $) 43)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) 42)) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-1035 |#1|) (-129) (-1122)) (T -1035)) +((-3845 (*1 *2 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1122)))) (-2085 (*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1122)))) (-3125 (*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1122)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1122)) (-5 *2 (-710))))) +(-13 (-102 |t#1|) (-10 -8 (-6 -4244) (-15 -3845 (|t#1| |t#1| $)) (-15 -2085 (|t#1| $)) (-15 -3125 (|t#1| $)) (-15 -1583 ((-710) $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) +((-4187 ((|#3| $) 76)) (-3517 (((-3 (-523) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3474 (((-523) $) NIL) (((-383 (-523)) $) NIL) ((|#3| $) 37)) (-2381 (((-629 (-523)) (-629 $)) NIL) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL) (((-2 (|:| -3392 (-629 |#3|)) (|:| |vec| (-1168 |#3|))) (-629 $) (-1168 $)) 73) (((-629 |#3|) (-629 $)) 65)) (-3523 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087)) NIL) (($ $ (-710)) NIL) (($ $) NIL)) (-3804 ((|#3| $) 78)) (-2561 ((|#4| $) 32)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ (-383 (-523))) NIL) (($ |#3|) 16)) (** (($ $ (-852)) NIL) (($ $ (-710)) 15) (($ $ (-523)) 82))) +(((-1036 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-523))) (-15 -3804 (|#3| |#1|)) (-15 -4187 (|#3| |#1|)) (-15 -2561 (|#4| |#1|)) (-15 -2381 ((-629 |#3|) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#3|)) (|:| |vec| (-1168 |#3|))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -3474 (|#3| |#1|)) (-15 -3517 ((-3 |#3| "failed") |#1|)) (-15 -1458 (|#1| |#3|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1 |#3| |#3|) (-710))) (-15 -3523 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1458 (|#1| (-523))) (-15 ** (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-852))) (-15 -1458 ((-794) |#1|))) (-1037 |#2| |#3| |#4| |#5|) (-710) (-973) (-216 |#2| |#3|) (-216 |#2| |#3|)) (T -1036)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-523))) (-15 -3804 (|#3| |#1|)) (-15 -4187 (|#3| |#1|)) (-15 -2561 (|#4| |#1|)) (-15 -2381 ((-629 |#3|) (-629 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 |#3|)) (|:| |vec| (-1168 |#3|))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 |#1|) (-1168 |#1|))) (-15 -2381 ((-629 (-523)) (-629 |#1|))) (-15 -3474 (|#3| |#1|)) (-15 -3517 ((-3 |#3| "failed") |#1|)) (-15 -1458 (|#1| |#3|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-523) |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1 |#3| |#3|) (-710))) (-15 -3523 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1458 (|#1| (-523))) (-15 ** (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-852))) (-15 -1458 ((-794) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-4187 ((|#2| $) 72)) (-2606 (((-108) $) 112)) (-3212 (((-3 $ "failed") $ $) 19)) (-2651 (((-108) $) 110)) (-3079 (((-108) $ (-710)) 102)) (-1421 (($ |#2|) 75)) (-2518 (($) 17 T CONST)) (-2445 (($ $) 129 (|has| |#2| (-284)))) (-2031 ((|#3| $ (-523)) 124)) (-3517 (((-3 (-523) "failed") $) 86 (|has| |#2| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) 84 (|has| |#2| (-964 (-383 (-523))))) (((-3 |#2| "failed") $) 81)) (-3474 (((-523) $) 87 (|has| |#2| (-964 (-523)))) (((-383 (-523)) $) 85 (|has| |#2| (-964 (-383 (-523))))) ((|#2| $) 80)) (-2381 (((-629 (-523)) (-629 $)) 79 (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 78 (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) 77) (((-629 |#2|) (-629 $)) 76)) (-2121 (((-3 $ "failed") $) 34)) (-1319 (((-710) $) 130 (|has| |#2| (-515)))) (-2795 ((|#2| $ (-523) (-523)) 122)) (-1666 (((-589 |#2|) $) 95 (|has| $ (-6 -4244)))) (-2023 (((-108) $) 31)) (-1867 (((-710) $) 131 (|has| |#2| (-515)))) (-3498 (((-589 |#4|) $) 132 (|has| |#2| (-515)))) (-2803 (((-710) $) 118)) (-2813 (((-710) $) 119)) (-2346 (((-108) $ (-710)) 103)) (-1925 ((|#2| $) 67 (|has| |#2| (-6 (-4246 "*"))))) (-3871 (((-523) $) 114)) (-1758 (((-523) $) 116)) (-2136 (((-589 |#2|) $) 94 (|has| $ (-6 -4244)))) (-1973 (((-108) |#2| $) 92 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4244))))) (-3338 (((-523) $) 115)) (-2347 (((-523) $) 117)) (-3068 (($ (-589 (-589 |#2|))) 109)) (-2852 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-2289 (((-589 (-589 |#2|)) $) 120)) (-2866 (((-108) $ (-710)) 104)) (-3779 (((-1070) $) 9)) (-3698 (((-3 $ "failed") $) 66 (|has| |#2| (-339)))) (-2783 (((-1034) $) 10)) (-3746 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-515)))) (-1327 (((-108) (-1 (-108) |#2|) $) 97 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#2|))) 91 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) 90 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) 88 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) 108)) (-3883 (((-108) $) 105)) (-3988 (($) 106)) (-3223 ((|#2| $ (-523) (-523) |#2|) 123) ((|#2| $ (-523) (-523)) 121)) (-3523 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-710)) 51) (($ $ (-589 (-1087)) (-589 (-710))) 44 (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) 43 (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) 42 (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) 41 (|has| |#2| (-831 (-1087)))) (($ $ (-710)) 39 (|has| |#2| (-211))) (($ $) 37 (|has| |#2| (-211)))) (-3804 ((|#2| $) 71)) (-3739 (($ (-589 |#2|)) 74)) (-3117 (((-108) $) 111)) (-2561 ((|#3| $) 73)) (-2310 ((|#2| $) 68 (|has| |#2| (-6 (-4246 "*"))))) (-2792 (((-710) (-1 (-108) |#2|) $) 96 (|has| $ (-6 -4244))) (((-710) |#2| $) 93 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 107)) (-1595 ((|#4| $ (-523)) 125)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 83 (|has| |#2| (-964 (-383 (-523))))) (($ |#2|) 82)) (-1621 (((-710)) 29)) (-2096 (((-108) (-1 (-108) |#2|) $) 98 (|has| $ (-6 -4244)))) (-2175 (((-108) $) 113)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-710)) 49) (($ $ (-589 (-1087)) (-589 (-710))) 48 (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) 47 (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) 46 (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) 45 (|has| |#2| (-831 (-1087)))) (($ $ (-710)) 40 (|has| |#2| (-211))) (($ $) 38 (|has| |#2| (-211)))) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#2|) 128 (|has| |#2| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 65 (|has| |#2| (-339)))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-2676 (((-710) $) 101 (|has| $ (-6 -4244))))) +(((-1037 |#1| |#2| |#3| |#4|) (-129) (-710) (-973) (-216 |t#1| |t#2|) (-216 |t#1| |t#2|)) (T -1037)) +((-1421 (*1 *1 *2) (-12 (-4 *2 (-973)) (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) (-4 *5 (-216 *3 *2)))) (-3739 (*1 *1 *2) (-12 (-5 *2 (-589 *4)) (-4 *4 (-973)) (-4 *1 (-1037 *3 *4 *5 *6)) (-4 *5 (-216 *3 *4)) (-4 *6 (-216 *3 *4)))) (-2561 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-973)) (-4 *5 (-216 *3 *4)) (-4 *2 (-216 *3 *4)))) (-4187 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) (-4 *5 (-216 *3 *2)) (-4 *2 (-973)))) (-3804 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) (-4 *5 (-216 *3 *2)) (-4 *2 (-973)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1037 *3 *4 *5 *2)) (-4 *4 (-973)) (-4 *5 (-216 *3 *4)) (-4 *2 (-216 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-973)) (-4 *2 (-216 *3 *4)) (-4 *5 (-216 *3 *4)))) (-2310 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) (-4 *5 (-216 *3 *2)) (|has| *2 (-6 (-4246 "*"))) (-4 *2 (-973)))) (-1925 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) (-4 *5 (-216 *3 *2)) (|has| *2 (-6 (-4246 "*"))) (-4 *2 (-973)))) (-3698 (*1 *1 *1) (|partial| -12 (-4 *1 (-1037 *2 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-216 *2 *3)) (-4 *5 (-216 *2 *3)) (-4 *3 (-339)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-1037 *3 *4 *5 *6)) (-4 *4 (-973)) (-4 *5 (-216 *3 *4)) (-4 *6 (-216 *3 *4)) (-4 *4 (-339))))) +(-13 (-209 |t#2|) (-107 |t#2| |t#2|) (-976 |t#1| |t#1| |t#2| |t#3| |t#4|) (-387 |t#2|) (-353 |t#2|) (-10 -8 (IF (|has| |t#2| (-158)) (-6 (-657 |t#2|)) |%noBranch|) (-15 -1421 ($ |t#2|)) (-15 -3739 ($ (-589 |t#2|))) (-15 -2561 (|t#3| $)) (-15 -4187 (|t#2| $)) (-15 -3804 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4246 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -2310 (|t#2| $)) (-15 -1925 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-339)) (PROGN (-15 -3698 ((-3 $ "failed") $)) (-15 ** ($ $ (-523)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4246 "*"))) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-563 (-794)) . T) ((-209 |#2|) . T) ((-211) |has| |#2| (-211)) ((-286 |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-353 |#2|) . T) ((-387 |#2|) . T) ((-462 |#2|) . T) ((-484 |#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-591 |#2|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#2| (-585 (-523))) ((-585 |#2|) . T) ((-657 |#2|) -3262 (|has| |#2| (-158)) (|has| |#2| (-6 (-4246 "*")))) ((-666) . T) ((-831 (-1087)) |has| |#2| (-831 (-1087))) ((-976 |#1| |#1| |#2| |#3| |#4|) . T) ((-964 (-383 (-523))) |has| |#2| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#2| (-964 (-523))) ((-964 |#2|) . T) ((-979 |#2|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1122) . T)) +((-3707 ((|#4| |#4|) 68)) (-1632 ((|#4| |#4|) 63)) (-4179 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4041 (-589 |#3|))) |#4| |#3|) 76)) (-3565 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 67)) (-3069 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 65))) +(((-1038 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1632 (|#4| |#4|)) (-15 -3069 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3707 (|#4| |#4|)) (-15 -3565 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4179 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4041 (-589 |#3|))) |#4| |#3|))) (-284) (-349 |#1|) (-349 |#1|) (-627 |#1| |#2| |#3|)) (T -1038)) +((-4179 (*1 *2 *3 *4) (-12 (-4 *5 (-284)) (-4 *6 (-349 *5)) (-4 *4 (-349 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) (-5 *1 (-1038 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-3565 (*1 *2 *3) (-12 (-4 *4 (-284)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1038 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3707 (*1 *2 *2) (-12 (-4 *3 (-284)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3069 (*1 *2 *3) (-12 (-4 *4 (-284)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1038 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-1632 (*1 *2 *2) (-12 (-4 *3 (-284)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +(-10 -7 (-15 -1632 (|#4| |#4|)) (-15 -3069 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3707 (|#4| |#4|)) (-15 -3565 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4179 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4041 (-589 |#3|))) |#4| |#3|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 17)) (-1957 (((-589 |#2|) $) 160)) (-1786 (((-1083 $) $ |#2|) 53) (((-1083 |#1|) $) 42)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 109 (|has| |#1| (-515)))) (-3345 (($ $) 111 (|has| |#1| (-515)))) (-3331 (((-108) $) 113 (|has| |#1| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 |#2|)) 194)) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2291 (($ $) NIL (|has| |#1| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) 157) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 |#2| "failed") $) NIL)) (-3474 ((|#1| $) 155) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) ((|#2| $) NIL)) (-3078 (($ $ $ |#2|) NIL (|has| |#1| (-158)))) (-3810 (($ $) 198)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) 81)) (-2528 (($ $) NIL (|has| |#1| (-427))) (($ $ |#2|) NIL (|has| |#1| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#1| (-840)))) (-1284 (($ $ |#1| (-495 |#2|) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| |#1| (-817 (-355))) (|has| |#2| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| |#1| (-817 (-523))) (|has| |#2| (-817 (-523)))))) (-2023 (((-108) $) 19)) (-3554 (((-710) $) 26)) (-1945 (($ (-1083 |#1|) |#2|) 47) (($ (-1083 $) |#2|) 63)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) 31)) (-1933 (($ |#1| (-495 |#2|)) 70) (($ $ |#2| (-710)) 51) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ |#2|) NIL)) (-1575 (((-495 |#2|) $) 187) (((-710) $ |#2|) 188) (((-589 (-710)) $ (-589 |#2|)) 189)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3782 (($ (-1 (-495 |#2|) (-495 |#2|)) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) 121)) (-2520 (((-3 |#2| "failed") $) 162)) (-3774 (($ $) 197)) (-3786 ((|#1| $) 36)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-3779 (((-1070) $) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| |#2|) (|:| -2735 (-710))) "failed") $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) 32)) (-3760 ((|#1| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 139 (|has| |#1| (-427)))) (-3278 (($ (-589 $)) 144 (|has| |#1| (-427))) (($ $ $) 131 (|has| |#1| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-840)))) (-3746 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ $) 119 (|has| |#1| (-515)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ |#2| |#1|) 165) (($ $ (-589 |#2|) (-589 |#1|)) 178) (($ $ |#2| $) 164) (($ $ (-589 |#2|) (-589 $)) 177)) (-3549 (($ $ |#2|) NIL (|has| |#1| (-158)))) (-3523 (($ $ |#2|) 196) (($ $ (-589 |#2|)) NIL) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-2299 (((-495 |#2|) $) 183) (((-710) $ |#2|) 179) (((-589 (-710)) $ (-589 |#2|)) 181)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| |#1| (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| |#1| (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| |#1| (-564 (-499))) (|has| |#2| (-564 (-499)))))) (-2438 ((|#1| $) 127 (|has| |#1| (-427))) (($ $ |#2|) 130 (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1458 (((-794) $) 150) (($ (-523)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-515))) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-1251 (((-589 |#1|) $) 153)) (-2365 ((|#1| $ (-495 |#2|)) 72) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) 78)) (-2276 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-1704 (((-108) $ $) 116 (|has| |#1| (-515)))) (-2364 (($ $ (-852)) 101) (($ $ (-710)) 103)) (-2756 (($) 12 T CONST)) (-2767 (($) 14 T CONST)) (-2862 (($ $ |#2|) NIL) (($ $ (-589 |#2|)) NIL) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) 96)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4098 (($ $ |#1|) 125 (|has| |#1| (-339)))) (-4087 (($ $) 84) (($ $ $) 94)) (-4075 (($ $ $) 48)) (** (($ $ (-852)) 102) (($ $ (-710)) 99)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 87) (($ $ $) 64) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 89) (($ $ |#1|) NIL))) +(((-1039 |#1| |#2|) (-880 |#1| (-495 |#2|) |#2|) (-973) (-786)) (T -1039)) +NIL +(-880 |#1| (-495 |#2|) |#2|) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 |#2|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-1769 (($ $) 142 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 118 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1744 (($ $) 138 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 114 (|has| |#1| (-37 (-383 (-523)))))) (-1793 (($ $) 146 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 122 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3566 (((-883 |#1|) $ (-710)) NIL) (((-883 |#1|) $ (-710) (-710)) NIL)) (-2003 (((-108) $) NIL)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-710) $ |#2|) NIL) (((-710) $ |#2| (-710)) NIL)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2620 (((-108) $) NIL)) (-1933 (($ $ (-589 |#2|) (-589 (-495 |#2|))) NIL) (($ $ |#2| (-495 |#2|)) NIL) (($ |#1| (-495 |#2|)) NIL) (($ $ |#2| (-710)) 58) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2384 (($ $) 112 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-3417 (($ $ |#2|) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ |#2| |#1|) 165 (|has| |#1| (-37 (-383 (-523)))))) (-2783 (((-1034) $) NIL)) (-2340 (($ (-1 $) |#2| |#1|) 164 (|has| |#1| (-37 (-383 (-523)))))) (-4097 (($ $ (-710)) 15)) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-1811 (($ $) 110 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (($ $ |#2| $) 96) (($ $ (-589 |#2|) (-589 $)) 89) (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL)) (-3523 (($ $ |#2|) 99) (($ $ (-589 |#2|)) NIL) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-2299 (((-495 |#2|) $) NIL)) (-1289 (((-1 (-1068 |#3|) |#3|) (-589 |#2|) (-589 (-1068 |#3|))) 79)) (-1805 (($ $) 148 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 124 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 144 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 120 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 140 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 116 (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) 17)) (-1458 (((-794) $) 180) (($ (-523)) NIL) (($ |#1|) 44 (|has| |#1| (-158))) (($ $) NIL (|has| |#1| (-515))) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#2|) 65) (($ |#3|) 63)) (-2365 ((|#1| $ (-495 |#2|)) NIL) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL) ((|#3| $ (-710)) 42)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-1839 (($ $) 154 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 130 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) 150 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 126 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 158 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 134 (|has| |#1| (-37 (-383 (-523)))))) (-2914 (($ $) 160 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 136 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 156 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 132 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 152 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 128 (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 18 T CONST)) (-2767 (($) 10 T CONST)) (-2862 (($ $ |#2|) NIL) (($ $ (-589 |#2|)) NIL) (($ $ |#2| (-710)) NIL) (($ $ (-589 |#2|) (-589 (-710))) NIL)) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ |#1|) 182 (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 61)) (** (($ $ (-852)) NIL) (($ $ (-710)) 70) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 102 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 60) (($ $ (-383 (-523))) 107 (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) 105 (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46))) +(((-1040 |#1| |#2| |#3|) (-13 (-680 |#1| |#2|) (-10 -8 (-15 -2365 (|#3| $ (-710))) (-15 -1458 ($ |#2|)) (-15 -1458 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1289 ((-1 (-1068 |#3|) |#3|) (-589 |#2|) (-589 (-1068 |#3|)))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ($ $ |#2| |#1|)) (-15 -2340 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-973) (-786) (-880 |#1| (-495 |#2|) |#2|)) (T -1040)) +((-2365 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *2 (-880 *4 (-495 *5) *5)) (-5 *1 (-1040 *4 *5 *2)) (-4 *4 (-973)) (-4 *5 (-786)))) (-1458 (*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *2 (-786)) (-5 *1 (-1040 *3 *2 *4)) (-4 *4 (-880 *3 (-495 *2) *2)))) (-1458 (*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *4 (-786)) (-5 *1 (-1040 *3 *4 *2)) (-4 *2 (-880 *3 (-495 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-973)) (-4 *4 (-786)) (-5 *1 (-1040 *3 *4 *2)) (-4 *2 (-880 *3 (-495 *4) *4)))) (-1289 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 (-1068 *7))) (-4 *6 (-786)) (-4 *7 (-880 *5 (-495 *6) *6)) (-4 *5 (-973)) (-5 *2 (-1 (-1068 *7) *7)) (-5 *1 (-1040 *5 *6 *7)))) (-3417 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-4 *2 (-786)) (-5 *1 (-1040 *3 *2 *4)) (-4 *4 (-880 *3 (-495 *2) *2)))) (-2340 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1040 *4 *3 *5))) (-4 *4 (-37 (-383 (-523)))) (-4 *4 (-973)) (-4 *3 (-786)) (-5 *1 (-1040 *4 *3 *5)) (-4 *5 (-880 *4 (-495 *3) *3))))) +(-13 (-680 |#1| |#2|) (-10 -8 (-15 -2365 (|#3| $ (-710))) (-15 -1458 ($ |#2|)) (-15 -1458 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1289 ((-1 (-1068 |#3|) |#3|) (-589 |#2|) (-589 (-1068 |#3|)))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ($ $ |#2| |#1|)) (-15 -2340 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-3924 (((-108) $ $) 7)) (-1633 (((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 |#4|)))) (-589 |#4|)) 85)) (-3846 (((-589 $) (-589 |#4|)) 86) (((-589 $) (-589 |#4|) (-108)) 111)) (-1957 (((-589 |#3|) $) 33)) (-2100 (((-108) $) 26)) (-2376 (((-108) $) 17 (|has| |#1| (-515)))) (-2694 (((-108) |#4| $) 101) (((-108) $) 97)) (-2308 ((|#4| |#4| $) 92)) (-2291 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| $) 126)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) 27)) (-3079 (((-108) $ (-710)) 44)) (-3724 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4244))) (((-3 |#4| "failed") $ |#3|) 79)) (-2518 (($) 45 T CONST)) (-3595 (((-108) $) 22 (|has| |#1| (-515)))) (-4017 (((-108) $ $) 24 (|has| |#1| (-515)))) (-3225 (((-108) $ $) 23 (|has| |#1| (-515)))) (-3393 (((-108) $) 25 (|has| |#1| (-515)))) (-3375 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3956 (((-589 |#4|) (-589 |#4|) $) 18 (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) 19 (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) 36)) (-3474 (($ (-589 |#4|)) 35)) (-1751 (((-3 $ "failed") $) 82)) (-4014 ((|#4| |#4| $) 89)) (-1773 (($ $) 68 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#4| $) 67 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-515)))) (-2663 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2636 ((|#4| |#4| $) 87)) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4244))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-3737 (((-2 (|:| -3952 (-589 |#4|)) (|:| -2625 (-589 |#4|))) $) 105)) (-2005 (((-108) |#4| $) 136)) (-3785 (((-108) |#4| $) 133)) (-1944 (((-108) |#4| $) 137) (((-108) $) 134)) (-1666 (((-589 |#4|) $) 52 (|has| $ (-6 -4244)))) (-4172 (((-108) |#4| $) 104) (((-108) $) 103)) (-2907 ((|#3| $) 34)) (-2346 (((-108) $ (-710)) 43)) (-2136 (((-589 |#4|) $) 53 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) 47)) (-4055 (((-589 |#3|) $) 32)) (-1357 (((-108) |#3| $) 31)) (-2866 (((-108) $ (-710)) 42)) (-3779 (((-1070) $) 9)) (-3246 (((-3 |#4| (-589 $)) |#4| |#4| $) 128)) (-1611 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| |#4| $) 127)) (-2579 (((-3 |#4| "failed") $) 83)) (-2668 (((-589 $) |#4| $) 129)) (-3320 (((-3 (-108) (-589 $)) |#4| $) 132)) (-2870 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-1309 (((-589 $) |#4| $) 125) (((-589 $) (-589 |#4|) $) 124) (((-589 $) (-589 |#4|) (-589 $)) 123) (((-589 $) |#4| (-589 $)) 122)) (-1770 (($ |#4| $) 117) (($ (-589 |#4|) $) 116)) (-2404 (((-589 |#4|) $) 107)) (-2112 (((-108) |#4| $) 99) (((-108) $) 95)) (-2648 ((|#4| |#4| $) 90)) (-2391 (((-108) $ $) 110)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-515)))) (-2001 (((-108) |#4| $) 100) (((-108) $) 96)) (-1398 ((|#4| |#4| $) 91)) (-2783 (((-1034) $) 10)) (-1738 (((-3 |#4| "failed") $) 84)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2890 (((-3 $ "failed") $ |#4|) 78)) (-4097 (($ $ |#4|) 77) (((-589 $) |#4| $) 115) (((-589 $) |#4| (-589 $)) 114) (((-589 $) (-589 |#4|) $) 113) (((-589 $) (-589 |#4|) (-589 $)) 112)) (-1327 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) 59 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) 57 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) 56 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) 38)) (-3883 (((-108) $) 41)) (-3988 (($) 40)) (-2299 (((-710) $) 106)) (-2792 (((-710) |#4| $) 54 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4244)))) (-1664 (($ $) 39)) (-3663 (((-499) $) 69 (|has| |#4| (-564 (-499))))) (-1472 (($ (-589 |#4|)) 60)) (-2621 (($ $ |#3|) 28)) (-2624 (($ $ |#3|) 30)) (-1824 (($ $) 88)) (-3076 (($ $ |#3|) 29)) (-1458 (((-794) $) 11) (((-589 |#4|) $) 37)) (-1395 (((-710) $) 76 (|has| |#3| (-344)))) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4031 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) 98)) (-3910 (((-589 $) |#4| $) 121) (((-589 $) |#4| (-589 $)) 120) (((-589 $) (-589 |#4|) $) 119) (((-589 $) (-589 |#4|) (-589 $)) 118)) (-2096 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4244)))) (-3862 (((-589 |#3|) $) 81)) (-4062 (((-108) |#4| $) 135)) (-2153 (((-108) |#3| $) 80)) (-3983 (((-108) $ $) 6)) (-2676 (((-710) $) 46 (|has| $ (-6 -4244))))) +(((-1041 |#1| |#2| |#3| |#4|) (-129) (-427) (-732) (-786) (-987 |t#1| |t#2| |t#3|)) (T -1041)) +NIL +(-13 (-1025 |t#1| |t#2| |t#3| |t#4|) (-723 |t#1| |t#2| |t#3| |t#4|)) +(((-33) . T) ((-97) . T) ((-563 (-589 |#4|)) . T) ((-563 (-794)) . T) ((-140 |#4|) . T) ((-564 (-499)) |has| |#4| (-564 (-499))) ((-286 |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-462 |#4|) . T) ((-484 |#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-723 |#1| |#2| |#3| |#4|) . T) ((-905 |#1| |#2| |#3| |#4|) . T) ((-992 |#1| |#2| |#3| |#4|) . T) ((-1016) . T) ((-1025 |#1| |#2| |#3| |#4|) . T) ((-1116 |#1| |#2| |#3| |#4|) . T) ((-1122) . T)) +((-1940 (((-589 |#2|) |#1|) 12)) (-3066 (((-589 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-589 |#2|) |#1|) 47)) (-2781 (((-589 |#2|) |#2| |#2| |#2|) 35) (((-589 |#2|) |#1|) 45)) (-1848 ((|#2| |#1|) 42)) (-1759 (((-2 (|:| |solns| (-589 |#2|)) (|:| |maps| (-589 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-3548 (((-589 |#2|) |#2| |#2|) 34) (((-589 |#2|) |#1|) 44)) (-3923 (((-589 |#2|) |#2| |#2| |#2| |#2|) 36) (((-589 |#2|) |#1|) 46)) (-4013 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-3543 ((|#2| |#2| |#2| |#2|) 39)) (-1285 ((|#2| |#2| |#2|) 38)) (-2119 ((|#2| |#2| |#2| |#2| |#2|) 40))) +(((-1042 |#1| |#2|) (-10 -7 (-15 -1940 ((-589 |#2|) |#1|)) (-15 -1848 (|#2| |#1|)) (-15 -1759 ((-2 (|:| |solns| (-589 |#2|)) (|:| |maps| (-589 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3548 ((-589 |#2|) |#1|)) (-15 -2781 ((-589 |#2|) |#1|)) (-15 -3923 ((-589 |#2|) |#1|)) (-15 -3066 ((-589 |#2|) |#1|)) (-15 -3548 ((-589 |#2|) |#2| |#2|)) (-15 -2781 ((-589 |#2|) |#2| |#2| |#2|)) (-15 -3923 ((-589 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3066 ((-589 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1285 (|#2| |#2| |#2|)) (-15 -3543 (|#2| |#2| |#2| |#2|)) (-15 -2119 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4013 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1144 |#2|) (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (T -1042)) +((-4013 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1144 *2)))) (-2119 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1144 *2)))) (-3543 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1144 *2)))) (-1285 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1144 *2)))) (-3066 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1144 *3)))) (-3923 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1144 *3)))) (-2781 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1144 *3)))) (-3548 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1144 *3)))) (-3066 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1144 *4)))) (-3923 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1144 *4)))) (-2781 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1144 *4)))) (-3548 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1144 *4)))) (-1759 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-2 (|:| |solns| (-589 *5)) (|:| |maps| (-589 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1042 *3 *5)) (-4 *3 (-1144 *5)))) (-1848 (*1 *2 *3) (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1144 *2)))) (-1940 (*1 *2 *3) (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1144 *4))))) +(-10 -7 (-15 -1940 ((-589 |#2|) |#1|)) (-15 -1848 (|#2| |#1|)) (-15 -1759 ((-2 (|:| |solns| (-589 |#2|)) (|:| |maps| (-589 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3548 ((-589 |#2|) |#1|)) (-15 -2781 ((-589 |#2|) |#1|)) (-15 -3923 ((-589 |#2|) |#1|)) (-15 -3066 ((-589 |#2|) |#1|)) (-15 -3548 ((-589 |#2|) |#2| |#2|)) (-15 -2781 ((-589 |#2|) |#2| |#2| |#2|)) (-15 -3923 ((-589 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3066 ((-589 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1285 (|#2| |#2| |#2|)) (-15 -3543 (|#2| |#2| |#2| |#2|)) (-15 -2119 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4013 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-1500 (((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-383 (-883 |#1|))))) 95) (((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-383 (-883 |#1|)))) (-589 (-1087))) 94) (((-589 (-589 (-271 (-292 |#1|)))) (-589 (-383 (-883 |#1|)))) 92) (((-589 (-589 (-271 (-292 |#1|)))) (-589 (-383 (-883 |#1|))) (-589 (-1087))) 90) (((-589 (-271 (-292 |#1|))) (-271 (-383 (-883 |#1|)))) 76) (((-589 (-271 (-292 |#1|))) (-271 (-383 (-883 |#1|))) (-1087)) 77) (((-589 (-271 (-292 |#1|))) (-383 (-883 |#1|))) 71) (((-589 (-271 (-292 |#1|))) (-383 (-883 |#1|)) (-1087)) 60)) (-2012 (((-589 (-589 (-292 |#1|))) (-589 (-383 (-883 |#1|))) (-589 (-1087))) 88) (((-589 (-292 |#1|)) (-383 (-883 |#1|)) (-1087)) 43)) (-3771 (((-1077 (-589 (-292 |#1|)) (-589 (-271 (-292 |#1|)))) (-383 (-883 |#1|)) (-1087)) 98) (((-1077 (-589 (-292 |#1|)) (-589 (-271 (-292 |#1|)))) (-271 (-383 (-883 |#1|))) (-1087)) 97))) +(((-1043 |#1|) (-10 -7 (-15 -1500 ((-589 (-271 (-292 |#1|))) (-383 (-883 |#1|)) (-1087))) (-15 -1500 ((-589 (-271 (-292 |#1|))) (-383 (-883 |#1|)))) (-15 -1500 ((-589 (-271 (-292 |#1|))) (-271 (-383 (-883 |#1|))) (-1087))) (-15 -1500 ((-589 (-271 (-292 |#1|))) (-271 (-383 (-883 |#1|))))) (-15 -1500 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -1500 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-383 (-883 |#1|))))) (-15 -1500 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-383 (-883 |#1|)))) (-589 (-1087)))) (-15 -1500 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-383 (-883 |#1|)))))) (-15 -2012 ((-589 (-292 |#1|)) (-383 (-883 |#1|)) (-1087))) (-15 -2012 ((-589 (-589 (-292 |#1|))) (-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -3771 ((-1077 (-589 (-292 |#1|)) (-589 (-271 (-292 |#1|)))) (-271 (-383 (-883 |#1|))) (-1087))) (-15 -3771 ((-1077 (-589 (-292 |#1|)) (-589 (-271 (-292 |#1|)))) (-383 (-883 |#1|)) (-1087)))) (-13 (-284) (-786) (-136))) (T -1043)) +((-3771 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-1077 (-589 (-292 *5)) (-589 (-271 (-292 *5))))) (-5 *1 (-1043 *5)))) (-3771 (*1 *2 *3 *4) (-12 (-5 *3 (-271 (-383 (-883 *5)))) (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-1077 (-589 (-292 *5)) (-589 (-271 (-292 *5))))) (-5 *1 (-1043 *5)))) (-2012 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-589 (-292 *5)))) (-5 *1 (-1043 *5)))) (-2012 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-292 *5))) (-5 *1 (-1043 *5)))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-589 (-271 (-383 (-883 *4))))) (-4 *4 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-589 (-271 (-292 *4))))) (-5 *1 (-1043 *4)))) (-1500 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-271 (-383 (-883 *5))))) (-5 *4 (-589 (-1087))) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-589 (-271 (-292 *5))))) (-5 *1 (-1043 *5)))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-589 (-383 (-883 *4)))) (-4 *4 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-589 (-271 (-292 *4))))) (-5 *1 (-1043 *4)))) (-1500 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-589 (-271 (-292 *5))))) (-5 *1 (-1043 *5)))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-271 (-383 (-883 *4)))) (-4 *4 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-271 (-292 *4)))) (-5 *1 (-1043 *4)))) (-1500 (*1 *2 *3 *4) (-12 (-5 *3 (-271 (-383 (-883 *5)))) (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-271 (-292 *5)))) (-5 *1 (-1043 *5)))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-271 (-292 *4)))) (-5 *1 (-1043 *4)))) (-1500 (*1 *2 *3 *4) (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-271 (-292 *5)))) (-5 *1 (-1043 *5))))) +(-10 -7 (-15 -1500 ((-589 (-271 (-292 |#1|))) (-383 (-883 |#1|)) (-1087))) (-15 -1500 ((-589 (-271 (-292 |#1|))) (-383 (-883 |#1|)))) (-15 -1500 ((-589 (-271 (-292 |#1|))) (-271 (-383 (-883 |#1|))) (-1087))) (-15 -1500 ((-589 (-271 (-292 |#1|))) (-271 (-383 (-883 |#1|))))) (-15 -1500 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -1500 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-383 (-883 |#1|))))) (-15 -1500 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-383 (-883 |#1|)))) (-589 (-1087)))) (-15 -1500 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-383 (-883 |#1|)))))) (-15 -2012 ((-589 (-292 |#1|)) (-383 (-883 |#1|)) (-1087))) (-15 -2012 ((-589 (-589 (-292 |#1|))) (-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -3771 ((-1077 (-589 (-292 |#1|)) (-589 (-271 (-292 |#1|)))) (-271 (-383 (-883 |#1|))) (-1087))) (-15 -3771 ((-1077 (-589 (-292 |#1|)) (-589 (-271 (-292 |#1|)))) (-383 (-883 |#1|)) (-1087)))) +((-1898 (((-383 (-1083 (-292 |#1|))) (-1168 (-292 |#1|)) (-383 (-1083 (-292 |#1|))) (-523)) 27)) (-4193 (((-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|)))) 39))) +(((-1044 |#1|) (-10 -7 (-15 -4193 ((-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))))) (-15 -1898 ((-383 (-1083 (-292 |#1|))) (-1168 (-292 |#1|)) (-383 (-1083 (-292 |#1|))) (-523)))) (-13 (-515) (-786))) (T -1044)) +((-1898 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-383 (-1083 (-292 *5)))) (-5 *3 (-1168 (-292 *5))) (-5 *4 (-523)) (-4 *5 (-13 (-515) (-786))) (-5 *1 (-1044 *5)))) (-4193 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-383 (-1083 (-292 *3)))) (-4 *3 (-13 (-515) (-786))) (-5 *1 (-1044 *3))))) +(-10 -7 (-15 -4193 ((-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))) (-383 (-1083 (-292 |#1|))))) (-15 -1898 ((-383 (-1083 (-292 |#1|))) (-1168 (-292 |#1|)) (-383 (-1083 (-292 |#1|))) (-523)))) +((-1940 (((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-292 |#1|))) (-589 (-1087))) 217) (((-589 (-271 (-292 |#1|))) (-292 |#1|) (-1087)) 20) (((-589 (-271 (-292 |#1|))) (-271 (-292 |#1|)) (-1087)) 26) (((-589 (-271 (-292 |#1|))) (-271 (-292 |#1|))) 25) (((-589 (-271 (-292 |#1|))) (-292 |#1|)) 21))) +(((-1045 |#1|) (-10 -7 (-15 -1940 ((-589 (-271 (-292 |#1|))) (-292 |#1|))) (-15 -1940 ((-589 (-271 (-292 |#1|))) (-271 (-292 |#1|)))) (-15 -1940 ((-589 (-271 (-292 |#1|))) (-271 (-292 |#1|)) (-1087))) (-15 -1940 ((-589 (-271 (-292 |#1|))) (-292 |#1|) (-1087))) (-15 -1940 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-292 |#1|))) (-589 (-1087))))) (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (T -1045)) +((-1940 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-1087))) (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-589 (-589 (-271 (-292 *5))))) (-5 *1 (-1045 *5)) (-5 *3 (-589 (-271 (-292 *5)))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-589 (-271 (-292 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-292 *5)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-589 (-271 (-292 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-271 (-292 *5))))) (-1940 (*1 *2 *3) (-12 (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-589 (-271 (-292 *4)))) (-5 *1 (-1045 *4)) (-5 *3 (-271 (-292 *4))))) (-1940 (*1 *2 *3) (-12 (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 (-589 (-271 (-292 *4)))) (-5 *1 (-1045 *4)) (-5 *3 (-292 *4))))) +(-10 -7 (-15 -1940 ((-589 (-271 (-292 |#1|))) (-292 |#1|))) (-15 -1940 ((-589 (-271 (-292 |#1|))) (-271 (-292 |#1|)))) (-15 -1940 ((-589 (-271 (-292 |#1|))) (-271 (-292 |#1|)) (-1087))) (-15 -1940 ((-589 (-271 (-292 |#1|))) (-292 |#1|) (-1087))) (-15 -1940 ((-589 (-589 (-271 (-292 |#1|)))) (-589 (-271 (-292 |#1|))) (-589 (-1087))))) +((-2826 ((|#2| |#2|) 20 (|has| |#1| (-786))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 16)) (-3317 ((|#2| |#2|) 19 (|has| |#1| (-786))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 15))) +(((-1046 |#1| |#2|) (-10 -7 (-15 -3317 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -2826 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-786)) (PROGN (-15 -3317 (|#2| |#2|)) (-15 -2826 (|#2| |#2|))) |%noBranch|)) (-1122) (-13 (-556 (-523) |#1|) (-10 -7 (-6 -4244) (-6 -4245)))) (T -1046)) +((-2826 (*1 *2 *2) (-12 (-4 *3 (-786)) (-4 *3 (-1122)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-13 (-556 (-523) *3) (-10 -7 (-6 -4244) (-6 -4245)))))) (-3317 (*1 *2 *2) (-12 (-4 *3 (-786)) (-4 *3 (-1122)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-13 (-556 (-523) *3) (-10 -7 (-6 -4244) (-6 -4245)))))) (-2826 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1122)) (-5 *1 (-1046 *4 *2)) (-4 *2 (-13 (-556 (-523) *4) (-10 -7 (-6 -4244) (-6 -4245)))))) (-3317 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1122)) (-5 *1 (-1046 *4 *2)) (-4 *2 (-13 (-556 (-523) *4) (-10 -7 (-6 -4244) (-6 -4245))))))) +(-10 -7 (-15 -3317 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -2826 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-786)) (PROGN (-15 -3317 (|#2| |#2|)) (-15 -2826 (|#2| |#2|))) |%noBranch|)) +((-3924 (((-108) $ $) NIL)) (-3097 (((-1076 3 |#1|) $) 106)) (-2084 (((-108) $) 72)) (-2474 (($ $ (-589 (-874 |#1|))) 20) (($ $ (-589 (-589 |#1|))) 75) (($ (-589 (-874 |#1|))) 74) (((-589 (-874 |#1|)) $) 73)) (-1531 (((-108) $) 41)) (-2388 (($ $ (-874 |#1|)) 46) (($ $ (-589 |#1|)) 51) (($ $ (-710)) 53) (($ (-874 |#1|)) 47) (((-874 |#1|) $) 45)) (-2997 (((-2 (|:| -3582 (-710)) (|:| |curves| (-710)) (|:| |polygons| (-710)) (|:| |constructs| (-710))) $) 104)) (-3657 (((-710) $) 26)) (-3552 (((-710) $) 25)) (-3247 (($ $ (-710) (-874 |#1|)) 39)) (-4115 (((-108) $) 82)) (-1843 (($ $ (-589 (-589 (-874 |#1|))) (-589 (-157)) (-157)) 89) (($ $ (-589 (-589 (-589 |#1|))) (-589 (-157)) (-157)) 91) (($ $ (-589 (-589 (-874 |#1|))) (-108) (-108)) 85) (($ $ (-589 (-589 (-589 |#1|))) (-108) (-108)) 93) (($ (-589 (-589 (-874 |#1|)))) 86) (($ (-589 (-589 (-874 |#1|))) (-108) (-108)) 87) (((-589 (-589 (-874 |#1|))) $) 84)) (-2178 (($ (-589 $)) 28) (($ $ $) 29)) (-2216 (((-589 (-157)) $) 102)) (-3240 (((-589 (-874 |#1|)) $) 97)) (-2584 (((-589 (-589 (-157))) $) 101)) (-2811 (((-589 (-589 (-589 (-874 |#1|)))) $) NIL)) (-3568 (((-589 (-589 (-589 (-710)))) $) 99)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1410 (((-710) $ (-589 (-874 |#1|))) 37)) (-3610 (((-108) $) 54)) (-3349 (($ $ (-589 (-874 |#1|))) 56) (($ $ (-589 (-589 |#1|))) 62) (($ (-589 (-874 |#1|))) 57) (((-589 (-874 |#1|)) $) 55)) (-2311 (($) 23) (($ (-1076 3 |#1|)) 24)) (-1664 (($ $) 35)) (-2839 (((-589 $) $) 34)) (-1260 (($ (-589 $)) 31)) (-1503 (((-589 $) $) 33)) (-1458 (((-794) $) 110)) (-1895 (((-108) $) 64)) (-1518 (($ $ (-589 (-874 |#1|))) 66) (($ $ (-589 (-589 |#1|))) 69) (($ (-589 (-874 |#1|))) 67) (((-589 (-874 |#1|)) $) 65)) (-1322 (($ $) 105)) (-3983 (((-108) $ $) NIL))) +(((-1047 |#1|) (-1048 |#1|) (-973)) (T -1047)) +NIL +(-1048 |#1|) +((-3924 (((-108) $ $) 7)) (-3097 (((-1076 3 |#1|) $) 13)) (-2084 (((-108) $) 29)) (-2474 (($ $ (-589 (-874 |#1|))) 33) (($ $ (-589 (-589 |#1|))) 32) (($ (-589 (-874 |#1|))) 31) (((-589 (-874 |#1|)) $) 30)) (-1531 (((-108) $) 44)) (-2388 (($ $ (-874 |#1|)) 49) (($ $ (-589 |#1|)) 48) (($ $ (-710)) 47) (($ (-874 |#1|)) 46) (((-874 |#1|) $) 45)) (-2997 (((-2 (|:| -3582 (-710)) (|:| |curves| (-710)) (|:| |polygons| (-710)) (|:| |constructs| (-710))) $) 15)) (-3657 (((-710) $) 58)) (-3552 (((-710) $) 59)) (-3247 (($ $ (-710) (-874 |#1|)) 50)) (-4115 (((-108) $) 21)) (-1843 (($ $ (-589 (-589 (-874 |#1|))) (-589 (-157)) (-157)) 28) (($ $ (-589 (-589 (-589 |#1|))) (-589 (-157)) (-157)) 27) (($ $ (-589 (-589 (-874 |#1|))) (-108) (-108)) 26) (($ $ (-589 (-589 (-589 |#1|))) (-108) (-108)) 25) (($ (-589 (-589 (-874 |#1|)))) 24) (($ (-589 (-589 (-874 |#1|))) (-108) (-108)) 23) (((-589 (-589 (-874 |#1|))) $) 22)) (-2178 (($ (-589 $)) 57) (($ $ $) 56)) (-2216 (((-589 (-157)) $) 16)) (-3240 (((-589 (-874 |#1|)) $) 20)) (-2584 (((-589 (-589 (-157))) $) 17)) (-2811 (((-589 (-589 (-589 (-874 |#1|)))) $) 18)) (-3568 (((-589 (-589 (-589 (-710)))) $) 19)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1410 (((-710) $ (-589 (-874 |#1|))) 51)) (-3610 (((-108) $) 39)) (-3349 (($ $ (-589 (-874 |#1|))) 43) (($ $ (-589 (-589 |#1|))) 42) (($ (-589 (-874 |#1|))) 41) (((-589 (-874 |#1|)) $) 40)) (-2311 (($) 61) (($ (-1076 3 |#1|)) 60)) (-1664 (($ $) 52)) (-2839 (((-589 $) $) 53)) (-1260 (($ (-589 $)) 55)) (-1503 (((-589 $) $) 54)) (-1458 (((-794) $) 11)) (-1895 (((-108) $) 34)) (-1518 (($ $ (-589 (-874 |#1|))) 38) (($ $ (-589 (-589 |#1|))) 37) (($ (-589 (-874 |#1|))) 36) (((-589 (-874 |#1|)) $) 35)) (-1322 (($ $) 14)) (-3983 (((-108) $ $) 6))) +(((-1048 |#1|) (-129) (-973)) (T -1048)) +((-1458 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-794)))) (-2311 (*1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973)))) (-2311 (*1 *1 *2) (-12 (-5 *2 (-1076 3 *3)) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) (-3552 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) (-3657 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) (-2178 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-2178 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973)))) (-1260 (*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-1503 (*1 *2 *1) (-12 (-4 *3 (-973)) (-5 *2 (-589 *1)) (-4 *1 (-1048 *3)))) (-2839 (*1 *2 *1) (-12 (-4 *3 (-973)) (-5 *2 (-589 *1)) (-4 *1 (-1048 *3)))) (-1664 (*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973)))) (-1410 (*1 *2 *1 *3) (-12 (-5 *3 (-589 (-874 *4))) (-4 *1 (-1048 *4)) (-4 *4 (-973)) (-5 *2 (-710)))) (-3247 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *3 (-874 *4)) (-4 *1 (-1048 *4)) (-4 *4 (-973)))) (-2388 (*1 *1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-2388 (*1 *1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-2388 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) (-2388 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-874 *3)))) (-1531 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108)))) (-3349 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-874 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-3349 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-3349 (*1 *1 *2) (-12 (-5 *2 (-589 (-874 *3))) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) (-3349 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3))))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108)))) (-1518 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-874 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-1518 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-589 (-874 *3))) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) (-1518 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3))))) (-1895 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108)))) (-2474 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-874 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-2474 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) (-2474 (*1 *1 *2) (-12 (-5 *2 (-589 (-874 *3))) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) (-2474 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3))))) (-2084 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108)))) (-1843 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-589 (-589 (-874 *5)))) (-5 *3 (-589 (-157))) (-5 *4 (-157)) (-4 *1 (-1048 *5)) (-4 *5 (-973)))) (-1843 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-589 (-589 (-589 *5)))) (-5 *3 (-589 (-157))) (-5 *4 (-157)) (-4 *1 (-1048 *5)) (-4 *5 (-973)))) (-1843 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-589 (-589 (-874 *4)))) (-5 *3 (-108)) (-4 *1 (-1048 *4)) (-4 *4 (-973)))) (-1843 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-589 (-589 (-589 *4)))) (-5 *3 (-108)) (-4 *1 (-1048 *4)) (-4 *4 (-973)))) (-1843 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-874 *3)))) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) (-1843 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-589 (-589 (-874 *4)))) (-5 *3 (-108)) (-4 *4 (-973)) (-4 *1 (-1048 *4)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-589 (-874 *3)))))) (-4115 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3))))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-589 (-589 (-710))))))) (-2811 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-589 (-589 (-874 *3))))))) (-2584 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-589 (-157)))))) (-2216 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-157))))) (-2997 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-2 (|:| -3582 (-710)) (|:| |curves| (-710)) (|:| |polygons| (-710)) (|:| |constructs| (-710)))))) (-1322 (*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973)))) (-3097 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-1076 3 *3))))) +(-13 (-1016) (-10 -8 (-15 -2311 ($)) (-15 -2311 ($ (-1076 3 |t#1|))) (-15 -3552 ((-710) $)) (-15 -3657 ((-710) $)) (-15 -2178 ($ (-589 $))) (-15 -2178 ($ $ $)) (-15 -1260 ($ (-589 $))) (-15 -1503 ((-589 $) $)) (-15 -2839 ((-589 $) $)) (-15 -1664 ($ $)) (-15 -1410 ((-710) $ (-589 (-874 |t#1|)))) (-15 -3247 ($ $ (-710) (-874 |t#1|))) (-15 -2388 ($ $ (-874 |t#1|))) (-15 -2388 ($ $ (-589 |t#1|))) (-15 -2388 ($ $ (-710))) (-15 -2388 ($ (-874 |t#1|))) (-15 -2388 ((-874 |t#1|) $)) (-15 -1531 ((-108) $)) (-15 -3349 ($ $ (-589 (-874 |t#1|)))) (-15 -3349 ($ $ (-589 (-589 |t#1|)))) (-15 -3349 ($ (-589 (-874 |t#1|)))) (-15 -3349 ((-589 (-874 |t#1|)) $)) (-15 -3610 ((-108) $)) (-15 -1518 ($ $ (-589 (-874 |t#1|)))) (-15 -1518 ($ $ (-589 (-589 |t#1|)))) (-15 -1518 ($ (-589 (-874 |t#1|)))) (-15 -1518 ((-589 (-874 |t#1|)) $)) (-15 -1895 ((-108) $)) (-15 -2474 ($ $ (-589 (-874 |t#1|)))) (-15 -2474 ($ $ (-589 (-589 |t#1|)))) (-15 -2474 ($ (-589 (-874 |t#1|)))) (-15 -2474 ((-589 (-874 |t#1|)) $)) (-15 -2084 ((-108) $)) (-15 -1843 ($ $ (-589 (-589 (-874 |t#1|))) (-589 (-157)) (-157))) (-15 -1843 ($ $ (-589 (-589 (-589 |t#1|))) (-589 (-157)) (-157))) (-15 -1843 ($ $ (-589 (-589 (-874 |t#1|))) (-108) (-108))) (-15 -1843 ($ $ (-589 (-589 (-589 |t#1|))) (-108) (-108))) (-15 -1843 ($ (-589 (-589 (-874 |t#1|))))) (-15 -1843 ($ (-589 (-589 (-874 |t#1|))) (-108) (-108))) (-15 -1843 ((-589 (-589 (-874 |t#1|))) $)) (-15 -4115 ((-108) $)) (-15 -3240 ((-589 (-874 |t#1|)) $)) (-15 -3568 ((-589 (-589 (-589 (-710)))) $)) (-15 -2811 ((-589 (-589 (-589 (-874 |t#1|)))) $)) (-15 -2584 ((-589 (-589 (-157))) $)) (-15 -2216 ((-589 (-157)) $)) (-15 -2997 ((-2 (|:| -3582 (-710)) (|:| |curves| (-710)) (|:| |polygons| (-710)) (|:| |constructs| (-710))) $)) (-15 -1322 ($ $)) (-15 -3097 ((-1076 3 |t#1|) $)) (-15 -1458 ((-794) $)))) +(((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-3723 (((-589 (-1092)) (-1070)) 8))) +(((-1049) (-10 -7 (-15 -3723 ((-589 (-1092)) (-1070))))) (T -1049)) +((-3723 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-589 (-1092))) (-5 *1 (-1049))))) +(-10 -7 (-15 -3723 ((-589 (-1092)) (-1070)))) +((-3895 (((-1173) (-589 (-794))) 23) (((-1173) (-794)) 22)) (-3826 (((-1173) (-589 (-794))) 21) (((-1173) (-794)) 20)) (-3394 (((-1173) (-589 (-794))) 19) (((-1173) (-794)) 11) (((-1173) (-1070) (-794)) 17))) +(((-1050) (-10 -7 (-15 -3394 ((-1173) (-1070) (-794))) (-15 -3394 ((-1173) (-794))) (-15 -3826 ((-1173) (-794))) (-15 -3895 ((-1173) (-794))) (-15 -3394 ((-1173) (-589 (-794)))) (-15 -3826 ((-1173) (-589 (-794)))) (-15 -3895 ((-1173) (-589 (-794)))))) (T -1050)) +((-3895 (*1 *2 *3) (-12 (-5 *3 (-589 (-794))) (-5 *2 (-1173)) (-5 *1 (-1050)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-589 (-794))) (-5 *2 (-1173)) (-5 *1 (-1050)))) (-3394 (*1 *2 *3) (-12 (-5 *3 (-589 (-794))) (-5 *2 (-1173)) (-5 *1 (-1050)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1173)) (-5 *1 (-1050)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1173)) (-5 *1 (-1050)))) (-3394 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1173)) (-5 *1 (-1050)))) (-3394 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-794)) (-5 *2 (-1173)) (-5 *1 (-1050))))) +(-10 -7 (-15 -3394 ((-1173) (-1070) (-794))) (-15 -3394 ((-1173) (-794))) (-15 -3826 ((-1173) (-794))) (-15 -3895 ((-1173) (-794))) (-15 -3394 ((-1173) (-589 (-794)))) (-15 -3826 ((-1173) (-589 (-794)))) (-15 -3895 ((-1173) (-589 (-794))))) +((-2789 (($ $ $) 10)) (-2710 (($ $) 9)) (-2322 (($ $ $) 13)) (-4102 (($ $ $) 15)) (-3254 (($ $ $) 12)) (-1325 (($ $ $) 14)) (-3728 (($ $) 17)) (-2320 (($ $) 16)) (-2619 (($ $) 6)) (-2033 (($ $ $) 11) (($ $) 7)) (-3599 (($ $ $) 8))) +(((-1051) (-129)) (T -1051)) +((-3728 (*1 *1 *1) (-4 *1 (-1051))) (-2320 (*1 *1 *1) (-4 *1 (-1051))) (-4102 (*1 *1 *1 *1) (-4 *1 (-1051))) (-1325 (*1 *1 *1 *1) (-4 *1 (-1051))) (-2322 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3254 (*1 *1 *1 *1) (-4 *1 (-1051))) (-2033 (*1 *1 *1 *1) (-4 *1 (-1051))) (-2789 (*1 *1 *1 *1) (-4 *1 (-1051))) (-2710 (*1 *1 *1) (-4 *1 (-1051))) (-3599 (*1 *1 *1 *1) (-4 *1 (-1051))) (-2033 (*1 *1 *1) (-4 *1 (-1051))) (-2619 (*1 *1 *1) (-4 *1 (-1051)))) +(-13 (-10 -8 (-15 -2619 ($ $)) (-15 -2033 ($ $)) (-15 -3599 ($ $ $)) (-15 -2710 ($ $)) (-15 -2789 ($ $ $)) (-15 -2033 ($ $ $)) (-15 -3254 ($ $ $)) (-15 -2322 ($ $ $)) (-15 -1325 ($ $ $)) (-15 -4102 ($ $ $)) (-15 -2320 ($ $)) (-15 -3728 ($ $)))) +((-3924 (((-108) $ $) 41)) (-1733 ((|#1| $) 15)) (-3220 (((-108) $ $ (-1 (-108) |#2| |#2|)) 36)) (-2688 (((-108) $) 17)) (-3532 (($ $ |#1|) 28)) (-4222 (($ $ (-108)) 30)) (-3200 (($ $) 31)) (-3818 (($ $ |#2|) 29)) (-3779 (((-1070) $) NIL)) (-2522 (((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|)) 35)) (-2783 (((-1034) $) NIL)) (-3883 (((-108) $) 14)) (-3988 (($) 10)) (-1664 (($ $) 27)) (-1472 (($ |#1| |#2| (-108)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3072 |#2|))) 21) (((-589 $) (-589 (-2 (|:| |val| |#1|) (|:| -3072 |#2|)))) 24) (((-589 $) |#1| (-589 |#2|)) 26)) (-3130 ((|#2| $) 16)) (-1458 (((-794) $) 50)) (-3983 (((-108) $ $) 39))) +(((-1052 |#1| |#2|) (-13 (-1016) (-10 -8 (-15 -3988 ($)) (-15 -3883 ((-108) $)) (-15 -1733 (|#1| $)) (-15 -3130 (|#2| $)) (-15 -2688 ((-108) $)) (-15 -1472 ($ |#1| |#2| (-108))) (-15 -1472 ($ |#1| |#2|)) (-15 -1472 ($ (-2 (|:| |val| |#1|) (|:| -3072 |#2|)))) (-15 -1472 ((-589 $) (-589 (-2 (|:| |val| |#1|) (|:| -3072 |#2|))))) (-15 -1472 ((-589 $) |#1| (-589 |#2|))) (-15 -1664 ($ $)) (-15 -3532 ($ $ |#1|)) (-15 -3818 ($ $ |#2|)) (-15 -4222 ($ $ (-108))) (-15 -3200 ($ $)) (-15 -2522 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -3220 ((-108) $ $ (-1 (-108) |#2| |#2|))))) (-13 (-1016) (-33)) (-13 (-1016) (-33))) (T -1052)) +((-3988 (*1 *1) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-3883 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))))) (-1733 (*1 *2 *1) (-12 (-4 *2 (-13 (-1016) (-33))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-13 (-1016) (-33))))) (-3130 (*1 *2 *1) (-12 (-4 *2 (-13 (-1016) (-33))) (-5 *1 (-1052 *3 *2)) (-4 *3 (-13 (-1016) (-33))))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))))) (-1472 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-1472 (*1 *1 *2 *3) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-1472 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3072 *4))) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1052 *3 *4)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-589 (-2 (|:| |val| *4) (|:| -3072 *5)))) (-4 *4 (-13 (-1016) (-33))) (-4 *5 (-13 (-1016) (-33))) (-5 *2 (-589 (-1052 *4 *5))) (-5 *1 (-1052 *4 *5)))) (-1472 (*1 *2 *3 *4) (-12 (-5 *4 (-589 *5)) (-4 *5 (-13 (-1016) (-33))) (-5 *2 (-589 (-1052 *3 *5))) (-5 *1 (-1052 *3 *5)) (-4 *3 (-13 (-1016) (-33))))) (-1664 (*1 *1 *1) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-3532 (*1 *1 *1 *2) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-3818 (*1 *1 *1 *2) (-12 (-5 *1 (-1052 *3 *2)) (-4 *3 (-13 (-1016) (-33))) (-4 *2 (-13 (-1016) (-33))))) (-4222 (*1 *1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))))) (-3200 (*1 *1 *1) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-2522 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1016) (-33))) (-4 *6 (-13 (-1016) (-33))) (-5 *2 (-108)) (-5 *1 (-1052 *5 *6)))) (-3220 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1016) (-33))) (-5 *2 (-108)) (-5 *1 (-1052 *4 *5)) (-4 *4 (-13 (-1016) (-33)))))) +(-13 (-1016) (-10 -8 (-15 -3988 ($)) (-15 -3883 ((-108) $)) (-15 -1733 (|#1| $)) (-15 -3130 (|#2| $)) (-15 -2688 ((-108) $)) (-15 -1472 ($ |#1| |#2| (-108))) (-15 -1472 ($ |#1| |#2|)) (-15 -1472 ($ (-2 (|:| |val| |#1|) (|:| -3072 |#2|)))) (-15 -1472 ((-589 $) (-589 (-2 (|:| |val| |#1|) (|:| -3072 |#2|))))) (-15 -1472 ((-589 $) |#1| (-589 |#2|))) (-15 -1664 ($ $)) (-15 -3532 ($ $ |#1|)) (-15 -3818 ($ $ |#2|)) (-15 -4222 ($ $ (-108))) (-15 -3200 ($ $)) (-15 -2522 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -3220 ((-108) $ $ (-1 (-108) |#2| |#2|))))) +((-3924 (((-108) $ $) NIL (|has| (-1052 |#1| |#2|) (-1016)))) (-1733 (((-1052 |#1| |#2|) $) 25)) (-2638 (($ $) 76)) (-2224 (((-108) (-1052 |#1| |#2|) $ (-1 (-108) |#2| |#2|)) 85)) (-1682 (($ $ $ (-589 (-1052 |#1| |#2|))) 90) (($ $ $ (-589 (-1052 |#1| |#2|)) (-1 (-108) |#2| |#2|)) 91)) (-3079 (((-108) $ (-710)) NIL)) (-1823 (((-1052 |#1| |#2|) $ (-1052 |#1| |#2|)) 43 (|has| $ (-6 -4245)))) (-1641 (((-1052 |#1| |#2|) $ "value" (-1052 |#1| |#2|)) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 41 (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-2147 (((-589 (-2 (|:| |val| |#1|) (|:| -3072 |#2|))) $) 80)) (-2249 (($ (-1052 |#1| |#2|) $) 39)) (-2557 (($ (-1052 |#1| |#2|) $) 31)) (-1666 (((-589 (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) 51)) (-3710 (((-108) (-1052 |#1| |#2|) $) 82)) (-1238 (((-108) $ $) NIL (|has| (-1052 |#1| |#2|) (-1016)))) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 (-1052 |#1| |#2|)) $) 55 (|has| $ (-6 -4244)))) (-1973 (((-108) (-1052 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-1052 |#1| |#2|) (-1016))))) (-2852 (($ (-1 (-1052 |#1| |#2|) (-1052 |#1| |#2|)) $) 47 (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-1052 |#1| |#2|) (-1052 |#1| |#2|)) $) 46)) (-2866 (((-108) $ (-710)) NIL)) (-2726 (((-589 (-1052 |#1| |#2|)) $) 53)) (-3555 (((-108) $) 42)) (-3779 (((-1070) $) NIL (|has| (-1052 |#1| |#2|) (-1016)))) (-2783 (((-1034) $) NIL (|has| (-1052 |#1| |#2|) (-1016)))) (-3598 (((-3 $ "failed") $) 75)) (-1327 (((-108) (-1 (-108) (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-1052 |#1| |#2|)))) NIL (-12 (|has| (-1052 |#1| |#2|) (-286 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1016)))) (($ $ (-271 (-1052 |#1| |#2|))) NIL (-12 (|has| (-1052 |#1| |#2|) (-286 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1016)))) (($ $ (-1052 |#1| |#2|) (-1052 |#1| |#2|)) NIL (-12 (|has| (-1052 |#1| |#2|) (-286 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1016)))) (($ $ (-589 (-1052 |#1| |#2|)) (-589 (-1052 |#1| |#2|))) NIL (-12 (|has| (-1052 |#1| |#2|) (-286 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1016))))) (-3811 (((-108) $ $) 50)) (-3883 (((-108) $) 22)) (-3988 (($) 24)) (-3223 (((-1052 |#1| |#2|) $ "value") NIL)) (-1549 (((-523) $ $) NIL)) (-2524 (((-108) $) 44)) (-2792 (((-710) (-1 (-108) (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -4244))) (((-710) (-1052 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-1052 |#1| |#2|) (-1016))))) (-1664 (($ $) 49)) (-1472 (($ (-1052 |#1| |#2|)) 9) (($ |#1| |#2| (-589 $)) 12) (($ |#1| |#2| (-589 (-1052 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-589 |#2|)) 17)) (-1534 (((-589 |#2|) $) 81)) (-1458 (((-794) $) 73 (|has| (-1052 |#1| |#2|) (-563 (-794))))) (-2296 (((-589 $) $) 28)) (-3653 (((-108) $ $) NIL (|has| (-1052 |#1| |#2|) (-1016)))) (-2096 (((-108) (-1 (-108) (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 64 (|has| (-1052 |#1| |#2|) (-1016)))) (-2676 (((-710) $) 58 (|has| $ (-6 -4244))))) +(((-1053 |#1| |#2|) (-13 (-938 (-1052 |#1| |#2|)) (-10 -8 (-6 -4245) (-6 -4244) (-15 -3598 ((-3 $ "failed") $)) (-15 -2638 ($ $)) (-15 -1472 ($ (-1052 |#1| |#2|))) (-15 -1472 ($ |#1| |#2| (-589 $))) (-15 -1472 ($ |#1| |#2| (-589 (-1052 |#1| |#2|)))) (-15 -1472 ($ |#1| |#2| |#1| (-589 |#2|))) (-15 -1534 ((-589 |#2|) $)) (-15 -2147 ((-589 (-2 (|:| |val| |#1|) (|:| -3072 |#2|))) $)) (-15 -3710 ((-108) (-1052 |#1| |#2|) $)) (-15 -2224 ((-108) (-1052 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -2557 ($ (-1052 |#1| |#2|) $)) (-15 -2249 ($ (-1052 |#1| |#2|) $)) (-15 -1682 ($ $ $ (-589 (-1052 |#1| |#2|)))) (-15 -1682 ($ $ $ (-589 (-1052 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) (-13 (-1016) (-33)) (-13 (-1016) (-33))) (T -1053)) +((-3598 (*1 *1 *1) (|partial| -12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-2638 (*1 *1 *1) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-1472 (*1 *1 *2) (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4)))) (-1472 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-589 (-1053 *2 *3))) (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) (-1472 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-589 (-1052 *2 *3))) (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))) (-5 *1 (-1053 *2 *3)))) (-1472 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-589 *3)) (-4 *3 (-13 (-1016) (-33))) (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1016) (-33))))) (-1534 (*1 *2 *1) (-12 (-5 *2 (-589 *4)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))))) (-2147 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))))) (-3710 (*1 *2 *3 *1) (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-1016) (-33))) (-4 *5 (-13 (-1016) (-33))) (-5 *2 (-108)) (-5 *1 (-1053 *4 *5)))) (-2224 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1052 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1016) (-33))) (-4 *6 (-13 (-1016) (-33))) (-5 *2 (-108)) (-5 *1 (-1053 *5 *6)))) (-2557 (*1 *1 *2 *1) (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4)))) (-2249 (*1 *1 *2 *1) (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4)))) (-1682 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-589 (-1052 *3 *4))) (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4)))) (-1682 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-1052 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) (-4 *4 (-13 (-1016) (-33))) (-4 *5 (-13 (-1016) (-33))) (-5 *1 (-1053 *4 *5))))) +(-13 (-938 (-1052 |#1| |#2|)) (-10 -8 (-6 -4245) (-6 -4244) (-15 -3598 ((-3 $ "failed") $)) (-15 -2638 ($ $)) (-15 -1472 ($ (-1052 |#1| |#2|))) (-15 -1472 ($ |#1| |#2| (-589 $))) (-15 -1472 ($ |#1| |#2| (-589 (-1052 |#1| |#2|)))) (-15 -1472 ($ |#1| |#2| |#1| (-589 |#2|))) (-15 -1534 ((-589 |#2|) $)) (-15 -2147 ((-589 (-2 (|:| |val| |#1|) (|:| -3072 |#2|))) $)) (-15 -3710 ((-108) (-1052 |#1| |#2|) $)) (-15 -2224 ((-108) (-1052 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -2557 ($ (-1052 |#1| |#2|) $)) (-15 -2249 ($ (-1052 |#1| |#2|) $)) (-15 -1682 ($ $ $ (-589 (-1052 |#1| |#2|)))) (-15 -1682 ($ $ $ (-589 (-1052 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-4190 (($ $) NIL)) (-4187 ((|#2| $) NIL)) (-2606 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2079 (($ (-629 |#2|)) 45)) (-2651 (((-108) $) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-1421 (($ |#2|) 9)) (-2518 (($) NIL T CONST)) (-2445 (($ $) 58 (|has| |#2| (-284)))) (-2031 (((-218 |#1| |#2|) $ (-523)) 31)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 |#2| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) ((|#2| $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) 72)) (-1319 (((-710) $) 60 (|has| |#2| (-515)))) (-2795 ((|#2| $ (-523) (-523)) NIL)) (-1666 (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-2023 (((-108) $) NIL)) (-1867 (((-710) $) 62 (|has| |#2| (-515)))) (-3498 (((-589 (-218 |#1| |#2|)) $) 66 (|has| |#2| (-515)))) (-2803 (((-710) $) NIL)) (-2813 (((-710) $) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-1925 ((|#2| $) 56 (|has| |#2| (-6 (-4246 "*"))))) (-3871 (((-523) $) NIL)) (-1758 (((-523) $) NIL)) (-2136 (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3338 (((-523) $) NIL)) (-2347 (((-523) $) NIL)) (-3068 (($ (-589 (-589 |#2|))) 26)) (-2852 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2289 (((-589 (-589 |#2|)) $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-3698 (((-3 $ "failed") $) 69 (|has| |#2| (-339)))) (-2783 (((-1034) $) NIL)) (-3746 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515)))) (-1327 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#2| $ (-523) (-523) |#2|) NIL) ((|#2| $ (-523) (-523)) NIL)) (-3523 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $) NIL (|has| |#2| (-211)))) (-3804 ((|#2| $) NIL)) (-3739 (($ (-589 |#2|)) 40)) (-3117 (((-108) $) NIL)) (-2561 (((-218 |#1| |#2|) $) NIL)) (-2310 ((|#2| $) 54 (|has| |#2| (-6 (-4246 "*"))))) (-2792 (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1664 (($ $) NIL)) (-3663 (((-499) $) 81 (|has| |#2| (-564 (-499))))) (-1595 (((-218 |#1| |#2|) $ (-523)) 33)) (-1458 (((-794) $) 36) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#2| (-964 (-383 (-523))))) (($ |#2|) NIL) (((-629 |#2|) $) 42)) (-1621 (((-710)) 17)) (-2096 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2175 (((-108) $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 11 T CONST)) (-2767 (($) 14 T CONST)) (-2862 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-710)) NIL (|has| |#2| (-211))) (($ $) NIL (|has| |#2| (-211)))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) 52) (($ $ (-523)) 71 (|has| |#2| (-339)))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-218 |#1| |#2|) $ (-218 |#1| |#2|)) 48) (((-218 |#1| |#2|) (-218 |#1| |#2|) $) 50)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-1054 |#1| |#2|) (-13 (-1037 |#1| |#2| (-218 |#1| |#2|) (-218 |#1| |#2|)) (-563 (-629 |#2|)) (-10 -8 (-15 -4190 ($ $)) (-15 -2079 ($ (-629 |#2|))) (-15 -1458 ((-629 |#2|) $)) (IF (|has| |#2| (-6 (-4246 "*"))) (-6 -4233) |%noBranch|) (IF (|has| |#2| (-6 (-4246 "*"))) (IF (|has| |#2| (-6 -4241)) (-6 -4241) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|))) (-710) (-973)) (T -1054)) +((-1458 (*1 *2 *1) (-12 (-5 *2 (-629 *4)) (-5 *1 (-1054 *3 *4)) (-14 *3 (-710)) (-4 *4 (-973)))) (-4190 (*1 *1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-14 *2 (-710)) (-4 *3 (-973)))) (-2079 (*1 *1 *2) (-12 (-5 *2 (-629 *4)) (-4 *4 (-973)) (-5 *1 (-1054 *3 *4)) (-14 *3 (-710))))) +(-13 (-1037 |#1| |#2| (-218 |#1| |#2|) (-218 |#1| |#2|)) (-563 (-629 |#2|)) (-10 -8 (-15 -4190 ($ $)) (-15 -2079 ($ (-629 |#2|))) (-15 -1458 ((-629 |#2|) $)) (IF (|has| |#2| (-6 (-4246 "*"))) (-6 -4233) |%noBranch|) (IF (|has| |#2| (-6 (-4246 "*"))) (IF (|has| |#2| (-6 -4241)) (-6 -4241) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-564 (-499))) (-6 (-564 (-499))) |%noBranch|))) +((-1303 (($ $) 19)) (-2874 (($ $ (-133)) 10) (($ $ (-130)) 14)) (-1569 (((-108) $ $) 24)) (-2674 (($ $) 17)) (-3223 (((-133) $ (-523) (-133)) NIL) (((-133) $ (-523)) NIL) (($ $ (-1135 (-523))) NIL) (($ $ $) 29)) (-1458 (($ (-133)) 27) (((-794) $) NIL))) +(((-1055 |#1|) (-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -3223 (|#1| |#1| |#1|)) (-15 -2874 (|#1| |#1| (-130))) (-15 -2874 (|#1| |#1| (-133))) (-15 -1458 (|#1| (-133))) (-15 -1569 ((-108) |#1| |#1|)) (-15 -1303 (|#1| |#1|)) (-15 -2674 (|#1| |#1|)) (-15 -3223 (|#1| |#1| (-1135 (-523)))) (-15 -3223 ((-133) |#1| (-523))) (-15 -3223 ((-133) |#1| (-523) (-133)))) (-1056)) (T -1055)) +NIL +(-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -3223 (|#1| |#1| |#1|)) (-15 -2874 (|#1| |#1| (-130))) (-15 -2874 (|#1| |#1| (-133))) (-15 -1458 (|#1| (-133))) (-15 -1569 ((-108) |#1| |#1|)) (-15 -1303 (|#1| |#1|)) (-15 -2674 (|#1| |#1|)) (-15 -3223 (|#1| |#1| (-1135 (-523)))) (-15 -3223 ((-133) |#1| (-523))) (-15 -3223 ((-133) |#1| (-523) (-133)))) +((-3924 (((-108) $ $) 19 (|has| (-133) (-1016)))) (-2109 (($ $) 120)) (-1303 (($ $) 121)) (-2874 (($ $ (-133)) 108) (($ $ (-130)) 107)) (-4207 (((-1173) $ (-523) (-523)) 40 (|has| $ (-6 -4245)))) (-1545 (((-108) $ $) 118)) (-1521 (((-108) $ $ (-523)) 117)) (-2063 (((-589 $) $ (-133)) 110) (((-589 $) $ (-130)) 109)) (-1964 (((-108) (-1 (-108) (-133) (-133)) $) 98) (((-108) $) 92 (|has| (-133) (-786)))) (-1506 (($ (-1 (-108) (-133) (-133)) $) 89 (|has| $ (-6 -4245))) (($ $) 88 (-12 (|has| (-133) (-786)) (|has| $ (-6 -4245))))) (-3974 (($ (-1 (-108) (-133) (-133)) $) 99) (($ $) 93 (|has| (-133) (-786)))) (-3079 (((-108) $ (-710)) 8)) (-1641 (((-133) $ (-523) (-133)) 52 (|has| $ (-6 -4245))) (((-133) $ (-1135 (-523)) (-133)) 58 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) (-133)) $) 75 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-4123 (($ $ (-133)) 104) (($ $ (-130)) 103)) (-2867 (($ $) 90 (|has| $ (-6 -4245)))) (-3631 (($ $) 100)) (-2129 (($ $ (-1135 (-523)) $) 114)) (-1773 (($ $) 78 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ (-133) $) 77 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) (-133)) $) 74 (|has| $ (-6 -4244)))) (-2437 (((-133) (-1 (-133) (-133) (-133)) $ (-133) (-133)) 76 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4244)))) (((-133) (-1 (-133) (-133) (-133)) $ (-133)) 73 (|has| $ (-6 -4244))) (((-133) (-1 (-133) (-133) (-133)) $) 72 (|has| $ (-6 -4244)))) (-2863 (((-133) $ (-523) (-133)) 53 (|has| $ (-6 -4245)))) (-2795 (((-133) $ (-523)) 51)) (-1569 (((-108) $ $) 119)) (-1479 (((-523) (-1 (-108) (-133)) $) 97) (((-523) (-133) $) 96 (|has| (-133) (-1016))) (((-523) (-133) $ (-523)) 95 (|has| (-133) (-1016))) (((-523) $ $ (-523)) 113) (((-523) (-130) $ (-523)) 112)) (-1666 (((-589 (-133)) $) 30 (|has| $ (-6 -4244)))) (-3052 (($ (-710) (-133)) 69)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 43 (|has| (-523) (-786)))) (-2454 (($ $ $) 87 (|has| (-133) (-786)))) (-2178 (($ (-1 (-108) (-133) (-133)) $ $) 101) (($ $ $) 94 (|has| (-133) (-786)))) (-2136 (((-589 (-133)) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) (-133) $) 27 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 44 (|has| (-523) (-786)))) (-2062 (($ $ $) 86 (|has| (-133) (-786)))) (-2599 (((-108) $ $ (-133)) 115)) (-1547 (((-710) $ $ (-133)) 116)) (-2852 (($ (-1 (-133) (-133)) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-133) (-133)) $) 35) (($ (-1 (-133) (-133) (-133)) $ $) 64)) (-2858 (($ $) 122)) (-2674 (($ $) 123)) (-2866 (((-108) $ (-710)) 10)) (-4133 (($ $ (-133)) 106) (($ $ (-130)) 105)) (-3779 (((-1070) $) 22 (|has| (-133) (-1016)))) (-2847 (($ (-133) $ (-523)) 60) (($ $ $ (-523)) 59)) (-2412 (((-589 (-523)) $) 46)) (-4135 (((-108) (-523) $) 47)) (-2783 (((-1034) $) 21 (|has| (-133) (-1016)))) (-1738 (((-133) $) 42 (|has| (-523) (-786)))) (-2114 (((-3 (-133) "failed") (-1 (-108) (-133)) $) 71)) (-4203 (($ $ (-133)) 41 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) (-133)) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-133)))) 26 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-271 (-133))) 25 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-133) (-133)) 24 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-589 (-133)) (-589 (-133))) 23 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) (-133) $) 45 (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-1264 (((-589 (-133)) $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 (((-133) $ (-523) (-133)) 50) (((-133) $ (-523)) 49) (($ $ (-1135 (-523))) 63) (($ $ $) 102)) (-1469 (($ $ (-523)) 62) (($ $ (-1135 (-523))) 61)) (-2792 (((-710) (-1 (-108) (-133)) $) 31 (|has| $ (-6 -4244))) (((-710) (-133) $) 28 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4244))))) (-3160 (($ $ $ (-523)) 91 (|has| $ (-6 -4245)))) (-1664 (($ $) 13)) (-3663 (((-499) $) 79 (|has| (-133) (-564 (-499))))) (-1472 (($ (-589 (-133))) 70)) (-2326 (($ $ (-133)) 68) (($ (-133) $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1458 (($ (-133)) 111) (((-794) $) 18 (|has| (-133) (-563 (-794))))) (-2096 (((-108) (-1 (-108) (-133)) $) 33 (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) 84 (|has| (-133) (-786)))) (-4019 (((-108) $ $) 83 (|has| (-133) (-786)))) (-3983 (((-108) $ $) 20 (|has| (-133) (-1016)))) (-4030 (((-108) $ $) 85 (|has| (-133) (-786)))) (-4007 (((-108) $ $) 82 (|has| (-133) (-786)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-1056) (-129)) (T -1056)) +((-2674 (*1 *1 *1) (-4 *1 (-1056))) (-2858 (*1 *1 *1) (-4 *1 (-1056))) (-1303 (*1 *1 *1) (-4 *1 (-1056))) (-2109 (*1 *1 *1) (-4 *1 (-1056))) (-1569 (*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-108)))) (-1545 (*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-108)))) (-1521 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-523)) (-5 *2 (-108)))) (-1547 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-133)) (-5 *2 (-710)))) (-2599 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-133)) (-5 *2 (-108)))) (-2129 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-1135 (-523))))) (-1479 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-523)))) (-1479 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-523)) (-5 *3 (-130)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-133)) (-4 *1 (-1056)))) (-2063 (*1 *2 *1 *3) (-12 (-5 *3 (-133)) (-5 *2 (-589 *1)) (-4 *1 (-1056)))) (-2063 (*1 *2 *1 *3) (-12 (-5 *3 (-130)) (-5 *2 (-589 *1)) (-4 *1 (-1056)))) (-2874 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-133)))) (-2874 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-130)))) (-4133 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-133)))) (-4133 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-130)))) (-4123 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-133)))) (-4123 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-130)))) (-3223 (*1 *1 *1 *1) (-4 *1 (-1056)))) +(-13 (-19 (-133)) (-10 -8 (-15 -2674 ($ $)) (-15 -2858 ($ $)) (-15 -1303 ($ $)) (-15 -2109 ($ $)) (-15 -1569 ((-108) $ $)) (-15 -1545 ((-108) $ $)) (-15 -1521 ((-108) $ $ (-523))) (-15 -1547 ((-710) $ $ (-133))) (-15 -2599 ((-108) $ $ (-133))) (-15 -2129 ($ $ (-1135 (-523)) $)) (-15 -1479 ((-523) $ $ (-523))) (-15 -1479 ((-523) (-130) $ (-523))) (-15 -1458 ($ (-133))) (-15 -2063 ((-589 $) $ (-133))) (-15 -2063 ((-589 $) $ (-130))) (-15 -2874 ($ $ (-133))) (-15 -2874 ($ $ (-130))) (-15 -4133 ($ $ (-133))) (-15 -4133 ($ $ (-130))) (-15 -4123 ($ $ (-133))) (-15 -4123 ($ $ (-130))) (-15 -3223 ($ $ $)))) +(((-33) . T) ((-97) -3262 (|has| (-133) (-1016)) (|has| (-133) (-786))) ((-563 (-794)) -3262 (|has| (-133) (-1016)) (|has| (-133) (-786)) (|has| (-133) (-563 (-794)))) ((-140 #0=(-133)) . T) ((-564 (-499)) |has| (-133) (-564 (-499))) ((-263 #1=(-523) #0#) . T) ((-265 #1# #0#) . T) ((-286 #0#) -12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))) ((-349 #0#) . T) ((-462 #0#) . T) ((-556 #1# #0#) . T) ((-484 #0# #0#) -12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))) ((-594 #0#) . T) ((-19 #0#) . T) ((-786) |has| (-133) (-786)) ((-1016) -3262 (|has| (-133) (-1016)) (|has| (-133) (-786))) ((-1122) . T)) +((-3980 (((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 |#4|) (-589 |#5|) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) (-710)) 94)) (-2944 (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710)) 53)) (-3431 (((-1173) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-710)) 85)) (-2770 (((-710) (-589 |#4|) (-589 |#5|)) 27)) (-1312 (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710)) 55) (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710) (-108)) 57)) (-2274 (((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108) (-108) (-108) (-108)) 76) (((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108)) 77)) (-3663 (((-1070) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) 80)) (-1827 (((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|) 52)) (-1417 (((-710) (-589 |#4|) (-589 |#5|)) 19))) +(((-1057 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1417 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -2770 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -1827 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|)) (-15 -2944 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710))) (-15 -2944 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|)) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710) (-108))) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710))) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|)) (-15 -2274 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -2274 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3980 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 |#4|) (-589 |#5|) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) (-710))) (-15 -3663 ((-1070) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)))) (-15 -3431 ((-1173) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-710)))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|) (-1025 |#1| |#2| |#3| |#4|)) (T -1057)) +((-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3072 *9)))) (-5 *4 (-710)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-1173)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3072 *8))) (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-1025 *4 *5 *6 *7)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1070)) (-5 *1 (-1057 *4 *5 *6 *7 *8)))) (-3980 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-589 *11)) (|:| |todo| (-589 (-2 (|:| |val| *3) (|:| -3072 *11)))))) (-5 *6 (-710)) (-5 *2 (-589 (-2 (|:| |val| (-589 *10)) (|:| -3072 *11)))) (-5 *3 (-589 *10)) (-5 *4 (-589 *11)) (-4 *10 (-987 *7 *8 *9)) (-4 *11 (-1025 *7 *8 *9 *10)) (-4 *7 (-427)) (-4 *8 (-732)) (-4 *9 (-786)) (-5 *1 (-1057 *7 *8 *9 *10 *11)))) (-2274 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-2274 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-1312 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1025 *5 *6 *7 *3)))) (-1312 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1025 *6 *7 *8 *3)))) (-1312 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-710)) (-5 *6 (-108)) (-4 *7 (-427)) (-4 *8 (-732)) (-4 *9 (-786)) (-4 *3 (-987 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-1057 *7 *8 *9 *3 *4)) (-4 *4 (-1025 *7 *8 *9 *3)))) (-2944 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1025 *5 *6 *7 *3)))) (-2944 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *3 (-987 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1025 *6 *7 *8 *3)))) (-1827 (*1 *2 *3 *4) (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-589 *4)) (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1025 *5 *6 *7 *3)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-1417 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -1417 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -2770 ((-710) (-589 |#4|) (-589 |#5|))) (-15 -1827 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|)) (-15 -2944 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710))) (-15 -2944 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|)) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710) (-108))) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5| (-710))) (-15 -1312 ((-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) |#4| |#5|)) (-15 -2274 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108))) (-15 -2274 ((-589 |#5|) (-589 |#4|) (-589 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3980 ((-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-589 |#4|) (-589 |#5|) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-2 (|:| |done| (-589 |#5|)) (|:| |todo| (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))))) (-710))) (-15 -3663 ((-1070) (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|)))) (-15 -3431 ((-1173) (-589 (-2 (|:| |val| (-589 |#4|)) (|:| -3072 |#5|))) (-710)))) +((-3924 (((-108) $ $) NIL)) (-1633 (((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 |#4|)))) (-589 |#4|)) NIL)) (-3846 (((-589 $) (-589 |#4|)) 110) (((-589 $) (-589 |#4|) (-108)) 111) (((-589 $) (-589 |#4|) (-108) (-108)) 109) (((-589 $) (-589 |#4|) (-108) (-108) (-108) (-108)) 112)) (-1957 (((-589 |#3|) $) NIL)) (-2100 (((-108) $) NIL)) (-2376 (((-108) $) NIL (|has| |#1| (-515)))) (-2694 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2308 ((|#4| |#4| $) NIL)) (-2291 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| $) 84)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-3724 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244))) (((-3 |#4| "failed") $ |#3|) 62)) (-2518 (($) NIL T CONST)) (-3595 (((-108) $) 26 (|has| |#1| (-515)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3225 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3393 (((-108) $) NIL (|has| |#1| (-515)))) (-3375 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3956 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) NIL)) (-3474 (($ (-589 |#4|)) NIL)) (-1751 (((-3 $ "failed") $) 39)) (-4014 ((|#4| |#4| $) 65)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-2557 (($ |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-515)))) (-2663 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2636 ((|#4| |#4| $) NIL)) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4244))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3737 (((-2 (|:| -3952 (-589 |#4|)) (|:| -2625 (-589 |#4|))) $) NIL)) (-2005 (((-108) |#4| $) NIL)) (-3785 (((-108) |#4| $) NIL)) (-1944 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3591 (((-2 (|:| |val| (-589 |#4|)) (|:| |towers| (-589 $))) (-589 |#4|) (-108) (-108)) 124)) (-1666 (((-589 |#4|) $) 16 (|has| $ (-6 -4244)))) (-4172 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2907 ((|#3| $) 33)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#4|) $) 17 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-2852 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) 21)) (-4055 (((-589 |#3|) $) NIL)) (-1357 (((-108) |#3| $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-3246 (((-3 |#4| (-589 $)) |#4| |#4| $) NIL)) (-1611 (((-589 (-2 (|:| |val| |#4|) (|:| -3072 $))) |#4| |#4| $) 103)) (-2579 (((-3 |#4| "failed") $) 37)) (-2668 (((-589 $) |#4| $) 88)) (-3320 (((-3 (-108) (-589 $)) |#4| $) NIL)) (-2870 (((-589 (-2 (|:| |val| (-108)) (|:| -3072 $))) |#4| $) 98) (((-108) |#4| $) 53)) (-1309 (((-589 $) |#4| $) 107) (((-589 $) (-589 |#4|) $) NIL) (((-589 $) (-589 |#4|) (-589 $)) 108) (((-589 $) |#4| (-589 $)) NIL)) (-3085 (((-589 $) (-589 |#4|) (-108) (-108) (-108)) 119)) (-1770 (($ |#4| $) 75) (($ (-589 |#4|) $) 76) (((-589 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 74)) (-2404 (((-589 |#4|) $) NIL)) (-2112 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2648 ((|#4| |#4| $) NIL)) (-2391 (((-108) $ $) NIL)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-2001 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1398 ((|#4| |#4| $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 (((-3 |#4| "failed") $) 35)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2890 (((-3 $ "failed") $ |#4|) 48)) (-4097 (($ $ |#4|) NIL) (((-589 $) |#4| $) 90) (((-589 $) |#4| (-589 $)) NIL) (((-589 $) (-589 |#4|) $) NIL) (((-589 $) (-589 |#4|) (-589 $)) 86)) (-1327 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 15)) (-3988 (($) 13)) (-2299 (((-710) $) NIL)) (-2792 (((-710) |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) (((-710) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) 12)) (-3663 (((-499) $) NIL (|has| |#4| (-564 (-499))))) (-1472 (($ (-589 |#4|)) 20)) (-2621 (($ $ |#3|) 42)) (-2624 (($ $ |#3|) 44)) (-1824 (($ $) NIL)) (-3076 (($ $ |#3|) NIL)) (-1458 (((-794) $) 31) (((-589 |#4|) $) 40)) (-1395 (((-710) $) NIL (|has| |#3| (-344)))) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4031 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) NIL)) (-3910 (((-589 $) |#4| $) 54) (((-589 $) |#4| (-589 $)) NIL) (((-589 $) (-589 |#4|) $) NIL) (((-589 $) (-589 |#4|) (-589 $)) NIL)) (-2096 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-3862 (((-589 |#3|) $) NIL)) (-4062 (((-108) |#4| $) NIL)) (-2153 (((-108) |#3| $) 61)) (-3983 (((-108) $ $) NIL)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-1058 |#1| |#2| |#3| |#4|) (-13 (-1025 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1770 ((-589 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3846 ((-589 $) (-589 |#4|) (-108) (-108))) (-15 -3846 ((-589 $) (-589 |#4|) (-108) (-108) (-108) (-108))) (-15 -3085 ((-589 $) (-589 |#4|) (-108) (-108) (-108))) (-15 -3591 ((-2 (|:| |val| (-589 |#4|)) (|:| |towers| (-589 $))) (-589 |#4|) (-108) (-108))))) (-427) (-732) (-786) (-987 |#1| |#2| |#3|)) (T -1058)) +((-1770 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-1058 *5 *6 *7 *3))) (-5 *1 (-1058 *5 *6 *7 *3)) (-4 *3 (-987 *5 *6 *7)))) (-3846 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-3846 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-3085 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-3591 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-589 *8)) (|:| |towers| (-589 (-1058 *5 *6 *7 *8))))) (-5 *1 (-1058 *5 *6 *7 *8)) (-5 *3 (-589 *8))))) +(-13 (-1025 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1770 ((-589 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3846 ((-589 $) (-589 |#4|) (-108) (-108))) (-15 -3846 ((-589 $) (-589 |#4|) (-108) (-108) (-108) (-108))) (-15 -3085 ((-589 $) (-589 |#4|) (-108) (-108) (-108))) (-15 -3591 ((-2 (|:| |val| (-589 |#4|)) (|:| |towers| (-589 $))) (-589 |#4|) (-108) (-108))))) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3125 ((|#1| $) 34)) (-3567 (($ (-589 |#1|)) 39)) (-3079 (((-108) $ (-710)) NIL)) (-2518 (($) NIL T CONST)) (-3845 ((|#1| |#1| $) 36)) (-2085 ((|#1| $) 32)) (-1666 (((-589 |#1|) $) 18 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 22)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-1934 ((|#1| $) 35)) (-3450 (($ |#1| $) 37)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3761 ((|#1| $) 33)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 31)) (-3988 (($) 38)) (-1583 (((-710) $) 29)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) 27)) (-1458 (((-794) $) 14 (|has| |#1| (-563 (-794))))) (-2401 (($ (-589 |#1|)) NIL)) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 17 (|has| |#1| (-1016)))) (-2676 (((-710) $) 30 (|has| $ (-6 -4244))))) +(((-1059 |#1|) (-13 (-1035 |#1|) (-10 -8 (-15 -3567 ($ (-589 |#1|))))) (-1122)) (T -1059)) +((-3567 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-1059 *3))))) +(-13 (-1035 |#1|) (-10 -8 (-15 -3567 ($ (-589 |#1|))))) +((-1641 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1135 (-523)) |#2|) 44) ((|#2| $ (-523) |#2|) 41)) (-1232 (((-108) $) 12)) (-2852 (($ (-1 |#2| |#2|) $) 39)) (-1738 ((|#2| $) NIL) (($ $ (-710)) 17)) (-4203 (($ $ |#2|) 40)) (-2402 (((-108) $) 11)) (-3223 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1135 (-523))) 31) ((|#2| $ (-523)) 23) ((|#2| $ (-523) |#2|) NIL)) (-1746 (($ $ $) 47) (($ $ |#2|) NIL)) (-2326 (($ $ $) 33) (($ |#2| $) NIL) (($ (-589 $)) 36) (($ $ |#2|) NIL))) +(((-1060 |#1| |#2|) (-10 -8 (-15 -1232 ((-108) |#1|)) (-15 -2402 ((-108) |#1|)) (-15 -1641 (|#2| |#1| (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523))) (-15 -4203 (|#1| |#1| |#2|)) (-15 -2326 (|#1| |#1| |#2|)) (-15 -2326 (|#1| (-589 |#1|))) (-15 -3223 (|#1| |#1| (-1135 (-523)))) (-15 -1641 (|#2| |#1| (-1135 (-523)) |#2|)) (-15 -1641 (|#2| |#1| "last" |#2|)) (-15 -1641 (|#1| |#1| "rest" |#1|)) (-15 -1641 (|#2| |#1| "first" |#2|)) (-15 -1746 (|#1| |#1| |#2|)) (-15 -1746 (|#1| |#1| |#1|)) (-15 -3223 (|#2| |#1| "last")) (-15 -3223 (|#1| |#1| "rest")) (-15 -1738 (|#1| |#1| (-710))) (-15 -3223 (|#2| |#1| "first")) (-15 -1738 (|#2| |#1|)) (-15 -2326 (|#1| |#2| |#1|)) (-15 -2326 (|#1| |#1| |#1|)) (-15 -1641 (|#2| |#1| "value" |#2|)) (-15 -3223 (|#2| |#1| "value")) (-15 -2852 (|#1| (-1 |#2| |#2|) |#1|))) (-1061 |#2|) (-1122)) (T -1060)) +NIL +(-10 -8 (-15 -1232 ((-108) |#1|)) (-15 -2402 ((-108) |#1|)) (-15 -1641 (|#2| |#1| (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523) |#2|)) (-15 -3223 (|#2| |#1| (-523))) (-15 -4203 (|#1| |#1| |#2|)) (-15 -2326 (|#1| |#1| |#2|)) (-15 -2326 (|#1| (-589 |#1|))) (-15 -3223 (|#1| |#1| (-1135 (-523)))) (-15 -1641 (|#2| |#1| (-1135 (-523)) |#2|)) (-15 -1641 (|#2| |#1| "last" |#2|)) (-15 -1641 (|#1| |#1| "rest" |#1|)) (-15 -1641 (|#2| |#1| "first" |#2|)) (-15 -1746 (|#1| |#1| |#2|)) (-15 -1746 (|#1| |#1| |#1|)) (-15 -3223 (|#2| |#1| "last")) (-15 -3223 (|#1| |#1| "rest")) (-15 -1738 (|#1| |#1| (-710))) (-15 -3223 (|#2| |#1| "first")) (-15 -1738 (|#2| |#1|)) (-15 -2326 (|#1| |#2| |#1|)) (-15 -2326 (|#1| |#1| |#1|)) (-15 -1641 (|#2| |#1| "value" |#2|)) (-15 -3223 (|#2| |#1| "value")) (-15 -2852 (|#1| (-1 |#2| |#2|) |#1|))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1733 ((|#1| $) 48)) (-1546 ((|#1| $) 65)) (-4039 (($ $) 67)) (-4207 (((-1173) $ (-523) (-523)) 97 (|has| $ (-6 -4245)))) (-2961 (($ $ (-523)) 52 (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) 8)) (-1823 ((|#1| $ |#1|) 39 (|has| $ (-6 -4245)))) (-2110 (($ $ $) 56 (|has| $ (-6 -4245)))) (-3395 ((|#1| $ |#1|) 54 (|has| $ (-6 -4245)))) (-3456 ((|#1| $ |#1|) 58 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4245))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4245))) (($ $ "rest" $) 55 (|has| $ (-6 -4245))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) 117 (|has| $ (-6 -4245))) ((|#1| $ (-523) |#1|) 86 (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 41 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4244)))) (-1532 ((|#1| $) 66)) (-2518 (($) 7 T CONST)) (-1751 (($ $) 73) (($ $ (-710)) 71)) (-1773 (($ $) 99 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4244))) (($ |#1| $) 100 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2863 ((|#1| $ (-523) |#1|) 85 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 87)) (-1232 (((-108) $) 83)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) 50)) (-1238 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-3052 (($ (-710) |#1|) 108)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 95 (|has| (-523) (-786)))) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 94 (|has| (-523) (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2866 (((-108) $ (-710)) 10)) (-2726 (((-589 |#1|) $) 45)) (-3555 (((-108) $) 49)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2579 ((|#1| $) 70) (($ $ (-710)) 68)) (-2847 (($ $ $ (-523)) 116) (($ |#1| $ (-523)) 115)) (-2412 (((-589 (-523)) $) 92)) (-4135 (((-108) (-523) $) 91)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1738 ((|#1| $) 76) (($ $ (-710)) 74)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-4203 (($ $ |#1|) 96 (|has| $ (-6 -4245)))) (-2402 (((-108) $) 84)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) 90)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1135 (-523))) 112) ((|#1| $ (-523)) 89) ((|#1| $ (-523) |#1|) 88)) (-1549 (((-523) $ $) 44)) (-1469 (($ $ (-1135 (-523))) 114) (($ $ (-523)) 113)) (-2524 (((-108) $) 46)) (-2732 (($ $) 62)) (-2363 (($ $) 59 (|has| $ (-6 -4245)))) (-2316 (((-710) $) 63)) (-3562 (($ $) 64)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-3663 (((-499) $) 98 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 107)) (-1746 (($ $ $) 61 (|has| $ (-6 -4245))) (($ $ |#1|) 60 (|has| $ (-6 -4245)))) (-2326 (($ $ $) 78) (($ |#1| $) 77) (($ (-589 $)) 110) (($ $ |#1|) 109)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) 51)) (-3653 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-1061 |#1|) (-129) (-1122)) (T -1061)) +((-2402 (*1 *2 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1122)) (-5 *2 (-108)))) (-1232 (*1 *2 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1122)) (-5 *2 (-108))))) +(-13 (-1156 |t#1|) (-594 |t#1|) (-10 -8 (-15 -2402 ((-108) $)) (-15 -1232 ((-108) $)))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-938 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1122) . T) ((-1156 |#1|) . T)) +((-3924 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-4207 (((-1173) $ |#1| |#1|) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#2| $ |#1| |#2|) NIL)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2243 (((-3 |#2| "failed") |#1| $) NIL)) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-2249 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-3 |#2| "failed") |#1| $) NIL)) (-2557 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) NIL)) (-1666 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 ((|#1| $) NIL (|has| |#1| (-786)))) (-2136 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3056 ((|#1| $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4245))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1330 (((-589 |#1|) $) NIL)) (-2777 (((-108) |#1| $) NIL)) (-1934 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-3450 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-2412 (((-589 |#1|) $) NIL)) (-4135 (((-108) |#1| $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1738 ((|#2| $) NIL (|has| |#1| (-786)))) (-2114 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL)) (-4203 (($ $ |#2|) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3433 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016)))) (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-1458 (((-794) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794)))))) (-2401 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-1062 |#1| |#2| |#3|) (-1099 |#1| |#2|) (-1016) (-1016) |#2|) (T -1062)) +NIL +(-1099 |#1| |#2|) +((-3924 (((-108) $ $) 7)) (-4058 (((-3 $ "failed") $) 13)) (-3779 (((-1070) $) 9)) (-2262 (($) 14 T CONST)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11)) (-3983 (((-108) $ $) 6))) +(((-1063) (-129)) (T -1063)) +((-2262 (*1 *1) (-4 *1 (-1063))) (-4058 (*1 *1 *1) (|partial| -4 *1 (-1063)))) +(-13 (-1016) (-10 -8 (-15 -2262 ($) -3059) (-15 -4058 ((-3 $ "failed") $)))) +(((-97) . T) ((-563 (-794)) . T) ((-1016) . T)) +((-3173 (((-1068 |#1|) (-1068 |#1|)) 17)) (-1379 (((-1068 |#1|) (-1068 |#1|)) 13)) (-1333 (((-1068 |#1|) (-1068 |#1|) (-523) (-523)) 20)) (-1425 (((-1068 |#1|) (-1068 |#1|)) 15))) +(((-1064 |#1|) (-10 -7 (-15 -1379 ((-1068 |#1|) (-1068 |#1|))) (-15 -1425 ((-1068 |#1|) (-1068 |#1|))) (-15 -3173 ((-1068 |#1|) (-1068 |#1|))) (-15 -1333 ((-1068 |#1|) (-1068 |#1|) (-523) (-523)))) (-13 (-515) (-136))) (T -1064)) +((-1333 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-13 (-515) (-136))) (-5 *1 (-1064 *4)))) (-3173 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-515) (-136))) (-5 *1 (-1064 *3)))) (-1425 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-515) (-136))) (-5 *1 (-1064 *3)))) (-1379 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-515) (-136))) (-5 *1 (-1064 *3))))) +(-10 -7 (-15 -1379 ((-1068 |#1|) (-1068 |#1|))) (-15 -1425 ((-1068 |#1|) (-1068 |#1|))) (-15 -3173 ((-1068 |#1|) (-1068 |#1|))) (-15 -1333 ((-1068 |#1|) (-1068 |#1|) (-523) (-523)))) +((-2326 (((-1068 |#1|) (-1068 (-1068 |#1|))) 15))) +(((-1065 |#1|) (-10 -7 (-15 -2326 ((-1068 |#1|) (-1068 (-1068 |#1|))))) (-1122)) (T -1065)) +((-2326 (*1 *2 *3) (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1065 *4)) (-4 *4 (-1122))))) +(-10 -7 (-15 -2326 ((-1068 |#1|) (-1068 (-1068 |#1|))))) +((-2837 (((-1068 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)) 25)) (-2437 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)) 26)) (-3612 (((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|)) 16))) +(((-1066 |#1| |#2|) (-10 -7 (-15 -3612 ((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|))) (-15 -2837 ((-1068 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|))) (-15 -2437 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)))) (-1122) (-1122)) (T -1066)) +((-2437 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1068 *5)) (-4 *5 (-1122)) (-4 *2 (-1122)) (-5 *1 (-1066 *5 *2)))) (-2837 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1068 *6)) (-4 *6 (-1122)) (-4 *3 (-1122)) (-5 *2 (-1068 *3)) (-5 *1 (-1066 *6 *3)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1068 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1068 *6)) (-5 *1 (-1066 *5 *6))))) +(-10 -7 (-15 -3612 ((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|))) (-15 -2837 ((-1068 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|))) (-15 -2437 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)))) +((-3612 (((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-1068 |#2|)) 21))) +(((-1067 |#1| |#2| |#3|) (-10 -7 (-15 -3612 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-1068 |#2|)))) (-1122) (-1122) (-1122)) (T -1067)) +((-3612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-1068 *7)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-4 *8 (-1122)) (-5 *2 (-1068 *8)) (-5 *1 (-1067 *6 *7 *8))))) +(-10 -7 (-15 -3612 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-1068 |#2|)))) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1733 ((|#1| $) NIL)) (-1546 ((|#1| $) NIL)) (-4039 (($ $) 49)) (-4207 (((-1173) $ (-523) (-523)) 74 (|has| $ (-6 -4245)))) (-2961 (($ $ (-523)) 108 (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-4201 (((-794) $) 38 (|has| |#1| (-1016)))) (-2057 (((-108)) 39 (|has| |#1| (-1016)))) (-1823 ((|#1| $ |#1|) NIL (|has| $ (-6 -4245)))) (-2110 (($ $ $) 96 (|has| $ (-6 -4245))) (($ $ (-523) $) 118)) (-3395 ((|#1| $ |#1|) 105 (|has| $ (-6 -4245)))) (-3456 ((|#1| $ |#1|) 100 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ "first" |#1|) 102 (|has| $ (-6 -4245))) (($ $ "rest" $) 104 (|has| $ (-6 -4245))) ((|#1| $ "last" |#1|) 107 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) 87 (|has| $ (-6 -4245))) ((|#1| $ (-523) |#1|) 53 (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) NIL (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) 56)) (-1532 ((|#1| $) NIL)) (-2518 (($) NIL T CONST)) (-3898 (($ $) 14)) (-1751 (($ $) 29) (($ $ (-710)) 86)) (-1691 (((-108) (-589 |#1|) $) 113 (|has| |#1| (-1016)))) (-2793 (($ (-589 |#1|)) 110)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) 55)) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2863 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) NIL)) (-1232 (((-108) $) NIL)) (-1666 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-3324 (((-1173) (-523) $) 117 (|has| |#1| (-1016)))) (-4122 (((-710) $) 115)) (-2645 (((-589 $) $) NIL)) (-1238 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3052 (($ (-710) |#1|) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 71 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2866 (((-108) $ (-710)) NIL)) (-2726 (((-589 |#1|) $) NIL)) (-3555 (((-108) $) NIL)) (-3886 (($ $) 88)) (-2271 (((-108) $) 13)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2579 ((|#1| $) NIL) (($ $ (-710)) NIL)) (-2847 (($ $ $ (-523)) NIL) (($ |#1| $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) 72)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-3655 (($ (-1 |#1|)) 120) (($ (-1 |#1| |#1|) |#1|) 121)) (-1810 ((|#1| $) 10)) (-1738 ((|#1| $) 28) (($ $ (-710)) 47)) (-2633 (((-2 (|:| |cycle?| (-108)) (|:| -3977 (-710)) (|:| |period| (-710))) (-710) $) 25)) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3699 (($ (-1 (-108) |#1|) $) 122)) (-3712 (($ (-1 (-108) |#1|) $) 123)) (-4203 (($ $ |#1|) 66 (|has| $ (-6 -4245)))) (-4097 (($ $ (-523)) 32)) (-2402 (((-108) $) 70)) (-3762 (((-108) $) 12)) (-2556 (((-108) $) 114)) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 20)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) 15)) (-3988 (($) 41)) (-3223 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1135 (-523))) NIL) ((|#1| $ (-523)) 52) ((|#1| $ (-523) |#1|) NIL)) (-1549 (((-523) $ $) 46)) (-1469 (($ $ (-1135 (-523))) NIL) (($ $ (-523)) NIL)) (-1335 (($ (-1 $)) 45)) (-2524 (((-108) $) 67)) (-2732 (($ $) 68)) (-2363 (($ $) 97 (|has| $ (-6 -4245)))) (-2316 (((-710) $) NIL)) (-3562 (($ $) NIL)) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) 42)) (-3663 (((-499) $) NIL (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 51)) (-3449 (($ |#1| $) 95)) (-1746 (($ $ $) 98 (|has| $ (-6 -4245))) (($ $ |#1|) 99 (|has| $ (-6 -4245)))) (-2326 (($ $ $) 76) (($ |#1| $) 43) (($ (-589 $)) 81) (($ $ |#1|) 75)) (-1353 (($ $) 48)) (-1458 (($ (-589 |#1|)) 109) (((-794) $) 40 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) NIL)) (-3653 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 112 (|has| |#1| (-1016)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-1068 |#1|) (-13 (-616 |#1|) (-10 -8 (-6 -4245) (-15 -1458 ($ (-589 |#1|))) (-15 -2793 ($ (-589 |#1|))) (IF (|has| |#1| (-1016)) (-15 -1691 ((-108) (-589 |#1|) $)) |%noBranch|) (-15 -2633 ((-2 (|:| |cycle?| (-108)) (|:| -3977 (-710)) (|:| |period| (-710))) (-710) $)) (-15 -1335 ($ (-1 $))) (-15 -3449 ($ |#1| $)) (IF (|has| |#1| (-1016)) (PROGN (-15 -3324 ((-1173) (-523) $)) (-15 -4201 ((-794) $)) (-15 -2057 ((-108)))) |%noBranch|) (-15 -2110 ($ $ (-523) $)) (-15 -3655 ($ (-1 |#1|))) (-15 -3655 ($ (-1 |#1| |#1|) |#1|)) (-15 -3699 ($ (-1 (-108) |#1|) $)) (-15 -3712 ($ (-1 (-108) |#1|) $)))) (-1122)) (T -1068)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3)))) (-2793 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3)))) (-1691 (*1 *2 *3 *1) (-12 (-5 *3 (-589 *4)) (-4 *4 (-1016)) (-4 *4 (-1122)) (-5 *2 (-108)) (-5 *1 (-1068 *4)))) (-2633 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-108)) (|:| -3977 (-710)) (|:| |period| (-710)))) (-5 *1 (-1068 *4)) (-4 *4 (-1122)) (-5 *3 (-710)))) (-1335 (*1 *1 *2) (-12 (-5 *2 (-1 (-1068 *3))) (-5 *1 (-1068 *3)) (-4 *3 (-1122)))) (-3449 (*1 *1 *2 *1) (-12 (-5 *1 (-1068 *2)) (-4 *2 (-1122)))) (-3324 (*1 *2 *3 *1) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-1068 *4)) (-4 *4 (-1016)) (-4 *4 (-1122)))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-1068 *3)) (-4 *3 (-1016)) (-4 *3 (-1122)))) (-2057 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1068 *3)) (-4 *3 (-1016)) (-4 *3 (-1122)))) (-2110 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1068 *3)) (-4 *3 (-1122)))) (-3655 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3)))) (-3655 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3)))) (-3699 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3)))) (-3712 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3))))) +(-13 (-616 |#1|) (-10 -8 (-6 -4245) (-15 -1458 ($ (-589 |#1|))) (-15 -2793 ($ (-589 |#1|))) (IF (|has| |#1| (-1016)) (-15 -1691 ((-108) (-589 |#1|) $)) |%noBranch|) (-15 -2633 ((-2 (|:| |cycle?| (-108)) (|:| -3977 (-710)) (|:| |period| (-710))) (-710) $)) (-15 -1335 ($ (-1 $))) (-15 -3449 ($ |#1| $)) (IF (|has| |#1| (-1016)) (PROGN (-15 -3324 ((-1173) (-523) $)) (-15 -4201 ((-794) $)) (-15 -2057 ((-108)))) |%noBranch|) (-15 -2110 ($ $ (-523) $)) (-15 -3655 ($ (-1 |#1|))) (-15 -3655 ($ (-1 |#1| |#1|) |#1|)) (-15 -3699 ($ (-1 (-108) |#1|) $)) (-15 -3712 ($ (-1 (-108) |#1|) $)))) +((-3924 (((-108) $ $) 19)) (-2109 (($ $) 120)) (-1303 (($ $) 121)) (-2874 (($ $ (-133)) 108) (($ $ (-130)) 107)) (-4207 (((-1173) $ (-523) (-523)) 40 (|has| $ (-6 -4245)))) (-1545 (((-108) $ $) 118)) (-1521 (((-108) $ $ (-523)) 117)) (-3207 (($ (-523)) 127)) (-2063 (((-589 $) $ (-133)) 110) (((-589 $) $ (-130)) 109)) (-1964 (((-108) (-1 (-108) (-133) (-133)) $) 98) (((-108) $) 92 (|has| (-133) (-786)))) (-1506 (($ (-1 (-108) (-133) (-133)) $) 89 (|has| $ (-6 -4245))) (($ $) 88 (-12 (|has| (-133) (-786)) (|has| $ (-6 -4245))))) (-3974 (($ (-1 (-108) (-133) (-133)) $) 99) (($ $) 93 (|has| (-133) (-786)))) (-3079 (((-108) $ (-710)) 8)) (-1641 (((-133) $ (-523) (-133)) 52 (|has| $ (-6 -4245))) (((-133) $ (-1135 (-523)) (-133)) 58 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) (-133)) $) 75 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-4123 (($ $ (-133)) 104) (($ $ (-130)) 103)) (-2867 (($ $) 90 (|has| $ (-6 -4245)))) (-3631 (($ $) 100)) (-2129 (($ $ (-1135 (-523)) $) 114)) (-1773 (($ $) 78 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ (-133) $) 77 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) (-133)) $) 74 (|has| $ (-6 -4244)))) (-2437 (((-133) (-1 (-133) (-133) (-133)) $ (-133) (-133)) 76 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4244)))) (((-133) (-1 (-133) (-133) (-133)) $ (-133)) 73 (|has| $ (-6 -4244))) (((-133) (-1 (-133) (-133) (-133)) $) 72 (|has| $ (-6 -4244)))) (-2863 (((-133) $ (-523) (-133)) 53 (|has| $ (-6 -4245)))) (-2795 (((-133) $ (-523)) 51)) (-1569 (((-108) $ $) 119)) (-1479 (((-523) (-1 (-108) (-133)) $) 97) (((-523) (-133) $) 96 (|has| (-133) (-1016))) (((-523) (-133) $ (-523)) 95 (|has| (-133) (-1016))) (((-523) $ $ (-523)) 113) (((-523) (-130) $ (-523)) 112)) (-1666 (((-589 (-133)) $) 30 (|has| $ (-6 -4244)))) (-3052 (($ (-710) (-133)) 69)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 43 (|has| (-523) (-786)))) (-2454 (($ $ $) 87 (|has| (-133) (-786)))) (-2178 (($ (-1 (-108) (-133) (-133)) $ $) 101) (($ $ $) 94 (|has| (-133) (-786)))) (-2136 (((-589 (-133)) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) (-133) $) 27 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 44 (|has| (-523) (-786)))) (-2062 (($ $ $) 86 (|has| (-133) (-786)))) (-2599 (((-108) $ $ (-133)) 115)) (-1547 (((-710) $ $ (-133)) 116)) (-2852 (($ (-1 (-133) (-133)) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-133) (-133)) $) 35) (($ (-1 (-133) (-133) (-133)) $ $) 64)) (-2858 (($ $) 122)) (-2674 (($ $) 123)) (-2866 (((-108) $ (-710)) 10)) (-4133 (($ $ (-133)) 106) (($ $ (-130)) 105)) (-3779 (((-1070) $) 22)) (-2847 (($ (-133) $ (-523)) 60) (($ $ $ (-523)) 59)) (-2412 (((-589 (-523)) $) 46)) (-4135 (((-108) (-523) $) 47)) (-2783 (((-1034) $) 21)) (-1738 (((-133) $) 42 (|has| (-523) (-786)))) (-2114 (((-3 (-133) "failed") (-1 (-108) (-133)) $) 71)) (-4203 (($ $ (-133)) 41 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) (-133)) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-133)))) 26 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-271 (-133))) 25 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-133) (-133)) 24 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-589 (-133)) (-589 (-133))) 23 (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) (-133) $) 45 (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-1264 (((-589 (-133)) $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 (((-133) $ (-523) (-133)) 50) (((-133) $ (-523)) 49) (($ $ (-1135 (-523))) 63) (($ $ $) 102)) (-1469 (($ $ (-523)) 62) (($ $ (-1135 (-523))) 61)) (-2792 (((-710) (-1 (-108) (-133)) $) 31 (|has| $ (-6 -4244))) (((-710) (-133) $) 28 (-12 (|has| (-133) (-1016)) (|has| $ (-6 -4244))))) (-3160 (($ $ $ (-523)) 91 (|has| $ (-6 -4245)))) (-1664 (($ $) 13)) (-3663 (((-499) $) 79 (|has| (-133) (-564 (-499))))) (-1472 (($ (-589 (-133))) 70)) (-2326 (($ $ (-133)) 68) (($ (-133) $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1458 (($ (-133)) 111) (((-794) $) 18)) (-2096 (((-108) (-1 (-108) (-133)) $) 33 (|has| $ (-6 -4244)))) (-3790 (((-1070) $) 131) (((-1070) $ (-108)) 130) (((-1173) (-761) $) 129) (((-1173) (-761) $ (-108)) 128)) (-4043 (((-108) $ $) 84 (|has| (-133) (-786)))) (-4019 (((-108) $ $) 83 (|has| (-133) (-786)))) (-3983 (((-108) $ $) 20)) (-4030 (((-108) $ $) 85 (|has| (-133) (-786)))) (-4007 (((-108) $ $) 82 (|has| (-133) (-786)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-1069) (-129)) (T -1069)) +((-3207 (*1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-1069))))) +(-13 (-1056) (-1016) (-767) (-10 -8 (-15 -3207 ($ (-523))))) +(((-33) . T) ((-97) . T) ((-563 (-794)) . T) ((-140 #0=(-133)) . T) ((-564 (-499)) |has| (-133) (-564 (-499))) ((-263 #1=(-523) #0#) . T) ((-265 #1# #0#) . T) ((-286 #0#) -12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))) ((-349 #0#) . T) ((-462 #0#) . T) ((-556 #1# #0#) . T) ((-484 #0# #0#) -12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))) ((-594 #0#) . T) ((-19 #0#) . T) ((-767) . T) ((-786) |has| (-133) (-786)) ((-1016) . T) ((-1056) . T) ((-1122) . T)) +((-3924 (((-108) $ $) NIL)) (-2109 (($ $) NIL)) (-1303 (($ $) NIL)) (-2874 (($ $ (-133)) NIL) (($ $ (-130)) NIL)) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1545 (((-108) $ $) NIL)) (-1521 (((-108) $ $ (-523)) NIL)) (-3207 (($ (-523)) 7)) (-2063 (((-589 $) $ (-133)) NIL) (((-589 $) $ (-130)) NIL)) (-1964 (((-108) (-1 (-108) (-133) (-133)) $) NIL) (((-108) $) NIL (|has| (-133) (-786)))) (-1506 (($ (-1 (-108) (-133) (-133)) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| (-133) (-786))))) (-3974 (($ (-1 (-108) (-133) (-133)) $) NIL) (($ $) NIL (|has| (-133) (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 (((-133) $ (-523) (-133)) NIL (|has| $ (-6 -4245))) (((-133) $ (-1135 (-523)) (-133)) NIL (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-4123 (($ $ (-133)) NIL) (($ $ (-130)) NIL)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-2129 (($ $ (-1135 (-523)) $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-2557 (($ (-133) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016)))) (($ (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-133) (-1 (-133) (-133) (-133)) $ (-133) (-133)) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016)))) (((-133) (-1 (-133) (-133) (-133)) $ (-133)) NIL (|has| $ (-6 -4244))) (((-133) (-1 (-133) (-133) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2863 (((-133) $ (-523) (-133)) NIL (|has| $ (-6 -4245)))) (-2795 (((-133) $ (-523)) NIL)) (-1569 (((-108) $ $) NIL)) (-1479 (((-523) (-1 (-108) (-133)) $) NIL) (((-523) (-133) $) NIL (|has| (-133) (-1016))) (((-523) (-133) $ (-523)) NIL (|has| (-133) (-1016))) (((-523) $ $ (-523)) NIL) (((-523) (-130) $ (-523)) NIL)) (-1666 (((-589 (-133)) $) NIL (|has| $ (-6 -4244)))) (-3052 (($ (-710) (-133)) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| (-133) (-786)))) (-2178 (($ (-1 (-108) (-133) (-133)) $ $) NIL) (($ $ $) NIL (|has| (-133) (-786)))) (-2136 (((-589 (-133)) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-133) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| (-133) (-786)))) (-2599 (((-108) $ $ (-133)) NIL)) (-1547 (((-710) $ $ (-133)) NIL)) (-2852 (($ (-1 (-133) (-133)) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-133) (-133)) $) NIL) (($ (-1 (-133) (-133) (-133)) $ $) NIL)) (-2858 (($ $) NIL)) (-2674 (($ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-4133 (($ $ (-133)) NIL) (($ $ (-130)) NIL)) (-3779 (((-1070) $) NIL)) (-2847 (($ (-133) $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 (((-133) $) NIL (|has| (-523) (-786)))) (-2114 (((-3 (-133) "failed") (-1 (-108) (-133)) $) NIL)) (-4203 (($ $ (-133)) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-133)))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-271 (-133))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-133) (-133)) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016)))) (($ $ (-589 (-133)) (-589 (-133))) NIL (-12 (|has| (-133) (-286 (-133))) (|has| (-133) (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) (-133) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-1264 (((-589 (-133)) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 (((-133) $ (-523) (-133)) NIL) (((-133) $ (-523)) NIL) (($ $ (-1135 (-523))) NIL) (($ $ $) NIL)) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2792 (((-710) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244))) (((-710) (-133) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-133) (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-133) (-564 (-499))))) (-1472 (($ (-589 (-133))) NIL)) (-2326 (($ $ (-133)) NIL) (($ (-133) $) NIL) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1458 (($ (-133)) NIL) (((-794) $) NIL)) (-2096 (((-108) (-1 (-108) (-133)) $) NIL (|has| $ (-6 -4244)))) (-3790 (((-1070) $) 18) (((-1070) $ (-108)) 20) (((-1173) (-761) $) 21) (((-1173) (-761) $ (-108)) 22)) (-4043 (((-108) $ $) NIL (|has| (-133) (-786)))) (-4019 (((-108) $ $) NIL (|has| (-133) (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| (-133) (-786)))) (-4007 (((-108) $ $) NIL (|has| (-133) (-786)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-1070) (-1069)) (T -1070)) +NIL +(-1069) +((-3924 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)) (|has| |#1| (-1016))))) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL)) (-4207 (((-1173) $ (-1070) (-1070)) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-1070) |#1|) NIL)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-2243 (((-3 |#1| "failed") (-1070) $) NIL)) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016))))) (-2249 (($ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244))) (((-3 |#1| "failed") (-1070) $) NIL)) (-2557 (($ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-1070) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-1070)) NIL)) (-1666 (((-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-1070) $) NIL (|has| (-1070) (-786)))) (-2136 (((-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-1070) $) NIL (|has| (-1070) (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4245))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (-3262 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)) (|has| |#1| (-1016))))) (-1330 (((-589 (-1070)) $) NIL)) (-2777 (((-108) (-1070) $) NIL)) (-1934 (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL)) (-3450 (($ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL)) (-2412 (((-589 (-1070)) $) NIL)) (-4135 (((-108) (-1070) $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)) (|has| |#1| (-1016))))) (-1738 ((|#1| $) NIL (|has| (-1070) (-786)))) (-2114 (((-3 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) "failed") (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL)) (-4203 (($ $ |#1|) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (($ $ (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL (-12 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-286 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-1070)) NIL) ((|#1| $ (-1070) |#1|) NIL)) (-3433 (($) NIL) (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL)) (-1458 (((-794) $) NIL (-3262 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-563 (-794))) (|has| |#1| (-563 (-794)))))) (-2401 (($ (-589 (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)))) NIL)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 (-1070)) (|:| -2433 |#1|)) (-1016)) (|has| |#1| (-1016))))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-1071 |#1|) (-13 (-1099 (-1070) |#1|) (-10 -7 (-6 -4244))) (-1016)) (T -1071)) +NIL +(-13 (-1099 (-1070) |#1|) (-10 -7 (-6 -4244))) +((-1492 (((-1068 |#1|) (-1068 |#1|)) 77)) (-2121 (((-3 (-1068 |#1|) "failed") (-1068 |#1|)) 37)) (-2405 (((-1068 |#1|) (-383 (-523)) (-1068 |#1|)) 117 (|has| |#1| (-37 (-383 (-523)))))) (-3829 (((-1068 |#1|) |#1| (-1068 |#1|)) 121 (|has| |#1| (-339)))) (-2673 (((-1068 |#1|) (-1068 |#1|)) 90)) (-2199 (((-1068 (-523)) (-523)) 57)) (-3521 (((-1068 |#1|) (-1068 (-1068 |#1|))) 108 (|has| |#1| (-37 (-383 (-523)))))) (-3235 (((-1068 |#1|) (-523) (-523) (-1068 |#1|)) 95)) (-2302 (((-1068 |#1|) |#1| (-523)) 45)) (-3004 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 60)) (-1926 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 119 (|has| |#1| (-339)))) (-3396 (((-1068 |#1|) |#1| (-1 (-1068 |#1|))) 107 (|has| |#1| (-37 (-383 (-523)))))) (-2426 (((-1068 |#1|) (-1 |#1| (-523)) |#1| (-1 (-1068 |#1|))) 120 (|has| |#1| (-339)))) (-2511 (((-1068 |#1|) (-1068 |#1|)) 89)) (-2548 (((-1068 |#1|) (-1068 |#1|)) 76)) (-1602 (((-1068 |#1|) (-523) (-523) (-1068 |#1|)) 96)) (-3417 (((-1068 |#1|) |#1| (-1068 |#1|)) 105 (|has| |#1| (-37 (-383 (-523)))))) (-2575 (((-1068 (-523)) (-523)) 56)) (-1464 (((-1068 |#1|) |#1|) 59)) (-1840 (((-1068 |#1|) (-1068 |#1|) (-523) (-523)) 92)) (-3006 (((-1068 |#1|) (-1 |#1| (-523)) (-1068 |#1|)) 66)) (-3746 (((-3 (-1068 |#1|) "failed") (-1068 |#1|) (-1068 |#1|)) 35)) (-3741 (((-1068 |#1|) (-1068 |#1|)) 91)) (-2679 (((-1068 |#1|) (-1068 |#1|) |#1|) 71)) (-2392 (((-1068 |#1|) (-1068 |#1|)) 62)) (-4100 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 72)) (-1458 (((-1068 |#1|) |#1|) 67)) (-3389 (((-1068 |#1|) (-1068 (-1068 |#1|))) 82)) (-4098 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 36)) (-4087 (((-1068 |#1|) (-1068 |#1|)) 21) (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 23)) (-4075 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 17)) (* (((-1068 |#1|) (-1068 |#1|) |#1|) 29) (((-1068 |#1|) |#1| (-1068 |#1|)) 26) (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 27))) +(((-1072 |#1|) (-10 -7 (-15 -4075 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -4087 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -4087 ((-1068 |#1|) (-1068 |#1|))) (-15 * ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 * ((-1068 |#1|) |#1| (-1068 |#1|))) (-15 * ((-1068 |#1|) (-1068 |#1|) |#1|)) (-15 -3746 ((-3 (-1068 |#1|) "failed") (-1068 |#1|) (-1068 |#1|))) (-15 -4098 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -2121 ((-3 (-1068 |#1|) "failed") (-1068 |#1|))) (-15 -2302 ((-1068 |#1|) |#1| (-523))) (-15 -2575 ((-1068 (-523)) (-523))) (-15 -2199 ((-1068 (-523)) (-523))) (-15 -1464 ((-1068 |#1|) |#1|)) (-15 -3004 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -2392 ((-1068 |#1|) (-1068 |#1|))) (-15 -3006 ((-1068 |#1|) (-1 |#1| (-523)) (-1068 |#1|))) (-15 -1458 ((-1068 |#1|) |#1|)) (-15 -2679 ((-1068 |#1|) (-1068 |#1|) |#1|)) (-15 -4100 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -2548 ((-1068 |#1|) (-1068 |#1|))) (-15 -1492 ((-1068 |#1|) (-1068 |#1|))) (-15 -3389 ((-1068 |#1|) (-1068 (-1068 |#1|)))) (-15 -2511 ((-1068 |#1|) (-1068 |#1|))) (-15 -2673 ((-1068 |#1|) (-1068 |#1|))) (-15 -3741 ((-1068 |#1|) (-1068 |#1|))) (-15 -1840 ((-1068 |#1|) (-1068 |#1|) (-523) (-523))) (-15 -3235 ((-1068 |#1|) (-523) (-523) (-1068 |#1|))) (-15 -1602 ((-1068 |#1|) (-523) (-523) (-1068 |#1|))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ((-1068 |#1|) |#1| (-1068 |#1|))) (-15 -3396 ((-1068 |#1|) |#1| (-1 (-1068 |#1|)))) (-15 -3521 ((-1068 |#1|) (-1068 (-1068 |#1|)))) (-15 -2405 ((-1068 |#1|) (-383 (-523)) (-1068 |#1|)))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-15 -1926 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -2426 ((-1068 |#1|) (-1 |#1| (-523)) |#1| (-1 (-1068 |#1|)))) (-15 -3829 ((-1068 |#1|) |#1| (-1068 |#1|)))) |%noBranch|)) (-973)) (T -1072)) +((-3829 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-339)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-2426 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-523))) (-5 *5 (-1 (-1068 *4))) (-4 *4 (-339)) (-4 *4 (-973)) (-5 *2 (-1068 *4)) (-5 *1 (-1072 *4)))) (-1926 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-339)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-2405 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *4)) (-4 *4 (-37 *3)) (-4 *4 (-973)) (-5 *3 (-383 (-523))) (-5 *1 (-1072 *4)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1072 *4)) (-4 *4 (-37 (-383 (-523)))) (-4 *4 (-973)))) (-3396 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1068 *3))) (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)))) (-3417 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-1602 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-973)) (-5 *1 (-1072 *4)))) (-3235 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-973)) (-5 *1 (-1072 *4)))) (-1840 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-973)) (-5 *1 (-1072 *4)))) (-3741 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-2673 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-2511 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-3389 (*1 *2 *3) (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1072 *4)) (-4 *4 (-973)))) (-1492 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-2548 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-4100 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-2679 (*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-1458 (*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) (-4 *3 (-973)))) (-3006 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-1 *4 (-523))) (-4 *4 (-973)) (-5 *1 (-1072 *4)))) (-2392 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-3004 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-1464 (*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) (-4 *3 (-973)))) (-2199 (*1 *2 *3) (-12 (-5 *2 (-1068 (-523))) (-5 *1 (-1072 *4)) (-4 *4 (-973)) (-5 *3 (-523)))) (-2575 (*1 *2 *3) (-12 (-5 *2 (-1068 (-523))) (-5 *1 (-1072 *4)) (-4 *4 (-973)) (-5 *3 (-523)))) (-2302 (*1 *2 *3 *4) (-12 (-5 *4 (-523)) (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) (-4 *3 (-973)))) (-2121 (*1 *2 *2) (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-4098 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-3746 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-4087 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-4087 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) (-4075 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3))))) +(-10 -7 (-15 -4075 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -4087 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -4087 ((-1068 |#1|) (-1068 |#1|))) (-15 * ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 * ((-1068 |#1|) |#1| (-1068 |#1|))) (-15 * ((-1068 |#1|) (-1068 |#1|) |#1|)) (-15 -3746 ((-3 (-1068 |#1|) "failed") (-1068 |#1|) (-1068 |#1|))) (-15 -4098 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -2121 ((-3 (-1068 |#1|) "failed") (-1068 |#1|))) (-15 -2302 ((-1068 |#1|) |#1| (-523))) (-15 -2575 ((-1068 (-523)) (-523))) (-15 -2199 ((-1068 (-523)) (-523))) (-15 -1464 ((-1068 |#1|) |#1|)) (-15 -3004 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -2392 ((-1068 |#1|) (-1068 |#1|))) (-15 -3006 ((-1068 |#1|) (-1 |#1| (-523)) (-1068 |#1|))) (-15 -1458 ((-1068 |#1|) |#1|)) (-15 -2679 ((-1068 |#1|) (-1068 |#1|) |#1|)) (-15 -4100 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -2548 ((-1068 |#1|) (-1068 |#1|))) (-15 -1492 ((-1068 |#1|) (-1068 |#1|))) (-15 -3389 ((-1068 |#1|) (-1068 (-1068 |#1|)))) (-15 -2511 ((-1068 |#1|) (-1068 |#1|))) (-15 -2673 ((-1068 |#1|) (-1068 |#1|))) (-15 -3741 ((-1068 |#1|) (-1068 |#1|))) (-15 -1840 ((-1068 |#1|) (-1068 |#1|) (-523) (-523))) (-15 -3235 ((-1068 |#1|) (-523) (-523) (-1068 |#1|))) (-15 -1602 ((-1068 |#1|) (-523) (-523) (-1068 |#1|))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ((-1068 |#1|) |#1| (-1068 |#1|))) (-15 -3396 ((-1068 |#1|) |#1| (-1 (-1068 |#1|)))) (-15 -3521 ((-1068 |#1|) (-1068 (-1068 |#1|)))) (-15 -2405 ((-1068 |#1|) (-383 (-523)) (-1068 |#1|)))) |%noBranch|) (IF (|has| |#1| (-339)) (PROGN (-15 -1926 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -2426 ((-1068 |#1|) (-1 |#1| (-523)) |#1| (-1 (-1068 |#1|)))) (-15 -3829 ((-1068 |#1|) |#1| (-1068 |#1|)))) |%noBranch|)) +((-1769 (((-1068 |#1|) (-1068 |#1|)) 57)) (-3780 (((-1068 |#1|) (-1068 |#1|)) 39)) (-1744 (((-1068 |#1|) (-1068 |#1|)) 53)) (-3711 (((-1068 |#1|) (-1068 |#1|)) 35)) (-1793 (((-1068 |#1|) (-1068 |#1|)) 60)) (-3805 (((-1068 |#1|) (-1068 |#1|)) 42)) (-2384 (((-1068 |#1|) (-1068 |#1|)) 31)) (-1811 (((-1068 |#1|) (-1068 |#1|)) 27)) (-1805 (((-1068 |#1|) (-1068 |#1|)) 61)) (-3816 (((-1068 |#1|) (-1068 |#1|)) 43)) (-1782 (((-1068 |#1|) (-1068 |#1|)) 58)) (-3793 (((-1068 |#1|) (-1068 |#1|)) 40)) (-1757 (((-1068 |#1|) (-1068 |#1|)) 55)) (-3767 (((-1068 |#1|) (-1068 |#1|)) 37)) (-1839 (((-1068 |#1|) (-1068 |#1|)) 65)) (-3847 (((-1068 |#1|) (-1068 |#1|)) 47)) (-1818 (((-1068 |#1|) (-1068 |#1|)) 63)) (-3828 (((-1068 |#1|) (-1068 |#1|)) 45)) (-1865 (((-1068 |#1|) (-1068 |#1|)) 68)) (-1719 (((-1068 |#1|) (-1068 |#1|)) 50)) (-2914 (((-1068 |#1|) (-1068 |#1|)) 69)) (-1731 (((-1068 |#1|) (-1068 |#1|)) 51)) (-1852 (((-1068 |#1|) (-1068 |#1|)) 67)) (-3859 (((-1068 |#1|) (-1068 |#1|)) 49)) (-1830 (((-1068 |#1|) (-1068 |#1|)) 66)) (-3838 (((-1068 |#1|) (-1068 |#1|)) 48)) (** (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 33))) +(((-1073 |#1|) (-10 -7 (-15 -1811 ((-1068 |#1|) (-1068 |#1|))) (-15 -2384 ((-1068 |#1|) (-1068 |#1|))) (-15 ** ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3711 ((-1068 |#1|) (-1068 |#1|))) (-15 -3767 ((-1068 |#1|) (-1068 |#1|))) (-15 -3780 ((-1068 |#1|) (-1068 |#1|))) (-15 -3793 ((-1068 |#1|) (-1068 |#1|))) (-15 -3805 ((-1068 |#1|) (-1068 |#1|))) (-15 -3816 ((-1068 |#1|) (-1068 |#1|))) (-15 -3828 ((-1068 |#1|) (-1068 |#1|))) (-15 -3838 ((-1068 |#1|) (-1068 |#1|))) (-15 -3847 ((-1068 |#1|) (-1068 |#1|))) (-15 -3859 ((-1068 |#1|) (-1068 |#1|))) (-15 -1719 ((-1068 |#1|) (-1068 |#1|))) (-15 -1731 ((-1068 |#1|) (-1068 |#1|))) (-15 -1744 ((-1068 |#1|) (-1068 |#1|))) (-15 -1757 ((-1068 |#1|) (-1068 |#1|))) (-15 -1769 ((-1068 |#1|) (-1068 |#1|))) (-15 -1782 ((-1068 |#1|) (-1068 |#1|))) (-15 -1793 ((-1068 |#1|) (-1068 |#1|))) (-15 -1805 ((-1068 |#1|) (-1068 |#1|))) (-15 -1818 ((-1068 |#1|) (-1068 |#1|))) (-15 -1830 ((-1068 |#1|) (-1068 |#1|))) (-15 -1839 ((-1068 |#1|) (-1068 |#1|))) (-15 -1852 ((-1068 |#1|) (-1068 |#1|))) (-15 -1865 ((-1068 |#1|) (-1068 |#1|))) (-15 -2914 ((-1068 |#1|) (-1068 |#1|)))) (-37 (-383 (-523)))) (T -1073)) +((-2914 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1852 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1830 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1818 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1805 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1793 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1782 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1769 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1757 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1744 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1731 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1719 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-3859 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-3847 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-3828 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-3816 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-3793 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-3780 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-3767 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-3711 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-2384 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3)))) (-1811 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1073 *3))))) +(-10 -7 (-15 -1811 ((-1068 |#1|) (-1068 |#1|))) (-15 -2384 ((-1068 |#1|) (-1068 |#1|))) (-15 ** ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3711 ((-1068 |#1|) (-1068 |#1|))) (-15 -3767 ((-1068 |#1|) (-1068 |#1|))) (-15 -3780 ((-1068 |#1|) (-1068 |#1|))) (-15 -3793 ((-1068 |#1|) (-1068 |#1|))) (-15 -3805 ((-1068 |#1|) (-1068 |#1|))) (-15 -3816 ((-1068 |#1|) (-1068 |#1|))) (-15 -3828 ((-1068 |#1|) (-1068 |#1|))) (-15 -3838 ((-1068 |#1|) (-1068 |#1|))) (-15 -3847 ((-1068 |#1|) (-1068 |#1|))) (-15 -3859 ((-1068 |#1|) (-1068 |#1|))) (-15 -1719 ((-1068 |#1|) (-1068 |#1|))) (-15 -1731 ((-1068 |#1|) (-1068 |#1|))) (-15 -1744 ((-1068 |#1|) (-1068 |#1|))) (-15 -1757 ((-1068 |#1|) (-1068 |#1|))) (-15 -1769 ((-1068 |#1|) (-1068 |#1|))) (-15 -1782 ((-1068 |#1|) (-1068 |#1|))) (-15 -1793 ((-1068 |#1|) (-1068 |#1|))) (-15 -1805 ((-1068 |#1|) (-1068 |#1|))) (-15 -1818 ((-1068 |#1|) (-1068 |#1|))) (-15 -1830 ((-1068 |#1|) (-1068 |#1|))) (-15 -1839 ((-1068 |#1|) (-1068 |#1|))) (-15 -1852 ((-1068 |#1|) (-1068 |#1|))) (-15 -1865 ((-1068 |#1|) (-1068 |#1|))) (-15 -2914 ((-1068 |#1|) (-1068 |#1|)))) +((-1769 (((-1068 |#1|) (-1068 |#1|)) 100)) (-3780 (((-1068 |#1|) (-1068 |#1|)) 64)) (-3438 (((-2 (|:| -1744 (-1068 |#1|)) (|:| -1757 (-1068 |#1|))) (-1068 |#1|)) 96)) (-1744 (((-1068 |#1|) (-1068 |#1|)) 97)) (-1313 (((-2 (|:| -3711 (-1068 |#1|)) (|:| -3767 (-1068 |#1|))) (-1068 |#1|)) 53)) (-3711 (((-1068 |#1|) (-1068 |#1|)) 54)) (-1793 (((-1068 |#1|) (-1068 |#1|)) 102)) (-3805 (((-1068 |#1|) (-1068 |#1|)) 71)) (-2384 (((-1068 |#1|) (-1068 |#1|)) 39)) (-1811 (((-1068 |#1|) (-1068 |#1|)) 36)) (-1805 (((-1068 |#1|) (-1068 |#1|)) 103)) (-3816 (((-1068 |#1|) (-1068 |#1|)) 72)) (-1782 (((-1068 |#1|) (-1068 |#1|)) 101)) (-3793 (((-1068 |#1|) (-1068 |#1|)) 67)) (-1757 (((-1068 |#1|) (-1068 |#1|)) 98)) (-3767 (((-1068 |#1|) (-1068 |#1|)) 55)) (-1839 (((-1068 |#1|) (-1068 |#1|)) 111)) (-3847 (((-1068 |#1|) (-1068 |#1|)) 86)) (-1818 (((-1068 |#1|) (-1068 |#1|)) 105)) (-3828 (((-1068 |#1|) (-1068 |#1|)) 82)) (-1865 (((-1068 |#1|) (-1068 |#1|)) 115)) (-1719 (((-1068 |#1|) (-1068 |#1|)) 90)) (-2914 (((-1068 |#1|) (-1068 |#1|)) 117)) (-1731 (((-1068 |#1|) (-1068 |#1|)) 92)) (-1852 (((-1068 |#1|) (-1068 |#1|)) 113)) (-3859 (((-1068 |#1|) (-1068 |#1|)) 88)) (-1830 (((-1068 |#1|) (-1068 |#1|)) 107)) (-3838 (((-1068 |#1|) (-1068 |#1|)) 84)) (** (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 40))) +(((-1074 |#1|) (-10 -7 (-15 -1811 ((-1068 |#1|) (-1068 |#1|))) (-15 -2384 ((-1068 |#1|) (-1068 |#1|))) (-15 ** ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -1313 ((-2 (|:| -3711 (-1068 |#1|)) (|:| -3767 (-1068 |#1|))) (-1068 |#1|))) (-15 -3711 ((-1068 |#1|) (-1068 |#1|))) (-15 -3767 ((-1068 |#1|) (-1068 |#1|))) (-15 -3780 ((-1068 |#1|) (-1068 |#1|))) (-15 -3793 ((-1068 |#1|) (-1068 |#1|))) (-15 -3805 ((-1068 |#1|) (-1068 |#1|))) (-15 -3816 ((-1068 |#1|) (-1068 |#1|))) (-15 -3828 ((-1068 |#1|) (-1068 |#1|))) (-15 -3838 ((-1068 |#1|) (-1068 |#1|))) (-15 -3847 ((-1068 |#1|) (-1068 |#1|))) (-15 -3859 ((-1068 |#1|) (-1068 |#1|))) (-15 -1719 ((-1068 |#1|) (-1068 |#1|))) (-15 -1731 ((-1068 |#1|) (-1068 |#1|))) (-15 -3438 ((-2 (|:| -1744 (-1068 |#1|)) (|:| -1757 (-1068 |#1|))) (-1068 |#1|))) (-15 -1744 ((-1068 |#1|) (-1068 |#1|))) (-15 -1757 ((-1068 |#1|) (-1068 |#1|))) (-15 -1769 ((-1068 |#1|) (-1068 |#1|))) (-15 -1782 ((-1068 |#1|) (-1068 |#1|))) (-15 -1793 ((-1068 |#1|) (-1068 |#1|))) (-15 -1805 ((-1068 |#1|) (-1068 |#1|))) (-15 -1818 ((-1068 |#1|) (-1068 |#1|))) (-15 -1830 ((-1068 |#1|) (-1068 |#1|))) (-15 -1839 ((-1068 |#1|) (-1068 |#1|))) (-15 -1852 ((-1068 |#1|) (-1068 |#1|))) (-15 -1865 ((-1068 |#1|) (-1068 |#1|))) (-15 -2914 ((-1068 |#1|) (-1068 |#1|)))) (-37 (-383 (-523)))) (T -1074)) +((-2914 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1852 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1830 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1818 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1805 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1793 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1782 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1769 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1757 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1744 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3438 (*1 *2 *3) (-12 (-4 *4 (-37 (-383 (-523)))) (-5 *2 (-2 (|:| -1744 (-1068 *4)) (|:| -1757 (-1068 *4)))) (-5 *1 (-1074 *4)) (-5 *3 (-1068 *4)))) (-1731 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1719 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3859 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3847 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3828 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3816 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3793 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3780 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3767 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-3711 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1313 (*1 *2 *3) (-12 (-4 *4 (-37 (-383 (-523)))) (-5 *2 (-2 (|:| -3711 (-1068 *4)) (|:| -3767 (-1068 *4)))) (-5 *1 (-1074 *4)) (-5 *3 (-1068 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-2384 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3)))) (-1811 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1074 *3))))) +(-10 -7 (-15 -1811 ((-1068 |#1|) (-1068 |#1|))) (-15 -2384 ((-1068 |#1|) (-1068 |#1|))) (-15 ** ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -1313 ((-2 (|:| -3711 (-1068 |#1|)) (|:| -3767 (-1068 |#1|))) (-1068 |#1|))) (-15 -3711 ((-1068 |#1|) (-1068 |#1|))) (-15 -3767 ((-1068 |#1|) (-1068 |#1|))) (-15 -3780 ((-1068 |#1|) (-1068 |#1|))) (-15 -3793 ((-1068 |#1|) (-1068 |#1|))) (-15 -3805 ((-1068 |#1|) (-1068 |#1|))) (-15 -3816 ((-1068 |#1|) (-1068 |#1|))) (-15 -3828 ((-1068 |#1|) (-1068 |#1|))) (-15 -3838 ((-1068 |#1|) (-1068 |#1|))) (-15 -3847 ((-1068 |#1|) (-1068 |#1|))) (-15 -3859 ((-1068 |#1|) (-1068 |#1|))) (-15 -1719 ((-1068 |#1|) (-1068 |#1|))) (-15 -1731 ((-1068 |#1|) (-1068 |#1|))) (-15 -3438 ((-2 (|:| -1744 (-1068 |#1|)) (|:| -1757 (-1068 |#1|))) (-1068 |#1|))) (-15 -1744 ((-1068 |#1|) (-1068 |#1|))) (-15 -1757 ((-1068 |#1|) (-1068 |#1|))) (-15 -1769 ((-1068 |#1|) (-1068 |#1|))) (-15 -1782 ((-1068 |#1|) (-1068 |#1|))) (-15 -1793 ((-1068 |#1|) (-1068 |#1|))) (-15 -1805 ((-1068 |#1|) (-1068 |#1|))) (-15 -1818 ((-1068 |#1|) (-1068 |#1|))) (-15 -1830 ((-1068 |#1|) (-1068 |#1|))) (-15 -1839 ((-1068 |#1|) (-1068 |#1|))) (-15 -1852 ((-1068 |#1|) (-1068 |#1|))) (-15 -1865 ((-1068 |#1|) (-1068 |#1|))) (-15 -2914 ((-1068 |#1|) (-1068 |#1|)))) +((-1540 (((-888 |#2|) |#2| |#2|) 36)) (-2528 ((|#2| |#2| |#1|) 19 (|has| |#1| (-284))))) +(((-1075 |#1| |#2|) (-10 -7 (-15 -1540 ((-888 |#2|) |#2| |#2|)) (IF (|has| |#1| (-284)) (-15 -2528 (|#2| |#2| |#1|)) |%noBranch|)) (-515) (-1144 |#1|)) (T -1075)) +((-2528 (*1 *2 *2 *3) (-12 (-4 *3 (-284)) (-4 *3 (-515)) (-5 *1 (-1075 *3 *2)) (-4 *2 (-1144 *3)))) (-1540 (*1 *2 *3 *3) (-12 (-4 *4 (-515)) (-5 *2 (-888 *3)) (-5 *1 (-1075 *4 *3)) (-4 *3 (-1144 *4))))) +(-10 -7 (-15 -1540 ((-888 |#2|) |#2| |#2|)) (IF (|has| |#1| (-284)) (-15 -2528 (|#2| |#2| |#1|)) |%noBranch|)) +((-3924 (((-108) $ $) NIL)) (-3525 (($ $ (-589 (-710))) 67)) (-3097 (($) 26)) (-2399 (($ $) 42)) (-3444 (((-589 $) $) 51)) (-1573 (((-108) $) 16)) (-3177 (((-589 (-874 |#2|)) $) 74)) (-1743 (($ $) 68)) (-4001 (((-710) $) 37)) (-3052 (($) 25)) (-2377 (($ $ (-589 (-710)) (-874 |#2|)) 60) (($ $ (-589 (-710)) (-710)) 61) (($ $ (-710) (-874 |#2|)) 63)) (-2178 (($ $ $) 48) (($ (-589 $)) 50)) (-2390 (((-710) $) 75)) (-3555 (((-108) $) 15)) (-3779 (((-1070) $) NIL)) (-2432 (((-108) $) 18)) (-2783 (((-1034) $) NIL)) (-3855 (((-157) $) 73)) (-1772 (((-874 |#2|) $) 69)) (-2877 (((-710) $) 70)) (-2963 (((-108) $) 72)) (-2113 (($ $ (-589 (-710)) (-157)) 66)) (-1707 (($ $) 43)) (-1458 (((-794) $) 85)) (-2161 (($ $ (-589 (-710)) (-108)) 65)) (-2296 (((-589 $) $) 11)) (-2705 (($ $ (-710)) 36)) (-3672 (($ $) 32)) (-3019 (($ $ $ (-874 |#2|) (-710)) 56)) (-1668 (($ $ (-874 |#2|)) 55)) (-1916 (($ $ (-589 (-710)) (-874 |#2|)) 54) (($ $ (-589 (-710)) (-710)) 58) (((-710) $ (-874 |#2|)) 59)) (-3983 (((-108) $ $) 79))) +(((-1076 |#1| |#2|) (-13 (-1016) (-10 -8 (-15 -3555 ((-108) $)) (-15 -1573 ((-108) $)) (-15 -2432 ((-108) $)) (-15 -3052 ($)) (-15 -3097 ($)) (-15 -3672 ($ $)) (-15 -2705 ($ $ (-710))) (-15 -2296 ((-589 $) $)) (-15 -4001 ((-710) $)) (-15 -2399 ($ $)) (-15 -1707 ($ $)) (-15 -2178 ($ $ $)) (-15 -2178 ($ (-589 $))) (-15 -3444 ((-589 $) $)) (-15 -1916 ($ $ (-589 (-710)) (-874 |#2|))) (-15 -1668 ($ $ (-874 |#2|))) (-15 -3019 ($ $ $ (-874 |#2|) (-710))) (-15 -2377 ($ $ (-589 (-710)) (-874 |#2|))) (-15 -1916 ($ $ (-589 (-710)) (-710))) (-15 -2377 ($ $ (-589 (-710)) (-710))) (-15 -1916 ((-710) $ (-874 |#2|))) (-15 -2377 ($ $ (-710) (-874 |#2|))) (-15 -2161 ($ $ (-589 (-710)) (-108))) (-15 -2113 ($ $ (-589 (-710)) (-157))) (-15 -3525 ($ $ (-589 (-710)))) (-15 -1772 ((-874 |#2|) $)) (-15 -2877 ((-710) $)) (-15 -2963 ((-108) $)) (-15 -3855 ((-157) $)) (-15 -2390 ((-710) $)) (-15 -1743 ($ $)) (-15 -3177 ((-589 (-874 |#2|)) $)))) (-852) (-973)) (T -1076)) +((-3555 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-1573 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-2432 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-3052 (*1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) (-3097 (*1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) (-3672 (*1 *1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) (-2705 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-2296 (*1 *2 *1) (-12 (-5 *2 (-589 (-1076 *3 *4))) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-4001 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-2399 (*1 *1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) (-1707 (*1 *1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) (-2178 (*1 *1 *1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) (-2178 (*1 *1 *2) (-12 (-5 *2 (-589 (-1076 *3 *4))) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-3444 (*1 *2 *1) (-12 (-5 *2 (-589 (-1076 *3 *4))) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-1916 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-710))) (-5 *3 (-874 *5)) (-4 *5 (-973)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)))) (-1668 (*1 *1 *1 *2) (-12 (-5 *2 (-874 *4)) (-4 *4 (-973)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)))) (-3019 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-874 *5)) (-5 *3 (-710)) (-4 *5 (-973)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)))) (-2377 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-710))) (-5 *3 (-874 *5)) (-4 *5 (-973)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)))) (-1916 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-710))) (-5 *3 (-710)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)) (-4 *5 (-973)))) (-2377 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-710))) (-5 *3 (-710)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)) (-4 *5 (-973)))) (-1916 (*1 *2 *1 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-973)) (-5 *2 (-710)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)))) (-2377 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *3 (-874 *5)) (-4 *5 (-973)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)))) (-2161 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-710))) (-5 *3 (-108)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)) (-4 *5 (-973)))) (-2113 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-589 (-710))) (-5 *3 (-157)) (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)) (-4 *5 (-973)))) (-3525 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-710))) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-1772 (*1 *2 *1) (-12 (-5 *2 (-874 *4)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-2877 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973)))) (-1743 (*1 *1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) (-3177 (*1 *2 *1) (-12 (-5 *2 (-589 (-874 *4))) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) (-4 *4 (-973))))) +(-13 (-1016) (-10 -8 (-15 -3555 ((-108) $)) (-15 -1573 ((-108) $)) (-15 -2432 ((-108) $)) (-15 -3052 ($)) (-15 -3097 ($)) (-15 -3672 ($ $)) (-15 -2705 ($ $ (-710))) (-15 -2296 ((-589 $) $)) (-15 -4001 ((-710) $)) (-15 -2399 ($ $)) (-15 -1707 ($ $)) (-15 -2178 ($ $ $)) (-15 -2178 ($ (-589 $))) (-15 -3444 ((-589 $) $)) (-15 -1916 ($ $ (-589 (-710)) (-874 |#2|))) (-15 -1668 ($ $ (-874 |#2|))) (-15 -3019 ($ $ $ (-874 |#2|) (-710))) (-15 -2377 ($ $ (-589 (-710)) (-874 |#2|))) (-15 -1916 ($ $ (-589 (-710)) (-710))) (-15 -2377 ($ $ (-589 (-710)) (-710))) (-15 -1916 ((-710) $ (-874 |#2|))) (-15 -2377 ($ $ (-710) (-874 |#2|))) (-15 -2161 ($ $ (-589 (-710)) (-108))) (-15 -2113 ($ $ (-589 (-710)) (-157))) (-15 -3525 ($ $ (-589 (-710)))) (-15 -1772 ((-874 |#2|) $)) (-15 -2877 ((-710) $)) (-15 -2963 ((-108) $)) (-15 -3855 ((-157) $)) (-15 -2390 ((-710) $)) (-15 -1743 ($ $)) (-15 -3177 ((-589 (-874 |#2|)) $)))) +((-3924 (((-108) $ $) NIL)) (-1797 ((|#2| $) 11)) (-1787 ((|#1| $) 10)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1472 (($ |#1| |#2|) 9)) (-1458 (((-794) $) 16)) (-3983 (((-108) $ $) NIL))) +(((-1077 |#1| |#2|) (-13 (-1016) (-10 -8 (-15 -1472 ($ |#1| |#2|)) (-15 -1787 (|#1| $)) (-15 -1797 (|#2| $)))) (-1016) (-1016)) (T -1077)) +((-1472 (*1 *1 *2 *3) (-12 (-5 *1 (-1077 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-1787 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1016)))) (-1797 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-1077 *3 *2)) (-4 *3 (-1016))))) +(-13 (-1016) (-10 -8 (-15 -1472 ($ |#1| |#2|)) (-15 -1787 (|#1| $)) (-15 -1797 (|#2| $)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3458 (((-1085 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-284)) (|has| |#1| (-339))))) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) 11)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3345 (($ $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3331 (((-108) $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3984 (($ $ (-523)) NIL) (($ $ (-523) (-523)) 66)) (-2133 (((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $) NIL)) (-3951 (((-1085 |#1| |#2| |#3|) $) 36)) (-3989 (((-3 (-1085 |#1| |#2| |#3|) "failed") $) 29)) (-2015 (((-1085 |#1| |#2| |#3|) $) 30)) (-1769 (($ $) 107 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 83 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-2291 (($ $) NIL (|has| |#1| (-339)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1744 (($ $) 103 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 79 (|has| |#1| (-37 (-383 (-523)))))) (-3671 (((-523) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-2417 (($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|)))) NIL)) (-1793 (($ $) 111 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 87 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-1085 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1087) "failed") $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-1087))) (|has| |#1| (-339)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339)))) (((-3 (-523) "failed") $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339))))) (-3474 (((-1085 |#1| |#2| |#3|) $) 131) (((-1087) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-1087))) (|has| |#1| (-339)))) (((-383 (-523)) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339)))) (((-523) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339))))) (-1819 (($ $) 34) (($ (-523) $) 35)) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) NIL)) (-2381 (((-629 (-1085 |#1| |#2| |#3|)) (-629 $)) NIL (|has| |#1| (-339))) (((-2 (|:| -3392 (-629 (-1085 |#1| |#2| |#3|))) (|:| |vec| (-1168 (-1085 |#1| |#2| |#3|)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-339))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-585 (-523))) (|has| |#1| (-339)))) (((-629 (-523)) (-629 $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-585 (-523))) (|has| |#1| (-339))))) (-2121 (((-3 $ "failed") $) 48)) (-3289 (((-383 (-883 |#1|)) $ (-523)) 65 (|has| |#1| (-515))) (((-383 (-883 |#1|)) $ (-523) (-523)) 67 (|has| |#1| (-515)))) (-4032 (($) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-508)) (|has| |#1| (-339))))) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2657 (((-108) $) NIL (|has| |#1| (-339)))) (-2604 (((-108) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-2003 (((-108) $) 25)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-817 (-523))) (|has| |#1| (-339)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-817 (-355))) (|has| |#1| (-339))))) (-1640 (((-523) $) NIL) (((-523) $ (-523)) 24)) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL (|has| |#1| (-339)))) (-2785 (((-1085 |#1| |#2| |#3|) $) 38 (|has| |#1| (-339)))) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-4058 (((-3 $ "failed") $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-1063)) (|has| |#1| (-339))))) (-4114 (((-108) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-1349 (($ $ (-852)) NIL)) (-3735 (($ (-1 |#1| (-523)) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-523)) 18) (($ $ (-1001) (-523)) NIL) (($ $ (-589 (-1001)) (-589 (-523))) NIL)) (-2454 (($ $ $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-2062 (($ $ $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-339)))) (-2384 (($ $) 72 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2028 (($ (-523) (-1085 |#1| |#2| |#3|)) 33)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| |#1| (-339)))) (-3417 (($ $) 70 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1108))))) (($ $ (-1164 |#2|)) 71 (|has| |#1| (-37 (-383 (-523)))))) (-2262 (($) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-1063)) (|has| |#1| (-339))) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2206 (($ $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-284)) (|has| |#1| (-339))))) (-3722 (((-1085 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-508)) (|has| |#1| (-339))))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-1820 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-4097 (($ $ (-523)) 145)) (-3746 (((-3 $ "failed") $ $) 49 (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-1811 (($ $) 73 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-523))))) (($ $ (-1087) (-1085 |#1| |#2| |#3|)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-484 (-1087) (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-589 (-1087)) (-589 (-1085 |#1| |#2| |#3|))) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-484 (-1087) (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-589 (-271 (-1085 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-286 (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-271 (-1085 |#1| |#2| |#3|))) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-286 (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-286 (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-589 (-1085 |#1| |#2| |#3|)) (-589 (-1085 |#1| |#2| |#3|))) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-286 (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339))))) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ (-523)) NIL) (($ $ $) 54 (|has| (-523) (-1028))) (($ $ (-1085 |#1| |#2| |#3|)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-263 (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|))) (|has| |#1| (-339))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3523 (($ $ (-1 (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|))) NIL (|has| |#1| (-339))) (($ $ (-1 (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|)) (-710)) NIL (|has| |#1| (-339))) (($ $ (-1164 |#2|)) 51) (($ $ (-710)) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) 50 (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087) (-710)) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-589 (-1087))) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))))) (-3414 (($ $) NIL (|has| |#1| (-339)))) (-2797 (((-1085 |#1| |#2| |#3|) $) 41 (|has| |#1| (-339)))) (-2299 (((-523) $) 37)) (-1805 (($ $) 113 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 89 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 109 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 85 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 105 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 81 (|has| |#1| (-37 (-383 (-523)))))) (-3663 (((-499) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-564 (-499))) (|has| |#1| (-339)))) (((-355) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-949)) (|has| |#1| (-339)))) (((-203) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-949)) (|has| |#1| (-339)))) (((-823 (-355)) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-564 (-823 (-355)))) (|has| |#1| (-339)))) (((-823 (-523)) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-564 (-823 (-523)))) (|has| |#1| (-339))))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-1353 (($ $) NIL)) (-1458 (((-794) $) 149) (($ (-523)) NIL) (($ |#1|) NIL (|has| |#1| (-158))) (($ (-1085 |#1| |#2| |#3|)) 27) (($ (-1164 |#2|)) 23) (($ (-1087)) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-1087))) (|has| |#1| (-339)))) (($ $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515)))) (($ (-383 (-523))) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339))) (|has| |#1| (-37 (-383 (-523))))))) (-2365 ((|#1| $ (-523)) 68)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-134)) (|has| |#1| (-339))) (|has| |#1| (-134))))) (-1621 (((-710)) NIL)) (-1288 ((|#1| $) 12)) (-1886 (((-1085 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-508)) (|has| |#1| (-339))))) (-1839 (($ $) 119 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 95 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-1818 (($ $) 115 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 91 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 123 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 99 (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-523)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-523)))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) 125 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 101 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 121 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 97 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 117 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 93 (|has| |#1| (-37 (-383 (-523)))))) (-2619 (($ $) NIL (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) 20 T CONST)) (-2767 (($) 16 T CONST)) (-2862 (($ $ (-1 (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|))) NIL (|has| |#1| (-339))) (($ $ (-1 (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|)) (-710)) NIL (|has| |#1| (-339))) (($ $ (-710)) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087) (-710)) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-589 (-1087))) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))))) (-4043 (((-108) $ $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-4019 (((-108) $ $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-4007 (((-108) $ $) NIL (-3262 (-12 (|has| (-1085 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1085 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) 44 (|has| |#1| (-339))) (($ (-1085 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3|)) 45 (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 21)) (** (($ $ (-852)) NIL) (($ $ (-710)) 53) (($ $ (-523)) NIL (|has| |#1| (-339))) (($ $ $) 74 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 128 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1085 |#1| |#2| |#3|)) 43 (|has| |#1| (-339))) (($ (-1085 |#1| |#2| |#3|) $) 42 (|has| |#1| (-339))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-1078 |#1| |#2| |#3|) (-13 (-1130 |#1| (-1085 |#1| |#2| |#3|)) (-10 -8 (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) (-973) (-1087) |#1|) (T -1078)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1078 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1078 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3417 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1078 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) +(-13 (-1130 |#1| (-1085 |#1| |#2| |#3|)) (-10 -8 (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) +((-1923 ((|#2| |#2| (-1009 |#2|)) 26) ((|#2| |#2| (-1087)) 28))) +(((-1079 |#1| |#2|) (-10 -7 (-15 -1923 (|#2| |#2| (-1087))) (-15 -1923 (|#2| |#2| (-1009 |#2|)))) (-13 (-515) (-786) (-964 (-523)) (-585 (-523))) (-13 (-406 |#1|) (-147) (-27) (-1108))) (T -1079)) +((-1923 (*1 *2 *2 *3) (-12 (-5 *3 (-1009 *2)) (-4 *2 (-13 (-406 *4) (-147) (-27) (-1108))) (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1079 *4 *2)))) (-1923 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1079 *4 *2)) (-4 *2 (-13 (-406 *4) (-147) (-27) (-1108)))))) +(-10 -7 (-15 -1923 (|#2| |#2| (-1087))) (-15 -1923 (|#2| |#2| (-1009 |#2|)))) +((-1923 (((-3 (-383 (-883 |#1|)) (-292 |#1|)) (-383 (-883 |#1|)) (-1009 (-383 (-883 |#1|)))) 30) (((-383 (-883 |#1|)) (-883 |#1|) (-1009 (-883 |#1|))) 44) (((-3 (-383 (-883 |#1|)) (-292 |#1|)) (-383 (-883 |#1|)) (-1087)) 32) (((-383 (-883 |#1|)) (-883 |#1|) (-1087)) 36))) +(((-1080 |#1|) (-10 -7 (-15 -1923 ((-383 (-883 |#1|)) (-883 |#1|) (-1087))) (-15 -1923 ((-3 (-383 (-883 |#1|)) (-292 |#1|)) (-383 (-883 |#1|)) (-1087))) (-15 -1923 ((-383 (-883 |#1|)) (-883 |#1|) (-1009 (-883 |#1|)))) (-15 -1923 ((-3 (-383 (-883 |#1|)) (-292 |#1|)) (-383 (-883 |#1|)) (-1009 (-383 (-883 |#1|)))))) (-13 (-515) (-786) (-964 (-523)))) (T -1080)) +((-1923 (*1 *2 *3 *4) (-12 (-5 *4 (-1009 (-383 (-883 *5)))) (-5 *3 (-383 (-883 *5))) (-4 *5 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-3 *3 (-292 *5))) (-5 *1 (-1080 *5)))) (-1923 (*1 *2 *3 *4) (-12 (-5 *4 (-1009 (-883 *5))) (-5 *3 (-883 *5)) (-4 *5 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-383 *3)) (-5 *1 (-1080 *5)))) (-1923 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-3 (-383 (-883 *5)) (-292 *5))) (-5 *1 (-1080 *5)) (-5 *3 (-383 (-883 *5))))) (-1923 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-383 (-883 *5))) (-5 *1 (-1080 *5)) (-5 *3 (-883 *5))))) +(-10 -7 (-15 -1923 ((-383 (-883 |#1|)) (-883 |#1|) (-1087))) (-15 -1923 ((-3 (-383 (-883 |#1|)) (-292 |#1|)) (-383 (-883 |#1|)) (-1087))) (-15 -1923 ((-383 (-883 |#1|)) (-883 |#1|) (-1009 (-883 |#1|)))) (-15 -1923 ((-3 (-383 (-883 |#1|)) (-292 |#1|)) (-383 (-883 |#1|)) (-1009 (-383 (-883 |#1|)))))) +((-3612 (((-1083 |#2|) (-1 |#2| |#1|) (-1083 |#1|)) 13))) +(((-1081 |#1| |#2|) (-10 -7 (-15 -3612 ((-1083 |#2|) (-1 |#2| |#1|) (-1083 |#1|)))) (-973) (-973)) (T -1081)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1083 *5)) (-4 *5 (-973)) (-4 *6 (-973)) (-5 *2 (-1083 *6)) (-5 *1 (-1081 *5 *6))))) +(-10 -7 (-15 -3612 ((-1083 |#2|) (-1 |#2| |#1|) (-1083 |#1|)))) +((-3614 (((-394 (-1083 (-383 |#4|))) (-1083 (-383 |#4|))) 50)) (-1820 (((-394 (-1083 (-383 |#4|))) (-1083 (-383 |#4|))) 51))) +(((-1082 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1820 ((-394 (-1083 (-383 |#4|))) (-1083 (-383 |#4|)))) (-15 -3614 ((-394 (-1083 (-383 |#4|))) (-1083 (-383 |#4|))))) (-732) (-786) (-427) (-880 |#3| |#1| |#2|)) (T -1082)) +((-3614 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-427)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-394 (-1083 (-383 *7)))) (-5 *1 (-1082 *4 *5 *6 *7)) (-5 *3 (-1083 (-383 *7))))) (-1820 (*1 *2 *3) (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-427)) (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-394 (-1083 (-383 *7)))) (-5 *1 (-1082 *4 *5 *6 *7)) (-5 *3 (-1083 (-383 *7)))))) +(-10 -7 (-15 -1820 ((-394 (-1083 (-383 |#4|))) (-1083 (-383 |#4|)))) (-15 -3614 ((-394 (-1083 (-383 |#4|))) (-1083 (-383 |#4|))))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 30)) (-2854 (((-1168 |#1|) $ (-710)) NIL)) (-1957 (((-589 (-1001)) $) NIL)) (-3131 (($ (-1083 |#1|)) NIL)) (-1786 (((-1083 $) $ (-1001)) 59) (((-1083 |#1|) $) 48)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) 133 (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-1001))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2407 (($ $ $) 127 (|has| |#1| (-515)))) (-3156 (((-394 (-1083 $)) (-1083 $)) 72 (|has| |#1| (-840)))) (-2291 (($ $) NIL (|has| |#1| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 92 (|has| |#1| (-840)))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-2692 (($ $ (-710)) 42)) (-2482 (($ $ (-710)) 43)) (-3444 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-427)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#1| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-1001) "failed") $) NIL)) (-3474 ((|#1| $) NIL) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-1001) $) NIL)) (-3078 (($ $ $ (-1001)) NIL (|has| |#1| (-158))) ((|#1| $ $) 129 (|has| |#1| (-158)))) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) 57)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) NIL) (((-629 |#1|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-3666 (($ $ $) 105)) (-2349 (($ $ $) NIL (|has| |#1| (-515)))) (-2815 (((-2 (|:| -2935 |#1|) (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-515)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2528 (($ $) 134 (|has| |#1| (-427))) (($ $ (-1001)) NIL (|has| |#1| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#1| (-840)))) (-1284 (($ $ |#1| (-710) $) 46)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1001) (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1001) (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-3553 (((-794) $ (-794)) 118)) (-1640 (((-710) $ $) NIL (|has| |#1| (-515)))) (-2023 (((-108) $) 32)) (-3554 (((-710) $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| |#1| (-1063)))) (-1945 (($ (-1083 |#1|) (-1001)) 50) (($ (-1083 $) (-1001)) 66)) (-1349 (($ $ (-710)) 34)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-710)) 64) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-1001)) NIL) (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 122)) (-1575 (((-710) $) NIL) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-3782 (($ (-1 (-710) (-710)) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2180 (((-1083 |#1|) $) NIL)) (-2520 (((-3 (-1001) "failed") $) NIL)) (-3774 (($ $) NIL)) (-3786 ((|#1| $) 53)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) NIL (|has| |#1| (-427)))) (-3779 (((-1070) $) NIL)) (-2150 (((-2 (|:| -3445 $) (|:| -3282 $)) $ (-710)) 41)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-1001)) (|:| -2735 (-710))) "failed") $) NIL)) (-3417 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2262 (($) NIL (|has| |#1| (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) 33)) (-3760 ((|#1| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 80 (|has| |#1| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-427))) (($ $ $) 136 (|has| |#1| (-427)))) (-4034 (($ $ (-710) |#1| $) 100)) (-1219 (((-394 (-1083 $)) (-1083 $)) 78 (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) 77 (|has| |#1| (-840)))) (-1820 (((-394 $) $) 85 (|has| |#1| (-840)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-3746 (((-3 $ "failed") $ |#1|) 132 (|has| |#1| (-515))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-1001) |#1|) NIL) (($ $ (-589 (-1001)) (-589 |#1|)) NIL) (($ $ (-1001) $) NIL) (($ $ (-589 (-1001)) (-589 $)) NIL)) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ |#1|) 120) (($ $ $) 121) (((-383 $) (-383 $) (-383 $)) NIL (|has| |#1| (-515))) ((|#1| (-383 $) |#1|) NIL (|has| |#1| (-339))) (((-383 $) $ (-383 $)) NIL (|has| |#1| (-515)))) (-3255 (((-3 $ "failed") $ (-710)) 37)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 139 (|has| |#1| (-339)))) (-3549 (($ $ (-1001)) NIL (|has| |#1| (-158))) ((|#1| $) 125 (|has| |#1| (-158)))) (-3523 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2299 (((-710) $) 55) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-1001) (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-2438 ((|#1| $) 131 (|has| |#1| (-427))) (($ $ (-1001)) NIL (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#1| (-840))))) (-1260 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515))) (((-3 (-383 $) "failed") (-383 $) $) NIL (|has| |#1| (-515)))) (-1458 (((-794) $) 119) (($ (-523)) NIL) (($ |#1|) 54) (($ (-1001)) NIL) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-710)) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) 28 (|has| |#1| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2364 (($ $ (-852)) 15) (($ $ (-710)) 16)) (-2756 (($) 17 T CONST)) (-2767 (($) 18 T CONST)) (-2862 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) 97)) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4098 (($ $ |#1|) 140 (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 67)) (** (($ $ (-852)) 14) (($ $ (-710)) 12)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 27) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 103) (($ $ |#1|) NIL))) +(((-1083 |#1|) (-13 (-1144 |#1|) (-10 -8 (-15 -3553 ((-794) $ (-794))) (-15 -4034 ($ $ (-710) |#1| $)))) (-973)) (T -1083)) +((-3553 (*1 *2 *1 *2) (-12 (-5 *2 (-794)) (-5 *1 (-1083 *3)) (-4 *3 (-973)))) (-4034 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1083 *3)) (-4 *3 (-973))))) +(-13 (-1144 |#1|) (-10 -8 (-15 -3553 ((-794) $ (-794))) (-15 -4034 ($ $ (-710) |#1| $)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) 11)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3984 (($ $ (-383 (-523))) NIL) (($ $ (-383 (-523)) (-383 (-523))) NIL)) (-2133 (((-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|))) $) NIL)) (-1769 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-339)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1744 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|)))) NIL)) (-1793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-1078 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1085 |#1| |#2| |#3|) "failed") $) 35)) (-3474 (((-1078 |#1| |#2| |#3|) $) NIL) (((-1085 |#1| |#2| |#3|) $) NIL)) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2290 (((-383 (-523)) $) 55)) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-3717 (($ (-383 (-523)) (-1078 |#1| |#2| |#3|)) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2657 (((-108) $) NIL (|has| |#1| (-339)))) (-2003 (((-108) $) NIL)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-383 (-523)) $) NIL) (((-383 (-523)) $ (-383 (-523))) NIL)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1349 (($ $ (-852)) NIL) (($ $ (-383 (-523))) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-383 (-523))) 19) (($ $ (-1001) (-383 (-523))) NIL) (($ $ (-589 (-1001)) (-589 (-383 (-523)))) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2384 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2508 (((-1078 |#1| |#2| |#3|) $) 40)) (-1745 (((-3 (-1078 |#1| |#2| |#3|) "failed") $) NIL)) (-2028 (((-1078 |#1| |#2| |#3|) $) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| |#1| (-339)))) (-3417 (($ $) 38 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1108))))) (($ $ (-1164 |#2|)) 39 (|has| |#1| (-37 (-383 (-523)))))) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-4097 (($ $ (-383 (-523))) NIL)) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-1811 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))))) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ (-383 (-523))) NIL) (($ $ $) NIL (|has| (-383 (-523)) (-1028)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $ (-1164 |#2|)) 37)) (-2299 (((-383 (-523)) $) NIL)) (-1805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) NIL)) (-1458 (((-794) $) 58) (($ (-523)) NIL) (($ |#1|) NIL (|has| |#1| (-158))) (($ (-1078 |#1| |#2| |#3|)) 29) (($ (-1085 |#1| |#2| |#3|)) 30) (($ (-1164 |#2|)) 25) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515)))) (-2365 ((|#1| $ (-383 (-523))) NIL)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-1288 ((|#1| $) 12)) (-1839 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-383 (-523))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) 21 T CONST)) (-2767 (($) 16 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 23)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-1084 |#1| |#2| |#3|) (-13 (-1151 |#1| (-1078 |#1| |#2| |#3|)) (-964 (-1085 |#1| |#2| |#3|)) (-10 -8 (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) (-973) (-1087) |#1|) (T -1084)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1084 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1084 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3417 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1084 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) +(-13 (-1151 |#1| (-1078 |#1| |#2| |#3|)) (-964 (-1085 |#1| |#2| |#3|)) (-10 -8 (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 125)) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) 116)) (-2053 (((-1141 |#2| |#1|) $ (-710)) 63)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3984 (($ $ (-710)) 79) (($ $ (-710) (-710)) 76)) (-2133 (((-1068 (-2 (|:| |k| (-710)) (|:| |c| |#1|))) $) 102)) (-1769 (($ $) 169 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 145 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1744 (($ $) 165 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 141 (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-1068 (-2 (|:| |k| (-710)) (|:| |c| |#1|)))) 115) (($ (-1068 |#1|)) 110)) (-1793 (($ $) 173 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 149 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) 23)) (-1956 (($ $) 26)) (-3566 (((-883 |#1|) $ (-710)) 75) (((-883 |#1|) $ (-710) (-710)) 77)) (-2003 (((-108) $) 120)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-710) $) 122) (((-710) $ (-710)) 124)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1349 (($ $ (-852)) NIL)) (-3735 (($ (-1 |#1| (-523)) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-710)) 13) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2384 (($ $) 131 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-3417 (($ $) 129 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1108))))) (($ $ (-1164 |#2|)) 130 (|has| |#1| (-37 (-383 (-523)))))) (-2783 (((-1034) $) NIL)) (-4097 (($ $ (-710)) 15)) (-3746 (((-3 $ "failed") $ $) 24 (|has| |#1| (-515)))) (-1811 (($ $) 133 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-710)))))) (-3223 ((|#1| $ (-710)) 119) (($ $ $) 128 (|has| (-710) (-1028)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $ (-1164 |#2|)) 29)) (-2299 (((-710) $) NIL)) (-1805 (($ $) 175 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 151 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 171 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 147 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 167 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 143 (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) NIL)) (-1458 (((-794) $) 201) (($ (-523)) NIL) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515))) (($ |#1|) 126 (|has| |#1| (-158))) (($ (-1141 |#2| |#1|)) 51) (($ (-1164 |#2|)) 32)) (-1251 (((-1068 |#1|) $) 98)) (-2365 ((|#1| $ (-710)) 118)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-1288 ((|#1| $) 54)) (-1839 (($ $) 181 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 157 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) 177 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 153 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 185 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 161 (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-710)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-710)))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) 187 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 163 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 183 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 159 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 179 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 155 (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 17 T CONST)) (-2767 (($) 19 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) 194)) (-4075 (($ $ $) 31)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ |#1|) 198 (|has| |#1| (-339))) (($ $ $) 134 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 137 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-1085 |#1| |#2| |#3|) (-13 (-1159 |#1|) (-10 -8 (-15 -1458 ($ (-1141 |#2| |#1|))) (-15 -2053 ((-1141 |#2| |#1|) $ (-710))) (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) (-973) (-1087) |#1|) (T -1085)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1141 *4 *3)) (-4 *3 (-973)) (-14 *4 (-1087)) (-14 *5 *3) (-5 *1 (-1085 *3 *4 *5)))) (-2053 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1141 *5 *4)) (-5 *1 (-1085 *4 *5 *6)) (-4 *4 (-973)) (-14 *5 (-1087)) (-14 *6 *4))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1085 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1085 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3417 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1085 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) +(-13 (-1159 |#1|) (-10 -8 (-15 -1458 ($ (-1141 |#2| |#1|))) (-15 -2053 ((-1141 |#2| |#1|) $ (-710))) (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) +((-1458 (((-794) $) 22) (($ (-1087)) 24)) (-3262 (($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 35)) (-3252 (($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 28) (($ $) 29)) (-3039 (($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 30)) (-4191 (($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 32)) (-4180 (($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 31)) (-4169 (($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 33)) (-2608 (($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $))) 34))) +(((-1086) (-13 (-563 (-794)) (-10 -8 (-15 -1458 ($ (-1087))) (-15 -3039 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -4180 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -4191 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -4169 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3262 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -2608 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3252 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3252 ($ $))))) (T -1086)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1086)))) (-3039 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-4180 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-4191 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-4169 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-3262 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-2608 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-3252 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) (-5 *1 (-1086)))) (-3252 (*1 *1 *1) (-5 *1 (-1086)))) +(-13 (-563 (-794)) (-10 -8 (-15 -1458 ($ (-1087))) (-15 -3039 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -4180 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -4191 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -4169 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3262 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -2608 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)) (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3252 ($ (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) (|:| CF (-292 (-155 (-355)))) (|:| |switch| $)))) (-15 -3252 ($ $)))) +((-3924 (((-108) $ $) NIL)) (-1806 (($ $ (-589 (-794))) 59)) (-1783 (($ $ (-589 (-794))) 57)) (-3207 (((-1070) $) 83)) (-3005 (((-2 (|:| -3602 (-589 (-794))) (|:| -3596 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -1892 (-589 (-794))) (|:| |args| (-589 (-794)))) $) 86)) (-2829 (((-108) $) 21)) (-3031 (($ $ (-589 (-589 (-794)))) 55) (($ $ (-2 (|:| -3602 (-589 (-794))) (|:| -3596 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -1892 (-589 (-794))) (|:| |args| (-589 (-794))))) 81)) (-2518 (($) 123 T CONST)) (-1385 (((-1173)) 105)) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 66) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 72)) (-3052 (($) 94) (($ $) 100)) (-4038 (($ $) 82)) (-2454 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3992 (((-589 $) $) 106)) (-3779 (((-1070) $) 89)) (-2783 (((-1034) $) NIL)) (-3223 (($ $ (-589 (-794))) 58)) (-3663 (((-499) $) 46) (((-1087) $) 47) (((-823 (-523)) $) 76) (((-823 (-355)) $) 74)) (-1458 (((-794) $) 53) (($ (-1070)) 48)) (-2888 (($ $ (-589 (-794))) 60)) (-3790 (((-1070) $) 33) (((-1070) $ (-108)) 34) (((-1173) (-761) $) 35) (((-1173) (-761) $ (-108)) 36)) (-4043 (((-108) $ $) NIL)) (-4019 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 49)) (-4030 (((-108) $ $) NIL)) (-4007 (((-108) $ $) 50))) +(((-1087) (-13 (-786) (-564 (-499)) (-767) (-564 (-1087)) (-564 (-823 (-523))) (-564 (-823 (-355))) (-817 (-523)) (-817 (-355)) (-10 -8 (-15 -3052 ($)) (-15 -3052 ($ $)) (-15 -1385 ((-1173))) (-15 -1458 ($ (-1070))) (-15 -4038 ($ $)) (-15 -2829 ((-108) $)) (-15 -3005 ((-2 (|:| -3602 (-589 (-794))) (|:| -3596 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -1892 (-589 (-794))) (|:| |args| (-589 (-794)))) $)) (-15 -3031 ($ $ (-589 (-589 (-794))))) (-15 -3031 ($ $ (-2 (|:| -3602 (-589 (-794))) (|:| -3596 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -1892 (-589 (-794))) (|:| |args| (-589 (-794)))))) (-15 -1783 ($ $ (-589 (-794)))) (-15 -1806 ($ $ (-589 (-794)))) (-15 -2888 ($ $ (-589 (-794)))) (-15 -3223 ($ $ (-589 (-794)))) (-15 -3207 ((-1070) $)) (-15 -3992 ((-589 $) $)) (-15 -2518 ($) -3059)))) (T -1087)) +((-3052 (*1 *1) (-5 *1 (-1087))) (-3052 (*1 *1 *1) (-5 *1 (-1087))) (-1385 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1087)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1087)))) (-4038 (*1 *1 *1) (-5 *1 (-1087))) (-2829 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1087)))) (-3005 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3602 (-589 (-794))) (|:| -3596 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -1892 (-589 (-794))) (|:| |args| (-589 (-794))))) (-5 *1 (-1087)))) (-3031 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-589 (-794)))) (-5 *1 (-1087)))) (-3031 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3602 (-589 (-794))) (|:| -3596 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -1892 (-589 (-794))) (|:| |args| (-589 (-794))))) (-5 *1 (-1087)))) (-1783 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087)))) (-1806 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087)))) (-2888 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087)))) (-3207 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1087)))) (-3992 (*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1087)))) (-2518 (*1 *1) (-5 *1 (-1087)))) +(-13 (-786) (-564 (-499)) (-767) (-564 (-1087)) (-564 (-823 (-523))) (-564 (-823 (-355))) (-817 (-523)) (-817 (-355)) (-10 -8 (-15 -3052 ($)) (-15 -3052 ($ $)) (-15 -1385 ((-1173))) (-15 -1458 ($ (-1070))) (-15 -4038 ($ $)) (-15 -2829 ((-108) $)) (-15 -3005 ((-2 (|:| -3602 (-589 (-794))) (|:| -3596 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -1892 (-589 (-794))) (|:| |args| (-589 (-794)))) $)) (-15 -3031 ($ $ (-589 (-589 (-794))))) (-15 -3031 ($ $ (-2 (|:| -3602 (-589 (-794))) (|:| -3596 (-589 (-794))) (|:| |presup| (-589 (-794))) (|:| -1892 (-589 (-794))) (|:| |args| (-589 (-794)))))) (-15 -1783 ($ $ (-589 (-794)))) (-15 -1806 ($ $ (-589 (-794)))) (-15 -2888 ($ $ (-589 (-794)))) (-15 -3223 ($ $ (-589 (-794)))) (-15 -3207 ((-1070) $)) (-15 -3992 ((-589 $) $)) (-15 -2518 ($) -3059))) +((-3716 (((-1168 |#1|) |#1| (-852)) 16) (((-1168 |#1|) (-589 |#1|)) 20))) +(((-1088 |#1|) (-10 -7 (-15 -3716 ((-1168 |#1|) (-589 |#1|))) (-15 -3716 ((-1168 |#1|) |#1| (-852)))) (-973)) (T -1088)) +((-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-5 *2 (-1168 *3)) (-5 *1 (-1088 *3)) (-4 *3 (-973)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-973)) (-5 *2 (-1168 *4)) (-5 *1 (-1088 *4))))) +(-10 -7 (-15 -3716 ((-1168 |#1|) (-589 |#1|))) (-15 -3716 ((-1168 |#1|) |#1| (-852)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| |#1| (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#1| (-964 (-383 (-523))))) (((-3 |#1| "failed") $) NIL)) (-3474 (((-523) $) NIL (|has| |#1| (-964 (-523)))) (((-383 (-523)) $) NIL (|has| |#1| (-964 (-383 (-523))))) ((|#1| $) NIL)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2528 (($ $) NIL (|has| |#1| (-427)))) (-1284 (($ $ |#1| (-900) $) NIL)) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-900)) NIL)) (-1575 (((-900) $) NIL)) (-3782 (($ (-1 (-900) (-900)) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 ((|#1| $) NIL)) (-4034 (($ $ (-900) |#1| $) NIL (-12 (|has| (-900) (-124)) (|has| |#1| (-515))))) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-515)))) (-2299 (((-900) $) NIL)) (-2438 ((|#1| $) NIL (|has| |#1| (-427)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ $) NIL (|has| |#1| (-515))) (($ |#1|) NIL) (($ (-383 (-523))) NIL (-3262 (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-964 (-383 (-523))))))) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ (-900)) NIL)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#1| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 9 T CONST)) (-2767 (($) 14 T CONST)) (-3983 (((-108) $ $) 16)) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 19)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-1089 |#1|) (-13 (-302 |#1| (-900)) (-10 -8 (IF (|has| |#1| (-515)) (IF (|has| (-900) (-124)) (-15 -4034 ($ $ (-900) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4242)) (-6 -4242) |%noBranch|))) (-973)) (T -1089)) +((-4034 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-900)) (-4 *2 (-124)) (-5 *1 (-1089 *3)) (-4 *3 (-515)) (-4 *3 (-973))))) +(-13 (-302 |#1| (-900)) (-10 -8 (IF (|has| |#1| (-515)) (IF (|has| (-900) (-124)) (-15 -4034 ($ $ (-900) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4242)) (-6 -4242) |%noBranch|))) +((-1203 (((-1091) (-1087) $) 24)) (-1230 (($) 28)) (-3478 (((-3 (|:| |fst| (-410)) (|:| -3853 "void")) (-1087) $) 21)) (-4070 (((-1173) (-1087) (-3 (|:| |fst| (-410)) (|:| -3853 "void")) $) 40) (((-1173) (-1087) (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) 41) (((-1173) (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) 42)) (-3373 (((-1173) (-1087)) 57)) (-2784 (((-1173) (-1087) $) 54) (((-1173) (-1087)) 55) (((-1173)) 56)) (-3683 (((-1173) (-1087)) 36)) (-2472 (((-1087)) 35)) (-3988 (($) 33)) (-2509 (((-413) (-1087) (-413) (-1087) $) 44) (((-413) (-589 (-1087)) (-413) (-1087) $) 48) (((-413) (-1087) (-413)) 45) (((-413) (-1087) (-413) (-1087)) 49)) (-3012 (((-1087)) 34)) (-1458 (((-794) $) 27)) (-2266 (((-1173)) 29) (((-1173) (-1087)) 32)) (-2719 (((-589 (-1087)) (-1087) $) 23)) (-1874 (((-1173) (-1087) (-589 (-1087)) $) 37) (((-1173) (-1087) (-589 (-1087))) 38) (((-1173) (-589 (-1087))) 39))) +(((-1090) (-13 (-563 (-794)) (-10 -8 (-15 -1230 ($)) (-15 -2266 ((-1173))) (-15 -2266 ((-1173) (-1087))) (-15 -2509 ((-413) (-1087) (-413) (-1087) $)) (-15 -2509 ((-413) (-589 (-1087)) (-413) (-1087) $)) (-15 -2509 ((-413) (-1087) (-413))) (-15 -2509 ((-413) (-1087) (-413) (-1087))) (-15 -3683 ((-1173) (-1087))) (-15 -3012 ((-1087))) (-15 -2472 ((-1087))) (-15 -1874 ((-1173) (-1087) (-589 (-1087)) $)) (-15 -1874 ((-1173) (-1087) (-589 (-1087)))) (-15 -1874 ((-1173) (-589 (-1087)))) (-15 -4070 ((-1173) (-1087) (-3 (|:| |fst| (-410)) (|:| -3853 "void")) $)) (-15 -4070 ((-1173) (-1087) (-3 (|:| |fst| (-410)) (|:| -3853 "void")))) (-15 -4070 ((-1173) (-3 (|:| |fst| (-410)) (|:| -3853 "void")))) (-15 -2784 ((-1173) (-1087) $)) (-15 -2784 ((-1173) (-1087))) (-15 -2784 ((-1173))) (-15 -3373 ((-1173) (-1087))) (-15 -3988 ($)) (-15 -3478 ((-3 (|:| |fst| (-410)) (|:| -3853 "void")) (-1087) $)) (-15 -2719 ((-589 (-1087)) (-1087) $)) (-15 -1203 ((-1091) (-1087) $))))) (T -1090)) +((-1230 (*1 *1) (-5 *1 (-1090))) (-2266 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1090)))) (-2266 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-2509 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1090)))) (-2509 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-413)) (-5 *3 (-589 (-1087))) (-5 *4 (-1087)) (-5 *1 (-1090)))) (-2509 (*1 *2 *3 *2) (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1090)))) (-2509 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1090)))) (-3683 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-3012 (*1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1090)))) (-2472 (*1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1090)))) (-1874 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-1874 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-1874 (*1 *2 *3) (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-4070 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1087)) (-5 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-5 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-4070 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-2784 (*1 *2 *3 *1) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-2784 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1090)))) (-3373 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090)))) (-3988 (*1 *1) (-5 *1 (-1090))) (-3478 (*1 *2 *3 *1) (-12 (-5 *3 (-1087)) (-5 *2 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-5 *1 (-1090)))) (-2719 (*1 *2 *3 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1090)) (-5 *3 (-1087)))) (-1203 (*1 *2 *3 *1) (-12 (-5 *3 (-1087)) (-5 *2 (-1091)) (-5 *1 (-1090))))) +(-13 (-563 (-794)) (-10 -8 (-15 -1230 ($)) (-15 -2266 ((-1173))) (-15 -2266 ((-1173) (-1087))) (-15 -2509 ((-413) (-1087) (-413) (-1087) $)) (-15 -2509 ((-413) (-589 (-1087)) (-413) (-1087) $)) (-15 -2509 ((-413) (-1087) (-413))) (-15 -2509 ((-413) (-1087) (-413) (-1087))) (-15 -3683 ((-1173) (-1087))) (-15 -3012 ((-1087))) (-15 -2472 ((-1087))) (-15 -1874 ((-1173) (-1087) (-589 (-1087)) $)) (-15 -1874 ((-1173) (-1087) (-589 (-1087)))) (-15 -1874 ((-1173) (-589 (-1087)))) (-15 -4070 ((-1173) (-1087) (-3 (|:| |fst| (-410)) (|:| -3853 "void")) $)) (-15 -4070 ((-1173) (-1087) (-3 (|:| |fst| (-410)) (|:| -3853 "void")))) (-15 -4070 ((-1173) (-3 (|:| |fst| (-410)) (|:| -3853 "void")))) (-15 -2784 ((-1173) (-1087) $)) (-15 -2784 ((-1173) (-1087))) (-15 -2784 ((-1173))) (-15 -3373 ((-1173) (-1087))) (-15 -3988 ($)) (-15 -3478 ((-3 (|:| |fst| (-410)) (|:| -3853 "void")) (-1087) $)) (-15 -2719 ((-589 (-1087)) (-1087) $)) (-15 -1203 ((-1091) (-1087) $)))) +((-2865 (((-589 (-589 (-3 (|:| -4038 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523))))))))) $) 57)) (-3347 (((-589 (-3 (|:| -4038 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523)))))))) (-410) $) 40)) (-3353 (($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-413))))) 15)) (-3373 (((-1173) $) 65)) (-3018 (((-589 (-1087)) $) 20)) (-2840 (((-1020) $) 53)) (-2980 (((-413) (-1087) $) 27)) (-1736 (((-589 (-1087)) $) 30)) (-3988 (($) 17)) (-2509 (((-413) (-589 (-1087)) (-413) $) 25) (((-413) (-1087) (-413) $) 24)) (-1458 (((-794) $) 9) (((-1096 (-1087) (-413)) $) 11))) +(((-1091) (-13 (-563 (-794)) (-10 -8 (-15 -1458 ((-1096 (-1087) (-413)) $)) (-15 -3988 ($)) (-15 -2509 ((-413) (-589 (-1087)) (-413) $)) (-15 -2509 ((-413) (-1087) (-413) $)) (-15 -2980 ((-413) (-1087) $)) (-15 -3018 ((-589 (-1087)) $)) (-15 -3347 ((-589 (-3 (|:| -4038 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523)))))))) (-410) $)) (-15 -1736 ((-589 (-1087)) $)) (-15 -2865 ((-589 (-589 (-3 (|:| -4038 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523))))))))) $)) (-15 -2840 ((-1020) $)) (-15 -3373 ((-1173) $)) (-15 -3353 ($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-413))))))))) (T -1091)) +((-1458 (*1 *2 *1) (-12 (-5 *2 (-1096 (-1087) (-413))) (-5 *1 (-1091)))) (-3988 (*1 *1) (-5 *1 (-1091))) (-2509 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-413)) (-5 *3 (-589 (-1087))) (-5 *1 (-1091)))) (-2509 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1091)))) (-2980 (*1 *2 *3 *1) (-12 (-5 *3 (-1087)) (-5 *2 (-413)) (-5 *1 (-1091)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1091)))) (-3347 (*1 *2 *3 *1) (-12 (-5 *3 (-410)) (-5 *2 (-589 (-3 (|:| -4038 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523))))))))) (-5 *1 (-1091)))) (-1736 (*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1091)))) (-2865 (*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-3 (|:| -4038 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523)))))))))) (-5 *1 (-1091)))) (-2840 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-1091)))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1091)))) (-3353 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-413))))) (-5 *1 (-1091))))) +(-13 (-563 (-794)) (-10 -8 (-15 -1458 ((-1096 (-1087) (-413)) $)) (-15 -3988 ($)) (-15 -2509 ((-413) (-589 (-1087)) (-413) $)) (-15 -2509 ((-413) (-1087) (-413) $)) (-15 -2980 ((-413) (-1087) $)) (-15 -3018 ((-589 (-1087)) $)) (-15 -3347 ((-589 (-3 (|:| -4038 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523)))))))) (-410) $)) (-15 -1736 ((-589 (-1087)) $)) (-15 -2865 ((-589 (-589 (-3 (|:| -4038 (-1087)) (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523))))))))) $)) (-15 -2840 ((-1020) $)) (-15 -3373 ((-1173) $)) (-15 -3353 ($ (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-413)))))))) +((-3924 (((-108) $ $) NIL)) (-1619 (((-108) $) 42)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-4139 (((-3 (-523) (-203) (-1087) (-1070) $) $) 50)) (-2936 (((-589 $) $) 55)) (-3663 (((-1020) $) 20) (($ (-1020)) 21)) (-2330 (((-108) $) 52)) (-1458 (((-794) $) NIL) (($ (-523)) 23) (((-523) $) 25) (($ (-203)) 27) (((-203) $) 29) (($ (-1087)) 31) (((-1087) $) 33) (($ (-1070)) 35) (((-1070) $) 37)) (-3689 (((-108) $ (|[\|\|]| (-523))) 10) (((-108) $ (|[\|\|]| (-203))) 13) (((-108) $ (|[\|\|]| (-1087))) 19) (((-108) $ (|[\|\|]| (-1070))) 16)) (-3697 (($ (-1087) (-589 $)) 39) (($ $ (-589 $)) 40)) (-1702 (((-523) $) 24) (((-203) $) 28) (((-1087) $) 32) (((-1070) $) 36)) (-3983 (((-108) $ $) 7))) +(((-1092) (-13 (-1163) (-1016) (-10 -8 (-15 -3663 ((-1020) $)) (-15 -3663 ($ (-1020))) (-15 -1458 ($ (-523))) (-15 -1458 ((-523) $)) (-15 -1702 ((-523) $)) (-15 -1458 ($ (-203))) (-15 -1458 ((-203) $)) (-15 -1702 ((-203) $)) (-15 -1458 ($ (-1087))) (-15 -1458 ((-1087) $)) (-15 -1702 ((-1087) $)) (-15 -1458 ($ (-1070))) (-15 -1458 ((-1070) $)) (-15 -1702 ((-1070) $)) (-15 -3697 ($ (-1087) (-589 $))) (-15 -3697 ($ $ (-589 $))) (-15 -1619 ((-108) $)) (-15 -4139 ((-3 (-523) (-203) (-1087) (-1070) $) $)) (-15 -2936 ((-589 $) $)) (-15 -2330 ((-108) $)) (-15 -3689 ((-108) $ (|[\|\|]| (-523)))) (-15 -3689 ((-108) $ (|[\|\|]| (-203)))) (-15 -3689 ((-108) $ (|[\|\|]| (-1087)))) (-15 -3689 ((-108) $ (|[\|\|]| (-1070))))))) (T -1092)) +((-3663 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-1092)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-1092)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-1092)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1092)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1092)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-1092)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-203)) (-5 *1 (-1092)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-203)) (-5 *1 (-1092)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1092)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1092)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1092)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1092)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1092)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1092)))) (-3697 (*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-1092))) (-5 *1 (-1092)))) (-3697 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-1092))) (-5 *1 (-1092)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1092)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-3 (-523) (-203) (-1087) (-1070) (-1092))) (-5 *1 (-1092)))) (-2936 (*1 *2 *1) (-12 (-5 *2 (-589 (-1092))) (-5 *1 (-1092)))) (-2330 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1092)))) (-3689 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-108)) (-5 *1 (-1092)))) (-3689 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-203))) (-5 *2 (-108)) (-5 *1 (-1092)))) (-3689 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-108)) (-5 *1 (-1092)))) (-3689 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1070))) (-5 *2 (-108)) (-5 *1 (-1092))))) +(-13 (-1163) (-1016) (-10 -8 (-15 -3663 ((-1020) $)) (-15 -3663 ($ (-1020))) (-15 -1458 ($ (-523))) (-15 -1458 ((-523) $)) (-15 -1702 ((-523) $)) (-15 -1458 ($ (-203))) (-15 -1458 ((-203) $)) (-15 -1702 ((-203) $)) (-15 -1458 ($ (-1087))) (-15 -1458 ((-1087) $)) (-15 -1702 ((-1087) $)) (-15 -1458 ($ (-1070))) (-15 -1458 ((-1070) $)) (-15 -1702 ((-1070) $)) (-15 -3697 ($ (-1087) (-589 $))) (-15 -3697 ($ $ (-589 $))) (-15 -1619 ((-108) $)) (-15 -4139 ((-3 (-523) (-203) (-1087) (-1070) $) $)) (-15 -2936 ((-589 $) $)) (-15 -2330 ((-108) $)) (-15 -3689 ((-108) $ (|[\|\|]| (-523)))) (-15 -3689 ((-108) $ (|[\|\|]| (-203)))) (-15 -3689 ((-108) $ (|[\|\|]| (-1087)))) (-15 -3689 ((-108) $ (|[\|\|]| (-1070)))))) +((-1456 (((-589 (-589 (-883 |#1|))) (-589 (-383 (-883 |#1|))) (-589 (-1087))) 55)) (-1940 (((-589 (-271 (-383 (-883 |#1|)))) (-271 (-383 (-883 |#1|)))) 67) (((-589 (-271 (-383 (-883 |#1|)))) (-383 (-883 |#1|))) 63) (((-589 (-271 (-383 (-883 |#1|)))) (-271 (-383 (-883 |#1|))) (-1087)) 68) (((-589 (-271 (-383 (-883 |#1|)))) (-383 (-883 |#1|)) (-1087)) 62) (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-271 (-383 (-883 |#1|))))) 92) (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-383 (-883 |#1|)))) 91) (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-271 (-383 (-883 |#1|)))) (-589 (-1087))) 93) (((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-383 (-883 |#1|))) (-589 (-1087))) 90))) +(((-1093 |#1|) (-10 -7 (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-271 (-383 (-883 |#1|)))) (-589 (-1087)))) (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-383 (-883 |#1|))))) (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-271 (-383 (-883 |#1|)))))) (-15 -1940 ((-589 (-271 (-383 (-883 |#1|)))) (-383 (-883 |#1|)) (-1087))) (-15 -1940 ((-589 (-271 (-383 (-883 |#1|)))) (-271 (-383 (-883 |#1|))) (-1087))) (-15 -1940 ((-589 (-271 (-383 (-883 |#1|)))) (-383 (-883 |#1|)))) (-15 -1940 ((-589 (-271 (-383 (-883 |#1|)))) (-271 (-383 (-883 |#1|))))) (-15 -1456 ((-589 (-589 (-883 |#1|))) (-589 (-383 (-883 |#1|))) (-589 (-1087))))) (-515)) (T -1093)) +((-1456 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) (-4 *5 (-515)) (-5 *2 (-589 (-589 (-883 *5)))) (-5 *1 (-1093 *5)))) (-1940 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-589 (-271 (-383 (-883 *4))))) (-5 *1 (-1093 *4)) (-5 *3 (-271 (-383 (-883 *4)))))) (-1940 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-589 (-271 (-383 (-883 *4))))) (-5 *1 (-1093 *4)) (-5 *3 (-383 (-883 *4))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-515)) (-5 *2 (-589 (-271 (-383 (-883 *5))))) (-5 *1 (-1093 *5)) (-5 *3 (-271 (-383 (-883 *5)))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *4 (-1087)) (-4 *5 (-515)) (-5 *2 (-589 (-271 (-383 (-883 *5))))) (-5 *1 (-1093 *5)) (-5 *3 (-383 (-883 *5))))) (-1940 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) (-5 *1 (-1093 *4)) (-5 *3 (-589 (-271 (-383 (-883 *4))))))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-589 (-383 (-883 *4)))) (-4 *4 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) (-5 *1 (-1093 *4)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *4 (-589 (-1087))) (-4 *5 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) (-5 *1 (-1093 *5)) (-5 *3 (-589 (-271 (-383 (-883 *5))))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) (-4 *5 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) (-5 *1 (-1093 *5))))) +(-10 -7 (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-383 (-883 |#1|))) (-589 (-1087)))) (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-271 (-383 (-883 |#1|)))) (-589 (-1087)))) (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-383 (-883 |#1|))))) (-15 -1940 ((-589 (-589 (-271 (-383 (-883 |#1|))))) (-589 (-271 (-383 (-883 |#1|)))))) (-15 -1940 ((-589 (-271 (-383 (-883 |#1|)))) (-383 (-883 |#1|)) (-1087))) (-15 -1940 ((-589 (-271 (-383 (-883 |#1|)))) (-271 (-383 (-883 |#1|))) (-1087))) (-15 -1940 ((-589 (-271 (-383 (-883 |#1|)))) (-383 (-883 |#1|)))) (-15 -1940 ((-589 (-271 (-383 (-883 |#1|)))) (-271 (-383 (-883 |#1|))))) (-15 -1456 ((-589 (-589 (-883 |#1|))) (-589 (-383 (-883 |#1|))) (-589 (-1087))))) +((-3515 (((-589 (-589 |#1|)) (-589 (-589 |#1|)) (-589 (-589 (-589 |#1|)))) 38)) (-2720 (((-589 (-589 (-589 |#1|))) (-589 (-589 |#1|))) 24)) (-2537 (((-1095 (-589 |#1|)) (-589 |#1|)) 34)) (-1394 (((-589 (-589 |#1|)) (-589 |#1|)) 30)) (-1466 (((-2 (|:| |f1| (-589 |#1|)) (|:| |f2| (-589 (-589 (-589 |#1|)))) (|:| |f3| (-589 (-589 |#1|))) (|:| |f4| (-589 (-589 (-589 |#1|))))) (-589 (-589 (-589 |#1|)))) 37)) (-3662 (((-2 (|:| |f1| (-589 |#1|)) (|:| |f2| (-589 (-589 (-589 |#1|)))) (|:| |f3| (-589 (-589 |#1|))) (|:| |f4| (-589 (-589 (-589 |#1|))))) (-589 |#1|) (-589 (-589 (-589 |#1|))) (-589 (-589 |#1|)) (-589 (-589 (-589 |#1|))) (-589 (-589 (-589 |#1|))) (-589 (-589 (-589 |#1|)))) 36)) (-2652 (((-589 (-589 |#1|)) (-589 (-589 |#1|))) 28)) (-3698 (((-589 |#1|) (-589 |#1|)) 31)) (-4045 (((-589 (-589 (-589 |#1|))) (-589 |#1|) (-589 (-589 (-589 |#1|)))) 18)) (-1525 (((-589 (-589 (-589 |#1|))) (-1 (-108) |#1| |#1|) (-589 |#1|) (-589 (-589 (-589 |#1|)))) 15)) (-2763 (((-2 (|:| |fs| (-108)) (|:| |sd| (-589 |#1|)) (|:| |td| (-589 (-589 |#1|)))) (-1 (-108) |#1| |#1|) (-589 |#1|) (-589 (-589 |#1|))) 13)) (-1226 (((-589 (-589 |#1|)) (-589 (-589 (-589 |#1|)))) 39)) (-3560 (((-589 (-589 |#1|)) (-1095 (-589 |#1|))) 41))) +(((-1094 |#1|) (-10 -7 (-15 -2763 ((-2 (|:| |fs| (-108)) (|:| |sd| (-589 |#1|)) (|:| |td| (-589 (-589 |#1|)))) (-1 (-108) |#1| |#1|) (-589 |#1|) (-589 (-589 |#1|)))) (-15 -1525 ((-589 (-589 (-589 |#1|))) (-1 (-108) |#1| |#1|) (-589 |#1|) (-589 (-589 (-589 |#1|))))) (-15 -4045 ((-589 (-589 (-589 |#1|))) (-589 |#1|) (-589 (-589 (-589 |#1|))))) (-15 -3515 ((-589 (-589 |#1|)) (-589 (-589 |#1|)) (-589 (-589 (-589 |#1|))))) (-15 -1226 ((-589 (-589 |#1|)) (-589 (-589 (-589 |#1|))))) (-15 -3560 ((-589 (-589 |#1|)) (-1095 (-589 |#1|)))) (-15 -2720 ((-589 (-589 (-589 |#1|))) (-589 (-589 |#1|)))) (-15 -2537 ((-1095 (-589 |#1|)) (-589 |#1|))) (-15 -2652 ((-589 (-589 |#1|)) (-589 (-589 |#1|)))) (-15 -1394 ((-589 (-589 |#1|)) (-589 |#1|))) (-15 -3698 ((-589 |#1|) (-589 |#1|))) (-15 -3662 ((-2 (|:| |f1| (-589 |#1|)) (|:| |f2| (-589 (-589 (-589 |#1|)))) (|:| |f3| (-589 (-589 |#1|))) (|:| |f4| (-589 (-589 (-589 |#1|))))) (-589 |#1|) (-589 (-589 (-589 |#1|))) (-589 (-589 |#1|)) (-589 (-589 (-589 |#1|))) (-589 (-589 (-589 |#1|))) (-589 (-589 (-589 |#1|))))) (-15 -1466 ((-2 (|:| |f1| (-589 |#1|)) (|:| |f2| (-589 (-589 (-589 |#1|)))) (|:| |f3| (-589 (-589 |#1|))) (|:| |f4| (-589 (-589 (-589 |#1|))))) (-589 (-589 (-589 |#1|)))))) (-786)) (T -1094)) +((-1466 (*1 *2 *3) (-12 (-4 *4 (-786)) (-5 *2 (-2 (|:| |f1| (-589 *4)) (|:| |f2| (-589 (-589 (-589 *4)))) (|:| |f3| (-589 (-589 *4))) (|:| |f4| (-589 (-589 (-589 *4)))))) (-5 *1 (-1094 *4)) (-5 *3 (-589 (-589 (-589 *4)))))) (-3662 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-786)) (-5 *3 (-589 *6)) (-5 *5 (-589 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-589 *5)) (|:| |f3| *5) (|:| |f4| (-589 *5)))) (-5 *1 (-1094 *6)) (-5 *4 (-589 *5)))) (-3698 (*1 *2 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-1094 *3)))) (-1394 (*1 *2 *3) (-12 (-4 *4 (-786)) (-5 *2 (-589 (-589 *4))) (-5 *1 (-1094 *4)) (-5 *3 (-589 *4)))) (-2652 (*1 *2 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-786)) (-5 *1 (-1094 *3)))) (-2537 (*1 *2 *3) (-12 (-4 *4 (-786)) (-5 *2 (-1095 (-589 *4))) (-5 *1 (-1094 *4)) (-5 *3 (-589 *4)))) (-2720 (*1 *2 *3) (-12 (-4 *4 (-786)) (-5 *2 (-589 (-589 (-589 *4)))) (-5 *1 (-1094 *4)) (-5 *3 (-589 (-589 *4))))) (-3560 (*1 *2 *3) (-12 (-5 *3 (-1095 (-589 *4))) (-4 *4 (-786)) (-5 *2 (-589 (-589 *4))) (-5 *1 (-1094 *4)))) (-1226 (*1 *2 *3) (-12 (-5 *3 (-589 (-589 (-589 *4)))) (-5 *2 (-589 (-589 *4))) (-5 *1 (-1094 *4)) (-4 *4 (-786)))) (-3515 (*1 *2 *2 *3) (-12 (-5 *3 (-589 (-589 (-589 *4)))) (-5 *2 (-589 (-589 *4))) (-4 *4 (-786)) (-5 *1 (-1094 *4)))) (-4045 (*1 *2 *3 *2) (-12 (-5 *2 (-589 (-589 (-589 *4)))) (-5 *3 (-589 *4)) (-4 *4 (-786)) (-5 *1 (-1094 *4)))) (-1525 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-589 (-589 (-589 *5)))) (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-589 *5)) (-4 *5 (-786)) (-5 *1 (-1094 *5)))) (-2763 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-786)) (-5 *4 (-589 *6)) (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-589 *4)))) (-5 *1 (-1094 *6)) (-5 *5 (-589 *4))))) +(-10 -7 (-15 -2763 ((-2 (|:| |fs| (-108)) (|:| |sd| (-589 |#1|)) (|:| |td| (-589 (-589 |#1|)))) (-1 (-108) |#1| |#1|) (-589 |#1|) (-589 (-589 |#1|)))) (-15 -1525 ((-589 (-589 (-589 |#1|))) (-1 (-108) |#1| |#1|) (-589 |#1|) (-589 (-589 (-589 |#1|))))) (-15 -4045 ((-589 (-589 (-589 |#1|))) (-589 |#1|) (-589 (-589 (-589 |#1|))))) (-15 -3515 ((-589 (-589 |#1|)) (-589 (-589 |#1|)) (-589 (-589 (-589 |#1|))))) (-15 -1226 ((-589 (-589 |#1|)) (-589 (-589 (-589 |#1|))))) (-15 -3560 ((-589 (-589 |#1|)) (-1095 (-589 |#1|)))) (-15 -2720 ((-589 (-589 (-589 |#1|))) (-589 (-589 |#1|)))) (-15 -2537 ((-1095 (-589 |#1|)) (-589 |#1|))) (-15 -2652 ((-589 (-589 |#1|)) (-589 (-589 |#1|)))) (-15 -1394 ((-589 (-589 |#1|)) (-589 |#1|))) (-15 -3698 ((-589 |#1|) (-589 |#1|))) (-15 -3662 ((-2 (|:| |f1| (-589 |#1|)) (|:| |f2| (-589 (-589 (-589 |#1|)))) (|:| |f3| (-589 (-589 |#1|))) (|:| |f4| (-589 (-589 (-589 |#1|))))) (-589 |#1|) (-589 (-589 (-589 |#1|))) (-589 (-589 |#1|)) (-589 (-589 (-589 |#1|))) (-589 (-589 (-589 |#1|))) (-589 (-589 (-589 |#1|))))) (-15 -1466 ((-2 (|:| |f1| (-589 |#1|)) (|:| |f2| (-589 (-589 (-589 |#1|)))) (|:| |f3| (-589 (-589 |#1|))) (|:| |f4| (-589 (-589 (-589 |#1|))))) (-589 (-589 (-589 |#1|)))))) +((-2233 (($ (-589 (-589 |#1|))) 9)) (-2289 (((-589 (-589 |#1|)) $) 10)) (-1458 (((-794) $) 25))) +(((-1095 |#1|) (-10 -8 (-15 -2233 ($ (-589 (-589 |#1|)))) (-15 -2289 ((-589 (-589 |#1|)) $)) (-15 -1458 ((-794) $))) (-1016)) (T -1095)) +((-1458 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-1095 *3)) (-4 *3 (-1016)))) (-2289 (*1 *2 *1) (-12 (-5 *2 (-589 (-589 *3))) (-5 *1 (-1095 *3)) (-4 *3 (-1016)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-1095 *3))))) +(-10 -8 (-15 -2233 ($ (-589 (-589 |#1|)))) (-15 -2289 ((-589 (-589 |#1|)) $)) (-15 -1458 ((-794) $))) +((-3924 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-3043 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-4207 (((-1173) $ |#1| |#1|) NIL (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#2| $ |#1| |#2|) NIL)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2243 (((-3 |#2| "failed") |#1| $) NIL)) (-2518 (($) NIL T CONST)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-2249 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-3 |#2| "failed") |#1| $) NIL)) (-2557 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) NIL)) (-1666 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) NIL)) (-4084 ((|#1| $) NIL (|has| |#1| (-786)))) (-2136 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-589 |#2|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-3056 ((|#1| $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4245))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1330 (((-589 |#1|) $) NIL)) (-2777 (((-108) |#1| $) NIL)) (-1934 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-3450 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-2412 (((-589 |#1|) $) NIL)) (-4135 (((-108) |#1| $) NIL)) (-2783 (((-1034) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-1738 ((|#2| $) NIL (|has| |#1| (-786)))) (-2114 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL)) (-4203 (($ $ |#2|) NIL (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3433 (($) NIL) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) NIL (-12 (|has| $ (-6 -4244)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (((-710) |#2| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016)))) (((-710) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-1458 (((-794) $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794))) (|has| |#2| (-563 (-794)))))) (-2401 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) NIL)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) NIL (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) NIL (-3262 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| |#2| (-1016))))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-1096 |#1| |#2|) (-13 (-1099 |#1| |#2|) (-10 -7 (-6 -4244))) (-1016) (-1016)) (T -1096)) +NIL +(-13 (-1099 |#1| |#2|) (-10 -7 (-6 -4244))) +((-1845 ((|#1| (-589 |#1|)) 32)) (-2030 ((|#1| |#1| (-523)) 18)) (-1343 (((-1083 |#1|) |#1| (-852)) 15))) +(((-1097 |#1|) (-10 -7 (-15 -1845 (|#1| (-589 |#1|))) (-15 -1343 ((-1083 |#1|) |#1| (-852))) (-15 -2030 (|#1| |#1| (-523)))) (-339)) (T -1097)) +((-2030 (*1 *2 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-1097 *2)) (-4 *2 (-339)))) (-1343 (*1 *2 *3 *4) (-12 (-5 *4 (-852)) (-5 *2 (-1083 *3)) (-5 *1 (-1097 *3)) (-4 *3 (-339)))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-5 *1 (-1097 *2)) (-4 *2 (-339))))) +(-10 -7 (-15 -1845 (|#1| (-589 |#1|))) (-15 -1343 ((-1083 |#1|) |#1| (-852))) (-15 -2030 (|#1| |#1| (-523)))) +((-3043 (($) 10) (($ (-589 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)))) 14)) (-2249 (($ (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) $) 60) (($ (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1666 (((-589 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) $) 39) (((-589 |#3|) $) 41)) (-2852 (($ (-1 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) $) 52) (($ (-1 |#3| |#3|) $) 33)) (-3612 (($ (-1 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) $) 50) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1934 (((-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) $) 53)) (-3450 (($ (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) $) 16)) (-2412 (((-589 |#2|) $) 19)) (-4135 (((-108) |#2| $) 58)) (-2114 (((-3 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) "failed") (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) $) 57)) (-3761 (((-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) $) 62)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 66)) (-1264 (((-589 |#3|) $) 43)) (-3223 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) $) NIL) (((-710) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) $) NIL) (((-710) |#3| $) NIL) (((-710) (-1 (-108) |#3|) $) 67)) (-1458 (((-794) $) 27)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 64)) (-3983 (((-108) $ $) 48))) +(((-1098 |#1| |#2| |#3|) (-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -3612 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3043 (|#1| (-589 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))))) (-15 -3043 (|#1|)) (-15 -3612 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2852 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -1327 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -2792 ((-710) (-1 (-108) |#3|) |#1|)) (-15 -1666 ((-589 |#3|) |#1|)) (-15 -2792 ((-710) |#3| |#1|)) (-15 -3223 (|#3| |#1| |#2| |#3|)) (-15 -3223 (|#3| |#1| |#2|)) (-15 -1264 ((-589 |#3|) |#1|)) (-15 -4135 ((-108) |#2| |#1|)) (-15 -2412 ((-589 |#2|) |#1|)) (-15 -2249 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2249 (|#1| (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -2249 (|#1| (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|)) (-15 -2114 ((-3 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) "failed") (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -1934 ((-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|)) (-15 -3450 (|#1| (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|)) (-15 -3761 ((-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|)) (-15 -2792 ((-710) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|)) (-15 -1666 ((-589 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -2792 ((-710) (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -1327 ((-108) (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -2096 ((-108) (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -2852 (|#1| (-1 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -3612 (|#1| (-1 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|))) (-1099 |#2| |#3|) (-1016) (-1016)) (T -1098)) +NIL +(-10 -8 (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -3612 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3043 (|#1| (-589 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))))) (-15 -3043 (|#1|)) (-15 -3612 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2852 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2096 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -1327 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -2792 ((-710) (-1 (-108) |#3|) |#1|)) (-15 -1666 ((-589 |#3|) |#1|)) (-15 -2792 ((-710) |#3| |#1|)) (-15 -3223 (|#3| |#1| |#2| |#3|)) (-15 -3223 (|#3| |#1| |#2|)) (-15 -1264 ((-589 |#3|) |#1|)) (-15 -4135 ((-108) |#2| |#1|)) (-15 -2412 ((-589 |#2|) |#1|)) (-15 -2249 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2249 (|#1| (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -2249 (|#1| (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|)) (-15 -2114 ((-3 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) "failed") (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -1934 ((-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|)) (-15 -3450 (|#1| (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|)) (-15 -3761 ((-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|)) (-15 -2792 ((-710) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) |#1|)) (-15 -1666 ((-589 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -2792 ((-710) (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -1327 ((-108) (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -2096 ((-108) (-1 (-108) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -2852 (|#1| (-1 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|)) (-15 -3612 (|#1| (-1 (-2 (|:| -1853 |#2|) (|:| -2433 |#3|)) (-2 (|:| -1853 |#2|) (|:| -2433 |#3|))) |#1|))) +((-3924 (((-108) $ $) 19 (-3262 (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-3043 (($) 72) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 71)) (-4207 (((-1173) $ |#1| |#1|) 99 (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) 8)) (-1641 ((|#2| $ |#1| |#2|) 73)) (-3387 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 45 (|has| $ (-6 -4244)))) (-3724 (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 55 (|has| $ (-6 -4244)))) (-2243 (((-3 |#2| "failed") |#1| $) 61)) (-2518 (($) 7 T CONST)) (-1773 (($ $) 58 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244))))) (-2249 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 47 (|has| $ (-6 -4244))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 46 (|has| $ (-6 -4244))) (((-3 |#2| "failed") |#1| $) 62)) (-2557 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 57 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 54 (|has| $ (-6 -4244)))) (-2437 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 56 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 53 (|has| $ (-6 -4244))) (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 52 (|has| $ (-6 -4244)))) (-2863 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4245)))) (-2795 ((|#2| $ |#1|) 88)) (-1666 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 30 (|has| $ (-6 -4244))) (((-589 |#2|) $) 79 (|has| $ (-6 -4244)))) (-2346 (((-108) $ (-710)) 9)) (-4084 ((|#1| $) 96 (|has| |#1| (-786)))) (-2136 (((-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 29 (|has| $ (-6 -4244))) (((-589 |#2|) $) 80 (|has| $ (-6 -4244)))) (-1973 (((-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 27 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4244))))) (-3056 ((|#1| $) 95 (|has| |#1| (-786)))) (-2852 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 34 (|has| $ (-6 -4245))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4245)))) (-3612 (($ (-1 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2866 (((-108) $ (-710)) 10)) (-3779 (((-1070) $) 22 (-3262 (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-1330 (((-589 |#1|) $) 63)) (-2777 (((-108) |#1| $) 64)) (-1934 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 39)) (-3450 (($ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 40)) (-2412 (((-589 |#1|) $) 93)) (-4135 (((-108) |#1| $) 92)) (-2783 (((-1034) $) 21 (-3262 (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-1738 ((|#2| $) 97 (|has| |#1| (-786)))) (-2114 (((-3 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) "failed") (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 51)) (-4203 (($ $ |#2|) 98 (|has| $ (-6 -4245)))) (-3761 (((-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 41)) (-1327 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 32 (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))))) 26 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-271 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 25 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) 24 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 23 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)))) (($ $ (-589 |#2|) (-589 |#2|)) 86 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-271 |#2|)) 84 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016)))) (($ $ (-589 (-271 |#2|))) 83 (-12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4244)) (|has| |#2| (-1016))))) (-1264 (((-589 |#2|) $) 91)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3433 (($) 49) (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 48)) (-2792 (((-710) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 31 (|has| $ (-6 -4244))) (((-710) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| $ (-6 -4244)))) (((-710) |#2| $) 81 (-12 (|has| |#2| (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4244)))) (-1664 (($ $) 13)) (-3663 (((-499) $) 59 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))))) (-1472 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 50)) (-1458 (((-794) $) 18 (-3262 (|has| |#2| (-563 (-794))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794)))))) (-2401 (($ (-589 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) 42)) (-2096 (((-108) (-1 (-108) (-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) $) 33 (|has| $ (-6 -4244))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (-3262 (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-1099 |#1| |#2|) (-129) (-1016) (-1016)) (T -1099)) +((-1641 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1099 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016)))) (-3043 (*1 *1) (-12 (-4 *1 (-1099 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-589 (-2 (|:| -1853 *3) (|:| -2433 *4)))) (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *1 (-1099 *3 *4)))) (-3612 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1099 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016))))) +(-13 (-560 |t#1| |t#2|) (-556 |t#1| |t#2|) (-10 -8 (-15 -1641 (|t#2| $ |t#1| |t#2|)) (-15 -3043 ($)) (-15 -3043 ($ (-589 (-2 (|:| -1853 |t#1|) (|:| -2433 |t#2|))))) (-15 -3612 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-33) . T) ((-102 #0=(-2 (|:| -1853 |#1|) (|:| -2433 |#2|))) . T) ((-97) -3262 (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))) ((-563 (-794)) -3262 (|has| |#2| (-1016)) (|has| |#2| (-563 (-794))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-563 (-794)))) ((-140 #0#) . T) ((-564 (-499)) |has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-564 (-499))) ((-207 #0#) . T) ((-213 #0#) . T) ((-263 |#1| |#2|) . T) ((-265 |#1| |#2|) . T) ((-286 #0#) -12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))) ((-286 |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-462 #0#) . T) ((-462 |#2|) . T) ((-556 |#1| |#2|) . T) ((-484 #0# #0#) -12 (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-286 (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)))) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))) ((-484 |#2| |#2|) -12 (|has| |#2| (-286 |#2|)) (|has| |#2| (-1016))) ((-560 |#1| |#2|) . T) ((-1016) -3262 (|has| |#2| (-1016)) (|has| (-2 (|:| -1853 |#1|) (|:| -2433 |#2|)) (-1016))) ((-1122) . T)) +((-1752 (((-108)) 24)) (-1942 (((-1173) (-1070)) 26)) (-1402 (((-108)) 36)) (-1969 (((-1173)) 34)) (-2801 (((-1173) (-1070) (-1070)) 25)) (-2254 (((-108)) 37)) (-3450 (((-1173) |#1| |#2|) 44)) (-2976 (((-1173)) 20)) (-3676 (((-3 |#2| "failed") |#1|) 42)) (-1849 (((-1173)) 35))) +(((-1100 |#1| |#2|) (-10 -7 (-15 -2976 ((-1173))) (-15 -2801 ((-1173) (-1070) (-1070))) (-15 -1942 ((-1173) (-1070))) (-15 -1969 ((-1173))) (-15 -1849 ((-1173))) (-15 -1752 ((-108))) (-15 -1402 ((-108))) (-15 -2254 ((-108))) (-15 -3676 ((-3 |#2| "failed") |#1|)) (-15 -3450 ((-1173) |#1| |#2|))) (-1016) (-1016)) (T -1100)) +((-3450 (*1 *2 *3 *4) (-12 (-5 *2 (-1173)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-3676 (*1 *2 *3) (|partial| -12 (-4 *2 (-1016)) (-5 *1 (-1100 *3 *2)) (-4 *3 (-1016)))) (-2254 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-1402 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-1752 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-1849 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-1969 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1100 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-1016)))) (-2801 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1100 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-1016)))) (-2976 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016))))) +(-10 -7 (-15 -2976 ((-1173))) (-15 -2801 ((-1173) (-1070) (-1070))) (-15 -1942 ((-1173) (-1070))) (-15 -1969 ((-1173))) (-15 -1849 ((-1173))) (-15 -1752 ((-108))) (-15 -1402 ((-108))) (-15 -2254 ((-108))) (-15 -3676 ((-3 |#2| "failed") |#1|)) (-15 -3450 ((-1173) |#1| |#2|))) +((-2058 (((-1070) (-1070)) 18)) (-3359 (((-51) (-1070)) 21))) +(((-1101) (-10 -7 (-15 -3359 ((-51) (-1070))) (-15 -2058 ((-1070) (-1070))))) (T -1101)) +((-2058 (*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1101)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-51)) (-5 *1 (-1101))))) +(-10 -7 (-15 -3359 ((-51) (-1070))) (-15 -2058 ((-1070) (-1070)))) +((-1458 (((-1103) |#1|) 11))) +(((-1102 |#1|) (-10 -7 (-15 -1458 ((-1103) |#1|))) (-1016)) (T -1102)) +((-1458 (*1 *2 *3) (-12 (-5 *2 (-1103)) (-5 *1 (-1102 *3)) (-4 *3 (-1016))))) +(-10 -7 (-15 -1458 ((-1103) |#1|))) +((-3924 (((-108) $ $) NIL)) (-3061 (((-589 (-1070)) $) 33)) (-1326 (((-589 (-1070)) $ (-589 (-1070))) 36)) (-4155 (((-589 (-1070)) $ (-589 (-1070))) 35)) (-2210 (((-589 (-1070)) $ (-589 (-1070))) 37)) (-2600 (((-589 (-1070)) $) 32)) (-3052 (($) 22)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3987 (((-589 (-1070)) $) 34)) (-3973 (((-1173) $ (-523)) 29) (((-1173) $) 30)) (-3663 (($ (-794) (-523)) 26) (($ (-794) (-523) (-794)) NIL)) (-1458 (((-794) $) 39) (($ (-794)) 24)) (-3983 (((-108) $ $) NIL))) +(((-1103) (-13 (-1016) (-10 -8 (-15 -1458 ($ (-794))) (-15 -3663 ($ (-794) (-523))) (-15 -3663 ($ (-794) (-523) (-794))) (-15 -3973 ((-1173) $ (-523))) (-15 -3973 ((-1173) $)) (-15 -3987 ((-589 (-1070)) $)) (-15 -3061 ((-589 (-1070)) $)) (-15 -3052 ($)) (-15 -2600 ((-589 (-1070)) $)) (-15 -2210 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -1326 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -4155 ((-589 (-1070)) $ (-589 (-1070))))))) (T -1103)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-794)) (-5 *1 (-1103)))) (-3663 (*1 *1 *2 *3) (-12 (-5 *2 (-794)) (-5 *3 (-523)) (-5 *1 (-1103)))) (-3663 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-794)) (-5 *3 (-523)) (-5 *1 (-1103)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-1103)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1103)))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103)))) (-3061 (*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103)))) (-3052 (*1 *1) (-5 *1 (-1103))) (-2600 (*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103)))) (-2210 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103)))) (-1326 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103)))) (-4155 (*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103))))) +(-13 (-1016) (-10 -8 (-15 -1458 ($ (-794))) (-15 -3663 ($ (-794) (-523))) (-15 -3663 ($ (-794) (-523) (-794))) (-15 -3973 ((-1173) $ (-523))) (-15 -3973 ((-1173) $)) (-15 -3987 ((-589 (-1070)) $)) (-15 -3061 ((-589 (-1070)) $)) (-15 -3052 ($)) (-15 -2600 ((-589 (-1070)) $)) (-15 -2210 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -1326 ((-589 (-1070)) $ (-589 (-1070)))) (-15 -4155 ((-589 (-1070)) $ (-589 (-1070)))))) +((-3924 (((-108) $ $) NIL)) (-1331 (((-1070) $ (-1070)) 15) (((-1070) $) 14)) (-3715 (((-1070) $ (-1070)) 13)) (-2647 (($ $ (-1070)) NIL)) (-2841 (((-3 (-1070) "failed") $) 11)) (-4156 (((-1070) $) 8)) (-4096 (((-3 (-1070) "failed") $) 12)) (-3114 (((-1070) $) 9)) (-2625 (($ (-364)) NIL) (($ (-364) (-1070)) NIL)) (-4038 (((-364) $) NIL)) (-3779 (((-1070) $) NIL)) (-1998 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2736 (((-108) $) 17)) (-1458 (((-794) $) NIL)) (-1685 (($ $) NIL)) (-3983 (((-108) $ $) NIL))) +(((-1104) (-13 (-340 (-364) (-1070)) (-10 -8 (-15 -1331 ((-1070) $ (-1070))) (-15 -1331 ((-1070) $)) (-15 -4156 ((-1070) $)) (-15 -2841 ((-3 (-1070) "failed") $)) (-15 -4096 ((-3 (-1070) "failed") $)) (-15 -2736 ((-108) $))))) (T -1104)) +((-1331 (*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1104)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1104)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1104)))) (-2841 (*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-1104)))) (-4096 (*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-1104)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1104))))) +(-13 (-340 (-364) (-1070)) (-10 -8 (-15 -1331 ((-1070) $ (-1070))) (-15 -1331 ((-1070) $)) (-15 -4156 ((-1070) $)) (-15 -2841 ((-3 (-1070) "failed") $)) (-15 -4096 ((-3 (-1070) "failed") $)) (-15 -2736 ((-108) $)))) +((-3671 (((-3 (-523) "failed") |#1|) 19)) (-2172 (((-3 (-523) "failed") |#1|) 13)) (-3166 (((-523) (-1070)) 28))) +(((-1105 |#1|) (-10 -7 (-15 -3671 ((-3 (-523) "failed") |#1|)) (-15 -2172 ((-3 (-523) "failed") |#1|)) (-15 -3166 ((-523) (-1070)))) (-973)) (T -1105)) +((-3166 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-523)) (-5 *1 (-1105 *4)) (-4 *4 (-973)))) (-2172 (*1 *2 *3) (|partial| -12 (-5 *2 (-523)) (-5 *1 (-1105 *3)) (-4 *3 (-973)))) (-3671 (*1 *2 *3) (|partial| -12 (-5 *2 (-523)) (-5 *1 (-1105 *3)) (-4 *3 (-973))))) +(-10 -7 (-15 -3671 ((-3 (-523) "failed") |#1|)) (-15 -2172 ((-3 (-523) "failed") |#1|)) (-15 -3166 ((-523) (-1070)))) +((-3123 (((-1047 (-203))) 8))) +(((-1106) (-10 -7 (-15 -3123 ((-1047 (-203)))))) (T -1106)) +((-3123 (*1 *2) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-1106))))) +(-10 -7 (-15 -3123 ((-1047 (-203))))) +((-2820 (($) 11)) (-1839 (($ $) 35)) (-1818 (($ $) 33)) (-3828 (($ $) 25)) (-1865 (($ $) 17)) (-2914 (($ $) 15)) (-1852 (($ $) 19)) (-3859 (($ $) 30)) (-1830 (($ $) 34)) (-3838 (($ $) 29))) +(((-1107 |#1|) (-10 -8 (-15 -2820 (|#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1818 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -1852 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3859 (|#1| |#1|)) (-15 -3838 (|#1| |#1|))) (-1108)) (T -1107)) +NIL +(-10 -8 (-15 -2820 (|#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1818 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -1852 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3859 (|#1| |#1|)) (-15 -3838 (|#1| |#1|))) +((-1769 (($ $) 26)) (-3780 (($ $) 11)) (-1744 (($ $) 27)) (-3711 (($ $) 10)) (-1793 (($ $) 28)) (-3805 (($ $) 9)) (-2820 (($) 16)) (-2384 (($ $) 19)) (-1811 (($ $) 18)) (-1805 (($ $) 29)) (-3816 (($ $) 8)) (-1782 (($ $) 30)) (-3793 (($ $) 7)) (-1757 (($ $) 31)) (-3767 (($ $) 6)) (-1839 (($ $) 20)) (-3847 (($ $) 32)) (-1818 (($ $) 21)) (-3828 (($ $) 33)) (-1865 (($ $) 22)) (-1719 (($ $) 34)) (-2914 (($ $) 23)) (-1731 (($ $) 35)) (-1852 (($ $) 24)) (-3859 (($ $) 36)) (-1830 (($ $) 25)) (-3838 (($ $) 37)) (** (($ $ $) 17))) +(((-1108) (-129)) (T -1108)) +((-2820 (*1 *1) (-4 *1 (-1108)))) +(-13 (-1111) (-91) (-464) (-34) (-261) (-10 -8 (-15 -2820 ($)))) +(((-34) . T) ((-91) . T) ((-261) . T) ((-464) . T) ((-1111) . T)) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-1733 ((|#1| $) 17)) (-3283 (($ |#1| (-589 $)) 23) (($ (-589 |#1|)) 27) (($ |#1|) 25)) (-3079 (((-108) $ (-710)) 48)) (-1823 ((|#1| $ |#1|) 14 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 13 (|has| $ (-6 -4245)))) (-2518 (($) NIL T CONST)) (-1666 (((-589 |#1|) $) 52 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) 43)) (-1238 (((-108) $ $) 33 (|has| |#1| (-1016)))) (-2346 (((-108) $ (-710)) 41)) (-2136 (((-589 |#1|) $) 53 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 51 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2852 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 22)) (-2866 (((-108) $ (-710)) 40)) (-2726 (((-589 |#1|) $) 37)) (-3555 (((-108) $) 36)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1327 (((-108) (-1 (-108) |#1|) $) 50 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 74)) (-3883 (((-108) $) 9)) (-3988 (($) 10)) (-3223 ((|#1| $ "value") NIL)) (-1549 (((-523) $ $) 32)) (-2032 (((-589 $) $) 59)) (-4144 (((-108) $ $) 76)) (-2616 (((-589 $) $) 72)) (-1498 (($ $) 73)) (-2524 (((-108) $) 56)) (-2792 (((-710) (-1 (-108) |#1|) $) 20 (|has| $ (-6 -4244))) (((-710) |#1| $) 16 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1664 (($ $) 58)) (-1458 (((-794) $) 61 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) 12)) (-3653 (((-108) $ $) 29 (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) 49 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 28 (|has| |#1| (-1016)))) (-2676 (((-710) $) 39 (|has| $ (-6 -4244))))) +(((-1109 |#1|) (-13 (-938 |#1|) (-10 -8 (-6 -4244) (-6 -4245) (-15 -3283 ($ |#1| (-589 $))) (-15 -3283 ($ (-589 |#1|))) (-15 -3283 ($ |#1|)) (-15 -2524 ((-108) $)) (-15 -1498 ($ $)) (-15 -2616 ((-589 $) $)) (-15 -4144 ((-108) $ $)) (-15 -2032 ((-589 $) $)))) (-1016)) (T -1109)) +((-2524 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1109 *3)) (-4 *3 (-1016)))) (-3283 (*1 *1 *2 *3) (-12 (-5 *3 (-589 (-1109 *2))) (-5 *1 (-1109 *2)) (-4 *2 (-1016)))) (-3283 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-1109 *3)))) (-3283 (*1 *1 *2) (-12 (-5 *1 (-1109 *2)) (-4 *2 (-1016)))) (-1498 (*1 *1 *1) (-12 (-5 *1 (-1109 *2)) (-4 *2 (-1016)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-589 (-1109 *3))) (-5 *1 (-1109 *3)) (-4 *3 (-1016)))) (-4144 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1109 *3)) (-4 *3 (-1016)))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-589 (-1109 *3))) (-5 *1 (-1109 *3)) (-4 *3 (-1016))))) +(-13 (-938 |#1|) (-10 -8 (-6 -4244) (-6 -4245) (-15 -3283 ($ |#1| (-589 $))) (-15 -3283 ($ (-589 |#1|))) (-15 -3283 ($ |#1|)) (-15 -2524 ((-108) $)) (-15 -1498 ($ $)) (-15 -2616 ((-589 $) $)) (-15 -4144 ((-108) $ $)) (-15 -2032 ((-589 $) $)))) +((-3780 (($ $) 15)) (-3805 (($ $) 12)) (-3816 (($ $) 10)) (-3793 (($ $) 17))) +(((-1110 |#1|) (-10 -8 (-15 -3793 (|#1| |#1|)) (-15 -3816 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3780 (|#1| |#1|))) (-1111)) (T -1110)) +NIL +(-10 -8 (-15 -3793 (|#1| |#1|)) (-15 -3816 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3780 (|#1| |#1|))) +((-3780 (($ $) 11)) (-3711 (($ $) 10)) (-3805 (($ $) 9)) (-3816 (($ $) 8)) (-3793 (($ $) 7)) (-3767 (($ $) 6))) +(((-1111) (-129)) (T -1111)) +((-3780 (*1 *1 *1) (-4 *1 (-1111))) (-3711 (*1 *1 *1) (-4 *1 (-1111))) (-3805 (*1 *1 *1) (-4 *1 (-1111))) (-3816 (*1 *1 *1) (-4 *1 (-1111))) (-3793 (*1 *1 *1) (-4 *1 (-1111))) (-3767 (*1 *1 *1) (-4 *1 (-1111)))) +(-13 (-10 -8 (-15 -3767 ($ $)) (-15 -3793 ($ $)) (-15 -3816 ($ $)) (-15 -3805 ($ $)) (-15 -3711 ($ $)) (-15 -3780 ($ $)))) +((-2653 ((|#2| |#2|) 85)) (-3623 (((-108) |#2|) 25)) (-1842 ((|#2| |#2|) 29)) (-1856 ((|#2| |#2|) 31)) (-2902 ((|#2| |#2| (-1087)) 79) ((|#2| |#2|) 80)) (-3726 (((-155 |#2|) |#2|) 27)) (-1901 ((|#2| |#2| (-1087)) 81) ((|#2| |#2|) 82))) +(((-1112 |#1| |#2|) (-10 -7 (-15 -2902 (|#2| |#2|)) (-15 -2902 (|#2| |#2| (-1087))) (-15 -1901 (|#2| |#2|)) (-15 -1901 (|#2| |#2| (-1087))) (-15 -2653 (|#2| |#2|)) (-15 -1842 (|#2| |#2|)) (-15 -1856 (|#2| |#2|)) (-15 -3623 ((-108) |#2|)) (-15 -3726 ((-155 |#2|) |#2|))) (-13 (-427) (-786) (-964 (-523)) (-585 (-523))) (-13 (-27) (-1108) (-406 |#1|))) (T -1112)) +((-3726 (*1 *2 *3) (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-155 *3)) (-5 *1 (-1112 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *4))))) (-3623 (*1 *2 *3) (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 (-108)) (-5 *1 (-1112 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *4))))) (-1856 (*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3))))) (-1842 (*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3))))) (-2653 (*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3))))) (-1901 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1112 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4))))) (-1901 (*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3))))) (-2902 (*1 *2 *2 *3) (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1112 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4))))) (-2902 (*1 *2 *2) (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3)))))) +(-10 -7 (-15 -2902 (|#2| |#2|)) (-15 -2902 (|#2| |#2| (-1087))) (-15 -1901 (|#2| |#2|)) (-15 -1901 (|#2| |#2| (-1087))) (-15 -2653 (|#2| |#2|)) (-15 -1842 (|#2| |#2|)) (-15 -1856 (|#2| |#2|)) (-15 -3623 ((-108) |#2|)) (-15 -3726 ((-155 |#2|) |#2|))) +((-2234 ((|#4| |#4| |#1|) 27)) (-3475 ((|#4| |#4| |#1|) 28))) +(((-1113 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2234 (|#4| |#4| |#1|)) (-15 -3475 (|#4| |#4| |#1|))) (-515) (-349 |#1|) (-349 |#1|) (-627 |#1| |#2| |#3|)) (T -1113)) +((-3475 (*1 *2 *2 *3) (-12 (-4 *3 (-515)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-1113 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2234 (*1 *2 *2 *3) (-12 (-4 *3 (-515)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-5 *1 (-1113 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +(-10 -7 (-15 -2234 (|#4| |#4| |#1|)) (-15 -3475 (|#4| |#4| |#1|))) +((-2481 ((|#2| |#2|) 132)) (-1961 ((|#2| |#2|) 129)) (-2414 ((|#2| |#2|) 120)) (-2675 ((|#2| |#2|) 117)) (-4171 ((|#2| |#2|) 125)) (-2680 ((|#2| |#2|) 113)) (-3849 ((|#2| |#2|) 42)) (-2533 ((|#2| |#2|) 93)) (-2267 ((|#2| |#2|) 73)) (-2460 ((|#2| |#2|) 127)) (-3245 ((|#2| |#2|) 115)) (-2681 ((|#2| |#2|) 137)) (-1509 ((|#2| |#2|) 135)) (-3635 ((|#2| |#2|) 136)) (-1277 ((|#2| |#2|) 134)) (-4025 ((|#2| |#2|) 146)) (-1912 ((|#2| |#2|) 30 (-12 (|has| |#2| (-564 (-823 |#1|))) (|has| |#2| (-817 |#1|)) (|has| |#1| (-564 (-823 |#1|))) (|has| |#1| (-817 |#1|))))) (-3382 ((|#2| |#2|) 74)) (-4002 ((|#2| |#2|) 138)) (-3686 ((|#2| |#2|) 139)) (-4208 ((|#2| |#2|) 126)) (-2202 ((|#2| |#2|) 114)) (-4120 ((|#2| |#2|) 133)) (-3463 ((|#2| |#2|) 131)) (-3576 ((|#2| |#2|) 121)) (-1761 ((|#2| |#2|) 119)) (-2213 ((|#2| |#2|) 123)) (-1505 ((|#2| |#2|) 111))) +(((-1114 |#1| |#2|) (-10 -7 (-15 -3686 (|#2| |#2|)) (-15 -2267 (|#2| |#2|)) (-15 -4025 (|#2| |#2|)) (-15 -2533 (|#2| |#2|)) (-15 -3849 (|#2| |#2|)) (-15 -3382 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -1505 (|#2| |#2|)) (-15 -2213 (|#2| |#2|)) (-15 -3576 (|#2| |#2|)) (-15 -4120 (|#2| |#2|)) (-15 -2202 (|#2| |#2|)) (-15 -4208 (|#2| |#2|)) (-15 -3245 (|#2| |#2|)) (-15 -2460 (|#2| |#2|)) (-15 -2680 (|#2| |#2|)) (-15 -4171 (|#2| |#2|)) (-15 -2414 (|#2| |#2|)) (-15 -2481 (|#2| |#2|)) (-15 -2675 (|#2| |#2|)) (-15 -1961 (|#2| |#2|)) (-15 -1761 (|#2| |#2|)) (-15 -3463 (|#2| |#2|)) (-15 -1277 (|#2| |#2|)) (-15 -1509 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -2681 (|#2| |#2|)) (IF (|has| |#1| (-817 |#1|)) (IF (|has| |#1| (-564 (-823 |#1|))) (IF (|has| |#2| (-564 (-823 |#1|))) (IF (|has| |#2| (-817 |#1|)) (-15 -1912 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-786) (-427)) (-13 (-406 |#1|) (-1108))) (T -1114)) +((-1912 (*1 *2 *2) (-12 (-4 *3 (-564 (-823 *3))) (-4 *3 (-817 *3)) (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-564 (-823 *3))) (-4 *2 (-817 *3)) (-4 *2 (-13 (-406 *3) (-1108))))) (-2681 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-1509 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-1277 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-3463 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-1761 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-1961 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-2675 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-2481 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-2414 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-4171 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-2680 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-2460 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-3245 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-4208 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-2202 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-4120 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-3576 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-2213 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-1505 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-3382 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-3849 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-2533 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-4025 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-2267 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108))))) (-3686 (*1 *2 *2) (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-406 *3) (-1108)))))) +(-10 -7 (-15 -3686 (|#2| |#2|)) (-15 -2267 (|#2| |#2|)) (-15 -4025 (|#2| |#2|)) (-15 -2533 (|#2| |#2|)) (-15 -3849 (|#2| |#2|)) (-15 -3382 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -1505 (|#2| |#2|)) (-15 -2213 (|#2| |#2|)) (-15 -3576 (|#2| |#2|)) (-15 -4120 (|#2| |#2|)) (-15 -2202 (|#2| |#2|)) (-15 -4208 (|#2| |#2|)) (-15 -3245 (|#2| |#2|)) (-15 -2460 (|#2| |#2|)) (-15 -2680 (|#2| |#2|)) (-15 -4171 (|#2| |#2|)) (-15 -2414 (|#2| |#2|)) (-15 -2481 (|#2| |#2|)) (-15 -2675 (|#2| |#2|)) (-15 -1961 (|#2| |#2|)) (-15 -1761 (|#2| |#2|)) (-15 -3463 (|#2| |#2|)) (-15 -1277 (|#2| |#2|)) (-15 -1509 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -2681 (|#2| |#2|)) (IF (|has| |#1| (-817 |#1|)) (IF (|has| |#1| (-564 (-823 |#1|))) (IF (|has| |#2| (-564 (-823 |#1|))) (IF (|has| |#2| (-817 |#1|)) (-15 -1912 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2694 (((-108) |#5| $) 60) (((-108) $) 102)) (-2308 ((|#5| |#5| $) 75)) (-3724 (($ (-1 (-108) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-3375 (((-589 |#5|) (-589 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 73)) (-3517 (((-3 $ "failed") (-589 |#5|)) 126)) (-1751 (((-3 $ "failed") $) 112)) (-4014 ((|#5| |#5| $) 94)) (-2663 (((-108) |#5| $ (-1 (-108) |#5| |#5|)) 31)) (-2636 ((|#5| |#5| $) 98)) (-2437 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 69)) (-3737 (((-2 (|:| -3952 (-589 |#5|)) (|:| -2625 (-589 |#5|))) $) 55)) (-4172 (((-108) |#5| $) 58) (((-108) $) 103)) (-2907 ((|#4| $) 108)) (-2579 (((-3 |#5| "failed") $) 110)) (-2404 (((-589 |#5|) $) 49)) (-2112 (((-108) |#5| $) 67) (((-108) $) 107)) (-2648 ((|#5| |#5| $) 81)) (-2391 (((-108) $ $) 27)) (-2001 (((-108) |#5| $) 63) (((-108) $) 105)) (-1398 ((|#5| |#5| $) 78)) (-1738 (((-3 |#5| "failed") $) 109)) (-4097 (($ $ |#5|) 127)) (-2299 (((-710) $) 52)) (-1472 (($ (-589 |#5|)) 124)) (-2621 (($ $ |#4|) 122)) (-2624 (($ $ |#4|) 121)) (-1824 (($ $) 120)) (-1458 (((-794) $) NIL) (((-589 |#5|) $) 113)) (-1395 (((-710) $) 130)) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#5|))) "failed") (-589 |#5|) (-1 (-108) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#5|))) "failed") (-589 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|)) 45)) (-4031 (((-108) $ (-1 (-108) |#5| (-589 |#5|))) 100)) (-3862 (((-589 |#4|) $) 115)) (-2153 (((-108) |#4| $) 118)) (-3983 (((-108) $ $) 19))) +(((-1115 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1395 ((-710) |#1|)) (-15 -4097 (|#1| |#1| |#5|)) (-15 -3724 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2153 ((-108) |#4| |#1|)) (-15 -3862 ((-589 |#4|) |#1|)) (-15 -1751 ((-3 |#1| "failed") |#1|)) (-15 -2579 ((-3 |#5| "failed") |#1|)) (-15 -1738 ((-3 |#5| "failed") |#1|)) (-15 -2636 (|#5| |#5| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 -4014 (|#5| |#5| |#1|)) (-15 -2648 (|#5| |#5| |#1|)) (-15 -1398 (|#5| |#5| |#1|)) (-15 -2308 (|#5| |#5| |#1|)) (-15 -3375 ((-589 |#5|) (-589 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2437 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2112 ((-108) |#1|)) (-15 -2001 ((-108) |#1|)) (-15 -2694 ((-108) |#1|)) (-15 -4031 ((-108) |#1| (-1 (-108) |#5| (-589 |#5|)))) (-15 -2112 ((-108) |#5| |#1|)) (-15 -2001 ((-108) |#5| |#1|)) (-15 -2694 ((-108) |#5| |#1|)) (-15 -2663 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -4172 ((-108) |#1|)) (-15 -4172 ((-108) |#5| |#1|)) (-15 -3737 ((-2 (|:| -3952 (-589 |#5|)) (|:| -2625 (-589 |#5|))) |#1|)) (-15 -2299 ((-710) |#1|)) (-15 -2404 ((-589 |#5|) |#1|)) (-15 -3869 ((-3 (-2 (|:| |bas| |#1|) (|:| -3125 (-589 |#5|))) "failed") (-589 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -3869 ((-3 (-2 (|:| |bas| |#1|) (|:| -3125 (-589 |#5|))) "failed") (-589 |#5|) (-1 (-108) |#5| |#5|))) (-15 -2391 ((-108) |#1| |#1|)) (-15 -2621 (|#1| |#1| |#4|)) (-15 -2624 (|#1| |#1| |#4|)) (-15 -2907 (|#4| |#1|)) (-15 -3517 ((-3 |#1| "failed") (-589 |#5|))) (-15 -1458 ((-589 |#5|) |#1|)) (-15 -1472 (|#1| (-589 |#5|))) (-15 -2437 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2437 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3724 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -2437 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) (-1116 |#2| |#3| |#4| |#5|) (-515) (-732) (-786) (-987 |#2| |#3| |#4|)) (T -1115)) +NIL +(-10 -8 (-15 -1395 ((-710) |#1|)) (-15 -4097 (|#1| |#1| |#5|)) (-15 -3724 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2153 ((-108) |#4| |#1|)) (-15 -3862 ((-589 |#4|) |#1|)) (-15 -1751 ((-3 |#1| "failed") |#1|)) (-15 -2579 ((-3 |#5| "failed") |#1|)) (-15 -1738 ((-3 |#5| "failed") |#1|)) (-15 -2636 (|#5| |#5| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 -4014 (|#5| |#5| |#1|)) (-15 -2648 (|#5| |#5| |#1|)) (-15 -1398 (|#5| |#5| |#1|)) (-15 -2308 (|#5| |#5| |#1|)) (-15 -3375 ((-589 |#5|) (-589 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2437 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2112 ((-108) |#1|)) (-15 -2001 ((-108) |#1|)) (-15 -2694 ((-108) |#1|)) (-15 -4031 ((-108) |#1| (-1 (-108) |#5| (-589 |#5|)))) (-15 -2112 ((-108) |#5| |#1|)) (-15 -2001 ((-108) |#5| |#1|)) (-15 -2694 ((-108) |#5| |#1|)) (-15 -2663 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -4172 ((-108) |#1|)) (-15 -4172 ((-108) |#5| |#1|)) (-15 -3737 ((-2 (|:| -3952 (-589 |#5|)) (|:| -2625 (-589 |#5|))) |#1|)) (-15 -2299 ((-710) |#1|)) (-15 -2404 ((-589 |#5|) |#1|)) (-15 -3869 ((-3 (-2 (|:| |bas| |#1|) (|:| -3125 (-589 |#5|))) "failed") (-589 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -3869 ((-3 (-2 (|:| |bas| |#1|) (|:| -3125 (-589 |#5|))) "failed") (-589 |#5|) (-1 (-108) |#5| |#5|))) (-15 -2391 ((-108) |#1| |#1|)) (-15 -2621 (|#1| |#1| |#4|)) (-15 -2624 (|#1| |#1| |#4|)) (-15 -2907 (|#4| |#1|)) (-15 -3517 ((-3 |#1| "failed") (-589 |#5|))) (-15 -1458 ((-589 |#5|) |#1|)) (-15 -1472 (|#1| (-589 |#5|))) (-15 -2437 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2437 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3724 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -2437 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1458 ((-794) |#1|)) (-15 -3983 ((-108) |#1| |#1|))) +((-3924 (((-108) $ $) 7)) (-1633 (((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 |#4|)))) (-589 |#4|)) 85)) (-3846 (((-589 $) (-589 |#4|)) 86)) (-1957 (((-589 |#3|) $) 33)) (-2100 (((-108) $) 26)) (-2376 (((-108) $) 17 (|has| |#1| (-515)))) (-2694 (((-108) |#4| $) 101) (((-108) $) 97)) (-2308 ((|#4| |#4| $) 92)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) 27)) (-3079 (((-108) $ (-710)) 44)) (-3724 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4244))) (((-3 |#4| "failed") $ |#3|) 79)) (-2518 (($) 45 T CONST)) (-3595 (((-108) $) 22 (|has| |#1| (-515)))) (-4017 (((-108) $ $) 24 (|has| |#1| (-515)))) (-3225 (((-108) $ $) 23 (|has| |#1| (-515)))) (-3393 (((-108) $) 25 (|has| |#1| (-515)))) (-3375 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3956 (((-589 |#4|) (-589 |#4|) $) 18 (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) 19 (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) 36)) (-3474 (($ (-589 |#4|)) 35)) (-1751 (((-3 $ "failed") $) 82)) (-4014 ((|#4| |#4| $) 89)) (-1773 (($ $) 68 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#4| $) 67 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-515)))) (-2663 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2636 ((|#4| |#4| $) 87)) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4244))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-3737 (((-2 (|:| -3952 (-589 |#4|)) (|:| -2625 (-589 |#4|))) $) 105)) (-1666 (((-589 |#4|) $) 52 (|has| $ (-6 -4244)))) (-4172 (((-108) |#4| $) 104) (((-108) $) 103)) (-2907 ((|#3| $) 34)) (-2346 (((-108) $ (-710)) 43)) (-2136 (((-589 |#4|) $) 53 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) 47)) (-4055 (((-589 |#3|) $) 32)) (-1357 (((-108) |#3| $) 31)) (-2866 (((-108) $ (-710)) 42)) (-3779 (((-1070) $) 9)) (-2579 (((-3 |#4| "failed") $) 83)) (-2404 (((-589 |#4|) $) 107)) (-2112 (((-108) |#4| $) 99) (((-108) $) 95)) (-2648 ((|#4| |#4| $) 90)) (-2391 (((-108) $ $) 110)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-515)))) (-2001 (((-108) |#4| $) 100) (((-108) $) 96)) (-1398 ((|#4| |#4| $) 91)) (-2783 (((-1034) $) 10)) (-1738 (((-3 |#4| "failed") $) 84)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2890 (((-3 $ "failed") $ |#4|) 78)) (-4097 (($ $ |#4|) 77)) (-1327 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) 59 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) 57 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) 56 (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) 38)) (-3883 (((-108) $) 41)) (-3988 (($) 40)) (-2299 (((-710) $) 106)) (-2792 (((-710) |#4| $) 54 (-12 (|has| |#4| (-1016)) (|has| $ (-6 -4244)))) (((-710) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4244)))) (-1664 (($ $) 39)) (-3663 (((-499) $) 69 (|has| |#4| (-564 (-499))))) (-1472 (($ (-589 |#4|)) 60)) (-2621 (($ $ |#3|) 28)) (-2624 (($ $ |#3|) 30)) (-1824 (($ $) 88)) (-3076 (($ $ |#3|) 29)) (-1458 (((-794) $) 11) (((-589 |#4|) $) 37)) (-1395 (((-710) $) 76 (|has| |#3| (-344)))) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4031 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) 98)) (-2096 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4244)))) (-3862 (((-589 |#3|) $) 81)) (-2153 (((-108) |#3| $) 80)) (-3983 (((-108) $ $) 6)) (-2676 (((-710) $) 46 (|has| $ (-6 -4244))))) +(((-1116 |#1| |#2| |#3| |#4|) (-129) (-515) (-732) (-786) (-987 |t#1| |t#2| |t#3|)) (T -1116)) +((-2391 (*1 *2 *1 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) (-3869 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3125 (-589 *8)))) (-5 *3 (-589 *8)) (-4 *1 (-1116 *5 *6 *7 *8)))) (-3869 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) (-4 *9 (-987 *6 *7 *8)) (-4 *6 (-515)) (-4 *7 (-732)) (-4 *8 (-786)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3125 (-589 *9)))) (-5 *3 (-589 *9)) (-4 *1 (-1116 *6 *7 *8 *9)))) (-2404 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *6)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-710)))) (-3737 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-2 (|:| -3952 (-589 *6)) (|:| -2625 (-589 *6)))))) (-4172 (*1 *2 *3 *1) (-12 (-4 *1 (-1116 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) (-2663 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1116 *5 *6 *7 *3)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-108)))) (-2694 (*1 *2 *3 *1) (-12 (-4 *1 (-1116 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-2001 (*1 *2 *3 *1) (-12 (-4 *1 (-1116 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-2112 (*1 *2 *3 *1) (-12 (-4 *1 (-1116 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-4031 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-108) *7 (-589 *7))) (-4 *1 (-1116 *4 *5 *6 *7)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)))) (-2694 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) (-2112 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) (-2437 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) (-4 *1 (-1116 *5 *6 *7 *2)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *2 (-987 *5 *6 *7)))) (-3375 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-589 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1116 *5 *6 *7 *8)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)))) (-2308 (*1 *2 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-1398 (*1 *2 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-2648 (*1 *2 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-4014 (*1 *2 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-1824 (*1 *1 *1) (-12 (-4 *1 (-1116 *2 *3 *4 *5)) (-4 *2 (-515)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-987 *2 *3 *4)))) (-2636 (*1 *2 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-3846 (*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) (-4 *1 (-1116 *4 *5 *6 *7)))) (-1633 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-589 (-2 (|:| -3952 *1) (|:| -2625 (-589 *7))))) (-5 *3 (-589 *7)) (-4 *1 (-1116 *4 *5 *6 *7)))) (-1738 (*1 *2 *1) (|partial| -12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-2579 (*1 *2 *1) (|partial| -12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-1751 (*1 *1 *1) (|partial| -12 (-4 *1 (-1116 *2 *3 *4 *5)) (-4 *2 (-515)) (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-987 *2 *3 *4)))) (-3862 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *5)))) (-2153 (*1 *2 *3 *1) (-12 (-4 *1 (-1116 *4 *5 *3 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *3 (-786)) (-4 *6 (-987 *4 *5 *3)) (-5 *2 (-108)))) (-3724 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1116 *4 *5 *3 *2)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *3 (-786)) (-4 *2 (-987 *4 *5 *3)))) (-2890 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-4097 (*1 *1 *1 *2) (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) (-1395 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *5 (-344)) (-5 *2 (-710))))) +(-13 (-905 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4244) (-6 -4245) (-15 -2391 ((-108) $ $)) (-15 -3869 ((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |t#4|))) "failed") (-589 |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3869 ((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |t#4|))) "failed") (-589 |t#4|) (-1 (-108) |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2404 ((-589 |t#4|) $)) (-15 -2299 ((-710) $)) (-15 -3737 ((-2 (|:| -3952 (-589 |t#4|)) (|:| -2625 (-589 |t#4|))) $)) (-15 -4172 ((-108) |t#4| $)) (-15 -4172 ((-108) $)) (-15 -2663 ((-108) |t#4| $ (-1 (-108) |t#4| |t#4|))) (-15 -2694 ((-108) |t#4| $)) (-15 -2001 ((-108) |t#4| $)) (-15 -2112 ((-108) |t#4| $)) (-15 -4031 ((-108) $ (-1 (-108) |t#4| (-589 |t#4|)))) (-15 -2694 ((-108) $)) (-15 -2001 ((-108) $)) (-15 -2112 ((-108) $)) (-15 -2437 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3375 ((-589 |t#4|) (-589 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2308 (|t#4| |t#4| $)) (-15 -1398 (|t#4| |t#4| $)) (-15 -2648 (|t#4| |t#4| $)) (-15 -4014 (|t#4| |t#4| $)) (-15 -1824 ($ $)) (-15 -2636 (|t#4| |t#4| $)) (-15 -3846 ((-589 $) (-589 |t#4|))) (-15 -1633 ((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 |t#4|)))) (-589 |t#4|))) (-15 -1738 ((-3 |t#4| "failed") $)) (-15 -2579 ((-3 |t#4| "failed") $)) (-15 -1751 ((-3 $ "failed") $)) (-15 -3862 ((-589 |t#3|) $)) (-15 -2153 ((-108) |t#3| $)) (-15 -3724 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2890 ((-3 $ "failed") $ |t#4|)) (-15 -4097 ($ $ |t#4|)) (IF (|has| |t#3| (-344)) (-15 -1395 ((-710) $)) |%noBranch|))) +(((-33) . T) ((-97) . T) ((-563 (-589 |#4|)) . T) ((-563 (-794)) . T) ((-140 |#4|) . T) ((-564 (-499)) |has| |#4| (-564 (-499))) ((-286 |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-462 |#4|) . T) ((-484 |#4| |#4|) -12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))) ((-905 |#1| |#2| |#3| |#4|) . T) ((-1016) . T) ((-1122) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-1087)) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-1769 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1744 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3566 (((-883 |#1|) $ (-710)) 17) (((-883 |#1|) $ (-710) (-710)) NIL)) (-2003 (((-108) $) NIL)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-710) $ (-1087)) NIL) (((-710) $ (-1087) (-710)) NIL)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2620 (((-108) $) NIL)) (-1933 (($ $ (-589 (-1087)) (-589 (-495 (-1087)))) NIL) (($ $ (-1087) (-495 (-1087))) NIL) (($ |#1| (-495 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2384 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-3417 (($ $ (-1087)) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087) |#1|) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2783 (((-1034) $) NIL)) (-2340 (($ (-1 $) (-1087) |#1|) NIL (|has| |#1| (-37 (-383 (-523)))))) (-4097 (($ $ (-710)) NIL)) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-1811 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2679 (($ $ (-1087) $) NIL) (($ $ (-589 (-1087)) (-589 $)) NIL) (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL)) (-3523 (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL)) (-2299 (((-495 (-1087)) $) NIL)) (-1805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL (|has| |#1| (-158))) (($ $) NIL (|has| |#1| (-515))) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-1087)) NIL) (($ (-883 |#1|)) NIL)) (-2365 ((|#1| $ (-495 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (((-883 |#1|) $ (-710)) NIL)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-1839 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2914 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2862 (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL)) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1117 |#1|) (-13 (-680 |#1| (-1087)) (-10 -8 (-15 -2365 ((-883 |#1|) $ (-710))) (-15 -1458 ($ (-1087))) (-15 -1458 ($ (-883 |#1|))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ($ $ (-1087) |#1|)) (-15 -2340 ($ (-1 $) (-1087) |#1|))) |%noBranch|))) (-973)) (T -1117)) +((-2365 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *2 (-883 *4)) (-5 *1 (-1117 *4)) (-4 *4 (-973)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1117 *3)) (-4 *3 (-973)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-883 *3)) (-4 *3 (-973)) (-5 *1 (-1117 *3)))) (-3417 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *1 (-1117 *3)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)))) (-2340 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1117 *4))) (-5 *3 (-1087)) (-5 *1 (-1117 *4)) (-4 *4 (-37 (-383 (-523)))) (-4 *4 (-973))))) +(-13 (-680 |#1| (-1087)) (-10 -8 (-15 -2365 ((-883 |#1|) $ (-710))) (-15 -1458 ($ (-1087))) (-15 -1458 ($ (-883 |#1|))) (IF (|has| |#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ($ $ (-1087) |#1|)) (-15 -2340 ($ (-1 $) (-1087) |#1|))) |%noBranch|))) +((-2501 (($ |#1| (-589 (-589 (-874 (-203)))) (-108)) 16)) (-2970 (((-108) $ (-108)) 15)) (-2672 (((-108) $) 14)) (-2794 (((-589 (-589 (-874 (-203)))) $) 10)) (-3014 ((|#1| $) 8)) (-1553 (((-108) $) 12))) +(((-1118 |#1|) (-10 -8 (-15 -3014 (|#1| $)) (-15 -2794 ((-589 (-589 (-874 (-203)))) $)) (-15 -1553 ((-108) $)) (-15 -2672 ((-108) $)) (-15 -2970 ((-108) $ (-108))) (-15 -2501 ($ |#1| (-589 (-589 (-874 (-203)))) (-108)))) (-903)) (T -1118)) +((-2501 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-108)) (-5 *1 (-1118 *2)) (-4 *2 (-903)))) (-2970 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1118 *3)) (-4 *3 (-903)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1118 *3)) (-4 *3 (-903)))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1118 *3)) (-4 *3 (-903)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-1118 *3)) (-4 *3 (-903)))) (-3014 (*1 *2 *1) (-12 (-5 *1 (-1118 *2)) (-4 *2 (-903))))) +(-10 -8 (-15 -3014 (|#1| $)) (-15 -2794 ((-589 (-589 (-874 (-203)))) $)) (-15 -1553 ((-108) $)) (-15 -2672 ((-108) $)) (-15 -2970 ((-108) $ (-108))) (-15 -2501 ($ |#1| (-589 (-589 (-874 (-203)))) (-108)))) +((-1890 (((-874 (-203)) (-874 (-203))) 25)) (-2388 (((-874 (-203)) (-203) (-203) (-203) (-203)) 10)) (-1800 (((-589 (-874 (-203))) (-874 (-203)) (-874 (-203)) (-874 (-203)) (-203) (-589 (-589 (-203)))) 37)) (-3269 (((-203) (-874 (-203)) (-874 (-203))) 21)) (-2240 (((-874 (-203)) (-874 (-203)) (-874 (-203))) 22)) (-3940 (((-589 (-589 (-203))) (-523)) 31)) (-4087 (((-874 (-203)) (-874 (-203)) (-874 (-203))) 20)) (-4075 (((-874 (-203)) (-874 (-203)) (-874 (-203))) 19)) (* (((-874 (-203)) (-203) (-874 (-203))) 18))) +(((-1119) (-10 -7 (-15 -2388 ((-874 (-203)) (-203) (-203) (-203) (-203))) (-15 * ((-874 (-203)) (-203) (-874 (-203)))) (-15 -4075 ((-874 (-203)) (-874 (-203)) (-874 (-203)))) (-15 -4087 ((-874 (-203)) (-874 (-203)) (-874 (-203)))) (-15 -3269 ((-203) (-874 (-203)) (-874 (-203)))) (-15 -2240 ((-874 (-203)) (-874 (-203)) (-874 (-203)))) (-15 -1890 ((-874 (-203)) (-874 (-203)))) (-15 -3940 ((-589 (-589 (-203))) (-523))) (-15 -1800 ((-589 (-874 (-203))) (-874 (-203)) (-874 (-203)) (-874 (-203)) (-203) (-589 (-589 (-203))))))) (T -1119)) +((-1800 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-589 (-589 (-203)))) (-5 *4 (-203)) (-5 *2 (-589 (-874 *4))) (-5 *1 (-1119)) (-5 *3 (-874 *4)))) (-3940 (*1 *2 *3) (-12 (-5 *3 (-523)) (-5 *2 (-589 (-589 (-203)))) (-5 *1 (-1119)))) (-1890 (*1 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1119)))) (-2240 (*1 *2 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1119)))) (-3269 (*1 *2 *3 *3) (-12 (-5 *3 (-874 (-203))) (-5 *2 (-203)) (-5 *1 (-1119)))) (-4087 (*1 *2 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1119)))) (-4075 (*1 *2 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1119)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-874 (-203))) (-5 *3 (-203)) (-5 *1 (-1119)))) (-2388 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1119)) (-5 *3 (-203))))) +(-10 -7 (-15 -2388 ((-874 (-203)) (-203) (-203) (-203) (-203))) (-15 * ((-874 (-203)) (-203) (-874 (-203)))) (-15 -4075 ((-874 (-203)) (-874 (-203)) (-874 (-203)))) (-15 -4087 ((-874 (-203)) (-874 (-203)) (-874 (-203)))) (-15 -3269 ((-203) (-874 (-203)) (-874 (-203)))) (-15 -2240 ((-874 (-203)) (-874 (-203)) (-874 (-203)))) (-15 -1890 ((-874 (-203)) (-874 (-203)))) (-15 -3940 ((-589 (-589 (-203))) (-523))) (-15 -1800 ((-589 (-874 (-203))) (-874 (-203)) (-874 (-203)) (-874 (-203)) (-203) (-589 (-589 (-203)))))) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-3724 ((|#1| $ (-710)) 13)) (-2996 (((-710) $) 12)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1458 (((-888 |#1|) $) 10) (($ (-888 |#1|)) 9) (((-794) $) 23 (|has| |#1| (-563 (-794))))) (-3983 (((-108) $ $) 16 (|has| |#1| (-1016))))) +(((-1120 |#1|) (-13 (-563 (-888 |#1|)) (-10 -8 (-15 -1458 ($ (-888 |#1|))) (-15 -3724 (|#1| $ (-710))) (-15 -2996 ((-710) $)) (IF (|has| |#1| (-563 (-794))) (-6 (-563 (-794))) |%noBranch|) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|))) (-1122)) (T -1120)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-888 *3)) (-4 *3 (-1122)) (-5 *1 (-1120 *3)))) (-3724 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *1 (-1120 *2)) (-4 *2 (-1122)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1120 *3)) (-4 *3 (-1122))))) +(-13 (-563 (-888 |#1|)) (-10 -8 (-15 -1458 ($ (-888 |#1|))) (-15 -3724 (|#1| $ (-710))) (-15 -2996 ((-710) $)) (IF (|has| |#1| (-563 (-794))) (-6 (-563 (-794))) |%noBranch|) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|))) +((-3075 (((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)) (-523)) 79)) (-1875 (((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|))) 73)) (-1794 (((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|))) 58))) +(((-1121 |#1|) (-10 -7 (-15 -1875 ((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)))) (-15 -1794 ((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)))) (-15 -3075 ((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)) (-523)))) (-325)) (T -1121)) +((-3075 (*1 *2 *3 *4) (-12 (-5 *4 (-523)) (-4 *5 (-325)) (-5 *2 (-394 (-1083 (-1083 *5)))) (-5 *1 (-1121 *5)) (-5 *3 (-1083 (-1083 *5))))) (-1794 (*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-394 (-1083 (-1083 *4)))) (-5 *1 (-1121 *4)) (-5 *3 (-1083 (-1083 *4))))) (-1875 (*1 *2 *3) (-12 (-4 *4 (-325)) (-5 *2 (-394 (-1083 (-1083 *4)))) (-5 *1 (-1121 *4)) (-5 *3 (-1083 (-1083 *4)))))) +(-10 -7 (-15 -1875 ((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)))) (-15 -1794 ((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)))) (-15 -3075 ((-394 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)) (-523)))) +NIL +(((-1122) (-129)) (T -1122)) +NIL +(-13 (-10 -7 (-6 -3656))) +((-1985 (((-108)) 15)) (-4129 (((-1173) (-589 |#1|) (-589 |#1|)) 19) (((-1173) (-589 |#1|)) 20)) (-2346 (((-108) |#1| |#1|) 31 (|has| |#1| (-786)))) (-2866 (((-108) |#1| |#1| (-1 (-108) |#1| |#1|)) 27) (((-3 (-108) "failed") |#1| |#1|) 25)) (-2256 ((|#1| (-589 |#1|)) 32 (|has| |#1| (-786))) ((|#1| (-589 |#1|) (-1 (-108) |#1| |#1|)) 28)) (-1567 (((-2 (|:| -2279 (-589 |#1|)) (|:| -2566 (-589 |#1|)))) 17))) +(((-1123 |#1|) (-10 -7 (-15 -4129 ((-1173) (-589 |#1|))) (-15 -4129 ((-1173) (-589 |#1|) (-589 |#1|))) (-15 -1567 ((-2 (|:| -2279 (-589 |#1|)) (|:| -2566 (-589 |#1|))))) (-15 -2866 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2866 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -2256 (|#1| (-589 |#1|) (-1 (-108) |#1| |#1|))) (-15 -1985 ((-108))) (IF (|has| |#1| (-786)) (PROGN (-15 -2256 (|#1| (-589 |#1|))) (-15 -2346 ((-108) |#1| |#1|))) |%noBranch|)) (-1016)) (T -1123)) +((-2346 (*1 *2 *3 *3) (-12 (-5 *2 (-108)) (-5 *1 (-1123 *3)) (-4 *3 (-786)) (-4 *3 (-1016)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-786)) (-5 *1 (-1123 *2)))) (-1985 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1123 *3)) (-4 *3 (-1016)))) (-2256 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1123 *2)) (-4 *2 (-1016)))) (-2866 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1016)) (-5 *2 (-108)) (-5 *1 (-1123 *3)))) (-2866 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1123 *3)) (-4 *3 (-1016)))) (-1567 (*1 *2) (-12 (-5 *2 (-2 (|:| -2279 (-589 *3)) (|:| -2566 (-589 *3)))) (-5 *1 (-1123 *3)) (-4 *3 (-1016)))) (-4129 (*1 *2 *3 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-1016)) (-5 *2 (-1173)) (-5 *1 (-1123 *4)))) (-4129 (*1 *2 *3) (-12 (-5 *3 (-589 *4)) (-4 *4 (-1016)) (-5 *2 (-1173)) (-5 *1 (-1123 *4))))) +(-10 -7 (-15 -4129 ((-1173) (-589 |#1|))) (-15 -4129 ((-1173) (-589 |#1|) (-589 |#1|))) (-15 -1567 ((-2 (|:| -2279 (-589 |#1|)) (|:| -2566 (-589 |#1|))))) (-15 -2866 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2866 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -2256 (|#1| (-589 |#1|) (-1 (-108) |#1| |#1|))) (-15 -1985 ((-108))) (IF (|has| |#1| (-786)) (PROGN (-15 -2256 (|#1| (-589 |#1|))) (-15 -2346 ((-108) |#1| |#1|))) |%noBranch|)) +((-3000 (((-1173) (-589 (-1087)) (-589 (-1087))) 12) (((-1173) (-589 (-1087))) 10)) (-1931 (((-1173)) 13)) (-3144 (((-2 (|:| -2566 (-589 (-1087))) (|:| -2279 (-589 (-1087))))) 17))) +(((-1124) (-10 -7 (-15 -3000 ((-1173) (-589 (-1087)))) (-15 -3000 ((-1173) (-589 (-1087)) (-589 (-1087)))) (-15 -3144 ((-2 (|:| -2566 (-589 (-1087))) (|:| -2279 (-589 (-1087)))))) (-15 -1931 ((-1173))))) (T -1124)) +((-1931 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1124)))) (-3144 (*1 *2) (-12 (-5 *2 (-2 (|:| -2566 (-589 (-1087))) (|:| -2279 (-589 (-1087))))) (-5 *1 (-1124)))) (-3000 (*1 *2 *3 *3) (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1173)) (-5 *1 (-1124)))) (-3000 (*1 *2 *3) (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1173)) (-5 *1 (-1124))))) +(-10 -7 (-15 -3000 ((-1173) (-589 (-1087)))) (-15 -3000 ((-1173) (-589 (-1087)) (-589 (-1087)))) (-15 -3144 ((-2 (|:| -2566 (-589 (-1087))) (|:| -2279 (-589 (-1087)))))) (-15 -1931 ((-1173)))) +((-2291 (($ $) 16)) (-2657 (((-108) $) 23))) +(((-1125 |#1|) (-10 -8 (-15 -2291 (|#1| |#1|)) (-15 -2657 ((-108) |#1|))) (-1126)) (T -1125)) +NIL +(-10 -8 (-15 -2291 (|#1| |#1|)) (-15 -2657 ((-108) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 51)) (-3614 (((-394 $) $) 52)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2657 (((-108) $) 53)) (-2023 (((-108) $) 31)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-1820 (((-394 $) $) 50)) (-3746 (((-3 $ "failed") $ $) 42)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43)) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24))) +(((-1126) (-129)) (T -1126)) +((-2657 (*1 *2 *1) (-12 (-4 *1 (-1126)) (-5 *2 (-108)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-394 *1)) (-4 *1 (-1126)))) (-2291 (*1 *1 *1) (-4 *1 (-1126))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-394 *1)) (-4 *1 (-1126))))) +(-13 (-427) (-10 -8 (-15 -2657 ((-108) $)) (-15 -3614 ((-394 $) $)) (-15 -2291 ($ $)) (-15 -1820 ((-394 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-563 (-794)) . T) ((-158) . T) ((-267) . T) ((-427) . T) ((-515) . T) ((-591 $) . T) ((-657 $) . T) ((-666) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-3612 (((-1132 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1132 |#1| |#3| |#5|)) 23))) +(((-1127 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3612 ((-1132 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1132 |#1| |#3| |#5|)))) (-973) (-973) (-1087) (-1087) |#1| |#2|) (T -1127)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1132 *5 *7 *9)) (-4 *5 (-973)) (-4 *6 (-973)) (-14 *7 (-1087)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1132 *6 *8 *10)) (-5 *1 (-1127 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1087))))) +(-10 -7 (-15 -3612 ((-1132 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1132 |#1| |#3| |#5|)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1957 (((-589 (-1001)) $) 74)) (-2700 (((-1087) $) 103)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3345 (($ $) 52 (|has| |#1| (-515)))) (-3331 (((-108) $) 54 (|has| |#1| (-515)))) (-3984 (($ $ (-523)) 98) (($ $ (-523) (-523)) 97)) (-2133 (((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $) 105)) (-1769 (($ $) 135 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 118 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 162 (|has| |#1| (-339)))) (-3614 (((-394 $) $) 163 (|has| |#1| (-339)))) (-1832 (($ $) 117 (|has| |#1| (-37 (-383 (-523)))))) (-1387 (((-108) $ $) 153 (|has| |#1| (-339)))) (-1744 (($ $) 134 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 119 (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|)))) 174)) (-1793 (($ $) 133 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 120 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) 17 T CONST)) (-3796 (($ $ $) 157 (|has| |#1| (-339)))) (-3810 (($ $) 60)) (-2121 (((-3 $ "failed") $) 34)) (-3289 (((-383 (-883 |#1|)) $ (-523)) 172 (|has| |#1| (-515))) (((-383 (-883 |#1|)) $ (-523) (-523)) 171 (|has| |#1| (-515)))) (-3769 (($ $ $) 156 (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 151 (|has| |#1| (-339)))) (-2657 (((-108) $) 164 (|has| |#1| (-339)))) (-2003 (((-108) $) 73)) (-2820 (($) 145 (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-523) $) 100) (((-523) $ (-523)) 99)) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 116 (|has| |#1| (-37 (-383 (-523)))))) (-1349 (($ $ (-852)) 101)) (-3735 (($ (-1 |#1| (-523)) $) 173)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 160 (|has| |#1| (-339)))) (-2620 (((-108) $) 62)) (-1933 (($ |#1| (-523)) 61) (($ $ (-1001) (-523)) 76) (($ $ (-589 (-1001)) (-589 (-523))) 75)) (-3612 (($ (-1 |#1| |#1|) $) 63)) (-2384 (($ $) 142 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) 65)) (-3786 ((|#1| $) 66)) (-3244 (($ (-589 $)) 149 (|has| |#1| (-339))) (($ $ $) 148 (|has| |#1| (-339)))) (-3779 (((-1070) $) 9)) (-3738 (($ $) 165 (|has| |#1| (-339)))) (-3417 (($ $) 170 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 169 (-3262 (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-889)) (|has| |#1| (-1108)) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-37 (-383 (-523)))))))) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 150 (|has| |#1| (-339)))) (-3278 (($ (-589 $)) 147 (|has| |#1| (-339))) (($ $ $) 146 (|has| |#1| (-339)))) (-1820 (((-394 $) $) 161 (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 158 (|has| |#1| (-339)))) (-4097 (($ $ (-523)) 95)) (-3746 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 152 (|has| |#1| (-339)))) (-1811 (($ $) 143 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-523)))))) (-1972 (((-710) $) 154 (|has| |#1| (-339)))) (-3223 ((|#1| $ (-523)) 104) (($ $ $) 81 (|has| (-523) (-1028)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 155 (|has| |#1| (-339)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) 89 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-1087) (-710)) 88 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087))) 87 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-1087)) 86 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-710)) 84 (|has| |#1| (-15 * (|#1| (-523) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (-2299 (((-523) $) 64)) (-1805 (($ $) 132 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 121 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 131 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 122 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 130 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 123 (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) 72)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 47 (|has| |#1| (-158))) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515)))) (-2365 ((|#1| $ (-523)) 59)) (-3901 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-1288 ((|#1| $) 102)) (-1839 (($ $) 141 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 129 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) 53 (|has| |#1| (-515)))) (-1818 (($ $) 140 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 128 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 139 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 127 (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-523)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-523)))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) 138 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 126 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 137 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 125 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 136 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 124 (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 166 (|has| |#1| (-339)))) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) 93 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-1087) (-710)) 92 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087))) 91 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-1087)) 90 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-710)) 85 (|has| |#1| (-15 * (|#1| (-523) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 58 (|has| |#1| (-339))) (($ $ $) 168 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 167 (|has| |#1| (-339))) (($ $ $) 144 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 115 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) +(((-1128 |#1|) (-129) (-973)) (T -1128)) +((-2417 (*1 *1 *2) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *3)))) (-4 *3 (-973)) (-4 *1 (-1128 *3)))) (-3735 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-523))) (-4 *1 (-1128 *3)) (-4 *3 (-973)))) (-3289 (*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-1128 *4)) (-4 *4 (-973)) (-4 *4 (-515)) (-5 *2 (-383 (-883 *4))))) (-3289 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-4 *1 (-1128 *4)) (-4 *4 (-973)) (-4 *4 (-515)) (-5 *2 (-383 (-883 *4))))) (-3417 (*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523)))))) (-3417 (*1 *1 *1 *2) (-3262 (-12 (-5 *2 (-1087)) (-4 *1 (-1128 *3)) (-4 *3 (-973)) (-12 (-4 *3 (-29 (-523))) (-4 *3 (-889)) (-4 *3 (-1108)) (-4 *3 (-37 (-383 (-523)))))) (-12 (-5 *2 (-1087)) (-4 *1 (-1128 *3)) (-4 *3 (-973)) (-12 (|has| *3 (-15 -1957 ((-589 *2) *3))) (|has| *3 (-15 -3417 (*3 *3 *2))) (-4 *3 (-37 (-383 (-523))))))))) +(-13 (-1146 |t#1| (-523)) (-10 -8 (-15 -2417 ($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |t#1|))))) (-15 -3735 ($ (-1 |t#1| (-523)) $)) (IF (|has| |t#1| (-515)) (PROGN (-15 -3289 ((-383 (-883 |t#1|)) $ (-523))) (-15 -3289 ((-383 (-883 |t#1|)) $ (-523) (-523)))) |%noBranch|) (IF (|has| |t#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ($ $)) (IF (|has| |t#1| (-15 -3417 (|t#1| |t#1| (-1087)))) (IF (|has| |t#1| (-15 -1957 ((-589 (-1087)) |t#1|))) (-15 -3417 ($ $ (-1087))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1108)) (IF (|has| |t#1| (-889)) (IF (|has| |t#1| (-29 (-523))) (-15 -3417 ($ $ (-1087))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-930)) (-6 (-1108))) |%noBranch|) (IF (|has| |t#1| (-339)) (-6 (-339)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-523)) . T) ((-25) . T) ((-37 #1=(-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-34) |has| |#1| (-37 (-383 (-523)))) ((-91) |has| |#1| (-37 (-383 (-523)))) ((-97) . T) ((-107 #1# #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-211) |has| |#1| (-15 * (|#1| (-523) |#1|))) ((-221) |has| |#1| (-339)) ((-261) |has| |#1| (-37 (-383 (-523)))) ((-263 $ $) |has| (-523) (-1028)) ((-267) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-284) |has| |#1| (-339)) ((-339) |has| |#1| (-339)) ((-427) |has| |#1| (-339)) ((-464) |has| |#1| (-37 (-383 (-523)))) ((-515) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-591 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-666) . T) ((-831 (-1087)) -12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))) ((-902 |#1| #0# (-1001)) . T) ((-851) |has| |#1| (-339)) ((-930) |has| |#1| (-37 (-383 (-523)))) ((-979 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1108) |has| |#1| (-37 (-383 (-523)))) ((-1111) |has| |#1| (-37 (-383 (-523)))) ((-1126) |has| |#1| (-339)) ((-1146 |#1| #0#) . T)) +((-2295 (((-108) $) 12)) (-3517 (((-3 |#3| "failed") $) 17) (((-3 (-1087) "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 (-523) "failed") $) NIL)) (-3474 ((|#3| $) 14) (((-1087) $) NIL) (((-383 (-523)) $) NIL) (((-523) $) NIL))) +(((-1129 |#1| |#2| |#3|) (-10 -8 (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-1087) |#1|)) (-15 -3517 ((-3 (-1087) "failed") |#1|)) (-15 -3474 (|#3| |#1|)) (-15 -3517 ((-3 |#3| "failed") |#1|)) (-15 -2295 ((-108) |#1|))) (-1130 |#2| |#3|) (-973) (-1159 |#2|)) (T -1129)) +NIL +(-10 -8 (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -3474 ((-1087) |#1|)) (-15 -3517 ((-3 (-1087) "failed") |#1|)) (-15 -3474 (|#3| |#1|)) (-15 -3517 ((-3 |#3| "failed") |#1|)) (-15 -2295 ((-108) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3458 ((|#2| $) 231 (-4099 (|has| |#2| (-284)) (|has| |#1| (-339))))) (-1957 (((-589 (-1001)) $) 74)) (-2700 (((-1087) $) 103)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3345 (($ $) 52 (|has| |#1| (-515)))) (-3331 (((-108) $) 54 (|has| |#1| (-515)))) (-3984 (($ $ (-523)) 98) (($ $ (-523) (-523)) 97)) (-2133 (((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $) 105)) (-3951 ((|#2| $) 267)) (-3989 (((-3 |#2| "failed") $) 263)) (-2015 ((|#2| $) 264)) (-1769 (($ $) 135 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 118 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) 19)) (-3156 (((-394 (-1083 $)) (-1083 $)) 240 (-4099 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-2291 (($ $) 162 (|has| |#1| (-339)))) (-3614 (((-394 $) $) 163 (|has| |#1| (-339)))) (-1832 (($ $) 117 (|has| |#1| (-37 (-383 (-523)))))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 237 (-4099 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-1387 (((-108) $ $) 153 (|has| |#1| (-339)))) (-1744 (($ $) 134 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 119 (|has| |#1| (-37 (-383 (-523)))))) (-3671 (((-523) $) 249 (-4099 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-2417 (($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|)))) 174)) (-1793 (($ $) 133 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 120 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#2| "failed") $) 270) (((-3 (-523) "failed") $) 259 (-4099 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-3 (-383 (-523)) "failed") $) 257 (-4099 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-3 (-1087) "failed") $) 242 (-4099 (|has| |#2| (-964 (-1087))) (|has| |#1| (-339))))) (-3474 ((|#2| $) 269) (((-523) $) 260 (-4099 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-383 (-523)) $) 258 (-4099 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-1087) $) 243 (-4099 (|has| |#2| (-964 (-1087))) (|has| |#1| (-339))))) (-1819 (($ $) 266) (($ (-523) $) 265)) (-3796 (($ $ $) 157 (|has| |#1| (-339)))) (-3810 (($ $) 60)) (-2381 (((-629 |#2|) (-629 $)) 221 (|has| |#1| (-339))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) 220 (|has| |#1| (-339))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 219 (-4099 (|has| |#2| (-585 (-523))) (|has| |#1| (-339)))) (((-629 (-523)) (-629 $)) 218 (-4099 (|has| |#2| (-585 (-523))) (|has| |#1| (-339))))) (-2121 (((-3 $ "failed") $) 34)) (-3289 (((-383 (-883 |#1|)) $ (-523)) 172 (|has| |#1| (-515))) (((-383 (-883 |#1|)) $ (-523) (-523)) 171 (|has| |#1| (-515)))) (-4032 (($) 233 (-4099 (|has| |#2| (-508)) (|has| |#1| (-339))))) (-3769 (($ $ $) 156 (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 151 (|has| |#1| (-339)))) (-2657 (((-108) $) 164 (|has| |#1| (-339)))) (-2604 (((-108) $) 247 (-4099 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-2003 (((-108) $) 73)) (-2820 (($) 145 (|has| |#1| (-37 (-383 (-523)))))) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 225 (-4099 (|has| |#2| (-817 (-355))) (|has| |#1| (-339)))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 224 (-4099 (|has| |#2| (-817 (-523))) (|has| |#1| (-339))))) (-1640 (((-523) $) 100) (((-523) $ (-523)) 99)) (-2023 (((-108) $) 31)) (-2531 (($ $) 229 (|has| |#1| (-339)))) (-2785 ((|#2| $) 227 (|has| |#1| (-339)))) (-1420 (($ $ (-523)) 116 (|has| |#1| (-37 (-383 (-523)))))) (-4058 (((-3 $ "failed") $) 261 (-4099 (|has| |#2| (-1063)) (|has| |#1| (-339))))) (-4114 (((-108) $) 248 (-4099 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-1349 (($ $ (-852)) 101)) (-3735 (($ (-1 |#1| (-523)) $) 173)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 160 (|has| |#1| (-339)))) (-2620 (((-108) $) 62)) (-1933 (($ |#1| (-523)) 61) (($ $ (-1001) (-523)) 76) (($ $ (-589 (-1001)) (-589 (-523))) 75)) (-2454 (($ $ $) 251 (-4099 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-2062 (($ $ $) 252 (-4099 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-3612 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-339)))) (-2384 (($ $) 142 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) 65)) (-3786 ((|#1| $) 66)) (-3244 (($ (-589 $)) 149 (|has| |#1| (-339))) (($ $ $) 148 (|has| |#1| (-339)))) (-2028 (($ (-523) |#2|) 268)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 165 (|has| |#1| (-339)))) (-3417 (($ $) 170 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 169 (-3262 (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-889)) (|has| |#1| (-1108)) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-37 (-383 (-523)))))))) (-2262 (($) 262 (-4099 (|has| |#2| (-1063)) (|has| |#1| (-339))) CONST)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 150 (|has| |#1| (-339)))) (-3278 (($ (-589 $)) 147 (|has| |#1| (-339))) (($ $ $) 146 (|has| |#1| (-339)))) (-2206 (($ $) 232 (-4099 (|has| |#2| (-284)) (|has| |#1| (-339))))) (-3722 ((|#2| $) 235 (-4099 (|has| |#2| (-508)) (|has| |#1| (-339))))) (-1219 (((-394 (-1083 $)) (-1083 $)) 238 (-4099 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-3967 (((-394 (-1083 $)) (-1083 $)) 239 (-4099 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-1820 (((-394 $) $) 161 (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 158 (|has| |#1| (-339)))) (-4097 (($ $ (-523)) 95)) (-3746 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 152 (|has| |#1| (-339)))) (-1811 (($ $) 143 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-523))))) (($ $ (-1087) |#2|) 212 (-4099 (|has| |#2| (-484 (-1087) |#2|)) (|has| |#1| (-339)))) (($ $ (-589 (-1087)) (-589 |#2|)) 211 (-4099 (|has| |#2| (-484 (-1087) |#2|)) (|has| |#1| (-339)))) (($ $ (-589 (-271 |#2|))) 210 (-4099 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339)))) (($ $ (-271 |#2|)) 209 (-4099 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339)))) (($ $ |#2| |#2|) 208 (-4099 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339)))) (($ $ (-589 |#2|) (-589 |#2|)) 207 (-4099 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339))))) (-1972 (((-710) $) 154 (|has| |#1| (-339)))) (-3223 ((|#1| $ (-523)) 104) (($ $ $) 81 (|has| (-523) (-1028))) (($ $ |#2|) 206 (-4099 (|has| |#2| (-263 |#2| |#2|)) (|has| |#1| (-339))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 155 (|has| |#1| (-339)))) (-3523 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-339))) (($ $ (-1 |#2| |#2|) (-710)) 216 (|has| |#1| (-339))) (($ $ (-710)) 84 (-3262 (-4099 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) 82 (-3262 (-4099 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) 89 (-3262 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))))) (($ $ (-1087) (-710)) 88 (-3262 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))))) (($ $ (-589 (-1087))) 87 (-3262 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))))) (($ $ (-1087)) 86 (-3262 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))))) (-3414 (($ $) 230 (|has| |#1| (-339)))) (-2797 ((|#2| $) 228 (|has| |#1| (-339)))) (-2299 (((-523) $) 64)) (-1805 (($ $) 132 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 121 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 131 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 122 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 130 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 123 (|has| |#1| (-37 (-383 (-523)))))) (-3663 (((-203) $) 246 (-4099 (|has| |#2| (-949)) (|has| |#1| (-339)))) (((-355) $) 245 (-4099 (|has| |#2| (-949)) (|has| |#1| (-339)))) (((-499) $) 244 (-4099 (|has| |#2| (-564 (-499))) (|has| |#1| (-339)))) (((-823 (-355)) $) 223 (-4099 (|has| |#2| (-564 (-823 (-355)))) (|has| |#1| (-339)))) (((-823 (-523)) $) 222 (-4099 (|has| |#2| (-564 (-823 (-523)))) (|has| |#1| (-339))))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 236 (-4099 (-4099 (|has| $ (-134)) (|has| |#2| (-840))) (|has| |#1| (-339))))) (-1353 (($ $) 72)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 47 (|has| |#1| (-158))) (($ |#2|) 271) (($ (-1087)) 241 (-4099 (|has| |#2| (-964 (-1087))) (|has| |#1| (-339)))) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515)))) (-2365 ((|#1| $ (-523)) 59)) (-3901 (((-3 $ "failed") $) 48 (-3262 (-4099 (-3262 (|has| |#2| (-134)) (-4099 (|has| $ (-134)) (|has| |#2| (-840)))) (|has| |#1| (-339))) (|has| |#1| (-134))))) (-1621 (((-710)) 29)) (-1288 ((|#1| $) 102)) (-1886 ((|#2| $) 234 (-4099 (|has| |#2| (-508)) (|has| |#1| (-339))))) (-1839 (($ $) 141 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 129 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) 53 (|has| |#1| (-515)))) (-1818 (($ $) 140 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 128 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 139 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 127 (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-523)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-523)))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) 138 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 126 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 137 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 125 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 136 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 124 (|has| |#1| (-37 (-383 (-523)))))) (-2619 (($ $) 250 (-4099 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 166 (|has| |#1| (-339)))) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-339))) (($ $ (-1 |#2| |#2|) (-710)) 214 (|has| |#1| (-339))) (($ $ (-710)) 85 (-3262 (-4099 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) 83 (-3262 (-4099 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) 93 (-3262 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))))) (($ $ (-1087) (-710)) 92 (-3262 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))))) (($ $ (-589 (-1087))) 91 (-3262 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))))) (($ $ (-1087)) 90 (-3262 (-4099 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))))) (-4043 (((-108) $ $) 254 (-4099 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-4019 (((-108) $ $) 255 (-4099 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 253 (-4099 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-4007 (((-108) $ $) 256 (-4099 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-4098 (($ $ |#1|) 58 (|has| |#1| (-339))) (($ $ $) 168 (|has| |#1| (-339))) (($ |#2| |#2|) 226 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 167 (|has| |#1| (-339))) (($ $ $) 144 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 115 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-339))) (($ |#2| $) 204 (|has| |#1| (-339))) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) +(((-1130 |#1| |#2|) (-129) (-973) (-1159 |t#1|)) (T -1130)) +((-2299 (*1 *2 *1) (-12 (-4 *1 (-1130 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1159 *3)) (-5 *2 (-523)))) (-1458 (*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *1 (-1130 *3 *2)) (-4 *2 (-1159 *3)))) (-2028 (*1 *1 *2 *3) (-12 (-5 *2 (-523)) (-4 *4 (-973)) (-4 *1 (-1130 *4 *3)) (-4 *3 (-1159 *4)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-1130 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1159 *3)))) (-1819 (*1 *1 *1) (-12 (-4 *1 (-1130 *2 *3)) (-4 *2 (-973)) (-4 *3 (-1159 *2)))) (-1819 (*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-4 *1 (-1130 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1159 *3)))) (-2015 (*1 *2 *1) (-12 (-4 *1 (-1130 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1159 *3)))) (-3989 (*1 *2 *1) (|partial| -12 (-4 *1 (-1130 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1159 *3))))) +(-13 (-1128 |t#1|) (-964 |t#2|) (-10 -8 (-15 -2028 ($ (-523) |t#2|)) (-15 -2299 ((-523) $)) (-15 -3951 (|t#2| $)) (-15 -1819 ($ $)) (-15 -1819 ($ (-523) $)) (-15 -1458 ($ |t#2|)) (-15 -2015 (|t#2| $)) (-15 -3989 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-339)) (-6 (-921 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-523)) . T) ((-25) . T) ((-37 #1=(-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-37 |#1|) |has| |#1| (-158)) ((-37 |#2|) |has| |#1| (-339)) ((-37 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-34) |has| |#1| (-37 (-383 (-523)))) ((-91) |has| |#1| (-37 (-383 (-523)))) ((-97) . T) ((-107 #1# #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-107 |#1| |#1|) . T) ((-107 |#2| |#2|) |has| |#1| (-339)) ((-107 $ $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-124) . T) ((-134) -3262 (-12 (|has| |#1| (-339)) (|has| |#2| (-134))) (|has| |#1| (-134))) ((-136) -3262 (-12 (|has| |#1| (-339)) (|has| |#2| (-136))) (|has| |#1| (-136))) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-564 (-203)) -12 (|has| |#1| (-339)) (|has| |#2| (-949))) ((-564 (-355)) -12 (|has| |#1| (-339)) (|has| |#2| (-949))) ((-564 (-499)) -12 (|has| |#1| (-339)) (|has| |#2| (-564 (-499)))) ((-564 (-823 (-355))) -12 (|has| |#1| (-339)) (|has| |#2| (-564 (-823 (-355))))) ((-564 (-823 (-523))) -12 (|has| |#1| (-339)) (|has| |#2| (-564 (-823 (-523))))) ((-209 |#2|) |has| |#1| (-339)) ((-211) -3262 (-12 (|has| |#1| (-339)) (|has| |#2| (-211))) (|has| |#1| (-15 * (|#1| (-523) |#1|)))) ((-221) |has| |#1| (-339)) ((-261) |has| |#1| (-37 (-383 (-523)))) ((-263 |#2| $) -12 (|has| |#1| (-339)) (|has| |#2| (-263 |#2| |#2|))) ((-263 $ $) |has| (-523) (-1028)) ((-267) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-284) |has| |#1| (-339)) ((-286 |#2|) -12 (|has| |#1| (-339)) (|has| |#2| (-286 |#2|))) ((-339) |has| |#1| (-339)) ((-314 |#2|) |has| |#1| (-339)) ((-353 |#2|) |has| |#1| (-339)) ((-376 |#2|) |has| |#1| (-339)) ((-427) |has| |#1| (-339)) ((-464) |has| |#1| (-37 (-383 (-523)))) ((-484 (-1087) |#2|) -12 (|has| |#1| (-339)) (|has| |#2| (-484 (-1087) |#2|))) ((-484 |#2| |#2|) -12 (|has| |#1| (-339)) (|has| |#2| (-286 |#2|))) ((-515) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-591 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-591 |#1|) . T) ((-591 |#2|) |has| |#1| (-339)) ((-591 $) . T) ((-585 (-523)) -12 (|has| |#1| (-339)) (|has| |#2| (-585 (-523)))) ((-585 |#2|) |has| |#1| (-339)) ((-657 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-657 |#1|) |has| |#1| (-158)) ((-657 |#2|) |has| |#1| (-339)) ((-657 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-666) . T) ((-730) -12 (|has| |#1| (-339)) (|has| |#2| (-759))) ((-731) -12 (|has| |#1| (-339)) (|has| |#2| (-759))) ((-733) -12 (|has| |#1| (-339)) (|has| |#2| (-759))) ((-734) -12 (|has| |#1| (-339)) (|has| |#2| (-759))) ((-759) -12 (|has| |#1| (-339)) (|has| |#2| (-759))) ((-784) -12 (|has| |#1| (-339)) (|has| |#2| (-759))) ((-786) -3262 (-12 (|has| |#1| (-339)) (|has| |#2| (-786))) (-12 (|has| |#1| (-339)) (|has| |#2| (-759)))) ((-831 (-1087)) -3262 (-12 (|has| |#1| (-339)) (|has| |#2| (-831 (-1087)))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))) ((-817 (-355)) -12 (|has| |#1| (-339)) (|has| |#2| (-817 (-355)))) ((-817 (-523)) -12 (|has| |#1| (-339)) (|has| |#2| (-817 (-523)))) ((-815 |#2|) |has| |#1| (-339)) ((-840) -12 (|has| |#1| (-339)) (|has| |#2| (-840))) ((-902 |#1| #0# (-1001)) . T) ((-851) |has| |#1| (-339)) ((-921 |#2|) |has| |#1| (-339)) ((-930) |has| |#1| (-37 (-383 (-523)))) ((-949) -12 (|has| |#1| (-339)) (|has| |#2| (-949))) ((-964 (-383 (-523))) -12 (|has| |#1| (-339)) (|has| |#2| (-964 (-523)))) ((-964 (-523)) -12 (|has| |#1| (-339)) (|has| |#2| (-964 (-523)))) ((-964 (-1087)) -12 (|has| |#1| (-339)) (|has| |#2| (-964 (-1087)))) ((-964 |#2|) . T) ((-979 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-979 |#1|) . T) ((-979 |#2|) |has| |#1| (-339)) ((-979 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) -12 (|has| |#1| (-339)) (|has| |#2| (-1063))) ((-1108) |has| |#1| (-37 (-383 (-523)))) ((-1111) |has| |#1| (-37 (-383 (-523)))) ((-1122) |has| |#1| (-339)) ((-1126) |has| |#1| (-339)) ((-1128 |#1|) . T) ((-1146 |#1| #0#) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 70)) (-3458 ((|#2| $) NIL (-12 (|has| |#2| (-284)) (|has| |#1| (-339))))) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) 88)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3984 (($ $ (-523)) 97) (($ $ (-523) (-523)) 99)) (-2133 (((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $) 47)) (-3951 ((|#2| $) 11)) (-3989 (((-3 |#2| "failed") $) 30)) (-2015 ((|#2| $) 31)) (-1769 (($ $) 192 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 168 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-2291 (($ $) NIL (|has| |#1| (-339)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1744 (($ $) 188 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 164 (|has| |#1| (-37 (-383 (-523)))))) (-3671 (((-523) $) NIL (-12 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-2417 (($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|)))) 57)) (-1793 (($ $) 196 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 172 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) 144) (((-3 (-523) "failed") $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-3 (-1087) "failed") $) NIL (-12 (|has| |#2| (-964 (-1087))) (|has| |#1| (-339))))) (-3474 ((|#2| $) 143) (((-523) $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-383 (-523)) $) NIL (-12 (|has| |#2| (-964 (-523))) (|has| |#1| (-339)))) (((-1087) $) NIL (-12 (|has| |#2| (-964 (-1087))) (|has| |#1| (-339))))) (-1819 (($ $) 61) (($ (-523) $) 24)) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) NIL)) (-2381 (((-629 |#2|) (-629 $)) NIL (|has| |#1| (-339))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL (|has| |#1| (-339))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#1| (-339)))) (((-629 (-523)) (-629 $)) NIL (-12 (|has| |#2| (-585 (-523))) (|has| |#1| (-339))))) (-2121 (((-3 $ "failed") $) 77)) (-3289 (((-383 (-883 |#1|)) $ (-523)) 112 (|has| |#1| (-515))) (((-383 (-883 |#1|)) $ (-523) (-523)) 114 (|has| |#1| (-515)))) (-4032 (($) NIL (-12 (|has| |#2| (-508)) (|has| |#1| (-339))))) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2657 (((-108) $) NIL (|has| |#1| (-339)))) (-2604 (((-108) $) NIL (-12 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-2003 (((-108) $) 64)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| |#2| (-817 (-355))) (|has| |#1| (-339)))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| |#2| (-817 (-523))) (|has| |#1| (-339))))) (-1640 (((-523) $) 93) (((-523) $ (-523)) 95)) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL (|has| |#1| (-339)))) (-2785 ((|#2| $) 151 (|has| |#1| (-339)))) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-4058 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1063)) (|has| |#1| (-339))))) (-4114 (((-108) $) NIL (-12 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-1349 (($ $ (-852)) 136)) (-3735 (($ (-1 |#1| (-523)) $) 132)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-523)) 19) (($ $ (-1001) (-523)) NIL) (($ $ (-589 (-1001)) (-589 (-523))) NIL)) (-2454 (($ $ $) NIL (-12 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-2062 (($ $ $) NIL (-12 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-3612 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-339)))) (-2384 (($ $) 162 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2028 (($ (-523) |#2|) 10)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 145 (|has| |#1| (-339)))) (-3417 (($ $) 214 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 219 (-3262 (-12 (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1108)))))) (-2262 (($) NIL (-12 (|has| |#2| (-1063)) (|has| |#1| (-339))) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2206 (($ $) NIL (-12 (|has| |#2| (-284)) (|has| |#1| (-339))))) (-3722 ((|#2| $) NIL (-12 (|has| |#2| (-508)) (|has| |#1| (-339))))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#2| (-840)) (|has| |#1| (-339))))) (-1820 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-4097 (($ $ (-523)) 126)) (-3746 (((-3 $ "failed") $ $) 116 (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-1811 (($ $) 160 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-523))))) (($ $ (-1087) |#2|) NIL (-12 (|has| |#2| (-484 (-1087) |#2|)) (|has| |#1| (-339)))) (($ $ (-589 (-1087)) (-589 |#2|)) NIL (-12 (|has| |#2| (-484 (-1087) |#2|)) (|has| |#1| (-339)))) (($ $ (-589 (-271 |#2|))) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339)))) (($ $ (-271 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339)))) (($ $ (-589 |#2|) (-589 |#2|)) NIL (-12 (|has| |#2| (-286 |#2|)) (|has| |#1| (-339))))) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ (-523)) 91) (($ $ $) 79 (|has| (-523) (-1028))) (($ $ |#2|) NIL (-12 (|has| |#2| (-263 |#2| |#2|)) (|has| |#1| (-339))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3523 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-339))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#1| (-339))) (($ $ (-710)) NIL (-3262 (-12 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) 137 (-3262 (-12 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-3262 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087) (-710)) NIL (-3262 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-589 (-1087))) NIL (-3262 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087)) 140 (-3262 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))))) (-3414 (($ $) NIL (|has| |#1| (-339)))) (-2797 ((|#2| $) 152 (|has| |#1| (-339)))) (-2299 (((-523) $) 12)) (-1805 (($ $) 198 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 174 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 194 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 170 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 190 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 166 (|has| |#1| (-37 (-383 (-523)))))) (-3663 (((-203) $) NIL (-12 (|has| |#2| (-949)) (|has| |#1| (-339)))) (((-355) $) NIL (-12 (|has| |#2| (-949)) (|has| |#1| (-339)))) (((-499) $) NIL (-12 (|has| |#2| (-564 (-499))) (|has| |#1| (-339)))) (((-823 (-355)) $) NIL (-12 (|has| |#2| (-564 (-823 (-355)))) (|has| |#1| (-339)))) (((-823 (-523)) $) NIL (-12 (|has| |#2| (-564 (-823 (-523)))) (|has| |#1| (-339))))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#2| (-840)) (|has| |#1| (-339))))) (-1353 (($ $) 124)) (-1458 (((-794) $) 243) (($ (-523)) 23) (($ |#1|) 21 (|has| |#1| (-158))) (($ |#2|) 20) (($ (-1087)) NIL (-12 (|has| |#2| (-964 (-1087))) (|has| |#1| (-339)))) (($ (-383 (-523))) 155 (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515)))) (-2365 ((|#1| $ (-523)) 74)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#2| (-840)) (|has| |#1| (-339))) (-12 (|has| |#2| (-134)) (|has| |#1| (-339))) (|has| |#1| (-134))))) (-1621 (((-710)) 142)) (-1288 ((|#1| $) 90)) (-1886 ((|#2| $) NIL (-12 (|has| |#2| (-508)) (|has| |#1| (-339))))) (-1839 (($ $) 204 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 180 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) 200 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 176 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 208 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 184 (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-523)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-523)))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) 210 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 186 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 206 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 182 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 202 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 178 (|has| |#1| (-37 (-383 (-523)))))) (-2619 (($ $) NIL (-12 (|has| |#2| (-759)) (|has| |#1| (-339))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) 13 T CONST)) (-2767 (($) 17 T CONST)) (-2862 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-339))) (($ $ (-1 |#2| |#2|) (-710)) NIL (|has| |#1| (-339))) (($ $ (-710)) NIL (-3262 (-12 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) NIL (-3262 (-12 (|has| |#2| (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-3262 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087) (-710)) NIL (-3262 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-589 (-1087))) NIL (-3262 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| |#2| (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))))) (-4043 (((-108) $ $) NIL (-12 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-4019 (((-108) $ $) NIL (-12 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-3983 (((-108) $ $) 63)) (-4030 (((-108) $ $) NIL (-12 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-4007 (((-108) $ $) NIL (-12 (|has| |#2| (-786)) (|has| |#1| (-339))))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) 149 (|has| |#1| (-339))) (($ |#2| |#2|) 150 (|has| |#1| (-339)))) (-4087 (($ $) 213) (($ $ $) 68)) (-4075 (($ $ $) 66)) (** (($ $ (-852)) NIL) (($ $ (-710)) 73) (($ $ (-523)) 146 (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 158 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-339))) (($ |#2| $) 147 (|has| |#1| (-339))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-1131 |#1| |#2|) (-1130 |#1| |#2|) (-973) (-1159 |#1|)) (T -1131)) +NIL +(-1130 |#1| |#2|) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3458 (((-1160 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-284)) (|has| |#1| (-339))))) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) 10)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3345 (($ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3331 (((-108) $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3984 (($ $ (-523)) NIL) (($ $ (-523) (-523)) NIL)) (-2133 (((-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|))) $) NIL)) (-3951 (((-1160 |#1| |#2| |#3|) $) NIL)) (-3989 (((-3 (-1160 |#1| |#2| |#3|) "failed") $) NIL)) (-2015 (((-1160 |#1| |#2| |#3|) $) NIL)) (-1769 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-2291 (($ $) NIL (|has| |#1| (-339)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1744 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3671 (((-523) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-2417 (($ (-1068 (-2 (|:| |k| (-523)) (|:| |c| |#1|)))) NIL)) (-1793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-1160 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1087) "failed") $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-964 (-1087))) (|has| |#1| (-339)))) (((-3 (-383 (-523)) "failed") $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339)))) (((-3 (-523) "failed") $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339))))) (-3474 (((-1160 |#1| |#2| |#3|) $) NIL) (((-1087) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-964 (-1087))) (|has| |#1| (-339)))) (((-383 (-523)) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339)))) (((-523) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339))))) (-1819 (($ $) NIL) (($ (-523) $) NIL)) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) NIL)) (-2381 (((-629 (-1160 |#1| |#2| |#3|)) (-629 $)) NIL (|has| |#1| (-339))) (((-2 (|:| -3392 (-629 (-1160 |#1| |#2| |#3|))) (|:| |vec| (-1168 (-1160 |#1| |#2| |#3|)))) (-629 $) (-1168 $)) NIL (|has| |#1| (-339))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-585 (-523))) (|has| |#1| (-339)))) (((-629 (-523)) (-629 $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-585 (-523))) (|has| |#1| (-339))))) (-2121 (((-3 $ "failed") $) NIL)) (-3289 (((-383 (-883 |#1|)) $ (-523)) NIL (|has| |#1| (-515))) (((-383 (-883 |#1|)) $ (-523) (-523)) NIL (|has| |#1| (-515)))) (-4032 (($) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-508)) (|has| |#1| (-339))))) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2657 (((-108) $) NIL (|has| |#1| (-339)))) (-2604 (((-108) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-2003 (((-108) $) NIL)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2130 (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-817 (-523))) (|has| |#1| (-339)))) (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-817 (-355))) (|has| |#1| (-339))))) (-1640 (((-523) $) NIL) (((-523) $ (-523)) NIL)) (-2023 (((-108) $) NIL)) (-2531 (($ $) NIL (|has| |#1| (-339)))) (-2785 (((-1160 |#1| |#2| |#3|) $) NIL (|has| |#1| (-339)))) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-4058 (((-3 $ "failed") $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-1063)) (|has| |#1| (-339))))) (-4114 (((-108) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-1349 (($ $ (-852)) NIL)) (-3735 (($ (-1 |#1| (-523)) $) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-523)) 17) (($ $ (-1001) (-523)) NIL) (($ $ (-589 (-1001)) (-589 (-523))) NIL)) (-2454 (($ $ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-2062 (($ $ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-339)))) (-2384 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2028 (($ (-523) (-1160 |#1| |#2| |#3|)) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| |#1| (-339)))) (-3417 (($ $) 25 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1108))))) (($ $ (-1164 |#2|)) 26 (|has| |#1| (-37 (-383 (-523)))))) (-2262 (($) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-1063)) (|has| |#1| (-339))) CONST)) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2206 (($ $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-284)) (|has| |#1| (-339))))) (-3722 (((-1160 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-508)) (|has| |#1| (-339))))) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-1820 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-4097 (($ $ (-523)) NIL)) (-3746 (((-3 $ "failed") $ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-1811 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-523))))) (($ $ (-1087) (-1160 |#1| |#2| |#3|)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-484 (-1087) (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-589 (-1087)) (-589 (-1160 |#1| |#2| |#3|))) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-484 (-1087) (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-589 (-271 (-1160 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-286 (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-271 (-1160 |#1| |#2| |#3|))) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-286 (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-286 (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339)))) (($ $ (-589 (-1160 |#1| |#2| |#3|)) (-589 (-1160 |#1| |#2| |#3|))) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-286 (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339))))) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ (-523)) NIL) (($ $ $) NIL (|has| (-523) (-1028))) (($ $ (-1160 |#1| |#2| |#3|)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-263 (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|))) (|has| |#1| (-339))))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3523 (($ $ (-1 (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|))) NIL (|has| |#1| (-339))) (($ $ (-1 (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|)) (-710)) NIL (|has| |#1| (-339))) (($ $ (-1164 |#2|)) 24) (($ $ (-710)) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) 23 (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087) (-710)) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-589 (-1087))) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))))) (-3414 (($ $) NIL (|has| |#1| (-339)))) (-2797 (((-1160 |#1| |#2| |#3|) $) NIL (|has| |#1| (-339)))) (-2299 (((-523) $) NIL)) (-1805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3663 (((-499) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-564 (-499))) (|has| |#1| (-339)))) (((-355) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-949)) (|has| |#1| (-339)))) (((-203) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-949)) (|has| |#1| (-339)))) (((-823 (-355)) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-564 (-823 (-355)))) (|has| |#1| (-339)))) (((-823 (-523)) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-564 (-823 (-523)))) (|has| |#1| (-339))))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))))) (-1353 (($ $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL (|has| |#1| (-158))) (($ (-1160 |#1| |#2| |#3|)) NIL) (($ (-1164 |#2|)) 22) (($ (-1087)) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-964 (-1087))) (|has| |#1| (-339)))) (($ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515)))) (($ (-383 (-523))) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-964 (-523))) (|has| |#1| (-339))) (|has| |#1| (-37 (-383 (-523))))))) (-2365 ((|#1| $ (-523)) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-134)) (|has| |#1| (-339))) (|has| |#1| (-134))))) (-1621 (((-710)) NIL)) (-1288 ((|#1| $) 11)) (-1886 (((-1160 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-508)) (|has| |#1| (-339))))) (-1839 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-840)) (|has| |#1| (-339))) (|has| |#1| (-515))))) (-1818 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-523)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-523)))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2619 (($ $) NIL (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) 19 T CONST)) (-2767 (($) 15 T CONST)) (-2862 (($ $ (-1 (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|))) NIL (|has| |#1| (-339))) (($ $ (-1 (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|)) (-710)) NIL (|has| |#1| (-339))) (($ $ (-710)) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-211)) (|has| |#1| (-339))) (|has| |#1| (-15 * (|#1| (-523) |#1|))))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087) (-710)) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-589 (-1087))) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087)))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-831 (-1087))) (|has| |#1| (-339))) (-12 (|has| |#1| (-15 * (|#1| (-523) |#1|))) (|has| |#1| (-831 (-1087))))))) (-4043 (((-108) $ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-4019 (((-108) $ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-4007 (((-108) $ $) NIL (-3262 (-12 (|has| (-1160 |#1| |#2| |#3|) (-759)) (|has| |#1| (-339))) (-12 (|has| (-1160 |#1| |#2| |#3|) (-786)) (|has| |#1| (-339)))))) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339))) (($ (-1160 |#1| |#2| |#3|) (-1160 |#1| |#2| |#3|)) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 20)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1160 |#1| |#2| |#3|)) NIL (|has| |#1| (-339))) (($ (-1160 |#1| |#2| |#3|) $) NIL (|has| |#1| (-339))) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-1132 |#1| |#2| |#3|) (-13 (-1130 |#1| (-1160 |#1| |#2| |#3|)) (-10 -8 (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) (-973) (-1087) |#1|) (T -1132)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1132 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1132 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3417 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1132 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) +(-13 (-1130 |#1| (-1160 |#1| |#2| |#3|)) (-10 -8 (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) +((-2550 (((-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))) |#1| (-108)) 10)) (-3906 (((-394 |#1|) |#1|) 21)) (-1820 (((-394 |#1|) |#1|) 20))) +(((-1133 |#1|) (-10 -7 (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3906 ((-394 |#1|) |#1|)) (-15 -2550 ((-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))) |#1| (-108)))) (-1144 (-523))) (T -1133)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| *3) (|:| -1227 (-523))))))) (-5 *1 (-1133 *3)) (-4 *3 (-1144 (-523))))) (-3906 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1144 (-523))))) (-1820 (*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1144 (-523)))))) +(-10 -7 (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3906 ((-394 |#1|) |#1|)) (-15 -2550 ((-2 (|:| |contp| (-523)) (|:| -1979 (-589 (-2 (|:| |irr| |#1|) (|:| -1227 (-523)))))) |#1| (-108)))) +((-3612 (((-1068 |#2|) (-1 |#2| |#1|) (-1135 |#1|)) 23 (|has| |#1| (-784))) (((-1135 |#2|) (-1 |#2| |#1|) (-1135 |#1|)) 17))) +(((-1134 |#1| |#2|) (-10 -7 (-15 -3612 ((-1135 |#2|) (-1 |#2| |#1|) (-1135 |#1|))) (IF (|has| |#1| (-784)) (-15 -3612 ((-1068 |#2|) (-1 |#2| |#1|) (-1135 |#1|))) |%noBranch|)) (-1122) (-1122)) (T -1134)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1135 *5)) (-4 *5 (-784)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1068 *6)) (-5 *1 (-1134 *5 *6)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1135 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1135 *6)) (-5 *1 (-1134 *5 *6))))) +(-10 -7 (-15 -3612 ((-1135 |#2|) (-1 |#2| |#1|) (-1135 |#1|))) (IF (|has| |#1| (-784)) (-15 -3612 ((-1068 |#2|) (-1 |#2| |#1|) (-1135 |#1|))) |%noBranch|)) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2644 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-3612 (((-1068 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-784)))) (-2279 ((|#1| $) 14)) (-3519 ((|#1| $) 10)) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-3530 (((-523) $) 18)) (-2566 ((|#1| $) 17)) (-3539 ((|#1| $) 11)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-2231 (((-108) $) 16)) (-3686 (((-1068 |#1|) $) 38 (|has| |#1| (-784))) (((-1068 |#1|) (-589 $)) 37 (|has| |#1| (-784)))) (-3663 (($ |#1|) 25)) (-1458 (($ (-1011 |#1|)) 24) (((-794) $) 34 (|has| |#1| (-1016)))) (-3410 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3763 (($ $ (-523)) 13)) (-3983 (((-108) $ $) 27 (|has| |#1| (-1016))))) +(((-1135 |#1|) (-13 (-1010 |#1|) (-10 -8 (-15 -3410 ($ |#1|)) (-15 -2644 ($ |#1|)) (-15 -1458 ($ (-1011 |#1|))) (-15 -2231 ((-108) $)) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-1012 |#1| (-1068 |#1|))) |%noBranch|))) (-1122)) (T -1135)) +((-3410 (*1 *1 *2) (-12 (-5 *1 (-1135 *2)) (-4 *2 (-1122)))) (-2644 (*1 *1 *2) (-12 (-5 *1 (-1135 *2)) (-4 *2 (-1122)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1011 *3)) (-4 *3 (-1122)) (-5 *1 (-1135 *3)))) (-2231 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1135 *3)) (-4 *3 (-1122))))) +(-13 (-1010 |#1|) (-10 -8 (-15 -3410 ($ |#1|)) (-15 -2644 ($ |#1|)) (-15 -1458 ($ (-1011 |#1|))) (-15 -2231 ((-108) $)) (IF (|has| |#1| (-1016)) (-6 (-1016)) |%noBranch|) (IF (|has| |#1| (-784)) (-6 (-1012 |#1| (-1068 |#1|))) |%noBranch|))) +((-3612 (((-1141 |#3| |#4|) (-1 |#4| |#2|) (-1141 |#1| |#2|)) 15))) +(((-1136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 ((-1141 |#3| |#4|) (-1 |#4| |#2|) (-1141 |#1| |#2|)))) (-1087) (-973) (-1087) (-973)) (T -1136)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1141 *5 *6)) (-14 *5 (-1087)) (-4 *6 (-973)) (-4 *8 (-973)) (-5 *2 (-1141 *7 *8)) (-5 *1 (-1136 *5 *6 *7 *8)) (-14 *7 (-1087))))) +(-10 -7 (-15 -3612 ((-1141 |#3| |#4|) (-1 |#4| |#2|) (-1141 |#1| |#2|)))) +((-1199 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3616 ((|#1| |#3|) 13)) (-3604 ((|#3| |#3|) 19))) +(((-1137 |#1| |#2| |#3|) (-10 -7 (-15 -3616 (|#1| |#3|)) (-15 -3604 (|#3| |#3|)) (-15 -1199 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-515) (-921 |#1|) (-1144 |#2|)) (T -1137)) +((-1199 (*1 *2 *3) (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1137 *4 *5 *3)) (-4 *3 (-1144 *5)))) (-3604 (*1 *2 *2) (-12 (-4 *3 (-515)) (-4 *4 (-921 *3)) (-5 *1 (-1137 *3 *4 *2)) (-4 *2 (-1144 *4)))) (-3616 (*1 *2 *3) (-12 (-4 *4 (-921 *2)) (-4 *2 (-515)) (-5 *1 (-1137 *2 *4 *3)) (-4 *3 (-1144 *4))))) +(-10 -7 (-15 -3616 (|#1| |#3|)) (-15 -3604 (|#3| |#3|)) (-15 -1199 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2498 (((-3 |#2| "failed") |#2| (-710) |#1|) 29)) (-2099 (((-3 |#2| "failed") |#2| (-710)) 30)) (-1897 (((-3 (-2 (|:| -3149 |#2|) (|:| -3159 |#2|)) "failed") |#2|) 43)) (-3772 (((-589 |#2|) |#2|) 45)) (-3103 (((-3 |#2| "failed") |#2| |#2|) 40))) +(((-1138 |#1| |#2|) (-10 -7 (-15 -2099 ((-3 |#2| "failed") |#2| (-710))) (-15 -2498 ((-3 |#2| "failed") |#2| (-710) |#1|)) (-15 -3103 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1897 ((-3 (-2 (|:| -3149 |#2|) (|:| -3159 |#2|)) "failed") |#2|)) (-15 -3772 ((-589 |#2|) |#2|))) (-13 (-515) (-136)) (-1144 |#1|)) (T -1138)) +((-3772 (*1 *2 *3) (-12 (-4 *4 (-13 (-515) (-136))) (-5 *2 (-589 *3)) (-5 *1 (-1138 *4 *3)) (-4 *3 (-1144 *4)))) (-1897 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-515) (-136))) (-5 *2 (-2 (|:| -3149 *3) (|:| -3159 *3))) (-5 *1 (-1138 *4 *3)) (-4 *3 (-1144 *4)))) (-3103 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-1138 *3 *2)) (-4 *2 (-1144 *3)))) (-2498 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-710)) (-4 *4 (-13 (-515) (-136))) (-5 *1 (-1138 *4 *2)) (-4 *2 (-1144 *4)))) (-2099 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-710)) (-4 *4 (-13 (-515) (-136))) (-5 *1 (-1138 *4 *2)) (-4 *2 (-1144 *4))))) +(-10 -7 (-15 -2099 ((-3 |#2| "failed") |#2| (-710))) (-15 -2498 ((-3 |#2| "failed") |#2| (-710) |#1|)) (-15 -3103 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1897 ((-3 (-2 (|:| -3149 |#2|) (|:| -3159 |#2|)) "failed") |#2|)) (-15 -3772 ((-589 |#2|) |#2|))) +((-3336 (((-3 (-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) "failed") |#2| |#2|) 32))) +(((-1139 |#1| |#2|) (-10 -7 (-15 -3336 ((-3 (-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) "failed") |#2| |#2|))) (-515) (-1144 |#1|)) (T -1139)) +((-3336 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-515)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-1139 *4 *3)) (-4 *3 (-1144 *4))))) +(-10 -7 (-15 -3336 ((-3 (-2 (|:| -3445 |#2|) (|:| -3282 |#2|)) "failed") |#2| |#2|))) +((-2796 ((|#2| |#2| |#2|) 19)) (-4153 ((|#2| |#2| |#2|) 30)) (-2798 ((|#2| |#2| |#2| (-710) (-710)) 36))) +(((-1140 |#1| |#2|) (-10 -7 (-15 -2796 (|#2| |#2| |#2|)) (-15 -4153 (|#2| |#2| |#2|)) (-15 -2798 (|#2| |#2| |#2| (-710) (-710)))) (-973) (-1144 |#1|)) (T -1140)) +((-2798 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-710)) (-4 *4 (-973)) (-5 *1 (-1140 *4 *2)) (-4 *2 (-1144 *4)))) (-4153 (*1 *2 *2 *2) (-12 (-4 *3 (-973)) (-5 *1 (-1140 *3 *2)) (-4 *2 (-1144 *3)))) (-2796 (*1 *2 *2 *2) (-12 (-4 *3 (-973)) (-5 *1 (-1140 *3 *2)) (-4 *2 (-1144 *3))))) +(-10 -7 (-15 -2796 (|#2| |#2| |#2|)) (-15 -4153 (|#2| |#2| |#2|)) (-15 -2798 (|#2| |#2| |#2| (-710) (-710)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2854 (((-1168 |#2|) $ (-710)) NIL)) (-1957 (((-589 (-1001)) $) NIL)) (-3131 (($ (-1083 |#2|)) NIL)) (-1786 (((-1083 $) $ (-1001)) NIL) (((-1083 |#2|) $) NIL)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#2| (-515)))) (-3345 (($ $) NIL (|has| |#2| (-515)))) (-3331 (((-108) $) NIL (|has| |#2| (-515)))) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-1001))) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2407 (($ $ $) NIL (|has| |#2| (-515)))) (-3156 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-2291 (($ $) NIL (|has| |#2| (-427)))) (-3614 (((-394 $) $) NIL (|has| |#2| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1387 (((-108) $ $) NIL (|has| |#2| (-339)))) (-2692 (($ $ (-710)) NIL)) (-2482 (($ $ (-710)) NIL)) (-3444 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-427)))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) NIL) (((-3 (-383 (-523)) "failed") $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) NIL (|has| |#2| (-964 (-523)))) (((-3 (-1001) "failed") $) NIL)) (-3474 ((|#2| $) NIL) (((-383 (-523)) $) NIL (|has| |#2| (-964 (-383 (-523))))) (((-523) $) NIL (|has| |#2| (-964 (-523)))) (((-1001) $) NIL)) (-3078 (($ $ $ (-1001)) NIL (|has| |#2| (-158))) ((|#2| $ $) NIL (|has| |#2| (-158)))) (-3796 (($ $ $) NIL (|has| |#2| (-339)))) (-3810 (($ $) NIL)) (-2381 (((-629 (-523)) (-629 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) NIL (|has| |#2| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#2|)) (|:| |vec| (-1168 |#2|))) (-629 $) (-1168 $)) NIL) (((-629 |#2|) (-629 $)) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-3769 (($ $ $) NIL (|has| |#2| (-339)))) (-3666 (($ $ $) NIL)) (-2349 (($ $ $) NIL (|has| |#2| (-515)))) (-2815 (((-2 (|:| -2935 |#2|) (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#2| (-515)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#2| (-339)))) (-2528 (($ $) NIL (|has| |#2| (-427))) (($ $ (-1001)) NIL (|has| |#2| (-427)))) (-3799 (((-589 $) $) NIL)) (-2657 (((-108) $) NIL (|has| |#2| (-840)))) (-1284 (($ $ |#2| (-710) $) NIL)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) NIL (-12 (|has| (-1001) (-817 (-355))) (|has| |#2| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) NIL (-12 (|has| (-1001) (-817 (-523))) (|has| |#2| (-817 (-523)))))) (-1640 (((-710) $ $) NIL (|has| |#2| (-515)))) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-4058 (((-3 $ "failed") $) NIL (|has| |#2| (-1063)))) (-1945 (($ (-1083 |#2|) (-1001)) NIL) (($ (-1083 $) (-1001)) NIL)) (-1349 (($ $ (-710)) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#2| (-339)))) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-1933 (($ |#2| (-710)) 17) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-1001)) NIL) (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL)) (-1575 (((-710) $) NIL) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-2454 (($ $ $) NIL (|has| |#2| (-786)))) (-2062 (($ $ $) NIL (|has| |#2| (-786)))) (-3782 (($ (-1 (-710) (-710)) $) NIL)) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-2180 (((-1083 |#2|) $) NIL)) (-2520 (((-3 (-1001) "failed") $) NIL)) (-3774 (($ $) NIL)) (-3786 ((|#2| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-3779 (((-1070) $) NIL)) (-2150 (((-2 (|:| -3445 $) (|:| -3282 $)) $ (-710)) NIL)) (-3226 (((-3 (-589 $) "failed") $) NIL)) (-4006 (((-3 (-589 $) "failed") $) NIL)) (-2630 (((-3 (-2 (|:| |var| (-1001)) (|:| -2735 (-710))) "failed") $) NIL)) (-3417 (($ $) NIL (|has| |#2| (-37 (-383 (-523)))))) (-2262 (($) NIL (|has| |#2| (-1063)) CONST)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 ((|#2| $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-427)))) (-3278 (($ (-589 $)) NIL (|has| |#2| (-427))) (($ $ $) NIL (|has| |#2| (-427)))) (-4034 (($ $ (-710) |#2| $) NIL)) (-1219 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-840)))) (-1820 (((-394 $) $) NIL (|has| |#2| (-840)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#2| (-339)))) (-3746 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-515))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#2| (-339)))) (-2679 (($ $ (-589 (-271 $))) NIL) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-1001) |#2|) NIL) (($ $ (-589 (-1001)) (-589 |#2|)) NIL) (($ $ (-1001) $) NIL) (($ $ (-589 (-1001)) (-589 $)) NIL)) (-1972 (((-710) $) NIL (|has| |#2| (-339)))) (-3223 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-383 $) (-383 $) (-383 $)) NIL (|has| |#2| (-515))) ((|#2| (-383 $) |#2|) NIL (|has| |#2| (-339))) (((-383 $) $ (-383 $)) NIL (|has| |#2| (-515)))) (-3255 (((-3 $ "failed") $ (-710)) NIL)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#2| (-339)))) (-3549 (($ $ (-1001)) NIL (|has| |#2| (-158))) ((|#2| $) NIL (|has| |#2| (-158)))) (-3523 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2299 (((-710) $) NIL) (((-710) $ (-1001)) NIL) (((-589 (-710)) $ (-589 (-1001))) NIL)) (-3663 (((-823 (-355)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-355)))) (|has| |#2| (-564 (-823 (-355)))))) (((-823 (-523)) $) NIL (-12 (|has| (-1001) (-564 (-823 (-523)))) (|has| |#2| (-564 (-823 (-523)))))) (((-499) $) NIL (-12 (|has| (-1001) (-564 (-499))) (|has| |#2| (-564 (-499)))))) (-2438 ((|#2| $) NIL (|has| |#2| (-427))) (($ $ (-1001)) NIL (|has| |#2| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) NIL (-12 (|has| $ (-134)) (|has| |#2| (-840))))) (-1260 (((-3 $ "failed") $ $) NIL (|has| |#2| (-515))) (((-3 (-383 $) "failed") (-383 $) $) NIL (|has| |#2| (-515)))) (-1458 (((-794) $) 13) (($ (-523)) NIL) (($ |#2|) NIL) (($ (-1001)) NIL) (($ (-1164 |#1|)) 19) (($ (-383 (-523))) NIL (-3262 (|has| |#2| (-37 (-383 (-523)))) (|has| |#2| (-964 (-383 (-523)))))) (($ $) NIL (|has| |#2| (-515)))) (-1251 (((-589 |#2|) $) NIL)) (-2365 ((|#2| $ (-710)) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-3901 (((-3 $ "failed") $) NIL (-3262 (-12 (|has| $ (-134)) (|has| |#2| (-840))) (|has| |#2| (-134))))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| |#2| (-158)))) (-1704 (((-108) $ $) NIL (|has| |#2| (-515)))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-2767 (($) 14 T CONST)) (-2862 (($ $ (-1001)) NIL) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) NIL) (($ $ (-1087)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1087) (-710)) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) NIL (|has| |#2| (-831 (-1087)))) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4043 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#2| (-786)))) (-3983 (((-108) $ $) NIL)) (-4030 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#2| (-786)))) (-4098 (($ $ |#2|) NIL (|has| |#2| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-383 (-523))) NIL (|has| |#2| (-37 (-383 (-523))))) (($ (-383 (-523)) $) NIL (|has| |#2| (-37 (-383 (-523))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1141 |#1| |#2|) (-13 (-1144 |#2|) (-10 -8 (-15 -1458 ($ (-1164 |#1|))) (-15 -4034 ($ $ (-710) |#2| $)))) (-1087) (-973)) (T -1141)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-14 *3 (-1087)) (-5 *1 (-1141 *3 *4)) (-4 *4 (-973)))) (-4034 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1141 *4 *3)) (-14 *4 (-1087)) (-4 *3 (-973))))) +(-13 (-1144 |#2|) (-10 -8 (-15 -1458 ($ (-1164 |#1|))) (-15 -4034 ($ $ (-710) |#2| $)))) +((-3612 ((|#4| (-1 |#3| |#1|) |#2|) 23))) +(((-1142 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 (|#4| (-1 |#3| |#1|) |#2|))) (-973) (-1144 |#1|) (-973) (-1144 |#3|)) (T -1142)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-973)) (-4 *6 (-973)) (-4 *2 (-1144 *6)) (-5 *1 (-1142 *5 *4 *6 *2)) (-4 *4 (-1144 *5))))) +(-10 -7 (-15 -3612 (|#4| (-1 |#3| |#1|) |#2|))) +((-2854 (((-1168 |#2|) $ (-710)) 113)) (-1957 (((-589 (-1001)) $) 15)) (-3131 (($ (-1083 |#2|)) 66)) (-3893 (((-710) $) NIL) (((-710) $ (-589 (-1001))) 18)) (-3156 (((-394 (-1083 $)) (-1083 $)) 184)) (-2291 (($ $) 174)) (-3614 (((-394 $) $) 172)) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 81)) (-2692 (($ $ (-710)) 70)) (-2482 (($ $ (-710)) 72)) (-3444 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-3517 (((-3 |#2| "failed") $) 116) (((-3 (-383 (-523)) "failed") $) NIL) (((-3 (-523) "failed") $) NIL) (((-3 (-1001) "failed") $) NIL)) (-3474 ((|#2| $) 114) (((-383 (-523)) $) NIL) (((-523) $) NIL) (((-1001) $) NIL)) (-2349 (($ $ $) 150)) (-2815 (((-2 (|:| -2935 |#2|) (|:| -3445 $) (|:| -3282 $)) $ $) 152)) (-1640 (((-710) $ $) 169)) (-4058 (((-3 $ "failed") $) 122)) (-1933 (($ |#2| (-710)) NIL) (($ $ (-1001) (-710)) 46) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-1575 (((-710) $) NIL) (((-710) $ (-1001)) 41) (((-589 (-710)) $ (-589 (-1001))) 42)) (-2180 (((-1083 |#2|) $) 58)) (-2520 (((-3 (-1001) "failed") $) 39)) (-2150 (((-2 (|:| -3445 $) (|:| -3282 $)) $ (-710)) 69)) (-3417 (($ $) 195)) (-2262 (($) 118)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 181)) (-1219 (((-394 (-1083 $)) (-1083 $)) 87)) (-3967 (((-394 (-1083 $)) (-1083 $)) 85)) (-1820 (((-394 $) $) 105)) (-2679 (($ $ (-589 (-271 $))) 38) (($ $ (-271 $)) NIL) (($ $ $ $) NIL) (($ $ (-589 $) (-589 $)) NIL) (($ $ (-1001) |#2|) 31) (($ $ (-589 (-1001)) (-589 |#2|)) 28) (($ $ (-1001) $) 25) (($ $ (-589 (-1001)) (-589 $)) 23)) (-1972 (((-710) $) 187)) (-3223 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-383 $) (-383 $) (-383 $)) 146) ((|#2| (-383 $) |#2|) 186) (((-383 $) $ (-383 $)) 168)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 190)) (-3523 (($ $ (-1001)) 139) (($ $ (-589 (-1001))) NIL) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL) (($ $ (-710)) NIL) (($ $) 137) (($ $ (-1087)) NIL) (($ $ (-589 (-1087))) NIL) (($ $ (-1087) (-710)) NIL) (($ $ (-589 (-1087)) (-589 (-710))) NIL) (($ $ (-1 |#2| |#2|) (-710)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-2299 (((-710) $) NIL) (((-710) $ (-1001)) 16) (((-589 (-710)) $ (-589 (-1001))) 20)) (-2438 ((|#2| $) NIL) (($ $ (-1001)) 124)) (-1260 (((-3 $ "failed") $ $) 160) (((-3 (-383 $) "failed") (-383 $) $) 156)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#2|) NIL) (($ (-1001)) 50) (($ (-383 (-523))) NIL) (($ $) NIL))) +(((-1143 |#1| |#2|) (-10 -8 (-15 -1458 (|#1| |#1|)) (-15 -2667 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3614 ((-394 |#1|) |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -2262 (|#1|)) (-15 -4058 ((-3 |#1| "failed") |#1|)) (-15 -3223 ((-383 |#1|) |#1| (-383 |#1|))) (-15 -1972 ((-710) |#1|)) (-15 -3462 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -3417 (|#1| |#1|)) (-15 -3223 (|#2| (-383 |#1|) |#2|)) (-15 -3444 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2815 ((-2 (|:| -2935 |#2|) (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -2349 (|#1| |#1| |#1|)) (-15 -1260 ((-3 (-383 |#1|) "failed") (-383 |#1|) |#1|)) (-15 -1260 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1640 ((-710) |#1| |#1|)) (-15 -3223 ((-383 |#1|) (-383 |#1|) (-383 |#1|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2482 (|#1| |#1| (-710))) (-15 -2692 (|#1| |#1| (-710))) (-15 -2150 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| (-710))) (-15 -3131 (|#1| (-1083 |#2|))) (-15 -2180 ((-1083 |#2|) |#1|)) (-15 -2854 ((-1168 |#2|) |#1| (-710))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -3223 (|#1| |#1| |#1|)) (-15 -3223 (|#2| |#1| |#2|)) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3156 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3967 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -1219 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3652 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -2438 (|#1| |#1| (-1001))) (-15 -1957 ((-589 (-1001)) |#1|)) (-15 -3893 ((-710) |#1| (-589 (-1001)))) (-15 -3893 ((-710) |#1|)) (-15 -1933 (|#1| |#1| (-589 (-1001)) (-589 (-710)))) (-15 -1933 (|#1| |#1| (-1001) (-710))) (-15 -1575 ((-589 (-710)) |#1| (-589 (-1001)))) (-15 -1575 ((-710) |#1| (-1001))) (-15 -2520 ((-3 (-1001) "failed") |#1|)) (-15 -2299 ((-589 (-710)) |#1| (-589 (-1001)))) (-15 -2299 ((-710) |#1| (-1001))) (-15 -3474 ((-1001) |#1|)) (-15 -3517 ((-3 (-1001) "failed") |#1|)) (-15 -1458 (|#1| (-1001))) (-15 -2679 (|#1| |#1| (-589 (-1001)) (-589 |#1|))) (-15 -2679 (|#1| |#1| (-1001) |#1|)) (-15 -2679 (|#1| |#1| (-589 (-1001)) (-589 |#2|))) (-15 -2679 (|#1| |#1| (-1001) |#2|)) (-15 -2679 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-271 |#1|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2299 ((-710) |#1|)) (-15 -1933 (|#1| |#2| (-710))) (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -1575 ((-710) |#1|)) (-15 -2438 (|#2| |#1|)) (-15 -3523 (|#1| |#1| (-589 (-1001)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1001) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1001)))) (-15 -3523 (|#1| |#1| (-1001))) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) (-1144 |#2|) (-973)) (T -1143)) +NIL +(-10 -8 (-15 -1458 (|#1| |#1|)) (-15 -2667 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3614 ((-394 |#1|) |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -2262 (|#1|)) (-15 -4058 ((-3 |#1| "failed") |#1|)) (-15 -3223 ((-383 |#1|) |#1| (-383 |#1|))) (-15 -1972 ((-710) |#1|)) (-15 -3462 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -3417 (|#1| |#1|)) (-15 -3223 (|#2| (-383 |#1|) |#2|)) (-15 -3444 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2815 ((-2 (|:| -2935 |#2|) (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| |#1|)) (-15 -2349 (|#1| |#1| |#1|)) (-15 -1260 ((-3 (-383 |#1|) "failed") (-383 |#1|) |#1|)) (-15 -1260 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1640 ((-710) |#1| |#1|)) (-15 -3223 ((-383 |#1|) (-383 |#1|) (-383 |#1|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2482 (|#1| |#1| (-710))) (-15 -2692 (|#1| |#1| (-710))) (-15 -2150 ((-2 (|:| -3445 |#1|) (|:| -3282 |#1|)) |#1| (-710))) (-15 -3131 (|#1| (-1083 |#2|))) (-15 -2180 ((-1083 |#2|) |#1|)) (-15 -2854 ((-1168 |#2|) |#1| (-710))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3523 (|#1| |#1| (-1 |#2| |#2|) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1087) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1087)))) (-15 -3523 (|#1| |#1| (-1087))) (-15 -3523 (|#1| |#1|)) (-15 -3523 (|#1| |#1| (-710))) (-15 -3223 (|#1| |#1| |#1|)) (-15 -3223 (|#2| |#1| |#2|)) (-15 -1820 ((-394 |#1|) |#1|)) (-15 -3156 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3967 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -1219 ((-394 (-1083 |#1|)) (-1083 |#1|))) (-15 -3652 ((-3 (-589 (-1083 |#1|)) "failed") (-589 (-1083 |#1|)) (-1083 |#1|))) (-15 -2438 (|#1| |#1| (-1001))) (-15 -1957 ((-589 (-1001)) |#1|)) (-15 -3893 ((-710) |#1| (-589 (-1001)))) (-15 -3893 ((-710) |#1|)) (-15 -1933 (|#1| |#1| (-589 (-1001)) (-589 (-710)))) (-15 -1933 (|#1| |#1| (-1001) (-710))) (-15 -1575 ((-589 (-710)) |#1| (-589 (-1001)))) (-15 -1575 ((-710) |#1| (-1001))) (-15 -2520 ((-3 (-1001) "failed") |#1|)) (-15 -2299 ((-589 (-710)) |#1| (-589 (-1001)))) (-15 -2299 ((-710) |#1| (-1001))) (-15 -3474 ((-1001) |#1|)) (-15 -3517 ((-3 (-1001) "failed") |#1|)) (-15 -1458 (|#1| (-1001))) (-15 -2679 (|#1| |#1| (-589 (-1001)) (-589 |#1|))) (-15 -2679 (|#1| |#1| (-1001) |#1|)) (-15 -2679 (|#1| |#1| (-589 (-1001)) (-589 |#2|))) (-15 -2679 (|#1| |#1| (-1001) |#2|)) (-15 -2679 (|#1| |#1| (-589 |#1|) (-589 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-271 |#1|))) (-15 -2679 (|#1| |#1| (-589 (-271 |#1|)))) (-15 -2299 ((-710) |#1|)) (-15 -1933 (|#1| |#2| (-710))) (-15 -3474 ((-523) |#1|)) (-15 -3517 ((-3 (-523) "failed") |#1|)) (-15 -3474 ((-383 (-523)) |#1|)) (-15 -3517 ((-3 (-383 (-523)) "failed") |#1|)) (-15 -1458 (|#1| |#2|)) (-15 -3517 ((-3 |#2| "failed") |#1|)) (-15 -3474 (|#2| |#1|)) (-15 -1575 ((-710) |#1|)) (-15 -2438 (|#2| |#1|)) (-15 -3523 (|#1| |#1| (-589 (-1001)) (-589 (-710)))) (-15 -3523 (|#1| |#1| (-1001) (-710))) (-15 -3523 (|#1| |#1| (-589 (-1001)))) (-15 -3523 (|#1| |#1| (-1001))) (-15 -1458 (|#1| (-523))) (-15 -1458 ((-794) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-2854 (((-1168 |#1|) $ (-710)) 238)) (-1957 (((-589 (-1001)) $) 110)) (-3131 (($ (-1083 |#1|)) 236)) (-1786 (((-1083 $) $ (-1001)) 125) (((-1083 |#1|) $) 124)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 87 (|has| |#1| (-515)))) (-3345 (($ $) 88 (|has| |#1| (-515)))) (-3331 (((-108) $) 90 (|has| |#1| (-515)))) (-3893 (((-710) $) 112) (((-710) $ (-589 (-1001))) 111)) (-3212 (((-3 $ "failed") $ $) 19)) (-2407 (($ $ $) 223 (|has| |#1| (-515)))) (-3156 (((-394 (-1083 $)) (-1083 $)) 100 (|has| |#1| (-840)))) (-2291 (($ $) 98 (|has| |#1| (-427)))) (-3614 (((-394 $) $) 97 (|has| |#1| (-427)))) (-3652 (((-3 (-589 (-1083 $)) "failed") (-589 (-1083 $)) (-1083 $)) 103 (|has| |#1| (-840)))) (-1387 (((-108) $ $) 208 (|has| |#1| (-339)))) (-2692 (($ $ (-710)) 231)) (-2482 (($ $ (-710)) 230)) (-3444 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-427)))) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#1| "failed") $) 164) (((-3 (-383 (-523)) "failed") $) 162 (|has| |#1| (-964 (-383 (-523))))) (((-3 (-523) "failed") $) 160 (|has| |#1| (-964 (-523)))) (((-3 (-1001) "failed") $) 136)) (-3474 ((|#1| $) 165) (((-383 (-523)) $) 161 (|has| |#1| (-964 (-383 (-523))))) (((-523) $) 159 (|has| |#1| (-964 (-523)))) (((-1001) $) 135)) (-3078 (($ $ $ (-1001)) 108 (|has| |#1| (-158))) ((|#1| $ $) 226 (|has| |#1| (-158)))) (-3796 (($ $ $) 212 (|has| |#1| (-339)))) (-3810 (($ $) 154)) (-2381 (((-629 (-523)) (-629 $)) 134 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 (-523))) (|:| |vec| (-1168 (-523)))) (-629 $) (-1168 $)) 133 (|has| |#1| (-585 (-523)))) (((-2 (|:| -3392 (-629 |#1|)) (|:| |vec| (-1168 |#1|))) (-629 $) (-1168 $)) 132) (((-629 |#1|) (-629 $)) 131)) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 211 (|has| |#1| (-339)))) (-3666 (($ $ $) 229)) (-2349 (($ $ $) 220 (|has| |#1| (-515)))) (-2815 (((-2 (|:| -2935 |#1|) (|:| -3445 $) (|:| -3282 $)) $ $) 219 (|has| |#1| (-515)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 206 (|has| |#1| (-339)))) (-2528 (($ $) 176 (|has| |#1| (-427))) (($ $ (-1001)) 105 (|has| |#1| (-427)))) (-3799 (((-589 $) $) 109)) (-2657 (((-108) $) 96 (|has| |#1| (-840)))) (-1284 (($ $ |#1| (-710) $) 172)) (-2130 (((-820 (-355) $) $ (-823 (-355)) (-820 (-355) $)) 84 (-12 (|has| (-1001) (-817 (-355))) (|has| |#1| (-817 (-355))))) (((-820 (-523) $) $ (-823 (-523)) (-820 (-523) $)) 83 (-12 (|has| (-1001) (-817 (-523))) (|has| |#1| (-817 (-523)))))) (-1640 (((-710) $ $) 224 (|has| |#1| (-515)))) (-2023 (((-108) $) 31)) (-3554 (((-710) $) 169)) (-4058 (((-3 $ "failed") $) 204 (|has| |#1| (-1063)))) (-1945 (($ (-1083 |#1|) (-1001)) 117) (($ (-1083 $) (-1001)) 116)) (-1349 (($ $ (-710)) 235)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 215 (|has| |#1| (-339)))) (-3679 (((-589 $) $) 126)) (-2620 (((-108) $) 152)) (-1933 (($ |#1| (-710)) 153) (($ $ (-1001) (-710)) 119) (($ $ (-589 (-1001)) (-589 (-710))) 118)) (-2981 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $ (-1001)) 120) (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 233)) (-1575 (((-710) $) 170) (((-710) $ (-1001)) 122) (((-589 (-710)) $ (-589 (-1001))) 121)) (-2454 (($ $ $) 79 (|has| |#1| (-786)))) (-2062 (($ $ $) 78 (|has| |#1| (-786)))) (-3782 (($ (-1 (-710) (-710)) $) 171)) (-3612 (($ (-1 |#1| |#1|) $) 151)) (-2180 (((-1083 |#1|) $) 237)) (-2520 (((-3 (-1001) "failed") $) 123)) (-3774 (($ $) 149)) (-3786 ((|#1| $) 148)) (-3244 (($ (-589 $)) 94 (|has| |#1| (-427))) (($ $ $) 93 (|has| |#1| (-427)))) (-3779 (((-1070) $) 9)) (-2150 (((-2 (|:| -3445 $) (|:| -3282 $)) $ (-710)) 232)) (-3226 (((-3 (-589 $) "failed") $) 114)) (-4006 (((-3 (-589 $) "failed") $) 115)) (-2630 (((-3 (-2 (|:| |var| (-1001)) (|:| -2735 (-710))) "failed") $) 113)) (-3417 (($ $) 216 (|has| |#1| (-37 (-383 (-523)))))) (-2262 (($) 203 (|has| |#1| (-1063)) CONST)) (-2783 (((-1034) $) 10)) (-3749 (((-108) $) 166)) (-3760 ((|#1| $) 167)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 95 (|has| |#1| (-427)))) (-3278 (($ (-589 $)) 92 (|has| |#1| (-427))) (($ $ $) 91 (|has| |#1| (-427)))) (-1219 (((-394 (-1083 $)) (-1083 $)) 102 (|has| |#1| (-840)))) (-3967 (((-394 (-1083 $)) (-1083 $)) 101 (|has| |#1| (-840)))) (-1820 (((-394 $) $) 99 (|has| |#1| (-840)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 213 (|has| |#1| (-339)))) (-3746 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-515))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 207 (|has| |#1| (-339)))) (-2679 (($ $ (-589 (-271 $))) 145) (($ $ (-271 $)) 144) (($ $ $ $) 143) (($ $ (-589 $) (-589 $)) 142) (($ $ (-1001) |#1|) 141) (($ $ (-589 (-1001)) (-589 |#1|)) 140) (($ $ (-1001) $) 139) (($ $ (-589 (-1001)) (-589 $)) 138)) (-1972 (((-710) $) 209 (|has| |#1| (-339)))) (-3223 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-383 $) (-383 $) (-383 $)) 225 (|has| |#1| (-515))) ((|#1| (-383 $) |#1|) 217 (|has| |#1| (-339))) (((-383 $) $ (-383 $)) 205 (|has| |#1| (-515)))) (-3255 (((-3 $ "failed") $ (-710)) 234)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 210 (|has| |#1| (-339)))) (-3549 (($ $ (-1001)) 107 (|has| |#1| (-158))) ((|#1| $) 227 (|has| |#1| (-158)))) (-3523 (($ $ (-1001)) 42) (($ $ (-589 (-1001))) 41) (($ $ (-1001) (-710)) 40) (($ $ (-589 (-1001)) (-589 (-710))) 39) (($ $ (-710)) 253) (($ $) 251) (($ $ (-1087)) 250 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 249 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 248 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 247 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-2299 (((-710) $) 150) (((-710) $ (-1001)) 130) (((-589 (-710)) $ (-589 (-1001))) 129)) (-3663 (((-823 (-355)) $) 82 (-12 (|has| (-1001) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355)))))) (((-823 (-523)) $) 81 (-12 (|has| (-1001) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523)))))) (((-499) $) 80 (-12 (|has| (-1001) (-564 (-499))) (|has| |#1| (-564 (-499)))))) (-2438 ((|#1| $) 175 (|has| |#1| (-427))) (($ $ (-1001)) 106 (|has| |#1| (-427)))) (-3391 (((-3 (-1168 $) "failed") (-629 $)) 104 (-4099 (|has| $ (-134)) (|has| |#1| (-840))))) (-1260 (((-3 $ "failed") $ $) 222 (|has| |#1| (-515))) (((-3 (-383 $) "failed") (-383 $) $) 221 (|has| |#1| (-515)))) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 163) (($ (-1001)) 137) (($ (-383 (-523))) 72 (-3262 (|has| |#1| (-964 (-383 (-523)))) (|has| |#1| (-37 (-383 (-523)))))) (($ $) 85 (|has| |#1| (-515)))) (-1251 (((-589 |#1|) $) 168)) (-2365 ((|#1| $ (-710)) 155) (($ $ (-1001) (-710)) 128) (($ $ (-589 (-1001)) (-589 (-710))) 127)) (-3901 (((-3 $ "failed") $) 73 (-3262 (-4099 (|has| $ (-134)) (|has| |#1| (-840))) (|has| |#1| (-134))))) (-1621 (((-710)) 29)) (-2276 (($ $ $ (-710)) 173 (|has| |#1| (-158)))) (-1704 (((-108) $ $) 89 (|has| |#1| (-515)))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-1001)) 38) (($ $ (-589 (-1001))) 37) (($ $ (-1001) (-710)) 36) (($ $ (-589 (-1001)) (-589 (-710))) 35) (($ $ (-710)) 254) (($ $) 252) (($ $ (-1087)) 246 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087))) 245 (|has| |#1| (-831 (-1087)))) (($ $ (-1087) (-710)) 244 (|has| |#1| (-831 (-1087)))) (($ $ (-589 (-1087)) (-589 (-710))) 243 (|has| |#1| (-831 (-1087)))) (($ $ (-1 |#1| |#1|) (-710)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-4043 (((-108) $ $) 76 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 75 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 6)) (-4030 (((-108) $ $) 77 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 74 (|has| |#1| (-786)))) (-4098 (($ $ |#1|) 156 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 158 (|has| |#1| (-37 (-383 (-523))))) (($ (-383 (-523)) $) 157 (|has| |#1| (-37 (-383 (-523))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-1144 |#1|) (-129) (-973)) (T -1144)) +((-2854 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-1144 *4)) (-4 *4 (-973)) (-5 *2 (-1168 *4)))) (-2180 (*1 *2 *1) (-12 (-4 *1 (-1144 *3)) (-4 *3 (-973)) (-5 *2 (-1083 *3)))) (-3131 (*1 *1 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-973)) (-4 *1 (-1144 *3)))) (-1349 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1144 *3)) (-4 *3 (-973)))) (-3255 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-710)) (-4 *1 (-1144 *3)) (-4 *3 (-973)))) (-2981 (*1 *2 *1 *1) (-12 (-4 *3 (-973)) (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-1144 *3)))) (-2150 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *4 (-973)) (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-1144 *4)))) (-2692 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1144 *3)) (-4 *3 (-973)))) (-2482 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1144 *3)) (-4 *3 (-973)))) (-3666 (*1 *1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)))) (-3523 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1144 *3)) (-4 *3 (-973)))) (-3549 (*1 *2 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-158)))) (-3078 (*1 *2 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-158)))) (-3223 (*1 *2 *2 *2) (-12 (-5 *2 (-383 *1)) (-4 *1 (-1144 *3)) (-4 *3 (-973)) (-4 *3 (-515)))) (-1640 (*1 *2 *1 *1) (-12 (-4 *1 (-1144 *3)) (-4 *3 (-973)) (-4 *3 (-515)) (-5 *2 (-710)))) (-2407 (*1 *1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-515)))) (-1260 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-515)))) (-1260 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-383 *1)) (-4 *1 (-1144 *3)) (-4 *3 (-973)) (-4 *3 (-515)))) (-2349 (*1 *1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-515)))) (-2815 (*1 *2 *1 *1) (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-5 *2 (-2 (|:| -2935 *3) (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-1144 *3)))) (-3444 (*1 *2 *1 *1) (-12 (-4 *3 (-427)) (-4 *3 (-973)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1144 *3)))) (-3223 (*1 *2 *3 *2) (-12 (-5 *3 (-383 *1)) (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-3417 (*1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523))))))) +(-13 (-880 |t#1| (-710) (-1001)) (-263 |t#1| |t#1|) (-263 $ $) (-211) (-209 |t#1|) (-10 -8 (-15 -2854 ((-1168 |t#1|) $ (-710))) (-15 -2180 ((-1083 |t#1|) $)) (-15 -3131 ($ (-1083 |t#1|))) (-15 -1349 ($ $ (-710))) (-15 -3255 ((-3 $ "failed") $ (-710))) (-15 -2981 ((-2 (|:| -3445 $) (|:| -3282 $)) $ $)) (-15 -2150 ((-2 (|:| -3445 $) (|:| -3282 $)) $ (-710))) (-15 -2692 ($ $ (-710))) (-15 -2482 ($ $ (-710))) (-15 -3666 ($ $ $)) (-15 -3523 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |t#1| (-158)) (PROGN (-15 -3549 (|t#1| $)) (-15 -3078 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-6 (-263 (-383 $) (-383 $))) (-15 -3223 ((-383 $) (-383 $) (-383 $))) (-15 -1640 ((-710) $ $)) (-15 -2407 ($ $ $)) (-15 -1260 ((-3 $ "failed") $ $)) (-15 -1260 ((-3 (-383 $) "failed") (-383 $) $)) (-15 -2349 ($ $ $)) (-15 -2815 ((-2 (|:| -2935 |t#1|) (|:| -3445 $) (|:| -3282 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-427)) (-15 -3444 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-339)) (PROGN (-6 (-284)) (-6 -4240) (-15 -3223 (|t#1| (-383 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-383 (-523)))) (-15 -3417 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-710)) . T) ((-25) . T) ((-37 #1=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-339))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-564 (-499)) -12 (|has| (-1001) (-564 (-499))) (|has| |#1| (-564 (-499)))) ((-564 (-823 (-355))) -12 (|has| (-1001) (-564 (-823 (-355)))) (|has| |#1| (-564 (-823 (-355))))) ((-564 (-823 (-523))) -12 (|has| (-1001) (-564 (-823 (-523)))) (|has| |#1| (-564 (-823 (-523))))) ((-209 |#1|) . T) ((-211) . T) ((-263 (-383 $) (-383 $)) |has| |#1| (-515)) ((-263 |#1| |#1|) . T) ((-263 $ $) . T) ((-267) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-339))) ((-284) |has| |#1| (-339)) ((-286 $) . T) ((-302 |#1| #0#) . T) ((-353 |#1|) . T) ((-387 |#1|) . T) ((-427) -3262 (|has| |#1| (-840)) (|has| |#1| (-427)) (|has| |#1| (-339))) ((-484 #2=(-1001) |#1|) . T) ((-484 #2# $) . T) ((-484 $ $) . T) ((-515) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-339))) ((-591 #1#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-585 (-523)) |has| |#1| (-585 (-523))) ((-585 |#1|) . T) ((-657 #1#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-339))) ((-666) . T) ((-786) |has| |#1| (-786)) ((-831 #2#) . T) ((-831 (-1087)) |has| |#1| (-831 (-1087))) ((-817 (-355)) -12 (|has| (-1001) (-817 (-355))) (|has| |#1| (-817 (-355)))) ((-817 (-523)) -12 (|has| (-1001) (-817 (-523))) (|has| |#1| (-817 (-523)))) ((-880 |#1| #0# #2#) . T) ((-840) |has| |#1| (-840)) ((-851) |has| |#1| (-339)) ((-964 (-383 (-523))) |has| |#1| (-964 (-383 (-523)))) ((-964 (-523)) |has| |#1| (-964 (-523))) ((-964 #2#) . T) ((-964 |#1|) . T) ((-979 #1#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-840)) (|has| |#1| (-515)) (|has| |#1| (-427)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1063) |has| |#1| (-1063)) ((-1126) |has| |#1| (-840))) +((-1957 (((-589 (-1001)) $) 28)) (-3810 (($ $) 25)) (-1933 (($ |#2| |#3|) NIL) (($ $ (-1001) |#3|) 22) (($ $ (-589 (-1001)) (-589 |#3|)) 20)) (-3774 (($ $) 14)) (-3786 ((|#2| $) 12)) (-2299 ((|#3| $) 10))) +(((-1145 |#1| |#2| |#3|) (-10 -8 (-15 -1957 ((-589 (-1001)) |#1|)) (-15 -1933 (|#1| |#1| (-589 (-1001)) (-589 |#3|))) (-15 -1933 (|#1| |#1| (-1001) |#3|)) (-15 -3810 (|#1| |#1|)) (-15 -1933 (|#1| |#2| |#3|)) (-15 -2299 (|#3| |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -3786 (|#2| |#1|))) (-1146 |#2| |#3|) (-973) (-731)) (T -1145)) +NIL +(-10 -8 (-15 -1957 ((-589 (-1001)) |#1|)) (-15 -1933 (|#1| |#1| (-589 (-1001)) (-589 |#3|))) (-15 -1933 (|#1| |#1| (-1001) |#3|)) (-15 -3810 (|#1| |#1|)) (-15 -1933 (|#1| |#2| |#3|)) (-15 -2299 (|#3| |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -3786 (|#2| |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1957 (((-589 (-1001)) $) 74)) (-2700 (((-1087) $) 103)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3345 (($ $) 52 (|has| |#1| (-515)))) (-3331 (((-108) $) 54 (|has| |#1| (-515)))) (-3984 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-2133 (((-1068 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3810 (($ $) 60)) (-2121 (((-3 $ "failed") $) 34)) (-2003 (((-108) $) 73)) (-1640 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-2023 (((-108) $) 31)) (-1349 (($ $ (-852)) 101)) (-2620 (((-108) $) 62)) (-1933 (($ |#1| |#2|) 61) (($ $ (-1001) |#2|) 76) (($ $ (-589 (-1001)) (-589 |#2|)) 75)) (-3612 (($ (-1 |#1| |#1|) $) 63)) (-3774 (($ $) 65)) (-3786 ((|#1| $) 66)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-4097 (($ $ |#2|) 95)) (-3746 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-2679 (((-1068 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-3223 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1028)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) 89 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1087) (-710)) 88 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-589 (-1087))) 87 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1087)) 86 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-710)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2299 ((|#2| $) 64)) (-1353 (($ $) 72)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515))) (($ |#1|) 47 (|has| |#1| (-158)))) (-2365 ((|#1| $ |#2|) 59)) (-3901 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-1288 ((|#1| $) 102)) (-1704 (((-108) $ $) 53 (|has| |#1| (-515)))) (-2562 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) 93 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1087) (-710)) 92 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-589 (-1087))) 91 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1087)) 90 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-710)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 58 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) +(((-1146 |#1| |#2|) (-129) (-973) (-731)) (T -1146)) +((-2133 (*1 *2 *1) (-12 (-4 *1 (-1146 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (-5 *2 (-1068 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3223 (*1 *2 *1 *3) (-12 (-4 *1 (-1146 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) (-2700 (*1 *2 *1) (-12 (-4 *1 (-1146 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (-5 *2 (-1087)))) (-1288 (*1 *2 *1) (-12 (-4 *1 (-1146 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) (-1349 (*1 *1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-1146 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) (-1640 (*1 *2 *1 *2) (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) (-3984 (*1 *1 *1 *2) (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) (-3984 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) (-2562 (*1 *2 *1 *3) (-12 (-4 *1 (-1146 *2 *3)) (-4 *3 (-731)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1458 (*2 (-1087)))) (-4 *2 (-973)))) (-4097 (*1 *1 *1 *2) (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) (-2679 (*1 *2 *1 *3) (-12 (-4 *1 (-1146 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1068 *3))))) +(-13 (-902 |t#1| |t#2| (-1001)) (-10 -8 (-15 -2133 ((-1068 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3223 (|t#1| $ |t#2|)) (-15 -2700 ((-1087) $)) (-15 -1288 (|t#1| $)) (-15 -1349 ($ $ (-852))) (-15 -1640 (|t#2| $)) (-15 -1640 (|t#2| $ |t#2|)) (-15 -3984 ($ $ |t#2|)) (-15 -3984 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -1458 (|t#1| (-1087)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2562 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4097 ($ $ |t#2|)) (IF (|has| |t#2| (-1028)) (-6 (-263 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-211)) (IF (|has| |t#1| (-831 (-1087))) (-6 (-831 (-1087))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2679 ((-1068 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) |has| |#1| (-515)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-211) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-263 $ $) |has| |#2| (-1028)) ((-267) |has| |#1| (-515)) ((-515) |has| |#1| (-515)) ((-591 #0#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #0#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) |has| |#1| (-515)) ((-666) . T) ((-831 (-1087)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-831 (-1087)))) ((-902 |#1| |#2| (-1001)) . T) ((-979 #0#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-2291 ((|#2| |#2|) 12)) (-3614 (((-394 |#2|) |#2|) 14)) (-3419 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-523))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-523)))) 30))) +(((-1147 |#1| |#2|) (-10 -7 (-15 -3614 ((-394 |#2|) |#2|)) (-15 -2291 (|#2| |#2|)) (-15 -3419 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-523))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-523)))))) (-515) (-13 (-1144 |#1|) (-515) (-10 -8 (-15 -3278 ($ $ $))))) (T -1147)) +((-3419 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-523)))) (-4 *4 (-13 (-1144 *3) (-515) (-10 -8 (-15 -3278 ($ $ $))))) (-4 *3 (-515)) (-5 *1 (-1147 *3 *4)))) (-2291 (*1 *2 *2) (-12 (-4 *3 (-515)) (-5 *1 (-1147 *3 *2)) (-4 *2 (-13 (-1144 *3) (-515) (-10 -8 (-15 -3278 ($ $ $))))))) (-3614 (*1 *2 *3) (-12 (-4 *4 (-515)) (-5 *2 (-394 *3)) (-5 *1 (-1147 *4 *3)) (-4 *3 (-13 (-1144 *4) (-515) (-10 -8 (-15 -3278 ($ $ $)))))))) +(-10 -7 (-15 -3614 ((-394 |#2|) |#2|)) (-15 -2291 (|#2| |#2|)) (-15 -3419 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-523))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-523)))))) +((-3612 (((-1153 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1153 |#1| |#3| |#5|)) 23))) +(((-1148 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3612 ((-1153 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1153 |#1| |#3| |#5|)))) (-973) (-973) (-1087) (-1087) |#1| |#2|) (T -1148)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1153 *5 *7 *9)) (-4 *5 (-973)) (-4 *6 (-973)) (-14 *7 (-1087)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1153 *6 *8 *10)) (-5 *1 (-1148 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1087))))) +(-10 -7 (-15 -3612 ((-1153 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1153 |#1| |#3| |#5|)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1957 (((-589 (-1001)) $) 74)) (-2700 (((-1087) $) 103)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3345 (($ $) 52 (|has| |#1| (-515)))) (-3331 (((-108) $) 54 (|has| |#1| (-515)))) (-3984 (($ $ (-383 (-523))) 98) (($ $ (-383 (-523)) (-383 (-523))) 97)) (-2133 (((-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|))) $) 105)) (-1769 (($ $) 135 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 118 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 162 (|has| |#1| (-339)))) (-3614 (((-394 $) $) 163 (|has| |#1| (-339)))) (-1832 (($ $) 117 (|has| |#1| (-37 (-383 (-523)))))) (-1387 (((-108) $ $) 153 (|has| |#1| (-339)))) (-1744 (($ $) 134 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 119 (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|)))) 172)) (-1793 (($ $) 133 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 120 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) 17 T CONST)) (-3796 (($ $ $) 157 (|has| |#1| (-339)))) (-3810 (($ $) 60)) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 156 (|has| |#1| (-339)))) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 151 (|has| |#1| (-339)))) (-2657 (((-108) $) 164 (|has| |#1| (-339)))) (-2003 (((-108) $) 73)) (-2820 (($) 145 (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-383 (-523)) $) 100) (((-383 (-523)) $ (-383 (-523))) 99)) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 116 (|has| |#1| (-37 (-383 (-523)))))) (-1349 (($ $ (-852)) 101) (($ $ (-383 (-523))) 171)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 160 (|has| |#1| (-339)))) (-2620 (((-108) $) 62)) (-1933 (($ |#1| (-383 (-523))) 61) (($ $ (-1001) (-383 (-523))) 76) (($ $ (-589 (-1001)) (-589 (-383 (-523)))) 75)) (-3612 (($ (-1 |#1| |#1|) $) 63)) (-2384 (($ $) 142 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) 65)) (-3786 ((|#1| $) 66)) (-3244 (($ (-589 $)) 149 (|has| |#1| (-339))) (($ $ $) 148 (|has| |#1| (-339)))) (-3779 (((-1070) $) 9)) (-3738 (($ $) 165 (|has| |#1| (-339)))) (-3417 (($ $) 170 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 169 (-3262 (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-889)) (|has| |#1| (-1108)) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-37 (-383 (-523)))))))) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 150 (|has| |#1| (-339)))) (-3278 (($ (-589 $)) 147 (|has| |#1| (-339))) (($ $ $) 146 (|has| |#1| (-339)))) (-1820 (((-394 $) $) 161 (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 158 (|has| |#1| (-339)))) (-4097 (($ $ (-383 (-523))) 95)) (-3746 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 152 (|has| |#1| (-339)))) (-1811 (($ $) 143 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))))) (-1972 (((-710) $) 154 (|has| |#1| (-339)))) (-3223 ((|#1| $ (-383 (-523))) 104) (($ $ $) 81 (|has| (-383 (-523)) (-1028)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 155 (|has| |#1| (-339)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) 89 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087) (-710)) 88 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-589 (-1087))) 87 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087)) 86 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-710)) 84 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-2299 (((-383 (-523)) $) 64)) (-1805 (($ $) 132 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 121 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 131 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 122 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 130 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 123 (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) 72)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 47 (|has| |#1| (-158))) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515)))) (-2365 ((|#1| $ (-383 (-523))) 59)) (-3901 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-1288 ((|#1| $) 102)) (-1839 (($ $) 141 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 129 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) 53 (|has| |#1| (-515)))) (-1818 (($ $) 140 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 128 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 139 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 127 (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-383 (-523))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) 138 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 126 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 137 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 125 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 136 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 124 (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 166 (|has| |#1| (-339)))) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) 93 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087) (-710)) 92 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-589 (-1087))) 91 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087)) 90 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-710)) 85 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 58 (|has| |#1| (-339))) (($ $ $) 168 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 167 (|has| |#1| (-339))) (($ $ $) 144 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 115 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) +(((-1149 |#1|) (-129) (-973)) (T -1149)) +((-2417 (*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *3 (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| *4)))) (-4 *4 (-973)) (-4 *1 (-1149 *4)))) (-1349 (*1 *1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-4 *1 (-1149 *3)) (-4 *3 (-973)))) (-3417 (*1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523)))))) (-3417 (*1 *1 *1 *2) (-3262 (-12 (-5 *2 (-1087)) (-4 *1 (-1149 *3)) (-4 *3 (-973)) (-12 (-4 *3 (-29 (-523))) (-4 *3 (-889)) (-4 *3 (-1108)) (-4 *3 (-37 (-383 (-523)))))) (-12 (-5 *2 (-1087)) (-4 *1 (-1149 *3)) (-4 *3 (-973)) (-12 (|has| *3 (-15 -1957 ((-589 *2) *3))) (|has| *3 (-15 -3417 (*3 *3 *2))) (-4 *3 (-37 (-383 (-523))))))))) +(-13 (-1146 |t#1| (-383 (-523))) (-10 -8 (-15 -2417 ($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |t#1|))))) (-15 -1349 ($ $ (-383 (-523)))) (IF (|has| |t#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ($ $)) (IF (|has| |t#1| (-15 -3417 (|t#1| |t#1| (-1087)))) (IF (|has| |t#1| (-15 -1957 ((-589 (-1087)) |t#1|))) (-15 -3417 ($ $ (-1087))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1108)) (IF (|has| |t#1| (-889)) (IF (|has| |t#1| (-29 (-523))) (-15 -3417 ($ $ (-1087))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-930)) (-6 (-1108))) |%noBranch|) (IF (|has| |t#1| (-339)) (-6 (-339)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-383 (-523))) . T) ((-25) . T) ((-37 #1=(-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-34) |has| |#1| (-37 (-383 (-523)))) ((-91) |has| |#1| (-37 (-383 (-523)))) ((-97) . T) ((-107 #1# #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-211) |has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) ((-221) |has| |#1| (-339)) ((-261) |has| |#1| (-37 (-383 (-523)))) ((-263 $ $) |has| (-383 (-523)) (-1028)) ((-267) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-284) |has| |#1| (-339)) ((-339) |has| |#1| (-339)) ((-427) |has| |#1| (-339)) ((-464) |has| |#1| (-37 (-383 (-523)))) ((-515) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-591 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-666) . T) ((-831 (-1087)) -12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087)))) ((-902 |#1| #0# (-1001)) . T) ((-851) |has| |#1| (-339)) ((-930) |has| |#1| (-37 (-383 (-523)))) ((-979 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1108) |has| |#1| (-37 (-383 (-523)))) ((-1111) |has| |#1| (-37 (-383 (-523)))) ((-1126) |has| |#1| (-339)) ((-1146 |#1| #0#) . T)) +((-2295 (((-108) $) 12)) (-3517 (((-3 |#3| "failed") $) 17)) (-3474 ((|#3| $) 14))) +(((-1150 |#1| |#2| |#3|) (-10 -8 (-15 -3474 (|#3| |#1|)) (-15 -3517 ((-3 |#3| "failed") |#1|)) (-15 -2295 ((-108) |#1|))) (-1151 |#2| |#3|) (-973) (-1128 |#2|)) (T -1150)) +NIL +(-10 -8 (-15 -3474 (|#3| |#1|)) (-15 -3517 ((-3 |#3| "failed") |#1|)) (-15 -2295 ((-108) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1957 (((-589 (-1001)) $) 74)) (-2700 (((-1087) $) 103)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3345 (($ $) 52 (|has| |#1| (-515)))) (-3331 (((-108) $) 54 (|has| |#1| (-515)))) (-3984 (($ $ (-383 (-523))) 98) (($ $ (-383 (-523)) (-383 (-523))) 97)) (-2133 (((-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|))) $) 105)) (-1769 (($ $) 135 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 118 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 162 (|has| |#1| (-339)))) (-3614 (((-394 $) $) 163 (|has| |#1| (-339)))) (-1832 (($ $) 117 (|has| |#1| (-37 (-383 (-523)))))) (-1387 (((-108) $ $) 153 (|has| |#1| (-339)))) (-1744 (($ $) 134 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 119 (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|)))) 172)) (-1793 (($ $) 133 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 120 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#2| "failed") $) 183)) (-3474 ((|#2| $) 182)) (-3796 (($ $ $) 157 (|has| |#1| (-339)))) (-3810 (($ $) 60)) (-2121 (((-3 $ "failed") $) 34)) (-2290 (((-383 (-523)) $) 180)) (-3769 (($ $ $) 156 (|has| |#1| (-339)))) (-3717 (($ (-383 (-523)) |#2|) 181)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 151 (|has| |#1| (-339)))) (-2657 (((-108) $) 164 (|has| |#1| (-339)))) (-2003 (((-108) $) 73)) (-2820 (($) 145 (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-383 (-523)) $) 100) (((-383 (-523)) $ (-383 (-523))) 99)) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 116 (|has| |#1| (-37 (-383 (-523)))))) (-1349 (($ $ (-852)) 101) (($ $ (-383 (-523))) 171)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 160 (|has| |#1| (-339)))) (-2620 (((-108) $) 62)) (-1933 (($ |#1| (-383 (-523))) 61) (($ $ (-1001) (-383 (-523))) 76) (($ $ (-589 (-1001)) (-589 (-383 (-523)))) 75)) (-3612 (($ (-1 |#1| |#1|) $) 63)) (-2384 (($ $) 142 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) 65)) (-3786 ((|#1| $) 66)) (-3244 (($ (-589 $)) 149 (|has| |#1| (-339))) (($ $ $) 148 (|has| |#1| (-339)))) (-2508 ((|#2| $) 179)) (-1745 (((-3 |#2| "failed") $) 177)) (-2028 ((|#2| $) 178)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 165 (|has| |#1| (-339)))) (-3417 (($ $) 170 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 169 (-3262 (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-889)) (|has| |#1| (-1108)) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-37 (-383 (-523)))))))) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 150 (|has| |#1| (-339)))) (-3278 (($ (-589 $)) 147 (|has| |#1| (-339))) (($ $ $) 146 (|has| |#1| (-339)))) (-1820 (((-394 $) $) 161 (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 158 (|has| |#1| (-339)))) (-4097 (($ $ (-383 (-523))) 95)) (-3746 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 152 (|has| |#1| (-339)))) (-1811 (($ $) 143 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))))) (-1972 (((-710) $) 154 (|has| |#1| (-339)))) (-3223 ((|#1| $ (-383 (-523))) 104) (($ $ $) 81 (|has| (-383 (-523)) (-1028)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 155 (|has| |#1| (-339)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) 89 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087) (-710)) 88 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-589 (-1087))) 87 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087)) 86 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-710)) 84 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-2299 (((-383 (-523)) $) 64)) (-1805 (($ $) 132 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 121 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 131 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 122 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 130 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 123 (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) 72)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 47 (|has| |#1| (-158))) (($ |#2|) 184) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515)))) (-2365 ((|#1| $ (-383 (-523))) 59)) (-3901 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-1288 ((|#1| $) 102)) (-1839 (($ $) 141 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 129 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) 53 (|has| |#1| (-515)))) (-1818 (($ $) 140 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 128 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 139 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 127 (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-383 (-523))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) 138 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 126 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 137 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 125 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 136 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 124 (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 166 (|has| |#1| (-339)))) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) 93 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087) (-710)) 92 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-589 (-1087))) 91 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-1087)) 90 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (($ $ (-710)) 85 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 58 (|has| |#1| (-339))) (($ $ $) 168 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 167 (|has| |#1| (-339))) (($ $ $) 144 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 115 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) +(((-1151 |#1| |#2|) (-129) (-973) (-1128 |t#1|)) (T -1151)) +((-2299 (*1 *2 *1) (-12 (-4 *1 (-1151 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1128 *3)) (-5 *2 (-383 (-523))))) (-1458 (*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *1 (-1151 *3 *2)) (-4 *2 (-1128 *3)))) (-3717 (*1 *1 *2 *3) (-12 (-5 *2 (-383 (-523))) (-4 *4 (-973)) (-4 *1 (-1151 *4 *3)) (-4 *3 (-1128 *4)))) (-2290 (*1 *2 *1) (-12 (-4 *1 (-1151 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1128 *3)) (-5 *2 (-383 (-523))))) (-2508 (*1 *2 *1) (-12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1128 *3)))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1128 *3)))) (-1745 (*1 *2 *1) (|partial| -12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1128 *3))))) +(-13 (-1149 |t#1|) (-964 |t#2|) (-10 -8 (-15 -3717 ($ (-383 (-523)) |t#2|)) (-15 -2290 ((-383 (-523)) $)) (-15 -2508 (|t#2| $)) (-15 -2299 ((-383 (-523)) $)) (-15 -1458 ($ |t#2|)) (-15 -2028 (|t#2| $)) (-15 -1745 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-383 (-523))) . T) ((-25) . T) ((-37 #1=(-383 (-523))) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-34) |has| |#1| (-37 (-383 (-523)))) ((-91) |has| |#1| (-37 (-383 (-523)))) ((-97) . T) ((-107 #1# #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-211) |has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) ((-221) |has| |#1| (-339)) ((-261) |has| |#1| (-37 (-383 (-523)))) ((-263 $ $) |has| (-383 (-523)) (-1028)) ((-267) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-284) |has| |#1| (-339)) ((-339) |has| |#1| (-339)) ((-427) |has| |#1| (-339)) ((-464) |has| |#1| (-37 (-383 (-523)))) ((-515) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-591 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339))) ((-666) . T) ((-831 (-1087)) -12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087)))) ((-902 |#1| #0# (-1001)) . T) ((-851) |has| |#1| (-339)) ((-930) |has| |#1| (-37 (-383 (-523)))) ((-964 |#2|) . T) ((-979 #1#) -3262 (|has| |#1| (-339)) (|has| |#1| (-37 (-383 (-523))))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-339)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1108) |has| |#1| (-37 (-383 (-523)))) ((-1111) |has| |#1| (-37 (-383 (-523)))) ((-1126) |has| |#1| (-339)) ((-1146 |#1| #0#) . T) ((-1149 |#1|) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) 96)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3984 (($ $ (-383 (-523))) 106) (($ $ (-383 (-523)) (-383 (-523))) 108)) (-2133 (((-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|))) $) 51)) (-1769 (($ $) 179 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 155 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-339)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1744 (($ $) 175 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 151 (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|)))) 61)) (-1793 (($ $) 183 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 159 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) NIL)) (-3474 ((|#2| $) NIL)) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) 79)) (-2290 (((-383 (-523)) $) 12)) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-3717 (($ (-383 (-523)) |#2|) 10)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2657 (((-108) $) NIL (|has| |#1| (-339)))) (-2003 (((-108) $) 68)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-383 (-523)) $) 103) (((-383 (-523)) $ (-383 (-523))) 104)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1349 (($ $ (-852)) 120) (($ $ (-383 (-523))) 118)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-383 (-523))) 31) (($ $ (-1001) (-383 (-523))) NIL) (($ $ (-589 (-1001)) (-589 (-383 (-523)))) NIL)) (-3612 (($ (-1 |#1| |#1|) $) 115)) (-2384 (($ $) 149 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2508 ((|#2| $) 11)) (-1745 (((-3 |#2| "failed") $) 41)) (-2028 ((|#2| $) 42)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) 93 (|has| |#1| (-339)))) (-3417 (($ $) 135 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 140 (-3262 (-12 (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1108)))))) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-4097 (($ $ (-383 (-523))) 112)) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-1811 (($ $) 147 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))))) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ (-383 (-523))) 100) (($ $ $) 86 (|has| (-383 (-523)) (-1028)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) 127 (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-2299 (((-383 (-523)) $) 16)) (-1805 (($ $) 185 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 161 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 181 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 157 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 177 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 153 (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) 110)) (-1458 (((-794) $) NIL) (($ (-523)) 35) (($ |#1|) 27 (|has| |#1| (-158))) (($ |#2|) 32) (($ (-383 (-523))) 128 (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515)))) (-2365 ((|#1| $ (-383 (-523))) 99)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) 117)) (-1288 ((|#1| $) 98)) (-1839 (($ $) 191 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 167 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) 187 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 163 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 195 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 171 (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-383 (-523))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) 197 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 173 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 193 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 169 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 189 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 165 (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) 21 T CONST)) (-2767 (($) 17 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-3983 (((-108) $ $) 66)) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) 92 (|has| |#1| (-339)))) (-4087 (($ $) 131) (($ $ $) 72)) (-4075 (($ $ $) 70)) (** (($ $ (-852)) NIL) (($ $ (-710)) 76) (($ $ (-523)) 144 (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 145 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-1152 |#1| |#2|) (-1151 |#1| |#2|) (-973) (-1128 |#1|)) (T -1152)) +NIL +(-1151 |#1| |#2|) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) 11)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) NIL (|has| |#1| (-515)))) (-3984 (($ $ (-383 (-523))) NIL) (($ $ (-383 (-523)) (-383 (-523))) NIL)) (-2133 (((-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|))) $) NIL)) (-1769 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-339)))) (-3614 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1387 (((-108) $ $) NIL (|has| |#1| (-339)))) (-1744 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-710) (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#1|)))) NIL)) (-1793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-1132 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1160 |#1| |#2| |#3|) "failed") $) 22)) (-3474 (((-1132 |#1| |#2| |#3|) $) NIL) (((-1160 |#1| |#2| |#3|) $) NIL)) (-3796 (($ $ $) NIL (|has| |#1| (-339)))) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-2290 (((-383 (-523)) $) 57)) (-3769 (($ $ $) NIL (|has| |#1| (-339)))) (-3717 (($ (-383 (-523)) (-1132 |#1| |#2| |#3|)) NIL)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) NIL (|has| |#1| (-339)))) (-2657 (((-108) $) NIL (|has| |#1| (-339)))) (-2003 (((-108) $) NIL)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-383 (-523)) $) NIL) (((-383 (-523)) $ (-383 (-523))) NIL)) (-2023 (((-108) $) NIL)) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1349 (($ $ (-852)) NIL) (($ $ (-383 (-523))) NIL)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-383 (-523))) 29) (($ $ (-1001) (-383 (-523))) NIL) (($ $ (-589 (-1001)) (-589 (-383 (-523)))) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2384 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3244 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-2508 (((-1132 |#1| |#2| |#3|) $) 60)) (-1745 (((-3 (-1132 |#1| |#2| |#3|) "failed") $) NIL)) (-2028 (((-1132 |#1| |#2| |#3|) $) NIL)) (-3779 (((-1070) $) NIL)) (-3738 (($ $) NIL (|has| |#1| (-339)))) (-3417 (($ $) 38 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) NIL (-3262 (-12 (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1108))))) (($ $ (-1164 |#2|)) 39 (|has| |#1| (-37 (-383 (-523)))))) (-2783 (((-1034) $) NIL)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-339)))) (-3278 (($ (-589 $)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-1820 (((-394 $) $) NIL (|has| |#1| (-339)))) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-339))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-339)))) (-4097 (($ $ (-383 (-523))) NIL)) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-3312 (((-3 (-589 $) "failed") (-589 $) $) NIL (|has| |#1| (-339)))) (-1811 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))))) (-1972 (((-710) $) NIL (|has| |#1| (-339)))) (-3223 ((|#1| $ (-383 (-523))) NIL) (($ $ $) NIL (|has| (-383 (-523)) (-1028)))) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) NIL (|has| |#1| (-339)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $ (-1164 |#2|)) 37)) (-2299 (((-383 (-523)) $) NIL)) (-1805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) NIL)) (-1458 (((-794) $) 88) (($ (-523)) NIL) (($ |#1|) NIL (|has| |#1| (-158))) (($ (-1132 |#1| |#2| |#3|)) 16) (($ (-1160 |#1| |#2| |#3|)) 17) (($ (-1164 |#2|)) 35) (($ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515)))) (-2365 ((|#1| $ (-383 (-523))) NIL)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-1288 ((|#1| $) 12)) (-1839 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-383 (-523))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-383 (-523))))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339)))) (-2756 (($) 31 T CONST)) (-2767 (($) 26 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-383 (-523)) |#1|))))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 33)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ (-523)) NIL (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-1153 |#1| |#2| |#3|) (-13 (-1151 |#1| (-1132 |#1| |#2| |#3|)) (-964 (-1160 |#1| |#2| |#3|)) (-10 -8 (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) (-973) (-1087) |#1|) (T -1153)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1153 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1153 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3417 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1153 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) +(-13 (-1151 |#1| (-1132 |#1| |#2| |#3|)) (-964 (-1160 |#1| |#2| |#3|)) (-10 -8 (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 32)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL)) (-3345 (($ $) NIL)) (-3331 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 (-523) "failed") $) NIL (|has| (-1153 |#2| |#3| |#4|) (-964 (-523)))) (((-3 (-383 (-523)) "failed") $) NIL (|has| (-1153 |#2| |#3| |#4|) (-964 (-383 (-523))))) (((-3 (-1153 |#2| |#3| |#4|) "failed") $) 20)) (-3474 (((-523) $) NIL (|has| (-1153 |#2| |#3| |#4|) (-964 (-523)))) (((-383 (-523)) $) NIL (|has| (-1153 |#2| |#3| |#4|) (-964 (-383 (-523))))) (((-1153 |#2| |#3| |#4|) $) NIL)) (-3810 (($ $) 33)) (-2121 (((-3 $ "failed") $) 25)) (-2528 (($ $) NIL (|has| (-1153 |#2| |#3| |#4|) (-427)))) (-1284 (($ $ (-1153 |#2| |#3| |#4|) (-295 |#2| |#3| |#4|) $) NIL)) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) 11)) (-2620 (((-108) $) NIL)) (-1933 (($ (-1153 |#2| |#3| |#4|) (-295 |#2| |#3| |#4|)) 23)) (-1575 (((-295 |#2| |#3| |#4|) $) NIL)) (-3782 (($ (-1 (-295 |#2| |#3| |#4|) (-295 |#2| |#3| |#4|)) $) NIL)) (-3612 (($ (-1 (-1153 |#2| |#3| |#4|) (-1153 |#2| |#3| |#4|)) $) NIL)) (-3684 (((-3 (-779 |#2|) "failed") $) 73)) (-3774 (($ $) NIL)) (-3786 (((-1153 |#2| |#3| |#4|) $) 18)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3749 (((-108) $) NIL)) (-3760 (((-1153 |#2| |#3| |#4|) $) NIL)) (-3746 (((-3 $ "failed") $ (-1153 |#2| |#3| |#4|)) NIL (|has| (-1153 |#2| |#3| |#4|) (-515))) (((-3 $ "failed") $ $) NIL)) (-3227 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1153 |#2| |#3| |#4|)) (|:| |%expon| (-295 |#2| |#3| |#4|)) (|:| |%expTerms| (-589 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#2|)))))) (|:| |%type| (-1070))) "failed") $) 56)) (-2299 (((-295 |#2| |#3| |#4|) $) 14)) (-2438 (((-1153 |#2| |#3| |#4|) $) NIL (|has| (-1153 |#2| |#3| |#4|) (-427)))) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ (-1153 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-383 (-523))) NIL (-3262 (|has| (-1153 |#2| |#3| |#4|) (-37 (-383 (-523)))) (|has| (-1153 |#2| |#3| |#4|) (-964 (-383 (-523))))))) (-1251 (((-589 (-1153 |#2| |#3| |#4|)) $) NIL)) (-2365 (((-1153 |#2| |#3| |#4|) $ (-295 |#2| |#3| |#4|)) NIL)) (-3901 (((-3 $ "failed") $) NIL (|has| (-1153 |#2| |#3| |#4|) (-134)))) (-1621 (((-710)) NIL)) (-2276 (($ $ $ (-710)) NIL (|has| (-1153 |#2| |#3| |#4|) (-158)))) (-1704 (((-108) $ $) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 61 T CONST)) (-2767 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ (-1153 |#2| |#3| |#4|)) NIL (|has| (-1153 |#2| |#3| |#4|) (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ (-1153 |#2| |#3| |#4|)) NIL) (($ (-1153 |#2| |#3| |#4|) $) NIL) (($ (-383 (-523)) $) NIL (|has| (-1153 |#2| |#3| |#4|) (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| (-1153 |#2| |#3| |#4|) (-37 (-383 (-523))))))) +(((-1154 |#1| |#2| |#3| |#4|) (-13 (-302 (-1153 |#2| |#3| |#4|) (-295 |#2| |#3| |#4|)) (-515) (-10 -8 (-15 -3684 ((-3 (-779 |#2|) "failed") $)) (-15 -3227 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1153 |#2| |#3| |#4|)) (|:| |%expon| (-295 |#2| |#3| |#4|)) (|:| |%expTerms| (-589 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#2|)))))) (|:| |%type| (-1070))) "failed") $)))) (-13 (-786) (-964 (-523)) (-585 (-523)) (-427)) (-13 (-27) (-1108) (-406 |#1|)) (-1087) |#2|) (T -1154)) +((-3684 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) (-5 *2 (-779 *4)) (-5 *1 (-1154 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1108) (-406 *3))) (-14 *5 (-1087)) (-14 *6 *4))) (-3227 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1153 *4 *5 *6)) (|:| |%expon| (-295 *4 *5 *6)) (|:| |%expTerms| (-589 (-2 (|:| |k| (-383 (-523))) (|:| |c| *4)))))) (|:| |%type| (-1070)))) (-5 *1 (-1154 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1108) (-406 *3))) (-14 *5 (-1087)) (-14 *6 *4)))) +(-13 (-302 (-1153 |#2| |#3| |#4|) (-295 |#2| |#3| |#4|)) (-515) (-10 -8 (-15 -3684 ((-3 (-779 |#2|) "failed") $)) (-15 -3227 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1153 |#2| |#3| |#4|)) (|:| |%expon| (-295 |#2| |#3| |#4|)) (|:| |%expTerms| (-589 (-2 (|:| |k| (-383 (-523))) (|:| |c| |#2|)))))) (|:| |%type| (-1070))) "failed") $)))) +((-1733 ((|#2| $) 29)) (-1546 ((|#2| $) 18)) (-4039 (($ $) 36)) (-2961 (($ $ (-523)) 64)) (-3079 (((-108) $ (-710)) 33)) (-1823 ((|#2| $ |#2|) 61)) (-3395 ((|#2| $ |#2|) 59)) (-1641 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-3100 (($ $ (-589 $)) 60)) (-1532 ((|#2| $) 17)) (-1751 (($ $) NIL) (($ $ (-710)) 42)) (-2645 (((-589 $) $) 26)) (-1238 (((-108) $ $) 50)) (-2346 (((-108) $ (-710)) 32)) (-2866 (((-108) $ (-710)) 31)) (-3555 (((-108) $) 28)) (-2579 ((|#2| $) 24) (($ $ (-710)) 46)) (-3223 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2524 (((-108) $) 22)) (-2732 (($ $) 39)) (-2363 (($ $) 65)) (-2316 (((-710) $) 41)) (-3562 (($ $) 40)) (-2326 (($ $ $) 58) (($ |#2| $) NIL)) (-2296 (((-589 $) $) 27)) (-3983 (((-108) $ $) 48)) (-2676 (((-710) $) 35))) +(((-1155 |#1| |#2|) (-10 -8 (-15 -2961 (|#1| |#1| (-523))) (-15 -1641 (|#2| |#1| "last" |#2|)) (-15 -3395 (|#2| |#1| |#2|)) (-15 -1641 (|#1| |#1| "rest" |#1|)) (-15 -1641 (|#2| |#1| "first" |#2|)) (-15 -2363 (|#1| |#1|)) (-15 -2732 (|#1| |#1|)) (-15 -2316 ((-710) |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -1546 (|#2| |#1|)) (-15 -1532 (|#2| |#1|)) (-15 -4039 (|#1| |#1|)) (-15 -2579 (|#1| |#1| (-710))) (-15 -3223 (|#2| |#1| "last")) (-15 -2579 (|#2| |#1|)) (-15 -1751 (|#1| |#1| (-710))) (-15 -3223 (|#1| |#1| "rest")) (-15 -1751 (|#1| |#1|)) (-15 -3223 (|#2| |#1| "first")) (-15 -2326 (|#1| |#2| |#1|)) (-15 -2326 (|#1| |#1| |#1|)) (-15 -1823 (|#2| |#1| |#2|)) (-15 -1641 (|#2| |#1| "value" |#2|)) (-15 -3100 (|#1| |#1| (-589 |#1|))) (-15 -1238 ((-108) |#1| |#1|)) (-15 -2524 ((-108) |#1|)) (-15 -3223 (|#2| |#1| "value")) (-15 -1733 (|#2| |#1|)) (-15 -3555 ((-108) |#1|)) (-15 -2645 ((-589 |#1|) |#1|)) (-15 -2296 ((-589 |#1|) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -2676 ((-710) |#1|)) (-15 -3079 ((-108) |#1| (-710))) (-15 -2346 ((-108) |#1| (-710))) (-15 -2866 ((-108) |#1| (-710)))) (-1156 |#2|) (-1122)) (T -1155)) +NIL +(-10 -8 (-15 -2961 (|#1| |#1| (-523))) (-15 -1641 (|#2| |#1| "last" |#2|)) (-15 -3395 (|#2| |#1| |#2|)) (-15 -1641 (|#1| |#1| "rest" |#1|)) (-15 -1641 (|#2| |#1| "first" |#2|)) (-15 -2363 (|#1| |#1|)) (-15 -2732 (|#1| |#1|)) (-15 -2316 ((-710) |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -1546 (|#2| |#1|)) (-15 -1532 (|#2| |#1|)) (-15 -4039 (|#1| |#1|)) (-15 -2579 (|#1| |#1| (-710))) (-15 -3223 (|#2| |#1| "last")) (-15 -2579 (|#2| |#1|)) (-15 -1751 (|#1| |#1| (-710))) (-15 -3223 (|#1| |#1| "rest")) (-15 -1751 (|#1| |#1|)) (-15 -3223 (|#2| |#1| "first")) (-15 -2326 (|#1| |#2| |#1|)) (-15 -2326 (|#1| |#1| |#1|)) (-15 -1823 (|#2| |#1| |#2|)) (-15 -1641 (|#2| |#1| "value" |#2|)) (-15 -3100 (|#1| |#1| (-589 |#1|))) (-15 -1238 ((-108) |#1| |#1|)) (-15 -2524 ((-108) |#1|)) (-15 -3223 (|#2| |#1| "value")) (-15 -1733 (|#2| |#1|)) (-15 -3555 ((-108) |#1|)) (-15 -2645 ((-589 |#1|) |#1|)) (-15 -2296 ((-589 |#1|) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -2676 ((-710) |#1|)) (-15 -3079 ((-108) |#1| (-710))) (-15 -2346 ((-108) |#1| (-710))) (-15 -2866 ((-108) |#1| (-710)))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-1733 ((|#1| $) 48)) (-1546 ((|#1| $) 65)) (-4039 (($ $) 67)) (-2961 (($ $ (-523)) 52 (|has| $ (-6 -4245)))) (-3079 (((-108) $ (-710)) 8)) (-1823 ((|#1| $ |#1|) 39 (|has| $ (-6 -4245)))) (-2110 (($ $ $) 56 (|has| $ (-6 -4245)))) (-3395 ((|#1| $ |#1|) 54 (|has| $ (-6 -4245)))) (-3456 ((|#1| $ |#1|) 58 (|has| $ (-6 -4245)))) (-1641 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4245))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4245))) (($ $ "rest" $) 55 (|has| $ (-6 -4245))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4245)))) (-3100 (($ $ (-589 $)) 41 (|has| $ (-6 -4245)))) (-1532 ((|#1| $) 66)) (-2518 (($) 7 T CONST)) (-1751 (($ $) 73) (($ $ (-710)) 71)) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-2645 (((-589 $) $) 50)) (-1238 (((-108) $ $) 42 (|has| |#1| (-1016)))) (-2346 (((-108) $ (-710)) 9)) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35)) (-2866 (((-108) $ (-710)) 10)) (-2726 (((-589 |#1|) $) 45)) (-3555 (((-108) $) 49)) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2579 ((|#1| $) 70) (($ $ (-710)) 68)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1738 ((|#1| $) 76) (($ $ (-710)) 74)) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-1549 (((-523) $ $) 44)) (-2524 (((-108) $) 46)) (-2732 (($ $) 62)) (-2363 (($ $) 59 (|has| $ (-6 -4245)))) (-2316 (((-710) $) 63)) (-3562 (($ $) 64)) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-1664 (($ $) 13)) (-1746 (($ $ $) 61 (|has| $ (-6 -4245))) (($ $ |#1|) 60 (|has| $ (-6 -4245)))) (-2326 (($ $ $) 78) (($ |#1| $) 77)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2296 (((-589 $) $) 51)) (-3653 (((-108) $ $) 43 (|has| |#1| (-1016)))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-1156 |#1|) (-129) (-1122)) (T -1156)) +((-2326 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-2326 (*1 *1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-1738 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1156 *3)) (-4 *3 (-1122)))) (-1751 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1156 *3)) (-4 *3 (-1122)))) (-1751 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1156 *3)) (-4 *3 (-1122)))) (-2579 (*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-2579 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1156 *3)) (-4 *3 (-1122)))) (-4039 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-1532 (*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-1546 (*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-3562 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-2316 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1122)) (-5 *2 (-710)))) (-2732 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-1746 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-1746 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-2363 (*1 *1 *1) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-3456 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-1641 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-2110 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-1641 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4245)) (-4 *1 (-1156 *3)) (-4 *3 (-1122)))) (-3395 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-1641 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) (-2961 (*1 *1 *1 *2) (-12 (-5 *2 (-523)) (|has| *1 (-6 -4245)) (-4 *1 (-1156 *3)) (-4 *3 (-1122))))) +(-13 (-938 |t#1|) (-10 -8 (-15 -2326 ($ $ $)) (-15 -2326 ($ |t#1| $)) (-15 -1738 (|t#1| $)) (-15 -3223 (|t#1| $ "first")) (-15 -1738 ($ $ (-710))) (-15 -1751 ($ $)) (-15 -3223 ($ $ "rest")) (-15 -1751 ($ $ (-710))) (-15 -2579 (|t#1| $)) (-15 -3223 (|t#1| $ "last")) (-15 -2579 ($ $ (-710))) (-15 -4039 ($ $)) (-15 -1532 (|t#1| $)) (-15 -1546 (|t#1| $)) (-15 -3562 ($ $)) (-15 -2316 ((-710) $)) (-15 -2732 ($ $)) (IF (|has| $ (-6 -4245)) (PROGN (-15 -1746 ($ $ $)) (-15 -1746 ($ $ |t#1|)) (-15 -2363 ($ $)) (-15 -3456 (|t#1| $ |t#1|)) (-15 -1641 (|t#1| $ "first" |t#1|)) (-15 -2110 ($ $ $)) (-15 -1641 ($ $ "rest" $)) (-15 -3395 (|t#1| $ |t#1|)) (-15 -1641 (|t#1| $ "last" |t#1|)) (-15 -2961 ($ $ (-523)))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1016)) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-563 (-794)))) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-462 |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-938 |#1|) . T) ((-1016) |has| |#1| (-1016)) ((-1122) . T)) +((-3612 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1157 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 (|#4| (-1 |#2| |#1|) |#3|))) (-973) (-973) (-1159 |#1|) (-1159 |#2|)) (T -1157)) +((-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-973)) (-4 *6 (-973)) (-4 *2 (-1159 *6)) (-5 *1 (-1157 *5 *6 *4 *2)) (-4 *4 (-1159 *5))))) +(-10 -7 (-15 -3612 (|#4| (-1 |#2| |#1|) |#3|))) +((-2295 (((-108) $) 15)) (-1769 (($ $) 91)) (-3780 (($ $) 67)) (-1744 (($ $) 87)) (-3711 (($ $) 63)) (-1793 (($ $) 95)) (-3805 (($ $) 71)) (-2384 (($ $) 61)) (-1811 (($ $) 59)) (-1805 (($ $) 97)) (-3816 (($ $) 73)) (-1782 (($ $) 93)) (-3793 (($ $) 69)) (-1757 (($ $) 89)) (-3767 (($ $) 65)) (-1458 (((-794) $) 47) (($ (-523)) NIL) (($ (-383 (-523))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1839 (($ $) 103)) (-3847 (($ $) 79)) (-1818 (($ $) 99)) (-3828 (($ $) 75)) (-1865 (($ $) 107)) (-1719 (($ $) 83)) (-2914 (($ $) 109)) (-1731 (($ $) 85)) (-1852 (($ $) 105)) (-3859 (($ $) 81)) (-1830 (($ $) 101)) (-3838 (($ $) 77)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-383 (-523))) 57))) +(((-1158 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-383 (-523)))) (-15 -3780 (|#1| |#1|)) (-15 -3711 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3816 (|#1| |#1|)) (-15 -3793 (|#1| |#1|)) (-15 -3767 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3859 (|#1| |#1|)) (-15 -1731 (|#1| |#1|)) (-15 -1719 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -1782 (|#1| |#1|)) (-15 -1805 (|#1| |#1|)) (-15 -1793 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1769 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -1852 (|#1| |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)) (-15 -1818 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -2384 (|#1| |#1|)) (-15 -1811 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1458 (|#1| |#2|)) (-15 -1458 (|#1| |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| (-523))) (-15 ** (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-852))) (-15 -2295 ((-108) |#1|)) (-15 -1458 ((-794) |#1|))) (-1159 |#2|) (-973)) (T -1158)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-383 (-523)))) (-15 -3780 (|#1| |#1|)) (-15 -3711 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3816 (|#1| |#1|)) (-15 -3793 (|#1| |#1|)) (-15 -3767 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3859 (|#1| |#1|)) (-15 -1731 (|#1| |#1|)) (-15 -1719 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -1782 (|#1| |#1|)) (-15 -1805 (|#1| |#1|)) (-15 -1793 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1769 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -1852 (|#1| |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)) (-15 -1818 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -2384 (|#1| |#1|)) (-15 -1811 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1458 (|#1| |#2|)) (-15 -1458 (|#1| |#1|)) (-15 -1458 (|#1| (-383 (-523)))) (-15 -1458 (|#1| (-523))) (-15 ** (|#1| |#1| (-710))) (-15 ** (|#1| |#1| (-852))) (-15 -2295 ((-108) |#1|)) (-15 -1458 ((-794) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1957 (((-589 (-1001)) $) 74)) (-2700 (((-1087) $) 103)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 51 (|has| |#1| (-515)))) (-3345 (($ $) 52 (|has| |#1| (-515)))) (-3331 (((-108) $) 54 (|has| |#1| (-515)))) (-3984 (($ $ (-710)) 98) (($ $ (-710) (-710)) 97)) (-2133 (((-1068 (-2 (|:| |k| (-710)) (|:| |c| |#1|))) $) 105)) (-1769 (($ $) 135 (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) 118 (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) 19)) (-1832 (($ $) 117 (|has| |#1| (-37 (-383 (-523)))))) (-1744 (($ $) 134 (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) 119 (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-1068 (-2 (|:| |k| (-710)) (|:| |c| |#1|)))) 155) (($ (-1068 |#1|)) 153)) (-1793 (($ $) 133 (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) 120 (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) 17 T CONST)) (-3810 (($ $) 60)) (-2121 (((-3 $ "failed") $) 34)) (-1956 (($ $) 152)) (-3566 (((-883 |#1|) $ (-710)) 150) (((-883 |#1|) $ (-710) (-710)) 149)) (-2003 (((-108) $) 73)) (-2820 (($) 145 (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-710) $) 100) (((-710) $ (-710)) 99)) (-2023 (((-108) $) 31)) (-1420 (($ $ (-523)) 116 (|has| |#1| (-37 (-383 (-523)))))) (-1349 (($ $ (-852)) 101)) (-3735 (($ (-1 |#1| (-523)) $) 151)) (-2620 (((-108) $) 62)) (-1933 (($ |#1| (-710)) 61) (($ $ (-1001) (-710)) 76) (($ $ (-589 (-1001)) (-589 (-710))) 75)) (-3612 (($ (-1 |#1| |#1|) $) 63)) (-2384 (($ $) 142 (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) 65)) (-3786 ((|#1| $) 66)) (-3779 (((-1070) $) 9)) (-3417 (($ $) 147 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 146 (-3262 (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-889)) (|has| |#1| (-1108)) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-37 (-383 (-523)))))))) (-2783 (((-1034) $) 10)) (-4097 (($ $ (-710)) 95)) (-3746 (((-3 $ "failed") $ $) 50 (|has| |#1| (-515)))) (-1811 (($ $) 143 (|has| |#1| (-37 (-383 (-523)))))) (-2679 (((-1068 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-710)))))) (-3223 ((|#1| $ (-710)) 104) (($ $ $) 81 (|has| (-710) (-1028)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) 89 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-1087) (-710)) 88 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-589 (-1087))) 87 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-1087)) 86 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-710)) 84 (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (-2299 (((-710) $) 64)) (-1805 (($ $) 132 (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) 121 (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) 131 (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) 122 (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) 130 (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) 123 (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) 72)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ (-383 (-523))) 57 (|has| |#1| (-37 (-383 (-523))))) (($ $) 49 (|has| |#1| (-515))) (($ |#1|) 47 (|has| |#1| (-158)))) (-1251 (((-1068 |#1|) $) 154)) (-2365 ((|#1| $ (-710)) 59)) (-3901 (((-3 $ "failed") $) 48 (|has| |#1| (-134)))) (-1621 (((-710)) 29)) (-1288 ((|#1| $) 102)) (-1839 (($ $) 141 (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) 129 (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) 53 (|has| |#1| (-515)))) (-1818 (($ $) 140 (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) 128 (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) 139 (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) 127 (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-710)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-710)))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) 138 (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) 126 (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) 137 (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) 125 (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) 136 (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) 124 (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) 93 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-1087) (-710)) 92 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-589 (-1087))) 91 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-1087)) 90 (-12 (|has| |#1| (-831 (-1087))) (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (($ $ (-710)) 85 (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 58 (|has| |#1| (-339)))) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ |#1|) 148 (|has| |#1| (-339))) (($ $ $) 144 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 115 (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-383 (-523)) $) 56 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) 55 (|has| |#1| (-37 (-383 (-523))))))) +(((-1159 |#1|) (-129) (-973)) (T -1159)) +((-2417 (*1 *1 *2) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-710)) (|:| |c| *3)))) (-4 *3 (-973)) (-4 *1 (-1159 *3)))) (-1251 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-973)) (-5 *2 (-1068 *3)))) (-2417 (*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-4 *1 (-1159 *3)))) (-1956 (*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-973)))) (-3735 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-523))) (-4 *1 (-1159 *3)) (-4 *3 (-973)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-1159 *4)) (-4 *4 (-973)) (-5 *2 (-883 *4)))) (-3566 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-710)) (-4 *1 (-1159 *4)) (-4 *4 (-973)) (-5 *2 (-883 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) (-3417 (*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523)))))) (-3417 (*1 *1 *1 *2) (-3262 (-12 (-5 *2 (-1087)) (-4 *1 (-1159 *3)) (-4 *3 (-973)) (-12 (-4 *3 (-29 (-523))) (-4 *3 (-889)) (-4 *3 (-1108)) (-4 *3 (-37 (-383 (-523)))))) (-12 (-5 *2 (-1087)) (-4 *1 (-1159 *3)) (-4 *3 (-973)) (-12 (|has| *3 (-15 -1957 ((-589 *2) *3))) (|has| *3 (-15 -3417 (*3 *3 *2))) (-4 *3 (-37 (-383 (-523))))))))) +(-13 (-1146 |t#1| (-710)) (-10 -8 (-15 -2417 ($ (-1068 (-2 (|:| |k| (-710)) (|:| |c| |t#1|))))) (-15 -1251 ((-1068 |t#1|) $)) (-15 -2417 ($ (-1068 |t#1|))) (-15 -1956 ($ $)) (-15 -3735 ($ (-1 |t#1| (-523)) $)) (-15 -3566 ((-883 |t#1|) $ (-710))) (-15 -3566 ((-883 |t#1|) $ (-710) (-710))) (IF (|has| |t#1| (-339)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-383 (-523)))) (PROGN (-15 -3417 ($ $)) (IF (|has| |t#1| (-15 -3417 (|t#1| |t#1| (-1087)))) (IF (|has| |t#1| (-15 -1957 ((-589 (-1087)) |t#1|))) (-15 -3417 ($ $ (-1087))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1108)) (IF (|has| |t#1| (-889)) (IF (|has| |t#1| (-29 (-523))) (-15 -3417 ($ $ (-1087))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-930)) (-6 (-1108))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-710)) . T) ((-25) . T) ((-37 #1=(-383 (-523))) |has| |#1| (-37 (-383 (-523)))) ((-37 |#1|) |has| |#1| (-158)) ((-37 $) |has| |#1| (-515)) ((-34) |has| |#1| (-37 (-383 (-523)))) ((-91) |has| |#1| (-37 (-383 (-523)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-383 (-523)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-124) . T) ((-134) |has| |#1| (-134)) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-211) |has| |#1| (-15 * (|#1| (-710) |#1|))) ((-261) |has| |#1| (-37 (-383 (-523)))) ((-263 $ $) |has| (-710) (-1028)) ((-267) |has| |#1| (-515)) ((-464) |has| |#1| (-37 (-383 (-523)))) ((-515) |has| |#1| (-515)) ((-591 #1#) |has| |#1| (-37 (-383 (-523)))) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #1#) |has| |#1| (-37 (-383 (-523)))) ((-657 |#1|) |has| |#1| (-158)) ((-657 $) |has| |#1| (-515)) ((-666) . T) ((-831 (-1087)) -12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087)))) ((-902 |#1| #0# (-1001)) . T) ((-930) |has| |#1| (-37 (-383 (-523)))) ((-979 #1#) |has| |#1| (-37 (-383 (-523)))) ((-979 |#1|) . T) ((-979 $) -3262 (|has| |#1| (-515)) (|has| |#1| (-158))) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1108) |has| |#1| (-37 (-383 (-523)))) ((-1111) |has| |#1| (-37 (-383 (-523)))) ((-1146 |#1| #0#) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-1957 (((-589 (-1001)) $) NIL)) (-2700 (((-1087) $) 87)) (-2053 (((-1141 |#2| |#1|) $ (-710)) 73)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) NIL (|has| |#1| (-515)))) (-3345 (($ $) NIL (|has| |#1| (-515)))) (-3331 (((-108) $) 136 (|has| |#1| (-515)))) (-3984 (($ $ (-710)) 121) (($ $ (-710) (-710)) 123)) (-2133 (((-1068 (-2 (|:| |k| (-710)) (|:| |c| |#1|))) $) 42)) (-1769 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3780 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3212 (((-3 $ "failed") $ $) NIL)) (-1832 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1744 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3711 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2417 (($ (-1068 (-2 (|:| |k| (-710)) (|:| |c| |#1|)))) 53) (($ (-1068 |#1|)) NIL)) (-1793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2518 (($) NIL T CONST)) (-1492 (($ $) 127)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-1956 (($ $) 134)) (-3566 (((-883 |#1|) $ (-710)) 63) (((-883 |#1|) $ (-710) (-710)) 65)) (-2003 (((-108) $) NIL)) (-2820 (($) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1640 (((-710) $) NIL) (((-710) $ (-710)) NIL)) (-2023 (((-108) $) NIL)) (-2673 (($ $) 111)) (-1420 (($ $ (-523)) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3235 (($ (-523) (-523) $) 129)) (-1349 (($ $ (-852)) 133)) (-3735 (($ (-1 |#1| (-523)) $) 105)) (-2620 (((-108) $) NIL)) (-1933 (($ |#1| (-710)) 15) (($ $ (-1001) (-710)) NIL) (($ $ (-589 (-1001)) (-589 (-710))) NIL)) (-3612 (($ (-1 |#1| |#1|) $) 93)) (-2384 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3774 (($ $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2511 (($ $) 109)) (-2548 (($ $) 107)) (-1602 (($ (-523) (-523) $) 131)) (-3417 (($ $) 144 (|has| |#1| (-37 (-383 (-523))))) (($ $ (-1087)) 150 (-3262 (-12 (|has| |#1| (-15 -3417 (|#1| |#1| (-1087)))) (|has| |#1| (-15 -1957 ((-589 (-1087)) |#1|))) (|has| |#1| (-37 (-383 (-523))))) (-12 (|has| |#1| (-29 (-523))) (|has| |#1| (-37 (-383 (-523)))) (|has| |#1| (-889)) (|has| |#1| (-1108))))) (($ $ (-1164 |#2|)) 145 (|has| |#1| (-37 (-383 (-523)))))) (-2783 (((-1034) $) NIL)) (-1840 (($ $ (-523) (-523)) 115)) (-4097 (($ $ (-710)) 117)) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-515)))) (-1811 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3741 (($ $) 113)) (-2679 (((-1068 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-710)))))) (-3223 ((|#1| $ (-710)) 90) (($ $ $) 125 (|has| (-710) (-1028)))) (-3523 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) 102 (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $ (-1164 |#2|)) 98)) (-2299 (((-710) $) NIL)) (-1805 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3816 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1782 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3793 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1757 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3767 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1353 (($ $) 119)) (-1458 (((-794) $) NIL) (($ (-523)) 24) (($ (-383 (-523))) 142 (|has| |#1| (-37 (-383 (-523))))) (($ $) NIL (|has| |#1| (-515))) (($ |#1|) 23 (|has| |#1| (-158))) (($ (-1141 |#2| |#1|)) 80) (($ (-1164 |#2|)) 20)) (-1251 (((-1068 |#1|) $) NIL)) (-2365 ((|#1| $ (-710)) 89)) (-3901 (((-3 $ "failed") $) NIL (|has| |#1| (-134)))) (-1621 (((-710)) NIL)) (-1288 ((|#1| $) 88)) (-1839 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3847 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1704 (((-108) $ $) NIL (|has| |#1| (-515)))) (-1818 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3828 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1865 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1719 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2562 ((|#1| $ (-710)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-710)))) (|has| |#1| (-15 -1458 (|#1| (-1087))))))) (-2914 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1731 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1852 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3859 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-1830 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-3838 (($ $) NIL (|has| |#1| (-37 (-383 (-523)))))) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 17 T CONST)) (-2767 (($) 13 T CONST)) (-2862 (($ $ (-589 (-1087)) (-589 (-710))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087) (-710)) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-589 (-1087))) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-1087)) NIL (-12 (|has| |#1| (-15 * (|#1| (-710) |#1|))) (|has| |#1| (-831 (-1087))))) (($ $ (-710)) NIL (|has| |#1| (-15 * (|#1| (-710) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-710) |#1|))))) (-3983 (((-108) $ $) NIL)) (-4098 (($ $ |#1|) NIL (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) 101)) (-4075 (($ $ $) 18)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL) (($ $ |#1|) 139 (|has| |#1| (-339))) (($ $ $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523)))))) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-383 (-523)) $) NIL (|has| |#1| (-37 (-383 (-523))))) (($ $ (-383 (-523))) NIL (|has| |#1| (-37 (-383 (-523))))))) +(((-1160 |#1| |#2| |#3|) (-13 (-1159 |#1|) (-10 -8 (-15 -1458 ($ (-1141 |#2| |#1|))) (-15 -2053 ((-1141 |#2| |#1|) $ (-710))) (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (-15 -2548 ($ $)) (-15 -2511 ($ $)) (-15 -2673 ($ $)) (-15 -3741 ($ $)) (-15 -1840 ($ $ (-523) (-523))) (-15 -1492 ($ $)) (-15 -3235 ($ (-523) (-523) $)) (-15 -1602 ($ (-523) (-523) $)) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) (-973) (-1087) |#1|) (T -1160)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-1141 *4 *3)) (-4 *3 (-973)) (-14 *4 (-1087)) (-14 *5 *3) (-5 *1 (-1160 *3 *4 *5)))) (-2053 (*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1141 *5 *4)) (-5 *1 (-1160 *4 *5 *6)) (-4 *4 (-973)) (-14 *5 (-1087)) (-14 *6 *4))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-973)) (-14 *5 *3))) (-2548 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) (-14 *4 *2))) (-2511 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) (-14 *4 *2))) (-2673 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) (-14 *4 *2))) (-3741 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) (-14 *4 *2))) (-1840 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-973)) (-14 *4 (-1087)) (-14 *5 *3))) (-1492 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) (-14 *4 *2))) (-3235 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-973)) (-14 *4 (-1087)) (-14 *5 *3))) (-1602 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-973)) (-14 *4 (-1087)) (-14 *5 *3))) (-3417 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) +(-13 (-1159 |#1|) (-10 -8 (-15 -1458 ($ (-1141 |#2| |#1|))) (-15 -2053 ((-1141 |#2| |#1|) $ (-710))) (-15 -1458 ($ (-1164 |#2|))) (-15 -3523 ($ $ (-1164 |#2|))) (-15 -2548 ($ $)) (-15 -2511 ($ $)) (-15 -2673 ($ $)) (-15 -3741 ($ $)) (-15 -1840 ($ $ (-523) (-523))) (-15 -1492 ($ $)) (-15 -3235 ($ (-523) (-523) $)) (-15 -1602 ($ (-523) (-523) $)) (IF (|has| |#1| (-37 (-383 (-523)))) (-15 -3417 ($ $ (-1164 |#2|))) |%noBranch|))) +((-3192 (((-1 (-1068 |#1|) (-589 (-1068 |#1|))) (-1 |#2| (-589 |#2|))) 24)) (-3280 (((-1 (-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2283 (((-1 (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2|)) 13)) (-2843 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2097 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3033 ((|#2| (-1 |#2| (-589 |#2|)) (-589 |#1|)) 54)) (-1390 (((-589 |#2|) (-589 |#1|) (-589 (-1 |#2| (-589 |#2|)))) 61)) (-2543 ((|#2| |#2| |#2|) 43))) +(((-1161 |#1| |#2|) (-10 -7 (-15 -2283 ((-1 (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2|))) (-15 -3280 ((-1 (-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3192 ((-1 (-1068 |#1|) (-589 (-1068 |#1|))) (-1 |#2| (-589 |#2|)))) (-15 -2543 (|#2| |#2| |#2|)) (-15 -2097 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3033 (|#2| (-1 |#2| (-589 |#2|)) (-589 |#1|))) (-15 -1390 ((-589 |#2|) (-589 |#1|) (-589 (-1 |#2| (-589 |#2|)))))) (-37 (-383 (-523))) (-1159 |#1|)) (T -1161)) +((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 (-1 *6 (-589 *6)))) (-4 *5 (-37 (-383 (-523)))) (-4 *6 (-1159 *5)) (-5 *2 (-589 *6)) (-5 *1 (-1161 *5 *6)))) (-3033 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-589 *2))) (-5 *4 (-589 *5)) (-4 *5 (-37 (-383 (-523)))) (-4 *2 (-1159 *5)) (-5 *1 (-1161 *5 *2)))) (-2843 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1159 *4)) (-5 *1 (-1161 *4 *2)) (-4 *4 (-37 (-383 (-523)))))) (-2097 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1159 *4)) (-5 *1 (-1161 *4 *2)) (-4 *4 (-37 (-383 (-523)))))) (-2543 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1161 *3 *2)) (-4 *2 (-1159 *3)))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-589 *5))) (-4 *5 (-1159 *4)) (-4 *4 (-37 (-383 (-523)))) (-5 *2 (-1 (-1068 *4) (-589 (-1068 *4)))) (-5 *1 (-1161 *4 *5)))) (-3280 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1159 *4)) (-4 *4 (-37 (-383 (-523)))) (-5 *2 (-1 (-1068 *4) (-1068 *4) (-1068 *4))) (-5 *1 (-1161 *4 *5)))) (-2283 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1159 *4)) (-4 *4 (-37 (-383 (-523)))) (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1161 *4 *5))))) +(-10 -7 (-15 -2283 ((-1 (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2|))) (-15 -3280 ((-1 (-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3192 ((-1 (-1068 |#1|) (-589 (-1068 |#1|))) (-1 |#2| (-589 |#2|)))) (-15 -2543 (|#2| |#2| |#2|)) (-15 -2097 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3033 (|#2| (-1 |#2| (-589 |#2|)) (-589 |#1|))) (-15 -1390 ((-589 |#2|) (-589 |#1|) (-589 (-1 |#2| (-589 |#2|)))))) +((-3065 ((|#2| |#4| (-710)) 30)) (-2068 ((|#4| |#2|) 25)) (-3083 ((|#4| (-383 |#2|)) 51 (|has| |#1| (-515)))) (-2931 (((-1 |#4| (-589 |#4|)) |#3|) 45))) +(((-1162 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2068 (|#4| |#2|)) (-15 -3065 (|#2| |#4| (-710))) (-15 -2931 ((-1 |#4| (-589 |#4|)) |#3|)) (IF (|has| |#1| (-515)) (-15 -3083 (|#4| (-383 |#2|))) |%noBranch|)) (-973) (-1144 |#1|) (-599 |#2|) (-1159 |#1|)) (T -1162)) +((-3083 (*1 *2 *3) (-12 (-5 *3 (-383 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-515)) (-4 *4 (-973)) (-4 *2 (-1159 *4)) (-5 *1 (-1162 *4 *5 *6 *2)) (-4 *6 (-599 *5)))) (-2931 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *5 (-1144 *4)) (-5 *2 (-1 *6 (-589 *6))) (-5 *1 (-1162 *4 *5 *3 *6)) (-4 *3 (-599 *5)) (-4 *6 (-1159 *4)))) (-3065 (*1 *2 *3 *4) (-12 (-5 *4 (-710)) (-4 *5 (-973)) (-4 *2 (-1144 *5)) (-5 *1 (-1162 *5 *2 *6 *3)) (-4 *6 (-599 *2)) (-4 *3 (-1159 *5)))) (-2068 (*1 *2 *3) (-12 (-4 *4 (-973)) (-4 *3 (-1144 *4)) (-4 *2 (-1159 *4)) (-5 *1 (-1162 *4 *3 *5 *2)) (-4 *5 (-599 *3))))) +(-10 -7 (-15 -2068 (|#4| |#2|)) (-15 -3065 (|#2| |#4| (-710))) (-15 -2931 ((-1 |#4| (-589 |#4|)) |#3|)) (IF (|has| |#1| (-515)) (-15 -3083 (|#4| (-383 |#2|))) |%noBranch|)) +NIL +(((-1163) (-129)) (T -1163)) +NIL +(-13 (-10 -7 (-6 -3656))) +((-3924 (((-108) $ $) NIL)) (-2700 (((-1087)) 12)) (-3779 (((-1070) $) 17)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 11) (((-1087) $) 8)) (-3983 (((-108) $ $) 14))) +(((-1164 |#1|) (-13 (-1016) (-563 (-1087)) (-10 -8 (-15 -1458 ((-1087) $)) (-15 -2700 ((-1087))))) (-1087)) (T -1164)) +((-1458 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1164 *3)) (-14 *3 *2))) (-2700 (*1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1164 *3)) (-14 *3 *2)))) +(-13 (-1016) (-563 (-1087)) (-10 -8 (-15 -1458 ((-1087) $)) (-15 -2700 ((-1087))))) +((-2821 (($ (-710)) 16)) (-1777 (((-629 |#2|) $ $) 37)) (-3798 ((|#2| $) 46)) (-2996 ((|#2| $) 45)) (-3269 ((|#2| $ $) 33)) (-2240 (($ $ $) 42)) (-4087 (($ $) 20) (($ $ $) 26)) (-4075 (($ $ $) 13)) (* (($ (-523) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28))) +(((-1165 |#1| |#2|) (-10 -8 (-15 -3798 (|#2| |#1|)) (-15 -2996 (|#2| |#1|)) (-15 -2240 (|#1| |#1| |#1|)) (-15 -1777 ((-629 |#2|) |#1| |#1|)) (-15 -3269 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -2821 (|#1| (-710))) (-15 -4075 (|#1| |#1| |#1|))) (-1166 |#2|) (-1122)) (T -1165)) +NIL +(-10 -8 (-15 -3798 (|#2| |#1|)) (-15 -2996 (|#2| |#1|)) (-15 -2240 (|#1| |#1| |#1|)) (-15 -1777 ((-629 |#2|) |#1| |#1|)) (-15 -3269 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-523) |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -2821 (|#1| (-710))) (-15 -4075 (|#1| |#1| |#1|))) +((-3924 (((-108) $ $) 19 (|has| |#1| (-1016)))) (-2821 (($ (-710)) 112 (|has| |#1| (-23)))) (-4207 (((-1173) $ (-523) (-523)) 40 (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4245))) (($ $) 88 (-12 (|has| |#1| (-786)) (|has| $ (-6 -4245))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) 8)) (-1641 ((|#1| $ (-523) |#1|) 52 (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) 58 (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4244)))) (-2518 (($) 7 T CONST)) (-2867 (($ $) 90 (|has| $ (-6 -4245)))) (-3631 (($ $) 100)) (-1773 (($ $) 78 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-2557 (($ |#1| $) 77 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) 53 (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) 51)) (-1479 (((-523) (-1 (-108) |#1|) $) 97) (((-523) |#1| $) 96 (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) 95 (|has| |#1| (-1016)))) (-1666 (((-589 |#1|) $) 30 (|has| $ (-6 -4244)))) (-1777 (((-629 |#1|) $ $) 105 (|has| |#1| (-973)))) (-3052 (($ (-710) |#1|) 69)) (-2346 (((-108) $ (-710)) 9)) (-4084 (((-523) $) 43 (|has| (-523) (-786)))) (-2454 (($ $ $) 87 (|has| |#1| (-786)))) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3056 (((-523) $) 44 (|has| (-523) (-786)))) (-2062 (($ $ $) 86 (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3798 ((|#1| $) 102 (-12 (|has| |#1| (-973)) (|has| |#1| (-930))))) (-2866 (((-108) $ (-710)) 10)) (-2996 ((|#1| $) 103 (-12 (|has| |#1| (-973)) (|has| |#1| (-930))))) (-3779 (((-1070) $) 22 (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) 60) (($ $ $ (-523)) 59)) (-2412 (((-589 (-523)) $) 46)) (-4135 (((-108) (-523) $) 47)) (-2783 (((-1034) $) 21 (|has| |#1| (-1016)))) (-1738 ((|#1| $) 42 (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-4203 (($ $ |#1|) 41 (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) 26 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) 25 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) 23 (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) 14)) (-1370 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) 48)) (-3883 (((-108) $) 11)) (-3988 (($) 12)) (-3223 ((|#1| $ (-523) |#1|) 50) ((|#1| $ (-523)) 49) (($ $ (-1135 (-523))) 63)) (-3269 ((|#1| $ $) 106 (|has| |#1| (-973)))) (-1469 (($ $ (-523)) 62) (($ $ (-1135 (-523))) 61)) (-2240 (($ $ $) 104 (|has| |#1| (-973)))) (-2792 (((-710) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4244))) (((-710) |#1| $) 28 (-12 (|has| |#1| (-1016)) (|has| $ (-6 -4244))))) (-3160 (($ $ $ (-523)) 91 (|has| $ (-6 -4245)))) (-1664 (($ $) 13)) (-3663 (((-499) $) 79 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 70)) (-2326 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-589 $)) 65)) (-1458 (((-794) $) 18 (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) 84 (|has| |#1| (-786)))) (-4019 (((-108) $ $) 83 (|has| |#1| (-786)))) (-3983 (((-108) $ $) 20 (|has| |#1| (-1016)))) (-4030 (((-108) $ $) 85 (|has| |#1| (-786)))) (-4007 (((-108) $ $) 82 (|has| |#1| (-786)))) (-4087 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4075 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-523) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-666))) (($ $ |#1|) 107 (|has| |#1| (-666)))) (-2676 (((-710) $) 6 (|has| $ (-6 -4244))))) +(((-1166 |#1|) (-129) (-1122)) (T -1166)) +((-4075 (*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-25)))) (-2821 (*1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1166 *3)) (-4 *3 (-23)) (-4 *3 (-1122)))) (-4087 (*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-21)))) (-4087 (*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-4 *1 (-1166 *3)) (-4 *3 (-1122)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-666)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-666)))) (-3269 (*1 *2 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-973)))) (-1777 (*1 *2 *1 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1122)) (-4 *3 (-973)) (-5 *2 (-629 *3)))) (-2240 (*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-973)))) (-2996 (*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-930)) (-4 *2 (-973)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-930)) (-4 *2 (-973))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4075 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2821 ($ (-710))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4087 ($ $)) (-15 -4087 ($ $ $)) (-15 * ($ (-523) $))) |%noBranch|) (IF (|has| |t#1| (-666)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-973)) (PROGN (-15 -3269 (|t#1| $ $)) (-15 -1777 ((-629 |t#1|) $ $)) (-15 -2240 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-930)) (IF (|has| |t#1| (-973)) (PROGN (-15 -2996 (|t#1| $)) (-15 -3798 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-33) . T) ((-97) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-563 (-794)) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786)) (|has| |#1| (-563 (-794)))) ((-140 |#1|) . T) ((-564 (-499)) |has| |#1| (-564 (-499))) ((-263 #0=(-523) |#1|) . T) ((-265 #0# |#1|) . T) ((-286 |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-349 |#1|) . T) ((-462 |#1|) . T) ((-556 #0# |#1|) . T) ((-484 |#1| |#1|) -12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))) ((-594 |#1|) . T) ((-19 |#1|) . T) ((-786) |has| |#1| (-786)) ((-1016) -3262 (|has| |#1| (-1016)) (|has| |#1| (-786))) ((-1122) . T)) +((-2837 (((-1168 |#2|) (-1 |#2| |#1| |#2|) (-1168 |#1|) |#2|) 13)) (-2437 ((|#2| (-1 |#2| |#1| |#2|) (-1168 |#1|) |#2|) 15)) (-3612 (((-3 (-1168 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1168 |#1|)) 28) (((-1168 |#2|) (-1 |#2| |#1|) (-1168 |#1|)) 18))) +(((-1167 |#1| |#2|) (-10 -7 (-15 -2837 ((-1168 |#2|) (-1 |#2| |#1| |#2|) (-1168 |#1|) |#2|)) (-15 -2437 (|#2| (-1 |#2| |#1| |#2|) (-1168 |#1|) |#2|)) (-15 -3612 ((-1168 |#2|) (-1 |#2| |#1|) (-1168 |#1|))) (-15 -3612 ((-3 (-1168 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1168 |#1|)))) (-1122) (-1122)) (T -1167)) +((-3612 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1168 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1168 *6)) (-5 *1 (-1167 *5 *6)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1168 *6)) (-5 *1 (-1167 *5 *6)))) (-2437 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1168 *5)) (-4 *5 (-1122)) (-4 *2 (-1122)) (-5 *1 (-1167 *5 *2)))) (-2837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1168 *6)) (-4 *6 (-1122)) (-4 *5 (-1122)) (-5 *2 (-1168 *5)) (-5 *1 (-1167 *6 *5))))) +(-10 -7 (-15 -2837 ((-1168 |#2|) (-1 |#2| |#1| |#2|) (-1168 |#1|) |#2|)) (-15 -2437 (|#2| (-1 |#2| |#1| |#2|) (-1168 |#1|) |#2|)) (-15 -3612 ((-1168 |#2|) (-1 |#2| |#1|) (-1168 |#1|))) (-15 -3612 ((-3 (-1168 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1168 |#1|)))) +((-3924 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-2821 (($ (-710)) NIL (|has| |#1| (-23)))) (-3510 (($ (-589 |#1|)) 9)) (-4207 (((-1173) $ (-523) (-523)) NIL (|has| $ (-6 -4245)))) (-1964 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-786)))) (-1506 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4245))) (($ $) NIL (-12 (|has| $ (-6 -4245)) (|has| |#1| (-786))))) (-3974 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-786)))) (-3079 (((-108) $ (-710)) NIL)) (-1641 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245))) ((|#1| $ (-1135 (-523)) |#1|) NIL (|has| $ (-6 -4245)))) (-3724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2518 (($) NIL T CONST)) (-2867 (($ $) NIL (|has| $ (-6 -4245)))) (-3631 (($ $) NIL)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-2557 (($ |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2437 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4244))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4244)))) (-2863 ((|#1| $ (-523) |#1|) NIL (|has| $ (-6 -4245)))) (-2795 ((|#1| $ (-523)) NIL)) (-1479 (((-523) (-1 (-108) |#1|) $) NIL) (((-523) |#1| $) NIL (|has| |#1| (-1016))) (((-523) |#1| $ (-523)) NIL (|has| |#1| (-1016)))) (-1666 (((-589 |#1|) $) 15 (|has| $ (-6 -4244)))) (-1777 (((-629 |#1|) $ $) NIL (|has| |#1| (-973)))) (-3052 (($ (-710) |#1|) NIL)) (-2346 (((-108) $ (-710)) NIL)) (-4084 (((-523) $) NIL (|has| (-523) (-786)))) (-2454 (($ $ $) NIL (|has| |#1| (-786)))) (-2178 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-786)))) (-2136 (((-589 |#1|) $) NIL (|has| $ (-6 -4244)))) (-1973 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3056 (((-523) $) NIL (|has| (-523) (-786)))) (-2062 (($ $ $) NIL (|has| |#1| (-786)))) (-2852 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3798 ((|#1| $) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-973))))) (-2866 (((-108) $ (-710)) NIL)) (-2996 ((|#1| $) NIL (-12 (|has| |#1| (-930)) (|has| |#1| (-973))))) (-3779 (((-1070) $) NIL (|has| |#1| (-1016)))) (-2847 (($ |#1| $ (-523)) NIL) (($ $ $ (-523)) NIL)) (-2412 (((-589 (-523)) $) NIL)) (-4135 (((-108) (-523) $) NIL)) (-2783 (((-1034) $) NIL (|has| |#1| (-1016)))) (-1738 ((|#1| $) NIL (|has| (-523) (-786)))) (-2114 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4203 (($ $ |#1|) NIL (|has| $ (-6 -4245)))) (-1327 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 (-271 |#1|))) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-271 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016)))) (($ $ (-589 |#1|) (-589 |#1|)) NIL (-12 (|has| |#1| (-286 |#1|)) (|has| |#1| (-1016))))) (-3811 (((-108) $ $) NIL)) (-1370 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-1264 (((-589 |#1|) $) NIL)) (-3883 (((-108) $) NIL)) (-3988 (($) NIL)) (-3223 ((|#1| $ (-523) |#1|) NIL) ((|#1| $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-3269 ((|#1| $ $) NIL (|has| |#1| (-973)))) (-1469 (($ $ (-523)) NIL) (($ $ (-1135 (-523))) NIL)) (-2240 (($ $ $) NIL (|has| |#1| (-973)))) (-2792 (((-710) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244))) (((-710) |#1| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#1| (-1016))))) (-3160 (($ $ $ (-523)) NIL (|has| $ (-6 -4245)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) 19 (|has| |#1| (-564 (-499))))) (-1472 (($ (-589 |#1|)) 8)) (-2326 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-589 $)) NIL)) (-1458 (((-794) $) NIL (|has| |#1| (-563 (-794))))) (-2096 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4244)))) (-4043 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4019 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-1016)))) (-4030 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4007 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4087 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4075 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-523) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-666))) (($ $ |#1|) NIL (|has| |#1| (-666)))) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-1168 |#1|) (-13 (-1166 |#1|) (-10 -8 (-15 -3510 ($ (-589 |#1|))))) (-1122)) (T -1168)) +((-3510 (*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-1168 *3))))) +(-13 (-1166 |#1|) (-10 -8 (-15 -3510 ($ (-589 |#1|))))) +((-3924 (((-108) $ $) NIL)) (-2529 (((-1070) $ (-1070)) 87) (((-1070) $ (-1070) (-1070)) 85) (((-1070) $ (-1070) (-589 (-1070))) 84)) (-3186 (($) 56)) (-1412 (((-1173) $ (-443) (-852)) 42)) (-3142 (((-1173) $ (-852) (-1070)) 70) (((-1173) $ (-852) (-805)) 71)) (-3706 (((-1173) $ (-852) (-355) (-355)) 45)) (-2331 (((-1173) $ (-1070)) 66)) (-4164 (((-1173) $ (-852) (-1070)) 75)) (-3495 (((-1173) $ (-852) (-355) (-355)) 46)) (-3185 (((-1173) $ (-852) (-852)) 43)) (-2506 (((-1173) $) 67)) (-3999 (((-1173) $ (-852) (-1070)) 74)) (-3920 (((-1173) $ (-443) (-852)) 30)) (-3582 (((-1173) $ (-852) (-1070)) 73)) (-1866 (((-589 (-240)) $) 22) (($ $ (-589 (-240))) 23)) (-2990 (((-1173) $ (-710) (-710)) 40)) (-3034 (($ $) 57) (($ (-443) (-589 (-240))) 58)) (-3779 (((-1070) $) NIL)) (-1853 (((-523) $) 37)) (-2783 (((-1034) $) NIL)) (-2951 (((-1168 (-3 (-443) "undefined")) $) 36)) (-3151 (((-1168 (-2 (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)) (|:| -3582 (-523)) (|:| -4134 (-523)) (|:| |spline| (-523)) (|:| -4166 (-523)) (|:| |axesColor| (-805)) (|:| -3142 (-523)) (|:| |unitsColor| (-805)) (|:| |showing| (-523)))) $) 35)) (-2614 (((-1173) $ (-852) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-805) (-523) (-805) (-523)) 65)) (-1646 (((-589 (-874 (-203))) $) NIL)) (-2526 (((-443) $ (-852)) 32)) (-4160 (((-1173) $ (-710) (-710) (-852) (-852)) 39)) (-2389 (((-1173) $ (-1070)) 76)) (-4134 (((-1173) $ (-852) (-1070)) 72)) (-1458 (((-794) $) 82)) (-3952 (((-1173) $) 77)) (-4166 (((-1173) $ (-852) (-1070)) 68) (((-1173) $ (-852) (-805)) 69)) (-3983 (((-108) $ $) NIL))) +(((-1169) (-13 (-1016) (-10 -8 (-15 -1646 ((-589 (-874 (-203))) $)) (-15 -3186 ($)) (-15 -3034 ($ $)) (-15 -1866 ((-589 (-240)) $)) (-15 -1866 ($ $ (-589 (-240)))) (-15 -3034 ($ (-443) (-589 (-240)))) (-15 -2614 ((-1173) $ (-852) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-805) (-523) (-805) (-523))) (-15 -3151 ((-1168 (-2 (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)) (|:| -3582 (-523)) (|:| -4134 (-523)) (|:| |spline| (-523)) (|:| -4166 (-523)) (|:| |axesColor| (-805)) (|:| -3142 (-523)) (|:| |unitsColor| (-805)) (|:| |showing| (-523)))) $)) (-15 -2951 ((-1168 (-3 (-443) "undefined")) $)) (-15 -2331 ((-1173) $ (-1070))) (-15 -3920 ((-1173) $ (-443) (-852))) (-15 -2526 ((-443) $ (-852))) (-15 -4166 ((-1173) $ (-852) (-1070))) (-15 -4166 ((-1173) $ (-852) (-805))) (-15 -3142 ((-1173) $ (-852) (-1070))) (-15 -3142 ((-1173) $ (-852) (-805))) (-15 -3582 ((-1173) $ (-852) (-1070))) (-15 -3999 ((-1173) $ (-852) (-1070))) (-15 -4134 ((-1173) $ (-852) (-1070))) (-15 -2389 ((-1173) $ (-1070))) (-15 -3952 ((-1173) $)) (-15 -4160 ((-1173) $ (-710) (-710) (-852) (-852))) (-15 -3495 ((-1173) $ (-852) (-355) (-355))) (-15 -3706 ((-1173) $ (-852) (-355) (-355))) (-15 -4164 ((-1173) $ (-852) (-1070))) (-15 -2990 ((-1173) $ (-710) (-710))) (-15 -1412 ((-1173) $ (-443) (-852))) (-15 -3185 ((-1173) $ (-852) (-852))) (-15 -2529 ((-1070) $ (-1070))) (-15 -2529 ((-1070) $ (-1070) (-1070))) (-15 -2529 ((-1070) $ (-1070) (-589 (-1070)))) (-15 -2506 ((-1173) $)) (-15 -1853 ((-523) $)) (-15 -1458 ((-794) $))))) (T -1169)) +((-1458 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-1169)))) (-1646 (*1 *2 *1) (-12 (-5 *2 (-589 (-874 (-203)))) (-5 *1 (-1169)))) (-3186 (*1 *1) (-5 *1 (-1169))) (-3034 (*1 *1 *1) (-5 *1 (-1169))) (-1866 (*1 *2 *1) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1169)))) (-1866 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1169)))) (-3034 (*1 *1 *2 *3) (-12 (-5 *2 (-443)) (-5 *3 (-589 (-240))) (-5 *1 (-1169)))) (-2614 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-852)) (-5 *4 (-203)) (-5 *5 (-523)) (-5 *6 (-805)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-1168 (-2 (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)) (|:| -3582 (-523)) (|:| -4134 (-523)) (|:| |spline| (-523)) (|:| -4166 (-523)) (|:| |axesColor| (-805)) (|:| -3142 (-523)) (|:| |unitsColor| (-805)) (|:| |showing| (-523))))) (-5 *1 (-1169)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-1168 (-3 (-443) "undefined"))) (-5 *1 (-1169)))) (-2331 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-3920 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-443)) (-5 *4 (-852)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-2526 (*1 *2 *1 *3) (-12 (-5 *3 (-852)) (-5 *2 (-443)) (-5 *1 (-1169)))) (-4166 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-4166 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-805)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-3142 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-3142 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-805)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-3582 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-3999 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-4134 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-2389 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1169)))) (-4160 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-710)) (-5 *4 (-852)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-3495 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-852)) (-5 *4 (-355)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-3706 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-852)) (-5 *4 (-355)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-4164 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-2990 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-1412 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-443)) (-5 *4 (-852)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-3185 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1173)) (-5 *1 (-1169)))) (-2529 (*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1169)))) (-2529 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1169)))) (-2529 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1070)) (-5 *1 (-1169)))) (-2506 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1169)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1169))))) +(-13 (-1016) (-10 -8 (-15 -1646 ((-589 (-874 (-203))) $)) (-15 -3186 ($)) (-15 -3034 ($ $)) (-15 -1866 ((-589 (-240)) $)) (-15 -1866 ($ $ (-589 (-240)))) (-15 -3034 ($ (-443) (-589 (-240)))) (-15 -2614 ((-1173) $ (-852) (-203) (-203) (-203) (-203) (-523) (-523) (-523) (-523) (-805) (-523) (-805) (-523))) (-15 -3151 ((-1168 (-2 (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)) (|:| -3582 (-523)) (|:| -4134 (-523)) (|:| |spline| (-523)) (|:| -4166 (-523)) (|:| |axesColor| (-805)) (|:| -3142 (-523)) (|:| |unitsColor| (-805)) (|:| |showing| (-523)))) $)) (-15 -2951 ((-1168 (-3 (-443) "undefined")) $)) (-15 -2331 ((-1173) $ (-1070))) (-15 -3920 ((-1173) $ (-443) (-852))) (-15 -2526 ((-443) $ (-852))) (-15 -4166 ((-1173) $ (-852) (-1070))) (-15 -4166 ((-1173) $ (-852) (-805))) (-15 -3142 ((-1173) $ (-852) (-1070))) (-15 -3142 ((-1173) $ (-852) (-805))) (-15 -3582 ((-1173) $ (-852) (-1070))) (-15 -3999 ((-1173) $ (-852) (-1070))) (-15 -4134 ((-1173) $ (-852) (-1070))) (-15 -2389 ((-1173) $ (-1070))) (-15 -3952 ((-1173) $)) (-15 -4160 ((-1173) $ (-710) (-710) (-852) (-852))) (-15 -3495 ((-1173) $ (-852) (-355) (-355))) (-15 -3706 ((-1173) $ (-852) (-355) (-355))) (-15 -4164 ((-1173) $ (-852) (-1070))) (-15 -2990 ((-1173) $ (-710) (-710))) (-15 -1412 ((-1173) $ (-443) (-852))) (-15 -3185 ((-1173) $ (-852) (-852))) (-15 -2529 ((-1070) $ (-1070))) (-15 -2529 ((-1070) $ (-1070) (-1070))) (-15 -2529 ((-1070) $ (-1070) (-589 (-1070)))) (-15 -2506 ((-1173) $)) (-15 -1853 ((-523) $)) (-15 -1458 ((-794) $)))) +((-3924 (((-108) $ $) NIL)) (-4197 (((-1173) $ (-355)) 138) (((-1173) $ (-355) (-355) (-355)) 139)) (-2529 (((-1070) $ (-1070)) 146) (((-1070) $ (-1070) (-1070)) 144) (((-1070) $ (-1070) (-589 (-1070))) 143)) (-2730 (($) 49)) (-3087 (((-1173) $ (-355) (-355) (-355) (-355) (-355)) 114) (((-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))) $) 112) (((-1173) $ (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) 113) (((-1173) $ (-523) (-523) (-355) (-355) (-355)) 115) (((-1173) $ (-355) (-355)) 116) (((-1173) $ (-355) (-355) (-355)) 123)) (-2985 (((-355)) 96) (((-355) (-355)) 97)) (-3524 (((-355)) 91) (((-355) (-355)) 93)) (-2123 (((-355)) 94) (((-355) (-355)) 95)) (-2912 (((-355)) 100) (((-355) (-355)) 101)) (-3673 (((-355)) 98) (((-355) (-355)) 99)) (-3706 (((-1173) $ (-355) (-355)) 140)) (-2331 (((-1173) $ (-1070)) 124)) (-3097 (((-1047 (-203)) $) 50) (($ $ (-1047 (-203))) 51)) (-3985 (((-1173) $ (-1070)) 152)) (-4000 (((-1173) $ (-1070)) 153)) (-4149 (((-1173) $ (-355) (-355)) 122) (((-1173) $ (-523) (-523)) 137)) (-3185 (((-1173) $ (-852) (-852)) 130)) (-2506 (((-1173) $) 110)) (-1921 (((-1173) $ (-1070)) 151)) (-1269 (((-1173) $ (-1070)) 107)) (-1866 (((-589 (-240)) $) 52) (($ $ (-589 (-240))) 53)) (-2990 (((-1173) $ (-710) (-710)) 129)) (-3247 (((-1173) $ (-710) (-874 (-203))) 158)) (-2237 (($ $) 56) (($ (-1047 (-203)) (-1070)) 57) (($ (-1047 (-203)) (-589 (-240))) 58)) (-3430 (((-1173) $ (-355) (-355) (-355)) 104)) (-3779 (((-1070) $) NIL)) (-1853 (((-523) $) 102)) (-3921 (((-1173) $ (-355)) 141)) (-3848 (((-1173) $ (-355)) 156)) (-2783 (((-1034) $) NIL)) (-1375 (((-1173) $ (-355)) 155)) (-3383 (((-1173) $ (-1070)) 109)) (-4160 (((-1173) $ (-710) (-710) (-852) (-852)) 128)) (-2538 (((-1173) $ (-1070)) 106)) (-2389 (((-1173) $ (-1070)) 108)) (-3789 (((-1173) $ (-144) (-144)) 127)) (-1458 (((-794) $) 135)) (-3952 (((-1173) $) 111)) (-3184 (((-1173) $ (-1070)) 154)) (-4166 (((-1173) $ (-1070)) 105)) (-3983 (((-108) $ $) NIL))) +(((-1170) (-13 (-1016) (-10 -8 (-15 -3524 ((-355))) (-15 -3524 ((-355) (-355))) (-15 -2123 ((-355))) (-15 -2123 ((-355) (-355))) (-15 -2985 ((-355))) (-15 -2985 ((-355) (-355))) (-15 -3673 ((-355))) (-15 -3673 ((-355) (-355))) (-15 -2912 ((-355))) (-15 -2912 ((-355) (-355))) (-15 -2730 ($)) (-15 -2237 ($ $)) (-15 -2237 ($ (-1047 (-203)) (-1070))) (-15 -2237 ($ (-1047 (-203)) (-589 (-240)))) (-15 -3097 ((-1047 (-203)) $)) (-15 -3097 ($ $ (-1047 (-203)))) (-15 -3247 ((-1173) $ (-710) (-874 (-203)))) (-15 -1866 ((-589 (-240)) $)) (-15 -1866 ($ $ (-589 (-240)))) (-15 -2990 ((-1173) $ (-710) (-710))) (-15 -3185 ((-1173) $ (-852) (-852))) (-15 -2331 ((-1173) $ (-1070))) (-15 -4160 ((-1173) $ (-710) (-710) (-852) (-852))) (-15 -3087 ((-1173) $ (-355) (-355) (-355) (-355) (-355))) (-15 -3087 ((-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))) $)) (-15 -3087 ((-1173) $ (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))))) (-15 -3087 ((-1173) $ (-523) (-523) (-355) (-355) (-355))) (-15 -3087 ((-1173) $ (-355) (-355))) (-15 -3087 ((-1173) $ (-355) (-355) (-355))) (-15 -2389 ((-1173) $ (-1070))) (-15 -4166 ((-1173) $ (-1070))) (-15 -2538 ((-1173) $ (-1070))) (-15 -1269 ((-1173) $ (-1070))) (-15 -3383 ((-1173) $ (-1070))) (-15 -4149 ((-1173) $ (-355) (-355))) (-15 -4149 ((-1173) $ (-523) (-523))) (-15 -4197 ((-1173) $ (-355))) (-15 -4197 ((-1173) $ (-355) (-355) (-355))) (-15 -3706 ((-1173) $ (-355) (-355))) (-15 -1921 ((-1173) $ (-1070))) (-15 -1375 ((-1173) $ (-355))) (-15 -3848 ((-1173) $ (-355))) (-15 -3985 ((-1173) $ (-1070))) (-15 -4000 ((-1173) $ (-1070))) (-15 -3184 ((-1173) $ (-1070))) (-15 -3430 ((-1173) $ (-355) (-355) (-355))) (-15 -3921 ((-1173) $ (-355))) (-15 -2506 ((-1173) $)) (-15 -3789 ((-1173) $ (-144) (-144))) (-15 -2529 ((-1070) $ (-1070))) (-15 -2529 ((-1070) $ (-1070) (-1070))) (-15 -2529 ((-1070) $ (-1070) (-589 (-1070)))) (-15 -3952 ((-1173) $)) (-15 -1853 ((-523) $))))) (T -1170)) +((-3524 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) (-3524 (*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) (-2123 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) (-2123 (*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) (-2985 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) (-2985 (*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) (-3673 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) (-3673 (*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) (-2912 (*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) (-2912 (*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) (-2730 (*1 *1) (-5 *1 (-1170))) (-2237 (*1 *1 *1) (-5 *1 (-1170))) (-2237 (*1 *1 *2 *3) (-12 (-5 *2 (-1047 (-203))) (-5 *3 (-1070)) (-5 *1 (-1170)))) (-2237 (*1 *1 *2 *3) (-12 (-5 *2 (-1047 (-203))) (-5 *3 (-589 (-240))) (-5 *1 (-1170)))) (-3097 (*1 *2 *1) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-1170)))) (-3097 (*1 *1 *1 *2) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-1170)))) (-3247 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-710)) (-5 *4 (-874 (-203))) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-1866 (*1 *2 *1) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1170)))) (-1866 (*1 *1 *1 *2) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1170)))) (-2990 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3185 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-2331 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-4160 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-710)) (-5 *4 (-852)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3087 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3087 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) (-5 *1 (-1170)))) (-3087 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3087 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-523)) (-5 *4 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3087 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3087 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-2389 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-4166 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-2538 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-1269 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3383 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-4149 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-4149 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-4197 (*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-4197 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3706 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-1921 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-1375 (*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3848 (*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3985 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-4000 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3184 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3430 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3921 (*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-2506 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1170)))) (-3789 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-144)) (-5 *2 (-1173)) (-5 *1 (-1170)))) (-2529 (*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1170)))) (-2529 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1170)))) (-2529 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1070)) (-5 *1 (-1170)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1170)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1170))))) +(-13 (-1016) (-10 -8 (-15 -3524 ((-355))) (-15 -3524 ((-355) (-355))) (-15 -2123 ((-355))) (-15 -2123 ((-355) (-355))) (-15 -2985 ((-355))) (-15 -2985 ((-355) (-355))) (-15 -3673 ((-355))) (-15 -3673 ((-355) (-355))) (-15 -2912 ((-355))) (-15 -2912 ((-355) (-355))) (-15 -2730 ($)) (-15 -2237 ($ $)) (-15 -2237 ($ (-1047 (-203)) (-1070))) (-15 -2237 ($ (-1047 (-203)) (-589 (-240)))) (-15 -3097 ((-1047 (-203)) $)) (-15 -3097 ($ $ (-1047 (-203)))) (-15 -3247 ((-1173) $ (-710) (-874 (-203)))) (-15 -1866 ((-589 (-240)) $)) (-15 -1866 ($ $ (-589 (-240)))) (-15 -2990 ((-1173) $ (-710) (-710))) (-15 -3185 ((-1173) $ (-852) (-852))) (-15 -2331 ((-1173) $ (-1070))) (-15 -4160 ((-1173) $ (-710) (-710) (-852) (-852))) (-15 -3087 ((-1173) $ (-355) (-355) (-355) (-355) (-355))) (-15 -3087 ((-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))) $)) (-15 -3087 ((-1173) $ (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) (|:| |deltaX| (-203)) (|:| |deltaY| (-203))))) (-15 -3087 ((-1173) $ (-523) (-523) (-355) (-355) (-355))) (-15 -3087 ((-1173) $ (-355) (-355))) (-15 -3087 ((-1173) $ (-355) (-355) (-355))) (-15 -2389 ((-1173) $ (-1070))) (-15 -4166 ((-1173) $ (-1070))) (-15 -2538 ((-1173) $ (-1070))) (-15 -1269 ((-1173) $ (-1070))) (-15 -3383 ((-1173) $ (-1070))) (-15 -4149 ((-1173) $ (-355) (-355))) (-15 -4149 ((-1173) $ (-523) (-523))) (-15 -4197 ((-1173) $ (-355))) (-15 -4197 ((-1173) $ (-355) (-355) (-355))) (-15 -3706 ((-1173) $ (-355) (-355))) (-15 -1921 ((-1173) $ (-1070))) (-15 -1375 ((-1173) $ (-355))) (-15 -3848 ((-1173) $ (-355))) (-15 -3985 ((-1173) $ (-1070))) (-15 -4000 ((-1173) $ (-1070))) (-15 -3184 ((-1173) $ (-1070))) (-15 -3430 ((-1173) $ (-355) (-355) (-355))) (-15 -3921 ((-1173) $ (-355))) (-15 -2506 ((-1173) $)) (-15 -3789 ((-1173) $ (-144) (-144))) (-15 -2529 ((-1070) $ (-1070))) (-15 -2529 ((-1070) $ (-1070) (-1070))) (-15 -2529 ((-1070) $ (-1070) (-589 (-1070)))) (-15 -3952 ((-1173) $)) (-15 -1853 ((-523) $)))) +((-2203 (((-589 (-1070)) (-589 (-1070))) 94) (((-589 (-1070))) 89)) (-3041 (((-589 (-1070))) 87)) (-1355 (((-589 (-852)) (-589 (-852))) 62) (((-589 (-852))) 59)) (-2101 (((-589 (-710)) (-589 (-710))) 56) (((-589 (-710))) 52)) (-3274 (((-1173)) 64)) (-2496 (((-852) (-852)) 80) (((-852)) 79)) (-4136 (((-852) (-852)) 78) (((-852)) 77)) (-3299 (((-805) (-805)) 74) (((-805)) 73)) (-3481 (((-203)) 84) (((-203) (-355)) 86)) (-1208 (((-852)) 81) (((-852) (-852)) 82)) (-3590 (((-852) (-852)) 76) (((-852)) 75)) (-3404 (((-805) (-805)) 68) (((-805)) 66)) (-2563 (((-805) (-805)) 70) (((-805)) 69)) (-2186 (((-805) (-805)) 72) (((-805)) 71))) +(((-1171) (-10 -7 (-15 -3404 ((-805))) (-15 -3404 ((-805) (-805))) (-15 -2563 ((-805))) (-15 -2563 ((-805) (-805))) (-15 -2186 ((-805))) (-15 -2186 ((-805) (-805))) (-15 -3299 ((-805))) (-15 -3299 ((-805) (-805))) (-15 -3590 ((-852))) (-15 -3590 ((-852) (-852))) (-15 -2101 ((-589 (-710)))) (-15 -2101 ((-589 (-710)) (-589 (-710)))) (-15 -1355 ((-589 (-852)))) (-15 -1355 ((-589 (-852)) (-589 (-852)))) (-15 -3274 ((-1173))) (-15 -2203 ((-589 (-1070)))) (-15 -2203 ((-589 (-1070)) (-589 (-1070)))) (-15 -3041 ((-589 (-1070)))) (-15 -4136 ((-852))) (-15 -2496 ((-852))) (-15 -4136 ((-852) (-852))) (-15 -2496 ((-852) (-852))) (-15 -1208 ((-852) (-852))) (-15 -1208 ((-852))) (-15 -3481 ((-203) (-355))) (-15 -3481 ((-203))))) (T -1171)) +((-3481 (*1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-1171)))) (-3481 (*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-203)) (-5 *1 (-1171)))) (-1208 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) (-1208 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) (-2496 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) (-4136 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) (-2496 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) (-4136 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) (-3041 (*1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1171)))) (-2203 (*1 *2 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1171)))) (-2203 (*1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1171)))) (-3274 (*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1171)))) (-1355 (*1 *2 *2) (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1171)))) (-1355 (*1 *2) (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1171)))) (-2101 (*1 *2 *2) (-12 (-5 *2 (-589 (-710))) (-5 *1 (-1171)))) (-2101 (*1 *2) (-12 (-5 *2 (-589 (-710))) (-5 *1 (-1171)))) (-3590 (*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) (-3590 (*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) (-3299 (*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) (-3299 (*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) (-2186 (*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) (-2186 (*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) (-2563 (*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) (-2563 (*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) (-3404 (*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) (-3404 (*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171))))) +(-10 -7 (-15 -3404 ((-805))) (-15 -3404 ((-805) (-805))) (-15 -2563 ((-805))) (-15 -2563 ((-805) (-805))) (-15 -2186 ((-805))) (-15 -2186 ((-805) (-805))) (-15 -3299 ((-805))) (-15 -3299 ((-805) (-805))) (-15 -3590 ((-852))) (-15 -3590 ((-852) (-852))) (-15 -2101 ((-589 (-710)))) (-15 -2101 ((-589 (-710)) (-589 (-710)))) (-15 -1355 ((-589 (-852)))) (-15 -1355 ((-589 (-852)) (-589 (-852)))) (-15 -3274 ((-1173))) (-15 -2203 ((-589 (-1070)))) (-15 -2203 ((-589 (-1070)) (-589 (-1070)))) (-15 -3041 ((-589 (-1070)))) (-15 -4136 ((-852))) (-15 -2496 ((-852))) (-15 -4136 ((-852) (-852))) (-15 -2496 ((-852) (-852))) (-15 -1208 ((-852) (-852))) (-15 -1208 ((-852))) (-15 -3481 ((-203) (-355))) (-15 -3481 ((-203)))) +((-2605 (((-443) (-589 (-589 (-874 (-203)))) (-589 (-240))) 17) (((-443) (-589 (-589 (-874 (-203))))) 16) (((-443) (-589 (-589 (-874 (-203)))) (-805) (-805) (-852) (-589 (-240))) 15)) (-1437 (((-1169) (-589 (-589 (-874 (-203)))) (-589 (-240))) 23) (((-1169) (-589 (-589 (-874 (-203)))) (-805) (-805) (-852) (-589 (-240))) 22)) (-1458 (((-1169) (-443)) 34))) +(((-1172) (-10 -7 (-15 -2605 ((-443) (-589 (-589 (-874 (-203)))) (-805) (-805) (-852) (-589 (-240)))) (-15 -2605 ((-443) (-589 (-589 (-874 (-203)))))) (-15 -2605 ((-443) (-589 (-589 (-874 (-203)))) (-589 (-240)))) (-15 -1437 ((-1169) (-589 (-589 (-874 (-203)))) (-805) (-805) (-852) (-589 (-240)))) (-15 -1437 ((-1169) (-589 (-589 (-874 (-203)))) (-589 (-240)))) (-15 -1458 ((-1169) (-443))))) (T -1172)) +((-1458 (*1 *2 *3) (-12 (-5 *3 (-443)) (-5 *2 (-1169)) (-5 *1 (-1172)))) (-1437 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-589 (-240))) (-5 *2 (-1169)) (-5 *1 (-1172)))) (-1437 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-805)) (-5 *5 (-852)) (-5 *6 (-589 (-240))) (-5 *2 (-1169)) (-5 *1 (-1172)))) (-2605 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-589 (-240))) (-5 *2 (-443)) (-5 *1 (-1172)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *2 (-443)) (-5 *1 (-1172)))) (-2605 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-805)) (-5 *5 (-852)) (-5 *6 (-589 (-240))) (-5 *2 (-443)) (-5 *1 (-1172))))) +(-10 -7 (-15 -2605 ((-443) (-589 (-589 (-874 (-203)))) (-805) (-805) (-852) (-589 (-240)))) (-15 -2605 ((-443) (-589 (-589 (-874 (-203)))))) (-15 -2605 ((-443) (-589 (-589 (-874 (-203)))) (-589 (-240)))) (-15 -1437 ((-1169) (-589 (-589 (-874 (-203)))) (-805) (-805) (-852) (-589 (-240)))) (-15 -1437 ((-1169) (-589 (-589 (-874 (-203)))) (-589 (-240)))) (-15 -1458 ((-1169) (-443)))) +((-3853 (($) 7)) (-1458 (((-794) $) 10))) +(((-1173) (-10 -8 (-15 -3853 ($)) (-15 -1458 ((-794) $)))) (T -1173)) +((-1458 (*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-1173)))) (-3853 (*1 *1) (-5 *1 (-1173)))) +(-10 -8 (-15 -3853 ($)) (-15 -1458 ((-794) $))) +((-4098 (($ $ |#2|) 10))) +(((-1174 |#1| |#2|) (-10 -8 (-15 -4098 (|#1| |#1| |#2|))) (-1175 |#2|) (-339)) (T -1174)) +NIL +(-10 -8 (-15 -4098 (|#1| |#1| |#2|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-3203 (((-126)) 28)) (-1458 (((-794) $) 11)) (-2756 (($) 18 T CONST)) (-3983 (((-108) $ $) 6)) (-4098 (($ $ |#1|) 29)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-1175 |#1|) (-129) (-339)) (T -1175)) +((-4098 (*1 *1 *1 *2) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-339)))) (-3203 (*1 *2) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-339)) (-5 *2 (-126))))) +(-13 (-657 |t#1|) (-10 -8 (-15 -4098 ($ $ |t#1|)) (-15 -3203 ((-126))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-657 |#1|) . T) ((-979 |#1|) . T) ((-1016) . T)) +((-2535 (((-589 (-1117 |#1|)) (-1087) (-1117 |#1|)) 78)) (-2148 (((-1068 (-1068 (-883 |#1|))) (-1087) (-1068 (-883 |#1|))) 57)) (-1812 (((-1 (-1068 (-1117 |#1|)) (-1068 (-1117 |#1|))) (-710) (-1117 |#1|) (-1068 (-1117 |#1|))) 68)) (-1581 (((-1 (-1068 (-883 |#1|)) (-1068 (-883 |#1|))) (-710)) 59)) (-3513 (((-1 (-1083 (-883 |#1|)) (-883 |#1|)) (-1087)) 27)) (-2824 (((-1 (-1068 (-883 |#1|)) (-1068 (-883 |#1|))) (-710)) 58))) +(((-1176 |#1|) (-10 -7 (-15 -1581 ((-1 (-1068 (-883 |#1|)) (-1068 (-883 |#1|))) (-710))) (-15 -2824 ((-1 (-1068 (-883 |#1|)) (-1068 (-883 |#1|))) (-710))) (-15 -2148 ((-1068 (-1068 (-883 |#1|))) (-1087) (-1068 (-883 |#1|)))) (-15 -3513 ((-1 (-1083 (-883 |#1|)) (-883 |#1|)) (-1087))) (-15 -2535 ((-589 (-1117 |#1|)) (-1087) (-1117 |#1|))) (-15 -1812 ((-1 (-1068 (-1117 |#1|)) (-1068 (-1117 |#1|))) (-710) (-1117 |#1|) (-1068 (-1117 |#1|))))) (-339)) (T -1176)) +((-1812 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-710)) (-4 *6 (-339)) (-5 *4 (-1117 *6)) (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1176 *6)) (-5 *5 (-1068 *4)))) (-2535 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-4 *5 (-339)) (-5 *2 (-589 (-1117 *5))) (-5 *1 (-1176 *5)) (-5 *4 (-1117 *5)))) (-3513 (*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1 (-1083 (-883 *4)) (-883 *4))) (-5 *1 (-1176 *4)) (-4 *4 (-339)))) (-2148 (*1 *2 *3 *4) (-12 (-5 *3 (-1087)) (-4 *5 (-339)) (-5 *2 (-1068 (-1068 (-883 *5)))) (-5 *1 (-1176 *5)) (-5 *4 (-1068 (-883 *5))))) (-2824 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-1068 (-883 *4)) (-1068 (-883 *4)))) (-5 *1 (-1176 *4)) (-4 *4 (-339)))) (-1581 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-1068 (-883 *4)) (-1068 (-883 *4)))) (-5 *1 (-1176 *4)) (-4 *4 (-339))))) +(-10 -7 (-15 -1581 ((-1 (-1068 (-883 |#1|)) (-1068 (-883 |#1|))) (-710))) (-15 -2824 ((-1 (-1068 (-883 |#1|)) (-1068 (-883 |#1|))) (-710))) (-15 -2148 ((-1068 (-1068 (-883 |#1|))) (-1087) (-1068 (-883 |#1|)))) (-15 -3513 ((-1 (-1083 (-883 |#1|)) (-883 |#1|)) (-1087))) (-15 -2535 ((-589 (-1117 |#1|)) (-1087) (-1117 |#1|))) (-15 -1812 ((-1 (-1068 (-1117 |#1|)) (-1068 (-1117 |#1|))) (-710) (-1117 |#1|) (-1068 (-1117 |#1|))))) +((-4029 (((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|) 74)) (-4158 (((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) 73))) +(((-1177 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4158 ((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))))) (-15 -4029 ((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|))) (-325) (-1144 |#1|) (-1144 |#2|) (-385 |#2| |#3|)) (T -1177)) +((-4029 (*1 *2 *3) (-12 (-4 *4 (-325)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 *3)) (-5 *2 (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-5 *1 (-1177 *4 *3 *5 *6)) (-4 *6 (-385 *3 *5)))) (-4158 (*1 *2) (-12 (-4 *3 (-325)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 *4)) (-5 *2 (-2 (|:| -4041 (-629 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-629 *4)))) (-5 *1 (-1177 *3 *4 *5 *6)) (-4 *6 (-385 *4 *5))))) +(-10 -7 (-15 -4158 ((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))))) (-15 -4029 ((-2 (|:| -4041 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 42)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1458 (((-794) $) 63) (($ (-523)) NIL) ((|#4| $) 53) (($ |#4|) 48) (($ |#1|) NIL (|has| |#1| (-158)))) (-1621 (((-710)) NIL)) (-2924 (((-1173) (-710)) 16)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 27 T CONST)) (-2767 (($) 66 T CONST)) (-3983 (((-108) $ $) 68)) (-4098 (((-3 $ "failed") $ $) NIL (|has| |#1| (-339)))) (-4087 (($ $) 70) (($ $ $) NIL)) (-4075 (($ $ $) 46)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-158))) (($ $ |#1|) NIL (|has| |#1| (-158))))) +(((-1178 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-973) (-10 -8 (IF (|has| |#1| (-158)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1458 (|#4| $)) (IF (|has| |#1| (-339)) (-15 -4098 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1458 ($ |#4|)) (-15 -2924 ((-1173) (-710))))) (-973) (-786) (-732) (-880 |#1| |#3| |#2|) (-589 |#2|) (-589 (-710)) (-710)) (T -1178)) +((-1458 (*1 *2 *1) (-12 (-4 *2 (-880 *3 *5 *4)) (-5 *1 (-1178 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-732)) (-14 *6 (-589 *4)) (-14 *7 (-589 (-710))) (-14 *8 (-710)))) (-4098 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-339)) (-4 *2 (-973)) (-4 *3 (-786)) (-4 *4 (-732)) (-14 *6 (-589 *3)) (-5 *1 (-1178 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-880 *2 *4 *3)) (-14 *7 (-589 (-710))) (-14 *8 (-710)))) (-1458 (*1 *1 *2) (-12 (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-732)) (-14 *6 (-589 *4)) (-5 *1 (-1178 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-880 *3 *5 *4)) (-14 *7 (-589 (-710))) (-14 *8 (-710)))) (-2924 (*1 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-973)) (-4 *5 (-786)) (-4 *6 (-732)) (-14 *8 (-589 *5)) (-5 *2 (-1173)) (-5 *1 (-1178 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-880 *4 *6 *5)) (-14 *9 (-589 *3)) (-14 *10 *3)))) +(-13 (-973) (-10 -8 (IF (|has| |#1| (-158)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1458 (|#4| $)) (IF (|has| |#1| (-339)) (-15 -4098 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1458 ($ |#4|)) (-15 -2924 ((-1173) (-710))))) +((-3924 (((-108) $ $) NIL)) (-1633 (((-589 (-2 (|:| -3952 $) (|:| -2625 (-589 |#4|)))) (-589 |#4|)) NIL)) (-3846 (((-589 $) (-589 |#4|)) 88)) (-1957 (((-589 |#3|) $) NIL)) (-2100 (((-108) $) NIL)) (-2376 (((-108) $) NIL (|has| |#1| (-515)))) (-2694 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2308 ((|#4| |#4| $) NIL)) (-3974 (((-2 (|:| |under| $) (|:| -3722 $) (|:| |upper| $)) $ |#3|) NIL)) (-3079 (((-108) $ (-710)) NIL)) (-3724 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2518 (($) NIL T CONST)) (-3595 (((-108) $) NIL (|has| |#1| (-515)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3225 (((-108) $ $) NIL (|has| |#1| (-515)))) (-3393 (((-108) $) NIL (|has| |#1| (-515)))) (-3375 (((-589 |#4|) (-589 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 28)) (-3956 (((-589 |#4|) (-589 |#4|) $) 25 (|has| |#1| (-515)))) (-2771 (((-589 |#4|) (-589 |#4|) $) NIL (|has| |#1| (-515)))) (-3517 (((-3 $ "failed") (-589 |#4|)) NIL)) (-3474 (($ (-589 |#4|)) NIL)) (-1751 (((-3 $ "failed") $) 70)) (-4014 ((|#4| |#4| $) 75)) (-1773 (($ $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-2557 (($ |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-3282 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-2663 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2636 ((|#4| |#4| $) NIL)) (-2437 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4244))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4244))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3737 (((-2 (|:| -3952 (-589 |#4|)) (|:| -2625 (-589 |#4|))) $) NIL)) (-1666 (((-589 |#4|) $) NIL (|has| $ (-6 -4244)))) (-4172 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2907 ((|#3| $) 76)) (-2346 (((-108) $ (-710)) NIL)) (-2136 (((-589 |#4|) $) 29 (|has| $ (-6 -4244)))) (-1973 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016))))) (-2235 (((-3 $ "failed") (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-589 |#4|)) 35)) (-2852 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4245)))) (-3612 (($ (-1 |#4| |#4|) $) NIL)) (-4055 (((-589 |#3|) $) NIL)) (-1357 (((-108) |#3| $) NIL)) (-2866 (((-108) $ (-710)) NIL)) (-3779 (((-1070) $) NIL)) (-2579 (((-3 |#4| "failed") $) NIL)) (-2404 (((-589 |#4|) $) 50)) (-2112 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2648 ((|#4| |#4| $) 74)) (-2391 (((-108) $ $) 85)) (-1644 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-515)))) (-2001 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1398 ((|#4| |#4| $) NIL)) (-2783 (((-1034) $) NIL)) (-1738 (((-3 |#4| "failed") $) 69)) (-2114 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2890 (((-3 $ "failed") $ |#4|) NIL)) (-4097 (($ $ |#4|) NIL)) (-1327 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-2679 (($ $ (-589 |#4|) (-589 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-271 |#4|)) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016)))) (($ $ (-589 (-271 |#4|))) NIL (-12 (|has| |#4| (-286 |#4|)) (|has| |#4| (-1016))))) (-3811 (((-108) $ $) NIL)) (-3883 (((-108) $) 67)) (-3988 (($) 42)) (-2299 (((-710) $) NIL)) (-2792 (((-710) |#4| $) NIL (-12 (|has| $ (-6 -4244)) (|has| |#4| (-1016)))) (((-710) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-1664 (($ $) NIL)) (-3663 (((-499) $) NIL (|has| |#4| (-564 (-499))))) (-1472 (($ (-589 |#4|)) NIL)) (-2621 (($ $ |#3|) NIL)) (-2624 (($ $ |#3|) NIL)) (-1824 (($ $) NIL)) (-3076 (($ $ |#3|) NIL)) (-1458 (((-794) $) NIL) (((-589 |#4|) $) 57)) (-1395 (((-710) $) NIL (|has| |#3| (-344)))) (-2093 (((-3 $ "failed") (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-589 |#4|)) 41)) (-2939 (((-589 $) (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-589 $) (-589 |#4|)) 66)) (-3869 (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3125 (-589 |#4|))) "failed") (-589 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4031 (((-108) $ (-1 (-108) |#4| (-589 |#4|))) NIL)) (-2096 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4244)))) (-3862 (((-589 |#3|) $) NIL)) (-2153 (((-108) |#3| $) NIL)) (-3983 (((-108) $ $) NIL)) (-2676 (((-710) $) NIL (|has| $ (-6 -4244))))) +(((-1179 |#1| |#2| |#3| |#4|) (-13 (-1116 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2235 ((-3 $ "failed") (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2235 ((-3 $ "failed") (-589 |#4|))) (-15 -2093 ((-3 $ "failed") (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2093 ((-3 $ "failed") (-589 |#4|))) (-15 -2939 ((-589 $) (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2939 ((-589 $) (-589 |#4|))))) (-515) (-732) (-786) (-987 |#1| |#2| |#3|)) (T -1179)) +((-2235 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-589 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1179 *5 *6 *7 *8)))) (-2235 (*1 *1 *2) (|partial| -12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-1179 *3 *4 *5 *6)))) (-2093 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-589 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1179 *5 *6 *7 *8)))) (-2093 (*1 *1 *2) (|partial| -12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-1179 *3 *4 *5 *6)))) (-2939 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-589 *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-987 *6 *7 *8)) (-4 *6 (-515)) (-4 *7 (-732)) (-4 *8 (-786)) (-5 *2 (-589 (-1179 *6 *7 *8 *9))) (-5 *1 (-1179 *6 *7 *8 *9)))) (-2939 (*1 *2 *3) (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 (-1179 *4 *5 *6 *7))) (-5 *1 (-1179 *4 *5 *6 *7))))) +(-13 (-1116 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2235 ((-3 $ "failed") (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2235 ((-3 $ "failed") (-589 |#4|))) (-15 -2093 ((-3 $ "failed") (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2093 ((-3 $ "failed") (-589 |#4|))) (-15 -2939 ((-589 $) (-589 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2939 ((-589 $) (-589 |#4|))))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-3212 (((-3 $ "failed") $ $) 19)) (-2518 (($) 17 T CONST)) (-2121 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 31)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#1|) 38)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-1180 |#1|) (-129) (-973)) (T -1180)) +((-1458 (*1 *1 *2) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-973))))) +(-13 (-973) (-107 |t#1| |t#1|) (-10 -8 (-15 -1458 ($ |t#1|)) (IF (|has| |t#1| (-158)) (-6 (-37 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-158)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-657 |#1|) |has| |#1| (-158)) ((-666) . T) ((-979 |#1|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2061 (((-589 |#1|) $) 45)) (-3296 (($ $ (-710)) 39)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2435 (($ $ (-710)) 17 (|has| |#2| (-158))) (($ $ $) 18 (|has| |#2| (-158)))) (-2518 (($) NIL T CONST)) (-4111 (($ $ $) 62) (($ $ (-758 |#1|)) 49) (($ $ |#1|) 53)) (-3517 (((-3 (-758 |#1|) "failed") $) NIL)) (-3474 (((-758 |#1|) $) NIL)) (-3810 (($ $) 32)) (-2121 (((-3 $ "failed") $) NIL)) (-4061 (((-108) $) NIL)) (-2468 (($ $) NIL)) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-2302 (($ (-758 |#1|) |#2|) 31)) (-1419 (($ $) 33)) (-3385 (((-2 (|:| |k| (-758 |#1|)) (|:| |c| |#2|)) $) 11)) (-2286 (((-758 |#1|) $) NIL)) (-2910 (((-758 |#1|) $) 34)) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-2701 (($ $ $) 61) (($ $ (-758 |#1|)) 51) (($ $ |#1|) 55)) (-4184 (((-2 (|:| |k| (-758 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3774 (((-758 |#1|) $) 28)) (-3786 ((|#2| $) 30)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-2299 (((-710) $) 36)) (-1869 (((-108) $) 40)) (-3059 ((|#2| $) NIL)) (-1458 (((-794) $) NIL) (($ (-758 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-523)) NIL)) (-1251 (((-589 |#2|) $) NIL)) (-2365 ((|#2| $ (-758 |#1|)) NIL)) (-2935 ((|#2| $ $) 64) ((|#2| $ (-758 |#1|)) NIL)) (-1621 (((-710)) NIL)) (-2364 (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (-2756 (($) 12 T CONST)) (-2767 (($) 14 T CONST)) (-1643 (((-589 (-2 (|:| |k| (-758 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3983 (((-108) $ $) 38)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 21)) (** (($ $ (-710)) NIL) (($ $ (-852)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 60) (($ |#2| (-758 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) +(((-1181 |#1| |#2|) (-13 (-358 |#2| (-758 |#1|)) (-1187 |#1| |#2|)) (-786) (-973)) (T -1181)) +NIL +(-13 (-358 |#2| (-758 |#1|)) (-1187 |#1| |#2|)) +((-2384 ((|#3| |#3| (-710)) 23)) (-1811 ((|#3| |#3| (-710)) 28)) (-1680 ((|#3| |#3| |#3| (-710)) 29))) +(((-1182 |#1| |#2| |#3|) (-10 -7 (-15 -1811 (|#3| |#3| (-710))) (-15 -2384 (|#3| |#3| (-710))) (-15 -1680 (|#3| |#3| |#3| (-710)))) (-13 (-973) (-657 (-383 (-523)))) (-786) (-1187 |#2| |#1|)) (T -1182)) +((-1680 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-13 (-973) (-657 (-383 (-523))))) (-4 *5 (-786)) (-5 *1 (-1182 *4 *5 *2)) (-4 *2 (-1187 *5 *4)))) (-2384 (*1 *2 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-13 (-973) (-657 (-383 (-523))))) (-4 *5 (-786)) (-5 *1 (-1182 *4 *5 *2)) (-4 *2 (-1187 *5 *4)))) (-1811 (*1 *2 *2 *3) (-12 (-5 *3 (-710)) (-4 *4 (-13 (-973) (-657 (-383 (-523))))) (-4 *5 (-786)) (-5 *1 (-1182 *4 *5 *2)) (-4 *2 (-1187 *5 *4))))) +(-10 -7 (-15 -1811 (|#3| |#3| (-710))) (-15 -2384 (|#3| |#3| (-710))) (-15 -1680 (|#3| |#3| |#3| (-710)))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-2061 (((-589 |#1|) $) 40)) (-3212 (((-3 $ "failed") $ $) 19)) (-2435 (($ $ $) 43 (|has| |#2| (-158))) (($ $ (-710)) 42 (|has| |#2| (-158)))) (-2518 (($) 17 T CONST)) (-4111 (($ $ |#1|) 54) (($ $ (-758 |#1|)) 53) (($ $ $) 52)) (-3517 (((-3 (-758 |#1|) "failed") $) 64)) (-3474 (((-758 |#1|) $) 63)) (-2121 (((-3 $ "failed") $) 34)) (-4061 (((-108) $) 45)) (-2468 (($ $) 44)) (-2023 (((-108) $) 31)) (-2620 (((-108) $) 50)) (-2302 (($ (-758 |#1|) |#2|) 51)) (-1419 (($ $) 49)) (-3385 (((-2 (|:| |k| (-758 |#1|)) (|:| |c| |#2|)) $) 60)) (-2286 (((-758 |#1|) $) 61)) (-3612 (($ (-1 |#2| |#2|) $) 41)) (-2701 (($ $ |#1|) 57) (($ $ (-758 |#1|)) 56) (($ $ $) 55)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-1869 (((-108) $) 47)) (-3059 ((|#2| $) 46)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#2|) 68) (($ (-758 |#1|)) 65) (($ |#1|) 48)) (-2935 ((|#2| $ (-758 |#1|)) 59) ((|#2| $ $) 58)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62))) +(((-1183 |#1| |#2|) (-129) (-786) (-973)) (T -1183)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-786)) (-4 *2 (-973)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-2286 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-758 *3)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-2 (|:| |k| (-758 *3)) (|:| |c| *4))))) (-2935 (*1 *2 *1 *3) (-12 (-5 *3 (-758 *4)) (-4 *1 (-1183 *4 *2)) (-4 *4 (-786)) (-4 *2 (-973)))) (-2935 (*1 *2 *1 *1) (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-786)) (-4 *2 (-973)))) (-2701 (*1 *1 *1 *2) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-2701 (*1 *1 *1 *2) (-12 (-5 *2 (-758 *3)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)))) (-2701 (*1 *1 *1 *1) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-4111 (*1 *1 *1 *2) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-4111 (*1 *1 *1 *2) (-12 (-5 *2 (-758 *3)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)))) (-4111 (*1 *1 *1 *1) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-2302 (*1 *1 *2 *3) (-12 (-5 *2 (-758 *4)) (-4 *4 (-786)) (-4 *1 (-1183 *4 *3)) (-4 *3 (-973)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-108)))) (-1419 (*1 *1 *1) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-1458 (*1 *1 *2) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-1869 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-108)))) (-3059 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-786)) (-4 *2 (-973)))) (-4061 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-108)))) (-2468 (*1 *1 *1) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) (-2435 (*1 *1 *1 *1) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)) (-4 *3 (-158)))) (-2435 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-4 *4 (-158)))) (-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)))) (-2061 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-589 *3))))) +(-13 (-973) (-1180 |t#2|) (-964 (-758 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2286 ((-758 |t#1|) $)) (-15 -3385 ((-2 (|:| |k| (-758 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2935 (|t#2| $ (-758 |t#1|))) (-15 -2935 (|t#2| $ $)) (-15 -2701 ($ $ |t#1|)) (-15 -2701 ($ $ (-758 |t#1|))) (-15 -2701 ($ $ $)) (-15 -4111 ($ $ |t#1|)) (-15 -4111 ($ $ (-758 |t#1|))) (-15 -4111 ($ $ $)) (-15 -2302 ($ (-758 |t#1|) |t#2|)) (-15 -2620 ((-108) $)) (-15 -1419 ($ $)) (-15 -1458 ($ |t#1|)) (-15 -1869 ((-108) $)) (-15 -3059 (|t#2| $)) (-15 -4061 ((-108) $)) (-15 -2468 ($ $)) (IF (|has| |t#2| (-158)) (PROGN (-15 -2435 ($ $ $)) (-15 -2435 ($ $ (-710)))) |%noBranch|) (-15 -3612 ($ (-1 |t#2| |t#2|) $)) (-15 -2061 ((-589 |t#1|) $)) (IF (|has| |t#2| (-6 -4237)) (-6 -4237) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-158)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#2|) . T) ((-591 $) . T) ((-657 |#2|) |has| |#2| (-158)) ((-666) . T) ((-964 (-758 |#1|)) . T) ((-979 |#2|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1180 |#2|) . T)) +((-2318 (((-108) $) 14)) (-2153 (((-108) $) 13)) (-3454 (($ $) 18) (($ $ (-710)) 19))) +(((-1184 |#1| |#2|) (-10 -8 (-15 -3454 (|#1| |#1| (-710))) (-15 -3454 (|#1| |#1|)) (-15 -2318 ((-108) |#1|)) (-15 -2153 ((-108) |#1|))) (-1185 |#2|) (-339)) (T -1184)) +NIL +(-10 -8 (-15 -3454 (|#1| |#1| (-710))) (-15 -3454 (|#1| |#1|)) (-15 -2318 ((-108) |#1|)) (-15 -2153 ((-108) |#1|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-1669 (((-2 (|:| -3819 $) (|:| -4231 $) (|:| |associate| $)) $) 41)) (-3345 (($ $) 40)) (-3331 (((-108) $) 38)) (-2318 (((-108) $) 94)) (-2654 (((-710)) 90)) (-3212 (((-3 $ "failed") $ $) 19)) (-2291 (($ $) 73)) (-3614 (((-394 $) $) 72)) (-1387 (((-108) $ $) 59)) (-2518 (($) 17 T CONST)) (-3517 (((-3 |#1| "failed") $) 101)) (-3474 ((|#1| $) 100)) (-3796 (($ $ $) 55)) (-2121 (((-3 $ "failed") $) 34)) (-3769 (($ $ $) 56)) (-1590 (((-2 (|:| -2935 (-589 $)) (|:| -3441 $)) (-589 $)) 51)) (-1991 (($ $ (-710)) 87 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344)))) (($ $) 86 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2657 (((-108) $) 71)) (-1640 (((-772 (-852)) $) 84 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-2023 (((-108) $) 31)) (-2270 (((-3 (-589 $) "failed") (-589 $) $) 52)) (-3244 (($ $ $) 46) (($ (-589 $)) 45)) (-3779 (((-1070) $) 9)) (-3738 (($ $) 70)) (-1290 (((-108) $) 93)) (-2783 (((-1034) $) 10)) (-2667 (((-1083 $) (-1083 $) (-1083 $)) 44)) (-3278 (($ $ $) 48) (($ (-589 $)) 47)) (-1820 (((-394 $) $) 74)) (-4124 (((-772 (-852))) 91)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3746 (((-3 $ "failed") $ $) 42)) (-3312 (((-3 (-589 $) "failed") (-589 $) $) 50)) (-1972 (((-710) $) 58)) (-3462 (((-2 (|:| -3445 $) (|:| -3282 $)) $ $) 57)) (-2974 (((-3 (-710) "failed") $ $) 85 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-3203 (((-126)) 99)) (-2299 (((-772 (-852)) $) 92)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ $) 43) (($ (-383 (-523))) 65) (($ |#1|) 102)) (-3901 (((-3 $ "failed") $) 83 (-3262 (|has| |#1| (-134)) (|has| |#1| (-344))))) (-1621 (((-710)) 29)) (-1704 (((-108) $ $) 39)) (-2153 (((-108) $) 95)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33) (($ $ (-523)) 69)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3454 (($ $) 89 (|has| |#1| (-344))) (($ $ (-710)) 88 (|has| |#1| (-344)))) (-3983 (((-108) $ $) 6)) (-4098 (($ $ $) 64) (($ $ |#1|) 98)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32) (($ $ (-523)) 68)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ $ (-383 (-523))) 67) (($ (-383 (-523)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96))) +(((-1185 |#1|) (-129) (-339)) (T -1185)) +((-2153 (*1 *2 *1) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-108)))) (-2318 (*1 *2 *1) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-108)))) (-1290 (*1 *2 *1) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-108)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-772 (-852))))) (-4124 (*1 *2) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-772 (-852))))) (-2654 (*1 *2) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-710)))) (-3454 (*1 *1 *1) (-12 (-4 *1 (-1185 *2)) (-4 *2 (-339)) (-4 *2 (-344)))) (-3454 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-4 *3 (-344))))) +(-13 (-339) (-964 |t#1|) (-1175 |t#1|) (-10 -8 (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-378)) |%noBranch|) (-15 -2153 ((-108) $)) (-15 -2318 ((-108) $)) (-15 -1290 ((-108) $)) (-15 -2299 ((-772 (-852)) $)) (-15 -4124 ((-772 (-852)))) (-15 -2654 ((-710))) (IF (|has| |t#1| (-344)) (PROGN (-6 (-378)) (-15 -3454 ($ $)) (-15 -3454 ($ $ (-710)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-383 (-523))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-134) -3262 (|has| |#1| (-344)) (|has| |#1| (-134))) ((-136) |has| |#1| (-136)) ((-563 (-794)) . T) ((-158) . T) ((-221) . T) ((-267) . T) ((-284) . T) ((-339) . T) ((-378) -3262 (|has| |#1| (-344)) (|has| |#1| (-134))) ((-427) . T) ((-515) . T) ((-591 #0#) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-657 #0#) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-666) . T) ((-851) . T) ((-964 |#1|) . T) ((-979 #0#) . T) ((-979 |#1|) . T) ((-979 $) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1126) . T) ((-1175 |#1|) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2061 (((-589 |#1|) $) 85)) (-3296 (($ $ (-710)) 88)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2435 (($ $ $) NIL (|has| |#2| (-158))) (($ $ (-710)) NIL (|has| |#2| (-158)))) (-2518 (($) NIL T CONST)) (-4111 (($ $ |#1|) NIL) (($ $ (-758 |#1|)) NIL) (($ $ $) NIL)) (-3517 (((-3 (-758 |#1|) "failed") $) NIL) (((-3 (-824 |#1|) "failed") $) NIL)) (-3474 (((-758 |#1|) $) NIL) (((-824 |#1|) $) NIL)) (-3810 (($ $) 87)) (-2121 (((-3 $ "failed") $) NIL)) (-4061 (((-108) $) 76)) (-2468 (($ $) 80)) (-1656 (($ $ $ (-710)) 89)) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-2302 (($ (-758 |#1|) |#2|) NIL) (($ (-824 |#1|) |#2|) 26)) (-1419 (($ $) 102)) (-3385 (((-2 (|:| |k| (-758 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2286 (((-758 |#1|) $) NIL)) (-2910 (((-758 |#1|) $) NIL)) (-3612 (($ (-1 |#2| |#2|) $) NIL)) (-2701 (($ $ |#1|) NIL) (($ $ (-758 |#1|)) NIL) (($ $ $) NIL)) (-2384 (($ $ (-710)) 96 (|has| |#2| (-657 (-383 (-523)))))) (-4184 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3774 (((-824 |#1|) $) 70)) (-3786 ((|#2| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1811 (($ $ (-710)) 93 (|has| |#2| (-657 (-383 (-523)))))) (-2299 (((-710) $) 86)) (-1869 (((-108) $) 71)) (-3059 ((|#2| $) 75)) (-1458 (((-794) $) 57) (($ (-523)) NIL) (($ |#2|) 51) (($ (-758 |#1|)) NIL) (($ |#1|) 59) (($ (-824 |#1|)) NIL) (($ (-607 |#1| |#2|)) 43) (((-1181 |#1| |#2|) $) 64) (((-1190 |#1| |#2|) $) 69)) (-1251 (((-589 |#2|) $) NIL)) (-2365 ((|#2| $ (-824 |#1|)) NIL)) (-2935 ((|#2| $ (-758 |#1|)) NIL) ((|#2| $ $) NIL)) (-1621 (((-710)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 21 T CONST)) (-2767 (($) 25 T CONST)) (-1643 (((-589 (-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3442 (((-3 (-607 |#1| |#2|) "failed") $) 101)) (-3983 (((-108) $ $) 65)) (-4087 (($ $) 95) (($ $ $) 94)) (-4075 (($ $ $) 20)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-824 |#1|)) NIL))) +(((-1186 |#1| |#2|) (-13 (-1187 |#1| |#2|) (-358 |#2| (-824 |#1|)) (-10 -8 (-15 -1458 ($ (-607 |#1| |#2|))) (-15 -1458 ((-1181 |#1| |#2|) $)) (-15 -1458 ((-1190 |#1| |#2|) $)) (-15 -3442 ((-3 (-607 |#1| |#2|) "failed") $)) (-15 -1656 ($ $ $ (-710))) (IF (|has| |#2| (-657 (-383 (-523)))) (PROGN (-15 -1811 ($ $ (-710))) (-15 -2384 ($ $ (-710)))) |%noBranch|))) (-786) (-158)) (T -1186)) +((-1458 (*1 *1 *2) (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) (-5 *1 (-1186 *3 *4)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1181 *3 *4)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1190 *3 *4)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) (-3442 (*1 *2 *1) (|partial| -12 (-5 *2 (-607 *3 *4)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) (-1656 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)))) (-1811 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-1186 *3 *4)) (-4 *4 (-657 (-383 (-523)))) (-4 *3 (-786)) (-4 *4 (-158)))) (-2384 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-1186 *3 *4)) (-4 *4 (-657 (-383 (-523)))) (-4 *3 (-786)) (-4 *4 (-158))))) +(-13 (-1187 |#1| |#2|) (-358 |#2| (-824 |#1|)) (-10 -8 (-15 -1458 ($ (-607 |#1| |#2|))) (-15 -1458 ((-1181 |#1| |#2|) $)) (-15 -1458 ((-1190 |#1| |#2|) $)) (-15 -3442 ((-3 (-607 |#1| |#2|) "failed") $)) (-15 -1656 ($ $ $ (-710))) (IF (|has| |#2| (-657 (-383 (-523)))) (PROGN (-15 -1811 ($ $ (-710))) (-15 -2384 ($ $ (-710)))) |%noBranch|))) +((-3924 (((-108) $ $) 7)) (-2295 (((-108) $) 16)) (-2061 (((-589 |#1|) $) 40)) (-3296 (($ $ (-710)) 73)) (-3212 (((-3 $ "failed") $ $) 19)) (-2435 (($ $ $) 43 (|has| |#2| (-158))) (($ $ (-710)) 42 (|has| |#2| (-158)))) (-2518 (($) 17 T CONST)) (-4111 (($ $ |#1|) 54) (($ $ (-758 |#1|)) 53) (($ $ $) 52)) (-3517 (((-3 (-758 |#1|) "failed") $) 64)) (-3474 (((-758 |#1|) $) 63)) (-2121 (((-3 $ "failed") $) 34)) (-4061 (((-108) $) 45)) (-2468 (($ $) 44)) (-2023 (((-108) $) 31)) (-2620 (((-108) $) 50)) (-2302 (($ (-758 |#1|) |#2|) 51)) (-1419 (($ $) 49)) (-3385 (((-2 (|:| |k| (-758 |#1|)) (|:| |c| |#2|)) $) 60)) (-2286 (((-758 |#1|) $) 61)) (-2910 (((-758 |#1|) $) 75)) (-3612 (($ (-1 |#2| |#2|) $) 41)) (-2701 (($ $ |#1|) 57) (($ $ (-758 |#1|)) 56) (($ $ $) 55)) (-3779 (((-1070) $) 9)) (-2783 (((-1034) $) 10)) (-2299 (((-710) $) 74)) (-1869 (((-108) $) 47)) (-3059 ((|#2| $) 46)) (-1458 (((-794) $) 11) (($ (-523)) 28) (($ |#2|) 68) (($ (-758 |#1|)) 65) (($ |#1|) 48)) (-2935 ((|#2| $ (-758 |#1|)) 59) ((|#2| $ $) 58)) (-1621 (((-710)) 29)) (-2364 (($ $ (-852)) 26) (($ $ (-710)) 33)) (-2756 (($) 18 T CONST)) (-2767 (($) 30 T CONST)) (-3983 (((-108) $ $) 6)) (-4087 (($ $) 22) (($ $ $) 21)) (-4075 (($ $ $) 14)) (** (($ $ (-852)) 25) (($ $ (-710)) 32)) (* (($ (-852) $) 13) (($ (-710) $) 15) (($ (-523) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62))) +(((-1187 |#1| |#2|) (-129) (-786) (-973)) (T -1187)) +((-2910 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-758 *3)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *2 (-710)))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973))))) +(-13 (-1183 |t#1| |t#2|) (-10 -8 (-15 -2910 ((-758 |t#1|) $)) (-15 -2299 ((-710) $)) (-15 -3296 ($ $ (-710))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-158)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-563 (-794)) . T) ((-591 |#2|) . T) ((-591 $) . T) ((-657 |#2|) |has| |#2| (-158)) ((-666) . T) ((-964 (-758 |#1|)) . T) ((-979 |#2|) . T) ((-973) . T) ((-980) . T) ((-1028) . T) ((-1016) . T) ((-1180 |#2|) . T) ((-1183 |#1| |#2|) . T)) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2061 (((-589 (-1087)) $) NIL)) (-3111 (($ (-1181 (-1087) |#1|)) NIL)) (-3296 (($ $ (-710)) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2435 (($ $ $) NIL (|has| |#1| (-158))) (($ $ (-710)) NIL (|has| |#1| (-158)))) (-2518 (($) NIL T CONST)) (-4111 (($ $ (-1087)) NIL) (($ $ (-758 (-1087))) NIL) (($ $ $) NIL)) (-3517 (((-3 (-758 (-1087)) "failed") $) NIL)) (-3474 (((-758 (-1087)) $) NIL)) (-2121 (((-3 $ "failed") $) NIL)) (-4061 (((-108) $) NIL)) (-2468 (($ $) NIL)) (-2023 (((-108) $) NIL)) (-2620 (((-108) $) NIL)) (-2302 (($ (-758 (-1087)) |#1|) NIL)) (-1419 (($ $) NIL)) (-3385 (((-2 (|:| |k| (-758 (-1087))) (|:| |c| |#1|)) $) NIL)) (-2286 (((-758 (-1087)) $) NIL)) (-2910 (((-758 (-1087)) $) NIL)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-2701 (($ $ (-1087)) NIL) (($ $ (-758 (-1087))) NIL) (($ $ $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3686 (((-1181 (-1087) |#1|) $) NIL)) (-2299 (((-710) $) NIL)) (-1869 (((-108) $) NIL)) (-3059 ((|#1| $) NIL)) (-1458 (((-794) $) NIL) (($ (-523)) NIL) (($ |#1|) NIL) (($ (-758 (-1087))) NIL) (($ (-1087)) NIL)) (-2935 ((|#1| $ (-758 (-1087))) NIL) ((|#1| $ $) NIL)) (-1621 (((-710)) NIL)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) NIL T CONST)) (-3879 (((-589 (-2 (|:| |k| (-1087)) (|:| |c| $))) $) NIL)) (-2767 (($) NIL T CONST)) (-3983 (((-108) $ $) NIL)) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1087) $) NIL))) +(((-1188 |#1|) (-13 (-1187 (-1087) |#1|) (-10 -8 (-15 -3686 ((-1181 (-1087) |#1|) $)) (-15 -3111 ($ (-1181 (-1087) |#1|))) (-15 -3879 ((-589 (-2 (|:| |k| (-1087)) (|:| |c| $))) $)))) (-973)) (T -1188)) +((-3686 (*1 *2 *1) (-12 (-5 *2 (-1181 (-1087) *3)) (-5 *1 (-1188 *3)) (-4 *3 (-973)))) (-3111 (*1 *1 *2) (-12 (-5 *2 (-1181 (-1087) *3)) (-4 *3 (-973)) (-5 *1 (-1188 *3)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |k| (-1087)) (|:| |c| (-1188 *3))))) (-5 *1 (-1188 *3)) (-4 *3 (-973))))) +(-13 (-1187 (-1087) |#1|) (-10 -8 (-15 -3686 ((-1181 (-1087) |#1|) $)) (-15 -3111 ($ (-1181 (-1087) |#1|))) (-15 -3879 ((-589 (-2 (|:| |k| (-1087)) (|:| |c| $))) $)))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2518 (($) NIL T CONST)) (-3517 (((-3 |#2| "failed") $) NIL)) (-3474 ((|#2| $) NIL)) (-3810 (($ $) NIL)) (-2121 (((-3 $ "failed") $) 35)) (-4061 (((-108) $) 30)) (-2468 (($ $) 31)) (-2023 (((-108) $) NIL)) (-3554 (((-710) $) NIL)) (-3679 (((-589 $) $) NIL)) (-2620 (((-108) $) NIL)) (-2302 (($ |#2| |#1|) NIL)) (-2286 ((|#2| $) 19)) (-2910 ((|#2| $) 16)) (-3612 (($ (-1 |#1| |#1|) $) NIL)) (-4184 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3774 ((|#2| $) NIL)) (-3786 ((|#1| $) NIL)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-1869 (((-108) $) 27)) (-3059 ((|#1| $) 28)) (-1458 (((-794) $) 54) (($ (-523)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-1251 (((-589 |#1|) $) NIL)) (-2365 ((|#1| $ |#2|) NIL)) (-2935 ((|#1| $ |#2|) 24)) (-1621 (((-710)) 14)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 25 T CONST)) (-2767 (($) 11 T CONST)) (-1643 (((-589 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3983 (((-108) $ $) 26)) (-4098 (($ $ |#1|) 56 (|has| |#1| (-339)))) (-4087 (($ $) NIL) (($ $ $) NIL)) (-4075 (($ $ $) 43)) (** (($ $ (-852)) NIL) (($ $ (-710)) 45)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2676 (((-710) $) 15))) +(((-1189 |#1| |#2|) (-13 (-973) (-1180 |#1|) (-358 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2676 ((-710) $)) (-15 -1458 ($ |#2|)) (-15 -2910 (|#2| $)) (-15 -2286 (|#2| $)) (-15 -3810 ($ $)) (-15 -2935 (|#1| $ |#2|)) (-15 -1869 ((-108) $)) (-15 -3059 (|#1| $)) (-15 -4061 ((-108) $)) (-15 -2468 ($ $)) (-15 -3612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-339)) (-15 -4098 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4237)) (-6 -4237) |%noBranch|) (IF (|has| |#1| (-6 -4241)) (-6 -4241) |%noBranch|) (IF (|has| |#1| (-6 -4242)) (-6 -4242) |%noBranch|))) (-973) (-782)) (T -1189)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1189 *2 *3)) (-4 *2 (-973)) (-4 *3 (-782)))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-4 *2 (-973)) (-4 *3 (-782)))) (-3612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-1189 *3 *4)) (-4 *4 (-782)))) (-1458 (*1 *1 *2) (-12 (-5 *1 (-1189 *3 *2)) (-4 *3 (-973)) (-4 *2 (-782)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-973)) (-4 *4 (-782)))) (-2910 (*1 *2 *1) (-12 (-4 *2 (-782)) (-5 *1 (-1189 *3 *2)) (-4 *3 (-973)))) (-2286 (*1 *2 *1) (-12 (-4 *2 (-782)) (-5 *1 (-1189 *3 *2)) (-4 *3 (-973)))) (-2935 (*1 *2 *1 *3) (-12 (-4 *2 (-973)) (-5 *1 (-1189 *2 *3)) (-4 *3 (-782)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-973)) (-4 *4 (-782)))) (-3059 (*1 *2 *1) (-12 (-4 *2 (-973)) (-5 *1 (-1189 *2 *3)) (-4 *3 (-782)))) (-4061 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-973)) (-4 *4 (-782)))) (-2468 (*1 *1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-4 *2 (-973)) (-4 *3 (-782)))) (-4098 (*1 *1 *1 *2) (-12 (-5 *1 (-1189 *2 *3)) (-4 *2 (-339)) (-4 *2 (-973)) (-4 *3 (-782))))) +(-13 (-973) (-1180 |#1|) (-358 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2676 ((-710) $)) (-15 -1458 ($ |#2|)) (-15 -2910 (|#2| $)) (-15 -2286 (|#2| $)) (-15 -3810 ($ $)) (-15 -2935 (|#1| $ |#2|)) (-15 -1869 ((-108) $)) (-15 -3059 (|#1| $)) (-15 -4061 ((-108) $)) (-15 -2468 ($ $)) (-15 -3612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-339)) (-15 -4098 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4237)) (-6 -4237) |%noBranch|) (IF (|has| |#1| (-6 -4241)) (-6 -4241) |%noBranch|) (IF (|has| |#1| (-6 -4242)) (-6 -4242) |%noBranch|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) NIL)) (-2061 (((-589 |#1|) $) 120)) (-3111 (($ (-1181 |#1| |#2|)) 44)) (-3296 (($ $ (-710)) 32)) (-3212 (((-3 $ "failed") $ $) NIL)) (-2435 (($ $ $) 48 (|has| |#2| (-158))) (($ $ (-710)) 46 (|has| |#2| (-158)))) (-2518 (($) NIL T CONST)) (-4111 (($ $ |#1|) 102) (($ $ (-758 |#1|)) 103) (($ $ $) 25)) (-3517 (((-3 (-758 |#1|) "failed") $) NIL)) (-3474 (((-758 |#1|) $) NIL)) (-2121 (((-3 $ "failed") $) 110)) (-4061 (((-108) $) 105)) (-2468 (($ $) 106)) (-2023 (((-108) $) NIL)) (-2620 (((-108) $) NIL)) (-2302 (($ (-758 |#1|) |#2|) 19)) (-1419 (($ $) NIL)) (-3385 (((-2 (|:| |k| (-758 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2286 (((-758 |#1|) $) 111)) (-2910 (((-758 |#1|) $) 114)) (-3612 (($ (-1 |#2| |#2|) $) 119)) (-2701 (($ $ |#1|) 100) (($ $ (-758 |#1|)) 101) (($ $ $) 56)) (-3779 (((-1070) $) NIL)) (-2783 (((-1034) $) NIL)) (-3686 (((-1181 |#1| |#2|) $) 84)) (-2299 (((-710) $) 117)) (-1869 (((-108) $) 70)) (-3059 ((|#2| $) 28)) (-1458 (((-794) $) 63) (($ (-523)) 77) (($ |#2|) 74) (($ (-758 |#1|)) 17) (($ |#1|) 73)) (-2935 ((|#2| $ (-758 |#1|)) 104) ((|#2| $ $) 27)) (-1621 (((-710)) 108)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 14 T CONST)) (-3879 (((-589 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2767 (($) 29 T CONST)) (-3983 (((-108) $ $) 13)) (-4087 (($ $) 88) (($ $ $) 91)) (-4075 (($ $ $) 55)) (** (($ $ (-852)) NIL) (($ $ (-710)) 49)) (* (($ (-852) $) NIL) (($ (-710) $) 47) (($ (-523) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) +(((-1190 |#1| |#2|) (-13 (-1187 |#1| |#2|) (-10 -8 (-15 -3686 ((-1181 |#1| |#2|) $)) (-15 -3111 ($ (-1181 |#1| |#2|))) (-15 -3879 ((-589 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-786) (-973)) (T -1190)) +((-3686 (*1 *2 *1) (-12 (-5 *2 (-1181 *3 *4)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)))) (-3111 (*1 *1 *2) (-12 (-5 *2 (-1181 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) (-5 *1 (-1190 *3 *4)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-589 (-2 (|:| |k| *3) (|:| |c| (-1190 *3 *4))))) (-5 *1 (-1190 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973))))) +(-13 (-1187 |#1| |#2|) (-10 -8 (-15 -3686 ((-1181 |#1| |#2|) $)) (-15 -3111 ($ (-1181 |#1| |#2|))) (-15 -3879 ((-589 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-1294 (((-589 (-1068 |#1|)) (-1 (-589 (-1068 |#1|)) (-589 (-1068 |#1|))) (-523)) 15) (((-1068 |#1|) (-1 (-1068 |#1|) (-1068 |#1|))) 11))) +(((-1191 |#1|) (-10 -7 (-15 -1294 ((-1068 |#1|) (-1 (-1068 |#1|) (-1068 |#1|)))) (-15 -1294 ((-589 (-1068 |#1|)) (-1 (-589 (-1068 |#1|)) (-589 (-1068 |#1|))) (-523)))) (-1122)) (T -1191)) +((-1294 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-589 (-1068 *5)) (-589 (-1068 *5)))) (-5 *4 (-523)) (-5 *2 (-589 (-1068 *5))) (-5 *1 (-1191 *5)) (-4 *5 (-1122)))) (-1294 (*1 *2 *3) (-12 (-5 *3 (-1 (-1068 *4) (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1191 *4)) (-4 *4 (-1122))))) +(-10 -7 (-15 -1294 ((-1068 |#1|) (-1 (-1068 |#1|) (-1068 |#1|)))) (-15 -1294 ((-589 (-1068 |#1|)) (-1 (-589 (-1068 |#1|)) (-589 (-1068 |#1|))) (-523)))) +((-2252 (((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|))) 146) (((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108)) 145) (((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108)) 144) (((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108) (-108)) 143) (((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-970 |#1| |#2|)) 128)) (-2655 (((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|))) 71) (((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)) (-108)) 70) (((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)) (-108) (-108)) 69)) (-3614 (((-589 (-1058 |#1| (-495 (-796 |#3|)) (-796 |#3|) (-719 |#1| (-796 |#3|)))) (-970 |#1| |#2|)) 60)) (-2897 (((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|))) 113) (((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108)) 112) (((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108)) 111) (((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108) (-108)) 110) (((-589 (-589 (-951 (-383 |#1|)))) (-970 |#1| |#2|)) 105)) (-2583 (((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|))) 118) (((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108)) 117) (((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108)) 116) (((-589 (-589 (-951 (-383 |#1|)))) (-970 |#1| |#2|)) 115)) (-3663 (((-589 (-719 |#1| (-796 |#3|))) (-1058 |#1| (-495 (-796 |#3|)) (-796 |#3|) (-719 |#1| (-796 |#3|)))) 97) (((-1083 (-951 (-383 |#1|))) (-1083 |#1|)) 88) (((-883 (-951 (-383 |#1|))) (-719 |#1| (-796 |#3|))) 95) (((-883 (-951 (-383 |#1|))) (-883 |#1|)) 93) (((-719 |#1| (-796 |#3|)) (-719 |#1| (-796 |#2|))) 33))) +(((-1192 |#1| |#2| |#3|) (-10 -7 (-15 -2655 ((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)) (-108) (-108))) (-15 -2655 ((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)) (-108))) (-15 -2655 ((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)))) (-15 -2252 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-970 |#1| |#2|))) (-15 -2252 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108) (-108))) (-15 -2252 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108))) (-15 -2252 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108))) (-15 -2252 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)))) (-15 -2897 ((-589 (-589 (-951 (-383 |#1|)))) (-970 |#1| |#2|))) (-15 -2897 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108) (-108))) (-15 -2897 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108))) (-15 -2897 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108))) (-15 -2897 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)))) (-15 -2583 ((-589 (-589 (-951 (-383 |#1|)))) (-970 |#1| |#2|))) (-15 -2583 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108))) (-15 -2583 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108))) (-15 -2583 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)))) (-15 -3614 ((-589 (-1058 |#1| (-495 (-796 |#3|)) (-796 |#3|) (-719 |#1| (-796 |#3|)))) (-970 |#1| |#2|))) (-15 -3663 ((-719 |#1| (-796 |#3|)) (-719 |#1| (-796 |#2|)))) (-15 -3663 ((-883 (-951 (-383 |#1|))) (-883 |#1|))) (-15 -3663 ((-883 (-951 (-383 |#1|))) (-719 |#1| (-796 |#3|)))) (-15 -3663 ((-1083 (-951 (-383 |#1|))) (-1083 |#1|))) (-15 -3663 ((-589 (-719 |#1| (-796 |#3|))) (-1058 |#1| (-495 (-796 |#3|)) (-796 |#3|) (-719 |#1| (-796 |#3|)))))) (-13 (-784) (-284) (-136) (-949)) (-589 (-1087)) (-589 (-1087))) (T -1192)) +((-3663 (*1 *2 *3) (-12 (-5 *3 (-1058 *4 (-495 (-796 *6)) (-796 *6) (-719 *4 (-796 *6)))) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-719 *4 (-796 *6)))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-589 (-1087))))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-1083 (-951 (-383 *4)))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-719 *4 (-796 *6))) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *6 (-589 (-1087))) (-5 *2 (-883 (-951 (-383 *4)))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-589 (-1087))))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-883 *4)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-883 (-951 (-383 *4)))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-719 *4 (-796 *5))) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *5 (-589 (-1087))) (-5 *2 (-719 *4 (-796 *6))) (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-589 (-1087))))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *5 (-589 (-1087))) (-5 *2 (-589 (-1058 *4 (-495 (-796 *6)) (-796 *6) (-719 *4 (-796 *6))))) (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-589 (-1087))))) (-2583 (*1 *2 *3) (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-589 (-951 (-383 *4))))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) (-2583 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-2583 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-2583 (*1 *2 *3) (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *5 (-589 (-1087))) (-5 *2 (-589 (-589 (-951 (-383 *4))))) (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-589 (-1087))))) (-2897 (*1 *2 *3) (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-589 (-951 (-383 *4))))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) (-2897 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-2897 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-2897 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-2897 (*1 *2 *3) (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *5 (-589 (-1087))) (-5 *2 (-589 (-589 (-951 (-383 *4))))) (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-589 (-1087))))) (-2252 (*1 *2 *3) (-12 (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-2 (|:| -1986 (-1083 *4)) (|:| -2966 (-589 (-883 *4)))))) (-5 *1 (-1192 *4 *5 *6)) (-5 *3 (-589 (-883 *4))) (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) (-2252 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-2 (|:| -1986 (-1083 *5)) (|:| -2966 (-589 (-883 *5)))))) (-5 *1 (-1192 *5 *6 *7)) (-5 *3 (-589 (-883 *5))) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-2252 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-2 (|:| -1986 (-1083 *5)) (|:| -2966 (-589 (-883 *5)))))) (-5 *1 (-1192 *5 *6 *7)) (-5 *3 (-589 (-883 *5))) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-2252 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-2 (|:| -1986 (-1083 *5)) (|:| -2966 (-589 (-883 *5)))))) (-5 *1 (-1192 *5 *6 *7)) (-5 *3 (-589 (-883 *5))) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *5 (-589 (-1087))) (-5 *2 (-589 (-2 (|:| -1986 (-1083 *4)) (|:| -2966 (-589 (-883 *4)))))) (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-589 (-1087))))) (-2655 (*1 *2 *3) (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-970 *4 *5))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) (-2655 (*1 *2 *3 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-970 *5 *6))) (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) (-2655 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) (-5 *2 (-589 (-970 *5 *6))) (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087)))))) +(-10 -7 (-15 -2655 ((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)) (-108) (-108))) (-15 -2655 ((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)) (-108))) (-15 -2655 ((-589 (-970 |#1| |#2|)) (-589 (-883 |#1|)))) (-15 -2252 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-970 |#1| |#2|))) (-15 -2252 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108) (-108))) (-15 -2252 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108) (-108))) (-15 -2252 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)) (-108))) (-15 -2252 ((-589 (-2 (|:| -1986 (-1083 |#1|)) (|:| -2966 (-589 (-883 |#1|))))) (-589 (-883 |#1|)))) (-15 -2897 ((-589 (-589 (-951 (-383 |#1|)))) (-970 |#1| |#2|))) (-15 -2897 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108) (-108))) (-15 -2897 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108))) (-15 -2897 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108))) (-15 -2897 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)))) (-15 -2583 ((-589 (-589 (-951 (-383 |#1|)))) (-970 |#1| |#2|))) (-15 -2583 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108) (-108))) (-15 -2583 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)) (-108))) (-15 -2583 ((-589 (-589 (-951 (-383 |#1|)))) (-589 (-883 |#1|)))) (-15 -3614 ((-589 (-1058 |#1| (-495 (-796 |#3|)) (-796 |#3|) (-719 |#1| (-796 |#3|)))) (-970 |#1| |#2|))) (-15 -3663 ((-719 |#1| (-796 |#3|)) (-719 |#1| (-796 |#2|)))) (-15 -3663 ((-883 (-951 (-383 |#1|))) (-883 |#1|))) (-15 -3663 ((-883 (-951 (-383 |#1|))) (-719 |#1| (-796 |#3|)))) (-15 -3663 ((-1083 (-951 (-383 |#1|))) (-1083 |#1|))) (-15 -3663 ((-589 (-719 |#1| (-796 |#3|))) (-1058 |#1| (-495 (-796 |#3|)) (-796 |#3|) (-719 |#1| (-796 |#3|)))))) +((-3607 (((-3 (-1168 (-383 (-523))) "failed") (-1168 |#1|) |#1|) 17)) (-1568 (((-108) (-1168 |#1|)) 11)) (-3978 (((-3 (-1168 (-523)) "failed") (-1168 |#1|)) 14))) +(((-1193 |#1|) (-10 -7 (-15 -1568 ((-108) (-1168 |#1|))) (-15 -3978 ((-3 (-1168 (-523)) "failed") (-1168 |#1|))) (-15 -3607 ((-3 (-1168 (-383 (-523))) "failed") (-1168 |#1|) |#1|))) (-585 (-523))) (T -1193)) +((-3607 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-585 (-523))) (-5 *2 (-1168 (-383 (-523)))) (-5 *1 (-1193 *4)))) (-3978 (*1 *2 *3) (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-585 (-523))) (-5 *2 (-1168 (-523))) (-5 *1 (-1193 *4)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-1168 *4)) (-4 *4 (-585 (-523))) (-5 *2 (-108)) (-5 *1 (-1193 *4))))) +(-10 -7 (-15 -1568 ((-108) (-1168 |#1|))) (-15 -3978 ((-3 (-1168 (-523)) "failed") (-1168 |#1|))) (-15 -3607 ((-3 (-1168 (-383 (-523))) "failed") (-1168 |#1|) |#1|))) +((-3924 (((-108) $ $) NIL)) (-2295 (((-108) $) 11)) (-3212 (((-3 $ "failed") $ $) NIL)) (-1703 (((-710)) 8)) (-2518 (($) NIL T CONST)) (-2121 (((-3 $ "failed") $) 43)) (-4032 (($) 36)) (-2023 (((-108) $) NIL)) (-4058 (((-3 $ "failed") $) 29)) (-2072 (((-852) $) 15)) (-3779 (((-1070) $) NIL)) (-2262 (($) 25 T CONST)) (-3878 (($ (-852)) 37)) (-2783 (((-1034) $) NIL)) (-3663 (((-523) $) 13)) (-1458 (((-794) $) 22) (($ (-523)) 19)) (-1621 (((-710)) 9)) (-2364 (($ $ (-852)) NIL) (($ $ (-710)) NIL)) (-2756 (($) 23 T CONST)) (-2767 (($) 24 T CONST)) (-3983 (((-108) $ $) 27)) (-4087 (($ $) 38) (($ $ $) 35)) (-4075 (($ $ $) 26)) (** (($ $ (-852)) NIL) (($ $ (-710)) 40)) (* (($ (-852) $) NIL) (($ (-710) $) NIL) (($ (-523) $) 32) (($ $ $) 31))) +(((-1194 |#1|) (-13 (-158) (-344) (-564 (-523)) (-1063)) (-852)) (T -1194)) +NIL +(-13 (-158) (-344) (-564 (-523)) (-1063)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3139311 3139316 3139321 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3139296 3139301 3139306 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3139281 3139286 3139291 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3139266 3139271 3139276 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1194 3138396 3139141 3139218 "ZMOD" 3139223 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1193 3137506 3137670 3137879 "ZLINDEP" 3138228 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1192 3126910 3128655 3130607 "ZDSOLVE" 3135655 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1191 3126156 3126297 3126486 "YSTREAM" 3126756 NIL YSTREAM (NIL T) -7 NIL NIL) (-1190 3123924 3125461 3125664 "XRPOLY" 3125999 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1189 3120386 3121715 3122297 "XPR" 3123388 NIL XPR (NIL T T) -8 NIL NIL) (-1188 3118100 3119721 3119924 "XPOLY" 3120217 NIL XPOLY (NIL T) -8 NIL NIL) (-1187 3115914 3117292 3117346 "XPOLYC" 3117631 NIL XPOLYC (NIL T T) -9 NIL 3117744) (-1186 3112286 3114431 3114819 "XPBWPOLY" 3115572 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1185 3108214 3110527 3110569 "XF" 3111190 NIL XF (NIL T) -9 NIL 3111589) (-1184 3107835 3107923 3108092 "XF-" 3108097 NIL XF- (NIL T T) -8 NIL NIL) (-1183 3103215 3104514 3104568 "XFALG" 3106716 NIL XFALG (NIL T T) -9 NIL 3107503) (-1182 3102352 3102456 3102660 "XEXPPKG" 3103107 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1181 3100450 3102203 3102298 "XDPOLY" 3102303 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1180 3099329 3099939 3099981 "XALG" 3100043 NIL XALG (NIL T) -9 NIL 3100162) (-1179 3092805 3097313 3097806 "WUTSET" 3098921 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1178 3090617 3091424 3091775 "WP" 3092587 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1177 3089503 3089701 3089996 "WFFINTBS" 3090414 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1176 3087407 3087834 3088296 "WEIER" 3089075 NIL WEIER (NIL T) -7 NIL NIL) (-1175 3086556 3086980 3087022 "VSPACE" 3087158 NIL VSPACE (NIL T) -9 NIL 3087232) (-1174 3086394 3086421 3086512 "VSPACE-" 3086517 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1173 3086140 3086183 3086254 "VOID" 3086345 T VOID (NIL) -8 NIL NIL) (-1172 3084276 3084635 3085041 "VIEW" 3085756 T VIEW (NIL) -7 NIL NIL) (-1171 3080701 3081339 3082076 "VIEWDEF" 3083561 T VIEWDEF (NIL) -7 NIL NIL) (-1170 3070040 3072249 3074422 "VIEW3D" 3078550 T VIEW3D (NIL) -8 NIL NIL) (-1169 3062322 3063951 3065530 "VIEW2D" 3068483 T VIEW2D (NIL) -8 NIL NIL) (-1168 3057731 3062092 3062184 "VECTOR" 3062265 NIL VECTOR (NIL T) -8 NIL NIL) (-1167 3056308 3056567 3056885 "VECTOR2" 3057461 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1166 3049848 3054100 3054143 "VECTCAT" 3055131 NIL VECTCAT (NIL T) -9 NIL 3055715) (-1165 3048862 3049116 3049506 "VECTCAT-" 3049511 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1164 3048343 3048513 3048633 "VARIABLE" 3048777 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1163 3048276 3048281 3048311 "UTYPE" 3048316 T UTYPE (NIL) -9 NIL NIL) (-1162 3047111 3047265 3047526 "UTSODETL" 3048102 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1161 3044551 3045011 3045535 "UTSODE" 3046652 NIL UTSODE (NIL T T) -7 NIL NIL) (-1160 3036395 3042191 3042679 "UTS" 3044120 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1159 3027740 3033105 3033147 "UTSCAT" 3034248 NIL UTSCAT (NIL T) -9 NIL 3035005) (-1158 3025096 3025811 3026799 "UTSCAT-" 3026804 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1157 3024727 3024770 3024901 "UTS2" 3025047 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1156 3019003 3021568 3021611 "URAGG" 3023681 NIL URAGG (NIL T) -9 NIL 3024403) (-1155 3015942 3016805 3017928 "URAGG-" 3017933 NIL URAGG- (NIL T T) -8 NIL NIL) (-1154 3011628 3014559 3015030 "UPXSSING" 3015606 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1153 3003519 3010749 3011029 "UPXS" 3011405 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1152 2996548 3003424 3003495 "UPXSCONS" 3003500 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1151 2986837 2993667 2993728 "UPXSCCA" 2994377 NIL UPXSCCA (NIL T T) -9 NIL 2994618) (-1150 2986476 2986561 2986734 "UPXSCCA-" 2986739 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1149 2976687 2983290 2983332 "UPXSCAT" 2983975 NIL UPXSCAT (NIL T) -9 NIL 2984583) (-1148 2976121 2976200 2976377 "UPXS2" 2976602 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1147 2974775 2975028 2975379 "UPSQFREE" 2975864 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1146 2968666 2971721 2971775 "UPSCAT" 2972924 NIL UPSCAT (NIL T T) -9 NIL 2973698) (-1145 2967871 2968078 2968404 "UPSCAT-" 2968409 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1144 2953957 2961994 2962036 "UPOLYC" 2964114 NIL UPOLYC (NIL T) -9 NIL 2965335) (-1143 2945287 2947712 2950858 "UPOLYC-" 2950863 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1142 2944918 2944961 2945092 "UPOLYC2" 2945238 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1141 2936337 2944487 2944624 "UP" 2944828 NIL UP (NIL NIL T) -8 NIL NIL) (-1140 2935680 2935787 2935950 "UPMP" 2936226 NIL UPMP (NIL T T) -7 NIL NIL) (-1139 2935233 2935314 2935453 "UPDIVP" 2935593 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1138 2933801 2934050 2934366 "UPDECOMP" 2934982 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1137 2933036 2933148 2933333 "UPCDEN" 2933685 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1136 2932559 2932628 2932775 "UP2" 2932961 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1135 2931076 2931763 2932040 "UNISEG" 2932317 NIL UNISEG (NIL T) -8 NIL NIL) (-1134 2930291 2930418 2930623 "UNISEG2" 2930919 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1133 2929351 2929531 2929757 "UNIFACT" 2930107 NIL UNIFACT (NIL T) -7 NIL NIL) (-1132 2913247 2928532 2928782 "ULS" 2929158 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1131 2901212 2913152 2913223 "ULSCONS" 2913228 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1130 2883962 2895975 2896036 "ULSCCAT" 2896748 NIL ULSCCAT (NIL T T) -9 NIL 2897044) (-1129 2883013 2883258 2883645 "ULSCCAT-" 2883650 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1128 2873003 2879520 2879562 "ULSCAT" 2880418 NIL ULSCAT (NIL T) -9 NIL 2881148) (-1127 2872437 2872516 2872693 "ULS2" 2872918 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1126 2870835 2871802 2871832 "UFD" 2872044 T UFD (NIL) -9 NIL 2872158) (-1125 2870629 2870675 2870770 "UFD-" 2870775 NIL UFD- (NIL T) -8 NIL NIL) (-1124 2869711 2869894 2870110 "UDVO" 2870435 T UDVO (NIL) -7 NIL NIL) (-1123 2867527 2867936 2868407 "UDPO" 2869275 NIL UDPO (NIL T) -7 NIL NIL) (-1122 2867460 2867465 2867495 "TYPE" 2867500 T TYPE (NIL) -9 NIL NIL) (-1121 2866431 2866633 2866873 "TWOFACT" 2867254 NIL TWOFACT (NIL T) -7 NIL NIL) (-1120 2865369 2865706 2865969 "TUPLE" 2866203 NIL TUPLE (NIL T) -8 NIL NIL) (-1119 2863060 2863579 2864118 "TUBETOOL" 2864852 T TUBETOOL (NIL) -7 NIL NIL) (-1118 2861909 2862114 2862355 "TUBE" 2862853 NIL TUBE (NIL T) -8 NIL NIL) (-1117 2856633 2860887 2861169 "TS" 2861661 NIL TS (NIL T) -8 NIL NIL) (-1116 2845337 2849429 2849525 "TSETCAT" 2854759 NIL TSETCAT (NIL T T T T) -9 NIL 2856290) (-1115 2840072 2841670 2843560 "TSETCAT-" 2843565 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1114 2834335 2835181 2836123 "TRMANIP" 2839208 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1113 2833776 2833839 2834002 "TRIMAT" 2834267 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1112 2831582 2831819 2832182 "TRIGMNIP" 2833525 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1111 2831102 2831215 2831245 "TRIGCAT" 2831458 T TRIGCAT (NIL) -9 NIL NIL) (-1110 2830771 2830850 2830991 "TRIGCAT-" 2830996 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1109 2827670 2829631 2829911 "TREE" 2830526 NIL TREE (NIL T) -8 NIL NIL) (-1108 2826944 2827472 2827502 "TRANFUN" 2827537 T TRANFUN (NIL) -9 NIL 2827603) (-1107 2826223 2826414 2826694 "TRANFUN-" 2826699 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1106 2826027 2826059 2826120 "TOPSP" 2826184 T TOPSP (NIL) -7 NIL NIL) (-1105 2825379 2825494 2825647 "TOOLSIGN" 2825908 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1104 2824040 2824556 2824795 "TEXTFILE" 2825162 T TEXTFILE (NIL) -8 NIL NIL) (-1103 2821905 2822419 2822857 "TEX" 2823624 T TEX (NIL) -8 NIL NIL) (-1102 2821686 2821717 2821789 "TEX1" 2821868 NIL TEX1 (NIL T) -7 NIL NIL) (-1101 2821334 2821397 2821487 "TEMUTL" 2821618 T TEMUTL (NIL) -7 NIL NIL) (-1100 2819488 2819768 2820093 "TBCMPPK" 2821057 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1099 2811377 2817649 2817705 "TBAGG" 2818105 NIL TBAGG (NIL T T) -9 NIL 2818316) (-1098 2806447 2807935 2809689 "TBAGG-" 2809694 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1097 2805831 2805938 2806083 "TANEXP" 2806336 NIL TANEXP (NIL T) -7 NIL NIL) (-1096 2799332 2805688 2805781 "TABLE" 2805786 NIL TABLE (NIL T T) -8 NIL NIL) (-1095 2798745 2798843 2798981 "TABLEAU" 2799229 NIL TABLEAU (NIL T) -8 NIL NIL) (-1094 2793353 2794573 2795821 "TABLBUMP" 2797531 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1093 2789816 2790511 2791294 "SYSSOLP" 2792604 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1092 2786107 2786815 2787549 "SYNTAX" 2789104 T SYNTAX (NIL) -8 NIL NIL) (-1091 2783241 2783849 2784487 "SYMTAB" 2785491 T SYMTAB (NIL) -8 NIL NIL) (-1090 2778490 2779392 2780375 "SYMS" 2782280 T SYMS (NIL) -8 NIL NIL) (-1089 2775723 2777950 2778179 "SYMPOLY" 2778295 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1088 2775243 2775318 2775440 "SYMFUNC" 2775635 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1087 2771220 2772480 2773302 "SYMBOL" 2774443 T SYMBOL (NIL) -8 NIL NIL) (-1086 2764759 2766448 2768168 "SWITCH" 2769522 T SWITCH (NIL) -8 NIL NIL) (-1085 2757989 2763586 2763888 "SUTS" 2764514 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1084 2749879 2757110 2757390 "SUPXS" 2757766 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1083 2741371 2749500 2749625 "SUP" 2749788 NIL SUP (NIL T) -8 NIL NIL) (-1082 2740530 2740657 2740874 "SUPFRACF" 2741239 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1081 2740155 2740214 2740325 "SUP2" 2740465 NIL SUP2 (NIL T T) -7 NIL NIL) (-1080 2738573 2738847 2739209 "SUMRF" 2739854 NIL SUMRF (NIL T) -7 NIL NIL) (-1079 2737890 2737956 2738154 "SUMFS" 2738494 NIL SUMFS (NIL T T) -7 NIL NIL) (-1078 2721826 2737071 2737321 "SULS" 2737697 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1077 2721148 2721351 2721491 "SUCH" 2721734 NIL SUCH (NIL T T) -8 NIL NIL) (-1076 2715075 2716087 2717045 "SUBSPACE" 2720236 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1075 2714505 2714595 2714759 "SUBRESP" 2714963 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1074 2707874 2709170 2710481 "STTF" 2713241 NIL STTF (NIL T) -7 NIL NIL) (-1073 2702047 2703167 2704314 "STTFNC" 2706774 NIL STTFNC (NIL T) -7 NIL NIL) (-1072 2693398 2695265 2697058 "STTAYLOR" 2700288 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1071 2686642 2693262 2693345 "STRTBL" 2693350 NIL STRTBL (NIL T) -8 NIL NIL) (-1070 2682033 2686597 2686628 "STRING" 2686633 T STRING (NIL) -8 NIL NIL) (-1069 2676922 2681407 2681437 "STRICAT" 2681496 T STRICAT (NIL) -9 NIL 2681558) (-1068 2669638 2674445 2675065 "STREAM" 2676337 NIL STREAM (NIL T) -8 NIL NIL) (-1067 2669148 2669225 2669369 "STREAM3" 2669555 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1066 2668130 2668313 2668548 "STREAM2" 2668961 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1065 2667818 2667870 2667963 "STREAM1" 2668072 NIL STREAM1 (NIL T) -7 NIL NIL) (-1064 2666834 2667015 2667246 "STINPROD" 2667634 NIL STINPROD (NIL T) -7 NIL NIL) (-1063 2666413 2666597 2666627 "STEP" 2666707 T STEP (NIL) -9 NIL 2666785) (-1062 2659956 2666312 2666389 "STBL" 2666394 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1061 2655132 2659179 2659222 "STAGG" 2659375 NIL STAGG (NIL T) -9 NIL 2659464) (-1060 2652834 2653436 2654308 "STAGG-" 2654313 NIL STAGG- (NIL T T) -8 NIL NIL) (-1059 2651029 2652604 2652696 "STACK" 2652777 NIL STACK (NIL T) -8 NIL NIL) (-1058 2643760 2649176 2649631 "SREGSET" 2650659 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1057 2636200 2637568 2639080 "SRDCMPK" 2642366 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1056 2629168 2633641 2633671 "SRAGG" 2634974 T SRAGG (NIL) -9 NIL 2635582) (-1055 2628185 2628440 2628819 "SRAGG-" 2628824 NIL SRAGG- (NIL T) -8 NIL NIL) (-1054 2622634 2627104 2627531 "SQMATRIX" 2627804 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1053 2616386 2619354 2620080 "SPLTREE" 2621980 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1052 2612376 2613042 2613688 "SPLNODE" 2615812 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1051 2611423 2611656 2611686 "SPFCAT" 2612130 T SPFCAT (NIL) -9 NIL NIL) (-1050 2610160 2610370 2610634 "SPECOUT" 2611181 T SPECOUT (NIL) -7 NIL NIL) (-1049 2609921 2609961 2610030 "SPADPRSR" 2610113 T SPADPRSR (NIL) -7 NIL NIL) (-1048 2601944 2603691 2603733 "SPACEC" 2608056 NIL SPACEC (NIL T) -9 NIL 2609872) (-1047 2600116 2601877 2601925 "SPACE3" 2601930 NIL SPACE3 (NIL T) -8 NIL NIL) (-1046 2598868 2599039 2599330 "SORTPAK" 2599921 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1045 2596924 2597227 2597645 "SOLVETRA" 2598532 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1044 2595935 2596157 2596431 "SOLVESER" 2596697 NIL SOLVESER (NIL T) -7 NIL NIL) (-1043 2591155 2592036 2593038 "SOLVERAD" 2594987 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1042 2586970 2587579 2588308 "SOLVEFOR" 2590522 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1041 2581270 2586322 2586418 "SNTSCAT" 2586423 NIL SNTSCAT (NIL T T T T) -9 NIL 2586493) (-1040 2575375 2579601 2579991 "SMTS" 2580960 NIL SMTS (NIL T T T) -8 NIL NIL) (-1039 2569786 2575264 2575340 "SMP" 2575345 NIL SMP (NIL T T) -8 NIL NIL) (-1038 2567945 2568246 2568644 "SMITH" 2569483 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1037 2560910 2565106 2565208 "SMATCAT" 2566548 NIL SMATCAT (NIL NIL T T T) -9 NIL 2567097) (-1036 2557851 2558674 2559851 "SMATCAT-" 2559856 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1035 2555565 2557088 2557131 "SKAGG" 2557392 NIL SKAGG (NIL T) -9 NIL 2557527) (-1034 2551623 2554669 2554947 "SINT" 2555309 T SINT (NIL) -8 NIL NIL) (-1033 2551395 2551433 2551499 "SIMPAN" 2551579 T SIMPAN (NIL) -7 NIL NIL) (-1032 2550233 2550454 2550729 "SIGNRF" 2551154 NIL SIGNRF (NIL T) -7 NIL NIL) (-1031 2549042 2549193 2549483 "SIGNEF" 2550062 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1030 2546732 2547186 2547692 "SHP" 2548583 NIL SHP (NIL T NIL) -7 NIL NIL) (-1029 2540585 2546633 2546709 "SHDP" 2546714 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1028 2540075 2540267 2540297 "SGROUP" 2540449 T SGROUP (NIL) -9 NIL 2540536) (-1027 2539845 2539897 2540001 "SGROUP-" 2540006 NIL SGROUP- (NIL T) -8 NIL NIL) (-1026 2536681 2537378 2538101 "SGCF" 2539144 T SGCF (NIL) -7 NIL NIL) (-1025 2531080 2536132 2536228 "SFRTCAT" 2536233 NIL SFRTCAT (NIL T T T T) -9 NIL 2536271) (-1024 2524540 2525555 2526689 "SFRGCD" 2530063 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1023 2517706 2518777 2519961 "SFQCMPK" 2523473 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1022 2517328 2517417 2517527 "SFORT" 2517647 NIL SFORT (NIL T T) -8 NIL NIL) (-1021 2516473 2517168 2517289 "SEXOF" 2517294 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1020 2515607 2516354 2516422 "SEX" 2516427 T SEX (NIL) -8 NIL NIL) (-1019 2510384 2511073 2511168 "SEXCAT" 2514939 NIL SEXCAT (NIL T T T T T) -9 NIL 2515558) (-1018 2507564 2510318 2510366 "SET" 2510371 NIL SET (NIL T) -8 NIL NIL) (-1017 2505815 2506277 2506582 "SETMN" 2507305 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1016 2505423 2505549 2505579 "SETCAT" 2505696 T SETCAT (NIL) -9 NIL 2505780) (-1015 2505203 2505255 2505354 "SETCAT-" 2505359 NIL SETCAT- (NIL T) -8 NIL NIL) (-1014 2501591 2503665 2503708 "SETAGG" 2504578 NIL SETAGG (NIL T) -9 NIL 2504918) (-1013 2501049 2501165 2501402 "SETAGG-" 2501407 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1012 2500253 2500546 2500607 "SEGXCAT" 2500893 NIL SEGXCAT (NIL T T) -9 NIL 2501013) (-1011 2499309 2499919 2500101 "SEG" 2500106 NIL SEG (NIL T) -8 NIL NIL) (-1010 2498216 2498429 2498472 "SEGCAT" 2499054 NIL SEGCAT (NIL T) -9 NIL 2499292) (-1009 2497265 2497595 2497795 "SEGBIND" 2498051 NIL SEGBIND (NIL T) -8 NIL NIL) (-1008 2496886 2496945 2497058 "SEGBIND2" 2497200 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1007 2496105 2496231 2496435 "SEG2" 2496730 NIL SEG2 (NIL T T) -7 NIL NIL) (-1006 2495542 2496040 2496087 "SDVAR" 2496092 NIL SDVAR (NIL T) -8 NIL NIL) (-1005 2487794 2495315 2495443 "SDPOL" 2495448 NIL SDPOL (NIL T) -8 NIL NIL) (-1004 2486387 2486653 2486972 "SCPKG" 2487509 NIL SCPKG (NIL T) -7 NIL NIL) (-1003 2485524 2485703 2485903 "SCOPE" 2486209 T SCOPE (NIL) -8 NIL NIL) (-1002 2484745 2484878 2485057 "SCACHE" 2485379 NIL SCACHE (NIL T) -7 NIL NIL) (-1001 2484184 2484505 2484590 "SAOS" 2484682 T SAOS (NIL) -8 NIL NIL) (-1000 2483749 2483784 2483957 "SAERFFC" 2484143 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-999 2477645 2483648 2483726 "SAE" 2483731 NIL SAE (NIL T T NIL) -8 NIL NIL) (-998 2477241 2477276 2477433 "SAEFACT" 2477604 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-997 2475567 2475881 2476280 "RURPK" 2476907 NIL RURPK (NIL T NIL) -7 NIL NIL) (-996 2474220 2474497 2474804 "RULESET" 2475403 NIL RULESET (NIL T T T) -8 NIL NIL) (-995 2471428 2471931 2472392 "RULE" 2473902 NIL RULE (NIL T T T) -8 NIL NIL) (-994 2471070 2471225 2471306 "RULECOLD" 2471380 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-993 2465962 2466756 2467672 "RSETGCD" 2470269 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-992 2455277 2460329 2460423 "RSETCAT" 2464488 NIL RSETCAT (NIL T T T T) -9 NIL 2465585) (-991 2453208 2453747 2454567 "RSETCAT-" 2454572 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-990 2445638 2447013 2448529 "RSDCMPK" 2451807 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-989 2443656 2444097 2444169 "RRCC" 2445245 NIL RRCC (NIL T T) -9 NIL 2445589) (-988 2443010 2443184 2443460 "RRCC-" 2443465 NIL RRCC- (NIL T T T) -8 NIL NIL) (-987 2417377 2427002 2427066 "RPOLCAT" 2437568 NIL RPOLCAT (NIL T T T) -9 NIL 2440726) (-986 2408881 2411219 2414337 "RPOLCAT-" 2414342 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-985 2399947 2407111 2407591 "ROUTINE" 2408421 T ROUTINE (NIL) -8 NIL NIL) (-984 2396652 2399503 2399650 "ROMAN" 2399820 T ROMAN (NIL) -8 NIL NIL) (-983 2394938 2395523 2395780 "ROIRC" 2396458 NIL ROIRC (NIL T T) -8 NIL NIL) (-982 2391343 2393647 2393675 "RNS" 2393971 T RNS (NIL) -9 NIL 2394241) (-981 2389857 2390240 2390771 "RNS-" 2390844 NIL RNS- (NIL T) -8 NIL NIL) (-980 2389283 2389691 2389719 "RNG" 2389724 T RNG (NIL) -9 NIL 2389745) (-979 2388681 2389043 2389083 "RMODULE" 2389143 NIL RMODULE (NIL T) -9 NIL 2389185) (-978 2387533 2387627 2387957 "RMCAT2" 2388582 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-977 2384247 2386716 2387037 "RMATRIX" 2387268 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-976 2377244 2379478 2379590 "RMATCAT" 2382899 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2383881) (-975 2376623 2376770 2377073 "RMATCAT-" 2377078 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-974 2376193 2376268 2376394 "RINTERP" 2376542 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-973 2375244 2375808 2375836 "RING" 2375946 T RING (NIL) -9 NIL 2376040) (-972 2375039 2375083 2375177 "RING-" 2375182 NIL RING- (NIL T) -8 NIL NIL) (-971 2373887 2374124 2374380 "RIDIST" 2374803 T RIDIST (NIL) -7 NIL NIL) (-970 2365209 2373361 2373564 "RGCHAIN" 2373736 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-969 2362214 2362828 2363496 "RF" 2364573 NIL RF (NIL T) -7 NIL NIL) (-968 2361863 2361926 2362027 "RFFACTOR" 2362145 NIL RFFACTOR (NIL T) -7 NIL NIL) (-967 2361591 2361626 2361721 "RFFACT" 2361822 NIL RFFACT (NIL T) -7 NIL NIL) (-966 2359721 2360085 2360465 "RFDIST" 2361231 T RFDIST (NIL) -7 NIL NIL) (-965 2359179 2359271 2359431 "RETSOL" 2359623 NIL RETSOL (NIL T T) -7 NIL NIL) (-964 2358772 2358852 2358893 "RETRACT" 2359083 NIL RETRACT (NIL T) -9 NIL NIL) (-963 2358624 2358649 2358733 "RETRACT-" 2358738 NIL RETRACT- (NIL T T) -8 NIL NIL) (-962 2351482 2358281 2358406 "RESULT" 2358519 T RESULT (NIL) -8 NIL NIL) (-961 2350067 2350756 2350953 "RESRING" 2351385 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-960 2349707 2349756 2349852 "RESLATC" 2350004 NIL RESLATC (NIL T) -7 NIL NIL) (-959 2349416 2349450 2349555 "REPSQ" 2349666 NIL REPSQ (NIL T) -7 NIL NIL) (-958 2346847 2347427 2348027 "REP" 2348836 T REP (NIL) -7 NIL NIL) (-957 2346548 2346582 2346691 "REPDB" 2346806 NIL REPDB (NIL T) -7 NIL NIL) (-956 2340493 2341872 2343092 "REP2" 2345360 NIL REP2 (NIL T) -7 NIL NIL) (-955 2336899 2337580 2338385 "REP1" 2339720 NIL REP1 (NIL T) -7 NIL NIL) (-954 2329645 2335060 2335512 "REGSET" 2336530 NIL REGSET (NIL T T T T) -8 NIL NIL) (-953 2328466 2328801 2329049 "REF" 2329430 NIL REF (NIL T) -8 NIL NIL) (-952 2327847 2327950 2328115 "REDORDER" 2328350 NIL REDORDER (NIL T T) -7 NIL NIL) (-951 2323816 2327081 2327302 "RECLOS" 2327678 NIL RECLOS (NIL T) -8 NIL NIL) (-950 2322873 2323054 2323267 "REALSOLV" 2323623 T REALSOLV (NIL) -7 NIL NIL) (-949 2322721 2322762 2322790 "REAL" 2322795 T REAL (NIL) -9 NIL 2322830) (-948 2319212 2320014 2320896 "REAL0Q" 2321886 NIL REAL0Q (NIL T) -7 NIL NIL) (-947 2314823 2315811 2316870 "REAL0" 2318193 NIL REAL0 (NIL T) -7 NIL NIL) (-946 2314231 2314303 2314508 "RDIV" 2314745 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-945 2313304 2313478 2313689 "RDIST" 2314053 NIL RDIST (NIL T) -7 NIL NIL) (-944 2311908 2312195 2312564 "RDETRS" 2313012 NIL RDETRS (NIL T T) -7 NIL NIL) (-943 2309729 2310183 2310718 "RDETR" 2311450 NIL RDETR (NIL T T) -7 NIL NIL) (-942 2308345 2308623 2309024 "RDEEFS" 2309445 NIL RDEEFS (NIL T T) -7 NIL NIL) (-941 2306845 2307151 2307580 "RDEEF" 2308033 NIL RDEEF (NIL T T) -7 NIL NIL) (-940 2301130 2304062 2304090 "RCFIELD" 2305367 T RCFIELD (NIL) -9 NIL 2306097) (-939 2299199 2299703 2300396 "RCFIELD-" 2300469 NIL RCFIELD- (NIL T) -8 NIL NIL) (-938 2295531 2297316 2297357 "RCAGG" 2298428 NIL RCAGG (NIL T) -9 NIL 2298893) (-937 2295162 2295256 2295416 "RCAGG-" 2295421 NIL RCAGG- (NIL T T) -8 NIL NIL) (-936 2294507 2294618 2294780 "RATRET" 2295046 NIL RATRET (NIL T) -7 NIL NIL) (-935 2294064 2294131 2294250 "RATFACT" 2294435 NIL RATFACT (NIL T) -7 NIL NIL) (-934 2293379 2293499 2293649 "RANDSRC" 2293934 T RANDSRC (NIL) -7 NIL NIL) (-933 2293116 2293160 2293231 "RADUTIL" 2293328 T RADUTIL (NIL) -7 NIL NIL) (-932 2286123 2291859 2292176 "RADIX" 2292831 NIL RADIX (NIL NIL) -8 NIL NIL) (-931 2277693 2285967 2286095 "RADFF" 2286100 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-930 2277345 2277420 2277448 "RADCAT" 2277605 T RADCAT (NIL) -9 NIL NIL) (-929 2277130 2277178 2277275 "RADCAT-" 2277280 NIL RADCAT- (NIL T) -8 NIL NIL) (-928 2275281 2276905 2276994 "QUEUE" 2277074 NIL QUEUE (NIL T) -8 NIL NIL) (-927 2271778 2275218 2275263 "QUAT" 2275268 NIL QUAT (NIL T) -8 NIL NIL) (-926 2271416 2271459 2271586 "QUATCT2" 2271729 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-925 2265210 2268590 2268630 "QUATCAT" 2269409 NIL QUATCAT (NIL T) -9 NIL 2270174) (-924 2261354 2262391 2263778 "QUATCAT-" 2263872 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-923 2258875 2260439 2260480 "QUAGG" 2260855 NIL QUAGG (NIL T) -9 NIL 2261030) (-922 2257800 2258273 2258445 "QFORM" 2258747 NIL QFORM (NIL NIL T) -8 NIL NIL) (-921 2249097 2254355 2254395 "QFCAT" 2255053 NIL QFCAT (NIL T) -9 NIL 2256046) (-920 2244669 2245870 2247461 "QFCAT-" 2247555 NIL QFCAT- (NIL T T) -8 NIL NIL) (-919 2244307 2244350 2244477 "QFCAT2" 2244620 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-918 2243767 2243877 2244007 "QEQUAT" 2244197 T QEQUAT (NIL) -8 NIL NIL) (-917 2236953 2238024 2239206 "QCMPACK" 2242700 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-916 2234529 2234950 2235378 "QALGSET" 2236608 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-915 2233774 2233948 2234180 "QALGSET2" 2234349 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-914 2232465 2232688 2233005 "PWFFINTB" 2233547 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-913 2230653 2230821 2231174 "PUSHVAR" 2232279 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-912 2226571 2227625 2227666 "PTRANFN" 2229550 NIL PTRANFN (NIL T) -9 NIL NIL) (-911 2224983 2225274 2225595 "PTPACK" 2226282 NIL PTPACK (NIL T) -7 NIL NIL) (-910 2224619 2224676 2224783 "PTFUNC2" 2224920 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-909 2219096 2223437 2223477 "PTCAT" 2223845 NIL PTCAT (NIL T) -9 NIL 2224007) (-908 2218754 2218789 2218913 "PSQFR" 2219055 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-907 2217349 2217647 2217981 "PSEUDLIN" 2218452 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-906 2204157 2206521 2208844 "PSETPK" 2215109 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-905 2197244 2199958 2200052 "PSETCAT" 2203033 NIL PSETCAT (NIL T T T T) -9 NIL 2203847) (-904 2195082 2195716 2196535 "PSETCAT-" 2196540 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-903 2194431 2194596 2194624 "PSCURVE" 2194892 T PSCURVE (NIL) -9 NIL 2195059) (-902 2190883 2192409 2192473 "PSCAT" 2193309 NIL PSCAT (NIL T T T) -9 NIL 2193549) (-901 2189947 2190163 2190562 "PSCAT-" 2190567 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-900 2188600 2189232 2189446 "PRTITION" 2189753 T PRTITION (NIL) -8 NIL NIL) (-899 2177698 2179904 2182092 "PRS" 2186462 NIL PRS (NIL T T) -7 NIL NIL) (-898 2175557 2177049 2177089 "PRQAGG" 2177272 NIL PRQAGG (NIL T) -9 NIL 2177374) (-897 2175128 2175230 2175258 "PROPLOG" 2175443 T PROPLOG (NIL) -9 NIL NIL) (-896 2172251 2172816 2173343 "PROPFRML" 2174633 NIL PROPFRML (NIL T) -8 NIL NIL) (-895 2171711 2171821 2171951 "PROPERTY" 2172141 T PROPERTY (NIL) -8 NIL NIL) (-894 2165485 2169877 2170697 "PRODUCT" 2170937 NIL PRODUCT (NIL T T) -8 NIL NIL) (-893 2162761 2164945 2165178 "PR" 2165296 NIL PR (NIL T T) -8 NIL NIL) (-892 2162557 2162589 2162648 "PRINT" 2162722 T PRINT (NIL) -7 NIL NIL) (-891 2161897 2162014 2162166 "PRIMES" 2162437 NIL PRIMES (NIL T) -7 NIL NIL) (-890 2159962 2160363 2160829 "PRIMELT" 2161476 NIL PRIMELT (NIL T) -7 NIL NIL) (-889 2159691 2159740 2159768 "PRIMCAT" 2159892 T PRIMCAT (NIL) -9 NIL NIL) (-888 2155852 2159629 2159674 "PRIMARR" 2159679 NIL PRIMARR (NIL T) -8 NIL NIL) (-887 2154859 2155037 2155265 "PRIMARR2" 2155670 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-886 2154502 2154558 2154669 "PREASSOC" 2154797 NIL PREASSOC (NIL T T) -7 NIL NIL) (-885 2153977 2154110 2154138 "PPCURVE" 2154343 T PPCURVE (NIL) -9 NIL 2154479) (-884 2151336 2151735 2152327 "POLYROOT" 2153558 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-883 2145242 2150942 2151101 "POLY" 2151209 NIL POLY (NIL T) -8 NIL NIL) (-882 2144627 2144685 2144918 "POLYLIFT" 2145178 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-881 2140912 2141361 2141989 "POLYCATQ" 2144172 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-880 2127953 2133350 2133414 "POLYCAT" 2136899 NIL POLYCAT (NIL T T T) -9 NIL 2138826) (-879 2121404 2123265 2125648 "POLYCAT-" 2125653 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-878 2120993 2121061 2121180 "POLY2UP" 2121330 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-877 2120629 2120686 2120793 "POLY2" 2120930 NIL POLY2 (NIL T T) -7 NIL NIL) (-876 2119314 2119553 2119829 "POLUTIL" 2120403 NIL POLUTIL (NIL T T) -7 NIL NIL) (-875 2117676 2117953 2118283 "POLTOPOL" 2119036 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-874 2113199 2117613 2117658 "POINT" 2117663 NIL POINT (NIL T) -8 NIL NIL) (-873 2111386 2111743 2112118 "PNTHEORY" 2112844 T PNTHEORY (NIL) -7 NIL NIL) (-872 2109814 2110111 2110520 "PMTOOLS" 2111084 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-871 2109407 2109485 2109602 "PMSYM" 2109730 NIL PMSYM (NIL T) -7 NIL NIL) (-870 2108917 2108986 2109160 "PMQFCAT" 2109332 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-869 2108272 2108382 2108538 "PMPRED" 2108794 NIL PMPRED (NIL T) -7 NIL NIL) (-868 2107668 2107754 2107915 "PMPREDFS" 2108173 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-867 2106314 2106522 2106906 "PMPLCAT" 2107430 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-866 2105846 2105925 2106077 "PMLSAGG" 2106229 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-865 2105323 2105399 2105579 "PMKERNEL" 2105764 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-864 2104940 2105015 2105128 "PMINS" 2105242 NIL PMINS (NIL T) -7 NIL NIL) (-863 2104370 2104439 2104654 "PMFS" 2104865 NIL PMFS (NIL T T T) -7 NIL NIL) (-862 2103601 2103719 2103923 "PMDOWN" 2104247 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-861 2102764 2102923 2103105 "PMASS" 2103439 T PMASS (NIL) -7 NIL NIL) (-860 2102038 2102149 2102312 "PMASSFS" 2102650 NIL PMASSFS (NIL T T) -7 NIL NIL) (-859 2101693 2101761 2101855 "PLOTTOOL" 2101964 T PLOTTOOL (NIL) -7 NIL NIL) (-858 2096315 2097504 2098652 "PLOT" 2100565 T PLOT (NIL) -8 NIL NIL) (-857 2092129 2093163 2094084 "PLOT3D" 2095414 T PLOT3D (NIL) -8 NIL NIL) (-856 2091041 2091218 2091453 "PLOT1" 2091933 NIL PLOT1 (NIL T) -7 NIL NIL) (-855 2066436 2071107 2075958 "PLEQN" 2086307 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-854 2065754 2065876 2066056 "PINTERP" 2066301 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-853 2065447 2065494 2065597 "PINTERPA" 2065701 NIL PINTERPA (NIL T T) -7 NIL NIL) (-852 2064674 2065241 2065334 "PI" 2065374 T PI (NIL) -8 NIL NIL) (-851 2063066 2064051 2064079 "PID" 2064261 T PID (NIL) -9 NIL 2064395) (-850 2062791 2062828 2062916 "PICOERCE" 2063023 NIL PICOERCE (NIL T) -7 NIL NIL) (-849 2062112 2062250 2062426 "PGROEB" 2062647 NIL PGROEB (NIL T) -7 NIL NIL) (-848 2057699 2058513 2059418 "PGE" 2061227 T PGE (NIL) -7 NIL NIL) (-847 2055823 2056069 2056435 "PGCD" 2057416 NIL PGCD (NIL T T T T) -7 NIL NIL) (-846 2055161 2055264 2055425 "PFRPAC" 2055707 NIL PFRPAC (NIL T) -7 NIL NIL) (-845 2051776 2053709 2054062 "PFR" 2054840 NIL PFR (NIL T) -8 NIL NIL) (-844 2050165 2050409 2050734 "PFOTOOLS" 2051523 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-843 2048698 2048937 2049288 "PFOQ" 2049922 NIL PFOQ (NIL T T T) -7 NIL NIL) (-842 2047175 2047387 2047749 "PFO" 2048482 NIL PFO (NIL T T T T T) -7 NIL NIL) (-841 2043698 2047064 2047133 "PF" 2047138 NIL PF (NIL NIL) -8 NIL NIL) (-840 2041127 2042408 2042436 "PFECAT" 2043021 T PFECAT (NIL) -9 NIL 2043405) (-839 2040572 2040726 2040940 "PFECAT-" 2040945 NIL PFECAT- (NIL T) -8 NIL NIL) (-838 2039176 2039427 2039728 "PFBRU" 2040321 NIL PFBRU (NIL T T) -7 NIL NIL) (-837 2037043 2037394 2037826 "PFBR" 2038827 NIL PFBR (NIL T T T T) -7 NIL NIL) (-836 2032895 2034419 2035095 "PERM" 2036400 NIL PERM (NIL T) -8 NIL NIL) (-835 2028161 2029102 2029972 "PERMGRP" 2032058 NIL PERMGRP (NIL T) -8 NIL NIL) (-834 2026232 2027225 2027266 "PERMCAT" 2027712 NIL PERMCAT (NIL T) -9 NIL 2028017) (-833 2025887 2025928 2026051 "PERMAN" 2026185 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-832 2023327 2025456 2025587 "PENDTREE" 2025789 NIL PENDTREE (NIL T) -8 NIL NIL) (-831 2021400 2022178 2022219 "PDRING" 2022876 NIL PDRING (NIL T) -9 NIL 2023161) (-830 2020503 2020721 2021083 "PDRING-" 2021088 NIL PDRING- (NIL T T) -8 NIL NIL) (-829 2017645 2018395 2019086 "PDEPROB" 2019832 T PDEPROB (NIL) -8 NIL NIL) (-828 2015216 2015712 2016261 "PDEPACK" 2017116 T PDEPACK (NIL) -7 NIL NIL) (-827 2014128 2014318 2014569 "PDECOMP" 2015015 NIL PDECOMP (NIL T T) -7 NIL NIL) (-826 2011740 2012555 2012583 "PDECAT" 2013368 T PDECAT (NIL) -9 NIL 2014079) (-825 2011493 2011526 2011615 "PCOMP" 2011701 NIL PCOMP (NIL T T) -7 NIL NIL) (-824 2009700 2010296 2010592 "PBWLB" 2011223 NIL PBWLB (NIL T) -8 NIL NIL) (-823 2002209 2003777 2005113 "PATTERN" 2008385 NIL PATTERN (NIL T) -8 NIL NIL) (-822 2001841 2001898 2002007 "PATTERN2" 2002146 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-821 1999598 1999986 2000443 "PATTERN1" 2001430 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-820 1996993 1997547 1998028 "PATRES" 1999163 NIL PATRES (NIL T T) -8 NIL NIL) (-819 1996557 1996624 1996756 "PATRES2" 1996920 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-818 1994454 1994854 1995259 "PATMATCH" 1996226 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-817 1993991 1994174 1994215 "PATMAB" 1994322 NIL PATMAB (NIL T) -9 NIL 1994405) (-816 1992536 1992845 1993103 "PATLRES" 1993796 NIL PATLRES (NIL T T T) -8 NIL NIL) (-815 1992082 1992205 1992246 "PATAB" 1992251 NIL PATAB (NIL T) -9 NIL 1992423) (-814 1989563 1990095 1990668 "PARTPERM" 1991529 T PARTPERM (NIL) -7 NIL NIL) (-813 1989184 1989247 1989349 "PARSURF" 1989494 NIL PARSURF (NIL T) -8 NIL NIL) (-812 1988816 1988873 1988982 "PARSU2" 1989121 NIL PARSU2 (NIL T T) -7 NIL NIL) (-811 1988580 1988620 1988687 "PARSER" 1988769 T PARSER (NIL) -7 NIL NIL) (-810 1988201 1988264 1988366 "PARSCURV" 1988511 NIL PARSCURV (NIL T) -8 NIL NIL) (-809 1987833 1987890 1987999 "PARSC2" 1988138 NIL PARSC2 (NIL T T) -7 NIL NIL) (-808 1987472 1987530 1987627 "PARPCURV" 1987769 NIL PARPCURV (NIL T) -8 NIL NIL) (-807 1987104 1987161 1987270 "PARPC2" 1987409 NIL PARPC2 (NIL T T) -7 NIL NIL) (-806 1986624 1986710 1986829 "PAN2EXPR" 1987005 T PAN2EXPR (NIL) -7 NIL NIL) (-805 1985430 1985745 1985973 "PALETTE" 1986416 T PALETTE (NIL) -8 NIL NIL) (-804 1983898 1984435 1984795 "PAIR" 1985116 NIL PAIR (NIL T T) -8 NIL NIL) (-803 1977748 1983157 1983351 "PADICRC" 1983753 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-802 1970956 1977094 1977278 "PADICRAT" 1977596 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-801 1969260 1970893 1970938 "PADIC" 1970943 NIL PADIC (NIL NIL) -8 NIL NIL) (-800 1966465 1968039 1968079 "PADICCT" 1968660 NIL PADICCT (NIL NIL) -9 NIL 1968942) (-799 1965422 1965622 1965890 "PADEPAC" 1966252 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-798 1964634 1964767 1964973 "PADE" 1965284 NIL PADE (NIL T T T) -7 NIL NIL) (-797 1962645 1963477 1963792 "OWP" 1964402 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-796 1961754 1962250 1962422 "OVAR" 1962513 NIL OVAR (NIL NIL) -8 NIL NIL) (-795 1961018 1961139 1961300 "OUT" 1961613 T OUT (NIL) -7 NIL NIL) (-794 1950064 1952243 1954413 "OUTFORM" 1958868 T OUTFORM (NIL) -8 NIL NIL) (-793 1949472 1949793 1949882 "OSI" 1949995 T OSI (NIL) -8 NIL NIL) (-792 1948217 1948444 1948729 "ORTHPOL" 1949219 NIL ORTHPOL (NIL T) -7 NIL NIL) (-791 1945588 1947878 1948016 "OREUP" 1948160 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-790 1942984 1945281 1945407 "ORESUP" 1945530 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-789 1940519 1941019 1941579 "OREPCTO" 1942473 NIL OREPCTO (NIL T T) -7 NIL NIL) (-788 1934429 1936635 1936675 "OREPCAT" 1938996 NIL OREPCAT (NIL T) -9 NIL 1940099) (-787 1931577 1932359 1933416 "OREPCAT-" 1933421 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-786 1930755 1931027 1931055 "ORDSET" 1931364 T ORDSET (NIL) -9 NIL 1931528) (-785 1930274 1930396 1930589 "ORDSET-" 1930594 NIL ORDSET- (NIL T) -8 NIL NIL) (-784 1928888 1929689 1929717 "ORDRING" 1929919 T ORDRING (NIL) -9 NIL 1930043) (-783 1928533 1928627 1928771 "ORDRING-" 1928776 NIL ORDRING- (NIL T) -8 NIL NIL) (-782 1927909 1928390 1928418 "ORDMON" 1928423 T ORDMON (NIL) -9 NIL 1928444) (-781 1927071 1927218 1927413 "ORDFUNS" 1927758 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-780 1926583 1926942 1926970 "ORDFIN" 1926975 T ORDFIN (NIL) -9 NIL 1926996) (-779 1923095 1925169 1925578 "ORDCOMP" 1926207 NIL ORDCOMP (NIL T) -8 NIL NIL) (-778 1922361 1922488 1922674 "ORDCOMP2" 1922955 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-777 1918869 1919751 1920588 "OPTPROB" 1921544 T OPTPROB (NIL) -8 NIL NIL) (-776 1915711 1916340 1917034 "OPTPACK" 1918195 T OPTPACK (NIL) -7 NIL NIL) (-775 1913437 1914173 1914201 "OPTCAT" 1915016 T OPTCAT (NIL) -9 NIL 1915662) (-774 1913205 1913244 1913310 "OPQUERY" 1913391 T OPQUERY (NIL) -7 NIL NIL) (-773 1910341 1911532 1912032 "OP" 1912737 NIL OP (NIL T) -8 NIL NIL) (-772 1907106 1909138 1909507 "ONECOMP" 1910005 NIL ONECOMP (NIL T) -8 NIL NIL) (-771 1906411 1906526 1906700 "ONECOMP2" 1906978 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-770 1905830 1905936 1906066 "OMSERVER" 1906301 T OMSERVER (NIL) -7 NIL NIL) (-769 1902719 1905271 1905311 "OMSAGG" 1905372 NIL OMSAGG (NIL T) -9 NIL 1905436) (-768 1901342 1901605 1901887 "OMPKG" 1902457 T OMPKG (NIL) -7 NIL NIL) (-767 1900772 1900875 1900903 "OM" 1901202 T OM (NIL) -9 NIL NIL) (-766 1899311 1900324 1900492 "OMLO" 1900653 NIL OMLO (NIL T T) -8 NIL NIL) (-765 1898241 1898388 1898614 "OMEXPR" 1899137 NIL OMEXPR (NIL T) -7 NIL NIL) (-764 1897559 1897787 1897923 "OMERR" 1898125 T OMERR (NIL) -8 NIL NIL) (-763 1896737 1896980 1897140 "OMERRK" 1897419 T OMERRK (NIL) -8 NIL NIL) (-762 1896215 1896414 1896522 "OMENC" 1896649 T OMENC (NIL) -8 NIL NIL) (-761 1890110 1891295 1892466 "OMDEV" 1895064 T OMDEV (NIL) -8 NIL NIL) (-760 1889179 1889350 1889544 "OMCONN" 1889936 T OMCONN (NIL) -8 NIL NIL) (-759 1887795 1888781 1888809 "OINTDOM" 1888814 T OINTDOM (NIL) -9 NIL 1888835) (-758 1883557 1884787 1885502 "OFMONOID" 1887112 NIL OFMONOID (NIL T) -8 NIL NIL) (-757 1882995 1883494 1883539 "ODVAR" 1883544 NIL ODVAR (NIL T) -8 NIL NIL) (-756 1880120 1882492 1882677 "ODR" 1882870 NIL ODR (NIL T T NIL) -8 NIL NIL) (-755 1872426 1879899 1880023 "ODPOL" 1880028 NIL ODPOL (NIL T) -8 NIL NIL) (-754 1866249 1872298 1872403 "ODP" 1872408 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-753 1865015 1865230 1865505 "ODETOOLS" 1866023 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-752 1861984 1862640 1863356 "ODESYS" 1864348 NIL ODESYS (NIL T T) -7 NIL NIL) (-751 1856888 1857796 1858819 "ODERTRIC" 1861059 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-750 1856314 1856396 1856590 "ODERED" 1856800 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-749 1853216 1853764 1854439 "ODERAT" 1855737 NIL ODERAT (NIL T T) -7 NIL NIL) (-748 1850184 1850648 1851244 "ODEPRRIC" 1852745 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-747 1848055 1848622 1849131 "ODEPROB" 1849695 T ODEPROB (NIL) -8 NIL NIL) (-746 1844587 1845070 1845716 "ODEPRIM" 1847534 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-745 1843840 1843942 1844200 "ODEPAL" 1844479 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-744 1840042 1840823 1841677 "ODEPACK" 1843006 T ODEPACK (NIL) -7 NIL NIL) (-743 1839079 1839186 1839414 "ODEINT" 1839931 NIL ODEINT (NIL T T) -7 NIL NIL) (-742 1833180 1834605 1836052 "ODEIFTBL" 1837652 T ODEIFTBL (NIL) -8 NIL NIL) (-741 1828524 1829310 1830268 "ODEEF" 1832339 NIL ODEEF (NIL T T) -7 NIL NIL) (-740 1827861 1827950 1828179 "ODECONST" 1828429 NIL ODECONST (NIL T T T) -7 NIL NIL) (-739 1826019 1826652 1826680 "ODECAT" 1827283 T ODECAT (NIL) -9 NIL 1827812) (-738 1822891 1825731 1825850 "OCT" 1825932 NIL OCT (NIL T) -8 NIL NIL) (-737 1822529 1822572 1822699 "OCTCT2" 1822842 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-736 1817363 1819801 1819841 "OC" 1820937 NIL OC (NIL T) -9 NIL 1821794) (-735 1814590 1815338 1816328 "OC-" 1816422 NIL OC- (NIL T T) -8 NIL NIL) (-734 1813969 1814411 1814439 "OCAMON" 1814444 T OCAMON (NIL) -9 NIL 1814465) (-733 1813423 1813830 1813858 "OASGP" 1813863 T OASGP (NIL) -9 NIL 1813883) (-732 1812711 1813174 1813202 "OAMONS" 1813242 T OAMONS (NIL) -9 NIL 1813285) (-731 1812152 1812559 1812587 "OAMON" 1812592 T OAMON (NIL) -9 NIL 1812612) (-730 1811457 1811949 1811977 "OAGROUP" 1811982 T OAGROUP (NIL) -9 NIL 1812002) (-729 1811147 1811197 1811285 "NUMTUBE" 1811401 NIL NUMTUBE (NIL T) -7 NIL NIL) (-728 1804720 1806238 1807774 "NUMQUAD" 1809631 T NUMQUAD (NIL) -7 NIL NIL) (-727 1800476 1801464 1802489 "NUMODE" 1803715 T NUMODE (NIL) -7 NIL NIL) (-726 1797880 1798726 1798754 "NUMINT" 1799671 T NUMINT (NIL) -9 NIL 1800427) (-725 1796828 1797025 1797243 "NUMFMT" 1797682 T NUMFMT (NIL) -7 NIL NIL) (-724 1783210 1786144 1788674 "NUMERIC" 1794337 NIL NUMERIC (NIL T) -7 NIL NIL) (-723 1777611 1782663 1782757 "NTSCAT" 1782762 NIL NTSCAT (NIL T T T T) -9 NIL 1782800) (-722 1776805 1776970 1777163 "NTPOLFN" 1777450 NIL NTPOLFN (NIL T) -7 NIL NIL) (-721 1764621 1773647 1774457 "NSUP" 1776027 NIL NSUP (NIL T) -8 NIL NIL) (-720 1764257 1764314 1764421 "NSUP2" 1764558 NIL NSUP2 (NIL T T) -7 NIL NIL) (-719 1754219 1764036 1764166 "NSMP" 1764171 NIL NSMP (NIL T T) -8 NIL NIL) (-718 1752651 1752952 1753309 "NREP" 1753907 NIL NREP (NIL T) -7 NIL NIL) (-717 1751242 1751494 1751852 "NPCOEF" 1752394 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-716 1750308 1750423 1750639 "NORMRETR" 1751123 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-715 1748361 1748651 1749058 "NORMPK" 1750016 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-714 1748046 1748074 1748198 "NORMMA" 1748327 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-713 1747873 1748003 1748032 "NONE" 1748037 T NONE (NIL) -8 NIL NIL) (-712 1747662 1747691 1747760 "NONE1" 1747837 NIL NONE1 (NIL T) -7 NIL NIL) (-711 1747147 1747209 1747394 "NODE1" 1747594 NIL NODE1 (NIL T T) -7 NIL NIL) (-710 1745440 1746310 1746565 "NNI" 1746912 T NNI (NIL) -8 NIL NIL) (-709 1743860 1744173 1744537 "NLINSOL" 1745108 NIL NLINSOL (NIL T) -7 NIL NIL) (-708 1740028 1740995 1741917 "NIPROB" 1742958 T NIPROB (NIL) -8 NIL NIL) (-707 1738785 1739019 1739321 "NFINTBAS" 1739790 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-706 1737493 1737724 1738005 "NCODIV" 1738553 NIL NCODIV (NIL T T) -7 NIL NIL) (-705 1737255 1737292 1737367 "NCNTFRAC" 1737450 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-704 1735435 1735799 1736219 "NCEP" 1736880 NIL NCEP (NIL T) -7 NIL NIL) (-703 1734347 1735086 1735114 "NASRING" 1735224 T NASRING (NIL) -9 NIL 1735298) (-702 1734142 1734186 1734280 "NASRING-" 1734285 NIL NASRING- (NIL T) -8 NIL NIL) (-701 1733296 1733795 1733823 "NARNG" 1733940 T NARNG (NIL) -9 NIL 1734031) (-700 1732988 1733055 1733189 "NARNG-" 1733194 NIL NARNG- (NIL T) -8 NIL NIL) (-699 1731867 1732074 1732309 "NAGSP" 1732773 T NAGSP (NIL) -7 NIL NIL) (-698 1723291 1724937 1726572 "NAGS" 1730252 T NAGS (NIL) -7 NIL NIL) (-697 1721855 1722159 1722486 "NAGF07" 1722984 T NAGF07 (NIL) -7 NIL NIL) (-696 1716437 1717717 1719013 "NAGF04" 1720579 T NAGF04 (NIL) -7 NIL NIL) (-695 1709469 1711067 1712684 "NAGF02" 1714840 T NAGF02 (NIL) -7 NIL NIL) (-694 1704733 1705823 1706930 "NAGF01" 1708382 T NAGF01 (NIL) -7 NIL NIL) (-693 1698393 1699951 1701528 "NAGE04" 1703176 T NAGE04 (NIL) -7 NIL NIL) (-692 1689634 1691737 1693849 "NAGE02" 1696301 T NAGE02 (NIL) -7 NIL NIL) (-691 1685627 1686564 1687518 "NAGE01" 1688700 T NAGE01 (NIL) -7 NIL NIL) (-690 1683434 1683965 1684520 "NAGD03" 1685092 T NAGD03 (NIL) -7 NIL NIL) (-689 1675220 1677139 1679084 "NAGD02" 1681509 T NAGD02 (NIL) -7 NIL NIL) (-688 1669079 1670492 1671920 "NAGD01" 1673812 T NAGD01 (NIL) -7 NIL NIL) (-687 1665336 1666146 1666971 "NAGC06" 1668274 T NAGC06 (NIL) -7 NIL NIL) (-686 1663813 1664142 1664495 "NAGC05" 1665003 T NAGC05 (NIL) -7 NIL NIL) (-685 1663197 1663314 1663456 "NAGC02" 1663691 T NAGC02 (NIL) -7 NIL NIL) (-684 1662259 1662816 1662856 "NAALG" 1662935 NIL NAALG (NIL T) -9 NIL 1662996) (-683 1662094 1662123 1662213 "NAALG-" 1662218 NIL NAALG- (NIL T T) -8 NIL NIL) (-682 1656044 1657152 1658339 "MULTSQFR" 1660990 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-681 1655363 1655438 1655622 "MULTFACT" 1655956 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-680 1648557 1652468 1652520 "MTSCAT" 1653580 NIL MTSCAT (NIL T T) -9 NIL 1654094) (-679 1648269 1648323 1648415 "MTHING" 1648497 NIL MTHING (NIL T) -7 NIL NIL) (-678 1648061 1648094 1648154 "MSYSCMD" 1648229 T MSYSCMD (NIL) -7 NIL NIL) (-677 1644173 1646816 1647136 "MSET" 1647774 NIL MSET (NIL T) -8 NIL NIL) (-676 1641269 1643735 1643776 "MSETAGG" 1643781 NIL MSETAGG (NIL T) -9 NIL 1643815) (-675 1637125 1638667 1639408 "MRING" 1640572 NIL MRING (NIL T T) -8 NIL NIL) (-674 1636695 1636762 1636891 "MRF2" 1637052 NIL MRF2 (NIL T T T) -7 NIL NIL) (-673 1636313 1636348 1636492 "MRATFAC" 1636654 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-672 1633925 1634220 1634651 "MPRFF" 1636018 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-671 1627945 1633780 1633876 "MPOLY" 1633881 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-670 1627435 1627470 1627678 "MPCPF" 1627904 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-669 1626951 1626994 1627177 "MPC3" 1627386 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-668 1626152 1626233 1626452 "MPC2" 1626866 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-667 1624453 1624790 1625180 "MONOTOOL" 1625812 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-666 1623578 1623913 1623941 "MONOID" 1624218 T MONOID (NIL) -9 NIL 1624390) (-665 1622956 1623119 1623362 "MONOID-" 1623367 NIL MONOID- (NIL T) -8 NIL NIL) (-664 1613937 1619923 1619982 "MONOGEN" 1620656 NIL MONOGEN (NIL T T) -9 NIL 1621112) (-663 1611155 1611890 1612890 "MONOGEN-" 1613009 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-662 1610015 1610435 1610463 "MONADWU" 1610855 T MONADWU (NIL) -9 NIL 1611093) (-661 1609387 1609546 1609794 "MONADWU-" 1609799 NIL MONADWU- (NIL T) -8 NIL NIL) (-660 1608773 1608991 1609019 "MONAD" 1609226 T MONAD (NIL) -9 NIL 1609338) (-659 1608458 1608536 1608668 "MONAD-" 1608673 NIL MONAD- (NIL T) -8 NIL NIL) (-658 1606709 1607371 1607650 "MOEBIUS" 1608211 NIL MOEBIUS (NIL T) -8 NIL NIL) (-657 1606103 1606481 1606521 "MODULE" 1606526 NIL MODULE (NIL T) -9 NIL 1606552) (-656 1605671 1605767 1605957 "MODULE-" 1605962 NIL MODULE- (NIL T T) -8 NIL NIL) (-655 1603342 1604037 1604363 "MODRING" 1605496 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-654 1600298 1601463 1601980 "MODOP" 1602874 NIL MODOP (NIL T T) -8 NIL NIL) (-653 1598485 1598937 1599278 "MODMONOM" 1600097 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-652 1588163 1596689 1597111 "MODMON" 1598113 NIL MODMON (NIL T T) -8 NIL NIL) (-651 1585289 1587007 1587283 "MODFIELD" 1588038 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-650 1584293 1584570 1584760 "MMLFORM" 1585119 T MMLFORM (NIL) -8 NIL NIL) (-649 1583819 1583862 1584041 "MMAP" 1584244 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-648 1582056 1582833 1582873 "MLO" 1583290 NIL MLO (NIL T) -9 NIL 1583531) (-647 1579423 1579938 1580540 "MLIFT" 1581537 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-646 1578814 1578898 1579052 "MKUCFUNC" 1579334 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-645 1578413 1578483 1578606 "MKRECORD" 1578737 NIL MKRECORD (NIL T T) -7 NIL NIL) (-644 1577461 1577622 1577850 "MKFUNC" 1578224 NIL MKFUNC (NIL T) -7 NIL NIL) (-643 1576849 1576953 1577109 "MKFLCFN" 1577344 NIL MKFLCFN (NIL T) -7 NIL NIL) (-642 1576275 1576642 1576731 "MKCHSET" 1576793 NIL MKCHSET (NIL T) -8 NIL NIL) (-641 1575552 1575654 1575839 "MKBCFUNC" 1576168 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-640 1572236 1575106 1575242 "MINT" 1575436 T MINT (NIL) -8 NIL NIL) (-639 1571048 1571291 1571568 "MHROWRED" 1571991 NIL MHROWRED (NIL T) -7 NIL NIL) (-638 1566319 1569493 1569917 "MFLOAT" 1570644 T MFLOAT (NIL) -8 NIL NIL) (-637 1565676 1565752 1565923 "MFINFACT" 1566231 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-636 1561991 1562839 1563723 "MESH" 1564812 T MESH (NIL) -7 NIL NIL) (-635 1560381 1560693 1561046 "MDDFACT" 1561678 NIL MDDFACT (NIL T) -7 NIL NIL) (-634 1557224 1559541 1559582 "MDAGG" 1559837 NIL MDAGG (NIL T) -9 NIL 1559980) (-633 1546922 1556517 1556724 "MCMPLX" 1557037 T MCMPLX (NIL) -8 NIL NIL) (-632 1546063 1546209 1546409 "MCDEN" 1546771 NIL MCDEN (NIL T T) -7 NIL NIL) (-631 1543953 1544223 1544603 "MCALCFN" 1545793 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-630 1541575 1542098 1542659 "MATSTOR" 1543424 NIL MATSTOR (NIL T) -7 NIL NIL) (-629 1537584 1540950 1541197 "MATRIX" 1541360 NIL MATRIX (NIL T) -8 NIL NIL) (-628 1533354 1534057 1534793 "MATLIN" 1536941 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-627 1523552 1526690 1526766 "MATCAT" 1531604 NIL MATCAT (NIL T T T) -9 NIL 1533021) (-626 1519917 1520930 1522285 "MATCAT-" 1522290 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-625 1518519 1518672 1519003 "MATCAT2" 1519752 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-624 1516631 1516955 1517339 "MAPPKG3" 1518194 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-623 1515612 1515785 1516007 "MAPPKG2" 1516455 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-622 1514111 1514395 1514722 "MAPPKG1" 1515318 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-621 1513722 1513780 1513903 "MAPHACK3" 1514047 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-620 1513314 1513375 1513489 "MAPHACK2" 1513654 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-619 1512752 1512855 1512997 "MAPHACK1" 1513205 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-618 1510860 1511454 1511757 "MAGMA" 1512481 NIL MAGMA (NIL T) -8 NIL NIL) (-617 1507334 1509104 1509564 "M3D" 1510433 NIL M3D (NIL T) -8 NIL NIL) (-616 1501490 1505705 1505746 "LZSTAGG" 1506528 NIL LZSTAGG (NIL T) -9 NIL 1506823) (-615 1497463 1498621 1500078 "LZSTAGG-" 1500083 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-614 1494579 1495356 1495842 "LWORD" 1497009 NIL LWORD (NIL T) -8 NIL NIL) (-613 1487739 1494350 1494484 "LSQM" 1494489 NIL LSQM (NIL NIL T) -8 NIL NIL) (-612 1486963 1487102 1487330 "LSPP" 1487594 NIL LSPP (NIL T T T T) -7 NIL NIL) (-611 1484775 1485076 1485532 "LSMP" 1486652 NIL LSMP (NIL T T T T) -7 NIL NIL) (-610 1481554 1482228 1482958 "LSMP1" 1484077 NIL LSMP1 (NIL T) -7 NIL NIL) (-609 1475481 1480723 1480764 "LSAGG" 1480826 NIL LSAGG (NIL T) -9 NIL 1480904) (-608 1472176 1473100 1474313 "LSAGG-" 1474318 NIL LSAGG- (NIL T T) -8 NIL NIL) (-607 1469802 1471320 1471569 "LPOLY" 1471971 NIL LPOLY (NIL T T) -8 NIL NIL) (-606 1469384 1469469 1469592 "LPEFRAC" 1469711 NIL LPEFRAC (NIL T) -7 NIL NIL) (-605 1467731 1468478 1468731 "LO" 1469216 NIL LO (NIL T T T) -8 NIL NIL) (-604 1467385 1467497 1467525 "LOGIC" 1467636 T LOGIC (NIL) -9 NIL 1467716) (-603 1467247 1467270 1467341 "LOGIC-" 1467346 NIL LOGIC- (NIL T) -8 NIL NIL) (-602 1466440 1466580 1466773 "LODOOPS" 1467103 NIL LODOOPS (NIL T T) -7 NIL NIL) (-601 1463858 1466357 1466422 "LODO" 1466427 NIL LODO (NIL T NIL) -8 NIL NIL) (-600 1462404 1462639 1462990 "LODOF" 1463605 NIL LODOF (NIL T T) -7 NIL NIL) (-599 1458824 1461260 1461300 "LODOCAT" 1461732 NIL LODOCAT (NIL T) -9 NIL 1461943) (-598 1458558 1458616 1458742 "LODOCAT-" 1458747 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-597 1455872 1458399 1458517 "LODO2" 1458522 NIL LODO2 (NIL T T) -8 NIL NIL) (-596 1453301 1455809 1455854 "LODO1" 1455859 NIL LODO1 (NIL T) -8 NIL NIL) (-595 1452164 1452329 1452640 "LODEEF" 1453124 NIL LODEEF (NIL T T T) -7 NIL NIL) (-594 1447451 1450295 1450336 "LNAGG" 1451283 NIL LNAGG (NIL T) -9 NIL 1451727) (-593 1446598 1446812 1447154 "LNAGG-" 1447159 NIL LNAGG- (NIL T T) -8 NIL NIL) (-592 1442763 1443525 1444163 "LMOPS" 1446014 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-591 1442161 1442523 1442563 "LMODULE" 1442623 NIL LMODULE (NIL T) -9 NIL 1442665) (-590 1439407 1441806 1441929 "LMDICT" 1442071 NIL LMDICT (NIL T) -8 NIL NIL) (-589 1432634 1438353 1438651 "LIST" 1439142 NIL LIST (NIL T) -8 NIL NIL) (-588 1432159 1432233 1432372 "LIST3" 1432554 NIL LIST3 (NIL T T T) -7 NIL NIL) (-587 1431166 1431344 1431572 "LIST2" 1431977 NIL LIST2 (NIL T T) -7 NIL NIL) (-586 1429300 1429612 1430011 "LIST2MAP" 1430813 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-585 1428013 1428693 1428733 "LINEXP" 1428986 NIL LINEXP (NIL T) -9 NIL 1429134) (-584 1426660 1426920 1427217 "LINDEP" 1427765 NIL LINDEP (NIL T T) -7 NIL NIL) (-583 1423427 1424146 1424923 "LIMITRF" 1425915 NIL LIMITRF (NIL T) -7 NIL NIL) (-582 1421707 1422002 1422417 "LIMITPS" 1423122 NIL LIMITPS (NIL T T) -7 NIL NIL) (-581 1416162 1421218 1421446 "LIE" 1421528 NIL LIE (NIL T T) -8 NIL NIL) (-580 1415213 1415656 1415696 "LIECAT" 1415836 NIL LIECAT (NIL T) -9 NIL 1415987) (-579 1415054 1415081 1415169 "LIECAT-" 1415174 NIL LIECAT- (NIL T T) -8 NIL NIL) (-578 1407666 1414503 1414668 "LIB" 1414909 T LIB (NIL) -8 NIL NIL) (-577 1403303 1404184 1405119 "LGROBP" 1406783 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-576 1401169 1401443 1401805 "LF" 1403024 NIL LF (NIL T T) -7 NIL NIL) (-575 1400009 1400701 1400729 "LFCAT" 1400936 T LFCAT (NIL) -9 NIL 1401075) (-574 1396921 1397547 1398233 "LEXTRIPK" 1399375 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-573 1393627 1394491 1394994 "LEXP" 1396501 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-572 1392025 1392338 1392739 "LEADCDET" 1393309 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-571 1391221 1391295 1391522 "LAZM3PK" 1391946 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-570 1386137 1389300 1389837 "LAUPOL" 1390734 NIL LAUPOL (NIL T T) -8 NIL NIL) (-569 1385704 1385748 1385915 "LAPLACE" 1386087 NIL LAPLACE (NIL T T) -7 NIL NIL) (-568 1383632 1384805 1385056 "LA" 1385537 NIL LA (NIL T T T) -8 NIL NIL) (-567 1382695 1383289 1383329 "LALG" 1383390 NIL LALG (NIL T) -9 NIL 1383448) (-566 1382410 1382469 1382604 "LALG-" 1382609 NIL LALG- (NIL T T) -8 NIL NIL) (-565 1381320 1381507 1381804 "KOVACIC" 1382210 NIL KOVACIC (NIL T T) -7 NIL NIL) (-564 1381155 1381179 1381220 "KONVERT" 1381282 NIL KONVERT (NIL T) -9 NIL NIL) (-563 1380990 1381014 1381055 "KOERCE" 1381117 NIL KOERCE (NIL T) -9 NIL NIL) (-562 1378724 1379484 1379877 "KERNEL" 1380629 NIL KERNEL (NIL T) -8 NIL NIL) (-561 1378226 1378307 1378437 "KERNEL2" 1378638 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-560 1372078 1376766 1376820 "KDAGG" 1377197 NIL KDAGG (NIL T T) -9 NIL 1377403) (-559 1371607 1371731 1371936 "KDAGG-" 1371941 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-558 1364782 1371268 1371423 "KAFILE" 1371485 NIL KAFILE (NIL T) -8 NIL NIL) (-557 1359237 1364293 1364521 "JORDAN" 1364603 NIL JORDAN (NIL T T) -8 NIL NIL) (-556 1355537 1357443 1357497 "IXAGG" 1358426 NIL IXAGG (NIL T T) -9 NIL 1358885) (-555 1354456 1354762 1355181 "IXAGG-" 1355186 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-554 1350041 1354378 1354437 "IVECTOR" 1354442 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-553 1348807 1349044 1349310 "ITUPLE" 1349808 NIL ITUPLE (NIL T) -8 NIL NIL) (-552 1347243 1347420 1347726 "ITRIGMNP" 1348629 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-551 1345988 1346192 1346475 "ITFUN3" 1347019 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-550 1345620 1345677 1345786 "ITFUN2" 1345925 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-549 1343422 1344493 1344790 "ITAYLOR" 1345355 NIL ITAYLOR (NIL T) -8 NIL NIL) (-548 1332410 1337608 1338767 "ISUPS" 1342295 NIL ISUPS (NIL T) -8 NIL NIL) (-547 1331514 1331654 1331890 "ISUMP" 1332257 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-546 1326778 1331315 1331394 "ISTRING" 1331467 NIL ISTRING (NIL NIL) -8 NIL NIL) (-545 1325991 1326072 1326287 "IRURPK" 1326692 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-544 1324927 1325128 1325368 "IRSN" 1325771 T IRSN (NIL) -7 NIL NIL) (-543 1322962 1323317 1323752 "IRRF2F" 1324565 NIL IRRF2F (NIL T) -7 NIL NIL) (-542 1322709 1322747 1322823 "IRREDFFX" 1322918 NIL IRREDFFX (NIL T) -7 NIL NIL) (-541 1321324 1321583 1321882 "IROOT" 1322442 NIL IROOT (NIL T) -7 NIL NIL) (-540 1317962 1319013 1319703 "IR" 1320666 NIL IR (NIL T) -8 NIL NIL) (-539 1315575 1316070 1316636 "IR2" 1317440 NIL IR2 (NIL T T) -7 NIL NIL) (-538 1314651 1314764 1314984 "IR2F" 1315458 NIL IR2F (NIL T T) -7 NIL NIL) (-537 1314442 1314476 1314536 "IPRNTPK" 1314611 T IPRNTPK (NIL) -7 NIL NIL) (-536 1310996 1314331 1314400 "IPF" 1314405 NIL IPF (NIL NIL) -8 NIL NIL) (-535 1309313 1310921 1310978 "IPADIC" 1310983 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-534 1308812 1308870 1309059 "INVLAPLA" 1309249 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-533 1298461 1300814 1303200 "INTTR" 1306476 NIL INTTR (NIL T T) -7 NIL NIL) (-532 1294809 1295550 1296413 "INTTOOLS" 1297647 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-531 1294395 1294486 1294603 "INTSLPE" 1294712 T INTSLPE (NIL) -7 NIL NIL) (-530 1292345 1294318 1294377 "INTRVL" 1294382 NIL INTRVL (NIL T) -8 NIL NIL) (-529 1289952 1290464 1291038 "INTRF" 1291830 NIL INTRF (NIL T) -7 NIL NIL) (-528 1289367 1289464 1289605 "INTRET" 1289850 NIL INTRET (NIL T) -7 NIL NIL) (-527 1287369 1287758 1288227 "INTRAT" 1288975 NIL INTRAT (NIL T T) -7 NIL NIL) (-526 1284602 1285185 1285810 "INTPM" 1286854 NIL INTPM (NIL T T) -7 NIL NIL) (-525 1281311 1281910 1282654 "INTPAF" 1283988 NIL INTPAF (NIL T T T) -7 NIL NIL) (-524 1276554 1277500 1278535 "INTPACK" 1280296 T INTPACK (NIL) -7 NIL NIL) (-523 1273408 1276283 1276410 "INT" 1276447 T INT (NIL) -8 NIL NIL) (-522 1272660 1272812 1273020 "INTHERTR" 1273250 NIL INTHERTR (NIL T T) -7 NIL NIL) (-521 1272099 1272179 1272367 "INTHERAL" 1272574 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-520 1269945 1270388 1270845 "INTHEORY" 1271662 T INTHEORY (NIL) -7 NIL NIL) (-519 1261268 1262888 1264666 "INTG0" 1268297 NIL INTG0 (NIL T T T) -7 NIL NIL) (-518 1241841 1246631 1251441 "INTFTBL" 1256478 T INTFTBL (NIL) -8 NIL NIL) (-517 1241090 1241228 1241401 "INTFACT" 1241700 NIL INTFACT (NIL T) -7 NIL NIL) (-516 1238481 1238927 1239490 "INTEF" 1240644 NIL INTEF (NIL T T) -7 NIL NIL) (-515 1236943 1237692 1237720 "INTDOM" 1238021 T INTDOM (NIL) -9 NIL 1238228) (-514 1236312 1236486 1236728 "INTDOM-" 1236733 NIL INTDOM- (NIL T) -8 NIL NIL) (-513 1232805 1234737 1234791 "INTCAT" 1235590 NIL INTCAT (NIL T) -9 NIL 1235909) (-512 1232278 1232380 1232508 "INTBIT" 1232697 T INTBIT (NIL) -7 NIL NIL) (-511 1230953 1231107 1231420 "INTALG" 1232123 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-510 1230410 1230500 1230670 "INTAF" 1230857 NIL INTAF (NIL T T) -7 NIL NIL) (-509 1223864 1230220 1230360 "INTABL" 1230365 NIL INTABL (NIL T T T) -8 NIL NIL) (-508 1218815 1221544 1221572 "INS" 1222540 T INS (NIL) -9 NIL 1223221) (-507 1216055 1216826 1217800 "INS-" 1217873 NIL INS- (NIL T) -8 NIL NIL) (-506 1214834 1215061 1215358 "INPSIGN" 1215808 NIL INPSIGN (NIL T T) -7 NIL NIL) (-505 1213952 1214069 1214266 "INPRODPF" 1214714 NIL INPRODPF (NIL T T) -7 NIL NIL) (-504 1212846 1212963 1213200 "INPRODFF" 1213832 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-503 1211846 1211998 1212258 "INNMFACT" 1212682 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-502 1211043 1211140 1211328 "INMODGCD" 1211745 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-501 1209552 1209796 1210120 "INFSP" 1210788 NIL INFSP (NIL T T T) -7 NIL NIL) (-500 1208736 1208853 1209036 "INFPROD0" 1209432 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-499 1205746 1206905 1207396 "INFORM" 1208253 T INFORM (NIL) -8 NIL NIL) (-498 1205356 1205416 1205514 "INFORM1" 1205681 NIL INFORM1 (NIL T) -7 NIL NIL) (-497 1204879 1204968 1205082 "INFINITY" 1205262 T INFINITY (NIL) -7 NIL NIL) (-496 1203497 1203745 1204066 "INEP" 1204627 NIL INEP (NIL T T T) -7 NIL NIL) (-495 1202773 1203394 1203459 "INDE" 1203464 NIL INDE (NIL T) -8 NIL NIL) (-494 1202337 1202405 1202522 "INCRMAPS" 1202700 NIL INCRMAPS (NIL T) -7 NIL NIL) (-493 1197648 1198573 1199517 "INBFF" 1201425 NIL INBFF (NIL T) -7 NIL NIL) (-492 1194143 1197493 1197596 "IMATRIX" 1197601 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-491 1192855 1192978 1193293 "IMATQF" 1193999 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-490 1191075 1191302 1191639 "IMATLIN" 1192611 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-489 1185701 1190999 1191057 "ILIST" 1191062 NIL ILIST (NIL T NIL) -8 NIL NIL) (-488 1183654 1185561 1185674 "IIARRAY2" 1185679 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-487 1179022 1183565 1183629 "IFF" 1183634 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-486 1174065 1178314 1178502 "IFARRAY" 1178879 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-485 1173272 1173969 1174042 "IFAMON" 1174047 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-484 1172856 1172921 1172975 "IEVALAB" 1173182 NIL IEVALAB (NIL T T) -9 NIL NIL) (-483 1172531 1172599 1172759 "IEVALAB-" 1172764 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-482 1172189 1172445 1172508 "IDPO" 1172513 NIL IDPO (NIL T T) -8 NIL NIL) (-481 1171466 1172078 1172153 "IDPOAMS" 1172158 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-480 1170800 1171355 1171430 "IDPOAM" 1171435 NIL IDPOAM (NIL T T) -8 NIL NIL) (-479 1169886 1170136 1170189 "IDPC" 1170602 NIL IDPC (NIL T T) -9 NIL 1170751) (-478 1169382 1169778 1169851 "IDPAM" 1169856 NIL IDPAM (NIL T T) -8 NIL NIL) (-477 1168785 1169274 1169347 "IDPAG" 1169352 NIL IDPAG (NIL T T) -8 NIL NIL) (-476 1165040 1165888 1166783 "IDECOMP" 1167942 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-475 1157914 1158963 1160010 "IDEAL" 1164076 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-474 1157078 1157190 1157389 "ICDEN" 1157798 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-473 1156177 1156558 1156705 "ICARD" 1156951 T ICARD (NIL) -8 NIL NIL) (-472 1154249 1154562 1154965 "IBPTOOLS" 1155854 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-471 1149863 1153869 1153982 "IBITS" 1154168 NIL IBITS (NIL NIL) -8 NIL NIL) (-470 1146586 1147162 1147857 "IBATOOL" 1149280 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-469 1144366 1144827 1145360 "IBACHIN" 1146121 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-468 1142243 1144212 1144315 "IARRAY2" 1144320 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-467 1138396 1142169 1142226 "IARRAY1" 1142231 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-466 1132335 1136814 1137292 "IAN" 1137938 T IAN (NIL) -8 NIL NIL) (-465 1131846 1131903 1132076 "IALGFACT" 1132272 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-464 1131374 1131487 1131515 "HYPCAT" 1131722 T HYPCAT (NIL) -9 NIL NIL) (-463 1130912 1131029 1131215 "HYPCAT-" 1131220 NIL HYPCAT- (NIL T) -8 NIL NIL) (-462 1127592 1128923 1128964 "HOAGG" 1129945 NIL HOAGG (NIL T) -9 NIL 1130624) (-461 1126186 1126585 1127111 "HOAGG-" 1127116 NIL HOAGG- (NIL T T) -8 NIL NIL) (-460 1120017 1125627 1125793 "HEXADEC" 1126040 T HEXADEC (NIL) -8 NIL NIL) (-459 1118765 1118987 1119250 "HEUGCD" 1119794 NIL HEUGCD (NIL T) -7 NIL NIL) (-458 1117868 1118602 1118732 "HELLFDIV" 1118737 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-457 1116096 1117645 1117733 "HEAP" 1117812 NIL HEAP (NIL T) -8 NIL NIL) (-456 1109963 1116011 1116073 "HDP" 1116078 NIL HDP (NIL NIL T) -8 NIL NIL) (-455 1103675 1109600 1109751 "HDMP" 1109864 NIL HDMP (NIL NIL T) -8 NIL NIL) (-454 1103000 1103139 1103303 "HB" 1103531 T HB (NIL) -7 NIL NIL) (-453 1096497 1102846 1102950 "HASHTBL" 1102955 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-452 1094250 1096125 1096304 "HACKPI" 1096338 T HACKPI (NIL) -8 NIL NIL) (-451 1089946 1094104 1094216 "GTSET" 1094221 NIL GTSET (NIL T T T T) -8 NIL NIL) (-450 1083472 1089824 1089922 "GSTBL" 1089927 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-449 1075705 1082508 1082772 "GSERIES" 1083263 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-448 1074728 1075181 1075209 "GROUP" 1075470 T GROUP (NIL) -9 NIL 1075629) (-447 1073844 1074067 1074411 "GROUP-" 1074416 NIL GROUP- (NIL T) -8 NIL NIL) (-446 1072213 1072532 1072919 "GROEBSOL" 1073521 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-445 1071154 1071416 1071467 "GRMOD" 1071996 NIL GRMOD (NIL T T) -9 NIL 1072164) (-444 1070922 1070958 1071086 "GRMOD-" 1071091 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-443 1066250 1067276 1068276 "GRIMAGE" 1069942 T GRIMAGE (NIL) -8 NIL NIL) (-442 1064717 1064977 1065301 "GRDEF" 1065946 T GRDEF (NIL) -7 NIL NIL) (-441 1064161 1064277 1064418 "GRAY" 1064596 T GRAY (NIL) -7 NIL NIL) (-440 1063395 1063775 1063826 "GRALG" 1063979 NIL GRALG (NIL T T) -9 NIL 1064071) (-439 1063056 1063129 1063292 "GRALG-" 1063297 NIL GRALG- (NIL T T T) -8 NIL NIL) (-438 1059864 1062645 1062821 "GPOLSET" 1062963 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-437 1059220 1059277 1059534 "GOSPER" 1059801 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-436 1054979 1055658 1056184 "GMODPOL" 1058919 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-435 1053984 1054168 1054406 "GHENSEL" 1054791 NIL GHENSEL (NIL T T) -7 NIL NIL) (-434 1048050 1048893 1049919 "GENUPS" 1053068 NIL GENUPS (NIL T T) -7 NIL NIL) (-433 1047747 1047798 1047887 "GENUFACT" 1047993 NIL GENUFACT (NIL T) -7 NIL NIL) (-432 1047159 1047236 1047401 "GENPGCD" 1047665 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-431 1046633 1046668 1046881 "GENMFACT" 1047118 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-430 1045201 1045456 1045763 "GENEEZ" 1046376 NIL GENEEZ (NIL T T) -7 NIL NIL) (-429 1039075 1044814 1044975 "GDMP" 1045124 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-428 1028457 1032846 1033952 "GCNAALG" 1038058 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-427 1026879 1027751 1027779 "GCDDOM" 1028034 T GCDDOM (NIL) -9 NIL 1028191) (-426 1026349 1026476 1026691 "GCDDOM-" 1026696 NIL GCDDOM- (NIL T) -8 NIL NIL) (-425 1025021 1025206 1025510 "GB" 1026128 NIL GB (NIL T T T T) -7 NIL NIL) (-424 1013641 1015967 1018359 "GBINTERN" 1022712 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-423 1011478 1011770 1012191 "GBF" 1013316 NIL GBF (NIL T T T T) -7 NIL NIL) (-422 1010259 1010424 1010691 "GBEUCLID" 1011294 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-421 1009608 1009733 1009882 "GAUSSFAC" 1010130 T GAUSSFAC (NIL) -7 NIL NIL) (-420 1007985 1008287 1008600 "GALUTIL" 1009327 NIL GALUTIL (NIL T) -7 NIL NIL) (-419 1006302 1006576 1006899 "GALPOLYU" 1007712 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-418 1003691 1003981 1004386 "GALFACTU" 1005999 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-417 995497 996996 998604 "GALFACT" 1002123 NIL GALFACT (NIL T) -7 NIL NIL) (-416 992885 993543 993571 "FVFUN" 994727 T FVFUN (NIL) -9 NIL 995447) (-415 992151 992333 992361 "FVC" 992652 T FVC (NIL) -9 NIL 992835) (-414 991793 991948 992029 "FUNCTION" 992103 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-413 989463 990014 990503 "FT" 991324 T FT (NIL) -8 NIL NIL) (-412 988281 988764 988967 "FTEM" 989280 T FTEM (NIL) -8 NIL NIL) (-411 986546 986834 987236 "FSUPFACT" 987973 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-410 984943 985232 985564 "FST" 986234 T FST (NIL) -8 NIL NIL) (-409 984118 984224 984418 "FSRED" 984825 NIL FSRED (NIL T T) -7 NIL NIL) (-408 982797 983052 983406 "FSPRMELT" 983833 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-407 979882 980320 980819 "FSPECF" 982360 NIL FSPECF (NIL T T) -7 NIL NIL) (-406 962256 970813 970853 "FS" 974691 NIL FS (NIL T) -9 NIL 976973) (-405 950906 953896 957952 "FS-" 958249 NIL FS- (NIL T T) -8 NIL NIL) (-404 950422 950476 950652 "FSINT" 950847 NIL FSINT (NIL T T) -7 NIL NIL) (-403 948703 949415 949718 "FSERIES" 950201 NIL FSERIES (NIL T T) -8 NIL NIL) (-402 947721 947837 948067 "FSCINT" 948583 NIL FSCINT (NIL T T) -7 NIL NIL) (-401 943956 946666 946707 "FSAGG" 947077 NIL FSAGG (NIL T) -9 NIL 947336) (-400 941718 942319 943115 "FSAGG-" 943210 NIL FSAGG- (NIL T T) -8 NIL NIL) (-399 940760 940903 941130 "FSAGG2" 941571 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-398 938419 938698 939251 "FS2UPS" 940478 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-397 938005 938048 938201 "FS2" 938370 NIL FS2 (NIL T T T T) -7 NIL NIL) (-396 936865 937036 937344 "FS2EXPXP" 937830 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-395 936291 936406 936558 "FRUTIL" 936745 NIL FRUTIL (NIL T) -7 NIL NIL) (-394 927712 931790 933146 "FR" 934967 NIL FR (NIL T) -8 NIL NIL) (-393 922789 925432 925472 "FRNAALG" 926868 NIL FRNAALG (NIL T) -9 NIL 927475) (-392 918468 919538 920813 "FRNAALG-" 921563 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-391 918106 918149 918276 "FRNAAF2" 918419 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-390 916471 916963 917257 "FRMOD" 917919 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-389 914194 914862 915178 "FRIDEAL" 916262 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-388 913393 913480 913767 "FRIDEAL2" 914101 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-387 912651 913059 913100 "FRETRCT" 913105 NIL FRETRCT (NIL T) -9 NIL 913276) (-386 911763 911994 912345 "FRETRCT-" 912350 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-385 908973 910193 910252 "FRAMALG" 911134 NIL FRAMALG (NIL T T) -9 NIL 911426) (-384 907106 907562 908192 "FRAMALG-" 908415 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-383 901008 906581 906857 "FRAC" 906862 NIL FRAC (NIL T) -8 NIL NIL) (-382 900644 900701 900808 "FRAC2" 900945 NIL FRAC2 (NIL T T) -7 NIL NIL) (-381 900280 900337 900444 "FR2" 900581 NIL FR2 (NIL T T) -7 NIL NIL) (-380 894954 897867 897895 "FPS" 899014 T FPS (NIL) -9 NIL 899570) (-379 894403 894512 894676 "FPS-" 894822 NIL FPS- (NIL T) -8 NIL NIL) (-378 891852 893549 893577 "FPC" 893802 T FPC (NIL) -9 NIL 893944) (-377 891645 891685 891782 "FPC-" 891787 NIL FPC- (NIL T) -8 NIL NIL) (-376 890524 891134 891175 "FPATMAB" 891180 NIL FPATMAB (NIL T) -9 NIL 891332) (-375 888224 888700 889126 "FPARFRAC" 890161 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-374 883619 884116 884798 "FORTRAN" 887656 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-373 881335 881835 882374 "FORT" 883100 T FORT (NIL) -7 NIL NIL) (-372 879011 879573 879601 "FORTFN" 880661 T FORTFN (NIL) -9 NIL 881285) (-371 878775 878825 878853 "FORTCAT" 878912 T FORTCAT (NIL) -9 NIL 878974) (-370 876835 877318 877717 "FORMULA" 878396 T FORMULA (NIL) -8 NIL NIL) (-369 876623 876653 876722 "FORMULA1" 876799 NIL FORMULA1 (NIL T) -7 NIL NIL) (-368 876146 876198 876371 "FORDER" 876565 NIL FORDER (NIL T T T T) -7 NIL NIL) (-367 875242 875406 875599 "FOP" 875973 T FOP (NIL) -7 NIL NIL) (-366 873850 874522 874696 "FNLA" 875124 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-365 872519 872908 872936 "FNCAT" 873508 T FNCAT (NIL) -9 NIL 873801) (-364 872085 872478 872506 "FNAME" 872511 T FNAME (NIL) -8 NIL NIL) (-363 870745 871718 871746 "FMTC" 871751 T FMTC (NIL) -9 NIL 871786) (-362 867063 868270 868898 "FMONOID" 870150 NIL FMONOID (NIL T) -8 NIL NIL) (-361 866283 866806 866954 "FM" 866959 NIL FM (NIL T T) -8 NIL NIL) (-360 863707 864353 864381 "FMFUN" 865525 T FMFUN (NIL) -9 NIL 866233) (-359 862976 863157 863185 "FMC" 863475 T FMC (NIL) -9 NIL 863657) (-358 860206 861040 861093 "FMCAT" 862275 NIL FMCAT (NIL T T) -9 NIL 862769) (-357 859101 859974 860073 "FM1" 860151 NIL FM1 (NIL T T) -8 NIL NIL) (-356 856875 857291 857785 "FLOATRP" 858652 NIL FLOATRP (NIL T) -7 NIL NIL) (-355 850361 854531 855161 "FLOAT" 856265 T FLOAT (NIL) -8 NIL NIL) (-354 847799 848299 848877 "FLOATCP" 849828 NIL FLOATCP (NIL T) -7 NIL NIL) (-353 846588 847436 847476 "FLINEXP" 847481 NIL FLINEXP (NIL T) -9 NIL 847574) (-352 845743 845978 846305 "FLINEXP-" 846310 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-351 844819 844963 845187 "FLASORT" 845595 NIL FLASORT (NIL T T) -7 NIL NIL) (-350 842038 842880 842932 "FLALG" 844159 NIL FLALG (NIL T T) -9 NIL 844626) (-349 835823 839525 839566 "FLAGG" 840828 NIL FLAGG (NIL T) -9 NIL 841480) (-348 834549 834888 835378 "FLAGG-" 835383 NIL FLAGG- (NIL T T) -8 NIL NIL) (-347 833591 833734 833961 "FLAGG2" 834402 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-346 830564 831582 831641 "FINRALG" 832769 NIL FINRALG (NIL T T) -9 NIL 833277) (-345 829724 829953 830292 "FINRALG-" 830297 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-344 829131 829344 829372 "FINITE" 829568 T FINITE (NIL) -9 NIL 829675) (-343 821591 823752 823792 "FINAALG" 827459 NIL FINAALG (NIL T) -9 NIL 828912) (-342 816932 817973 819117 "FINAALG-" 820496 NIL FINAALG- (NIL T T) -8 NIL NIL) (-341 816327 816687 816790 "FILE" 816862 NIL FILE (NIL T) -8 NIL NIL) (-340 815012 815324 815378 "FILECAT" 816062 NIL FILECAT (NIL T T) -9 NIL 816278) (-339 812875 814431 814459 "FIELD" 814499 T FIELD (NIL) -9 NIL 814579) (-338 811495 811880 812391 "FIELD-" 812396 NIL FIELD- (NIL T) -8 NIL NIL) (-337 809310 810132 810478 "FGROUP" 811182 NIL FGROUP (NIL T) -8 NIL NIL) (-336 808400 808564 808784 "FGLMICPK" 809142 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-335 804202 808325 808382 "FFX" 808387 NIL FFX (NIL T NIL) -8 NIL NIL) (-334 803803 803864 803999 "FFSLPE" 804135 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-333 799798 800575 801371 "FFPOLY" 803039 NIL FFPOLY (NIL T) -7 NIL NIL) (-332 799302 799338 799547 "FFPOLY2" 799756 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-331 795124 799221 799284 "FFP" 799289 NIL FFP (NIL T NIL) -8 NIL NIL) (-330 790492 795035 795099 "FF" 795104 NIL FF (NIL NIL NIL) -8 NIL NIL) (-329 785588 789835 790025 "FFNBX" 790346 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-328 780498 784723 784981 "FFNBP" 785442 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-327 775101 779782 779993 "FFNB" 780331 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-326 773933 774131 774446 "FFINTBAS" 774898 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-325 770157 772397 772425 "FFIELDC" 773045 T FFIELDC (NIL) -9 NIL 773421) (-324 768820 769190 769687 "FFIELDC-" 769692 NIL FFIELDC- (NIL T) -8 NIL NIL) (-323 768390 768435 768559 "FFHOM" 768762 NIL FFHOM (NIL T T T) -7 NIL NIL) (-322 766088 766572 767089 "FFF" 767905 NIL FFF (NIL T) -7 NIL NIL) (-321 761676 765830 765931 "FFCGX" 766031 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-320 757278 761408 761515 "FFCGP" 761619 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-319 752431 757005 757113 "FFCG" 757214 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-318 734377 743500 743586 "FFCAT" 748751 NIL FFCAT (NIL T T T) -9 NIL 750238) (-317 729575 730622 731936 "FFCAT-" 733166 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-316 728986 729029 729264 "FFCAT2" 729526 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-315 718186 721976 723193 "FEXPR" 727841 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-314 717186 717621 717662 "FEVALAB" 717746 NIL FEVALAB (NIL T) -9 NIL 718007) (-313 716345 716555 716893 "FEVALAB-" 716898 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-312 714938 715728 715931 "FDIV" 716244 NIL FDIV (NIL T T T T) -8 NIL NIL) (-311 712005 712720 712835 "FDIVCAT" 714403 NIL FDIVCAT (NIL T T T T) -9 NIL 714840) (-310 711767 711794 711964 "FDIVCAT-" 711969 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-309 710987 711074 711351 "FDIV2" 711674 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-308 709673 709932 710221 "FCPAK1" 710718 T FCPAK1 (NIL) -7 NIL NIL) (-307 708801 709173 709314 "FCOMP" 709564 NIL FCOMP (NIL T) -8 NIL NIL) (-306 692437 695850 699411 "FC" 705260 T FC (NIL) -8 NIL NIL) (-305 685033 689079 689119 "FAXF" 690921 NIL FAXF (NIL T) -9 NIL 691612) (-304 682312 682967 683792 "FAXF-" 684257 NIL FAXF- (NIL T T) -8 NIL NIL) (-303 677412 681688 681864 "FARRAY" 682169 NIL FARRAY (NIL T) -8 NIL NIL) (-302 672803 674874 674926 "FAMR" 675938 NIL FAMR (NIL T T) -9 NIL 676398) (-301 671694 671996 672430 "FAMR-" 672435 NIL FAMR- (NIL T T T) -8 NIL NIL) (-300 670890 671616 671669 "FAMONOID" 671674 NIL FAMONOID (NIL T) -8 NIL NIL) (-299 668723 669407 669460 "FAMONC" 670401 NIL FAMONC (NIL T T) -9 NIL 670786) (-298 667415 668477 668614 "FAGROUP" 668619 NIL FAGROUP (NIL T) -8 NIL NIL) (-297 665218 665537 665939 "FACUTIL" 667096 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-296 664317 664502 664724 "FACTFUNC" 665028 NIL FACTFUNC (NIL T) -7 NIL NIL) (-295 656637 663568 663780 "EXPUPXS" 664173 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-294 654120 654660 655246 "EXPRTUBE" 656071 T EXPRTUBE (NIL) -7 NIL NIL) (-293 650314 650906 651643 "EXPRODE" 653459 NIL EXPRODE (NIL T T) -7 NIL NIL) (-292 635473 648973 649399 "EXPR" 649920 NIL EXPR (NIL T) -8 NIL NIL) (-291 629901 630488 631300 "EXPR2UPS" 634771 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-290 629537 629594 629701 "EXPR2" 629838 NIL EXPR2 (NIL T T) -7 NIL NIL) (-289 620891 628674 628969 "EXPEXPAN" 629375 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-288 620718 620848 620877 "EXIT" 620882 T EXIT (NIL) -8 NIL NIL) (-287 620345 620407 620520 "EVALCYC" 620650 NIL EVALCYC (NIL T) -7 NIL NIL) (-286 619886 620004 620045 "EVALAB" 620215 NIL EVALAB (NIL T) -9 NIL 620319) (-285 619367 619489 619710 "EVALAB-" 619715 NIL EVALAB- (NIL T T) -8 NIL NIL) (-284 616830 618142 618170 "EUCDOM" 618725 T EUCDOM (NIL) -9 NIL 619075) (-283 615235 615677 616267 "EUCDOM-" 616272 NIL EUCDOM- (NIL T) -8 NIL NIL) (-282 602813 605561 608301 "ESTOOLS" 612515 T ESTOOLS (NIL) -7 NIL NIL) (-281 602449 602506 602613 "ESTOOLS2" 602750 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-280 602200 602242 602322 "ESTOOLS1" 602401 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-279 596138 597862 597890 "ES" 600654 T ES (NIL) -9 NIL 602060) (-278 591086 592372 594189 "ES-" 594353 NIL ES- (NIL T) -8 NIL NIL) (-277 587461 588221 589001 "ESCONT" 590326 T ESCONT (NIL) -7 NIL NIL) (-276 587206 587238 587320 "ESCONT1" 587423 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-275 586881 586931 587031 "ES2" 587150 NIL ES2 (NIL T T) -7 NIL NIL) (-274 586511 586569 586678 "ES1" 586817 NIL ES1 (NIL T T) -7 NIL NIL) (-273 585727 585856 586032 "ERROR" 586355 T ERROR (NIL) -7 NIL NIL) (-272 579230 585586 585677 "EQTBL" 585682 NIL EQTBL (NIL T T) -8 NIL NIL) (-271 571667 574548 575995 "EQ" 577816 NIL -2608 (NIL T) -8 NIL NIL) (-270 571299 571356 571465 "EQ2" 571604 NIL EQ2 (NIL T T) -7 NIL NIL) (-269 566591 567637 568730 "EP" 570238 NIL EP (NIL T) -7 NIL NIL) (-268 565174 565474 565791 "ENV" 566294 T ENV (NIL) -8 NIL NIL) (-267 564334 564898 564926 "ENTIRER" 564931 T ENTIRER (NIL) -9 NIL 564976) (-266 560790 562289 562659 "EMR" 564133 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-265 559934 560119 560173 "ELTAGG" 560553 NIL ELTAGG (NIL T T) -9 NIL 560764) (-264 559653 559715 559856 "ELTAGG-" 559861 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-263 559442 559471 559525 "ELTAB" 559609 NIL ELTAB (NIL T T) -9 NIL NIL) (-262 558568 558714 558913 "ELFUTS" 559293 NIL ELFUTS (NIL T T) -7 NIL NIL) (-261 558310 558366 558394 "ELEMFUN" 558499 T ELEMFUN (NIL) -9 NIL NIL) (-260 558180 558201 558269 "ELEMFUN-" 558274 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-259 553072 556281 556322 "ELAGG" 557262 NIL ELAGG (NIL T) -9 NIL 557725) (-258 551357 551791 552454 "ELAGG-" 552459 NIL ELAGG- (NIL T T) -8 NIL NIL) (-257 550014 550294 550589 "ELABEXPR" 551082 T ELABEXPR (NIL) -8 NIL NIL) (-256 542882 544681 545508 "EFUPXS" 549290 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-255 536332 538133 538943 "EFULS" 542158 NIL EFULS (NIL T T T) -8 NIL NIL) (-254 533763 534121 534599 "EFSTRUC" 535964 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-253 522835 524400 525960 "EF" 532278 NIL EF (NIL T T) -7 NIL NIL) (-252 521936 522320 522469 "EAB" 522706 T EAB (NIL) -8 NIL NIL) (-251 521149 521895 521923 "E04UCFA" 521928 T E04UCFA (NIL) -8 NIL NIL) (-250 520362 521108 521136 "E04NAFA" 521141 T E04NAFA (NIL) -8 NIL NIL) (-249 519575 520321 520349 "E04MBFA" 520354 T E04MBFA (NIL) -8 NIL NIL) (-248 518788 519534 519562 "E04JAFA" 519567 T E04JAFA (NIL) -8 NIL NIL) (-247 518003 518747 518775 "E04GCFA" 518780 T E04GCFA (NIL) -8 NIL NIL) (-246 517218 517962 517990 "E04FDFA" 517995 T E04FDFA (NIL) -8 NIL NIL) (-245 516431 517177 517205 "E04DGFA" 517210 T E04DGFA (NIL) -8 NIL NIL) (-244 510616 511961 513323 "E04AGNT" 515089 T E04AGNT (NIL) -7 NIL NIL) (-243 509343 509823 509863 "DVARCAT" 510338 NIL DVARCAT (NIL T) -9 NIL 510536) (-242 508547 508759 509073 "DVARCAT-" 509078 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-241 501409 508349 508476 "DSMP" 508481 NIL DSMP (NIL T T T) -8 NIL NIL) (-240 496219 497354 498422 "DROPT" 500361 T DROPT (NIL) -8 NIL NIL) (-239 495884 495943 496041 "DROPT1" 496154 NIL DROPT1 (NIL T) -7 NIL NIL) (-238 490999 492125 493262 "DROPT0" 494767 T DROPT0 (NIL) -7 NIL NIL) (-237 489344 489669 490055 "DRAWPT" 490633 T DRAWPT (NIL) -7 NIL NIL) (-236 483931 484854 485933 "DRAW" 488318 NIL DRAW (NIL T) -7 NIL NIL) (-235 483564 483617 483735 "DRAWHACK" 483872 NIL DRAWHACK (NIL T) -7 NIL NIL) (-234 482295 482564 482855 "DRAWCX" 483293 T DRAWCX (NIL) -7 NIL NIL) (-233 481813 481881 482031 "DRAWCURV" 482221 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-232 472285 474243 476358 "DRAWCFUN" 479718 T DRAWCFUN (NIL) -7 NIL NIL) (-231 469099 470981 471022 "DQAGG" 471651 NIL DQAGG (NIL T) -9 NIL 471924) (-230 457606 464344 464426 "DPOLCAT" 466264 NIL DPOLCAT (NIL T T T T) -9 NIL 466808) (-229 452446 453792 455749 "DPOLCAT-" 455754 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-228 446530 452308 452405 "DPMO" 452410 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-227 440517 446311 446477 "DPMM" 446482 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-226 440030 440128 440248 "DOMAIN" 440417 T DOMAIN (NIL) -8 NIL NIL) (-225 433742 439667 439818 "DMP" 439931 NIL DMP (NIL NIL T) -8 NIL NIL) (-224 433342 433398 433542 "DLP" 433680 NIL DLP (NIL T) -7 NIL NIL) (-223 426986 432443 432670 "DLIST" 433147 NIL DLIST (NIL T) -8 NIL NIL) (-222 423833 425842 425883 "DLAGG" 426433 NIL DLAGG (NIL T) -9 NIL 426662) (-221 422543 423235 423263 "DIVRING" 423413 T DIVRING (NIL) -9 NIL 423521) (-220 421531 421784 422177 "DIVRING-" 422182 NIL DIVRING- (NIL T) -8 NIL NIL) (-219 419633 419990 420396 "DISPLAY" 421145 T DISPLAY (NIL) -7 NIL NIL) (-218 413522 419547 419610 "DIRPROD" 419615 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-217 412370 412573 412838 "DIRPROD2" 413315 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-216 402001 408006 408059 "DIRPCAT" 408467 NIL DIRPCAT (NIL NIL T) -9 NIL 409294) (-215 399327 399969 400850 "DIRPCAT-" 401187 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-214 398614 398774 398960 "DIOSP" 399161 T DIOSP (NIL) -7 NIL NIL) (-213 395317 397527 397568 "DIOPS" 398002 NIL DIOPS (NIL T) -9 NIL 398231) (-212 394866 394980 395171 "DIOPS-" 395176 NIL DIOPS- (NIL T T) -8 NIL NIL) (-211 393738 394376 394404 "DIFRING" 394591 T DIFRING (NIL) -9 NIL 394700) (-210 393384 393461 393613 "DIFRING-" 393618 NIL DIFRING- (NIL T) -8 NIL NIL) (-209 391174 392456 392496 "DIFEXT" 392855 NIL DIFEXT (NIL T) -9 NIL 393148) (-208 389460 389888 390553 "DIFEXT-" 390558 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-207 386783 388993 389034 "DIAGG" 389039 NIL DIAGG (NIL T) -9 NIL 389059) (-206 386167 386324 386576 "DIAGG-" 386581 NIL DIAGG- (NIL T T) -8 NIL NIL) (-205 381632 385126 385403 "DHMATRIX" 385936 NIL DHMATRIX (NIL T) -8 NIL NIL) (-204 377244 378153 379163 "DFSFUN" 380642 T DFSFUN (NIL) -7 NIL NIL) (-203 372030 375958 376323 "DFLOAT" 376899 T DFLOAT (NIL) -8 NIL NIL) (-202 370263 370544 370939 "DFINTTLS" 371738 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-201 367296 368298 368696 "DERHAM" 369930 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-200 365145 367071 367160 "DEQUEUE" 367240 NIL DEQUEUE (NIL T) -8 NIL NIL) (-199 364363 364496 364691 "DEGRED" 365007 NIL DEGRED (NIL T T) -7 NIL NIL) (-198 360763 361508 362360 "DEFINTRF" 363591 NIL DEFINTRF (NIL T) -7 NIL NIL) (-197 358294 358763 359361 "DEFINTEF" 360282 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-196 352125 357735 357901 "DECIMAL" 358148 T DECIMAL (NIL) -8 NIL NIL) (-195 349637 350095 350601 "DDFACT" 351669 NIL DDFACT (NIL T T) -7 NIL NIL) (-194 349233 349276 349427 "DBLRESP" 349588 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-193 346943 347277 347646 "DBASE" 348991 NIL DBASE (NIL T) -8 NIL NIL) (-192 346078 346902 346930 "D03FAFA" 346935 T D03FAFA (NIL) -8 NIL NIL) (-191 345214 346037 346065 "D03EEFA" 346070 T D03EEFA (NIL) -8 NIL NIL) (-190 343164 343630 344119 "D03AGNT" 344745 T D03AGNT (NIL) -7 NIL NIL) (-189 342482 343123 343151 "D02EJFA" 343156 T D02EJFA (NIL) -8 NIL NIL) (-188 341800 342441 342469 "D02CJFA" 342474 T D02CJFA (NIL) -8 NIL NIL) (-187 341118 341759 341787 "D02BHFA" 341792 T D02BHFA (NIL) -8 NIL NIL) (-186 340436 341077 341105 "D02BBFA" 341110 T D02BBFA (NIL) -8 NIL NIL) (-185 333634 335222 336828 "D02AGNT" 338850 T D02AGNT (NIL) -7 NIL NIL) (-184 331403 331925 332471 "D01WGTS" 333108 T D01WGTS (NIL) -7 NIL NIL) (-183 330506 331362 331390 "D01TRNS" 331395 T D01TRNS (NIL) -8 NIL NIL) (-182 329609 330465 330493 "D01GBFA" 330498 T D01GBFA (NIL) -8 NIL NIL) (-181 328712 329568 329596 "D01FCFA" 329601 T D01FCFA (NIL) -8 NIL NIL) (-180 327815 328671 328699 "D01ASFA" 328704 T D01ASFA (NIL) -8 NIL NIL) (-179 326918 327774 327802 "D01AQFA" 327807 T D01AQFA (NIL) -8 NIL NIL) (-178 326021 326877 326905 "D01APFA" 326910 T D01APFA (NIL) -8 NIL NIL) (-177 325124 325980 326008 "D01ANFA" 326013 T D01ANFA (NIL) -8 NIL NIL) (-176 324227 325083 325111 "D01AMFA" 325116 T D01AMFA (NIL) -8 NIL NIL) (-175 323330 324186 324214 "D01ALFA" 324219 T D01ALFA (NIL) -8 NIL NIL) (-174 322433 323289 323317 "D01AKFA" 323322 T D01AKFA (NIL) -8 NIL NIL) (-173 321536 322392 322420 "D01AJFA" 322425 T D01AJFA (NIL) -8 NIL NIL) (-172 314840 316389 317948 "D01AGNT" 319997 T D01AGNT (NIL) -7 NIL NIL) (-171 314177 314305 314457 "CYCLOTOM" 314708 T CYCLOTOM (NIL) -7 NIL NIL) (-170 310912 311625 312352 "CYCLES" 313470 T CYCLES (NIL) -7 NIL NIL) (-169 310224 310358 310529 "CVMP" 310773 NIL CVMP (NIL T) -7 NIL NIL) (-168 308006 308263 308638 "CTRIGMNP" 309952 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-167 307611 307694 307799 "CTORCALL" 307921 T CTORCALL (NIL) -8 NIL NIL) (-166 306985 307084 307237 "CSTTOOLS" 307508 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-165 302784 303441 304199 "CRFP" 306297 NIL CRFP (NIL T T) -7 NIL NIL) (-164 301831 302016 302244 "CRAPACK" 302588 NIL CRAPACK (NIL T) -7 NIL NIL) (-163 301215 301316 301520 "CPMATCH" 301707 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-162 300940 300968 301074 "CPIMA" 301181 NIL CPIMA (NIL T T T) -7 NIL NIL) (-161 297304 297976 298694 "COORDSYS" 300275 NIL COORDSYS (NIL T) -7 NIL NIL) (-160 296688 296817 296967 "CONTOUR" 297174 T CONTOUR (NIL) -8 NIL NIL) (-159 292549 294691 295183 "CONTFRAC" 296228 NIL CONTFRAC (NIL T) -8 NIL NIL) (-158 291703 292267 292295 "COMRING" 292300 T COMRING (NIL) -9 NIL 292351) (-157 290784 291061 291245 "COMPPROP" 291539 T COMPPROP (NIL) -8 NIL NIL) (-156 290445 290480 290608 "COMPLPAT" 290743 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-155 280426 290254 290363 "COMPLEX" 290368 NIL COMPLEX (NIL T) -8 NIL NIL) (-154 280062 280119 280226 "COMPLEX2" 280363 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-153 279780 279815 279913 "COMPFACT" 280021 NIL COMPFACT (NIL T T) -7 NIL NIL) (-152 264115 274409 274449 "COMPCAT" 275451 NIL COMPCAT (NIL T) -9 NIL 276844) (-151 253630 256554 260181 "COMPCAT-" 260537 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-150 253361 253389 253491 "COMMUPC" 253596 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-149 253156 253189 253248 "COMMONOP" 253322 T COMMONOP (NIL) -7 NIL NIL) (-148 252739 252907 252994 "COMM" 253089 T COMM (NIL) -8 NIL NIL) (-147 251988 252182 252210 "COMBOPC" 252548 T COMBOPC (NIL) -9 NIL 252723) (-146 250884 251094 251336 "COMBINAT" 251778 NIL COMBINAT (NIL T) -7 NIL NIL) (-145 247082 247655 248295 "COMBF" 250306 NIL COMBF (NIL T T) -7 NIL NIL) (-144 245868 246198 246433 "COLOR" 246867 T COLOR (NIL) -8 NIL NIL) (-143 245508 245555 245680 "CMPLXRT" 245815 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-142 241010 242038 243118 "CLIP" 244448 T CLIP (NIL) -7 NIL NIL) (-141 239348 240118 240356 "CLIF" 240838 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-140 235571 237495 237536 "CLAGG" 238465 NIL CLAGG (NIL T) -9 NIL 239001) (-139 233993 234450 235033 "CLAGG-" 235038 NIL CLAGG- (NIL T T) -8 NIL NIL) (-138 233537 233622 233762 "CINTSLPE" 233902 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-137 231038 231509 232057 "CHVAR" 233065 NIL CHVAR (NIL T T T) -7 NIL NIL) (-136 230261 230825 230853 "CHARZ" 230858 T CHARZ (NIL) -9 NIL 230872) (-135 230015 230055 230133 "CHARPOL" 230215 NIL CHARPOL (NIL T) -7 NIL NIL) (-134 229122 229719 229747 "CHARNZ" 229794 T CHARNZ (NIL) -9 NIL 229849) (-133 227147 227812 228147 "CHAR" 228807 T CHAR (NIL) -8 NIL NIL) (-132 226873 226934 226962 "CFCAT" 227073 T CFCAT (NIL) -9 NIL NIL) (-131 226118 226229 226411 "CDEN" 226757 NIL CDEN (NIL T T T) -7 NIL NIL) (-130 222110 225271 225551 "CCLASS" 225858 T CCLASS (NIL) -8 NIL NIL) (-129 222029 222055 222090 "CATEGORY" 222095 T -10 (NIL) -8 NIL NIL) (-128 217082 218058 218811 "CARTEN" 221332 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-127 216190 216338 216559 "CARTEN2" 216929 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-126 214487 215342 215598 "CARD" 215954 T CARD (NIL) -8 NIL NIL) (-125 213860 214188 214216 "CACHSET" 214348 T CACHSET (NIL) -9 NIL 214425) (-124 213357 213653 213681 "CABMON" 213731 T CABMON (NIL) -9 NIL 213787) (-123 210914 213049 213156 "BTREE" 213283 NIL BTREE (NIL T) -8 NIL NIL) (-122 208412 210562 210684 "BTOURN" 210824 NIL BTOURN (NIL T) -8 NIL NIL) (-121 205831 207884 207925 "BTCAT" 207993 NIL BTCAT (NIL T) -9 NIL 208070) (-120 205498 205578 205727 "BTCAT-" 205732 NIL BTCAT- (NIL T T) -8 NIL NIL) (-119 200719 204590 204618 "BTAGG" 204874 T BTAGG (NIL) -9 NIL 205053) (-118 200142 200286 200516 "BTAGG-" 200521 NIL BTAGG- (NIL T) -8 NIL NIL) (-117 197186 199420 199635 "BSTREE" 199959 NIL BSTREE (NIL T) -8 NIL NIL) (-116 196324 196450 196634 "BRILL" 197042 NIL BRILL (NIL T) -7 NIL NIL) (-115 193026 195053 195094 "BRAGG" 195743 NIL BRAGG (NIL T) -9 NIL 196000) (-114 191555 191961 192516 "BRAGG-" 192521 NIL BRAGG- (NIL T T) -8 NIL NIL) (-113 184763 190901 191085 "BPADICRT" 191403 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-112 183067 184700 184745 "BPADIC" 184750 NIL BPADIC (NIL NIL) -8 NIL NIL) (-111 182767 182797 182910 "BOUNDZRO" 183031 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-110 178282 179373 180240 "BOP" 181920 T BOP (NIL) -8 NIL NIL) (-109 175903 176347 176867 "BOP1" 177795 NIL BOP1 (NIL T) -7 NIL NIL) (-108 174522 175233 175456 "BOOLEAN" 175700 T BOOLEAN (NIL) -8 NIL NIL) (-107 173889 174267 174319 "BMODULE" 174324 NIL BMODULE (NIL T T) -9 NIL 174388) (-106 169699 173687 173760 "BITS" 173836 T BITS (NIL) -8 NIL NIL) (-105 168796 169231 169383 "BINFILE" 169567 T BINFILE (NIL) -8 NIL NIL) (-104 168208 168330 168472 "BINDING" 168674 T BINDING (NIL) -8 NIL NIL) (-103 162043 167652 167817 "BINARY" 168063 T BINARY (NIL) -8 NIL NIL) (-102 159871 161299 161340 "BGAGG" 161600 NIL BGAGG (NIL T) -9 NIL 161737) (-101 159702 159734 159825 "BGAGG-" 159830 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 158800 159086 159291 "BFUNCT" 159517 T BFUNCT (NIL) -8 NIL NIL) (-99 157501 157679 157964 "BEZOUT" 158624 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 154026 156361 156689 "BBTREE" 157204 NIL BBTREE (NIL T) -8 NIL NIL) (-97 153764 153817 153843 "BASTYPE" 153960 T BASTYPE (NIL) -9 NIL NIL) (-96 153619 153648 153718 "BASTYPE-" 153723 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 153057 153133 153283 "BALFACT" 153530 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 151879 152476 152661 "AUTOMOR" 152902 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151605 151610 151636 "ATTREG" 151641 T ATTREG (NIL) -9 NIL NIL) (-92 149884 150302 150654 "ATTRBUT" 151271 T ATTRBUT (NIL) -8 NIL NIL) (-91 149420 149533 149559 "ATRIG" 149760 T ATRIG (NIL) -9 NIL NIL) (-90 149229 149270 149357 "ATRIG-" 149362 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147426 149005 149093 "ASTACK" 149172 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145931 146228 146593 "ASSOCEQ" 147108 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144963 145590 145714 "ASP9" 145838 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144727 144911 144950 "ASP8" 144955 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143597 144332 144474 "ASP80" 144616 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142496 143232 143364 "ASP7" 143496 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141452 142173 142291 "ASP78" 142409 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140423 141132 141249 "ASP77" 141366 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139338 140061 140192 "ASP74" 140323 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 138239 138973 139105 "ASP73" 139237 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 137194 137916 138034 "ASP6" 138152 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 136143 136871 136989 "ASP55" 137107 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 135093 135817 135936 "ASP50" 136055 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 134181 134794 134904 "ASP4" 135014 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 133269 133882 133992 "ASP49" 134102 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 132054 132808 132976 "ASP42" 133158 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130832 131587 131757 "ASP41" 131941 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129784 130509 130627 "ASP35" 130745 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129549 129732 129771 "ASP34" 129776 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 129286 129353 129429 "ASP33" 129504 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 128182 128921 129053 "ASP31" 129185 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127947 128130 128169 "ASP30" 128174 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127682 127751 127827 "ASP29" 127902 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127447 127630 127669 "ASP28" 127674 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 127212 127395 127434 "ASP27" 127439 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 126296 126910 127021 "ASP24" 127132 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 125213 125937 126067 "ASP20" 126197 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124301 124914 125024 "ASP1" 125134 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 123245 123975 124094 "ASP19" 124213 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122982 123049 123125 "ASP12" 123200 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121835 122581 122725 "ASP10" 122869 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119734 121679 121770 "ARRAY2" 121775 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115550 119382 119496 "ARRAY1" 119651 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114582 114755 114976 "ARRAY12" 115373 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108942 110813 110888 "ARR2CAT" 113518 NIL ARR2CAT (NIL T T T) -9 NIL 114276) (-54 106376 107120 108074 "ARR2CAT-" 108079 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 105136 105286 105589 "APPRULE" 106214 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104789 104837 104955 "APPLYORE" 105082 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103763 104054 104249 "ANY" 104612 T ANY (NIL) -8 NIL NIL) (-50 103041 103164 103321 "ANY1" 103637 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100573 101491 101816 "ANTISYM" 102766 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100088 100277 100374 "ANON" 100494 T ANON (NIL) -8 NIL NIL) (-47 94165 98633 99084 "AN" 99655 T AN (NIL) -8 NIL NIL) (-46 90519 91917 91967 "AMR" 92706 NIL AMR (NIL T T) -9 NIL 93305) (-45 89632 89853 90215 "AMR-" 90220 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74182 89549 89610 "ALIST" 89615 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71019 73776 73945 "ALGSC" 74100 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67575 68129 68736 "ALGPKG" 70459 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66852 66953 67137 "ALGMFACT" 67461 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62602 63282 63936 "ALGMANIP" 66376 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53921 62228 62378 "ALGFF" 62535 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53117 53248 53427 "ALGFACT" 53779 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52108 52718 52756 "ALGEBRA" 52816 NIL ALGEBRA (NIL T) -9 NIL 52874) (-36 51826 51885 52017 "ALGEBRA-" 52022 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34087 49830 49882 "ALAGG" 50018 NIL ALAGG (NIL T T) -9 NIL 50179) (-34 33623 33736 33762 "AHYP" 33963 T AHYP (NIL) -9 NIL NIL) (-33 32554 32802 32828 "AGG" 33327 T AGG (NIL) -9 NIL 33606) (-32 31988 32150 32364 "AGG-" 32369 NIL AGG- (NIL T) -8 NIL NIL) (-31 29675 30093 30510 "AF" 31631 NIL AF (NIL T T) -7 NIL NIL) (-30 28944 29202 29358 "ACPLOT" 29537 T ACPLOT (NIL) -8 NIL NIL) (-29 18411 26357 26408 "ACFS" 27119 NIL ACFS (NIL T) -9 NIL 27358) (-28 16425 16915 17690 "ACFS-" 17695 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12693 14649 14675 "ACF" 15554 T ACF (NIL) -9 NIL 15966) (-26 11397 11731 12224 "ACF-" 12229 NIL ACF- (NIL T) -8 NIL NIL) (-25 10996 11165 11191 "ABELSG" 11283 T ABELSG (NIL) -9 NIL 11348) (-24 10863 10888 10954 "ABELSG-" 10959 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10233 10494 10520 "ABELMON" 10690 T ABELMON (NIL) -9 NIL 10802) (-22 9897 9981 10119 "ABELMON-" 10124 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9232 9578 9604 "ABELGRP" 9729 T ABELGRP (NIL) -9 NIL 9811) (-20 8695 8824 9040 "ABELGRP-" 9045 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 7298ace0..49405576 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,5891 +1,10124 @@ -(725490 . 3410359539) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -3636 (-588 (-1085))) (|:| -2430 (-588 (-1085))))) - (-5 *1 (-1122))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *1 (-806 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *1 (-808 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *1 (-811 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-588 (-881 *6))) (-5 *4 (-588 (-1085))) (-4 *6 (-426)) - (-5 *2 (-588 (-588 *7))) (-5 *1 (-500 *6 *7 *5)) (-4 *7 (-338)) - (-4 *5 (-13 (-338) (-782)))))) +(725939 . 3415311731) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) + (-5 *1 (-857)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) + (-5 *1 (-857)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) + (-5 *1 (-858)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-874 (-203)) (-203))) (-5 *3 (-1011 (-203))) + (-5 *1 (-858))))) +(((*1 *1) (-5 *1 (-413)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) + (-4 *4 (-13 (-1016) (-33)))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4245)) (-4 *1 (-222 *2)) (-4 *2 (-1122))))) +(((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) + (-5 *1 (-688))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1016)) (-4 *6 (-1016)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-624 *4 *5 *6)) (-4 *5 (-1016))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-708)) (-5 *1 (-540 *2)) (-4 *2 (-507)))) - ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -1897 *3) (|:| -3858 (-708)))) (-5 *1 (-540 *3)) - (-4 *3 (-507))))) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1068 (-203))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3499 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-518))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-562 *5))) (-4 *4 (-786)) (-5 *2 (-562 *5)) + (-5 *1 (-532 *4 *5)) (-4 *5 (-406 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158))))) +(((*1 *2 *3) + (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) (-5 *2 (-394 *3)) + (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-880 *6 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) + (-5 *2 (-383 (-523))) (-5 *1 (-947 *4)) (-4 *4 (-1144 (-523)))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-337 (-110))) (-4 *2 (-973)) (-5 *1 (-654 *2 *4)) + (-4 *4 (-591 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-337 (-110))) (-5 *1 (-773 *2)) (-4 *2 (-973))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4245)) (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1122)) (-5 *2 (-1173))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-940)) (-5 *2 (-794))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1081 *7)) - (-4 *5 (-971)) (-4 *7 (-971)) (-4 *2 (-1142 *5)) - (-5 *1 (-471 *5 *2 *6 *7)) (-4 *6 (-1142 *2))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-336 *3)) (-4 *3 (-1014)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-522)) (-5 *2 (-708)) (-5 *1 (-361 *4)) (-4 *4 (-1014)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-522)) (-4 *2 (-23)) (-5 *1 (-591 *4 *2 *5)) - (-4 *4 (-1014)) (-14 *5 *2))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-522)) (-5 *2 (-708)) (-5 *1 (-756 *4)) (-4 *4 (-784))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *3 (-522)) - (-5 *2 (-960)) (-5 *1 (-692))))) + (-12 (-5 *4 (-1 (-589 *5) *6)) + (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *6 (-1144 *5)) + (-5 *2 (-589 (-2 (|:| -3059 *5) (|:| -1710 *3)))) + (-5 *1 (-748 *5 *6 *3 *7)) (-4 *3 (-599 *6)) + (-4 *7 (-599 (-383 *6)))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) + (-4 *5 (-406 *4)) (-5 *2 (-394 (-1083 (-383 (-523))))) + (-5 *1 (-411 *4 *5 *3)) (-4 *3 (-1144 *5))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-872 *4)) (-4 *4 (-971)) (-5 *1 (-1074 *3 *4)) - (-14 *3 (-850))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-311 *5 *6 *7 *8)) (-4 *5 (-405 *4)) - (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6))) - (-4 *8 (-317 *5 *6 *7)) (-4 *4 (-13 (-784) (-514) (-962 (-522)))) - (-5 *2 (-2 (|:| -3872 (-708)) (|:| -2138 *8))) - (-5 *1 (-840 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-311 (-382 (-522)) *4 *5 *6)) - (-4 *4 (-1142 (-382 (-522)))) (-4 *5 (-1142 (-382 *4))) - (-4 *6 (-317 (-382 (-522)) *4 *5)) - (-5 *2 (-2 (|:| -3872 (-708)) (|:| -2138 *6))) - (-5 *1 (-841 *4 *5 *6))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-1168)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168))))) -(((*1 *1 *1) (|partial| -4 *1 (-1061)))) -(((*1 *2 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-372))))) -(((*1 *2 *3) - (-12 (-5 *3 (-628 *4)) (-4 *4 (-338)) (-5 *2 (-1081 *4)) - (-5 *1 (-495 *4 *5 *6)) (-4 *5 (-338)) (-4 *6 (-13 (-338) (-782)))))) + (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-349 *2)) + (-4 *4 (-349 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4245)) (-4 *1 (-556 *3 *2)) (-4 *3 (-1016)) + (-4 *2 (-1122))))) (((*1 *2 *1) - (-12 (-5 *2 (-588 (-270 *3))) (-5 *1 (-270 *3)) (-4 *3 (-514)) - (-4 *3 (-1120))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971))))) + (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1017 *3 *4)) (-14 *3 (-852)) + (-14 *4 (-852))))) +(((*1 *2 *1) + (-12 (-5 *2 (-794)) (-5 *1 (-1068 *3)) (-4 *3 (-1016)) + (-4 *3 (-1122))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) + (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689))))) +(((*1 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-900))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-226))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1034)) (-5 *2 (-108)) (-5 *1 (-760))))) +(((*1 *2 *2) + (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-424 *3 *4 *5 *2)) (-4 *2 (-880 *3 *4 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-383 (-1083 (-292 *3)))) (-4 *3 (-13 (-515) (-786))) + (-5 *1 (-1044 *3))))) +(((*1 *2) (-12 (-5 *2 (-1059 (-1070))) (-5 *1 (-367))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) + (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) + (-5 *1 (-1086))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-523)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-710)) (-4 *5 (-158)))) + ((*1 *1 *1) + (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) + (-4 *4 (-158)))) + ((*1 *1 *1) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) + (-4 *4 (-349 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-973)) (-4 *1 (-627 *3 *2 *4)) (-4 *2 (-349 *3)) + (-4 *4 (-349 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1054 *2 *3)) (-14 *2 (-710)) (-4 *3 (-973))))) (((*1 *2) - (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-5 *2 (-628 (-382 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *1 *2) - (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-338)) - (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-834 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-850)) (-4 *4 (-343)) (-4 *4 (-338)) (-5 *2 (-1081 *1)) - (-4 *1 (-304 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-5 *2 (-1081 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-157)) (-4 *3 (-338)) - (-4 *2 (-1142 *3)))) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108))))) +(((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) ((*1 *2 *3) - (-12 (-5 *3 (-1166 *4)) (-4 *4 (-324)) (-5 *2 (-1081 *4)) - (-5 *1 (-492 *4))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-426)) (-4 *3 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) - (-5 *1 (-423 *4 *3 *5 *6)) (-4 *6 (-878 *4 *3 *5))))) -(((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) - (-4 *3 (-342 *4)))) - ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-1120)) (-5 *2 (-108))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1074 3 *3)) (-4 *3 (-971)) (-4 *1 (-1046 *3)))) - ((*1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-971))))) -(((*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-103)))) - ((*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-195)))) - ((*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-459)))) - ((*1 *1 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)) (-4 *2 (-283)))) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-852)) (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)))) + ((*1 *2 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-339)))) ((*1 *2 *1) - (-12 (-5 *2 (-382 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))) - ((*1 *1 *1) (-4 *1 (-980)))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-522)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-708)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-730)) (-4 *4 (-878 *5 *6 *7)) (-4 *5 (-426)) (-4 *7 (-784)) - (-5 *1 (-423 *5 *6 *7 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1085)) - (-4 *5 (-13 (-784) (-962 (-522)) (-426) (-584 (-522)))) - (-5 *2 (-2 (|:| -2441 *3) (|:| |nconst| *3))) (-5 *1 (-525 *5 *3)) - (-4 *3 (-13 (-27) (-1106) (-405 *5)))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-159))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-708)) (-4 *6 (-338)) (-5 *4 (-1115 *6)) - (-5 *2 (-1 (-1066 *4) (-1066 *4))) (-5 *1 (-1174 *6)) - (-5 *5 (-1066 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-354)))) - ((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-354))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4238)) (-4 *1 (-461 *3)) (-4 *3 (-1120)) - (-4 *3 (-1014)) (-5 *2 (-708)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4238)) (-4 *1 (-461 *4)) - (-4 *4 (-1120)) (-5 *2 (-708))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-270 *6)) (-5 *4 (-110)) (-4 *6 (-405 *5)) - (-4 *5 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) - (-5 *1 (-292 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-270 *7)) (-5 *4 (-110)) (-5 *5 (-588 *7)) - (-4 *7 (-405 *6)) (-4 *6 (-13 (-784) (-514) (-563 (-498)))) - (-5 *2 (-51)) (-5 *1 (-292 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-588 (-270 *7))) (-5 *4 (-588 (-110))) (-5 *5 (-270 *7)) - (-4 *7 (-405 *6)) (-4 *6 (-13 (-784) (-514) (-563 (-498)))) - (-5 *2 (-51)) (-5 *1 (-292 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-588 (-270 *8))) (-5 *4 (-588 (-110))) (-5 *5 (-270 *8)) - (-5 *6 (-588 *8)) (-4 *8 (-405 *7)) - (-4 *7 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) - (-5 *1 (-292 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-588 *7)) (-5 *4 (-588 (-110))) (-5 *5 (-270 *7)) - (-4 *7 (-405 *6)) (-4 *6 (-13 (-784) (-514) (-563 (-498)))) - (-5 *2 (-51)) (-5 *1 (-292 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 (-110))) (-5 *6 (-588 (-270 *8))) - (-4 *8 (-405 *7)) (-5 *5 (-270 *8)) - (-4 *7 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) - (-5 *1 (-292 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-270 *5)) (-5 *4 (-110)) (-4 *5 (-405 *6)) - (-4 *6 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) - (-5 *1 (-292 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-110)) (-5 *5 (-270 *3)) (-4 *3 (-405 *6)) - (-4 *6 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) - (-5 *1 (-292 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-110)) (-5 *5 (-270 *3)) (-4 *3 (-405 *6)) - (-4 *6 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) - (-5 *1 (-292 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-110)) (-5 *5 (-270 *3)) (-5 *6 (-588 *3)) - (-4 *3 (-405 *7)) (-4 *7 (-13 (-784) (-514) (-563 (-498)))) - (-5 *2 (-51)) (-5 *1 (-292 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-561 *5)) (-4 *5 (-405 *4)) (-4 *4 (-962 (-522))) - (-4 *4 (-13 (-784) (-514))) (-5 *2 (-1081 *5)) (-5 *1 (-31 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-561 *1)) (-4 *1 (-971)) (-4 *1 (-278)) - (-5 *2 (-1081 *1))))) -(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1085))))) -(((*1 *1 *2) - (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-1014)) (-5 *1 (-834 *3))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) - (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) (-5 *2 (-960)) - (-5 *1 (-686))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-971)) (-4 *7 (-971)) - (-4 *6 (-1142 *5)) (-5 *2 (-1081 (-1081 *7))) - (-5 *1 (-471 *5 *6 *4 *7)) (-4 *4 (-1142 *6))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-588 *1)) (-4 *1 (-283))))) -(((*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-1120)) (-5 *2 (-708)))) - ((*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-708)))) - ((*1 *2 *3) - (-12 (-4 *4 (-971)) - (-4 *2 (-13 (-379) (-962 *4) (-338) (-1106) (-260))) - (-5 *1 (-417 *4 *3 *2)) (-4 *3 (-1142 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-561 *3)) (-4 *3 (-784)))) - ((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) - ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-792))))) + (-12 (-4 *1 (-346 *2 *3)) (-4 *3 (-1144 *2)) (-4 *2 (-158)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1168 *4)) (-5 *3 (-852)) (-4 *4 (-325)) + (-5 *1 (-493 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) + (-4 *5 (-216 *3 *2)) (-4 *2 (-973))))) +(((*1 *1) (-5 *1 (-413)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110))))) (((*1 *2 *1) - (-12 (-4 *1 (-1142 *3)) (-4 *3 (-971)) (-5 *2 (-1081 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-628 *4)) (-4 *4 (-971)) (-5 *1 (-1052 *3 *4)) - (-14 *3 (-708))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4238)) (-4 *1 (-461 *3)) (-4 *3 (-1120)) - (-4 *3 (-1014)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-834 *4)) (-4 *4 (-1014)) (-5 *2 (-108)) - (-5 *1 (-833 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-850)) (-5 *2 (-108)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-426)) - (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *1 (-904 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-202)))) - ((*1 *1 *1) (-4 *1 (-507))) - ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-545 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1032))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-971)) (-5 *1 (-418 *3 *2)) (-4 *2 (-1142 *3))))) + (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-508)))) +(((*1 *2 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1126)) (-4 *3 (-1144 *4)) + (-4 *5 (-1144 (-383 *3))) (-5 *2 (-108)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) + (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) + (-5 *1 (-1086))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-522)) (-4 *2 (-405 *3)) (-5 *1 (-31 *3 *2)) - (-4 *3 (-962 *4)) (-4 *3 (-13 (-784) (-514)))))) + (-12 (-4 *5 (-284)) (-4 *6 (-349 *5)) (-4 *4 (-349 *5)) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) + (-5 *1 (-1038 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-588 *5)) (-5 *4 (-588 *6)) (-4 *5 (-1014)) - (-4 *6 (-1120)) (-5 *2 (-1 *6 *5)) (-5 *1 (-585 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-588 *5)) (-5 *4 (-588 *2)) (-4 *5 (-1014)) - (-4 *2 (-1120)) (-5 *1 (-585 *5 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-588 *6)) (-5 *4 (-588 *5)) (-4 *6 (-1014)) - (-4 *5 (-1120)) (-5 *2 (-1 *5 *6)) (-5 *1 (-585 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-588 *5)) (-5 *4 (-588 *2)) (-4 *5 (-1014)) - (-4 *2 (-1120)) (-5 *1 (-585 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-588 *5)) (-5 *4 (-588 *6)) - (-4 *5 (-1014)) (-4 *6 (-1120)) (-5 *1 (-585 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-588 *5)) (-5 *4 (-588 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1014)) (-4 *2 (-1120)) (-5 *1 (-585 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1054)) (-5 *3 (-132)) (-5 *2 (-708))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-960)) (-5 *1 (-281)))) - ((*1 *2 *3) (-12 (-5 *3 (-588 (-960))) (-5 *2 (-960)) (-5 *1 (-281)))) - ((*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-593 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *1) (-5 *1 (-983))) - ((*1 *2 *3) - (-12 (-5 *3 (-1066 (-1066 *4))) (-5 *2 (-1066 *4)) (-5 *1 (-1063 *4)) - (-4 *4 (-1120)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120))))) -(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1088)))) - ((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088))))) -(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *2 (-960)) - (-5 *1 (-693))))) -(((*1 *2 *1) + (-12 (-5 *3 (-589 (-383 (-883 (-155 (-523)))))) + (-5 *2 (-589 (-589 (-271 (-883 (-155 *4)))))) (-5 *1 (-354 *4)) + (-4 *4 (-13 (-339) (-784))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-271 (-383 (-883 (-155 (-523))))))) + (-5 *2 (-589 (-589 (-271 (-883 (-155 *4)))))) (-5 *1 (-354 *4)) + (-4 *4 (-13 (-339) (-784))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-383 (-883 (-155 (-523))))) + (-5 *2 (-589 (-271 (-883 (-155 *4))))) (-5 *1 (-354 *4)) + (-4 *4 (-13 (-339) (-784))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-271 (-383 (-883 (-155 (-523)))))) + (-5 *2 (-589 (-271 (-883 (-155 *4))))) (-5 *1 (-354 *4)) + (-4 *4 (-13 (-339) (-784)))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *6 (-203)) + (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-692))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-499))) (-5 *1 (-499))))) +(((*1 *2) + (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) + (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) + (-5 *1 (-993 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) + (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) + (-5 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-589 (-1087))) (-4 *2 (-158)) + (-4 *4 (-216 (-2676 *5) (-710))) + (-14 *6 + (-1 (-108) (-2 (|:| -3878 *3) (|:| -2735 *4)) + (-2 (|:| -3878 *3) (|:| -2735 *4)))) + (-5 *1 (-436 *5 *2 *3 *4 *6 *7)) (-4 *3 (-786)) + (-4 *7 (-880 *2 *4 (-796 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) + (-5 *2 (-2 (|:| -2935 (-383 *5)) (|:| |poly| *3))) + (-5 *1 (-137 *4 *5 *3)) (-4 *3 (-1144 (-383 *5)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1116 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) + (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-108)) (-5 *5 (-629 (-155 (-203)))) + (-5 *2 (-962)) (-5 *1 (-695))))) +(((*1 *1 *2 *2) (-12 (-5 *2 - (-588 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-522))))) - (-5 *1 (-393 *3)) (-4 *3 (-514)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-708)) (-4 *3 (-324)) (-4 *5 (-1142 *3)) - (-5 *2 (-588 (-1081 *3))) (-5 *1 (-468 *3 *5 *6)) - (-4 *6 (-1142 *5))))) + (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) + (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) + (-5 *1 (-1086))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-743 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1108) (-889)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-203) (-203))) (-5 *1 (-294)) (-5 *3 (-203))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-805)) (-5 *2 (-1173)) (-5 *1 (-1169)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1016))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-691))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-523)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-284)) + (-4 *9 (-880 *8 *6 *7)) + (-5 *2 (-2 (|:| -1480 (-1083 *9)) (|:| |polval| (-1083 *8)))) + (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1083 *9)) (-5 *4 (-1083 *8))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-1026)) (-5 *3 (-523))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-710)) (-5 *4 (-852)) (-5 *2 (-1173)) (-5 *1 (-1169)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-710)) (-5 *4 (-852)) (-5 *2 (-1173)) (-5 *1 (-1170))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-303 *3)) (-4 *3 (-1122)))) + ((*1 *2 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-486 *3 *4)) (-4 *3 (-1122)) + (-14 *4 (-523))))) +(((*1 *2) + (-12 (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) + (-5 *2 (-1168 *1)) (-4 *1 (-318 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) + (-4 *4 (-1144 *3)) + (-5 *2 + (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-629 *3)))) + (-5 *1 (-326 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1144 (-523))) + (-5 *2 + (-2 (|:| -4041 (-629 (-523))) (|:| |basisDen| (-523)) + (|:| |basisInv| (-629 (-523))))) + (-5 *1 (-707 *3 *4)) (-4 *4 (-385 (-523) *3)))) + ((*1 *2) + (-12 (-4 *3 (-325)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 *4)) + (-5 *2 + (-2 (|:| -4041 (-629 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-629 *4)))) + (-5 *1 (-914 *3 *4 *5 *6)) (-4 *6 (-664 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-325)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 *4)) + (-5 *2 + (-2 (|:| -4041 (-629 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-629 *4)))) + (-5 *1 (-1177 *3 *4 *5 *6)) (-4 *6 (-385 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-596 (-383 *2))) (-4 *2 (-1144 *4)) (-5 *1 (-749 *4 *2)) + (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-597 *2 (-383 *2))) (-4 *2 (-1144 *4)) + (-5 *1 (-749 *4 *2)) + (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1104))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-973)) (-5 *1 (-1140 *3 *2)) (-4 *2 (-1144 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1070)) (-5 *2 (-193 (-473))) (-5 *1 (-774))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-762)) (-5 *1 (-761))))) +(((*1 *2 *1) + (-12 (-4 *3 (-973)) (-5 *2 (-1168 *3)) (-5 *1 (-652 *3 *4)) + (-4 *4 (-1144 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-1170)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) + (-5 *2 (-962)) (-5 *1 (-693))))) +(((*1 *1 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3078 *4))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-89 *3))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3450 *1) (|:| -4002 *1))) (-4 *1 (-283)))) - ((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-361 *3)) (|:| |rm| (-361 *3)))) - (-5 *1 (-361 *3)) (-4 *3 (-1014)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3450 (-708)) (|:| -4002 (-708)))) - (-5 *1 (-708)))) + (-12 (-5 *2 (-108)) (-5 *1 (-1109 *3)) (-4 *3 (-1016))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-223 *3))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-589 (-523))) (-5 *3 (-108)) (-5 *1 (-1026))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-695))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-117 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-257)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-523) (-203) (-1087) (-1070) (-1092))) + (-5 *1 (-1092))))) +(((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-355)) (-5 *1 (-966))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-523))) (-5 *1 (-971))))) +(((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) + ((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1122)) + (-5 *2 (-108))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-130)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-133))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *4)) (-4 *4 (-1016)) (-5 *2 (-1173)) + (-5 *1 (-1123 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| -3450 *3) (|:| -4002 *3))) - (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-588 *7)) (|:| |badPols| (-588 *7)))) - (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-588 *7))))) -(((*1 *1) (-5 *1 (-740)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168))))) + (-12 (-5 *3 (-589 *4)) (-4 *4 (-1016)) (-5 *2 (-1173)) + (-5 *1 (-1123 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1083 *7)) (-5 *3 (-523)) (-4 *7 (-880 *6 *4 *5)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) + (-5 *1 (-297 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) + (-5 *1 (-688))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-299 *4 *2)) (-4 *4 (-1016)) + (-4 *2 (-124))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-523)) (-5 *5 (-108)) (-5 *6 (-629 (-203))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN)))) + (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-693))))) (((*1 *2) - (-12 (-4 *3 (-971)) (-5 *2 (-886 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) - (-4 *4 (-1142 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-302 *3)) (-4 *3 (-1120)))) - ((*1 *2 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-485 *3 *4)) (-4 *3 (-1120)) - (-14 *4 (-522))))) + (-12 (-4 *4 (-339)) (-5 *2 (-852)) (-5 *1 (-304 *3 *4)) + (-4 *3 (-305 *4)))) + ((*1 *2) + (-12 (-4 *4 (-339)) (-5 *2 (-772 (-852))) (-5 *1 (-304 *3 *4)) + (-4 *3 (-305 *4)))) + ((*1 *2) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-852)))) + ((*1 *2) + (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-772 (-852)))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-130)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-133))))) +(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1122)) (-5 *2 (-710))))) +(((*1 *1 *1) (-5 *1 (-203))) ((*1 *1 *1) (-5 *1 (-355))) + ((*1 *1) (-5 *1 (-355)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-515)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-515))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1173)) (-5 *1 (-761))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-971)) (-4 *2 (-626 *4 *5 *6)) - (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1142 *4)) (-4 *5 (-348 *4)) - (-4 *6 (-348 *4))))) + (-12 (-4 *2 (-515)) (-4 *2 (-427)) (-5 *1 (-899 *2 *3)) + (-4 *3 (-1144 *2))))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857))))) +(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108))))) (((*1 *2 *1) - (-12 (-5 *2 (-588 *4)) (-5 *1 (-1051 *3 *4)) - (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33)))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-685))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-1024))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-756 *3)) (-4 *3 (-784)) (-5 *1 (-613 *3))))) -(((*1 *2 *3 *2) + (-12 (-4 *1 (-513 *3)) (-4 *3 (-13 (-380) (-1108))) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) + (-4 *3 (-1144 *4)) (-5 *2 (-108))))) +(((*1 *2 *3) (-12 (-5 *2 - (-588 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-708)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-730)) (-4 *6 (-878 *4 *3 *5)) (-4 *4 (-426)) (-4 *5 (-784)) - (-5 *1 (-423 *4 *3 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-393 *3)) (-4 *3 (-514)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-2 (|:| -2006 *4) (|:| -2487 (-522))))) - (-4 *4 (-1142 (-522))) (-5 *2 (-708)) (-5 *1 (-416 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-708)) (|:| -1976 *4))) (-5 *5 (-708)) - (-4 *4 (-878 *6 *7 *8)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) + (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) + (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523))))) + ((*1 *2 *3 *4) + (-12 (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-423 *6 *7 *8 *4))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -2430 (-588 *3)) (|:| -3636 (-588 *3)))) - (-5 *1 (-1121 *3)) (-4 *3 (-1014))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1085)) - (-4 *4 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) - (-5 *1 (-741 *4 *2)) (-4 *2 (-13 (-29 *4) (-1106) (-887))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-792))) ((*1 *1 *1 *1) (-5 *1 (-792))) - ((*1 *1 *1) (-5 *1 (-792))) - ((*1 *2 *3) - (-12 (-5 *2 (-1066 *3)) (-5 *1 (-1070 *3)) (-4 *3 (-971))))) -(((*1 *1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-283))))) -(((*1 *2 *3) - (-12 (-5 *3 (-628 *2)) (-4 *4 (-1142 *2)) - (-4 *2 (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $))))) - (-5 *1 (-469 *2 *4 *5)) (-4 *5 (-384 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) - (-4 *5 (-215 *3 *2)) (-4 *2 (-971))))) -(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-108)) (-5 *1 (-766))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-1085))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-588 *6)) (-5 *4 (-1085)) (-4 *6 (-405 *5)) - (-4 *5 (-784)) (-5 *2 (-588 (-561 *6))) (-5 *1 (-531 *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *2 *3) - (-12 (-5 *3 (-522)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-5 *2 (-1171)) (-5 *1 (-423 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1066 *2)) (-4 *2 (-283)) (-5 *1 (-158 *2))))) -(((*1 *1) (-5 *1 (-129))) ((*1 *1 *1) (-5 *1 (-132))) - ((*1 *1 *1) (-4 *1 (-1054)))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784)) (-4 *2 (-514)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784)) (-4 *2 (-514))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-588 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-588 (-588 (-708)))) (-5 *1 (-833 *3)) (-4 *3 (-1014))))) -(((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-332 *3)) (-4 *3 (-324))))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-619 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2585 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-338)) (-4 *7 (-1142 *6)) - (-5 *2 (-2 (|:| |answer| (-539 (-382 *7))) (|:| |a0| *6))) - (-5 *1 (-532 *6 *7)) (-5 *3 (-382 *7))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *3 (-522)) - (-5 *2 (-960)) (-5 *1 (-694))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-135) (-27) (-962 (-522)) (-962 (-382 (-522))))) - (-4 *5 (-1142 *4)) (-5 *2 (-1081 (-382 *5))) (-5 *1 (-564 *4 *5)) - (-5 *3 (-382 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-393 *6) *6)) (-4 *6 (-1142 *5)) - (-4 *5 (-13 (-135) (-27) (-962 (-522)) (-962 (-382 (-522))))) - (-5 *2 (-1081 (-382 *6))) (-5 *1 (-564 *5 *6)) (-5 *3 (-382 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-628 *6)) (-5 *5 (-1 (-393 (-1081 *6)) (-1081 *6))) - (-4 *6 (-338)) + (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) + (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523))) + (-5 *4 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))))) + ((*1 *2 *3 *4) + (-12 (-5 *2 - (-588 - (-2 (|:| |outval| *7) (|:| |outmult| (-522)) - (|:| |outvect| (-588 (-628 *7)))))) - (-5 *1 (-495 *6 *7 *4)) (-4 *7 (-338)) (-4 *4 (-13 (-338) (-782)))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-960))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1098 *4 *5)) - (-4 *4 (-1014)) (-4 *5 (-1014))))) -(((*1 *2 *3) - (-12 (-4 *1 (-773)) - (-5 *3 - (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) - (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) - (|:| |ub| (-588 (-777 (-202)))))) - (-5 *2 (-960)))) + (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) + (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523))) (-5 *4 (-383 (-523))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-383 (-523))) + (-5 *2 (-589 (-2 (|:| -3149 *5) (|:| -3159 *5)))) (-5 *1 (-947 *3)) + (-4 *3 (-1144 (-523))) (-5 *4 (-2 (|:| -3149 *5) (|:| -3159 *5))))) ((*1 *2 *3) - (-12 (-4 *1 (-773)) - (-5 *3 - (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) - (-5 *2 (-960))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-708)) (-5 *2 (-588 (-1085))) (-5 *1 (-189)) - (-5 *3 (-1085)))) + (-12 + (-5 *2 + (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) + (-5 *1 (-948 *3)) (-4 *3 (-1144 (-383 (-523)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-291 (-202))) (-5 *4 (-708)) (-5 *2 (-588 (-1085))) - (-5 *1 (-243)))) - ((*1 *2 *1) - (-12 (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) - (-5 *2 (-588 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-588 *3)) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784)) - (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850)))) - ((*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-613 *3)) (-4 *3 (-784)))) - ((*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-617 *3)) (-4 *3 (-784)))) - ((*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-756 *3)) (-4 *3 (-784)))) - ((*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-822 *3)) (-4 *3 (-784)))) + (-12 + (-5 *2 + (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) + (-5 *1 (-948 *3)) (-4 *3 (-1144 (-383 (-523)))) + (-5 *4 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-383 (-523))) + (-5 *2 (-589 (-2 (|:| -3149 *4) (|:| -3159 *4)))) (-5 *1 (-948 *3)) + (-4 *3 (-1144 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-383 (-523))) + (-5 *2 (-589 (-2 (|:| -3149 *5) (|:| -3159 *5)))) (-5 *1 (-948 *3)) + (-4 *3 (-1144 *5)) (-5 *4 (-2 (|:| -3149 *5) (|:| -3159 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-312 *5 *6 *7 *8)) (-4 *5 (-406 *4)) (-4 *6 (-1144 *5)) + (-4 *7 (-1144 (-383 *6))) (-4 *8 (-318 *5 *6 *7)) + (-4 *4 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-108)) + (-5 *1 (-842 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-312 (-383 (-523)) *4 *5 *6)) + (-4 *4 (-1144 (-383 (-523)))) (-4 *5 (-1144 (-383 *4))) + (-4 *6 (-318 (-383 (-523)) *4 *5)) (-5 *2 (-108)) + (-5 *1 (-843 *4 *5 *6))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1190 *3 *4)) (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-158)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-758 *3)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-973)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1168 *1)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) + (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-167)) (-5 *1 (-226))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-292 (-203))) (-5 *1 (-244))))) +(((*1 *2 *1) + (-12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-982)) (-4 *3 (-1108)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-589 *3)) (-5 *5 (-852)) (-4 *3 (-1144 *4)) + (-4 *4 (-284)) (-5 *1 (-435 *4 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *2 (-589 (-203))) + (-5 *1 (-443))))) +(((*1 *2 *1) (-12 (-4 *1 (-964 (-523))) (-4 *1 (-279)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-836 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3287 (-523)) (|:| -1979 (-589 *3)))) + (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) + ((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-973)) (-5 *1 (-825 *2 *3)) (-4 *2 (-1144 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1 *1) (-4 *1 (-897)))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)) + (-4 *2 (-339)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-203)))) + ((*1 *1 *1 *1) + (-3262 (-12 (-5 *1 (-271 *2)) (-4 *2 (-339)) (-4 *2 (-1122))) + (-12 (-5 *1 (-271 *2)) (-4 *2 (-448)) (-4 *2 (-1122))))) + ((*1 *1 *1 *1) (-4 *1 (-339))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-355)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1039 *3 (-562 *1))) (-4 *3 (-515)) (-4 *3 (-786)) + (-4 *1 (-406 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-448))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1168 *3)) (-4 *3 (-325)) (-5 *1 (-493 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-499))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-158)) (-5 *1 (-568 *2 *4 *3)) (-4 *2 (-37 *4)) + (-4 *3 (|SubsetCategory| (-666) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-158)) (-5 *1 (-568 *3 *4 *2)) (-4 *3 (-37 *4)) + (-4 *2 (|SubsetCategory| (-666) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-580 *2)) (-4 *2 (-158)) (-4 *2 (-339)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-158)) (-5 *1 (-605 *2 *4 *3)) (-4 *2 (-657 *4)) + (-4 *3 (|SubsetCategory| (-666) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-158)) (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-657 *4)) + (-4 *2 (|SubsetCategory| (-666) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) + (-4 *4 (-349 *2)) (-4 *2 (-339)))) + ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-797 *2 *3 *4 *5)) (-4 *2 (-339)) + (-4 *2 (-973)) (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-710))) + (-14 *5 (-710)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-976 *3 *4 *2 *5 *6)) (-4 *2 (-973)) + (-4 *5 (-216 *4 *2)) (-4 *6 (-216 *3 *2)) (-4 *2 (-339)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-339)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-339)) (-4 *2 (-973)) (-4 *3 (-786)) + (-4 *4 (-732)) (-14 *6 (-589 *3)) + (-5 *1 (-1178 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-880 *2 *4 *3)) + (-14 *7 (-589 (-710))) (-14 *8 (-710)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-1189 *2 *3)) (-4 *2 (-339)) (-4 *2 (-973)) + (-4 *3 (-782))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-159 *3)) (-4 *3 (-284)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-616 *3)) (-4 *3 (-1122)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-680 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-786)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-589 *3)) (-4 *1 (-909 *3)) (-4 *3 (-973)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-589 *1)) (-5 *3 (-589 *7)) (-4 *1 (-992 *4 *5 *6 *7)) + (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) + (-4 *1 (-992 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1034)) (-5 *1 (-105)))) + ((*1 *2 *1) (|partial| -12 (-5 *1 (-341 *2)) (-4 *2 (-1016)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-1104))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-589 (-883 *3))) (-4 *3 (-427)) + (-5 *1 (-336 *3 *4)) (-14 *4 (-589 (-1087))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-589 (-719 *3 (-796 *4)))) (-4 *3 (-427)) + (-14 *4 (-589 (-1087))) (-5 *1 (-574 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-761))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-124)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-337 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-362 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-592 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-523)) (-5 *3 (-852)) (-4 *1 (-380)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-523)) (-4 *1 (-380)))) ((*1 *2 *1) - (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) - (-5 *2 (-588 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-980)))) + (-12 (-4 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-589 (-883 *6))) (-5 *4 (-589 (-1087))) (-4 *6 (-427)) + (-5 *2 (-589 (-589 *7))) (-5 *1 (-501 *6 *7 *5)) (-4 *7 (-339)) + (-4 *5 (-13 (-339) (-784)))))) +(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1 *1) (-4 *1 (-897)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-589 *4)) (-4 *4 (-339)) (-4 *2 (-1144 *4)) + (-5 *1 (-853 *4 *2))))) +(((*1 *1) (-5 *1 (-413)))) +(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-126))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-193 *2)) + (-4 *2 + (-13 (-786) + (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) + (-15 -2823 ((-1173) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1122)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1122)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) - (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) + (-4 *4 (-349 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) + (-4 *4 (-349 *2)))) + ((*1 *1 *1) (-5 *1 (-794))) ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) - (-4 *2 (-405 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)) (-4 *2 (-980)))) - ((*1 *1 *1) (-4 *1 (-782))) - ((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)) (-4 *2 (-980)))) - ((*1 *1 *1) (-4 *1 (-980))) ((*1 *1 *1) (-4 *1 (-1049)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-850)) (-5 *2 (-442)) (-5 *1 (-1167))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-382 (-522))) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-514)) (-4 *8 (-878 *7 *5 *6)) - (-5 *2 (-2 (|:| -3858 (-708)) (|:| -3112 *9) (|:| |radicand| *9))) - (-5 *1 (-882 *5 *6 *7 *8 *9)) (-5 *4 (-708)) - (-4 *9 - (-13 (-338) - (-10 -8 (-15 -2947 (*8 $)) (-15 -2959 (*8 $)) (-15 -2217 ($ *8)))))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-619 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1119)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-21))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-1014 *3)))) + ((*1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *1) + (-12 (-4 *1 (-556 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1016)) + (-4 *2 (-786))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-394 *2)) (-4 *2 (-284)) (-5 *1 (-845 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) + (-4 *5 (-13 (-284) (-136))) (-5 *2 (-51)) (-5 *1 (-846 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-394 (-883 *6))) (-5 *5 (-1087)) (-5 *3 (-883 *6)) + (-4 *6 (-13 (-284) (-136))) (-5 *2 (-51)) (-5 *1 (-846 *6))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-562 *3)) + (-4 *3 (-13 (-406 *5) (-27) (-1108))) + (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 (-2 (|:| -2462 *3) (|:| |coeff| *3))) + (-5 *1 (-525 *5 *3 *6)) (-4 *6 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966))))) (((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-51)) (-5 *1 (-1099))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-338) (-135) (-962 (-522)))) - (-4 *5 (-1142 *4)) - (-5 *2 (-2 (|:| -2585 (-382 *5)) (|:| |coeff| (-382 *5)))) - (-5 *1 (-526 *4 *5)) (-5 *3 (-382 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-782)) (-5 *1 (-279 *3))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-291 (-202))) (-5 *1 (-281)))) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) + (-4 *5 (-1144 *4)) (-5 *2 (-629 *4)))) ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-821 *3)) (|:| |den| (-821 *3)))) - (-5 *1 (-821 *3)) (-4 *3 (-1014))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2908 *3) (|:| |coef2| (-719 *3)))) - (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971))))) -(((*1 *2 *1) - (-12 (-14 *3 (-588 (-1085))) (-4 *4 (-157)) - (-14 *6 - (-1 (-108) (-2 (|:| -2882 *5) (|:| -3858 *2)) - (-2 (|:| -2882 *5) (|:| -3858 *2)))) - (-4 *2 (-215 (-3591 *3) (-708))) (-5 *1 (-435 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-784)) (-4 *7 (-878 *4 *2 (-794 *3)))))) + (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1144 *3)) + (-5 *2 (-629 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-339)) + (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *1 (-425 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-339)) + (-5 *2 + (-2 (|:| R (-629 *6)) (|:| A (-629 *6)) (|:| |Ainv| (-629 *6)))) + (-5 *1 (-907 *6)) (-5 *3 (-629 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-928)) - (-4 *2 (-971))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1068) (-711))) (-5 *1 (-110))))) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) + (-5 *2 (-2 (|:| |num| (-1168 *4)) (|:| |den| *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-689))))) -(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855))))) -(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-411)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-411))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *2 (-784)))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-144))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-110)) (-4 *4 (-971)) (-5 *1 (-652 *4 *2)) - (-4 *2 (-590 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-771 *2)) (-4 *2 (-971))))) -(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-51)) (-5 *1 (-766))))) + (-12 (-5 *1 (-193 *2)) + (-4 *2 + (-13 (-786) + (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) + (-15 -2823 ((-1173) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-25)) (-4 *2 (-1122)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-25)) (-4 *2 (-1122)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-299 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-124)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *2)) + (-4 *2 (-1144 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) + (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-499))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) + (-4 *4 (-349 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1119)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-25))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1168 *4)) (-5 *3 (-523)) (-4 *4 (-325)) + (-5 *1 (-493 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-522)) (-5 *1 (-419 *3)) (-4 *3 (-379)) (-4 *3 (-971))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) - (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *1 (-1177 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-588 *8)) (-5 *3 (-1 (-108) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) - (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-1177 *5 *6 *7 *8))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-708)) (-5 *2 (-1 (-354))) (-5 *1 (-964))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-628 (-1081 *8))) (-4 *5 (-971)) (-4 *8 (-971)) - (-4 *6 (-1142 *5)) (-5 *2 (-628 *6)) (-5 *1 (-471 *5 *6 *7 *8)) - (-4 *7 (-1142 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-1095 *2)) (-4 *2 (-338))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-872 *3)))))) -(((*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1088))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-708)) (-5 *1 (-110))))) -(((*1 *2 *1) (-12 (-4 *3 (-971)) (-5 *2 (-588 *1)) (-4 *1 (-1046 *3))))) + (|partial| -12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 *2)) + (-5 *2 (-355)) (-5 *1 (-724 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) + (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) + (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) + (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) + (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) + (-4 *5 (-786)) (-4 *5 (-564 *2)) (-5 *2 (-355)) + (-5 *1 (-724 *5))))) +(((*1 *2) + (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) + (-5 *2 (-589 (-589 *4))) (-5 *1 (-317 *3 *4 *5 *6)) + (-4 *3 (-318 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-4 *3 (-344)) (-5 *2 (-589 (-589 *3)))))) (((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -1410 (-110)) (|:| |arg| (-588 (-821 *3))))) - (-5 *1 (-821 *3)) (-4 *3 (-1014)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-110)) (-5 *2 (-588 (-821 *4))) - (-5 *1 (-821 *4)) (-4 *4 (-1014))))) -(((*1 *2 *2) - (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-784)) (-5 *1 (-1092 *3))))) + (-12 (-4 *2 (-648 *3)) (-5 *1 (-766 *2 *3)) (-4 *3 (-973))))) +(((*1 *2 *3) + (-12 (-5 *3 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-5 *2 (-1173)) (-5 *1 (-1090)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1087)) + (-5 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-5 *2 (-1173)) + (-5 *1 (-1090)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1087)) + (-5 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-5 *2 (-1173)) + (-5 *1 (-1090))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-973)) (-4 *2 (-627 *4 *5 *6)) + (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1144 *4)) (-4 *5 (-349 *4)) + (-4 *6 (-349 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-885)) (-5 *2 (-589 (-589 (-874 (-203))))))) + ((*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-589 (-589 (-874 (-203)))))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-157))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) + (-5 *2 (-962)) (-5 *1 (-690))))) +(((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-133)))) + ((*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-133))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1088))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) - (-5 *2 (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))) - (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *1 (-98 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) + (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) + (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-782))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-155 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) + (-5 *1 (-698))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *1) (-5 *1 (-267)))) + (-12 (-5 *3 (-383 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1144 *5)) + (-5 *1 (-667 *5 *2)) (-4 *5 (-339))))) +(((*1 *1 *1) (|partial| -4 *1 (-1063)))) (((*1 *2 *3) - (-12 (-5 *3 (-588 (-1085))) (-4 *4 (-13 (-283) (-135))) - (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) - (-5 *2 (-588 (-382 (-881 *4)))) (-5 *1 (-853 *4 *5 *6 *7)) - (-4 *7 (-878 *4 *6 *5))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *5 (-108)) - (-5 *2 (-960)) (-5 *1 (-683))))) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) + (-4 *4 (-13 (-786) (-515)))))) +(((*1 *2 *2) + (-12 (-4 *2 (-158)) (-4 *2 (-973)) (-5 *1 (-654 *2 *3)) + (-4 *3 (-591 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-773 *2)) (-4 *2 (-158)) (-4 *2 (-973))))) +(((*1 *2 *1) + (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1068)) (-4 *4 (-13 (-283) (-135))) - (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) + (-12 + (-5 *3 + (-2 (|:| -3392 (-629 (-383 (-883 *4)))) + (|:| |vec| (-589 (-383 (-883 *4)))) (|:| -1319 (-710)) + (|:| |rows| (-589 (-523))) (|:| |cols| (-589 (-523))))) + (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) (-5 *2 - (-588 - (-2 (|:| |eqzro| (-588 *7)) (|:| |neqzro| (-588 *7)) - (|:| |wcond| (-588 (-881 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1166 (-382 (-881 *4)))) - (|:| -2905 (-588 (-1166 (-382 (-881 *4)))))))))) - (-5 *1 (-853 *4 *5 *6 *7)) (-4 *7 (-878 *4 *6 *5))))) + (-2 (|:| |partsol| (-1168 (-383 (-883 *4)))) + (|:| -4041 (-589 (-1168 (-383 (-883 *4))))))) + (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-880 *4 *6 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-934))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *3 (-589 (-240))) + (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-240)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-443)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-443))))) +(((*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158))))) +(((*1 *2) + (-12 + (-5 *2 + (-1168 (-589 (-2 (|:| -1733 (-841 *3)) (|:| -3878 (-1034)))))) + (-5 *1 (-327 *3 *4)) (-14 *3 (-852)) (-14 *4 (-852)))) + ((*1 *2) + (-12 (-5 *2 (-1168 (-589 (-2 (|:| -1733 *3) (|:| -3878 (-1034)))))) + (-5 *1 (-328 *3 *4)) (-4 *3 (-325)) (-14 *4 (-3 (-1083 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1168 (-589 (-2 (|:| -1733 *3) (|:| -3878 (-1034)))))) + (-5 *1 (-329 *3 *4)) (-4 *3 (-325)) (-14 *4 (-852))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-710)) (-4 *2 (-515)) (-5 *1 (-899 *2 *4)) + (-4 *4 (-1144 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-760))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-589 (-589 (-589 *4)))) (-5 *3 (-589 *4)) (-4 *4 (-786)) + (-5 *1 (-1094 *4))))) (((*1 *2 *1) - (-12 (|has| *1 (-6 -4238)) (-4 *1 (-461 *3)) (-4 *3 (-1120)) - (-5 *2 (-588 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1014))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-588 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522))))) -(((*1 *2 *3) - (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108)) - (-5 *1 (-31 *4 *5)) (-4 *5 (-405 *4)))) + (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) + (-4 *3 (-897))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) + ((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *1 *2) (-12 (-5 *2 (-364)) (-5 *1 (-578))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1168 *4)) (-4 *4 (-393 *3)) (-4 *3 (-284)) + (-4 *3 (-515)) (-5 *1 (-42 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108)) - (-5 *1 (-144 *4 *5)) (-4 *5 (-405 *4)))) + (-12 (-5 *3 (-852)) (-4 *4 (-339)) (-5 *2 (-1168 *1)) + (-4 *1 (-305 *4)))) + ((*1 *2) (-12 (-4 *3 (-339)) (-5 *2 (-1168 *1)) (-4 *1 (-305 *3)))) + ((*1 *2) + (-12 (-4 *3 (-158)) (-4 *4 (-1144 *3)) (-5 *2 (-1168 *1)) + (-4 *1 (-385 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-284)) (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) + (-5 *2 (-1168 *6)) (-5 *1 (-389 *3 *4 *5 *6)) + (-4 *6 (-13 (-385 *4 *5) (-964 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-284)) (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) + (-5 *2 (-1168 *6)) (-5 *1 (-390 *3 *4 *5 *6 *7)) + (-4 *6 (-385 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-158)) (-5 *2 (-1168 *1)) (-4 *1 (-393 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1168 (-1168 *4))) (-5 *1 (-493 *4)) + (-4 *4 (-325))))) +(((*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122))))) +(((*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)))) + ((*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) +(((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-104)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-110)))) + ((*1 *2 *1) + (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1016)) (-4 *2 (-1016)))) + ((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-414 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-895)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-994 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-5 *1 (-1087)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1070)) + (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-108)) (-5 *1 (-202 *4 *5)) (-4 *5 (-13 (-1108) (-29 *4)))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) + (-5 *2 (-962)) (-5 *1 (-692))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-713)) (-5 *1 (-110))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-710)) (-5 *1 (-721 *3)) (-4 *3 (-973)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-893 *3 *2)) (-4 *2 (-124)) (-4 *3 (-515)) + (-4 *3 (-973)) (-4 *2 (-731)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-710)) (-5 *1 (-1083 *3)) (-4 *3 (-973)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-900)) (-4 *2 (-124)) (-5 *1 (-1089 *3)) (-4 *3 (-515)) + (-4 *3 (-973)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-710)) (-5 *1 (-1141 *4 *3)) (-14 *4 (-1087)) + (-4 *3 (-973))))) +(((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-51))))) +(((*1 *2 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) + (-4 *4 (-325)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) + (-4 *4 (-325)))) + ((*1 *1) (-4 *1 (-344))) + ((*1 *2 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1168 *4)) (-5 *1 (-493 *4)) + (-4 *4 (-325)))) + ((*1 *1 *1) (-4 *1 (-508))) ((*1 *1) (-4 *1 (-508))) + ((*1 *1 *1) (-5 *1 (-523))) ((*1 *1 *1) (-5 *1 (-710))) + ((*1 *2 *1) (-12 (-5 *2 (-836 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-5 *2 (-836 *4)) (-5 *1 (-835 *4)) + (-4 *4 (-1016)))) + ((*1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-508)) (-4 *2 (-515))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-108) *7 (-589 *7))) (-4 *1 (-1116 *4 *5 *6 *7)) + (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-987 *4 *5 *6)) + (-5 *2 (-108))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) + ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3) + (-12 (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) + (-4 *4 (-1144 *3)) + (-5 *2 + (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-629 *3)))) + (-5 *1 (-326 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108)) - (-5 *1 (-252 *4 *5)) (-4 *5 (-13 (-405 *4) (-928))))) + (-12 (-5 *3 (-523)) (-4 *4 (-1144 *3)) + (-5 *2 + (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-629 *3)))) + (-5 *1 (-707 *4 *5)) (-4 *5 (-385 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-277 *4)) (-4 *4 (-278)))) - ((*1 *2 *3) (-12 (-4 *1 (-278)) (-5 *3 (-110)) (-5 *2 (-108)))) + (-12 (-4 *4 (-325)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 *3)) + (-5 *2 + (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-629 *3)))) + (-5 *1 (-914 *4 *3 *5 *6)) (-4 *6 (-664 *3 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-110)) (-4 *5 (-784)) (-5 *2 (-108)) - (-5 *1 (-404 *4 *5)) (-4 *4 (-405 *5)))) + (-12 (-4 *4 (-325)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 *3)) + (-5 *2 + (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-629 *3)))) + (-5 *1 (-1177 *4 *3 *5 *6)) (-4 *6 (-385 *3 *5))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-108)) + (-5 *2 (-962)) (-5 *1 (-693))))) +(((*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-203))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-499) (-589 (-499)))) (-5 *1 (-110)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-499) (-589 (-499)))) (-5 *1 (-110))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-420 *3)) (-4 *3 (-973))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-108)) (-5 *3 (-883 *6)) (-5 *4 (-1087)) + (-5 *5 (-779 *7)) + (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-4 *7 (-13 (-1108) (-29 *6))) (-5 *1 (-202 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1083 *6)) (-5 *4 (-779 *6)) + (-4 *6 (-13 (-1108) (-29 *5))) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-202 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1054 *4 *2)) (-14 *4 (-852)) + (-4 *2 (-13 (-973) (-10 -7 (-6 (-4246 "*"))))) (-5 *1 (-833 *4 *2))))) +(((*1 *2) (-12 (-5 *2 (-589 *3)) (-5 *1 (-1002 *3)) (-4 *3 (-125))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) + ((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1122))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) + (-5 *2 (-108))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-325)) + (-5 *2 + (-2 (|:| |cont| *5) + (|:| -1979 (-589 (-2 (|:| |irr| *3) (|:| -1227 (-523))))))) + (-5 *1 (-195 *5 *3)) (-4 *3 (-1144 *5))))) +(((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-966))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *1 (-1042 *3 *2)) (-4 *3 (-1144 *2))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-523)) (-4 *3 (-158)) (-4 *5 (-349 *3)) + (-4 *6 (-349 *3)) (-5 *1 (-628 *3 *5 *6 *2)) + (-4 *2 (-627 *3 *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-51))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 (-2 (|:| |val| (-589 *6)) (|:| -3072 *7)))) + (-4 *6 (-987 *3 *4 *5)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-917 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-589 (-2 (|:| |val| (-589 *6)) (|:| -3072 *7)))) + (-4 *6 (-987 *3 *4 *5)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-1023 *3 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) + ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-834 *3)) (-4 *3 (-1016)) (-5 *2 (-108)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1016)) (-5 *2 (-108))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-406 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) + (-4 *3 (-1016)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-589 *1)) (-4 *1 (-880 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108)) - (-5 *1 (-406 *4 *5)) (-4 *5 (-405 *4)))) + (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) + (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-589 *3)) + (-5 *1 (-881 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-339) + (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) + (-15 -2797 (*7 $)))))))) +(((*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-234))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-523)) (-5 *1 (-219)))) ((*1 *2 *3) - (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108)) - (-5 *1 (-575 *4 *5)) (-4 *5 (-13 (-405 *4) (-928) (-1106)))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-821 *4)) (-4 *4 (-1014)) (-5 *1 (-818 *4 *3)) - (-4 *3 (-1014))))) + (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-523)) (-5 *1 (-219))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *2 (-1016)) (-4 *3 (-1016)) + (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) (((*1 *2 *1) - (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-4 *3 (-514)) - (-5 *2 (-1081 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-792))) - ((*1 *1 *1 *1) (-4 *1 (-895)))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) - (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))) + (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-540 *3)) (-4 *3 (-339))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3078 *3) (|:| |coef2| (-721 *3)))) + (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-383 *5)) + (|:| |c2| (-383 *5)) (|:| |deg| (-710)))) + (-5 *1 (-137 *4 *5 *3)) (-4 *3 (-1144 (-383 *5)))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN)))) + (-5 *2 (-962)) (-5 *1 (-688))))) +(((*1 *1 *1) (-5 *1 (-108)))) +(((*1 *1) (-5 *1 (-762)))) +(((*1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1087))))) +(((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-794))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1087)) + (-4 *4 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-534 *4 *2)) + (-4 *2 (-13 (-1108) (-889) (-1051) (-29 *4)))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1130 *3 *2)) (-4 *3 (-973)) + (-4 *2 (-1159 *3))))) +(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-268))) + ((*1 *1) (-5 *1 (-794))) + ((*1 *1) + (-12 (-4 *2 (-427)) (-4 *3 (-786)) (-4 *4 (-732)) + (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-880 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1003))) + ((*1 *1) + (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) + (-4 *3 (-13 (-1016) (-33))))) + ((*1 *1) (-5 *1 (-1090))) ((*1 *1) (-5 *1 (-1091)))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103))))) +(((*1 *2 *3) + (-12 (-5 *3 (-523)) (|has| *1 (-6 -4235)) (-4 *1 (-380)) + (-5 *2 (-852))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170))))) +(((*1 *1 *1) (-4 *1 (-982))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1122)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) + ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-953 *3)) (-4 *3 (-1122))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-523)) (-5 *5 (-1070)) (-5 *6 (-629 (-203))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G)))) + (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) + (-5 *9 (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) + (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689))))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-589 *11)) + (|:| |todo| (-589 (-2 (|:| |val| *3) (|:| -3072 *11)))))) + (-5 *6 (-710)) + (-5 *2 (-589 (-2 (|:| |val| (-589 *10)) (|:| -3072 *11)))) + (-5 *3 (-589 *10)) (-5 *4 (-589 *11)) (-4 *10 (-987 *7 *8 *9)) + (-4 *11 (-992 *7 *8 *9 *10)) (-4 *7 (-427)) (-4 *8 (-732)) + (-4 *9 (-786)) (-5 *1 (-990 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-589 *11)) + (|:| |todo| (-589 (-2 (|:| |val| *3) (|:| -3072 *11)))))) + (-5 *6 (-710)) + (-5 *2 (-589 (-2 (|:| |val| (-589 *10)) (|:| -3072 *11)))) + (-5 *3 (-589 *10)) (-5 *4 (-589 *11)) (-4 *10 (-987 *7 *8 *9)) + (-4 *11 (-1025 *7 *8 *9 *10)) (-4 *7 (-427)) (-4 *8 (-732)) + (-4 *9 (-786)) (-5 *1 (-1057 *7 *8 *9 *10 *11))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-687))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-585 (-523))) + (-5 *2 (-1168 (-523))) (-5 *1 (-1193 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794))))) (((*1 *2 *2) - (-12 (-4 *3 (-971)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1142 *3))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-628 *2)) (-5 *4 (-708)) - (-4 *2 (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $))))) - (-4 *5 (-1142 *2)) (-5 *1 (-469 *2 *5 *6)) (-4 *6 (-384 *2 *5))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) - (-4 *5 (-13 (-1014) (-33))) (-4 *6 (-13 (-1014) (-33))) - (-5 *2 (-108)) (-5 *1 (-1050 *5 *6))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-522)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-393 *2)) (-4 *2 (-514))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-514)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) - (-5 *1 (-1111 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-588 (-834 *3))) (-4 *3 (-1014)) (-5 *1 (-833 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-792))) - ((*1 *1 *1 *1) (-4 *1 (-895)))) + (-12 (-4 *3 (-13 (-284) (-136))) (-4 *4 (-13 (-786) (-564 (-1087)))) + (-4 *5 (-732)) (-5 *1 (-855 *3 *4 *5 *2)) (-4 *2 (-880 *3 *5 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-834 (-522))) (-5 *4 (-522)) (-5 *2 (-628 *4)) - (-5 *1 (-953 *5)) (-4 *5 (-971)))) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *1 *1) (-12 (-4 *1 (-349 *2)) (-4 *2 (-1122)) (-4 *2 (-786)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1122)))) + ((*1 *2 *2) + (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) + (-4 *6 (-987 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3722 *1) (|:| |upper| *1))) + (-4 *1 (-905 *4 *5 *3 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-794) (-794))) (-5 *1 (-110)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-794) (-589 (-794)))) (-5 *1 (-110)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-794) (-589 (-794)))) (-5 *1 (-110)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1173)) (-5 *1 (-193 *3)) + (-4 *3 + (-13 (-786) + (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 (*2 $)) + (-15 -2823 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-370)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-370)))) + ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-473)))) + ((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-650)))) + ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1103)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-1103))))) +(((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) + ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520))))) +(((*1 *2 *3) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-421)) (-5 *3 (-523))))) +(((*1 *2 *2) + (-12 (-4 *3 (-786)) (-5 *1 (-860 *3 *2)) (-4 *2 (-406 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-588 (-522))) (-5 *2 (-628 (-522))) (-5 *1 (-953 *4)) - (-4 *4 (-971)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-834 (-522)))) (-5 *4 (-522)) - (-5 *2 (-588 (-628 *4))) (-5 *1 (-953 *5)) (-4 *5 (-971)))) + (-12 (-5 *3 (-1087)) (-5 *2 (-292 (-523))) (-5 *1 (-861))))) +(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-412))))) +(((*1 *2 *3) + (-12 (-5 *2 (-394 (-1083 *1))) (-5 *1 (-292 *4)) (-5 *3 (-1083 *1)) + (-4 *4 (-427)) (-4 *4 (-515)) (-4 *4 (-786)))) ((*1 *2 *3) - (-12 (-5 *3 (-588 (-588 (-522)))) (-5 *2 (-588 (-628 (-522)))) - (-5 *1 (-953 *4)) (-4 *4 (-971))))) -(((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-332 *3)) (-4 *3 (-324))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) - (-5 *1 (-915 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) - (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7))))) + (-12 (-4 *1 (-840)) (-5 *2 (-394 (-1083 *1))) (-5 *3 (-1083 *1))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-339)) (-5 *1 (-262 *3 *2)) (-4 *2 (-1159 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) - (-4 *3 (-13 (-338) (-1106) (-928)))))) -(((*1 *2 *1 *1) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-589 (-629 (-523)))) + (-5 *1 (-1026))))) +(((*1 *2 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-373))))) +(((*1 *2 *2 *2) (-12 (-5 *2 - (-2 (|:| -2908 *3) (|:| |coef1| (-719 *3)) (|:| |coef2| (-719 *3)))) - (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971))))) -(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-522)) (-5 *1 (-218)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-522)) (-5 *1 (-218))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-442)) (-5 *4 (-850)) (-5 *2 (-1171)) (-5 *1 (-1167))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-338)) (-4 *3 (-971)) - (-5 *1 (-1070 *3))))) + (-2 (|:| -4041 (-629 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-629 *3)))) + (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) + (-4 *4 (-1144 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1122))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-595 *4)) (-4 *4 (-317 *5 *6 *7)) - (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) - (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6))) + (-12 (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-515)) + (-4 *3 (-880 *7 *5 *6)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2905 (-588 *4)))) - (-5 *1 (-743 *5 *6 *7 *4))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-522)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1120)) - (-4 *5 (-348 *4)) (-4 *3 (-348 *4))))) -(((*1 *1) (-5 *1 (-305)))) -(((*1 *1 *2) - (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-1057 *3))))) + (-2 (|:| -2735 (-710)) (|:| -2935 *3) (|:| |radicand| (-589 *3)))) + (-5 *1 (-884 *5 *6 *7 *3 *8)) (-5 *4 (-710)) + (-4 *8 + (-13 (-339) + (-10 -8 (-15 -2785 (*3 $)) (-15 -2797 (*3 $)) (-15 -1458 ($ *3)))))))) (((*1 *2 *1) - (-12 (-5 *2 (-588 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522))))) -(((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-1120))))) + (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857))))) +(((*1 *2 *3) + (-12 (-4 *4 (-515)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3549 *4))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-279))) ((*1 *1 *1) (-4 *1 (-279)))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-589 *6)) (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) + (-4 *3 (-515))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-710)) (-5 *1 (-541 *2)) (-4 *2 (-508)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3007 *3) (|:| -2735 (-710)))) (-5 *1 (-541 *3)) + (-4 *3 (-508))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-589 *7)) (-5 *3 (-523)) (-4 *7 (-880 *4 *5 *6)) + (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *1 (-424 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-306)))) + ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-306))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1169)))) + ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1170))))) (((*1 *2 *1) - (-12 (-4 *4 (-1014)) (-5 *2 (-108)) (-5 *1 (-814 *3 *4 *5)) - (-4 *3 (-1014)) (-4 *5 (-608 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1014)) - (-4 *4 (-1014))))) -(((*1 *2 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1068)) (-5 *1 (-281))))) -(((*1 *1) (-5 *1 (-267)))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171)) - (-5 *1 (-915 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171)) - (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-697))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-588 (-522))) (-5 *1 (-1024)) (-5 *3 (-522))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-621 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-1068)) (-5 *1 (-1167)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1167)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1167)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-1068)) (-5 *1 (-1168)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1168)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1168))))) + (-12 (-4 *1 (-1130 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1159 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-617 *3)) (-4 *3 (-973)) (-4 *3 (-1016))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-1087)) (-5 *3 (-1020)) (-5 *1 (-268))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) + (-4 *4 (-349 *2))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-562 *4)) (-5 *6 (-1083 *4)) + (-4 *4 (-13 (-406 *7) (-27) (-1108))) + (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) + (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1016)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-562 *4)) (-5 *6 (-383 (-1083 *4))) + (-4 *4 (-13 (-406 *7) (-27) (-1108))) + (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) + (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1016))))) (((*1 *2 *1) - (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) - (-4 *5 (-348 *3)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) - (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108))))) + (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) + (-5 *2 (-1083 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794))))) +(((*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1122)) (-4 *2 (-1016)))) + ((*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1016))))) (((*1 *2 *3) - (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-171)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-276)))) + (-12 (-5 *3 (-523)) (-5 *2 (-589 (-589 (-203)))) (-5 *1 (-1119))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) + (-5 *5 (-1011 (-203))) (-5 *6 (-523)) (-5 *2 (-1118 (-857))) + (-5 *1 (-294)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) + (-5 *5 (-1011 (-203))) (-5 *6 (-523)) (-5 *7 (-1070)) + (-5 *2 (-1118 (-857))) (-5 *1 (-294)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) + (-5 *5 (-1011 (-203))) (-5 *6 (-203)) (-5 *7 (-523)) + (-5 *2 (-1118 (-857))) (-5 *1 (-294)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) + (-5 *5 (-1011 (-203))) (-5 *6 (-203)) (-5 *7 (-523)) (-5 *8 (-1070)) + (-5 *2 (-1118 (-857))) (-5 *1 (-294))))) +(((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1168 *5)) (-5 *3 (-710)) (-5 *4 (-1034)) (-4 *5 (-325)) + (-5 *1 (-493 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-108)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-240))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1011 (-779 (-355)))) (-5 *2 (-1011 (-779 (-203)))) + (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) + (-5 *2 + (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) + (|:| |success| (-108)))) + (-5 *1 (-728)) (-5 *5 (-523))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-895))) (-5 *1 (-104))))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) + ((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-638))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-523)) (-5 *2 (-589 (-2 (|:| -1820 *3) (|:| -2299 *4)))) + (-5 *1 (-635 *3)) (-4 *3 (-1144 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) + (-5 *1 (-308))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-852)) (-5 *1 (-1017 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) + (-4 *4 (-13 (-786) (-515)))))) +(((*1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-116 *3)) (-4 *3 (-1144 (-523))))) + ((*1 *2 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-116 *3)) (-4 *3 (-1144 (-523)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1144 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1144 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1087)) (-4 *5 (-564 (-823 (-523)))) + (-4 *5 (-817 (-523))) + (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-526 *5 *3)) (-4 *3 (-575)) + (-4 *3 (-13 (-27) (-1108) (-406 *5)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-443)) (-5 *4 (-852)) (-5 *2 (-1173)) (-5 *1 (-1169))))) +(((*1 *2 *1) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108))))) + ((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) + ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-284)) + (-5 *1 (-847 *3 *4 *5 *2)) (-4 *2 (-880 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1083 *6)) (-4 *6 (-880 *5 *3 *4)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *5 (-284)) (-5 *1 (-847 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-281))))) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *6 *4 *5)) + (-5 *1 (-847 *4 *5 *6 *2)) (-4 *4 (-732)) (-4 *5 (-786)) + (-4 *6 (-284))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-874 (-203))) (-5 *4 (-805)) (-5 *5 (-852)) + (-5 *2 (-1173)) (-5 *1 (-443)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-874 (-203))) (-5 *2 (-1173)) (-5 *1 (-443)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-589 (-874 (-203)))) (-5 *4 (-805)) (-5 *5 (-852)) + (-5 *2 (-1173)) (-5 *1 (-443))))) +(((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-48))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1144 (-523))) (-5 *1 (-459 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3357 (-522))))) - (-5 *1 (-336 *3)) (-4 *3 (-1014)))) + (-12 (-5 *2 (-1068 (-383 *3))) (-5 *1 (-159 *3)) (-4 *3 (-284))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-589 *1)) (-5 *3 (-589 *7)) (-4 *1 (-992 *4 *5 *6 *7)) + (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) + (-4 *1 (-992 *4 *5 *6 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-695))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-804 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-687))))) +(((*1 *2 *3) + (-12 (-4 *4 (-325)) (-5 *2 (-394 *3)) (-5 *1 (-195 *4 *3)) + (-4 *3 (-1144 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) + (-4 *3 (-1144 (-523))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-710))) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) + (-4 *3 (-1144 (-523))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-589 (-710))) (-5 *5 (-710)) (-5 *2 (-394 *3)) + (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) + (-4 *3 (-1144 (-523))))) + ((*1 *2 *3) + (-12 (-5 *2 (-394 *3)) (-5 *1 (-935 *3)) + (-4 *3 (-1144 (-383 (-523)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-394 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1144 (-523)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (-5 *2 (-108)) (-5 *1 (-277))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) + (-5 *2 (-962)) (-5 *1 (-694))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-104))) (-5 *1 (-160))))) +(((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) +(((*1 *1 *1) (|partial| -4 *1 (-134))) ((*1 *1 *1) (-4 *1 (-325))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-134)) (-4 *1 (-840))))) +(((*1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1) (-4 *1 (-897))) ((*1 *1 *1) (-5 *1 (-1034)))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1122))))) +(((*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284))))) +(((*1 *2 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-393 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1173)) (-5 *1 (-1050)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-794))) (-5 *2 (-1173)) (-5 *1 (-1050))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *2)) (-5 *1 (-459 *2)) (-4 *2 (-1144 (-523)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-589 *6)) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-710)))) ((*1 *2 *1) - (-12 (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3357 (-708))))) - (-5 *1 (-361 *3)) (-4 *3 (-1014)))) + (-12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-710))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-562 (-47)))) (-5 *1 (-47)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-562 (-47))) (-5 *1 (-47)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1083 (-47))) (-5 *3 (-589 (-562 (-47)))) (-5 *1 (-47)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1083 (-47))) (-5 *3 (-562 (-47))) (-5 *1 (-47)))) + ((*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) + (-4 *3 (-1144 (-155 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-852)) (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)))) + ((*1 *2 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-339)))) ((*1 *2 *1) - (-12 (-5 *2 (-588 (-2 (|:| -2006 *3) (|:| -3858 (-522))))) - (-5 *1 (-393 *3)) (-4 *3 (-514)))) + (-12 (-4 *1 (-346 *2 *3)) (-4 *3 (-1144 *2)) (-4 *2 (-158)))) ((*1 *2 *1) - (-12 (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3357 (-708))))) - (-5 *1 (-756 *3)) (-4 *3 (-784))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-971)) (-4 *3 (-784)) - (-4 *5 (-242 *3)) (-4 *6 (-730)) (-5 *2 (-588 (-708))))) + (-12 (-4 *4 (-1144 *2)) (-4 *2 (-921 *3)) (-5 *1 (-389 *3 *2 *4 *5)) + (-4 *3 (-284)) (-4 *5 (-13 (-385 *2 *4) (-964 *2))))) ((*1 *2 *1) - (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-784)) - (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-588 (-708)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1120)) (-4 *3 (-971)) - (-5 *2 (-628 *3))))) + (-12 (-4 *4 (-1144 *2)) (-4 *2 (-921 *3)) + (-5 *1 (-390 *3 *2 *4 *5 *6)) (-4 *3 (-284)) (-4 *5 (-385 *2 *4)) + (-14 *6 (-1168 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-852)) (-4 *5 (-973)) + (-4 *2 (-13 (-380) (-964 *5) (-339) (-1108) (-261))) + (-5 *1 (-418 *5 *3 *2)) (-4 *3 (-1144 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-562 (-466)))) (-5 *1 (-466)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-562 (-466))) (-5 *1 (-466)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1083 (-466))) (-5 *3 (-589 (-562 (-466)))) + (-5 *1 (-466)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1083 (-466))) (-5 *3 (-562 (-466))) (-5 *1 (-466)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1168 *4)) (-5 *3 (-852)) (-4 *4 (-325)) + (-5 *1 (-493 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-664 *4 *2)) (-4 *2 (-1144 *4)) + (-5 *1 (-714 *4 *2 *5 *3)) (-4 *3 (-1144 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) + ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) + ((*1 *1 *1) (-4 *1 (-982)))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) - (-4 *5 (-348 *3)) (-5 *2 (-522)))) + (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) + (-14 *6 + (-1 (-108) (-2 (|:| -3878 *5) (|:| -2735 *2)) + (-2 (|:| -3878 *5) (|:| -2735 *2)))) + (-4 *2 (-216 (-2676 *3) (-710))) (-5 *1 (-436 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-786)) (-4 *7 (-880 *4 *2 (-796 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-5 *1 (-306))))) +(((*1 *1) (-5 *1 (-518)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-1026))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-299 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-124)) + (-4 *3 (-731))))) +(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1122))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-895))) (-5 *1 (-268))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-1144 *4)) (-5 *1 (-502 *4 *2 *5 *6)) + (-4 *4 (-284)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-710)))))) +(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)) (-5 *2 (-108)) + (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-880 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) - (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-522))))) + (-12 (-5 *2 (-108)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) + (-4 *4 (-13 (-1016) (-33)))))) +(((*1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))) + (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-383 (-523))) + (-5 *1 (-409 *4 *3)) (-4 *3 (-406 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-562 *3)) (-4 *3 (-406 *5)) + (-4 *5 (-13 (-786) (-515) (-964 (-523)))) + (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-409 *5 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-382 (-522))) (-5 *1 (-294 *3 *4 *5)) - (-4 *3 (-13 (-338) (-784))) (-14 *4 (-1085)) (-14 *5 *3)))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-588 (-454 *4 *5))) (-5 *3 (-588 (-794 *4))) - (-14 *4 (-588 (-1085))) (-4 *5 (-426)) (-5 *1 (-445 *4 *5 *6)) - (-4 *6 (-426))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) + (-12 (-5 *2 (-589 (-2 (|:| |k| (-1087)) (|:| |c| (-1188 *3))))) + (-5 *1 (-1188 *3)) (-4 *3 (-973)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| -1949 (-588 (-792))) (|:| -1827 (-588 (-792))) - (|:| |presup| (-588 (-792))) (|:| -2482 (-588 (-792))) - (|:| |args| (-588 (-792))))) - (-5 *1 (-1085))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1188 *3 *4)) (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) - (-4 *4 (-157)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-361 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-756 *3)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) - (-4 *4 (-971)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-507))))) -(((*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *2)) (-4 *2 (-157)))) - ((*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-391 *3 *2)) (-4 *3 (-392 *2)))) - ((*1 *2) (-12 (-4 *1 (-392 *2)) (-4 *2 (-157))))) -(((*1 *2 *3) - (-12 (-5 *3 (-270 (-881 (-522)))) - (-5 *2 - (-2 (|:| |varOrder| (-588 (-1085))) - (|:| |inhom| (-3 (-588 (-1166 (-708))) "failed")) - (|:| |hom| (-588 (-1166 (-708)))))) - (-5 *1 (-213))))) -(((*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1167)))) - ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1168))))) -(((*1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-708))))) -(((*1 *2 *3) - (-12 (-4 *4 (-971)) - (-4 *2 (-13 (-379) (-962 *4) (-338) (-1106) (-260))) - (-5 *1 (-417 *4 *3 *2)) (-4 *3 (-1142 *4)))) - ((*1 *1 *1) (-4 *1 (-507))) - ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-613 *3)) (-4 *3 (-784)))) - ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-617 *3)) (-4 *3 (-784)))) - ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-756 *3)) (-4 *3 (-784)))) - ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-822 *3)) (-4 *3 (-784)))) - ((*1 *2 *1) (-12 (-4 *1 (-921 *3)) (-4 *3 (-1120)) (-5 *2 (-708)))) - ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-1118 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-589 (-2 (|:| |k| *3) (|:| |c| (-1190 *3 *4))))) + (-5 *1 (-1190 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973))))) +(((*1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-344)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1168 *4)) (-5 *1 (-493 *4)) + (-4 *4 (-325)))) ((*1 *2 *1) - (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-928)) - (-4 *2 (-971))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-1133 (-522)))))) -(((*1 *2) - (-12 (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-838)) - (-5 *1 (-431 *3 *4 *2 *5)) (-4 *5 (-878 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-838)) - (-5 *1 (-835 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-838)) (-5 *1 (-836 *2 *3)) (-4 *3 (-1142 *2))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-708)) (-4 *6 (-1014)) (-4 *3 (-829 *6)) - (-5 *2 (-628 *3)) (-5 *1 (-630 *6 *3 *7 *4)) (-4 *7 (-348 *3)) - (-4 *4 (-13 (-348 *6) (-10 -7 (-6 -4238))))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3))))) + (-12 (-4 *2 (-786)) (-5 *1 (-653 *2 *3 *4)) (-4 *3 (-1016)) + (-14 *4 + (-1 (-108) (-2 (|:| -3878 *2) (|:| -2735 *3)) + (-2 (|:| -3878 *2) (|:| -2735 *3))))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1120)) (-4 *2 (-971)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-792)))) - ((*1 *1 *1) (-5 *1 (-792))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-872 (-202))) (-5 *2 (-202)) (-5 *1 (-1117)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-971))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-689))))) + (-12 (-5 *2 (-383 (-523))) (-5 *1 (-951 *3)) + (-4 *3 (-13 (-784) (-339) (-949))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) + (-4 *3 (-1144 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-989 *2 *3)) (-4 *2 (-13 (-784) (-339))) + (-4 *3 (-1144 *2))))) (((*1 *2 *3) - (-12 (-4 *1 (-838)) (-5 *2 (-393 (-1081 *1))) (-5 *3 (-1081 *1))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-708)) (-5 *4 (-850)) (-5 *2 (-1171)) (-5 *1 (-1167)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-708)) (-5 *4 (-850)) (-5 *2 (-1171)) (-5 *1 (-1168))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-154 (-202))) (-5 *4 (-522)) (-5 *2 (-960)) - (-5 *1 (-696))))) + (-12 (-5 *3 (-629 *4)) (-4 *4 (-339)) (-5 *2 (-1083 *4)) + (-5 *1 (-496 *4 *5 *6)) (-4 *5 (-339)) (-4 *6 (-13 (-339) (-784)))))) +(((*1 *2) + (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) + ((*1 *2 *2) + (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133))))) +(((*1 *2 *1) (-12 (-5 *2 (-203)) (-5 *1 (-761))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-852)) (-5 *1 (-417 *2)) + (-4 *2 (-1144 (-523))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-852)) (-5 *4 (-710)) (-5 *1 (-417 *2)) + (-4 *2 (-1144 (-523))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-852)) (-5 *4 (-589 (-710))) (-5 *1 (-417 *2)) + (-4 *2 (-1144 (-523))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-852)) (-5 *4 (-589 (-710))) (-5 *5 (-710)) + (-5 *1 (-417 *2)) (-4 *2 (-1144 (-523))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-852)) (-5 *4 (-589 (-710))) (-5 *5 (-710)) + (-5 *6 (-108)) (-5 *1 (-417 *2)) (-4 *2 (-1144 (-523))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-394 *2)) (-4 *2 (-1144 *5)) + (-5 *1 (-419 *5 *2)) (-4 *5 (-973))))) (((*1 *2 *1) - (-12 (-5 *2 (-1066 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522))))) -(((*1 *2 *2) (-12 (-5 *2 (-291 (-202))) (-5 *1 (-243))))) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-523)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-515))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) + (-4 *9 (-987 *6 *7 *8)) (-4 *6 (-515)) (-4 *7 (-732)) + (-4 *8 (-786)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3125 (-589 *9)))) + (-5 *3 (-589 *9)) (-4 *1 (-1116 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3125 (-589 *8)))) + (-5 *3 (-589 *8)) (-4 *1 (-1116 *5 *6 *7 *8))))) +(((*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-699))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-588 (-154 *4))) (-5 *1 (-142 *3 *4)) - (-4 *3 (-1142 (-154 (-522)))) (-4 *4 (-13 (-338) (-782))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-588 (-154 *4))) - (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-588 (-154 *4))) - (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4)))))) -(((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-1066 *3)) (-4 *3 (-1014)) - (-4 *3 (-1120))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1083 *7)) + (-4 *5 (-973)) (-4 *7 (-973)) (-4 *2 (-1144 *5)) + (-5 *1 (-472 *5 *2 *6 *7)) (-4 *6 (-1144 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-427)) (-4 *3 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) + (-5 *1 (-424 *4 *3 *5 *6)) (-4 *6 (-880 *4 *3 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1083 *3)) (-4 *3 (-344)) (-4 *1 (-305 *3)) + (-4 *3 (-339))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *3)) + (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-987 *4 *5 *6)) (-4 *4 (-515)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-906 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-589 *7) (-589 *7))) (-5 *2 (-589 *7)) + (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *1 (-906 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108)) (-5 *1 (-252 *4 *3)) - (-4 *3 (-13 (-405 *4) (-928)))))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) + (-5 *2 (-589 (-883 *4))))) + ((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-589 (-883 *4))) (-5 *1 (-392 *3 *4)) + (-4 *3 (-393 *4)))) + ((*1 *2) + (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-589 (-883 *3))))) + ((*1 *2) + (-12 (-5 *2 (-589 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1168 (-428 *4 *5 *6 *7))) (-5 *2 (-589 (-883 *4))) + (-5 *1 (-428 *4 *5 *6 *7)) (-4 *4 (-515)) (-4 *4 (-158)) + (-14 *5 (-852)) (-14 *6 (-589 (-1087))) (-14 *7 (-1168 (-629 *4)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *5))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-589 (-1087))) (-4 *4 (-1016)) + (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) + (-5 *1 (-995 *4 *5 *2)) + (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1016)) + (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) + (-5 *1 (-995 *3 *4 *2)) + (-4 *2 (-13 (-406 *4) (-817 *3) (-564 (-823 *3))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) +(((*1 *1 *1) (-4 *1 (-91))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) + (-4 *4 (-349 *2))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-523)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-710)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-732)) (-4 *4 (-880 *5 *6 *7)) (-4 *5 (-427)) (-4 *7 (-786)) + (-5 *1 (-424 *5 *6 *7 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-157)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) (((*1 *2 *3) - (-12 (-4 *4 (-784)) - (-5 *2 - (-2 (|:| |f1| (-588 *4)) (|:| |f2| (-588 (-588 (-588 *4)))) - (|:| |f3| (-588 (-588 *4))) (|:| |f4| (-588 (-588 (-588 *4)))))) - (-5 *1 (-1092 *4)) (-5 *3 (-588 (-588 (-588 *4))))))) + (-12 (-4 *4 (-515)) (-5 *2 (-589 *3)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-393 *4))))) +(((*1 *1) (-5 *1 (-1173)))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-339)) (-4 *3 (-973)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3441 *1))) + (-4 *1 (-788 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-108)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) - (-4 *3 (-985 *6 *7 *8)) + (-12 (-5 *4 (-108)) + (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-4 *3 (-13 (-27) (-1108) (-406 *6) (-10 -8 (-15 -1458 ($ *7))))) + (-4 *7 (-784)) + (-4 *8 + (-13 (-1146 *3 *7) (-339) (-1108) + (-10 -8 (-15 -3523 ($ $)) (-15 -3417 ($ $))))) (-5 *2 - (-2 (|:| |done| (-588 *4)) - (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) - (-5 *1 (-988 *6 *7 *8 *3 *4)) (-4 *4 (-990 *6 *7 *8 *3)))) + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070)))))) + (-5 *1 (-398 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1070)) (-4 *9 (-912 *8)) + (-14 *10 (-1087))))) +(((*1 *2 *1) + (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) + (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170))))) +(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-203))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *1 *1 *1) (-5 *1 (-355))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 *10)) + (-5 *1 (-571 *5 *6 *7 *8 *9 *10)) (-4 *9 (-992 *5 *6 *7 *8)) + (-4 *10 (-1025 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-588 *4)) - (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) - (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1023 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1081 *9)) (-5 *4 (-588 *7)) (-5 *5 (-588 (-588 *8))) - (-4 *7 (-784)) (-4 *8 (-283)) (-4 *9 (-878 *8 *6 *7)) (-4 *6 (-730)) + (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) + (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-970 *5 *6))) + (-5 *1 (-574 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) + (-14 *6 (-589 (-1087))) (-5 *2 - (-2 (|:| |upol| (-1081 *8)) (|:| |Lval| (-588 *8)) - (|:| |Lfact| - (-588 (-2 (|:| -2006 (-1081 *8)) (|:| -3858 (-522))))) - (|:| |ctpol| *8))) - (-5 *1 (-680 *6 *7 *8 *9))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-559 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1166 (-291 (-202)))) (-5 *2 (-1166 (-291 (-354)))) - (-5 *1 (-281))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-171)))) + (-589 (-1058 *5 (-495 (-796 *6)) (-796 *6) (-719 *5 (-796 *6))))) + (-5 *1 (-574 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-589 (-954 *5 *6 *7 *8))) (-5 *1 (-954 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-589 (-954 *5 *6 *7 *8))) (-5 *1 (-954 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) + (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-970 *5 *6))) + (-5 *1 (-970 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-992 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-589 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-589 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-1116 *4 *5 *6 *7))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1087)) (-4 *5 (-1126)) (-4 *6 (-1144 *5)) + (-4 *7 (-1144 (-383 *6))) (-5 *2 (-589 (-883 *5))) + (-5 *1 (-317 *4 *5 *6 *7)) (-4 *4 (-318 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1087)) (-4 *1 (-318 *4 *5 *6)) (-4 *4 (-1126)) + (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) (-4 *4 (-339)) + (-5 *2 (-589 (-883 *4)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) + (-4 *3 (-13 (-339) (-1108) (-930)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-762)) (-5 *1 (-761))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1016)) (-4 *4 (-1016)) + (-4 *6 (-1016)) (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *5 *4 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1017 *3 *4)) (-14 *3 (-852)) + (-14 *4 (-852))))) +(((*1 *2 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) +(((*1 *1 *1) (-4 *1 (-91))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-303 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-486 *3 *4)) + (-14 *4 (-523))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-987 *4 *5 *6)) (-4 *4 (-515)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-906 *4 *5 *6 *2))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1144 *5)) + (-4 *5 (-13 (-27) (-406 *4))) + (-4 *4 (-13 (-786) (-515) (-964 (-523)))) + (-4 *7 (-1144 (-383 *6))) (-5 *1 (-511 *4 *5 *6 *7 *2)) + (-4 *2 (-318 *5 *6 *7))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-852)) + (-5 *2 (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034)))))) + (-5 *1 (-322 *4)) (-4 *4 (-325))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4246 "*"))) (-4 *5 (-349 *2)) (-4 *6 (-349 *2)) + (-4 *2 (-973)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1144 *2)) + (-4 *4 (-627 *2 *5 *6))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) + (-5 *2 (-962)) (-5 *1 (-692))))) +(((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-292 *3)) (-4 *3 (-515)) (-4 *3 (-786))))) +(((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) ((*1 *2 *3) - (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-276)))) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-339)) (-4 *3 (-973)) + (-5 *1 (-1072 *3))))) +(((*1 *1 *1) (-4 *1 (-91))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) + (-4 *3 (-13 (-339) (-1108) (-930)))))) +(((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1173)) (-5 *1 (-1050)))) ((*1 *2 *3) - (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-281))))) + (-12 (-5 *3 (-589 (-794))) (-5 *2 (-1173)) (-5 *1 (-1050))))) +(((*1 *1 *1) (-4 *1 (-575))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930) (-1108)))))) +(((*1 *1) (-5 *1 (-985)))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *6)))) + (-5 *4 (-953 (-779 (-523)))) (-5 *5 (-1087)) (-5 *7 (-383 (-523))) + (-4 *6 (-973)) (-5 *2 (-794)) (-5 *1 (-548 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-279)))) + ((*1 *1 *1) (-4 *1 (-279))) ((*1 *1 *1) (-5 *1 (-794)))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-122 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-5 *1 (-413))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-355))) (-5 *1 (-240)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-515)) (-4 *2 (-158)))) + ((*1 *2 *1) (-12 (-5 *1 (-394 *2)) (-4 *2 (-515))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1052 *3 *2)) (-4 *3 (-13 (-1016) (-33))) + (-4 *2 (-13 (-1016) (-33)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-306))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3)))) + ((*1 *1 *1) (-4 *1 (-1111)))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1009 (-883 (-523)))) (-5 *3 (-883 (-523))) + (-5 *1 (-306)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1009 (-883 (-523)))) (-5 *1 (-306))))) +(((*1 *1) (-5 *1 (-985)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108))))) +(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)))) + ((*1 *1 *1) + (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-973)) (-14 *3 (-589 (-1087))))) + ((*1 *1 *1) + (-12 (-5 *1 (-201 *2 *3)) (-4 *2 (-13 (-973) (-786))) + (-14 *3 (-589 (-1087))))) + ((*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-973)) (-4 *3 (-1016)))) + ((*1 *1 *1) + (-12 (-14 *2 (-589 (-1087))) (-4 *3 (-158)) + (-4 *5 (-216 (-2676 *2) (-710))) + (-14 *6 + (-1 (-108) (-2 (|:| -3878 *4) (|:| -2735 *5)) + (-2 (|:| -3878 *4) (|:| -2735 *5)))) + (-5 *1 (-436 *2 *3 *4 *5 *6 *7)) (-4 *4 (-786)) + (-4 *7 (-880 *3 *5 (-796 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-786)))) + ((*1 *1 *1) + (-12 (-4 *2 (-515)) (-5 *1 (-570 *2 *3)) (-4 *3 (-1144 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-973)))) + ((*1 *1 *1) + (-12 (-5 *1 (-675 *2 *3)) (-4 *3 (-786)) (-4 *2 (-973)) + (-4 *3 (-666)))) + ((*1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)))) + ((*1 *1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-4 *2 (-973)) (-4 *3 (-782))))) +(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-518))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-292 (-203)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355)))) + (-5 *1 (-185))))) (((*1 *2 *3) - (-12 (|has| *2 (-6 (-4240 "*"))) (-4 *5 (-348 *2)) (-4 *6 (-348 *2)) - (-4 *2 (-971)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1142 *2)) - (-4 *4 (-626 *2 *5 *6))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-318 *4 *5 *6)) (-4 *4 (-1126)) + (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) + (-5 *2 (-2 (|:| |num| (-629 *5)) (|:| |den| *5)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-225 *3 *4)) + (-14 *3 (-589 (-1087))) (-4 *4 (-973)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-523))) (-14 *3 (-589 (-1087))) + (-5 *1 (-429 *3 *4 *5)) (-4 *4 (-973)) + (-4 *5 (-216 (-2676 *3) (-710))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-455 *3 *4)) + (-14 *3 (-589 (-1087))) (-4 *4 (-973))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1085)) (-5 *5 (-1009 (-202))) (-5 *2 (-856)) - (-5 *1 (-854 *3)) (-4 *3 (-563 (-498))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1085)) (-5 *2 (-856)) (-5 *1 (-854 *3)) - (-4 *3 (-563 (-498))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-856)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202))) - (-5 *1 (-856))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-708)) (-5 *1 (-540 *2)) (-4 *2 (-507))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-903 *4 *5 *6 *3)) (-4 *4 (-971)) (-4 *5 (-730)) - (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-4 *4 (-514)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1068)) (-5 *5 (-628 (-202))) (-5 *6 (-628 (-522))) - (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-695))))) -(((*1 *1 *1) (-4 *1 (-507)))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3)))) + ((*1 *1 *1) (-4 *1 (-1111)))) (((*1 *2 *3) - (-12 (-4 *4 (-283)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1036 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-971)) (-5 *1 (-1138 *3 *2)) (-4 *2 (-1142 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-932))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-382 (-522))) (-5 *1 (-113 *4)) (-14 *4 *3) - (-5 *3 (-522)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-522)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-382 (-522))) (-5 *1 (-800 *4)) (-14 *4 *3) - (-5 *3 (-522)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-382 (-522))) (-5 *1 (-801 *4 *5)) - (-5 *3 (-522)) (-4 *5 (-798 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-938)) (-5 *2 (-382 (-522))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-987 *2 *3)) (-4 *2 (-13 (-782) (-338))) - (-4 *3 (-1142 *2)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1144 *2 *3)) (-4 *3 (-729)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2217 (*2 (-1085)))) - (-4 *2 (-971))))) + (-12 (-5 *3 (-629 *2)) (-4 *4 (-1144 *2)) + (-4 *2 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) + (-5 *1 (-470 *2 *4 *5)) (-4 *5 (-385 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) + (-4 *5 (-216 *3 *2)) (-4 *2 (-973))))) (((*1 *2 *3) - (-12 (-5 *3 (-522)) (-5 *2 (-588 (-588 (-202)))) (-5 *1 (-1117))))) -(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-792))))) + (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) + (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-522)) (-5 *4 (-393 *2)) (-4 *2 (-878 *7 *5 *6)) - (-5 *1 (-680 *5 *6 *7 *2)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-283))))) + (-12 (-5 *3 (-589 (-1 (-108) *8))) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-2 (|:| |goodPols| (-589 *8)) (|:| |badPols| (-589 *8)))) + (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-589 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-622 *4 *5))))) -(((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) - (-4 *3 (-342 *4)))) - ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) + (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410))))) +(((*1 *2 *1) + (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-880 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-930)) + (-4 *2 (-973))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-1089 (-383 (-523)))) + (-5 *1 (-170))))) +(((*1 *1 *1 *1) (-4 *1 (-284))) ((*1 *1 *1 *1) (-5 *1 (-710))) + ((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-383 (-883 *6)) (-1077 (-1087) (-883 *6)))) + (-5 *5 (-710)) (-4 *6 (-427)) (-5 *2 (-589 (-629 (-383 (-883 *6))))) + (-5 *1 (-269 *6)) (-5 *4 (-629 (-383 (-883 *6)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-383 (-883 *5)) (-1077 (-1087) (-883 *5)))) + (|:| |eigmult| (-710)) (|:| |eigvec| (-589 *4)))) + (-4 *5 (-427)) (-5 *2 (-589 (-629 (-383 (-883 *5))))) + (-5 *1 (-269 *5)) (-5 *4 (-629 (-383 (-883 *5))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) - (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-74 G JACOBG JACGEP)))) - (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-687))))) -(((*1 *2 *3) - (-12 (-4 *4 (-426)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) - (-5 *2 (-588 *3)) (-5 *1 (-904 *4 *5 *6 *3)) - (-4 *3 (-985 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) - (-5 *2 (-2 (|:| -3112 (-382 *5)) (|:| |poly| *3))) - (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1142 (-382 *5)))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1085)) (-5 *1 (-616 *3)) (-4 *3 (-1014))))) -(((*1 *2) - (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-392 *3))))) -(((*1 *1 *1) (-5 *1 (-498)))) -(((*1 *1 *1) (-5 *1 (-983)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-184)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-588 (-354))) (-5 *2 (-354)) (-5 *1 (-184))))) -(((*1 *2 *3) (-12 (-5 *3 (-759)) (-5 *2 (-51)) (-5 *1 (-766))))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3)))) + ((*1 *1 *1) (-4 *1 (-1111)))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-645 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) +(((*1 *1 *1) (-5 *1 (-985)))) (((*1 *2 *3) - (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 (-1177 *4 *5 *6 *7))) - (-5 *1 (-1177 *4 *5 *6 *7)))) + (-12 (-5 *3 (-292 *4)) (-4 *4 (-13 (-767) (-786) (-973))) + (-5 *2 (-1070)) (-5 *1 (-765 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-292 *5)) (-5 *4 (-108)) + (-4 *5 (-13 (-767) (-786) (-973))) (-5 *2 (-1070)) + (-5 *1 (-765 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-761)) (-5 *4 (-292 *5)) + (-4 *5 (-13 (-767) (-786) (-973))) (-5 *2 (-1173)) + (-5 *1 (-765 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-588 *9)) (-5 *4 (-1 (-108) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-985 *6 *7 *8)) (-4 *6 (-514)) - (-4 *7 (-730)) (-4 *8 (-784)) (-5 *2 (-588 (-1177 *6 *7 *8 *9))) - (-5 *1 (-1177 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1085))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1068)) (|:| -3015 (-1068)))) - (-5 *1 (-759))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-202))) - (-5 *2 (-960)) (-5 *1 (-692))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1081 *1)) (-5 *3 (-1085)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1081 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-881 *1)) (-4 *1 (-27)))) + (-12 (-5 *3 (-761)) (-5 *4 (-292 *6)) (-5 *5 (-108)) + (-4 *6 (-13 (-767) (-786) (-973))) (-5 *2 (-1173)) + (-5 *1 (-765 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-767)) (-5 *2 (-1070)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-767)) (-5 *3 (-108)) (-5 *2 (-1070)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-767)) (-5 *3 (-761)) (-5 *2 (-1173)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-767)) (-5 *3 (-761)) (-5 *4 (-108)) (-5 *2 (-1173))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-144)) (-5 *2 (-1173)) (-5 *1 (-1170))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-758 *3)) (-4 *3 (-786)) (-5 *1 (-614 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-523)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1122)) + (-4 *3 (-349 *4)) (-4 *5 (-349 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) + ((*1 *2 *1) + (-12 (-4 *2 (-973)) (-5 *1 (-49 *2 *3)) (-14 *3 (-589 (-1087))))) + ((*1 *2 *1) + (-12 (-5 *2 (-292 *3)) (-5 *1 (-201 *3 *4)) + (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) + ((*1 *2 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1016)) (-4 *2 (-973)))) + ((*1 *2 *1) + (-12 (-14 *3 (-589 (-1087))) (-4 *5 (-216 (-2676 *3) (-710))) + (-14 *6 + (-1 (-108) (-2 (|:| -3878 *4) (|:| -2735 *5)) + (-2 (|:| -3878 *4) (|:| -2735 *5)))) + (-4 *2 (-158)) (-5 *1 (-436 *3 *2 *4 *5 *6 *7)) (-4 *4 (-786)) + (-4 *7 (-880 *2 *5 (-796 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *2 (-515)) (-5 *1 (-570 *2 *3)) (-4 *3 (-1144 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-973)))) + ((*1 *2 *1) + (-12 (-4 *2 (-973)) (-5 *1 (-675 *2 *3)) (-4 *3 (-786)) + (-4 *3 (-666)))) + ((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)))) + ((*1 *2 *1) + (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *3 (-731)) (-4 *4 (-786)) + (-4 *2 (-973)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1085)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-784) (-514))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-784) (-514)))))) + (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) + (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) + (-5 *2 (-2 (|:| -2462 (-383 *6)) (|:| |coeff| (-383 *6)))) + (-5 *1 (-533 *5 *6)) (-5 *3 (-383 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-852)) + (-5 *2 + (-3 (-1083 *4) + (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034))))))) + (-5 *1 (-322 *4)) (-4 *4 (-325))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-731))))) (((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) - (-4 *4 (-971))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1085)) (-5 *4 (-881 (-522))) (-5 *2 (-305)) - (-5 *1 (-307))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-588 *3)) (-5 *1 (-897 *4 *3)) - (-4 *3 (-1142 *4))))) + (-12 (-4 *3 (-1016)) (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 *2))) + (-5 *2 (-823 *3)) (-5 *1 (-995 *3 *4 *5)) + (-4 *5 (-13 (-406 *4) (-817 *3) (-564 *2)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) - (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-64 FUNCT1)))) - (-5 *2 (-960)) (-5 *1 (-691))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *2 (-784)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-760)) (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-539 *3)) (-4 *3 (-338))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-522)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-708)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-850)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708)) - (-4 *4 (-157)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-143)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-143)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106))) - (-5 *1 (-204 *3)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1120)) (-4 *2 (-664)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1120)) (-4 *2 (-664)))) - ((*1 *1 *2 *1) - (-12 (-5 *1 (-270 *2)) (-4 *2 (-1026)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-270 *2)) (-4 *2 (-1026)) (-4 *2 (-1120)))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-124)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-336 *2)) (-4 *2 (-1014)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-336 *2)) (-4 *2 (-1014)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-356 *3 *2)) (-4 *3 (-971)) (-4 *2 (-784)))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-971)) (-4 *3 (-1014)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1014)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1014)))) - ((*1 *1 *2 *1) - (-12 (-14 *3 (-588 (-1085))) (-4 *4 (-157)) - (-4 *6 (-215 (-3591 *3) (-708))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3)))) + ((*1 *1 *1) (-4 *1 (-1111)))) +(((*1 *2 *1) (-12 (-4 *1 (-1016)) (-5 *2 (-1070))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-562 *3)) (-5 *5 (-1 (-1083 *3) (-1083 *3))) + (-4 *3 (-13 (-27) (-406 *6))) (-4 *6 (-13 (-786) (-515))) + (-5 *2 (-540 *3)) (-5 *1 (-510 *6 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-284)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-422 *4 *5 *6 *2))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-79 FCN)))) (-5 *2 (-962)) + (-5 *1 (-686))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-271 *3))) (-5 *1 (-271 *3)) (-4 *3 (-515)) + (-4 *3 (-1122))))) +(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)))) + ((*1 *2 *1) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1016)))) + ((*1 *2 *1) + (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) + (-4 *6 (-216 (-2676 *3) (-710))) (-14 *7 - (-1 (-108) (-2 (|:| -2882 *5) (|:| -3858 *6)) - (-2 (|:| -2882 *5) (|:| -3858 *6)))) - (-5 *1 (-435 *3 *4 *5 *6 *7 *2)) (-4 *5 (-784)) - (-4 *2 (-878 *4 *6 (-794 *3))))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784)) - (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1166 *3)) (-4 *3 (-324)) (-5 *1 (-492 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-498))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-548 *3)) (-4 *3 (-971)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-548 *2)) (-4 *2 (-971)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-971)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-978)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) - (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-623 *5 *6 *7)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-626 *3 *2 *4)) (-4 *3 (-971)) (-4 *2 (-348 *3)) - (-4 *4 (-348 *3)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-626 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-348 *3)) - (-4 *2 (-348 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) - (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) - (-4 *4 (-348 *2)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) - (-4 *4 (-348 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) - (-4 *4 (-348 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-658))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) - ((*1 *1 *1 *1) (-5 *1 (-792))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1142 *3)) (-4 *3 (-514)) - (-5 *1 (-897 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-977 *2)) (-4 *2 (-978)))) - ((*1 *1 *1 *1) (-4 *1 (-1026))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1035 *3 *4 *2 *5)) (-4 *4 (-971)) (-4 *2 (-215 *3 *4)) - (-4 *5 (-215 *3 *4)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1035 *3 *4 *5 *2)) (-4 *4 (-971)) (-4 *5 (-215 *3 *4)) - (-4 *2 (-215 *3 *4)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-971)) (-4 *4 (-784)) (-5 *1 (-1038 *3 *4 *2)) - (-4 *2 (-878 *3 (-494 *4) *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-872 (-202))) (-5 *3 (-202)) (-5 *1 (-1117)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-664)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-664)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-522)) (-4 *1 (-1164 *3)) (-4 *3 (-1120)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-784)) (-4 *2 (-971)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-971)) (-4 *3 (-780))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-202))) - (-5 *2 (-960)) (-5 *1 (-692))))) -(((*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1120)) (-5 *2 (-108))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))) -(((*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1120)))) + (-1 (-108) (-2 (|:| -3878 *5) (|:| -2735 *6)) + (-2 (|:| -3878 *5) (|:| -2735 *6)))) + (-5 *2 (-653 *5 *6 *7)) (-5 *1 (-436 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-786)) (-4 *8 (-880 *4 *6 (-796 *3))))) + ((*1 *2 *1) + (-12 (-4 *2 (-666)) (-4 *2 (-786)) (-5 *1 (-675 *3 *2)) + (-4 *3 (-973)))) ((*1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784)))) - ((*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-158 *3)) (-4 *3 (-283))))) + (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-731)) + (-4 *4 (-786))))) +(((*1 *2 *1) (-12 (-5 *2 (-167)) (-5 *1 (-257))))) (((*1 *2 *3) - (-12 (-4 *4 (-426)) - (-5 *2 - (-588 - (-2 (|:| |eigval| (-3 (-382 (-881 *4)) (-1075 (-1085) (-881 *4)))) - (|:| |geneigvec| (-588 (-628 (-382 (-881 *4)))))))) - (-5 *1 (-268 *4)) (-5 *3 (-628 (-382 (-881 *4))))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-511))))) + (-12 (-4 *4 (-13 (-515) (-136))) (-5 *2 (-589 *3)) + (-5 *1 (-1138 *4 *3)) (-4 *3 (-1144 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-588 (-588 *8))) (-5 *3 (-588 *8)) - (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-283) (-135))) - (-4 *6 (-13 (-784) (-563 (-1085)))) (-4 *7 (-730)) (-5 *2 (-108)) - (-5 *1 (-853 *5 *6 *7 *8))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-757)) (-14 *5 (-1085)) (-5 *2 (-588 (-1139 *5 *4))) - (-5 *1 (-1028 *4 *5)) (-5 *3 (-1139 *5 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) - (-5 *2 (-588 (-382 (-522)))) (-5 *1 (-945 *4)) - (-4 *4 (-1142 (-522)))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-108)) (-5 *1 (-821 *4)) - (-4 *4 (-1014))))) -(((*1 *2 *3) - (-12 (-14 *4 (-588 (-1085))) (-14 *5 (-708)) + (-12 (-5 *3 (-271 (-383 (-883 *5)))) (-5 *4 (-1087)) + (-4 *5 (-13 (-284) (-786) (-136))) + (-5 *2 (-1077 (-589 (-292 *5)) (-589 (-271 (-292 *5))))) + (-5 *1 (-1043 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) + (-4 *5 (-13 (-284) (-786) (-136))) + (-5 *2 (-1077 (-589 (-292 *5)) (-589 (-271 (-292 *5))))) + (-5 *1 (-1043 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-4 *1 (-834 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-284))) ((*1 *1 *1 *1) (-5 *1 (-710))) + ((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-710)) (-4 *5 (-515)) (-5 *2 - (-588 - (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4) - (-224 *4 (-382 (-522)))))) - (-5 *1 (-475 *4 *5)) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-899 *5 *3)) (-4 *3 (-1144 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-307 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3)))) + ((*1 *1 *1) (-4 *1 (-1111)))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-726)) (-5 *2 (-962)) (-5 *3 - (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4) - (-224 *4 (-382 (-522)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-108))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) - (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102)))) (-5 *2 (-960)) - (-5 *1 (-686))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) - (-4 *3 (-13 (-338) (-1106) (-928)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-588 *2))) (-5 *4 (-588 *5)) - (-4 *5 (-37 (-382 (-522)))) (-4 *2 (-1157 *5)) - (-5 *1 (-1159 *5 *2))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-202) (-202) (-202))) - (-5 *4 (-3 (-1 (-202) (-202) (-202) (-202)) "undefined")) - (-5 *5 (-1009 (-202))) (-5 *6 (-588 (-239))) (-5 *2 (-1045 (-202))) - (-5 *1 (-635)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-202))) - (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-635)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1045 (-202))) (-5 *3 (-1 (-872 (-202)) (-202) (-202))) - (-5 *4 (-1009 (-202))) (-5 *5 (-588 (-239))) (-5 *1 (-635))))) -(((*1 *2 *3) - (-12 + (-2 (|:| |fn| (-292 (-203))) + (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-726)) (-5 *2 (-962)) (-5 *3 - (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4) - (-224 *4 (-382 (-522))))) - (-14 *4 (-588 (-1085))) (-14 *5 (-708)) (-5 *2 (-108)) - (-5 *1 (-475 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1)) - (-4 *1 (-985 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-689))))) -(((*1 *2 *1) - (-12 (-5 *2 (-588 (-2 (|:| |k| (-613 *3)) (|:| |c| *4)))) - (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784)) - (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850))))) -(((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-1081 (-881 *4))) (-5 *1 (-391 *3 *4)) - (-4 *3 (-392 *4)))) - ((*1 *2) - (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-4 *3 (-338)) - (-5 *2 (-1081 (-881 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1081 (-382 (-881 *3)))) (-5 *1 (-427 *3 *4 *5 *6)) - (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) - (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-283)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1036 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6))))) + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203))))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-523)) (-4 *1 (-1010 *3)) (-4 *3 (-1122))))) +(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1122)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1122))))) +(((*1 *2 *1) (-12 (-4 *1 (-302 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) + ((*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-786))))) +(((*1 *1 *2) + (-12 (-5 *2 (-389 *3 *4 *5 *6)) (-4 *6 (-964 *4)) (-4 *3 (-284)) + (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) (-4 *6 (-385 *4 *5)) + (-14 *7 (-1168 *6)) (-5 *1 (-390 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1168 *6)) (-4 *6 (-385 *4 *5)) (-4 *4 (-921 *3)) + (-4 *5 (-1144 *4)) (-4 *3 (-284)) (-5 *1 (-390 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-338) (-782))) (-5 *1 (-164 *3 *2)) - (-4 *2 (-1142 (-154 *3)))))) -(((*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014))))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-758 *3)) (|:| |rm| (-758 *3)))) + (-5 *1 (-758 *3)) (-4 *3 (-786)))) + ((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) (((*1 *2 *2) - (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) - (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6))))) + (|partial| -12 (-4 *3 (-515)) (-4 *3 (-158)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) + (-4 *2 (-627 *3 *4 *5))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-108))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-537))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-589 (-271 *4))) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) + (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-589 (-1168 *4))) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) + (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-4 *3 (-515)) + (-5 *2 (-589 (-1168 *3)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-4 *5 (-405 *4)) - (-5 *2 - (-3 (|:| |overq| (-1081 (-382 (-522)))) - (|:| |overan| (-1081 (-47))) (|:| -3181 (-108)))) - (-5 *1 (-410 *4 *5 *3)) (-4 *3 (-1142 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784)))) - ((*1 *1) (-4 *1 (-1061)))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-540 *2)) (-4 *2 (-507))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-158 *3)) (-4 *3 (-283)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-615 *3)) (-4 *3 (-1120)))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) + (-4 *5 (-1144 *4)) (-5 *2 (-629 *4)))) + ((*1 *2) + (-12 (-4 *4 (-158)) (-4 *5 (-1144 *4)) (-5 *2 (-629 *4)) + (-5 *1 (-384 *3 *4 *5)) (-4 *3 (-385 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1144 *3)) + (-5 *2 (-629 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) + (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-786)) (-5 *2 (-108))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-629 (-523))) (-5 *1 (-1026))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-394 *4) *4)) (-4 *4 (-515)) (-5 *2 (-394 *4)) + (-5 *1 (-395 *4)))) + ((*1 *1 *1) (-5 *1 (-857))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) + ((*1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) + (-5 *4 (-383 (-523))) (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) + (-5 *1 (-947 *3)) (-4 *3 (-1144 (-523))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) + (-5 *4 (-383 (-523))) (-5 *1 (-948 *3)) (-4 *3 (-1144 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523))))) + (-5 *1 (-948 *3)) (-4 *3 (-1144 (-383 (-523)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) + (-4 *3 (-1144 *2))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-152 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-708)) (-4 *1 (-678 *3 *4)) (-4 *3 (-971)) - (-4 *4 (-784)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-522)))) + (|partial| -12 (-4 *1 (-302 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)) + (-4 *2 (-515)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-515))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-588 *3)) (-4 *1 (-907 *3)) (-4 *3 (-971)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-588 *1)) (-5 *3 (-588 *7)) (-4 *1 (-990 *4 *5 *6 *7)) - (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *1)) - (-4 *1 (-990 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) - (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 *1)) - (-4 *1 (-990 *4 *5 *6 *3)))) + (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) + (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (-4 *2 (-515)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-710))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-515)))) + ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1168 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-515)) + (-5 *1 (-899 *3 *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168))))) -(((*1 *1 *1) (-5 *1 (-792)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-270 (-382 (-881 *5)))) (-5 *4 (-1085)) - (-4 *5 (-13 (-283) (-784) (-135))) - (-5 *2 (-1075 (-588 (-291 *5)) (-588 (-270 (-291 *5))))) - (-5 *1 (-1041 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085)) - (-4 *5 (-13 (-283) (-784) (-135))) - (-5 *2 (-1075 (-588 (-291 *5)) (-588 (-270 (-291 *5))))) - (-5 *1 (-1041 *5))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-202) (-202) (-202))) - (-5 *4 (-3 (-1 (-202) (-202) (-202) (-202)) "undefined")) - (-5 *5 (-1009 (-202))) (-5 *6 (-588 (-239))) (-5 *2 (-1045 (-202))) - (-5 *1 (-635))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-514)) - (-4 *8 (-878 *7 *5 *6)) - (-5 *2 (-2 (|:| -3858 (-708)) (|:| -3112 *3) (|:| |radicand| *3))) - (-5 *1 (-882 *5 *6 *7 *8 *3)) (-5 *4 (-708)) - (-4 *3 - (-13 (-338) - (-10 -8 (-15 -2947 (*8 $)) (-15 -2959 (*8 $)) (-15 -2217 ($ *8)))))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-770 *3)) (-4 *3 (-1014)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-777 *3)) (-4 *3 (-1014))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-522))) (-5 *2 (-522)) (-5 *1 (-458 *4)) - (-4 *4 (-1142 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-843 *3)) (-4 *3 (-283))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-456 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1038 *4 *3 *5))) (-4 *4 (-37 (-382 (-522)))) - (-4 *4 (-971)) (-4 *3 (-784)) (-5 *1 (-1038 *4 *3 *5)) - (-4 *5 (-878 *4 (-494 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1115 *4))) (-5 *3 (-1085)) (-5 *1 (-1115 *4)) - (-4 *4 (-37 (-382 (-522)))) (-4 *4 (-971))))) + (|partial| -12 (-4 *1 (-976 *3 *4 *2 *5 *6)) (-4 *2 (-973)) + (-4 *5 (-216 *4 *2)) (-4 *6 (-216 *3 *2)) (-4 *2 (-515)))) + ((*1 *2 *2 *2) + (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1168 (-523))) (-5 *3 (-523)) (-5 *1 (-1026)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1168 (-523))) (-5 *3 (-589 (-523))) (-5 *4 (-523)) + (-5 *1 (-1026))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-394 *3)) (-4 *3 (-515))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) + (-14 *4 *2)))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-514)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) - (-5 *1 (-1111 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-140 *2 *3 *4)) (-14 *2 (-850)) (-4 *3 (-338)) - (-14 *4 (-920 *2 *3)))) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-424 *4 *5 *6 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 *1)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-973)) (-5 *1 (-629 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 *4)) (-4 *4 (-973)) (-4 *1 (-1037 *3 *4 *5 *6)) + (-4 *5 (-216 *3 *4)) (-4 *6 (-216 *3 *4))))) +(((*1 *1 *1) (-4 *1 (-221))) ((*1 *1 *1) - (|partial| -12 (-4 *2 (-157)) (-5 *1 (-265 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1142 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + (-12 (-4 *2 (-158)) (-5 *1 (-266 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1144 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-157)) (-4 *2 (-514)))) + (-3262 (-12 (-5 *1 (-271 *2)) (-4 *2 (-339)) (-4 *2 (-1122))) + (-12 (-5 *1 (-271 *2)) (-4 *2 (-448)) (-4 *2 (-1122))))) + ((*1 *1 *1) (-4 *1 (-448))) + ((*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-325)) (-5 *1 (-493 *3)))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-157)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) - ((*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) - ((*1 *1 *1) (|partial| -4 *1 (-660))) - ((*1 *1 *1) (|partial| -4 *1 (-664))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-713 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-987 *3 *2)) (-4 *3 (-13 (-782) (-338))) - (-4 *2 (-1142 *3)))) + (-12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)) (-4 *2 (-339))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) + (-5 *2 (-2 (|:| -3952 (-589 *6)) (|:| -2625 (-589 *6))))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-589 + (-2 + (|:| -1853 + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1168 (-292 (-203)))) + (|:| |yinit| (-589 (-203))) (|:| |intvals| (-589 (-203))) + (|:| |g| (-292 (-203))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (|:| -2433 + (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) + (|:| |expense| (-355)) (|:| |accuracy| (-355)) + (|:| |intermediateResults| (-355))))))) + (-5 *1 (-742))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-523))) (-4 *3 (-973)) (-5 *1 (-548 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-523))) (-4 *1 (-1128 *3)) (-4 *3 (-973)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-523))) (-4 *1 (-1159 *3)) (-4 *3 (-973))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170))))) +(((*1 *2 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3549 *4))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-383 (-883 *4))) (-5 *3 (-1087)) + (-4 *4 (-13 (-515) (-964 (-523)) (-136))) (-5 *1 (-529 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-337 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-5 *2 (-710)) (-5 *1 (-362 *4)) (-4 *4 (-1016)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *2 (-23)) (-5 *1 (-592 *4 *2 *5)) + (-4 *4 (-1016)) (-14 *5 *2))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-5 *2 (-710)) (-5 *1 (-758 *4)) (-4 *4 (-786))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-679 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786))))) +(((*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + ((*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3))))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *1 *1) (-4 *1 (-1051)))) (((*1 *2 *2) - (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) - (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-514)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2908 *4))) - (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-628 *8)) (-4 *8 (-878 *5 *7 *6)) - (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085)))) - (-4 *7 (-730)) - (-5 *2 - (-588 - (-2 (|:| -1692 (-708)) - (|:| |eqns| - (-588 - (-2 (|:| |det| *8) (|:| |rows| (-588 (-522))) - (|:| |cols| (-588 (-522)))))) - (|:| |fgb| (-588 *8))))) - (-5 *1 (-853 *5 *6 *7 *8)) (-5 *4 (-708))))) -(((*1 *2 *3) - (-12 (-4 *4 (-838)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-393 (-1081 *7))) - (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-1081 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-838)) (-4 *5 (-1142 *4)) (-5 *2 (-393 (-1081 *5))) - (-5 *1 (-836 *4 *5)) (-5 *3 (-1081 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *6)) - (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) + (-12 (-4 *3 (-964 (-523))) (-4 *3 (-13 (-786) (-515))) + (-5 *1 (-31 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-1083 *4)) (-5 *1 (-151 *3 *4)) + (-4 *3 (-152 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-973)) (-4 *1 (-279)))) + ((*1 *2) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-1083 *3)))) + ((*1 *2) (-12 (-4 *1 (-664 *3 *2)) (-4 *3 (-158)) (-4 *2 (-1144 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-588 (-834 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1116 *3)) (-4 *3 (-901))))) + (-12 (-4 *1 (-989 *3 *2)) (-4 *3 (-13 (-784) (-339))) + (-4 *2 (-1144 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) + (-5 *2 (-155 (-292 *4))) (-5 *1 (-168 *4 *3)) + (-4 *3 (-13 (-27) (-1108) (-406 (-155 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-155 *3)) (-5 *1 (-1112 *4 *3)) + (-4 *3 (-13 (-27) (-1108) (-406 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-338)) - (-5 *2 (-2 (|:| -3798 (-393 *3)) (|:| |special| (-393 *3)))) - (-5 *1 (-665 *5 *3))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1085)) (-5 *6 (-588 (-561 *3))) - (-5 *5 (-561 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *7))) - (-4 *7 (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-2 (|:| -2585 *3) (|:| |coeff| *3))) - (-5 *1 (-515 *7 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-350 *4 *2)) - (-4 *2 (-13 (-348 *4) (-10 -7 (-6 -4239))))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-628 (-522))) (-5 *3 (-588 (-522))) (-5 *1 (-1024))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-792)))) - ((*1 *1 *1) (-5 *1 (-792)))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-686))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-685))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-256)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-522) (-202) (-1085) (-1068) (-1090))) - (-5 *1 (-1090))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-522)) (-4 *3 (-157)) (-4 *5 (-348 *3)) - (-4 *6 (-348 *3)) (-5 *1 (-627 *3 *5 *6 *2)) - (-4 *2 (-626 *3 *5 *6))))) -(((*1 *2 *2) - (-12 + (-12 (-5 *3 (-596 *4)) (-4 *4 (-318 *5 *6 *7)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) (-5 *2 - (-474 (-382 (-522)) (-217 *4 (-708)) (-794 *3) - (-224 *3 (-382 (-522))))) - (-14 *3 (-588 (-1085))) (-14 *4 (-708)) (-5 *1 (-475 *3 *4))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) + (-5 *1 (-745 *5 *6 *7 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4244)) (-4 *1 (-140 *3)) + (-4 *3 (-1122)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1122)) (-5 *1 (-553 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1 *3) + (|partial| -12 (-4 *1 (-1116 *4 *5 *3 *2)) (-4 *4 (-515)) + (-4 *5 (-732)) (-4 *3 (-786)) (-4 *2 (-987 *4 *5 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-5 *1 (-1120 *2)) (-4 *2 (-1122))))) (((*1 *2 *3) - (-12 (-4 *4 (-324)) (-5 *2 (-393 *3)) (-5 *1 (-194 *4 *3)) - (-4 *3 (-1142 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-708)) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) - (-4 *3 (-1142 (-522))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-588 (-708))) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) - (-4 *3 (-1142 (-522))))) + (-12 (-5 *3 (-1070)) (-5 *2 (-589 (-1092))) (-5 *1 (-1049))))) +(((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-508)))) + ((*1 *1 *1) (-4 *1 (-982)))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-523)) (-5 *3 (-710)) (-5 *1 (-520))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *3 (-515))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-339) (-784))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1979 (-394 *3)))) + (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-110))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) + (-4 *5 (-13 (-27) (-1108) (-406 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) + (-4 *3 (-13 (-27) (-1108) (-406 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-383 (-523))) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) + (-4 *3 (-13 (-27) (-1108) (-406 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-588 (-708))) (-5 *5 (-708)) (-5 *2 (-393 *3)) - (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-708)) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) - (-4 *3 (-1142 (-522))))) - ((*1 *2 *3) - (-12 (-5 *2 (-393 *3)) (-5 *1 (-933 *3)) - (-4 *3 (-1142 (-382 (-522)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-393 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-1142 (-522)))))) + (-12 (-5 *4 (-271 *3)) (-5 *5 (-383 (-523))) + (-4 *3 (-13 (-27) (-1108) (-406 *6))) + (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-383 (-523)))) (-5 *4 (-271 *8)) + (-5 *5 (-1135 (-383 (-523)))) (-5 *6 (-383 (-523))) + (-4 *8 (-13 (-27) (-1108) (-406 *7))) + (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1135 (-383 (-523)))) + (-5 *7 (-383 (-523))) (-4 *3 (-13 (-27) (-1108) (-406 *8))) + (-4 *8 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *8 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-383 (-523))) (-4 *4 (-973)) (-4 *1 (-1151 *4 *3)) + (-4 *3 (-1128 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-588 *7)) (|:| |badPols| (-588 *7)))) - (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-588 *7))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) - (-5 *2 - (-2 (|:| -3526 *4) (|:| -3106 *4) (|:| |totalpts| (-522)) - (|:| |success| (-108)))) - (-5 *1 (-726)) (-5 *5 (-522))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-108))))) + (-12 (-5 *3 (-589 *4)) (-4 *4 (-973)) (-5 *2 (-1168 *4)) + (-5 *1 (-1088 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-852)) (-5 *2 (-1168 *3)) (-5 *1 (-1088 *3)) + (-4 *3 (-973))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1081 *1)) (-5 *4 (-1085)) (-4 *1 (-27)) - (-5 *2 (-588 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1081 *1)) (-4 *1 (-27)) (-5 *2 (-588 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-881 *1)) (-4 *1 (-27)) (-5 *2 (-588 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-588 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *2 (-588 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-291 (-202))) (-5 *4 (-588 (-1085))) - (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-1066 (-202))) (-5 *1 (-276))))) + (-12 (-5 *3 (-523)) (-5 *4 (-394 *2)) (-4 *2 (-880 *7 *5 *6)) + (-5 *1 (-682 *5 *6 *7 *2)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-284))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-203))) (-5 *2 (-1168 (-638))) (-5 *1 (-282))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1122)) (-5 *1 (-553 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-305))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-354)) (-5 *1 (-722 *3)) (-4 *3 (-563 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-850)) (-5 *2 (-354)) (-5 *1 (-722 *3)) - (-4 *3 (-563 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-881 *4)) (-4 *4 (-971)) (-4 *4 (-563 *2)) - (-5 *2 (-354)) (-5 *1 (-722 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-971)) - (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514)) (-4 *4 (-563 *2)) - (-5 *2 (-354)) (-5 *1 (-722 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-514)) - (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5)))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-307 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3)))) + ((*1 *1 *1) (-4 *1 (-1111)))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-1016) (-33))) + (-4 *5 (-13 (-1016) (-33))) (-5 *2 (-108)) (-5 *1 (-1053 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-857))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) +(((*1 *2 *2) + (-12 (-4 *3 (-284)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) + (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108))))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-355)) (-5 *2 (-1173)) (-5 *1 (-1169)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-5 *2 (-900)) (-5 *1 (-836 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-523)) (-5 *2 (-108)) (-5 *1 (-454))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1122)) (-5 *1 (-553 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-339)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) + (-5 *1 (-490 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-291 *4)) (-4 *4 (-514)) (-4 *4 (-784)) - (-4 *4 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-291 *5)) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-784)) - (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5))))) -(((*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-850)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1066 (-2 (|:| |k| (-522)) (|:| |c| *6)))) - (-5 *4 (-951 (-777 (-522)))) (-5 *5 (-1085)) (-5 *7 (-382 (-522))) - (-4 *6 (-971)) (-5 *2 (-792)) (-5 *1 (-547 *6))))) + (|partial| -12 (-4 *4 (-515)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) + (-4 *7 (-921 *4)) (-4 *2 (-627 *7 *8 *9)) + (-5 *1 (-491 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) + (-4 *8 (-349 *7)) (-4 *9 (-349 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) + (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) (-4 *2 (-339)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-339)) (-4 *3 (-158)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) + (-4 *2 (-627 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-629 *2)) (-4 *2 (-339)) (-4 *2 (-973)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1037 *2 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-216 *2 *3)) (-4 *5 (-216 *2 *3)) (-4 *3 (-339)))) + ((*1 *2 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-1094 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-1092))) (-5 *1 (-1092)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-1092))) (-5 *1 (-1092))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) + (-5 *2 + (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) + (|:| |success| (-108)))) + (-5 *1 (-728)) (-5 *5 (-523))))) +(((*1 *1 *1) (-4 *1 (-575))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930) (-1108)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1020)) (-5 *1 (-257))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-895))) (-5 *1 (-104)))) + ((*1 *2 *1) (-12 (-5 *2 (-44 (-1070) (-713))) (-5 *1 (-110))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-710)) (-4 *6 (-1016)) (-4 *7 (-831 *6)) + (-5 *2 (-629 *7)) (-5 *1 (-631 *6 *7 *3 *4)) (-4 *3 (-349 *7)) + (-4 *4 (-13 (-349 *6) (-10 -7 (-6 -4244))))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1070))) (-5 *2 (-108)) (-5 *1 (-1092)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-108)) (-5 *1 (-1092)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-203))) (-5 *2 (-108)) (-5 *1 (-1092)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-108)) (-5 *1 (-1092))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-338) (-782))) - (-5 *2 (-2 (|:| |start| *3) (|:| -4045 (-393 *3)))) - (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4)))))) + (-12 (-5 *3 (-629 (-292 (-203)))) (-5 *2 (-355)) (-5 *1 (-185))))) +(((*1 *2 *1) (-12 (-5 *2 (-167)) (-5 *1 (-226))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-270 (-770 *3))) - (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-770 *3)) (-5 *1 (-581 *5 *3)) - (-4 *3 (-13 (-27) (-1106) (-405 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-270 (-770 (-881 *5)))) (-4 *5 (-426)) - (-5 *2 (-770 (-382 (-881 *5)))) (-5 *1 (-582 *5)) - (-5 *3 (-382 (-881 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-270 (-382 (-881 *5)))) (-5 *3 (-382 (-881 *5))) - (-4 *5 (-426)) (-5 *2 (-770 *3)) (-5 *1 (-582 *5))))) + (-12 (-5 *4 (-852)) (-4 *6 (-13 (-515) (-786))) + (-5 *2 (-589 (-292 *6))) (-5 *1 (-199 *5 *6)) (-5 *3 (-292 *6)) + (-4 *5 (-973)))) + ((*1 *2 *1) (-12 (-5 *1 (-394 *2)) (-4 *2 (-515)))) + ((*1 *2 *3) + (-12 (-5 *3 (-540 *5)) (-4 *5 (-13 (-29 *4) (-1108))) + (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) + (-5 *2 (-589 *5)) (-5 *1 (-538 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-540 (-383 (-883 *4)))) + (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) + (-5 *2 (-589 (-292 *4))) (-5 *1 (-543 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1012 *3 *2)) (-4 *3 (-784)) (-4 *2 (-1061 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 *1)) (-4 *1 (-1012 *4 *2)) (-4 *4 (-784)) + (-4 *2 (-1061 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1181 (-1087) *3)) (-5 *1 (-1188 *3)) (-4 *3 (-973)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1181 *3 *4)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-973))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-768))))) +(((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) + (-5 *2 (-779 *4)) (-5 *1 (-289 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1108) (-406 *3))) (-14 *5 (-1087)) + (-14 *6 *4))) + ((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) + (-5 *2 (-779 *4)) (-5 *1 (-1154 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1108) (-406 *3))) (-14 *5 (-1087)) + (-14 *6 *4)))) +(((*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-874 (-203))) (-5 *2 (-1173)) (-5 *1 (-443))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-365))))) +(((*1 *2 *1) + (-12 (-4 *3 (-973)) (-4 *4 (-1016)) (-5 *2 (-589 *1)) + (-4 *1 (-358 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-589 (-675 *3 *4))) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-666)))) + ((*1 *2 *1) + (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-880 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1166 (-628 *4))) (-4 *4 (-157)) - (-5 *2 (-1166 (-628 (-881 *4)))) (-5 *1 (-168 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-135)) - (-4 *3 (-283)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *1 (-904 *3 *4 *5 *6))))) + (-12 (-5 *3 (-589 (-455 *4 *5))) (-14 *4 (-589 (-1087))) + (-4 *5 (-427)) (-5 *2 (-589 (-225 *4 *5))) (-5 *1 (-577 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-257)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897))))) (((*1 *2 *3) - (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2)) - (-4 *4 (-13 (-784) (-514)))))) + (|partial| -12 (-4 *2 (-1016)) (-5 *1 (-1100 *3 *2)) (-4 *3 (-1016))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1016)) + (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) + (-5 *2 (-589 (-1087))) (-5 *1 (-995 *3 *4 *5)) + (-4 *5 (-13 (-406 *4) (-817 *3) (-564 (-823 *3))))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-494 *3)) (-4 *3 (-13 (-666) (-25)))))) +(((*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) + ((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170))))) (((*1 *1 *1) - (-12 (-4 *2 (-324)) (-4 *2 (-971)) (-5 *1 (-650 *2 *3)) - (-4 *3 (-1142 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1068)) (-5 *1 (-51))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-382 *1)) (-4 *1 (-1142 *3)) (-4 *3 (-971)) - (-4 *3 (-514)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-514))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4239)) (-4 *1 (-555 *3 *4)) (-4 *3 (-1014)) - (-4 *4 (-1120)) (-5 *2 (-1171))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-108)) (-4 *6 (-426)) (-4 *7 (-730)) - (-4 *8 (-784)) (-4 *9 (-985 *6 *7 *8)) - (-5 *2 - (-2 (|:| -3277 (-588 *9)) (|:| -1974 *4) (|:| |ineq| (-588 *9)))) - (-5 *1 (-915 *6 *7 *8 *9 *4)) (-5 *3 (-588 *9)) - (-4 *4 (-990 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-108)) (-4 *6 (-426)) (-4 *7 (-730)) - (-4 *8 (-784)) (-4 *9 (-985 *6 *7 *8)) - (-5 *2 - (-2 (|:| -3277 (-588 *9)) (|:| -1974 *4) (|:| |ineq| (-588 *9)))) - (-5 *1 (-1021 *6 *7 *8 *9 *4)) (-5 *3 (-588 *9)) - (-4 *4 (-990 *6 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-968 *4 *5)) (-4 *4 (-13 (-782) (-283) (-135) (-947))) - (-14 *5 (-588 (-1085))) - (-5 *2 - (-588 (-2 (|:| -3769 (-1081 *4)) (|:| -3510 (-588 (-881 *4)))))) - (-5 *1 (-1190 *4 *5 *6)) (-14 *6 (-588 (-1085))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) - (-5 *2 - (-588 (-2 (|:| -3769 (-1081 *5)) (|:| -3510 (-588 (-881 *5)))))) - (-5 *1 (-1190 *5 *6 *7)) (-5 *3 (-588 (-881 *5))) - (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) - (-5 *2 - (-588 (-2 (|:| -3769 (-1081 *5)) (|:| -3510 (-588 (-881 *5)))))) - (-5 *1 (-1190 *5 *6 *7)) (-5 *3 (-588 (-881 *5))) - (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) - (-5 *2 - (-588 (-2 (|:| -3769 (-1081 *5)) (|:| -3510 (-588 (-881 *5)))))) - (-5 *1 (-1190 *5 *6 *7)) (-5 *3 (-588 (-881 *5))) - (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) + (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973))))) +(((*1 *2 *1) (-12 (-4 *1 (-784)) (-5 *2 (-523)))) + ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) + (-4 *3 (-1144 *4)) (-5 *2 (-523)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-515) (-786) (-964 *2) (-585 *2) (-427))) + (-5 *2 (-523)) (-5 *1 (-1031 *4 *3)) + (-4 *3 (-13 (-27) (-1108) (-406 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-779 *3)) + (-4 *3 (-13 (-27) (-1108) (-406 *6))) + (-4 *6 (-13 (-515) (-786) (-964 *2) (-585 *2) (-427))) + (-5 *2 (-523)) (-5 *1 (-1031 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-1070)) + (-4 *6 (-13 (-515) (-786) (-964 *2) (-585 *2) (-427))) + (-5 *2 (-523)) (-5 *1 (-1031 *6 *3)) + (-4 *3 (-13 (-27) (-1108) (-406 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-782) (-283) (-135) (-947))) + (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-427)) (-5 *2 (-523)) + (-5 *1 (-1032 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-779 (-383 (-883 *6)))) + (-5 *3 (-383 (-883 *6))) (-4 *6 (-427)) (-5 *2 (-523)) + (-5 *1 (-1032 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-383 (-883 *6))) (-5 *4 (-1087)) + (-5 *5 (-1070)) (-4 *6 (-427)) (-5 *2 (-523)) (-5 *1 (-1032 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-523)) (-5 *1 (-1105 *3)) (-4 *3 (-973))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 - (-588 (-2 (|:| -3769 (-1081 *4)) (|:| -3510 (-588 (-881 *4)))))) - (-5 *1 (-1190 *4 *5 *6)) (-5 *3 (-588 (-881 *4))) - (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085)))))) + (-589 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-710)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-732)) (-4 *6 (-880 *4 *3 *5)) (-4 *4 (-427)) (-4 *5 (-786)) + (-5 *1 (-424 *4 *3 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-973))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1070) (-713))) (-5 *1 (-110))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-588 (-1 *4 (-588 *4)))) (-4 *4 (-1014)) - (-5 *1 (-109 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) - (-5 *1 (-109 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-110)) (-5 *2 (-588 (-1 *4 (-588 *4)))) - (-5 *1 (-109 *4)) (-4 *4 (-1014))))) -(((*1 *2 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1099))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-338) (-135) (-962 (-522)))) - (-4 *5 (-1142 *4)) (-5 *2 (-588 (-382 *5))) (-5 *1 (-942 *4 *5)) - (-5 *3 (-382 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1054)) (-5 *3 (-522)) (-5 *2 (-108))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-522)) (-5 *2 (-108)) (-5 *1 (-511))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-971)) (-4 *2 (-626 *4 *5 *6)) - (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1142 *4)) (-4 *5 (-348 *4)) - (-4 *6 (-348 *4))))) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *1 (-424 *4 *5 *6 *2))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973))))) +(((*1 *2 *3) (-12 (-5 *3 (-760)) (-5 *2 (-51)) (-5 *1 (-770))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) + (-5 *2 + (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) + (|:| |success| (-108)))) + (-5 *1 (-728)) (-5 *5 (-523))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-563 *2) (-157))) (-5 *2 (-821 *4)) - (-5 *1 (-155 *4 *5 *3)) (-4 *4 (-1014)) (-4 *3 (-151 *5)))) + (-12 (-4 *5 (-13 (-564 *2) (-158))) (-5 *2 (-823 *4)) + (-5 *1 (-156 *4 *5 *3)) (-4 *4 (-1016)) (-4 *3 (-152 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-588 (-1009 (-777 (-354))))) - (-5 *2 (-588 (-1009 (-777 (-202))))) (-5 *1 (-281)))) - ((*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-354)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-522)) (-5 *1 (-369)))) + (-12 (-5 *3 (-589 (-1011 (-779 (-355))))) + (-5 *2 (-589 (-1011 (-779 (-203))))) (-5 *1 (-282)))) + ((*1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-355)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-794)) (-5 *3 (-523)) (-5 *1 (-370)))) ((*1 *1 *2) - (-12 (-5 *2 (-1166 *3)) (-4 *3 (-157)) (-4 *1 (-384 *3 *4)) - (-4 *4 (-1142 *3)))) + (-12 (-5 *2 (-1168 *3)) (-4 *3 (-158)) (-4 *1 (-385 *3 *4)) + (-4 *4 (-1144 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1142 *3)) - (-5 *2 (-1166 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-157)) (-4 *1 (-392 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-1166 *3)))) + (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1144 *3)) + (-5 *2 (-1168 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-158)) (-4 *1 (-393 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-1168 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-393 *1)) (-4 *1 (-405 *3)) (-4 *3 (-514)) - (-4 *3 (-784)))) + (-12 (-5 *2 (-394 *1)) (-4 *1 (-406 *3)) (-4 *3 (-515)) + (-4 *3 (-786)))) ((*1 *1 *2) - (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-971)) - (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-437 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-498)))) - ((*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-1120)))) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-438 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-499)))) + ((*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-1122)))) ((*1 *1 *2) - (-12 (-4 *3 (-157)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1142 *3)))) + (-12 (-4 *3 (-158)) (-4 *1 (-664 *3 *2)) (-4 *2 (-1144 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) - ((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-971)) (-4 *1 (-907 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-982)))) + (-12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-973)) (-4 *1 (-909 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-984)))) ((*1 *1 *2) - (-12 (-5 *2 (-881 *3)) (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) - (-4 *5 (-563 (-1085))) (-4 *4 (-730)) (-4 *5 (-784)))) + (-12 (-5 *2 (-883 *3)) (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) + (-4 *5 (-564 (-1087))) (-4 *4 (-732)) (-4 *5 (-786)))) ((*1 *1 *2) - (-3844 - (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5)) - (-12 (-2473 (-4 *3 (-37 (-382 (-522))))) (-4 *3 (-37 (-522))) - (-4 *5 (-563 (-1085)))) - (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))) - (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5)) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085)))) - (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))))) + (-3262 + (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) + (-12 (-3900 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) + (-4 *5 (-564 (-1087)))) + (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))) + (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) + (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))))) ((*1 *1 *2) - (-12 (-5 *2 (-881 (-382 (-522)))) (-4 *1 (-985 *3 *4 *5)) - (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085))) (-4 *3 (-971)) - (-4 *4 (-730)) (-4 *5 (-784)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-588 *7)) (|:| -1974 *8))) - (-4 *7 (-985 *4 *5 *6)) (-4 *8 (-990 *4 *5 *6 *7)) (-4 *4 (-426)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-1068)) - (-5 *1 (-988 *4 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-999)))) - ((*1 *1 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120)))) + (-12 (-5 *2 (-883 (-383 (-523)))) (-4 *1 (-987 *3 *4 *5)) + (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087))) (-4 *3 (-973)) + (-4 *4 (-732)) (-4 *5 (-786)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3072 *8))) + (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1070)) + (-5 *1 (-990 *4 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1001)))) + ((*1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122)))) ((*1 *1 *2) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *2)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *2)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) ((*1 *1 *2) - (-12 (-4 *1 (-1017 *3 *4 *5 *2 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *2 (-1014)) (-4 *6 (-1014)))) + (-12 (-4 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *2 (-1016)) (-4 *6 (-1016)))) ((*1 *1 *2) - (-12 (-4 *1 (-1017 *3 *4 *2 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *2 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) + (-12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *2 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) ((*1 *1 *2) - (-12 (-4 *1 (-1017 *3 *2 *4 *5 *6)) (-4 *3 (-1014)) (-4 *2 (-1014)) - (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) + (-12 (-4 *1 (-1019 *3 *2 *4 *5 *6)) (-4 *3 (-1016)) (-4 *2 (-1016)) + (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) ((*1 *1 *2) - (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) - (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) + (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *2 (-1016)) (-4 *3 (-1016)) + (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)))) ((*1 *1 *2) - (-12 (-5 *2 (-588 *1)) (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) - (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-588 *7)) (|:| -1974 *8))) - (-4 *7 (-985 *4 *5 *6)) (-4 *8 (-1023 *4 *5 *6 *7)) (-4 *4 (-426)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-1068)) - (-5 *1 (-1055 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-1090)))) - ((*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-1090)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-792)) (-5 *3 (-522)) (-5 *1 (-1101)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-522)) (-5 *1 (-1101)))) - ((*1 *2 *3) - (-12 (-5 *3 (-717 *4 (-794 *5))) - (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-14 *5 (-588 (-1085))) - (-5 *2 (-717 *4 (-794 *6))) (-5 *1 (-1190 *4 *5 *6)) - (-14 *6 (-588 (-1085))))) - ((*1 *2 *3) - (-12 (-5 *3 (-881 *4)) (-4 *4 (-13 (-782) (-283) (-135) (-947))) - (-5 *2 (-881 (-949 (-382 *4)))) (-5 *1 (-1190 *4 *5 *6)) - (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085))))) - ((*1 *2 *3) - (-12 (-5 *3 (-717 *4 (-794 *6))) - (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-14 *6 (-588 (-1085))) - (-5 *2 (-881 (-949 (-382 *4)))) (-5 *1 (-1190 *4 *5 *6)) - (-14 *5 (-588 (-1085))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1081 *4)) (-4 *4 (-13 (-782) (-283) (-135) (-947))) - (-5 *2 (-1081 (-949 (-382 *4)))) (-5 *1 (-1190 *4 *5 *6)) - (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085))))) + (-12 (-5 *2 (-589 *1)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) + (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3072 *8))) + (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-1025 *4 *5 *6 *7)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1070)) + (-5 *1 (-1057 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-1092)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-794)) (-5 *3 (-523)) (-5 *1 (-1103)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-794)) (-5 *3 (-523)) (-5 *1 (-1103)))) + ((*1 *2 *3) + (-12 (-5 *3 (-719 *4 (-796 *5))) + (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *5 (-589 (-1087))) + (-5 *2 (-719 *4 (-796 *6))) (-5 *1 (-1192 *4 *5 *6)) + (-14 *6 (-589 (-1087))))) + ((*1 *2 *3) + (-12 (-5 *3 (-883 *4)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-883 (-951 (-383 *4)))) (-5 *1 (-1192 *4 *5 *6)) + (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) + ((*1 *2 *3) + (-12 (-5 *3 (-719 *4 (-796 *6))) + (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *6 (-589 (-1087))) + (-5 *2 (-883 (-951 (-383 *4)))) (-5 *1 (-1192 *4 *5 *6)) + (-14 *5 (-589 (-1087))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1083 *4)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-1083 (-951 (-383 *4)))) (-5 *1 (-1192 *4 *5 *6)) + (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087))))) ((*1 *2 *3) (-12 - (-5 *3 (-1056 *4 (-494 (-794 *6)) (-794 *6) (-717 *4 (-794 *6)))) - (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-14 *6 (-588 (-1085))) - (-5 *2 (-588 (-717 *4 (-794 *6)))) (-5 *1 (-1190 *4 *5 *6)) - (-14 *5 (-588 (-1085)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-784)) - (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-708)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-971)) (-4 *3 (-784)) - (-4 *5 (-242 *3)) (-4 *6 (-730)) (-5 *2 (-708)))) - ((*1 *2 *1) (-12 (-4 *1 (-242 *3)) (-4 *3 (-784)) (-5 *2 (-708)))) - ((*1 *2 *1) (-12 (-4 *1 (-324)) (-5 *2 (-850)))) - ((*1 *2 *3) - (-12 (-5 *3 (-311 *4 *5 *6 *7)) (-4 *4 (-13 (-343) (-338))) - (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) (-4 *7 (-317 *4 *5 *6)) - (-5 *2 (-708)) (-5 *1 (-367 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-770 (-850))))) - ((*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-522)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-548 *3)) (-4 *3 (-971)))) - ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-548 *3)) (-4 *3 (-971)))) - ((*1 *2 *1) - (-12 (-4 *3 (-514)) (-5 *2 (-522)) (-5 *1 (-569 *3 *4)) - (-4 *4 (-1142 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-708)) (-4 *1 (-678 *4 *3)) (-4 *4 (-971)) - (-4 *3 (-784)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-678 *4 *3)) (-4 *4 (-971)) (-4 *3 (-784)) - (-5 *2 (-708)))) - ((*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-5 *2 (-708)))) - ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) - ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-311 *5 *6 *7 *8)) (-4 *5 (-405 *4)) - (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6))) - (-4 *8 (-317 *5 *6 *7)) (-4 *4 (-13 (-784) (-514) (-962 (-522)))) - (-5 *2 (-708)) (-5 *1 (-840 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-311 (-382 (-522)) *4 *5 *6)) - (-4 *4 (-1142 (-382 (-522)))) (-4 *5 (-1142 (-382 *4))) - (-4 *6 (-317 (-382 (-522)) *4 *5)) (-5 *2 (-708)) - (-5 *1 (-841 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-311 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-338)) - (-4 *7 (-1142 *6)) (-4 *4 (-1142 (-382 *7))) (-4 *8 (-317 *6 *7 *4)) - (-4 *9 (-13 (-343) (-338))) (-5 *2 (-708)) - (-5 *1 (-944 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1142 *3)) (-4 *3 (-971)) (-4 *3 (-514)) (-5 *2 (-708)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729)))) - ((*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))) - ((*1 *2 *3) - (-12 (-5 *2 (-108)) (-5 *1 (-527 *3)) (-4 *3 (-962 (-522))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) - (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-77 LSFUN1)))) - (-5 *2 (-960)) (-5 *1 (-691))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) - ((*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846))))) -(((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) - (-4 *3 (-342 *4)))) - ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1090))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-514)) (-4 *3 (-971)) - (-5 *2 (-2 (|:| -3450 *1) (|:| -4002 *1))) (-4 *1 (-786 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-94 *5)) (-4 *5 (-514)) (-4 *5 (-971)) - (-5 *2 (-2 (|:| -3450 *3) (|:| -4002 *3))) (-5 *1 (-787 *5 *3)) - (-4 *3 (-786 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-588 *1)) (-4 *1 (-985 *4 *5 *6)) (-4 *4 (-971)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-514)) (-4 *5 (-730)) - (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108))))) -(((*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-516 *3)) (-4 *3 (-507))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) - (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-5 *2 (-588 (-952 *5 *6 *7 *8))) (-5 *1 (-952 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) - (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-5 *2 (-588 (-1056 *5 *6 *7 *8))) (-5 *1 (-1056 *5 *6 *7 *8))))) -(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855))))) -(((*1 *2 *3) - (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-795 *4 *5 *6 *7)) - (-4 *4 (-971)) (-14 *5 (-588 (-1085))) (-14 *6 (-588 *3)) - (-14 *7 *3))) - ((*1 *2 *3) - (-12 (-5 *3 (-708)) (-4 *4 (-971)) (-4 *5 (-784)) (-4 *6 (-730)) - (-14 *8 (-588 *5)) (-5 *2 (-1171)) - (-5 *1 (-1176 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-878 *4 *6 *5)) - (-14 *9 (-588 *3)) (-14 *10 *3)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-507)))) -(((*1 *2 *1) - (-12 (-5 *2 (-1151 *3 *4 *5)) (-5 *1 (-294 *3 *4 *5)) - (-4 *3 (-13 (-338) (-784))) (-14 *4 (-1085)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-522)))) - ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-393 *3)) (-4 *3 (-514)))) - ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-637)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1014)) (-5 *1 (-651 *3 *2 *4)) (-4 *3 (-784)) - (-14 *4 - (-1 (-108) (-2 (|:| -2882 *3) (|:| -3858 *2)) - (-2 (|:| -2882 *3) (|:| -3858 *2))))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3))))) -(((*1 *1 *2 *2) - (-12 + (-5 *3 (-1058 *4 (-495 (-796 *6)) (-796 *6) (-719 *4 (-796 *6)))) + (-4 *4 (-13 (-784) (-284) (-136) (-949))) (-14 *6 (-589 (-1087))) + (-5 *2 (-589 (-719 *4 (-796 *6)))) (-5 *1 (-1192 *4 *5 *6)) + (-14 *5 (-589 (-1087)))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-786)) (-5 *3 (-589 *6)) (-5 *5 (-589 *3)) (-5 *2 - (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) - (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) - (-5 *1 (-1084))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1081 *4)) (-4 *4 (-324)) - (-4 *2 - (-13 (-377) - (-10 -7 (-15 -2217 (*2 *4)) (-15 -1475 ((-850) *2)) - (-15 -2905 ((-1166 *2) (-850))) (-15 -2938 (*2 *2))))) - (-5 *1 (-331 *2 *4))))) -(((*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-964))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-708)) (-4 *3 (-514)) (-5 *1 (-897 *3 *2)) - (-4 *2 (-1142 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-762))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-522)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-522)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-522))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) + (-2 (|:| |f1| *3) (|:| |f2| (-589 *5)) (|:| |f3| *5) + (|:| |f4| (-589 *5)))) + (-5 *1 (-1094 *6)) (-5 *4 (-589 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-427))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-763)) (-5 *3 (-589 (-1087))) (-5 *1 (-764))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-696))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522)))) - (-5 *4 (-291 (-154 (-354)))) (-5 *1 (-305)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522)))) - (-5 *4 (-291 (-354))) (-5 *1 (-305)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522)))) - (-5 *4 (-291 (-522))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-154 (-354))))) - (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-354)))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-522)))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-154 (-354))))) - (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-354)))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-522)))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-154 (-354)))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-354))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-522))) (-5 *1 (-305)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522)))) - (-5 *4 (-291 (-632))) (-5 *1 (-305)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522)))) - (-5 *4 (-291 (-637))) (-5 *1 (-305)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522)))) - (-5 *4 (-291 (-639))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-632)))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-637)))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-639)))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-632)))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-637)))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-639)))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-632))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-637))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-639))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-632))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-637))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-639))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-632))) (-5 *1 (-305)))) + (-12 + (-5 *3 + (-589 + (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 *2)) + (|:| |logand| (-1083 *2))))) + (-5 *4 (-589 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-339)) (-5 *1 (-540 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-710))))) +(((*1 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-1168 (-589 (-523)))) (-5 *1 (-454)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-637))) (-5 *1 (-305)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-553 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-639))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1068)) (-5 *1 (-305)))) - ((*1 *1 *1 *1) (-5 *1 (-792)))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) - (-5 *2 (-382 (-522))) (-5 *1 (-945 *4)) (-4 *4 (-1142 (-522)))))) -(((*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1120)) (-5 *2 (-708))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-132))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-4 *3 (-1016)) + (-5 *2 (-108))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-589 (-1083 *5))) (-5 *3 (-1083 *5)) + (-4 *5 (-152 *4)) (-4 *4 (-508)) (-5 *1 (-138 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-589 *3)) (-4 *3 (-1144 *5)) + (-4 *5 (-1144 *4)) (-4 *4 (-325)) (-5 *1 (-334 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-589 (-1083 (-523)))) (-5 *3 (-1083 (-523))) + (-5 *1 (-531)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-589 (-1083 *1))) (-5 *3 (-1083 *1)) + (-4 *1 (-840))))) +(((*1 *1 *1 *1) (-4 *1 (-604))) ((*1 *1 *1 *1) (-5 *1 (-1034)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-852)) (-4 *1 (-684 *3)) (-4 *3 (-158))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306))))) +(((*1 *1 *1) (-5 *1 (-985)))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-203) (-203) (-203))) + (-5 *4 (-3 (-1 (-203) (-203) (-203) (-203)) "undefined")) + (-5 *5 (-1011 (-203))) (-5 *6 (-589 (-240))) (-5 *2 (-1047 (-203))) + (-5 *1 (-636))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1085)) (-5 *4 (-881 (-522))) (-5 *2 (-305)) - (-5 *1 (-307))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) - (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) - (-5 *1 (-1084))))) + (-12 (-5 *3 (-710)) (-5 *4 (-523)) (-5 *1 (-420 *2)) (-4 *2 (-973))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-339)) (-4 *3 (-973)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3441 *1))) + (-4 *1 (-788 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) - (-4 *3 (-13 (-338) (-1106) (-928)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-382 (-881 *4))) (-5 *3 (-1085)) - (-4 *4 (-13 (-514) (-962 (-522)) (-135))) (-5 *1 (-528 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *3)) - (-4 *3 (-990 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) - (-5 *1 (-1021 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1014)))) - ((*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1014))))) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) + ((*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-695))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) (-5 *2 (-383 (-883 *4))) (-5 *1 (-855 *4 *5 *6 *3)) + (-4 *3 (-880 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-880 *4 *6 *5)) + (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) (-5 *2 (-629 (-383 (-883 *4)))) + (-5 *1 (-855 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *6 *5)) + (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) (-5 *2 (-589 (-383 (-883 *4)))) + (-5 *1 (-855 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-271 (-772 *3))) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-772 *3)) (-5 *1 (-582 *5 *3)) + (-4 *3 (-13 (-27) (-1108) (-406 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-271 (-772 (-883 *5)))) (-4 *5 (-427)) + (-5 *2 (-772 (-383 (-883 *5)))) (-5 *1 (-583 *5)) + (-5 *3 (-383 (-883 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-271 (-383 (-883 *5)))) (-5 *3 (-383 (-883 *5))) + (-4 *5 (-427)) (-5 *2 (-772 *3)) (-5 *1 (-583 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-604))) ((*1 *1 *1 *1) (-5 *1 (-1034)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-588 *7) *7 (-1081 *7))) (-5 *5 (-1 (-393 *7) *7)) - (-4 *7 (-1142 *6)) (-4 *6 (-13 (-338) (-135) (-962 (-382 (-522))))) - (-5 *2 (-588 (-2 (|:| |frac| (-382 *7)) (|:| -3277 *3)))) - (-5 *1 (-746 *6 *7 *3 *8)) (-4 *3 (-598 *7)) - (-4 *8 (-598 (-382 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-393 *6) *6)) (-4 *6 (-1142 *5)) - (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) - (-5 *2 - (-588 (-2 (|:| |frac| (-382 *6)) (|:| -3277 (-596 *6 (-382 *6)))))) - (-5 *1 (-749 *5 *6)) (-5 *3 (-596 *6 (-382 *6)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1133 (-522))) (-4 *1 (-593 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-593 *3)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-108)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) + ((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363))))) +(((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-133))) (-5 *1 (-130)))) + ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-130))))) +(((*1 *2 *3) + (-12 (-4 *4 (-325)) (-4 *5 (-305 *4)) (-4 *6 (-1144 *5)) + (-5 *2 (-589 *3)) (-5 *1 (-716 *4 *5 *6 *3 *7)) (-4 *3 (-1144 *6)) + (-14 *7 (-852))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3))))) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794))))) (((*1 *2 *3) - (-12 (-4 *1 (-324)) (-5 *3 (-522)) (-5 *2 (-1094 (-850) (-708)))))) -(((*1 *1 *1) (-5 *1 (-1084))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) - (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) - (-5 *1 (-1084))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1018)) (-5 *3 (-711)) (-5 *1 (-51))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (-5 *2 (-589 (-203))) (-5 *1 (-184))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897))))) +(((*1 *1 *1) (-12 (-4 *1 (-349 *2)) (-4 *2 (-1122)))) + ((*1 *2 *2) + (-12 (-4 *3 (-973)) (-5 *1 (-419 *3 *2)) (-4 *2 (-1144 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3278 (-721 *3)) (|:| |coef2| (-721 *3)))) + (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-2 (|:| -3278 *1) (|:| |coef2| *1))) + (-4 *1 (-987 *3 *4 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) + (-5 *1 (-475 *4 *5 *6 *2)) (-4 *2 (-880 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-475 *3 *4 *5 *2)) (-4 *2 (-880 *3 *4 *5))))) +(((*1 *1) (-5 *1 (-306)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-254 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-254 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4)))))) +(((*1 *2) + (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-840)) + (-5 *1 (-432 *3 *4 *2 *5)) (-4 *5 (-880 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *2 (-840)) + (-5 *1 (-837 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-840)) (-5 *1 (-838 *2 *3)) (-4 *3 (-1144 *2))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-971)) - (-4 *2 (-1126 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) - (-5 *2 (-588 (-2 (|:| -1720 *1) (|:| -1566 (-588 *7))))) - (-5 *3 (-588 *7)) (-4 *1 (-1114 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-108))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-1124)) - (-4 *6 (-1142 (-382 *5))) + (-12 (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-317 *4 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-903 *4 *5 *3 *6)) (-4 *4 (-971)) (-4 *5 (-730)) - (-4 *3 (-784)) (-4 *6 (-985 *4 *5 *3)) (-5 *2 (-108))))) -(((*1 *2) - (-12 (-4 *3 (-514)) (-5 *2 (-588 (-628 *3))) (-5 *1 (-42 *3 *4)) - (-4 *4 (-392 *3))))) + (-589 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-523))))) + (-5 *1 (-394 *3)) (-4 *3 (-515)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-710)) (-4 *3 (-325)) (-4 *5 (-1144 *3)) + (-5 *2 (-589 (-1083 *3))) (-5 *1 (-469 *3 *5 *6)) + (-4 *6 (-1144 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-392 *4))))) -(((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) - (-4 *3 (-342 *4)))) - ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-708)) (-4 *4 (-338)) (-5 *1 (-825 *2 *4)) - (-4 *2 (-1142 *4))))) -(((*1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-697))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-338)) - (-5 *2 - (-2 (|:| A (-628 *5)) - (|:| |eqs| - (-588 - (-2 (|:| C (-628 *5)) (|:| |g| (-1166 *5)) (|:| -3277 *6) - (|:| |rh| *5)))))) - (-5 *1 (-750 *5 *6)) (-5 *3 (-628 *5)) (-5 *4 (-1166 *5)) - (-4 *6 (-598 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-338)) (-4 *6 (-598 *5)) - (-5 *2 (-2 (|:| -2149 (-628 *6)) (|:| |vec| (-1166 *5)))) - (-5 *1 (-750 *5 *6)) (-5 *3 (-628 *6)) (-5 *4 (-1166 *5))))) + (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-108)) + (-5 *1 (-168 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 (-155 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-108)) (-5 *1 (-1112 *4 *3)) + (-4 *3 (-13 (-27) (-1108) (-406 *4)))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) + (-5 *2 (-962)) (-5 *1 (-694))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) + (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-906 *3 *4 *5 *6))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-158)) (-5 *1 (-266 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1144 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-158)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1098 *4 *5)) - (-4 *4 (-1014)) (-4 *5 (-1014))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1120))))) + (-12 (-5 *3 (-629 (-383 (-883 *4)))) (-4 *4 (-427)) + (-5 *2 (-589 (-3 (-383 (-883 *4)) (-1077 (-1087) (-883 *4))))) + (-5 *1 (-269 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1085)) - (-4 *5 (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-539 *3)) (-5 *1 (-515 *5 *3)) - (-4 *3 (-13 (-27) (-1106) (-405 *5)))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |polnum| (-719 *3)) (|:| |polden| *3) (|:| -4062 (-708)))) - (-5 *1 (-719 *3)) (-4 *3 (-971)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4062 (-708)))) - (-4 *1 (-985 *3 *4 *5))))) + (-12 (-5 *3 (-589 (-629 *5))) (-4 *5 (-284)) (-4 *5 (-973)) + (-5 *2 (-1168 (-1168 *5))) (-5 *1 (-956 *5)) (-5 *4 (-1168 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-523)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1122)) + (-4 *5 (-349 *4)) (-4 *3 (-349 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-588 (-2 (|:| -2006 (-1081 *6)) (|:| -3858 (-522))))) - (-4 *6 (-283)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-522)) - (-5 *1 (-680 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5))))) + (-12 (-4 *4 (-921 *2)) (-4 *2 (-515)) (-5 *1 (-131 *2 *4 *3)) + (-4 *3 (-349 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-921 *2)) (-4 *2 (-515)) (-5 *1 (-474 *2 *4 *5 *3)) + (-4 *5 (-349 *2)) (-4 *3 (-349 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 *4)) (-4 *4 (-921 *2)) (-4 *2 (-515)) + (-5 *1 (-632 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-921 *2)) (-4 *2 (-515)) (-5 *1 (-1137 *2 *4 *3)) + (-4 *3 (-1144 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158))))) +(((*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-517 *3)) (-4 *3 (-508)))) + ((*1 *2 *3) + (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) (-5 *2 (-394 *3)) + (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-880 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) + (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-394 (-1083 *7))) + (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-427)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-394 *1)) (-4 *1 (-880 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-427)) (-5 *2 (-394 *3)) + (-5 *1 (-908 *4 *5 *6 *3)) (-4 *3 (-880 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-427)) + (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-394 (-1083 (-383 *7)))) + (-5 *1 (-1082 *4 *5 *6 *7)) (-5 *3 (-1083 (-383 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-394 *1)) (-4 *1 (-1126)))) + ((*1 *2 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-394 *3)) (-5 *1 (-1147 *4 *3)) + (-4 *3 (-13 (-1144 *4) (-515) (-10 -8 (-15 -3278 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) + (-14 *5 (-589 (-1087))) + (-5 *2 + (-589 (-1058 *4 (-495 (-796 *6)) (-796 *6) (-719 *4 (-796 *6))))) + (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-589 (-1087)))))) (((*1 *2 *1) - (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1)) - (-4 *1 (-985 *3 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1068)) (-4 *1 (-339 *3 *4)) (-4 *3 (-1014)) - (-4 *4 (-1014))))) -(((*1 *2 *3) - (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4)) - (-4 *4 (-324))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-278)))) - ((*1 *1 *1) (-4 *1 (-278))) ((*1 *1 *1) (-5 *1 (-792)))) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-971)) - (-4 *4 (-729)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-731)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-49 *3 *4)) - (-14 *4 (-588 (-1085))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-49 *3 *4)) + (-14 *4 (-589 (-1087))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) - (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) - (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) - (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-522)) - (-14 *6 (-708)) (-4 *7 (-157)) (-4 *8 (-157)) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-523)) + (-14 *6 (-710)) (-4 *7 (-158)) (-4 *8 (-158)) (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-154 *5)) (-4 *5 (-157)) - (-4 *6 (-157)) (-5 *2 (-154 *6)) (-5 *1 (-153 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-155 *5)) (-4 *5 (-158)) + (-4 *6 (-158)) (-5 *2 (-155 *6)) (-5 *1 (-154 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-291 *3) (-291 *3))) (-4 *3 (-13 (-971) (-784))) - (-5 *1 (-200 *3 *4)) (-14 *4 (-588 (-1085))))) + (-12 (-5 *2 (-1 (-292 *3) (-292 *3))) (-4 *3 (-13 (-973) (-786))) + (-5 *1 (-201 *3 *4)) (-14 *4 (-589 (-1087))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-217 *5 *6)) (-14 *5 (-708)) - (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-217 *5 *7)) - (-5 *1 (-216 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-218 *5 *6)) (-14 *5 (-710)) + (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-218 *5 *7)) + (-5 *1 (-217 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-270 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-270 *6)) (-5 *1 (-269 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-271 *5)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-5 *2 (-271 *6)) (-5 *1 (-270 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-270 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-271 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1068)) (-5 *5 (-561 *6)) - (-4 *6 (-278)) (-4 *2 (-1120)) (-5 *1 (-273 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1070)) (-5 *5 (-562 *6)) + (-4 *6 (-279)) (-4 *2 (-1122)) (-5 *1 (-274 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-561 *5)) (-4 *5 (-278)) - (-4 *2 (-278)) (-5 *1 (-274 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-562 *5)) (-4 *5 (-279)) + (-4 *2 (-279)) (-5 *1 (-275 *5 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-561 *1)) (-4 *1 (-278)))) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-562 *1)) (-4 *1 (-279)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-628 *5)) (-4 *5 (-971)) - (-4 *6 (-971)) (-5 *2 (-628 *6)) (-5 *1 (-280 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-629 *5)) (-4 *5 (-973)) + (-4 *6 (-973)) (-5 *2 (-629 *6)) (-5 *1 (-281 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-291 *5)) (-4 *5 (-784)) - (-4 *6 (-784)) (-5 *2 (-291 *6)) (-5 *1 (-289 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-292 *5)) (-4 *5 (-786)) + (-4 *6 (-786)) (-5 *2 (-292 *6)) (-5 *1 (-290 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-311 *5 *6 *7 *8)) (-4 *5 (-338)) - (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6))) (-4 *8 (-317 *5 *6 *7)) - (-4 *9 (-338)) (-4 *10 (-1142 *9)) (-4 *11 (-1142 (-382 *10))) - (-5 *2 (-311 *9 *10 *11 *12)) - (-5 *1 (-308 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-317 *9 *10 *11)))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-312 *5 *6 *7 *8)) (-4 *5 (-339)) + (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) (-4 *8 (-318 *5 *6 *7)) + (-4 *9 (-339)) (-4 *10 (-1144 *9)) (-4 *11 (-1144 (-383 *10))) + (-5 *2 (-312 *9 *10 *11 *12)) + (-5 *1 (-309 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-318 *9 *10 *11)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-313 *3)) (-4 *3 (-1014)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-314 *3)) (-4 *3 (-1016)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1124)) (-4 *8 (-1124)) - (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6))) (-4 *9 (-1142 *8)) - (-4 *2 (-317 *8 *9 *10)) (-5 *1 (-315 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-317 *5 *6 *7)) (-4 *10 (-1142 (-382 *9))))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1126)) (-4 *8 (-1126)) + (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) (-4 *9 (-1144 *8)) + (-4 *2 (-318 *8 *9 *10)) (-5 *1 (-316 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-318 *5 *6 *7)) (-4 *10 (-1144 (-383 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-4 *2 (-348 *6)) (-5 *1 (-346 *5 *4 *6 *2)) (-4 *4 (-348 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) + (-4 *2 (-349 *6)) (-5 *1 (-347 *5 *4 *6 *2)) (-4 *4 (-349 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) - (-4 *4 (-1014)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-1016)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-393 *5)) (-4 *5 (-514)) - (-4 *6 (-514)) (-5 *2 (-393 *6)) (-5 *1 (-380 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-394 *5)) (-4 *5 (-515)) + (-4 *6 (-515)) (-5 *2 (-394 *6)) (-5 *1 (-381 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-382 *5)) (-4 *5 (-514)) - (-4 *6 (-514)) (-5 *2 (-382 *6)) (-5 *1 (-381 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-383 *5)) (-4 *5 (-515)) + (-4 *6 (-515)) (-5 *2 (-383 *6)) (-5 *1 (-382 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-388 *5 *6 *7 *8)) (-4 *5 (-283)) - (-4 *6 (-919 *5)) (-4 *7 (-1142 *6)) - (-4 *8 (-13 (-384 *6 *7) (-962 *6))) (-4 *9 (-283)) - (-4 *10 (-919 *9)) (-4 *11 (-1142 *10)) - (-5 *2 (-388 *9 *10 *11 *12)) - (-5 *1 (-387 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-384 *10 *11) (-962 *10))))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-389 *5 *6 *7 *8)) (-4 *5 (-284)) + (-4 *6 (-921 *5)) (-4 *7 (-1144 *6)) + (-4 *8 (-13 (-385 *6 *7) (-964 *6))) (-4 *9 (-284)) + (-4 *10 (-921 *9)) (-4 *11 (-1144 *10)) + (-5 *2 (-389 *9 *10 *11 *12)) + (-5 *1 (-388 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-385 *10 *11) (-964 *10))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) - (-4 *2 (-392 *6)) (-5 *1 (-390 *4 *5 *2 *6)) (-4 *4 (-392 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-158)) (-4 *6 (-158)) + (-4 *2 (-393 *6)) (-5 *1 (-391 *4 *5 *2 *6)) (-4 *4 (-393 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-514)) (-5 *1 (-393 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-515)) (-5 *1 (-394 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-971) (-784))) - (-4 *6 (-13 (-971) (-784))) (-4 *2 (-405 *6)) - (-5 *1 (-396 *5 *4 *6 *2)) (-4 *4 (-405 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-973) (-786))) + (-4 *6 (-13 (-973) (-786))) (-4 *2 (-406 *6)) + (-5 *1 (-397 *5 *4 *6 *2)) (-4 *4 (-406 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) - (-4 *2 (-400 *6)) (-5 *1 (-398 *5 *4 *6 *2)) (-4 *4 (-400 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) + (-4 *2 (-401 *6)) (-5 *1 (-399 *5 *4 *6 *2)) (-4 *4 (-401 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-461 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-462 *3)) (-4 *3 (-1122)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-478 *3 *4)) (-4 *3 (-1014)) - (-4 *4 (-784)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-479 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-786)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-539 *5)) (-4 *5 (-338)) - (-4 *6 (-338)) (-5 *2 (-539 *6)) (-5 *1 (-538 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-540 *5)) (-4 *5 (-339)) + (-4 *6 (-339)) (-5 *2 (-540 *6)) (-5 *1 (-539 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2585 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-338)) (-4 *6 (-338)) - (-5 *2 (-2 (|:| -2585 *6) (|:| |coeff| *6))) - (-5 *1 (-538 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -2462 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-339)) (-4 *6 (-339)) + (-5 *2 (-2 (|:| -2462 *6) (|:| |coeff| *6))) + (-5 *1 (-539 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-338)) (-4 *2 (-338)) (-5 *1 (-538 *5 *2)))) + (-4 *5 (-339)) (-4 *2 (-339)) (-5 *1 (-539 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| - (-588 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (-589 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) - (-4 *5 (-338)) (-4 *6 (-338)) + (-4 *5 (-339)) (-4 *6 (-339)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| - (-588 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-538 *5 *6)))) + (-589 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-539 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-552 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-552 *6)) (-5 *1 (-549 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-553 *5)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-5 *2 (-553 *6)) (-5 *1 (-550 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-552 *6)) (-5 *5 (-552 *7)) - (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-552 *8)) - (-5 *1 (-550 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-553 *6)) (-5 *5 (-553 *7)) + (-4 *6 (-1122)) (-4 *7 (-1122)) (-4 *8 (-1122)) (-5 *2 (-553 *8)) + (-5 *1 (-551 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1066 *6)) (-5 *5 (-552 *7)) - (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-1066 *8)) - (-5 *1 (-550 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-553 *7)) + (-4 *6 (-1122)) (-4 *7 (-1122)) (-4 *8 (-1122)) (-5 *2 (-1068 *8)) + (-5 *1 (-551 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-552 *6)) (-5 *5 (-1066 *7)) - (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-1066 *8)) - (-5 *1 (-550 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-553 *6)) (-5 *5 (-1068 *7)) + (-4 *6 (-1122)) (-4 *7 (-1122)) (-4 *8 (-1122)) (-5 *2 (-1068 *8)) + (-5 *1 (-551 *6 *7 *8)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-552 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-553 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-588 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-588 *6)) (-5 *1 (-586 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-589 *5)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-5 *2 (-589 *6)) (-5 *1 (-587 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-588 *6)) (-5 *5 (-588 *7)) - (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-588 *8)) - (-5 *1 (-587 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-589 *6)) (-5 *5 (-589 *7)) + (-4 *6 (-1122)) (-4 *7 (-1122)) (-4 *8 (-1122)) (-5 *2 (-589 *8)) + (-5 *1 (-588 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-593 *3)) (-4 *3 (-1120)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-971)) (-4 *8 (-971)) - (-4 *6 (-348 *5)) (-4 *7 (-348 *5)) (-4 *2 (-626 *8 *9 *10)) - (-5 *1 (-624 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-626 *5 *6 *7)) - (-4 *9 (-348 *8)) (-4 *10 (-348 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-971)) - (-4 *8 (-971)) (-4 *6 (-348 *5)) (-4 *7 (-348 *5)) - (-4 *2 (-626 *8 *9 *10)) (-5 *1 (-624 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-626 *5 *6 *7)) (-4 *9 (-348 *8)) (-4 *10 (-348 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-514)) (-4 *7 (-514)) - (-4 *6 (-1142 *5)) (-4 *2 (-1142 (-382 *8))) - (-5 *1 (-648 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1142 (-382 *6))) - (-4 *8 (-1142 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-971)) (-4 *9 (-971)) (-4 *5 (-784)) - (-4 *6 (-730)) (-4 *2 (-878 *9 *7 *5)) - (-5 *1 (-666 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-730)) - (-4 *4 (-878 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-784)) (-4 *6 (-784)) (-4 *7 (-730)) - (-4 *9 (-971)) (-4 *2 (-878 *9 *8 *6)) - (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-730)) - (-4 *4 (-878 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-673 *5 *7)) (-4 *5 (-971)) - (-4 *6 (-971)) (-4 *7 (-664)) (-5 *2 (-673 *6 *7)) - (-5 *1 (-672 *5 *6 *7)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-973)) (-4 *8 (-973)) + (-4 *6 (-349 *5)) (-4 *7 (-349 *5)) (-4 *2 (-627 *8 *9 *10)) + (-5 *1 (-625 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) + (-4 *9 (-349 *8)) (-4 *10 (-349 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-973)) + (-4 *8 (-973)) (-4 *6 (-349 *5)) (-4 *7 (-349 *5)) + (-4 *2 (-627 *8 *9 *10)) (-5 *1 (-625 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-627 *5 *6 *7)) (-4 *9 (-349 *8)) (-4 *10 (-349 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-515)) (-4 *7 (-515)) + (-4 *6 (-1144 *5)) (-4 *2 (-1144 (-383 *8))) + (-5 *1 (-649 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1144 (-383 *6))) + (-4 *8 (-1144 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-973)) (-4 *9 (-973)) (-4 *5 (-786)) + (-4 *6 (-732)) (-4 *2 (-880 *9 *7 *5)) + (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-732)) + (-4 *4 (-880 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-786)) (-4 *6 (-786)) (-4 *7 (-732)) + (-4 *9 (-973)) (-4 *2 (-880 *9 *8 *6)) + (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-732)) + (-4 *4 (-880 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5 *7)) (-4 *5 (-973)) + (-4 *6 (-973)) (-4 *7 (-666)) (-5 *2 (-675 *6 *7)) + (-5 *1 (-674 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-673 *3 *4)) - (-4 *4 (-664)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-675 *3 *4)) + (-4 *4 (-666)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-719 *5)) (-4 *5 (-971)) - (-4 *6 (-971)) (-5 *2 (-719 *6)) (-5 *1 (-718 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-721 *5)) (-4 *5 (-973)) + (-4 *6 (-973)) (-5 *2 (-721 *6)) (-5 *1 (-720 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) - (-4 *2 (-734 *6)) (-5 *1 (-735 *4 *5 *2 *6)) (-4 *4 (-734 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-158)) (-4 *6 (-158)) + (-4 *2 (-736 *6)) (-5 *1 (-737 *4 *5 *2 *6)) (-4 *4 (-736 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-770 *5)) (-4 *5 (-1014)) - (-4 *6 (-1014)) (-5 *2 (-770 *6)) (-5 *1 (-769 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-770 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-770 *5)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *1 (-769 *5 *6)))) + (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *1 (-771 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-777 *5)) (-4 *5 (-1014)) - (-4 *6 (-1014)) (-5 *2 (-777 *6)) (-5 *1 (-776 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-5 *2 (-779 *6)) (-5 *1 (-778 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-777 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-777 *5)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *1 (-776 *5 *6)))) + (-12 (-5 *2 (-779 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *1 (-778 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-806 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-806 *6)) (-5 *1 (-805 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-808 *5)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-5 *2 (-808 *6)) (-5 *1 (-807 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-808 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-808 *6)) (-5 *1 (-807 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-5 *2 (-810 *6)) (-5 *1 (-809 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-811 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-811 *6)) (-5 *1 (-810 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-813 *5)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-5 *2 (-813 *6)) (-5 *1 (-812 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-818 *5 *6)) (-4 *5 (-1014)) - (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-818 *5 *7)) - (-5 *1 (-817 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-820 *5 *6)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-820 *5 *7)) + (-5 *1 (-819 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-821 *5)) (-4 *5 (-1014)) - (-4 *6 (-1014)) (-5 *2 (-821 *6)) (-5 *1 (-820 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-5 *2 (-823 *6)) (-5 *1 (-822 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-971)) - (-4 *6 (-971)) (-5 *2 (-881 *6)) (-5 *1 (-875 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-973)) + (-4 *6 (-973)) (-5 *2 (-883 *6)) (-5 *1 (-877 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-784)) - (-4 *8 (-971)) (-4 *6 (-730)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-786)) + (-4 *8 (-973)) (-4 *6 (-732)) (-4 *2 - (-13 (-1014) - (-10 -8 (-15 -1661 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-708)))))) - (-5 *1 (-880 *6 *7 *8 *5 *2)) (-4 *5 (-878 *8 *6 *7)))) + (-13 (-1016) + (-10 -8 (-15 -4075 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-710)))))) + (-5 *1 (-882 *6 *7 *8 *5 *2)) (-4 *5 (-880 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-886 *6)) (-5 *1 (-885 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-971)) - (-4 *6 (-971)) (-5 *2 (-872 *6)) (-5 *1 (-908 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-973)) + (-4 *6 (-973)) (-5 *2 (-874 *6)) (-5 *1 (-910 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-881 *4))) (-4 *4 (-971)) - (-4 *2 (-878 (-881 *4) *5 *6)) (-4 *5 (-730)) + (-12 (-5 *3 (-1 *2 (-883 *4))) (-4 *4 (-973)) + (-4 *2 (-880 (-883 *4) *5 *6)) (-4 *5 (-732)) (-4 *6 - (-13 (-784) - (-10 -8 (-15 -3873 ((-1085) $)) - (-15 -1660 ((-3 $ "failed") (-1085)))))) - (-5 *1 (-911 *4 *5 *6 *2)))) + (-13 (-786) + (-10 -8 (-15 -3663 ((-1087) $)) + (-15 -2700 ((-3 $ "failed") (-1087)))))) + (-5 *1 (-913 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-514)) (-4 *6 (-514)) - (-4 *2 (-919 *6)) (-5 *1 (-917 *5 *6 *4 *2)) (-4 *4 (-919 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-515)) (-4 *6 (-515)) + (-4 *2 (-921 *6)) (-5 *1 (-919 *5 *6 *4 *2)) (-4 *4 (-921 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) - (-4 *2 (-923 *6)) (-5 *1 (-924 *4 *5 *2 *6)) (-4 *4 (-923 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-158)) (-4 *6 (-158)) + (-4 *2 (-925 *6)) (-5 *1 (-926 *4 *5 *2 *6)) (-4 *4 (-925 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-974 *3 *4 *5 *6 *7)) - (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-976 *3 *4 *5 *6 *7)) + (-4 *5 (-973)) (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) - (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-971)) (-4 *10 (-971)) - (-14 *5 (-708)) (-14 *6 (-708)) (-4 *8 (-215 *6 *7)) - (-4 *9 (-215 *5 *7)) (-4 *2 (-974 *5 *6 *10 *11 *12)) - (-5 *1 (-976 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-974 *5 *6 *7 *8 *9)) (-4 *11 (-215 *6 *10)) - (-4 *12 (-215 *5 *10)))) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-973)) (-4 *10 (-973)) + (-14 *5 (-710)) (-14 *6 (-710)) (-4 *8 (-216 *6 *7)) + (-4 *9 (-216 *5 *7)) (-4 *2 (-976 *5 *6 *10 *11 *12)) + (-5 *1 (-978 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-976 *5 *6 *7 *8 *9)) (-4 *11 (-216 *6 *10)) + (-4 *12 (-216 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1009 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-1009 *6)) (-5 *1 (-1005 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1011 *5)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-5 *2 (-1011 *6)) (-5 *1 (-1007 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1009 *5)) (-4 *5 (-782)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-588 *6)) - (-5 *1 (-1005 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1011 *5)) (-4 *5 (-784)) + (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-589 *6)) + (-5 *1 (-1007 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1007 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-1007 *6)) (-5 *1 (-1006 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1009 *5)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-5 *2 (-1009 *6)) (-5 *1 (-1008 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1010 *4 *2)) (-4 *4 (-782)) - (-4 *2 (-1059 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1012 *4 *2)) (-4 *4 (-784)) + (-4 *2 (-1061 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1066 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-1066 *6)) (-5 *1 (-1064 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1068 *5)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-5 *2 (-1068 *6)) (-5 *1 (-1066 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1066 *6)) (-5 *5 (-1066 *7)) - (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-1066 *8)) - (-5 *1 (-1065 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-1068 *7)) + (-4 *6 (-1122)) (-4 *7 (-1122)) (-4 *8 (-1122)) (-5 *2 (-1068 *8)) + (-5 *1 (-1067 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1081 *5)) (-4 *5 (-971)) - (-4 *6 (-971)) (-5 *2 (-1081 *6)) (-5 *1 (-1079 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1083 *5)) (-4 *5 (-973)) + (-4 *6 (-973)) (-5 *2 (-1083 *6)) (-5 *1 (-1081 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1097 *3 *4)) (-4 *3 (-1014)) - (-4 *4 (-1014)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1099 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1016)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1130 *5 *7 *9)) (-4 *5 (-971)) - (-4 *6 (-971)) (-14 *7 (-1085)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1130 *6 *8 *10)) (-5 *1 (-1125 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1085)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1132 *5 *7 *9)) (-4 *5 (-973)) + (-4 *6 (-973)) (-14 *7 (-1087)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1132 *6 *8 *10)) (-5 *1 (-1127 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1087)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1133 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-1133 *6)) (-5 *1 (-1132 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1135 *5)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-5 *2 (-1135 *6)) (-5 *1 (-1134 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1133 *5)) (-4 *5 (-782)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1066 *6)) - (-5 *1 (-1132 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1135 *5)) (-4 *5 (-784)) + (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1068 *6)) + (-5 *1 (-1134 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1139 *5 *6)) (-14 *5 (-1085)) - (-4 *6 (-971)) (-4 *8 (-971)) (-5 *2 (-1139 *7 *8)) - (-5 *1 (-1134 *5 *6 *7 *8)) (-14 *7 (-1085)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1141 *5 *6)) (-14 *5 (-1087)) + (-4 *6 (-973)) (-4 *8 (-973)) (-5 *2 (-1141 *7 *8)) + (-5 *1 (-1136 *5 *6 *7 *8)) (-14 *7 (-1087)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-971)) (-4 *6 (-971)) - (-4 *2 (-1142 *6)) (-5 *1 (-1140 *5 *4 *6 *2)) (-4 *4 (-1142 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-973)) (-4 *6 (-973)) + (-4 *2 (-1144 *6)) (-5 *1 (-1142 *5 *4 *6 *2)) (-4 *4 (-1144 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1151 *5 *7 *9)) (-4 *5 (-971)) - (-4 *6 (-971)) (-14 *7 (-1085)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1151 *6 *8 *10)) (-5 *1 (-1146 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1085)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1153 *5 *7 *9)) (-4 *5 (-973)) + (-4 *6 (-973)) (-14 *7 (-1087)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1153 *6 *8 *10)) (-5 *1 (-1148 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1087)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-971)) (-4 *6 (-971)) - (-4 *2 (-1157 *6)) (-5 *1 (-1155 *5 *6 *4 *2)) (-4 *4 (-1157 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-973)) (-4 *6 (-973)) + (-4 *2 (-1159 *6)) (-5 *1 (-1157 *5 *6 *4 *2)) (-4 *4 (-1159 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-1120)) - (-4 *6 (-1120)) (-5 *2 (-1166 *6)) (-5 *1 (-1165 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-1122)) + (-4 *6 (-1122)) (-5 *2 (-1168 *6)) (-5 *1 (-1167 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1166 *5)) - (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1166 *6)) - (-5 *1 (-1165 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1168 *5)) + (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1168 *6)) + (-5 *1 (-1167 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) - (-4 *4 (-971)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-973)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-1187 *3 *4)) - (-4 *4 (-780))))) -(((*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-92))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) - ((*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-850)) (-5 *4 (-354)) (-5 *2 (-1171)) (-5 *1 (-1167))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-588 (-522))) (-5 *2 (-628 (-522))) (-5 *1 (-1024))))) -(((*1 *1) (-5 *1 (-132))) ((*1 *1 *1) (-5 *1 (-792)))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) - (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102)))) (-5 *2 (-960)) - (-5 *1 (-684))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-561 *3)) (-5 *5 (-588 *3)) - (-4 *3 (-13 (-405 *6) (-27) (-1106))) - (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-1189 *3 *4)) + (-4 *4 (-782))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 *5)) (-4 *5 (-158)) (-5 *1 (-128 *3 *4 *5)) + (-14 *3 (-523)) (-14 *4 (-710))))) +(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -2462 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-339)) (-4 *7 (-1144 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-383 *7)) (|:| |a0| *6)) + (-2 (|:| -2462 (-383 *7)) (|:| |coeff| (-383 *7))) "failed")) + (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1016)) (-4 *5 (-1016)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-623 *4 *5))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-585 (-523))) + (-5 *2 (-1168 (-383 (-523)))) (-5 *1 (-1193 *4))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-710)) (-4 *4 (-515)) (-5 *1 (-899 *4 *2)) + (-4 *2 (-1144 *4))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) + (-5 *2 + (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) + (|:| |success| (-108)))) + (-5 *1 (-728)) (-5 *5 (-523))))) +(((*1 *2 *2) + (-12 (-4 *3 (-515)) (-4 *4 (-921 *3)) (-5 *1 (-131 *3 *4 *2)) + (-4 *2 (-349 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) (-4 *2 (-349 *4)) + (-5 *1 (-474 *4 *5 *2 *3)) (-4 *3 (-349 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 *5)) (-4 *5 (-921 *4)) (-4 *4 (-515)) + (-5 *2 (-629 *4)) (-5 *1 (-632 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-515)) (-4 *4 (-921 *3)) (-5 *1 (-1137 *3 *4 *2)) + (-4 *2 (-1144 *4))))) +(((*1 *2) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-5 *2 (-629 (-383 *4)))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168 (-1168 *4))) (-4 *4 (-973)) (-5 *2 (-629 *4)) + (-5 *1 (-956 *4))))) +(((*1 *1) (-5 *1 (-762)))) +(((*1 *1 *1 *1) (-5 *1 (-203))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966)))) + ((*1 *1 *1 *1) (-4 *1 (-1051)))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1016) (-33))) + (-4 *3 (-13 (-1016) (-33)))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *1) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108))))) + ((*1 *1 *1 *1) (-4 *1 (-732)))) +(((*1 *2 *1) + (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) + (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-292 (-203))) (-5 *4 (-1087)) + (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-589 (-203))) (-5 *1 (-172)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-292 (-203))) (-5 *4 (-1087)) + (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-589 (-203))) (-5 *1 (-277))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-692))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *8 (-987 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-589 *8)) (|:| |towers| (-589 (-954 *5 *6 *7 *8))))) + (-5 *1 (-954 *5 *6 *7 *8)) (-5 *3 (-589 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *8 (-987 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-589 *8)) + (|:| |towers| (-589 (-1058 *5 *6 *7 *8))))) + (-5 *1 (-1058 *5 *6 *7 *8)) (-5 *3 (-589 *8))))) +(((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) + ((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171))))) +(((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-966))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-694))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1087)) (-5 *6 (-589 (-562 *3))) + (-5 *5 (-562 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *7))) + (-4 *7 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-2 (|:| -2462 *3) (|:| |coeff| *3))) + (-5 *1 (-516 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-710)) (-4 *8 (-880 *5 *7 *6)) + (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) + (-4 *7 (-732)) + (-5 *2 + (-589 + (-2 (|:| |det| *8) (|:| |rows| (-589 (-523))) + (|:| |cols| (-589 (-523)))))) + (-5 *1 (-855 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-710)) (-4 *5 (-973)) (-5 *2 (-523)) + (-5 *1 (-418 *5 *3 *6)) (-4 *3 (-1144 *5)) + (-4 *6 (-13 (-380) (-964 *5) (-339) (-1108) (-261))))) + ((*1 *2 *3) + (-12 (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-418 *4 *3 *5)) + (-4 *3 (-1144 *4)) + (-4 *5 (-13 (-380) (-964 *4) (-339) (-1108) (-261)))))) +(((*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-92))))) +(((*1 *2 *2) + (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) + (-5 *1 (-161 *3))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-589 *3)) (-5 *6 (-1083 *3)) + (-4 *3 (-13 (-406 *7) (-27) (-1108))) + (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| - (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-524 *6 *3 *7)) (-4 *7 (-1014))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2908 *4))) - (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-802 (-894 *3) (-894 *3))) (-5 *1 (-894 *3)) - (-4 *3 (-895))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792))))) + (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-519 *7 *3 *8)) (-4 *8 (-1016)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-589 *3)) + (-5 *6 (-383 (-1083 *3))) (-4 *3 (-13 (-406 *7) (-27) (-1108))) + (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-519 *7 *3 *8)) (-4 *8 (-1016))))) +(((*1 *1 *1) (-5 *1 (-985)))) +(((*1 *1 *2) + (-12 (-5 *2 (-629 *5)) (-4 *5 (-973)) (-5 *1 (-977 *3 *4 *5)) + (-14 *3 (-710)) (-14 *4 (-710))))) +(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-589 (-383 *7))) + (-4 *7 (-1144 *6)) (-5 *3 (-383 *7)) (-4 *6 (-339)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-533 *6 *7))))) (((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-291 *3)) (-4 *3 (-514)) (-4 *3 (-784))))) -(((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) - ((*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) - (-4 *2 (-405 *3)))) - ((*1 *1 *1) (-4 *1 (-1049)))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-354))) (-5 *1 (-964)) (-5 *3 (-354))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) + (-12 (-4 *2 (-880 *3 *5 *4)) (-5 *1 (-916 *3 *4 *5 *2)) + (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732))))) +(((*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-628 *4)) (-5 *3 (-850)) (-4 *4 (-971)) - (-5 *1 (-953 *4)))) + (|partial| -12 (-5 *2 (-589 (-1083 *7))) (-5 *3 (-1083 *7)) + (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-840)) (-4 *5 (-732)) + (-4 *6 (-786)) (-5 *1 (-837 *4 *5 *6 *7)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-588 (-628 *4))) (-5 *3 (-850)) (-4 *4 (-971)) - (-5 *1 (-953 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-354)))) - ((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-354))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 *7)) (-4 *7 (-878 *4 *6 *5)) - (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) - (-4 *6 (-730)) (-5 *2 (-108)) (-5 *1 (-853 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-13 (-283) (-135))) - (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-108)) - (-5 *1 (-853 *4 *5 *6 *7)) (-4 *7 (-878 *4 *6 *5))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729))))) -(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441)))) - ((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441)))) - ((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-690))))) -(((*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1120)) (-5 *2 (-108))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1068)) (-5 *3 (-522)) (-5 *1 (-218))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *2 (-784)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -2585 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-338)) (-5 *1 (-532 *4 *2)) (-4 *2 (-1142 *4))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-561 *3)) (-5 *5 (-1081 *3)) - (-4 *3 (-13 (-405 *6) (-27) (-1106))) - (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) - (-5 *2 (-539 *3)) (-5 *1 (-518 *6 *3 *7)) (-4 *7 (-1014)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-561 *3)) (-5 *5 (-382 (-1081 *3))) - (-4 *3 (-13 (-405 *6) (-27) (-1106))) - (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) - (-5 *2 (-539 *3)) (-5 *1 (-518 *6 *3 *7)) (-4 *7 (-1014))))) -(((*1 *2 *2) - (-12 (-5 *2 (-588 *3)) (-4 *3 (-1142 (-522))) (-5 *1 (-458 *3))))) + (|partial| -12 (-5 *2 (-589 (-1083 *5))) (-5 *3 (-1083 *5)) + (-4 *5 (-1144 *4)) (-4 *4 (-840)) (-5 *1 (-838 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-695))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-589 (-383 (-883 *6)))) + (-5 *3 (-383 (-883 *6))) + (-4 *6 (-13 (-515) (-964 (-523)) (-136))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-529 *6))))) (((*1 *2 *1) - (-12 (-5 *2 (-708)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) - (-4 *4 (-971))))) -(((*1 *2 *3) - (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-1171)) - (-5 *1 (-423 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2308 *3))) - (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) - (-4 *3 (-13 (-338) (-1106) (-928)))))) -(((*1 *2) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-100))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-1068)) (-5 *5 (-628 (-202))) - (-5 *2 (-960)) (-5 *1 (-685))))) -(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-676))))) -(((*1 *2 *2) - (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-426)) - (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-423 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1014)) (-4 *6 (-815 *5)) (-5 *2 (-814 *5 *6 (-588 *6))) - (-5 *1 (-816 *5 *6 *4)) (-5 *3 (-588 *6)) (-4 *4 (-563 (-821 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1014)) (-5 *2 (-588 (-270 *3))) (-5 *1 (-816 *5 *3 *4)) - (-4 *3 (-962 (-1085))) (-4 *3 (-815 *5)) (-4 *4 (-563 (-821 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1014)) (-5 *2 (-588 (-270 (-881 *3)))) - (-5 *1 (-816 *5 *3 *4)) (-4 *3 (-971)) - (-2473 (-4 *3 (-962 (-1085)))) (-4 *3 (-815 *5)) - (-4 *4 (-563 (-821 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1014)) (-5 *2 (-818 *5 *3)) (-5 *1 (-816 *5 *3 *4)) - (-2473 (-4 *3 (-962 (-1085)))) (-2473 (-4 *3 (-971))) - (-4 *3 (-815 *5)) (-4 *4 (-563 (-821 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) + (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) + (-5 *2 (-589 (-589 (-589 (-710)))))))) (((*1 *1 *2) - (-12 (-5 *2 (-1179 (-1085) *3)) (-4 *3 (-971)) (-5 *1 (-1186 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1179 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) - (-5 *1 (-1188 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-382 (-881 (-154 (-522)))))) - (-5 *2 (-588 (-588 (-270 (-881 (-154 *4)))))) (-5 *1 (-353 *4)) - (-4 *4 (-13 (-338) (-782))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-270 (-382 (-881 (-154 (-522))))))) - (-5 *2 (-588 (-588 (-270 (-881 (-154 *4)))))) (-5 *1 (-353 *4)) - (-4 *4 (-13 (-338) (-782))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-382 (-881 (-154 (-522))))) - (-5 *2 (-588 (-270 (-881 (-154 *4))))) (-5 *1 (-353 *4)) - (-4 *4 (-13 (-338) (-782))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-270 (-382 (-881 (-154 (-522)))))) - (-5 *2 (-588 (-270 (-881 (-154 *4))))) (-5 *1 (-353 *4)) - (-4 *4 (-13 (-338) (-782)))))) -(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-637)))) - ((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-637))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-382 (-881 (-154 (-522))))) (-5 *2 (-588 (-154 *4))) - (-5 *1 (-353 *4)) (-4 *4 (-13 (-338) (-782))))) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-1059 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *5)) (-4 *4 (-973)) + (-4 *5 (-786)) (-5 *2 (-883 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *5)) (-4 *4 (-973)) + (-4 *5 (-786)) (-5 *2 (-883 *4)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-1159 *4)) (-4 *4 (-973)) + (-5 *2 (-883 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-1159 *4)) (-4 *4 (-973)) + (-5 *2 (-883 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-284)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) + (-5 *2 + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1038 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) + (-4 *3 (-987 *6 *7 *8)) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) + (-5 *1 (-1024 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-588 (-382 (-881 (-154 (-522)))))) - (-5 *4 (-588 (-1085))) (-5 *2 (-588 (-588 (-154 *5)))) - (-5 *1 (-353 *5)) (-4 *5 (-13 (-338) (-782)))))) -(((*1 *1) (-12 (-4 *1 (-304 *2)) (-4 *2 (-343)) (-4 *2 (-338)))) - ((*1 *2 *3) - (-12 (-5 *3 (-850)) (-5 *2 (-1166 *4)) (-5 *1 (-492 *4)) - (-4 *4 (-324))))) -(((*1 *2 *1) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-1081 *3))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-850)) (-4 *5 (-514)) (-5 *2 (-628 *5)) - (-5 *1 (-884 *5 *3)) (-4 *3 (-598 *5))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1102))))) -(((*1 *1 *1 *1) (-5 *1 (-792))) ((*1 *1 *1) (-5 *1 (-792))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1081 (-522))) (-5 *3 (-522)) (-4 *1 (-798 *4))))) + (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3072 *9)))) + (-5 *5 (-108)) (-4 *8 (-987 *6 *7 *4)) (-4 *9 (-992 *6 *7 *4 *8)) + (-4 *6 (-427)) (-4 *7 (-732)) (-4 *4 (-786)) + (-5 *2 (-589 (-2 (|:| |val| *8) (|:| -3072 *9)))) + (-5 *1 (-1024 *6 *7 *4 *8 *9))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3078 *4))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-383 *6)) (|:| |c| (-383 *6)) + (|:| -4081 *6))) + (-5 *1 (-943 *5 *6)) (-5 *3 (-383 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-756 *4)) (-4 *4 (-784)) (-5 *2 (-108)) - (-5 *1 (-613 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-157))))) -(((*1 *1 *1) (-4 *1 (-574))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928) (-1106)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1066 (-382 *3))) (-5 *1 (-158 *3)) (-4 *3 (-283))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-675 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1014)))) - ((*1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1014))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-338)) (-5 *1 (-704 *2 *3)) (-4 *2 (-647 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-685))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *3 (-588 (-239))) - (-5 *1 (-237)))) - ((*1 *1 *2) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *1 (-239)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *1 (-442)))) - ((*1 *2 *1) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *1 (-442))))) -(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855))))) -(((*1 *2 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522)))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-514)) (-4 *3 (-157)) (-4 *4 (-348 *3)) - (-4 *5 (-348 *3)) (-5 *1 (-627 *3 *4 *5 *2)) - (-4 *2 (-626 *3 *4 *5))))) -(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-1095 (-589 *4))) (-4 *4 (-786)) + (-5 *2 (-589 (-589 *4))) (-5 *1 (-1094 *4))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-687))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 - (-588 - (-2 (|:| |scalar| (-382 (-522))) (|:| |coeff| (-1081 *2)) - (|:| |logand| (-1081 *2))))) - (-5 *4 (-588 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-338)) (-5 *1 (-539 *2))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-338)) (-5 *1 (-261 *3 *2)) (-4 *2 (-1157 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1085)) - (-4 *4 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-401 *4 *2)) (-4 *2 (-13 (-1106) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085)) (-4 *5 (-135)) - (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) - (-5 *2 (-291 *5)) (-5 *1 (-542 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1085)) + (-2 (|:| |det| *12) (|:| |rows| (-589 (-523))) + (|:| |cols| (-589 (-523))))) + (-5 *4 (-629 *12)) (-5 *5 (-589 (-383 (-883 *9)))) + (-5 *6 (-589 (-589 *12))) (-5 *7 (-710)) (-5 *8 (-523)) + (-4 *9 (-13 (-284) (-136))) (-4 *12 (-880 *9 *11 *10)) + (-4 *10 (-13 (-786) (-564 (-1087)))) (-4 *11 (-732)) (-5 *2 - (-2 (|:| |zeros| (-1066 (-202))) (|:| |ones| (-1066 (-202))) - (|:| |singularities| (-1066 (-202))))) - (-5 *1 (-100))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-37 (-382 (-522)))) - (-4 *2 (-157))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1081 (-382 (-881 *3)))) (-5 *1 (-427 *3 *4 *5 *6)) - (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) - (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-588 (-850))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-850)) - (-14 *4 (-850))))) -(((*1 *2 *1) - (-12 (-4 *1 (-512 *3)) (-4 *3 (-13 (-379) (-1106))) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-782)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-987 *4 *3)) (-4 *4 (-13 (-782) (-338))) - (-4 *3 (-1142 *4)) (-5 *2 (-108))))) -(((*1 *1 *1) (-5 *1 (-983)))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-818 *5 *3)) (-5 *4 (-821 *5)) (-4 *5 (-1014)) - (-4 *3 (-151 *6)) (-4 (-881 *6) (-815 *5)) - (-4 *6 (-13 (-815 *5) (-157))) (-5 *1 (-162 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-818 *4 *1)) (-5 *3 (-821 *4)) (-4 *1 (-815 *4)) - (-4 *4 (-1014)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-818 *5 *6)) (-5 *4 (-821 *5)) (-4 *5 (-1014)) - (-4 *6 (-13 (-1014) (-962 *3))) (-4 *3 (-815 *5)) - (-5 *1 (-860 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-818 *5 *3)) (-4 *5 (-1014)) - (-4 *3 (-13 (-405 *6) (-563 *4) (-815 *5) (-962 (-561 $)))) - (-5 *4 (-821 *5)) (-4 *6 (-13 (-514) (-784) (-815 *5))) - (-5 *1 (-861 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-818 (-522) *3)) (-5 *4 (-821 (-522))) (-4 *3 (-507)) - (-5 *1 (-862 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-818 *5 *6)) (-5 *3 (-561 *6)) (-4 *5 (-1014)) - (-4 *6 (-13 (-784) (-962 (-561 $)) (-563 *4) (-815 *5))) - (-5 *4 (-821 *5)) (-5 *1 (-863 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-814 *5 *6 *3)) (-5 *4 (-821 *5)) (-4 *5 (-1014)) - (-4 *6 (-815 *5)) (-4 *3 (-608 *6)) (-5 *1 (-864 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-818 *6 *3) *8 (-821 *6) (-818 *6 *3))) - (-4 *8 (-784)) (-5 *2 (-818 *6 *3)) (-5 *4 (-821 *6)) - (-4 *6 (-1014)) (-4 *3 (-13 (-878 *9 *7 *8) (-563 *4))) - (-4 *7 (-730)) (-4 *9 (-13 (-971) (-784) (-815 *6))) - (-5 *1 (-865 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-818 *5 *3)) (-4 *5 (-1014)) - (-4 *3 (-13 (-878 *8 *6 *7) (-563 *4))) (-5 *4 (-821 *5)) - (-4 *7 (-815 *5)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *8 (-13 (-971) (-784) (-815 *5))) (-5 *1 (-865 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-818 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-919 *6)) - (-4 *6 (-13 (-514) (-815 *5) (-563 *4))) (-5 *4 (-821 *5)) - (-5 *1 (-868 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-818 *5 (-1085))) (-5 *3 (-1085)) (-5 *4 (-821 *5)) - (-4 *5 (-1014)) (-5 *1 (-869 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-588 (-821 *7))) (-5 *5 (-1 *9 (-588 *9))) - (-5 *6 (-1 (-818 *7 *9) *9 (-821 *7) (-818 *7 *9))) (-4 *7 (-1014)) - (-4 *9 (-13 (-971) (-563 (-821 *7)) (-962 *8))) (-5 *2 (-818 *7 *9)) - (-5 *3 (-588 *9)) (-4 *8 (-13 (-971) (-784))) - (-5 *1 (-870 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-762))))) -(((*1 *2 *3) - (-12 (-5 *3 (-628 (-382 (-881 (-522))))) - (-5 *2 (-588 (-628 (-291 (-522))))) (-5 *1 (-956))))) -(((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) - ((*1 *2 *1) (-12 (-4 *1 (-1033 *3)) (-4 *3 (-1120)) (-5 *2 (-708))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-113 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-522)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-800 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-14 *2 (-522)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-522)) (-14 *3 *2) (-5 *1 (-801 *3 *4)) - (-4 *4 (-798 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-522)) (-5 *1 (-801 *2 *3)) (-4 *3 (-798 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-522)) (-4 *1 (-1128 *3 *4)) (-4 *3 (-971)) - (-4 *4 (-1157 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1128 *2 *3)) (-4 *2 (-971)) (-4 *3 (-1157 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-166))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-689))))) -(((*1 *2 *3) - (-12 (-4 *4 (-971)) (-5 *2 (-522)) (-5 *1 (-417 *4 *3 *5)) - (-4 *3 (-1142 *4)) - (-4 *5 (-13 (-379) (-962 *4) (-338) (-1106) (-260)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-338)) (-5 *1 (-601 *4 *2)) - (-4 *2 (-598 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132))))) -(((*1 *2 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1014)) - (-4 *2 (-13 (-405 *4) (-815 *3) (-563 (-821 *3)))) - (-5 *1 (-993 *3 *4 *2)) - (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1014)) (-5 *1 (-1075 *3 *2)) (-4 *3 (-1014))))) -(((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971))))) -(((*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1120)) (-5 *2 (-108))))) + (-2 (|:| |eqzro| (-589 *12)) (|:| |neqzro| (-589 *12)) + (|:| |wcond| (-589 (-883 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1168 (-383 (-883 *9)))) + (|:| -4041 (-589 (-1168 (-383 (-883 *9))))))))) + (-5 *1 (-855 *9 *10 *11 *12))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-955 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-589 (-629 *3))) (-4 *3 (-973)) (-5 *1 (-955 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-955 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-589 (-629 *3))) (-4 *3 (-973)) (-5 *1 (-955 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1085)) (-5 *4 (-881 (-522))) (-5 *2 (-305)) - (-5 *1 (-307))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-850))) (-5 *2 (-833 (-522))) (-5 *1 (-846))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343)) - (-5 *2 (-1081 *3)))) + (-12 (-5 *3 (-383 (-523))) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-515)) (-4 *8 (-880 *7 *5 *6)) + (-5 *2 (-2 (|:| -2735 (-710)) (|:| -2935 *9) (|:| |radicand| *9))) + (-5 *1 (-884 *5 *6 *7 *8 *9)) (-5 *4 (-710)) + (-4 *9 + (-13 (-339) + (-10 -8 (-15 -2785 (*8 $)) (-15 -2797 (*8 $)) (-15 -1458 ($ *8)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-5 *2 (-108)))) ((*1 *2 *1) - (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343)) - (-5 *2 (-1081 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) - ((*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846))))) + (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) (((*1 *2 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)) - (|has| *2 (-6 (-4240 "*"))) (-4 *2 (-971)))) - ((*1 *2 *3) - (-12 (-4 *4 (-348 *2)) (-4 *5 (-348 *2)) (-4 *2 (-157)) - (-5 *1 (-627 *2 *4 *5 *3)) (-4 *3 (-626 *2 *4 *5)))) + (-12 (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) + (-5 *2 (-710)))) ((*1 *2 *1) - (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) - (-4 *5 (-215 *3 *2)) (|has| *2 (-6 (-4240 "*"))) (-4 *2 (-971))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-522)) (-5 *3 (-850)) (-5 *1 (-637)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-628 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-338)) (-5 *1 (-905 *5))))) -(((*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))) - ((*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169))))) -(((*1 *2 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1120)))) + (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) + (-5 *2 (-710)))) ((*1 *2 *1) - (-12 (-4 *3 (-1014)) - (-4 *2 (-13 (-405 *4) (-815 *3) (-563 (-821 *3)))) - (-5 *1 (-993 *3 *4 *2)) - (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1014)) (-5 *1 (-1075 *2 *3)) (-4 *3 (-1014))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-588 *1)) (-4 *1 (-849))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1014)) (-4 *3 (-829 *5)) (-5 *2 (-628 *3)) - (-5 *1 (-630 *5 *3 *6 *4)) (-4 *6 (-348 *3)) - (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4238))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) - (-4 *6 (-1014)) (-4 *2 (-1014)) (-5 *1 (-620 *5 *6 *2))))) -(((*1 *2) (-12 (-5 *2 (-1057 (-1068))) (-5 *1 (-366))))) + (-12 (-5 *2 (-710)) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-666))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-794) (-794) (-794))) (-5 *4 (-523)) (-5 *2 (-794)) + (-5 *1 (-592 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-794)) (-5 *1 (-790 *3 *4 *5)) (-4 *3 (-973)) + (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-794)))) + ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-794)))) + ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-794)))) + ((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-794)) (-5 *1 (-1083 *3)) (-4 *3 (-973))))) +(((*1 *2) + (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) + (-5 *2 (-710)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-318 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-710))))) (((*1 *2 *3) - (-12 - (-5 *2 - (-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) - (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) - (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522))) - (-5 *4 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))))) + (-12 (-5 *3 (-589 *4)) (-4 *4 (-339)) (-5 *2 (-629 *4)) + (-5 *1 (-753 *4 *5)) (-4 *5 (-599 *4)))) ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) - (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522))) (-5 *4 (-382 (-522))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-382 (-522))) - (-5 *2 (-588 (-2 (|:| -1993 *5) (|:| -2002 *5)))) (-5 *1 (-945 *3)) - (-4 *3 (-1142 (-522))) (-5 *4 (-2 (|:| -1993 *5) (|:| -2002 *5))))) + (-12 (-5 *3 (-589 *5)) (-5 *4 (-710)) (-4 *5 (-339)) + (-5 *2 (-629 *5)) (-5 *1 (-753 *5 *6)) (-4 *6 (-599 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-883 (-203))) (-5 *2 (-203)) (-5 *1 (-282))))) +(((*1 *2) (-12 (-4 *2 (-158)) (-5 *1 (-151 *3 *2)) (-4 *3 (-152 *2)))) ((*1 *2 *3) - (-12 - (-5 *2 - (-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) - (-5 *1 (-946 *3)) (-4 *3 (-1142 (-382 (-522)))))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *2 *4)) (-4 *4 (-1144 *2)) + (-4 *2 (-158)))) + ((*1 *2) + (-12 (-4 *4 (-1144 *2)) (-4 *2 (-158)) (-5 *1 (-384 *3 *2 *4)) + (-4 *3 (-385 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *3 (-1144 *2)) (-4 *2 (-158)))) + ((*1 *2) + (-12 (-4 *3 (-1144 *2)) (-5 *2 (-523)) (-5 *1 (-707 *3 *4)) + (-4 *4 (-385 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)) (-4 *3 (-158)))) + ((*1 *2 *3) + (-12 (-4 *2 (-515)) (-5 *1 (-899 *2 *3)) (-4 *3 (-1144 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-158))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1144 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1144 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-823 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1016)) + (-4 *5 (-1122)) (-5 *1 (-821 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-823 *4)) (-5 *3 (-589 (-1 (-108) *5))) (-4 *4 (-1016)) + (-4 *5 (-1122)) (-5 *1 (-821 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-823 *5)) (-5 *3 (-589 (-1087))) + (-5 *4 (-1 (-108) (-589 *6))) (-4 *5 (-1016)) (-4 *6 (-1122)) + (-5 *1 (-821 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1122)) (-4 *4 (-786)) + (-5 *1 (-868 *4 *2 *5)) (-4 *2 (-406 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-589 (-1 (-108) *5))) (-4 *5 (-1122)) (-4 *4 (-786)) + (-5 *1 (-868 *4 *2 *5)) (-4 *2 (-406 *4)))) ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) - (-5 *1 (-946 *3)) (-4 *3 (-1142 (-382 (-522)))) - (-5 *4 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))))) + (-12 (-5 *3 (-1087)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1122)) + (-5 *2 (-292 (-523))) (-5 *1 (-869 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-382 (-522))) - (-5 *2 (-588 (-2 (|:| -1993 *4) (|:| -2002 *4)))) (-5 *1 (-946 *3)) - (-4 *3 (-1142 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-382 (-522))) - (-5 *2 (-588 (-2 (|:| -1993 *5) (|:| -2002 *5)))) (-5 *1 (-946 *3)) - (-4 *3 (-1142 *5)) (-5 *4 (-2 (|:| -1993 *5) (|:| -2002 *5)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-708)) (-4 *1 (-678 *4 *5)) (-4 *4 (-971)) - (-4 *5 (-784)) (-5 *2 (-881 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-708)) (-4 *1 (-678 *4 *5)) (-4 *4 (-971)) - (-4 *5 (-784)) (-5 *2 (-881 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-708)) (-4 *1 (-1157 *4)) (-4 *4 (-971)) - (-5 *2 (-881 *4)))) + (-12 (-5 *3 (-1087)) (-5 *4 (-589 (-1 (-108) *5))) (-4 *5 (-1122)) + (-5 *2 (-292 (-523))) (-5 *1 (-869 *5)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-1 (-108) (-589 *6))) + (-4 *6 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))) (-4 *4 (-1016)) + (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) + (-5 *1 (-995 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-515)) (-4 *2 (-158))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *1 (-1042 *3 *2)) (-4 *3 (-1144 *2))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *5 (-1070)) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-80 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-962)) + (-5 *1 (-690))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *4)))) + (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122))))) +(((*1 *2) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-100))))) +(((*1 *2 *1) + (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) + (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-708)) (-4 *1 (-1157 *4)) (-4 *4 (-971)) - (-5 *2 (-881 *4))))) -(((*1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-498))) ((*1 *1) (-4 *1 (-660))) - ((*1 *1) (-4 *1 (-664))) - ((*1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) - ((*1 *1) (-12 (-5 *1 (-822 *2)) (-4 *2 (-784))))) + (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) + (-5 *2 (-108)) (-5 *1 (-475 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-383 (-883 (-523))))) (-5 *2 (-589 (-292 (-523)))) + (-5 *1 (-958))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3278 *3))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1141 *5 *4)) (-4 *4 (-427)) (-4 *4 (-759)) + (-14 *5 (-1087)) (-5 *2 (-523)) (-5 *1 (-1030 *4 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-708)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) - (-4 *4 (-971))))) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) + (-4 *3 (-13 (-1016) (-33)))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1122)) (-5 *2 (-523))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1070)) (-5 *5 (-629 (-203))) (-5 *6 (-203)) + (-5 *7 (-629 (-523))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-692))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-522)) (-5 *2 (-588 (-2 (|:| -2006 *3) (|:| -2487 *4)))) - (-5 *1 (-634 *3)) (-4 *3 (-1142 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-302 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-485 *3 *4)) - (-14 *4 (-522))))) -(((*1 *2 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1615 *4))) - (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283)) - (-5 *2 (-588 (-708))) (-5 *1 (-715 *3 *4 *5 *6 *7)) - (-4 *3 (-1142 *6)) (-4 *7 (-878 *6 *4 *5))))) + (|partial| -12 (-5 *4 (-1087)) (-4 *5 (-564 (-823 (-523)))) + (-4 *5 (-817 (-523))) + (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-526 *5 *3)) (-4 *3 (-575)) + (-4 *3 (-13 (-27) (-1108) (-406 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1087)) (-5 *4 (-779 *2)) (-4 *2 (-1051)) + (-4 *2 (-13 (-27) (-1108) (-406 *5))) + (-4 *5 (-564 (-823 (-523)))) (-4 *5 (-817 (-523))) + (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) + (-5 *1 (-526 *5 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-284)) (-4 *3 (-158)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) + (-5 *1 (-628 *3 *4 *5 *6)) (-4 *6 (-627 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-639 *3)) + (-4 *3 (-284))))) (((*1 *2 *3) - (-12 (-4 *4 (-324)) (-5 *2 (-393 (-1081 (-1081 *4)))) - (-5 *1 (-1119 *4)) (-5 *3 (-1081 (-1081 *4)))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (-5 *2 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-172))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-710))) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) +(((*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) + ((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-710)) (-4 *1 (-209 *4)) + (-4 *4 (-973)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-209 *3)) (-4 *3 (-973)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-211)) (-5 *2 (-710)))) + ((*1 *1 *1) (-4 *1 (-211))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-243 *3)) (-4 *3 (-786)))) + ((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-786)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) + (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *4)) + (-4 *4 (-1144 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-339) (-136))) (-5 *1 (-375 *2 *3)) + (-4 *3 (-1144 *2)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-449 *3 *4 *5)) + (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-339)) (-4 *2 (-831 *3)) (-5 *1 (-540 *2)) + (-5 *3 (-1087)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-540 *2)) (-4 *2 (-339)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-794)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 *4)) (-5 *3 (-589 (-710))) (-4 *1 (-831 *4)) + (-4 *4 (-1016)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-831 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-589 *3)) (-4 *1 (-831 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1078 *3 *4 *5)) + (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1084 *3 *4 *5)) + (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1085 *3 *4 *5)) + (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1132 *3 *4 *5)) + (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1144 *3)) (-4 *3 (-973)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1153 *3 *4 *5)) + (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1160 *3 *4 *5)) + (-4 *3 (-973)) (-14 *5 *3)))) (((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) - (-4 *3 (-342 *4)))) - ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) + (-12 (-5 *2 (-1168 (-1017 *3 *4))) (-5 *1 (-1017 *3 *4)) + (-14 *3 (-852)) (-14 *4 (-852))))) (((*1 *2 *3) - (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-757)) (-14 *5 (-1085)) - (-5 *2 (-522)) (-5 *1 (-1028 *4 *5))))) + (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1072 *4)) + (-4 *4 (-37 (-383 (-523)))) (-4 *4 (-973))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122))))) +(((*1 *1 *1) + (-12 (-4 *2 (-427)) (-4 *3 (-786)) (-4 *4 (-732)) + (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-880 *2 *4 *3))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1120)))) + (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1122)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-881 (-354))) (-5 *1 (-314 *3 *4 *5)) - (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085))) - (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) + (|partial| -12 (-5 *2 (-883 (-355))) (-5 *1 (-315 *3 *4 *5)) + (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-382 (-881 (-354)))) (-5 *1 (-314 *3 *4 *5)) - (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085))) - (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) + (|partial| -12 (-5 *2 (-383 (-883 (-355)))) (-5 *1 (-315 *3 *4 *5)) + (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-291 (-354))) (-5 *1 (-314 *3 *4 *5)) - (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085))) - (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) + (|partial| -12 (-5 *2 (-292 (-355))) (-5 *1 (-315 *3 *4 *5)) + (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-881 (-522))) (-5 *1 (-314 *3 *4 *5)) - (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085))) - (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) + (|partial| -12 (-5 *2 (-883 (-523))) (-5 *1 (-315 *3 *4 *5)) + (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-382 (-881 (-522)))) (-5 *1 (-314 *3 *4 *5)) - (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085))) - (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) + (|partial| -12 (-5 *2 (-383 (-883 (-523)))) (-5 *1 (-315 *3 *4 *5)) + (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-291 (-522))) (-5 *1 (-314 *3 *4 *5)) - (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085))) - (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) + (|partial| -12 (-5 *2 (-292 (-523))) (-5 *1 (-315 *3 *4 *5)) + (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-314 *3 *4 *5)) - (-14 *3 (-588 *2)) (-14 *4 (-588 *2)) (-4 *5 (-362)))) + (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-315 *3 *4 *5)) + (-14 *3 (-589 *2)) (-14 *4 (-589 *2)) (-4 *5 (-363)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-291 *5)) (-4 *5 (-362)) - (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 (-1085))) - (-14 *4 (-588 (-1085))))) + (|partial| -12 (-5 *2 (-292 *5)) (-4 *5 (-363)) + (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-628 (-382 (-881 (-522))))) (-4 *1 (-359)))) + (|partial| -12 (-5 *2 (-629 (-383 (-883 (-523))))) (-4 *1 (-360)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-628 (-382 (-881 (-354))))) (-4 *1 (-359)))) + (|partial| -12 (-5 *2 (-629 (-383 (-883 (-355))))) (-4 *1 (-360)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-628 (-881 (-522)))) (-4 *1 (-359)))) + (|partial| -12 (-5 *2 (-629 (-883 (-523)))) (-4 *1 (-360)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-628 (-881 (-354)))) (-4 *1 (-359)))) + (|partial| -12 (-5 *2 (-629 (-883 (-355)))) (-4 *1 (-360)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-628 (-291 (-522)))) (-4 *1 (-359)))) + (|partial| -12 (-5 *2 (-629 (-292 (-523)))) (-4 *1 (-360)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-628 (-291 (-354)))) (-4 *1 (-359)))) + (|partial| -12 (-5 *2 (-629 (-292 (-355)))) (-4 *1 (-360)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-382 (-881 (-522)))) (-4 *1 (-371)))) + (|partial| -12 (-5 *2 (-383 (-883 (-523)))) (-4 *1 (-372)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-382 (-881 (-354)))) (-4 *1 (-371)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-881 (-522))) (-4 *1 (-371)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-881 (-354))) (-4 *1 (-371)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-291 (-522))) (-4 *1 (-371)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-291 (-354))) (-4 *1 (-371)))) + (|partial| -12 (-5 *2 (-383 (-883 (-355)))) (-4 *1 (-372)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-883 (-523))) (-4 *1 (-372)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-883 (-355))) (-4 *1 (-372)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-292 (-523))) (-4 *1 (-372)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-292 (-355))) (-4 *1 (-372)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1166 (-382 (-881 (-522))))) (-4 *1 (-415)))) + (|partial| -12 (-5 *2 (-1168 (-383 (-883 (-523))))) (-4 *1 (-416)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1166 (-382 (-881 (-354))))) (-4 *1 (-415)))) + (|partial| -12 (-5 *2 (-1168 (-383 (-883 (-355))))) (-4 *1 (-416)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1166 (-881 (-522)))) (-4 *1 (-415)))) + (|partial| -12 (-5 *2 (-1168 (-883 (-523)))) (-4 *1 (-416)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1166 (-881 (-354)))) (-4 *1 (-415)))) + (|partial| -12 (-5 *2 (-1168 (-883 (-355)))) (-4 *1 (-416)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1166 (-291 (-522)))) (-4 *1 (-415)))) + (|partial| -12 (-5 *2 (-1168 (-292 (-523)))) (-4 *1 (-416)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1166 (-291 (-354)))) (-4 *1 (-415)))) + (|partial| -12 (-5 *2 (-1168 (-292 (-355)))) (-4 *1 (-416)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-324)) (-4 *5 (-304 *4)) (-4 *6 (-1142 *5)) - (-5 *2 (-1081 (-1081 *4))) (-5 *1 (-714 *4 *5 *6 *3 *7)) - (-4 *3 (-1142 *6)) (-14 *7 (-850)))) + (|partial| -12 (-4 *4 (-325)) (-4 *5 (-305 *4)) (-4 *6 (-1144 *5)) + (-5 *2 (-1083 (-1083 *4))) (-5 *1 (-716 *4 *5 *6 *3 *7)) + (-4 *3 (-1144 *6)) (-14 *7 (-852)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) - (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) - (-4 *1 (-903 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1120)))) + (|partial| -12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) + (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-4 *1 (-905 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-964 *2)) (-4 *2 (-1122)))) ((*1 *1 *2) - (|partial| -3844 - (-12 (-5 *2 (-881 *3)) - (-12 (-2473 (-4 *3 (-37 (-382 (-522))))) - (-2473 (-4 *3 (-37 (-522)))) (-4 *5 (-563 (-1085)))) - (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730)) - (-4 *5 (-784))) - (-12 (-5 *2 (-881 *3)) - (-12 (-2473 (-4 *3 (-507))) (-2473 (-4 *3 (-37 (-382 (-522))))) - (-4 *3 (-37 (-522))) (-4 *5 (-563 (-1085)))) - (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730)) - (-4 *5 (-784))) - (-12 (-5 *2 (-881 *3)) - (-12 (-2473 (-4 *3 (-919 (-522)))) (-4 *3 (-37 (-382 (-522)))) - (-4 *5 (-563 (-1085)))) - (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730)) - (-4 *5 (-784))))) + (|partial| -3262 + (-12 (-5 *2 (-883 *3)) + (-12 (-3900 (-4 *3 (-37 (-383 (-523))))) + (-3900 (-4 *3 (-37 (-523)))) (-4 *5 (-564 (-1087)))) + (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) + (-4 *5 (-786))) + (-12 (-5 *2 (-883 *3)) + (-12 (-3900 (-4 *3 (-508))) (-3900 (-4 *3 (-37 (-383 (-523))))) + (-4 *3 (-37 (-523))) (-4 *5 (-564 (-1087)))) + (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) + (-4 *5 (-786))) + (-12 (-5 *2 (-883 *3)) + (-12 (-3900 (-4 *3 (-921 (-523)))) (-4 *3 (-37 (-383 (-523)))) + (-4 *5 (-564 (-1087)))) + (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) + (-4 *5 (-786))))) ((*1 *1 *2) - (|partial| -3844 - (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5)) - (-12 (-2473 (-4 *3 (-37 (-382 (-522))))) (-4 *3 (-37 (-522))) - (-4 *5 (-563 (-1085)))) - (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))) - (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5)) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085)))) - (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))))) + (|partial| -3262 + (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) + (-12 (-3900 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) + (-4 *5 (-564 (-1087)))) + (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))) + (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) + (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-881 (-382 (-522)))) (-4 *1 (-985 *3 *4 *5)) - (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085))) (-4 *3 (-971)) - (-4 *4 (-730)) (-4 *5 (-784))))) + (|partial| -12 (-5 *2 (-883 (-383 (-523)))) (-4 *1 (-987 *3 *4 *5)) + (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087))) (-4 *3 (-973)) + (-4 *4 (-732)) (-4 *5 (-786))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1087)) + (-4 *5 (-13 (-515) (-964 (-523)) (-136))) + (-5 *2 + (-2 (|:| -2462 (-383 (-883 *5))) (|:| |coeff| (-383 (-883 *5))))) + (-5 *1 (-529 *5)) (-5 *3 (-383 (-883 *5)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-589 (-589 (-589 *4)))) (-5 *2 (-589 (-589 *4))) + (-4 *4 (-786)) (-5 *1 (-1094 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-995 *3 *4 *5))) (-4 *3 (-1016)) + (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) + (-4 *5 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))) + (-5 *1 (-996 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1087)) (-5 *2 (-1 (-1083 (-883 *4)) (-883 *4))) + (-5 *1 (-1176 *4)) (-4 *4 (-339))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-973)) + (-5 *1 (-654 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-773 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) (-4 *4 (-515)) (-4 *4 (-786)) + (-5 *1 (-532 *4 *2)) (-4 *2 (-406 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-1168 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))) + (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-633 *3)) (-4 *3 (-1014)) - (-5 *2 (-588 (-2 (|:| -3149 *3) (|:| -4187 (-708)))))))) + (-12 (-4 *3 (-158)) (-4 *2 (-23)) (-5 *1 (-266 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1144 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-651 *3 *2 *4 *5 *6)) (-4 *3 (-158)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *2 (-1144 *3)) (-5 *1 (-652 *3 *2)) (-4 *3 (-973)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-655 *3 *2 *4 *5 *6)) (-4 *3 (-158)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) + (-5 *2 (-962)) (-5 *1 (-691))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-710)) (-4 *6 (-1016)) (-4 *3 (-831 *6)) + (-5 *2 (-629 *3)) (-5 *1 (-631 *6 *3 *7 *4)) (-4 *7 (-349 *3)) + (-4 *4 (-13 (-349 *6) (-10 -7 (-6 -4244))))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) + (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-523)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-710)) (-4 *5 (-158)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-523)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-710)) (-4 *5 (-158)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) + (-225 *4 (-383 (-523))))) + (-5 *3 (-589 (-796 *4))) (-14 *4 (-589 (-1087))) (-14 *5 (-710)) + (-5 *1 (-476 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-562 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4))) + (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-254 *4 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) (-5 *2 (-1 (-203) (-203))) (-5 *1 (-643 *3)) + (-4 *3 (-564 (-499))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1087)) (-5 *2 (-1 (-203) (-203) (-203))) + (-5 *1 (-643 *3)) (-4 *3 (-564 (-499)))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-710)) (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) + (-4 *2 (-1144 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-383 (-523))))) (-5 *1 (-240)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-240))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4245)) (-4 *4 (-339)) (-4 *5 (-349 *4)) + (-4 *6 (-349 *4)) (-5 *2 (-589 *6)) (-5 *1 (-490 *4 *5 *6 *3)) + (-4 *3 (-627 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4245)) (-4 *4 (-515)) (-4 *5 (-349 *4)) + (-4 *6 (-349 *4)) (-4 *7 (-921 *4)) (-4 *8 (-349 *7)) + (-4 *9 (-349 *7)) (-5 *2 (-589 *6)) + (-5 *1 (-491 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-627 *4 *5 *6)) + (-4 *10 (-627 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-4 *3 (-515)) (-5 *2 (-589 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) + (-4 *6 (-349 *4)) (-5 *2 (-589 *6)) (-5 *1 (-628 *4 *5 *6 *3)) + (-4 *3 (-627 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-4 *5 (-515)) + (-5 *2 (-589 *7))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) + ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442))))) +(((*1 *2) + (-12 (-4 *3 (-1126)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) + (-5 *2 (-1168 *1)) (-4 *1 (-318 *3 *4 *5))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) + ((*1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-355)) (-5 *2 (-1173)) (-5 *1 (-1169))))) +(((*1 *2) + (-12 (-5 *2 (-629 (-841 *3))) (-5 *1 (-327 *3 *4)) (-14 *3 (-852)) + (-14 *4 (-852)))) + ((*1 *2) + (-12 (-5 *2 (-629 *3)) (-5 *1 (-328 *3 *4)) (-4 *3 (-325)) + (-14 *4 + (-3 (-1083 *3) + (-1168 (-589 (-2 (|:| -1733 *3) (|:| -3878 (-1034))))))))) + ((*1 *2) + (-12 (-5 *2 (-629 *3)) (-5 *1 (-329 *3 *4)) (-4 *3 (-325)) + (-14 *4 (-852))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-498))) - ((*1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014))))) -(((*1 *2 *3) - (-12 (-4 *4 (-971)) (-5 *2 (-522)) (-5 *1 (-417 *4 *3 *5)) - (-4 *3 (-1142 *4)) - (-4 *5 (-13 (-379) (-962 *4) (-338) (-1106) (-260)))))) -(((*1 *1 *1) - (-12 (-4 *2 (-283)) (-4 *3 (-919 *2)) (-4 *4 (-1142 *3)) - (-5 *1 (-388 *2 *3 *4 *5)) (-4 *5 (-13 (-384 *3 *4) (-962 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1085)) (-5 *2 (-1 (-1081 (-881 *4)) (-881 *4))) - (-5 *1 (-1174 *4)) (-4 *4 (-338))))) -(((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-834 *3)) (-4 *3 (-1014))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-51)) (-5 *1 (-821 *4)) - (-4 *4 (-1014))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) + (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) + (-5 *1 (-161 *3))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-523)) (-5 *3 (-852)) (-5 *1 (-638)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-629 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-339)) (-5 *1 (-907 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) - (-5 *2 (-1166 (-628 *4))))) - ((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-1166 (-628 *4))) (-5 *1 (-391 *3 *4)) - (-4 *3 (-392 *4)))) + (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) + (-5 *2 (-394 *3)) (-5 *1 (-411 *4 *5 *3)) (-4 *3 (-1144 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-520)) (-5 *3 (-523)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-873)) (-5 *3 (-523))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1122)) (-5 *1 (-351 *4 *2)) + (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4245))))))) +(((*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-196))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-203) (-203) (-203))) + (-5 *4 (-1 (-203) (-203) (-203) (-203))) + (-5 *2 (-1 (-874 (-203)) (-203) (-203))) (-5 *1 (-636))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-515)) (-4 *3 (-158)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -4041 (-589 *1)))) + (-4 *1 (-343 *3)))) ((*1 *2) - (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-1166 (-628 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-1085))) (-4 *5 (-338)) - (-5 *2 (-1166 (-628 (-382 (-881 *5))))) (-5 *1 (-1002 *5)) - (-5 *4 (-628 (-382 (-881 *5)))))) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-428 *3 *4 *5 *6)) + (|:| -4041 (-589 (-428 *3 *4 *5 *6))))) + (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-589 (-589 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-589 (-3 (|:| |array| (-589 *3)) (|:| |scalar| (-1087))))) + (-5 *6 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1020)) + (-5 *1 (-373)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-589 (-589 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-589 (-3 (|:| |array| (-589 *3)) (|:| |scalar| (-1087))))) + (-5 *6 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1020)) + (-5 *1 (-373)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-589 (-1087))) (-5 *5 (-1090)) (-5 *3 (-1087)) + (-5 *2 (-1020)) (-5 *1 (-373))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) + (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-383 (-523))) (-5 *4 (-523)) (-5 *2 (-51)) + (-5 *1 (-933))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) + (-5 *2 (-962)) (-5 *1 (-691))))) +(((*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-203)) (-5 *1 (-1171)))) + ((*1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-1171))))) +(((*1 *2 *3) + (-12 (-4 *4 (-973)) + (-4 *2 (-13 (-380) (-964 *4) (-339) (-1108) (-261))) + (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1144 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-852)) (-4 *5 (-973)) + (-4 *2 (-13 (-380) (-964 *5) (-339) (-1108) (-261))) + (-5 *1 (-418 *5 *3 *2)) (-4 *3 (-1144 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-427)) (-4 *4 (-515)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4117 *4))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1087)) + (-5 *2 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) (-5 *1 (-1090))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-339) (-784))) (-5 *1 (-165 *3 *2)) + (-4 *2 (-1144 (-155 *3)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1087)) (-5 *5 (-1011 (-203))) (-5 *2 (-858)) + (-5 *1 (-856 *3)) (-4 *3 (-564 (-499))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-1085))) (-4 *5 (-338)) - (-5 *2 (-1166 (-628 (-881 *5)))) (-5 *1 (-1002 *5)) - (-5 *4 (-628 (-881 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-628 *4))) (-4 *4 (-338)) - (-5 *2 (-1166 (-628 *4))) (-5 *1 (-1002 *4))))) + (-12 (-5 *4 (-1087)) (-5 *2 (-858)) (-5 *1 (-856 *3)) + (-4 *3 (-564 (-499))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *1 (-858)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) + (-5 *1 (-858))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-515)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) + (-5 *1 (-1113 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2) + (-12 (-5 *2 (-883 (-355))) (-5 *1 (-315 *3 *4 *5)) + (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) + ((*1 *1 *2) + (-12 (-5 *2 (-383 (-883 (-355)))) (-5 *1 (-315 *3 *4 *5)) + (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) + ((*1 *1 *2) + (-12 (-5 *2 (-292 (-355))) (-5 *1 (-315 *3 *4 *5)) + (-4 *5 (-964 (-355))) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) + ((*1 *1 *2) + (-12 (-5 *2 (-883 (-523))) (-5 *1 (-315 *3 *4 *5)) + (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) + ((*1 *1 *2) + (-12 (-5 *2 (-383 (-883 (-523)))) (-5 *1 (-315 *3 *4 *5)) + (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) + ((*1 *1 *2) + (-12 (-5 *2 (-292 (-523))) (-5 *1 (-315 *3 *4 *5)) + (-4 *5 (-964 (-523))) (-14 *3 (-589 (-1087))) + (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1087)) (-5 *1 (-315 *3 *4 *5)) (-14 *3 (-589 *2)) + (-14 *4 (-589 *2)) (-4 *5 (-363)))) + ((*1 *1 *2) + (-12 (-5 *2 (-292 *5)) (-4 *5 (-363)) (-5 *1 (-315 *3 *4 *5)) + (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-383 (-883 (-523))))) (-4 *1 (-360)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-383 (-883 (-355))))) (-4 *1 (-360)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-883 (-523)))) (-4 *1 (-360)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-883 (-355)))) (-4 *1 (-360)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-292 (-523)))) (-4 *1 (-360)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-292 (-355)))) (-4 *1 (-360)))) + ((*1 *1 *2) (-12 (-5 *2 (-383 (-883 (-523)))) (-4 *1 (-372)))) + ((*1 *1 *2) (-12 (-5 *2 (-383 (-883 (-355)))) (-4 *1 (-372)))) + ((*1 *1 *2) (-12 (-5 *2 (-883 (-523))) (-4 *1 (-372)))) + ((*1 *1 *2) (-12 (-5 *2 (-883 (-355))) (-4 *1 (-372)))) + ((*1 *1 *2) (-12 (-5 *2 (-292 (-523))) (-4 *1 (-372)))) + ((*1 *1 *2) (-12 (-5 *2 (-292 (-355))) (-4 *1 (-372)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168 (-383 (-883 (-523))))) (-4 *1 (-416)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168 (-383 (-883 (-355))))) (-4 *1 (-416)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168 (-883 (-523)))) (-4 *1 (-416)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168 (-883 (-355)))) (-4 *1 (-416)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168 (-292 (-523)))) (-4 *1 (-416)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168 (-292 (-355)))) (-4 *1 (-416)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-3 + (|:| |nia| + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (|:| |mdnia| + (-2 (|:| |fn| (-292 (-203))) + (|:| -3499 (-589 (-1011 (-779 (-203))))) + (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) + (-5 *1 (-708)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) + (|:| |abserr| (-203)) (|:| |relerr| (-203)))) + (-5 *1 (-747)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) + (|:| |lb| (-589 (-779 (-203)))) + (|:| |cf| (-589 (-292 (-203)))) + (|:| |ub| (-589 (-779 (-203)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-589 (-292 (-203)))) + (|:| -2262 (-589 (-203))))))) + (-5 *1 (-777)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |pde| (-589 (-292 (-203)))) + (|:| |constraints| + (-589 + (-2 (|:| |start| (-203)) (|:| |finish| (-203)) + (|:| |grid| (-710)) (|:| |boundaryType| (-523)) + (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) + (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) + (|:| |tol| (-203)))) + (-5 *1 (-829)))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *1 (-905 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2) + (-3262 + (-12 (-5 *2 (-883 *3)) + (-12 (-3900 (-4 *3 (-37 (-383 (-523))))) + (-3900 (-4 *3 (-37 (-523)))) (-4 *5 (-564 (-1087)))) + (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) + (-4 *5 (-786))) + (-12 (-5 *2 (-883 *3)) + (-12 (-3900 (-4 *3 (-508))) (-3900 (-4 *3 (-37 (-383 (-523))))) + (-4 *3 (-37 (-523))) (-4 *5 (-564 (-1087)))) + (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) + (-4 *5 (-786))) + (-12 (-5 *2 (-883 *3)) + (-12 (-3900 (-4 *3 (-921 (-523)))) (-4 *3 (-37 (-383 (-523)))) + (-4 *5 (-564 (-1087)))) + (-4 *3 (-973)) (-4 *1 (-987 *3 *4 *5)) (-4 *4 (-732)) + (-4 *5 (-786))))) + ((*1 *1 *2) + (-3262 + (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) + (-12 (-3900 (-4 *3 (-37 (-383 (-523))))) (-4 *3 (-37 (-523))) + (-4 *5 (-564 (-1087)))) + (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))) + (-12 (-5 *2 (-883 (-523))) (-4 *1 (-987 *3 *4 *5)) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087)))) + (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786))))) + ((*1 *1 *2) + (-12 (-5 *2 (-883 (-383 (-523)))) (-4 *1 (-987 *3 *4 *5)) + (-4 *3 (-37 (-383 (-523)))) (-4 *5 (-564 (-1087))) (-4 *3 (-973)) + (-4 *4 (-732)) (-4 *5 (-786))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-710)) (-4 *5 (-515)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-899 *5 *3)) (-4 *3 (-1144 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-541 *3)) (-4 *3 (-508))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1016)) (-5 *2 (-108))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1034)) (-5 *2 (-1173)) (-5 *1 (-770))))) (((*1 *2 *3) - (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-971)) - (-5 *2 (-881 *5)) (-5 *1 (-873 *4 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1032)) (-5 *1 (-105)))) - ((*1 *2 *1) (|partial| -12 (-5 *1 (-340 *2)) (-4 *2 (-1014)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1068)) (-5 *1 (-1102))))) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) + ((*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-928 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) - (-5 *2 (-588 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1142 *4)))) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-1089 (-383 (-523)))) + (-5 *1 (-170))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-517 *2)) (-4 *2 (-508))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-82 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-203)) + (-5 *2 (-962)) (-5 *1 (-689))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-306))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-284)))) + ((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-362 *3)) (|:| |rm| (-362 *3)))) + (-5 *1 (-362 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3445 (-710)) (|:| -3282 (-710)))) + (-5 *1 (-710)))) ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) - (-5 *2 (-588 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1142 *3))))) + (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) + (-5 *2 (-962)) (-5 *1 (-687))))) (((*1 *2 *1) - (-12 (-5 *2 (-588 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1014))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) - (-5 *2 (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))) - (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-850)) (|has| *1 (-6 -4229)) (-4 *1 (-379)))) - ((*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-850)))) - ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-637)))) - ((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-637))))) -(((*1 *1 *2) - (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-1014)) (-4 *1 (-832 *3))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-694))))) -(((*1 *2 *3) - (-12 (-5 *3 (-454 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-971)) - (-5 *2 (-224 *4 *5)) (-5 *1 (-873 *4 *5))))) + (-12 (-5 *2 (-2 (|:| |var| (-589 (-1087))) (|:| |pred| (-51)))) + (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1) (-12 (-5 *1 (-159 *2)) (-4 *2 (-284)))) + ((*1 *2 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284)))) + ((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-284)))) + ((*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-523))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) (-5 *2 (-962)) + (-5 *1 (-688))))) +(((*1 *2 *2) + (-12 (-4 *3 (-325)) (-4 *4 (-305 *3)) (-4 *5 (-1144 *4)) + (-5 *1 (-716 *3 *4 *5 *2 *6)) (-4 *2 (-1144 *5)) (-14 *6 (-852)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-4 *3 (-344)))) + ((*1 *1 *1) (-12 (-4 *1 (-1185 *2)) (-4 *2 (-339)) (-4 *2 (-344))))) (((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1014)) (-5 *1 (-892 *3 *2)) (-4 *3 (-1014))))) -(((*1 *2 *3) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-805)) (-5 *3 (-589 (-240))) (-5 *1 (-238))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-786)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-786)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-523)) (-4 *1 (-259 *3)) (-4 *3 (-1122)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-259 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2) (-12 - (-5 *3 - (-588 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522)))))) - (-5 *2 (-588 (-202))) (-5 *1 (-281))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-588 (-561 *6))) (-5 *4 (-1085)) (-5 *2 (-561 *6)) - (-4 *6 (-405 *5)) (-4 *5 (-784)) (-5 *1 (-531 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-342 *2)) (-4 *2 (-157))))) -(((*1 *2 *1) (-12 (-5 *2 (-759)) (-5 *1 (-758))))) -(((*1 *2 *3) - (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-588 *7)) (|:| |badPols| (-588 *7)))) - (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-588 *7))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-507)))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-548 *3)) (-4 *3 (-971)))) + (-5 *2 + (-2 + (|:| -1853 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (|:| -2433 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1068 (-203))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3499 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-518)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-634 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -1853 + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) + (|:| |abserr| (-203)) (|:| |relerr| (-203)))) + (|:| -2433 + (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) + (|:| |expense| (-355)) (|:| |accuracy| (-355)) + (|:| |intermediateResults| (-355)))))) + (-5 *1 (-742)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1173)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1016))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1068 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523))))) +(((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-966))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-475 *3 *4 *5 *2)) (-4 *2 (-880 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) + (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-339)) (-4 *4 (-515)) (-4 *5 (-1144 *4)) + (-5 *2 (-2 (|:| -3062 (-570 *4 *5)) (|:| -2591 (-383 *5)))) + (-5 *1 (-570 *4 *5)) (-5 *3 (-383 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-900 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-729)) - (-4 *5 (-784)) (-5 *2 (-108))))) + (-12 (-5 *2 (-589 (-1076 *3 *4))) (-5 *1 (-1076 *3 *4)) + (-14 *3 (-852)) (-4 *4 (-973)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-427)) (-4 *3 (-973)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1144 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1181 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) + (-5 *1 (-607 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-607 *3 *4)) (-5 *1 (-1186 *3 *4)) + (-4 *3 (-786)) (-4 *4 (-158))))) +(((*1 *1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) + (-14 *4 (-589 (-1087))))) + ((*1 *1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) + (-14 *4 (-589 (-1087))))) + ((*1 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-344)) (-4 *2 (-339)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-311 *3 *4 *5 *2)) (-4 *3 (-339)) + (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) + (-4 *2 (-318 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-158)))) + ((*1 *1) (-12 (-4 *2 (-158)) (-4 *1 (-664 *2 *3)) (-4 *3 (-1144 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *1) + (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) + (-4 *4 (-158))))) +(((*1 *2 *3) + (-12 (-4 *4 (-37 (-383 (-523)))) + (-5 *2 (-2 (|:| -1744 (-1068 *4)) (|:| -1757 (-1068 *4)))) + (-5 *1 (-1074 *4)) (-5 *3 (-1068 *4))))) +(((*1 *2 *2) (-12 (-5 *1 (-541 *2)) (-4 *2 (-508))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-589 (-883 *4))) (-5 *3 (-589 (-1087))) (-4 *4 (-427)) + (-5 *1 (-849 *4))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-821 *4 *3)) + (-4 *3 (-1122)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-213 *3)))) + ((*1 *1) (-12 (-4 *1 (-213 *2)) (-4 *2 (-1016))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2 *1) - (-12 (-5 *2 (-872 *4)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) - (-4 *4 (-971))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) - (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-588 *7)) (-5 *3 (-108)) (-4 *7 (-985 *4 *5 *6)) - (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) - (-5 *1 (-904 *4 *5 *6 *7))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-588 *6)) (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) - (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) - (-4 *3 (-514))))) -(((*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-759))))) + (-12 (-4 *5 (-339)) + (-5 *2 (-589 (-2 (|:| C (-629 *5)) (|:| |g| (-1168 *5))))) + (-5 *1 (-907 *5)) (-5 *3 (-629 *5)) (-5 *4 (-1168 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-514)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2308 *3))) - (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4))))) -(((*1 *2) - (-12 (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) - (-5 *2 (-1166 *1)) (-4 *1 (-317 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895))))) -(((*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))) - ((*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169))))) -(((*1 *2 *3) - (-12 (-5 *2 (-393 (-1081 (-522)))) (-5 *1 (-170)) (-5 *3 (-522))))) -(((*1 *2 *3) - (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-588 *7)) (|:| |badPols| (-588 *7)))) - (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-588 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812))))) + (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3072 *9)))) + (-5 *4 (-710)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) + (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-1173)) + (-5 *1 (-990 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3072 *9)))) + (-5 *4 (-710)) (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) + (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) (-5 *2 (-1173)) + (-5 *1 (-1057 *5 *6 *7 *8 *9))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1168 (-589 *3))) (-4 *4 (-284)) + (-5 *2 (-589 *3)) (-5 *1 (-430 *4 *3)) (-4 *3 (-1144 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-805)) (-5 *3 (-589 (-240))) (-5 *1 (-238))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1003))))) +(((*1 *1) (-4 *1 (-325)))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-288)) (-5 *1 (-768))))) +(((*1 *1 *2) (-12 (-5 *2 (-292 (-155 (-355)))) (-5 *1 (-306)))) + ((*1 *1 *2) (-12 (-5 *2 (-292 (-523))) (-5 *1 (-306)))) + ((*1 *1 *2) (-12 (-5 *2 (-292 (-355))) (-5 *1 (-306)))) + ((*1 *1 *2) (-12 (-5 *2 (-292 (-633))) (-5 *1 (-306)))) + ((*1 *1 *2) (-12 (-5 *2 (-292 (-640))) (-5 *1 (-306)))) + ((*1 *1 *2) (-12 (-5 *2 (-292 (-638))) (-5 *1 (-306)))) + ((*1 *1) (-5 *1 (-306)))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-589 (-874 (-203))))) + (-5 *2 (-589 (-1011 (-203)))) (-5 *1 (-859))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) + (-5 *1 (-308))))) (((*1 *2 *2) - (-12 (-4 *2 (-157)) (-4 *2 (-971)) (-5 *1 (-652 *2 *3)) - (-4 *3 (-590 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-771 *2)) (-4 *2 (-157)) (-4 *2 (-971))))) + (-12 + (-5 *2 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-523)))) + (-4 *4 (-13 (-1144 *3) (-515) (-10 -8 (-15 -3278 ($ $ $))))) + (-4 *3 (-515)) (-5 *1 (-1147 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343)) - (-5 *2 (-1081 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) - (-4 *3 (-13 (-338) (-1106) (-928)))))) -(((*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-426)) - (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *1 (-904 *3 *4 *5 *6))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-522)) (-4 *4 (-157)) (-4 *5 (-348 *4)) - (-4 *6 (-348 *4)) (-5 *1 (-627 *4 *5 *6 *2)) - (-4 *2 (-626 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-982)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-982))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-821 *4)) (-4 *4 (-1014)) (-5 *2 (-108)) - (-5 *1 (-818 *4 *5)) (-4 *5 (-1014)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-821 *5)) (-4 *5 (-1014)) (-5 *2 (-108)) - (-5 *1 (-819 *5 *3)) (-4 *3 (-1120)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 *6)) (-5 *4 (-821 *5)) (-4 *5 (-1014)) - (-4 *6 (-1120)) (-5 *2 (-108)) (-5 *1 (-819 *5 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-628 *3)) (-4 *3 (-283)) (-5 *1 (-638 *3))))) -(((*1 *1 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1014)) (-4 *2 (-784)) - (-5 *1 (-109 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-2 (|:| -2006 *4) (|:| -2487 (-522))))) - (-4 *4 (-1142 (-522))) (-5 *2 (-675 (-708))) (-5 *1 (-416 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-393 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-971)) - (-5 *2 (-675 (-708))) (-5 *1 (-418 *4 *5))))) + (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-717 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-426)) - (-14 *6 (-588 (-1085))) + (-12 (-5 *4 (-1009 (-779 *3))) (-4 *3 (-13 (-1108) (-889) (-29 *5))) + (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) (-5 *2 - (-588 (-1056 *5 (-494 (-794 *6)) (-794 *6) (-717 *5 (-794 *6))))) - (-5 *1 (-573 *5 *6))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1085)) (-5 *2 (-412)) (-5 *1 (-1089))))) -(((*1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-343)) (-4 *2 (-1014))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1009 *3)) (-4 *3 (-878 *7 *6 *4)) (-4 *6 (-730)) - (-4 *4 (-784)) (-4 *7 (-514)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-522)))) - (-5 *1 (-546 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-730)) (-4 *4 (-784)) (-4 *6 (-514)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-522)))) - (-5 *1 (-546 *5 *4 *6 *3)) (-4 *3 (-878 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-792))) ((*1 *1 *1 *1) (-5 *1 (-792))) - ((*1 *1 *1) (-5 *1 (-792))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1085)) - (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-1077 *4 *2)) (-4 *2 (-13 (-405 *4) (-146) (-27) (-1106))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1007 *2)) (-4 *2 (-13 (-405 *4) (-146) (-27) (-1106))) - (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-1077 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-514) (-784) (-962 (-522)))) - (-5 *2 (-382 (-881 *5))) (-5 *1 (-1078 *5)) (-5 *3 (-881 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-514) (-784) (-962 (-522)))) - (-5 *2 (-3 (-382 (-881 *5)) (-291 *5))) (-5 *1 (-1078 *5)) - (-5 *3 (-382 (-881 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1007 (-881 *5))) (-5 *3 (-881 *5)) - (-4 *5 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-382 *3)) - (-5 *1 (-1078 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1007 (-382 (-881 *5)))) (-5 *3 (-382 (-881 *5))) - (-4 *5 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-3 *3 (-291 *5))) - (-5 *1 (-1078 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1120)) - (-4 *5 (-1120)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-217 *6 *7)) (-14 *6 (-708)) - (-4 *7 (-1120)) (-4 *5 (-1120)) (-5 *2 (-217 *6 *5)) - (-5 *1 (-216 *6 *7 *5)))) + (-3 (|:| |f1| (-779 *3)) (|:| |f2| (-589 (-779 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-197 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1120)) (-4 *5 (-1120)) - (-4 *2 (-348 *5)) (-5 *1 (-346 *6 *4 *5 *2)) (-4 *4 (-348 *6)))) + (-12 (-5 *4 (-1009 (-779 *3))) (-5 *5 (-1070)) + (-4 *3 (-13 (-1108) (-889) (-29 *6))) + (-4 *6 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 + (-3 (|:| |f1| (-779 *3)) (|:| |f2| (-589 (-779 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-197 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1009 (-779 (-292 *5)))) + (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 + (-3 (|:| |f1| (-779 (-292 *5))) (|:| |f2| (-589 (-779 (-292 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-198 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1014)) (-4 *5 (-1014)) - (-4 *2 (-400 *5)) (-5 *1 (-398 *6 *4 *5 *2)) (-4 *4 (-400 *6)))) + (-12 (-5 *3 (-383 (-883 *6))) (-5 *4 (-1009 (-779 (-292 *6)))) + (-5 *5 (-1070)) + (-4 *6 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 + (-3 (|:| |f1| (-779 (-292 *6))) (|:| |f2| (-589 (-779 (-292 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-198 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1009 (-779 (-383 (-883 *5))))) (-5 *3 (-383 (-883 *5))) + (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 + (-3 (|:| |f1| (-779 (-292 *5))) (|:| |f2| (-589 (-779 (-292 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-198 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-588 *6)) (-4 *6 (-1120)) - (-4 *5 (-1120)) (-5 *2 (-588 *5)) (-5 *1 (-586 *6 *5)))) + (-12 (-5 *4 (-1009 (-779 (-383 (-883 *6))))) (-5 *5 (-1070)) + (-5 *3 (-383 (-883 *6))) + (-4 *6 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 + (-3 (|:| |f1| (-779 (-292 *6))) (|:| |f2| (-589 (-779 (-292 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-198 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) + (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-3 *3 (-589 *3))) (-5 *1 (-404 *5 *3)) + (-4 *3 (-13 (-1108) (-889) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-449 *3 *4 *5)) + (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) + (-5 *5 (-355)) (-5 *6 (-985)) (-5 *2 (-962)) (-5 *1 (-524)))) + ((*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-962)) (-5 *1 (-524)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) + (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-886 *6)) (-4 *6 (-1120)) - (-4 *5 (-1120)) (-5 *2 (-886 *5)) (-5 *1 (-885 *6 *5)))) + (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) + (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-292 (-355))) (-5 *4 (-1011 (-779 (-355)))) + (-5 *2 (-962)) (-5 *1 (-524)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) + (-5 *2 (-962)) (-5 *1 (-524)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1066 *6)) (-4 *6 (-1120)) - (-4 *3 (-1120)) (-5 *2 (-1066 *3)) (-5 *1 (-1064 *6 *3)))) + (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) + (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) + (-5 *5 (-355)) (-5 *2 (-962)) (-5 *1 (-524)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-1011 (-779 (-355))))) + (-5 *5 (-355)) (-5 *6 (-985)) (-5 *2 (-962)) (-5 *1 (-524)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1166 *6)) (-4 *6 (-1120)) - (-4 *5 (-1120)) (-5 *2 (-1166 *5)) (-5 *1 (-1165 *6 *5))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-202))) - (-5 *2 (-960)) (-5 *1 (-695))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) - (-4 *4 (-348 *3)) (-4 *5 (-348 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-291 (-202))) (-5 *4 (-1085)) - (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-588 (-202))) (-5 *1 (-171)))) + (|partial| -12 (-5 *3 (-292 (-355))) (-5 *4 (-1009 (-779 (-355)))) + (-5 *5 (-1070)) (-5 *2 (-962)) (-5 *1 (-524)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-291 (-202))) (-5 *4 (-1085)) - (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-588 (-202))) (-5 *1 (-276))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-588 (-588 (-588 *4)))) (-5 *2 (-588 (-588 *4))) - (-4 *4 (-784)) (-5 *1 (-1092 *4))))) + (|partial| -12 (-5 *3 (-292 (-355))) (-5 *4 (-1009 (-779 (-355)))) + (-5 *5 (-1087)) (-5 *2 (-962)) (-5 *1 (-524)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) (-4 *5 (-1144 *4)) + (-5 *2 (-540 (-383 *5))) (-5 *1 (-527 *4 *5)) (-5 *3 (-383 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-136)) + (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) + (-5 *2 (-3 (-292 *5) (-589 (-292 *5)))) (-5 *1 (-543 *5)))) + ((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-680 *3 *2)) (-4 *3 (-973)) (-4 *2 (-786)) + (-4 *3 (-37 (-383 (-523)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1087)) (-5 *1 (-883 *3)) (-4 *3 (-37 (-383 (-523)))) + (-4 *3 (-973)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-4 *2 (-786)) + (-5 *1 (-1040 *3 *2 *4)) (-4 *4 (-880 *3 (-495 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) + (-5 *1 (-1072 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1078 *3 *4 *5)) + (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1084 *3 *4 *5)) + (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1085 *3 *4 *5)) + (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *1 (-1117 *3)) (-4 *3 (-37 (-383 (-523)))) + (-4 *3 (-973)))) + ((*1 *1 *1 *2) + (-3262 + (-12 (-5 *2 (-1087)) (-4 *1 (-1128 *3)) (-4 *3 (-973)) + (-12 (-4 *3 (-29 (-523))) (-4 *3 (-889)) (-4 *3 (-1108)) + (-4 *3 (-37 (-383 (-523)))))) + (-12 (-5 *2 (-1087)) (-4 *1 (-1128 *3)) (-4 *3 (-973)) + (-12 (|has| *3 (-15 -1957 ((-589 *2) *3))) + (|has| *3 (-15 -3417 (*3 *3 *2))) (-4 *3 (-37 (-383 (-523)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1128 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1132 *3 *4 *5)) + (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523)))))) + ((*1 *1 *1 *2) + (-3262 + (-12 (-5 *2 (-1087)) (-4 *1 (-1149 *3)) (-4 *3 (-973)) + (-12 (-4 *3 (-29 (-523))) (-4 *3 (-889)) (-4 *3 (-1108)) + (-4 *3 (-37 (-383 (-523)))))) + (-12 (-5 *2 (-1087)) (-4 *1 (-1149 *3)) (-4 *3 (-973)) + (-12 (|has| *3 (-15 -1957 ((-589 *2) *3))) + (|has| *3 (-15 -3417 (*3 *3 *2))) (-4 *3 (-37 (-383 (-523)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1149 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1153 *3 *4 *5)) + (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-3262 + (-12 (-5 *2 (-1087)) (-4 *1 (-1159 *3)) (-4 *3 (-973)) + (-12 (-4 *3 (-29 (-523))) (-4 *3 (-889)) (-4 *3 (-1108)) + (-4 *3 (-37 (-383 (-523)))))) + (-12 (-5 *2 (-1087)) (-4 *1 (-1159 *3)) (-4 *3 (-973)) + (-12 (|has| *3 (-15 -1957 ((-589 *2) *3))) + (|has| *3 (-15 -3417 (*3 *3 *2))) (-4 *3 (-37 (-383 (-523)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1159 *2)) (-4 *2 (-973)) (-4 *2 (-37 (-383 (-523)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1160 *3 *4 *5)) + (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973)) (-14 *5 *3)))) (((*1 *2 *3) - (-12 (-4 *4 (-37 (-382 (-522)))) - (-5 *2 (-2 (|:| -3023 (-1066 *4)) (|:| -3035 (-1066 *4)))) - (-5 *1 (-1072 *4)) (-5 *3 (-1066 *4))))) + (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) - (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) - (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-132)))) - ((*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-132))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) - ((*1 *2 *3) (-12 (-5 *3 (-898)) (-5 *2 (-833 (-522))) (-5 *1 (-846))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-522)) (|has| *1 (-6 -4239)) (-4 *1 (-348 *3)) - (-4 *3 (-1120))))) -(((*1 *1 *1) (-12 (-5 *1 (-470 *2)) (-14 *2 (-522)))) - ((*1 *1 *1) (-5 *1 (-1032)))) -(((*1 *2) - (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) - (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) - (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3)))))) -(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))) - ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-108)) - (-5 *2 (-960)) (-5 *1 (-691))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1085)) (-4 *5 (-563 (-821 (-522)))) - (-4 *5 (-815 (-522))) - (-4 *5 (-13 (-784) (-962 (-522)) (-426) (-584 (-522)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-525 *5 *3)) (-4 *3 (-574)) - (-4 *3 (-13 (-27) (-1106) (-405 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-628 (-291 (-202)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-354)) (|:| |stabilityFactor| (-354)))) - (-5 *1 (-184))))) -(((*1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1) (-4 *1 (-119))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-220)) (-5 *2 (-522)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-447)) (-5 *2 (-522)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-708)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1026)) (-5 *2 (-850))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-708)) (-4 *6 (-1014)) (-4 *7 (-829 *6)) - (-5 *2 (-628 *7)) (-5 *1 (-630 *6 *7 *3 *4)) (-4 *3 (-348 *7)) - (-4 *4 (-13 (-348 *6) (-10 -7 (-6 -4238))))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1120)) (-5 *1 (-165 *3 *2)) (-4 *2 (-615 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-514)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-405 *3) (-928))) (-5 *1 (-252 *3 *2)) - (-4 *3 (-13 (-784) (-514)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-470 *2)) (-14 *2 (-522)))) - ((*1 *1 *1 *1) (-5 *1 (-1032)))) + (-12 (-4 *1 (-230 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-786)) + (-4 *5 (-732)) (-4 *2 (-243 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-786)) (-4 *2 (-515)))) + ((*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763))))) (((*1 *2 *2) - (-12 (-5 *2 (-708)) (-5 *1 (-419 *3)) (-4 *3 (-379)) (-4 *3 (-971)))) - ((*1 *2) - (-12 (-5 *2 (-708)) (-5 *1 (-419 *3)) (-4 *3 (-379)) (-4 *3 (-971))))) -(((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-1120)) (-5 *2 (-108))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1142 *6)) - (-4 *6 (-13 (-338) (-135) (-962 *4))) (-5 *4 (-522)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) - (|:| -3277 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-941 *6 *3))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-588 *6)) (-5 *4 (-588 (-224 *5 *6))) (-4 *6 (-426)) - (-5 *2 (-224 *5 *6)) (-14 *5 (-588 (-1085))) (-5 *1 (-576 *5 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-522)) (-5 *1 (-527 *3)) (-4 *3 (-962 *2))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-708)) (-5 *2 (-1139 *5 *4)) (-5 *1 (-1083 *4 *5 *6)) - (-4 *4 (-971)) (-14 *5 (-1085)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-708)) (-5 *2 (-1139 *5 *4)) (-5 *1 (-1158 *4 *5 *6)) - (-4 *4 (-971)) (-14 *5 (-1085)) (-14 *6 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-759))))) -(((*1 *2) (-12 (-5 *2 (-1057 (-1068))) (-5 *1 (-366))))) -(((*1 *1 *1 *1) (-5 *1 (-147))) - ((*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-147))))) -(((*1 *1 *1) (-4 *1 (-798 *2)))) -(((*1 *2 *3) - (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1142 (-47)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-470 *2)) (-14 *2 (-522)))) - ((*1 *1 *1 *1) (-5 *1 (-1032)))) -(((*1 *2 *1) - (-12 (-4 *1 (-512 *3)) (-4 *3 (-13 (-379) (-1106))) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-782)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-987 *4 *3)) (-4 *4 (-13 (-782) (-338))) - (-4 *3 (-1142 *4)) (-5 *2 (-108))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1126 *3))))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *1 *1) (-5 *1 (-794))) ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2) (-12 (-5 *1 (-1135 *2)) (-4 *2 (-1122))))) +(((*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-339)) (-4 *1 (-305 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1144 *4)) (-4 *4 (-1126)) + (-4 *1 (-318 *4 *3 *5)) (-4 *5 (-1144 (-383 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1168 *1)) (-4 *4 (-158)) + (-4 *1 (-343 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1168 *1)) (-4 *4 (-158)) + (-4 *1 (-346 *4 *5)) (-4 *5 (-1144 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1168 *3)) (-4 *3 (-158)) (-4 *1 (-385 *3 *4)) + (-4 *4 (-1144 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-158)) (-4 *1 (-393 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1141 *5 *4)) (-4 *4 (-759)) (-14 *5 (-1087)) + (-5 *2 (-523)) (-5 *1 (-1030 *4 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-836 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-108)) (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) + (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) + (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4)))))) +(((*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) + ((*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171))))) +(((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-764))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-629 (-523))) (-5 *3 (-589 (-523))) (-5 *1 (-1026))))) +(((*1 *1) (-5 *1 (-413)))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-629 (-523))) (-5 *1 (-1026))))) +(((*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-1016)) (-5 *2 (-710))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-692))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) - (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1974 *4)))) - (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1179 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) - (-5 *1 (-606 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-606 *3 *4)) (-5 *1 (-1184 *3 *4)) - (-4 *3 (-784)) (-4 *4 (-157))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) + (-12 (-5 *4 (-1 (-1068 *3))) (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) + (-4 *3 (-37 (-383 (-523)))) (-4 *3 (-973))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) +(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-60 *3)) (-14 *3 (-1087)))) + ((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-67 *3)) (-14 *3 (-1087)))) + ((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-70 *3)) (-14 *3 (-1087)))) + ((*1 *2 *1) (-12 (-4 *1 (-371)) (-5 *2 (-1173)))) + ((*1 *2 *3) (-12 (-5 *3 (-364)) (-5 *2 (-1173)) (-5 *1 (-373)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1070)) (-5 *4 (-794)) (-5 *2 (-1173)) (-5 *1 (-1050)))) + ((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1173)) (-5 *1 (-1050)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-794))) (-5 *2 (-1173)) (-5 *1 (-1050))))) +(((*1 *2 *1) + (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) (-5 *2 (-108))))) -(((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) - (-4 *3 (-342 *4)))) - ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1085)) - (-4 *4 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-741 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1106) (-887)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) - (-4 *4 (-348 *2))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1142 *5)) - (-4 *5 (-13 (-27) (-405 *4))) - (-4 *4 (-13 (-784) (-514) (-962 (-522)))) - (-4 *7 (-1142 (-382 *6))) (-5 *1 (-510 *4 *5 *6 *7 *2)) - (-4 *2 (-317 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)) (-4 *2 (-507)))) - ((*1 *1 *1) (-4 *1 (-980)))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4238)) (-4 *1 (-33)) (-5 *2 (-708)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-522)))) - ((*1 *2 *1) - (-12 (-5 *2 (-708)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-971)) - (-4 *4 (-780))))) -(((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522)))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708)) - (-4 *4 (-157)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-144 *4 *2)) - (-4 *2 (-405 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1007 *2)) (-4 *2 (-405 *4)) (-4 *4 (-13 (-784) (-514))) - (-5 *1 (-144 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1007 *1)) (-4 *1 (-146)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1085)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-708)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-784)) - (-4 *4 (-157))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) - (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 - (-3 (|:| |%expansion| (-288 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068)))))) - (-5 *1 (-395 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1106) (-405 *5))) - (-14 *6 (-1085)) (-14 *7 *3)))) -(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-92)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-92))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-522)) (-4 *4 (-13 (-514) (-135))) (-5 *1 (-499 *4 *2)) - (-4 *2 (-1157 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-522)) (-4 *4 (-13 (-338) (-343) (-563 *3))) - (-4 *5 (-1142 *4)) (-4 *6 (-662 *4 *5)) (-5 *1 (-503 *4 *5 *6 *2)) - (-4 *2 (-1157 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-522)) (-4 *4 (-13 (-338) (-343) (-563 *3))) - (-5 *1 (-504 *4 *2)) (-4 *2 (-1157 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1066 *4)) (-5 *3 (-522)) (-4 *4 (-13 (-514) (-135))) - (-5 *1 (-1062 *4))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-354)) (-5 *1 (-983))))) -(((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-522)) (-5 *1 (-354))))) -(((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522)))))) -(((*1 *2 *3 *3 *1) - (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-1018)) (-5 *1 (-267))))) -(((*1 *2 *2) - (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-426)) - (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *1 (-904 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-588 *7)) (-5 *3 (-108)) (-4 *7 (-985 *4 *5 *6)) - (-4 *4 (-426)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) - (-5 *1 (-904 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-708)) (-5 *5 (-588 *3)) (-4 *3 (-283)) (-4 *6 (-784)) - (-4 *7 (-730)) (-5 *2 (-108)) (-5 *1 (-571 *6 *7 *3 *8)) - (-4 *8 (-878 *3 *7 *6))))) -(((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) - (-4 *3 (-342 *4)))) - ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) + (-12 (-5 *3 (-589 (-203))) (-5 *4 (-710)) (-5 *2 (-629 (-203))) + (-5 *1 (-282))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-629 *1)) (-4 *1 (-325)) (-5 *2 (-1168 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-629 *1)) (-4 *1 (-134)) (-4 *1 (-840)) + (-5 *2 (-1168 *1))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-338)) (-4 *7 (-1142 *5)) (-4 *4 (-662 *5 *7)) - (-5 *2 (-2 (|:| -2149 (-628 *6)) (|:| |vec| (-1166 *5)))) - (-5 *1 (-748 *5 *6 *7 *4 *3)) (-4 *6 (-598 *5)) (-4 *3 (-598 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1081 *2)) (-4 *2 (-405 *4)) (-4 *4 (-13 (-784) (-514))) - (-5 *1 (-31 *4 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))) - ((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-393 *2)) (-4 *2 (-514))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-302 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-522)) (-5 *1 (-485 *3 *4)) (-4 *3 (-1120)) (-14 *4 *2)))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-960)) (-5 *3 (-1085)) (-5 *1 (-171))))) + (-12 (-5 *3 (-589 (-779 (-203)))) (-5 *4 (-203)) (-5 *2 (-589 *4)) + (-5 *1 (-244))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1072 *4)) + (-4 *4 (-973))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-692))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4244)) (-4 *1 (-213 *3)) + (-4 *3 (-1016)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-259 *3)) (-4 *3 (-1122))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) - (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *1 (-1177 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-588 *8)) (-5 *3 (-1 (-108) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) - (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-1177 *5 *6 *7 *8))))) -(((*1 *1 *2) (-12 (-5 *1 (-1107 *2)) (-4 *2 (-1014)))) - ((*1 *1 *2) - (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-1107 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-588 (-1107 *2))) (-5 *1 (-1107 *2)) (-4 *2 (-1014))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) - (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102)))) (-5 *2 (-960)) - (-5 *1 (-686))))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-108))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-784))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338)) - (-4 *7 (-1142 (-382 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -3002 *3))) - (-5 *1 (-520 *5 *6 *7 *3)) (-4 *3 (-317 *5 *6 *7)))) + (-12 (-5 *2 (-589 (-836 *3))) (-4 *3 (-1016)) (-5 *1 (-835 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) + (-5 *2 (-2 (|:| |k| (-758 *3)) (|:| |c| *4)))))) +(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-367))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-589 (-455 *5 *6))) (-5 *4 (-796 *5)) + (-14 *5 (-589 (-1087))) (-5 *2 (-455 *5 *6)) (-5 *1 (-577 *5 *6)) + (-4 *6 (-427)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338)) - (-5 *2 - (-2 (|:| |answer| (-382 *6)) (|:| -3002 (-382 *6)) - (|:| |specpart| (-382 *6)) (|:| |polypart| *6))) - (-5 *1 (-521 *5 *6)) (-5 *3 (-382 *6))))) + (-12 (-5 *3 (-589 (-455 *5 *6))) (-5 *4 (-796 *5)) + (-14 *5 (-589 (-1087))) (-5 *2 (-455 *5 *6)) (-5 *1 (-577 *5 *6)) + (-4 *6 (-427))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-852)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-240))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) (-5 *2 (-589 (-589 (-523)))) + (-5 *1 (-855 *4 *5 *6 *7)) (-5 *3 (-523)) (-4 *7 (-880 *4 *6 *5))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-494 *3)) (-4 *3 (-13 (-666) (-25)))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-710)) (-5 *1 (-541 *2)) (-4 *2 (-508))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-108)) - (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) - (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1974 *4)))) - (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729)))) - ((*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-971)) (-5 *2 (-708)))) - ((*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-971)) (-5 *2 (-708)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-588 *6)) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-971)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 (-708))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-878 *4 *5 *3)) (-4 *4 (-971)) (-4 *5 (-730)) - (-4 *3 (-784)) (-5 *2 (-708))))) + (-12 (-4 *6 (-515)) (-4 *2 (-880 *3 *5 *4)) + (-5 *1 (-672 *5 *4 *6 *2)) (-5 *3 (-383 (-883 *6))) (-4 *5 (-732)) + (-4 *4 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)))))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-589 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1116 *5 *6 *7 *8)) (-4 *5 (-515)) + (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-515)) (-4 *3 (-158)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) + (-4 *2 (-627 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090)))) + ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1091))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-588 *5) *6)) - (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *6 (-1142 *5)) - (-5 *2 (-588 (-2 (|:| |poly| *6) (|:| -3277 *3)))) - (-5 *1 (-746 *5 *6 *3 *7)) (-4 *3 (-598 *6)) - (-4 *7 (-598 (-382 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-588 *5) *6)) - (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) - (-4 *6 (-1142 *5)) - (-5 *2 (-588 (-2 (|:| |poly| *6) (|:| -3277 (-596 *6 (-382 *6)))))) - (-5 *1 (-749 *5 *6)) (-5 *3 (-596 *6 (-382 *6)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-561 *1)) (-4 *1 (-278))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-465))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-588 (-881 *4))) (-5 *3 (-588 (-1085))) (-4 *4 (-426)) - (-5 *1 (-847 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-792))))) -(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-92))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-1120)) (-4 *2 (-784)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-258 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-896 *2)) (-4 *2 (-784))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-971)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-693))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *6 (-202)) - (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-689))))) + (-12 (-5 *3 (-629 (-155 (-383 (-523))))) + (-5 *2 + (-589 + (-2 (|:| |outval| (-155 *4)) (|:| |outmult| (-523)) + (|:| |outvect| (-589 (-629 (-155 *4))))))) + (-5 *1 (-704 *4)) (-4 *4 (-13 (-339) (-784)))))) +(((*1 *2 *3) (-12 (-5 *3 (-364)) (-5 *2 (-1173)) (-5 *1 (-367)))) + ((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-367))))) +(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) - (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) - (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1133 (-522))) (-4 *1 (-258 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-258 *3)) (-4 *3 (-1120))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-971)) (-14 *3 (-1085)) - (-14 *4 *2)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-588 (-156))))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) + (-12 (-5 *2 - (-2 (|:| -3526 *4) (|:| -3106 *4) (|:| |totalpts| (-522)) - (|:| |success| (-108)))) - (-5 *1 (-726)) (-5 *5 (-522))))) -(((*1 *1 *1) - (-12 (-4 *2 (-426)) (-4 *3 (-784)) (-4 *4 (-730)) - (-5 *1 (-914 *2 *3 *4 *5)) (-4 *5 (-878 *2 *4 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-4 *1 (-212 *3)))) - ((*1 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1014))))) -(((*1 *2 *1) - (-12 (-4 *3 (-338)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) - (-5 *2 (-1166 *6)) (-5 *1 (-311 *3 *4 *5 *6)) - (-4 *6 (-317 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-393 (-1081 *1))) (-5 *1 (-291 *4)) (-5 *3 (-1081 *1)) - (-4 *4 (-426)) (-4 *4 (-514)) (-4 *4 (-784)))) - ((*1 *2 *3) - (-12 (-4 *1 (-838)) (-5 *2 (-393 (-1081 *1))) (-5 *3 (-1081 *1))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1068)) (-5 *3 (-760)) (-5 *1 (-759))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-382 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1142 *5)) - (-5 *1 (-665 *5 *2)) (-4 *5 (-338))))) -(((*1 *2 *3) - (-12 (-4 *4 (-514)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1615 *4))) - (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4))))) + (-2 (|:| -2935 *3) (|:| |gap| (-710)) (|:| -3445 (-721 *3)) + (|:| -3282 (-721 *3)))) + (-5 *1 (-721 *3)) (-4 *3 (-973)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) + (-5 *2 + (-2 (|:| -2935 *1) (|:| |gap| (-710)) (|:| -3445 *1) + (|:| -3282 *1))) + (-4 *1 (-987 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 + (-2 (|:| -2935 *1) (|:| |gap| (-710)) (|:| -3445 *1) + (|:| -3282 *1))) + (-4 *1 (-987 *3 *4 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-523)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-710)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-852)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) + (-4 *4 (-158)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-203)) (-5 *1 (-144)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-852)) (-5 *1 (-144)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108))) + (-5 *1 (-205 *3)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-216 *3 *2)) (-4 *2 (-1122)) (-4 *2 (-666)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-216 *3 *2)) (-4 *2 (-1122)) (-4 *2 (-666)))) + ((*1 *1 *2 *1) + (-12 (-5 *1 (-271 *2)) (-4 *2 (-1028)) (-4 *2 (-1122)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-271 *2)) (-4 *2 (-1028)) (-4 *2 (-1122)))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-124)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-337 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-337 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-357 *3 *2)) (-4 *3 (-973)) (-4 *2 (-786)))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-973)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2 *1) + (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) + (-4 *6 (-216 (-2676 *3) (-710))) + (-14 *7 + (-1 (-108) (-2 (|:| -3878 *5) (|:| -2735 *6)) + (-2 (|:| -3878 *5) (|:| -2735 *6)))) + (-5 *1 (-436 *3 *4 *5 *6 *7 *2)) (-4 *5 (-786)) + (-4 *2 (-880 *4 *6 (-796 *3))))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) + (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1168 *3)) (-4 *3 (-325)) (-5 *1 (-493 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-499))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-549 *2)) (-4 *2 (-973)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-549 *2)) (-4 *2 (-973)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-591 *2)) (-4 *2 (-980)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-624 *5 *6 *7)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-627 *3 *2 *4)) (-4 *3 (-973)) (-4 *2 (-349 *3)) + (-4 *4 (-349 *3)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-627 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-349 *3)) + (-4 *2 (-349 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) + (-4 *4 (-349 *2)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) + (-4 *4 (-349 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) + (-4 *4 (-349 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-660))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) + ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1168 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-515)) + (-5 *1 (-899 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-979 *2)) (-4 *2 (-980)))) + ((*1 *1 *1 *1) (-4 *1 (-1028))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-973)) (-4 *2 (-216 *3 *4)) + (-4 *5 (-216 *3 *4)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1037 *3 *4 *5 *2)) (-4 *4 (-973)) (-4 *5 (-216 *3 *4)) + (-4 *2 (-216 *3 *4)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-973)) (-4 *4 (-786)) (-5 *1 (-1040 *3 *4 *2)) + (-4 *2 (-880 *3 (-495 *4) *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-874 (-203))) (-5 *3 (-203)) (-5 *1 (-1119)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-666)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-666)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-523)) (-4 *1 (-1166 *3)) (-4 *3 (-1122)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-786)) (-4 *2 (-973)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-1189 *2 *3)) (-4 *2 (-973)) (-4 *3 (-782))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) - (-4 *9 (-985 *6 *7 *8)) (-4 *6 (-514)) (-4 *7 (-730)) - (-4 *8 (-784)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1322 (-588 *9)))) - (-5 *3 (-588 *9)) (-4 *1 (-1114 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-985 *5 *6 *7)) - (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -1322 (-588 *8)))) - (-5 *3 (-588 *8)) (-4 *1 (-1114 *5 *6 *7 *8))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792))))) + (|partial| -12 (-5 *3 (-710)) (-4 *4 (-284)) (-4 *6 (-1144 *4)) + (-5 *2 (-1168 (-589 *6))) (-5 *1 (-430 *4 *6)) (-5 *5 (-589 *6))))) (((*1 *2 *3) - (-12 (-4 *1 (-824)) - (-5 *3 - (-2 (|:| |pde| (-588 (-291 (-202)))) - (|:| |constraints| - (-588 - (-2 (|:| |start| (-202)) (|:| |finish| (-202)) - (|:| |grid| (-708)) (|:| |boundaryType| (-522)) - (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) - (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) - (|:| |tol| (-202)))) - (-5 *2 (-960))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-298 *3 *4)) (-4 *3 (-1014)) - (-4 *4 (-124))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) - (-5 *2 (-588 (-1085))) (-5 *1 (-243)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1081 *7)) (-4 *7 (-878 *6 *4 *5)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *6 (-971)) (-5 *2 (-588 *5)) - (-5 *1 (-296 *4 *5 *6 *7)))) + (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) + (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-424 *3 *4 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-589 *3)) (-5 *1 (-899 *4 *3)) + (-4 *3 (-1144 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-51)) (-5 *1 (-1101))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-4 *2 (-1016)) + (-5 *1 (-820 *4 *2))))) +(((*1 *2 *3) (-12 (-5 *2 (-523)) (-5 *1 (-528 *3)) (-4 *3 (-964 *2)))) ((*1 *2 *1) - (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-314 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-362)))) + (-12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016))))) +(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1002 *3)) (-4 *3 (-125))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-710)) (-5 *1 (-617 *2)) (-4 *2 (-1016))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 (-413))))) + (-5 *1 (-1091))))) +(((*1 *2 *1) + (-12 (-4 *3 (-339)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) + (-5 *2 (-1168 *6)) (-5 *1 (-312 *3 *4 *5 *6)) + (-4 *6 (-318 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-808 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1122)))) ((*1 *2 *1) - (-12 (-4 *1 (-405 *3)) (-4 *3 (-784)) (-5 *2 (-588 (-1085))))) + (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 (-874 *3))) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-589 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-874 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973))))) +(((*1 *2 *2) + (-12 (-4 *3 (-427)) (-4 *3 (-786)) (-4 *3 (-964 (-523))) + (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) + (-4 *2 + (-13 (-339) (-279) + (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) + (-15 -2797 ((-1039 *3 (-562 $)) $)) + (-15 -1458 ($ (-1039 *3 (-562 $)))))))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-410)) + (-5 *2 + (-589 + (-3 (|:| -4038 (-1087)) + (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523))))))))) + (-5 *1 (-1091))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-508)) + (-5 *2 (-383 (-523))))) ((*1 *2 *1) - (-12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) + (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-394 *3)) (-4 *3 (-508)) + (-4 *3 (-515)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-508)) (-5 *2 (-383 (-523))))) ((*1 *2 *1) - (-12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-5 *2 (-588 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) - (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-588 *5)) - (-5 *1 (-879 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-338) - (-10 -8 (-15 -2217 ($ *7)) (-15 -2947 (*7 $)) (-15 -2959 (*7 $))))))) + (|partial| -12 (-4 *1 (-736 *3)) (-4 *3 (-158)) (-4 *3 (-508)) + (-5 *2 (-383 (-523))))) ((*1 *2 *1) - (-12 (-5 *2 (-1016 (-1085))) (-5 *1 (-894 *3)) (-4 *3 (-895)))) + (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-772 *3)) (-4 *3 (-508)) + (-4 *3 (-1016)))) ((*1 *2 *1) - (-12 (-4 *1 (-900 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-729)) - (-4 *5 (-784)) (-5 *2 (-588 *5)))) + (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-779 *3)) (-4 *3 (-508)) + (-4 *3 (-1016)))) ((*1 *2 *1) - (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-588 *5)))) + (|partial| -12 (-4 *1 (-925 *3)) (-4 *3 (-158)) (-4 *3 (-508)) + (-5 *2 (-383 (-523))))) ((*1 *2 *3) - (-12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514)) (-5 *2 (-588 (-1085))) - (-5 *1 (-967 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-971)) - (-14 *4 (-588 (-1085))))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-971) (-784))) - (-14 *4 (-588 (-1085)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) - (-5 *2 (-628 *4)))) - ((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-628 *4)) (-5 *1 (-391 *3 *4)) - (-4 *3 (-392 *4)))) - ((*1 *2) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-628 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-382 (-522))) - (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2)) - (-4 *4 (-13 (-784) (-514)))))) -(((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-412)) (-5 *3 (-1085)) (-5 *1 (-1088)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-412)) (-5 *3 (-1085)) (-5 *1 (-1088)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-412)) (-5 *3 (-588 (-1085))) (-5 *4 (-1085)) - (-5 *1 (-1088)))) - ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-412)) (-5 *3 (-1085)) (-5 *1 (-1088)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-412)) (-5 *3 (-1085)) (-5 *1 (-1089)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-412)) (-5 *3 (-588 (-1085))) (-5 *1 (-1089))))) -(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856))))) -(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-791)))) - ((*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-893)))) - ((*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-916)))) - ((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1014) (-33))) (-5 *1 (-1050 *2 *3)) - (-4 *3 (-13 (-1014) (-33)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338))))) -(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-411))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-306 *3)) (-4 *3 (-784))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-405 *3) (-928))) (-5 *1 (-252 *3 *2)) - (-4 *3 (-13 (-784) (-514)))))) + (|partial| -12 (-5 *2 (-383 (-523))) (-5 *1 (-936 *3)) + (-4 *3 (-964 *2))))) +(((*1 *1 *1) (-4 *1 (-515)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-588 *5)) (-5 *4 (-588 (-1 *6 (-588 *6)))) - (-4 *5 (-37 (-382 (-522)))) (-4 *6 (-1157 *5)) (-5 *2 (-588 *6)) - (-5 *1 (-1159 *5 *6))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1081 (-382 (-1081 *2)))) (-5 *4 (-561 *2)) - (-4 *2 (-13 (-405 *5) (-27) (-1106))) - (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) - (-5 *1 (-518 *5 *2 *6)) (-4 *6 (-1014)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1081 *1)) (-4 *1 (-878 *4 *5 *3)) (-4 *4 (-971)) - (-4 *5 (-730)) (-4 *3 (-784)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1081 *4)) (-4 *4 (-971)) (-4 *1 (-878 *4 *5 *3)) - (-4 *5 (-730)) (-4 *3 (-784)))) + (-12 (-5 *3 (-589 *5)) (-5 *4 (-852)) (-4 *5 (-786)) + (-5 *2 (-589 (-614 *5))) (-5 *1 (-614 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-61 LSFUN2)))) + (-5 *2 (-962)) (-5 *1 (-693))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-589 (-895))) (-5 *1 (-268))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-589 *3)) (|:| |image| (-589 *3)))) + (-5 *1 (-836 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-883 (-523)))) (-5 *1 (-413)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-382 (-1081 *2))) (-4 *5 (-730)) (-4 *4 (-784)) - (-4 *6 (-971)) - (-4 *2 - (-13 (-338) - (-10 -8 (-15 -2217 ($ *7)) (-15 -2947 (*7 $)) (-15 -2959 (*7 $))))) - (-5 *1 (-879 *5 *4 *6 *7 *2)) (-4 *7 (-878 *6 *5 *4)))) + (-12 (-5 *3 (-1087)) (-5 *4 (-629 (-203))) (-5 *2 (-1020)) + (-5 *1 (-699)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-382 (-1081 (-382 (-881 *5))))) (-5 *4 (-1085)) - (-5 *2 (-382 (-881 *5))) (-5 *1 (-967 *5)) (-4 *5 (-514))))) + (-12 (-5 *3 (-1087)) (-5 *4 (-629 (-523))) (-5 *2 (-1020)) + (-5 *1 (-699))))) (((*1 *2 *1) - (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-393 *3)) (-4 *3 (-507)) (-4 *3 (-514)))) - ((*1 *2 *1) (-12 (-4 *1 (-507)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-734 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-108)))) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-523)))) ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-770 *3)) (-4 *3 (-507)) (-4 *3 (-1014)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-777 *3)) (-4 *3 (-507)) (-4 *3 (-1014)))) - ((*1 *2 *1) - (-12 (-4 *1 (-923 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-108)))) - ((*1 *2 *3) - (-12 (-5 *2 (-108)) (-5 *1 (-934 *3)) (-4 *3 (-962 (-382 (-522))))))) -(((*1 *1 *1) (-4 *1 (-507)))) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523))))) +(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-742))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-515)) + (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-1139 *4 *3)) + (-4 *3 (-1144 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-426)) (-4 *4 (-784)) (-4 *5 (-730)) (-5 *2 (-588 *6)) - (-5 *1 (-914 *3 *4 *5 *6)) (-4 *6 (-878 *3 *5 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-588 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-283)) - (-5 *2 (-708)) (-5 *1 (-429 *5 *3))))) + (-12 (-4 *1 (-1019 *3 *2 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016))))) +(((*1 *1 *1) (-4 *1 (-575))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930) (-1108)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1126 *3)) - (-5 *2 (-382 (-522)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *2 *2) - (-12 + (-12 (-5 *2 (-1018 (-1018 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-339)) (-5 *1 (-602 *4 *2)) + (-4 *2 (-599 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168 (-292 (-203)))) (-5 *2 - (-914 (-382 (-522)) (-794 *3) (-217 *4 (-708)) - (-224 *3 (-382 (-522))))) - (-14 *3 (-588 (-1085))) (-14 *4 (-708)) (-5 *1 (-913 *3 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-291 (-202))) (-5 *2 (-108)) (-5 *1 (-243))))) + (-2 (|:| |additions| (-523)) (|:| |multiplications| (-523)) + (|:| |exponentiations| (-523)) (|:| |functionCalls| (-523)))) + (-5 *1 (-282))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-981 (-949 *3) (-1081 (-949 *3)))) - (-5 *1 (-949 *3)) (-4 *3 (-13 (-782) (-338) (-947)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-872 (-202)) (-872 (-202)))) (-5 *1 (-239)))) + (-12 (-4 *3 (-973)) (-5 *2 (-1168 *3)) (-5 *1 (-652 *3 *4)) + (-4 *4 (-1144 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-589 (-562 *5))) (-5 *3 (-1087)) (-4 *5 (-406 *4)) + (-4 *4 (-786)) (-5 *1 (-532 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-110)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1070)) (-4 *4 (-786)) (-5 *1 (-860 *4 *2)) + (-4 *2 (-406 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1087)) (-5 *4 (-1070)) (-5 *2 (-292 (-523))) + (-5 *1 (-861))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-51)) (-5 *1 (-823 *4)) + (-4 *4 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-795)))) + ((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1173)) (-5 *1 (-795)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1070)) (-5 *4 (-794)) (-5 *2 (-1173)) (-5 *1 (-795)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-1068 *4)) + (-4 *4 (-1016)) (-4 *4 (-1122))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) + (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-589 (-562 *3))) + (|:| |vals| (-589 *3)))) + (-5 *1 (-254 *5 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5)))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523)))) ((*1 *2 *3) - (-12 (-5 *3 (-1166 *1)) (-4 *1 (-304 *4)) (-4 *4 (-338)) - (-5 *2 (-628 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-5 *2 (-1166 *3)))) + (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) - (-5 *2 (-628 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) - (-5 *2 (-1166 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1166 *1)) (-4 *1 (-345 *4 *5)) (-4 *4 (-157)) - (-4 *5 (-1142 *4)) (-5 *2 (-628 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1166 *1)) (-4 *1 (-345 *4 *5)) (-4 *4 (-157)) - (-4 *5 (-1142 *4)) (-5 *2 (-1166 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1166 *1)) (-4 *1 (-384 *4 *5)) (-4 *4 (-157)) - (-4 *5 (-1142 *4)) (-5 *2 (-628 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1142 *3)) - (-5 *2 (-1166 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1166 *1)) (-4 *1 (-392 *4)) (-4 *4 (-157)) - (-5 *2 (-628 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-1166 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-588 (-628 *5))) (-5 *3 (-628 *5)) (-4 *5 (-338)) - (-5 *2 (-1166 *5)) (-5 *1 (-1002 *5))))) -(((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) - (-4 *3 (-342 *4)))) - ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) + (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) (-5 *3 (-523))))) (((*1 *2 *3) - (-12 (-4 *4 (-324)) (-5 *2 (-108)) (-5 *1 (-194 *4 *3)) - (-4 *3 (-1142 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) - (-4 *3 (-1142 *4)) (-5 *1 (-746 *4 *3 *2 *5)) (-4 *2 (-598 *3)) - (-4 *5 (-598 (-382 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-382 *5)) - (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *5 (-1142 *4)) - (-5 *1 (-746 *4 *5 *2 *6)) (-4 *2 (-598 *5)) (-4 *6 (-598 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369)))) - ((*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-588 (-1081 *13))) (-5 *3 (-1081 *13)) - (-5 *4 (-588 *12)) (-5 *5 (-588 *10)) (-5 *6 (-588 *13)) - (-5 *7 (-588 (-588 (-2 (|:| -2170 (-708)) (|:| |pcoef| *13))))) - (-5 *8 (-588 (-708))) (-5 *9 (-1166 (-588 (-1081 *10)))) - (-4 *12 (-784)) (-4 *10 (-283)) (-4 *13 (-878 *10 *11 *12)) - (-4 *11 (-730)) (-5 *1 (-646 *11 *12 *10 *13))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2308 *3))) - (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4))))) -(((*1 *2 *2) (-12 (-5 *1 (-540 *2)) (-4 *2 (-507))))) + (-12 (-5 *3 (-292 (-203))) (-5 *2 (-292 (-355))) (-5 *1 (-282))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-3 (-108) (-589 *1))) + (-4 *1 (-992 *4 *5 *6 *3))))) +(((*1 *1) (-5 *1 (-268)))) +(((*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-638)) (-5 *1 (-282))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-588 (-561 *5))) (-5 *3 (-1085)) (-4 *5 (-405 *4)) - (-4 *4 (-784)) (-5 *1 (-531 *4 *5))))) -(((*1 *1 *1) (-5 *1 (-108)))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-588 (-850))) (-5 *1 (-140 *4 *2 *5)) (-14 *4 (-850)) - (-4 *2 (-338)) (-14 *5 (-920 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-651 *5 *6 *7)) (-4 *5 (-784)) - (-4 *6 (-215 (-3591 *4) (-708))) - (-14 *7 - (-1 (-108) (-2 (|:| -2882 *5) (|:| -3858 *6)) - (-2 (|:| -2882 *5) (|:| -3858 *6)))) - (-14 *4 (-588 (-1085))) (-4 *2 (-157)) - (-5 *1 (-435 *4 *2 *5 *6 *7 *8)) (-4 *8 (-878 *2 *6 (-794 *4))))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-784)))) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1122)) (-5 *1 (-1046 *4 *2)) + (-4 *2 (-13 (-556 (-523) *4) (-10 -7 (-6 -4244) (-6 -4245)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-786)) (-4 *3 (-1122)) (-5 *1 (-1046 *3 *2)) + (-4 *2 (-13 (-556 (-523) *3) (-10 -7 (-6 -4244) (-6 -4245))))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133))))) +(((*1 *2 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-710)) + (-5 *1 (-424 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-288)) (-5 *1 (-273)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-288)) (-5 *1 (-273)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-288)) (-5 *1 (-273)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-1070))) (-5 *3 (-1070)) (-5 *2 (-288)) + (-5 *1 (-273))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1087)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-883 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1087)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-786) (-515))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-786) (-515))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1083 *2)) (-5 *4 (-1087)) (-4 *2 (-406 *5)) + (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-786) (-515))))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-522)) (-4 *2 (-514)) (-5 *1 (-569 *2 *4)) - (-4 *4 (-1142 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-647 *2)) (-4 *2 (-971)))) + (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-852)) (-4 *1 (-940)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-852)) (-5 *4 (-794)) + (-4 *1 (-940)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-673 *2 *3)) (-4 *2 (-971)) (-4 *3 (-664)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 *5)) (-5 *3 (-588 (-708))) (-4 *1 (-678 *4 *5)) - (-4 *4 (-971)) (-4 *5 (-784)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-708)) (-4 *1 (-678 *4 *2)) (-4 *4 (-971)) - (-4 *2 (-784)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-786 *2)) (-4 *2 (-971)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 *6)) (-5 *3 (-588 (-708))) (-4 *1 (-878 *4 *5 *6)) - (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-708)) (-4 *1 (-878 *4 *5 *2)) (-4 *4 (-971)) - (-4 *5 (-730)) (-4 *2 (-784)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 *6)) (-5 *3 (-588 *5)) (-4 *1 (-900 *4 *5 *6)) - (-4 *4 (-971)) (-4 *5 (-729)) (-4 *6 (-784)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-900 *4 *3 *2)) (-4 *4 (-971)) (-4 *3 (-729)) - (-4 *2 (-784))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) + (|partial| -12 (-5 *3 (-852)) (-4 *4 (-13 (-784) (-339))) + (-4 *1 (-989 *4 *2)) (-4 *2 (-1144 *4))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-589 *1)) (-4 *1 (-851))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-692))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-515)) (-5 *1 (-899 *2 *3)) (-4 *3 (-1144 *2))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-203)) (-5 *2 - (-2 (|:| -3526 *4) (|:| -3106 *4) (|:| |totalpts| (-522)) - (|:| |success| (-108)))) - (-5 *1 (-726)) (-5 *5 (-522))))) -(((*1 *2 *1) - (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) - (-4 *5 (-348 *3)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) - (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1032)) (-5 *2 (-108)) (-5 *1 (-758))))) -(((*1 *2 *1) - (-12 (-4 *1 (-555 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1014)) - (-4 *2 (-784))))) -(((*1 *1 *1) (-4 *1 (-980))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729))))) -(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *3 (-426)) (-4 *4 (-784)) (-4 *5 (-730)) (-5 *2 (-108)) - (-5 *1 (-914 *3 *4 *5 *6)) (-4 *6 (-878 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33))) - (-4 *4 (-13 (-1014) (-33)))))) + (-2 (|:| |brans| (-589 (-589 (-874 *4)))) + (|:| |xValues| (-1011 *4)) (|:| |yValues| (-1011 *4)))) + (-5 *1 (-142)) (-5 *3 (-589 (-589 (-874 *4))))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-514) (-135))) (-5 *2 (-588 *3)) - (-5 *1 (-1136 *4 *3)) (-4 *3 (-1142 *4))))) -(((*1 *1 *1) (-5 *1 (-983)))) -(((*1 *2 *1) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-1089))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) - (-5 *2 (-960)) (-5 *1 (-690))))) + (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) + (-4 *3 (-13 (-339) (-1108) (-930))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1126)) (-4 *5 (-1144 (-383 *2))) + (-4 *2 (-1144 *4)) (-5 *1 (-317 *3 *4 *2 *5)) + (-4 *3 (-318 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-318 *3 *2 *4)) (-4 *3 (-1126)) + (-4 *4 (-1144 (-383 *2))) (-4 *2 (-1144 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *3 (-1142 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-912 *4 *2 *3 *5)) - (-4 *4 (-324)) (-4 *5 (-662 *2 *3))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-522)) (-5 *5 (-628 (-202))) - (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G)))) - (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN)))) (-5 *3 (-202)) - (-5 *2 (-960)) (-5 *1 (-687))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4238)) (-4 *1 (-461 *4)) - (-4 *4 (-1120)) (-5 *2 (-108))))) -(((*1 *2 *1) - (-12 (-5 *2 (-792)) (-5 *1 (-365 *3 *4 *5)) (-14 *3 (-708)) - (-14 *4 (-708)) (-4 *5 (-157))))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-732)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *6 (-786)) + (-5 *2 (-108)) (-5 *1 (-424 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) (-4 *1 (-508)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-836 (-523))) (-5 *4 (-523)) (-5 *2 (-629 *4)) + (-5 *1 (-955 *5)) (-4 *5 (-973)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-629 (-523))) (-5 *1 (-955 *4)) + (-4 *4 (-973)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-836 (-523)))) (-5 *4 (-523)) + (-5 *2 (-589 (-629 *4))) (-5 *1 (-955 *5)) (-4 *5 (-973)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-589 (-523)))) (-5 *2 (-589 (-629 (-523)))) + (-5 *1 (-955 *4)) (-4 *4 (-973))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-499))) (-5 *2 (-1087)) (-5 *1 (-499))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-852)) (-4 *5 (-284)) (-4 *3 (-1144 *5)) + (-5 *2 (-2 (|:| |plist| (-589 *3)) (|:| |modulo| *5))) + (-5 *1 (-435 *5 *3)) (-5 *4 (-589 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-589 *1)) (-4 *1 (-987 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1083 *6)) (-4 *6 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-1083 *7)) (-5 *1 (-297 *4 *5 *6 *7)) + (-4 *7 (-880 *6 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) + ((*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171))))) +(((*1 *1) (-5 *1 (-108)))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-883 (-523))) (-5 *3 (-1087)) + (-5 *4 (-1011 (-383 (-523)))) (-5 *1 (-30))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-158)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-973))))) +(((*1 *1) (-5 *1 (-133))) ((*1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-383 (-883 (-523))))) + (-5 *2 + (-589 + (-2 (|:| |radval| (-292 (-523))) (|:| |radmult| (-523)) + (|:| |radvect| (-589 (-629 (-292 (-523)))))))) + (-5 *1 (-958))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-589 (-1087))) (-4 *5 (-515)) + (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) (-5 *1 (-709 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-515)) + (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) (-5 *1 (-709 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4041 (-589 *6))) + *7 *6)) + (-4 *6 (-339)) (-4 *7 (-599 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1168 *6) "failed")) + (|:| -4041 (-589 (-1168 *6))))) + (-5 *1 (-752 *6 *7)) (-5 *4 (-1168 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-48))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-219))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-1128 *4)) (-4 *4 (-973)) (-4 *4 (-515)) + (-5 *2 (-383 (-883 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-1128 *4)) (-4 *4 (-973)) (-4 *4 (-515)) + (-5 *2 (-383 (-883 *4)))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-514)) (-5 *1 (-897 *3 *2)) (-4 *2 (-1142 *3)))) + (-12 (-5 *2 (-589 (-562 *4))) (-4 *4 (-406 *3)) (-4 *3 (-786)) + (-5 *1 (-532 *3 *4)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784)) (-4 *2 (-514)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-514))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) - ((*1 *1 *1) (-5 *1 (-792))) + (-12 (-5 *1 (-820 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-794)))) + ((*1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *3) + (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) + (-4 *5 (-1144 *4)) (-5 *2 (-589 (-2 (|:| -1288 *5) (|:| -1915 *5)))) + (-5 *1 (-746 *4 *5 *3 *6)) (-4 *3 (-599 *5)) + (-4 *6 (-599 (-383 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) + (-4 *4 (-1144 *5)) (-5 *2 (-589 (-2 (|:| -1288 *4) (|:| -1915 *4)))) + (-5 *1 (-746 *5 *4 *3 *6)) (-4 *3 (-599 *4)) + (-4 *6 (-599 (-383 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) + (-4 *5 (-1144 *4)) (-5 *2 (-589 (-2 (|:| -1288 *5) (|:| -1915 *5)))) + (-5 *1 (-746 *4 *5 *6 *3)) (-4 *6 (-599 *5)) + (-4 *3 (-599 (-383 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) + (-4 *4 (-1144 *5)) (-5 *2 (-589 (-2 (|:| -1288 *4) (|:| -1915 *4)))) + (-5 *1 (-746 *5 *4 *6 *3)) (-4 *6 (-599 *4)) + (-4 *3 (-599 (-383 *4)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1168 *5)) (-4 *5 (-585 *4)) (-4 *4 (-515)) + (-5 *2 (-1168 *4)) (-5 *1 (-584 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *1 (-1109 *2)) (-4 *2 (-1016)))) ((*1 *1 *2) - (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3)))) - ((*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))) -(((*1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-766))))) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-1109 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-589 (-1109 *2))) (-5 *1 (-1109 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-905 *4 *5 *6 *3)) (-4 *4 (-973)) (-4 *5 (-732)) + (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-4 *4 (-515)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1014)) (-4 *3 (-829 *5)) (-5 *2 (-1166 *3)) - (-5 *1 (-630 *5 *3 *6 *4)) (-4 *6 (-348 *3)) - (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4238))))))) -(((*1 *1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-283))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *3 (-588 (-522))) - (-5 *1 (-812))))) -(((*1 *1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-239)))) - ((*1 *1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-239))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-339)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-533 *5 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-777 (-354))) (-5 *2 (-777 (-202))) (-5 *1 (-281))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) - (-5 *1 (-915 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) - (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-588 *4)) (-4 *4 (-338)) (-5 *2 (-1166 *4)) - (-5 *1 (-751 *4 *3)) (-4 *3 (-598 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-522)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-393 *4)) (-4 *4 (-514))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-850)) (-5 *1 (-955 *2)) - (-4 *2 (-13 (-1014) (-10 -8 (-15 -1661 ($ $ $)))))))) -(((*1 *1 *1) (-5 *1 (-983)))) -(((*1 *2 *3) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-519)) (-5 *3 (-522)))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1159 *4)) + (-4 *4 (-37 (-383 (-523)))) + (-5 *2 (-1 (-1068 *4) (-1068 *4) (-1068 *4))) (-5 *1 (-1161 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-427)))) + ((*1 *1 *1 *1) (-4 *1 (-427))) ((*1 *2 *3) - (-12 (-5 *2 (-1081 (-382 (-522)))) (-5 *1 (-871)) (-5 *3 (-522))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-777 (-202)))) (-5 *4 (-202)) (-5 *2 (-588 *4)) - (-5 *1 (-243))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-881 (-522))) (-5 *3 (-1085)) - (-5 *4 (-1009 (-382 (-522)))) (-5 *1 (-30))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-588 (-588 *8))) (-5 *3 (-588 *8)) - (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) - (-5 *2 (-108)) (-5 *1 (-904 *5 *6 *7 *8))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-199 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-4 *1 (-230 *3)))) - ((*1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 *4)) (-4 *4 (-1014)) (-5 *2 (-1171)) - (-5 *1 (-1121 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-588 *4)) (-4 *4 (-1014)) (-5 *2 (-1171)) - (-5 *1 (-1121 *4))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) - (-5 *2 (-960)) (-5 *1 (-690))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-588 *6)) (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) - (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) - (-4 *3 (-514))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-426)) (-4 *3 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) - (-5 *1 (-423 *4 *3 *5 *6)) (-4 *6 (-878 *4 *3 *5))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-724)) (-5 *2 (-960)) - (-5 *3 - (-2 (|:| |fn| (-291 (-202))) - (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) - (|:| |relerr| (-202)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-724)) (-5 *2 (-960)) - (-5 *3 - (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) - (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) - (|:| |relerr| (-202))))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) - (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-72 FCN)))) (-5 *2 (-960)) - (-5 *1 (-684))))) + (-12 (-5 *3 (-589 *2)) (-5 *1 (-459 *2)) (-4 *2 (-1144 (-523))))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-523)) (-5 *1 (-635 *2)) (-4 *2 (-1144 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-710))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-284)) + (-5 *1 (-847 *3 *4 *5 *2)) (-4 *2 (-880 *5 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-880 *6 *4 *5)) + (-5 *1 (-847 *4 *5 *6 *2)) (-4 *4 (-732)) (-4 *5 (-786)) + (-4 *6 (-284)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1083 *6)) (-4 *6 (-880 *5 *3 *4)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *5 (-284)) (-5 *1 (-847 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-1083 *7))) (-4 *4 (-732)) (-4 *5 (-786)) + (-4 *6 (-284)) (-5 *2 (-1083 *7)) (-5 *1 (-847 *4 *5 *6 *7)) + (-4 *7 (-880 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-852))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-427)) (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) + (-4 *2 (-1144 *3)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-427))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1166 (-1166 (-522)))) (-5 *3 (-850)) (-5 *1 (-440))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-708)) (-4 *5 (-338)) (-5 *2 (-382 *6)) - (-5 *1 (-796 *5 *4 *6)) (-4 *4 (-1157 *5)) (-4 *6 (-1142 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-708)) (-5 *4 (-1158 *5 *6 *7)) (-4 *5 (-338)) - (-14 *6 (-1085)) (-14 *7 *5) (-5 *2 (-382 (-1139 *6 *5))) - (-5 *1 (-797 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-708)) (-5 *4 (-1158 *5 *6 *7)) (-4 *5 (-338)) - (-14 *6 (-1085)) (-14 *7 *5) (-5 *2 (-382 (-1139 *6 *5))) - (-5 *1 (-797 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) - (-4 *5 (-348 *3)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) - (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108))))) -(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))) - ((*1 *1 *1 *1) (-5 *1 (-1032)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-338)) (-5 *1 (-704 *2 *3)) (-4 *2 (-647 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-730)) - (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7)) (-5 *2 (-588 *3)) - (-5 *1 (-544 *5 *6 *7 *8 *3)) (-4 *3 (-1023 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) + (-12 (-5 *2 - (-588 (-2 (|:| -3769 (-1081 *5)) (|:| -3510 (-588 (-881 *5)))))) - (-5 *1 (-995 *5 *6)) (-5 *3 (-588 (-881 *5))) - (-14 *6 (-588 (-1085))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-283) (-135))) + (-2 (|:| |partsol| (-1168 (-383 (-883 *4)))) + (|:| -4041 (-589 (-1168 (-383 (-883 *4))))))) + (-5 *3 (-589 *7)) (-4 *4 (-13 (-284) (-136))) + (-4 *7 (-880 *4 *6 *5)) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) (-5 *1 (-855 *4 *5 *6 *7))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-562 *4)) (-5 *6 (-1087)) + (-4 *4 (-13 (-406 *7) (-27) (-1108))) + (-4 *7 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) (-5 *2 - (-588 (-2 (|:| -3769 (-1081 *4)) (|:| -3510 (-588 (-881 *4)))))) - (-5 *1 (-995 *4 *5)) (-5 *3 (-588 (-881 *4))) - (-14 *5 (-588 (-1085))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) + (-5 *1 (-525 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1016))))) +(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1171))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 - (-588 (-2 (|:| -3769 (-1081 *5)) (|:| -3510 (-588 (-881 *5)))))) - (-5 *1 (-995 *5 *6)) (-5 *3 (-588 (-881 *5))) - (-14 *6 (-588 (-1085)))))) -(((*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-522)))) - ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-637))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-878 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784)) - (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4))))) + (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) + (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) + (-5 *1 (-1086))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-708)) (-4 *4 (-283)) (-4 *6 (-1142 *4)) - (-5 *2 (-1166 (-588 *6))) (-5 *1 (-429 *4 *6)) (-5 *5 (-588 *6))))) + (-12 (-4 *6 (-1144 *9)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-284)) + (-4 *10 (-880 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-589 (-1083 *10))) + (|:| |dterm| + (-589 (-589 (-2 (|:| -1725 (-710)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-589 *6)) (|:| |nlead| (-589 *10)))) + (-5 *1 (-717 *6 *7 *8 *9 *10)) (-5 *3 (-1083 *10)) (-5 *4 (-589 *6)) + (-5 *5 (-589 *10))))) (((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-588 (-1085))) (-4 *2 (-157)) - (-4 *3 (-215 (-3591 *4) (-708))) + (-12 (-14 *4 (-589 (-1087))) (-4 *2 (-158)) + (-4 *3 (-216 (-2676 *4) (-710))) (-14 *6 - (-1 (-108) (-2 (|:| -2882 *5) (|:| -3858 *3)) - (-2 (|:| -2882 *5) (|:| -3858 *3)))) - (-5 *1 (-435 *4 *2 *5 *3 *6 *7)) (-4 *5 (-784)) - (-4 *7 (-878 *2 *3 (-794 *4)))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-1068)) (-5 *5 (-628 (-202))) - (-5 *2 (-960)) (-5 *1 (-685))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-514) (-135))) (-5 *1 (-1136 *3 *2)) - (-4 *2 (-1142 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-588 *3)) (-4 *3 (-283)) (-5 *1 (-163 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-895)))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-393 *2)) (-4 *2 (-283)) (-5 *1 (-843 *2)))) + (-1 (-108) (-2 (|:| -3878 *5) (|:| -2735 *3)) + (-2 (|:| -3878 *5) (|:| -2735 *3)))) + (-5 *1 (-436 *4 *2 *5 *3 *6 *7)) (-4 *5 (-786)) + (-4 *7 (-880 *2 *3 (-796 *4)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-216 *3 *2)) (-4 *2 (-1122)) (-4 *2 (-973)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-794)))) + ((*1 *1 *1) (-5 *1 (-794))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-874 (-203))) (-5 *2 (-203)) (-5 *1 (-1119)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-973))))) +(((*1 *1) (-5 *1 (-742)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1016)) (-4 *6 (-817 *5)) (-5 *2 (-816 *5 *6 (-589 *6))) + (-5 *1 (-818 *5 *6 *4)) (-5 *3 (-589 *6)) (-4 *4 (-564 (-823 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085)) - (-4 *5 (-13 (-283) (-135))) (-5 *2 (-51)) (-5 *1 (-844 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-393 (-881 *6))) (-5 *5 (-1085)) (-5 *3 (-881 *6)) - (-4 *6 (-13 (-283) (-135))) (-5 *2 (-51)) (-5 *1 (-844 *6))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-522)) (-5 *5 (-1068)) (-5 *6 (-628 (-202))) - (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G)))) - (-5 *8 (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN)))) - (-5 *9 (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT)))) - (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-687))))) -(((*1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-382 (-881 *6)) (-1075 (-1085) (-881 *6)))) - (-5 *5 (-708)) (-4 *6 (-426)) (-5 *2 (-588 (-628 (-382 (-881 *6))))) - (-5 *1 (-268 *6)) (-5 *4 (-628 (-382 (-881 *6)))))) + (-12 (-4 *5 (-1016)) (-5 *2 (-589 (-271 *3))) (-5 *1 (-818 *5 *3 *4)) + (-4 *3 (-964 (-1087))) (-4 *3 (-817 *5)) (-4 *4 (-564 (-823 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1016)) (-5 *2 (-589 (-271 (-883 *3)))) + (-5 *1 (-818 *5 *3 *4)) (-4 *3 (-973)) + (-3900 (-4 *3 (-964 (-1087)))) (-4 *3 (-817 *5)) + (-4 *4 (-564 (-823 *5))))) ((*1 *2 *3 *4) + (-12 (-4 *5 (-1016)) (-5 *2 (-820 *5 *3)) (-5 *1 (-818 *5 *3 *4)) + (-3900 (-4 *3 (-964 (-1087)))) (-3900 (-4 *3 (-973))) + (-4 *3 (-817 *5)) (-4 *4 (-564 (-823 *5)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) + (|:| |explanations| (-589 (-1070))))) + (-5 *2 (-962)) (-5 *1 (-282)))) + ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |eigval| (-3 (-382 (-881 *5)) (-1075 (-1085) (-881 *5)))) - (|:| |eigmult| (-708)) (|:| |eigvec| (-588 *4)))) - (-4 *5 (-426)) (-5 *2 (-588 (-628 (-382 (-881 *5))))) - (-5 *1 (-268 *5)) (-5 *4 (-628 (-382 (-881 *5))))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-393 *2)) (-4 *2 (-514))))) + (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) + (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962)))) + (-5 *2 (-962)) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-858))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1166 *4)) (-4 *4 (-584 (-522))) - (-5 *2 (-1166 (-382 (-522)))) (-5 *1 (-1191 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) - ((*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168))))) -(((*1 *2 *3) - (-12 (-5 *3 (-708)) (-5 *2 (-1 (-1066 (-881 *4)) (-1066 (-881 *4)))) - (-5 *1 (-1174 *4)) (-4 *4 (-338))))) -(((*1 *2 *3) - (-12 (-4 *2 (-338)) (-4 *2 (-782)) (-5 *1 (-874 *2 *3)) - (-4 *3 (-1142 *2))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4238)) (-4 *1 (-555 *4 *3)) (-4 *4 (-1014)) - (-4 *3 (-1120)) (-4 *3 (-1014)) (-5 *2 (-108))))) -(((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-382 (-522))) (-5 *1 (-281))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4239)) (-4 *1 (-221 *2)) (-4 *2 (-1120))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-983)) (-5 *3 (-1068))))) + (-12 (-5 *3 (-589 *5)) (-5 *4 (-852)) (-4 *5 (-786)) + (-5 *2 (-57 (-589 (-614 *5)))) (-5 *1 (-614 *5))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) + (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) + (-5 *1 (-1086))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) - (-4 *6 (-1014)) (-5 *2 (-1 *6 *5)) (-5 *1 (-623 *4 *5 *6))))) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *4)))) + (-5 *1 (-715 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-367))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-108)) (-5 *1 (-110)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-279)) (-5 *3 (-1087)) (-5 *2 (-108)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-279)) (-5 *3 (-110)) (-5 *2 (-108)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1087)) (-5 *2 (-108)) (-5 *1 (-562 *4)) (-4 *4 (-786)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-562 *4)) (-4 *4 (-786)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1016)) (-5 *2 (-108)) (-5 *1 (-818 *5 *3 *4)) + (-4 *3 (-817 *5)) (-4 *4 (-564 (-823 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *6)) (-4 *6 (-817 *5)) (-4 *5 (-1016)) + (-5 *2 (-108)) (-5 *1 (-818 *5 *6 *4)) (-4 *4 (-564 (-823 *5)))))) +(((*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-973))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-589 *2) *2 *2 *2)) (-4 *2 (-1016)) + (-5 *1 (-98 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1016)) (-5 *1 (-98 *2))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-710)) (-4 *1 (-1144 *3)) (-4 *3 (-973))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1051)))) (((*1 *2 *3) - (-12 (-5 *2 (-393 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1142 (-47))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) - (-5 *1 (-117 *3)) (-4 *3 (-784)))) - ((*1 *2 *2) - (-12 (-5 *2 (-539 *4)) (-4 *4 (-13 (-29 *3) (-1106))) - (-4 *3 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) - (-5 *1 (-537 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-539 (-382 (-881 *3)))) - (-4 *3 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) - (-5 *1 (-542 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-338)) - (-5 *2 (-2 (|:| -3798 *3) (|:| |special| *3))) (-5 *1 (-665 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1166 *5)) (-4 *5 (-338)) (-4 *5 (-971)) - (-5 *2 (-588 (-588 (-628 *5)))) (-5 *1 (-954 *5)) - (-5 *3 (-588 (-628 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1166 (-1166 *5))) (-4 *5 (-338)) (-4 *5 (-971)) - (-5 *2 (-588 (-588 (-628 *5)))) (-5 *1 (-954 *5)) - (-5 *3 (-588 (-628 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-129)) (-5 *2 (-588 *1)) (-4 *1 (-1054)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-588 *1)) (-4 *1 (-1054))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1166 *4)) (-5 *3 (-1032)) (-4 *4 (-324)) - (-5 *1 (-492 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110))))) -(((*1 *2 *2) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) + ((*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-835 (-523))) (-5 *1 (-848))))) +(((*1 *1 *1) (-5 *1 (-1086))) + ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) - (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) - (|:| |ub| (-588 (-777 (-202)))))) - (-5 *1 (-243))))) + (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) + (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) + (-5 *1 (-1086))))) +(((*1 *2 *3) (-12 (-5 *3 (-383 (-523))) (-5 *2 (-203)) (-5 *1 (-282))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1068 (-383 *3))) (-5 *1 (-159 *3)) (-4 *3 (-284))))) (((*1 *2 *3) - (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-784)) (-4 *3 (-1014))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 *9)) (-4 *8 (-985 *5 *6 *7)) - (-4 *9 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) - (-4 *7 (-784)) (-5 *2 (-708)) (-5 *1 (-988 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 *9)) (-4 *8 (-985 *5 *6 *7)) - (-4 *9 (-1023 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) - (-4 *7 (-784)) (-5 *2 (-708)) (-5 *1 (-1055 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-427)) (-5 *2 (-108)) + (-5 *1 (-336 *4 *5)) (-14 *5 (-589 (-1087))))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-719 *4 (-796 *5)))) (-4 *4 (-427)) + (-14 *5 (-589 (-1087))) (-5 *2 (-108)) (-5 *1 (-574 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-710)) (-5 *3 (-874 *4)) (-4 *1 (-1048 *4)) + (-4 *4 (-973)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-710)) (-5 *4 (-874 (-203))) (-5 *2 (-1173)) + (-5 *1 (-1170))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-3 *3 (-589 *1))) + (-4 *1 (-992 *4 *5 *6 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-991 *5 *6 *7 *3 *4)) - (-4 *4 (-990 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) - (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1974 *4)))) - (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-427)))) + ((*1 *1 *1 *1) (-4 *1 (-427)))) (((*1 *2 *2) (-12 (-5 *2 - (-588 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-708)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-730)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-426)) (-4 *5 (-784)) - (-5 *1 (-423 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) + (-475 (-383 (-523)) (-218 *4 (-710)) (-796 *3) + (-225 *3 (-383 (-523))))) + (-14 *3 (-589 (-1087))) (-14 *4 (-710)) (-5 *1 (-476 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-51)) (-5 *1 (-768))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) + (-4 *5 (-1144 *4)) + (-5 *2 (-2 (|:| -2462 (-383 *5)) (|:| |coeff| (-383 *5)))) + (-5 *1 (-527 *4 *5)) (-5 *3 (-383 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3)))))) +(((*1 *2) + (-12 (-4 *3 (-515)) (-5 *2 (-589 (-629 *3))) (-5 *1 (-42 *3 *4)) + (-4 *4 (-393 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-157))))) +(((*1 *2 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-158))))) +(((*1 *2 *2) + (-12 (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) + (-4 *2 + (-13 (-339) (-279) + (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) + (-15 -2797 ((-1039 *3 (-562 $)) $)) + (-15 -1458 ($ (-1039 *3 (-562 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) + (-4 *2 + (-13 (-339) (-279) + (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) + (-15 -2797 ((-1039 *3 (-562 $)) $)) + (-15 -1458 ($ (-1039 *3 (-562 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-589 *2)) + (-4 *2 + (-13 (-339) (-279) + (-10 -8 (-15 -2785 ((-1039 *4 (-562 $)) $)) + (-15 -2797 ((-1039 *4 (-562 $)) $)) + (-15 -1458 ($ (-1039 *4 (-562 $))))))) + (-4 *4 (-515)) (-5 *1 (-40 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-589 (-562 *2))) + (-4 *2 + (-13 (-339) (-279) + (-10 -8 (-15 -2785 ((-1039 *4 (-562 $)) $)) + (-15 -2797 ((-1039 *4 (-562 $)) $)) + (-15 -1458 ($ (-1039 *4 (-562 $))))))) + (-4 *4 (-515)) (-5 *1 (-40 *4 *2))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-973)) + (-5 *1 (-1072 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-523)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-973)) + (-14 *4 (-1087)) (-14 *5 *3)))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-1087))) (-4 *4 (-13 (-284) (-136))) + (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) + (-5 *2 (-589 (-383 (-883 *4)))) (-5 *1 (-855 *4 *5 *6 *7)) + (-4 *7 (-880 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-624 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-355)) (-5 *1 (-724 *3)) (-4 *3 (-564 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-852)) (-5 *2 (-355)) (-5 *1 (-724 *3)) + (-4 *3 (-564 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 *2)) + (-5 *2 (-355)) (-5 *1 (-724 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) + (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-4 *4 (-564 *2)) + (-5 *2 (-355)) (-5 *1 (-724 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) + (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) + (-4 *4 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) + (-4 *5 (-564 *2)) (-5 *2 (-355)) (-5 *1 (-724 *5))))) +(((*1 *1) (-5 *1 (-1003)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) + (-5 *2 + (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) + (|:| |success| (-108)))) + (-5 *1 (-728)) (-5 *5 (-523))))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) + ((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) + ((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858))))) +(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284))))) +(((*1 *2 *1) (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -4045 (-588 (-2 (|:| |irr| *10) (|:| -4160 (-522))))))) - (-5 *6 (-588 *3)) (-5 *7 (-588 *8)) (-4 *8 (-784)) (-4 *3 (-283)) - (-4 *10 (-878 *3 *9 *8)) (-4 *9 (-730)) + (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) (-5 *2 - (-2 (|:| |polfac| (-588 *10)) (|:| |correct| *3) - (|:| |corrfact| (-588 (-1081 *3))))) - (-5 *1 (-571 *8 *9 *3 *10)) (-5 *4 (-588 (-1081 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-628 *5))) (-5 *4 (-522)) (-4 *5 (-338)) - (-4 *5 (-971)) (-5 *2 (-108)) (-5 *1 (-954 *5)))) + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1153 *4 *5 *6)) + (|:| |%expon| (-295 *4 *5 *6)) + (|:| |%expTerms| + (-589 (-2 (|:| |k| (-383 (-523))) (|:| |c| *4)))))) + (|:| |%type| (-1070)))) + (-5 *1 (-1154 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1108) (-406 *3))) + (-14 *5 (-1087)) (-14 *6 *4)))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1028)) (-4 *3 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-406 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) + (-4 *3 (-1016)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-589 *1)) (-4 *1 (-880 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-588 (-628 *4))) (-4 *4 (-338)) (-4 *4 (-971)) - (-5 *2 (-108)) (-5 *1 (-954 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-708)) (-4 *1 (-910 *2)) (-4 *2 (-1106))))) + (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) + (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-589 *3)) + (-5 *1 (-881 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-339) + (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) + (-15 -2797 (*7 $)))))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) + (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1142 (-522))))) + (-12 (-5 *3 (-203)) (-5 *2 (-108)) (-5 *1 (-276 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1011 (-779 (-203)))) (-5 *3 (-203)) (-5 *2 (-108)) + (-5 *1 (-282)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) + (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1122)) + (-4 *4 (-349 *2)) (-4 *5 (-349 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-349 *2)) + (-4 *5 (-349 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1122)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-589 (-523))) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) + (-14 *4 (-523)) (-14 *5 (-710)))) + ((*1 *2 *1 *3 *3 *3 *3) + (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-710)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-710)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-710)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *2 (-158)) (-5 *1 (-128 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-710)))) + ((*1 *2 *1) + (-12 (-4 *2 (-158)) (-5 *1 (-128 *3 *4 *2)) (-14 *3 (-523)) + (-14 *4 (-710)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1087)) (-5 *2 (-223 (-1070))) (-5 *1 (-193 *4)) + (-4 *4 + (-13 (-786) + (-10 -8 (-15 -3223 ((-1070) $ *3)) (-15 -3973 ((-1173) $)) + (-15 -2823 ((-1173) $))))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-918)) (-5 *1 (-193 *3)) + (-4 *3 + (-13 (-786) + (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) + (-15 -2823 ((-1173) $))))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "count") (-5 *2 (-710)) (-5 *1 (-223 *4)) (-4 *4 (-786)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-223 *3)) (-4 *3 (-786)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "unique") (-5 *1 (-223 *3)) (-4 *3 (-786)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-263 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1122)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1122)))) + ((*1 *2 *1 *2) + (-12 (-4 *3 (-158)) (-5 *1 (-266 *3 *2 *4 *5 *6 *7)) + (-4 *2 (-1144 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-589 *1)) (-4 *1 (-279)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) + ((*1 *2 *1 *2 *2) + (-12 (-4 *1 (-318 *2 *3 *4)) (-4 *2 (-1126)) (-4 *3 (-1144 *2)) + (-4 *4 (-1144 (-383 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-4 *1 (-393 *2)) (-4 *2 (-158)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1070)) (-5 *1 (-473)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-51)) (-5 *1 (-578)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1135 (-523))) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-710)) (-5 *1 (-617 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-589 (-523))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-589 (-823 *4))) (-5 *1 (-823 *4)) + (-4 *4 (-1016)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1016)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-836 *4)) (-5 *1 (-835 *4)) + (-4 *4 (-1016)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-218 *4 *2)) (-14 *4 (-852)) (-4 *2 (-339)) + (-5 *1 (-922 *4 *2)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "value") (-4 *1 (-938 *2)) (-4 *2 (-1122)))) + ((*1 *2 *1) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1122)))) + ((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *2 *6 *7)) (-4 *2 (-973)) + (-4 *6 (-216 *5 *2)) (-4 *7 (-216 *4 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *2 *6 *7)) + (-4 *6 (-216 *5 *2)) (-4 *7 (-216 *4 *2)) (-4 *2 (-973)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-852)) (-4 *4 (-1016)) + (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) + (-5 *1 (-995 *4 *5 *2)) + (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-852)) (-4 *4 (-1016)) + (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) + (-5 *1 (-996 *4 *5 *2)) + (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-523))) (-4 *1 (-1019 *3 *4 *5 *6 *7)) + (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) + (-4 *7 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-523)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) + (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)))) + ((*1 *1 *1 *1) (-4 *1 (-1056))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1142 (-522)))))) -(((*1 *1 *1 *1) (-5 *1 (-792)))) -(((*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-821 *4)) (-4 *4 (-1014)) (-5 *1 (-819 *4 *3)) - (-4 *3 (-1120)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-821 *3)) (-4 *3 (-1014))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-338)) (-5 *1 (-601 *4 *2)) - (-4 *2 (-598 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-342 *2)) (-4 *2 (-157))))) + (-12 (-5 *3 (-383 *1)) (-4 *1 (-1144 *2)) (-4 *2 (-973)) + (-4 *2 (-339)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-383 *1)) (-4 *1 (-1144 *3)) (-4 *3 (-973)) + (-4 *3 (-515)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1146 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "last") (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "rest") (-4 *1 (-1156 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "first") (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3) + (-12 (-5 *2 (-523)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973))))) +(((*1 *1) (-5 *1 (-268)))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1016) (-33))) + (-5 *2 (-108)) (-5 *1 (-1052 *4 *5)) (-4 *4 (-13 (-1016) (-33)))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-339)) (-4 *3 (-1144 *4)) (-4 *5 (-1144 (-383 *3))) + (-4 *1 (-311 *4 *3 *5 *2)) (-4 *2 (-318 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-523)) (-4 *2 (-339)) (-4 *4 (-1144 *2)) + (-4 *5 (-1144 (-383 *4))) (-4 *1 (-311 *2 *4 *5 *6)) + (-4 *6 (-318 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-339)) (-4 *3 (-1144 *2)) (-4 *4 (-1144 (-383 *3))) + (-4 *1 (-311 *2 *3 *4 *5)) (-4 *5 (-318 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-339)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) + (-4 *1 (-311 *3 *4 *5 *2)) (-4 *2 (-318 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-389 *4 (-383 *4) *5 *6)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) (-4 *3 (-339)) + (-4 *1 (-311 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-225 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-427)) + (-5 *2 (-455 *4 *5)) (-5 *1 (-577 *4 *5))))) +(((*1 *1 *1) (-4 *1 (-132))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-589 (-455 *4 *5))) (-5 *3 (-796 *4)) + (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *1 (-577 *4 *5))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-124)))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-894 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) (((*1 *2 *3) - (-12 (-5 *3 (-708)) (-5 *2 (-1081 *4)) (-5 *1 (-492 *4)) - (-4 *4 (-324))))) + (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) + (-5 *2 + (-3 (|:| |overq| (-1083 (-383 (-523)))) + (|:| |overan| (-1083 (-47))) (|:| -2494 (-108)))) + (-5 *1 (-411 *4 *5 *3)) (-4 *3 (-1144 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110))))) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *1 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) + ((*1 *1 *1 *1) (-4 *1 (-448))) + ((*1 *1 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) + ((*1 *2 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-814)))) + ((*1 *1 *1) (-5 *1 (-900))) + ((*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158))))) +(((*1 *1 *1) (-5 *1 (-794))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016)))) + ((*1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-1069)))) + ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1087))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-710)) (-5 *4 (-1168 *2)) (-4 *5 (-284)) + (-4 *6 (-921 *5)) (-4 *2 (-13 (-385 *6 *7) (-964 *6))) + (-5 *1 (-389 *5 *6 *7 *2)) (-4 *7 (-1144 *6))))) (((*1 *2) - (-12 - (-5 *2 - (-1166 (-588 (-2 (|:| -3526 (-839 *3)) (|:| -2882 (-1032)))))) - (-5 *1 (-326 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850)))) + (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) + (-5 *2 (-710)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-318 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-5 *2 (-710))))) +(((*1 *2) + (-12 (-14 *4 (-710)) (-4 *5 (-1122)) (-5 *2 (-126)) + (-5 *1 (-215 *3 *4 *5)) (-4 *3 (-216 *4 *5)))) ((*1 *2) - (-12 (-5 *2 (-1166 (-588 (-2 (|:| -3526 *3) (|:| -2882 (-1032)))))) - (-5 *1 (-327 *3 *4)) (-4 *3 (-324)) (-14 *4 (-3 (-1081 *3) *2)))) + (-12 (-4 *4 (-339)) (-5 *2 (-126)) (-5 *1 (-304 *3 *4)) + (-4 *3 (-305 *4)))) ((*1 *2) - (-12 (-5 *2 (-1166 (-588 (-2 (|:| -3526 *3) (|:| -2882 (-1032)))))) - (-5 *1 (-328 *3 *4)) (-4 *3 (-324)) (-14 *4 (-850))))) -(((*1 *1 *1 *1) (-4 *1 (-278))) ((*1 *1 *1) (-4 *1 (-278)))) -(((*1 *2 *1) - (-12 (-5 *2 (-588 (-2 (|:| |k| (-1085)) (|:| |c| (-1186 *3))))) - (-5 *1 (-1186 *3)) (-4 *3 (-971)))) + (-12 (-5 *2 (-710)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-158)))) ((*1 *2 *1) - (-12 (-5 *2 (-588 (-2 (|:| |k| *3) (|:| |c| (-1188 *3 *4))))) - (-5 *1 (-1188 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971))))) -(((*1 *2 *1) - (-12 (-5 *2 (-588 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522))))) + (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-523)) + (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) + (-5 *2 (-523)) (-5 *1 (-475 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-973)) (-5 *2 (-852)))) + ((*1 *2) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-339)) (-5 *2 (-126))))) +(((*1 *2) + (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-393 *3))))) +(((*1 *1 *1) (-4 *1 (-508)))) +(((*1 *1 *1) + (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) + (-4 *3 (-13 (-1016) (-33)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-725))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-403 *3 *2)) (-4 *3 (-13 (-158) (-37 (-383 (-523))))) + (-4 *2 (-13 (-786) (-21)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-230 *2 *3 *4 *5)) (-4 *2 (-973)) (-4 *3 (-786)) + (-4 *4 (-243 *3)) (-4 *5 (-732))))) +(((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-333 *3)) (-4 *3 (-325))))) +(((*1 *2 *3) + (-12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-5 *2 (-1 (-108) *5)) + (-5 *1 (-821 *4 *5)) (-4 *5 (-1122))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-203)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-203)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-355)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-383 (-523))) (-5 *1 (-355))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 (-589 *5))) (-4 *5 (-1159 *4)) + (-4 *4 (-37 (-383 (-523)))) + (-5 *2 (-1 (-1068 *4) (-589 (-1068 *4)))) (-5 *1 (-1161 *4 *5))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-940)) (-5 *2 (-794))))) +(((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786))))) (((*1 *2 *1) - (-12 (-4 *3 (-1014)) - (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3)))) - (-5 *2 (-588 (-1085))) (-5 *1 (-993 *3 *4 *5)) - (-4 *5 (-13 (-405 *4) (-815 *3) (-563 (-821 *3))))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-522)) - (-5 *6 - (-2 (|:| |try| (-354)) (|:| |did| (-354)) (|:| -3745 (-354)))) - (-5 *7 (-1 (-1171) (-1166 *5) (-1166 *5) (-354))) - (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171)) - (-5 *1 (-725)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-522)) - (-5 *6 - (-2 (|:| |try| (-354)) (|:| |did| (-354)) (|:| -3745 (-354)))) - (-5 *7 (-1 (-1171) (-1166 *5) (-1166 *5) (-354))) - (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171)) - (-5 *1 (-725))))) + (-12 + (-5 *2 + (-3 (|:| |nullBranch| "null") + (|:| |assignmentBranch| + (-2 (|:| |var| (-1087)) + (|:| |arrayIndex| (-589 (-883 (-523)))) + (|:| |rand| + (-2 (|:| |ints2Floats?| (-108)) (|:| -2659 (-794)))))) + (|:| |arrayAssignmentBranch| + (-2 (|:| |var| (-1087)) (|:| |rand| (-794)) + (|:| |ints2Floats?| (-108)))) + (|:| |conditionalBranch| + (-2 (|:| |switch| (-1086)) (|:| |thenClause| (-306)) + (|:| |elseClause| (-306)))) + (|:| |returnBranch| + (-2 (|:| -3883 (-108)) + (|:| -1733 + (-2 (|:| |ints2Floats?| (-108)) (|:| -2659 (-794)))))) + (|:| |blockBranch| (-589 (-306))) + (|:| |commentBranch| (-589 (-1070))) (|:| |callBranch| (-1070)) + (|:| |forBranch| + (-2 (|:| -3499 (-1009 (-883 (-523)))) + (|:| |span| (-883 (-523))) (|:| -3913 (-306)))) + (|:| |labelBranch| (-1034)) + (|:| |loopBranch| (-2 (|:| |switch| (-1086)) (|:| -3913 (-306)))) + (|:| |commonBranch| + (-2 (|:| -4038 (-1087)) (|:| |contents| (-589 (-1087))))) + (|:| |printBranch| (-589 (-794))))) + (-5 *1 (-306))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-629 (-203))) (-5 *6 (-108)) (-5 *7 (-629 (-523))) + (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-63 QPHESS)))) + (-5 *3 (-523)) (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-693))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) (-5 *2 (-962)) + (-5 *1 (-686))))) +(((*1 *1) (-5 *1 (-1169)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1173)) (-5 *1 (-1169)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1173)) (-5 *1 (-1170))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -2541 *1) (|:| -4225 *1) (|:| |associate| *1))) - (-4 *1 (-514))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2908 *3) (|:| |coef1| (-719 *3)))) - (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971))))) + (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-688))))) (((*1 *2 *3) - (-12 (-5 *3 (-708)) (-5 *2 (-1 (-1066 (-881 *4)) (-1066 (-881 *4)))) - (-5 *1 (-1174 *4)) (-4 *4 (-338))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1014)) - (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3)))) - (-5 *2 (-588 (-993 *3 *4 *5))) (-5 *1 (-994 *3 *4 *5)) - (-4 *5 (-13 (-405 *4) (-815 *3) (-563 (-821 *3))))))) -(((*1 *1 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-971)))) - ((*1 *2 *3) - (-12 (-4 *4 (-514)) (-4 *4 (-157)) (-4 *5 (-348 *4)) - (-4 *6 (-348 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-627 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-157)) (-4 *2 (-971)) (-5 *1 (-652 *2 *3)) - (-4 *3 (-590 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-157)) (-4 *2 (-971)) (-5 *1 (-652 *2 *3)) - (-4 *3 (-590 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-771 *2)) (-4 *2 (-157)) (-4 *2 (-971)))) - ((*1 *1 *1) (-12 (-5 *1 (-771 *2)) (-4 *2 (-157)) (-4 *2 (-971))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409))))) -(((*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1107 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) - (-4 *4 (-971))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-821 *4)) (-4 *4 (-1014)) (-4 *2 (-1014)) - (-5 *1 (-818 *4 *2))))) + (-12 (-5 *2 (-394 (-1083 (-523)))) (-5 *1 (-171)) (-5 *3 (-523))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) - (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1974 *4)))) - (-5 *1 (-713 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) - (-5 *2 (-960)) (-5 *1 (-693))))) + (-12 (-4 *4 (-339)) (-5 *2 (-589 (-1068 *4))) (-5 *1 (-262 *4 *5)) + (-5 *3 (-1068 *4)) (-4 *5 (-1159 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-1142 *3)) (-5 *1 (-374 *3 *2)) - (-4 *3 (-13 (-338) (-135)))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-522)) (-5 *5 (-108)) (-5 *6 (-628 (-202))) - (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-75 OBJFUN)))) - (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-691))))) + (-12 (-4 *3 (-211)) (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-243 *4)) + (-4 *6 (-732)) (-5 *2 (-1 *1 (-710))) (-4 *1 (-230 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-973)) (-4 *3 (-786)) (-4 *5 (-243 *3)) (-4 *6 (-732)) + (-5 *2 (-1 *1 (-710))) (-4 *1 (-230 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-243 *2)) (-4 *2 (-786))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-874 *4))) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) + (-5 *2 (-962)) (-5 *1 (-687))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $))))) - (-4 *4 (-1142 *3)) + (-12 (-5 *3 (-589 (-292 (-203)))) (-5 *2 (-108)) (-5 *1 (-244))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-500 *3 *2)) + (-4 *2 (-1159 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-4 *4 (-1144 *3)) + (-4 *5 (-664 *3 *4)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-1159 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-5 *1 (-505 *3 *2)) + (-4 *2 (-1159 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-515) (-136))) + (-5 *1 (-1064 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 - (-2 (|:| -2905 (-628 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-628 *3)))) - (-5 *1 (-325 *3 *4 *5)) (-4 *5 (-384 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-522)) (-4 *4 (-1142 *3)) + (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) + (|:| |success| (-108)))) + (-5 *1 (-728)) (-5 *5 (-523))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-515) (-786))) + (-4 *2 (-13 (-406 (-155 *4)) (-930) (-1108))) + (-5 *1 (-552 *4 *3 *2)) (-4 *3 (-13 (-406 *4) (-930) (-1108)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-589 *2)) (-5 *1 (-164 *2)) (-4 *2 (-284)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-589 (-589 *4))) (-5 *2 (-589 *4)) (-4 *4 (-284)) + (-5 *1 (-164 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-589 *8)) + (-5 *4 + (-589 + (-2 (|:| -4041 (-629 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-629 *7))))) + (-5 *5 (-710)) (-4 *8 (-1144 *7)) (-4 *7 (-1144 *6)) (-4 *6 (-325)) (-5 *2 - (-2 (|:| -2905 (-628 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-628 *3)))) - (-5 *1 (-705 *4 *5)) (-4 *5 (-384 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-324)) (-4 *3 (-1142 *4)) (-4 *5 (-1142 *3)) + (-2 (|:| -4041 (-629 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-629 *7)))) + (-5 *1 (-469 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1070)) (-5 *5 (-629 (-203))) (-5 *6 (-629 (-523))) + (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-697))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1144 *6)) + (-4 *6 (-13 (-27) (-406 *5))) + (-4 *5 (-13 (-786) (-515) (-964 (-523)))) (-4 *8 (-1144 (-383 *7))) + (-5 *2 (-540 *3)) (-5 *1 (-511 *5 *6 *7 *8 *3)) + (-4 *3 (-318 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1070)) (-5 *2 (-523)) (-5 *1 (-1105 *4)) + (-4 *4 (-973))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-691))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-836 *4)) (-4 *4 (-1016)) (-5 *2 (-589 (-710))) + (-5 *1 (-835 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) (-5 *2 - (-2 (|:| -2905 (-628 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-628 *3)))) - (-5 *1 (-912 *4 *3 *5 *6)) (-4 *6 (-662 *3 *5)))) + (-2 (|:| |ir| (-540 (-383 *6))) (|:| |specpart| (-383 *6)) + (|:| |polypart| *6))) + (-5 *1 (-533 *5 *6)) (-5 *3 (-383 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-403 *3 *2)) (-4 *3 (-13 (-158) (-37 (-383 (-523))))) + (-4 *2 (-13 (-786) (-21)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168 *5)) (-4 *5 (-585 *4)) (-4 *4 (-515)) + (-5 *2 (-108)) (-5 *1 (-584 *4 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-523)) (|has| *1 (-6 -4245)) (-4 *1 (-349 *3)) + (-4 *3 (-1122))))) +(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) + (-4 *3 (-1144 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-761))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-677 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1016)))) + ((*1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *2 (-394 (-1083 *1))) (-5 *1 (-292 *4)) (-5 *3 (-1083 *1)) + (-4 *4 (-427)) (-4 *4 (-515)) (-4 *4 (-786)))) ((*1 *2 *3) - (-12 (-4 *4 (-324)) (-4 *3 (-1142 *4)) (-4 *5 (-1142 *3)) + (-12 (-4 *1 (-840)) (-5 *2 (-394 (-1083 *1))) (-5 *3 (-1083 *1))))) +(((*1 *2 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-1083 *4)) (-5 *1 (-493 *4)) + (-4 *4 (-325))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) + (-225 *4 (-383 (-523))))) + (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *2 (-108)) + (-5 *1 (-476 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1122))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| -2905 (-628 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-628 *3)))) - (-5 *1 (-1175 *4 *3 *5 *6)) (-4 *6 (-384 *3 *5))))) + (-1168 + (-2 (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) + (|:| |deltaX| (-203)) (|:| |deltaY| (-203)) (|:| -3582 (-523)) + (|:| -4134 (-523)) (|:| |spline| (-523)) (|:| -4166 (-523)) + (|:| |axesColor| (-805)) (|:| -3142 (-523)) + (|:| |unitsColor| (-805)) (|:| |showing| (-523))))) + (-5 *1 (-1169))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) + (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) + (-4 *3 (-1144 *2))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) + (-5 *2 (-962)) (-5 *1 (-695))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1168 (-1087))) (-5 *3 (-1168 (-428 *4 *5 *6 *7))) + (-5 *1 (-428 *4 *5 *6 *7)) (-4 *4 (-158)) (-14 *5 (-852)) + (-14 *6 (-589 (-1087))) (-14 *7 (-1168 (-629 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-428 *4 *5 *6 *7))) + (-5 *1 (-428 *4 *5 *6 *7)) (-4 *4 (-158)) (-14 *5 (-852)) + (-14 *6 (-589 *2)) (-14 *7 (-1168 (-629 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1168 (-428 *3 *4 *5 *6))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) + (-14 *6 (-1168 (-629 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1168 (-1087))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-158)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))) + (-14 *6 (-1168 (-629 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1087)) (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) + (-14 *4 (-852)) (-14 *5 (-589 *2)) (-14 *6 (-1168 (-629 *3))))) + ((*1 *1) + (-12 (-5 *1 (-428 *2 *3 *4 *5)) (-4 *2 (-158)) (-14 *3 (-852)) + (-14 *4 (-589 (-1087))) (-14 *5 (-1168 (-629 *2)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -2566 (-589 (-1087))) (|:| -2279 (-589 (-1087))))) + (-5 *1 (-1124))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-588 *1)) (-5 *3 (-588 *7)) (-4 *1 (-990 *4 *5 *6 *7)) - (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *1)) - (-4 *1 (-990 *4 *5 *6 *7)))) + (-12 (-5 *2 (-589 (-355))) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-355))) (-5 *1 (-443)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 (-355))) (-5 *1 (-443)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-805)) (-5 *2 (-1173)) (-5 *1 (-1169)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-64 FUNCT1)))) + (-5 *2 (-962)) (-5 *1 (-693))))) +(((*1 *2 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-784)) (-5 *1 (-280 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-523))) (-4 *3 (-973)) (-5 *1 (-94 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-94 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-94 *3))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-1083 (-883 *4))) (-5 *1 (-392 *3 *4)) + (-4 *3 (-393 *4)))) + ((*1 *2) + (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-4 *3 (-339)) + (-5 *2 (-1083 (-883 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1016)) (-4 *5 (-1016)) + (-5 *2 (-1 *5)) (-5 *1 (-623 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-306))))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934))))) +(((*1 *2 *3) + (-12 (-5 *3 (-523)) (|has| *1 (-6 -4235)) (-4 *1 (-380)) + (-5 *2 (-852))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-589 *8))) (-5 *3 (-589 *8)) + (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-108)) (-5 *1 (-906 *5 *6 *7 *8))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-857))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1083 *3)) (-4 *3 (-973)) (-4 *1 (-1144 *3))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-1016) (-33))) (-5 *1 (-1052 *3 *2)) + (-4 *3 (-13 (-1016) (-33)))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-541 *2)) (-4 *2 (-508))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-355))) (-5 *1 (-966)) (-5 *3 (-355))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3078 *4))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-1106))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) + (-5 *4 (-292 (-155 (-355)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) + (-5 *4 (-292 (-355))) (-5 *1 (-306)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) + (-5 *4 (-292 (-523))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-155 (-355))))) + (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-355)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-523)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-155 (-355))))) + (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-355)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-523)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-155 (-355)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-355))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-523))) (-5 *1 (-306)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) + (-5 *4 (-292 (-633))) (-5 *1 (-306)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) + (-5 *4 (-292 (-638))) (-5 *1 (-306)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1087)) (-5 *3 (-589 (-883 (-523)))) + (-5 *4 (-292 (-640))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-633)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-638)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-292 (-640)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-633)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-638)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-292 (-640)))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-633))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-638))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1168 (-640))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-633))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-638))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-629 (-640))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-633))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-638))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-292 (-640))) (-5 *1 (-306)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1070)) (-5 *1 (-306)))) + ((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-1087)) (-5 *1 (-499)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) - (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 *1)) - (-4 *1 (-990 *4 *5 *6 *3))))) + (-12 (-5 *2 (-1087)) (-5 *1 (-644 *3)) (-4 *3 (-564 (-499))))) + ((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-1087)) (-5 *1 (-644 *3)) (-4 *3 (-564 (-499))))) + ((*1 *2 *3 *2 *2 *2) + (-12 (-5 *2 (-1087)) (-5 *1 (-644 *3)) (-4 *3 (-564 (-499))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *4 (-589 (-1087))) (-5 *2 (-1087)) (-5 *1 (-644 *3)) + (-4 *3 (-564 (-499)))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *3 (-589 (-805))) + (-5 *4 (-589 (-852))) (-5 *5 (-589 (-240))) (-5 *1 (-443)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *3 (-589 (-805))) + (-5 *4 (-589 (-852))) (-5 *1 (-443)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-443)))) + ((*1 *1 *1) (-5 *1 (-443)))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-317 *4 *5 *6)) (-4 *4 (-1124)) - (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) - (-5 *2 (-2 (|:| |num| (-628 *5)) (|:| |den| *5)))))) + (-12 (-4 *4 (-427)) + (-5 *2 + (-589 + (-2 (|:| |eigval| (-3 (-383 (-883 *4)) (-1077 (-1087) (-883 *4)))) + (|:| |eigmult| (-710)) + (|:| |eigvec| (-589 (-629 (-383 (-883 *4)))))))) + (-5 *1 (-269 *4)) (-5 *3 (-629 (-383 (-883 *4))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515))))) (((*1 *2 *3) - (-12 (-5 *3 (-628 (-291 (-202)))) (-5 *2 (-354)) (-5 *1 (-184))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-690))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-693))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-5 *2 (-522))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1166 *4)) (-4 *4 (-584 *5)) (-4 *5 (-338)) - (-4 *5 (-514)) (-5 *2 (-1166 *5)) (-5 *1 (-583 *5 *4)))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) + (-5 *2 (-1168 (-629 *4))))) + ((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-1168 (-629 *4))) (-5 *1 (-392 *3 *4)) + (-4 *3 (-393 *4)))) + ((*1 *2) + (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-1168 (-629 *3))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1166 *4)) (-4 *4 (-584 *5)) - (-2473 (-4 *5 (-338))) (-4 *5 (-514)) (-5 *2 (-1166 (-382 *5))) - (-5 *1 (-583 *5 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1081 *7)) (-4 *7 (-878 *6 *4 *5)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *6 (-971)) (-5 *2 (-1081 *6)) - (-5 *1 (-296 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1085)) - (-4 *4 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) - (-5 *1 (-741 *4 *2)) (-4 *2 (-13 (-29 *4) (-1106) (-887)))))) + (-12 (-5 *3 (-589 (-1087))) (-4 *5 (-339)) + (-5 *2 (-1168 (-629 (-383 (-883 *5))))) (-5 *1 (-1004 *5)) + (-5 *4 (-629 (-383 (-883 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-1087))) (-4 *5 (-339)) + (-5 *2 (-1168 (-629 (-883 *5)))) (-5 *1 (-1004 *5)) + (-5 *4 (-629 (-883 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-629 *4))) (-4 *4 (-339)) + (-5 *2 (-1168 (-629 *4))) (-5 *1 (-1004 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) + (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1016)) (-4 *3 (-831 *5)) (-5 *2 (-629 *3)) + (-5 *1 (-631 *5 *3 *6 *4)) (-4 *6 (-349 *3)) + (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4244))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1181 (-1087) *3)) (-4 *3 (-973)) (-5 *1 (-1188 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1181 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) + (-5 *1 (-1190 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-234))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-940))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1070)) (-5 *2 (-713)) (-5 *1 (-110)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1020)) (-5 *1 (-895))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-108)) (-5 *1 (-548 *3)) (-4 *3 (-973))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1083 *7)) (-4 *5 (-973)) + (-4 *7 (-973)) (-4 *2 (-1144 *5)) (-5 *1 (-472 *5 *2 *6 *7)) + (-4 *6 (-1144 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-973)) (-4 *7 (-973)) + (-4 *4 (-1144 *5)) (-5 *2 (-1083 *7)) (-5 *1 (-472 *5 *4 *6 *7)) + (-4 *6 (-1144 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1122))))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-1138 *3 *2)) + (-4 *2 (-1144 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-796 *5))) (-14 *5 (-589 (-1087))) (-4 *6 (-427)) + (-5 *2 + (-2 (|:| |dpolys| (-589 (-225 *5 *6))) + (|:| |coords| (-589 (-523))))) + (-5 *1 (-446 *5 *6 *7)) (-5 *3 (-589 (-225 *5 *6))) (-4 *7 (-427))))) (((*1 *2) - (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-392 *3))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-708)) - (-4 *3 (-13 (-664) (-343) (-10 -7 (-15 ** (*3 *3 (-522)))))) - (-5 *1 (-223 *3))))) + (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-393 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-589 *1)) (|has| *1 (-6 -4245)) (-4 *1 (-938 *3)) + (-4 *3 (-1122))))) +(((*1 *1 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108)))))) +(((*1 *2 *3) + (-12 (-4 *1 (-739)) + (-5 *3 + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) + (|:| |abserr| (-203)) (|:| |relerr| (-203)))) + (-5 *2 (-962))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-1076 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-1170)))) + ((*1 *2 *1) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-1170))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) - (-4 *3 (-13 (-338) (-1106) (-928)))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (-5 *2 (-523)) (-5 *1 (-184))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-678))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-339) (-784))) (-5 *1 (-165 *3 *2)) + (-4 *2 (-1144 (-155 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3357 *4)))) - (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-507)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-110))))) + (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) + (-4 *3 (-897))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-514)) - (-5 *2 (-2 (|:| -3112 *4) (|:| -3450 *3) (|:| -4002 *3))) - (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) + (-12 (-4 *4 (-339)) (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) + (-5 *1 (-706 *3 *4)) (-4 *3 (-648 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *2 (-2 (|:| -3450 *1) (|:| -4002 *1))) (-4 *1 (-985 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-514)) (-4 *3 (-971)) - (-5 *2 (-2 (|:| -3112 *3) (|:| -3450 *1) (|:| -4002 *1))) - (-4 *1 (-1142 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1142 (-382 *2))) (-5 *2 (-522)) (-5 *1 (-842 *4 *3)) - (-4 *3 (-1142 (-382 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) - ((*1 *1 *1 *1) (-5 *1 (-792)))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33))) - ((*1 *1) - (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708)) - (-4 *4 (-157)))) - ((*1 *1) (-4 *1 (-664))) ((*1 *1) (-5 *1 (-1085)))) + (-12 (-4 *3 (-339)) (-4 *3 (-973)) + (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-788 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-94 *5)) (-4 *5 (-339)) (-4 *5 (-973)) + (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-789 *5 *3)) + (-4 *3 (-788 *5))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *3 (-515))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-589 *3)) + (-4 *3 (-13 (-406 *6) (-27) (-1108))) + (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-525 *6 *3 *7)) (-4 *7 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1066 *4)) (-4 *4 (-37 *3)) (-4 *4 (-971)) - (-5 *3 (-382 (-522))) (-5 *1 (-1070 *4))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-784)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-784)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-522)) (-4 *1 (-258 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-522)) (-4 *1 (-258 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2) (-12 (-5 *2 - (-2 - (|:| -2644 - (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) - (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) - (|:| |relerr| (-202)))) - (|:| -3149 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1066 (-202))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2321 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-517)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-708)) (-4 *1 (-633 *2)) (-4 *2 (-1014)))) + (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) + (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) + (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) + (-5 *3 (-589 (-240))) (-5 *1 (-238)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 - (|:| -2644 - (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) - (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) - (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) - (|:| |abserr| (-202)) (|:| |relerr| (-202)))) - (|:| -3149 - (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) - (|:| |expense| (-354)) (|:| |accuracy| (-354)) - (|:| |intermediateResults| (-354)))))) - (-5 *1 (-740)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1171)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014)) - (-4 *4 (-1014))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-806 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-808 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-872 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-588 (-872 *3))) (-4 *3 (-971)) (-4 *1 (-1046 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-588 (-588 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-588 (-872 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) - (-4 *6 (-1014)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-623 *4 *5 *6))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *3 (-588 (-803))) - (-5 *4 (-588 (-850))) (-5 *5 (-588 (-239))) (-5 *1 (-442)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *3 (-588 (-803))) - (-5 *4 (-588 (-850))) (-5 *1 (-442)))) - ((*1 *1 *2) (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *1 (-442)))) - ((*1 *1 *1) (-5 *1 (-442)))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-354)) (-5 *3 (-1068)) (-5 *1 (-92)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-354)) (-5 *3 (-1068)) (-5 *1 (-92))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-588 *4)) (-4 *4 (-338)) (-4 *2 (-1142 *4)) - (-5 *1 (-851 *4 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369)))) - ((*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-588 *6)) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-971)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-708)))) + (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) + (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) + (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) + (-5 *1 (-240)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-523)) (-5 *4 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) + (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) + (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) + (-5 *2 (-1173)) (-5 *1 (-1170)))) ((*1 *2 *1) - (-12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-5 *2 (-708))))) -(((*1 *1 *2) - (-12 (-5 *2 (-588 (-522))) (-5 *1 (-49 *3 *4)) (-4 *3 (-971)) - (-14 *4 (-588 (-1085))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *1 *1) (-4 *1 (-260))) - ((*1 *1 *1) - (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) - (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-784)) - (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-5 *1 (-572 *3 *4 *5)) - (-14 *5 (-850)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-708)) (-4 *4 (-13 (-971) (-655 (-382 (-522))))) - (-4 *5 (-784)) (-5 *1 (-1180 *4 *5 *2)) (-4 *2 (-1185 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-708)) (-5 *1 (-1184 *3 *4)) - (-4 *4 (-655 (-382 (-522)))) (-4 *3 (-784)) (-4 *4 (-157))))) + (-12 + (-5 *2 + (-2 (|:| |theta| (-203)) (|:| |phi| (-203)) (|:| -3495 (-203)) + (|:| |scaleX| (-203)) (|:| |scaleY| (-203)) (|:| |scaleZ| (-203)) + (|:| |deltaX| (-203)) (|:| |deltaY| (-203)))) + (-5 *1 (-1170)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170))))) (((*1 *2 *3) - (-12 (-5 *3 (-1166 *1)) (-4 *1 (-345 *4 *5)) (-4 *4 (-157)) - (-4 *5 (-1142 *4)) (-5 *2 (-628 *4)))) - ((*1 *2) - (-12 (-4 *4 (-157)) (-4 *5 (-1142 *4)) (-5 *2 (-628 *4)) - (-5 *1 (-383 *3 *4 *5)) (-4 *3 (-384 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1142 *3)) - (-5 *2 (-628 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-782)) (-5 *2 (-522)))) - ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-987 *4 *3)) (-4 *4 (-13 (-782) (-338))) - (-4 *3 (-1142 *4)) (-5 *2 (-522)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-514) (-784) (-962 *2) (-584 *2) (-426))) - (-5 *2 (-522)) (-5 *1 (-1029 *4 *3)) - (-4 *3 (-13 (-27) (-1106) (-405 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-777 *3)) - (-4 *3 (-13 (-27) (-1106) (-405 *6))) - (-4 *6 (-13 (-514) (-784) (-962 *2) (-584 *2) (-426))) - (-5 *2 (-522)) (-5 *1 (-1029 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-1068)) - (-4 *6 (-13 (-514) (-784) (-962 *2) (-584 *2) (-426))) - (-5 *2 (-522)) (-5 *1 (-1029 *6 *3)) - (-4 *3 (-13 (-27) (-1106) (-405 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-426)) (-5 *2 (-522)) - (-5 *1 (-1030 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-777 (-382 (-881 *6)))) - (-5 *3 (-382 (-881 *6))) (-4 *6 (-426)) (-5 *2 (-522)) - (-5 *1 (-1030 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-382 (-881 *6))) (-5 *4 (-1085)) - (-5 *5 (-1068)) (-4 *6 (-426)) (-5 *2 (-522)) (-5 *1 (-1030 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-522)) (-5 *1 (-1103 *3)) (-4 *3 (-971))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-588 (-522))) - (|:| |cols| (-588 (-522))))) - (-5 *4 (-628 *12)) (-5 *5 (-588 (-382 (-881 *9)))) - (-5 *6 (-588 (-588 *12))) (-5 *7 (-708)) (-5 *8 (-522)) - (-4 *9 (-13 (-283) (-135))) (-4 *12 (-878 *9 *11 *10)) - (-4 *10 (-13 (-784) (-563 (-1085)))) (-4 *11 (-730)) - (-5 *2 - (-2 (|:| |eqzro| (-588 *12)) (|:| |neqzro| (-588 *12)) - (|:| |wcond| (-588 (-881 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1166 (-382 (-881 *9)))) - (|:| -2905 (-588 (-1166 (-382 (-881 *9))))))))) - (-5 *1 (-853 *9 *10 *11 *12))))) -(((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-378 *3)) (-4 *3 (-379)))) - ((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-378 *3)) (-4 *3 (-379)))) - ((*1 *2 *2) (-12 (-5 *2 (-850)) (|has| *1 (-6 -4229)) (-4 *1 (-379)))) - ((*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-850)))) - ((*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-5 *2 (-1066 (-522)))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) - (-4 *4 (-348 *3)) (-4 *5 (-348 *3))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-514)) (-4 *2 (-157))))) -(((*1 *2 *2) - (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928))) - (-5 *1 (-160 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1166 *1)) (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) - (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4)))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *6 (-202)) - (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-690))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-588 (-522))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522)) - (-14 *4 (-708)) (-4 *5 (-157))))) + (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) + (|:| |expense| (-355)) (|:| |accuracy| (-355)) + (|:| |intermediateResults| (-355)))) + (-5 *2 (-962)) (-5 *1 (-282))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-589 (-954 *5 *6 *7 *8))) (-5 *1 (-954 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-108)) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-589 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8))))) +(((*1 *1 *1) (-4 *1 (-575))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930) (-1108)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-623 *4 *5 *6)) (-4 *4 (-1014))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 (-708))) (-5 *3 (-156)) (-5 *1 (-1074 *4 *5)) - (-14 *4 (-850)) (-4 *5 (-971))))) + (-12 (-5 *3 (-383 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-515)) + (-4 *4 (-973)) (-4 *2 (-1159 *4)) (-5 *1 (-1162 *4 *5 *6 *2)) + (-4 *6 (-599 *5))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) (((*1 *2 *3) - (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4)) - (-4 *4 (-324)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4)) - (-4 *4 (-324)))) - ((*1 *1) (-4 *1 (-343))) - ((*1 *2 *3) - (-12 (-5 *3 (-850)) (-5 *2 (-1166 *4)) (-5 *1 (-492 *4)) - (-4 *4 (-324)))) - ((*1 *1 *1) (-4 *1 (-507))) ((*1 *1) (-4 *1 (-507))) - ((*1 *1 *1) (-5 *1 (-522))) ((*1 *1 *1) (-5 *1 (-708))) - ((*1 *2 *1) (-12 (-5 *2 (-834 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-522)) (-5 *2 (-834 *4)) (-5 *1 (-833 *4)) - (-4 *4 (-1014)))) - ((*1 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-507)) (-4 *2 (-514))))) + (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) + (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-588 (-794 *5))) (-14 *5 (-588 (-1085))) (-4 *6 (-426)) - (-5 *2 (-588 (-588 (-224 *5 *6)))) (-5 *1 (-445 *5 *6 *7)) - (-5 *3 (-588 (-224 *5 *6))) (-4 *7 (-426))))) + (-12 (-5 *3 (-589 (-1168 *5))) (-5 *4 (-523)) (-5 *2 (-1168 *5)) + (-5 *1 (-956 *5)) (-4 *5 (-339)) (-4 *5 (-344)) (-4 *5 (-973))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-710)) (-5 *2 (-108))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)) (-4 *3 (-158)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-515)) (-5 *1 (-899 *2 *3)) (-4 *3 (-1144 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-515)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-158))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-338)) (-4 *3 (-971)) - (-5 *1 (-1070 *3))))) + (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)) (-4 *5 (-987 *3 *4 *2))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 *4)) - (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))) + (-12 (-5 *4 (-523)) (-4 *5 (-325)) (-5 *2 (-394 (-1083 (-1083 *5)))) + (-5 *1 (-1121 *5)) (-5 *3 (-1083 (-1083 *5)))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-687))))) +(((*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-760))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-562 *1))) (-4 *1 (-279))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-857))))) +(((*1 *2) + (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-284)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1038 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-794)))) (-5 *1 (-794)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1054 *3 *4)) (-5 *1 (-922 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-339)))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 (-589 *5))) (-4 *5 (-973)) + (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *6 (-216 *4 *5)) + (-4 *7 (-216 *3 *5))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-629 (-523))) (-5 *5 (-108)) (-5 *7 (-629 (-203))) + (-5 *3 (-523)) (-5 *6 (-203)) (-5 *2 (-962)) (-5 *1 (-694))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1144 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1144 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-717 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-426)) - (-14 *6 (-588 (-1085))) (-5 *2 (-588 (-968 *5 *6))) - (-5 *1 (-573 *5 *6))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-522) "failed") *5)) (-4 *5 (-971)) - (-5 *2 (-522)) (-5 *1 (-505 *5 *3)) (-4 *3 (-1142 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-522) "failed") *4)) (-4 *4 (-971)) - (-5 *2 (-522)) (-5 *1 (-505 *4 *3)) (-4 *3 (-1142 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-522) "failed") *4)) (-4 *4 (-971)) - (-5 *2 (-522)) (-5 *1 (-505 *4 *3)) (-4 *3 (-1142 *4))))) + (-12 (-5 *4 (-710)) (-4 *5 (-973)) (-4 *2 (-1144 *5)) + (-5 *1 (-1162 *5 *2 *6 *3)) (-4 *6 (-599 *2)) (-4 *3 (-1159 *5))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-312 *5 *6 *7 *8)) (-4 *5 (-406 *4)) + (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) + (-4 *8 (-318 *5 *6 *7)) (-4 *4 (-13 (-786) (-515) (-964 (-523)))) + (-5 *2 (-2 (|:| -1640 (-710)) (|:| -3121 *8))) + (-5 *1 (-842 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-312 (-383 (-523)) *4 *5 *6)) + (-4 *4 (-1144 (-383 (-523)))) (-4 *5 (-1144 (-383 *4))) + (-4 *6 (-318 (-383 (-523)) *4 *5)) + (-5 *2 (-2 (|:| -1640 (-710)) (|:| -3121 *6))) + (-5 *1 (-843 *4 *5 *6))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1144 *3)) (-5 *1 (-375 *3 *2)) + (-4 *3 (-13 (-339) (-136)))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-589 (-2 (|:| |func| *2) (|:| |pole| (-108))))) + (-4 *2 (-13 (-406 *4) (-930))) (-4 *4 (-13 (-786) (-515))) + (-5 *1 (-253 *4 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1016)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-623 *4 *5)) (-4 *4 (-1016)))) + ((*1 *2 *2) + (-12 (-4 *3 (-786)) (-5 *1 (-860 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1087)) (-5 *2 (-292 (-523))) (-5 *1 (-861)))) + ((*1 *2 *1) (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-786)) (-4 *2 (-973)))) + ((*1 *2 *1) (-12 (-4 *2 (-973)) (-5 *1 (-1189 *2 *3)) (-4 *3 (-782))))) +(((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-515))))) +(((*1 *1 *2) (-12 (-5 *2 (-758 *3)) (-4 *3 (-786)) (-5 *1 (-614 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-556 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1016)) + (-4 *2 (-786))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-983 (-951 *3) (-1083 (-951 *3)))) + (-5 *1 (-951 *3)) (-4 *3 (-13 (-784) (-339) (-949)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-595 (-382 *6))) (-5 *4 (-382 *6)) (-4 *6 (-1142 *5)) - (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2905 (-588 *4)))) - (-5 *1 (-747 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-595 (-382 *6))) (-4 *6 (-1142 *5)) - (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) - (-5 *2 (-2 (|:| -2905 (-588 (-382 *6))) (|:| -2149 (-628 *5)))) - (-5 *1 (-747 *5 *6)) (-5 *4 (-588 (-382 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-596 *6 (-382 *6))) (-5 *4 (-382 *6)) (-4 *6 (-1142 *5)) - (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) + (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 (-1087))) (-4 *6 (-339)) + (-5 *2 (-589 (-271 (-883 *6)))) (-5 *1 (-501 *5 *6 *7)) + (-4 *5 (-427)) (-4 *7 (-13 (-339) (-784)))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-710)) (-4 *3 (-1122)) (-4 *1 (-55 *3 *4 *5)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) + ((*1 *1) (-5 *1 (-157))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-365)))) + ((*1 *1) (-5 *1 (-370))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) + ((*1 *1) + (-12 (-4 *3 (-1016)) (-5 *1 (-816 *2 *3 *4)) (-4 *2 (-1016)) + (-4 *4 (-609 *3)))) + ((*1 *1) (-12 (-5 *1 (-820 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016)))) + ((*1 *1) (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973)))) + ((*1 *1 *1) (-5 *1 (-1087))) ((*1 *1) (-5 *1 (-1087))) + ((*1 *1) (-5 *1 (-1103)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *2 (-987 *4 *5 *6)) (-5 *1 (-715 *4 *5 *6 *2 *3)) + (-4 *3 (-992 *4 *5 *6 *2))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) + (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-906 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-200 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-4 *1 (-231 *3)))) + ((*1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1144 (-383 (-523)))) + (-5 *2 (-2 (|:| |den| (-523)) (|:| |gcdnum| (-523)))) + (-5 *1 (-844 *3 *4)) (-4 *4 (-1144 (-383 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1144 (-383 *2))) (-5 *2 (-523)) (-5 *1 (-844 *4 *3)) + (-4 *3 (-1144 (-383 *4)))))) +(((*1 *2) + (-12 (-4 *1 (-325)) + (-5 *2 (-589 (-2 (|:| -1820 (-523)) (|:| -2735 (-523)))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-2 (|:| -1853 *3) (|:| -2433 *4)))) + (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *1 (-1099 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1099 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-697))))) +(((*1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1171))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-596 (-383 *6))) (-5 *4 (-1 (-589 *5) *6)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-4 *6 (-1144 *5)) (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-596 (-383 *7))) (-5 *4 (-1 (-589 *6) *7)) + (-5 *5 (-1 (-394 *7) *7)) + (-4 *6 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-4 *7 (-1144 *6)) (-5 *2 (-589 (-383 *7))) (-5 *1 (-751 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-597 *6 (-383 *6))) (-5 *4 (-1 (-589 *5) *6)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-4 *6 (-1144 *5)) (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-597 *7 (-383 *7))) (-5 *4 (-1 (-589 *6) *7)) + (-5 *5 (-1 (-394 *7) *7)) + (-4 *6 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-4 *7 (-1144 *6)) (-5 *2 (-589 (-383 *7))) (-5 *1 (-751 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-596 (-383 *5))) (-4 *5 (-1144 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-5 *2 (-589 (-383 *5))) (-5 *1 (-751 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-596 (-383 *6))) (-5 *4 (-1 (-394 *6) *6)) + (-4 *6 (-1144 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-597 *5 (-383 *5))) (-4 *5 (-1144 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-5 *2 (-589 (-383 *5))) (-5 *1 (-751 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-597 *6 (-383 *6))) (-5 *4 (-1 (-394 *6) *6)) + (-4 *6 (-1144 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-5 *2 (-589 (-383 *6))) (-5 *1 (-751 *5 *6))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2905 (-588 *4)))) - (-5 *1 (-747 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-596 *6 (-382 *6))) (-4 *6 (-1142 *5)) - (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) - (-5 *2 (-2 (|:| -2905 (-588 (-382 *6))) (|:| -2149 (-628 *5)))) - (-5 *1 (-747 *5 *6)) (-5 *4 (-588 (-382 *6)))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-784)) (-4 *5 (-730)) - (-4 *6 (-514)) (-4 *7 (-878 *6 *5 *3)) - (-5 *1 (-436 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-962 (-382 (-522))) (-338) - (-10 -8 (-15 -2217 ($ *7)) (-15 -2947 (*7 $)) - (-15 -2959 (*7 $)))))))) + (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) + (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) + (-5 *1 (-1086))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *1 (-808 *2)) (-4 *2 (-1122)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *1 (-810 *2)) (-4 *2 (-1122)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-5 *1 (-813 *2)) (-4 *2 (-1122))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-964 (-47))) + (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-4 *5 (-406 *4)) + (-5 *2 (-394 (-1083 (-47)))) (-5 *1 (-411 *4 *5 *3)) + (-4 *3 (-1144 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-167))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-443)) (-5 *3 (-589 (-240))) (-5 *1 (-1169)))) + ((*1 *1 *1) (-5 *1 (-1169)))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 *4)) - (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))) -(((*1 *1 *1) (-4 *1 (-574))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928) (-1106)))))) -(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-926 *3))))) + (-12 (-5 *3 (-1 *2 (-589 *2))) (-5 *4 (-589 *5)) + (-4 *5 (-37 (-383 (-523)))) (-4 *2 (-1159 *5)) + (-5 *1 (-1161 *5 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1066 (-1066 *4))) (-5 *2 (-1066 *4)) (-5 *1 (-1070 *4)) - (-4 *4 (-971))))) + (-12 (-4 *4 (-13 (-515) (-786))) + (-4 *2 (-13 (-406 *4) (-930) (-1108))) (-5 *1 (-552 *4 *2 *3)) + (-4 *3 (-13 (-406 (-155 *4)) (-930) (-1108)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-708)) (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) - (-4 *4 (-157)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-708)) (-4 *1 (-1185 *3 *4)) (-4 *3 (-784)) - (-4 *4 (-971))))) + (-12 + (-5 *2 + (-2 (|:| -3602 (-589 (-794))) (|:| -3596 (-589 (-794))) + (|:| |presup| (-589 (-794))) (|:| -1892 (-589 (-794))) + (|:| |args| (-589 (-794))))) + (-5 *1 (-1087)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-589 (-794)))) (-5 *1 (-1087))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) + (-4 *3 (-13 (-339) (-1108) (-930)))))) (((*1 *2 *3 *4) - (-12 (-4 *4 (-338)) (-5 *2 (-588 (-1066 *4))) (-5 *1 (-261 *4 *5)) - (-5 *3 (-1066 *4)) (-4 *5 (-1157 *4))))) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-355)) (-5 *3 (-1070)) (-5 *1 (-92)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-355)) (-5 *3 (-1070)) (-5 *1 (-92))))) +(((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-355)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-240))))) (((*1 *2 *3) - (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-522)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-283)) - (-4 *9 (-878 *8 *6 *7)) - (-5 *2 (-2 (|:| -1976 (-1081 *9)) (|:| |polval| (-1081 *8)))) - (-5 *1 (-680 *6 *7 *8 *9)) (-5 *3 (-1081 *9)) (-5 *4 (-1081 *8))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) + (-12 (-5 *3 (-225 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) + (-5 *2 (-883 *5)) (-5 *1 (-875 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1016))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-710)) (-4 *4 (-515)) (-5 *1 (-899 *4 *2)) + (-4 *2 (-1144 *4))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *6 (-203)) + (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-691))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) + (-4 *3 (-987 *6 *7 *8)) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) + (-5 *1 (-993 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-589 (-2 (|:| |val| (-589 *8)) (|:| -3072 *9)))) + (-5 *5 (-108)) (-4 *8 (-987 *6 *7 *4)) (-4 *9 (-992 *6 *7 *4 *8)) + (-4 *6 (-427)) (-4 *7 (-732)) (-4 *4 (-786)) + (-5 *2 (-589 (-2 (|:| |val| *8) (|:| -3072 *9)))) + (-5 *1 (-993 *6 *7 *4 *8 *9))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-874 *5)) (-5 *3 (-710)) (-4 *5 (-973)) + (-5 *1 (-1076 *4 *5)) (-14 *4 (-852))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1091))))) +(((*1 *2 *1) + (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) + (-4 *3 (-897))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-284)) (-5 *1 (-164 *3))))) +(((*1 *2 *1) (-12 (-5 *1 (-1118 *2)) (-4 *2 (-903))))) +(((*1 *1 *2) + (-12 (-4 *3 (-973)) (-5 *1 (-766 *2 *3)) (-4 *2 (-648 *3))))) +(((*1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1090))))) +(((*1 *2) (-12 (-5 *2 (-1059 (-1070))) (-5 *1 (-367))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-1108) (-889) (-29 *4)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-514)) - (-4 *3 (-878 *7 *5 *6)) - (-5 *2 - (-2 (|:| -3858 (-708)) (|:| -3112 *3) (|:| |radicand| (-588 *3)))) - (-5 *1 (-882 *5 *6 *7 *3 *8)) (-5 *4 (-708)) - (-4 *8 - (-13 (-338) - (-10 -8 (-15 -2947 (*3 $)) (-15 -2959 (*3 $)) (-15 -2217 ($ *3)))))))) + (-12 (-5 *4 (-1087)) + (-4 *5 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-540 *3)) (-5 *1 (-516 *5 *3)) + (-4 *3 (-13 (-27) (-1108) (-406 *5)))))) (((*1 *2 *2) - (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) - (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) + (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) + (-5 *1 (-161 *3))))) +(((*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852)))) ((*1 *1) (-4 *1 (-508))) + ((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638)))) + ((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1068 *4)) (-5 *3 (-1 *4 (-523))) (-4 *4 (-973)) + (-5 *1 (-1072 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| -3602 (-589 (-794))) (|:| -3596 (-589 (-794))) + (|:| |presup| (-589 (-794))) (|:| -1892 (-589 (-794))) + (|:| |args| (-589 (-794))))) + (-5 *1 (-1087))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *2)) (-4 *2 (-158)))) + ((*1 *2) (-12 (-4 *2 (-158)) (-5 *1 (-392 *3 *2)) (-4 *3 (-393 *2)))) + ((*1 *2) (-12 (-4 *1 (-393 *2)) (-4 *2 (-158))))) +(((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1173)) (-5 *1 (-1124)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *3)) - (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-588 *3)) (-4 *3 (-985 *4 *5 *6)) (-4 *4 (-514)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-904 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) - (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-588 *7) (-588 *7))) (-5 *2 (-588 *7)) - (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) - (-5 *1 (-904 *4 *5 *6 *7))))) + (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1173)) (-5 *1 (-1124))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-1026)) (-5 *3 (-523))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-588 (-522))) (-5 *2 (-628 (-522))) (-5 *1 (-1024))))) -(((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971))))) -(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))) + (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3072 *8))) + (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-917 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-589 *7)) (|:| -3072 *8))) + (-4 *7 (-987 *4 *5 *6)) (-4 *8 (-992 *4 *5 *6 *7)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-1023 *4 *5 *6 *7 *8))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) + (-5 *2 + (-2 (|:| -3582 (-710)) (|:| |curves| (-710)) + (|:| |polygons| (-710)) (|:| |constructs| (-710))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-973)) + (-4 *2 (-13 (-380) (-964 *4) (-339) (-1108) (-261))) + (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1144 *4)))) + ((*1 *1 *1) (-4 *1 (-508))) + ((*1 *2 *1) (-12 (-5 *2 (-852)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-852)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-758 *3)) (-4 *3 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-824 *3)) (-4 *3 (-786)))) + ((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-1120 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-930)) + (-4 *2 (-973))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-687))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *3 (-589 (-523))) + (-5 *1 (-814))))) +(((*1 *1) (-5 *1 (-133))) ((*1 *2 *3) - (-12 (-5 *2 (-1081 (-382 (-522)))) (-5 *1 (-871)) (-5 *3 (-522))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-685))))) -(((*1 *2 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-305))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1166 *4)) (-5 *3 (-708)) (-4 *4 (-324)) - (-5 *1 (-492 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-5 *2 (-522))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-693))))) -(((*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-105)))) - ((*1 *2 *1) (-12 (-4 *1 (-125)) (-5 *2 (-708)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-522)) (-4 *1 (-348 *3)) (-4 *3 (-1120)) - (-4 *3 (-1014)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-348 *3)) (-4 *3 (-1120)) (-4 *3 (-1014)) - (-5 *2 (-522)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-348 *4)) (-4 *4 (-1120)) - (-5 *2 (-522)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-522)) (-5 *3 (-129)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-522))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-708)) (-4 *4 (-13 (-514) (-135))) - (-5 *1 (-1136 *4 *2)) (-4 *2 (-1142 *4))))) + (-12 (-5 *3 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-1047 (-203))) (-5 *1 (-240))))) +(((*1 *2 *2) (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-1169)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-1170))))) +(((*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1070)) (-5 *1 (-282))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)) + (-4 *2 (-406 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-147)) (-5 *2 (-1087)))) + ((*1 *1 *1) (-4 *1 (-147)))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-2 (|:| |deg| (-710)) (|:| -1992 *5)))) + (-4 *5 (-1144 *4)) (-4 *4 (-325)) (-5 *2 (-589 *5)) + (-5 *1 (-195 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-2 (|:| -1820 *5) (|:| -2299 (-523))))) + (-5 *4 (-523)) (-4 *5 (-1144 *4)) (-5 *2 (-589 *5)) + (-5 *1 (-635 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-962)) (-5 *1 (-776)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-292 (-355)))) (-5 *4 (-589 (-355))) + (-5 *2 (-962)) (-5 *1 (-776))))) +(((*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) + ((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-973))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) + (-5 *1 (-917 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) + (-5 *1 (-1023 *3 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) + (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-880 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-973)) (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) + (-4 *1 (-1144 *3))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1087)) (-5 *2 (-413)) (-5 *1 (-1091))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1085)) - (-4 *4 (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-515 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4)))))) -(((*1 *1) (-5 *1 (-412)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-382 *6)) (-4 *5 (-1124)) (-4 *6 (-1142 *5)) - (-5 *2 (-2 (|:| -3858 (-708)) (|:| -3112 *3) (|:| |radicand| *6))) - (-5 *1 (-136 *5 *6 *7)) (-5 *4 (-708)) (-4 *7 (-1142 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-708)) (-5 *2 (-108)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1121 *3)) (-4 *3 (-1014)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1014)) (-5 *2 (-108)) - (-5 *1 (-1121 *3))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-561 *3)) (-5 *5 (-1081 *3)) - (-4 *3 (-13 (-405 *6) (-27) (-1106))) - (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) - (-5 *2 (-2 (|:| -2585 *3) (|:| |coeff| *3))) - (-5 *1 (-518 *6 *3 *7)) (-4 *7 (-1014)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-561 *3)) (-5 *5 (-382 (-1081 *3))) - (-4 *3 (-13 (-405 *6) (-27) (-1106))) - (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) - (-5 *2 (-2 (|:| -2585 *3) (|:| |coeff| *3))) - (-5 *1 (-518 *6 *3 *7)) (-4 *7 (-1014))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-708)) (-5 *1 (-57 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-57 *3))))) + (-12 (-5 *2 (-1083 *6)) (-5 *3 (-523)) (-4 *6 (-284)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1087)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-589 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -2462 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1108) (-27) (-406 *8))) + (-4 *8 (-13 (-427) (-786) (-136) (-964 *3) (-585 *3))) + (-5 *3 (-523)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3159 *4) (|:| |sol?| (-108)))) + (-5 *1 (-941 *8 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *2) + (-12 (-5 *2 (-1173)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1016))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) + (-12 (-5 *3 (-629 *8)) (-4 *8 (-880 *5 *7 *6)) + (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) + (-4 *7 (-732)) (-5 *2 - (-2 (|:| |contp| (-522)) - (|:| -4045 (-588 (-2 (|:| |irr| *3) (|:| -4160 (-522))))))) - (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) + (-589 + (-2 (|:| -1319 (-710)) + (|:| |eqns| + (-589 + (-2 (|:| |det| *8) (|:| |rows| (-589 (-523))) + (|:| |cols| (-589 (-523)))))) + (|:| |fgb| (-589 *8))))) + (-5 *1 (-855 *5 *6 *7 *8)) (-5 *4 (-710))))) +(((*1 *2 *1) (-12 (-4 *1 (-325)) (-5 *2 (-710)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-378)) (-5 *2 (-710))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 *6)) (-5 *5 (-1 (-394 (-1083 *6)) (-1083 *6))) + (-4 *6 (-339)) (-5 *2 - (-2 (|:| |contp| (-522)) - (|:| -4045 (-588 (-2 (|:| |irr| *3) (|:| -4160 (-522))))))) - (-5 *1 (-1131 *3)) (-4 *3 (-1142 (-522)))))) + (-589 + (-2 (|:| |outval| *7) (|:| |outmult| (-523)) + (|:| |outvect| (-589 (-629 *7)))))) + (-5 *1 (-496 *6 *7 *4)) (-4 *7 (-339)) (-4 *4 (-13 (-339) (-784)))))) +(((*1 *2) + (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-393 *3))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4245)) (-4 *1 (-115 *2)) (-4 *2 (-1122))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1118 *3)) (-4 *3 (-903))))) (((*1 *1 *2) - (-12 (-5 *2 (-628 *5)) (-4 *5 (-971)) (-5 *1 (-975 *3 *4 *5)) - (-14 *3 (-708)) (-14 *4 (-708))))) -(((*1 *2 *3) (-12 (-5 *3 (-354)) (-5 *2 (-202)) (-5 *1 (-1169)))) - ((*1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-1169))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-561 *4)) (-5 *6 (-1085)) - (-4 *4 (-13 (-405 *7) (-27) (-1106))) - (-4 *7 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2905 (-588 *4)))) - (-5 *1 (-524 *7 *4 *3)) (-4 *3 (-598 *4)) (-4 *3 (-1014))))) -(((*1 *2 *3) (-12 - (-5 *3 - (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4) - (-224 *4 (-382 (-522))))) - (-14 *4 (-588 (-1085))) (-14 *5 (-708)) (-5 *2 (-108)) - (-5 *1 (-475 *4 *5))))) + (-5 *2 + (-589 + (-2 + (|:| -1853 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (|:| -2433 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1068 (-203))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3499 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-518))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-708)) (-4 *5 (-971)) (-4 *2 (-1142 *5)) - (-5 *1 (-1160 *5 *2 *6 *3)) (-4 *6 (-598 *2)) (-4 *3 (-1157 *5))))) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-267))) - ((*1 *1) (-5 *1 (-792))) - ((*1 *1) - (-12 (-4 *2 (-426)) (-4 *3 (-784)) (-4 *4 (-730)) - (-5 *1 (-914 *2 *3 *4 *5)) (-4 *5 (-878 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1001))) - ((*1 *1) - (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33))) - (-4 *3 (-13 (-1014) (-33))))) - ((*1 *1) (-5 *1 (-1088))) ((*1 *1) (-5 *1 (-1089)))) -(((*1 *1 *1) (-5 *1 (-202))) - ((*1 *1 *1) - (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) - (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) - ((*1 *1 *1) (-5 *1 (-354))) ((*1 *1) (-5 *1 (-354)))) -(((*1 *1 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-1120)) (-4 *2 (-784)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-348 *3)) (-4 *3 (-1120)))) - ((*1 *2 *2) - (-12 (-5 *2 (-588 (-834 *3))) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1144 (-523))) (-5 *1 (-459 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-874 (-203)) (-874 (-203)))) (-5 *1 (-240)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-305 *4)) (-4 *4 (-339)) + (-5 *2 (-629 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-1168 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) + (-5 *2 (-629 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) - (-4 *6 (-985 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3592 *1) (|:| |upper| *1))) - (-4 *1 (-903 *4 *5 *3 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-4 *3 (-1014)) - (-5 *2 (-108))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-850)) (-5 *4 (-393 *6)) (-4 *6 (-1142 *5)) - (-4 *5 (-971)) (-5 *2 (-588 *6)) (-5 *1 (-418 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-628 (-202))) (-5 *5 (-108)) (-5 *6 (-202)) - (-5 *7 (-628 (-522))) - (-5 *8 (-3 (|:| |fn| (-363)) (|:| |fp| (-78 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-363)) (|:| |fp| (-75 OBJFUN)))) - (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-691))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1139 *4 *5)) (-5 *3 (-588 *5)) (-14 *4 (-1085)) - (-4 *5 (-338)) (-5 *1 (-852 *4 *5)))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) + (-5 *2 (-1168 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-588 *5)) (-4 *5 (-338)) (-5 *2 (-1081 *5)) - (-5 *1 (-852 *4 *5)) (-14 *4 (-1085)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-588 *6)) (-5 *4 (-708)) (-4 *6 (-338)) - (-5 *2 (-382 (-881 *6))) (-5 *1 (-972 *5 *6)) (-14 *5 (-1085))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-758))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-708)) (-4 *2 (-1014)) - (-5 *1 (-618 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-332 *3)) (-4 *3 (-324))))) -(((*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-338)) (-5 *1 (-704 *2 *3)) (-4 *2 (-647 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-872 *5)) (-4 *5 (-971)) (-5 *2 (-708)) - (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 (-708))) (-5 *3 (-708)) (-5 *1 (-1074 *4 *5)) - (-14 *4 (-850)) (-4 *5 (-971)))) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) + (-4 *5 (-1144 *4)) (-5 *2 (-629 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-158)) + (-4 *5 (-1144 *4)) (-5 *2 (-1168 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-385 *4 *5)) (-4 *4 (-158)) + (-4 *5 (-1144 *4)) (-5 *2 (-629 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1144 *3)) + (-5 *2 (-1168 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-393 *4)) (-4 *4 (-158)) + (-5 *2 (-629 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-1168 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-629 *5))) (-5 *3 (-629 *5)) (-4 *5 (-339)) + (-5 *2 (-1168 *5)) (-5 *1 (-1004 *5))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-203) (-203) (-203))) + (-5 *4 (-3 (-1 (-203) (-203) (-203) (-203)) "undefined")) + (-5 *5 (-1011 (-203))) (-5 *6 (-589 (-240))) (-5 *2 (-1047 (-203))) + (-5 *1 (-636)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-203))) + (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-636)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1047 (-203))) (-5 *3 (-1 (-874 (-203)) (-203) (-203))) + (-5 *4 (-1011 (-203))) (-5 *5 (-589 (-240))) (-5 *1 (-636))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-758 *3)) (-4 *3 (-786))))) +(((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-973)) (-5 *1 (-419 *3 *2)) (-4 *2 (-1144 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-523)) (|has| *1 (-6 -4245)) (-4 *1 (-1156 *3)) + (-4 *3 (-1122))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1122)) (-5 *1 (-351 *4 *2)) + (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4245))))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-271 *2)) (-4 *2 (-666)) (-4 *2 (-1122))))) +(((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650))))) +(((*1 *2) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-279)) (-4 *2 (-1122)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 (-708))) (-5 *3 (-872 *5)) (-4 *5 (-971)) - (-5 *1 (-1074 *4 *5)) (-14 *4 (-850))))) + (-12 (-5 *2 (-589 (-562 *1))) (-5 *3 (-589 *1)) (-4 *1 (-279)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-271 *1))) (-4 *1 (-279)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-271 *1)) (-4 *1 (-279))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -3078 *3) (|:| |coef1| (-721 *3)) (|:| |coef2| (-721 *3)))) + (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1083 (-883 *6))) (-4 *6 (-515)) + (-4 *2 (-880 (-383 (-883 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) + (-4 *5 (-732)) + (-4 *4 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $)))))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-339)) (-5 *1 (-262 *3 *2)) (-4 *2 (-1159 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1168 (-3 (-443) "undefined"))) (-5 *1 (-1169))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-383 *6)) (-4 *5 (-1126)) (-4 *6 (-1144 *5)) + (-5 *2 (-2 (|:| -2735 (-710)) (|:| -2935 *3) (|:| |radicand| *6))) + (-5 *1 (-137 *5 *6 *7)) (-5 *4 (-710)) (-4 *7 (-1144 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-339)) (-5 *2 (-589 *3)) (-5 *1 (-876 *4 *3)) + (-4 *3 (-1144 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-794)))) + ((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1173)) (-5 *1 (-892))))) +(((*1 *2 *1) + (-12 (-5 *2 (-159 (-383 (-523)))) (-5 *1 (-113 *3)) (-14 *3 (-523)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1068 *2)) (-4 *2 (-284)) (-5 *1 (-159 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-383 *3)) (-4 *3 (-284)) (-5 *1 (-159 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-159 (-523))) (-5 *1 (-705 *3)) (-4 *3 (-380)))) + ((*1 *2 *1) + (-12 (-5 *2 (-159 (-383 (-523)))) (-5 *1 (-802 *3)) (-14 *3 (-523)))) + ((*1 *2 *1) + (-12 (-14 *3 (-523)) (-5 *2 (-159 (-383 (-523)))) + (-5 *1 (-803 *3 *4)) (-4 *4 (-800 *3))))) (((*1 *1 *1) - (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) - (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014))))) -(((*1 *2 *2) (-12 (-5 *2 (-708)) (-5 *1 (-419 *3)) (-4 *3 (-971)))) - ((*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-419 *3)) (-4 *3 (-971))))) + (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) + (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-292 *3)) (-4 *3 (-13 (-973) (-786))) + (-5 *1 (-201 *3 *4)) (-14 *4 (-589 (-1087)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) + (-4 *3 (-987 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) + (-5 *1 (-990 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) + (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) + (-4 *3 (-987 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) + (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1025 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) + (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1025 *5 *6 *7 *3))))) +(((*1 *1) (-5 *1 (-306)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-820 *4 *5)) (-5 *3 (-820 *4 *6)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-609 *5)) (-5 *1 (-816 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 (-1179 *4 *5 *6 *7))) + (-5 *1 (-1179 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-589 *9)) (-5 *4 (-1 (-108) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-987 *6 *7 *8)) (-4 *6 (-515)) + (-4 *7 (-732)) (-4 *8 (-786)) (-5 *2 (-589 (-1179 *6 *7 *8 *9))) + (-5 *1 (-1179 *6 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-589 (-589 *7))) + (-5 *1 (-423 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) + (-4 *7 (-786)) (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-589 (-589 *8))) + (-5 *1 (-423 *5 *6 *7 *8)) (-5 *3 (-589 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-133))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-589 (-257))) (-5 *1 (-257)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 (-1092))) (-5 *1 (-1092))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1190 *4 *2)) (-4 *1 (-350 *4 *2)) (-4 *4 (-786)) + (-4 *2 (-158)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-786)) (-4 *2 (-973)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-758 *4)) (-4 *1 (-1183 *4 *2)) (-4 *4 (-786)) + (-4 *2 (-973)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-973)) (-5 *1 (-1189 *2 *3)) (-4 *3 (-782))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848))))) (((*1 *2 *3) - (-12 (-5 *3 (-1085)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *4 *5 *6 *7)) - (-4 *4 (-563 (-498))) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-4 *7 (-1120))))) + (|partial| -12 (-5 *3 (-883 (-155 *4))) (-4 *4 (-158)) + (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-883 (-155 *5))) (-5 *4 (-852)) (-4 *5 (-158)) + (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 (-355))) + (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) + (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) + (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) + (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-383 (-883 (-155 *4)))) (-4 *4 (-515)) + (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-383 (-883 (-155 *5)))) (-5 *4 (-852)) + (-4 *5 (-515)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) + (-5 *1 (-724 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) + (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) + (-4 *5 (-786)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) + (-5 *1 (-724 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-292 (-155 *4))) (-4 *4 (-515)) (-4 *4 (-786)) + (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-292 (-155 *5))) (-5 *4 (-852)) (-4 *5 (-515)) + (-4 *5 (-786)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) + (-5 *1 (-724 *5))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) - (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) - (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) - (|:| |abserr| (-202)) (|:| |relerr| (-202)))) - (-5 *2 - (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) - (|:| |expense| (-354)) (|:| |accuracy| (-354)) - (|:| |intermediateResults| (-354)))) - (-5 *1 (-740))))) + (-12 (-4 *4 (-973)) (-4 *5 (-1144 *4)) (-5 *2 (-1 *6 (-589 *6))) + (-5 *1 (-1162 *4 *5 *3 *6)) (-4 *3 (-599 *5)) (-4 *6 (-1159 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-852)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-339)) (-14 *5 (-922 *3 *4))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108))))) -(((*1 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-305))))) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-721 *3)) (|:| |polden| *3) (|:| -3829 (-710)))) + (-5 *1 (-721 *3)) (-4 *3 (-973)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3829 (-710)))) + (-4 *1 (-987 *3 *4 *5))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-523)) (-5 *5 (-108)) (-5 *6 (-629 (-203))) + (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-695))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-881 (-382 (-522)))) (-5 *4 (-1085)) - (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-588 (-202))) (-5 *1 (-276))))) + (-12 (-5 *3 (-1083 *9)) (-5 *4 (-589 *7)) (-5 *5 (-589 (-589 *8))) + (-4 *7 (-786)) (-4 *8 (-284)) (-4 *9 (-880 *8 *6 *7)) (-4 *6 (-732)) + (-5 *2 + (-2 (|:| |upol| (-1083 *8)) (|:| |Lval| (-589 *8)) + (|:| |Lfact| + (-589 (-2 (|:| -1820 (-1083 *8)) (|:| -2735 (-523))))) + (|:| |ctpol| *8))) + (-5 *1 (-682 *6 *7 *8 *9))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-852)) (-4 *5 (-515)) (-5 *2 (-629 *5)) + (-5 *1 (-886 *5 *3)) (-4 *3 (-599 *5))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1087)) (-5 *3 (-410)) (-4 *5 (-786)) + (-5 *1 (-1022 *5 *4)) (-4 *4 (-406 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-797 *4 *5 *6 *7)) + (-4 *4 (-973)) (-14 *5 (-589 (-1087))) (-14 *6 (-589 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-710)) (-4 *4 (-973)) (-4 *5 (-786)) (-4 *6 (-732)) + (-14 *8 (-589 *5)) (-5 *2 (-1173)) + (-5 *1 (-1178 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-880 *4 *6 *5)) + (-14 *9 (-589 *3)) (-14 *10 *3)))) +(((*1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-21)) (-4 *2 (-1122))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-710)) (-5 *1 (-110))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) (((*1 *2 *3) - (-12 (-5 *3 (-291 (-202))) (-5 *2 (-291 (-382 (-522)))) - (-5 *1 (-281))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792))))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-732)) (-4 *2 (-880 *4 *5 *6)) (-5 *1 (-424 *4 *5 *6 *2)) + (-4 *4 (-427)) (-4 *6 (-786))))) +(((*1 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-344)) (-4 *2 (-1016))))) +(((*1 *1 *1) (-12 (-5 *1 (-558 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1) (-5 *1 (-578)))) (((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -2002 *6) (|:| |sol?| (-108))) (-522) - *6)) - (-4 *6 (-338)) (-4 *7 (-1142 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-382 *7)) (|:| |a0| *6)) - (-2 (|:| -2585 (-382 *7)) (|:| |coeff| (-382 *7))) "failed")) - (-5 *1 (-532 *6 *7)) (-5 *3 (-382 *7))))) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) + (-5 *2 (-962)) (-5 *1 (-692))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1047 (-203))) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-810 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) + (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) + (-5 *1 (-236 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-810 *5)) (-5 *4 (-1009 (-355))) + (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) + (-5 *1 (-236 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) + (-5 *2 (-1047 (-203))) (-5 *1 (-236 *3)) + (-4 *3 (-13 (-564 (-499)) (-1016))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1009 (-355))) (-5 *2 (-1047 (-203))) (-5 *1 (-236 *3)) + (-4 *3 (-13 (-564 (-499)) (-1016))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-813 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) + (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) + (-5 *1 (-236 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-813 *5)) (-5 *4 (-1009 (-355))) + (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1047 (-203))) + (-5 *1 (-236 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) - (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014))))) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-589 (-710))) (-5 *1 (-899 *4 *3)) + (-4 *3 (-1144 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) + ((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170))))) +(((*1 *1 *1 *1) (-5 *1 (-148))) + ((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-148))))) (((*1 *2 *1) - (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-5 *2 (-1068))))) -(((*1 *1) (-5 *1 (-999)))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4239)) (-4 *1 (-115 *2)) (-4 *2 (-1120))))) + (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) + (-5 *2 (-758 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-782)) (-5 *1 (-1189 *3 *2)) (-4 *3 (-973))))) +(((*1 *1) (-5 *1 (-133)))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-412))))) +(((*1 *2 *1) + (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-987 *3 *4 *2)) (-4 *2 (-786)))) + ((*1 *2 *1) + (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-629 *2)) (-5 *4 (-523)) + (-4 *2 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) + (-4 *5 (-1144 *2)) (-5 *1 (-470 *2 *5 *6)) (-4 *6 (-385 *2 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-240)))) + ((*1 *1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-240))))) +(((*1 *1) (-5 *1 (-144)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-110))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *3 *2)) + (-4 *2 (-13 (-27) (-1108) (-406 (-155 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-786) (-964 (-523)))) + (-5 *1 (-168 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 (-155 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-1112 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *4)))) + (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) (((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3))))) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-629 (-203))) (-5 *6 (-629 (-523))) (-5 *3 (-523)) + (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-692))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-588 - (-2 (|:| -1692 (-708)) - (|:| |eqns| - (-588 - (-2 (|:| |det| *7) (|:| |rows| (-588 (-522))) - (|:| |cols| (-588 (-522)))))) - (|:| |fgb| (-588 *7))))) - (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-283) (-135))) - (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-708)) - (-5 *1 (-853 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) - (-5 *2 (-960)) (-5 *1 (-689))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-628 *3)) (-4 *3 (-283)) (-5 *1 (-638 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-792)) (-5 *1 (-365 *3 *4 *5)) (-14 *3 (-708)) - (-14 *4 (-708)) (-4 *5 (-157))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) - (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) - (-5 *1 (-1084))))) + (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1126)) (-4 *3 (-1144 *4)) + (-4 *5 (-1144 (-383 *3))) (-5 *2 (-108)))) + ((*1 *2 *3) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-589 (-1087))) + (-5 *2 (-589 (-589 (-355)))) (-5 *1 (-950)) (-5 *5 (-355)))) + ((*1 *2 *3) + (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) + (-14 *5 (-589 (-1087))) (-5 *2 (-589 (-589 (-951 (-383 *4))))) + (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-589 (-1087))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1192 *5 *6 *7)) + (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1192 *5 *6 *7)) + (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1192 *5 *6 *7)) + (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-883 *4))) + (-4 *4 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-589 (-589 (-951 (-383 *4))))) (-5 *1 (-1192 *4 *5 *6)) + (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087)))))) +(((*1 *2 *1) (-12 (-5 *2 (-394 *3)) (-5 *1 (-845 *3)) (-4 *3 (-284))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-695))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-588 (-708))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) - (-4 *4 (-971))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1001))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-514)) - (-5 *2 (-2 (|:| -3450 *3) (|:| -4002 *3))) (-5 *1 (-1137 *4 *3)) - (-4 *3 (-1142 *4))))) -(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441)))) - ((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441)))) - ((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-442)) (-5 *4 (-850)) (-5 *2 (-1171)) (-5 *1 (-1167))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-514)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2908 *4))) - (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4))))) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-962))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-514) (-784))) - (-4 *2 (-13 (-405 *4) (-928) (-1106))) (-5 *1 (-551 *4 *2 *3)) - (-4 *3 (-13 (-405 (-154 *4)) (-928) (-1106)))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-588 *3)) (-5 *5 (-850)) (-4 *3 (-1142 *4)) - (-4 *4 (-283)) (-5 *1 (-434 *4 *3))))) -(((*1 *1 *2 *2) (-12 - (-5 *2 - (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) - (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) - (-5 *1 (-1084))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) - (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-76 FUNCTN)))) - (-5 *2 (-960)) (-5 *1 (-686))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-5 *1 (-305))))) + (-5 *3 + (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) + (-225 *4 (-383 (-523))))) + (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *2 (-108)) + (-5 *1 (-476 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-850)) - (-5 *2 - (-3 (-1081 *4) - (-1166 (-588 (-2 (|:| -3526 *4) (|:| -2882 (-1032))))))) - (-5 *1 (-321 *4)) (-4 *4 (-324))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-426)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-423 *4 *5 *6 *2))))) + (-12 (-5 *3 (-1141 *5 *4)) (-4 *4 (-759)) (-14 *5 (-1087)) + (-5 *2 (-523)) (-5 *1 (-1030 *4 *5))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + ((*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087))))) +(((*1 *2 *3) + (-12 (-4 *4 (-840)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-394 (-1083 *7))) + (-5 *1 (-837 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-840)) (-4 *5 (-1144 *4)) (-5 *2 (-394 (-1083 *5))) + (-5 *1 (-838 *4 *5)) (-5 *3 (-1083 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-589 *7)) (-5 *3 (-108)) (-4 *7 (-987 *4 *5 *6)) + (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *1 (-906 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *2 (-878 *3 *5 *4)) (-5 *1 (-914 *3 *4 *5 *2)) - (-4 *3 (-426)) (-4 *4 (-784)) (-4 *5 (-730))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-856))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-832 *3)) (-4 *3 (-1014)) (-5 *2 (-1016 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1014)) (-5 *2 (-1016 (-588 *4))) (-5 *1 (-833 *4)) - (-5 *3 (-588 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1014)) (-5 *2 (-1016 (-1016 *4))) (-5 *1 (-833 *4)) - (-5 *3 (-1016 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1016 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1014))))) + (-12 (-5 *2 (-383 (-523))) (-5 *1 (-295 *3 *4 *5)) + (-4 *3 (-13 (-339) (-786))) (-14 *4 (-1087)) (-14 *5 *3)))) +(((*1 *2 *1) + (-12 (-5 *2 (-804 (-896 *3) (-896 *3))) (-5 *1 (-896 *3)) + (-4 *3 (-897))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-2 (|:| |val| (-588 *8)) (|:| -1974 *9)))) - (-5 *4 (-708)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-990 *5 *6 *7 *8)) - (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-1171)) - (-5 *1 (-988 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-2 (|:| |val| (-588 *8)) (|:| -1974 *9)))) - (-5 *4 (-708)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-1023 *5 *6 *7 *8)) - (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-1171)) - (-5 *1 (-1055 *5 *6 *7 *8 *9))))) -(((*1 *1 *2 *2) - (-12 + (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) + (-14 *6 (-589 (-1087))) (-5 *2 (-589 (-970 *5 *6))) + (-5 *1 (-574 *5 *6))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) + (-5 *2 (-962)) (-5 *1 (-687))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-155 (-203)) (-155 (-203)))) (-5 *4 (-1011 (-203))) + (-5 *2 (-1170)) (-5 *1 (-234))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-203) (-203))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1169)) (-5 *1 (-232)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-203) (-203))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1169)) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-808 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1169)) (-5 *1 (-232)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-808 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1169)) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-810 (-1 (-203) (-203)))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1170)) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-874 (-203)) (-203))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1170)) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-203) (-203) (-203))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1170)) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-874 (-203)) (-203) (-203))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1170)) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) + (-5 *5 (-589 (-240))) (-5 *2 (-1170)) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-813 (-1 (-203) (-203) (-203)))) (-5 *4 (-1011 (-355))) + (-5 *2 (-1170)) (-5 *1 (-232)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-271 *7)) (-5 *4 (-1087)) (-5 *5 (-589 (-240))) + (-4 *7 (-406 *6)) (-4 *6 (-13 (-515) (-786) (-964 (-523)))) + (-5 *2 (-1169)) (-5 *1 (-233 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1169)) + (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1009 (-355))) (-5 *2 (-1169)) (-5 *1 (-236 *3)) + (-4 *3 (-13 (-564 (-499)) (-1016))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-808 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) + (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1169)) + (-5 *1 (-236 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-808 *5)) (-5 *4 (-1009 (-355))) + (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1169)) + (-5 *1 (-236 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-810 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) + (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1170)) + (-5 *1 (-236 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-810 *5)) (-5 *4 (-1009 (-355))) + (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1170)) + (-5 *1 (-236 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) (-5 *2 (-1170)) + (-5 *1 (-236 *3)) (-4 *3 (-13 (-564 (-499)) (-1016))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1009 (-355))) (-5 *2 (-1170)) (-5 *1 (-236 *3)) + (-4 *3 (-13 (-564 (-499)) (-1016))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-813 *6)) (-5 *4 (-1009 (-355))) (-5 *5 (-589 (-240))) + (-4 *6 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1170)) + (-5 *1 (-236 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-813 *5)) (-5 *4 (-1009 (-355))) + (-4 *5 (-13 (-564 (-499)) (-1016))) (-5 *2 (-1170)) + (-5 *1 (-236 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-589 (-203))) (-5 *2 (-1169)) (-5 *1 (-237)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-589 (-203))) (-5 *4 (-589 (-240))) (-5 *2 (-1169)) + (-5 *1 (-237)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-874 (-203)))) (-5 *2 (-1169)) (-5 *1 (-237)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-874 (-203)))) (-5 *4 (-589 (-240))) + (-5 *2 (-1169)) (-5 *1 (-237)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-589 (-203))) (-5 *2 (-1170)) (-5 *1 (-237)))) + ((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-589 (-203))) (-5 *4 (-589 (-240))) (-5 *2 (-1170)) + (-5 *1 (-237))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-523)) (-4 *2 (-406 *3)) (-5 *1 (-31 *3 *2)) + (-4 *3 (-964 *4)) (-4 *3 (-13 (-786) (-515)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 - (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) - (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) - (-5 *1 (-1084))))) + (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) + (|:| |success| (-108)))) + (-5 *1 (-728)) (-5 *5 (-523))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-786) (-515) (-964 (-523)))) (-5 *2 (-1173)) + (-5 *1 (-409 *3 *4)) (-4 *4 (-406 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-130)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-133))))) +(((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-51))))) +(((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-355))))) (((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014)) - (-4 *4 (-1014))))) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) + (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *3 (-987 *4 *5 *6)) + (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *1)))) + (-4 *1 (-992 *4 *5 *6 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-971)) (-4 *3 (-784)) - (-5 *2 (-2 (|:| |val| *1) (|:| -3858 (-522)))) (-4 *1 (-405 *3)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-821 *3)) (|:| -3858 (-821 *3)))) - (-5 *1 (-821 *3)) (-4 *3 (-1014)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) - (-4 *7 (-878 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -3858 (-522)))) - (-5 *1 (-879 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-338) - (-10 -8 (-15 -2217 ($ *7)) (-15 -2947 (*7 $)) - (-15 -2959 (*7 $)))))))) -(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729)))) - ((*1 *1 *1) - (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-971)) (-14 *3 (-588 (-1085))))) - ((*1 *1 *1) - (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-971) (-784))) - (-14 *3 (-588 (-1085))))) - ((*1 *1 *1) (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-971)) (-4 *3 (-1014)))) + (-12 (-4 *2 (-1016)) (-5 *1 (-894 *2 *3)) (-4 *3 (-1016))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-589 *1)) (-4 *1 (-279)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) + ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-110)) (-5 *3 (-589 *5)) (-5 *4 (-710)) (-4 *5 (-786)) + (-5 *1 (-562 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122)))) ((*1 *1 *1) - (-12 (-14 *2 (-588 (-1085))) (-4 *3 (-157)) - (-4 *5 (-215 (-3591 *2) (-708))) - (-14 *6 - (-1 (-108) (-2 (|:| -2882 *4) (|:| -3858 *5)) - (-2 (|:| -2882 *4) (|:| -3858 *5)))) - (-5 *1 (-435 *2 *3 *4 *5 *6 *7)) (-4 *4 (-784)) - (-4 *7 (-878 *3 *5 (-794 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-784)))) + (-12 (|has| *1 (-6 -4245)) (-4 *1 (-349 *2)) (-4 *2 (-1122)))) ((*1 *1 *1) - (-12 (-4 *2 (-514)) (-5 *1 (-569 *2 *3)) (-4 *3 (-1142 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-971)))) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-710)) (-5 *2 (-108)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1123 *3)) (-4 *3 (-1016)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1016)) (-5 *2 (-108)) + (-5 *1 (-1123 *3))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-589 + (-589 + (-3 (|:| -4038 (-1087)) + (|:| |bounds| (-589 (-3 (|:| S (-1087)) (|:| P (-883 (-523)))))))))) + (-5 *1 (-1091))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1018 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1018 *3)) (-5 *1 (-836 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1122)) + (-4 *4 (-349 *2)) (-4 *5 (-349 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4245)) (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) + (-4 *2 (-1122))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-710)) (-4 *1 (-209 *4)) + (-4 *4 (-973)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-209 *3)) (-4 *3 (-973)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-211)) (-5 *2 (-710)))) + ((*1 *1 *1) (-4 *1 (-211))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *4)) + (-4 *4 (-1144 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-673 *2 *3)) (-4 *3 (-784)) (-4 *2 (-971)) - (-4 *3 (-664)))) - ((*1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)))) + (-12 (-4 *2 (-13 (-339) (-136))) (-5 *1 (-375 *2 *3)) + (-4 *3 (-1144 *2)))) + ((*1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 *4)) (-5 *3 (-589 (-710))) (-4 *1 (-831 *4)) + (-4 *4 (-1016)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-831 *2)) (-4 *2 (-1016)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *2 (-784)))) - ((*1 *1 *1) (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-971)) (-4 *3 (-780))))) -(((*1 *2 *2) (-12 (-5 *2 (-291 (-202))) (-5 *1 (-189))))) + (-12 (-5 *2 (-589 *3)) (-4 *1 (-831 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1016))))) (((*1 *2 *3) - (-12 (-5 *3 (-588 *5)) (-4 *5 (-405 *4)) (-4 *4 (-13 (-784) (-514))) - (-5 *2 (-792)) (-5 *1 (-31 *4 *5))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 (-821 *6))) - (-5 *5 (-1 (-818 *6 *8) *8 (-821 *6) (-818 *6 *8))) (-4 *6 (-1014)) - (-4 *8 (-13 (-971) (-563 (-821 *6)) (-962 *7))) (-5 *2 (-818 *6 *8)) - (-4 *7 (-13 (-971) (-784))) (-5 *1 (-870 *6 *7 *8))))) + (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-786)) (-4 *3 (-1016))))) +(((*1 *2) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-5 *2 (-629 (-383 *4)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-1168 (-629 *4))) (-5 *1 (-88 *4 *5)) + (-5 *3 (-629 *4)) (-4 *5 (-599 *4))))) +(((*1 *1 *1) (-4 *1 (-1056)))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-72 FCN)))) (-5 *2 (-962)) + (-5 *1 (-686))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-471 *2)) (-14 *2 (-523)))) + ((*1 *1 *1 *1) (-5 *1 (-1034)))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-1144 *4)) (-4 *4 (-973)) + (-5 *2 (-1168 *4))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-927 *3)) (-4 *3 (-158)) (-5 *1 (-738 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4245)) (-4 *1 (-462 *3)) + (-4 *3 (-1122))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1168 *1)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) + (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4)))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1081 *3)) (-5 *1 (-843 *3)) (-4 *3 (-283))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-588 (-1085))) (-4 *4 (-1014)) - (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4)))) - (-5 *1 (-53 *4 *5 *2)) - (-4 *2 (-13 (-405 *5) (-815 *4) (-563 (-821 *4))))))) -(((*1 *1 *2 *2) + (-12 (-5 *3 (-1168 *5)) (-4 *5 (-731)) (-5 *2 (-108)) + (-5 *1 (-781 *4 *5)) (-14 *4 (-710))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-2 (|:| -1820 (-1083 *6)) (|:| -2735 (-523))))) + (-4 *6 (-284)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-523)) + (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-523)) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-594 *2)) (-4 *2 (-1122))))) +(((*1 *2 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) - (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) - (-5 *1 (-1084))))) -(((*1 *1) (-5 *1 (-760)))) + (-589 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-710)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-732)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) (-4 *5 (-786)) + (-5 *1 (-424 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) + ((*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-471 *2)) (-14 *2 (-523)))) + ((*1 *1 *1 *1) (-5 *1 (-1034)))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1085)) (-5 *4 (-881 (-522))) (-5 *2 (-305)) - (-5 *1 (-307)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1085)) (-5 *4 (-1007 (-881 (-522)))) (-5 *2 (-305)) - (-5 *1 (-307)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-708)) (-5 *1 (-616 *3)) (-4 *3 (-971)) (-4 *3 (-1014))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1159 *4)) (-5 *1 (-1161 *4 *2)) + (-4 *4 (-37 (-383 (-523))))))) +(((*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-1011 (-203)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-1091))))) +(((*1 *2 *1) (-12 (-4 *3 (-973)) (-5 *2 (-589 *1)) (-4 *1 (-1048 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1122)) + (-4 *5 (-1122)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-218 *6 *7)) (-14 *6 (-710)) + (-4 *7 (-1122)) (-4 *5 (-1122)) (-5 *2 (-218 *6 *5)) + (-5 *1 (-217 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1122)) (-4 *5 (-1122)) + (-4 *2 (-349 *5)) (-5 *1 (-347 *6 *4 *5 *2)) (-4 *4 (-349 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1016)) (-4 *5 (-1016)) + (-4 *2 (-401 *5)) (-5 *1 (-399 *6 *4 *5 *2)) (-4 *4 (-401 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-589 *6)) (-4 *6 (-1122)) + (-4 *5 (-1122)) (-5 *2 (-589 *5)) (-5 *1 (-587 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-888 *6)) (-4 *6 (-1122)) + (-4 *5 (-1122)) (-5 *2 (-888 *5)) (-5 *1 (-887 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1068 *6)) (-4 *6 (-1122)) + (-4 *3 (-1122)) (-5 *2 (-1068 *3)) (-5 *1 (-1066 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1168 *6)) (-4 *6 (-1122)) + (-4 *5 (-1122)) (-5 *2 (-1168 *5)) (-5 *1 (-1167 *6 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1)) - (-4 *1 (-878 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-693))))) + (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) + (-4 *5 (-216 (-2676 *3) (-710))) + (-14 *6 + (-1 (-108) (-2 (|:| -3878 *2) (|:| -2735 *5)) + (-2 (|:| -3878 *2) (|:| -2735 *5)))) + (-4 *2 (-786)) (-5 *1 (-436 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-880 *4 *5 (-796 *3)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) - (-5 *2 (-588 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1142 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) - (-5 *2 (-588 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1142 *3))))) + (-12 (-5 *3 (-1168 (-292 (-203)))) (-5 *2 (-1168 (-292 (-355)))) + (-5 *1 (-282))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1068)) (-5 *3 (-522)) (-5 *1 (-983))))) -(((*1 *2) - (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-392 *3))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) - (-5 *2 (-960)) (-5 *1 (-689))))) -(((*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-338)) (-4 *1 (-304 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1142 *4)) (-4 *4 (-1124)) - (-4 *1 (-317 *4 *3 *5)) (-4 *5 (-1142 (-382 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1166 *4)) (-5 *3 (-1166 *1)) (-4 *4 (-157)) - (-4 *1 (-342 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1166 *4)) (-5 *3 (-1166 *1)) (-4 *4 (-157)) - (-4 *1 (-345 *4 *5)) (-4 *5 (-1142 *4)))) + (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3))))) +(((*1 *2) (-12 (-5 *2 (-772 (-523))) (-5 *1 (-497)))) + ((*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1016))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1070)) (-5 *4 (-1034)) (-5 *2 (-108)) (-5 *1 (-760))))) +(((*1 *2 *1) (-12 (-4 *1 (-885)) (-5 *2 (-1011 (-203))))) + ((*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-1011 (-203)))))) +(((*1 *2 *2) (-12 (-5 *2 (-589 (-629 (-292 (-523))))) (-5 *1 (-958))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1087))))) +(((*1 *2 *2) + (-12 (-4 *3 (-427)) (-4 *3 (-786)) (-4 *3 (-964 (-523))) + (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) + (-4 *2 + (-13 (-339) (-279) + (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) + (-15 -2797 ((-1039 *3 (-562 $)) $)) + (-15 -1458 ($ (-1039 *3 (-562 $)))))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-418 *4 *3 *5)) + (-4 *3 (-1144 *4)) + (-4 *5 (-13 (-380) (-964 *4) (-339) (-1108) (-261)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1122)) (-5 *1 (-1046 *4 *2)) + (-4 *2 (-13 (-556 (-523) *4) (-10 -7 (-6 -4244) (-6 -4245)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-786)) (-4 *3 (-1122)) (-5 *1 (-1046 *3 *2)) + (-4 *2 (-13 (-556 (-523) *3) (-10 -7 (-6 -4244) (-6 -4245))))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-1 (-1068 (-883 *4)) (-1068 (-883 *4)))) + (-5 *1 (-1176 *4)) (-4 *4 (-339))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1173)) (-5 *1 (-193 *4)) + (-4 *4 + (-13 (-786) + (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 (*2 $)) + (-15 -2823 (*2 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1173)) (-5 *1 (-193 *3)) + (-4 *3 + (-13 (-786) + (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 (*2 $)) + (-15 -2823 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-473))))) +(((*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-203)) (-5 *1 (-282))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-710)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1166 *3)) (-4 *3 (-157)) (-4 *1 (-384 *3 *4)) - (-4 *4 (-1142 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-157)) (-4 *1 (-392 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971)))) + (-12 (-5 *2 (-710)) (-4 *1 (-1166 *3)) (-4 *3 (-23)) (-4 *3 (-1122))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-406 *3) (-930))) (-5 *1 (-253 *3 *2)) + (-4 *3 (-13 (-786) (-515))))) + ((*1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *1) (-5 *1 (-452))) ((*1 *1) (-4 *1 (-1108)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-508)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1020)) (-5 *3 (-713)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-4 *1 (-885)) (-5 *2 (-1011 (-203))))) + ((*1 *2 *1) (-12 (-4 *1 (-903)) (-5 *2 (-1011 (-203)))))) +(((*1 *1 *1) (-4 *1 (-800 *2)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) + (-5 *2 (-2 (|:| -2935 *4) (|:| -3445 *3) (|:| -3282 *3))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-987 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-515)) (-4 *3 (-973)) + (-5 *2 (-2 (|:| -2935 *3) (|:| -3445 *1) (|:| -3282 *1))) + (-4 *1 (-1144 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-779 (-355))) (-5 *2 (-779 (-203))) (-5 *1 (-282))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-710)))) ((*1 *2 *1) - (-12 (-4 *2 (-971)) (-5 *1 (-49 *2 *3)) (-14 *3 (-588 (-1085))))) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-710))))) +(((*1 *2 *3) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-520)) (-5 *3 (-523))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) + (-5 *2 (-589 (-589 (-589 (-874 *3)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-589 *5)) (-4 *5 (-1144 *3)) (-4 *3 (-284)) + (-5 *2 (-108)) (-5 *1 (-430 *3 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-413))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-562 *4)) (-4 *4 (-786)) (-4 *2 (-786)) + (-5 *1 (-561 *2 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-108)) + (-5 *6 (-203)) (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-66 APROD)))) + (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-71 MSOLVE)))) + (-5 *2 (-962)) (-5 *1 (-696))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) + (-5 *2 (-2 (|:| |radicand| (-383 *5)) (|:| |deg| (-710)))) + (-5 *1 (-137 *4 *5 *3)) (-4 *3 (-1144 (-383 *5)))))) +(((*1 *2) + (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) + (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) + (-5 *1 (-993 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) + (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) + (-5 *1 (-1024 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-710)))) ((*1 *2 *1) - (-12 (-5 *2 (-291 *3)) (-5 *1 (-200 *3 *4)) - (-4 *3 (-13 (-971) (-784))) (-14 *4 (-588 (-1085))))) - ((*1 *2 *1) (-12 (-4 *1 (-357 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-971)))) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-710))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1070)) (-5 *5 (-629 (-203))) (-5 *6 (-203)) + (-5 *7 (-629 (-523))) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-692))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1100 *4 *5)) + (-4 *4 (-1016)) (-4 *5 (-1016))))) +(((*1 *2 *1) + (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-987 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-383 (-523)))) + (-5 *2 + (-589 + (-2 (|:| |outval| *4) (|:| |outmult| (-523)) + (|:| |outvect| (-589 (-629 *4)))))) + (-5 *1 (-718 *4)) (-4 *4 (-13 (-339) (-784)))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-710)) (-4 *4 (-973)) (-5 *1 (-1140 *4 *2)) + (-4 *2 (-1144 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-47)))) (-5 *1 (-47)))) ((*1 *2 *1) - (-12 (-14 *3 (-588 (-1085))) (-4 *5 (-215 (-3591 *3) (-708))) - (-14 *6 - (-1 (-108) (-2 (|:| -2882 *4) (|:| -3858 *5)) - (-2 (|:| -2882 *4) (|:| -3858 *5)))) - (-4 *2 (-157)) (-5 *1 (-435 *3 *2 *4 *5 *6 *7)) (-4 *4 (-784)) - (-4 *7 (-878 *2 *5 (-794 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *3 (-784)) (-4 *2 (-1014)))) + (-12 (-4 *3 (-921 *2)) (-4 *4 (-1144 *3)) (-4 *2 (-284)) + (-5 *1 (-389 *2 *3 *4 *5)) (-4 *5 (-13 (-385 *3 *4) (-964 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-514)) (-5 *1 (-569 *2 *3)) (-4 *3 (-1142 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-971)))) + (-12 (-4 *3 (-515)) (-4 *3 (-786)) (-5 *2 (-1039 *3 (-562 *1))) + (-4 *1 (-406 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-466)))) (-5 *1 (-466)))) ((*1 *2 *1) - (-12 (-4 *2 (-971)) (-5 *1 (-673 *2 *3)) (-4 *3 (-784)) - (-4 *3 (-664)))) - ((*1 *2 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)))) + (-12 (-4 *4 (-158)) (-4 *2 (|SubsetCategory| (-666) *4)) + (-5 *1 (-568 *3 *4 *2)) (-4 *3 (-37 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-900 *2 *3 *4)) (-4 *3 (-729)) (-4 *4 (-784)) - (-4 *2 (-971)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *2 (-784))))) + (-12 (-4 *4 (-158)) (-4 *2 (|SubsetCategory| (-666) *4)) + (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-657 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-973)) (-5 *1 (-1140 *3 *2)) (-4 *2 (-1144 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-349 *2)) + (-4 *5 (-349 *2)) (-4 *2 (-1122)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1122)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *2 *6 *7)) + (-4 *6 (-216 *5 *2)) (-4 *7 (-216 *4 *2)) (-4 *2 (-973))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-1118 *3)) + (-4 *3 (-903))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4244)) (-4 *1 (-462 *3)) (-4 *3 (-1122)) + (-4 *3 (-1016)) (-5 *2 (-710)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4244)) (-4 *1 (-462 *4)) + (-4 *4 (-1122)) (-5 *2 (-710))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-589 (-455 *4 *5))) (-5 *3 (-589 (-796 *4))) + (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *1 (-446 *4 *5 *6)) + (-4 *6 (-427))))) +(((*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-292 (-355))) (-5 *1 (-282))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-203)) (-5 *3 (-710)) (-5 *1 (-204)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-155 (-203))) (-5 *3 (-710)) (-5 *1 (-204)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) + (-5 *2 (-629 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) - (-4 *3 (-13 (-338) (-1106) (-928))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1124)) (-4 *5 (-1142 (-382 *2))) - (-4 *2 (-1142 *4)) (-5 *1 (-316 *3 *4 *2 *5)) - (-4 *3 (-317 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-317 *3 *2 *4)) (-4 *3 (-1124)) - (-4 *4 (-1142 (-382 *2))) (-4 *2 (-1142 *3))))) + (-12 + (-5 *3 + (-589 + (-2 (|:| -1319 (-710)) + (|:| |eqns| + (-589 + (-2 (|:| |det| *7) (|:| |rows| (-589 (-523))) + (|:| |cols| (-589 (-523)))))) + (|:| |fgb| (-589 *7))))) + (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) + (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-710)) + (-5 *1 (-855 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1141 *5 *4)) (-4 *4 (-427)) (-4 *4 (-759)) + (-14 *5 (-1087)) (-5 *2 (-523)) (-5 *1 (-1030 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-47)))) (-5 *1 (-47)))) + ((*1 *2 *1) + (-12 (-4 *3 (-284)) (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) + (-5 *2 (-1168 *6)) (-5 *1 (-389 *3 *4 *5 *6)) + (-4 *6 (-13 (-385 *4 *5) (-964 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-973)) (-4 *3 (-786)) (-5 *2 (-1039 *3 (-562 *1))) + (-4 *1 (-406 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039 (-523) (-562 (-466)))) (-5 *1 (-466)))) + ((*1 *2 *1) + (-12 (-4 *3 (-158)) (-4 *2 (-37 *3)) (-5 *1 (-568 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-666) *3)))) + ((*1 *2 *1) + (-12 (-4 *3 (-158)) (-4 *2 (-657 *3)) (-5 *1 (-605 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-666) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515))))) +(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1090)))) + ((*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090))))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-203)))) + ((*1 *1 *1) (-4 *1 (-508))) + ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-546 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-4 *1 (-1016)) (-5 *2 (-1034))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-355)) (-5 *1 (-985))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1144 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *2 (-589 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1144 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1083 *2)) (-4 *2 (-880 (-383 (-883 *6)) *5 *4)) + (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-732)) + (-4 *4 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))) + (-4 *6 (-515))))) (((*1 *2) - (-12 (-14 *4 (-708)) (-4 *5 (-1120)) (-5 *2 (-126)) - (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5)))) + (|partial| -12 (-4 *4 (-1126)) (-4 *5 (-1144 (-383 *2))) + (-4 *2 (-1144 *4)) (-5 *1 (-317 *3 *4 *2 *5)) + (-4 *3 (-318 *4 *2 *5)))) ((*1 *2) - (-12 (-4 *4 (-338)) (-5 *2 (-126)) (-5 *1 (-303 *3 *4)) - (-4 *3 (-304 *4)))) - ((*1 *2) - (-12 (-5 *2 (-708)) (-5 *1 (-365 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-157)))) - ((*1 *2 *1) - (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-522)) - (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-588 *6)) (-4 *6 (-784)) (-4 *4 (-338)) (-4 *5 (-730)) - (-5 *2 (-522)) (-5 *1 (-474 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-907 *3)) (-4 *3 (-971)) (-5 *2 (-850)))) - ((*1 *2) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-338)) (-5 *2 (-126))))) + (|partial| -12 (-4 *1 (-318 *3 *2 *4)) (-4 *3 (-1126)) + (-4 *4 (-1144 (-383 *2))) (-4 *2 (-1144 *3))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-629 *11)) (-5 *4 (-589 (-383 (-883 *8)))) + (-5 *5 (-710)) (-5 *6 (-1070)) (-4 *8 (-13 (-284) (-136))) + (-4 *11 (-880 *8 *10 *9)) (-4 *9 (-13 (-786) (-564 (-1087)))) + (-4 *10 (-732)) + (-5 *2 + (-2 + (|:| |rgl| + (-589 + (-2 (|:| |eqzro| (-589 *11)) (|:| |neqzro| (-589 *11)) + (|:| |wcond| (-589 (-883 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1168 (-383 (-883 *8)))) + (|:| -4041 (-589 (-1168 (-383 (-883 *8)))))))))) + (|:| |rgsz| (-523)))) + (-5 *1 (-855 *8 *9 *10 *11)) (-5 *7 (-523))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-560 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-4 *1 (-737)) + (-12 (-5 *3 - (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) - (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) - (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) - (|:| |abserr| (-202)) (|:| |relerr| (-202)))) - (-5 *2 (-960))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1085)) - (-4 *4 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-568 *4 *2)) (-4 *2 (-13 (-1106) (-887) (-29 *4)))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) - (-5 *2 (-960)) (-5 *1 (-688))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-588 *7)) (-5 *3 (-522)) (-4 *7 (-878 *4 *5 *6)) - (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-5 *1 (-423 *4 *5 *6 *7))))) + (-589 + (-2 (|:| -1319 (-710)) + (|:| |eqns| + (-589 + (-2 (|:| |det| *7) (|:| |rows| (-589 (-523))) + (|:| |cols| (-589 (-523)))))) + (|:| |fgb| (-589 *7))))) + (-4 *7 (-880 *4 *6 *5)) (-4 *4 (-13 (-284) (-136))) + (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-710)) + (-5 *1 (-855 *4 *5 *6 *7))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204))))) +(((*1 *2 *1) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108)))))) (((*1 *2 *1) - (-12 (-5 *2 (-156)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) - (-4 *4 (-971))))) -(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729)))) - ((*1 *2 *1) (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1014)))) + (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *6)) + (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) ((*1 *2 *1) - (-12 (-14 *3 (-588 (-1085))) (-4 *4 (-157)) - (-4 *6 (-215 (-3591 *3) (-708))) - (-14 *7 - (-1 (-108) (-2 (|:| -2882 *5) (|:| -3858 *6)) - (-2 (|:| -2882 *5) (|:| -3858 *6)))) - (-5 *2 (-651 *5 *6 *7)) (-5 *1 (-435 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-784)) (-4 *8 (-878 *4 *6 (-794 *3))))) - ((*1 *2 *1) - (-12 (-4 *2 (-664)) (-4 *2 (-784)) (-5 *1 (-673 *3 *2)) - (-4 *3 (-971)))) - ((*1 *1 *1) - (-12 (-4 *1 (-900 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-729)) - (-4 *4 (-784))))) -(((*1 *1 *2) - (-12 (-5 *2 (-588 *1)) (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *5)) - (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-588 *3)) (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *5)) - (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-971)) (-5 *1 (-628 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-588 *4)) (-4 *4 (-971)) (-4 *1 (-1035 *3 *4 *5 *6)) - (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *3 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2308 (-719 *3)) (|:| |coef2| (-719 *3)))) - (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *2 (-2 (|:| -2308 *1) (|:| |coef2| *1))) - (-4 *1 (-985 *3 *4 *5))))) + (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1173)) + (-5 *1 (-424 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-589 *6)) (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) + (-4 *3 (-515))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-588 *8)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-522)) - (-14 *6 (-708)) (-4 *7 (-157)) (-4 *8 (-157)) - (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) + (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) + (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 *9)) (-4 *9 (-971)) (-4 *5 (-784)) (-4 *6 (-730)) - (-4 *8 (-971)) (-4 *2 (-878 *9 *7 *5)) - (-5 *1 (-666 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-730)) - (-4 *4 (-878 *8 *6 *5))))) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) + (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) + (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-523) "failed") *5)) (-4 *5 (-973)) + (-5 *2 (-523)) (-5 *1 (-506 *5 *3)) (-4 *3 (-1144 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-523) "failed") *4)) (-4 *4 (-973)) + (-5 *2 (-523)) (-5 *1 (-506 *4 *3)) (-4 *3 (-1144 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-523) "failed") *4)) (-4 *4 (-973)) + (-5 *2 (-523)) (-5 *1 (-506 *4 *3)) (-4 *3 (-1144 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-325)) (-5 *2 (-108)) (-5 *1 (-195 *4 *3)) + (-4 *3 (-1144 *4))))) +(((*1 *1) (-12 (-4 *1 (-440 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-499))) ((*1 *1) (-4 *1 (-662))) + ((*1 *1) (-4 *1 (-666))) + ((*1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) + ((*1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-786))))) (((*1 *2 *1) - (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) - (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) + (-12 (-4 *1 (-634 *3)) (-4 *3 (-1016)) + (-5 *2 (-589 (-2 (|:| -2433 *3) (|:| -2792 (-710)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-1144 *4)) (-5 *1 (-502 *4 *2 *5 *6)) + (-4 *4 (-284)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-710)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1144 *4)) (-4 *4 (-1126)) + (-4 *1 (-318 *4 *3 *5)) (-4 *5 (-1144 (-383 *3)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-786)) (-5 *4 (-589 *6)) + (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-589 *4)))) + (-5 *1 (-1094 *6)) (-5 *5 (-589 *4))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-696))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1068 (-203))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3499 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-962)) (-5 *1 (-282))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) + (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-499))) + ((*1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-710) *2)) (-5 *4 (-710)) (-4 *2 (-1016)) + (-5 *1 (-619 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-710) *3)) (-4 *3 (-1016)) (-5 *1 (-622 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1168 (-1168 (-523)))) (-5 *3 (-852)) (-5 *1 (-441))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1135 (-523))) (-4 *1 (-259 *3)) (-4 *3 (-1122)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-259 *3)) (-4 *3 (-1122))))) +(((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-1003))) (-5 *1 (-268))))) +(((*1 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-344)) (-4 *2 (-339))))) +(((*1 *2 *1) + (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-987 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-962)) (-5 *3 (-1087)) (-5 *1 (-244))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) + (-4 *4 (-13 (-786) (-515)))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) + (-5 *1 (-993 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) + (-5 *1 (-1024 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) +(((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| -3013 (-110)) (|:| |arg| (-589 (-823 *3))))) + (-5 *1 (-823 *3)) (-4 *3 (-1016)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-588 *6)) (-4 *6 (-784)) (-4 *4 (-338)) (-4 *5 (-730)) - (-5 *2 (-108)) (-5 *1 (-474 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-1068))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) - (-4 *2 (-405 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-324)) - (-5 *2 (-588 (-2 (|:| |deg| (-708)) (|:| -2592 *3)))) - (-5 *1 (-194 *4 *3)) (-4 *3 (-1142 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))) - ((*1 *1 *1) (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-971)) (-4 *3 (-780))))) -(((*1 *2 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971)))) - ((*1 *2 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-784))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1166 *5)) (-4 *5 (-729)) (-5 *2 (-108)) - (-5 *1 (-779 *4 *5)) (-14 *4 (-708))))) -(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519))))) + (|partial| -12 (-5 *3 (-110)) (-5 *2 (-589 (-823 *4))) + (-5 *1 (-823 *4)) (-4 *4 (-1016))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-1083 *3)) + (-4 *3 (-13 (-406 *6) (-27) (-1108))) + (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 (-2 (|:| -2462 *3) (|:| |coeff| *3))) + (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-562 *3)) (-5 *5 (-383 (-1083 *3))) + (-4 *3 (-13 (-406 *6) (-27) (-1108))) + (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 (-2 (|:| -2462 *3) (|:| |coeff| *3))) + (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-589 (-721 *3))) (-5 *1 (-721 *3)) (-4 *3 (-515)) + (-4 *3 (-973))))) +(((*1 *2 *3) + (-12 (-5 *3 (-225 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) + (-5 *2 (-455 *4 *5)) (-5 *1 (-875 *4 *5))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) + (-5 *2 (-962)) (-5 *1 (-697))))) +(((*1 *2) (-12 (-4 *3 (-158)) (-5 *2 (-1168 *1)) (-4 *1 (-343 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) + (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-540 *3)) (-5 *1 (-402 *5 *3)) + (-4 *3 (-13 (-1108) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-964 (-523)) (-136))) + (-5 *2 (-540 (-383 (-883 *5)))) (-5 *1 (-529 *5)) + (-5 *3 (-383 (-883 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1104))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1153 *3 *4 *5)) (-5 *1 (-295 *3 *4 *5)) + (-4 *3 (-13 (-339) (-786))) (-14 *4 (-1087)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-523)))) + ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-394 *3)) (-4 *3 (-515)))) + ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-638)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1016)) (-5 *1 (-653 *3 *2 *4)) (-4 *3 (-786)) + (-14 *4 + (-1 (-108) (-2 (|:| -3878 *3) (|:| -2735 *2)) + (-2 (|:| -3878 *3) (|:| -2735 *2))))))) +(((*1 *1 *1) (-5 *1 (-985)))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) + (-4 *3 (-1144 (-155 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) + (-4 *3 (-1144 (-155 *2)))))) +(((*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)) (-4 *2 (-339)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-339)) (-5 *1 (-602 *4 *2)) + (-4 *2 (-599 *4))))) +(((*1 *1) (-5 *1 (-1170)))) +(((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-640)))) + ((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-640))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-172)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-277)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110))))) +(((*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-5 *2 (-589 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1122)) (-5 *1 (-351 *4 *2)) + (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4245))))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-588 (-588 *7))) - (-5 *1 (-422 *4 *5 *6 *7)) (-5 *3 (-588 *7)))) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) + (|:| |abserr| (-203)) (|:| |relerr| (-203)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-355)) (|:| |stabilityFactor| (-355)))) + (-5 *1 (-185))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1070)) (|:| -4038 (-1070)))) + (-5 *1 (-761))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-760)) (-5 *4 (-51)) (-5 *2 (-1173)) (-5 *1 (-770))))) +(((*1 *2 *3) + (-12 (-4 *4 (-786)) (-5 *2 (-589 (-589 (-589 *4)))) + (-5 *1 (-1094 *4)) (-5 *3 (-589 (-589 *4)))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1090)) (-5 *3 (-1087))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-589 (-629 *6))) (-5 *4 (-108)) (-5 *5 (-523)) + (-5 *2 (-629 *6)) (-5 *1 (-956 *6)) (-4 *6 (-339)) (-4 *6 (-973)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-589 (-629 *4))) (-5 *2 (-629 *4)) (-5 *1 (-956 *4)) + (-4 *4 (-339)) (-4 *4 (-973)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-730)) - (-4 *7 (-784)) (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-588 (-588 *8))) - (-5 *1 (-422 *5 *6 *7 *8)) (-5 *3 (-588 *8)))) + (-12 (-5 *3 (-589 (-629 *5))) (-5 *4 (-523)) (-5 *2 (-629 *5)) + (-5 *1 (-956 *5)) (-4 *5 (-339)) (-4 *5 (-973))))) +(((*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-103)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-499))) (-5 *1 (-499))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-292 (-203)))) (-5 *2 (-108)) (-5 *1 (-244)))) + ((*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-108)) (-5 *1 (-244)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-588 (-588 *7))) - (-5 *1 (-422 *4 *5 *6 *7)) (-5 *3 (-588 *7)))) + (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-155 (-203)))) (-5 *2 (-962)) + (-5 *1 (-694))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1144 (-383 *2))) (-5 *2 (-523)) (-5 *1 (-844 *4 *3)) + (-4 *3 (-1144 (-383 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1144 *6)) + (-4 *6 (-13 (-27) (-406 *5))) + (-4 *5 (-13 (-786) (-515) (-964 (-523)))) (-4 *8 (-1144 (-383 *7))) + (-5 *2 (-540 *3)) (-5 *1 (-511 *5 *6 *7 *8 *3)) + (-4 *3 (-318 *6 *7 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-499)) (-5 *1 (-498 *2)) (-4 *2 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-499))))) +(((*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + ((*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) + (-4 *3 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7))))) +(((*1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)))) + ((*1 *2 *3) + (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) + (-4 *6 (-349 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-158)) (-4 *2 (-973)) (-5 *1 (-654 *2 *3)) + (-4 *3 (-591 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-158)) (-4 *2 (-973)) (-5 *1 (-654 *2 *3)) + (-4 *3 (-591 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-158)) (-4 *2 (-973)))) + ((*1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-158)) (-4 *2 (-973))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-710)) + (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) + (-4 *4 (-1144 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 (-589 *6))) (-4 *6 (-880 *3 *5 *4)) + (-4 *3 (-13 (-284) (-136))) (-4 *4 (-13 (-786) (-564 (-1087)))) + (-4 *5 (-732)) (-5 *1 (-855 *3 *4 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) +(((*1 *2 *3) + (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1144 (-47)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-777)) (-5 *4 (-985)) (-5 *2 (-962)) (-5 *1 (-776)))) + ((*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-962)) (-5 *1 (-776)))) + ((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-589 (-355))) (-5 *5 (-589 (-779 (-355)))) + (-5 *6 (-589 (-292 (-355)))) (-5 *3 (-292 (-355))) (-5 *2 (-962)) + (-5 *1 (-776)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-355))) + (-5 *5 (-589 (-779 (-355)))) (-5 *2 (-962)) (-5 *1 (-776)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-730)) - (-4 *7 (-784)) (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-588 (-588 *8))) - (-5 *1 (-422 *5 *6 *7 *8)) (-5 *3 (-588 *8))))) -(((*1 *2 *1) - (-12 (-5 *2 (-588 *5)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522)) - (-14 *4 (-708)) (-4 *5 (-157))))) + (-12 (-5 *3 (-292 (-355))) (-5 *4 (-589 (-355))) (-5 *2 (-962)) + (-5 *1 (-776)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-292 (-355)))) (-5 *4 (-589 (-355))) + (-5 *2 (-962)) (-5 *1 (-776))))) +(((*1 *1) (-5 *1 (-443)))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1190 *3 *4)) (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-158)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-758 *3)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-973)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973))))) +(((*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-786)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-796 *3)) (-14 *3 (-589 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-918)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1009 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1146 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) + (-5 *2 (-1087)))) + ((*1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1164 *3)) (-14 *3 *2)))) (((*1 *2 *3) - (-12 (-5 *3 (-1081 (-522))) (-5 *2 (-522)) (-5 *1 (-871))))) -(((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-1014)) (-4 *2 (-343))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1085)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *3 *5 *6 *7)) - (-4 *3 (-563 (-498))) (-4 *5 (-1120)) (-4 *6 (-1120)) - (-4 *7 (-1120)))) + (-12 (-4 *1 (-775)) + (-5 *3 + (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) + (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) + (|:| |ub| (-589 (-779 (-203)))))) + (-5 *2 (-962)))) + ((*1 *2 *3) + (-12 (-4 *1 (-775)) + (-5 *3 + (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) + (-5 *2 (-962))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-596 (-383 *6))) (-5 *4 (-383 *6)) (-4 *6 (-1144 *5)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) + (-5 *1 (-749 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-596 (-383 *6))) (-4 *6 (-1144 *5)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-5 *2 (-2 (|:| -4041 (-589 (-383 *6))) (|:| -3392 (-629 *5)))) + (-5 *1 (-749 *5 *6)) (-5 *4 (-589 (-383 *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1085)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *3 *5 *6)) - (-4 *3 (-563 (-498))) (-4 *5 (-1120)) (-4 *6 (-1120))))) + (-12 (-5 *3 (-597 *6 (-383 *6))) (-5 *4 (-383 *6)) (-4 *6 (-1144 *5)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) + (-5 *1 (-749 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-597 *6 (-383 *6))) (-4 *6 (-1144 *5)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-5 *2 (-2 (|:| -4041 (-589 (-383 *6))) (|:| -3392 (-629 *5)))) + (-5 *1 (-749 *5 *6)) (-5 *4 (-589 (-383 *6)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-393 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857))))) (((*1 *2 *1) - (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) - (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-405 *3)) (-4 *3 (-784)) (-5 *2 (-108))))) + (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1116 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) + (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3278 *3))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1144 *3)) (-4 *3 (-973))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-514) (-135))) - (-5 *2 (-2 (|:| -1993 *3) (|:| -2002 *3))) (-5 *1 (-1136 *4 *3)) - (-4 *3 (-1142 *4))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-588 (-522))) (-5 *1 (-1024)) (-5 *3 (-522))))) -(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-132))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *1 *1) (-4 *1 (-220))) - ((*1 *1 *1) - (-12 (-4 *2 (-157)) (-5 *1 (-265 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1142 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (-3844 (-12 (-5 *1 (-270 *2)) (-4 *2 (-338)) (-4 *2 (-1120))) - (-12 (-5 *1 (-270 *2)) (-4 *2 (-447)) (-4 *2 (-1120))))) - ((*1 *1 *1) (-4 *1 (-447))) - ((*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-324)) (-5 *1 (-492 *3)))) + (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1126)) (-4 *3 (-1144 *4)) + (-4 *5 (-1144 (-383 *3))) (-5 *2 (-108)))) + ((*1 *2 *3) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) + (-4 *3 (-1144 *4)) (-5 *1 (-748 *4 *3 *2 *5)) (-4 *2 (-599 *3)) + (-4 *5 (-599 (-383 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-383 *5)) + (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *5 (-1144 *4)) + (-5 *1 (-748 *4 *5 *2 *6)) (-4 *2 (-599 *5)) (-4 *6 (-599 *3))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-691))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)) + (-5 *2 (-108)) (-5 *1 (-916 *3 *4 *5 *6)) + (-4 *6 (-880 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) + (-4 *4 (-13 (-1016) (-33)))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) + (-5 *2 (-962)) (-5 *1 (-691))))) +(((*1 *2 *2) + (-12 (-4 *3 (-973)) (-5 *1 (-652 *3 *2)) (-4 *2 (-1144 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-852)) (|has| *1 (-6 -4235)) (-4 *1 (-380)))) + ((*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852)))) + ((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638)))) + ((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-638))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) + (-4 *3 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 *3)) (-4 *3 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) + (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-108)) + (-5 *1 (-917 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 *3)) (-4 *3 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) + (-4 *6 (-732)) (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-108)) + (-5 *1 (-1023 *5 *6 *7 *8 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-523) (-523))) (-5 *1 (-337 *3)) (-4 *3 (-1016)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-710) (-710))) (-5 *1 (-362 *3)) (-4 *3 (-1016)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-383 *5)) (-4 *4 (-1126)) (-4 *5 (-1144 *4)) + (-5 *1 (-137 *4 *5 *2)) (-4 *2 (-1144 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1089 (-383 (-523)))) (-5 *2 (-383 (-523))) + (-5 *1 (-170)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-629 (-292 (-203)))) (-5 *3 (-589 (-1087))) + (-5 *4 (-1168 (-292 (-203)))) (-5 *1 (-185)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-271 *3))) (-4 *3 (-286 *3)) (-4 *3 (-1016)) + (-4 *3 (-1122)) (-5 *1 (-271 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-286 *2)) (-4 *2 (-1016)) (-4 *2 (-1122)) + (-5 *1 (-271 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-279)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-589 *1))) (-4 *1 (-279)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-110))) (-5 *3 (-589 (-1 *1 (-589 *1)))) + (-4 *1 (-279)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-110))) (-5 *3 (-589 (-1 *1 *1))) (-4 *1 (-279)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1 *1 *1)) (-4 *1 (-279)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1 *1 (-589 *1))) (-4 *1 (-279)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-589 (-1 *1 (-589 *1)))) + (-4 *1 (-279)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-589 (-1 *1 *1))) (-4 *1 (-279)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-271 *3))) (-4 *1 (-286 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-271 *3)) (-4 *1 (-286 *3)) (-4 *3 (-1016)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-523))) (-5 *4 (-1089 (-383 (-523)))) + (-5 *1 (-287 *2)) (-4 *2 (-37 (-383 (-523)))))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 *4)) (-5 *3 (-589 *1)) (-4 *1 (-350 *4 *5)) + (-4 *4 (-786)) (-4 *5 (-158)))) + ((*1 *1 *1 *2 *1) + (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-786)) (-4 *3 (-158)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1087)) (-5 *3 (-710)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-406 *5)) (-4 *5 (-786)) (-4 *5 (-973)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1087)) (-5 *3 (-710)) (-5 *4 (-1 *1 (-589 *1))) + (-4 *1 (-406 *5)) (-4 *5 (-786)) (-4 *5 (-973)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-589 (-710))) + (-5 *4 (-589 (-1 *1 (-589 *1)))) (-4 *1 (-406 *5)) (-4 *5 (-786)) + (-4 *5 (-973)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-589 (-1087))) (-5 *3 (-589 (-710))) + (-5 *4 (-589 (-1 *1 *1))) (-4 *1 (-406 *5)) (-4 *5 (-786)) + (-4 *5 (-973)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-589 (-110))) (-5 *3 (-589 *1)) (-5 *4 (-1087)) + (-4 *1 (-406 *5)) (-4 *5 (-786)) (-4 *5 (-564 (-499))))) + ((*1 *1 *1 *2 *1 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-1087)) (-4 *1 (-406 *4)) (-4 *4 (-786)) + (-4 *4 (-564 (-499))))) ((*1 *1 *1) - (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)) (-4 *2 (-338))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-110)))) - ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-110)))) + (-12 (-4 *1 (-406 *2)) (-4 *2 (-786)) (-4 *2 (-564 (-499))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-1087))) (-4 *1 (-406 *3)) (-4 *3 (-786)) + (-4 *3 (-564 (-499))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)) + (-4 *3 (-564 (-499))))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1122)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 *4)) (-5 *3 (-589 *5)) (-4 *1 (-484 *4 *5)) + (-4 *4 (-1016)) (-4 *5 (-1122)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-772 *3)) (-4 *3 (-339)) (-5 *1 (-658 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1016)))) + ((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-383 (-883 *4))) (-5 *3 (-1087)) (-4 *4 (-515)) + (-5 *1 (-969 *4)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-589 (-1087))) (-5 *4 (-589 (-383 (-883 *5)))) + (-5 *2 (-383 (-883 *5))) (-4 *5 (-515)) (-5 *1 (-969 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-271 (-383 (-883 *4)))) (-5 *2 (-383 (-883 *4))) + (-4 *4 (-515)) (-5 *1 (-969 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-589 (-271 (-383 (-883 *4))))) (-5 *2 (-383 (-883 *4))) + (-4 *4 (-515)) (-5 *1 (-969 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-971)) (-4 *3 (-784)) - (-4 *5 (-242 *3)) (-4 *6 (-730)) (-5 *2 (-708)))) + (-12 (-4 *1 (-1146 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1068 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-589 *3)) (-4 *3 (-880 *5 *6 *7)) (-4 *5 (-427)) + (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-424 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4244)) (-4 *1 (-33)) (-5 *2 (-710)))) ((*1 *2 *1) - (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-784)) - (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-708)))) - ((*1 *2 *1) (-12 (-4 *1 (-242 *3)) (-4 *3 (-784)) (-5 *2 (-708))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) - (-4 *5 (-13 (-338) (-135) (-962 (-522)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-382 *6)) (|:| |h| *6) - (|:| |c1| (-382 *6)) (|:| |c2| (-382 *6)) (|:| -1704 *6))) - (-5 *1 (-942 *5 *6)) (-5 *3 (-382 *6))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2585 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-338)) (-4 *7 (-1142 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-382 *7)) (|:| |a0| *6)) - (-2 (|:| -2585 (-382 *7)) (|:| |coeff| (-382 *7))) "failed")) - (-5 *1 (-532 *6 *7)) (-5 *3 (-382 *7))))) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-523)))) + ((*1 *2 *1) + (-12 (-5 *2 (-710)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-782))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *1 *1) (-5 *1 (-133))) + ((*1 *1 *1) (-4 *1 (-1056)))) +(((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1118 *3)) (-4 *3 (-903))))) (((*1 *2 *3) + (-12 (-5 *2 (-155 *4)) (-5 *1 (-165 *4 *3)) + (-4 *4 (-13 (-339) (-784))) (-4 *3 (-1144 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-761))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -2462 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-589 (-383 *8))) (-4 *7 (-339)) (-4 *8 (-1144 *7)) + (-5 *3 (-383 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-533 *7 *8))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) + (-4 *1 (-992 *4 *5 *6 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-427)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1083 *6)) (-4 *6 (-880 *5 *3 *4)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *5 (-840)) (-5 *1 (-432 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-840))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) + (-4 *5 (-1144 *4)) + (-5 *2 (-589 (-2 (|:| |deg| (-710)) (|:| -1710 *5)))) + (-5 *1 (-748 *4 *5 *3 *6)) (-4 *3 (-599 *5)) + (-4 *6 (-599 (-383 *5)))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-710)) (-4 *5 (-339)) (-5 *2 (-383 *6)) + (-5 *1 (-798 *5 *4 *6)) (-4 *4 (-1159 *5)) (-4 *6 (-1144 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-710)) (-5 *4 (-1160 *5 *6 *7)) (-4 *5 (-339)) + (-14 *6 (-1087)) (-14 *7 *5) (-5 *2 (-383 (-1141 *6 *5))) + (-5 *1 (-799 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-710)) (-5 *4 (-1160 *5 *6 *7)) (-4 *5 (-339)) + (-14 *6 (-1087)) (-14 *7 *5) (-5 *2 (-383 (-1141 *6 *5))) + (-5 *1 (-799 *5 *6 *7))))) +(((*1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-897))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-108)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1116 *5 *6 *7 *3)) + (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-108))))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-499))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *2)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-155 (-523))) (-5 *2 (-108)) (-5 *1 (-421)))) + ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) - (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) - (|:| |relerr| (-202)))) + (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) + (-225 *4 (-383 (-523))))) + (-14 *4 (-589 (-1087))) (-14 *5 (-710)) (-5 *2 (-108)) + (-5 *1 (-476 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-891 *3)) (-4 *3 (-508)))) + ((*1 *2 *1) (-12 (-4 *1 (-1126)) (-5 *2 (-108))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-110)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-110)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) + (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-710)))) + ((*1 *2 *1) + (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) + (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-4 *1 (-243 *3)) (-4 *3 (-786)) (-5 *2 (-710))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-589 (-970 *5 *6))) (-5 *1 (-1192 *5 *6 *7)) + (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-589 (-970 *5 *6))) (-5 *1 (-1192 *5 *6 *7)) + (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-883 *4))) + (-4 *4 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-589 (-970 *4 *5))) (-5 *1 (-1192 *4 *5 *6)) + (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087)))))) +(((*1 *2) + (-12 (-4 *4 (-339)) (-5 *2 (-710)) (-5 *1 (-304 *3 *4)) + (-4 *3 (-305 *4)))) + ((*1 *2) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-710))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *3 *2)) + (-4 *2 (-13 (-27) (-1108) (-406 (-155 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-786)) (-5 *1 (-1094 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108))))) +(((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-144))))) +(((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1070)) (-4 *1 (-340 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1016))))) +(((*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-460))))) +(((*1 *2 *1) (-12 (-4 *3 (-1122)) (-5 *2 (-589 *1)) (-4 *1 (-938 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1011 *3)) (-5 *1 (-1009 *3)) (-4 *3 (-1122)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2) (-12 (-5 *1 (-1135 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *4)) (-4 *4 (-786)) (-5 *2 (-589 (-607 *4 *5))) + (-5 *1 (-573 *4 *5 *6)) (-4 *5 (-13 (-158) (-657 (-383 (-523))))) + (-14 *6 (-852))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *1 (-57 *3)) (-4 *3 (-1122)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-57 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-394 *2)) (-4 *2 (-515))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-710)) (-4 *5 (-325)) (-4 *6 (-1144 *5)) + (-5 *2 + (-589 + (-2 (|:| -4041 (-629 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-629 *6))))) + (-5 *1 (-469 *5 *6 *7)) + (-5 *3 + (-2 (|:| -4041 (-629 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-629 *6)))) + (-4 *7 (-1144 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1016) (-33))) + (-4 *3 (-13 (-1016) (-33)))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-794))) ((*1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1083 (-523))) (-5 *3 (-523)) (-4 *1 (-800 *4))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-171))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-157)))) + (-2 (|:| |cycle?| (-108)) (|:| -3977 (-710)) (|:| |period| (-710)))) + (-5 *1 (-1068 *4)) (-4 *4 (-1122)) (-5 *3 (-710))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-589 *4)) (-4 *4 (-339)) (-5 *2 (-1168 *4)) + (-5 *1 (-753 *4 *3)) (-4 *3 (-599 *4))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) + (-5 *2 (-962)) (-5 *1 (-694))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1087)) (-4 *4 (-973)) (-4 *4 (-786)) + (-5 *2 (-2 (|:| |var| (-562 *1)) (|:| -2735 (-523)))) + (-4 *1 (-406 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-110)) (-4 *4 (-973)) (-4 *4 (-786)) + (-5 *2 (-2 (|:| |var| (-562 *1)) (|:| -2735 (-523)))) + (-4 *1 (-406 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1028)) (-4 *3 (-786)) + (-5 *2 (-2 (|:| |var| (-562 *1)) (|:| -2735 (-523)))) + (-4 *1 (-406 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-823 *3)) (|:| -2735 (-710)))) + (-5 *1 (-823 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-2 (|:| |var| *5) (|:| -2735 (-710)))))) ((*1 *2 *3) - (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-871)) (-5 *3 (-522))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) + (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) + (-4 *7 (-880 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -2735 (-523)))) + (-5 *1 (-881 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-339) + (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) + (-15 -2797 (*7 $)))))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-355)) (-5 *1 (-985))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4246 "*"))) (-4 *5 (-349 *2)) (-4 *6 (-349 *2)) + (-4 *2 (-973)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1144 *2)) + (-4 *4 (-627 *2 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-589 (-383 (-883 (-523))))) (-5 *4 (-589 (-1087))) + (-5 *2 (-589 (-589 *5))) (-5 *1 (-356 *5)) + (-4 *5 (-13 (-784) (-339))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-383 (-883 (-523)))) (-5 *2 (-589 *4)) (-5 *1 (-356 *4)) + (-4 *4 (-13 (-784) (-339)))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1070)) (-4 *1 (-340 *2 *4)) (-4 *2 (-1016)) + (-4 *4 (-1016)))) + ((*1 *1 *2) + (-12 (-4 *1 (-340 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)) (-4 *5 (-987 *3 *4 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *1) (-5 *1 (-144)))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-905 *3 *4 *2 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)) (-4 *5 (-987 *3 *4 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108))))) + (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) + (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) + (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-548 *3)) (-4 *3 (-973)))) + ((*1 *2 *1) + (-12 (-4 *3 (-515)) (-5 *2 (-108)) (-5 *1 (-570 *3 *4)) + (-4 *4 (-1144 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-666)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) + (-5 *2 (-108))))) +(((*1 *1 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)) (-4 *2 (-982)))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)) (-4 *2 (-982)))) + ((*1 *1 *1) (-4 *1 (-784))) + ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)) (-4 *2 (-982)))) + ((*1 *1 *1) (-4 *1 (-982))) ((*1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-2 (|:| |k| (-614 *3)) (|:| |c| *4)))) + (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) + (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-68 APROD)))) (-5 *4 (-203)) + (-5 *2 (-962)) (-5 *1 (-696))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-1109 *3))) (-5 *1 (-1109 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) + (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-852)) (-5 *4 (-203)) (-5 *5 (-523)) (-5 *6 (-805)) + (-5 *2 (-1173)) (-5 *1 (-1169))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-383 (-523)))) (-5 *2 (-589 *4)) (-5 *1 (-718 *4)) + (-4 *4 (-13 (-339) (-784)))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) + ((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-515))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-125)) (-5 *1 (-1002 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-523) *2 *2)) (-4 *2 (-125)) (-5 *1 (-1002 *2))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-291 (-522))) (|:| -4102 (-291 (-354))) - (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) - (-5 *1 (-1084))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-522))) (-4 *3 (-971)) (-5 *1 (-94 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-94 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-94 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-1166 *5))) (-5 *4 (-522)) (-5 *2 (-1166 *5)) - (-5 *1 (-954 *5)) (-4 *5 (-338)) (-4 *5 (-343)) (-4 *5 (-971))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-89 *3))))) -(((*1 *1) - (-12 (-4 *3 (-1014)) (-5 *1 (-814 *2 *3 *4)) (-4 *2 (-1014)) - (-4 *4 (-608 *3)))) - ((*1 *1) (-12 (-5 *1 (-818 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-588 (-588 (-588 *4)))) (-5 *3 (-588 *4)) (-4 *4 (-784)) - (-5 *1 (-1092 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) - (-5 *2 - (-2 (|:| -3526 *4) (|:| -3106 *4) (|:| |totalpts| (-522)) - (|:| |success| (-108)))) - (-5 *1 (-726)) (-5 *5 (-522))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1085)) - (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-290 *4 *5)) - (-4 *5 (-13 (-27) (-1106) (-405 *4))))) + (-3 (|:| I (-292 (-523))) (|:| -2315 (-292 (-355))) + (|:| CF (-292 (-155 (-355)))) (|:| |switch| (-1086)))) + (-5 *1 (-1086))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410))))) +(((*1 *2 *1) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-805)) + (-5 *5 (-852)) (-5 *6 (-589 (-240))) (-5 *2 (-443)) (-5 *1 (-1172)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-290 *4 *3)) - (-4 *3 (-13 (-27) (-1106) (-405 *4))))) + (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *2 (-443)) + (-5 *1 (-1172)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-382 (-522))) - (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-290 *5 *3)) - (-4 *3 (-13 (-27) (-1106) (-405 *5))))) + (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-589 (-240))) + (-5 *2 (-443)) (-5 *1 (-1172))))) +(((*1 *2 *1) + (-12 (-4 *1 (-513 *3)) (-4 *3 (-13 (-380) (-1108))) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) + (-4 *3 (-1144 *4)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1122))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-133)) (-5 *2 (-108))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-339)) (-5 *1 (-952 *3 *2)) (-4 *2 (-599 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))) - (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-290 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-270 *3)) (-5 *5 (-382 (-522))) - (-4 *3 (-13 (-27) (-1106) (-405 *6))) - (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-290 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-382 (-522)))) (-5 *4 (-270 *8)) - (-5 *5 (-1133 (-382 (-522)))) (-5 *6 (-382 (-522))) - (-4 *8 (-13 (-27) (-1106) (-405 *7))) - (-4 *7 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-433 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-5 *6 (-1133 (-382 (-522)))) - (-5 *7 (-382 (-522))) (-4 *3 (-13 (-27) (-1106) (-405 *8))) - (-4 *8 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-433 *8 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-382 (-522))) (-4 *4 (-971)) (-4 *1 (-1149 *4 *3)) - (-4 *3 (-1126 *4))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) - (-5 *2 (-960)) (-5 *1 (-690))))) + (-12 (-4 *5 (-339)) (-5 *2 (-2 (|:| -1710 *3) (|:| -3013 (-589 *5)))) + (-5 *1 (-952 *5 *3)) (-5 *4 (-589 *5)) (-4 *3 (-599 *5))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-786)) (-4 *5 (-732)) + (-4 *6 (-515)) (-4 *7 (-880 *6 *5 *3)) + (-5 *1 (-437 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-964 (-383 (-523))) (-339) + (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) + (-15 -2797 (*7 $)))))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-629 *2)) (-5 *4 (-710)) + (-4 *2 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) + (-4 *5 (-1144 *2)) (-5 *1 (-470 *2 *5 *6)) (-4 *6 (-385 *2 *5))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) + (-5 *1 (-695))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-710)) (-5 *1 (-1017 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-589 (-108))) (-5 *7 (-629 (-203))) + (-5 *8 (-629 (-523))) (-5 *3 (-523)) (-5 *4 (-203)) (-5 *5 (-108)) + (-5 *2 (-962)) (-5 *1 (-694))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-339) (-136))) + (-5 *2 (-589 (-2 (|:| -2735 (-710)) (|:| -1288 *4) (|:| |num| *4)))) + (-5 *1 (-375 *3 *4)) (-4 *4 (-1144 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-993 *5 *6 *7 *3 *4)) + (-4 *4 (-992 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *4)))) + (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-5 *2 (-2 (|:| -1853 *3) (|:| -2433 *4)))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) + (-5 *2 (-962)) (-5 *1 (-696))))) (((*1 *2 *3) - (-12 (-5 *3 (-588 *4)) (-4 *4 (-971)) (-5 *2 (-1166 *4)) - (-5 *1 (-1086 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-850)) (-5 *2 (-1166 *3)) (-5 *1 (-1086 *3)) - (-4 *3 (-971))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-708)) (-4 *5 (-514)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-897 *5 *3)) (-4 *3 (-1142 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-792)))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-522)) (-5 *3 (-850)) (-4 *1 (-379)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-522)) (-4 *1 (-379)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *2 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014))))) -(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-850)) (-5 *1 (-723))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) - (-4 *2 (-405 *3))))) + (-12 (-5 *3 (-155 *5)) (-4 *5 (-13 (-406 *4) (-930) (-1108))) + (-4 *4 (-13 (-515) (-786))) + (-4 *2 (-13 (-406 (-155 *4)) (-930) (-1108))) + (-5 *1 (-552 *4 *5 *2))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-279)) (-5 *3 (-1087)) (-5 *2 (-108)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-279)) (-5 *2 (-108))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-589 (-157))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1085)) - (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-290 *4 *5)) - (-4 *5 (-13 (-27) (-1106) (-405 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-290 *4 *3)) - (-4 *3 (-13 (-27) (-1106) (-405 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-522)) (-4 *5 (-13 (-426) (-784) (-962 *4) (-584 *4))) - (-5 *2 (-51)) (-5 *1 (-290 *5 *3)) - (-4 *3 (-13 (-27) (-1106) (-405 *5))))) + (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) + (-14 *5 (-589 (-1087))) (-5 *2 (-589 (-589 (-951 (-383 *4))))) + (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-589 (-1087))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1192 *5 *6 *7)) + (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))) - (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-290 *5 *3)))) + (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-589 (-589 (-951 (-383 *5))))) (-5 *1 (-1192 *5 *6 *7)) + (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-883 *4))) + (-4 *4 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 (-589 (-589 (-951 (-383 *4))))) (-5 *1 (-1192 *4 *5 *6)) + (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (-5 *2 (-1068 (-203))) (-5 *1 (-172)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *6))) - (-4 *6 (-13 (-426) (-784) (-962 *5) (-584 *5))) (-5 *5 (-522)) - (-5 *2 (-51)) (-5 *1 (-290 *6 *3)))) + (-12 (-5 *3 (-292 (-203))) (-5 *4 (-589 (-1087))) + (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-1068 (-203))) (-5 *1 (-277)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-522))) (-5 *4 (-270 *7)) (-5 *5 (-1133 (-522))) - (-4 *7 (-13 (-27) (-1106) (-405 *6))) - (-4 *6 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-433 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-5 *6 (-1133 (-522))) - (-4 *3 (-13 (-27) (-1106) (-405 *7))) - (-4 *7 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-433 *7 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-522)) (-4 *4 (-971)) (-4 *1 (-1128 *4 *3)) - (-4 *3 (-1157 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1126 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *2 (-784)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784))))) -(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-803)))) - ((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-338) (-962 (-382 *2)))) (-5 *2 (-522)) - (-5 *1 (-111 *4 *3)) (-4 *3 (-1142 *4))))) + (-12 (-5 *3 (-1168 (-292 (-203)))) (-5 *4 (-589 (-1087))) + (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-1068 (-203))) (-5 *1 (-277))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-382 (-522))) (-4 *4 (-962 (-522))) - (-4 *4 (-13 (-784) (-514))) (-5 *1 (-31 *4 *2)) (-4 *2 (-405 *4)))) + (-12 (-5 *3 (-383 (-523))) (-4 *4 (-964 (-523))) + (-4 *4 (-13 (-786) (-515))) (-5 *1 (-31 *4 *2)) (-4 *2 (-406 *4)))) ((*1 *1 *1 *1) (-5 *1 (-126))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2)) - (-4 *2 (-405 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-202))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-220)) (-5 *2 (-522)))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-203))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-221)) (-5 *2 (-523)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-382 (-522))) (-4 *4 (-338)) (-4 *4 (-37 *3)) - (-4 *5 (-1157 *4)) (-5 *1 (-254 *4 *5 *2)) (-4 *2 (-1128 *4 *5)))) + (-12 (-5 *3 (-383 (-523))) (-4 *4 (-339)) (-4 *4 (-37 *3)) + (-4 *5 (-1159 *4)) (-5 *1 (-255 *4 *5 *2)) (-4 *2 (-1130 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-382 (-522))) (-4 *4 (-338)) (-4 *4 (-37 *3)) - (-4 *5 (-1126 *4)) (-5 *1 (-255 *4 *5 *2 *6)) (-4 *2 (-1149 *4 *5)) - (-4 *6 (-910 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-260))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-336 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1 *1) (-5 *1 (-354))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-708)) (-5 *1 (-361 *2)) (-4 *2 (-1014)))) + (-12 (-5 *3 (-383 (-523))) (-4 *4 (-339)) (-4 *4 (-37 *3)) + (-4 *5 (-1128 *4)) (-5 *1 (-256 *4 *5 *2 *6)) (-4 *2 (-1151 *4 *5)) + (-4 *6 (-912 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-261))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-337 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *1) (-5 *1 (-355))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-5 *1 (-362 *2)) (-4 *2 (-1016)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-708)) (-4 *1 (-405 *3)) (-4 *3 (-784)) (-4 *3 (-1026)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-447)) (-5 *2 (-522)))) + (-12 (-5 *2 (-710)) (-4 *1 (-406 *3)) (-4 *3 (-786)) (-4 *3 (-1028)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-448)) (-5 *2 (-523)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-708)) (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) + (-12 (-5 *2 (-710)) (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1166 *4)) (-5 *3 (-522)) (-4 *4 (-324)) - (-5 *1 (-492 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-498)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-498)))) + (-12 (-5 *2 (-1168 *4)) (-5 *3 (-523)) (-4 *4 (-325)) + (-5 *1 (-493 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-499)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-499)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-708)) (-4 *4 (-1014)) - (-5 *1 (-621 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-710)) (-4 *4 (-1016)) + (-5 *1 (-622 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) - (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-4 *3 (-338)))) + (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) (-4 *3 (-339)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-708)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) - (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) + (-12 (-5 *2 (-710)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-628 *4)) (-5 *3 (-708)) (-4 *4 (-971)) - (-5 *1 (-629 *4)))) + (-12 (-5 *2 (-629 *4)) (-5 *3 (-710)) (-4 *4 (-973)) + (-5 *1 (-630 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-522)) (-4 *3 (-971)) (-5 *1 (-652 *3 *4)) - (-4 *4 (-590 *3)))) + (-12 (-5 *2 (-523)) (-4 *3 (-973)) (-5 *1 (-654 *3 *4)) + (-4 *4 (-591 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-522)) (-4 *4 (-971)) - (-5 *1 (-652 *4 *5)) (-4 *5 (-590 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-850)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-708)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-708)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-708)) (-5 *1 (-756 *2)) (-4 *2 (-784)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-771 *3)) (-4 *3 (-971)))) + (-12 (-5 *2 (-110)) (-5 *3 (-523)) (-4 *4 (-973)) + (-5 *1 (-654 *4 *5)) (-4 *5 (-591 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-852)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-710)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-666)) (-5 *2 (-710)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-5 *1 (-758 *2)) (-4 *2 (-786)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-773 *3)) (-4 *3 (-973)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-522)) (-5 *1 (-771 *4)) (-4 *4 (-971)))) - ((*1 *1 *1 *1) (-5 *1 (-792))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-382 (-522))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1026)) (-5 *2 (-850)))) + (-12 (-5 *2 (-110)) (-5 *3 (-523)) (-5 *1 (-773 *4)) (-4 *4 (-973)))) + ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-383 (-523))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-852)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-522)) (-4 *1 (-1035 *3 *4 *5 *6)) (-4 *4 (-971)) - (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *3 *4)) (-4 *4 (-338)))) + (-12 (-5 *2 (-523)) (-4 *1 (-1037 *3 *4 *5 *6)) (-4 *4 (-973)) + (-4 *5 (-216 *3 *4)) (-4 *6 (-216 *3 *4)) (-4 *4 (-339)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-971)) (-4 *2 (-338))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-1120)) (-4 *2 (-784)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-348 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-896 *2)) (-4 *2 (-784)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-971)))) - ((*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) - ((*1 *1 *2) - (-12 (-5 *2 (-588 (-1074 *3 *4))) (-5 *1 (-1074 *3 *4)) - (-14 *3 (-850)) (-4 *4 (-971)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1085)) - (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-290 *4 *5)) - (-4 *5 (-13 (-27) (-1106) (-405 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-290 *4 *3)) - (-4 *3 (-13 (-27) (-1106) (-405 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-708)) - (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-290 *5 *3)) - (-4 *3 (-13 (-27) (-1106) (-405 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))) - (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-290 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-270 *3)) (-5 *5 (-708)) - (-4 *3 (-13 (-27) (-1106) (-405 *6))) - (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-290 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-522))) (-5 *4 (-270 *6)) - (-4 *6 (-13 (-27) (-1106) (-405 *5))) - (-4 *5 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-433 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) - (-4 *3 (-13 (-27) (-1106) (-405 *6))) - (-4 *6 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-433 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-522))) (-5 *4 (-270 *7)) (-5 *5 (-1133 (-708))) - (-4 *7 (-13 (-27) (-1106) (-405 *6))) - (-4 *6 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-433 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-5 *6 (-1133 (-708))) - (-4 *3 (-13 (-27) (-1106) (-405 *7))) - (-4 *7 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-433 *7 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1070)) (-5 *3 (-523)) (-5 *1 (-985))))) +(((*1 *2 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1122)))) ((*1 *2 *1) - (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1157 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-108)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) - (-4 *3 (-985 *6 *7 *8)) - (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *4)))) - (-5 *1 (-991 *6 *7 *8 *3 *4)) (-4 *4 (-990 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-588 (-2 (|:| |val| (-588 *8)) (|:| -1974 *9)))) - (-5 *5 (-108)) (-4 *8 (-985 *6 *7 *4)) (-4 *9 (-990 *6 *7 *4 *8)) - (-4 *6 (-426)) (-4 *7 (-730)) (-4 *4 (-784)) - (-5 *2 (-588 (-2 (|:| |val| *8) (|:| -1974 *9)))) - (-5 *1 (-991 *6 *7 *4 *8 *9))))) + (|partial| -12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-1156 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-383 *6)) (|:| |h| *6) + (|:| |c1| (-383 *6)) (|:| |c2| (-383 *6)) (|:| -4081 *6))) + (-5 *1 (-944 *5 *6)) (-5 *3 (-383 *6))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-710)) (-4 *4 (-325)) (-5 *1 (-195 *4 *2)) + (-4 *2 (-1144 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-881 (-154 *4))) (-4 *4 (-157)) - (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) + (-12 (-5 *2 (-1068 (-523))) (-5 *1 (-1072 *4)) (-4 *4 (-973)) + (-5 *3 (-523))))) +(((*1 *1 *1 *1) (-4 *1 (-132))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508)))) + ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-523))) (-5 *1 (-971)) + (-5 *3 (-523))))) +(((*1 *1 *1) (-4 *1 (-604))) ((*1 *1 *1) (-5 *1 (-1034)))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-973)) (-5 *1 (-419 *3 *2)) (-4 *2 (-1144 *3))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158))))) +(((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-779 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-339)) + (-5 *2 (-2 (|:| -3127 (-394 *3)) (|:| |special| (-394 *3)))) + (-5 *1 (-667 *5 *3))))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934)))) + ((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934))))) +(((*1 *2 *3) + (-12 (-5 *3 (-883 (-203))) (-5 *2 (-292 (-355))) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122))))) +(((*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-1083 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-973)) (-5 *2 (-523)) (-5 *1 (-418 *4 *3 *5)) + (-4 *3 (-1144 *4)) + (-4 *5 (-13 (-380) (-964 *4) (-339) (-1108) (-261)))))) +(((*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) + ((*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-383 (-523))) (-5 *1 (-113 *4)) (-14 *4 *3) + (-5 *3 (-523)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-383 (-523))) (-5 *1 (-802 *4)) (-14 *4 *3) + (-5 *3 (-523)))) + ((*1 *2 *1 *3) + (-12 (-14 *4 *3) (-5 *2 (-383 (-523))) (-5 *1 (-803 *4 *5)) + (-5 *3 (-523)) (-4 *5 (-800 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-940)) (-5 *2 (-383 (-523))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-989 *2 *3)) (-4 *2 (-13 (-784) (-339))) + (-4 *3 (-1144 *2)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1146 *2 *3)) (-4 *3 (-731)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1458 (*2 (-1087)))) + (-4 *2 (-973))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-973)) (-4 *5 (-216 *3 *4)) + (-4 *2 (-216 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *4)) (-4 *4 (-784)) (-4 *4 (-339)) (-5 *2 (-710)) + (-5 *1 (-876 *4 *5)) (-4 *5 (-1144 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-973)) + (-4 *2 (-13 (-380) (-964 *4) (-339) (-1108) (-261))) + (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1144 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4244)) (-4 *1 (-140 *2)) (-4 *2 (-1122)) + (-4 *2 (-1016)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4244)) (-4 *1 (-140 *3)) + (-4 *3 (-1122)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1122)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-523)) (-4 *4 (-1016)) + (-5 *1 (-677 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-5 *1 (-677 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) + (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1122)) (-5 *2 (-108))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) + ((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) + (-4 *4 (-325))))) +(((*1 *2 *1) + (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-4 *3 (-515)) + (-5 *2 (-1083 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-758 *4)) (-4 *4 (-786)) (-5 *2 (-108)) + (-5 *1 (-614 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) + (-4 *2 + (-13 (-378) + (-10 -7 (-15 -1458 (*2 *4)) (-15 -2072 ((-852) *2)) + (-15 -4041 ((-1168 *2) (-852))) (-15 -3454 (*2 *2))))) + (-5 *1 (-332 *2 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) + (-5 *2 + (-2 (|:| |contp| (-523)) + (|:| -1979 (-589 (-2 (|:| |irr| *3) (|:| -1227 (-523))))))) + (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-881 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-157)) - (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) + (-12 (-5 *4 (-108)) + (-5 *2 + (-2 (|:| |contp| (-523)) + (|:| -1979 (-589 (-2 (|:| |irr| *3) (|:| -1227 (-523))))))) + (-5 *1 (-1133 *3)) (-4 *3 (-1144 (-523)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) + (-14 *4 *2)))) +(((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-306))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1087)) (-5 *2 (-499)) (-5 *1 (-498 *4)) + (-4 *4 (-1122))))) +(((*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-5 *1 (-1161 *3 *2)) + (-4 *2 (-1159 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4245)) (-4 *1 (-115 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-692))))) +(((*1 *2 *3) + (-12 (-4 *1 (-318 *4 *3 *5)) (-4 *4 (-1126)) (-4 *3 (-1144 *4)) + (-4 *5 (-1144 (-383 *3))) (-5 *2 (-108)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-881 *4)) (-4 *4 (-971)) (-4 *4 (-563 (-354))) - (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170))))) +(((*1 *2 *3) + (-12 (-4 *4 (-786)) (-5 *2 (-1095 (-589 *4))) (-5 *1 (-1094 *4)) + (-5 *3 (-589 *4))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-699))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1087)) (-4 *5 (-339)) (-5 *2 (-589 (-1117 *5))) + (-5 *1 (-1176 *5)) (-5 *4 (-1117 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) + (-4 *4 (-325))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) + ((*1 *1 *1) (|partial| -4 *1 (-662)))) +(((*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-786)) (-4 *2 (-973)))) + ((*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1144 *4)) (-5 *1 (-746 *4 *2 *3 *5)) + (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-599 *2)) + (-4 *5 (-599 (-383 *2))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-971)) - (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) + (-12 (-4 *2 (-1144 *4)) (-5 *1 (-746 *4 *2 *5 *3)) + (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *5 (-599 *2)) + (-4 *3 (-599 (-383 *2)))))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1070)) (-5 *1 (-1169)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1169)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1169)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1070)) (-5 *1 (-1170)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1170)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1170))))) +(((*1 *1 *1) + (-12 (-4 *1 (-302 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)) + (-4 *2 (-427)))) + ((*1 *1 *1) + (-12 (-4 *1 (-318 *2 *3 *4)) (-4 *2 (-1126)) (-4 *3 (-1144 *2)) + (-4 *4 (-1144 (-383 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-427)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)) (-4 *3 (-427)))) + ((*1 *1 *1) + (-12 (-4 *1 (-880 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-427)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-284)) (-4 *3 (-515)) (-5 *1 (-1075 *3 *2)) + (-4 *2 (-1144 *3))))) +(((*1 *1) (-5 *1 (-762)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-852)) (-5 *2 (-443)) (-5 *1 (-1169))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-1083 (-883 *4))) (-5 *1 (-392 *3 *4)) + (-4 *3 (-393 *4)))) + ((*1 *2) + (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-4 *3 (-339)) + (-5 *2 (-1083 (-883 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1109 *3)) (-4 *3 (-1016))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-589 *1)) (-4 *1 (-406 *4)) + (-4 *4 (-786)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1087)) (-4 *1 (-406 *3)) (-4 *3 (-786))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) + (-4 *5 (-13 (-1016) (-33))) (-4 *6 (-13 (-1016) (-33))) + (-5 *2 (-108)) (-5 *1 (-1052 *5 *6))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-466))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514)) - (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-514)) - (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) + (|partial| -12 (-4 *4 (-732)) (-4 *5 (-973)) (-4 *6 (-880 *5 *4 *2)) + (-4 *2 (-786)) (-5 *1 (-881 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-339) + (-10 -8 (-15 -1458 ($ *6)) (-15 -2785 (*6 $)) + (-15 -2797 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) + (-5 *2 (-1087)) (-5 *1 (-969 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-394 *4)) (-4 *4 (-515))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33))) + ((*1 *1) + (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) + (-4 *4 (-158)))) + ((*1 *1) (-4 *1 (-666))) ((*1 *1) (-5 *1 (-1087)))) +(((*1 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-508))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) + (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-786)) (-5 *1 (-860 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1087)) (-5 *2 (-292 (-523))) (-5 *1 (-861))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-1070)) (-5 *5 (-629 (-203))) + (-5 *2 (-962)) (-5 *1 (-687))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-562 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1087))) + (-4 *2 (-13 (-406 *5) (-27) (-1108))) + (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *1 (-525 *5 *2 *6)) (-4 *6 (-1016))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-971))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-4 *1 (-231 *3)) (-4 *3 (-1122)) (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-710)))) + ((*1 *2 *3) + (-12 (-4 *4 (-973)) + (-4 *2 (-13 (-380) (-964 *4) (-339) (-1108) (-261))) + (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1144 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) + ((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) + ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794))))) +(((*1 *2 *3 *2 *3) + (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1090)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1090)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-413)) (-5 *3 (-589 (-1087))) (-5 *4 (-1087)) + (-5 *1 (-1090)))) + ((*1 *2 *3 *2 *3 *1) + (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1090)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-413)) (-5 *3 (-1087)) (-5 *1 (-1091)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-413)) (-5 *3 (-589 (-1087))) (-5 *1 (-1091))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1128 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-523))) (-5 *4 (-836 (-523))) + (-5 *2 (-629 (-523))) (-5 *1 (-544)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-382 (-881 (-154 *4)))) (-4 *4 (-514)) - (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-589 (-629 (-523)))) + (-5 *1 (-544)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-382 (-881 (-154 *5)))) (-5 *4 (-850)) - (-4 *5 (-514)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) - (-5 *1 (-722 *5)))) + (-12 (-5 *3 (-589 (-523))) (-5 *4 (-589 (-836 (-523)))) + (-5 *2 (-589 (-629 (-523)))) (-5 *1 (-544))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1169)))) + ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1170))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-291 *4)) (-4 *4 (-514)) (-4 *4 (-784)) - (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) + (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523))))) +(((*1 *2 *3) + (-12 (-5 *3 (-883 *4)) (-4 *4 (-13 (-284) (-136))) + (-4 *2 (-880 *4 *6 *5)) (-5 *1 (-855 *4 *5 *6 *2)) + (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-589 (-1083 *13))) (-5 *3 (-1083 *13)) + (-5 *4 (-589 *12)) (-5 *5 (-589 *10)) (-5 *6 (-589 *13)) + (-5 *7 (-589 (-589 (-2 (|:| -1725 (-710)) (|:| |pcoef| *13))))) + (-5 *8 (-589 (-710))) (-5 *9 (-1168 (-589 (-1083 *10)))) + (-4 *12 (-786)) (-4 *10 (-284)) (-4 *13 (-880 *10 *11 *12)) + (-4 *11 (-732)) (-5 *1 (-647 *11 *12 *10 *13))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-203)) (-5 *5 (-523)) (-5 *2 (-1118 *3)) + (-5 *1 (-729 *3)) (-4 *3 (-903)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-108)) + (-5 *1 (-1118 *2)) (-4 *2 (-903))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-1026)) (-5 *3 (-523))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-710)) (-4 *4 (-13 (-515) (-136))) + (-5 *1 (-1138 *4 *2)) (-4 *2 (-1144 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) + (-4 *3 (-13 (-339) (-1108) (-930)))))) +(((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) + ((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171))))) +(((*1 *2 *1) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) + ((*1 *2 *1) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858))))) +(((*1 *1) + (-12 (-4 *3 (-1016)) (-5 *1 (-816 *2 *3 *4)) (-4 *2 (-1016)) + (-4 *4 (-609 *3)))) + ((*1 *1) (-12 (-5 *1 (-820 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) +(((*1 *2 *1) + (-12 (-5 *2 (-794)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 (-710)) + (-14 *4 (-710)) (-4 *5 (-158))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-786)) + (-5 *2 (-2 (|:| -2935 (-523)) (|:| |var| (-562 *1)))) + (-4 *1 (-406 *3))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -3278 (-721 *3)) (|:| |coef1| (-721 *3)) + (|:| |coef2| (-721 *3)))) + (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-2 (|:| -3278 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-987 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1087)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-883 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1087)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-786) (-515))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-786) (-515)))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-589 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-710)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-732)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) (-4 *5 (-786)) + (-5 *1 (-424 *3 *4 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-383 (-523))) (-5 *1 (-548 *3)) (-4 *3 (-37 *2)) + (-4 *3 (-973))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-540 *3) *3 (-1087))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1087))) + (-4 *3 (-261)) (-4 *3 (-575)) (-4 *3 (-964 *4)) (-4 *3 (-406 *7)) + (-5 *4 (-1087)) (-4 *7 (-564 (-823 (-523)))) (-4 *7 (-427)) + (-4 *7 (-817 (-523))) (-4 *7 (-786)) (-5 *2 (-540 *3)) + (-5 *1 (-532 *7 *3))))) +(((*1 *1 *1) + (-12 (-4 *2 (-284)) (-4 *3 (-921 *2)) (-4 *4 (-1144 *3)) + (-5 *1 (-389 *2 *3 *4 *5)) (-4 *5 (-13 (-385 *3 *4) (-964 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *8)) (-4 *8 (-880 *5 *7 *6)) + (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) + (-4 *7 (-732)) + (-5 *2 + (-589 + (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) + (|:| |wcond| (-589 (-883 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1168 (-383 (-883 *5)))) + (|:| -4041 (-589 (-1168 (-383 (-883 *5)))))))))) + (-5 *1 (-855 *5 *6 *7 *8)) (-5 *4 (-589 *8)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-291 *5)) (-5 *4 (-850)) (-4 *5 (-514)) - (-4 *5 (-784)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) - (-5 *1 (-722 *5)))) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-589 (-1087))) (-4 *8 (-880 *5 *7 *6)) + (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) + (-4 *7 (-732)) + (-5 *2 + (-589 + (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) + (|:| |wcond| (-589 (-883 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1168 (-383 (-883 *5)))) + (|:| -4041 (-589 (-1168 (-383 (-883 *5)))))))))) + (-5 *1 (-855 *5 *6 *7 *8)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-291 (-154 *4))) (-4 *4 (-514)) (-4 *4 (-784)) - (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) + (-12 (-5 *3 (-629 *7)) (-4 *7 (-880 *4 *6 *5)) + (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) + (-5 *2 + (-589 + (-2 (|:| |eqzro| (-589 *7)) (|:| |neqzro| (-589 *7)) + (|:| |wcond| (-589 (-883 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1168 (-383 (-883 *4)))) + (|:| -4041 (-589 (-1168 (-383 (-883 *4)))))))))) + (-5 *1 (-855 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 *9)) (-5 *5 (-852)) (-4 *9 (-880 *6 *8 *7)) + (-4 *6 (-13 (-284) (-136))) (-4 *7 (-13 (-786) (-564 (-1087)))) + (-4 *8 (-732)) + (-5 *2 + (-589 + (-2 (|:| |eqzro| (-589 *9)) (|:| |neqzro| (-589 *9)) + (|:| |wcond| (-589 (-883 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1168 (-383 (-883 *6)))) + (|:| -4041 (-589 (-1168 (-383 (-883 *6)))))))))) + (-5 *1 (-855 *6 *7 *8 *9)) (-5 *4 (-589 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 *9)) (-5 *4 (-589 (-1087))) (-5 *5 (-852)) + (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) + (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) + (-5 *2 + (-589 + (-2 (|:| |eqzro| (-589 *9)) (|:| |neqzro| (-589 *9)) + (|:| |wcond| (-589 (-883 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1168 (-383 (-883 *6)))) + (|:| -4041 (-589 (-1168 (-383 (-883 *6)))))))))) + (-5 *1 (-855 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-291 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-514)) - (-4 *5 (-784)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) - (-5 *1 (-722 *5))))) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-852)) (-4 *8 (-880 *5 *7 *6)) + (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) + (-4 *7 (-732)) + (-5 *2 + (-589 + (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) + (|:| |wcond| (-589 (-883 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1168 (-383 (-883 *5)))) + (|:| -4041 (-589 (-1168 (-383 (-883 *5)))))))))) + (-5 *1 (-855 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 *9)) (-5 *4 (-589 *9)) (-5 *5 (-1070)) + (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) + (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-523)) + (-5 *1 (-855 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 *9)) (-5 *4 (-589 (-1087))) (-5 *5 (-1070)) + (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) + (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-523)) + (-5 *1 (-855 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *8)) (-5 *4 (-1070)) (-4 *8 (-880 *5 *7 *6)) + (-4 *5 (-13 (-284) (-136))) (-4 *6 (-13 (-786) (-564 (-1087)))) + (-4 *7 (-732)) (-5 *2 (-523)) (-5 *1 (-855 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-629 *10)) (-5 *4 (-589 *10)) (-5 *5 (-852)) + (-5 *6 (-1070)) (-4 *10 (-880 *7 *9 *8)) (-4 *7 (-13 (-284) (-136))) + (-4 *8 (-13 (-786) (-564 (-1087)))) (-4 *9 (-732)) (-5 *2 (-523)) + (-5 *1 (-855 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-629 *10)) (-5 *4 (-589 (-1087))) (-5 *5 (-852)) + (-5 *6 (-1070)) (-4 *10 (-880 *7 *9 *8)) (-4 *7 (-13 (-284) (-136))) + (-4 *8 (-13 (-786) (-564 (-1087)))) (-4 *9 (-732)) (-5 *2 (-523)) + (-5 *1 (-855 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-629 *9)) (-5 *4 (-852)) (-5 *5 (-1070)) + (-4 *9 (-880 *6 *8 *7)) (-4 *6 (-13 (-284) (-136))) + (-4 *7 (-13 (-786) (-564 (-1087)))) (-4 *8 (-732)) (-5 *2 (-523)) + (-5 *1 (-855 *6 *7 *8 *9))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1144 *3)) (-4 *3 (-973))))) (((*1 *2 *2) - (-12 (-4 *3 (-426)) (-4 *3 (-784)) (-4 *3 (-962 (-522))) - (-4 *3 (-514)) (-5 *1 (-40 *3 *2)) (-4 *2 (-405 *3)) - (-4 *2 - (-13 (-338) (-278) - (-10 -8 (-15 -2947 ((-1037 *3 (-561 $)) $)) - (-15 -2959 ((-1037 *3 (-561 $)) $)) - (-15 -2217 ($ (-1037 *3 (-561 $)))))))))) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-940))))) +(((*1 *2) + (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-393 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) - (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) - (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) - (|:| |abserr| (-202)) (|:| |relerr| (-202)))) + (-12 (-4 *2 (-1144 *4)) (-5 *1 (-748 *4 *2 *3 *5)) + (-4 *4 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-599 *2)) + (-4 *5 (-599 (-383 *2)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-515)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-515))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) (-5 *2 - (-2 (|:| |stiffnessFactor| (-354)) (|:| |stabilityFactor| (-354)))) - (-5 *1 (-184))))) -(((*1 *1) (-5 *1 (-143)))) + (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) + (|:| |success| (-108)))) + (-5 *1 (-728)) (-5 *5 (-523))))) +(((*1 *2 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) + (-4 *4 (-325))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *2 (-784)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-730)) (-4 *5 (-971)) (-4 *6 (-878 *5 *4 *2)) - (-4 *2 (-784)) (-5 *1 (-879 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-338) - (-10 -8 (-15 -2217 ($ *6)) (-15 -2947 (*6 $)) - (-15 -2959 (*6 $))))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514)) - (-5 *2 (-1085)) (-5 *1 (-967 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-881 (-202))) (-5 *2 (-202)) (-5 *1 (-281))))) -(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856))))) + (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 (-874 *3))) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-589 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-874 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523))))) +(((*1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1090))))) +(((*1 *1 *1 *1) (-4 *1 (-897)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3278 *3))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-708)) (-5 *3 (-872 *4)) (-4 *1 (-1046 *4)) - (-4 *4 (-971)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-708)) (-5 *4 (-872 (-202))) (-5 *2 (-1171)) - (-5 *1 (-1168))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855))))) + (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) + (-5 *1 (-308))))) +(((*1 *1 *1) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) + ((*1 *1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-4 *2 (-973)) (-4 *3 (-782))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-203)) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL)))) + (-5 *2 (-962)) (-5 *1 (-689)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-203)) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-59 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-85 BDYVAL)))) + (-5 *8 (-364)) (-5 *2 (-962)) (-5 *1 (-689))))) +(((*1 *2 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1168 (-1168 (-523)))) (-5 *1 (-441))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-900))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-292 (-203))) (-5 *1 (-282)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-823 *3)) (|:| |den| (-823 *3)))) + (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-339))))) +(((*1 *2 *3) + (-12 (-5 *2 (-589 (-1083 (-523)))) (-5 *1 (-171)) (-5 *3 (-523))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-1 (-108) *8))) (-4 *8 (-987 *5 *6 *7)) + (-4 *5 (-515)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-2 (|:| |goodPols| (-589 *8)) (|:| |badPols| (-589 *8)))) + (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-589 *8))))) +(((*1 *2 *1) + (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-710))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) + (-5 *1 (-688))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-1092))) (-5 *1 (-167))))) +(((*1 *1) + (-12 (-4 *1 (-380)) (-3900 (|has| *1 (-6 -4235))) + (-3900 (|has| *1 (-6 -4227))))) + ((*1 *2 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-1016)) (-4 *2 (-786)))) + ((*1 *2 *1) (-12 (-4 *1 (-769 *2)) (-4 *2 (-786)))) + ((*1 *1 *1 *1) (-4 *1 (-786))) ((*1 *1) (-5 *1 (-1034)))) +(((*1 *2 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-589 *3)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-393 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-284)) (-5 *1 (-164 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-427)) (-4 *4 (-786)) (-4 *5 (-732)) (-5 *2 (-589 *6)) + (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-880 *3 *5 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) + (-5 *3 (-589 (-523))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) + (-5 *3 (-589 (-523)))))) +(((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3159 *6) (|:| |sol?| (-108))) (-523) + *6)) + (-4 *6 (-339)) (-4 *7 (-1144 *6)) + (-5 *2 (-2 (|:| |answer| (-540 (-383 *7))) (|:| |a0| *6))) + (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-589 (-883 *4))) (-5 *3 (-589 (-1087))) (-4 *4 (-427)) + (-5 *1 (-849 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-339)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) + (-5 *1 (-490 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-515)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) + (-4 *7 (-921 *4)) (-4 *2 (-627 *7 *8 *9)) + (-5 *1 (-491 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) + (-4 *8 (-349 *7)) (-4 *9 (-349 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) + (-4 *4 (-349 *2)) (-4 *2 (-284)))) + ((*1 *2 *2) + (-12 (-4 *3 (-284)) (-4 *3 (-158)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *1 (-628 *3 *4 *5 *2)) + (-4 *2 (-627 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-976 *2 *3 *4 *5 *6)) (-4 *4 (-973)) + (-4 *5 (-216 *3 *4)) (-4 *6 (-216 *2 *4)) (-4 *4 (-284))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-852)) (-5 *1 (-957 *2)) + (-4 *2 (-13 (-1016) (-10 -8 (-15 -4075 ($ $ $)))))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-513 *3)) (-4 *3 (-13 (-380) (-1108))) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-4 *5 (-1144 *4)) (-5 *2 (-589 (-596 (-383 *5)))) + (-5 *1 (-600 *4 *5)) (-5 *3 (-596 (-383 *5)))))) +(((*1 *1 *1) (-4 *1 (-575))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930) (-1108)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *5 *6)) (-4 *6 (-564 (-1087))) + (-4 *4 (-339)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *2 (-1077 (-589 (-883 *4)) (-589 (-271 (-883 *4))))) + (-5 *1 (-475 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-302 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)) + (-4 *2 (-427)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 *4)) (-4 *4 (-1144 (-523))) (-5 *2 (-589 (-523))) + (-5 *1 (-459 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-427)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-880 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)) (-4 *3 (-427))))) +(((*1 *1 *1) (-5 *1 (-47))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1122)) + (-4 *2 (-1122)) (-5 *1 (-56 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1016)) (|has| *1 (-6 -4244)) + (-4 *1 (-140 *2)) (-4 *2 (-1122)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4244)) (-4 *1 (-140 *2)) + (-4 *2 (-1122)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4244)) (-4 *1 (-140 *2)) + (-4 *2 (-1122)))) + ((*1 *2 *3) + (-12 (-4 *4 (-973)) + (-5 *2 (-2 (|:| -1480 (-1083 *4)) (|:| |deg| (-852)))) + (-5 *1 (-199 *4 *5)) (-5 *3 (-1083 *4)) (-4 *5 (-13 (-515) (-786))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-218 *5 *6)) (-14 *5 (-710)) + (-4 *6 (-1122)) (-4 *2 (-1122)) (-5 *1 (-217 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-158)) (-5 *1 (-266 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1144 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-515)) (-4 *2 (-786)))) + ((*1 *1 *1) + (-12 (-4 *1 (-311 *2 *3 *4 *5)) (-4 *2 (-339)) (-4 *3 (-1144 *2)) + (-4 *4 (-1144 (-383 *3))) (-4 *5 (-318 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1122)) (-4 *2 (-1122)) + (-5 *1 (-347 *5 *4 *2 *6)) (-4 *4 (-349 *5)) (-4 *6 (-349 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1016)) (-4 *2 (-1016)) + (-5 *1 (-399 *5 *4 *2 *6)) (-4 *4 (-401 *5)) (-4 *6 (-401 *2)))) + ((*1 *1 *1) (-5 *1 (-466))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-589 *5)) (-4 *5 (-1122)) + (-4 *2 (-1122)) (-5 *1 (-587 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-973)) (-4 *2 (-973)) + (-4 *6 (-349 *5)) (-4 *7 (-349 *5)) (-4 *8 (-349 *2)) + (-4 *9 (-349 *2)) (-5 *1 (-625 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-627 *5 *6 *7)) (-4 *10 (-627 *2 *8 *9)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-973)) (-5 *1 (-652 *3 *2)) (-4 *2 (-1144 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-383 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-339)) + (-4 *3 (-158)) (-4 *1 (-664 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-158)) (-4 *1 (-664 *3 *2)) (-4 *2 (-1144 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-888 *5)) (-4 *5 (-1122)) + (-4 *2 (-1122)) (-5 *1 (-887 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-961 *3 *4 *5 *2 *6)) (-4 *2 (-880 *3 *4 *5)) + (-14 *6 (-589 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-973)) (-4 *2 (-973)) + (-14 *5 (-710)) (-14 *6 (-710)) (-4 *8 (-216 *6 *7)) + (-4 *9 (-216 *5 *7)) (-4 *10 (-216 *6 *2)) (-4 *11 (-216 *5 *2)) + (-5 *1 (-978 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-976 *5 *6 *7 *8 *9)) (-4 *12 (-976 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1068 *5)) (-4 *5 (-1122)) + (-4 *2 (-1122)) (-5 *1 (-1066 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) + (-4 *1 (-1116 *5 *6 *7 *2)) (-4 *5 (-515)) (-4 *6 (-732)) + (-4 *7 (-786)) (-4 *2 (-987 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1168 *5)) (-4 *5 (-1122)) + (-4 *2 (-1122)) (-5 *1 (-1167 *5 *2))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-696))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-973)) (-4 *4 (-158)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)) + (-4 *3 (-158))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) - (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) - (|:| |relerr| (-202)))) + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) (-5 *2 (-2 (|:| |endPointContinuity| @@ -5899,12237 +10132,8013 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1066 (-202))) + (-3 (|:| |str| (-1068 (-203))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2321 + (|:| -3499 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-517))))) -(((*1 *2) - (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1014))))) + (-5 *1 (-518))))) (((*1 *2 *1) - (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) - (-5 *2 (-2 (|:| |num| (-1166 *4)) (|:| |den| *4)))))) + (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1168 *5)) (-4 *5 (-731)) (-5 *2 (-108)) + (-5 *1 (-781 *4 *5)) (-14 *4 (-710))))) (((*1 *2 *3) - (-12 (-5 *3 (-588 (-522))) (-5 *2 (-588 (-628 (-522)))) - (-5 *1 (-1024))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-971)) (-14 *3 (-1085)) - (-14 *4 *2)))) -(((*1 *2 *1) - (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-708)) (-4 *4 (-13 (-971) (-655 (-382 (-522))))) - (-4 *5 (-784)) (-5 *1 (-1180 *4 *5 *2)) (-4 *2 (-1185 *5 *4))))) + (-12 (-4 *1 (-325)) (-5 *3 (-523)) (-5 *2 (-1096 (-852) (-710)))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-523)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-394 *2)) (-4 *2 (-515))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-522)) (-4 *5 (-324)) (-5 *2 (-393 (-1081 (-1081 *5)))) - (-5 *1 (-1119 *5)) (-5 *3 (-1081 (-1081 *5)))))) -(((*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-354)) (-5 *1 (-964))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-708)) (-4 *2 (-514)) (-5 *1 (-897 *2 *4)) - (-4 *4 (-1142 *2))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1166 *4)) (-4 *4 (-584 (-522))) - (-5 *2 (-1166 (-522))) (-5 *1 (-1191 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1) (-5 *1 (-983)))) -(((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-784) (-962 (-522)) (-584 (-522)) (-426))) - (-5 *2 (-777 *4)) (-5 *1 (-288 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1106) (-405 *3))) (-14 *5 (-1085)) - (-14 *6 *4))) + (-12 (-5 *4 (-562 *6)) (-4 *6 (-13 (-406 *5) (-27) (-1108))) + (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 (-1083 (-383 (-1083 *6)))) (-5 *1 (-519 *5 *6 *7)) + (-5 *3 (-1083 *6)) (-4 *7 (-1016)))) ((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-784) (-962 (-522)) (-584 (-522)) (-426))) - (-5 *2 (-777 *4)) (-5 *1 (-1152 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1106) (-405 *3))) (-14 *5 (-1085)) - (-14 *6 *4)))) -(((*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-516 *3)) (-4 *3 (-507)))) - ((*1 *2 *3) - (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283)) (-5 *2 (-393 *3)) - (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-878 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283)) - (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-393 (-1081 *7))) - (-5 *1 (-680 *4 *5 *6 *7)) (-5 *3 (-1081 *7)))) + (-12 (-4 *2 (-1144 *3)) (-5 *1 (-652 *3 *2)) (-4 *3 (-973)))) ((*1 *2 *1) - (-12 (-4 *3 (-426)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *2 (-393 *1)) (-4 *1 (-878 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-784)) (-4 *5 (-730)) (-4 *6 (-426)) (-5 *2 (-393 *3)) - (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-878 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-426)) - (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-393 (-1081 (-382 *7)))) - (-5 *1 (-1080 *4 *5 *6 *7)) (-5 *3 (-1081 (-382 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-393 *1)) (-4 *1 (-1124)))) - ((*1 *2 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-393 *3)) (-5 *1 (-1145 *4 *3)) - (-4 *3 (-13 (-1142 *4) (-514) (-10 -8 (-15 -2308 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-968 *4 *5)) (-4 *4 (-13 (-782) (-283) (-135) (-947))) - (-14 *5 (-588 (-1085))) - (-5 *2 - (-588 (-1056 *4 (-494 (-794 *6)) (-794 *6) (-717 *4 (-794 *6))))) - (-5 *1 (-1190 *4 *5 *6)) (-14 *6 (-588 (-1085)))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-338)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) - (-5 *1 (-474 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6))))) + (-12 (-4 *1 (-664 *3 *2)) (-4 *3 (-158)) (-4 *2 (-1144 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1083 *11)) (-5 *6 (-589 *10)) + (-5 *7 (-589 (-710))) (-5 *8 (-589 *11)) (-4 *10 (-786)) + (-4 *11 (-284)) (-4 *9 (-732)) (-4 *5 (-880 *11 *9 *10)) + (-5 *2 (-589 (-1083 *5))) (-5 *1 (-682 *9 *10 *11 *5)) + (-5 *3 (-1083 *5)))) + ((*1 *2 *1) + (-12 (-4 *2 (-880 *3 *4 *5)) (-5 *1 (-961 *3 *4 *5 *2 *6)) + (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-14 *6 (-589 *2))))) +(((*1 *1 *1) (-12 (-5 *1 (-159 *2)) (-4 *2 (-284))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-523))) (-5 *5 (-1 (-1068 *4))) (-4 *4 (-339)) + (-4 *4 (-973)) (-5 *2 (-1068 *4)) (-5 *1 (-1072 *4))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-768))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 *4)))) + (-4 *3 (-1016)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5))))) +(((*1 *2) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-393 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-588 (-239))) (-5 *4 (-1085)) - (-5 *1 (-238 *2)) (-4 *2 (-1120)))) + (-12 (-5 *4 (-710)) (-5 *2 (-108)) (-5 *1 (-541 *3)) (-4 *3 (-508))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-883 (-383 (-523)))) (-5 *4 (-1087)) + (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-589 (-203))) (-5 *1 (-277))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) + (-4 *7 (-786)) (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-589 *3)) + (-5 *1 (-545 *5 *6 *7 *8 *3)) (-4 *3 (-1025 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-588 (-239))) (-5 *4 (-1085)) (-5 *2 (-51)) - (-5 *1 (-239))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *3)) - (-4 *3 (-990 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) - (-5 *1 (-1021 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-310 *3 *4 *5 *6)) (-4 *3 (-338)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 *3 *4 *5)) - (-5 *2 (-388 *4 (-382 *4) *5 *6)))) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) + (-5 *2 + (-589 (-2 (|:| -1986 (-1083 *5)) (|:| -2966 (-589 (-883 *5)))))) + (-5 *1 (-997 *5 *6)) (-5 *3 (-589 (-883 *5))) + (-14 *6 (-589 (-1087))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-284) (-136))) + (-5 *2 + (-589 (-2 (|:| -1986 (-1083 *4)) (|:| -2966 (-589 (-883 *4)))))) + (-5 *1 (-997 *4 *5)) (-5 *3 (-589 (-883 *4))) + (-14 *5 (-589 (-1087))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) + (-5 *2 + (-589 (-2 (|:| -1986 (-1083 *5)) (|:| -2966 (-589 (-883 *5)))))) + (-5 *1 (-997 *5 *6)) (-5 *3 (-589 (-883 *5))) + (-14 *6 (-589 (-1087)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-973)) (-14 *3 (-589 (-1087))))) + ((*1 *1 *1) + (-12 (-5 *1 (-201 *2 *3)) (-4 *2 (-13 (-973) (-786))) + (-14 *3 (-589 (-1087)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) + (-4 *5 (-13 (-27) (-1108) (-406 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) + (-4 *3 (-13 (-27) (-1108) (-406 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-383 (-523))) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) + (-4 *3 (-13 (-27) (-1108) (-406 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-271 *3)) (-5 *5 (-383 (-523))) + (-4 *3 (-13 (-27) (-1108) (-406 *6))) + (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-523))) (-5 *4 (-271 *6)) + (-4 *6 (-13 (-27) (-1108) (-406 *5))) + (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) + (-4 *3 (-13 (-27) (-1108) (-406 *6))) + (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-523))) (-5 *4 (-271 *7)) (-5 *5 (-1135 (-523))) + (-4 *7 (-13 (-27) (-1108) (-406 *6))) + (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1135 (-523))) + (-4 *3 (-13 (-27) (-1108) (-406 *7))) + (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-383 (-523)))) (-5 *4 (-271 *8)) + (-5 *5 (-1135 (-383 (-523)))) (-5 *6 (-383 (-523))) + (-4 *8 (-13 (-27) (-1108) (-406 *7))) + (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1135 (-383 (-523)))) + (-5 *7 (-383 (-523))) (-4 *3 (-13 (-27) (-1108) (-406 *8))) + (-4 *8 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1166 *6)) (-4 *6 (-13 (-384 *4 *5) (-962 *4))) - (-4 *4 (-919 *3)) (-4 *5 (-1142 *4)) (-4 *3 (-283)) - (-5 *1 (-388 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *3)))) + (-4 *3 (-973)) (-5 *1 (-548 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-549 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-338)) - (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *6))))) -(((*1 *2) - (-12 (-5 *2 (-886 (-1032))) (-5 *1 (-318 *3 *4)) (-14 *3 (-850)) - (-14 *4 (-850)))) - ((*1 *2) - (-12 (-5 *2 (-886 (-1032))) (-5 *1 (-319 *3 *4)) (-4 *3 (-324)) - (-14 *4 (-1081 *3)))) - ((*1 *2) - (-12 (-5 *2 (-886 (-1032))) (-5 *1 (-320 *3 *4)) (-4 *3 (-324)) - (-14 *4 (-850))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-856))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-426)) (-4 *4 (-514)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -1920 *4))) (-5 *1 (-897 *4 *3)) - (-4 *3 (-1142 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-588 (-588 *4)))) (-5 *2 (-588 (-588 *4))) - (-5 *1 (-1092 *4)) (-4 *4 (-784))))) -(((*1 *1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-239)))) - ((*1 *1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-239))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-589 *3)) (-4 *3 (-1014))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106)))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) - (-5 *3 (-588 (-522)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1052 *3 *4)) (-14 *3 (-850)) (-4 *4 (-338)) - (-5 *1 (-920 *3 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-983))))) -(((*1 *2 *3) - (-12 (-5 *3 (-291 (-354))) (-5 *2 (-291 (-202))) (-5 *1 (-281))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-588 (-588 (-202)))) (-5 *4 (-202)) - (-5 *2 (-588 (-872 *4))) (-5 *1 (-1117)) (-5 *3 (-872 *4))))) + (-12 (-5 *2 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *3)))) + (-4 *3 (-973)) (-4 *1 (-1128 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-710)) + (-5 *3 (-1068 (-2 (|:| |k| (-383 (-523))) (|:| |c| *4)))) + (-4 *4 (-973)) (-4 *1 (-1149 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-4 *1 (-1159 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1068 (-2 (|:| |k| (-710)) (|:| |c| *3)))) + (-4 *3 (-973)) (-4 *1 (-1159 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-51)) (-5 *1 (-768))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1168 *4)) (-5 *3 (-710)) (-4 *4 (-325)) + (-5 *1 (-493 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-144)))) + ((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) +(((*1 *2 *1) + (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1122)) + (-5 *2 (-589 *3))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-710)) (-4 *5 (-339)) (-5 *2 (-159 *6)) + (-5 *1 (-798 *5 *4 *6)) (-4 *4 (-1159 *5)) (-4 *6 (-1144 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1144 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-515)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-515))))) (((*1 *1 *1) - (-12 (-4 *1 (-339 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-110)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1068)) (-4 *4 (-784)) (-5 *1 (-858 *4 *2)) - (-4 *2 (-405 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1085)) (-5 *4 (-1068)) (-5 *2 (-291 (-522))) - (-5 *1 (-859))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-522)) (-5 *6 (-1 (-1171) (-1166 *5) (-1166 *5) (-354))) - (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171)) - (-5 *1 (-725)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-522)) (-5 *6 (-1 (-1171) (-1166 *5) (-1166 *5) (-354))) - (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171)) - (-5 *1 (-725))))) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) (((*1 *2 *3 *2) - (-12 - (-5 *2 - (-588 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-708)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-730)) (-4 *3 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *6 (-784)) - (-5 *1 (-423 *4 *5 *6 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1188 *4 *2)) (-4 *1 (-349 *4 *2)) (-4 *4 (-784)) - (-4 *2 (-157)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-784)) (-4 *2 (-971)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-756 *4)) (-4 *1 (-1181 *4 *2)) (-4 *4 (-784)) - (-4 *2 (-971)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-971)) (-5 *1 (-1187 *2 *3)) (-4 *3 (-780))))) + (-12 (-5 *2 (-1068 *4)) (-4 *4 (-37 *3)) (-4 *4 (-973)) + (-5 *3 (-383 (-523))) (-5 *1 (-1072 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *5 (-343)) - (-5 *2 (-708))))) + (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *6))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-589 (-562 *2))) (-5 *4 (-1087)) + (-4 *2 (-13 (-27) (-1108) (-406 *5))) + (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-254 *5 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1122)) (-5 *2 (-108))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-4 *1 (-102 *3))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-155 (-203)) (-155 (-203)))) (-5 *4 (-1011 (-203))) + (-5 *5 (-108)) (-5 *2 (-1170)) (-5 *1 (-234))))) (((*1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784))))) -(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-898))))) + (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973))))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-805)))) + ((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) +(((*1 *2 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-897))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1168 *5)) (-4 *5 (-731)) (-5 *2 (-108)) + (-5 *1 (-781 *4 *5)) (-14 *4 (-710))))) +(((*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) + (-5 *2 (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034)))))) + (-5 *1 (-322 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-240)))) + ((*1 *1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-240))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-108)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108))))) +(((*1 *2 *1) + (-12 (-5 *2 (-710)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-874 (-203))) (-5 *4 (-805)) (-5 *2 (-1173)) + (-5 *1 (-443)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-973)) (-4 *1 (-909 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-874 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-589 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-874 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1119)) (-5 *3 (-203))))) +(((*1 *1) (-5 *1 (-1003)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-108)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-240)))) + ((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) + ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-589 (-240))) (-5 *4 (-1087)) + (-5 *1 (-239 *2)) (-4 *2 (-1122)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-589 (-240))) (-5 *4 (-1087)) (-5 *2 (-51)) + (-5 *1 (-240))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *1) (-4 *1 (-261))) + ((*1 *2 *3) + (-12 (-5 *3 (-394 *4)) (-4 *4 (-515)) + (-5 *2 (-589 (-2 (|:| -2935 (-710)) (|:| |logand| *4)))) + (-5 *1 (-296 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *2 *1) + (-12 (-5 *2 (-607 *3 *4)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) + (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-710)) (-4 *4 (-13 (-973) (-657 (-383 (-523))))) + (-4 *5 (-786)) (-5 *1 (-1182 *4 *5 *2)) (-4 *2 (-1187 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-1186 *3 *4)) + (-4 *4 (-657 (-383 (-523)))) (-4 *3 (-786)) (-4 *4 (-158))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-589 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-284)) + (-5 *2 (-710)) (-5 *1 (-430 *5 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *1)) (-5 *4 (-1168 *1)) (-4 *1 (-585 *5)) + (-4 *5 (-973)) + (-5 *2 (-2 (|:| -3392 (-629 *5)) (|:| |vec| (-1168 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 *1)) (-4 *1 (-585 *4)) (-4 *4 (-973)) + (-5 *2 (-629 *4))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-589 (-383 *6))) (-5 *3 (-383 *6)) + (-4 *6 (-1144 *5)) (-4 *5 (-13 (-339) (-136) (-964 (-523)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-527 *5 *6))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) + (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) + (-5 *1 (-727))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-522)) (-4 *1 (-298 *2 *4)) (-4 *4 (-124)) - (-4 *2 (-1014)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *1 (-336 *2)) (-4 *2 (-1014)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *1 (-361 *2)) (-4 *2 (-1014)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *1 (-393 *2)) (-4 *2 (-514)))) + (-12 (-5 *3 (-523)) (-4 *1 (-299 *2 *4)) (-4 *4 (-124)) + (-4 *2 (-1016)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-337 *2)) (-4 *2 (-1016)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-362 *2)) (-4 *2 (-1016)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-522)) (-4 *2 (-1014)) (-5 *1 (-591 *2 *4 *5)) + (-12 (-5 *3 (-523)) (-4 *2 (-1016)) (-5 *1 (-592 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *1 (-756 *2)) (-4 *2 (-784))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-523)) (-5 *1 (-758 *2)) (-4 *2 (-786))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-710)) (-5 *3 (-874 *5)) (-4 *5 (-973)) + (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-710))) (-5 *3 (-710)) (-5 *1 (-1076 *4 *5)) + (-14 *4 (-852)) (-4 *5 (-973)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-710))) (-5 *3 (-874 *5)) (-4 *5 (-973)) + (-5 *1 (-1076 *4 *5)) (-14 *4 (-852))))) +(((*1 *2 *1) + (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) + (-5 *2 (-108))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *1 (-743 *4 *2)) (-4 *2 (-13 (-29 *4) (-1108) (-889)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-158))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-621 *2)) (-4 *2 (-1014)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-588 *5) (-588 *5))) (-5 *4 (-522)) - (-5 *2 (-588 *5)) (-5 *1 (-621 *5)) (-4 *5 (-1014))))) -(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-287)) (-5 *1 (-272)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-287)) (-5 *1 (-272)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-287)) (-5 *1 (-272)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-588 (-1068))) (-5 *3 (-1068)) (-5 *2 (-287)) - (-5 *1 (-272))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-981 (-949 *4) (-1081 (-949 *4)))) (-5 *3 (-792)) - (-5 *1 (-949 *4)) (-4 *4 (-13 (-782) (-338) (-947)))))) + (-12 (-5 *3 (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034)))))) + (-4 *4 (-325)) (-5 *2 (-629 *4)) (-5 *1 (-322 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1068 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-394 *2)) (-4 *2 (-515))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1085)) - (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) - (-4 *4 (-13 (-29 *6) (-1106) (-887))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2905 (-588 *4)))) - (-5 *1 (-738 *6 *4 *3)) (-4 *3 (-598 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-628 *4)) (-5 *3 (-850)) (|has| *4 (-6 (-4240 "*"))) - (-4 *4 (-971)) (-5 *1 (-953 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-588 (-628 *4))) (-5 *3 (-850)) - (|has| *4 (-6 (-4240 "*"))) (-4 *4 (-971)) (-5 *1 (-953 *4))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-4 *2 (-1016)) (-5 *1 (-621 *5 *6 *2))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-589 (-1083 *11))) (-5 *3 (-1083 *11)) + (-5 *4 (-589 *10)) (-5 *5 (-589 *8)) (-5 *6 (-589 (-710))) + (-5 *7 (-1168 (-589 (-1083 *8)))) (-4 *10 (-786)) + (-4 *8 (-284)) (-4 *11 (-880 *8 *9 *10)) (-4 *9 (-732)) + (-5 *1 (-647 *9 *10 *8 *11))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-595 (-382 *6))) (-5 *4 (-1 (-588 *5) *6)) - (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) - (-4 *6 (-1142 *5)) (-5 *2 (-588 (-382 *6))) (-5 *1 (-749 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-595 (-382 *7))) (-5 *4 (-1 (-588 *6) *7)) - (-5 *5 (-1 (-393 *7) *7)) - (-4 *6 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) - (-4 *7 (-1142 *6)) (-5 *2 (-588 (-382 *7))) (-5 *1 (-749 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-596 *6 (-382 *6))) (-5 *4 (-1 (-588 *5) *6)) - (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) - (-4 *6 (-1142 *5)) (-5 *2 (-588 (-382 *6))) (-5 *1 (-749 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-596 *7 (-382 *7))) (-5 *4 (-1 (-588 *6) *7)) - (-5 *5 (-1 (-393 *7) *7)) - (-4 *6 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) - (-4 *7 (-1142 *6)) (-5 *2 (-588 (-382 *7))) (-5 *1 (-749 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-595 (-382 *5))) (-4 *5 (-1142 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) - (-5 *2 (-588 (-382 *5))) (-5 *1 (-749 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-595 (-382 *6))) (-5 *4 (-1 (-393 *6) *6)) - (-4 *6 (-1142 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) - (-5 *2 (-588 (-382 *6))) (-5 *1 (-749 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-596 *5 (-382 *5))) (-4 *5 (-1142 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) - (-5 *2 (-588 (-382 *5))) (-5 *1 (-749 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-596 *6 (-382 *6))) (-5 *4 (-1 (-393 *6) *6)) - (-4 *6 (-1142 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) - (-5 *2 (-588 (-382 *6))) (-5 *1 (-749 *5 *6))))) -(((*1 *1 *2) - (-12 + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-973)) (-4 *7 (-973)) + (-4 *6 (-1144 *5)) (-5 *2 (-1083 (-1083 *7))) + (-5 *1 (-472 *5 *6 *4 *7)) (-4 *4 (-1144 *6))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1144 *6)) + (-4 *6 (-13 (-339) (-136) (-964 *4))) (-5 *4 (-523)) (-5 *2 - (-588 - (-2 - (|:| -2644 - (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) - (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) - (|:| |relerr| (-202)))) - (|:| -3149 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1066 (-202))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2321 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-517))))) -(((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) - ((*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))) -(((*1 *2 *1) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106)))))) + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) + (|:| -1710 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-943 *6 *3))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-692))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-973)) (-5 *1 (-49 *2 *3)) (-14 *3 (-589 (-1087))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-589 (-852))) (-4 *2 (-339)) (-5 *1 (-141 *4 *2 *5)) + (-14 *4 (-852)) (-14 *5 (-922 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-292 *3)) (-5 *1 (-201 *3 *4)) + (-4 *3 (-13 (-973) (-786))) (-14 *4 (-589 (-1087))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-124)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1016)) (-4 *2 (-973)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *2 (-515)) (-5 *1 (-570 *2 *4)) + (-4 *4 (-1144 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-648 *2)) (-4 *2 (-973)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-973)) (-5 *1 (-675 *2 *3)) (-4 *3 (-666)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 *5)) (-5 *3 (-589 (-710))) (-4 *1 (-680 *4 *5)) + (-4 *4 (-973)) (-4 *5 (-786)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *2)) (-4 *4 (-973)) + (-4 *2 (-786)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-710)) (-4 *1 (-788 *2)) (-4 *2 (-973)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 *6)) (-5 *3 (-589 (-710))) (-4 *1 (-880 *4 *5 *6)) + (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-880 *4 *5 *2)) (-4 *4 (-973)) + (-4 *5 (-732)) (-4 *2 (-786)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-4 *2 (-880 *4 (-495 *5) *5)) + (-5 *1 (-1040 *4 *5 *2)) (-4 *4 (-973)) (-4 *5 (-786)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-883 *4)) (-5 *1 (-1117 *4)) + (-4 *4 (-973))))) +(((*1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1) (-4 *1 (-119))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-221)) (-5 *2 (-523)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-448)) (-5 *2 (-523)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-666)) (-5 *2 (-710)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-852))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-515)) (-4 *3 (-158)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -4041 (-589 *1)))) + (-4 *1 (-343 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-428 *3 *4 *5 *6)) + (|:| -4041 (-589 (-428 *3 *4 *5 *6))))) + (-5 *1 (-428 *3 *4 *5 *6)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-279)))) + ((*1 *1 *1) (-4 *1 (-279))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) + ((*1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *2) (-12 (-5 *2 (-1011 (-779 (-203)))) (-5 *1 (-282))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-136)) + (-4 *3 (-284)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-906 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) + (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *2) + (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) + (-5 *1 (-161 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *5)) (-4 *5 (-406 *4)) (-4 *4 (-13 (-786) (-515))) + (-5 *2 (-794)) (-5 *1 (-31 *4 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) + (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) + (-5 *2 + (-2 (|:| -1710 (-589 *9)) (|:| -3072 *4) (|:| |ineq| (-589 *9)))) + (-5 *1 (-917 *6 *7 *8 *9 *4)) (-5 *3 (-589 *9)) + (-4 *4 (-992 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) + (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) + (-5 *2 + (-2 (|:| -1710 (-589 *9)) (|:| -3072 *4) (|:| |ineq| (-589 *9)))) + (-5 *1 (-1023 *6 *7 *8 *9 *4)) (-5 *3 (-589 *9)) + (-4 *4 (-992 *6 *7 *8 *9))))) (((*1 *1 *2) - (-12 (-5 *2 (-850)) (-5 *1 (-140 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-338)) (-14 *5 (-920 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *4 (-803)) - (-5 *5 (-850)) (-5 *6 (-588 (-239))) (-5 *2 (-442)) (-5 *1 (-1170)))) + (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-836 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508))))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-515))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-834 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-523)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-710)) (-5 *2 (-108)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-108)) (-5 *1 (-1123 *3)) (-4 *3 (-786)) + (-4 *3 (-1016))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-760))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-284)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-422 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) + (-4 *4 (-284)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *1 (-422 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) + (-4 *4 (-284)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *1 (-422 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1087)) (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *4 *5 *6)) + (-4 *4 (-564 (-499))) (-4 *5 (-1122)) (-4 *6 (-1122))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1040 *4 *3 *5))) (-4 *4 (-37 (-383 (-523)))) + (-4 *4 (-973)) (-4 *3 (-786)) (-5 *1 (-1040 *4 *3 *5)) + (-4 *5 (-880 *4 (-495 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1117 *4))) (-5 *3 (-1087)) (-5 *1 (-1117 *4)) + (-4 *4 (-37 (-383 (-523)))) (-4 *4 (-973))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-108)) (-5 *5 (-629 (-203))) + (-5 *2 (-962)) (-5 *1 (-695))))) +(((*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-760))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1087)) (-5 *1 (-306))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-710)) (-5 *1 (-722 *2)) (-4 *2 (-37 (-383 (-523)))) + (-4 *2 (-158))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520))))) +(((*1 *2 *2) (-12 (-5 *2 (-589 (-292 (-203)))) (-5 *1 (-244))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-108)) + (-5 *2 (-962)) (-5 *1 (-685))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1070)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-240)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1169)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1092))))) +(((*1 *2 *1) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523))))) +(((*1 *2 *3) + (-12 (-5 *2 (-523)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-962)) (-5 *1 (-282)))) + ((*1 *2 *3) (-12 (-5 *3 (-589 (-962))) (-5 *2 (-962)) (-5 *1 (-282)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1 *1) (-5 *1 (-985))) + ((*1 *2 *3) + (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1065 *4)) + (-4 *4 (-1122)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3) + (-12 (-5 *2 (-589 (-589 (-523)))) (-5 *1 (-900)) + (-5 *3 (-589 (-523)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2 *3) + (-12 (-5 *3 (-292 (-203))) (-5 *2 (-292 (-383 (-523)))) + (-5 *1 (-282))))) +(((*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) + ((*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442)))) + ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-442))))) +(((*1 *2 *1) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-108))))) +(((*1 *2) + (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) + ((*1 *2 *2) + (-12 (-5 *2 (-852)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1122)) (-5 *2 (-710))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *1 *1 *1) (-4 *1 (-508)))) +(((*1 *1 *2) + (-12 (-5 *2 (-1076 3 *3)) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) + ((*1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973))))) +(((*1 *2 *3) + (-12 (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-339)) + (-5 *1 (-490 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) + (|has| *2 (-6 (-4246 "*"))) (-4 *2 (-973)))) ((*1 *2 *3) - (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *2 (-442)) - (-5 *1 (-1170)))) + (-12 (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-158)) + (-5 *1 (-628 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) + (-4 *5 (-216 *3 *2)) (|has| *2 (-6 (-4246 "*"))) (-4 *2 (-973))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-589 (-1083 *7))) (-5 *3 (-1083 *7)) + (-4 *7 (-880 *5 *6 *4)) (-4 *5 (-840)) (-4 *6 (-732)) + (-4 *4 (-786)) (-5 *1 (-837 *5 *6 *4 *7))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) (-5 *2 (-108)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-5 *2 (-108)) + (-5 *1 (-333 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1168 *4)) (-4 *4 (-325)) (-5 *2 (-108)) + (-5 *1 (-493 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-512))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1087)) (-5 *1 (-617 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1016)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *4 (-588 (-239))) - (-5 *2 (-442)) (-5 *1 (-1170))))) -(((*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-792) (-792) (-792))) (-5 *4 (-522)) (-5 *2 (-792)) - (-5 *1 (-591 *5 *6 *7)) (-4 *5 (-1014)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-792)) (-5 *1 (-788 *3 *4 *5)) (-4 *3 (-971)) - (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-792)))) - ((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-792)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-792)))) - ((*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1081 *3)) (-4 *3 (-971))))) + (-12 (-5 *4 (-523)) (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) + (-4 *3 (-973)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-758 *4)) (-4 *4 (-786)) (-4 *1 (-1183 *4 *3)) + (-4 *3 (-973))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-589 (-710)))) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-412))))) +(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) + ((*1 *2 *1) + (-12 (-5 *2 (-710)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) + (-14 *4 (-589 (-1087))))) + ((*1 *2 *1) + (-12 (-5 *2 (-523)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) + (-14 *4 (-589 (-1087))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) + (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-252)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1083 *8)) (-5 *4 (-589 *6)) (-4 *6 (-786)) + (-4 *8 (-880 *7 *5 *6)) (-4 *5 (-732)) (-4 *7 (-973)) + (-5 *2 (-589 (-710))) (-5 *1 (-297 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-852)))) + ((*1 *2 *1) + (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) + (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-4 *1 (-445 *3 *2)) (-4 *3 (-158)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-515)) (-5 *2 (-523)) (-5 *1 (-570 *3 *4)) + (-4 *4 (-1144 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-589 *6)) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 (-710))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-880 *4 *5 *3)) (-4 *4 (-973)) (-4 *5 (-732)) + (-4 *3 (-786)) (-5 *2 (-710)))) + ((*1 *2 *1) + (-12 (-4 *1 (-902 *3 *2 *4)) (-4 *3 (-973)) (-4 *4 (-786)) + (-4 *2 (-731)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-710)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1130 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1159 *3)) + (-5 *2 (-523)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1151 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1128 *3)) + (-5 *2 (-383 (-523))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-772 (-852))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) + (-5 *2 (-710))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-523)) (-5 *1 (-355))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) + (-14 *4 (-710)) (-4 *5 (-158))))) +(((*1 *2 *1) (-12 (-4 *3 (-1122)) (-5 *2 (-589 *1)) (-4 *1 (-938 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-589 (-1076 *3 *4))) (-5 *1 (-1076 *3 *4)) + (-14 *3 (-852)) (-4 *4 (-973))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) + (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-989 *4 *3)) (-4 *4 (-13 (-784) (-339))) + (-4 *3 (-1144 *4)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-203)))) (-5 *1 (-857))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-339) (-964 (-383 *2)))) (-5 *2 (-523)) + (-5 *1 (-111 *4 *3)) (-4 *3 (-1144 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122))))) (((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *1 *1) (-4 *1 (-507)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354))) - (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354))) - (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1009 (-354))) - (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) + (-12 (-4 *1 (-880 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-427)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *3 (-987 *4 *5 *6)) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *1)))) + (-4 *1 (-992 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1126))) + ((*1 *2 *2) + (-12 (-4 *3 (-515)) (-5 *1 (-1147 *3 *2)) + (-4 *2 (-13 (-1144 *3) (-515) (-10 -8 (-15 -3278 ($ $ $)))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1151 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1128 *3)) + (-5 *2 (-383 (-523)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-589 (-589 *3))))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-589 (-589 *5))))) + ((*1 *2 *1) + (-12 (-5 *2 (-589 (-589 *3))) (-5 *1 (-1095 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-590 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-542 *4)) + (-4 *4 (-325))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) + (-5 *2 (-758 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-782)) (-5 *1 (-1189 *3 *2)) (-4 *3 (-973))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-622 *2)) (-4 *2 (-1016)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1009 (-354))) - (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1009 (-354))) - (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1009 (-354))) - (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-354))) - (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-354))) - (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1009 (-354))) - (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1009 (-354))) - (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-808 *6)) (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) - (-4 *6 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1045 (-202))) - (-5 *1 (-235 *6)))) + (-12 (-5 *3 (-1 (-589 *5) (-589 *5))) (-5 *4 (-523)) + (-5 *2 (-589 *5)) (-5 *1 (-622 *5)) (-4 *5 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *2)) (-4 *2 (-158)))) + ((*1 *2) (-12 (-4 *2 (-158)) (-5 *1 (-392 *3 *2)) (-4 *3 (-393 *2)))) + ((*1 *2) (-12 (-4 *1 (-393 *2)) (-4 *2 (-158))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1159 *4)) + (-4 *4 (-37 (-383 (-523)))) (-5 *2 (-1 (-1068 *4) (-1068 *4))) + (-5 *1 (-1161 *4 *5))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 (-225 *5 *6))) (-4 *6 (-427)) + (-5 *2 (-225 *5 *6)) (-14 *5 (-589 (-1087))) (-5 *1 (-577 *5 *6))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-691))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-589 *10)) (-5 *5 (-108)) (-4 *10 (-992 *6 *7 *8 *9)) + (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) + (-5 *2 + (-589 + (-2 (|:| -1710 (-589 *9)) (|:| -3072 *10) (|:| |ineq| (-589 *9))))) + (-5 *1 (-917 *6 *7 *8 *9 *10)) (-5 *3 (-589 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-589 *10)) (-5 *5 (-108)) (-4 *10 (-992 *6 *7 *8 *9)) + (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) (-4 *9 (-987 *6 *7 *8)) + (-5 *2 + (-589 + (-2 (|:| -1710 (-589 *9)) (|:| -3072 *10) (|:| |ineq| (-589 *9))))) + (-5 *1 (-1023 *6 *7 *8 *9 *10)) (-5 *3 (-589 *9))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1122))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-108)) (-5 *1 (-823 *4)) + (-4 *4 (-1016))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-303 *3)) (-4 *3 (-1122)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-523)) (-5 *1 (-486 *3 *4)) (-4 *3 (-1122)) (-14 *4 *2)))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-731)) (-4 *3 (-158))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1016)) (-4 *2 (-786)) + (-5 *1 (-109 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-339)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) + (-5 *2 + (-2 (|:| -3024 (-389 *4 (-383 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-808 *5)) (-5 *4 (-1007 (-354))) - (-4 *5 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1045 (-202))) - (-5 *1 (-235 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) - (-5 *2 (-1045 (-202))) (-5 *1 (-235 *3)) - (-4 *3 (-13 (-563 (-498)) (-1014))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1007 (-354))) (-5 *2 (-1045 (-202))) (-5 *1 (-235 *3)) - (-4 *3 (-13 (-563 (-498)) (-1014))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-811 *6)) (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) - (-4 *6 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1045 (-202))) - (-5 *1 (-235 *6)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -3127 (-383 *6)) + (|:| |special| (-383 *6)))) + (-5 *1 (-667 *5 *6)) (-5 *3 (-383 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-339)) (-5 *2 (-589 *3)) (-5 *1 (-827 *3 *4)) + (-4 *3 (-1144 *4)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-811 *5)) (-5 *4 (-1007 (-354))) - (-4 *5 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1045 (-202))) - (-5 *1 (-235 *5))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-588 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1114 *5 *6 *7 *8)) (-4 *5 (-514)) - (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-291 (-202)))) (-5 *2 (-108)) (-5 *1 (-243))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1142 *2)) (-4 *2 (-1124)) (-5 *1 (-136 *2 *4 *3)) - (-4 *3 (-1142 (-382 *4)))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-108)) (-5 *5 (-628 (-154 (-202)))) - (-5 *2 (-960)) (-5 *1 (-693))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-338)) (-5 *1 (-261 *3 *2)) (-4 *2 (-1157 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1068)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) - ((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-239)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-561 *3)) (-5 *5 (-1 (-1081 *3) (-1081 *3))) - (-4 *3 (-13 (-27) (-405 *6))) (-4 *6 (-13 (-784) (-514))) - (-5 *2 (-539 *3)) (-5 *1 (-509 *6 *3))))) + (|partial| -12 (-5 *4 (-710)) (-4 *5 (-339)) + (-5 *2 (-2 (|:| -3149 *3) (|:| -3159 *3))) (-5 *1 (-827 *3 *5)) + (-4 *3 (-1144 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) + (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) + (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) + (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) + (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) + (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) + (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-589 *9)) (-5 *3 (-589 *8)) (-5 *4 (-108)) + (-4 *8 (-987 *5 *6 *7)) (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) + (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858))))) +(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1122)) (-5 *2 (-108))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-589 *1)) (-4 *1 (-284))))) +(((*1 *2) + (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-393 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-872 (-202))) (-5 *2 (-1171)) (-5 *1 (-442))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-154 (-202)))) - (-5 *2 (-960)) (-5 *1 (-692))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-971))))) -(((*1 *2 *1) (-12 (-4 *1 (-962 (-522))) (-4 *1 (-278)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-507)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-834 *3)) (-4 *3 (-1014))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-628 (-382 (-881 (-522))))) - (-5 *2 (-628 (-291 (-522)))) (-5 *1 (-956))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-298 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-124)) - (-4 *3 (-729))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-522)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1120)) - (-4 *3 (-348 *4)) (-4 *5 (-348 *4))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-338)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) - (-5 *1 (-489 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-514)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) - (-4 *7 (-919 *4)) (-4 *2 (-626 *7 *8 *9)) - (-5 *1 (-490 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-626 *4 *5 *6)) - (-4 *8 (-348 *7)) (-4 *9 (-348 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) - (-4 *3 (-348 *2)) (-4 *4 (-348 *2)) (-4 *2 (-338)))) + (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-985)) (-5 *3 (-1070))))) +(((*1 *1 *1) + (-12 (-4 *2 (-136)) (-4 *2 (-284)) (-4 *2 (-427)) (-4 *3 (-786)) + (-4 *4 (-732)) (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-880 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-292 (-523))) (-5 *1 (-1033)))) ((*1 *2 *2) - (|partial| -12 (-4 *3 (-338)) (-4 *3 (-157)) (-4 *4 (-348 *3)) - (-4 *5 (-348 *3)) (-5 *1 (-627 *3 *4 *5 *2)) - (-4 *2 (-626 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-628 *2)) (-4 *2 (-338)) (-4 *2 (-971)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1035 *2 *3 *4 *5)) (-4 *3 (-971)) - (-4 *4 (-215 *2 *3)) (-4 *5 (-215 *2 *3)) (-4 *3 (-338)))) - ((*1 *2 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-1092 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-338)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) - (-5 *1 (-474 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6))))) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-1090)))) + ((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1090))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-126))))) +(((*1 *2 *3) + (-12 (-5 *3 (-292 (-203))) (-5 *2 (-383 (-523))) (-5 *1 (-282))))) (((*1 *1 *1) - (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-157)) (-4 *2 (-514)))) - ((*1 *1 *1) (|partial| -4 *1 (-660)))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2)) - (-4 *4 (-13 (-784) (-514)))))) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)))) + ((*1 *1) (-4 *1 (-1063)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -1979 (-589 (-2 (|:| |irr| *10) (|:| -1227 (-523))))))) + (-5 *6 (-589 *3)) (-5 *7 (-589 *8)) (-4 *8 (-786)) (-4 *3 (-284)) + (-4 *10 (-880 *3 *9 *8)) (-4 *9 (-732)) + (-5 *2 + (-2 (|:| |polfac| (-589 *10)) (|:| |correct| *3) + (|:| |corrfact| (-589 (-1083 *3))))) + (-5 *1 (-572 *8 *9 *3 *10)) (-5 *4 (-589 (-1083 *3)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-362 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786))))) (((*1 *2 *3) - (-12 (-5 *3 (-881 (-522))) (-5 *2 (-588 *1)) (-4 *1 (-938)))) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) + (-5 *2 (-355)) (-5 *1 (-244)))) ((*1 *2 *3) - (-12 (-5 *3 (-881 (-382 (-522)))) (-5 *2 (-588 *1)) (-4 *1 (-938)))) - ((*1 *2 *3) (-12 (-5 *3 (-881 *1)) (-4 *1 (-938)) (-5 *2 (-588 *1)))) + (-12 (-5 *3 (-1168 (-292 (-203)))) (-5 *2 (-355)) (-5 *1 (-282))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-515)) + (-4 *7 (-880 *3 *5 *6)) + (-5 *2 (-2 (|:| -2735 (-710)) (|:| -2935 *8) (|:| |radicand| *8))) + (-5 *1 (-884 *5 *6 *3 *7 *8)) (-5 *4 (-710)) + (-4 *8 + (-13 (-339) + (-10 -8 (-15 -2785 (*7 $)) (-15 -2797 (*7 $)) (-15 -1458 ($ *7)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1123 *2)) + (-4 *2 (-1016)))) ((*1 *2 *3) - (-12 (-5 *3 (-1081 (-522))) (-5 *2 (-588 *1)) (-4 *1 (-938)))) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-786)) + (-5 *1 (-1123 *2))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-973)) + (-5 *1 (-789 *5 *2)) (-4 *2 (-788 *5))))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1016))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-710)) (-4 *4 (-339)) (-5 *1 (-827 *2 *4)) + (-4 *2 (-1144 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-970 *4 *5)) (-4 *4 (-13 (-784) (-284) (-136) (-949))) + (-14 *5 (-589 (-1087))) + (-5 *2 + (-589 (-2 (|:| -1986 (-1083 *4)) (|:| -2966 (-589 (-883 *4)))))) + (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-589 (-1087))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 + (-589 (-2 (|:| -1986 (-1083 *5)) (|:| -2966 (-589 (-883 *5)))))) + (-5 *1 (-1192 *5 *6 *7)) (-5 *3 (-589 (-883 *5))) + (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 + (-589 (-2 (|:| -1986 (-1083 *5)) (|:| -2966 (-589 (-883 *5)))))) + (-5 *1 (-1192 *5 *6 *7)) (-5 *3 (-589 (-883 *5))) + (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 + (-589 (-2 (|:| -1986 (-1083 *5)) (|:| -2966 (-589 (-883 *5)))))) + (-5 *1 (-1192 *5 *6 *7)) (-5 *3 (-589 (-883 *5))) + (-14 *6 (-589 (-1087))) (-14 *7 (-589 (-1087))))) ((*1 *2 *3) - (-12 (-5 *3 (-1081 (-382 (-522)))) (-5 *2 (-588 *1)) (-4 *1 (-938)))) - ((*1 *2 *3) (-12 (-5 *3 (-1081 *1)) (-4 *1 (-938)) (-5 *2 (-588 *1)))) + (-12 (-4 *4 (-13 (-784) (-284) (-136) (-949))) + (-5 *2 + (-589 (-2 (|:| -1986 (-1083 *4)) (|:| -2966 (-589 (-883 *4)))))) + (-5 *1 (-1192 *4 *5 *6)) (-5 *3 (-589 (-883 *4))) + (-14 *5 (-589 (-1087))) (-14 *6 (-589 (-1087)))))) +(((*1 *2 *2) (-12 (-5 *2 (-292 (-203))) (-5 *1 (-244))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-427) (-136))) (-5 *2 (-394 *3)) + (-5 *1 (-95 *4 *3)) (-4 *3 (-1144 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-13 (-427) (-136))) + (-5 *2 (-394 *3)) (-5 *1 (-95 *5 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4244)) (-4 *1 (-213 *3)) + (-4 *3 (-1016)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4244)) (-4 *1 (-213 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-259 *2)) (-4 *2 (-1122)) (-4 *2 (-1016)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-259 *3)) (-4 *3 (-1122)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-560 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-523)) (-4 *4 (-1016)) + (-5 *1 (-677 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-5 *1 (-677 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) + (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4))))) +(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-92))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) + (-5 *2 (-962)) (-5 *1 (-697))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-499))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 (-823 *6))) + (-5 *5 (-1 (-820 *6 *8) *8 (-823 *6) (-820 *6 *8))) (-4 *6 (-1016)) + (-4 *8 (-13 (-973) (-564 (-823 *6)) (-964 *7))) (-5 *2 (-820 *6 *8)) + (-4 *7 (-13 (-973) (-786))) (-5 *1 (-872 *6 *7 *8))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-560 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-589 (-589 *7))) + (-5 *1 (-423 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) + (-4 *7 (-786)) (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-589 (-589 *8))) + (-5 *1 (-423 *5 *6 *7 *8)) (-5 *3 (-589 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-782) (-338))) (-4 *3 (-1142 *4)) (-5 *2 (-588 *1)) - (-4 *1 (-987 *4 *3))))) + (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-589 (-589 *7))) + (-5 *1 (-423 *4 *5 *6 *7)) (-5 *3 (-589 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) + (-4 *7 (-786)) (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-589 (-589 *8))) + (-5 *1 (-423 *5 *6 *7 *8)) (-5 *3 (-589 *8))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1016))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-973)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1119)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1122)) (-4 *2 (-973))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-953 (-779 (-523)))) + (-5 *3 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *4)))) (-4 *4 (-973)) + (-5 *1 (-548 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-37 (-382 (-522)))) - (-5 *2 (-2 (|:| -2906 (-1066 *4)) (|:| -2915 (-1066 *4)))) - (-5 *1 (-1072 *4)) (-5 *3 (-1066 *4))))) + (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-284) (-136))) + (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) + (-5 *2 + (-589 + (-2 (|:| |eqzro| (-589 *7)) (|:| |neqzro| (-589 *7)) + (|:| |wcond| (-589 (-883 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1168 (-383 (-883 *4)))) + (|:| -4041 (-589 (-1168 (-383 (-883 *4)))))))))) + (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-880 *4 *6 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1047 (-203))) (-5 *3 (-589 (-240))) (-5 *1 (-1170)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1047 (-203))) (-5 *3 (-1070)) (-5 *1 (-1170)))) + ((*1 *1 *1) (-5 *1 (-1170)))) +(((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-427))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) + (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-1179 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-589 *8)) (-5 *3 (-1 (-108) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) + (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1179 *5 *6 *7 *8))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-515)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) + (-5 *1 (-1113 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-1095 *3))))) +(((*1 *1 *1) (-5 *1 (-985)))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1135 *3)) (-4 *3 (-1122))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-589 *3)) + (-4 *3 (-13 (-27) (-1108) (-406 *6))) + (-4 *6 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-516 *6 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *1 *1) (-4 *1 (-463))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *5 (-202)) - (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-59 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-85 BDYVAL)))) - (-5 *2 (-960)) (-5 *1 (-687)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *5 (-202)) - (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-59 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-85 BDYVAL)))) - (-5 *8 (-363)) (-5 *2 (-960)) (-5 *1 (-687))))) -(((*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) + (-5 *2 (-962)) (-5 *1 (-692))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-284)) (-5 *1 (-430 *3 *2)) (-4 *2 (-1144 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-284)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1144 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-284)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-710))) + (-5 *1 (-502 *3 *2 *4 *5)) (-4 *2 (-1144 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-852))) (-5 *2 (-835 (-523))) (-5 *1 (-848))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-515)) (-4 *3 (-973)) + (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-788 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-94 *5)) (-4 *5 (-515)) (-4 *5 (-973)) + (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-789 *5 *3)) + (-4 *3 (-788 *5))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1052 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) + (-4 *5 (-13 (-1016) (-33))) (-4 *6 (-13 (-1016) (-33))) + (-5 *2 (-108)) (-5 *1 (-1053 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-257))))) +(((*1 *2 *3) + (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-589 *7)) (|:| |badPols| (-589 *7)))) + (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-599 *3)) (-4 *3 (-973)) (-4 *3 (-339)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-710)) (-5 *4 (-1 *5 *5)) (-4 *5 (-339)) + (-5 *1 (-602 *5 *2)) (-4 *2 (-599 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-906 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-395 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1106) (-405 *3))) - (-14 *4 (-1085)) (-14 *5 *2))) + (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-396 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1108) (-406 *3))) + (-14 *4 (-1087)) (-14 *5 *2))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-4 *2 (-13 (-27) (-1106) (-405 *3) (-10 -8 (-15 -2217 ($ *4))))) - (-4 *4 (-782)) + (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-4 *2 (-13 (-27) (-1108) (-406 *3) (-10 -8 (-15 -1458 ($ *4))))) + (-4 *4 (-784)) (-4 *5 - (-13 (-1144 *2 *4) (-338) (-1106) - (-10 -8 (-15 -2731 ($ $)) (-15 -2611 ($ $))))) - (-5 *1 (-397 *3 *2 *4 *5 *6 *7)) (-4 *6 (-910 *5)) (-14 *7 (-1085))))) -(((*1 *1) (-5 *1 (-202))) ((*1 *1) (-5 *1 (-354)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-588 *1)) (-4 *1 (-985 *4 *5 *6)) (-4 *4 (-971)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-5 *2 (-108)))) + (-13 (-1146 *2 *4) (-339) (-1108) + (-10 -8 (-15 -3523 ($ $)) (-15 -3417 ($ $))))) + (-5 *1 (-398 *3 *2 *4 *5 *6 *7)) (-4 *6 (-912 *5)) (-14 *7 (-1087))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-394 *3)) (-4 *3 (-515)) (-5 *1 (-395 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-157)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) (-4 *7 (-880 *4 *6 *5)) + (-5 *2 + (-2 (|:| |sysok| (-108)) (|:| |z0| (-589 *7)) (|:| |n0| (-589 *7)))) + (-5 *1 (-855 *4 *5 *6 *7)) (-5 *3 (-589 *7))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-589 (-562 *2))) (-5 *4 (-589 (-1087))) + (-4 *2 (-13 (-406 (-155 *5)) (-930) (-1108))) + (-4 *5 (-13 (-515) (-786))) (-5 *1 (-552 *5 *6 *2)) + (-4 *6 (-13 (-406 *5) (-930) (-1108)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-695))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-370)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-973)) (-4 *2 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-355)))) + ((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-355))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-307 *3)) (-4 *3 (-786))))) +(((*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-103)))) + ((*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-196)))) + ((*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-460)))) + ((*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-284)))) ((*1 *2 *1) - (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-514)) (-4 *5 (-730)) - (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108))))) + (-12 (-5 *2 (-383 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) + ((*1 *1 *1) (-4 *1 (-982)))) +(((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-333 *3)) (-4 *3 (-325))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-624 *4 *5 *6)) (-4 *4 (-1016))))) +(((*1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1171)))) + ((*1 *2 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1171))))) (((*1 *2 *2) - (-12 (-5 *2 (-588 (-881 *3))) (-4 *3 (-426)) (-5 *1 (-335 *3 *4)) - (-14 *4 (-588 (-1085))))) - ((*1 *2 *2) - (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-426)) - (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-424 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-588 *7)) (-5 *3 (-1068)) (-4 *7 (-878 *4 *5 *6)) - (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-5 *1 (-424 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-588 *7)) (-5 *3 (-1068)) (-4 *7 (-878 *4 *5 *6)) - (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-5 *1 (-424 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784)) - (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-588 (-717 *3 (-794 *4)))) (-4 *3 (-426)) - (-14 *4 (-588 (-1085))) (-5 *1 (-573 *3 *4))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) - (-5 *2 (-2 (|:| -3450 *1) (|:| -4002 *1))) (-4 *1 (-878 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-971)) (-5 *2 (-2 (|:| -3450 *1) (|:| -4002 *1))) - (-4 *1 (-1142 *3))))) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) + (-5 *2 (-962)) (-5 *1 (-692))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-589 (-995 *4 *5 *2))) (-4 *4 (-1016)) + (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) + (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4)))) + (-5 *1 (-53 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-589 (-995 *5 *6 *2))) (-5 *4 (-852)) (-4 *5 (-1016)) + (-4 *6 (-13 (-973) (-817 *5) (-786) (-564 (-823 *5)))) + (-4 *2 (-13 (-406 *6) (-817 *5) (-564 (-823 *5)))) + (-5 *1 (-53 *5 *6 *2))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1068 (-523))) (-5 *1 (-1072 *4)) (-4 *4 (-973)) + (-5 *3 (-523))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) - (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1974 *4)))) - (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-202)) (-5 *3 (-708)) (-5 *1 (-203)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-154 (-202))) (-5 *3 (-708)) (-5 *1 (-203)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) - (-4 *2 (-405 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1049)))) + (-12 (-4 *5 (-515)) + (-5 *2 (-2 (|:| -3392 (-629 *5)) (|:| |vec| (-1168 (-589 (-852)))))) + (-5 *1 (-88 *5 *3)) (-5 *4 (-852)) (-4 *3 (-599 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *3) + (-12 (-14 *4 (-589 (-1087))) (-14 *5 (-710)) + (-5 *2 + (-589 + (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) + (-225 *4 (-383 (-523)))))) + (-5 *1 (-476 *4 *5)) + (-5 *3 + (-475 (-383 (-523)) (-218 *5 (-710)) (-796 *4) + (-225 *4 (-383 (-523)))))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-880 *4 *6 *5)) (-4 *4 (-427)) + (-4 *5 (-786)) (-4 *6 (-732)) (-5 *1 (-916 *4 *5 *6 *3))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-589 *7)) (-5 *5 (-589 (-589 *8))) (-4 *7 (-786)) + (-4 *8 (-284)) (-4 *6 (-732)) (-4 *9 (-880 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-589 (-2 (|:| -1820 (-1083 *9)) (|:| -2735 (-523))))))) + (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1083 *9))))) +(((*1 *2 *3) (-12 (-5 *3 (-589 (-51))) (-5 *2 (-1173)) (-5 *1 (-795))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-710)) (-4 *5 (-515)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-899 *5 *3)) (-4 *3 (-1144 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-523)) + (-5 *1 (-424 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-874 (-203)) (-203) (-203))) + (-5 *3 (-1 (-203) (-203) (-203) (-203))) (-5 *1 (-232))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *3)) - (-4 *3 (-990 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) - (-5 *1 (-1021 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1089 (-383 (-523)))) (-5 *2 (-383 (-523))) + (-5 *1 (-170))))) +(((*1 *2 *3) + (-12 (-5 *3 (-455 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) + (-5 *2 (-883 *5)) (-5 *1 (-875 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171)))) + ((*1 *2 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1171))))) +(((*1 *2 *3 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-732)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *6 (-786)) + (-5 *2 (-108)) (-5 *1 (-424 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-333 *3)) (-4 *3 (-325))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3078 *4))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1144 *3)) (-4 *3 (-973)) (-5 *2 (-1083 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-271 (-883 (-523)))) + (-5 *2 + (-2 (|:| |varOrder| (-589 (-1087))) + (|:| |inhom| (-3 (-589 (-1168 (-710))) "failed")) + (|:| |hom| (-589 (-1168 (-710)))))) + (-5 *1 (-214))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-349 *2)) (-4 *2 (-1122)) (-4 *2 (-786)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1122)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-786)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 (-1076 *3 *4))) (-5 *1 (-1076 *3 *4)) + (-14 *3 (-852)) (-4 *4 (-973)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-355) (-355))) (-5 *4 (-355)) + (-5 *2 + (-2 (|:| -1733 *4) (|:| -3314 *4) (|:| |totalpts| (-523)) + (|:| |success| (-108)))) + (-5 *1 (-728)) (-5 *5 (-523))))) +(((*1 *2) + (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-393 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-108)) + (-5 *2 (-962)) (-5 *1 (-685))))) +(((*1 *2 *3) + (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1144 (-523)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-523)) (-5 *1 (-1105 *3)) (-4 *3 (-973))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *1 *1) (-4 *1 (-463))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-202) (-202))) (-5 *4 (-1009 (-354))) - (-5 *5 (-588 (-239))) (-5 *2 (-1167)) (-5 *1 (-231)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-202) (-202))) (-5 *4 (-1009 (-354))) - (-5 *2 (-1167)) (-5 *1 (-231)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-806 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354))) - (-5 *5 (-588 (-239))) (-5 *2 (-1167)) (-5 *1 (-231)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-806 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354))) - (-5 *2 (-1167)) (-5 *1 (-231)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354))) - (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-231)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354))) - (-5 *2 (-1168)) (-5 *1 (-231)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1009 (-354))) - (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-231)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1009 (-354))) - (-5 *2 (-1168)) (-5 *1 (-231)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1009 (-354))) - (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-231)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1009 (-354))) - (-5 *2 (-1168)) (-5 *1 (-231)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-354))) - (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-231)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-354))) - (-5 *2 (-1168)) (-5 *1 (-231)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1009 (-354))) - (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-231)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1009 (-354))) - (-5 *2 (-1168)) (-5 *1 (-231)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-270 *7)) (-5 *4 (-1085)) (-5 *5 (-588 (-239))) - (-4 *7 (-405 *6)) (-4 *6 (-13 (-514) (-784) (-962 (-522)))) - (-5 *2 (-1167)) (-5 *1 (-232 *6 *7)))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1070)) (-5 *1 (-725))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-629 *5))) (-5 *4 (-523)) (-4 *5 (-339)) + (-4 *5 (-973)) (-5 *2 (-108)) (-5 *1 (-956 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-629 *4))) (-4 *4 (-339)) (-4 *4 (-973)) + (-5 *2 (-108)) (-5 *1 (-956 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-983 (-951 *4) (-1083 (-951 *4)))) (-5 *3 (-794)) + (-5 *1 (-951 *4)) (-4 *4 (-13 (-784) (-339) (-949)))))) +(((*1 *2 *1) + (-12 (-4 *2 (-515)) (-5 *1 (-570 *2 *3)) (-4 *3 (-1144 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *3 (-523)) (-5 *1 (-219))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-271 (-779 *3))) (-4 *3 (-13 (-27) (-1108) (-406 *5))) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 + (-3 (-779 *3) + (-2 (|:| |leftHandLimit| (-3 (-779 *3) "failed")) + (|:| |rightHandLimit| (-3 (-779 *3) "failed"))) + "failed")) + (-5 *1 (-582 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1167)) - (-5 *1 (-235 *3)) (-4 *3 (-13 (-563 (-498)) (-1014))))) + (|partial| -12 (-5 *4 (-271 *3)) (-5 *5 (-1070)) + (-4 *3 (-13 (-27) (-1108) (-406 *6))) + (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-779 *3)) (-5 *1 (-582 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1007 (-354))) (-5 *2 (-1167)) (-5 *1 (-235 *3)) - (-4 *3 (-13 (-563 (-498)) (-1014))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-806 *6)) (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) - (-4 *6 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1167)) - (-5 *1 (-235 *6)))) + (-12 (-5 *4 (-271 (-779 (-883 *5)))) (-4 *5 (-427)) + (-5 *2 + (-3 (-779 (-383 (-883 *5))) + (-2 (|:| |leftHandLimit| (-3 (-779 (-383 (-883 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-779 (-383 (-883 *5))) "failed"))) + "failed")) + (-5 *1 (-583 *5)) (-5 *3 (-383 (-883 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-806 *5)) (-5 *4 (-1007 (-354))) - (-4 *5 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1167)) - (-5 *1 (-235 *5)))) + (-12 (-5 *4 (-271 (-383 (-883 *5)))) (-5 *3 (-383 (-883 *5))) + (-4 *5 (-427)) + (-5 *2 + (-3 (-779 *3) + (-2 (|:| |leftHandLimit| (-3 (-779 *3) "failed")) + (|:| |rightHandLimit| (-3 (-779 *3) "failed"))) + "failed")) + (-5 *1 (-583 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-808 *6)) (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) - (-4 *6 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1168)) - (-5 *1 (-235 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-808 *5)) (-5 *4 (-1007 (-354))) - (-4 *5 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1168)) - (-5 *1 (-235 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1168)) - (-5 *1 (-235 *3)) (-4 *3 (-13 (-563 (-498)) (-1014))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1007 (-354))) (-5 *2 (-1168)) (-5 *1 (-235 *3)) - (-4 *3 (-13 (-563 (-498)) (-1014))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-811 *6)) (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) - (-4 *6 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1168)) - (-5 *1 (-235 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-811 *5)) (-5 *4 (-1007 (-354))) - (-4 *5 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1168)) - (-5 *1 (-235 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-588 (-202))) (-5 *2 (-1167)) (-5 *1 (-236)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-588 (-202))) (-5 *4 (-588 (-239))) (-5 *2 (-1167)) - (-5 *1 (-236)))) + (|partial| -12 (-5 *4 (-271 (-383 (-883 *6)))) (-5 *5 (-1070)) + (-5 *3 (-383 (-883 *6))) (-4 *6 (-427)) (-5 *2 (-779 *3)) + (-5 *1 (-583 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-1016)) + (-4 *6 (-1016)) (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1016)) (-5 *2 (-820 *3 *4)) (-5 *1 (-816 *3 *4 *5)) + (-4 *3 (-1016)) (-4 *5 (-609 *4))))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-710))) (-5 *3 (-108)) (-5 *1 (-1076 *4 *5)) + (-14 *4 (-852)) (-4 *5 (-973))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-962)) (-5 *3 (-1087)) (-5 *1 (-172))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -3159 *7) (|:| |sol?| (-108))) + (-523) *7)) + (-5 *6 (-589 (-383 *8))) (-4 *7 (-339)) (-4 *8 (-1144 *7)) + (-5 *3 (-383 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-533 *7 *8))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1122)) (-4 *2 (-786)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-259 *3)) (-4 *3 (-1122)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-786))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-523)) (-5 *1 (-528 *3)) (-4 *3 (-964 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-325)) (-5 *2 (-108)))) ((*1 *2 *3) - (-12 (-5 *3 (-588 (-872 (-202)))) (-5 *2 (-1167)) (-5 *1 (-236)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-872 (-202)))) (-5 *4 (-588 (-239))) - (-5 *2 (-1167)) (-5 *1 (-236)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-588 (-202))) (-5 *2 (-1168)) (-5 *1 (-236)))) - ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-588 (-202))) (-5 *4 (-588 (-239))) (-5 *2 (-1168)) - (-5 *1 (-236))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-125)) (-5 *1 (-1000 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-522) *2 *2)) (-4 *2 (-125)) (-5 *1 (-1000 *2))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-561 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1085))) - (-4 *2 (-13 (-405 *5) (-27) (-1106))) - (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) - (-5 *1 (-524 *5 *2 *6)) (-4 *6 (-1014))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-514)) (-4 *2 (-157))))) -(((*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-283)))) - ((*1 *2 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-283)))) - ((*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)) (-4 *2 (-283)))) - ((*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-522))))) + (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-5 *2 (-108)) + (-5 *1 (-333 *4))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-562 *3)) (-4 *3 (-786))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-409)) - (-5 *2 - (-588 - (-3 (|:| -3015 (-1085)) - (|:| |bounds| (-588 (-3 (|:| S (-1085)) (|:| P (-881 (-522))))))))) - (-5 *1 (-1089))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) - (-4 *2 (-405 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1049)))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) - (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *4)))) - (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))) + (-12 (-4 *1 (-1116 *4 *5 *3 *6)) (-4 *4 (-515)) (-4 *5 (-732)) + (-4 *3 (-786)) (-4 *6 (-987 *4 *5 *3)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1083 (-523))) (-5 *2 (-523)) (-5 *1 (-873))))) +(((*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-699))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-4 *4 (-973)) + (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-1144 *4))))) +(((*1 *2) + (-12 (-4 *3 (-973)) (-5 *2 (-888 (-652 *3 *4))) (-5 *1 (-652 *3 *4)) + (-4 *4 (-1144 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-588 *5) *6)) - (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *6 (-1142 *5)) - (-5 *2 (-588 (-2 (|:| -2855 *5) (|:| -3277 *3)))) - (-5 *1 (-746 *5 *6 *3 *7)) (-4 *3 (-598 *6)) - (-4 *7 (-598 (-382 *6)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) - (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) - ((*1 *1 *1) (-4 *1 (-463))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-588 *1)) (-4 *1 (-278)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-110)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-561 *3)) (-4 *3 (-784)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-110)) (-5 *3 (-588 *5)) (-5 *4 (-708)) (-4 *5 (-784)) - (-5 *1 (-561 *5))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-291 (-202))) (-5 *1 (-243))))) -(((*1 *2 *2) - (-12 (-5 *2 (-588 (-2 (|:| |val| (-588 *6)) (|:| -1974 *7)))) - (-4 *6 (-985 *3 *4 *5)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) - (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-915 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-588 (-2 (|:| |val| (-588 *6)) (|:| -1974 *7)))) - (-4 *6 (-985 *3 *4 *5)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) - (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-1021 *3 *4 *5 *6 *7))))) -(((*1 *1 *1) (|partial| -4 *1 (-133))) ((*1 *1 *1) (-4 *1 (-324))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-133)) (-4 *1 (-838))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730)) - (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108))))) + (-12 (-5 *3 (-1087)) (-4 *5 (-339)) (-5 *2 (-1068 (-1068 (-883 *5)))) + (-5 *1 (-1176 *5)) (-5 *4 (-1068 (-883 *5)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) + (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1016) (-33))) + (-4 *4 (-13 (-1016) (-33)))))) (((*1 *2 *1) - (-12 (-4 *3 (-971)) (-4 *4 (-1014)) (-5 *2 (-588 *1)) - (-4 *1 (-357 *3 *4)))) + (-12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-508)) + (-5 *2 (-383 (-523))))) ((*1 *2 *1) - (-12 (-5 *2 (-588 (-673 *3 *4))) (-5 *1 (-673 *3 *4)) (-4 *3 (-971)) - (-4 *4 (-664)))) + (-12 (-5 *2 (-383 (-523))) (-5 *1 (-394 *3)) (-4 *3 (-508)) + (-4 *3 (-515)))) + ((*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-383 (-523))))) ((*1 *2 *1) - (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1)) - (-4 *1 (-878 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-1120))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) - (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) - ((*1 *1 *1) (-4 *1 (-463))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132))))) -(((*1 *1 *1 *1) (-5 *1 (-792)))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-338)) (-5 *1 (-825 *2 *3)) - (-4 *2 (-1142 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1014)) (-4 *2 (-829 *5)) (-5 *1 (-630 *5 *2 *3 *4)) - (-4 *3 (-348 *2)) (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4238))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-522))) (-5 *5 (-1 (-1066 *4))) (-4 *4 (-338)) - (-4 *4 (-971)) (-5 *2 (-1066 *4)) (-5 *1 (-1070 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-51))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-108)) (-5 *5 (-628 (-202))) - (-5 *2 (-960)) (-5 *1 (-693))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1050 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) - (-4 *5 (-13 (-1014) (-33))) (-4 *6 (-13 (-1014) (-33))) - (-5 *2 (-108)) (-5 *1 (-1051 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-777 (-522))) (-5 *1 (-496)))) - ((*1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1014))))) -(((*1 *2 *1) - (-12 (-4 *1 (-298 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-124)) - (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3357 *4)))))) + (-12 (-4 *1 (-736 *3)) (-4 *3 (-158)) (-4 *3 (-508)) + (-5 *2 (-383 (-523))))) + ((*1 *2 *1) + (-12 (-5 *2 (-383 (-523))) (-5 *1 (-772 *3)) (-4 *3 (-508)) + (-4 *3 (-1016)))) ((*1 *2 *1) - (-12 (-5 *2 (-588 (-2 (|:| -3112 *3) (|:| -2623 *4)))) - (-5 *1 (-673 *3 *4)) (-4 *3 (-971)) (-4 *4 (-664)))) + (-12 (-5 *2 (-383 (-523))) (-5 *1 (-779 *3)) (-4 *3 (-508)) + (-4 *3 (-1016)))) ((*1 *2 *1) - (-12 (-4 *1 (-1144 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) - (-5 *2 (-1066 (-2 (|:| |k| *4) (|:| |c| *3))))))) + (-12 (-4 *1 (-925 *3)) (-4 *3 (-158)) (-4 *3 (-508)) + (-5 *2 (-383 (-523))))) + ((*1 *2 *3) + (-12 (-5 *2 (-383 (-523))) (-5 *1 (-936 *3)) (-4 *3 (-964 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *3) + (-12 (-5 *3 (-523)) (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-973)) + (-5 *1 (-297 *4 *5 *2 *6)) (-4 *6 (-880 *2 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) - (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) - ((*1 *1 *1) (-4 *1 (-463))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3))))) + (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) + (-5 *1 (-161 *3))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-710)) + (-4 *3 (-13 (-666) (-344) (-10 -7 (-15 ** (*3 *3 (-523)))))) + (-5 *1 (-224 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) - (-4 *4 (-348 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *2)) (-4 *2 (-157)))) - ((*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-391 *3 *2)) (-4 *3 (-392 *2)))) - ((*1 *2) (-12 (-4 *1 (-392 *2)) (-4 *2 (-157))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1066 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846))))) -(((*1 *2 *2) (-12 (-5 *2 (-588 (-628 (-291 (-522))))) (-5 *1 (-956))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-338) (-782))) (-5 *1 (-164 *2 *3)) - (-4 *3 (-1142 (-154 *2))))) + (-12 (-5 *3 (-1168 (-292 (-203)))) (-5 *4 (-589 (-1087))) + (-5 *2 (-629 (-292 (-203)))) (-5 *1 (-185)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1016)) (-4 *6 (-831 *5)) (-5 *2 (-629 *6)) + (-5 *1 (-631 *5 *6 *3 *4)) (-4 *3 (-349 *6)) + (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4244))))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) + (-5 *2 (-629 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-589 (-155 *4))) (-5 *1 (-143 *3 *4)) + (-4 *3 (-1144 (-155 (-523)))) (-4 *4 (-13 (-339) (-784))))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-338) (-782))) (-5 *1 (-164 *2 *3)) - (-4 *3 (-1142 (-154 *2)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-104)))) - ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-110)))) - ((*1 *2 *1) - (-12 (-4 *1 (-339 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-1014)))) - ((*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-1068)))) - ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-413 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-561 *3)) (-4 *3 (-784)))) - ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-893)))) - ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-992 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-5 *1 (-1085)))) -(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 *4)) (-4 *4 (-782)) (-4 *4 (-338)) (-5 *2 (-708)) - (-5 *1 (-874 *4 *5)) (-4 *5 (-1142 *4))))) -(((*1 *2) (-12 (-5 *2 (-777 (-522))) (-5 *1 (-496)))) - ((*1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1014))))) -(((*1 *1 *1) (-4 *1 (-91))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-692))))) -(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441)))) - ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *2 *1) (-12 (-4 *1 (-514)) (-5 *2 (-108))))) -(((*1 *2 *3) - (-12 (-5 *3 (-202)) (-5 *2 (-108)) (-5 *1 (-275 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) + (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-589 (-155 *4))) + (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1009 (-777 (-202)))) (-5 *3 (-202)) (-5 *2 (-108)) - (-5 *1 (-281)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) - (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971))))) + (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-589 (-155 *4))) + (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4)))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-283)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1142 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-283)) (-5 *1 (-434 *3 *2)) (-4 *2 (-1142 *3)))) + (-12 (-5 *2 (-110)) (-5 *3 (-589 (-1 *4 (-589 *4)))) (-4 *4 (-1016)) + (-5 *1 (-109 *4)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-283)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-708))) - (-5 *1 (-501 *3 *2 *4 *5)) (-4 *2 (-1142 *3))))) -(((*1 *2) (-12 (-5 *2 (-588 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-125))))) + (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1016)) + (-5 *1 (-109 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-110)) (-5 *2 (-589 (-1 *4 (-589 *4)))) + (-5 *1 (-109 *4)) (-4 *4 (-1016))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4244)) (-4 *1 (-462 *3)) (-4 *3 (-1122)) + (-5 *2 (-589 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)) (-4 *2 (-1108)))) + ((*1 *2 *1) (-12 (-5 *1 (-307 *2)) (-4 *2 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-562 *3)) (-4 *3 (-786))))) +(((*1 *2 *3) + (-12 (-5 *3 (-540 *2)) (-4 *2 (-13 (-29 *4) (-1108))) + (-5 *1 (-538 *4 *2)) + (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-540 (-383 (-883 *4)))) + (-4 *4 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) + (-5 *2 (-292 *4)) (-5 *1 (-543 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-124)) + (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 *4)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-589 (-2 (|:| -2935 *3) (|:| -2302 *4)))) + (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) (-4 *4 (-666)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1146 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) + (-5 *2 (-1068 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-973)) (-5 *2 (-108)) (-5 *1 (-419 *4 *3)) + (-4 *3 (-1144 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-108))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1083 *3)) (-5 *1 (-845 *3)) (-4 *3 (-284))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-820 *5 *3)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) + (-4 *3 (-152 *6)) (-4 (-883 *6) (-817 *5)) + (-4 *6 (-13 (-817 *5) (-158))) (-5 *1 (-163 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-820 *4 *1)) (-5 *3 (-823 *4)) (-4 *1 (-817 *4)) + (-4 *4 (-1016)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-820 *5 *6)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) + (-4 *6 (-13 (-1016) (-964 *3))) (-4 *3 (-817 *5)) + (-5 *1 (-862 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-820 *5 *3)) (-4 *5 (-1016)) + (-4 *3 (-13 (-406 *6) (-564 *4) (-817 *5) (-964 (-562 $)))) + (-5 *4 (-823 *5)) (-4 *6 (-13 (-515) (-786) (-817 *5))) + (-5 *1 (-863 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-820 (-523) *3)) (-5 *4 (-823 (-523))) (-4 *3 (-508)) + (-5 *1 (-864 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-820 *5 *6)) (-5 *3 (-562 *6)) (-4 *5 (-1016)) + (-4 *6 (-13 (-786) (-964 (-562 $)) (-564 *4) (-817 *5))) + (-5 *4 (-823 *5)) (-5 *1 (-865 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-816 *5 *6 *3)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) + (-4 *6 (-817 *5)) (-4 *3 (-609 *6)) (-5 *1 (-866 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-820 *6 *3) *8 (-823 *6) (-820 *6 *3))) + (-4 *8 (-786)) (-5 *2 (-820 *6 *3)) (-5 *4 (-823 *6)) + (-4 *6 (-1016)) (-4 *3 (-13 (-880 *9 *7 *8) (-564 *4))) + (-4 *7 (-732)) (-4 *9 (-13 (-973) (-786) (-817 *6))) + (-5 *1 (-867 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-820 *5 *3)) (-4 *5 (-1016)) + (-4 *3 (-13 (-880 *8 *6 *7) (-564 *4))) (-5 *4 (-823 *5)) + (-4 *7 (-817 *5)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *8 (-13 (-973) (-786) (-817 *5))) (-5 *1 (-867 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-820 *5 *3)) (-4 *5 (-1016)) (-4 *3 (-921 *6)) + (-4 *6 (-13 (-515) (-817 *5) (-564 *4))) (-5 *4 (-823 *5)) + (-5 *1 (-870 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-820 *5 (-1087))) (-5 *3 (-1087)) (-5 *4 (-823 *5)) + (-4 *5 (-1016)) (-5 *1 (-871 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-589 (-823 *7))) (-5 *5 (-1 *9 (-589 *9))) + (-5 *6 (-1 (-820 *7 *9) *9 (-823 *7) (-820 *7 *9))) (-4 *7 (-1016)) + (-4 *9 (-13 (-973) (-564 (-823 *7)) (-964 *8))) (-5 *2 (-820 *7 *9)) + (-5 *3 (-589 *9)) (-4 *8 (-13 (-973) (-786))) + (-5 *1 (-872 *7 *8 *9))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-1135 (-523)))))) +(((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-303 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1) + (-12 (-5 *2 (-710)) (-5 *1 (-486 *3 *4)) (-4 *3 (-1122)) + (-14 *4 (-523))))) +(((*1 *2) + (-12 (-4 *3 (-515)) (-5 *2 (-589 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-393 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) (((*1 *2 *1) (-12 (-5 *2 - (-588 - (-2 (|:| |scalar| (-382 (-522))) (|:| |coeff| (-1081 *3)) - (|:| |logand| (-1081 *3))))) - (-5 *1 (-539 *3)) (-4 *3 (-338))))) -(((*1 *1 *1) (-4 *1 (-91))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-588 (-291 (-202)))) (-5 *1 (-243))))) -(((*1 *1) (-5 *1 (-143)))) -(((*1 *2 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-392 *4))))) + (-589 + (-2 (|:| |scalar| (-383 (-523))) (|:| |coeff| (-1083 *3)) + (|:| |logand| (-1083 *3))))) + (-5 *1 (-540 *3)) (-4 *3 (-339))))) +(((*1 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170)))) + ((*1 *2) (-12 (-5 *2 (-355)) (-5 *1 (-1170))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2308 (-719 *3)) (|:| |coef1| (-719 *3)))) - (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971)))) + (|partial| -12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) + (-5 *2 (-1083 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-4 *3 (-344)) + (-5 *2 (-1083 *3))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-852)) (-4 *3 (-339)) + (-14 *4 (-922 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-158)) (-5 *1 (-266 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1144 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *2 (-158)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) + ((*1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) + ((*1 *1 *1) (|partial| -4 *1 (-662))) + ((*1 *1 *1) (|partial| -4 *1 (-666))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-715 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-989 *3 *2)) (-4 *3 (-13 (-784) (-339))) + (-4 *2 (-1144 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-629 (-1083 *8))) (-4 *5 (-973)) (-4 *8 (-973)) + (-4 *6 (-1144 *5)) (-5 *2 (-629 *6)) (-5 *1 (-472 *5 *6 *7 *8)) + (-4 *7 (-1144 *6))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *1 (-1042 *3 *2)) (-4 *3 (-1144 *2))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-125)) (-5 *3 (-710)) (-5 *2 (-1173))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-406 *3) (-930))) (-5 *1 (-253 *3 *2)) + (-4 *3 (-13 (-786) (-515)))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-140 *2)) + (-4 *2 (-1122))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-710))) (-5 *3 (-157)) (-5 *1 (-1076 *4 *5)) + (-14 *4 (-852)) (-4 *5 (-973))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *2 (-2 (|:| -2308 *1) (|:| |coef1| *1))) - (-4 *1 (-985 *3 *4 *5))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-154 (-202)) (-154 (-202)))) (-5 *4 (-1009 (-202))) - (-5 *2 (-1168)) (-5 *1 (-233))))) + (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1116 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) + (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-687))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-523)) (-5 *1 (-1068 *3)) (-4 *3 (-1122)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) +(((*1 *1 *1) (-4 *1 (-1056)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-508)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) (((*1 *2 *3) - (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-426)) (-4 *4 (-757)) - (-14 *5 (-1085)) (-5 *2 (-522)) (-5 *1 (-1028 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *1) - (-12 (-5 *2 (-588 (-1107 *3))) (-5 *1 (-1107 *3)) (-4 *3 (-1014))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-129)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-132))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-969))))) -(((*1 *2) (-12 (-5 *2 (-770 (-522))) (-5 *1 (-496)))) - ((*1 *1) (-12 (-5 *1 (-770 *2)) (-4 *2 (-1014))))) -(((*1 *1 *1) (-4 *1 (-91))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3))))) + (-12 (-5 *3 (-589 (-2 (|:| -1733 *4) (|:| -2656 (-523))))) + (-4 *4 (-1016)) (-5 *2 (-1 *4)) (-5 *1 (-945 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -2462 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-339)) (-4 *7 (-1144 *6)) + (-5 *2 (-2 (|:| |answer| (-540 (-383 *7))) (|:| |a0| *6))) + (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1068 (-589 (-523)))) (-5 *1 (-814)) + (-5 *3 (-589 (-523)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-523)) (-5 *1 (-635 *2)) (-4 *2 (-1144 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-1173)) + (-5 *1 (-424 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-589 (-710))) (-5 *1 (-1171)))) + ((*1 *2 *2) (-12 (-5 *2 (-589 (-710))) (-5 *1 (-1171))))) (((*1 *2 *1) - (-12 (-4 *1 (-301 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971)) - (-4 *2 (-426)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 *4)) (-4 *4 (-1142 (-522))) (-5 *2 (-588 (-522))) - (-5 *1 (-458 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-426)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *2 (-784)) (-4 *3 (-426))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-522)) (-5 *5 (-628 (-202))) - (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-82 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-202)) - (-5 *2 (-960)) (-5 *1 (-687))))) -(((*1 *2 *1) (-12 (-5 *2 (-711)) (-5 *1 (-51))))) + (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-710)) (-4 *4 (-13 (-515) (-136))) + (-5 *1 (-1138 *4 *2)) (-4 *2 (-1144 *4))))) +(((*1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-768))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1066 *3))) (-5 *2 (-1066 *3)) (-5 *1 (-1070 *3)) - (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1159 *4)) (-5 *1 (-1161 *4 *2)) + (-4 *4 (-37 (-383 (-523))))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4244)) (-4 *1 (-462 *4)) + (-4 *4 (-1122)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-108))))) +(((*1 *1) (-5 *1 (-203))) ((*1 *1) (-5 *1 (-355)))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) + (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-1179 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-589 *8)) (-5 *3 (-1 (-108) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) + (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-1179 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3159 *6) (|:| |sol?| (-108))) (-523) + *6)) + (-4 *6 (-339)) (-4 *7 (-1144 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-383 *7)) (|:| |a0| *6)) + (-2 (|:| -2462 (-383 *7)) (|:| |coeff| (-383 *7))) "failed")) + (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-629 *3)) + (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) + (-4 *4 (-1144 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-629 *3)) + (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) + (-4 *4 (-1144 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-108))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-146 *2)) (-4 *2 (-508))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-2 (|:| |den| (-523)) (|:| |gcdnum| (-523))))) + (-4 *4 (-1144 (-383 *2))) (-5 *2 (-523)) (-5 *1 (-844 *4 *5)) + (-4 *5 (-1144 (-383 *4)))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-110)) (-5 *4 (-710)) (-4 *5 (-427)) (-4 *5 (-786)) + (-4 *5 (-964 (-523))) (-4 *5 (-515)) (-5 *1 (-40 *5 *2)) + (-4 *2 (-406 *5)) + (-4 *2 + (-13 (-339) (-279) + (-10 -8 (-15 -2785 ((-1039 *5 (-562 $)) $)) + (-15 -2797 ((-1039 *5 (-562 $)) $)) + (-15 -1458 ($ (-1039 *5 (-562 $)))))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-588 (-1085))) (-4 *5 (-514)) - (-5 *2 (-588 (-588 (-270 (-382 (-881 *5)))))) (-5 *1 (-707 *5)))) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1122))))) +(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-508)) (-5 *1 (-146 *2))))) +(((*1 *2 *3) + (-12 (-14 *4 (-589 (-1087))) (-4 *5 (-427)) + (-5 *2 + (-2 (|:| |glbase| (-589 (-225 *4 *5))) (|:| |glval| (-589 (-523))))) + (-5 *1 (-577 *4 *5)) (-5 *3 (-589 (-225 *4 *5)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-383 (-523))) (-4 *1 (-513 *3)) + (-4 *3 (-13 (-380) (-1108))))) + ((*1 *1 *2) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-513 *2)) (-4 *2 (-13 (-380) (-1108)))))) +(((*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-203)) (-5 *1 (-282))))) +(((*1 *1 *2) + (-12 (-5 *2 (-629 *4)) (-4 *4 (-973)) (-5 *1 (-1054 *3 *4)) + (-14 *3 (-710))))) +(((*1 *1 *2) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108)))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786))))) +(((*1 *2 *2) (-12 (-5 *2 (-629 (-292 (-523)))) (-5 *1 (-958))))) +(((*1 *1 *1) (-5 *1 (-985)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-172)))) ((*1 *2 *3) - (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-514)) - (-5 *2 (-588 (-588 (-270 (-382 (-881 *4)))))) (-5 *1 (-707 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-628 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2905 (-588 *6))) - *7 *6)) - (-4 *6 (-338)) (-4 *7 (-598 *6)) + (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-277)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1011 (-779 (-203)))) (-5 *2 (-203)) (-5 *1 (-282))))) +(((*1 *2 *2) + (-12 (-5 *2 - (-2 (|:| |particular| (-3 (-1166 *6) "failed")) - (|:| -2905 (-588 (-1166 *6))))) - (-5 *1 (-750 *6 *7)) (-5 *4 (-1166 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) - ((*1 *1 *1 *1) (-4 *1 (-447))) - ((*1 *1 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) - ((*1 *2 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-812)))) - ((*1 *1 *1) (-5 *1 (-898))) - ((*1 *1 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157))))) -(((*1 *2 *1) - (-12 (-4 *1 (-339 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))) -(((*1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1169))))) + (-916 (-383 (-523)) (-796 *3) (-218 *4 (-710)) + (-225 *3 (-383 (-523))))) + (-14 *3 (-589 (-1087))) (-14 *4 (-710)) (-5 *1 (-915 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-852)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1168 *4)) (-4 *4 (-325)) (-5 *2 (-852)) + (-5 *1 (-493 *4))))) (((*1 *2) - (-12 (-4 *2 (-13 (-405 *3) (-928))) (-5 *1 (-252 *3 *2)) - (-4 *3 (-13 (-784) (-514))))) - ((*1 *1) - (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) - (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) - ((*1 *1) (-5 *1 (-451))) ((*1 *1) (-4 *1 (-1106)))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-129)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-132))))) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284))))) (((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) - (-4 *4 (-971))))) -(((*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-964))))) -(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-202))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) - (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) - ((*1 *1 *1 *1) (-5 *1 (-354))) + (-12 (-5 *2 (-953 (-779 (-523)))) (-5 *1 (-548 *3)) (-4 *3 (-973))))) +(((*1 *2 *3) + (-12 (-4 *4 (-973)) (-4 *3 (-1144 *4)) (-4 *2 (-1159 *4)) + (-5 *1 (-1162 *4 *3 *5 *2)) (-4 *5 (-599 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1087)) + (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-4 *4 (-13 (-29 *6) (-1108) (-889))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -4041 (-589 *4)))) + (-5 *1 (-740 *6 *4 *3)) (-4 *3 (-599 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-523)) (-5 *2 (-1173)) (-5 *1 (-835 *4)) + (-4 *4 (-1016)))) + ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) + (-4 *2 + (-13 (-339) (-279) + (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) + (-15 -2797 ((-1039 *3 (-562 $)) $)) + (-15 -1458 ($ (-1039 *3 (-562 $)))))))))) +(((*1 *2 *3) + (-12 (-5 *2 (-394 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1144 (-47))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) + (-5 *1 (-117 *3)) (-4 *3 (-786)))) ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) + (-12 (-5 *2 (-540 *4)) (-4 *4 (-13 (-29 *3) (-1108))) + (-4 *3 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) + (-5 *1 (-538 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-693))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-305))))) + (-12 (-5 *2 (-540 (-383 (-883 *3)))) + (-4 *3 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) + (-5 *1 (-543 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1144 *5)) (-4 *5 (-339)) + (-5 *2 (-2 (|:| -3127 *3) (|:| |special| *3))) (-5 *1 (-667 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1168 *5)) (-4 *5 (-339)) (-4 *5 (-973)) + (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) + (-5 *3 (-589 (-629 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1168 (-1168 *5))) (-4 *5 (-339)) (-4 *5 (-973)) + (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) + (-5 *3 (-589 (-629 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-130)) (-5 *2 (-589 *1)) (-4 *1 (-1056)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-133)) (-5 *2 (-589 *1)) (-4 *1 (-1056))))) +(((*1 *1) + (-12 (-4 *1 (-380)) (-3900 (|has| *1 (-6 -4235))) + (-3900 (|has| *1 (-6 -4227))))) + ((*1 *2 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-1016)) (-4 *2 (-786)))) + ((*1 *1 *1 *1) (-4 *1 (-786))) + ((*1 *2 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-786)))) + ((*1 *1) (-5 *1 (-1034)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-710)) (-5 *2 (-589 (-1087))) (-5 *1 (-190)) + (-5 *3 (-1087)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-292 (-203))) (-5 *4 (-710)) (-5 *2 (-589 (-1087))) + (-5 *1 (-244)))) + ((*1 *2 *1) + (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) + (-5 *2 (-589 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-589 *3)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) + (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-758 *3)) (-4 *3 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-824 *3)) (-4 *3 (-786)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) + (-5 *2 (-589 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650))))) +(((*1 *1 *1) (-12 (-4 *1 (-401 *2)) (-4 *2 (-1016)) (-4 *2 (-344))))) +(((*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1101))))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-1068 *3)) (-4 *3 (-1016)) + (-4 *3 (-1122))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-973)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-710)) (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-1141 *5 *4)) (-5 *1 (-1085 *4 *5 *6)) + (-4 *4 (-973)) (-14 *5 (-1087)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-710)) (-5 *2 (-1141 *5 *4)) (-5 *1 (-1160 *4 *5 *6)) + (-4 *4 (-973)) (-14 *5 (-1087)) (-14 *6 *4)))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) + (|:| |abserr| (-203)) (|:| |relerr| (-203)))) + (-5 *2 (-355)) (-5 *1 (-185))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) + (|:| |abserr| (-203)) (|:| |relerr| (-203)))) + (-5 *2 (-355)) (-5 *1 (-185))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1018 *3)) (-5 *1 (-836 *3)) (-4 *3 (-344)) + (-4 *3 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-339)) + (-5 *2 (-108)) (-5 *1 (-610 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4245)))) + (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-5 *2 (-108)) + (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-451 *4 *5 *6 *7)) (|:| -3125 (-589 *7)))) + (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-589 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) + (-4 *4 (-325))))) +(((*1 *2 *2) (-12 (-5 *2 (-589 (-292 (-203)))) (-5 *1 (-244))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *1) (-5 *1 (-413)))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-339)) (-4 *3 (-973)) + (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-788 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-94 *5)) (-4 *5 (-339)) (-4 *5 (-973)) + (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-789 *5 *3)) + (-4 *3 (-788 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-355)))) + ((*1 *1 *1 *1) (-4 *1 (-508))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) + ((*1 *1 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-339)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-710))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-589 (-292 (-203)))) (-5 *3 (-203)) (-5 *2 (-108)) + (-5 *1 (-190))))) (((*1 *2 *3) - (-12 (-5 *3 (-588 (-202))) (-5 *2 (-1166 (-637))) (-5 *1 (-281))))) + (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) + (-4 *3 (-13 (-339) (-1108) (-930)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-110)) (-5 *4 (-589 *2)) (-5 *1 (-109 *2)) + (-4 *2 (-1016)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-589 *4))) (-4 *4 (-1016)) + (-5 *1 (-109 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1016)) + (-5 *1 (-109 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-589 *4))) + (-5 *1 (-109 *4)) (-4 *4 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-973)) + (-5 *1 (-654 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-973)) (-5 *1 (-773 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-339)) + (-5 *2 + (-2 (|:| A (-629 *5)) + (|:| |eqs| + (-589 + (-2 (|:| C (-629 *5)) (|:| |g| (-1168 *5)) (|:| -1710 *6) + (|:| |rh| *5)))))) + (-5 *1 (-752 *5 *6)) (-5 *3 (-629 *5)) (-5 *4 (-1168 *5)) + (-4 *6 (-599 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-339)) (-4 *6 (-599 *5)) + (-5 *2 (-2 (|:| -3392 (-629 *6)) (|:| |vec| (-1168 *5)))) + (-5 *1 (-752 *5 *6)) (-5 *3 (-629 *6)) (-5 *4 (-1168 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) (-5 *2 (-962)) + (-5 *1 (-688))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) + (-4 *3 (-13 (-339) (-1108) (-930)))))) +(((*1 *1 *1) (-5 *1 (-203))) + ((*1 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + ((*1 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *1 *1) (-4 *1 (-1051))) ((*1 *1 *1 *1) (-4 *1 (-1051)))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-426)) (-4 *4 (-784)) (-4 *5 (-730)) - (-5 *2 (-108)) (-5 *1 (-914 *3 *4 *5 *6)) - (-4 *6 (-878 *3 *5 *4)))) + (-12 (-5 *2 (-589 (-1109 *3))) (-5 *1 (-1109 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1122)) + (-4 *5 (-349 *4)) (-4 *2 (-349 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *6 *2 *7)) (-4 *6 (-973)) + (-4 *7 (-216 *4 *6)) (-4 *2 (-216 *5 *6))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-1097 *2)) (-4 *2 (-339))))) +(((*1 *1 *1) (-4 *1 (-508)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) + (-4 *5 (-13 (-27) (-1108) (-406 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) + (-4 *3 (-13 (-27) (-1108) (-406 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-523)) (-4 *5 (-13 (-427) (-786) (-964 *4) (-585 *4))) + (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) + (-4 *3 (-13 (-27) (-1108) (-406 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *6))) + (-4 *6 (-13 (-427) (-786) (-964 *5) (-585 *5))) (-5 *5 (-523)) + (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-523))) (-5 *4 (-271 *7)) (-5 *5 (-1135 (-523))) + (-4 *7 (-13 (-27) (-1108) (-406 *6))) + (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1135 (-523))) + (-4 *3 (-13 (-27) (-1108) (-406 *7))) + (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *7 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-523)) (-4 *4 (-973)) (-4 *1 (-1130 *4 *3)) + (-4 *3 (-1159 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33))) - (-4 *4 (-13 (-1014) (-33)))))) + (-12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1128 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-852)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-240))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-764))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *2)) + (-4 *2 (-406 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-515)) (-4 *3 (-973)) + (-5 *2 (-2 (|:| -3445 *1) (|:| -3282 *1))) (-4 *1 (-788 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-94 *5)) (-4 *5 (-515)) (-4 *5 (-973)) + (-5 *2 (-2 (|:| -3445 *3) (|:| -3282 *3))) (-5 *1 (-789 *5 *3)) + (-4 *3 (-788 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) + (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-662)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-666)) (-5 *2 (-108))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-701)))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-155 (-203))) (-5 *5 (-523)) (-5 *6 (-1070)) + (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-796 *5))) (-14 *5 (-589 (-1087))) (-4 *6 (-427)) + (-5 *2 (-589 (-589 (-225 *5 *6)))) (-5 *1 (-446 *5 *6 *7)) + (-5 *3 (-589 (-225 *5 *6))) (-4 *7 (-427))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) + ((*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3))))) + (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-254 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1085)) - (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-792))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) - (-5 *1 (-1040 *3 *2)) (-4 *3 (-1142 *2))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1066 *4)) (-5 *3 (-522)) (-4 *4 (-971)) - (-5 *1 (-1070 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-522)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-971)) - (-14 *4 (-1085)) (-14 *5 *3)))) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-254 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4))))) + ((*1 *1 *1) (-5 *1 (-355))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) + (-5 *1 (-715 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085)) - (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-270 (-291 *5)))) - (-5 *1 (-1041 *5)))) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *4 *5)) + (-4 *5 (-13 (-27) (-1108) (-406 *4))))) ((*1 *2 *3) - (-12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-13 (-283) (-784) (-135))) - (-5 *2 (-588 (-270 (-291 *4)))) (-5 *1 (-1041 *4)))) + (-12 (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *4 *3)) + (-4 *3 (-13 (-27) (-1108) (-406 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-270 (-382 (-881 *5)))) (-5 *4 (-1085)) - (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-270 (-291 *5)))) - (-5 *1 (-1041 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-270 (-382 (-881 *4)))) - (-4 *4 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-270 (-291 *4)))) - (-5 *1 (-1041 *4)))) + (-12 (-5 *4 (-710)) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *5 *3)) + (-4 *3 (-13 (-27) (-1108) (-406 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-382 (-881 *5)))) (-5 *4 (-588 (-1085))) - (-4 *5 (-13 (-283) (-784) (-135))) - (-5 *2 (-588 (-588 (-270 (-291 *5))))) (-5 *1 (-1041 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-382 (-881 *4)))) - (-4 *4 (-13 (-283) (-784) (-135))) - (-5 *2 (-588 (-588 (-270 (-291 *4))))) (-5 *1 (-1041 *4)))) + (-12 (-5 *4 (-271 *3)) (-4 *3 (-13 (-27) (-1108) (-406 *5))) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-271 *3)) (-5 *5 (-710)) + (-4 *3 (-13 (-27) (-1108) (-406 *6))) + (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-523))) (-5 *4 (-271 *6)) + (-4 *6 (-13 (-27) (-1108) (-406 *5))) + (-4 *5 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) + (-4 *3 (-13 (-27) (-1108) (-406 *6))) + (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-523))) (-5 *4 (-271 *7)) (-5 *5 (-1135 (-710))) + (-4 *7 (-13 (-27) (-1108) (-406 *6))) + (-4 *6 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1087)) (-5 *5 (-271 *3)) (-5 *6 (-1135 (-710))) + (-4 *3 (-13 (-27) (-1108) (-406 *7))) + (-4 *7 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-51)) (-5 *1 (-434 *7 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1130 *3 *2)) (-4 *3 (-973)) (-4 *2 (-1159 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-589 (-1087))) (-4 *4 (-1016)) + (-4 *5 (-13 (-973) (-817 *4) (-786) (-564 (-823 *4)))) + (-5 *1 (-53 *4 *5 *2)) + (-4 *2 (-13 (-406 *5) (-817 *4) (-564 (-823 *4))))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-874 (-203)) (-874 (-203)))) (-5 *3 (-589 (-240))) + (-5 *1 (-238)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-874 (-203)) (-874 (-203)))) (-5 *1 (-240)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-270 (-382 (-881 *5))))) (-5 *4 (-588 (-1085))) - (-4 *5 (-13 (-283) (-784) (-135))) - (-5 *2 (-588 (-588 (-270 (-291 *5))))) (-5 *1 (-1041 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-270 (-382 (-881 *4))))) - (-4 *4 (-13 (-283) (-784) (-135))) - (-5 *2 (-588 (-588 (-270 (-291 *4))))) (-5 *1 (-1041 *4))))) -(((*1 *1 *1) (-4 *1 (-91))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) - (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) - ((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157))))) + (-12 (-5 *4 (-589 (-455 *5 *6))) (-5 *3 (-455 *5 *6)) + (-14 *5 (-589 (-1087))) (-4 *6 (-427)) (-5 *2 (-1168 *6)) + (-5 *1 (-577 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) + (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-292 *5))) + (-5 *1 (-1043 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) + (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-589 (-292 *5)))) + (-5 *1 (-1043 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-339)) (-4 *6 (-1144 (-383 *2))) + (-4 *2 (-1144 *5)) (-5 *1 (-194 *5 *2 *6 *3)) + (-4 *3 (-318 *5 *2 *6))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) + (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) (((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |mval| (-628 *3)) (|:| |invmval| (-628 *3)) - (|:| |genIdeal| (-474 *3 *4 *5 *6)))) - (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))) + (-12 (-5 *2 (-1054 *3 *4)) (-14 *3 (-852)) (-4 *4 (-339)) + (-5 *1 (-922 *3 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1087)) (-5 *5 (-1011 (-203))) (-5 *2 (-858)) + (-5 *1 (-856 *3)) (-4 *3 (-564 (-499))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1087)) (-5 *5 (-1011 (-203))) (-5 *2 (-858)) + (-5 *1 (-856 *3)) (-4 *3 (-564 (-499))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-857)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) + (-5 *1 (-857)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) + (-5 *1 (-857)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1011 (-203))) (-5 *1 (-858)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) + (-5 *1 (-858)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) + (-5 *1 (-858)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-589 (-1 (-203) (-203)))) (-5 *3 (-1011 (-203))) + (-5 *1 (-858)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-589 (-1 (-203) (-203)))) (-5 *3 (-1011 (-203))) + (-5 *1 (-858)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) + (-5 *1 (-858)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-203) (-203))) (-5 *3 (-1011 (-203))) + (-5 *1 (-858))))) +(((*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-517 *3)) (-4 *3 (-508))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) + (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-515)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-906 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) + ((*1 *2 *1) + (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-731)) + (-4 *5 (-786)) (-5 *2 (-108))))) +(((*1 *2 *3) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-520)) (-5 *3 (-523))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-589 *1)) (-4 *1 (-987 *4 *5 *6)) (-4 *4 (-973)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1116 *4 *5 *6 *3)) (-4 *4 (-515)) (-4 *5 (-732)) + (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-763))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-523)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-710)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-732)) (-4 *4 (-880 *5 *6 *7)) (-4 *5 (-427)) (-4 *7 (-786)) + (-5 *1 (-424 *5 *6 *7 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-5 *2 (-1070))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-772 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-779 *3)) (-4 *3 (-1016))))) +(((*1 *1) (-4 *1 (-325))) ((*1 *2 *3) - (-12 (-5 *2 (-1081 (-382 (-522)))) (-5 *1 (-871)) (-5 *3 (-522))))) + (-12 (-5 *3 (-589 *5)) (-4 *5 (-406 *4)) + (-4 *4 (-13 (-515) (-786) (-136))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-589 (-1083 *5))) + (|:| |prim| (-1083 *5)))) + (-5 *1 (-408 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-515) (-786) (-136))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1083 *3)) + (|:| |pol2| (-1083 *3)) (|:| |prim| (-1083 *3)))) + (-5 *1 (-408 *4 *3)) (-4 *3 (-27)) (-4 *3 (-406 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-883 *5)) (-5 *4 (-1087)) (-4 *5 (-13 (-339) (-136))) + (-5 *2 + (-2 (|:| |coef1| (-523)) (|:| |coef2| (-523)) + (|:| |prim| (-1083 *5)))) + (-5 *1 (-890 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-589 (-1087))) + (-4 *5 (-13 (-339) (-136))) + (-5 *2 + (-2 (|:| -2935 (-589 (-523))) (|:| |poly| (-589 (-1083 *5))) + (|:| |prim| (-1083 *5)))) + (-5 *1 (-890 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-589 (-883 *6))) (-5 *4 (-589 (-1087))) (-5 *5 (-1087)) + (-4 *6 (-13 (-339) (-136))) + (-5 *2 + (-2 (|:| -2935 (-589 (-523))) (|:| |poly| (-589 (-1083 *6))) + (|:| |prim| (-1083 *6)))) + (-5 *1 (-890 *6))))) +(((*1 *1 *1 *1) (-4 *1 (-701)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1016)) (-4 *3 (-831 *5)) (-5 *2 (-1168 *3)) + (-5 *1 (-631 *5 *3 *6 *4)) (-4 *6 (-349 *3)) + (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4244))))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1122)) (-5 *1 (-166 *3 *2)) + (-4 *2 (-616 *3))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-794))) ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1) (-5 *1 (-794)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-710)))) + ((*1 *1 *1) (-4 *1 (-378)))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) + (-5 *2 (-962)) (-5 *1 (-696))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1087)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *3 *5 *6 *7)) + (-4 *3 (-564 (-499))) (-4 *5 (-1122)) (-4 *6 (-1122)) + (-4 *7 (-1122)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *3 *5 *6)) + (-4 *3 (-564 (-499))) (-4 *5 (-1122)) (-4 *6 (-1122))))) (((*1 *2 *3) - (-12 (-5 *3 (-1068)) (-5 *2 (-192 (-472))) (-5 *1 (-772))))) -(((*1 *1 *1) - (-12 (-4 *1 (-878 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784)) (-4 *2 (-426)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *3 (-985 *4 *5 *6)) - (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *1)))) - (-4 *1 (-990 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1124))) - ((*1 *2 *2) - (-12 (-4 *3 (-514)) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-1142 *3) (-514) (-10 -8 (-15 -2308 ($ $ $)))))))) + (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-284)) + (-5 *2 (-589 (-710))) (-5 *1 (-717 *3 *4 *5 *6 *7)) + (-4 *3 (-1144 *6)) (-4 *7 (-880 *6 *4 *5))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) (-5 *2 (-962)) + (-5 *1 (-688))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-383 (-883 (-155 (-523))))) (-5 *2 (-589 (-155 *4))) + (-5 *1 (-354 *4)) (-4 *4 (-13 (-339) (-784))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-589 (-383 (-883 (-155 (-523)))))) + (-5 *4 (-589 (-1087))) (-5 *2 (-589 (-589 (-155 *5)))) + (-5 *1 (-354 *5)) (-4 *5 (-13 (-339) (-784)))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1123 *3)) (-4 *3 (-1016))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-383 *4)) (-4 *4 (-1144 *3)) + (-4 *3 (-13 (-339) (-136) (-964 (-523)))) (-5 *1 (-527 *3 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))) + ((*1 *1 *1 *1) (-5 *1 (-1034)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1141 *5 *4)) (-4 *4 (-759)) (-14 *5 (-1087)) + (-5 *2 (-589 *4)) (-5 *1 (-1030 *4 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108))))) +(((*1 *1 *1 *1) (-4 *1 (-508)))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) - (-4 *5 (-348 *3)) (-5 *2 (-708)))) - ((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) - (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-708))))) -(((*1 *2 *1) (-12 (-5 *2 (-1037 (-522) (-561 (-47)))) (-5 *1 (-47)))) + (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 (-523))))) + (-5 *1 (-337 *3)) (-4 *3 (-1016)))) ((*1 *2 *1) - (-12 (-4 *3 (-919 *2)) (-4 *4 (-1142 *3)) (-4 *2 (-283)) - (-5 *1 (-388 *2 *3 *4 *5)) (-4 *5 (-13 (-384 *3 *4) (-962 *3))))) + (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 (-710))))) + (-5 *1 (-362 *3)) (-4 *3 (-1016)))) ((*1 *2 *1) - (-12 (-4 *3 (-514)) (-4 *3 (-784)) (-5 *2 (-1037 *3 (-561 *1))) - (-4 *1 (-405 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1037 (-522) (-561 (-465)))) (-5 *1 (-465)))) + (-12 (-5 *2 (-589 (-2 (|:| -1820 *3) (|:| -2735 (-523))))) + (-5 *1 (-394 *3)) (-4 *3 (-515)))) ((*1 *2 *1) - (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-664) *4)) - (-5 *1 (-567 *3 *4 *2)) (-4 *3 (-37 *4)))) - ((*1 *2 *1) - (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-664) *4)) - (-5 *1 (-604 *3 *4 *2)) (-4 *3 (-655 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514))))) -(((*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))) - ((*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169))))) -(((*1 *1 *1) (-4 *1 (-91))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) - (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *2 (-960)) - (-5 *1 (-686))))) -(((*1 *2 *1) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-251))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-5 *2 (-588 (-952 *5 *6 *7 *3))) (-5 *1 (-952 *5 *6 *7 *3)) - (-4 *3 (-985 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-588 *6)) (-4 *1 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) - (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-990 *3 *4 *5 *2)) (-4 *3 (-426)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-5 *2 (-588 (-1056 *5 *6 *7 *3))) (-5 *1 (-1056 *5 *6 *7 *3)) - (-4 *3 (-985 *5 *6 *7))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) + (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 (-710))))) + (-5 *1 (-758 *3)) (-4 *3 (-786))))) +(((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-427))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) + (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-2 (|:| |goodPols| (-589 *8)) (|:| |badPols| (-589 *8)))) + (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-589 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1168 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-339)) + (-4 *1 (-664 *5 *6)) (-4 *5 (-158)) (-4 *6 (-1144 *5)) + (-5 *2 (-629 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1068 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-172)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1068 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-277)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1068 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-282))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4244)) (-4 *1 (-462 *3)) (-4 *3 (-1122)) + (-4 *3 (-1016)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-836 *4)) (-4 *4 (-1016)) (-5 *2 (-108)) + (-5 *1 (-835 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-852)) (-5 *2 (-108)) (-5 *1 (-1017 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-710))))) +(((*1 *1 *1 *1) (-4 *1 (-897)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-852)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-710))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1124)) (-4 *5 (-1142 (-382 *2))) - (-4 *2 (-1142 *4)) (-5 *1 (-316 *3 *4 *2 *5)) - (-4 *3 (-317 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-317 *3 *2 *4)) (-4 *3 (-1124)) - (-4 *4 (-1142 (-382 *2))) (-4 *2 (-1142 *3))))) + (-12 (-5 *2 (-1173)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1016))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1087)) + (-4 *4 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-516 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4)))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) + (-5 *1 (-688))))) (((*1 *2 *3) - (-12 (-4 *1 (-317 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1142 *4)) - (-4 *5 (-1142 (-382 *3))) (-5 *2 (-108)))) + (-12 (-5 *3 (-589 (-2 (|:| -1820 *4) (|:| -2299 (-523))))) + (-4 *4 (-1144 (-523))) (-5 *2 (-677 (-710))) (-5 *1 (-417 *4)))) ((*1 *2 *3) - (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108))))) + (-12 (-5 *3 (-394 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-973)) + (-5 *2 (-677 (-710))) (-5 *1 (-419 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-292 (-203))) (-5 *2 (-108)) (-5 *1 (-244))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) - (-4 *5 (-348 *3)) (-5 *2 (-708)))) - ((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) - (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-708))))) + (-12 (-4 *1 (-349 *3)) (-4 *3 (-1122)) (-4 *3 (-786)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-349 *4)) (-4 *4 (-1122)) + (-5 *2 (-108))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4245)) (-4 *1 (-222 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) + (|:| |abserr| (-203)) (|:| |relerr| (-203)))) + (-5 *2 (-355)) (-5 *1 (-185))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) (((*1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784)) (-4 *2 (-514))))) -(((*1 *2 *1) (-12 (-5 *2 (-1037 (-522) (-561 (-47)))) (-5 *1 (-47)))) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1 (-355))) (-5 *1 (-966))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -2462 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-339)) (-5 *1 (-533 *4 *2)) (-4 *2 (-1144 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) + (-5 *2 (-589 (-1087))) (-5 *1 (-244)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1083 *7)) (-4 *7 (-880 *6 *4 *5)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-973)) (-5 *2 (-589 *5)) + (-5 *1 (-297 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-4 *3 (-283)) (-4 *4 (-919 *3)) (-4 *5 (-1142 *4)) - (-5 *2 (-1166 *6)) (-5 *1 (-388 *3 *4 *5 *6)) - (-4 *6 (-13 (-384 *4 *5) (-962 *4))))) + (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-315 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-363)))) ((*1 *2 *1) - (-12 (-4 *3 (-971)) (-4 *3 (-784)) (-5 *2 (-1037 *3 (-561 *1))) - (-4 *1 (-405 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1037 (-522) (-561 (-465)))) (-5 *1 (-465)))) + (-12 (-4 *1 (-406 *3)) (-4 *3 (-786)) (-5 *2 (-589 (-1087))))) ((*1 *2 *1) - (-12 (-4 *3 (-157)) (-4 *2 (-37 *3)) (-5 *1 (-567 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-664) *3)))) + (-12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) ((*1 *2 *1) - (-12 (-4 *3 (-157)) (-4 *2 (-655 *3)) (-5 *1 (-604 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-664) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3)))) - ((*1 *1 *1) (-4 *1 (-1109)))) -(((*1 *2 *3) - (-12 (-5 *3 (-881 *4)) (-4 *4 (-13 (-283) (-135))) - (-4 *2 (-878 *4 *6 *5)) (-5 *1 (-853 *4 *5 *6 *2)) - (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) + (-12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-589 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) + (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-589 *5)) + (-5 *1 (-881 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-339) + (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) - (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-987 *4 *3)) (-4 *4 (-13 (-782) (-338))) - (-4 *3 (-1142 *4)) (-5 *2 (-108))))) + (-12 (-5 *2 (-1018 (-1087))) (-5 *1 (-896 *3)) (-4 *3 (-897)))) + ((*1 *2 *1) + (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-731)) + (-4 *5 (-786)) (-5 *2 (-589 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-905 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-589 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-5 *2 (-589 (-1087))) + (-5 *1 (-969 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-973))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-562 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1087))) (-5 *5 (-1083 *2)) + (-4 *2 (-13 (-406 *6) (-27) (-1108))) + (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *1 (-519 *6 *2 *7)) (-4 *7 (-1016)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-562 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1087))) + (-5 *5 (-383 (-1083 *2))) (-4 *2 (-13 (-406 *6) (-27) (-1108))) + (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *1 (-519 *6 *2 *7)) (-4 *7 (-1016))))) +(((*1 *2 *1) (-12 (-4 *1 (-479 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-786))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) + (-4 *5 (-1144 *4)) (-5 *2 (-589 (-383 *5))) (-5 *1 (-944 *4 *5)) + (-5 *3 (-383 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-443))))) (((*1 *2 *3) - (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-522)) - (-5 *1 (-423 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-5 *2 (-108))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-382 *4)) (-4 *4 (-1142 *3)) - (-4 *3 (-13 (-338) (-135) (-962 (-522)))) (-5 *1 (-526 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *5 (-1068)) - (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-80 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-960)) - (-5 *1 (-688))))) -(((*1 *2 *2) - (-12 (-4 *3 (-324)) (-4 *4 (-304 *3)) (-4 *5 (-1142 *4)) - (-5 *1 (-714 *3 *4 *5 *2 *6)) (-4 *2 (-1142 *5)) (-14 *6 (-850)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-708)) (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-4 *3 (-343)))) - ((*1 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-338)) (-4 *2 (-343))))) -(((*1 *2 *2) - (-12 (-4 *3 (-426)) (-4 *3 (-784)) (-4 *3 (-962 (-522))) - (-4 *3 (-514)) (-5 *1 (-40 *3 *2)) (-4 *2 (-405 *3)) - (-4 *2 - (-13 (-338) (-278) - (-10 -8 (-15 -2947 ((-1037 *3 (-561 $)) $)) - (-15 -2959 ((-1037 *3 (-561 $)) $)) - (-15 -2217 ($ (-1037 *3 (-561 $)))))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3)))) - ((*1 *1 *1) (-4 *1 (-1109)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-108)) (-5 *1 (-110)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-278)) (-5 *3 (-1085)) (-5 *2 (-108)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-278)) (-5 *3 (-110)) (-5 *2 (-108)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1085)) (-5 *2 (-108)) (-5 *1 (-561 *4)) (-4 *4 (-784)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-561 *4)) (-4 *4 (-784)))) + (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) + (-5 *1 (-31 *4 *5)) (-4 *5 (-406 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) + (-5 *1 (-145 *4 *5)) (-4 *5 (-406 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) + (-5 *1 (-253 *4 *5)) (-4 *5 (-13 (-406 *4) (-930))))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-278 *4)) (-4 *4 (-279)))) + ((*1 *2 *3) (-12 (-4 *1 (-279)) (-5 *3 (-110)) (-5 *2 (-108)))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-4 *5 (-786)) (-5 *2 (-108)) + (-5 *1 (-405 *4 *5)) (-4 *4 (-406 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) + (-5 *1 (-407 *4 *5)) (-4 *5 (-406 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) + (-5 *1 (-576 *4 *5)) (-4 *5 (-13 (-406 *4) (-930) (-1108)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-629 *4)) (-5 *3 (-852)) (|has| *4 (-6 (-4246 "*"))) + (-4 *4 (-973)) (-5 *1 (-955 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-589 (-629 *4))) (-5 *3 (-852)) + (|has| *4 (-6 (-4246 "*"))) (-4 *4 (-973)) (-5 *1 (-955 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1144 (-523))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1144 (-523)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-284)) (-5 *2 (-394 *3)) + (-5 *1 (-682 *5 *4 *6 *3)) (-4 *3 (-880 *6 *5 *4))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1083 (-383 (-1083 *2)))) (-5 *4 (-562 *2)) + (-4 *2 (-13 (-406 *5) (-27) (-1108))) + (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1016)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1083 *1)) (-4 *1 (-880 *4 *5 *3)) (-4 *4 (-973)) + (-4 *5 (-732)) (-4 *3 (-786)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1083 *4)) (-4 *4 (-973)) (-4 *1 (-880 *4 *5 *3)) + (-4 *5 (-732)) (-4 *3 (-786)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1014)) (-5 *2 (-108)) (-5 *1 (-816 *5 *3 *4)) - (-4 *3 (-815 *5)) (-4 *4 (-563 (-821 *5))))) + (-12 (-5 *3 (-383 (-1083 *2))) (-4 *5 (-732)) (-4 *4 (-786)) + (-4 *6 (-973)) + (-4 *2 + (-13 (-339) + (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))) + (-5 *1 (-881 *5 *4 *6 *7 *2)) (-4 *7 (-880 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 *6)) (-4 *6 (-815 *5)) (-4 *5 (-1014)) - (-5 *2 (-108)) (-5 *1 (-816 *5 *6 *4)) (-4 *4 (-563 (-821 *5)))))) -(((*1 *1 *1 *1) (-5 *1 (-792)))) -(((*1 *1) (-5 *1 (-143)))) + (-12 (-5 *3 (-383 (-1083 (-383 (-883 *5))))) (-5 *4 (-1087)) + (-5 *2 (-383 (-883 *5))) (-5 *1 (-969 *5)) (-4 *5 (-515))))) (((*1 *2 *1) - (-12 (-4 *3 (-971)) (-5 *2 (-1166 *3)) (-5 *1 (-650 *3 *4)) - (-4 *4 (-1142 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) - (-5 *2 (-1171)) (-5 *1 (-1088)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1085)) - (-5 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-5 *2 (-1171)) - (-5 *1 (-1088)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1085)) - (-5 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-5 *2 (-1171)) - (-5 *1 (-1088))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-278)))) - ((*1 *1 *1) (-4 *1 (-278))) - ((*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) - ((*1 *1 *1) (-5 *1 (-792)))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3)))) - ((*1 *1 *1) (-4 *1 (-1109)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-708)) (-4 *4 (-971)) - (-5 *2 (-2 (|:| -3450 *1) (|:| -4002 *1))) (-4 *1 (-1142 *4))))) + (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) (-4 *5 (-732)) + (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1034)) (-4 *4 (-325)) + (-5 *1 (-493 *4))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-450 *4 *5 *6 *7)) (|:| -1322 (-588 *7)))) - (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-588 *7))))) + (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1100 *4 *5)) + (-4 *4 (-1016)) (-4 *5 (-1016))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-710)) (-5 *1 (-722 *2)) (-4 *2 (-37 (-383 (-523)))) + (-4 *2 (-158))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-382 (-881 (-522))))) - (-5 *2 (-588 (-588 (-270 (-881 *4))))) (-5 *1 (-355 *4)) - (-4 *4 (-13 (-782) (-338))))) + (-12 (-5 *3 (-589 (-383 (-883 (-523))))) + (-5 *2 (-589 (-589 (-271 (-883 *4))))) (-5 *1 (-356 *4)) + (-4 *4 (-13 (-784) (-339))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-270 (-382 (-881 (-522)))))) - (-5 *2 (-588 (-588 (-270 (-881 *4))))) (-5 *1 (-355 *4)) - (-4 *4 (-13 (-782) (-338))))) + (-12 (-5 *3 (-589 (-271 (-383 (-883 (-523)))))) + (-5 *2 (-589 (-589 (-271 (-883 *4))))) (-5 *1 (-356 *4)) + (-4 *4 (-13 (-784) (-339))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-382 (-881 (-522)))) (-5 *2 (-588 (-270 (-881 *4)))) - (-5 *1 (-355 *4)) (-4 *4 (-13 (-782) (-338))))) + (-12 (-5 *3 (-383 (-883 (-523)))) (-5 *2 (-589 (-271 (-883 *4)))) + (-5 *1 (-356 *4)) (-4 *4 (-13 (-784) (-339))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-270 (-382 (-881 (-522))))) - (-5 *2 (-588 (-270 (-881 *4)))) (-5 *1 (-355 *4)) - (-4 *4 (-13 (-782) (-338))))) + (-12 (-5 *3 (-271 (-383 (-883 (-523))))) + (-5 *2 (-589 (-271 (-883 *4)))) (-5 *1 (-356 *4)) + (-4 *4 (-13 (-784) (-339))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1085)) - (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) - (-4 *4 (-13 (-29 *6) (-1106) (-887))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2905 (-588 *4)))) - (-5 *1 (-594 *6 *4 *3)) (-4 *3 (-598 *4)))) + (|partial| -12 (-5 *5 (-1087)) + (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-4 *4 (-13 (-29 *6) (-1108) (-889))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -4041 (-589 *4)))) + (-5 *1 (-595 *6 *4 *3)) (-4 *3 (-599 *4)))) ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-588 *2)) - (-4 *2 (-13 (-29 *6) (-1106) (-887))) - (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) - (-5 *1 (-594 *6 *2 *3)) (-4 *3 (-598 *2)))) + (|partial| -12 (-5 *4 (-1087)) (-5 *5 (-589 *2)) + (-4 *2 (-13 (-29 *6) (-1108) (-889))) + (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *1 (-595 *6 *2 *3)) (-4 *3 (-599 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-628 *5)) (-4 *5 (-338)) + (-12 (-5 *3 (-629 *5)) (-4 *5 (-339)) (-5 *2 - (-2 (|:| |particular| (-3 (-1166 *5) "failed")) - (|:| -2905 (-588 (-1166 *5))))) - (-5 *1 (-609 *5)) (-5 *4 (-1166 *5)))) + (-2 (|:| |particular| (-3 (-1168 *5) "failed")) + (|:| -4041 (-589 (-1168 *5))))) + (-5 *1 (-610 *5)) (-5 *4 (-1168 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-588 *5))) (-4 *5 (-338)) + (-12 (-5 *3 (-589 (-589 *5))) (-4 *5 (-339)) (-5 *2 - (-2 (|:| |particular| (-3 (-1166 *5) "failed")) - (|:| -2905 (-588 (-1166 *5))))) - (-5 *1 (-609 *5)) (-5 *4 (-1166 *5)))) + (-2 (|:| |particular| (-3 (-1168 *5) "failed")) + (|:| -4041 (-589 (-1168 *5))))) + (-5 *1 (-610 *5)) (-5 *4 (-1168 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-628 *5)) (-4 *5 (-338)) + (-12 (-5 *3 (-629 *5)) (-4 *5 (-339)) (-5 *2 - (-588 - (-2 (|:| |particular| (-3 (-1166 *5) "failed")) - (|:| -2905 (-588 (-1166 *5)))))) - (-5 *1 (-609 *5)) (-5 *4 (-588 (-1166 *5))))) + (-589 + (-2 (|:| |particular| (-3 (-1168 *5) "failed")) + (|:| -4041 (-589 (-1168 *5)))))) + (-5 *1 (-610 *5)) (-5 *4 (-589 (-1168 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-588 *5))) (-4 *5 (-338)) + (-12 (-5 *3 (-589 (-589 *5))) (-4 *5 (-339)) (-5 *2 - (-588 - (-2 (|:| |particular| (-3 (-1166 *5) "failed")) - (|:| -2905 (-588 (-1166 *5)))))) - (-5 *1 (-609 *5)) (-5 *4 (-588 (-1166 *5))))) + (-589 + (-2 (|:| |particular| (-3 (-1168 *5) "failed")) + (|:| -4041 (-589 (-1168 *5)))))) + (-5 *1 (-610 *5)) (-5 *4 (-589 (-1168 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-338)) (-4 *6 (-13 (-348 *5) (-10 -7 (-6 -4239)))) - (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4239)))) + (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4245)))) + (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2905 (-588 *4)))) - (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4041 (-589 *4)))) + (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-338)) (-4 *6 (-13 (-348 *5) (-10 -7 (-6 -4239)))) - (-4 *7 (-13 (-348 *5) (-10 -7 (-6 -4239)))) + (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4245)))) + (-4 *7 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-5 *2 - (-588 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2905 (-588 *7))))) - (-5 *1 (-610 *5 *6 *7 *3)) (-5 *4 (-588 *7)) - (-4 *3 (-626 *5 *6 *7)))) + (-589 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4041 (-589 *7))))) + (-5 *1 (-611 *5 *6 *7 *3)) (-5 *4 (-589 *7)) + (-4 *3 (-627 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-588 (-1085))) (-4 *5 (-514)) - (-5 *2 (-588 (-588 (-270 (-382 (-881 *5)))))) (-5 *1 (-707 *5)))) + (-12 (-5 *3 (-589 (-883 *5))) (-5 *4 (-589 (-1087))) (-4 *5 (-515)) + (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) (-5 *1 (-709 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-514)) - (-5 *2 (-588 (-588 (-270 (-382 (-881 *4)))))) (-5 *1 (-707 *4)))) + (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-515)) + (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) (-5 *1 (-709 *4)))) ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1085)) - (-4 *5 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) - (-5 *1 (-709 *5 *2)) (-4 *2 (-13 (-29 *5) (-1106) (-887))))) + (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1087)) + (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *1 (-711 *5 *2)) (-4 *2 (-13 (-29 *5) (-1108) (-889))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-628 *7)) (-5 *5 (-1085)) - (-4 *7 (-13 (-29 *6) (-1106) (-887))) - (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) + (|partial| -12 (-5 *3 (-629 *7)) (-5 *5 (-1087)) + (-4 *7 (-13 (-29 *6) (-1108) (-889))) + (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 - (-2 (|:| |particular| (-1166 *7)) (|:| -2905 (-588 (-1166 *7))))) - (-5 *1 (-739 *6 *7)) (-5 *4 (-1166 *7)))) + (-2 (|:| |particular| (-1168 *7)) (|:| -4041 (-589 (-1168 *7))))) + (-5 *1 (-741 *6 *7)) (-5 *4 (-1168 *7)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-628 *6)) (-5 *4 (-1085)) - (-4 *6 (-13 (-29 *5) (-1106) (-887))) - (-4 *5 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) - (-5 *2 (-588 (-1166 *6))) (-5 *1 (-739 *5 *6)))) + (|partial| -12 (-5 *3 (-629 *6)) (-5 *4 (-1087)) + (-4 *6 (-13 (-29 *5) (-1108) (-889))) + (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *2 (-589 (-1168 *6))) (-5 *1 (-741 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-588 (-270 *7))) (-5 *4 (-588 (-110))) - (-5 *5 (-1085)) (-4 *7 (-13 (-29 *6) (-1106) (-887))) - (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) + (|partial| -12 (-5 *3 (-589 (-271 *7))) (-5 *4 (-589 (-110))) + (-5 *5 (-1087)) (-4 *7 (-13 (-29 *6) (-1108) (-889))) + (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 - (-2 (|:| |particular| (-1166 *7)) (|:| -2905 (-588 (-1166 *7))))) - (-5 *1 (-739 *6 *7)))) + (-2 (|:| |particular| (-1168 *7)) (|:| -4041 (-589 (-1168 *7))))) + (-5 *1 (-741 *6 *7)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-588 *7)) (-5 *4 (-588 (-110))) - (-5 *5 (-1085)) (-4 *7 (-13 (-29 *6) (-1106) (-887))) - (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) + (|partial| -12 (-5 *3 (-589 *7)) (-5 *4 (-589 (-110))) + (-5 *5 (-1087)) (-4 *7 (-13 (-29 *6) (-1108) (-889))) + (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 - (-2 (|:| |particular| (-1166 *7)) (|:| -2905 (-588 (-1166 *7))))) - (-5 *1 (-739 *6 *7)))) + (-2 (|:| |particular| (-1168 *7)) (|:| -4041 (-589 (-1168 *7))))) + (-5 *1 (-741 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-270 *7)) (-5 *4 (-110)) (-5 *5 (-1085)) - (-4 *7 (-13 (-29 *6) (-1106) (-887))) - (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) + (-12 (-5 *3 (-271 *7)) (-5 *4 (-110)) (-5 *5 (-1087)) + (-4 *7 (-13 (-29 *6) (-1108) (-889))) + (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -2905 (-588 *7))) *7 "failed")) - (-5 *1 (-739 *6 *7)))) + (-3 (-2 (|:| |particular| *7) (|:| -4041 (-589 *7))) *7 "failed")) + (-5 *1 (-741 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-110)) (-5 *5 (-1085)) - (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) + (-12 (-5 *4 (-110)) (-5 *5 (-1087)) + (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -2905 (-588 *3))) *3 "failed")) - (-5 *1 (-739 *6 *3)) (-4 *3 (-13 (-29 *6) (-1106) (-887))))) + (-3 (-2 (|:| |particular| *3) (|:| -4041 (-589 *3))) *3 "failed")) + (-5 *1 (-741 *6 *3)) (-4 *3 (-13 (-29 *6) (-1108) (-889))))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-270 *2)) (-5 *4 (-110)) (-5 *5 (-588 *2)) - (-4 *2 (-13 (-29 *6) (-1106) (-887))) (-5 *1 (-739 *6 *2)) - (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))))) + (|partial| -12 (-5 *3 (-271 *2)) (-5 *4 (-110)) (-5 *5 (-589 *2)) + (-4 *2 (-13 (-29 *6) (-1108) (-889))) (-5 *1 (-741 *6 *2)) + (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))))) ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-110)) (-5 *4 (-270 *2)) (-5 *5 (-588 *2)) - (-4 *2 (-13 (-29 *6) (-1106) (-887))) - (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) - (-5 *1 (-739 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-960)) (-5 *1 (-742)))) + (|partial| -12 (-5 *3 (-110)) (-5 *4 (-271 *2)) (-5 *5 (-589 *2)) + (-4 *2 (-13 (-29 *6) (-1108) (-889))) + (-4 *6 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *1 (-741 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-962)) (-5 *1 (-744)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-745)) (-5 *4 (-983)) (-5 *2 (-960)) (-5 *1 (-742)))) + (-12 (-5 *3 (-747)) (-5 *4 (-985)) (-5 *2 (-962)) (-5 *1 (-744)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1166 (-291 (-354)))) (-5 *4 (-354)) (-5 *5 (-588 *4)) - (-5 *2 (-960)) (-5 *1 (-742)))) + (-12 (-5 *3 (-1168 (-292 (-355)))) (-5 *4 (-355)) (-5 *5 (-589 *4)) + (-5 *2 (-962)) (-5 *1 (-744)))) ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1166 (-291 (-354)))) (-5 *4 (-354)) (-5 *5 (-588 *4)) - (-5 *2 (-960)) (-5 *1 (-742)))) + (-12 (-5 *3 (-1168 (-292 (-355)))) (-5 *4 (-355)) (-5 *5 (-589 *4)) + (-5 *2 (-962)) (-5 *1 (-744)))) ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1166 (-291 *4))) (-5 *5 (-588 (-354))) - (-5 *6 (-291 (-354))) (-5 *4 (-354)) (-5 *2 (-960)) (-5 *1 (-742)))) + (-12 (-5 *3 (-1168 (-292 *4))) (-5 *5 (-589 (-355))) + (-5 *6 (-292 (-355))) (-5 *4 (-355)) (-5 *2 (-962)) (-5 *1 (-744)))) ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1166 (-291 (-354)))) (-5 *4 (-354)) (-5 *5 (-588 *4)) - (-5 *2 (-960)) (-5 *1 (-742)))) + (-12 (-5 *3 (-1168 (-292 (-355)))) (-5 *4 (-355)) (-5 *5 (-589 *4)) + (-5 *2 (-962)) (-5 *1 (-744)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1166 (-291 *4))) (-5 *5 (-588 (-354))) - (-5 *6 (-291 (-354))) (-5 *4 (-354)) (-5 *2 (-960)) (-5 *1 (-742)))) + (-12 (-5 *3 (-1168 (-292 *4))) (-5 *5 (-589 (-355))) + (-5 *6 (-292 (-355))) (-5 *4 (-355)) (-5 *2 (-962)) (-5 *1 (-744)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1166 (-291 *4))) (-5 *5 (-588 (-354))) - (-5 *6 (-291 (-354))) (-5 *4 (-354)) (-5 *2 (-960)) (-5 *1 (-742)))) + (-12 (-5 *3 (-1168 (-292 *4))) (-5 *5 (-589 (-355))) + (-5 *6 (-292 (-355))) (-5 *4 (-355)) (-5 *2 (-962)) (-5 *1 (-744)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 - (-3 (-2 (|:| |particular| *6) (|:| -2905 (-588 *6))) "failed") + (-3 (-2 (|:| |particular| *6) (|:| -4041 (-589 *6))) "failed") *7 *6)) - (-4 *6 (-338)) (-4 *7 (-598 *6)) - (-5 *2 (-2 (|:| |particular| (-1166 *6)) (|:| -2905 (-628 *6)))) - (-5 *1 (-750 *6 *7)) (-5 *3 (-628 *6)) (-5 *4 (-1166 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-960)) (-5 *1 (-826)))) + (-4 *6 (-339)) (-4 *7 (-599 *6)) + (-5 *2 (-2 (|:| |particular| (-1168 *6)) (|:| -4041 (-629 *6)))) + (-5 *1 (-752 *6 *7)) (-5 *3 (-629 *6)) (-5 *4 (-1168 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-962)) (-5 *1 (-828)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-827)) (-5 *4 (-983)) (-5 *2 (-960)) (-5 *1 (-826)))) + (-12 (-5 *3 (-829)) (-5 *4 (-985)) (-5 *2 (-962)) (-5 *1 (-828)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-708)) (-5 *6 (-588 (-588 (-291 *3)))) (-5 *7 (-1068)) - (-5 *8 (-202)) (-5 *5 (-588 (-291 (-354)))) (-5 *3 (-354)) - (-5 *2 (-960)) (-5 *1 (-826)))) + (-12 (-5 *4 (-710)) (-5 *6 (-589 (-589 (-292 *3)))) (-5 *7 (-1070)) + (-5 *8 (-203)) (-5 *5 (-589 (-292 (-355)))) (-5 *3 (-355)) + (-5 *2 (-962)) (-5 *1 (-828)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-708)) (-5 *6 (-588 (-588 (-291 *3)))) (-5 *7 (-1068)) - (-5 *5 (-588 (-291 (-354)))) (-5 *3 (-354)) (-5 *2 (-960)) - (-5 *1 (-826)))) + (-12 (-5 *4 (-710)) (-5 *6 (-589 (-589 (-292 *3)))) (-5 *7 (-1070)) + (-5 *5 (-589 (-292 (-355)))) (-5 *3 (-355)) (-5 *2 (-962)) + (-5 *1 (-828)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-881 (-382 (-522)))) (-5 *2 (-588 (-354))) - (-5 *1 (-948)) (-5 *4 (-354)))) + (-12 (-5 *3 (-883 (-383 (-523)))) (-5 *2 (-589 (-355))) + (-5 *1 (-950)) (-5 *4 (-355)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-881 (-522))) (-5 *2 (-588 (-354))) (-5 *1 (-948)) - (-5 *4 (-354)))) + (-12 (-5 *3 (-883 (-523))) (-5 *2 (-589 (-355))) (-5 *1 (-950)) + (-5 *4 (-355)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) - (-5 *2 (-588 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1142 *4)))) + (-12 (-4 *4 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *2 (-589 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1144 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) - (-5 *2 (-588 (-270 (-291 *4)))) (-5 *1 (-1043 *4)) - (-5 *3 (-291 *4)))) + (-12 (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *2 (-589 (-271 (-292 *4)))) (-5 *1 (-1045 *4)) + (-5 *3 (-292 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) - (-5 *2 (-588 (-270 (-291 *4)))) (-5 *1 (-1043 *4)) - (-5 *3 (-270 (-291 *4))))) + (-12 (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *2 (-589 (-271 (-292 *4)))) (-5 *1 (-1045 *4)) + (-5 *3 (-271 (-292 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1085)) - (-4 *5 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) - (-5 *2 (-588 (-270 (-291 *5)))) (-5 *1 (-1043 *5)) - (-5 *3 (-270 (-291 *5))))) + (-12 (-5 *4 (-1087)) + (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *2 (-589 (-271 (-292 *5)))) (-5 *1 (-1045 *5)) + (-5 *3 (-271 (-292 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1085)) - (-4 *5 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) - (-5 *2 (-588 (-270 (-291 *5)))) (-5 *1 (-1043 *5)) - (-5 *3 (-291 *5)))) + (-12 (-5 *4 (-1087)) + (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *2 (-589 (-271 (-292 *5)))) (-5 *1 (-1045 *5)) + (-5 *3 (-292 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-588 (-1085))) - (-4 *5 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) - (-5 *2 (-588 (-588 (-270 (-291 *5))))) (-5 *1 (-1043 *5)) - (-5 *3 (-588 (-270 (-291 *5)))))) + (-12 (-5 *4 (-589 (-1087))) + (-4 *5 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *2 (-589 (-589 (-271 (-292 *5))))) (-5 *1 (-1045 *5)) + (-5 *3 (-589 (-271 (-292 *5)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-382 (-881 *5)))) (-5 *4 (-588 (-1085))) - (-4 *5 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *5)))))) - (-5 *1 (-1091 *5)))) + (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) + (-4 *5 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) + (-5 *1 (-1093 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-588 (-1085))) (-4 *5 (-514)) - (-5 *2 (-588 (-588 (-270 (-382 (-881 *5)))))) (-5 *1 (-1091 *5)) - (-5 *3 (-588 (-270 (-382 (-881 *5))))))) + (-12 (-5 *4 (-589 (-1087))) (-4 *5 (-515)) + (-5 *2 (-589 (-589 (-271 (-383 (-883 *5)))))) (-5 *1 (-1093 *5)) + (-5 *3 (-589 (-271 (-383 (-883 *5))))))) ((*1 *2 *3) - (-12 (-5 *3 (-588 (-382 (-881 *4)))) (-4 *4 (-514)) - (-5 *2 (-588 (-588 (-270 (-382 (-881 *4)))))) (-5 *1 (-1091 *4)))) + (-12 (-5 *3 (-589 (-383 (-883 *4)))) (-4 *4 (-515)) + (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) (-5 *1 (-1093 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *4)))))) - (-5 *1 (-1091 *4)) (-5 *3 (-588 (-270 (-382 (-881 *4))))))) + (-12 (-4 *4 (-515)) (-5 *2 (-589 (-589 (-271 (-383 (-883 *4)))))) + (-5 *1 (-1093 *4)) (-5 *3 (-589 (-271 (-383 (-883 *4))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1085)) (-4 *5 (-514)) - (-5 *2 (-588 (-270 (-382 (-881 *5))))) (-5 *1 (-1091 *5)) - (-5 *3 (-382 (-881 *5))))) + (-12 (-5 *4 (-1087)) (-4 *5 (-515)) + (-5 *2 (-589 (-271 (-383 (-883 *5))))) (-5 *1 (-1093 *5)) + (-5 *3 (-383 (-883 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1085)) (-4 *5 (-514)) - (-5 *2 (-588 (-270 (-382 (-881 *5))))) (-5 *1 (-1091 *5)) - (-5 *3 (-270 (-382 (-881 *5)))))) + (-12 (-5 *4 (-1087)) (-4 *5 (-515)) + (-5 *2 (-589 (-271 (-383 (-883 *5))))) (-5 *1 (-1093 *5)) + (-5 *3 (-271 (-383 (-883 *5)))))) ((*1 *2 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-588 (-270 (-382 (-881 *4))))) - (-5 *1 (-1091 *4)) (-5 *3 (-382 (-881 *4))))) + (-12 (-4 *4 (-515)) (-5 *2 (-589 (-271 (-383 (-883 *4))))) + (-5 *1 (-1093 *4)) (-5 *3 (-383 (-883 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-588 (-270 (-382 (-881 *4))))) - (-5 *1 (-1091 *4)) (-5 *3 (-270 (-382 (-881 *4))))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-98 *3))))) + (-12 (-4 *4 (-515)) (-5 *2 (-589 (-271 (-383 (-883 *4))))) + (-5 *1 (-1093 *4)) (-5 *3 (-271 (-383 (-883 *4))))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-732)) + (-4 *3 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))) (-4 *5 (-515)) + (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-880 (-383 (-883 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-973)) (-4 *5 (-732)) + (-4 *3 + (-13 (-786) + (-10 -8 (-15 -3663 ((-1087) $)) + (-15 -2700 ((-3 $ "failed") (-1087)))))) + (-5 *1 (-913 *4 *5 *3 *2)) (-4 *2 (-880 (-883 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-589 *6)) + (-4 *6 + (-13 (-786) + (-10 -8 (-15 -3663 ((-1087) $)) + (-15 -2700 ((-3 $ "failed") (-1087)))))) + (-4 *4 (-973)) (-4 *5 (-732)) (-5 *1 (-913 *4 *5 *6 *2)) + (-4 *2 (-880 (-883 *4) *5 *6))))) +(((*1 *1) (-5 *1 (-144)))) +(((*1 *2 *3) + (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-284)) + (-5 *2 (-383 (-394 (-883 *4)))) (-5 *1 (-968 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410))))) +(((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1122))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-589 (-852))) (-5 *1 (-141 *4 *2 *5)) (-14 *4 (-852)) + (-4 *2 (-339)) (-14 *5 (-922 *4 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-653 *5 *6 *7)) (-4 *5 (-786)) + (-4 *6 (-216 (-2676 *4) (-710))) + (-14 *7 + (-1 (-108) (-2 (|:| -3878 *5) (|:| -2735 *6)) + (-2 (|:| -3878 *5) (|:| -2735 *6)))) + (-14 *4 (-589 (-1087))) (-4 *2 (-158)) + (-5 *1 (-436 *4 *2 *5 *6 *7 *8)) (-4 *8 (-880 *2 *6 (-796 *4))))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-786)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-523)) (-4 *2 (-515)) (-5 *1 (-570 *2 *4)) + (-4 *4 (-1144 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-648 *2)) (-4 *2 (-973)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-973)) (-4 *3 (-666)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 *5)) (-5 *3 (-589 (-710))) (-4 *1 (-680 *4 *5)) + (-4 *4 (-973)) (-4 *5 (-786)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-680 *4 *2)) (-4 *4 (-973)) + (-4 *2 (-786)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-710)) (-4 *1 (-788 *2)) (-4 *2 (-973)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 *6)) (-5 *3 (-589 (-710))) (-4 *1 (-880 *4 *5 *6)) + (-4 *4 (-973)) (-4 *5 (-732)) (-4 *6 (-786)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-710)) (-4 *1 (-880 *4 *5 *2)) (-4 *4 (-973)) + (-4 *5 (-732)) (-4 *2 (-786)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 *6)) (-5 *3 (-589 *5)) (-4 *1 (-902 *4 *5 *6)) + (-4 *4 (-973)) (-4 *5 (-731)) (-4 *6 (-786)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-902 *4 *3 *2)) (-4 *4 (-973)) (-4 *3 (-731)) + (-4 *2 (-786))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-2 (|:| |gen| *3) (|:| -1811 *4)))) + (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1124))))) +(((*1 *2 *3) + (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-768)) (-5 *3 (-1070))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-874 *3) (-874 *3))) (-5 *1 (-161 *3)) + (-4 *3 (-13 (-339) (-1108) (-930)))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-940)) (-5 *2 (-794))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-786) (-515))) (-5 *2 (-108)) (-5 *1 (-253 *4 *3)) + (-4 *3 (-13 (-406 *4) (-930)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-339)) (-4 *3 (-973)) + (-5 *1 (-1072 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-349 *2)) (-4 *4 (-349 *2)) + (|has| *2 (-6 (-4246 "*"))) (-4 *2 (-973)))) + ((*1 *2 *3) + (-12 (-4 *4 (-349 *2)) (-4 *5 (-349 *2)) (-4 *2 (-158)) + (-5 *1 (-628 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) + (-4 *5 (-216 *3 *2)) (|has| *2 (-6 (-4246 "*"))) (-4 *2 (-973))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-695))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1011 *3)) (-4 *3 (-880 *7 *6 *4)) (-4 *6 (-732)) + (-4 *4 (-786)) (-4 *7 (-515)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-523)))) + (-5 *1 (-547 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-515)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-523)))) + (-5 *1 (-547 *5 *4 *6 *3)) (-4 *3 (-880 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-794))) ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1) (-5 *1 (-794))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-1079 *4 *2)) (-4 *2 (-13 (-406 *4) (-147) (-27) (-1108))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1009 *2)) (-4 *2 (-13 (-406 *4) (-147) (-27) (-1108))) + (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-1079 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-786) (-964 (-523)))) + (-5 *2 (-383 (-883 *5))) (-5 *1 (-1080 *5)) (-5 *3 (-883 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) (-4 *5 (-13 (-515) (-786) (-964 (-523)))) + (-5 *2 (-3 (-383 (-883 *5)) (-292 *5))) (-5 *1 (-1080 *5)) + (-5 *3 (-383 (-883 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1009 (-883 *5))) (-5 *3 (-883 *5)) + (-4 *5 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-383 *3)) + (-5 *1 (-1080 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1009 (-383 (-883 *5)))) (-5 *3 (-383 (-883 *5))) + (-4 *5 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-3 *3 (-292 *5))) + (-5 *1 (-1080 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170))))) +(((*1 *1) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3) + (-12 (-5 *3 (-629 (-383 (-883 (-523))))) + (-5 *2 (-589 (-629 (-292 (-523))))) (-5 *1 (-958))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-523)) (-4 *3 (-158)) (-4 *5 (-349 *3)) + (-4 *6 (-349 *3)) (-5 *1 (-628 *3 *5 *6 *2)) + (-4 *2 (-627 *3 *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-874 *5)) (-4 *5 (-973)) (-5 *2 (-710)) + (-5 *1 (-1076 *4 *5)) (-14 *4 (-852)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-710))) (-5 *3 (-710)) (-5 *1 (-1076 *4 *5)) + (-14 *4 (-852)) (-4 *5 (-973)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-710))) (-5 *3 (-874 *5)) (-4 *5 (-973)) + (-5 *1 (-1076 *4 *5)) (-14 *4 (-852))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-1070)) (-5 *1 (-918)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1087)) (-5 *3 (-1011 *4)) (-4 *4 (-1122)) + (-5 *1 (-1009 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1168 *6)) (-5 *4 (-1168 (-523))) (-5 *5 (-523)) + (-4 *6 (-1016)) (-5 *2 (-1 *6)) (-5 *1 (-945 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-973)) + (-4 *2 (-13 (-380) (-964 *4) (-339) (-1108) (-261))) + (-5 *1 (-418 *4 *3 *2)) (-4 *3 (-1144 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-564 (-823 *3))) (-4 *3 (-817 *3)) + (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-564 (-823 *3))) (-4 *2 (-817 *3)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-349 *2)) + (-4 *4 (-349 *2))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-355)) (-5 *1 (-185)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-589 (-355))) (-5 *2 (-355)) (-5 *1 (-185))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-987 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-108))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-985))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 -2315)))) (-5 *3 (-203)) + (-5 *2 (-962)) (-5 *1 (-688))))) +(((*1 *2) (-12 (-5 *2 (-779 (-523))) (-5 *1 (-497)))) + ((*1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1016))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-160))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) + (-12 (-4 *3 (-13 (-515) (-786) (-964 (-523)))) (-5 *1 (-168 *3 *2)) + (-4 *2 (-13 (-27) (-1108) (-406 (-155 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-515) (-786) (-964 (-523)))) + (-5 *1 (-168 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 (-155 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-1112 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-284))))) +(((*1 *1) (-5 *1 (-762)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168 *4)) (-4 *4 (-973)) (-4 *2 (-1144 *4)) + (-5 *1 (-419 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-383 (-1083 (-292 *5)))) (-5 *3 (-1168 (-292 *5))) + (-5 *4 (-523)) (-4 *5 (-13 (-515) (-786))) (-5 *1 (-1044 *5))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-515) (-136))) + (-5 *2 (-2 (|:| -3149 *3) (|:| -3159 *3))) (-5 *1 (-1138 *4 *3)) + (-4 *3 (-1144 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 (-883 *3))) (-4 *3 (-427)) (-5 *1 (-336 *3 *4)) + (-14 *4 (-589 (-1087))))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-427)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-425 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) + (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *1 (-425 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-589 *7)) (-5 *3 (-1070)) (-4 *7 (-880 *4 *5 *6)) + (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *1 (-425 *4 *5 *6 *7)))) ((*1 *1 *1) - (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) - (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) + (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) + (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3)))) - ((*1 *1 *1) (-4 *1 (-1109)))) -(((*1 *1 *1) (-12 (-5 *1 (-557 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1) (-5 *1 (-577)))) -(((*1 *2 *2 *2) - (-12 + (-12 (-5 *2 (-589 (-719 *3 (-796 *4)))) (-4 *3 (-427)) + (-14 *4 (-589 (-1087))) (-5 *1 (-574 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108))))) +(((*1 *2 *1) + (-12 (-4 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-339)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) (-5 *2 (-108))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2) (-12 (-5 *2 (-779 (-523))) (-5 *1 (-497)))) + ((*1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1016))))) +(((*1 *1 *2) + (-12 (-5 *2 (-852)) (-4 *1 (-216 *3 *4)) (-4 *4 (-973)) + (-4 *4 (-1122)))) + ((*1 *1 *2) + (-12 (-14 *3 (-589 (-1087))) (-4 *4 (-158)) + (-4 *5 (-216 (-2676 *3) (-710))) + (-14 *6 + (-1 (-108) (-2 (|:| -3878 *2) (|:| -2735 *5)) + (-2 (|:| -3878 *2) (|:| -2735 *5)))) + (-5 *1 (-436 *3 *4 *2 *5 *6 *7)) (-4 *2 (-786)) + (-4 *7 (-880 *4 *5 (-796 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-874 (-203))) (-5 *1 (-1119))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) + ((*1 *1 *1) (-5 *1 (-794)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) +(((*1 *2 *1) + (-12 (-5 *2 (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 *4)))) + (-5 *1 (-820 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1016)) (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016)) + (-4 *7 (-1016)) (-5 *2 (-589 *1)) (-4 *1 (-1019 *3 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-515)) (-4 *2 (-508)))) + ((*1 *1 *1) (-4 *1 (-982)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-719 *5 (-796 *6)))) (-5 *4 (-108)) (-4 *5 (-427)) + (-14 *6 (-589 (-1087))) (-5 *2 - (-588 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-708)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-730)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-426)) (-4 *5 (-784)) - (-5 *1 (-423 *3 *4 *5 *6))))) -(((*1 *1 *1 *1) (-4 *1 (-603))) ((*1 *1 *1 *1) (-5 *1 (-1032)))) + (-589 (-1058 *5 (-495 (-796 *6)) (-796 *6) (-719 *5 (-796 *6))))) + (-5 *1 (-574 *5 *6))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-136) (-27) (-964 (-523)) (-964 (-383 (-523))))) + (-4 *5 (-1144 *4)) (-5 *2 (-1083 (-383 *5))) (-5 *1 (-565 *4 *5)) + (-5 *3 (-383 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1144 *5)) + (-4 *5 (-13 (-136) (-27) (-964 (-523)) (-964 (-383 (-523))))) + (-5 *2 (-1083 (-383 *6))) (-5 *1 (-565 *5 *6)) (-5 *3 (-383 *6))))) +(((*1 *1) (-5 *1 (-1001)))) +(((*1 *2 *3) + (-12 (-4 *4 (-732)) + (-4 *5 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))) (-4 *6 (-515)) + (-5 *2 (-2 (|:| -3596 (-883 *6)) (|:| -2774 (-883 *6)))) + (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-880 (-383 (-883 *6)) *4 *5))))) +(((*1 *1) (-12 (-4 *1 (-305 *2)) (-4 *2 (-344)) (-4 *2 (-339)))) + ((*1 *2 *3) + (-12 (-5 *3 (-852)) (-5 *2 (-1168 *4)) (-5 *1 (-493 *4)) + (-4 *4 (-325))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-786))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3078 *4))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (-5 *2 (-2 (|:| -3013 (-110)) (|:| |w| (-203)))) (-5 *1 (-184))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1085)) - (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-539 *3)) (-5 *1 (-401 *5 *3)) - (-4 *3 (-13 (-1106) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-514) (-962 (-522)) (-135))) - (-5 *2 (-539 (-382 (-881 *5)))) (-5 *1 (-528 *5)) - (-5 *3 (-382 (-881 *5)))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1159 *3 *2)) - (-4 *2 (-1157 *3))))) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-252))))) (((*1 *2 *3) - (-12 (-5 *3 (-588 *7)) (-4 *7 (-878 *4 *5 *6)) (-4 *6 (-563 (-1085))) - (-4 *4 (-338)) (-4 *5 (-730)) (-4 *6 (-784)) - (-5 *2 (-1075 (-588 (-881 *4)) (-588 (-270 (-881 *4))))) - (-5 *1 (-474 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-784)))) - ((*1 *1 *1) - (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) - (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3)))) - ((*1 *1 *1) (-4 *1 (-1109)))) -(((*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-516 *2)) (-4 *2 (-507))))) + (-12 (-4 *4 (-325)) (-5 *2 (-394 (-1083 (-1083 *4)))) + (-5 *1 (-1121 *4)) (-5 *3 (-1083 (-1083 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-1087))) (-5 *2 (-1173)) (-5 *1 (-1090)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1173)) + (-5 *1 (-1090)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-589 (-1087))) (-5 *3 (-1087)) (-5 *2 (-1173)) + (-5 *1 (-1090))))) (((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) - (-4 *3 (-342 *4)))) - ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1142 *9)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *9 (-283)) - (-4 *10 (-878 *9 *7 *8)) - (-5 *2 - (-2 (|:| |deter| (-588 (-1081 *10))) - (|:| |dterm| - (-588 (-588 (-2 (|:| -2170 (-708)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-588 *6)) (|:| |nlead| (-588 *10)))) - (-5 *1 (-715 *6 *7 *8 *9 *10)) (-5 *3 (-1081 *10)) (-5 *4 (-588 *6)) - (-5 *5 (-588 *10))))) -(((*1 *1) (-5 *1 (-305)))) + (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-306))))) (((*1 *2 *1) - (-12 (-5 *2 (-588 (-872 *4))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) - (-4 *4 (-971))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *2 (-784)) (-4 *3 (-157)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-514)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1142 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784)) (-4 *2 (-514)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-157))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1107 *3)) (-4 *3 (-1014))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) + (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-987 *3 *4 *5))))) +(((*1 *1) (-5 *1 (-413)))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-257)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-786)) (-4 *4 (-973)) + (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-782))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1168 *4)) (-4 *4 (-1122)) (-4 *1 (-216 *3 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-339)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) + (-5 *2 (-710)) (-5 *1 (-490 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-4 *3 (-515)) (-5 *2 (-710)))) + ((*1 *2 *3) + (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) + (-4 *6 (-349 *4)) (-5 *2 (-710)) (-5 *1 (-628 *4 *5 *6 *3)) + (-4 *3 (-627 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-4 *5 (-515)) + (-5 *2 (-710))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1169)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1169)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1170)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 (-240))) (-5 *1 (-1170))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-784)))) - ((*1 *1 *1) - (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) - (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3)))) - ((*1 *1 *1) (-4 *1 (-1109)))) -(((*1 *2 *2) - (-12 (-5 *2 (-1166 *4)) (-4 *4 (-392 *3)) (-4 *3 (-283)) - (-4 *3 (-514)) (-5 *1 (-42 *3 *4)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *3) + (-12 (-4 *1 (-826)) + (-5 *3 + (-2 (|:| |pde| (-589 (-292 (-203)))) + (|:| |constraints| + (-589 + (-2 (|:| |start| (-203)) (|:| |finish| (-203)) + (|:| |grid| (-710)) (|:| |boundaryType| (-523)) + (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) + (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) + (|:| |tol| (-203)))) + (-5 *2 (-962))))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-172)))) ((*1 *2 *3) - (-12 (-5 *3 (-850)) (-4 *4 (-338)) (-5 *2 (-1166 *1)) - (-4 *1 (-304 *4)))) - ((*1 *2) (-12 (-4 *3 (-338)) (-5 *2 (-1166 *1)) (-4 *1 (-304 *3)))) - ((*1 *2) - (-12 (-4 *3 (-157)) (-4 *4 (-1142 *3)) (-5 *2 (-1166 *1)) - (-4 *1 (-384 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-283)) (-4 *4 (-919 *3)) (-4 *5 (-1142 *4)) - (-5 *2 (-1166 *6)) (-5 *1 (-388 *3 *4 *5 *6)) - (-4 *6 (-13 (-384 *4 *5) (-962 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-283)) (-4 *4 (-919 *3)) (-4 *5 (-1142 *4)) - (-5 *2 (-1166 *6)) (-5 *1 (-389 *3 *4 *5 *6 *7)) - (-4 *6 (-384 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1166 *1)) (-4 *1 (-392 *3)))) + (-12 (-5 *3 (-589 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-277)))) ((*1 *2 *3) - (-12 (-5 *3 (-850)) (-5 *2 (-1166 (-1166 *4))) (-5 *1 (-492 *4)) - (-4 *4 (-324))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-893))) (-5 *1 (-104))))) + (-12 (-5 *3 (-589 (-203))) (-5 *2 (-589 (-1070))) (-5 *1 (-282))))) (((*1 *1 *2) - (-12 (-5 *2 (-588 (-850))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-850)) - (-14 *4 (-850))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) - (-5 *2 (-154 (-291 *4))) (-5 *1 (-167 *4 *3)) - (-4 *3 (-13 (-27) (-1106) (-405 (-154 *4)))))) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) + (-4 *5 (-13 (-786) (-964 (-523)) (-427) (-585 (-523)))) + (-5 *2 (-2 (|:| -1280 *3) (|:| |nconst| *3))) (-5 *1 (-526 *5 *3)) + (-4 *3 (-13 (-27) (-1108) (-406 *5)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) (-4 *4 (-427)) (-4 *4 (-786)) + (-5 *1 (-532 *4 *2)) (-4 *2 (-261)) (-4 *2 (-406 *4))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1070)) (-5 *4 (-155 (-203))) (-5 *5 (-523)) + (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-562 *3)) (-5 *5 (-1083 *3)) + (-4 *3 (-13 (-406 *6) (-27) (-1108))) + (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 (-540 *3)) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-562 *3)) (-5 *5 (-383 (-1083 *3))) + (-4 *3 (-13 (-406 *6) (-27) (-1108))) + (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 (-540 *3)) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1016))))) +(((*1 *1) + (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) + (-4 *4 (-158))))) +(((*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-154 *3)) (-5 *1 (-1110 *4 *3)) - (-4 *3 (-13 (-27) (-1106) (-405 *4)))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-802 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120))))) -(((*1 *1 *1) (-4 *1 (-574))) + (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-292 *4)) + (-5 *1 (-168 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 (-155 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928) (-1106)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-628 *5))) (-4 *5 (-283)) (-4 *5 (-971)) - (-5 *2 (-1166 (-1166 *5))) (-5 *1 (-954 *5)) (-5 *4 (-1166 *5))))) + (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3)))))) +(((*1 *1) (-5 *1 (-130)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-588 *6)) (-4 *6 (-784)) (-4 *4 (-338)) (-4 *5 (-730)) - (-5 *2 - (-2 (|:| |mval| (-628 *4)) (|:| |invmval| (-628 *4)) - (|:| |genIdeal| (-474 *4 *5 *6 *7)))) - (-5 *1 (-474 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-782) (-338))) (-5 *2 (-108)) (-5 *1 (-981 *4 *3)) - (-4 *3 (-1142 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-588 (-110)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1142 *3)) (-4 *3 (-971)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-850)) (-4 *1 (-1144 *3 *4)) (-4 *3 (-971)) - (-4 *4 (-729)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-382 (-522))) (-4 *1 (-1147 *3)) (-4 *3 (-971))))) -(((*1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784)) (-4 *2 (-426))))) -(((*1 *2 *1) - (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *3 (-454 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-971)) - (-5 *2 (-881 *5)) (-5 *1 (-873 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-514)) (-5 *1 (-40 *3 *2)) - (-4 *2 - (-13 (-338) (-278) - (-10 -8 (-15 -2947 ((-1037 *3 (-561 $)) $)) - (-15 -2959 ((-1037 *3 (-561 $)) $)) - (-15 -2217 ($ (-1037 *3 (-561 $)))))))))) -(((*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-971))))) + (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) + (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-589 (-710))))) + ((*1 *2 *1) + (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) + (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-589 (-710)))))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-443)))) + ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1169)))) + ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1170))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-629 *5))) (-5 *4 (-1168 *5)) (-4 *5 (-284)) + (-4 *5 (-973)) (-5 *2 (-629 *5)) (-5 *1 (-956 *5))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) + (-5 *2 (-962)) (-5 *1 (-696))))) +(((*1 *2) + (-12 (-5 *2 (-1173)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1016))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1168 *4)) (-5 *3 (-629 *4)) (-4 *4 (-339)) + (-5 *1 (-610 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-339)) + (-4 *5 (-13 (-349 *4) (-10 -7 (-6 -4245)))) + (-4 *2 (-13 (-349 *4) (-10 -7 (-6 -4245)))) + (-5 *1 (-611 *4 *5 *2 *3)) (-4 *3 (-627 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-589 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-339)) + (-5 *1 (-753 *2 *3)) (-4 *3 (-599 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *1 (-1042 *3 *2)) (-4 *3 (-1144 *2))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-820 *4 *3)) + (-4 *3 (-1016))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-523)) (-5 *2 (-108)) (-5 *1 (-512))))) +(((*1 *2 *3) (-12 (-5 *3 (-589 *2)) (-5 *1 (-1097 *2)) (-4 *2 (-339))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-155 (-203)))) (-5 *2 (-962)) + (-5 *1 (-696))))) (((*1 *2 *1) - (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) - (-5 *2 (-588 (-588 (-872 *3)))))) + (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) + (-5 *2 (-589 (-589 (-874 *3)))))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-588 (-588 (-872 *4)))) (-5 *3 (-108)) (-4 *4 (-971)) - (-4 *1 (-1046 *4)))) + (-12 (-5 *2 (-589 (-589 (-874 *4)))) (-5 *3 (-108)) (-4 *4 (-973)) + (-4 *1 (-1048 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-588 (-588 (-872 *3)))) (-4 *3 (-971)) - (-4 *1 (-1046 *3)))) + (-12 (-5 *2 (-589 (-589 (-874 *3)))) (-4 *3 (-973)) + (-4 *1 (-1048 *3)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-588 (-588 (-588 *4)))) (-5 *3 (-108)) - (-4 *1 (-1046 *4)) (-4 *4 (-971)))) + (-12 (-5 *2 (-589 (-589 (-589 *4)))) (-5 *3 (-108)) + (-4 *1 (-1048 *4)) (-4 *4 (-973)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-588 (-588 (-872 *4)))) (-5 *3 (-108)) - (-4 *1 (-1046 *4)) (-4 *4 (-971)))) + (-12 (-5 *2 (-589 (-589 (-874 *4)))) (-5 *3 (-108)) + (-4 *1 (-1048 *4)) (-4 *4 (-973)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-588 (-588 (-588 *5)))) (-5 *3 (-588 (-156))) - (-5 *4 (-156)) (-4 *1 (-1046 *5)) (-4 *5 (-971)))) + (-12 (-5 *2 (-589 (-589 (-589 *5)))) (-5 *3 (-589 (-157))) + (-5 *4 (-157)) (-4 *1 (-1048 *5)) (-4 *5 (-973)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-588 (-588 (-872 *5)))) (-5 *3 (-588 (-156))) - (-5 *4 (-156)) (-4 *1 (-1046 *5)) (-4 *5 (-971))))) -(((*1 *2 *3) - (-12 (-4 *4 (-971)) (-4 *5 (-1142 *4)) (-5 *2 (-1 *6 (-588 *6))) - (-5 *1 (-1160 *4 *5 *3 *6)) (-4 *3 (-598 *5)) (-4 *6 (-1157 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-1089))))) -(((*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-393 *2)) (-4 *2 (-514))))) + (-12 (-5 *2 (-589 (-589 (-874 *5)))) (-5 *3 (-589 (-157))) + (-5 *4 (-157)) (-4 *1 (-1048 *5)) (-4 *5 (-973))))) +(((*1 *2 *1) (-12 (-4 *1 (-152 *2)) (-4 *2 (-158)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-515) (-786) (-964 (-523)))) (-5 *2 (-292 *4)) + (-5 *1 (-168 *4 *3)) (-4 *3 (-13 (-27) (-1108) (-406 (-155 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) + ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-515) (-786))) (-5 *2 (-155 *5)) + (-5 *1 (-552 *4 *5 *3)) (-4 *5 (-13 (-406 *4) (-930) (-1108))) + (-4 *3 (-13 (-406 (-155 *4)) (-930) (-1108)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-973)) + (-5 *1 (-1072 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-523)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-973)) + (-14 *4 (-1087)) (-14 *5 *3)))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-257))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-252))))) +(((*1 *2 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-393 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-896 *3)) (-4 *3 (-897))))) +(((*1 *2 *3) (-12 (-5 *3 (-761)) (-5 *2 (-51)) (-5 *1 (-768))))) (((*1 *1 *1) - (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729)) - (-4 *2 (-426)))) - ((*1 *1 *1) - (-12 (-4 *1 (-317 *2 *3 *4)) (-4 *2 (-1124)) (-4 *3 (-1142 *2)) - (-4 *4 (-1142 (-382 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-426)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *2 (-784)) (-4 *3 (-426)))) - ((*1 *1 *1) - (-12 (-4 *1 (-878 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784)) (-4 *2 (-426)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-283)) (-4 *3 (-514)) (-5 *1 (-1073 *3 *2)) - (-4 *2 (-1142 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-343)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-850)) (-5 *2 (-1166 *4)) (-5 *1 (-492 *4)) - (-4 *4 (-324)))) - ((*1 *2 *1) - (-12 (-4 *2 (-784)) (-5 *1 (-651 *2 *3 *4)) (-4 *3 (-1014)) - (-14 *4 - (-1 (-108) (-2 (|:| -2882 *2) (|:| -3858 *3)) - (-2 (|:| -2882 *2) (|:| -3858 *3))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3357 *4)))) - (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5))))) -(((*1 *1 *1) (-4 *1 (-574))) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-800 *3)) (-5 *2 (-523)))) + ((*1 *1 *1) (-4 *1 (-930))) + ((*1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-940)))) + ((*1 *1 *2) (-12 (-5 *2 (-383 (-523))) (-4 *1 (-940)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-940)) (-5 *2 (-710)))) + ((*1 *1 *1) (-4 *1 (-940)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928) (-1106)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-588 (-1085))) (|:| |pred| (-51)))) - (-5 *1 (-821 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-588 (-881 (-522)))) (-5 *1 (-412)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1085)) (-5 *4 (-628 (-202))) (-5 *2 (-1018)) - (-5 *1 (-697)))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-339) (-136) (-964 (-523)))) (-4 *5 (-1144 *4)) + (-5 *2 (-2 (|:| |ans| (-383 *5)) (|:| |nosol| (-108)))) + (-5 *1 (-943 *4 *5)) (-5 *3 (-383 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-973)) (-4 *4 (-1144 *3)) (-5 *1 (-150 *3 *4 *2)) + (-4 *2 (-1144 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-108)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) + (-4 *3 (-987 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) + (-5 *1 (-990 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1085)) (-5 *4 (-628 (-522))) (-5 *2 (-1018)) - (-5 *1 (-697))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-708)) (-4 *1 (-1142 *3)) (-4 *3 (-971))))) -(((*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-1120))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126))))) -(((*1 *1 *2) (-12 (-5 *2 (-166)) (-5 *1 (-225))))) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) + (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1025 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-240))) (-5 *4 (-1087)) (-5 *2 (-108)) + (-5 *1 (-240))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) + (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) (((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-501 *4 *2 *5 *6)) - (-4 *4 (-283)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-708)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-871)) (-5 *3 (-522))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-682 *3)) (-4 *3 (-157))))) + (-12 (-4 *1 (-1116 *2 *3 *4 *5)) (-4 *2 (-515)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *5 (-987 *2 *3 *4))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4245)) (-4 *1 (-938 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-687))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-589 (-523))) (-5 *3 (-629 (-523))) (-5 *1 (-1026))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-628 *8)) (-5 *4 (-708)) (-4 *8 (-878 *5 *7 *6)) - (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085)))) - (-4 *7 (-730)) - (-5 *2 - (-588 - (-2 (|:| |det| *8) (|:| |rows| (-588 (-522))) - (|:| |cols| (-588 (-522)))))) - (-5 *1 (-853 *5 *6 *7 *8))))) -(((*1 *2 *2) - (-12 (-5 *2 (-588 *7)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) - (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) - (-5 *1 (-915 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-588 *7)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) - (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) - (-5 *1 (-1021 *3 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-784)) (-5 *1 (-858 *3 *2)) (-4 *2 (-405 *3)))) + (-12 (-5 *4 (-589 (-47))) (-5 *2 (-394 *3)) (-5 *1 (-38 *3)) + (-4 *3 (-1144 (-47))))) ((*1 *2 *3) - (-12 (-5 *3 (-1085)) (-5 *2 (-291 (-522))) (-5 *1 (-859))))) -(((*1 *1 *1) (-4 *1 (-574))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928) (-1106)))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-588 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-522))))) - (-4 *2 (-514)) (-5 *1 (-393 *2)))) + (-12 (-5 *2 (-394 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1144 (-47))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-47))) (-4 *5 (-786)) (-4 *6 (-732)) + (-5 *2 (-394 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-880 (-47) *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-47))) (-4 *5 (-786)) (-4 *6 (-732)) + (-4 *7 (-880 (-47) *6 *5)) (-5 *2 (-394 (-1083 *7))) + (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1083 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-284)) (-5 *2 (-394 *3)) (-5 *1 (-153 *4 *3)) + (-4 *3 (-1144 (-155 *4))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-108)) (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) + (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) + (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-339) (-784))) (-5 *2 (-394 *3)) + (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-325)) (-5 *2 (-394 *3)) (-5 *1 (-195 *4 *3)) + (-4 *3 (-1144 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) + (-4 *3 (-1144 (-523))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-710))) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) + (-4 *3 (-1144 (-523))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-589 (-710))) (-5 *5 (-710)) (-5 *2 (-394 *3)) + (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-710)) (-5 *2 (-394 *3)) (-5 *1 (-417 *3)) + (-4 *3 (-1144 (-523))))) + ((*1 *2 *3) + (-12 (-5 *2 (-394 (-155 (-523)))) (-5 *1 (-421)) + (-5 *3 (-155 (-523))))) ((*1 *2 *3) (-12 - (-5 *3 - (-2 (|:| |contp| (-522)) - (|:| -4045 (-588 (-2 (|:| |irr| *4) (|:| -4160 (-522))))))) - (-4 *4 (-1142 (-522))) (-5 *2 (-393 *4)) (-5 *1 (-416 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-1102)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1102))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *1) - (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) - (-4 *5 (-348 *3)) (-5 *2 (-588 (-588 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) - (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-588 (-588 *5))))) - ((*1 *2 *1) - (-12 (-5 *2 (-588 (-588 *3))) (-5 *1 (-1093 *3)) (-4 *3 (-1014))))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-708)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-730)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *6 (-784)) - (-5 *2 (-108)) (-5 *1 (-423 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-2 (|:| -3526 *4) (|:| -3192 (-522))))) - (-4 *4 (-1014)) (-5 *2 (-1 *4)) (-5 *1 (-943 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) - (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-660)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-664)) (-5 *2 (-108))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-708)) (-5 *1 (-720 *2)) (-4 *2 (-37 (-382 (-522)))) - (-4 *2 (-157))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-354)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) - ((*1 *1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-239))))) -(((*1 *2) - (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-622 *4 *5)) (-4 *4 (-1014)))) - ((*1 *2 *2) - (-12 (-4 *3 (-784)) (-5 *1 (-858 *3 *2)) (-4 *2 (-405 *3)))) + (-4 *4 + (-13 (-786) + (-10 -8 (-15 -3663 ((-1087) $)) + (-15 -2700 ((-3 $ "failed") (-1087)))))) + (-4 *5 (-732)) (-4 *7 (-515)) (-5 *2 (-394 *3)) + (-5 *1 (-431 *4 *5 *6 *7 *3)) (-4 *6 (-515)) + (-4 *3 (-880 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-284)) (-5 *2 (-394 (-1083 *4))) (-5 *1 (-433 *4)) + (-5 *3 (-1083 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) + (-4 *7 (-13 (-339) (-136) (-664 *5 *6))) (-5 *2 (-394 *3)) + (-5 *1 (-465 *5 *6 *7 *3)) (-4 *3 (-1144 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-394 (-1083 *7)) (-1083 *7))) + (-4 *7 (-13 (-284) (-136))) (-4 *5 (-786)) (-4 *6 (-732)) + (-5 *2 (-394 *3)) (-5 *1 (-503 *5 *6 *7 *3)) + (-4 *3 (-880 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-394 (-1083 *7)) (-1083 *7))) + (-4 *7 (-13 (-284) (-136))) (-4 *5 (-786)) (-4 *6 (-732)) + (-4 *8 (-880 *7 *6 *5)) (-5 *2 (-394 (-1083 *8))) + (-5 *1 (-503 *5 *6 *7 *8)) (-5 *3 (-1083 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-394 *3)) (-5 *1 (-517 *3)) (-4 *3 (-508)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-589 *5) *6)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-4 *6 (-1144 *5)) (-5 *2 (-589 (-596 (-383 *6)))) + (-5 *1 (-600 *5 *6)) (-5 *3 (-596 (-383 *6))))) ((*1 *2 *3) - (-12 (-5 *3 (-1085)) (-5 *2 (-291 (-522))) (-5 *1 (-859)))) - ((*1 *2 *1) (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-784)) (-4 *2 (-971)))) - ((*1 *2 *1) (-12 (-4 *2 (-971)) (-5 *1 (-1187 *2 *3)) (-4 *3 (-780))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-514) (-784) (-962 (-522)))) (-5 *1 (-167 *3 *2)) - (-4 *2 (-13 (-27) (-1106) (-405 (-154 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-514) (-784) (-962 (-522)))) - (-5 *1 (-167 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 (-154 *4)))))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-4 *5 (-1144 *4)) (-5 *2 (-589 (-596 (-383 *5)))) + (-5 *1 (-600 *4 *5)) (-5 *3 (-596 (-383 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-758 *4)) (-4 *4 (-786)) (-5 *2 (-589 (-614 *4))) + (-5 *1 (-614 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-523)) (-5 *2 (-589 *3)) (-5 *1 (-635 *3)) + (-4 *3 (-1144 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-325)) (-5 *2 (-394 *3)) + (-5 *1 (-637 *4 *5 *6 *3)) (-4 *3 (-880 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-325)) + (-4 *7 (-880 *6 *5 *4)) (-5 *2 (-394 (-1083 *7))) + (-5 *1 (-637 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-732)) + (-4 *5 + (-13 (-786) + (-10 -8 (-15 -3663 ((-1087) $)) + (-15 -2700 ((-3 $ "failed") (-1087)))))) + (-4 *6 (-284)) (-5 *2 (-394 *3)) (-5 *1 (-670 *4 *5 *6 *3)) + (-4 *3 (-880 (-883 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-732)) + (-4 *5 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))) (-4 *6 (-515)) + (-5 *2 (-394 *3)) (-5 *1 (-672 *4 *5 *6 *3)) + (-4 *3 (-880 (-383 (-883 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-13 (-284) (-136))) + (-5 *2 (-394 *3)) (-5 *1 (-673 *4 *5 *6 *3)) + (-4 *3 (-880 (-383 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-13 (-284) (-136))) + (-5 *2 (-394 *3)) (-5 *1 (-681 *4 *5 *6 *3)) + (-4 *3 (-880 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-786)) (-4 *5 (-732)) (-4 *6 (-13 (-284) (-136))) + (-4 *7 (-880 *6 *5 *4)) (-5 *2 (-394 (-1083 *7))) + (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-394 *3)) (-5 *1 (-935 *3)) + (-4 *3 (-1144 (-383 (-523)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-394 *3)) (-5 *1 (-967 *3)) + (-4 *3 (-1144 (-383 (-883 (-523))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1144 (-383 (-523)))) + (-4 *5 (-13 (-339) (-136) (-664 (-383 (-523)) *4))) + (-5 *2 (-394 *3)) (-5 *1 (-998 *4 *5 *3)) (-4 *3 (-1144 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1144 (-383 (-883 (-523))))) + (-4 *5 (-13 (-339) (-136) (-664 (-383 (-883 (-523))) *4))) + (-5 *2 (-394 *3)) (-5 *1 (-1000 *4 *5 *3)) (-4 *3 (-1144 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-427)) + (-4 *7 (-880 *6 *4 *5)) (-5 *2 (-394 (-1083 (-383 *7)))) + (-5 *1 (-1082 *4 *5 *6 *7)) (-5 *3 (-1083 (-383 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-394 *1)) (-4 *1 (-1126)))) + ((*1 *2 *3) + (-12 (-5 *2 (-394 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1144 (-523)))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-113 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-523)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-802 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-14 *2 (-523)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-523)) (-14 *3 *2) (-5 *1 (-803 *3 *4)) + (-4 *4 (-800 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-523)) (-5 *1 (-803 *2 *3)) (-4 *3 (-800 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-523)) (-4 *1 (-1130 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-1159 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1130 *2 *3)) (-4 *2 (-973)) (-4 *3 (-1159 *2))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1085)) - (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-1110 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) - (-5 *2 (-628 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-628 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) - ((*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) - (-4 *2 (-405 *3)))) - ((*1 *1 *1) (-4 *1 (-1049)))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1085)) (-4 *5 (-338)) (-5 *2 (-588 (-1115 *5))) - (-5 *1 (-1174 *5)) (-5 *4 (-1115 *5))))) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-202) (-202) (-202))) - (-5 *4 (-1 (-202) (-202) (-202) (-202))) - (-5 *2 (-1 (-872 (-202)) (-202) (-202))) (-5 *1 (-635))))) -(((*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-1014)) (-5 *2 (-708))))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-1044 *4 *2)) - (-4 *2 (-13 (-555 (-522) *4) (-10 -7 (-6 -4238) (-6 -4239)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-784)) (-4 *3 (-1120)) (-5 *1 (-1044 *3 *2)) - (-4 *2 (-13 (-555 (-522) *3) (-10 -7 (-6 -4238) (-6 -4239))))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1014) (-33))) - (-5 *2 (-108)) (-5 *1 (-1050 *4 *5)) (-4 *4 (-13 (-1014) (-33)))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-393 *2)) (-4 *2 (-514))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-855)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-856)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-856)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-561 *3)) - (-4 *3 (-13 (-405 *5) (-27) (-1106))) - (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) - (-5 *2 (-2 (|:| -2585 *3) (|:| |coeff| *3))) - (-5 *1 (-524 *5 *3 *6)) (-4 *6 (-1014))))) -(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-498))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-850)) (-5 *1 (-416 *2)) - (-4 *2 (-1142 (-522))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-850)) (-5 *4 (-708)) (-5 *1 (-416 *2)) - (-4 *2 (-1142 (-522))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-850)) (-5 *4 (-588 (-708))) (-5 *1 (-416 *2)) - (-4 *2 (-1142 (-522))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-850)) (-5 *4 (-588 (-708))) (-5 *5 (-708)) - (-5 *1 (-416 *2)) (-4 *2 (-1142 (-522))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-850)) (-5 *4 (-588 (-708))) (-5 *5 (-708)) - (-5 *6 (-108)) (-5 *1 (-416 *2)) (-4 *2 (-1142 (-522))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-850)) (-5 *4 (-393 *2)) (-4 *2 (-1142 *5)) - (-5 *1 (-418 *5 *2)) (-4 *5 (-971))))) -(((*1 *1 *2) - (-12 (-5 *2 (-388 *3 *4 *5 *6)) (-4 *6 (-962 *4)) (-4 *3 (-283)) - (-4 *4 (-919 *3)) (-4 *5 (-1142 *4)) (-4 *6 (-384 *4 *5)) - (-14 *7 (-1166 *6)) (-5 *1 (-389 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1166 *6)) (-4 *6 (-384 *4 *5)) (-4 *4 (-919 *3)) - (-4 *5 (-1142 *4)) (-4 *3 (-283)) (-5 *1 (-389 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-761)) (-5 *3 (-588 (-1085))) (-5 *1 (-762))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) + (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)) + (-4 *2 (-406 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1009 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-786) (-515))) + (-5 *1 (-145 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1009 *1)) (-4 *1 (-147)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-147)) (-5 *2 (-1087))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-284)) (-5 *1 (-639 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1081 *9)) (-5 *4 (-588 *7)) (-5 *5 (-588 *8)) - (-4 *7 (-784)) (-4 *8 (-971)) (-4 *9 (-878 *8 *6 *7)) (-4 *6 (-730)) - (-5 *2 (-1081 *8)) (-5 *1 (-296 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-4 *3 (-971)) (-5 *2 (-588 *1)) (-4 *1 (-1046 *3))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-777 *4)) (-5 *3 (-561 *4)) (-5 *5 (-108)) - (-4 *4 (-13 (-1106) (-29 *6))) - (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-201 *6 *4))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) - (-5 *1 (-1040 *3 *2)) (-4 *3 (-1142 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-514))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-256))))) -(((*1 *1 *1) (-4 *1 (-1054)))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1120)) (-5 *1 (-165 *3 *2)) - (-4 *2 (-615 *3))))) + (-12 (-5 *3 (-710)) (-4 *6 (-339)) (-5 *4 (-1117 *6)) + (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1176 *6)) + (-5 *5 (-1068 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-850)) (-4 *1 (-215 *3 *4)) (-4 *4 (-971)) - (-4 *4 (-1120)))) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) + (-14 *4 (-589 (-1087))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *1) (-4 *1 (-261))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) ((*1 *1 *2) - (-12 (-14 *3 (-588 (-1085))) (-4 *4 (-157)) - (-4 *5 (-215 (-3591 *3) (-708))) - (-14 *6 - (-1 (-108) (-2 (|:| -2882 *2) (|:| -3858 *5)) - (-2 (|:| -2882 *2) (|:| -3858 *5)))) - (-5 *1 (-435 *3 *4 *2 *5 *6 *7)) (-4 *2 (-784)) - (-4 *7 (-878 *4 *5 (-794 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1117))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) - (-5 *2 - (-2 (|:| -3526 *4) (|:| -3106 *4) (|:| |totalpts| (-522)) - (|:| |success| (-108)))) - (-5 *1 (-726)) (-5 *5 (-522))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-694))))) -(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856))))) -(((*1 *2 *3) - (-12 (-4 *4 (-971)) - (-4 *2 (-13 (-379) (-962 *4) (-338) (-1106) (-260))) - (-5 *1 (-417 *4 *3 *2)) (-4 *3 (-1142 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-895)))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4239)) (-4 *4 (-338)) (-4 *5 (-348 *4)) - (-4 *6 (-348 *4)) (-5 *2 (-588 *6)) (-5 *1 (-489 *4 *5 *6 *3)) - (-4 *3 (-626 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4239)) (-4 *4 (-514)) (-4 *5 (-348 *4)) - (-4 *6 (-348 *4)) (-4 *7 (-919 *4)) (-4 *8 (-348 *7)) - (-4 *9 (-348 *7)) (-5 *2 (-588 *6)) - (-5 *1 (-490 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-626 *4 *5 *6)) - (-4 *10 (-626 *7 *8 *9)))) - ((*1 *2 *1) - (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) - (-4 *5 (-348 *3)) (-4 *3 (-514)) (-5 *2 (-588 *5)))) + (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-5 *1 (-573 *3 *4 *5)) + (-14 *5 (-852)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-710)) (-4 *4 (-13 (-973) (-657 (-383 (-523))))) + (-4 *5 (-786)) (-5 *1 (-1182 *4 *5 *2)) (-4 *2 (-1187 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-1186 *3 *4)) + (-4 *4 (-657 (-383 (-523)))) (-4 *3 (-786)) (-4 *4 (-158))))) +(((*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1122))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-508)))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-629 *2)) (-4 *2 (-158)) (-5 *1 (-135 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-514)) (-4 *4 (-157)) (-4 *5 (-348 *4)) - (-4 *6 (-348 *4)) (-5 *2 (-588 *6)) (-5 *1 (-627 *4 *5 *6 *3)) - (-4 *3 (-626 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) - (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-514)) - (-5 *2 (-588 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) - (-5 *2 (-108))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *2 (-588 *1)) (-4 *1 (-985 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-588 *5))) (-4 *5 (-1157 *4)) - (-4 *4 (-37 (-382 (-522)))) - (-5 *2 (-1 (-1066 *4) (-588 (-1066 *4)))) (-5 *1 (-1159 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106))))) - ((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) - ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-792))))) -(((*1 *2 *3) - (-12 (-5 *3 (-382 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-514)) - (-4 *4 (-971)) (-4 *2 (-1157 *4)) (-5 *1 (-1160 *4 *5 *6 *2)) - (-4 *6 (-598 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1081 *7)) (-5 *3 (-522)) (-4 *7 (-878 *6 *4 *5)) - (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) - (-5 *1 (-296 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-588 (-834 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1014))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 *2)) (-5 *1 (-458 *2)) (-4 *2 (-1142 (-522)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-291 *4)) (-4 *4 (-13 (-765) (-784) (-971))) - (-5 *2 (-1068)) (-5 *1 (-763 *4)))) + (-12 (-4 *4 (-158)) (-4 *2 (-1144 *4)) (-5 *1 (-162 *4 *2 *3)) + (-4 *3 (-664 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-291 *5)) (-5 *4 (-108)) - (-4 *5 (-13 (-765) (-784) (-971))) (-5 *2 (-1068)) - (-5 *1 (-763 *5)))) + (-12 (-5 *3 (-629 (-383 (-883 *5)))) (-5 *4 (-1087)) + (-5 *2 (-883 *5)) (-5 *1 (-269 *5)) (-4 *5 (-427)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-383 (-883 *4)))) (-5 *2 (-883 *4)) + (-5 *1 (-269 *4)) (-4 *4 (-427)))) + ((*1 *2 *1) + (-12 (-4 *1 (-346 *3 *2)) (-4 *3 (-158)) (-4 *2 (-1144 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 (-155 (-383 (-523))))) + (-5 *2 (-883 (-155 (-383 (-523))))) (-5 *1 (-704 *4)) + (-4 *4 (-13 (-339) (-784))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-759)) (-5 *4 (-291 *5)) - (-4 *5 (-13 (-765) (-784) (-971))) (-5 *2 (-1171)) - (-5 *1 (-763 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-759)) (-5 *4 (-291 *6)) (-5 *5 (-108)) - (-4 *6 (-13 (-765) (-784) (-971))) (-5 *2 (-1171)) - (-5 *1 (-763 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-765)) (-5 *2 (-1068)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-765)) (-5 *3 (-108)) (-5 *2 (-1068)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-765)) (-5 *3 (-759)) (-5 *2 (-1171)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-765)) (-5 *3 (-759)) (-5 *4 (-108)) (-5 *2 (-1171))))) -(((*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) - ((*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-588 *3)) (-5 *1 (-889 *3)) (-4 *3 (-507))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4239)) (-4 *1 (-348 *2)) (-4 *2 (-1120)) - (-4 *2 (-784)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4239)) - (-4 *1 (-348 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-108))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-730)) (-4 *4 (-784)) (-4 *5 (-283)) - (-5 *1 (-845 *3 *4 *5 *2)) (-4 *2 (-878 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1081 *6)) (-4 *6 (-878 *5 *3 *4)) (-4 *3 (-730)) - (-4 *4 (-784)) (-4 *5 (-283)) (-5 *1 (-845 *3 *4 *5 *6)))) + (-12 (-5 *3 (-629 (-155 (-383 (-523))))) (-5 *4 (-1087)) + (-5 *2 (-883 (-155 (-383 (-523))))) (-5 *1 (-704 *5)) + (-4 *5 (-13 (-339) (-784))))) ((*1 *2 *3) - (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *6 *4 *5)) - (-5 *1 (-845 *4 *5 *6 *2)) (-4 *4 (-730)) (-4 *5 (-784)) - (-4 *6 (-283))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-588 *2)) (-4 *2 (-985 *4 *5 *6)) (-4 *4 (-514)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-904 *4 *5 *6 *2))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-677 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-588 (-1081 *5))) (-5 *3 (-1081 *5)) - (-4 *5 (-151 *4)) (-4 *4 (-507)) (-5 *1 (-137 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-588 *3)) (-4 *3 (-1142 *5)) - (-4 *5 (-1142 *4)) (-4 *4 (-324)) (-5 *1 (-333 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-588 (-1081 (-522)))) (-5 *3 (-1081 (-522))) - (-5 *1 (-530)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-588 (-1081 *1))) (-5 *3 (-1081 *1)) - (-4 *1 (-838))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1014)) (-4 *2 (-829 *4)) (-5 *1 (-630 *4 *2 *5 *3)) - (-4 *5 (-348 *2)) (-4 *3 (-13 (-348 *4) (-10 -7 (-6 -4238))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-588 *6) "failed") (-522) *6 *6)) (-4 *6 (-338)) - (-4 *7 (-1142 *6)) - (-5 *2 (-2 (|:| |answer| (-539 (-382 *7))) (|:| |a0| *6))) - (-5 *1 (-532 *6 *7)) (-5 *3 (-382 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-881 *6))) (-5 *4 (-588 (-1085))) - (-4 *6 (-13 (-514) (-962 *5))) (-4 *5 (-514)) - (-5 *2 (-588 (-588 (-270 (-382 (-881 *6)))))) (-5 *1 (-963 *5 *6))))) + (-12 (-5 *3 (-629 (-383 (-523)))) (-5 *2 (-883 (-383 (-523)))) + (-5 *1 (-718 *4)) (-4 *4 (-13 (-339) (-784))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-383 (-523)))) (-5 *4 (-1087)) + (-5 *2 (-883 (-383 (-523)))) (-5 *1 (-718 *5)) + (-4 *5 (-13 (-339) (-784)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *1) (-4 *1 (-464))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-144)))) + ((*1 *2 *1) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) + ((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) +(((*1 *2 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-973)))) + ((*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-973))))) +(((*1 *2 *3) + (-12 (-5 *3 (-292 (-355))) (-5 *2 (-292 (-203))) (-5 *1 (-282))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-454))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-589 (-589 (-203)))) (-5 *4 (-203)) + (-5 *2 (-589 (-874 *4))) (-5 *1 (-1119)) (-5 *3 (-874 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-710)) (-4 *5 (-515)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-899 *5 *3)) (-4 *3 (-1144 *5))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-339) (-784))) (-5 *1 (-165 *2 *3)) + (-4 *3 (-1144 (-155 *2)))))) +(((*1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1122)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1016)) + (-4 *2 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))) + (-5 *1 (-995 *3 *4 *2)) + (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1016)) (-5 *1 (-1077 *3 *2)) (-4 *3 (-1016))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-203) (-203) (-203) (-203))) (-5 *1 (-240)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-203) (-203) (-203))) (-5 *1 (-240)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-203) (-203))) (-5 *1 (-240))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-850)) (-5 *2 (-1081 *3)) (-5 *1 (-1095 *3)) - (-4 *3 (-338))))) + (-12 (-5 *3 (-1083 *5)) (-4 *5 (-339)) (-5 *2 (-589 *6)) + (-5 *1 (-496 *5 *6 *4)) (-4 *6 (-339)) (-4 *4 (-13 (-339) (-784)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) - (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) - (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) - (|:| |abserr| (-202)) (|:| |relerr| (-202)))) - (-5 *2 (-354)) (-5 *1 (-184))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) - (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) (-5 *2 (-960)) - (-5 *1 (-686))))) + (-12 (-4 *4 (-325)) (-5 *2 (-394 (-1083 (-1083 *4)))) + (-5 *1 (-1121 *4)) (-5 *3 (-1083 (-1083 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-283)) - (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-421 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-588 *7)) (-5 *3 (-1068)) (-4 *7 (-878 *4 *5 *6)) - (-4 *4 (-283)) (-4 *5 (-730)) (-4 *6 (-784)) - (-5 *1 (-421 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-588 *7)) (-5 *3 (-1068)) (-4 *7 (-878 *4 *5 *6)) - (-4 *4 (-283)) (-4 *5 (-730)) (-4 *6 (-784)) - (-5 *1 (-421 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-907 *2)) (-4 *2 (-971)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1117)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-971))))) -(((*1 *2) - (-12 (-4 *3 (-971)) (-5 *2 (-886 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) - (-4 *4 (-1142 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4)) - (-4 *4 (-324))))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *1) (-4 *1 (-464))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-730)) - (-4 *3 (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $))))) (-4 *5 (-514)) - (-5 *1 (-670 *4 *3 *5 *2)) (-4 *2 (-878 (-382 (-881 *5)) *4 *3)))) + (-12 (-4 *4 (-732)) + (-4 *3 (-13 (-786) (-10 -8 (-15 -3663 ((-1087) $))))) (-4 *5 (-515)) + (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-880 (-383 (-883 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-971)) (-4 *5 (-730)) + (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 - (-13 (-784) - (-10 -8 (-15 -3873 ((-1085) $)) - (-15 -1660 ((-3 $ "failed") (-1085)))))) - (-5 *1 (-911 *4 *5 *3 *2)) (-4 *2 (-878 (-881 *4) *5 *3)))) + (-13 (-786) + (-10 -8 (-15 -3663 ((-1087) $)) + (-15 -2700 ((-3 $ "failed") (-1087)))))) + (-5 *1 (-913 *4 *5 *3 *2)) (-4 *2 (-880 (-883 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-588 *6)) + (-12 (-5 *3 (-589 *6)) (-4 *6 - (-13 (-784) - (-10 -8 (-15 -3873 ((-1085) $)) - (-15 -1660 ((-3 $ "failed") (-1085)))))) - (-4 *4 (-971)) (-4 *5 (-730)) (-5 *1 (-911 *4 *5 *6 *2)) - (-4 *2 (-878 (-881 *4) *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1166 *4)) (-5 *3 (-628 *4)) (-4 *4 (-338)) - (-5 *1 (-609 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-338)) - (-4 *5 (-13 (-348 *4) (-10 -7 (-6 -4239)))) - (-4 *2 (-13 (-348 *4) (-10 -7 (-6 -4239)))) - (-5 *1 (-610 *4 *5 *2 *3)) (-4 *3 (-626 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-588 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-338)) - (-5 *1 (-751 *2 *3)) (-4 *3 (-598 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) - (-5 *1 (-1040 *3 *2)) (-4 *3 (-1142 *2))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1068)) (-5 *4 (-154 (-202))) (-5 *5 (-522)) - (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1068)) (-5 *2 (-588 (-1090))) (-5 *1 (-809))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) - (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) (-5 *2 (-960)) - (-5 *1 (-686))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *4 (-803)) - (-5 *5 (-850)) (-5 *6 (-588 (-239))) (-5 *2 (-1167)) - (-5 *1 (-1170)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *4 (-588 (-239))) - (-5 *2 (-1167)) (-5 *1 (-1170))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-708)) (-5 *3 (-108)) (-5 *1 (-106)))) - ((*1 *2 *2) (-12 (-5 *2 (-850)) (|has| *1 (-6 -4229)) (-4 *1 (-379)))) - ((*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-850))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-588 (-522))) (-5 *1 (-1024)) (-5 *3 (-522))))) -(((*1 *1 *1) - (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-971)) (-14 *3 (-588 (-1085))))) - ((*1 *1 *1) - (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-971) (-784))) - (-14 *3 (-588 (-1085)))))) -(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441)))) - ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-588 (-561 *2))) (-5 *4 (-588 (-1085))) - (-4 *2 (-13 (-405 (-154 *5)) (-928) (-1106))) - (-4 *5 (-13 (-514) (-784))) (-5 *1 (-551 *5 *6 *2)) - (-4 *6 (-13 (-405 *5) (-928) (-1106)))))) -(((*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) - ((*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1085)) - (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4))))) - ((*1 *1 *1) (-5 *1 (-354))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) - (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *4)))) - (-5 *1 (-713 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-903 *3 *4 *2 *5)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *2 (-784)) (-4 *5 (-985 *3 *4 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-338)) (-5 *1 (-261 *3 *2)) (-4 *2 (-1157 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1068)) (-5 *4 (-1032)) (-5 *2 (-108)) (-5 *1 (-758))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-350 *4 *2)) - (-4 *2 (-13 (-348 *4) (-10 -7 (-6 -4239))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 *4)) (-4 *4 (-784)) (-5 *2 (-588 (-606 *4 *5))) - (-5 *1 (-572 *4 *5 *6)) (-4 *5 (-13 (-157) (-655 (-382 (-522))))) - (-14 *6 (-850))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4239)) (-4 *1 (-115 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-561 *3)) (-5 *5 (-588 *3)) (-5 *6 (-1081 *3)) - (-4 *3 (-13 (-405 *7) (-27) (-1106))) - (-4 *7 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-518 *7 *3 *8)) (-4 *8 (-1014)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-561 *3)) (-5 *5 (-588 *3)) - (-5 *6 (-382 (-1081 *3))) (-4 *3 (-13 (-405 *7) (-27) (-1106))) - (-4 *7 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-518 *7 *3 *8)) (-4 *8 (-1014))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-850)) (-5 *2 (-708)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-4 *5 (-405 *4)) - (-5 *2 (-393 *3)) (-5 *1 (-410 *4 *5 *3)) (-4 *3 (-1142 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-784)) (-4 *2 (-514)))) - ((*1 *1 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-690))))) + (-13 (-786) + (-10 -8 (-15 -3663 ((-1087) $)) + (-15 -2700 ((-3 $ "failed") (-1087)))))) + (-4 *4 (-973)) (-4 *5 (-732)) (-5 *1 (-913 *4 *5 *6 *2)) + (-4 *2 (-880 (-883 *4) *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) + ((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) + ((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-784)) (-5 *2 (-588 *1)) - (-4 *1 (-405 *3)))) + (-12 (-5 *2 (-589 (-51))) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410))))) +(((*1 *2 *1) (-12 (-5 *1 (-271 *2)) (-4 *2 (-1122)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3)) - (-4 *3 (-1014)))) + (-12 (-4 *3 (-1016)) + (-4 *2 (-13 (-406 *4) (-817 *3) (-564 (-823 *3)))) + (-5 *1 (-995 *3 *4 *2)) + (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *2 (-588 *1)) (-4 *1 (-878 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) - (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-588 *3)) - (-5 *1 (-879 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-338) - (-10 -8 (-15 -2217 ($ *7)) (-15 -2947 (*7 $)) - (-15 -2959 (*7 $)))))))) -(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-932))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-522)) (-5 *5 (-628 (-202))) - (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN)))) - (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT)))) - (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-687))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3909 (-522)) (|:| -4045 (-588 *3)))) - (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522)))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) - (-5 *1 (-1040 *3 *2)) (-4 *3 (-1142 *2))))) -(((*1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-850)) - (-5 *2 (-1166 (-588 (-2 (|:| -3526 *4) (|:| -2882 (-1032)))))) - (-5 *1 (-321 *4)) (-4 *4 (-324))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-108)) (-5 *1 (-110))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-338) (-135) (-962 (-522)))) (-4 *5 (-1142 *4)) - (-5 *2 (-2 (|:| |ans| (-382 *5)) (|:| |nosol| (-108)))) - (-5 *1 (-941 *4 *5)) (-5 *3 (-382 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1166 *3)) (-4 *3 (-971)) (-5 *1 (-650 *3 *4)) - (-4 *4 (-1142 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-971) (-784))) - (-14 *3 (-588 (-1085)))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-270 *2)) (-4 *2 (-664)) (-4 *2 (-1120))))) + (-12 (-4 *2 (-1016)) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1016))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-588 (-872 *4))) (-4 *1 (-1046 *4)) (-4 *4 (-971)) - (-5 *2 (-708))))) -(((*1 *2) - (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) - (-5 *2 (-108)) (-5 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-317 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-291 (-522))) (-5 *4 (-1 (-202) (-202))) - (-5 *5 (-1009 (-202))) (-5 *6 (-588 (-239))) (-5 *2 (-1045 (-202))) - (-5 *1 (-635))))) -(((*1 *2) - (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-305)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-305))))) -(((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1068)) (-5 *1 (-171)))) - ((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1068)) (-5 *1 (-276)))) - ((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1068)) (-5 *1 (-281))))) -(((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-708)) (-5 *1 (-150 *3 *4)) - (-4 *3 (-151 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1120)) (-5 *2 (-708)) - (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-784)) (-5 *2 (-708)) (-5 *1 (-404 *3 *4)) - (-4 *3 (-405 *4)))) - ((*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-506 *3)) (-4 *3 (-507)))) - ((*1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-708)))) - ((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-708)) (-5 *1 (-733 *3 *4)) - (-4 *3 (-734 *4)))) - ((*1 *2) - (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-918 *3 *4)) - (-4 *3 (-919 *4)))) - ((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-708)) (-5 *1 (-922 *3 *4)) - (-4 *3 (-923 *4)))) - ((*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) - ((*1 *2) (-12 (-4 *1 (-971)) (-5 *2 (-708)))) - ((*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-979 *3)) (-4 *3 (-980))))) -(((*1 *2 *3) - (-12 (-5 *3 (-856)) - (-5 *2 - (-2 (|:| |brans| (-588 (-588 (-872 (-202))))) - (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202))))) - (-5 *1 (-141)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-856)) (-5 *4 (-382 (-522))) - (-5 *2 - (-2 (|:| |brans| (-588 (-588 (-872 (-202))))) - (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202))))) - (-5 *1 (-141)))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-588 (-588 (-872 (-202))))) - (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202))))) - (-5 *1 (-141)) (-5 *3 (-588 (-872 (-202)))))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-588 (-588 (-872 (-202))))) - (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202))))) - (-5 *1 (-141)) (-5 *3 (-588 (-588 (-872 (-202))))))) - ((*1 *1 *2) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *1 (-239)))) - ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-382 (-881 *5)) (-1075 (-1085) (-881 *5)))) - (-4 *5 (-426)) (-5 *2 (-588 (-628 (-382 (-881 *5))))) - (-5 *1 (-268 *5)) (-5 *4 (-628 (-382 (-881 *5))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-856)) - (-5 *2 - (-2 (|:| |brans| (-588 (-588 (-872 (-202))))) - (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202))))) - (-5 *1 (-141)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-856)) (-5 *4 (-382 (-522))) - (-5 *2 - (-2 (|:| |brans| (-588 (-588 (-872 (-202))))) - (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202))))) - (-5 *1 (-141))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-628 (-382 (-881 (-522))))) - (-5 *2 (-588 (-628 (-291 (-522))))) (-5 *1 (-956)) - (-5 *3 (-291 (-522)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1166 *5)) (-4 *5 (-729)) (-5 *2 (-108)) - (-5 *1 (-779 *4 *5)) (-14 *4 (-708))))) -(((*1 *1 *1 *1) (-5 *1 (-792)))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-98 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1014))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) - (-5 *2 (-628 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-628 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1016 *3)) (-5 *1 (-834 *3)) (-4 *3 (-343)) - (-4 *3 (-1014))))) -(((*1 *2 *3) - (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-766)) (-5 *3 (-1068))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-708)) (-4 *1 (-208 *4)) - (-4 *4 (-971)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-208 *3)) (-4 *3 (-971)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-210)) (-5 *2 (-708)))) - ((*1 *1 *1) (-4 *1 (-210))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-242 *3)) (-4 *3 (-784)))) - ((*1 *1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-784)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) - (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-708)) (-4 *3 (-13 (-338) (-135))) (-5 *1 (-374 *3 *4)) - (-4 *4 (-1142 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-338) (-135))) (-5 *1 (-374 *2 *3)) - (-4 *3 (-1142 *2)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-448 *3 *4 *5)) - (-4 *3 (-971)) (-14 *5 *3))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-338)) (-4 *2 (-829 *3)) (-5 *1 (-539 *2)) - (-5 *3 (-1085)))) + (-12 (-5 *3 (-562 *1)) (-4 *1 (-406 *4)) (-4 *4 (-786)) + (-4 *4 (-515)) (-5 *2 (-383 (-1083 *1))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-562 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1108))) + (-4 *6 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 (-1083 (-383 (-1083 *3)))) (-5 *1 (-519 *6 *3 *7)) + (-5 *5 (-1083 *3)) (-4 *7 (-1016)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1164 *5)) (-14 *5 (-1087)) (-4 *6 (-973)) + (-5 *2 (-1141 *5 (-883 *6))) (-5 *1 (-878 *5 *6)) (-5 *3 (-883 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *2 (-1083 *3)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-539 *2)) (-4 *2 (-338)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-792)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 *4)) (-5 *3 (-588 (-708))) (-4 *1 (-829 *4)) - (-4 *4 (-1014)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-708)) (-4 *1 (-829 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-588 *3)) (-4 *1 (-829 *3)) (-4 *3 (-1014)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1076 *3 *4 *5)) - (-4 *3 (-971)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1082 *3 *4 *5)) - (-4 *3 (-971)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1083 *3 *4 *5)) - (-4 *3 (-971)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1130 *3 *4 *5)) - (-4 *3 (-971)) (-14 *5 *3))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1142 *3)) (-4 *3 (-971)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1151 *3 *4 *5)) - (-4 *3 (-971)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1158 *3 *4 *5)) - (-4 *3 (-971)) (-14 *5 *3)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1068)) (-5 *2 (-588 (-1090))) (-5 *1 (-1047))))) -(((*1 *2 *1) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-1089))))) + (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) (-5 *2 (-1083 *1)) + (-4 *1 (-880 *4 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-973)) + (-4 *7 (-880 *6 *5 *4)) (-5 *2 (-383 (-1083 *3))) + (-5 *1 (-881 *5 *4 *6 *7 *3)) + (-4 *3 + (-13 (-339) + (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1083 *3)) + (-4 *3 + (-13 (-339) + (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) (-15 -2797 (*7 $))))) + (-4 *7 (-880 *6 *5 *4)) (-4 *5 (-732)) (-4 *4 (-786)) (-4 *6 (-973)) + (-5 *1 (-881 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1087)) (-4 *5 (-515)) + (-5 *2 (-383 (-1083 (-383 (-883 *5))))) (-5 *1 (-969 *5)) + (-5 *3 (-383 (-883 *5)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1087)) (-5 *4 (-883 (-523))) (-5 *2 (-306)) + (-5 *1 (-308)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1087)) (-5 *4 (-1009 (-883 (-523)))) (-5 *2 (-306)) + (-5 *1 (-308)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-617 *3)) (-4 *3 (-973)) (-4 *3 (-1016))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-1087))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *1 *1) (-4 *1 (-464))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) + (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) + (-5 *1 (-727))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-155 (-203)))) + (-5 *2 (-962)) (-5 *1 (-694))))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) +(((*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-1083 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1122)) (-4 *3 (-973)) + (-5 *2 (-629 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-708)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-730)) (-4 *2 (-878 *4 *5 *6)) (-5 *1 (-423 *4 *5 *6 *2)) - (-4 *4 (-426)) (-4 *6 (-784))))) -(((*1 *2 *1) - (-12 (-14 *3 (-588 (-1085))) (-4 *4 (-157)) - (-4 *5 (-215 (-3591 *3) (-708))) - (-14 *6 - (-1 (-108) (-2 (|:| -2882 *2) (|:| -3858 *5)) - (-2 (|:| -2882 *2) (|:| -3858 *5)))) - (-4 *2 (-784)) (-5 *1 (-435 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-878 *4 *5 (-794 *3)))))) -(((*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1166 *1)) (-4 *1 (-342 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-154 (-522))) (-5 *2 (-108)) (-5 *1 (-420)))) + (-12 (-4 *4 (-840)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-880 *4 *5 *6)) (-5 *2 (-394 (-1083 *7))) + (-5 *1 (-837 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4) - (-224 *4 (-382 (-522))))) - (-14 *4 (-588 (-1085))) (-14 *5 (-708)) (-5 *2 (-108)) - (-5 *1 (-475 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-889 *3)) (-4 *3 (-507)))) - ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-1081 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-514)) (-4 *3 (-157)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2905 (-588 *1)))) - (-4 *1 (-342 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-427 *3 *4 *5 *6)) - (|:| -2905 (-588 (-427 *3 *4 *5 *6))))) - (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-850)) - (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3)))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-690))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-305))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-210)) (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-242 *4)) - (-4 *6 (-730)) (-5 *2 (-1 *1 (-708))) (-4 *1 (-229 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-971)) (-4 *3 (-784)) (-4 *5 (-242 *3)) (-4 *6 (-730)) - (-5 *2 (-1 *1 (-708))) (-4 *1 (-229 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-242 *2)) (-4 *2 (-784))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-708)) (-5 *2 (-108))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895))))) + (-12 (-4 *4 (-840)) (-4 *5 (-1144 *4)) (-5 *2 (-394 (-1083 *5))) + (-5 *1 (-838 *4 *5)) (-5 *3 (-1083 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1070)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-240))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4244)) (-4 *1 (-140 *2)) (-4 *2 (-1122)) + (-4 *2 (-1016))))) (((*1 *2 *1) - (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-588 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-1166 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1014)) (-4 *4 (-1014)) - (-4 *6 (-1014)) (-5 *2 (-1 *6 *5)) (-5 *1 (-623 *5 *4 *6))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-339 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-338) (-782))) (-5 *1 (-164 *2 *3)) - (-4 *3 (-1142 (-154 *2)))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-338)) (-5 *1 (-704 *2 *3)) (-4 *2 (-647 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-588 *11)) (-5 *5 (-588 (-1081 *9))) - (-5 *6 (-588 *9)) (-5 *7 (-588 *12)) (-5 *8 (-588 (-708))) - (-4 *11 (-784)) (-4 *9 (-283)) (-4 *12 (-878 *9 *10 *11)) - (-4 *10 (-730)) (-5 *2 (-588 (-1081 *12))) - (-5 *1 (-646 *10 *11 *9 *12)) (-5 *3 (-1081 *12))))) + (-12 (-5 *2 (-874 *4)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-562 *1))) (-4 *1 (-279))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-589 (-954 *5 *6 *7 *3))) (-5 *1 (-954 *5 *6 *7 *3)) + (-4 *3 (-987 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-589 *6)) (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-992 *3 *4 *5 *2)) (-4 *3 (-427)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-5 *2 (-589 (-1058 *5 *6 *7 *3))) (-5 *1 (-1058 *5 *6 *7 *3)) + (-4 *3 (-987 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-971)) (-14 *3 (-1085)) - (-14 *4 *2)))) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *1 *1) (-4 *1 (-464))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-523)) + (-5 *6 + (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1739 (-355)))) + (-5 *7 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) + (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) + (-5 *1 (-727)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-523)) + (-5 *6 + (-2 (|:| |try| (-355)) (|:| |did| (-355)) (|:| -1739 (-355)))) + (-5 *7 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) + (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) + (-5 *1 (-727))))) +(((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-394 *3)) (-4 *3 (-515)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-2 (|:| -1820 *4) (|:| -2299 (-523))))) + (-4 *4 (-1144 (-523))) (-5 *2 (-710)) (-5 *1 (-417 *4))))) +(((*1 *2 *3 *3 *1) + (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-1020)) (-5 *1 (-268))))) (((*1 *2 *3) - (-12 (-4 *4 (-784)) (-5 *2 (-588 (-588 *4))) (-5 *1 (-1092 *4)) - (-5 *3 (-588 *4))))) + (-12 (-4 *4 (-1122)) (-5 *2 (-710)) (-5 *1 (-166 *4 *3)) + (-4 *3 (-616 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-523)) (-5 *1 (-292 *3)) (-4 *3 (-515)) (-4 *3 (-786))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1016))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-628 (-154 (-382 (-522))))) (-5 *2 (-588 (-154 *4))) - (-5 *1 (-702 *4)) (-4 *4 (-13 (-338) (-782)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-588 *3)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-392 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) - (-5 *2 (-108))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1157 *4)) - (-4 *4 (-37 (-382 (-522)))) (-5 *2 (-1 (-1066 *4) (-1066 *4))) - (-5 *1 (-1159 *4 *5))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) + (-4 *7 (-1144 (-383 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -2124 *3))) + (-5 *1 (-521 *5 *6 *7 *3)) (-4 *3 (-318 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1144 *5)) (-4 *5 (-339)) (-5 *2 - (-2 (|:| -3526 *4) (|:| -3106 *4) (|:| |totalpts| (-522)) - (|:| |success| (-108)))) - (-5 *1 (-726)) (-5 *5 (-522))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-833 *4)) - (-4 *4 (-1014)))) - ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-833 *3)) (-4 *3 (-1014))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-850)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-708))))) -(((*1 *2 *1) - (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1)) - (-4 *1 (-985 *3 *4 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-350 *4 *2)) - (-4 *2 (-13 (-348 *4) (-10 -7 (-6 -4239))))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-1085))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-354)) (-5 *1 (-983))))) -(((*1 *2 *3) - (-12 (-5 *2 (-154 *4)) (-5 *1 (-164 *4 *3)) - (-4 *4 (-13 (-338) (-782))) (-4 *3 (-1142 *2))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-588 (-108))) (-5 *7 (-628 (-202))) - (-5 *8 (-628 (-522))) (-5 *3 (-522)) (-5 *4 (-202)) (-5 *5 (-108)) - (-5 *2 (-960)) (-5 *1 (-692))))) + (-2 (|:| |answer| (-383 *6)) (|:| -2124 (-383 *6)) + (|:| |specpart| (-383 *6)) (|:| |polypart| *6))) + (-5 *1 (-522 *5 *6)) (-5 *3 (-383 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-284)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3441 *1))) + (-4 *1 (-284))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-522))) (-5 *4 (-834 (-522))) - (-5 *2 (-628 (-522))) (-5 *1 (-543)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-522))) (-5 *2 (-588 (-628 (-522)))) - (-5 *1 (-543)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-522))) (-5 *4 (-588 (-834 (-522)))) - (-5 *2 (-588 (-628 (-522)))) (-5 *1 (-543))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 *4)) (-4 *4 (-338)) (-5 *2 (-628 *4)) - (-5 *1 (-751 *4 *5)) (-4 *5 (-598 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 *5)) (-5 *4 (-708)) (-4 *5 (-338)) - (-5 *2 (-628 *5)) (-5 *1 (-751 *5 *6)) (-4 *6 (-598 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-803)) (-5 *3 (-588 (-239))) (-5 *1 (-237))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088)))) - ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1089))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1068)) (-4 *1 (-364))))) -(((*1 *2 *2 *3) - (-12 + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) (-5 *2 - (-2 (|:| |partsol| (-1166 (-382 (-881 *4)))) - (|:| -2905 (-588 (-1166 (-382 (-881 *4))))))) - (-5 *3 (-588 *7)) (-4 *4 (-13 (-283) (-135))) - (-4 *7 (-878 *4 *6 *5)) (-4 *5 (-13 (-784) (-563 (-1085)))) - (-4 *6 (-730)) (-5 *1 (-853 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-588 *1)) (|has| *1 (-6 -4239)) (-4 *1 (-936 *3)) - (-4 *3 (-1120))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-522)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1120)) - (-4 *4 (-348 *2)) (-4 *5 (-348 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-522)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-348 *2)) - (-4 *5 (-348 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-588 (-522))) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) - (-14 *4 (-522)) (-14 *5 (-708)))) - ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-522)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-708)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-522)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-708)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-522)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-708)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-522)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-708)))) + (-2 (|:| |solns| (-589 *5)) + (|:| |maps| (-589 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1042 *3 *5)) (-4 *3 (-1144 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-523)))) ((*1 *2 *1) - (-12 (-4 *2 (-157)) (-5 *1 (-128 *3 *4 *2)) (-14 *3 (-522)) - (-14 *4 (-708)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1085)) (-5 *2 (-222 (-1068))) (-5 *1 (-192 *4)) - (-4 *4 - (-13 (-784) - (-10 -8 (-15 -2683 ((-1068) $ *3)) (-15 -1757 ((-1171) $)) - (-15 -2113 ((-1171) $))))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-916)) (-5 *1 (-192 *3)) - (-4 *3 - (-13 (-784) - (-10 -8 (-15 -2683 ((-1068) $ (-1085))) (-15 -1757 ((-1171) $)) - (-15 -2113 ((-1171) $))))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-708)) (-5 *1 (-222 *4)) (-4 *4 (-784)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-222 *3)) (-4 *3 (-784)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-222 *3)) (-4 *3 (-784)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-262 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1120)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-264 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1120)))) - ((*1 *2 *1 *2) - (-12 (-4 *3 (-157)) (-5 *1 (-265 *3 *2 *4 *5 *6 *7)) - (-4 *2 (-1142 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-588 *1)) (-4 *1 (-278)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-110)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-110)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-110)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-110)))) - ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-317 *2 *3 *4)) (-4 *2 (-1124)) (-4 *3 (-1142 *2)) - (-4 *4 (-1142 (-382 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-392 *2)) (-4 *2 (-157)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1068)) (-5 *1 (-472)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-51)) (-5 *1 (-577)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1133 (-522))) (-4 *1 (-593 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-708)) (-5 *1 (-616 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-588 (-522))) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) - (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-588 (-821 *4))) (-5 *1 (-821 *4)) - (-4 *4 (-1014)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1014)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-708)) (-5 *2 (-834 *4)) (-5 *1 (-833 *4)) - (-4 *4 (-1014)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-217 *4 *2)) (-14 *4 (-850)) (-4 *2 (-338)) - (-5 *1 (-920 *4 *2)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-936 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1) (-12 (-5 *1 (-951 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-522)) (-4 *1 (-974 *4 *5 *2 *6 *7)) (-4 *2 (-971)) - (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-522)) (-4 *1 (-974 *4 *5 *2 *6 *7)) - (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2)) (-4 *2 (-971)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-850)) (-4 *4 (-1014)) - (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4)))) - (-5 *1 (-993 *4 *5 *2)) - (-4 *2 (-13 (-405 *5) (-815 *4) (-563 (-821 *4)))))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-850)) (-4 *4 (-1014)) - (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4)))) - (-5 *1 (-994 *4 *5 *2)) - (-4 *2 (-13 (-405 *5) (-815 *4) (-563 (-821 *4)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-588 (-522))) (-4 *1 (-1017 *3 *4 *5 *6 *7)) - (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) - (-4 *7 (-1014)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-522)) (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) - (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)))) - ((*1 *1 *1 *1) (-4 *1 (-1054))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-1085)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-382 *1)) (-4 *1 (-1142 *2)) (-4 *2 (-971)) - (-4 *2 (-338)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-382 *1)) (-4 *1 (-1142 *3)) (-4 *3 (-971)) - (-4 *3 (-514)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1144 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1154 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1154 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-522)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-708)) (-4 *5 (-157)))) - ((*1 *1 *1) - (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708)) - (-4 *4 (-157)))) - ((*1 *1 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) - (-4 *4 (-348 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-971)) (-4 *1 (-626 *3 *2 *4)) (-4 *2 (-348 *3)) - (-4 *4 (-348 *3)))) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-5 *2 (-523))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-1052 *2 *3)) (-14 *2 (-708)) (-4 *3 (-971))))) -(((*1 *1) (-5 *1 (-412)))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-770 *3)) (-4 *3 (-1014)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-777 *3)) (-4 *3 (-1014))))) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *1 *1) (-4 *1 (-464))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-589 *8)) (-5 *3 (-1 (-108) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-987 *5 *6 *7)) (-4 *5 (-515)) + (-4 *6 (-732)) (-4 *7 (-786)) (-5 *1 (-906 *5 *6 *7 *8))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-730)) - (-4 *3 (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $))))) (-4 *5 (-514)) - (-5 *1 (-670 *4 *3 *5 *2)) (-4 *2 (-878 (-382 (-881 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-971)) (-4 *5 (-730)) - (-4 *3 - (-13 (-784) - (-10 -8 (-15 -3873 ((-1085) $)) - (-15 -1660 ((-3 $ "failed") (-1085)))))) - (-5 *1 (-911 *4 *5 *3 *2)) (-4 *2 (-878 (-881 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-588 *6)) - (-4 *6 - (-13 (-784) - (-10 -8 (-15 -3873 ((-1085) $)) - (-15 -1660 ((-3 $ "failed") (-1085)))))) - (-4 *4 (-971)) (-4 *5 (-730)) (-5 *1 (-911 *4 *5 *6 *2)) - (-4 *2 (-878 (-881 *4) *5 *6))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) - (-5 *2 (-960)) (-5 *1 (-690))))) -(((*1 *2 *3) (-12 (-5 *3 (-291 (-202))) (-5 *2 (-202)) (-5 *1 (-281))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110))))) -(((*1 *2 *1) (-12 (-4 *3 (-1120)) (-5 *2 (-588 *1)) (-4 *1 (-936 *3))))) -(((*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))) - ((*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-872 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-588 (-872 *3))) (-4 *3 (-971)) (-4 *1 (-1046 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-588 (-588 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) + (|partial| -12 (-5 *2 (-852)) (-5 *1 (-1017 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1070)) (-5 *4 (-155 (-203))) (-5 *5 (-523)) + (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1016))))) +(((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1116 *2 *3 *4 *5)) (-4 *2 (-515)) + (-4 *3 (-732)) (-4 *4 (-786)) (-4 *5 (-987 *2 *3 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-588 (-872 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-522)) (-5 *6 (-1 (-1171) (-1166 *5) (-1166 *5) (-354))) - (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171)) - (-5 *1 (-725))))) -(((*1 *1) (-4 *1 (-324)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-588 *5)) (-5 *4 (-850)) (-4 *5 (-784)) - (-5 *2 (-588 (-613 *5))) (-5 *1 (-613 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1166 (-1085))) (-5 *3 (-1166 (-427 *4 *5 *6 *7))) - (-5 *1 (-427 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-850)) - (-14 *6 (-588 (-1085))) (-14 *7 (-1166 (-628 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-427 *4 *5 *6 *7))) - (-5 *1 (-427 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-850)) - (-14 *6 (-588 *2)) (-14 *7 (-1166 (-628 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1166 (-427 *3 *4 *5 *6))) (-5 *1 (-427 *3 *4 *5 *6)) - (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) - (-14 *6 (-1166 (-628 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1166 (-1085))) (-5 *1 (-427 *3 *4 *5 *6)) - (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) - (-14 *6 (-1166 (-628 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1085)) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-157)) - (-14 *4 (-850)) (-14 *5 (-588 *2)) (-14 *6 (-1166 (-628 *3))))) - ((*1 *1) - (-12 (-5 *1 (-427 *2 *3 *4 *5)) (-4 *2 (-157)) (-14 *3 (-850)) - (-14 *4 (-588 (-1085))) (-14 *5 (-1166 (-628 *2)))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-628 (-522))) (-5 *5 (-108)) (-5 *7 (-628 (-202))) - (-5 *3 (-522)) (-5 *6 (-202)) (-5 *2 (-960)) (-5 *1 (-692))))) + (-12 (-5 *2 (-710)) (-4 *1 (-1156 *3)) (-4 *3 (-1122)))) + ((*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) (((*1 *2 *3) - (-12 (-5 *3 (-588 (-2 (|:| |deg| (-708)) (|:| -2592 *5)))) - (-4 *5 (-1142 *4)) (-4 *4 (-324)) (-5 *2 (-588 *5)) - (-5 *1 (-194 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-2 (|:| -2006 *5) (|:| -2487 (-522))))) - (-5 *4 (-522)) (-4 *5 (-1142 *4)) (-5 *2 (-588 *5)) - (-5 *1 (-634 *5))))) + (-12 (-5 *3 (-1070)) (-5 *2 (-589 (-1092))) (-5 *1 (-811))))) (((*1 *2 *1) - (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) - (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-971)) - (-4 *4 (-780))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784)) (-4 *2 (-514))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-588 (-1085))) (-5 *2 (-1085)) (-5 *1 (-305))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-708)) (-4 *5 (-514)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-897 *5 *3)) (-4 *3 (-1142 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971))))) -(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3)) - (-4 *3 (-1014))))) -(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-792))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-239))) (-5 *1 (-1167)))) - ((*1 *2 *1) (-12 (-5 *2 (-588 (-239))) (-5 *1 (-1167)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-239))) (-5 *1 (-1168)))) - ((*1 *2 *1) (-12 (-5 *2 (-588 (-239))) (-5 *1 (-1168))))) -(((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-1120))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *1 *1 *1) (-5 *1 (-792)))) + (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) + (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-589 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *2 (-588 (-202))) - (-5 *1 (-442))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-708)) (-4 *1 (-598 *3)) (-4 *3 (-971)) (-4 *3 (-338)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-708)) (-5 *4 (-1 *5 *5)) (-4 *5 (-338)) - (-5 *1 (-601 *5 *2)) (-4 *2 (-598 *5))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-125)) (-5 *3 (-708)) (-5 *2 (-1171))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-872 (-202)) (-872 (-202)))) (-5 *3 (-588 (-239))) - (-5 *1 (-237)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-872 (-202)) (-872 (-202)))) (-5 *1 (-239)))) + (-12 (-5 *2 (-155 (-355))) (-5 *1 (-724 *3)) (-4 *3 (-564 (-355))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-588 (-454 *5 *6))) (-5 *3 (-454 *5 *6)) - (-14 *5 (-588 (-1085))) (-4 *6 (-426)) (-5 *2 (-1166 *6)) - (-5 *1 (-576 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-628 *2)) (-4 *2 (-157)) (-5 *1 (-134 *2)))) + (-12 (-5 *4 (-852)) (-5 *2 (-155 (-355))) (-5 *1 (-724 *3)) + (-4 *3 (-564 (-355))))) ((*1 *2 *3) - (-12 (-4 *4 (-157)) (-4 *2 (-1142 *4)) (-5 *1 (-161 *4 *2 *3)) - (-4 *3 (-662 *4 *2)))) + (-12 (-5 *3 (-155 *4)) (-4 *4 (-158)) (-4 *4 (-564 (-355))) + (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-628 (-382 (-881 *5)))) (-5 *4 (-1085)) - (-5 *2 (-881 *5)) (-5 *1 (-268 *5)) (-4 *5 (-426)))) - ((*1 *2 *3) - (-12 (-5 *3 (-628 (-382 (-881 *4)))) (-5 *2 (-881 *4)) - (-5 *1 (-268 *4)) (-4 *4 (-426)))) - ((*1 *2 *1) - (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1142 *3)))) + (-12 (-5 *3 (-155 *5)) (-5 *4 (-852)) (-4 *5 (-158)) + (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-628 (-154 (-382 (-522))))) - (-5 *2 (-881 (-154 (-382 (-522))))) (-5 *1 (-702 *4)) - (-4 *4 (-13 (-338) (-782))))) + (-12 (-5 *3 (-883 (-155 *4))) (-4 *4 (-158)) (-4 *4 (-564 (-355))) + (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-628 (-154 (-382 (-522))))) (-5 *4 (-1085)) - (-5 *2 (-881 (-154 (-382 (-522))))) (-5 *1 (-702 *5)) - (-4 *5 (-13 (-338) (-782))))) + (-12 (-5 *3 (-883 (-155 *5))) (-5 *4 (-852)) (-4 *5 (-158)) + (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-628 (-382 (-522)))) (-5 *2 (-881 (-382 (-522)))) - (-5 *1 (-716 *4)) (-4 *4 (-13 (-338) (-782))))) + (-12 (-5 *3 (-883 *4)) (-4 *4 (-973)) (-4 *4 (-564 (-355))) + (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-628 (-382 (-522)))) (-5 *4 (-1085)) - (-5 *2 (-881 (-382 (-522)))) (-5 *1 (-716 *5)) - (-4 *5 (-13 (-338) (-782)))))) -(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-442)))) - ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1167)))) - ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1168))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1151 *3 *4 *5)) (-4 *3 (-13 (-338) (-784))) - (-14 *4 (-1085)) (-14 *5 *3) (-5 *1 (-294 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-354))) (-5 *1 (-964)) (-5 *3 (-354))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *2 *3) - (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-971)) - (-5 *2 (-454 *4 *5)) (-5 *1 (-873 *4 *5))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-708)) (-4 *5 (-324)) (-4 *6 (-1142 *5)) - (-5 *2 - (-588 - (-2 (|:| -2905 (-628 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-628 *6))))) - (-5 *1 (-468 *5 *6 *7)) - (-5 *3 - (-2 (|:| -2905 (-628 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-628 *6)))) - (-4 *7 (-1142 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1085)) (-5 *2 (-498)) (-5 *1 (-497 *4)) - (-4 *4 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *2 (-588 (-1081 (-522)))) (-5 *1 (-170)) (-5 *3 (-522))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1045 (-202))) (-5 *3 (-588 (-239))) (-5 *1 (-1168)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1045 (-202))) (-5 *3 (-1068)) (-5 *1 (-1168)))) - ((*1 *1 *1) (-5 *1 (-1168)))) -(((*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-1106)))) - ((*1 *2 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-784)))) - ((*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-561 *3)) (-4 *3 (-784))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-522)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1120)) - (-4 *5 (-348 *4)) (-4 *2 (-348 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-522)) (-4 *1 (-974 *4 *5 *6 *2 *7)) (-4 *6 (-971)) - (-4 *7 (-215 *4 *6)) (-4 *2 (-215 *5 *6))))) -(((*1 *1 *1 *1) (-4 *1 (-131))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2)) - (-4 *2 (-405 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) - (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) - (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3)))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) - (-5 *2 (-960)) (-5 *1 (-689))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1081 *6)) (-4 *6 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *2 (-1081 *7)) (-5 *1 (-296 *4 *5 *6 *7)) - (-4 *7 (-878 *6 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784))))) -(((*1 *2) (-12 (-5 *2 (-1045 (-202))) (-5 *1 (-1104))))) -(((*1 *2 *1) - (-12 (-5 *2 (-792)) (-5 *1 (-1066 *3)) (-4 *3 (-1014)) - (-4 *3 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-962 (-522))) (-4 *1 (-278)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-507)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-834 *3)) (-4 *3 (-1014))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1014)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-522)) (-5 *2 (-1066 *3)) (-5 *1 (-1070 *3)) - (-4 *3 (-971)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-756 *4)) (-4 *4 (-784)) (-4 *1 (-1181 *4 *3)) - (-4 *3 (-971))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1120))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1166 (-522))) (-5 *3 (-522)) (-5 *1 (-1024)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1166 (-522))) (-5 *3 (-588 (-522))) (-5 *4 (-522)) - (-5 *1 (-1024))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-338)) - (-4 *1 (-662 *5 *6)) (-4 *5 (-157)) (-4 *6 (-1142 *5)) - (-5 *2 (-628 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-588 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-613 *3)) (-4 *3 (-784)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-784)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-756 *3)) (-4 *3 (-784))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-1068)) (-5 *5 (-628 (-202))) - (-5 *2 (-960)) (-5 *1 (-685))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-588 - (-2 (|:| -1692 (-708)) - (|:| |eqns| - (-588 - (-2 (|:| |det| *7) (|:| |rows| (-588 (-522))) - (|:| |cols| (-588 (-522)))))) - (|:| |fgb| (-588 *7))))) - (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-283) (-135))) - (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-708)) - (-5 *1 (-853 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) - (-4 *5 (-1142 *4)) - (-5 *2 (-588 (-2 (|:| |deg| (-708)) (|:| -3277 *5)))) - (-5 *1 (-746 *4 *5 *3 *6)) (-4 *3 (-598 *5)) - (-4 *6 (-598 (-382 *5)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1066 (-522))) (-5 *1 (-1070 *4)) (-4 *4 (-971)) - (-5 *3 (-522))))) -(((*1 *2 *3) - (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4)) - (-4 *4 (-324))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-561 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4))) - (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-253 *4 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1007 (-777 *3))) (-4 *3 (-13 (-1106) (-887) (-29 *5))) - (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) - (-5 *2 - (-3 (|:| |f1| (-777 *3)) (|:| |f2| (-588 (-777 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-196 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1007 (-777 *3))) (-5 *5 (-1068)) - (-4 *3 (-13 (-1106) (-887) (-29 *6))) - (-4 *6 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) - (-5 *2 - (-3 (|:| |f1| (-777 *3)) (|:| |f2| (-588 (-777 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-196 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1007 (-777 (-291 *5)))) - (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) - (-5 *2 - (-3 (|:| |f1| (-777 (-291 *5))) (|:| |f2| (-588 (-777 (-291 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-197 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-382 (-881 *6))) (-5 *4 (-1007 (-777 (-291 *6)))) - (-5 *5 (-1068)) - (-4 *6 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) - (-5 *2 - (-3 (|:| |f1| (-777 (-291 *6))) (|:| |f2| (-588 (-777 (-291 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-197 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1007 (-777 (-382 (-881 *5))))) (-5 *3 (-382 (-881 *5))) - (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) - (-5 *2 - (-3 (|:| |f1| (-777 (-291 *5))) (|:| |f2| (-588 (-777 (-291 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-197 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1007 (-777 (-382 (-881 *6))))) (-5 *5 (-1068)) - (-5 *3 (-382 (-881 *6))) - (-4 *6 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) - (-5 *2 - (-3 (|:| |f1| (-777 (-291 *6))) (|:| |f2| (-588 (-777 (-291 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-197 *6)))) + (-12 (-5 *3 (-883 *5)) (-5 *4 (-852)) (-4 *5 (-973)) + (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-515)) (-4 *4 (-564 (-355))) + (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1085)) - (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-3 *3 (-588 *3))) (-5 *1 (-403 *5 *3)) - (-4 *3 (-13 (-1106) (-887) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-448 *3 *4 *5)) - (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-291 (-354))) (-5 *4 (-1009 (-777 (-354)))) - (-5 *5 (-354)) (-5 *6 (-983)) (-5 *2 (-960)) (-5 *1 (-523)))) - ((*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-960)) (-5 *1 (-523)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-291 (-354))) (-5 *4 (-1009 (-777 (-354)))) - (-5 *5 (-354)) (-5 *2 (-960)) (-5 *1 (-523)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-291 (-354))) (-5 *4 (-1009 (-777 (-354)))) - (-5 *5 (-354)) (-5 *2 (-960)) (-5 *1 (-523)))) + (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-852)) (-4 *5 (-515)) + (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-383 (-883 (-155 *4)))) (-4 *4 (-515)) + (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-291 (-354))) (-5 *4 (-1009 (-777 (-354)))) - (-5 *2 (-960)) (-5 *1 (-523)))) + (-12 (-5 *3 (-383 (-883 (-155 *5)))) (-5 *4 (-852)) (-4 *5 (-515)) + (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-292 *4)) (-4 *4 (-515)) (-4 *4 (-786)) + (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-1009 (-777 (-354))))) - (-5 *2 (-960)) (-5 *1 (-523)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-1009 (-777 (-354))))) - (-5 *5 (-354)) (-5 *2 (-960)) (-5 *1 (-523)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-1009 (-777 (-354))))) - (-5 *5 (-354)) (-5 *2 (-960)) (-5 *1 (-523)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-1009 (-777 (-354))))) - (-5 *5 (-354)) (-5 *6 (-983)) (-5 *2 (-960)) (-5 *1 (-523)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-291 (-354))) (-5 *4 (-1007 (-777 (-354)))) - (-5 *5 (-1068)) (-5 *2 (-960)) (-5 *1 (-523)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-291 (-354))) (-5 *4 (-1007 (-777 (-354)))) - (-5 *5 (-1085)) (-5 *2 (-960)) (-5 *1 (-523)))) + (-12 (-5 *3 (-292 *5)) (-5 *4 (-852)) (-4 *5 (-515)) (-4 *5 (-786)) + (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-338) (-135) (-962 (-522)))) (-4 *5 (-1142 *4)) - (-5 *2 (-539 (-382 *5))) (-5 *1 (-526 *4 *5)) (-5 *3 (-382 *5)))) + (-12 (-5 *3 (-292 (-155 *4))) (-4 *4 (-515)) (-4 *4 (-786)) + (-4 *4 (-564 (-355))) (-5 *2 (-155 (-355))) (-5 *1 (-724 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085)) (-4 *5 (-135)) - (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) - (-5 *2 (-3 (-291 *5) (-588 (-291 *5)))) (-5 *1 (-542 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-678 *3 *2)) (-4 *3 (-971)) (-4 *2 (-784)) - (-4 *3 (-37 (-382 (-522)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1085)) (-5 *1 (-881 *3)) (-4 *3 (-37 (-382 (-522)))) - (-4 *3 (-971)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-4 *2 (-784)) - (-5 *1 (-1038 *3 *2 *4)) (-4 *4 (-878 *3 (-494 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) - (-5 *1 (-1070 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1076 *3 *4 *5)) - (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1082 *3 *4 *5)) - (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1083 *3 *4 *5)) - (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *1 (-1115 *3)) (-4 *3 (-37 (-382 (-522)))) - (-4 *3 (-971)))) - ((*1 *1 *1 *2) - (-3844 - (-12 (-5 *2 (-1085)) (-4 *1 (-1126 *3)) (-4 *3 (-971)) - (-12 (-4 *3 (-29 (-522))) (-4 *3 (-887)) (-4 *3 (-1106)) - (-4 *3 (-37 (-382 (-522)))))) - (-12 (-5 *2 (-1085)) (-4 *1 (-1126 *3)) (-4 *3 (-971)) - (-12 (|has| *3 (-15 -3533 ((-588 *2) *3))) - (|has| *3 (-15 -2611 (*3 *3 *2))) (-4 *3 (-37 (-382 (-522)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1126 *2)) (-4 *2 (-971)) (-4 *2 (-37 (-382 (-522)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1130 *3 *4 *5)) - (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-37 (-382 (-522)))))) - ((*1 *1 *1 *2) - (-3844 - (-12 (-5 *2 (-1085)) (-4 *1 (-1147 *3)) (-4 *3 (-971)) - (-12 (-4 *3 (-29 (-522))) (-4 *3 (-887)) (-4 *3 (-1106)) - (-4 *3 (-37 (-382 (-522)))))) - (-12 (-5 *2 (-1085)) (-4 *1 (-1147 *3)) (-4 *3 (-971)) - (-12 (|has| *3 (-15 -3533 ((-588 *2) *3))) - (|has| *3 (-15 -2611 (*3 *3 *2))) (-4 *3 (-37 (-382 (-522)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1147 *2)) (-4 *2 (-971)) (-4 *2 (-37 (-382 (-522)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1151 *3 *4 *5)) - (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3))) + (-12 (-5 *3 (-292 (-155 *5))) (-5 *4 (-852)) (-4 *5 (-515)) + (-4 *5 (-786)) (-4 *5 (-564 (-355))) (-5 *2 (-155 (-355))) + (-5 *1 (-724 *5))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4245)) (-4 *1 (-222 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1122)))) ((*1 *1 *1 *2) - (-3844 - (-12 (-5 *2 (-1085)) (-4 *1 (-1157 *3)) (-4 *3 (-971)) - (-12 (-4 *3 (-29 (-522))) (-4 *3 (-887)) (-4 *3 (-1106)) - (-4 *3 (-37 (-382 (-522)))))) - (-12 (-5 *2 (-1085)) (-4 *1 (-1157 *3)) (-4 *3 (-971)) - (-12 (|has| *3 (-15 -3533 ((-588 *2) *3))) - (|has| *3 (-15 -2611 (*3 *3 *2))) (-4 *3 (-37 (-382 (-522)))))))) + (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-973)) + (-4 *2 (-1128 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) ((*1 *1 *1) - (-12 (-4 *1 (-1157 *2)) (-4 *2 (-971)) (-4 *2 (-37 (-382 (-522)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1158 *3 *4 *5)) - (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3)))) -(((*1 *2 *3) - (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-708)) - (-5 *1 (-423 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-426)) - (-5 *2 (-454 *4 *5)) (-5 *1 (-576 *4 *5))))) -(((*1 *1) (-5 *1 (-129)))) -(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *3) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-420)) (-5 *3 (-522))))) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *1 *1) (-4 *1 (-464))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3) (-12 (-5 *3 (-589 (-523))) (-5 *2 (-710)) (-5 *1 (-544))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3278 (-721 *3)) (|:| |coef1| (-721 *3)))) + (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-515)) (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-2 (|:| -3278 *1) (|:| |coef1| *1))) + (-4 *1 (-987 *3 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-222 *2)) (-4 *2 (-1122))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) - (-4 *5 (-348 *3)) (-5 *2 (-522)))) + (-12 (-4 *1 (-556 *3 *2)) (-4 *3 (-1016)) (-4 *3 (-786)) + (-4 *2 (-1122)))) + ((*1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) + ((*1 *2 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) ((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) - (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-522))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) + (-12 (-4 *2 (-1122)) (-5 *1 (-804 *2 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-824 *3)) (-4 *3 (-786)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-1156 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-973)) (-4 *2 (-627 *4 *5 *6)) + (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1144 *4)) (-4 *5 (-349 *4)) + (-4 *6 (-349 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-1087))) (-5 *1 (-1091))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-708)) (-5 *4 (-522)) (-5 *1 (-419 *2)) (-4 *2 (-971))))) + (-12 (-4 *7 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) (-4 *7 (-515)) + (-4 *8 (-880 *7 *5 *6)) + (-5 *2 (-2 (|:| -2735 (-710)) (|:| -2935 *3) (|:| |radicand| *3))) + (-5 *1 (-884 *5 *6 *7 *8 *3)) (-5 *4 (-710)) + (-4 *3 + (-13 (-339) + (-10 -8 (-15 -2785 (*8 $)) (-15 -2797 (*8 $)) (-15 -1458 ($ *8)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-455 *4 *5)) (-14 *4 (-589 (-1087))) (-4 *5 (-973)) + (-5 *2 (-225 *4 *5)) (-5 *1 (-875 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-793)))) + ((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-895)))) + ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-918)))) + ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-1122)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1016) (-33))) (-5 *1 (-1052 *2 *3)) + (-4 *3 (-13 (-1016) (-33)))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) + (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) + (|:| |ub| (-589 (-779 (-203)))))) + (-5 *1 (-244))))) +(((*1 *1 *1) (-4 *1 (-91))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-589 (-1083 *4))) (-5 *3 (-1083 *4)) + (-4 *4 (-840)) (-5 *1 (-606 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1070)) (-5 *1 (-172)))) + ((*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1070)) (-5 *1 (-277)))) + ((*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1070)) (-5 *1 (-282))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1087)) (-4 *1 (-27)) + (-5 *2 (-589 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-883 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-589 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *2 (-589 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-292 (-203))) (-5 *4 (-589 (-1087))) + (-5 *5 (-1011 (-779 (-203)))) (-5 *2 (-1068 (-203))) (-5 *1 (-277))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168 (-629 *4))) (-4 *4 (-158)) + (-5 *2 (-1168 (-629 (-883 *4)))) (-5 *1 (-169 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-4 *3 (-515)) + (-5 *2 (-1083 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-852)) (-5 *1 (-959 *2)) + (-4 *2 (-13 (-1016) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-523)) (-5 *5 (-155 (-203))) (-5 *6 (-1070)) + (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-698))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1081 *9)) (-5 *4 (-588 *7)) (-4 *7 (-784)) - (-4 *9 (-878 *8 *6 *7)) (-4 *6 (-730)) (-4 *8 (-283)) - (-5 *2 (-588 (-708))) (-5 *1 (-680 *6 *7 *8 *9)) (-5 *5 (-708))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-338) (-782))) - (-5 *2 (-588 (-2 (|:| -4045 (-588 *3)) (|:| -3106 *5)))) - (-5 *1 (-164 *5 *3)) (-4 *3 (-1142 (-154 *5))))) + (-12 (-5 *3 (-1083 *9)) (-5 *4 (-589 *7)) (-4 *7 (-786)) + (-4 *9 (-880 *8 *6 *7)) (-4 *6 (-732)) (-4 *8 (-284)) + (-5 *2 (-589 (-710))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *5 (-710))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-710)) (-4 *2 (-1016)) + (-5 *1 (-619 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-159 *3)) (-4 *3 (-284))))) +(((*1 *1 *1) (-4 *1 (-91))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1159 *3)) + (-5 *1 (-255 *3 *4 *2)) (-4 *2 (-1130 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-383 (-523)))) (-4 *4 (-1128 *3)) + (-5 *1 (-256 *3 *4 *2 *5)) (-4 *2 (-1151 *3 *4)) (-4 *5 (-912 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1073 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-37 (-383 (-523)))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) + (-4 *3 (-992 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-338) (-782))) - (-5 *2 (-588 (-2 (|:| -4045 (-588 *3)) (|:| -3106 *4)))) - (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4)))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) - (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *4)))) - (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-392 *4))))) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1087)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-589 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-589 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -2462 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1108) (-27) (-406 *8))) + (-4 *8 (-13 (-427) (-786) (-136) (-964 *3) (-585 *3))) + (-5 *3 (-523)) (-5 *2 (-589 *4)) (-5 *1 (-942 *8 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *2 *2) + (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) + (-5 *1 (-161 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-448))) ((*1 *1 *1 *1) (-4 *1 (-701)))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1014) (-962 *5))) - (-4 *5 (-815 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-108) *5)) - (-5 *1 (-860 *4 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33))) - (-4 *4 (-13 (-1014) (-33)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) - (-4 *5 (-348 *3)) (-5 *2 (-522)))) - ((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) - (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-522))))) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) + ((*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-873)) (-5 *3 (-523))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-820 *4 *3)) + (-4 *3 (-1016))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) +(((*1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) (((*1 *1 *2) - (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-1014)) (-5 *1 (-1093 *3))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) - (-5 *1 (-1040 *3 *2)) (-4 *3 (-1142 *2))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-792))) ((*1 *1 *1 *1) (-5 *1 (-792))) - ((*1 *1 *1) (-5 *1 (-792)))) + (-12 (-5 *2 (-1153 *3 *4 *5)) (-4 *3 (-13 (-339) (-786))) + (-14 *4 (-1087)) (-14 *5 *3) (-5 *1 (-295 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-355))) (-5 *1 (-966)) (-5 *3 (-355))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1076 *2 *3)) (-14 *2 (-852)) (-4 *3 (-973))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1168 *3)) (-4 *3 (-973)) (-5 *1 (-652 *3 *4)) + (-4 *4 (-1144 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) + (-4 *6 (-987 *3 *4 *5)) (-5 *1 (-571 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-992 *3 *4 *5 *6)) (-4 *2 (-1025 *3 *4 *5 *6))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-515)) (-5 *2 (-108))))) +(((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1122)) (-5 *2 (-710)) + (-5 *1 (-215 *3 *4 *5)) (-4 *3 (-216 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-124)) + (-5 *2 (-710)))) + ((*1 *2) + (-12 (-4 *4 (-339)) (-5 *2 (-710)) (-5 *1 (-304 *3 *4)) + (-4 *3 (-305 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-337 *3)) (-4 *3 (-1016)))) + ((*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-362 *3)) (-4 *3 (-1016)))) + ((*1 *2) + (-12 (-4 *4 (-1016)) (-5 *2 (-710)) (-5 *1 (-400 *3 *4)) + (-4 *3 (-401 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-710)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2) + (-12 (-4 *4 (-158)) (-4 *5 (-1144 *4)) (-5 *2 (-710)) + (-5 *1 (-663 *3 *4 *5)) (-4 *3 (-664 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-758 *3)) (-4 *3 (-786)))) + ((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-934)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) + (-4 *3 (-1144 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-203)) (-5 *1 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1092))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-629 *4)) (-5 *3 (-852)) (-4 *4 (-973)) + (-5 *1 (-955 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-589 (-629 *4))) (-5 *3 (-852)) (-4 *4 (-973)) + (-5 *1 (-955 *4))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-155 (-203)))) + (-5 *2 (-962)) (-5 *1 (-694))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-962))))) +(((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-355)))) + ((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-355))))) (((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108))))) + (-12 (-4 *3 (-1016)) + (-4 *4 (-13 (-973) (-817 *3) (-786) (-564 (-823 *3)))) + (-5 *2 (-589 (-995 *3 *4 *5))) (-5 *1 (-996 *3 *4 *5)) + (-4 *5 (-13 (-406 *4) (-817 *3) (-564 (-823 *3))))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-691))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) - (-5 *2 - (-2 (|:| |solns| (-588 *5)) - (|:| |maps| (-588 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1040 *3 *5)) (-4 *3 (-1142 *5))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-784) (-514) (-962 (-522)))) (-5 *2 (-1171)) - (-5 *1 (-408 *3 *4)) (-4 *4 (-405 *3))))) + (-12 (-5 *3 (-589 *6)) (-5 *4 (-1087)) (-4 *6 (-406 *5)) + (-4 *5 (-786)) (-5 *2 (-589 (-562 *6))) (-5 *1 (-532 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1087)) (-4 *1 (-27)) + (-5 *2 (-589 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-883 *1)) (-4 *1 (-27)) (-5 *2 (-589 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *2 (-589 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *2 (-589 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1066 (-202))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2321 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-960)) (-5 *1 (-281))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132))))) -(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-932)))) - ((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-932))))) -(((*1 *2 *1) (-12 (-5 *1 (-539 *2)) (-4 *2 (-338))))) -(((*1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-195))))) + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (-5 *2 (-355)) (-5 *1 (-172))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-589 *4)) (-4 *4 (-1016)) (-4 *4 (-1122)) (-5 *2 (-108)) + (-5 *1 (-1068 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *1 *1) (-5 *1 (-499)))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-628 *1)) (-4 *1 (-324)) (-5 *2 (-1166 *1)))) + (-12 (-5 *3 (-1018 *4)) (-4 *4 (-1016)) (-5 *2 (-1 *4)) + (-5 *1 (-945 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-355))) (-5 *1 (-966)) (-5 *3 (-355)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-628 *1)) (-4 *1 (-133)) (-4 *1 (-838)) - (-5 *2 (-1166 *1))))) -(((*1 *2 *3) - (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522)))))) + (-12 (-5 *3 (-1011 (-523))) (-5 *2 (-1 (-523))) (-5 *1 (-971))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-339)) (-5 *1 (-706 *2 *3)) (-4 *2 (-648 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-589 *6)) (-4 *6 (-786)) (-4 *4 (-339)) (-4 *5 (-732)) + (-5 *2 + (-2 (|:| |mval| (-629 *4)) (|:| |invmval| (-629 *4)) + (|:| |genIdeal| (-475 *4 *5 *6 *7)))) + (-5 *1 (-475 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6))))) (((*1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-708)) (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) - (-4 *4 (-730)) (-4 *5 (-784)) (-4 *3 (-514))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-1085))) (-5 *2 (-1171)) (-5 *1 (-1122)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-588 (-1085))) (-5 *2 (-1171)) (-5 *1 (-1122))))) -(((*1 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-758))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1009 (-777 (-354)))) (-5 *2 (-1009 (-777 (-202)))) - (-5 *1 (-281))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4240 "*"))) (-4 *5 (-348 *2)) (-4 *6 (-348 *2)) - (-4 *2 (-971)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1142 *2)) - (-4 *4 (-626 *2 *5 *6))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-708)) (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) - (-4 *4 (-730)) (-4 *5 (-784)) (-4 *3 (-514))))) -(((*1 *1 *2) - (-12 (-5 *2 (-588 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) - (-14 *3 (-522)) (-14 *4 (-708))))) + (-12 (-4 *1 (-340 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794)))) + ((*1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-4 *1 (-1014 *3)))) + ((*1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016))))) +(((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-589 (-1052 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) + (-4 *4 (-13 (-1016) (-33))) (-4 *5 (-13 (-1016) (-33))) + (-5 *1 (-1053 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-589 (-1052 *3 *4))) (-4 *3 (-13 (-1016) (-33))) + (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-588 *4)) (-4 *4 (-1014)) (-4 *4 (-1120)) (-5 *2 (-108)) - (-5 *1 (-1066 *4))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-971)) - (-5 *1 (-787 *5 *2)) (-4 *2 (-786 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-708)) (-4 *4 (-324)) (-5 *1 (-194 *4 *2)) - (-4 *2 (-1142 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-588 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522))))) + (-12 (-4 *4 (-339)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-475 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-710)) (-4 *4 (-13 (-973) (-657 (-383 (-523))))) + (-4 *5 (-786)) (-5 *1 (-1182 *4 *5 *2)) (-4 *2 (-1187 *5 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-339)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-475 *4 *5 *6 *3)) (-4 *3 (-880 *4 *5 *6))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-523)) (-4 *4 (-158)) (-4 *5 (-349 *4)) + (-4 *6 (-349 *4)) (-5 *1 (-628 *4 *5 *6 *2)) + (-4 *2 (-627 *4 *5 *6))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-591 *5)) (-4 *5 (-973)) + (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-788 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-629 *3)) (-4 *1 (-393 *3)) (-4 *3 (-158)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-973)) + (-5 *1 (-789 *2 *3)) (-4 *3 (-788 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-588 *7)) (-4 *7 (-784)) (-4 *5 (-838)) (-4 *6 (-730)) - (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-393 (-1081 *8))) - (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-1081 *8)))) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-108)) + (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| (-108)) (|:| -3072 *4)))) + (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-108)) (-5 *5 (-523)) (-4 *6 (-339)) (-4 *6 (-344)) + (-4 *6 (-973)) (-5 *2 (-589 (-589 (-629 *6)))) (-5 *1 (-956 *6)) + (-5 *3 (-589 (-629 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-339)) (-4 *4 (-344)) (-4 *4 (-973)) + (-5 *2 (-589 (-589 (-629 *4)))) (-5 *1 (-956 *4)) + (-5 *3 (-589 (-629 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-339)) (-4 *5 (-344)) (-4 *5 (-973)) + (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) + (-5 *3 (-589 (-629 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-852)) (-4 *5 (-339)) (-4 *5 (-344)) (-4 *5 (-973)) + (-5 *2 (-589 (-589 (-629 *5)))) (-5 *1 (-956 *5)) + (-5 *3 (-589 (-629 *5)))))) +(((*1 *1 *1 *1) (-5 *1 (-794)))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-219)))) ((*1 *2 *3) - (-12 (-4 *4 (-838)) (-4 *5 (-1142 *4)) (-5 *2 (-393 (-1081 *5))) - (-5 *1 (-836 *4 *5)) (-5 *3 (-1081 *5))))) + (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1173)) (-5 *1 (-219))))) (((*1 *2 *3) - (-12 (-4 *4 (-514)) (-4 *5 (-919 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-130 *4 *5 *3)) - (-4 *3 (-348 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-514)) (-4 *5 (-919 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-473 *4 *5 *6 *3)) (-4 *6 (-348 *4)) (-4 *3 (-348 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-628 *5)) (-4 *5 (-919 *4)) (-4 *4 (-514)) - (-5 *2 (-2 (|:| |num| (-628 *4)) (|:| |den| *4))) - (-5 *1 (-631 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) - (-4 *6 (-1142 *5)) - (-5 *2 (-2 (|:| -3277 *7) (|:| |rh| (-588 (-382 *6))))) - (-5 *1 (-744 *5 *6 *7 *3)) (-5 *4 (-588 (-382 *6))) - (-4 *7 (-598 *6)) (-4 *3 (-598 (-382 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-514)) (-4 *5 (-919 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1135 *4 *5 *3)) - (-4 *3 (-1142 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-1102))))) + (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-973))))) (((*1 *2 *1) - (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) - (-5 *2 (-756 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-780)) (-5 *1 (-1187 *3 *2)) (-4 *3 (-971))))) -(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1068)) (-5 *1 (-723))))) -(((*1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784)) (-4 *2 (-426))))) + (-12 (-5 *2 (-2 (|:| -3819 *1) (|:| -4231 *1) (|:| |associate| *1))) + (-4 *1 (-515))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-874 *4)) (-4 *4 (-973)) (-5 *1 (-1076 *3 *4)) + (-14 *3 (-852))))) +(((*1 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) + (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-906 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-589 *7)) (-5 *3 (-108)) (-4 *7 (-987 *4 *5 *6)) + (-4 *4 (-427)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *1 (-906 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-588 - (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) - (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) - (|:| |relerr| (-202))))) - (-5 *1 (-517)))) - ((*1 *2 *1) - (-12 (-4 *1 (-559 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-5 *2 (-588 *3)))) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-5 *2 (-589 *3)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-588 - (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) - (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) - (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) - (|:| |abserr| (-202)) (|:| |relerr| (-202))))) - (-5 *1 (-740))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-588 *6)) (-5 *4 (-588 (-1085))) (-4 *6 (-338)) - (-5 *2 (-588 (-270 (-881 *6)))) (-5 *1 (-500 *5 *6 *7)) - (-4 *5 (-426)) (-4 *7 (-13 (-338) (-782)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-1167)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-1168))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-522)) (-5 *5 (-108)) (-5 *6 (-628 (-202))) - (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-693))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-1044 *4 *2)) - (-4 *2 (-13 (-555 (-522) *4) (-10 -7 (-6 -4238) (-6 -4239)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-784)) (-4 *3 (-1120)) (-5 *1 (-1044 *3 *2)) - (-4 *2 (-13 (-555 (-522) *3) (-10 -7 (-6 -4238) (-6 -4239))))))) -(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-639)))) - ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-639))))) + (-12 (|has| *1 (-6 -4244)) (-4 *1 (-462 *3)) (-4 *3 (-1122)) + (-5 *2 (-589 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-852)) (-5 *3 (-589 (-240))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-240))))) +(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-110))) + ((*1 *1 *1) (-5 *1 (-157))) ((*1 *1 *1) (-4 *1 (-508))) + ((*1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) + (-4 *3 (-13 (-1016) (-33)))))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-845 *3)) (-4 *3 (-284))))) +(((*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-699))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106))))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-850)) (-5 *4 (-354)) (-5 *2 (-1171)) (-5 *1 (-1167)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) - ((*1 *1 *1 *1) (-5 *1 (-792)))) -(((*1 *1) (-5 *1 (-760)))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-154 (-202))) (-5 *5 (-522)) (-5 *6 (-1068)) - (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1166 (-588 *3))) (-4 *4 (-283)) - (-5 *2 (-588 *3)) (-5 *1 (-429 *4 *3)) (-4 *3 (-1142 *4))))) -(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-60 *3)) (-14 *3 (-1085)))) - ((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-67 *3)) (-14 *3 (-1085)))) - ((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-70 *3)) (-14 *3 (-1085)))) - ((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1171)))) - ((*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1171)) (-5 *1 (-372)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1068)) (-5 *4 (-792)) (-5 *2 (-1171)) (-5 *1 (-1048)))) - ((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1171)) (-5 *1 (-1048)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-792))) (-5 *2 (-1171)) (-5 *1 (-1048))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-507)) - (-5 *2 (-382 (-522))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-382 (-522))) (-5 *1 (-393 *3)) (-4 *3 (-507)) - (-4 *3 (-514)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-507)) (-5 *2 (-382 (-522))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-734 *3)) (-4 *3 (-157)) (-4 *3 (-507)) - (-5 *2 (-382 (-522))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-382 (-522))) (-5 *1 (-770 *3)) (-4 *3 (-507)) - (-4 *3 (-1014)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-382 (-522))) (-5 *1 (-777 *3)) (-4 *3 (-507)) - (-4 *3 (-1014)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-923 *3)) (-4 *3 (-157)) (-4 *3 (-507)) - (-5 *2 (-382 (-522))))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-382 (-522))) (-5 *1 (-934 *3)) - (-4 *3 (-962 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-5 *2 (-588 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-51)) (-5 *1 (-766))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-588 *2)) (-5 *1 (-163 *2)) (-4 *2 (-283)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-588 (-588 *4))) (-5 *2 (-588 *4)) (-4 *4 (-283)) - (-5 *1 (-163 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-588 *8)) - (-5 *4 - (-588 - (-2 (|:| -2905 (-628 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-628 *7))))) - (-5 *5 (-708)) (-4 *8 (-1142 *7)) (-4 *7 (-1142 *6)) (-4 *6 (-324)) - (-5 *2 - (-2 (|:| -2905 (-628 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-628 *7)))) - (-5 *1 (-468 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519))))) -(((*1 *1) (-5 *1 (-412)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-522)) (-4 *1 (-298 *4 *2)) (-4 *4 (-1014)) - (-4 *2 (-124))))) + (-12 (-5 *1 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-1122))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-695))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-324)) + (-12 (-4 *5 (-339)) (-4 *5 (-515)) (-5 *2 - (-2 (|:| |cont| *5) - (|:| -4045 (-588 (-2 (|:| |irr| *3) (|:| -4160 (-522))))))) - (-5 *1 (-194 *5 *3)) (-4 *3 (-1142 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-588 *3)) (-4 *3 (-1142 (-522))) (-5 *1 (-458 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 (-354))) (-5 *1 (-239)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-514)) (-4 *2 (-157)))) - ((*1 *2 *1) (-12 (-5 *1 (-393 *2)) (-4 *2 (-514))))) -(((*1 *2 *1) (-12 (-5 *2 (-898)) (-5 *1 (-834 *3)) (-4 *3 (-1014))))) -(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-218)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-1171)) (-5 *1 (-218))))) -(((*1 *2 *1) - (-12 (-5 *2 (-588 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1014))))) -(((*1 *2 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-697))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-811 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) - (-5 *2 (-960)) (-5 *1 (-690))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-628 *7)) (-5 *3 (-588 *7)) (-4 *7 (-878 *4 *6 *5)) - (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) - (-4 *6 (-730)) (-5 *1 (-853 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) + (-2 (|:| |minor| (-589 (-852))) (|:| -1710 *3) + (|:| |minors| (-589 (-589 (-852)))) (|:| |ops| (-589 *3)))) + (-5 *1 (-88 *5 *3)) (-5 *4 (-852)) (-4 *3 (-599 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-710)) (|:| -1480 *4))) (-5 *5 (-710)) + (-4 *4 (-880 *6 *7 *8)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-424 *6 *7 *8 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-234))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-523)) (-14 *3 (-710)) + (-4 *4 (-158)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-145 *4 *2)) + (-4 *2 (-406 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1009 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-786) (-515))) + (-5 *1 (-145 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1009 *1)) (-4 *1 (-147)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-147)) (-5 *2 (-1087)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-440 *2 *3)) (-4 *2 (-158)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-158))))) +(((*1 *2 *1 *1) (-12 - (-5 *3 - (-588 - (-2 (|:| |eqzro| (-588 *8)) (|:| |neqzro| (-588 *8)) - (|:| |wcond| (-588 (-881 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1166 (-382 (-881 *5)))) - (|:| -2905 (-588 (-1166 (-382 (-881 *5)))))))))) - (-5 *4 (-1068)) (-4 *5 (-13 (-283) (-135))) (-4 *8 (-878 *5 *7 *6)) - (-4 *6 (-13 (-784) (-563 (-1085)))) (-4 *7 (-730)) (-5 *2 (-522)) - (-5 *1 (-853 *5 *6 *7 *8))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168))))) -(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-366))))) -(((*1 *2 *3) + (-5 *2 + (-2 (|:| |lm| (-362 *3)) (|:| |mm| (-362 *3)) (|:| |rm| (-362 *3)))) + (-5 *1 (-362 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1 *1) (-12 - (-5 *3 - (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) - (-5 *2 (-354)) (-5 *1 (-243)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1166 (-291 (-202)))) (-5 *2 (-354)) (-5 *1 (-281))))) -(((*1 *2 *1) - (-12 (-4 *2 (-514)) (-5 *1 (-569 *2 *3)) (-4 *3 (-1142 *2))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-588 (-291 (-202)))) (-5 *3 (-202)) (-5 *2 (-108)) - (-5 *1 (-189))))) -(((*1 *1) - (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-108))))) -(((*1 *1 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-21)) (-4 *2 (-1120))))) -(((*1 *1) - (-12 (-4 *1 (-379)) (-2473 (|has| *1 (-6 -4229))) - (-2473 (|has| *1 (-6 -4221))))) - ((*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-1014)) (-4 *2 (-784)))) - ((*1 *1 *1 *1) (-4 *1 (-784))) - ((*1 *2 *1) (-12 (-4 *1 (-896 *2)) (-4 *2 (-784)))) - ((*1 *1) (-5 *1 (-1032)))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-108)) - (-5 *6 (-202)) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-66 APROD)))) - (-5 *8 (-3 (|:| |fn| (-363)) (|:| |fp| (-71 MSOLVE)))) - (-5 *2 (-960)) (-5 *1 (-694))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-154 (-202)))) (-5 *2 (-960)) - (-5 *1 (-692))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-850)) (-5 *4 (-202)) (-5 *5 (-522)) (-5 *6 (-803)) - (-5 *2 (-1171)) (-5 *1 (-1167))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-708)) (-4 *4 (-13 (-514) (-135))) - (-5 *1 (-1136 *4 *2)) (-4 *2 (-1142 *4))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1085)) (-4 *5 (-563 (-821 (-522)))) - (-4 *5 (-815 (-522))) - (-4 *5 (-13 (-784) (-962 (-522)) (-426) (-584 (-522)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-525 *5 *3)) (-4 *3 (-574)) - (-4 *3 (-13 (-27) (-1106) (-405 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1085)) (-5 *4 (-777 *2)) (-4 *2 (-1049)) - (-4 *2 (-13 (-27) (-1106) (-405 *5))) - (-4 *5 (-563 (-821 (-522)))) (-4 *5 (-815 (-522))) - (-4 *5 (-13 (-784) (-962 (-522)) (-426) (-584 (-522)))) - (-5 *1 (-525 *5 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1171)) (-5 *1 (-366)))) - ((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-366))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1166 (-291 (-202)))) (-5 *2 - (-2 (|:| |additions| (-522)) (|:| |multiplications| (-522)) - (|:| |exponentiations| (-522)) (|:| |functionCalls| (-522)))) - (-5 *1 (-281))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1066 *4)) (-5 *3 (-522)) (-4 *4 (-971)) - (-5 *1 (-1070 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-522)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-971)) - (-14 *4 (-1085)) (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-233))))) + (-2 (|:| |lm| (-758 *3)) (|:| |mm| (-758 *3)) (|:| |rm| (-758 *3)))) + (-5 *1 (-758 *3)) (-4 *3 (-786))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-283)) (-4 *6 (-348 *5)) (-4 *4 (-348 *5)) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *7)) (-4 *7 (-786)) + (-4 *8 (-880 *5 *6 *7)) (-4 *5 (-515)) (-4 *6 (-732)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2905 (-588 *4)))) - (-5 *1 (-1036 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2)) - (-4 *4 (-13 (-784) (-514)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-108)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) - ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239))))) + (-2 (|:| |particular| (-3 (-1168 (-383 *8)) "failed")) + (|:| -4041 (-589 (-1168 (-383 *8)))))) + (-5 *1 (-612 *5 *6 *7 *8))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-1122))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) - (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 *10)) - (-5 *1 (-570 *5 *6 *7 *8 *9 *10)) (-4 *9 (-990 *5 *6 *7 *8)) - (-4 *10 (-1023 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-717 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-426)) - (-14 *6 (-588 (-1085))) (-5 *2 (-588 (-968 *5 *6))) - (-5 *1 (-573 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-717 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-426)) - (-14 *6 (-588 (-1085))) - (-5 *2 - (-588 (-1056 *5 (-494 (-794 *6)) (-794 *6) (-717 *5 (-794 *6))))) - (-5 *1 (-573 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) - (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-5 *2 (-588 (-952 *5 *6 *7 *8))) (-5 *1 (-952 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) - (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-5 *2 (-588 (-952 *5 *6 *7 *8))) (-5 *1 (-952 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-588 (-717 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-426)) - (-14 *6 (-588 (-1085))) (-5 *2 (-588 (-968 *5 *6))) - (-5 *1 (-968 *5 *6)))) + (-12 (-5 *3 (-1083 *5)) (-4 *5 (-427)) (-5 *2 (-589 *6)) + (-5 *1 (-501 *5 *6 *4)) (-4 *6 (-339)) (-4 *4 (-13 (-339) (-784))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) - (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 *1)) - (-4 *1 (-990 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) - (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-5 *2 (-588 (-1056 *5 *6 *7 *8))) (-5 *1 (-1056 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) - (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-5 *2 (-588 (-1056 *5 *6 *7 *8))) (-5 *1 (-1056 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *1)) - (-4 *1 (-1114 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855))))) -(((*1 *2 *2) - (-12 (-4 *3 (-514)) (-4 *4 (-919 *3)) (-5 *1 (-130 *3 *4 *2)) - (-4 *2 (-348 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-514)) (-4 *5 (-919 *4)) (-4 *2 (-348 *4)) - (-5 *1 (-473 *4 *5 *2 *3)) (-4 *3 (-348 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-628 *5)) (-4 *5 (-919 *4)) (-4 *4 (-514)) - (-5 *2 (-628 *4)) (-5 *1 (-631 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-514)) (-4 *4 (-919 *3)) (-5 *1 (-1135 *3 *4 *2)) - (-4 *2 (-1142 *4))))) + (-12 (-5 *3 (-883 *5)) (-4 *5 (-427)) (-5 *2 (-589 *6)) + (-5 *1 (-501 *5 *6 *4)) (-4 *6 (-339)) (-4 *4 (-13 (-339) (-784)))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1122))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1122)) (-5 *1 (-166 *3 *2)) (-4 *2 (-616 *3))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *1 *1) (-4 *1 (-508)))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-874 (-203)))) (-5 *1 (-1169))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT)))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-203)) + (-5 *2 (-962)) (-5 *1 (-695)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-65 DOT)))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-364)) + (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-695))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-903 *4 *5 *6 *3)) (-4 *4 (-971)) (-4 *5 (-730)) - (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-4 *4 (-514)) + (-12 (-4 *1 (-905 *4 *5 *6 *3)) (-4 *4 (-973)) (-4 *5 (-732)) + (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)) (-4 *4 (-515)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) - (|:| |lb| (-588 (-777 (-202)))) - (|:| |cf| (-588 (-291 (-202)))) - (|:| |ub| (-588 (-777 (-202)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-588 (-291 (-202)))) - (|:| -3937 (-588 (-202))))))) - (-5 *2 (-588 (-1068))) (-5 *1 (-243))))) -(((*1 *1) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106)))))) -(((*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-971))))) -(((*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-1090)))) - ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1090)))) - ((*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-1090)))) - ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1090))))) (((*1 *2 *1) - (-12 (-5 *2 (-588 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-539 *3)) (-4 *3 (-338))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-4 *1 (-102 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-348 *2)) (-4 *5 (-348 *2)) (-4 *2 (-338)) - (-5 *1 (-489 *2 *4 *5 *3)) (-4 *3 (-626 *2 *4 *5)))) + (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) + (-5 *2 (-589 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)) - (|has| *2 (-6 (-4240 "*"))) (-4 *2 (-971)))) - ((*1 *2 *3) - (-12 (-4 *4 (-348 *2)) (-4 *5 (-348 *2)) (-4 *2 (-157)) - (-5 *1 (-627 *2 *4 *5 *3)) (-4 *3 (-626 *2 *4 *5)))) + (-12 (-5 *2 (-589 (-2 (|:| |k| (-824 *3)) (|:| |c| *4)))) + (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) + (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) ((*1 *2 *1) - (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) - (-4 *5 (-215 *3 *2)) (|has| *2 (-6 (-4240 "*"))) (-4 *2 (-971))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-588 *3)) (-4 *3 (-878 *4 *6 *5)) (-4 *4 (-426)) - (-4 *5 (-784)) (-4 *6 (-730)) (-5 *1 (-914 *4 *5 *6 *3))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-522)) (-5 *6 (-1 (-1171) (-1166 *5) (-1166 *5) (-354))) - (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171)) - (-5 *1 (-725))))) -(((*1 *2 *1) (-12 (-5 *2 (-588 (-893))) (-5 *1 (-104)))) - ((*1 *2 *1) (-12 (-5 *2 (-44 (-1068) (-711))) (-5 *1 (-110))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |lm| (-361 *3)) (|:| |mm| (-361 *3)) (|:| |rm| (-361 *3)))) - (-5 *1 (-361 *3)) (-4 *3 (-1014)))) - ((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |lm| (-756 *3)) (|:| |mm| (-756 *3)) (|:| |rm| (-756 *3)))) - (-5 *1 (-756 *3)) (-4 *3 (-784))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-454 *4 *5))) (-14 *4 (-588 (-1085))) - (-4 *5 (-426)) - (-5 *2 - (-2 (|:| |gblist| (-588 (-224 *4 *5))) - (|:| |gvlist| (-588 (-522))))) - (-5 *1 (-576 *4 *5))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) - (-5 *1 (-915 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) - (-5 *1 (-1021 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-856))))) -(((*1 *1 *2) - (-12 (-5 *2 (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 (-412))))) - (-5 *1 (-1089))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-588 *6)) (-5 *4 (-588 (-1066 *7))) (-4 *6 (-784)) - (-4 *7 (-878 *5 (-494 *6) *6)) (-4 *5 (-971)) - (-5 *2 (-1 (-1066 *7) *7)) (-5 *1 (-1038 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-821 *4)) (-4 *4 (-1014)) (-5 *2 (-588 *5)) - (-5 *1 (-819 *4 *5)) (-4 *5 (-1120))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-588 (-382 *6))) (-5 *3 (-382 *6)) - (-4 *6 (-1142 *5)) (-4 *5 (-13 (-338) (-135) (-962 (-522)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-526 *5 *6))))) -(((*1 *1 *1 *1) (-5 *1 (-792)))) -(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729)))) - ((*1 *2 *1) - (-12 (-5 *2 (-708)) (-5 *1 (-49 *3 *4)) (-4 *3 (-971)) - (-14 *4 (-588 (-1085))))) - ((*1 *2 *1) - (-12 (-5 *2 (-522)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-971) (-784))) - (-14 *4 (-588 (-1085))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-971)) (-4 *3 (-784)) - (-4 *5 (-242 *3)) (-4 *6 (-730)) (-5 *2 (-708)))) - ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-251)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1081 *8)) (-5 *4 (-588 *6)) (-4 *6 (-784)) - (-4 *8 (-878 *7 *5 *6)) (-4 *5 (-730)) (-4 *7 (-971)) - (-5 *2 (-588 (-708))) (-5 *1 (-296 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-5 *2 (-850)))) - ((*1 *2 *1) - (-12 (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) - (-5 *2 (-708)))) - ((*1 *2 *1) (-12 (-4 *1 (-444 *3 *2)) (-4 *3 (-157)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-514)) (-5 *2 (-522)) (-5 *1 (-569 *3 *4)) - (-4 *4 (-1142 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-971)) (-5 *2 (-708)))) - ((*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-971)) (-5 *2 (-708)))) - ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) - ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-588 *6)) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-971)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 (-708))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-878 *4 *5 *3)) (-4 *4 (-971)) (-4 *5 (-730)) - (-4 *3 (-784)) (-5 *2 (-708)))) - ((*1 *2 *1) - (-12 (-4 *1 (-900 *3 *2 *4)) (-4 *3 (-971)) (-4 *4 (-784)) - (-4 *2 (-729)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-708)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1128 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1157 *3)) - (-5 *2 (-522)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1126 *3)) - (-5 *2 (-382 (-522))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-770 (-850))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1185 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) - (-5 *2 (-708))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2908 *4))) - (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4))))) -(((*1 *2 *3) - (-12 (-14 *4 (-588 (-1085))) (-4 *5 (-426)) - (-5 *2 - (-2 (|:| |glbase| (-588 (-224 *4 *5))) (|:| |glval| (-588 (-522))))) - (-5 *1 (-576 *4 *5)) (-5 *3 (-588 (-224 *4 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1066 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-171)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1066 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-276)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1066 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-281))))) -(((*1 *2 *3) - (-12 (-4 *4 (-730)) - (-4 *5 (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $))))) (-4 *6 (-514)) - (-5 *2 (-2 (|:| -1827 (-881 *6)) (|:| -3099 (-881 *6)))) - (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-878 (-382 (-881 *6)) *4 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-792)))) -(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441)))) - ((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441)))) - ((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856))))) -(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-843 *3)) (-4 *3 (-283))))) -(((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4)) - (-4 *4 (-324))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1124)) (-4 *5 (-1142 *3)) (-4 *6 (-1142 (-382 *5))) - (-5 *2 (-108)) (-5 *1 (-316 *4 *3 *5 *6)) (-4 *4 (-317 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-881 *5)) (-4 *5 (-971)) (-5 *2 (-224 *4 *5)) - (-5 *1 (-873 *4 *5)) (-14 *4 (-588 (-1085)))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-694))))) -(((*1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1) (-5 *1 (-792))) - ((*1 *1 *1) (-4 *1 (-895))) ((*1 *1 *1) (-5 *1 (-1032)))) + (-12 (-5 *2 (-589 (-614 *3))) (-5 *1 (-824 *3)) (-4 *3 (-786))))) (((*1 *2 *2) - (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-135)) - (-4 *3 (-283)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *1 (-904 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1081 (-881 *6))) (-4 *6 (-514)) - (-4 *2 (-878 (-382 (-881 *6)) *5 *4)) (-5 *1 (-670 *5 *4 *6 *2)) - (-4 *5 (-730)) - (-4 *4 (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $)))))))) -(((*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4239)) (-4 *1 (-348 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1) - (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1142 *4)) (-4 *4 (-1124)) - (-4 *1 (-317 *4 *3 *5)) (-4 *5 (-1142 (-382 *3)))))) -(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-110))) - ((*1 *1 *1) (-5 *1 (-156))) ((*1 *1 *1) (-4 *1 (-507))) - ((*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-971)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33))) - (-4 *3 (-13 (-1014) (-33)))))) -(((*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-895))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-971)) (-5 *1 (-418 *3 *2)) (-4 *2 (-1142 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-919 *2)) (-4 *2 (-514)) (-5 *1 (-130 *2 *4 *3)) - (-4 *3 (-348 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-919 *2)) (-4 *2 (-514)) (-5 *1 (-473 *2 *4 *5 *3)) - (-4 *5 (-348 *2)) (-4 *3 (-348 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-628 *4)) (-4 *4 (-919 *2)) (-4 *2 (-514)) - (-5 *1 (-631 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-919 *2)) (-4 *2 (-514)) (-5 *1 (-1135 *2 *4 *3)) - (-4 *3 (-1142 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33))) - (-4 *3 (-13 (-1014) (-33)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-338)) (-4 *4 (-514)) (-4 *5 (-1142 *4)) - (-5 *2 (-2 (|:| -3389 (-569 *4 *5)) (|:| -1898 (-382 *5)))) - (-5 *1 (-569 *4 *5)) (-5 *3 (-382 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-588 (-1074 *3 *4))) (-5 *1 (-1074 *3 *4)) - (-14 *3 (-850)) (-4 *4 (-971)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-426)) (-4 *3 (-971)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1142 *3))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-971)) (-4 *2 (-1014))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-588 (-893))) (-5 *1 (-267))))) -(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1068)) (-5 *2 (-522)) (-5 *1 (-1103 *4)) - (-4 *4 (-971))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1085)) (-5 *6 (-108)) - (-4 *7 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) - (-4 *3 (-13 (-1106) (-887) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-777 *3)) (|:| |f2| (-588 (-777 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-196 *7 *3)) (-5 *5 (-777 *3))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-693))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1068)) (-5 *3 (-711)) (-5 *1 (-110))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-1085)) (-5 *3 (-1018)) (-5 *1 (-267))))) -(((*1 *1 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) - (-4 *4 (-348 *2))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-393 *3)) (-4 *3 (-514))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) - (-5 *2 (-960)) (-5 *1 (-694))))) -(((*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-708)) (-5 *1 (-543))))) -(((*1 *2 *1) (-12 (-5 *2 (-588 (-872 (-202)))) (-5 *1 (-1167))))) -(((*1 *1 *2) - (-12 (-5 *2 (-382 *4)) (-4 *4 (-1142 *3)) (-4 *3 (-13 (-338) (-135))) - (-5 *1 (-374 *3 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-628 *3)) - (-4 *3 (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $))))) - (-4 *4 (-1142 *3)) (-5 *1 (-469 *3 *4 *5)) (-4 *5 (-384 *3 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) - (-4 *6 (-730)) (-5 *2 (-588 *3)) (-5 *1 (-853 *4 *5 *6 *3)) - (-4 *3 (-878 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-622 *4 *3)) (-4 *4 (-1014)) - (-4 *3 (-1014))))) -(((*1 *1 *1) (-4 *1 (-574))) + (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) + (-5 *1 (-917 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928) (-1106)))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-514)) (-4 *3 (-157)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2905 (-588 *1)))) - (-4 *1 (-342 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-427 *3 *4 *5 *6)) - (|:| -2905 (-588 (-427 *3 *4 *5 *6))))) - (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-850)) - (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-588 (-588 (-522)))) (-5 *1 (-898)) - (-5 *3 (-588 (-522)))))) + (-12 (-5 *2 (-589 *7)) (-4 *7 (-992 *3 *4 *5 *6)) (-4 *3 (-427)) + (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) + (-5 *1 (-1023 *3 *4 *5 *6 *7))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-522)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1120)) - (-4 *4 (-348 *2)) (-4 *5 (-348 *2)))) + (-12 (-5 *3 (-523)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1122)) + (-4 *4 (-349 *2)) (-4 *5 (-349 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4239)) (-4 *1 (-115 *3)) - (-4 *3 (-1120)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -4245)) (-4 *1 (-115 *3)) + (-4 *3 (-1122)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4239)) (-4 *1 (-115 *3)) - (-4 *3 (-1120)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -4245)) (-4 *1 (-115 *3)) + (-4 *3 (-1122)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4239)) (-4 *1 (-264 *3 *2)) (-4 *3 (-1014)) - (-4 *2 (-1120)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1085)) (-5 *1 (-577)))) + (-12 (|has| *1 (-6 -4245)) (-4 *1 (-265 *3 *2)) (-4 *3 (-1016)) + (-4 *2 (-1122)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1087)) (-5 *1 (-578)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1133 (-522))) (|has| *1 (-6 -4239)) (-4 *1 (-593 *2)) - (-4 *2 (-1120)))) + (-12 (-5 *3 (-1135 (-523))) (|has| *1 (-6 -4245)) (-4 *1 (-594 *2)) + (-4 *2 (-1122)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-588 (-522))) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) - (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) + (-12 (-5 *2 (-589 (-523))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4239)) (-4 *1 (-936 *2)) - (-4 *2 (-1120)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-1120)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -4245)) (-4 *1 (-938 *2)) + (-4 *2 (-1122)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-1122)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1097 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) + (-12 (-4 *1 (-1099 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) - (-4 *2 (-1120)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) + (-4 *2 (-1122)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4239)) (-4 *1 (-1154 *3)) - (-4 *3 (-1120)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4245)) (-4 *1 (-1156 *3)) + (-4 *3 (-1122)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) - (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1133 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1166 (-291 (-202)))) (-5 *4 (-588 (-1085))) - (-5 *2 (-628 (-291 (-202)))) (-5 *1 (-184)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1014)) (-4 *6 (-829 *5)) (-5 *2 (-628 *6)) - (-5 *1 (-630 *5 *6 *3 *4)) (-4 *3 (-348 *6)) - (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4238))))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-708)) (-4 *4 (-324)) (-5 *1 (-194 *4 *2)) - (-4 *2 (-1142 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-522)) (-5 *1 (-634 *2)) (-4 *2 (-1142 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1166 (-588 (-2 (|:| -3526 *4) (|:| -2882 (-1032)))))) - (-4 *4 (-324)) (-5 *2 (-628 *4)) (-5 *1 (-321 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1142 (-522)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-108))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) - (-4 *6 (-730)) (-4 *7 (-784)) - (-5 *2 (-2 (|:| |goodPols| (-588 *8)) (|:| |badPols| (-588 *8)))) - (-5 *1 (-904 *5 *6 *7 *8)) (-5 *4 (-588 *8))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1142 (-382 (-522)))) - (-5 *2 (-2 (|:| |den| (-522)) (|:| |gcdnum| (-522)))) - (-5 *1 (-842 *3 *4)) (-4 *4 (-1142 (-382 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1142 (-382 *2))) (-5 *2 (-522)) (-5 *1 (-842 *4 *3)) - (-4 *3 (-1142 (-382 *4)))))) -(((*1 *1 *1) - (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784)) - (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4))))) + (-12 (-5 *3 "first") (|has| *1 (-6 -4245)) (-4 *1 (-1156 *2)) + (-4 *2 (-1122))))) (((*1 *2 *1) - (-12 (-5 *2 (-802 (-894 *3) (-894 *3))) (-5 *1 (-894 *3)) - (-4 *3 (-895))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-628 *11)) (-5 *4 (-588 (-382 (-881 *8)))) - (-5 *5 (-708)) (-5 *6 (-1068)) (-4 *8 (-13 (-283) (-135))) - (-4 *11 (-878 *8 *10 *9)) (-4 *9 (-13 (-784) (-563 (-1085)))) - (-4 *10 (-730)) + (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) + (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-710)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-230 *4 *3 *5 *6)) (-4 *4 (-973)) (-4 *3 (-786)) + (-4 *5 (-243 *3)) (-4 *6 (-732)) (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-4 *1 (-243 *3)) (-4 *3 (-786)) (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-4 *1 (-325)) (-5 *2 (-852)))) + ((*1 *2 *3) + (-12 (-5 *3 (-312 *4 *5 *6 *7)) (-4 *4 (-13 (-344) (-339))) + (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) (-4 *7 (-318 *4 *5 *6)) + (-5 *2 (-710)) (-5 *1 (-368 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-772 (-852))))) + ((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-523)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) + ((*1 *2 *1) + (-12 (-4 *3 (-515)) (-5 *2 (-523)) (-5 *1 (-570 *3 *4)) + (-4 *4 (-1144 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-710)) (-4 *1 (-680 *4 *3)) (-4 *4 (-973)) + (-4 *3 (-786)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-680 *4 *3)) (-4 *4 (-973)) (-4 *3 (-786)) + (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-4 *1 (-800 *3)) (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-836 *3)) (-4 *3 (-1016)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-312 *5 *6 *7 *8)) (-4 *5 (-406 *4)) + (-4 *6 (-1144 *5)) (-4 *7 (-1144 (-383 *6))) + (-4 *8 (-318 *5 *6 *7)) (-4 *4 (-13 (-786) (-515) (-964 (-523)))) + (-5 *2 (-710)) (-5 *1 (-842 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-312 (-383 (-523)) *4 *5 *6)) + (-4 *4 (-1144 (-383 (-523)))) (-4 *5 (-1144 (-383 *4))) + (-4 *6 (-318 (-383 (-523)) *4 *5)) (-5 *2 (-710)) + (-5 *1 (-843 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-312 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-339)) + (-4 *7 (-1144 *6)) (-4 *4 (-1144 (-383 *7))) (-4 *8 (-318 *6 *7 *4)) + (-4 *9 (-13 (-344) (-339))) (-5 *2 (-710)) + (-5 *1 (-946 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1144 *3)) (-4 *3 (-973)) (-4 *3 (-515)) (-5 *2 (-710)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-691))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-589 *2)) (-4 *2 (-1016)) (-4 *2 (-1122))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-108)) (-5 *5 (-1018 (-710))) (-5 *6 (-710)) (-5 *2 - (-2 - (|:| |rgl| - (-588 - (-2 (|:| |eqzro| (-588 *11)) (|:| |neqzro| (-588 *11)) - (|:| |wcond| (-588 (-881 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1166 (-382 (-881 *8)))) - (|:| -2905 (-588 (-1166 (-382 (-881 *8)))))))))) - (|:| |rgsz| (-522)))) - (-5 *1 (-853 *8 *9 *10 *11)) (-5 *7 (-522))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-588 *3)) (-4 *3 (-878 *5 *6 *7)) (-4 *5 (-426)) - (-4 *6 (-730)) (-4 *7 (-784)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-423 *5 *6 *7 *3))))) + (-2 (|:| |contp| (-523)) + (|:| -1979 (-589 (-2 (|:| |irr| *3) (|:| -1227 (-523))))))) + (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-108)) (-5 *3 (-589 (-240))) (-5 *1 (-238))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-339)) (-5 *1 (-262 *3 *2)) (-4 *2 (-1159 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-794))))) (((*1 *2 *3) - (-12 (-5 *3 (-154 *5)) (-4 *5 (-13 (-405 *4) (-928) (-1106))) - (-4 *4 (-13 (-514) (-784))) - (-4 *2 (-13 (-405 (-154 *4)) (-928) (-1106))) - (-5 *1 (-551 *4 *5 *2))))) + (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) + (-5 *2 (-589 (-2 (|:| -3952 *1) (|:| -2625 (-589 *7))))) + (-5 *3 (-589 *7)) (-4 *1 (-1116 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-628 (-382 (-881 *4)))) (-4 *4 (-426)) - (-5 *2 (-588 (-3 (-382 (-881 *4)) (-1075 (-1085) (-881 *4))))) - (-5 *1 (-268 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-283)) (-4 *3 (-157)) (-4 *4 (-348 *3)) - (-4 *5 (-348 *3)) (-5 *2 (-2 (|:| -3450 *3) (|:| -4002 *3))) - (-5 *1 (-627 *3 *4 *5 *6)) (-4 *6 (-626 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -3450 *3) (|:| -4002 *3))) (-5 *1 (-638 *3)) - (-4 *3 (-283))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-803)) (-5 *3 (-588 (-239))) (-5 *1 (-237))))) -(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-740))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-338)) (-4 *3 (-1142 *4)) (-4 *5 (-1142 (-382 *3))) - (-4 *1 (-310 *4 *3 *5 *2)) (-4 *2 (-317 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-522)) (-4 *2 (-338)) (-4 *4 (-1142 *2)) - (-4 *5 (-1142 (-382 *4))) (-4 *1 (-310 *2 *4 *5 *6)) - (-4 *6 (-317 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-338)) (-4 *3 (-1142 *2)) (-4 *4 (-1142 (-382 *3))) - (-4 *1 (-310 *2 *3 *4 *5)) (-4 *5 (-317 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-338)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) - (-4 *1 (-310 *3 *4 *5 *2)) (-4 *2 (-317 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-388 *4 (-382 *4) *5 *6)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 *3 *4 *5)) (-4 *3 (-338)) - (-4 *1 (-310 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108))))) -(((*1 *1) (-5 *1 (-412)))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-588 (-881 *3))) (-4 *3 (-426)) - (-5 *1 (-335 *3 *4)) (-14 *4 (-588 (-1085))))) + (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-588 (-717 *3 (-794 *4)))) (-4 *3 (-426)) - (-14 *4 (-588 (-1085))) (-5 *1 (-573 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) - ((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-522)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1120)) - (-4 *4 (-348 *2)) (-4 *5 (-348 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4239)) (-4 *1 (-264 *3 *2)) (-4 *3 (-1014)) - (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-759))))) + (-12 (-4 *3 (-284)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) + (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-136)) + (-4 *3 (-284)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-906 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) + (-5 *1 (-696))))) +(((*1 *2 *3) + (-12 (-4 *4 (-427)) + (-5 *2 + (-589 + (-2 (|:| |eigval| (-3 (-383 (-883 *4)) (-1077 (-1087) (-883 *4)))) + (|:| |geneigvec| (-589 (-629 (-383 (-883 *4)))))))) + (-5 *1 (-269 *4)) (-5 *3 (-629 (-383 (-883 *4))))))) +(((*1 *1 *1) (-12 (-5 *1 (-471 *2)) (-14 *2 (-523)))) + ((*1 *1 *1) (-5 *1 (-1034)))) (((*1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784)) (-4 *2 (-426))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-522)) (-5 *5 (-154 (-202))) (-5 *6 (-1068)) - (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-696))))) + (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *2 (-1016)) (-4 *3 (-1016)) + (-4 *4 (-1016)) (-4 *5 (-1016)) (-4 *6 (-1016))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-589 *9)) (-5 *3 (-1 (-108) *9)) + (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-987 *6 *7 *8)) (-4 *6 (-515)) (-4 *7 (-732)) (-4 *8 (-786)) + (-5 *1 (-906 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-170)) (-5 *3 (-522)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-720 *2)) (-4 *2 (-157)))) + (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-171)) (-5 *3 (-523)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-710)) (-5 *1 (-722 *2)) (-4 *2 (-158)))) ((*1 *2 *3) - (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-871)) (-5 *3 (-522))))) + (-12 (-5 *2 (-1083 (-523))) (-5 *1 (-873)) (-5 *3 (-523))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-858))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-62 G)))) (-5 *2 (-962)) + (-5 *1 (-688))))) (((*1 *2 *3) - (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-514) (-135))) (-5 *1 (-499 *3 *2)) - (-4 *2 (-1157 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-4 *4 (-1142 *3)) - (-4 *5 (-662 *3 *4)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-1157 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-5 *1 (-504 *3 *2)) - (-4 *2 (-1157 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-13 (-514) (-135))) - (-5 *1 (-1062 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-105))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-4 *3 (-1014)) - (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-895))))) -(((*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-108))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-588 (-993 *4 *5 *2))) (-4 *4 (-1014)) - (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4)))) - (-4 *2 (-13 (-405 *5) (-815 *4) (-563 (-821 *4)))) - (-5 *1 (-53 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-588 (-993 *5 *6 *2))) (-5 *4 (-850)) (-4 *5 (-1014)) - (-4 *6 (-13 (-971) (-815 *5) (-784) (-563 (-821 *5)))) - (-4 *2 (-13 (-405 *6) (-815 *5) (-563 (-821 *5)))) - (-5 *1 (-53 *5 *6 *2))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-522)) (-5 *1 (-1066 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120))))) + (-12 (-5 *3 (-589 (-1070))) (-5 *2 (-1070)) (-5 *1 (-172)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-794))) (-5 *1 (-794))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-710)) (-5 *1 (-151 *3 *4)) + (-4 *3 (-152 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1122)) (-5 *2 (-710)) + (-5 *1 (-215 *3 *4 *5)) (-4 *3 (-216 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-786)) (-5 *2 (-710)) (-5 *1 (-405 *3 *4)) + (-4 *3 (-406 *4)))) + ((*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-507 *3)) (-4 *3 (-508)))) + ((*1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-710)))) + ((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-710)) (-5 *1 (-735 *3 *4)) + (-4 *3 (-736 *4)))) + ((*1 *2) + (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-920 *3 *4)) + (-4 *3 (-921 *4)))) + ((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-710)) (-5 *1 (-924 *3 *4)) + (-4 *3 (-925 *4)))) + ((*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-939 *3)) (-4 *3 (-940)))) + ((*1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-710)))) + ((*1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-981 *3)) (-4 *3 (-982))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) - (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4239)) (-4 *1 (-461 *3)) - (-4 *3 (-1120))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730)) - (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-299 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-124))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1092))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1016)) (-4 *2 (-831 *4)) (-5 *1 (-631 *4 *2 *5 *3)) + (-4 *5 (-349 *2)) (-4 *3 (-13 (-349 *4) (-10 -7 (-6 -4244))))))) +(((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-379 *3)) (-4 *3 (-380)))) + ((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-379 *3)) (-4 *3 (-380)))) + ((*1 *2 *2) (-12 (-5 *2 (-852)) (|has| *1 (-6 -4235)) (-4 *1 (-380)))) + ((*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852)))) + ((*1 *2 *1) (-12 (-4 *1 (-800 *3)) (-5 *2 (-1068 (-523)))))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-794))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-772 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-779 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) + (-5 *2 (-962)) (-5 *1 (-692))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *1) (-12 (-5 *2 (-589 (-160))) (-5 *1 (-1003))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-721 *2)) (-4 *2 (-515)) (-4 *2 (-973)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1144 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-515)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *3 (-987 *4 *5 *6)) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *1)))) + (-4 *1 (-992 *4 *5 *6 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-201 *2 *3)) (-4 *2 (-13 (-973) (-786))) + (-14 *3 (-589 (-1087)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) + (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-589 *3)) (-5 *1 (-891 *3)) (-4 *3 (-508))))) +(((*1 *2 *2) + (-12 (-4 *3 (-427)) (-4 *3 (-786)) (-4 *3 (-964 (-523))) + (-4 *3 (-515)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) + (-4 *2 + (-13 (-339) (-279) + (-10 -8 (-15 -2785 ((-1039 *3 (-562 $)) $)) + (-15 -2797 ((-1039 *3 (-562 $)) $)) + (-15 -1458 ($ (-1039 *3 (-562 $)))))))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-589 (-1141 *5 *4))) + (-5 *1 (-1030 *4 *5)) (-5 *3 (-1141 *5 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) + ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1083 *9)) (-5 *4 (-589 *7)) (-5 *5 (-589 *8)) + (-4 *7 (-786)) (-4 *8 (-973)) (-4 *9 (-880 *8 *6 *7)) (-4 *6 (-732)) + (-5 *2 (-1083 *8)) (-5 *1 (-297 *6 *7 *8 *9))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-339) (-784))) + (-5 *2 (-589 (-2 (|:| -1979 (-589 *3)) (|:| -3314 *5)))) + (-5 *1 (-165 *5 *3)) (-4 *3 (-1144 (-155 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-339) (-784))) + (-5 *2 (-589 (-2 (|:| -1979 (-589 *3)) (|:| -3314 *4)))) + (-5 *1 (-165 *4 *3)) (-4 *3 (-1144 (-155 *4)))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-973)) + (-5 *1 (-1072 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-523)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-973)) + (-14 *4 (-1087)) (-14 *5 *3)))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *2 (-962)) + (-5 *1 (-695))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1016))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) - (-4 *5 (-348 *3)) (-5 *2 (-588 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4238)) (-4 *1 (-461 *3)) (-4 *3 (-1120)) - (-5 *2 (-588 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) - ((*1 *1 *1) (-5 *1 (-792)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-971))))) + (-12 (-5 *2 (-1068 (-2 (|:| |k| (-523)) (|:| |c| *3)))) + (-5 *1 (-548 *3)) (-4 *3 (-973))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) + (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) + (-5 *1 (-727)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-523)) (-5 *6 (-1 (-1173) (-1168 *5) (-1168 *5) (-355))) + (-5 *3 (-1168 (-355))) (-5 *5 (-355)) (-5 *2 (-1173)) + (-5 *1 (-727))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1122)) + (-4 *5 (-349 *4)) (-4 *2 (-349 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-523)) (-4 *1 (-976 *4 *5 *6 *7 *2)) (-4 *6 (-973)) + (-4 *7 (-216 *5 *6)) (-4 *2 (-216 *4 *6))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-589 *11)) (-5 *5 (-589 (-1083 *9))) + (-5 *6 (-589 *9)) (-5 *7 (-589 *12)) (-5 *8 (-589 (-710))) + (-4 *11 (-786)) (-4 *9 (-284)) (-4 *12 (-880 *9 *10 *11)) + (-4 *10 (-732)) (-5 *2 (-589 (-1083 *12))) + (-5 *1 (-647 *10 *11 *9 *12)) (-5 *3 (-1083 *12))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1122))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3) + (-12 (-4 *1 (-851)) (-5 *2 (-2 (|:| -2935 (-589 *1)) (|:| -3441 *1))) + (-5 *3 (-589 *1))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-588 (-708))) (-5 *1 (-897 *4 *3)) - (-4 *3 (-1142 *4))))) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-917 *4 *5 *6 *7 *3)) + (-4 *3 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-271 *6)) (-5 *4 (-110)) (-4 *6 (-406 *5)) + (-4 *5 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) + (-5 *1 (-293 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-271 *7)) (-5 *4 (-110)) (-5 *5 (-589 *7)) + (-4 *7 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) + (-5 *2 (-51)) (-5 *1 (-293 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-589 (-271 *7))) (-5 *4 (-589 (-110))) (-5 *5 (-271 *7)) + (-4 *7 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) + (-5 *2 (-51)) (-5 *1 (-293 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-589 (-271 *8))) (-5 *4 (-589 (-110))) (-5 *5 (-271 *8)) + (-5 *6 (-589 *8)) (-4 *8 (-406 *7)) + (-4 *7 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) + (-5 *1 (-293 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-589 *7)) (-5 *4 (-589 (-110))) (-5 *5 (-271 *7)) + (-4 *7 (-406 *6)) (-4 *6 (-13 (-786) (-515) (-564 (-499)))) + (-5 *2 (-51)) (-5 *1 (-293 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 (-110))) (-5 *6 (-589 (-271 *8))) + (-4 *8 (-406 *7)) (-5 *5 (-271 *8)) + (-4 *7 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) + (-5 *1 (-293 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-271 *5)) (-5 *4 (-110)) (-4 *5 (-406 *6)) + (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) + (-5 *1 (-293 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-110)) (-5 *5 (-271 *3)) (-4 *3 (-406 *6)) + (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) + (-5 *1 (-293 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-110)) (-5 *5 (-271 *3)) (-4 *3 (-406 *6)) + (-4 *6 (-13 (-786) (-515) (-564 (-499)))) (-5 *2 (-51)) + (-5 *1 (-293 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-110)) (-5 *5 (-271 *3)) (-5 *6 (-589 *3)) + (-4 *3 (-406 *7)) (-4 *7 (-13 (-786) (-515) (-564 (-499)))) + (-5 *2 (-51)) (-5 *1 (-293 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-1173)) (-5 *1 (-355)))) + ((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-355))))) +(((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-823 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1122)) (-5 *2 (-710))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-515)) (-5 *1 (-899 *3 *2)) (-4 *2 (-1144 *3))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) - (-5 *2 (-2 (|:| |radicand| (-382 *5)) (|:| |deg| (-708)))) - (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1142 (-382 *5)))))) + (-12 (-5 *3 (-710)) (-5 *2 (-1 (-1068 (-883 *4)) (-1068 (-883 *4)))) + (-5 *1 (-1176 *4)) (-4 *4 (-339))))) (((*1 *2 *3) - (-12 (-5 *3 (-588 (-291 (-202)))) (-5 *2 (-108)) (-5 *1 (-243)))) - ((*1 *2 *3) (-12 (-5 *3 (-291 (-202))) (-5 *2 (-108)) (-5 *1 (-243)))) - ((*1 *2 *3) - (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) - (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6))))) + (-12 (-5 *3 (-523)) (-4 *4 (-1144 (-383 *3))) (-5 *2 (-852)) + (-5 *1 (-844 *4 *5)) (-4 *5 (-1144 (-383 *4)))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-158)) (-4 *2 (-515)))) + ((*1 *1 *1) (|partial| -4 *1 (-662)))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-339)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-984)))) + ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-984))))) +(((*1 *2 *1) (-12 (-4 *1 (-302 *3 *2)) (-4 *3 (-973)) (-4 *2 (-731)))) + ((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) + ((*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-973)) (-5 *2 (-710)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-589 *6)) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-973)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 (-710))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-880 *4 *5 *3)) (-4 *4 (-973)) (-4 *5 (-732)) + (-4 *3 (-786)) (-5 *2 (-710))))) +(((*1 *1 *1) (-5 *1 (-203))) + ((*1 *1 *1) + (-12 (-5 *1 (-315 *2 *3 *4)) (-14 *2 (-589 (-1087))) + (-14 *3 (-589 (-1087))) (-4 *4 (-363)))) + ((*1 *1 *1) (-5 *1 (-355))) ((*1 *1) (-5 *1 (-355)))) (((*1 *2 *1) - (-12 (-4 *4 (-1014)) (-5 *2 (-818 *3 *5)) (-5 *1 (-814 *3 *4 *5)) - (-4 *3 (-1014)) (-4 *5 (-608 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-603))) ((*1 *1 *1 *1) (-5 *1 (-1032)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-690))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-685))))) + (-12 (-5 *2 (-108)) (-5 *1 (-1076 *3 *4)) (-14 *3 (-852)) + (-4 *4 (-973))))) +(((*1 *2) + (-12 (-4 *1 (-325)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-784) (-339))) (-5 *2 (-108)) (-5 *1 (-983 *4 *3)) + (-4 *3 (-1144 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-852)) (-5 *1 (-725))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-4 *4 (-971)) - (-4 *2 (-13 (-379) (-962 *4) (-338) (-1106) (-260))) - (-5 *1 (-417 *4 *3 *2)) (-4 *3 (-1142 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-850)) (-4 *5 (-971)) - (-4 *2 (-13 (-379) (-962 *5) (-338) (-1106) (-260))) - (-5 *1 (-417 *5 *3 *2)) (-4 *3 (-1142 *5))))) -(((*1 *1) (-5 *1 (-412)))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-202)) - (-5 *2 - (-2 (|:| |brans| (-588 (-588 (-872 *4)))) - (|:| |xValues| (-1009 *4)) (|:| |yValues| (-1009 *4)))) - (-5 *1 (-141)) (-5 *3 (-588 (-588 (-872 *4))))))) + (-12 (-5 *3 (-1168 *4)) (-4 *4 (-585 (-523))) (-5 *2 (-108)) + (-5 *1 (-1193 *4))))) (((*1 *2) - (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-392 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-901)) (-5 *2 (-1009 (-202)))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4238)) (-4 *1 (-139 *2)) (-4 *2 (-1120)) - (-4 *2 (-1014))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *1 *2) (-12 (-5 *2 (-756 *3)) (-4 *3 (-784)) (-5 *1 (-613 *3))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784)) (-4 *2 (-514)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784)) (-4 *2 (-514))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-108)) (-5 *3 (-881 *6)) (-5 *4 (-1085)) - (-5 *5 (-777 *7)) - (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-4 *7 (-13 (-1106) (-29 *6))) (-5 *1 (-201 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1081 *6)) (-5 *4 (-777 *6)) - (-4 *6 (-13 (-1106) (-29 *5))) - (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-201 *5 *6))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-561 *4)) (-5 *6 (-1081 *4)) - (-4 *4 (-13 (-405 *7) (-27) (-1106))) - (-4 *7 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2905 (-588 *4)))) - (-5 *1 (-518 *7 *4 *3)) (-4 *3 (-598 *4)) (-4 *3 (-1014)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-561 *4)) (-5 *6 (-382 (-1081 *4))) - (-4 *4 (-13 (-405 *7) (-27) (-1106))) - (-4 *7 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2905 (-588 *4)))) - (-5 *1 (-518 *7 *4 *3)) (-4 *3 (-598 *4)) (-4 *3 (-1014))))) + (-12 (-5 *2 (-2 (|:| -2279 (-589 *3)) (|:| -2566 (-589 *3)))) + (-5 *1 (-1123 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) (((*1 *2 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-588 *3)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-392 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-588 (-270 *4))) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784)) - (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1014)) (-5 *1 (-892 *2 *3)) (-4 *3 (-1014))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-501 *4 *2 *5 *6)) - (-4 *4 (-283)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-708)))))) -(((*1 *1) (-5 *1 (-129))) ((*1 *1 *1) (-5 *1 (-132))) - ((*1 *1 *1) (-4 *1 (-1054)))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-278)) (-5 *3 (-1085)) (-5 *2 (-108)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-108))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-784)) - (-5 *2 (-2 (|:| -3112 (-522)) (|:| |var| (-561 *1)))) - (-4 *1 (-405 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-883)) (-5 *2 (-1009 (-202))))) - ((*1 *2 *1) (-12 (-4 *1 (-901)) (-5 *2 (-1009 (-202)))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1014))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) - (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102)))) (-5 *2 (-960)) - (-5 *1 (-686))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-514)) (-4 *2 (-878 *3 *5 *4)) - (-5 *1 (-670 *5 *4 *6 *2)) (-5 *3 (-382 (-881 *6))) (-4 *5 (-730)) - (-4 *4 (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $)))))))) + (-12 (-5 *3 (-589 (-455 *4 *5))) (-14 *4 (-589 (-1087))) + (-4 *5 (-427)) + (-5 *2 + (-2 (|:| |gblist| (-589 (-225 *4 *5))) + (|:| |gvlist| (-589 (-523))))) + (-5 *1 (-577 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-338)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-532 *5 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-850)) (-5 *2 (-1171)) (-5 *1 (-1167)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-850)) (-5 *2 (-1171)) (-5 *1 (-1168))))) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *1) (-5 *1 (-108)))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-417 *3)) (-4 *3 (-1144 (-523)))))) +(((*1 *1 *1) (-5 *1 (-985)))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-852)) (-5 *1 (-725))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-338) (-782))) (-5 *1 (-164 *3 *2)) - (-4 *2 (-1142 (-154 *3)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-708)) (-4 *4 (-514)) (-5 *1 (-897 *4 *2)) - (-4 *2 (-1142 *4))))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-339)) (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4))) + (-5 *2 (-1168 *6)) (-5 *1 (-312 *3 *4 *5 *6)) + (-4 *6 (-318 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-964 (-523))) (-4 *1 (-279)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-836 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3078 *3) (|:| |coef1| (-721 *3)))) + (-5 *1 (-721 *3)) (-4 *3 (-515)) (-4 *3 (-973))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-708)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) - (-4 *3 (-985 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-588 *4)) - (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) - (-5 *1 (-988 *6 *7 *8 *3 *4)) (-4 *4 (-990 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-588 *4)) - (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) - (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-708)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) - (-4 *3 (-985 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-588 *4)) - (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) - (-5 *1 (-1055 *6 *7 *8 *3 *4)) (-4 *4 (-1023 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-588 *4)) - (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) - (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1023 *5 *6 *7 *3))))) -(((*1 *1) (-5 *1 (-760)))) -(((*1 *1) (-5 *1 (-517)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-588 (-522))) (-5 *1 (-224 *3 *4)) - (-14 *3 (-588 (-1085))) (-4 *4 (-971)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-588 (-522))) (-14 *3 (-588 (-1085))) - (-5 *1 (-428 *3 *4 *5)) (-4 *4 (-971)) - (-4 *5 (-215 (-3591 *3) (-708))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-588 (-522))) (-5 *1 (-454 *3 *4)) - (-14 *3 (-588 (-1085))) (-4 *4 (-971))))) -(((*1 *2 *1) (-12 (-5 *2 (-166)) (-5 *1 (-225))))) -(((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784)))) - ((*1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) - ((*1 *1 *1) (-12 (-5 *1 (-822 *2)) (-4 *2 (-784)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1114 *2 *3 *4 *5)) (-4 *2 (-514)) - (-4 *3 (-730)) (-4 *4 (-784)) (-4 *5 (-985 *2 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-708)) (-4 *1 (-1154 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-883)) (-5 *2 (-1009 (-202))))) - ((*1 *2 *1) (-12 (-4 *1 (-901)) (-5 *2 (-1009 (-202)))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1051 *2 *3)) (-4 *2 (-13 (-1014) (-33))) - (-4 *3 (-13 (-1014) (-33)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1085)) (-4 *4 (-514)) (-4 *4 (-784)) - (-5 *1 (-531 *4 *2)) (-4 *2 (-405 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-850)) (-5 *1 (-723))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2 *3) - (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) - (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-588 (-2 (|:| |totdeg| (-708)) (|:| -1976 *3)))) - (-5 *4 (-708)) (-4 *3 (-878 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730)) - (-4 *7 (-784)) (-5 *1 (-423 *5 *6 *7 *3))))) -(((*1 *1) (-5 *1 (-412)))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-588 (-522))) (-5 *3 (-108)) (-5 *1 (-1024))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-588 *10)) (-5 *5 (-108)) (-4 *10 (-990 *6 *7 *8 *9)) - (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *9 (-985 *6 *7 *8)) - (-5 *2 - (-588 - (-2 (|:| -3277 (-588 *9)) (|:| -1974 *10) (|:| |ineq| (-588 *9))))) - (-5 *1 (-915 *6 *7 *8 *9 *10)) (-5 *3 (-588 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-588 *10)) (-5 *5 (-108)) (-4 *10 (-990 *6 *7 *8 *9)) - (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *9 (-985 *6 *7 *8)) + (-12 (-5 *4 (-710)) (-5 *5 (-589 *3)) (-4 *3 (-284)) (-4 *6 (-786)) + (-4 *7 (-732)) (-5 *2 (-108)) (-5 *1 (-572 *6 *7 *3 *8)) + (-4 *8 (-880 *3 *7 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) + (-4 *5 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) (-5 *2 - (-588 - (-2 (|:| -3277 (-588 *9)) (|:| -1974 *10) (|:| |ineq| (-588 *9))))) - (-5 *1 (-1021 *6 *7 *8 *9 *10)) (-5 *3 (-588 *9))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *1) (-5 *1 (-108)))) + (-3 (|:| |%expansion| (-289 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070)))))) + (-5 *1 (-396 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1108) (-406 *5))) + (-14 *6 (-1087)) (-14 *7 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1118 *3)) (-4 *3 (-903))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-5 *2 (-523))))) (((*1 *2 *1) - (-12 (-4 *1 (-555 *3 *2)) (-4 *3 (-1014)) (-4 *3 (-784)) - (-4 *2 (-1120)))) - ((*1 *2 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784)))) - ((*1 *2 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1120)) (-5 *1 (-802 *2 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-613 *3)) (-5 *1 (-822 *3)) (-4 *3 (-784)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) - (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-708)) (-4 *1 (-1154 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120))))) + (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) + (-4 *3 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *6)) (-4 *5 (-1016)) + (-4 *6 (-1122)) (-5 *2 (-1 *6 *5)) (-5 *1 (-586 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *2)) (-4 *5 (-1016)) + (-4 *2 (-1122)) (-5 *1 (-586 *5 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 *5)) (-4 *6 (-1016)) + (-4 *5 (-1122)) (-5 *2 (-1 *5 *6)) (-5 *1 (-586 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *2)) (-4 *5 (-1016)) + (-4 *2 (-1122)) (-5 *1 (-586 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-589 *5)) (-5 *4 (-589 *6)) + (-4 *5 (-1016)) (-4 *6 (-1122)) (-5 *1 (-586 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1016)) (-4 *2 (-1122)) (-5 *1 (-586 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-133)) (-5 *2 (-710))))) +(((*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-589 *3)) (-4 *3 (-1122))))) +(((*1 *1 *2) + (-12 (-5 *2 (-383 *4)) (-4 *4 (-1144 *3)) (-4 *3 (-13 (-339) (-136))) + (-5 *1 (-375 *3 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) +(((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-306))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) (-5 *2 (-888 *3)) (-5 *1 (-1075 *4 *3)) + (-4 *3 (-1144 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-338)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) - (-5 *2 (-708)) (-5 *1 (-489 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) - (-4 *5 (-348 *3)) (-4 *3 (-514)) (-5 *2 (-708)))) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) + (|:| |lb| (-589 (-779 (-203)))) + (|:| |cf| (-589 (-292 (-203)))) + (|:| |ub| (-589 (-779 (-203)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-589 (-292 (-203)))) + (|:| -2262 (-589 (-203))))))) + (-5 *2 (-589 (-1070))) (-5 *1 (-244))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) ((*1 *2 *3) - (-12 (-4 *4 (-514)) (-4 *4 (-157)) (-4 *5 (-348 *4)) - (-4 *6 (-348 *4)) (-5 *2 (-708)) (-5 *1 (-627 *4 *5 *6 *3)) - (-4 *3 (-626 *4 *5 *6)))) + (-12 (-5 *2 (-108)) (-5 *1 (-528 *3)) (-4 *3 (-964 (-523))))) ((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) - (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-514)) - (-5 *2 (-708))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4239)) (-4 *1 (-221 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-258 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-129)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-132))))) -(((*1 *1 *1 *1) (-4 *1 (-283))) ((*1 *1 *1 *1) (-5 *1 (-708))) - ((*1 *1 *1 *1) (-5 *1 (-792)))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -2585 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-588 (-382 *8))) (-4 *7 (-338)) (-4 *8 (-1142 *7)) - (-5 *3 (-382 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-532 *7 *8))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-382 *5)) (-4 *4 (-1124)) (-4 *5 (-1142 *4)) - (-5 *1 (-136 *4 *5 *2)) (-4 *2 (-1142 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1087 (-382 (-522)))) (-5 *2 (-382 (-522))) - (-5 *1 (-169)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-628 (-291 (-202)))) (-5 *3 (-588 (-1085))) - (-5 *4 (-1166 (-291 (-202)))) (-5 *1 (-184)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-588 (-270 *3))) (-4 *3 (-285 *3)) (-4 *3 (-1014)) - (-4 *3 (-1120)) (-5 *1 (-270 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-285 *2)) (-4 *2 (-1014)) (-4 *2 (-1120)) - (-5 *1 (-270 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-278)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-588 *1))) (-4 *1 (-278)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 (-110))) (-5 *3 (-588 (-1 *1 (-588 *1)))) - (-4 *1 (-278)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 (-110))) (-5 *3 (-588 (-1 *1 *1))) (-4 *1 (-278)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-1 *1 *1)) (-4 *1 (-278)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-1 *1 (-588 *1))) (-4 *1 (-278)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-588 (-1 *1 (-588 *1)))) - (-4 *1 (-278)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-588 (-1 *1 *1))) (-4 *1 (-278)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-588 (-270 *3))) (-4 *1 (-285 *3)) (-4 *3 (-1014)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-270 *3)) (-4 *1 (-285 *3)) (-4 *3 (-1014)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-522))) (-5 *4 (-1087 (-382 (-522)))) - (-5 *1 (-286 *2)) (-4 *2 (-37 (-382 (-522)))))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 *4)) (-5 *3 (-588 *1)) (-4 *1 (-349 *4 *5)) - (-4 *4 (-784)) (-4 *5 (-157)))) - ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-349 *2 *3)) (-4 *2 (-784)) (-4 *3 (-157)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1085)) (-5 *3 (-708)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-405 *5)) (-4 *5 (-784)) (-4 *5 (-971)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1085)) (-5 *3 (-708)) (-5 *4 (-1 *1 (-588 *1))) - (-4 *1 (-405 *5)) (-4 *5 (-784)) (-4 *5 (-971)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-588 (-708))) - (-5 *4 (-588 (-1 *1 (-588 *1)))) (-4 *1 (-405 *5)) (-4 *5 (-784)) - (-4 *5 (-971)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-588 (-708))) - (-5 *4 (-588 (-1 *1 *1))) (-4 *1 (-405 *5)) (-4 *5 (-784)) - (-4 *5 (-971)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-588 (-110))) (-5 *3 (-588 *1)) (-5 *4 (-1085)) - (-4 *1 (-405 *5)) (-4 *5 (-784)) (-4 *5 (-563 (-498))))) - ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-1085)) (-4 *1 (-405 *4)) (-4 *4 (-784)) - (-4 *4 (-563 (-498))))) - ((*1 *1 *1) - (-12 (-4 *1 (-405 *2)) (-4 *2 (-784)) (-4 *2 (-563 (-498))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-588 (-1085))) (-4 *1 (-405 *3)) (-4 *3 (-784)) - (-4 *3 (-563 (-498))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1085)) (-4 *1 (-405 *3)) (-4 *3 (-784)) - (-4 *3 (-563 (-498))))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1120)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 *4)) (-5 *3 (-588 *5)) (-4 *1 (-483 *4 *5)) - (-4 *4 (-1014)) (-4 *5 (-1120)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-770 *3)) (-4 *3 (-338)) (-5 *1 (-656 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1014)))) - ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-382 (-881 *4))) (-5 *3 (-1085)) (-4 *4 (-514)) - (-5 *1 (-967 *4)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-588 (-1085))) (-5 *4 (-588 (-382 (-881 *5)))) - (-5 *2 (-382 (-881 *5))) (-4 *5 (-514)) (-5 *1 (-967 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-270 (-382 (-881 *4)))) (-5 *2 (-382 (-881 *4))) - (-4 *4 (-514)) (-5 *1 (-967 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-588 (-270 (-382 (-881 *4))))) (-5 *2 (-382 (-881 *4))) - (-4 *4 (-514)) (-5 *1 (-967 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1144 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1066 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-881 (-202))) (-5 *2 (-291 (-354))) (-5 *1 (-281))))) -(((*1 *2 *1) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-855)))) - ((*1 *2 *1) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-856))))) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1122))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3))))) +(((*1 *2) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-5 *2 (-629 (-383 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-310 *3 *4 *5 *6)) (-4 *3 (-338)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 *3 *4 *5)) - (-5 *2 - (-2 (|:| -1868 (-388 *4 (-382 *4) *5 *6)) (|:| |principalPart| *6))))) + (-12 (-5 *2 (-589 *4)) (-5 *1 (-1053 *3 *4)) + (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-402 *4 *2)) (-4 *2 (-13 (-1108) (-29 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338)) - (-5 *2 - (-2 (|:| |poly| *6) (|:| -3798 (-382 *6)) - (|:| |special| (-382 *6)))) - (-5 *1 (-665 *5 *6)) (-5 *3 (-382 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-338)) (-5 *2 (-588 *3)) (-5 *1 (-825 *3 *4)) - (-4 *3 (-1142 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-708)) (-4 *5 (-338)) - (-5 *2 (-2 (|:| -1993 *3) (|:| -2002 *3))) (-5 *1 (-825 *3 *5)) - (-4 *3 (-1142 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-588 *9)) (-5 *3 (-588 *8)) (-5 *4 (-108)) - (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) - (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-988 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-588 *9)) (-5 *3 (-588 *8)) (-5 *4 (-108)) - (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) - (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-988 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-588 *9)) (-5 *3 (-588 *8)) (-5 *4 (-108)) - (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-1023 *5 *6 *7 *8)) (-4 *5 (-426)) - (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-1055 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-588 *9)) (-5 *3 (-588 *8)) (-5 *4 (-108)) - (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-1023 *5 *6 *7 *8)) (-4 *5 (-426)) - (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-1055 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2 *3) - (-12 (-4 *4 (-971)) (-4 *3 (-1142 *4)) (-4 *2 (-1157 *4)) - (-5 *1 (-1160 *4 *3 *5 *2)) (-4 *5 (-598 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-588 (-561 *4))) (-4 *4 (-405 *3)) (-4 *3 (-784)) - (-5 *1 (-531 *3 *4)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-818 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-708)) (-4 *4 (-514)) (-5 *1 (-897 *4 *2)) - (-4 *2 (-1142 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 (-1009 (-382 (-522))))) (-5 *1 (-239)))) - ((*1 *1 *2) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *1 (-239))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-287)) (-5 *1 (-766))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) - (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-61 LSFUN2)))) - (-5 *2 (-960)) (-5 *1 (-691))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-426)) (-5 *2 (-108)) - (-5 *1 (-335 *4 *5)) (-14 *5 (-588 (-1085))))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-717 *4 (-794 *5)))) (-4 *4 (-426)) - (-14 *5 (-588 (-1085))) (-5 *2 (-108)) (-5 *1 (-573 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-158 *3)) (-4 *3 (-283))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1085)) (-5 *2 (-1089)) (-5 *1 (-1088))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-117 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1068)) - (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-108)) (-5 *1 (-201 *4 *5)) (-4 *5 (-13 (-1106) (-29 *4)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-393 (-1081 *1))) (-5 *1 (-291 *4)) (-5 *3 (-1081 *1)) - (-4 *4 (-426)) (-4 *4 (-514)) (-4 *4 (-784)))) - ((*1 *2 *3) - (-12 (-4 *1 (-838)) (-5 *2 (-393 (-1081 *1))) (-5 *3 (-1081 *1))))) -(((*1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-697))))) -(((*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1068))))) + (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) (-4 *5 (-136)) + (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-585 (-523)))) + (-5 *2 (-292 *5)) (-5 *1 (-543 *5))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1122)) (-5 *1 (-804 *3 *2)) (-4 *3 (-1122)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1122))))) +(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-5 *3 (-588 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-171)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-276)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-281))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-1085))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-426)))) - ((*1 *1 *1 *1) (-4 *1 (-426))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 *2)) (-5 *1 (-458 *2)) (-4 *2 (-1142 (-522))))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-522)) (-5 *1 (-634 *2)) (-4 *2 (-1142 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-708))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-730)) (-4 *4 (-784)) (-4 *5 (-283)) - (-5 *1 (-845 *3 *4 *5 *2)) (-4 *2 (-878 *5 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *6 *4 *5)) - (-5 *1 (-845 *4 *5 *6 *2)) (-4 *4 (-730)) (-4 *5 (-784)) - (-4 *6 (-283)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1081 *6)) (-4 *6 (-878 *5 *3 *4)) (-4 *3 (-730)) - (-4 *4 (-784)) (-4 *5 (-283)) (-5 *1 (-845 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-1081 *7))) (-4 *4 (-730)) (-4 *5 (-784)) - (-4 *6 (-283)) (-5 *2 (-1081 *7)) (-5 *1 (-845 *4 *5 *6 *7)) - (-4 *7 (-878 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-850))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-426)) (-4 *3 (-514)) (-5 *1 (-897 *3 *2)) - (-4 *2 (-1142 *3)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784)) (-4 *2 (-426))))) -(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-233))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1166 *4)) (-4 *4 (-584 (-522))) (-5 *2 (-108)) - (-5 *1 (-1191 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *1 *1 *1) (-4 *1 (-283))) ((*1 *1 *1 *1) (-5 *1 (-708))) - ((*1 *1 *1 *1) (-5 *1 (-792)))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) - (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-68 APROD)))) (-5 *4 (-202)) - (-5 *2 (-960)) (-5 *1 (-694))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-1068)) (-5 *5 (-628 (-202))) - (-5 *2 (-960)) (-5 *1 (-685))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522))))) -(((*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-964))))) -(((*1 *1 *1) (-4 *1 (-514)))) -(((*1 *2 *3) (-12 (-5 *3 (-382 (-522))) (-5 *2 (-202)) (-5 *1 (-281))))) -(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-759))))) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-515)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-906 *4 *5 *6 *7))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-589 (-629 *4))) (-5 *2 (-629 *4)) (-4 *4 (-973)) + (-5 *1 (-956 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-589 *6) "failed") (-523) *6 *6)) (-4 *6 (-339)) + (-4 *7 (-1144 *6)) + (-5 *2 (-2 (|:| |answer| (-540 (-383 *7))) (|:| |a0| *6))) + (-5 *1 (-533 *6 *7)) (-5 *3 (-383 *7))))) +(((*1 *1 *1) (-4 *1 (-575))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930) (-1108)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167))))) -(((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-233))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1050 *3 *2)) (-4 *3 (-13 (-1014) (-33))) - (-4 *2 (-13 (-1014) (-33)))))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-589 (-589 (-589 *5)))) (-5 *3 (-1 (-108) *5 *5)) + (-5 *4 (-589 *5)) (-4 *5 (-786)) (-5 *1 (-1094 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-522))))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-756 *3)) (|:| |rm| (-756 *3)))) - (-5 *1 (-756 *3)) (-4 *3 (-784)))) - ((*1 *1 *1 *1) (-5 *1 (-792)))) -(((*1 *1 *1 *1) (-5 *1 (-202))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) - (-4 *2 (-405 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-708)) (-5 *2 (-1 (-354))) (-5 *1 (-964)))) - ((*1 *1 *1 *1) (-4 *1 (-1049)))) -(((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) - (-4 *3 (-342 *4)))) - ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) -(((*1 *2) - (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-5 *2 (-628 (-382 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-723))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101))))) -(((*1 *1) (-5 *1 (-1088)))) -(((*1 *1) (-5 *1 (-1001)))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-689))))) + (-12 (-4 *3 (-1144 *2)) (-4 *2 (-1144 *4)) (-5 *1 (-914 *4 *2 *3 *5)) + (-4 *4 (-325)) (-4 *5 (-664 *2 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-270 (-777 *3))) (-4 *3 (-13 (-27) (-1106) (-405 *5))) - (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) (-5 *2 (-589 *4)) + (-5 *1 (-1024 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-427)) + (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-906 *3 *4 *5 *6))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-523)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-5 *3 (-858)) (-5 *2 - (-3 (-777 *3) - (-2 (|:| |leftHandLimit| (-3 (-777 *3) "failed")) - (|:| |rightHandLimit| (-3 (-777 *3) "failed"))) - "failed")) - (-5 *1 (-581 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-270 *3)) (-5 *5 (-1068)) - (-4 *3 (-13 (-27) (-1106) (-405 *6))) - (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-777 *3)) (-5 *1 (-581 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-270 (-777 (-881 *5)))) (-4 *5 (-426)) + (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) + (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) + (-5 *1 (-142)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-858)) (-5 *4 (-383 (-523))) (-5 *2 - (-3 (-777 (-382 (-881 *5))) - (-2 (|:| |leftHandLimit| (-3 (-777 (-382 (-881 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-777 (-382 (-881 *5))) "failed"))) - "failed")) - (-5 *1 (-582 *5)) (-5 *3 (-382 (-881 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-270 (-382 (-881 *5)))) (-5 *3 (-382 (-881 *5))) - (-4 *5 (-426)) + (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) + (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) + (-5 *1 (-142)))) + ((*1 *2 *3) + (-12 (-5 *2 - (-3 (-777 *3) - (-2 (|:| |leftHandLimit| (-3 (-777 *3) "failed")) - (|:| |rightHandLimit| (-3 (-777 *3) "failed"))) - "failed")) - (-5 *1 (-582 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-270 (-382 (-881 *6)))) (-5 *5 (-1068)) - (-5 *3 (-382 (-881 *6))) (-4 *6 (-426)) (-5 *2 (-777 *3)) - (-5 *1 (-582 *6))))) -(((*1 *2 *3) + (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) + (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) + (-5 *1 (-142)) (-5 *3 (-589 (-874 (-203)))))) + ((*1 *2 *3) (-12 - (-5 *3 - (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) - (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) - (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) - (|:| |abserr| (-202)) (|:| |relerr| (-202)))) - (-5 *2 (-354)) (-5 *1 (-184))))) + (-5 *2 + (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) + (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) + (-5 *1 (-142)) (-5 *3 (-589 (-589 (-874 (-203))))))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-1011 (-355)))) (-5 *1 (-240)))) + ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-240))))) (((*1 *2 *1) - (-12 (-4 *1 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730)) - (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-202) (-202) (-202) (-202))) (-5 *1 (-239)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202) (-202))) (-5 *1 (-239)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-239))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-514)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-301 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729)) - (-4 *2 (-514)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-514))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) - (-4 *3 (-348 *2)) (-4 *4 (-348 *2)) (-4 *2 (-514)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-708))) + (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) + (-14 *4 (-589 (-1087))))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) + (-14 *4 (-589 (-1087)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-589 (-874 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 (-874 *3))) (-4 *3 (-973)) (-4 *1 (-1048 *3)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-514)))) - ((*1 *1 *1 *1) (-5 *1 (-792))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1142 *3)) (-4 *3 (-514)) - (-5 *1 (-897 *3 *4)))) + (-12 (-5 *2 (-589 (-589 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-974 *3 *4 *2 *5 *6)) (-4 *2 (-971)) - (-4 *5 (-215 *4 *2)) (-4 *6 (-215 *3 *2)) (-4 *2 (-514)))) - ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2) - (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) - (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171)) - (-5 *1 (-991 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) - (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171)) - (-5 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-442)))) -(((*1 *2 *3) - (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-218)) (-5 *3 (-1068)))) - ((*1 *2 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-218)))) - ((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-903 *3 *4 *2 *5)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *2 (-784)) (-4 *5 (-985 *3 *4 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-157)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-871)) (-5 *3 (-522))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-426)))) - ((*1 *1 *1 *1) (-4 *1 (-426)))) -(((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-637)) (-5 *1 (-281))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-124)))) -(((*1 *1 *2) - (-12 (-5 *2 (-1081 *3)) (-4 *3 (-971)) (-4 *1 (-1142 *3))))) + (-12 (-5 *2 (-589 (-874 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-973))))) (((*1 *2 *3) - (|partial| -12 (-4 *5 (-962 (-47))) - (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-4 *5 (-405 *4)) - (-5 *2 (-393 (-1081 (-47)))) (-5 *1 (-410 *4 *5 *3)) - (-4 *3 (-1142 *5))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-971)) (-5 *1 (-823 *2 *3)) (-4 *2 (-1142 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3))))) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) + (-4 *4 (-13 (-786) (-515)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-512))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) + (-5 *1 (-993 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) + (-5 *1 (-1024 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-283) (-135))) (-4 *4 (-13 (-784) (-563 (-1085)))) - (-4 *5 (-730)) (-5 *1 (-853 *3 *4 *5 *2)) (-4 *2 (-878 *3 *5 *4))))) + (|partial| -12 (-5 *2 (-589 (-823 *3))) (-5 *1 (-823 *3)) + (-4 *3 (-1016))))) (((*1 *2 *3) - (-12 (-5 *3 (-821 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-108) *5)) - (-5 *1 (-819 *4 *5)) (-4 *5 (-1120))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1081 *3)) (-4 *3 (-343)) (-4 *1 (-304 *3)) - (-4 *3 (-338))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-143)) (-5 *2 (-1171)) (-5 *1 (-1168))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-784)) (-5 *3 (-588 *6)) (-5 *5 (-588 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-588 *5)) (|:| |f3| *5) - (|:| |f4| (-588 *5)))) - (-5 *1 (-1092 *6)) (-5 *4 (-588 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) - (-5 *2 (-588 (-588 (-588 (-708)))))))) + (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-834 *3)) (-4 *3 (-1016)) (-5 *2 (-1018 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1016)) (-5 *2 (-1018 (-589 *4))) (-5 *1 (-835 *4)) + (-5 *3 (-589 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1016)) (-5 *2 (-1018 (-1018 *4))) (-5 *1 (-835 *4)) + (-5 *3 (-1018 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1018 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-620 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1016))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) (((*1 *2 *2) - (-12 (-4 *3 (-426)) (-4 *3 (-784)) (-4 *3 (-962 (-522))) - (-4 *3 (-514)) (-5 *1 (-40 *3 *2)) (-4 *2 (-405 *3)) - (-4 *2 - (-13 (-338) (-278) - (-10 -8 (-15 -2947 ((-1037 *3 (-561 $)) $)) - (-15 -2959 ((-1037 *3 (-561 $)) $)) - (-15 -2217 ($ (-1037 *3 (-561 $)))))))))) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-589 (-225 *4 *5))) (-5 *2 (-225 *4 *5)) + (-14 *4 (-589 (-1087))) (-4 *5 (-427)) (-5 *1 (-577 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-339)) (-5 *2 (-589 *3)) (-5 *1 (-876 *4 *3)) + (-4 *3 (-1144 *4))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4245)) (-4 *1 (-349 *2)) (-4 *2 (-1122)) + (-4 *2 (-786)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4245)) + (-4 *1 (-349 *3)) (-4 *3 (-1122))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) + (-5 *2 (-629 *4)))) + ((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-629 *4)) (-5 *1 (-392 *3 *4)) + (-4 *3 (-393 *4)))) + ((*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3))))) +(((*1 *2 *1) (-12 (-4 *3 (-973)) (-5 *2 (-589 *1)) (-4 *1 (-1048 *3))))) +(((*1 *1 *1) (-5 *1 (-985)))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) + (-5 *2 (-589 (-2 (|:| |val| *3) (|:| -3072 *4)))) + (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 *9)) (-4 *8 (-985 *5 *6 *7)) - (-4 *9 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) - (-4 *7 (-784)) (-5 *2 (-708)) (-5 *1 (-988 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-383 (-883 *5))) (-5 *4 (-1087)) + (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-271 (-292 *5)))) + (-5 *1 (-1043 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-383 (-883 *4))) (-4 *4 (-13 (-284) (-786) (-136))) + (-5 *2 (-589 (-271 (-292 *4)))) (-5 *1 (-1043 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 *9)) (-4 *8 (-985 *5 *6 *7)) - (-4 *9 (-1023 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) - (-4 *7 (-784)) (-5 *2 (-708)) (-5 *1 (-1055 *5 *6 *7 *8 *9))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-708)) (-4 *1 (-208 *4)) - (-4 *4 (-971)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-208 *3)) (-4 *3 (-971)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-210)) (-5 *2 (-708)))) - ((*1 *1 *1) (-4 *1 (-210))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-708)) (-4 *3 (-13 (-338) (-135))) (-5 *1 (-374 *3 *4)) - (-4 *4 (-1142 *3)))) + (-12 (-5 *3 (-271 (-383 (-883 *5)))) (-5 *4 (-1087)) + (-4 *5 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-271 (-292 *5)))) + (-5 *1 (-1043 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-271 (-383 (-883 *4)))) + (-4 *4 (-13 (-284) (-786) (-136))) (-5 *2 (-589 (-271 (-292 *4)))) + (-5 *1 (-1043 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) + (-4 *5 (-13 (-284) (-786) (-136))) + (-5 *2 (-589 (-589 (-271 (-292 *5))))) (-5 *1 (-1043 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-383 (-883 *4)))) + (-4 *4 (-13 (-284) (-786) (-136))) + (-5 *2 (-589 (-589 (-271 (-292 *4))))) (-5 *1 (-1043 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-271 (-383 (-883 *5))))) (-5 *4 (-589 (-1087))) + (-4 *5 (-13 (-284) (-786) (-136))) + (-5 *2 (-589 (-589 (-271 (-292 *5))))) (-5 *1 (-1043 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-589 (-271 (-383 (-883 *4))))) + (-4 *4 (-13 (-284) (-786) (-136))) + (-5 *2 (-589 (-589 (-271 (-292 *4))))) (-5 *1 (-1043 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-620 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) +(((*1 *1 *1) (-12 (-5 *1 (-1109 *2)) (-4 *2 (-1016))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-271 *2)) (-4 *2 (-666)) (-4 *2 (-1122))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-836 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-306))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-523)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-589 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-710)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-732)) (-4 *3 (-880 *4 *5 *6)) (-4 *4 (-427)) (-4 *6 (-786)) + (-5 *1 (-424 *4 *5 *6 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-973)) (-5 *1 (-1072 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-338) (-135))) (-5 *1 (-374 *2 *3)) - (-4 *3 (-1142 *2)))) - ((*1 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-971)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 *4)) (-5 *3 (-588 (-708))) (-4 *1 (-829 *4)) - (-4 *4 (-1014)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-708)) (-4 *1 (-829 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-588 *3)) (-4 *1 (-829 *3)) (-4 *3 (-1014)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1014))))) -(((*1 *1 *2) - (-12 (-5 *2 (-588 (-474 *3 *4 *5 *6))) (-4 *3 (-338)) (-4 *4 (-730)) - (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784)) - (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) - (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-588 *1)) (-5 *3 (-588 *7)) (-4 *1 (-990 *4 *5 *6 *7)) - (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *1)) - (-4 *1 (-990 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 *1)) - (-4 *1 (-990 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))) -(((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971))))) -(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) - (-4 *2 (-405 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1049)))) + (-12 (-5 *1 (-1160 *2 *3 *4)) (-4 *2 (-973)) (-14 *3 (-1087)) + (-14 *4 *2)))) +(((*1 *2 *3) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-523)) (-5 *1 (-459 *4)) + (-4 *4 (-1144 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-156)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 *7)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-426)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-1171)) - (-5 *1 (-423 *4 *5 *6 *7))))) -(((*1 *1 *1) (-5 *1 (-202))) - ((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) - ((*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) - (-4 *2 (-405 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) - (-4 *2 (-405 *3)))) - ((*1 *1 *1) (-4 *1 (-1049))) ((*1 *1 *1 *1) (-4 *1 (-1049)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1166 *6)) (-5 *4 (-1166 (-522))) (-5 *5 (-522)) - (-4 *6 (-1014)) (-5 *2 (-1 *6)) (-5 *1 (-943 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-283)) (-5 *1 (-638 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-354))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-559 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-5 *2 (-108))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) + (-12 (-4 *2 (-1016)) (-5 *1 (-894 *3 *2)) (-4 *3 (-1016))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1016)) (-5 *2 (-108)) (-5 *1 (-816 *3 *4 *5)) + (-4 *3 (-1016)) (-4 *5 (-609 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-820 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *3 (-523)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *2 (-1173)) (-5 *1 (-424 *4 *5 *6 *7)) (-4 *7 (-880 *4 *5 *6))))) +(((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-953 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-588 (-628 *3))) (-4 *3 (-971)) (-5 *1 (-953 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-953 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-588 (-628 *3))) (-4 *3 (-971)) (-5 *1 (-953 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-792)))) + (-12 (-5 *2 (-629 *3)) (-4 *3 (-973)) (-5 *1 (-630 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-339)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-4 *6 (-318 *3 *4 *5)) + (-5 *2 (-389 *4 (-383 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1168 *6)) (-4 *6 (-13 (-385 *4 *5) (-964 *4))) + (-4 *4 (-921 *3)) (-4 *5 (-1144 *4)) (-4 *3 (-284)) + (-5 *1 (-389 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-339)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-614 *3)) (-4 *3 (-786)) (-4 *1 (-350 *3 *4)) + (-4 *4 (-158))))) +(((*1 *2 *3) + (-12 (-5 *3 (-562 *5)) (-4 *5 (-406 *4)) (-4 *4 (-964 (-523))) + (-4 *4 (-13 (-786) (-515))) (-5 *2 (-1083 *5)) (-5 *1 (-31 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-562 *1)) (-4 *1 (-973)) (-4 *1 (-279)) + (-5 *2 (-1083 *1))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) - (-4 *6 (-730)) (-5 *2 (-588 (-588 (-522)))) - (-5 *1 (-853 *4 *5 *6 *7)) (-5 *3 (-522)) (-4 *7 (-878 *4 *6 *5))))) + (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *3)) + (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168 *4)) (-4 *4 (-325)) (-5 *2 (-1083 *4)) + (-5 *1 (-493 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-105)))) + ((*1 *2 *1) (-12 (-4 *1 (-125)) (-5 *2 (-710)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-523)) (-4 *1 (-349 *3)) (-4 *3 (-1122)) + (-4 *3 (-1016)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-349 *3)) (-4 *3 (-1122)) (-4 *3 (-1016)) + (-5 *2 (-523)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-349 *4)) (-4 *4 (-1122)) + (-5 *2 (-523)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-523)) (-5 *3 (-130)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-523))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1166 *5)) (-4 *5 (-584 *4)) (-4 *4 (-514)) - (-5 *2 (-1166 *4)) (-5 *1 (-583 *4 *5))))) + (-12 (-4 *2 (-339)) (-4 *2 (-784)) (-5 *1 (-876 *2 *3)) + (-4 *3 (-1144 *2))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-723))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-108)) (-5 *1 (-547 *3)) (-4 *3 (-971))))) -(((*1 *2) - (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) - (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171)) - (-5 *1 (-991 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) - (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171)) - (-5 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6))))) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) + (-4 *4 (-13 (-786) (-515)))))) (((*1 *2) - (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) - (-5 *2 (-588 (-588 *4))) (-5 *1 (-316 *3 *4 *5 *6)) - (-4 *3 (-317 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-4 *3 (-343)) (-5 *2 (-588 (-588 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-338)) (-4 *3 (-971)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1368 *1))) - (-4 *1 (-786 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-4 *1 (-139 *3)))) + (-12 (-4 *3 (-515)) (-5 *2 (-589 (-629 *3))) (-5 *1 (-42 *3 *4)) + (-4 *4 (-393 *3))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-917 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-1023 *4 *5 *6 *7 *3)) (-4 *3 (-992 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-394 *6)) (-4 *6 (-1144 *5)) + (-4 *5 (-973)) (-5 *2 (-589 *6)) (-5 *1 (-419 *5 *6))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-5 *2 (-108)) + (-5 *1 (-820 *4 *5)) (-4 *5 (-1016)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-823 *5)) (-4 *5 (-1016)) (-5 *2 (-108)) + (-5 *1 (-821 *5 *3)) (-4 *3 (-1122)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *6)) (-5 *4 (-823 *5)) (-4 *5 (-1016)) + (-4 *6 (-1122)) (-5 *2 (-108)) (-5 *1 (-821 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-4 *1 (-140 *3)))) ((*1 *1 *2) (-12 - (-5 *2 (-588 (-2 (|:| -3858 (-708)) (|:| -1980 *4) (|:| |num| *4)))) - (-4 *4 (-1142 *3)) (-4 *3 (-13 (-338) (-135))) (-5 *1 (-374 *3 *4)))) + (-5 *2 (-589 (-2 (|:| -2735 (-710)) (|:| -1288 *4) (|:| |num| *4)))) + (-4 *4 (-1144 *3)) (-4 *3 (-13 (-339) (-136))) (-5 *1 (-375 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) - (-5 *3 (-588 (-881 (-522)))) (-5 *4 (-108)) (-5 *1 (-412)))) + (-12 (-5 *2 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-5 *3 (-589 (-883 (-523)))) (-5 *4 (-108)) (-5 *1 (-413)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) - (-5 *3 (-588 (-1085))) (-5 *4 (-108)) (-5 *1 (-412)))) + (-12 (-5 *2 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-5 *3 (-589 (-1087))) (-5 *4 (-108)) (-5 *1 (-413)))) ((*1 *2 *1) - (-12 (-5 *2 (-1066 *3)) (-5 *1 (-552 *3)) (-4 *3 (-1120)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-579 *2)) (-4 *2 (-157)))) + (-12 (-5 *2 (-1068 *3)) (-5 *1 (-553 *3)) (-4 *3 (-1122)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-580 *2)) (-4 *2 (-158)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-613 *3)) (-4 *3 (-784)) (-5 *1 (-606 *3 *4)) - (-4 *4 (-157)))) + (-12 (-5 *2 (-614 *3)) (-4 *3 (-786)) (-5 *1 (-607 *3 *4)) + (-4 *4 (-158)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-613 *3)) (-4 *3 (-784)) (-5 *1 (-606 *3 *4)) - (-4 *4 (-157)))) + (-12 (-5 *2 (-614 *3)) (-4 *3 (-786)) (-5 *1 (-607 *3 *4)) + (-4 *4 (-158)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-613 *3)) (-4 *3 (-784)) (-5 *1 (-606 *3 *4)) - (-4 *4 (-157)))) + (-12 (-5 *2 (-614 *3)) (-4 *3 (-786)) (-5 *1 (-607 *3 *4)) + (-4 *4 (-158)))) ((*1 *1 *2) - (-12 (-5 *2 (-588 (-588 (-588 *3)))) (-4 *3 (-1014)) - (-5 *1 (-616 *3)))) + (-12 (-5 *2 (-589 (-589 (-589 *3)))) (-4 *3 (-1016)) + (-5 *1 (-617 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-784)) (-4 *3 (-1014)) + (-12 (-5 *1 (-653 *2 *3 *4)) (-4 *2 (-786)) (-4 *3 (-1016)) (-14 *4 - (-1 (-108) (-2 (|:| -2882 *2) (|:| -3858 *3)) - (-2 (|:| -2882 *2) (|:| -3858 *3)))))) + (-1 (-108) (-2 (|:| -3878 *2) (|:| -2735 *3)) + (-2 (|:| -3878 *2) (|:| -2735 *3)))))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-802 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) + (-12 (-5 *1 (-804 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) ((*1 *1 *2) - (-12 (-5 *2 (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 *4)))) - (-4 *4 (-1014)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1014)))) + (-12 (-5 *2 (-589 (-2 (|:| -1853 (-1087)) (|:| -2433 *4)))) + (-4 *4 (-1016)) (-5 *1 (-820 *3 *4)) (-4 *3 (-1016)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-588 *5)) (-4 *5 (-13 (-1014) (-33))) - (-5 *2 (-588 (-1050 *3 *5))) (-5 *1 (-1050 *3 *5)) - (-4 *3 (-13 (-1014) (-33))))) + (-12 (-5 *4 (-589 *5)) (-4 *5 (-13 (-1016) (-33))) + (-5 *2 (-589 (-1052 *3 *5))) (-5 *1 (-1052 *3 *5)) + (-4 *3 (-13 (-1016) (-33))))) ((*1 *2 *3) - (-12 (-5 *3 (-588 (-2 (|:| |val| *4) (|:| -1974 *5)))) - (-4 *4 (-13 (-1014) (-33))) (-4 *5 (-13 (-1014) (-33))) - (-5 *2 (-588 (-1050 *4 *5))) (-5 *1 (-1050 *4 *5)))) + (-12 (-5 *3 (-589 (-2 (|:| |val| *4) (|:| -3072 *5)))) + (-4 *4 (-13 (-1016) (-33))) (-4 *5 (-13 (-1016) (-33))) + (-5 *2 (-589 (-1052 *4 *5))) (-5 *1 (-1052 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1974 *4))) - (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))) - (-5 *1 (-1050 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3072 *4))) + (-4 *3 (-13 (-1016) (-33))) (-4 *4 (-13 (-1016) (-33))) + (-5 *1 (-1052 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33))) - (-4 *3 (-13 (-1014) (-33))))) + (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) + (-4 *3 (-13 (-1016) (-33))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33))) - (-4 *3 (-13 (-1014) (-33))))) + (-12 (-5 *4 (-108)) (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1016) (-33))) + (-4 *3 (-13 (-1016) (-33))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-588 *3)) (-4 *3 (-13 (-1014) (-33))) - (-5 *1 (-1051 *2 *3)) (-4 *2 (-13 (-1014) (-33))))) + (-12 (-5 *4 (-589 *3)) (-4 *3 (-13 (-1016) (-33))) + (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1016) (-33))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-588 (-1050 *2 *3))) (-4 *2 (-13 (-1014) (-33))) - (-4 *3 (-13 (-1014) (-33))) (-5 *1 (-1051 *2 *3)))) + (-12 (-5 *4 (-589 (-1052 *2 *3))) (-4 *2 (-13 (-1016) (-33))) + (-4 *3 (-13 (-1016) (-33))) (-5 *1 (-1053 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-588 (-1051 *2 *3))) (-5 *1 (-1051 *2 *3)) - (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33))))) + (-12 (-5 *4 (-589 (-1053 *2 *3))) (-5 *1 (-1053 *2 *3)) + (-4 *2 (-13 (-1016) (-33))) (-4 *3 (-13 (-1016) (-33))))) ((*1 *1 *2) - (-12 (-5 *2 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33))) - (-4 *4 (-13 (-1014) (-33))) (-5 *1 (-1051 *3 *4)))) + (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1016) (-33))) + (-4 *4 (-13 (-1016) (-33))) (-5 *1 (-1053 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1075 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) -(((*1 *1 *2) - (-12 + (-12 (-5 *1 (-1077 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-589 *5) *6)) + (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *6 (-1144 *5)) + (-5 *2 (-589 (-2 (|:| |poly| *6) (|:| -1710 *3)))) + (-5 *1 (-748 *5 *6 *3 *7)) (-4 *3 (-599 *6)) + (-4 *7 (-599 (-383 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-589 *5) *6)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-4 *6 (-1144 *5)) + (-5 *2 (-589 (-2 (|:| |poly| *6) (|:| -1710 (-597 *6 (-383 *6)))))) + (-5 *1 (-751 *5 *6)) (-5 *3 (-597 *6 (-383 *6)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1135 (-523))) (-4 *1 (-594 *3)) (-4 *3 (-1122)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-594 *3)) (-4 *3 (-1122))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-589 *3)) (-4 *3 (-1025 *5 *6 *7 *8)) + (-4 *5 (-13 (-284) (-136))) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *8 (-987 *5 *6 *7)) (-5 *2 (-108)) + (-5 *1 (-545 *5 *6 *7 *8 *3))))) +(((*1 *2) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-5 *2 (-629 (-383 *4)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-786)) (-5 *2 - (-588 - (-2 - (|:| -2644 - (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) - (|:| |fn| (-1166 (-291 (-202)))) - (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) - (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) - (|:| |relerr| (-202)))) - (|:| -3149 - (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) - (|:| |expense| (-354)) (|:| |accuracy| (-354)) - (|:| |intermediateResults| (-354))))))) - (-5 *1 (-740))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-685))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-154 (-202)))) - (-5 *2 (-960)) (-5 *1 (-692))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-522)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1120)) - (-4 *5 (-348 *4)) (-4 *2 (-348 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-522)) (-4 *1 (-974 *4 *5 *6 *7 *2)) (-4 *6 (-971)) - (-4 *7 (-215 *5 *6)) (-4 *2 (-215 *4 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *3)) - (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792))))) + (-2 (|:| |f1| (-589 *4)) (|:| |f2| (-589 (-589 (-589 *4)))) + (|:| |f3| (-589 (-589 *4))) (|:| |f4| (-589 (-589 (-589 *4)))))) + (-5 *1 (-1094 *4)) (-5 *3 (-589 (-589 (-589 *4))))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-203)) (-5 *4 (-523)) (-5 *2 (-962)) (-5 *1 (-698))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1087)) + (-4 *4 (-13 (-786) (-284) (-964 (-523)) (-585 (-523)) (-136))) + (-5 *1 (-743 *4 *2)) (-4 *2 (-13 (-29 *4) (-1108) (-889))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-794))) ((*1 *1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1) (-5 *1 (-794))) + ((*1 *2 *3) + (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) (-4 *3 (-973))))) +(((*1 *2 *2) + (-12 (-4 *3 (-339)) (-4 *4 (-349 *3)) (-4 *5 (-349 *3)) + (-5 *1 (-490 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +(((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |pde| (-588 (-291 (-202)))) - (|:| |constraints| - (-588 - (-2 (|:| |start| (-202)) (|:| |finish| (-202)) - (|:| |grid| (-708)) (|:| |boundaryType| (-522)) - (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) - (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) - (|:| |tol| (-202)))) - (-5 *2 (-108)) (-5 *1 (-189))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-108)) (-5 *1 (-766))))) -(((*1 *2) - (-12 (-5 *2 (-850)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) - ((*1 *2 *2) - (-12 (-5 *2 (-850)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522)))))) -(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-157)))) + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (-5 *2 + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-172))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-710)) (-4 *4 (-325)) (-5 *1 (-195 *4 *2)) + (-4 *2 (-1144 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-858))))) +(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-158)))) ((*1 *1 *2) - (-12 (-5 *2 (-1166 *3)) (-4 *3 (-338)) (-14 *6 (-1166 (-628 *3))) - (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))))) - ((*1 *1 *2) (-12 (-5 *2 (-1037 (-522) (-561 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1120)))) + (-12 (-5 *2 (-1168 *3)) (-4 *3 (-339)) (-14 *6 (-1168 (-629 *3))) + (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-852)) (-14 *5 (-589 (-1087))))) + ((*1 *1 *2) (-12 (-5 *2 (-1039 (-523) (-562 (-47)))) (-5 *1 (-47)))) + ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1122)))) ((*1 *1 *2) - (-12 (-5 *2 (-1166 (-314 (-2227 'JINT 'X 'ELAM) (-2227) (-637)))) - (-5 *1 (-59 *3)) (-14 *3 (-1085)))) + (-12 (-5 *2 (-1168 (-315 (-1472 'JINT 'X 'ELAM) (-1472) (-638)))) + (-5 *1 (-59 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1166 (-314 (-2227) (-2227 'XC) (-637)))) - (-5 *1 (-61 *3)) (-14 *3 (-1085)))) + (-12 (-5 *2 (-1168 (-315 (-1472) (-1472 'XC) (-638)))) + (-5 *1 (-61 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-314 (-2227 'X) (-2227) (-637))) (-5 *1 (-62 *3)) - (-14 *3 (-1085)))) + (-12 (-5 *2 (-315 (-1472 'X) (-1472) (-638))) (-5 *1 (-62 *3)) + (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-628 (-314 (-2227) (-2227 'X 'HESS) (-637)))) - (-5 *1 (-63 *3)) (-14 *3 (-1085)))) + (-12 (-5 *2 (-629 (-315 (-1472) (-1472 'X 'HESS) (-638)))) + (-5 *1 (-63 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-314 (-2227) (-2227 'XC) (-637))) (-5 *1 (-64 *3)) - (-14 *3 (-1085)))) + (-12 (-5 *2 (-315 (-1472) (-1472 'XC) (-638))) (-5 *1 (-64 *3)) + (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1166 (-314 (-2227 'X) (-2227 '-1330) (-637)))) - (-5 *1 (-69 *3)) (-14 *3 (-1085)))) + (-12 (-5 *2 (-1168 (-315 (-1472 'X) (-1472 '-1294) (-638)))) + (-5 *1 (-69 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1166 (-314 (-2227) (-2227 'X) (-637)))) - (-5 *1 (-72 *3)) (-14 *3 (-1085)))) + (-12 (-5 *2 (-1168 (-315 (-1472) (-1472 'X) (-638)))) + (-5 *1 (-72 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1166 (-314 (-2227 'X 'EPS) (-2227 '-1330) (-637)))) - (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1085)) (-14 *4 (-1085)) - (-14 *5 (-1085)))) + (-12 (-5 *2 (-1168 (-315 (-1472 'X 'EPS) (-1472 '-1294) (-638)))) + (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1087)) (-14 *4 (-1087)) + (-14 *5 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1166 (-314 (-2227 'EPS) (-2227 'YA 'YB) (-637)))) - (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1085)) (-14 *4 (-1085)) - (-14 *5 (-1085)))) + (-12 (-5 *2 (-1168 (-315 (-1472 'EPS) (-1472 'YA 'YB) (-638)))) + (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1087)) (-14 *4 (-1087)) + (-14 *5 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-314 (-2227) (-2227 'X) (-637))) (-5 *1 (-75 *3)) - (-14 *3 (-1085)))) + (-12 (-5 *2 (-315 (-1472) (-1472 'X) (-638))) (-5 *1 (-75 *3)) + (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-314 (-2227) (-2227 'X) (-637))) (-5 *1 (-76 *3)) - (-14 *3 (-1085)))) + (-12 (-5 *2 (-315 (-1472) (-1472 'X) (-638))) (-5 *1 (-76 *3)) + (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1166 (-314 (-2227) (-2227 'XC) (-637)))) - (-5 *1 (-77 *3)) (-14 *3 (-1085)))) + (-12 (-5 *2 (-1168 (-315 (-1472) (-1472 'XC) (-638)))) + (-5 *1 (-77 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1166 (-314 (-2227) (-2227 'X) (-637)))) - (-5 *1 (-78 *3)) (-14 *3 (-1085)))) + (-12 (-5 *2 (-1168 (-315 (-1472) (-1472 'X) (-638)))) + (-5 *1 (-78 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1166 (-314 (-2227) (-2227 'X) (-637)))) - (-5 *1 (-79 *3)) (-14 *3 (-1085)))) + (-12 (-5 *2 (-1168 (-315 (-1472) (-1472 'X) (-638)))) + (-5 *1 (-79 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1166 (-314 (-2227 'X '-1330) (-2227) (-637)))) - (-5 *1 (-80 *3)) (-14 *3 (-1085)))) + (-12 (-5 *2 (-1168 (-315 (-1472 'X '-1294) (-1472) (-638)))) + (-5 *1 (-80 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-628 (-314 (-2227 'X '-1330) (-2227) (-637)))) - (-5 *1 (-81 *3)) (-14 *3 (-1085)))) + (-12 (-5 *2 (-629 (-315 (-1472 'X '-1294) (-1472) (-638)))) + (-5 *1 (-81 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-628 (-314 (-2227 'X) (-2227) (-637)))) (-5 *1 (-82 *3)) - (-14 *3 (-1085)))) + (-12 (-5 *2 (-629 (-315 (-1472 'X) (-1472) (-638)))) (-5 *1 (-82 *3)) + (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1166 (-314 (-2227 'X) (-2227) (-637)))) - (-5 *1 (-83 *3)) (-14 *3 (-1085)))) + (-12 (-5 *2 (-1168 (-315 (-1472 'X) (-1472) (-638)))) + (-5 *1 (-83 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-1166 (-314 (-2227 'X) (-2227 '-1330) (-637)))) - (-5 *1 (-84 *3)) (-14 *3 (-1085)))) + (-12 (-5 *2 (-1168 (-315 (-1472 'X) (-1472 '-1294) (-638)))) + (-5 *1 (-84 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-628 (-314 (-2227 'XL 'XR 'ELAM) (-2227) (-637)))) - (-5 *1 (-85 *3)) (-14 *3 (-1085)))) + (-12 (-5 *2 (-629 (-315 (-1472 'XL 'XR 'ELAM) (-1472) (-638)))) + (-5 *1 (-85 *3)) (-14 *3 (-1087)))) ((*1 *1 *2) - (-12 (-5 *2 (-314 (-2227 'X) (-2227 '-1330) (-637))) (-5 *1 (-87 *3)) - (-14 *3 (-1085)))) - ((*1 *2 *1) (-12 (-5 *2 (-930 2)) (-5 *1 (-103)))) - ((*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-103)))) + (-12 (-5 *2 (-315 (-1472 'X) (-1472 '-1294) (-638))) (-5 *1 (-87 *3)) + (-14 *3 (-1087)))) + ((*1 *2 *1) (-12 (-5 *2 (-932 2)) (-5 *1 (-103)))) + ((*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-103)))) ((*1 *1 *2) - (-12 (-5 *2 (-588 (-128 *3 *4 *5))) (-5 *1 (-128 *3 *4 *5)) - (-14 *3 (-522)) (-14 *4 (-708)) (-4 *5 (-157)))) + (-12 (-5 *2 (-589 (-128 *3 *4 *5))) (-5 *1 (-128 *3 *4 *5)) + (-14 *3 (-523)) (-14 *4 (-710)) (-4 *5 (-158)))) ((*1 *1 *2) - (-12 (-5 *2 (-588 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) - (-14 *3 (-522)) (-14 *4 (-708)))) + (-12 (-5 *2 (-589 *5)) (-4 *5 (-158)) (-5 *1 (-128 *3 *4 *5)) + (-14 *3 (-523)) (-14 *4 (-710)))) ((*1 *1 *2) - (-12 (-5 *2 (-1052 *4 *5)) (-14 *4 (-708)) (-4 *5 (-157)) - (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522)))) + (-12 (-5 *2 (-1054 *4 *5)) (-14 *4 (-710)) (-4 *5 (-158)) + (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)))) ((*1 *1 *2) - (-12 (-5 *2 (-217 *4 *5)) (-14 *4 (-708)) (-4 *5 (-157)) - (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522)))) + (-12 (-5 *2 (-218 *4 *5)) (-14 *4 (-710)) (-4 *5 (-158)) + (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)))) ((*1 *2 *3) - (-12 (-5 *3 (-1166 (-628 *4))) (-4 *4 (-157)) - (-5 *2 (-1166 (-628 (-382 (-881 *4))))) (-5 *1 (-168 *4)))) + (-12 (-5 *3 (-1168 (-629 *4))) (-4 *4 (-158)) + (-5 *2 (-1168 (-629 (-383 (-883 *4))))) (-5 *1 (-169 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-588 *3)) + (-12 (-5 *2 (-589 *3)) (-4 *3 - (-13 (-784) - (-10 -8 (-15 -2683 ((-1068) $ (-1085))) (-15 -1757 ((-1171) $)) - (-15 -2113 ((-1171) $))))) - (-5 *1 (-192 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-930 10)) (-5 *1 (-195)))) - ((*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-195)))) - ((*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-222 *3)) (-4 *3 (-784)))) - ((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-222 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1007 (-291 *4))) - (-4 *4 (-13 (-784) (-514) (-563 (-354)))) (-5 *2 (-1007 (-354))) - (-5 *1 (-234 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-242 *2)) (-4 *2 (-784)))) - ((*1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-251)))) + (-13 (-786) + (-10 -8 (-15 -3223 ((-1070) $ (-1087))) (-15 -3973 ((-1173) $)) + (-15 -2823 ((-1173) $))))) + (-5 *1 (-193 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-932 10)) (-5 *1 (-196)))) + ((*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-196)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 *3)) (-5 *1 (-223 *3)) (-4 *3 (-786)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-223 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1009 (-292 *4))) + (-4 *4 (-13 (-786) (-515) (-564 (-355)))) (-5 *2 (-1009 (-355))) + (-5 *1 (-235 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-243 *2)) (-4 *2 (-786)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-252)))) ((*1 *2 *1) - (-12 (-4 *2 (-1142 *3)) (-5 *1 (-265 *3 *2 *4 *5 *6 *7)) - (-4 *3 (-157)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-12 (-4 *2 (-1144 *3)) (-5 *1 (-266 *3 *2 *4 *5 *6 *7)) + (-4 *3 (-158)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1151 *4 *5 *6)) (-4 *4 (-13 (-27) (-1106) (-405 *3))) - (-14 *5 (-1085)) (-14 *6 *4) - (-4 *3 (-13 (-784) (-962 (-522)) (-584 (-522)) (-426))) - (-5 *1 (-288 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-305)))) + (-12 (-5 *2 (-1153 *4 *5 *6)) (-4 *4 (-13 (-27) (-1108) (-406 *3))) + (-14 *5 (-1087)) (-14 *6 *4) + (-4 *3 (-13 (-786) (-964 (-523)) (-585 (-523)) (-427))) + (-5 *1 (-289 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-306)))) ((*1 *2 *1) - (-12 (-5 *2 (-291 *5)) (-5 *1 (-314 *3 *4 *5)) - (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) + (-12 (-5 *2 (-292 *5)) (-5 *1 (-315 *3 *4 *5)) + (-14 *3 (-589 (-1087))) (-14 *4 (-589 (-1087))) (-4 *5 (-363)))) ((*1 *2 *3) - (-12 (-4 *4 (-324)) (-4 *2 (-304 *4)) (-5 *1 (-322 *3 *4 *2)) - (-4 *3 (-304 *4)))) + (-12 (-4 *4 (-325)) (-4 *2 (-305 *4)) (-5 *1 (-323 *3 *4 *2)) + (-4 *3 (-305 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-324)) (-4 *2 (-304 *4)) (-5 *1 (-322 *2 *4 *3)) - (-4 *3 (-304 *4)))) + (-12 (-4 *4 (-325)) (-4 *2 (-305 *4)) (-5 *1 (-323 *2 *4 *3)) + (-4 *3 (-305 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) - (-5 *2 (-1188 *3 *4)))) + (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) + (-5 *2 (-1190 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) - (-5 *2 (-1179 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-349 *2 *3)) (-4 *2 (-784)) (-4 *3 (-157)))) + (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) + (-5 *2 (-1181 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-786)) (-4 *3 (-158)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) - (-4 *1 (-358)))) - ((*1 *1 *2) (-12 (-5 *2 (-305)) (-4 *1 (-358)))) - ((*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-4 *1 (-358)))) - ((*1 *1 *2) (-12 (-5 *2 (-628 (-637))) (-4 *1 (-358)))) + (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) + (-4 *1 (-359)))) + ((*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-359)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-359)))) + ((*1 *1 *2) (-12 (-5 *2 (-629 (-638))) (-4 *1 (-359)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) - (-4 *1 (-359)))) - ((*1 *1 *2) (-12 (-5 *2 (-305)) (-4 *1 (-359)))) - ((*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-4 *1 (-359)))) - ((*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-1068)))) - ((*1 *1 *2) (-12 (-5 *2 (-1068)) (-4 *1 (-364)))) - ((*1 *2 *3) (-12 (-5 *2 (-369)) (-5 *1 (-368 *3)) (-4 *3 (-1014)))) - ((*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-369)))) + (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) + (-4 *1 (-360)))) + ((*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-360)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-360)))) + ((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1070)))) + ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-365)))) + ((*1 *2 *3) (-12 (-5 *2 (-370)) (-5 *1 (-369 *3)) (-4 *3 (-1016)))) + ((*1 *1 *2) (-12 (-5 *2 (-794)) (-5 *1 (-370)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) - (-4 *1 (-371)))) - ((*1 *1 *2) (-12 (-5 *2 (-305)) (-4 *1 (-371)))) - ((*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-4 *1 (-371)))) + (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) + (-4 *1 (-372)))) + ((*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-372)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-372)))) ((*1 *1 *2) - (-12 (-5 *2 (-270 (-291 (-154 (-354))))) (-5 *1 (-373 *3 *4 *5 *6)) - (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) - (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) + (-12 (-5 *2 (-271 (-292 (-155 (-355))))) (-5 *1 (-374 *3 *4 *5 *6)) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) - (-12 (-5 *2 (-270 (-291 (-354)))) (-5 *1 (-373 *3 *4 *5 *6)) - (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) - (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) + (-12 (-5 *2 (-271 (-292 (-355)))) (-5 *1 (-374 *3 *4 *5 *6)) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) - (-12 (-5 *2 (-270 (-291 (-522)))) (-5 *1 (-373 *3 *4 *5 *6)) - (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) - (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) + (-12 (-5 *2 (-271 (-292 (-523)))) (-5 *1 (-374 *3 *4 *5 *6)) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) - (-12 (-5 *2 (-291 (-154 (-354)))) (-5 *1 (-373 *3 *4 *5 *6)) - (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) - (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) + (-12 (-5 *2 (-292 (-155 (-355)))) (-5 *1 (-374 *3 *4 *5 *6)) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) - (-12 (-5 *2 (-291 (-354))) (-5 *1 (-373 *3 *4 *5 *6)) - (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) - (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) + (-12 (-5 *2 (-292 (-355))) (-5 *1 (-374 *3 *4 *5 *6)) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) - (-12 (-5 *2 (-291 (-522))) (-5 *1 (-373 *3 *4 *5 *6)) - (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) - (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) + (-12 (-5 *2 (-292 (-523))) (-5 *1 (-374 *3 *4 *5 *6)) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) - (-12 (-5 *2 (-270 (-291 (-632)))) (-5 *1 (-373 *3 *4 *5 *6)) - (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) - (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) + (-12 (-5 *2 (-271 (-292 (-633)))) (-5 *1 (-374 *3 *4 *5 *6)) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) - (-12 (-5 *2 (-270 (-291 (-637)))) (-5 *1 (-373 *3 *4 *5 *6)) - (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) - (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) + (-12 (-5 *2 (-271 (-292 (-638)))) (-5 *1 (-374 *3 *4 *5 *6)) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) - (-12 (-5 *2 (-270 (-291 (-639)))) (-5 *1 (-373 *3 *4 *5 *6)) - (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) - (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) + (-12 (-5 *2 (-271 (-292 (-640)))) (-5 *1 (-374 *3 *4 *5 *6)) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) - (-12 (-5 *2 (-291 (-632))) (-5 *1 (-373 *3 *4 *5 *6)) - (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) - (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) + (-12 (-5 *2 (-292 (-633))) (-5 *1 (-374 *3 *4 *5 *6)) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) - (-12 (-5 *2 (-291 (-637))) (-5 *1 (-373 *3 *4 *5 *6)) - (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) - (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) + (-12 (-5 *2 (-292 (-638))) (-5 *1 (-374 *3 *4 *5 *6)) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) - (-12 (-5 *2 (-291 (-639))) (-5 *1 (-373 *3 *4 *5 *6)) - (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) - (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) + (-12 (-5 *2 (-292 (-640))) (-5 *1 (-374 *3 *4 *5 *6)) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) - (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) - (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) - (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) + (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) + (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) + (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) - (-12 (-5 *2 (-588 (-305))) (-5 *1 (-373 *3 *4 *5 *6)) - (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) - (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) + (-12 (-5 *2 (-589 (-306))) (-5 *1 (-374 *3 *4 *5 *6)) + (-14 *3 (-1087)) (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) - (-12 (-5 *2 (-305)) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) - (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) - (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) + (-12 (-5 *2 (-306)) (-5 *1 (-374 *3 *4 *5 *6)) (-14 *3 (-1087)) + (-14 *4 (-3 (|:| |fst| (-410)) (|:| -3853 "void"))) + (-14 *5 (-589 (-1087))) (-14 *6 (-1091)))) ((*1 *1 *2) - (-12 (-5 *2 (-306 *4)) (-4 *4 (-13 (-784) (-21))) - (-5 *1 (-402 *3 *4)) (-4 *3 (-13 (-157) (-37 (-382 (-522))))))) + (-12 (-5 *2 (-307 *4)) (-4 *4 (-13 (-786) (-21))) + (-5 *1 (-403 *3 *4)) (-4 *3 (-13 (-158) (-37 (-383 (-523))))))) ((*1 *1 *2) - (-12 (-5 *1 (-402 *2 *3)) (-4 *2 (-13 (-157) (-37 (-382 (-522))))) - (-4 *3 (-13 (-784) (-21))))) + (-12 (-5 *1 (-403 *2 *3)) (-4 *2 (-13 (-158) (-37 (-383 (-523))))) + (-4 *3 (-13 (-786) (-21))))) ((*1 *1 *2) - (-12 (-5 *2 (-382 (-881 (-382 *3)))) (-4 *3 (-514)) (-4 *3 (-784)) - (-4 *1 (-405 *3)))) + (-12 (-5 *2 (-383 (-883 (-383 *3)))) (-4 *3 (-515)) (-4 *3 (-786)) + (-4 *1 (-406 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-881 (-382 *3))) (-4 *3 (-514)) (-4 *3 (-784)) - (-4 *1 (-405 *3)))) + (-12 (-5 *2 (-883 (-383 *3))) (-4 *3 (-515)) (-4 *3 (-786)) + (-4 *1 (-406 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-382 *3)) (-4 *3 (-514)) (-4 *3 (-784)) - (-4 *1 (-405 *3)))) + (-12 (-5 *2 (-383 *3)) (-4 *3 (-515)) (-4 *3 (-786)) + (-4 *1 (-406 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1037 *3 (-561 *1))) (-4 *3 (-971)) (-4 *3 (-784)) - (-4 *1 (-405 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-409)))) - ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-409)) (-5 *1 (-412)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-412)))) + (-12 (-5 *2 (-1039 *3 (-562 *1))) (-4 *3 (-973)) (-4 *3 (-786)) + (-4 *1 (-406 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-410)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-410)))) + ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-410)))) + ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-410)))) + ((*1 *1 *2) (-12 (-5 *2 (-410)) (-5 *1 (-413)))) + ((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-413)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) - (-4 *1 (-414)))) - ((*1 *1 *2) (-12 (-5 *2 (-305)) (-4 *1 (-414)))) - ((*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-4 *1 (-414)))) - ((*1 *1 *2) (-12 (-5 *2 (-1166 (-637))) (-4 *1 (-414)))) + (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) + (-4 *1 (-415)))) + ((*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-415)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-415)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168 (-638))) (-4 *1 (-415)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2077 (-588 (-305))))) - (-4 *1 (-415)))) - ((*1 *1 *2) (-12 (-5 *2 (-305)) (-4 *1 (-415)))) - ((*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-4 *1 (-415)))) + (-5 *2 (-2 (|:| |localSymbols| (-1091)) (|:| -3189 (-589 (-306))))) + (-4 *1 (-416)))) + ((*1 *1 *2) (-12 (-5 *2 (-306)) (-4 *1 (-416)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-306))) (-4 *1 (-416)))) ((*1 *1 *2) - (-12 (-5 *2 (-1166 (-382 (-881 *3)))) (-4 *3 (-157)) - (-14 *6 (-1166 (-628 *3))) (-5 *1 (-427 *3 *4 *5 *6)) - (-14 *4 (-850)) (-14 *5 (-588 (-1085))))) - ((*1 *1 *2) (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *1 (-442)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-442)))) + (-12 (-5 *2 (-1168 (-383 (-883 *3)))) (-4 *3 (-158)) + (-14 *6 (-1168 (-629 *3))) (-5 *1 (-428 *3 *4 *5 *6)) + (-14 *4 (-852)) (-14 *5 (-589 (-1087))))) + ((*1 *1 *2) (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *1 (-443)))) + ((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-443)))) ((*1 *1 *2) - (-12 (-5 *2 (-1151 *3 *4 *5)) (-4 *3 (-971)) (-14 *4 (-1085)) - (-14 *5 *3) (-5 *1 (-448 *3 *4 *5)))) + (-12 (-5 *2 (-1153 *3 *4 *5)) (-4 *3 (-973)) (-14 *4 (-1087)) + (-14 *5 *3) (-5 *1 (-449 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-448 *3 *4 *5)) - (-4 *3 (-971)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-5 *2 (-930 16)) (-5 *1 (-459)))) - ((*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-459)))) - ((*1 *1 *2) (-12 (-5 *2 (-1037 (-522) (-561 (-465)))) (-5 *1 (-465)))) - ((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-472)))) + (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-449 *3 *4 *5)) + (-4 *3 (-973)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-5 *2 (-932 16)) (-5 *1 (-460)))) + ((*1 *2 *1) (-12 (-5 *2 (-383 (-523))) (-5 *1 (-460)))) + ((*1 *1 *2) (-12 (-5 *2 (-1039 (-523) (-562 (-466)))) (-5 *1 (-466)))) + ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-473)))) ((*1 *1 *2) - (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-338)) - (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *6)))) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-880 *3 *4 *5)) (-4 *3 (-339)) + (-4 *4 (-732)) (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)))) ((*1 *1 *2) - (-12 (-4 *3 (-157)) (-5 *1 (-556 *3 *2)) (-4 *2 (-682 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-562 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-971)))) + (-12 (-4 *3 (-158)) (-5 *1 (-557 *3 *2)) (-4 *2 (-684 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-973)))) ((*1 *2 *1) - (-12 (-5 *2 (-1184 *3 *4)) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784)) - (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850)))) + (-12 (-5 *2 (-1186 *3 *4)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) + (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) ((*1 *2 *1) - (-12 (-5 *2 (-1179 *3 *4)) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784)) - (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850)))) + (-12 (-5 *2 (-1181 *3 *4)) (-5 *1 (-573 *3 *4 *5)) (-4 *3 (-786)) + (-4 *4 (-13 (-158) (-657 (-383 (-523))))) (-14 *5 (-852)))) ((*1 *1 *2) - (-12 (-4 *3 (-157)) (-5 *1 (-580 *3 *2)) (-4 *2 (-682 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-617 *3)) (-5 *1 (-613 *3)) (-4 *3 (-784)))) - ((*1 *2 *1) (-12 (-5 *2 (-756 *3)) (-5 *1 (-613 *3)) (-4 *3 (-784)))) + (-12 (-4 *3 (-158)) (-5 *1 (-581 *3 *2)) (-4 *2 (-684 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-758 *3)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) ((*1 *2 *1) - (-12 (-5 *2 (-886 (-886 (-886 *3)))) (-5 *1 (-616 *3)) - (-4 *3 (-1014)))) + (-12 (-5 *2 (-888 (-888 (-888 *3)))) (-5 *1 (-617 *3)) + (-4 *3 (-1016)))) ((*1 *1 *2) - (-12 (-5 *2 (-886 (-886 (-886 *3)))) (-4 *3 (-1014)) - (-5 *1 (-616 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-756 *3)) (-5 *1 (-617 *3)) (-4 *3 (-784)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-621 *3)) (-4 *3 (-1014)))) + (-12 (-5 *2 (-888 (-888 (-888 *3)))) (-4 *3 (-1016)) + (-5 *1 (-617 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-758 *3)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1016)))) ((*1 *1 *2) - (-12 (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *2)) (-4 *4 (-348 *3)) - (-4 *2 (-348 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-154 (-354))) (-5 *1 (-632)))) - ((*1 *1 *2) (-12 (-5 *2 (-154 (-639))) (-5 *1 (-632)))) - ((*1 *1 *2) (-12 (-5 *2 (-154 (-637))) (-5 *1 (-632)))) - ((*1 *1 *2) (-12 (-5 *2 (-154 (-522))) (-5 *1 (-632)))) - ((*1 *1 *2) (-12 (-5 *2 (-154 (-354))) (-5 *1 (-632)))) - ((*1 *1 *2) (-12 (-5 *2 (-639)) (-5 *1 (-637)))) - ((*1 *2 *1) (-12 (-5 *2 (-354)) (-5 *1 (-637)))) - ((*1 *2 *3) - (-12 (-5 *3 (-291 (-522))) (-5 *2 (-291 (-639))) (-5 *1 (-639)))) - ((*1 *1 *2) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1014)))) + (-12 (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *2)) (-4 *4 (-349 *3)) + (-4 *2 (-349 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-155 (-355))) (-5 *1 (-633)))) + ((*1 *1 *2) (-12 (-5 *2 (-155 (-640))) (-5 *1 (-633)))) + ((*1 *1 *2) (-12 (-5 *2 (-155 (-638))) (-5 *1 (-633)))) + ((*1 *1 *2) (-12 (-5 *2 (-155 (-523))) (-5 *1 (-633)))) + ((*1 *1 *2) (-12 (-5 *2 (-155 (-355))) (-5 *1 (-633)))) + ((*1 *1 *2) (-12 (-5 *2 (-640)) (-5 *1 (-638)))) + ((*1 *2 *1) (-12 (-5 *2 (-355)) (-5 *1 (-638)))) + ((*1 *2 *3) + (-12 (-5 *3 (-292 (-523))) (-5 *2 (-292 (-640))) (-5 *1 (-640)))) + ((*1 *1 *2) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1016)))) + ((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1070)) (-5 *1 (-650)))) ((*1 *2 *1) - (-12 (-4 *2 (-157)) (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-158)) (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-971)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1142 *3)))) + (-12 (-4 *3 (-973)) (-5 *1 (-652 *3 *2)) (-4 *2 (-1144 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -2882 *3) (|:| -3858 *4))) - (-5 *1 (-651 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-1014)) + (-12 (-5 *2 (-2 (|:| -3878 *3) (|:| -2735 *4))) + (-5 *1 (-653 *3 *4 *5)) (-4 *3 (-786)) (-4 *4 (-1016)) (-14 *5 (-1 (-108) *2 *2)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| -2882 *3) (|:| -3858 *4))) (-4 *3 (-784)) - (-4 *4 (-1014)) (-5 *1 (-651 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2)))) + (-12 (-5 *2 (-2 (|:| -3878 *3) (|:| -2735 *4))) (-4 *3 (-786)) + (-4 *4 (-1016)) (-5 *1 (-653 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-157)) (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-158)) (-5 *1 (-655 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-588 (-2 (|:| -3112 *3) (|:| -2623 *4)))) (-4 *3 (-971)) - (-4 *4 (-664)) (-5 *1 (-673 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-701)))) + (-12 (-5 *2 (-589 (-2 (|:| -2935 *3) (|:| -2302 *4)))) (-4 *3 (-973)) + (-4 *4 (-666)) (-5 *1 (-675 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-703)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) - (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) - (|:| |relerr| (-202)))) + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) (|:| |mdnia| - (-2 (|:| |fn| (-291 (-202))) - (|:| -2321 (-588 (-1009 (-777 (-202))))) - (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) - (-5 *1 (-706)))) + (-2 (|:| |fn| (-292 (-203))) + (|:| -3499 (-589 (-1011 (-779 (-203))))) + (|:| |abserr| (-203)) (|:| |relerr| (-203)))))) + (-5 *1 (-708)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-291 (-202))) - (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) - (|:| |relerr| (-202)))) - (-5 *1 (-706)))) + (-2 (|:| |fn| (-292 (-203))) + (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (-5 *1 (-708)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) - (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) - (|:| |relerr| (-202)))) - (-5 *1 (-706)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-706)))) - ((*1 *2 *3) (-12 (-5 *2 (-711)) (-5 *1 (-710 *3)) (-4 *3 (-1120)))) + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (-5 *1 (-708)))) + ((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-708)))) + ((*1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-712 *3)) (-4 *3 (-1122)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) - (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) - (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) - (|:| |abserr| (-202)) (|:| |relerr| (-202)))) - (-5 *1 (-745)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-745)))) + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) + (|:| |abserr| (-203)) (|:| |relerr| (-203)))) + (-5 *1 (-747)))) + ((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-747)))) ((*1 *2 *1) - (-12 (-4 *2 (-829 *3)) (-5 *1 (-754 *3 *2 *4)) (-4 *3 (-1014)) + (-12 (-4 *2 (-831 *3)) (-5 *1 (-756 *3 *2 *4)) (-4 *3 (-1016)) (-14 *4 *3))) ((*1 *1 *2) - (-12 (-4 *3 (-1014)) (-14 *4 *3) (-5 *1 (-754 *3 *2 *4)) - (-4 *2 (-829 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-761)))) + (-12 (-4 *3 (-1016)) (-14 *4 *3) (-5 *1 (-756 *3 *2 *4)) + (-4 *2 (-831 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-763)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) - (|:| |lb| (-588 (-777 (-202)))) - (|:| |cf| (-588 (-291 (-202)))) - (|:| |ub| (-588 (-777 (-202)))))) + (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) + (|:| |lb| (-589 (-779 (-203)))) + (|:| |cf| (-589 (-292 (-203)))) + (|:| |ub| (-589 (-779 (-203)))))) (|:| |lsa| - (-2 (|:| |lfn| (-588 (-291 (-202)))) - (|:| -3937 (-588 (-202))))))) - (-5 *1 (-775)))) + (-2 (|:| |lfn| (-589 (-292 (-203)))) + (|:| -2262 (-589 (-203))))))) + (-5 *1 (-777)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) - (-5 *1 (-775)))) + (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) + (-5 *1 (-777)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) - (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) - (|:| |ub| (-588 (-777 (-202)))))) - (-5 *1 (-775)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-775)))) + (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) + (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) + (|:| |ub| (-589 (-779 (-203)))))) + (-5 *1 (-777)))) + ((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-777)))) ((*1 *1 *2) - (-12 (-5 *2 (-1162 *3)) (-14 *3 (-1085)) (-5 *1 (-789 *3 *4 *5 *6)) - (-4 *4 (-971)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-791)))) + (-12 (-5 *2 (-1164 *3)) (-14 *3 (-1087)) (-5 *1 (-791 *3 *4 *5 *6)) + (-4 *4 (-973)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-793)))) ((*1 *1 *2) - (-12 (-5 *2 (-881 *3)) (-4 *3 (-971)) (-5 *1 (-795 *3 *4 *5 *6)) - (-14 *4 (-588 (-1085))) (-14 *5 (-588 (-708))) (-14 *6 (-708)))) + (-12 (-5 *2 (-883 *3)) (-4 *3 (-973)) (-5 *1 (-797 *3 *4 *5 *6)) + (-14 *4 (-589 (-1087))) (-14 *5 (-589 (-710))) (-14 *6 (-710)))) ((*1 *2 *1) - (-12 (-5 *2 (-881 *3)) (-5 *1 (-795 *3 *4 *5 *6)) (-4 *3 (-971)) - (-14 *4 (-588 (-1085))) (-14 *5 (-588 (-708))) (-14 *6 (-708)))) - ((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))) + (-12 (-5 *2 (-883 *3)) (-5 *1 (-797 *3 *4 *5 *6)) (-4 *3 (-973)) + (-14 *4 (-589 (-1087))) (-14 *5 (-589 (-710))) (-14 *6 (-710)))) + ((*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805)))) ((*1 *2 *3) - (-12 (-5 *3 (-881 (-47))) (-5 *2 (-291 (-522))) (-5 *1 (-804)))) + (-12 (-5 *3 (-883 (-47))) (-5 *2 (-292 (-523))) (-5 *1 (-806)))) ((*1 *2 *3) - (-12 (-5 *3 (-382 (-881 (-47)))) (-5 *2 (-291 (-522))) - (-5 *1 (-804)))) - ((*1 *1 *2) (-12 (-5 *1 (-822 *2)) (-4 *2 (-784)))) - ((*1 *2 *1) (-12 (-5 *2 (-756 *3)) (-5 *1 (-822 *3)) (-4 *3 (-784)))) + (-12 (-5 *3 (-383 (-883 (-47)))) (-5 *2 (-292 (-523))) + (-5 *1 (-806)))) + ((*1 *1 *2) (-12 (-5 *1 (-824 *2)) (-4 *2 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-758 *3)) (-5 *1 (-824 *3)) (-4 *3 (-786)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-588 (-291 (-202)))) + (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| - (-588 - (-2 (|:| |start| (-202)) (|:| |finish| (-202)) - (|:| |grid| (-708)) (|:| |boundaryType| (-522)) - (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) - (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) - (|:| |tol| (-202)))) - (-5 *1 (-827)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-827)))) + (-589 + (-2 (|:| |start| (-203)) (|:| |finish| (-203)) + (|:| |grid| (-710)) (|:| |boundaryType| (-523)) + (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) + (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) + (|:| |tol| (-203)))) + (-5 *1 (-829)))) + ((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-829)))) ((*1 *2 *1) - (-12 (-5 *2 (-1107 *3)) (-5 *1 (-830 *3)) (-4 *3 (-1014)))) + (-12 (-5 *2 (-1109 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1016)))) ((*1 *1 *2) - (-12 (-5 *2 (-588 (-834 *3))) (-4 *3 (-1014)) (-5 *1 (-833 *3)))) + (-12 (-5 *2 (-589 (-836 *3))) (-4 *3 (-1016)) (-5 *1 (-835 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-588 (-834 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) - ((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-834 *3)))) + (-12 (-5 *2 (-589 (-836 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1016)))) + ((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-1016)) (-5 *1 (-836 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-1014)) (-5 *1 (-834 *3)))) + (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-836 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-382 (-393 *3))) (-4 *3 (-283)) (-5 *1 (-843 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-382 *3)) (-5 *1 (-843 *3)) (-4 *3 (-283)))) - ((*1 *2 *3) - (-12 (-5 *3 (-451)) (-5 *2 (-291 *4)) (-5 *1 (-848 *4)) - (-4 *4 (-13 (-784) (-514))))) - ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-894 *3)) (-4 *3 (-895)))) - ((*1 *1 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-895)))) - ((*1 *2 *1) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-898)))) + (-12 (-5 *2 (-383 (-394 *3))) (-4 *3 (-284)) (-5 *1 (-845 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-383 *3)) (-5 *1 (-845 *3)) (-4 *3 (-284)))) + ((*1 *2 *3) + (-12 (-5 *3 (-452)) (-5 *2 (-292 *4)) (-5 *1 (-850 *4)) + (-4 *4 (-13 (-786) (-515))))) + ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-896 *3)) (-4 *3 (-897)))) + ((*1 *1 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-897)))) + ((*1 *2 *1) (-12 (-5 *2 (-589 (-523))) (-5 *1 (-900)))) ((*1 *2 *1) - (-12 (-5 *2 (-382 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))) - ((*1 *2 *3) (-12 (-5 *2 (-1171)) (-5 *1 (-958 *3)) (-4 *3 (-1120)))) - ((*1 *2 *3) (-12 (-5 *3 (-287)) (-5 *1 (-958 *2)) (-4 *2 (-1120)))) + (-12 (-5 *2 (-383 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523)))) + ((*1 *2 *3) (-12 (-5 *2 (-1173)) (-5 *1 (-960 *3)) (-4 *3 (-1122)))) + ((*1 *2 *3) (-12 (-5 *3 (-288)) (-5 *1 (-960 *2)) (-4 *2 (-1122)))) ((*1 *1 *2) - (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *1 (-959 *3 *4 *5 *2 *6)) (-4 *2 (-878 *3 *4 *5)) - (-14 *6 (-588 *2)))) - ((*1 *1 *2) (-12 (-4 *1 (-962 *2)) (-4 *2 (-1120)))) + (-12 (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-961 *3 *4 *5 *2 *6)) (-4 *2 (-880 *3 *4 *5)) + (-14 *6 (-589 *2)))) + ((*1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1122)))) ((*1 *2 *3) - (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-967 *3)) (-4 *3 (-514)))) - ((*1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-971)))) + (-12 (-5 *2 (-383 (-883 *3))) (-5 *1 (-969 *3)) (-4 *3 (-515)))) + ((*1 *1 *2) (-12 (-5 *2 (-523)) (-4 *1 (-973)))) ((*1 *2 *1) - (-12 (-5 *2 (-628 *5)) (-5 *1 (-975 *3 *4 *5)) (-14 *3 (-708)) - (-14 *4 (-708)) (-4 *5 (-971)))) + (-12 (-5 *2 (-629 *5)) (-5 *1 (-977 *3 *4 *5)) (-14 *3 (-710)) + (-14 *4 (-710)) (-4 *5 (-973)))) ((*1 *1 *2) - (-12 (-4 *3 (-971)) (-4 *4 (-784)) (-5 *1 (-1038 *3 *4 *2)) - (-4 *2 (-878 *3 (-494 *4) *4)))) + (-12 (-4 *3 (-973)) (-4 *4 (-786)) (-5 *1 (-1040 *3 *4 *2)) + (-4 *2 (-880 *3 (-495 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-971)) (-4 *2 (-784)) (-5 *1 (-1038 *3 *2 *4)) - (-4 *4 (-878 *3 (-494 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-792)))) + (-12 (-4 *3 (-973)) (-4 *2 (-786)) (-5 *1 (-1040 *3 *2 *4)) + (-4 *4 (-880 *3 (-495 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-973)) (-5 *2 (-794)))) ((*1 *2 *1) - (-12 (-5 *2 (-628 *4)) (-5 *1 (-1052 *3 *4)) (-14 *3 (-708)) - (-4 *4 (-971)))) - ((*1 *1 *2) (-12 (-5 *2 (-132)) (-4 *1 (-1054)))) + (-12 (-5 *2 (-629 *4)) (-5 *1 (-1054 *3 *4)) (-14 *3 (-710)) + (-4 *4 (-973)))) + ((*1 *1 *2) (-12 (-5 *2 (-133)) (-4 *1 (-1056)))) ((*1 *1 *2) - (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3)))) + (-12 (-5 *2 (-589 *3)) (-4 *3 (-1122)) (-5 *1 (-1068 *3)))) ((*1 *2 *3) - (-12 (-5 *2 (-1066 *3)) (-5 *1 (-1070 *3)) (-4 *3 (-971)))) + (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1072 *3)) (-4 *3 (-973)))) ((*1 *1 *2) - (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1076 *3 *4 *5)) - (-4 *3 (-971)) (-14 *5 *3))) + (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1078 *3 *4 *5)) + (-4 *3 (-973)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1082 *3 *4 *5)) - (-4 *3 (-971)) (-14 *5 *3))) + (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1084 *3 *4 *5)) + (-4 *3 (-973)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1083 *3 *4 *5)) - (-4 *3 (-971)) (-14 *5 *3))) + (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1085 *3 *4 *5)) + (-4 *3 (-973)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1139 *4 *3)) (-4 *3 (-971)) (-14 *4 (-1085)) - (-14 *5 *3) (-5 *1 (-1083 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1084)))) - ((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1085)))) - ((*1 *2 *1) (-12 (-5 *2 (-1094 (-1085) (-412))) (-5 *1 (-1089)))) - ((*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-1090)))) - ((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1090)))) - ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1090)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1090)))) - ((*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-1090)))) - ((*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-1090)))) - ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1090)))) - ((*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-1090)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1093 *3)) (-4 *3 (-1014)))) - ((*1 *2 *3) (-12 (-5 *2 (-1101)) (-5 *1 (-1100 *3)) (-4 *3 (-1014)))) - ((*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1101)))) - ((*1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-971)) (-5 *1 (-1115 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1115 *3)) (-4 *3 (-971)))) + (-12 (-5 *2 (-1141 *4 *3)) (-4 *3 (-973)) (-14 *4 (-1087)) + (-14 *5 *3) (-5 *1 (-1085 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1086)))) + ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1087)))) + ((*1 *2 *1) (-12 (-5 *2 (-1096 (-1087) (-413))) (-5 *1 (-1091)))) + ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1092)))) + ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1092)))) + ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-203)) (-5 *1 (-1092)))) + ((*1 *1 *2) (-12 (-5 *2 (-203)) (-5 *1 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-1092)))) + ((*1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-1095 *3)) (-4 *3 (-1016)))) + ((*1 *2 *3) (-12 (-5 *2 (-1103)) (-5 *1 (-1102 *3)) (-4 *3 (-1016)))) + ((*1 *1 *2) (-12 (-5 *2 (-794)) (-5 *1 (-1103)))) + ((*1 *1 *2) (-12 (-5 *2 (-883 *3)) (-4 *3 (-973)) (-5 *1 (-1117 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-1117 *3)) (-4 *3 (-973)))) ((*1 *1 *2) - (-12 (-5 *2 (-886 *3)) (-4 *3 (-1120)) (-5 *1 (-1118 *3)))) + (-12 (-5 *2 (-888 *3)) (-4 *3 (-1122)) (-5 *1 (-1120 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-971)) (-4 *1 (-1128 *3 *2)) (-4 *2 (-1157 *3)))) + (-12 (-4 *3 (-973)) (-4 *1 (-1130 *3 *2)) (-4 *2 (-1159 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1130 *3 *4 *5)) - (-4 *3 (-971)) (-14 *5 *3))) + (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1132 *3 *4 *5)) + (-4 *3 (-973)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1009 *3)) (-4 *3 (-1120)) (-5 *1 (-1133 *3)))) + (-12 (-5 *2 (-1011 *3)) (-4 *3 (-1122)) (-5 *1 (-1135 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1162 *3)) (-14 *3 (-1085)) (-5 *1 (-1139 *3 *4)) - (-4 *4 (-971)))) + (-12 (-5 *2 (-1164 *3)) (-14 *3 (-1087)) (-5 *1 (-1141 *3 *4)) + (-4 *4 (-973)))) ((*1 *1 *2) - (-12 (-4 *3 (-971)) (-4 *1 (-1149 *3 *2)) (-4 *2 (-1126 *3)))) + (-12 (-4 *3 (-973)) (-4 *1 (-1151 *3 *2)) (-4 *2 (-1128 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1151 *3 *4 *5)) - (-4 *3 (-971)) (-14 *5 *3))) + (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1153 *3 *4 *5)) + (-4 *3 (-973)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1158 *3 *4 *5)) - (-4 *3 (-971)) (-14 *5 *3))) + (-12 (-5 *2 (-1164 *4)) (-14 *4 (-1087)) (-5 *1 (-1160 *3 *4 *5)) + (-4 *3 (-973)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1139 *4 *3)) (-4 *3 (-971)) (-14 *4 (-1085)) - (-14 *5 *3) (-5 *1 (-1158 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1162 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1167)))) - ((*1 *2 *3) (-12 (-5 *3 (-442)) (-5 *2 (-1167)) (-5 *1 (-1170)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1171)))) + (-12 (-5 *2 (-1141 *4 *3)) (-4 *3 (-973)) (-14 *4 (-1087)) + (-14 *5 *3) (-5 *1 (-1160 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-1164 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-1169)))) + ((*1 *2 *3) (-12 (-5 *3 (-443)) (-5 *2 (-1169)) (-5 *1 (-1172)))) + ((*1 *2 *1) (-12 (-5 *2 (-794)) (-5 *1 (-1173)))) ((*1 *1 *2) - (-12 (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-730)) (-14 *6 (-588 *4)) - (-5 *1 (-1176 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-878 *3 *5 *4)) - (-14 *7 (-588 (-708))) (-14 *8 (-708)))) + (-12 (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-732)) (-14 *6 (-589 *4)) + (-5 *1 (-1178 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-880 *3 *5 *4)) + (-14 *7 (-589 (-710))) (-14 *8 (-710)))) ((*1 *2 *1) - (-12 (-4 *2 (-878 *3 *5 *4)) (-5 *1 (-1176 *3 *4 *5 *2 *6 *7 *8)) - (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-730)) (-14 *6 (-588 *4)) - (-14 *7 (-588 (-708))) (-14 *8 (-708)))) - ((*1 *1 *2) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-971)))) - ((*1 *1 *2) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))) + (-12 (-4 *2 (-880 *3 *5 *4)) (-5 *1 (-1178 *3 *4 *5 *2 *6 *7 *8)) + (-4 *3 (-973)) (-4 *4 (-786)) (-4 *5 (-732)) (-14 *6 (-589 *4)) + (-14 *7 (-589 (-710))) (-14 *8 (-710)))) + ((*1 *1 *2) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-973)))) + ((*1 *1 *2) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973)))) ((*1 *2 *1) - (-12 (-5 *2 (-1188 *3 *4)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-784)) - (-4 *4 (-157)))) + (-12 (-5 *2 (-1190 *3 *4)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-158)))) ((*1 *2 *1) - (-12 (-5 *2 (-1179 *3 *4)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-784)) - (-4 *4 (-157)))) + (-12 (-5 *2 (-1181 *3 *4)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-158)))) ((*1 *1 *2) - (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) - (-5 *1 (-1184 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-1187 *3 *2)) (-4 *3 (-971)) (-4 *2 (-780))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) - (-5 *2 (-960)) (-5 *1 (-690))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-108)) (-5 *1 (-1090)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-108)) (-5 *1 (-1090)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-202))) (-5 *2 (-108)) (-5 *1 (-1090)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-108)) (-5 *1 (-1090))))) + (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-786)) (-4 *4 (-158)) + (-5 *1 (-1186 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-1189 *3 *2)) (-4 *3 (-973)) (-4 *2 (-782))))) (((*1 *2 *3) - (-12 (-5 *3 (-588 (-2 (|:| |den| (-522)) (|:| |gcdnum| (-522))))) - (-4 *4 (-1142 (-382 *2))) (-5 *2 (-522)) (-5 *1 (-842 *4 *5)) - (-4 *5 (-1142 (-382 *4)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-757)) (-14 *5 (-1085)) - (-5 *2 (-588 *4)) (-5 *1 (-1028 *4 *5))))) -(((*1 *1) - (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708)) - (-4 *4 (-157))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-522)) (|has| *1 (-6 -4239)) (-4 *1 (-1154 *3)) - (-4 *3 (-1120))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-925 *3)) (-4 *3 (-157)) (-5 *1 (-736 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784))))) + (-12 (-5 *3 (-852)) (-5 *2 (-1083 *4)) (-5 *1 (-333 *4)) + (-4 *4 (-325))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-383 (-883 *5)))) (-5 *4 (-589 (-1087))) + (-4 *5 (-515)) (-5 *2 (-589 (-589 (-883 *5)))) (-5 *1 (-1093 *5))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-383 *2)) (-4 *2 (-1144 *5)) + (-5 *1 (-746 *5 *2 *3 *6)) + (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) + (-4 *3 (-599 *2)) (-4 *6 (-599 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-383 *2))) (-4 *2 (-1144 *5)) + (-5 *1 (-746 *5 *2 *3 *6)) + (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) (-4 *3 (-599 *2)) + (-4 *6 (-599 (-383 *2)))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-74 G JACOBG JACGEP)))) + (-5 *4 (-203)) (-5 *2 (-962)) (-5 *1 (-689))))) (((*1 *2 *1) - (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) - (-4 *5 (-348 *3)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) - (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108))))) + (-12 (-4 *1 (-230 *3 *4 *5 *6)) (-4 *3 (-973)) (-4 *4 (-786)) + (-4 *5 (-243 *4)) (-4 *6 (-732)) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-4 *1 (-317 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1142 *4)) - (-4 *5 (-1142 (-382 *3))) (-5 *2 (-108)))) - ((*1 *2 *3) - (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-588 (-382 (-881 *6)))) - (-5 *3 (-382 (-881 *6))) - (-4 *6 (-13 (-514) (-962 (-522)) (-135))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-528 *6))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1032)) (-5 *2 (-1171)) (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-628 (-154 (-382 (-522))))) + (|partial| -12 (-5 *3 (-629 (-383 (-883 (-523))))) + (-5 *2 (-629 (-292 (-523)))) (-5 *1 (-958))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1144 *4)) (-4 *4 (-1126)) + (-4 *6 (-1144 (-383 *5))) (-5 *2 - (-588 - (-2 (|:| |outval| (-154 *4)) (|:| |outmult| (-522)) - (|:| |outvect| (-588 (-628 (-154 *4))))))) - (-5 *1 (-702 *4)) (-4 *4 (-13 (-338) (-782)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) - (|:| |explanations| (-588 (-1068))))) - (-5 *2 (-960)) (-5 *1 (-281)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) - (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960)))) - (-5 *2 (-960)) (-5 *1 (-281))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-514) (-135))) (-5 *1 (-499 *3 *2)) - (-4 *2 (-1157 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-4 *4 (-1142 *3)) - (-4 *5 (-662 *3 *4)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-1157 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-5 *1 (-504 *3 *2)) - (-4 *2 (-1157 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-13 (-514) (-135))) - (-5 *1 (-1062 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-555 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1014)) - (-4 *2 (-784))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1166 *1)) (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) - (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168))))) + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-318 *4 *5 *6))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-589 *6)) (-4 *6 (-987 *3 *4 *5)) (-4 *3 (-136)) + (-4 *3 (-284)) (-4 *3 (-515)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-906 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1087)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *4 *5 *6 *7)) + (-4 *4 (-564 (-499))) (-4 *5 (-1122)) (-4 *6 (-1122)) + (-4 *7 (-1122))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-852)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-710))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-893))) (-5 *1 (-267))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-283)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-421 *4 *5 *6 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) - (-4 *6 (-730)) (-5 *2 (-382 (-881 *4))) (-5 *1 (-853 *4 *5 *6 *3)) - (-4 *3 (-878 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-628 *7)) (-4 *7 (-878 *4 *6 *5)) - (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) - (-4 *6 (-730)) (-5 *2 (-628 (-382 (-881 *4)))) - (-5 *1 (-853 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 *7)) (-4 *7 (-878 *4 *6 *5)) - (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) - (-4 *6 (-730)) (-5 *2 (-588 (-382 (-881 *4)))) - (-5 *1 (-853 *4 *5 *6 *7))))) + (-12 (-5 *2 (-823 *4)) (-4 *4 (-1016)) (-5 *1 (-820 *4 *3)) + (-4 *3 (-1016))))) +(((*1 *2 *2) (-12 (-5 *2 (-364)) (-5 *1 (-412)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-364)) (-5 *1 (-412))))) (((*1 *2 *2) - (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) - (-4 *6 (-985 *3 *4 *5)) (-5 *1 (-570 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-990 *3 *4 *5 *6)) (-4 *2 (-1023 *3 *4 *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-279)) (-5 *2 (-589 (-110)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-794))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1085)) - (-4 *5 (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-2 (|:| -2585 *3) (|:| |coeff| *3))) (-5 *1 (-515 *5 *3)) - (-4 *3 (-13 (-27) (-1106) (-405 *5)))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-92))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1014)) (-4 *6 (-1014)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-623 *4 *5 *6)) (-4 *5 (-1014))))) -(((*1 *1 *2) - (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-1014)) (-5 *1 (-834 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-951 (-777 (-522)))) - (-5 *3 (-1066 (-2 (|:| |k| (-522)) (|:| |c| *4)))) (-4 *4 (-971)) - (-5 *1 (-547 *4))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-139 *2)) - (-4 *2 (-1120))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-522)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-348 *2)) - (-4 *5 (-348 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-264 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1120)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-522)) (-4 *1 (-974 *4 *5 *2 *6 *7)) - (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2)) (-4 *2 (-971))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-699)))) -(((*1 *2 *1) - (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-5 *2 (-108))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2)) - (-4 *2 (-405 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-144 *4 *2)) - (-4 *2 (-405 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1085)))) - ((*1 *1 *1) (-4 *1 (-146)))) -(((*1 *1 *1) (-12 (-4 *1 (-349 *2 *3)) (-4 *2 (-784)) (-4 *3 (-157)))) - ((*1 *1 *1) - (-12 (-5 *1 (-572 *2 *3 *4)) (-4 *2 (-784)) - (-4 *3 (-13 (-157) (-655 (-382 (-522))))) (-14 *4 (-850)))) - ((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784)))) - ((*1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) - ((*1 *1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-588 (-2 (|:| -2006 (-1081 *6)) (|:| -3858 (-522))))) - (-4 *6 (-283)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) - (-5 *1 (-680 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-971))))) -(((*1 *2 *1) - (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) - (-5 *2 (-588 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014)) - (-5 *2 (-588 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-548 *3)) (-4 *3 (-971)))) - ((*1 *2 *1) - (-12 (-5 *2 (-588 *3)) (-5 *1 (-673 *3 *4)) (-4 *3 (-971)) - (-4 *4 (-664)))) - ((*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-971)) (-5 *2 (-588 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1157 *3)) (-4 *3 (-971)) (-5 *2 (-1066 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-708)) (-5 *2 (-108)) (-5 *1 (-540 *3)) (-4 *3 (-507))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132))))) -(((*1 *2 *2) - (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) - (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) - (-4 *3 (-13 (-338) (-1106) (-928)))))) -(((*1 *2 *1) (-12 (-5 *2 (-588 (-1090))) (-5 *1 (-166))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-938)) (-5 *2 (-792))))) + (-12 (-5 *2 (-629 *3)) + (-4 *3 (-13 (-284) (-10 -8 (-15 -3614 ((-394 $) $))))) + (-4 *4 (-1144 *3)) (-5 *1 (-470 *3 *4 *5)) (-4 *5 (-385 *3 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-239))) (-5 *4 (-1085)) (-5 *2 (-108)) - (-5 *1 (-239))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-850)) (-5 *1 (-957 *2)) - (-4 *2 (-13 (-1014) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-792))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171)) - (-5 *1 (-991 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171)) - (-5 *1 (-1022 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7))))) + (-12 (-5 *3 (-3 (-383 (-883 *5)) (-1077 (-1087) (-883 *5)))) + (-4 *5 (-427)) (-5 *2 (-589 (-629 (-383 (-883 *5))))) + (-5 *1 (-269 *5)) (-5 *4 (-629 (-383 (-883 *5))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1166 (-588 (-2 (|:| -3526 *4) (|:| -2882 (-1032)))))) - (-4 *4 (-324)) (-5 *2 (-1171)) (-5 *1 (-492 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1142 *3)) (-4 *3 (-971))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108))))) -(((*1 *1) (-4 *1 (-324))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 *5)) (-4 *5 (-405 *4)) - (-4 *4 (-13 (-514) (-784) (-135))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-588 (-1081 *5))) - (|:| |prim| (-1081 *5)))) - (-5 *1 (-407 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-514) (-784) (-135))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1081 *3)) - (|:| |pol2| (-1081 *3)) (|:| |prim| (-1081 *3)))) - (-5 *1 (-407 *4 *3)) (-4 *3 (-27)) (-4 *3 (-405 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-881 *5)) (-5 *4 (-1085)) (-4 *5 (-13 (-338) (-135))) - (-5 *2 - (-2 (|:| |coef1| (-522)) (|:| |coef2| (-522)) - (|:| |prim| (-1081 *5)))) - (-5 *1 (-888 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-588 (-1085))) - (-4 *5 (-13 (-338) (-135))) - (-5 *2 - (-2 (|:| -3112 (-588 (-522))) (|:| |poly| (-588 (-1081 *5))) - (|:| |prim| (-1081 *5)))) - (-5 *1 (-888 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-588 (-881 *6))) (-5 *4 (-588 (-1085))) (-5 *5 (-1085)) - (-4 *6 (-13 (-338) (-135))) - (-5 *2 - (-2 (|:| -3112 (-588 (-522))) (|:| |poly| (-588 (-1081 *6))) - (|:| |prim| (-1081 *6)))) - (-5 *1 (-888 *6))))) + (-12 (-5 *3 (-589 (-883 *6))) (-5 *4 (-589 (-1087))) + (-4 *6 (-13 (-515) (-964 *5))) (-4 *5 (-515)) + (-5 *2 (-589 (-589 (-271 (-383 (-883 *6)))))) (-5 *1 (-965 *5 *6))))) +(((*1 *1) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-339) (-1108)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) - (-5 *2 (-588 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1142 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) - (-5 *2 (-588 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1142 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-775)) (-5 *2 (-960)) (-5 *1 (-774)))) + (-12 (-5 *3 (-883 *5)) (-4 *5 (-973)) (-5 *2 (-455 *4 *5)) + (-5 *1 (-875 *4 *5)) (-14 *4 (-589 (-1087)))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-805)) + (-5 *5 (-852)) (-5 *6 (-589 (-240))) (-5 *2 (-1169)) + (-5 *1 (-1172)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-291 (-354)))) (-5 *4 (-588 (-354))) - (-5 *2 (-960)) (-5 *1 (-774))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-628 *2)) (-5 *4 (-522)) - (-4 *2 (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $))))) - (-4 *5 (-1142 *2)) (-5 *1 (-469 *2 *5 *6)) (-4 *6 (-384 *2 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-103)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-498))) (-5 *1 (-498))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-903 *3 *4 *2 *5)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *2 (-784)) (-4 *5 (-985 *3 *4 *2))))) -(((*1 *1 *1) (-5 *1 (-47))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1120)) - (-4 *2 (-1120)) (-5 *1 (-56 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (|has| *1 (-6 -4238)) - (-4 *1 (-139 *2)) (-4 *2 (-1120)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4238)) (-4 *1 (-139 *2)) - (-4 *2 (-1120)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4238)) (-4 *1 (-139 *2)) - (-4 *2 (-1120)))) - ((*1 *2 *3) - (-12 (-4 *4 (-971)) - (-5 *2 (-2 (|:| -1976 (-1081 *4)) (|:| |deg| (-850)))) - (-5 *1 (-198 *4 *5)) (-5 *3 (-1081 *4)) (-4 *5 (-13 (-514) (-784))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-217 *5 *6)) (-14 *5 (-708)) - (-4 *6 (-1120)) (-4 *2 (-1120)) (-5 *1 (-216 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-157)) (-5 *1 (-265 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1142 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-291 *2)) (-4 *2 (-514)) (-4 *2 (-784)))) - ((*1 *1 *1) - (-12 (-4 *1 (-310 *2 *3 *4 *5)) (-4 *2 (-338)) (-4 *3 (-1142 *2)) - (-4 *4 (-1142 (-382 *3))) (-4 *5 (-317 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1120)) (-4 *2 (-1120)) - (-5 *1 (-346 *5 *4 *2 *6)) (-4 *4 (-348 *5)) (-4 *6 (-348 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1014)) (-4 *2 (-1014)) - (-5 *1 (-398 *5 *4 *2 *6)) (-4 *4 (-400 *5)) (-4 *6 (-400 *2)))) - ((*1 *1 *1) (-5 *1 (-465))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-588 *5)) (-4 *5 (-1120)) - (-4 *2 (-1120)) (-5 *1 (-586 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-971)) (-4 *2 (-971)) - (-4 *6 (-348 *5)) (-4 *7 (-348 *5)) (-4 *8 (-348 *2)) - (-4 *9 (-348 *2)) (-5 *1 (-624 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-626 *5 *6 *7)) (-4 *10 (-626 *2 *8 *9)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-971)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1142 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-382 *4)) (-4 *4 (-1142 *3)) (-4 *3 (-338)) - (-4 *3 (-157)) (-4 *1 (-662 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-157)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1142 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-886 *5)) (-4 *5 (-1120)) - (-4 *2 (-1120)) (-5 *1 (-885 *5 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *1 (-959 *3 *4 *5 *2 *6)) (-4 *2 (-878 *3 *4 *5)) - (-14 *6 (-588 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-971)) (-4 *2 (-971)) - (-14 *5 (-708)) (-14 *6 (-708)) (-4 *8 (-215 *6 *7)) - (-4 *9 (-215 *5 *7)) (-4 *10 (-215 *6 *2)) (-4 *11 (-215 *5 *2)) - (-5 *1 (-976 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-974 *5 *6 *7 *8 *9)) (-4 *12 (-974 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1066 *5)) (-4 *5 (-1120)) - (-4 *2 (-1120)) (-5 *1 (-1064 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) - (-4 *1 (-1114 *5 *6 *7 *2)) (-4 *5 (-514)) (-4 *6 (-730)) - (-4 *7 (-784)) (-4 *2 (-985 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1166 *5)) (-4 *5 (-1120)) - (-4 *2 (-1120)) (-5 *1 (-1165 *5 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-708))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-588 (-1081 *7))) (-5 *3 (-1081 *7)) - (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-838)) (-4 *5 (-730)) - (-4 *6 (-784)) (-5 *1 (-835 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-588 (-1081 *5))) (-5 *3 (-1081 *5)) - (-4 *5 (-1142 *4)) (-4 *4 (-838)) (-5 *1 (-836 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-382 (-522))) (-5 *4 (-522)) (-5 *2 (-51)) - (-5 *1 (-931))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-202))) (-5 *4 (-708)) (-5 *2 (-628 (-202))) - (-5 *1 (-281))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-850)) (-4 *5 (-283)) (-4 *3 (-1142 *5)) - (-5 *2 (-2 (|:| |plist| (-588 *3)) (|:| |modulo| *5))) - (-5 *1 (-434 *5 *3)) (-5 *4 (-588 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-708)) (-5 *4 (-1166 *2)) (-4 *5 (-283)) - (-4 *6 (-919 *5)) (-4 *2 (-13 (-384 *6 *7) (-962 *6))) - (-5 *1 (-388 *5 *6 *7 *2)) (-4 *7 (-1142 *6))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) - (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *4)))) - (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-382 (-1081 (-291 *3)))) (-4 *3 (-13 (-514) (-784))) - (-5 *1 (-1042 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-311 *5 *6 *7 *8)) (-4 *5 (-405 *4)) (-4 *6 (-1142 *5)) - (-4 *7 (-1142 (-382 *6))) (-4 *8 (-317 *5 *6 *7)) - (-4 *4 (-13 (-784) (-514) (-962 (-522)))) (-5 *2 (-108)) - (-5 *1 (-840 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-311 (-382 (-522)) *4 *5 *6)) - (-4 *4 (-1142 (-382 (-522)))) (-4 *5 (-1142 (-382 *4))) - (-4 *6 (-317 (-382 (-522)) *4 *5)) (-5 *2 (-108)) - (-5 *1 (-841 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-561 *6)) (-4 *6 (-13 (-405 *5) (-27) (-1106))) - (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) - (-5 *2 (-1081 (-382 (-1081 *6)))) (-5 *1 (-518 *5 *6 *7)) - (-5 *3 (-1081 *6)) (-4 *7 (-1014)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1142 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-971)))) - ((*1 *2 *1) - (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1142 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1081 *11)) (-5 *6 (-588 *10)) - (-5 *7 (-588 (-708))) (-5 *8 (-588 *11)) (-4 *10 (-784)) - (-4 *11 (-283)) (-4 *9 (-730)) (-4 *5 (-878 *11 *9 *10)) - (-5 *2 (-588 (-1081 *5))) (-5 *1 (-680 *9 *10 *11 *5)) - (-5 *3 (-1081 *5)))) - ((*1 *2 *1) - (-12 (-4 *2 (-878 *3 *4 *5)) (-5 *1 (-959 *3 *4 *5 *2 *6)) - (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-14 *6 (-588 *2))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-685))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-1085)) (-5 *1 (-498)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1085)) (-5 *1 (-643 *3)) (-4 *3 (-563 (-498))))) - ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1085)) (-5 *1 (-643 *3)) (-4 *3 (-563 (-498))))) - ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1085)) (-5 *1 (-643 *3)) (-4 *3 (-563 (-498))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-588 (-1085))) (-5 *2 (-1085)) (-5 *1 (-643 *3)) - (-4 *3 (-563 (-498)))))) -(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-143)))) - ((*1 *2 *1) (-12 (-5 *2 (-143)) (-5 *1 (-803)))) - ((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1081 *1)) (-5 *4 (-1085)) (-4 *1 (-27)) - (-5 *2 (-588 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1081 *1)) (-4 *1 (-27)) (-5 *2 (-588 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-881 *1)) (-4 *1 (-27)) (-5 *2 (-588 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-588 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *2 (-588 *1)) (-4 *1 (-29 *3))))) + (-12 (-5 *3 (-589 (-589 (-874 (-203))))) (-5 *4 (-589 (-240))) + (-5 *2 (-1169)) (-5 *1 (-1172))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-523)) (-5 *5 (-629 (-203))) (-5 *4 (-203)) + (-5 *2 (-962)) (-5 *1 (-692))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-133))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) (((*1 *2 *3) - (-12 (-4 *1 (-849)) (-5 *2 (-2 (|:| -3112 (-588 *1)) (|:| -1368 *1))) - (-5 *3 (-588 *1))))) -(((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-708)) (-5 *6 (-108)) (-4 *7 (-426)) (-4 *8 (-730)) - (-4 *9 (-784)) (-4 *3 (-985 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-588 *4)) - (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) - (-5 *1 (-988 *7 *8 *9 *3 *4)) (-4 *4 (-990 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-708)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) - (-4 *3 (-985 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-588 *4)) - (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) - (-5 *1 (-988 *6 *7 *8 *3 *4)) (-4 *4 (-990 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-588 *4)) - (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) - (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-708)) (-5 *6 (-108)) (-4 *7 (-426)) (-4 *8 (-730)) - (-4 *9 (-784)) (-4 *3 (-985 *7 *8 *9)) + (-12 (-5 *3 (-1087)) (-5 *2 - (-2 (|:| |done| (-588 *4)) - (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) - (-5 *1 (-1055 *7 *8 *9 *3 *4)) (-4 *4 (-1023 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-708)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) - (-4 *3 (-985 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-588 *4)) - (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) - (-5 *1 (-1055 *6 *7 *8 *3 *4)) (-4 *4 (-1023 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-588 *4)) - (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1974 *4)))))) - (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1023 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-539 *3) *3 (-1085))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1085))) - (-4 *3 (-260)) (-4 *3 (-574)) (-4 *3 (-962 *4)) (-4 *3 (-405 *7)) - (-5 *4 (-1085)) (-4 *7 (-563 (-821 (-522)))) (-4 *7 (-426)) - (-4 *7 (-815 (-522))) (-4 *7 (-784)) (-5 *2 (-539 *3)) - (-5 *1 (-531 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-555 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1120)) - (-5 *2 (-588 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088)))) - ((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1088))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *5 (-108)) - (-5 *2 (-960)) (-5 *1 (-683))))) -(((*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-588 *2)) (-4 *2 (-507)) (-5 *1 (-145 *2))))) + (-2 (|:| |zeros| (-1068 (-203))) (|:| |ones| (-1068 (-203))) + (|:| |singularities| (-1068 (-203))))) + (-5 *1 (-100))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085)) - (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-291 *5))) - (-5 *1 (-1041 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-382 (-881 *5)))) (-5 *4 (-588 (-1085))) - (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-588 (-291 *5)))) - (-5 *1 (-1041 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *1) - (-12 (-5 *2 (-802 (-894 *3) (-894 *3))) (-5 *1 (-894 *3)) - (-4 *3 (-895))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-708)) (-5 *1 (-720 *2)) (-4 *2 (-37 (-382 (-522)))) - (-4 *2 (-157))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-588 *3)) - (-4 *3 (-13 (-27) (-1106) (-405 *6))) - (-4 *6 (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-515 *6 *3))))) -(((*1 *2) - (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-392 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-514)) (-4 *3 (-971)) - (-5 *2 (-2 (|:| -3450 *1) (|:| -4002 *1))) (-4 *1 (-786 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-94 *5)) (-4 *5 (-514)) (-4 *5 (-971)) - (-5 *2 (-2 (|:| -3450 *3) (|:| -4002 *3))) (-5 *1 (-787 *5 *3)) - (-4 *3 (-786 *5))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-522)) (-4 *3 (-157)) (-4 *5 (-348 *3)) - (-4 *6 (-348 *3)) (-5 *1 (-627 *3 *5 *6 *2)) - (-4 *2 (-626 *3 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1120)) (-5 *1 (-802 *3 *2)) (-4 *3 (-1120)))) - ((*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-588 *7)) (|:| -1974 *8))) - (-4 *7 (-985 *4 *5 *6)) (-4 *8 (-990 *4 *5 *6 *7)) (-4 *4 (-426)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) - (-5 *1 (-915 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-588 *7)) (|:| -1974 *8))) - (-4 *7 (-985 *4 *5 *6)) (-4 *8 (-990 *4 *5 *6 *7)) (-4 *4 (-426)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) - (-5 *1 (-1021 *4 *5 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1185 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) - (-5 *2 (-756 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-780)) (-5 *1 (-1187 *3 *2)) (-4 *3 (-971))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-850)) (-5 *2 (-1171)) (-5 *1 (-192 *4)) - (-4 *4 - (-13 (-784) - (-10 -8 (-15 -2683 ((-1068) $ (-1085))) (-15 -1757 (*2 $)) - (-15 -2113 (*2 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1171)) (-5 *1 (-192 *3)) - (-4 *3 - (-13 (-784) - (-10 -8 (-15 -2683 ((-1068) $ (-1085))) (-15 -1757 (*2 $)) - (-15 -2113 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-472))))) -(((*1 *1) (-5 *1 (-1168)))) + (-12 (-5 *4 (-1087)) + (-4 *5 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-540 *3)) (-5 *1 (-402 *5 *3)) + (-4 *3 (-13 (-1108) (-29 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168 *1)) (-4 *1 (-343 *4)) (-4 *4 (-158)) + (-5 *2 (-629 *4)))) + ((*1 *2) + (-12 (-4 *4 (-158)) (-5 *2 (-629 *4)) (-5 *1 (-392 *3 *4)) + (-4 *3 (-393 *4)))) + ((*1 *2) (-12 (-4 *1 (-393 *3)) (-4 *3 (-158)) (-5 *2 (-629 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) (((*1 *1 *1) - (-12 (-5 *1 (-1051 *2 *3)) (-4 *2 (-13 (-1014) (-33))) - (-4 *3 (-13 (-1014) (-33)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-588 (-382 *7))) - (-4 *7 (-1142 *6)) (-5 *3 (-382 *7)) (-4 *6 (-338)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-532 *6 *7))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1085)) - (-5 *2 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) (-5 *1 (-1088))))) + (-12 (-4 *2 (-325)) (-4 *2 (-973)) (-5 *1 (-652 *2 *3)) + (-4 *3 (-1144 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-589 (-589 *8))) (-5 *3 (-589 *8)) + (-4 *8 (-880 *5 *7 *6)) (-4 *5 (-13 (-284) (-136))) + (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-108)) + (-5 *1 (-855 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-219)) (-5 *3 (-1070)))) + ((*1 *2 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-219)))) + ((*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) + (-5 *5 (-3 (|:| |fn| (-364)) (|:| |fp| (-77 LSFUN1)))) + (-5 *2 (-962)) (-5 *1 (-693))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-500 *3 *2)) + (-4 *2 (-1159 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-4 *4 (-1144 *3)) + (-4 *5 (-664 *3 *4)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-1159 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-5 *1 (-505 *3 *2)) + (-4 *2 (-1159 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-515) (-136))) + (-5 *1 (-1064 *3))))) (((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-493 *3)) (-4 *3 (-13 (-664) (-25)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) - (-4 *5 (-1142 *4)) (-5 *2 (-588 (-2 (|:| -1980 *5) (|:| -1656 *5)))) - (-5 *1 (-744 *4 *5 *3 *6)) (-4 *3 (-598 *5)) - (-4 *6 (-598 (-382 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) - (-4 *4 (-1142 *5)) (-5 *2 (-588 (-2 (|:| -1980 *4) (|:| -1656 *4)))) - (-5 *1 (-744 *5 *4 *3 *6)) (-4 *3 (-598 *4)) - (-4 *6 (-598 (-382 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) - (-4 *5 (-1142 *4)) (-5 *2 (-588 (-2 (|:| -1980 *5) (|:| -1656 *5)))) - (-5 *1 (-744 *4 *5 *6 *3)) (-4 *6 (-598 *5)) - (-4 *3 (-598 (-382 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) - (-4 *4 (-1142 *5)) (-5 *2 (-588 (-2 (|:| -1980 *4) (|:| -1656 *4)))) - (-5 *1 (-744 *5 *4 *6 *3)) (-4 *6 (-598 *4)) - (-4 *3 (-598 (-382 *4)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855))))) + (-12 (-4 *2 (-13 (-406 *3) (-930))) (-5 *1 (-253 *3 *2)) + (-4 *3 (-13 (-786) (-515)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-725))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-555 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1120)) - (-5 *2 (-108))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-108) *7 (-588 *7))) (-4 *1 (-1114 *4 *5 *6 *7)) - (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) - (-5 *2 (-108))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) - (-5 *2 (-588 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1142 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) - (-5 *2 (-588 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1142 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-792)))) - ((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1171)) (-5 *1 (-890))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-409)) (|:| -1350 "void"))) - (-5 *1 (-412))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-522)) (-5 *2 (-108)) (-5 *1 (-453))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-108)) (-5 *5 (-522)) (-4 *6 (-338)) (-4 *6 (-343)) - (-4 *6 (-971)) (-5 *2 (-588 (-588 (-628 *6)))) (-5 *1 (-954 *6)) - (-5 *3 (-588 (-628 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-338)) (-4 *4 (-343)) (-4 *4 (-971)) - (-5 *2 (-588 (-588 (-628 *4)))) (-5 *1 (-954 *4)) - (-5 *3 (-588 (-628 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-338)) (-4 *5 (-343)) (-4 *5 (-971)) - (-5 *2 (-588 (-588 (-628 *5)))) (-5 *1 (-954 *5)) - (-5 *3 (-588 (-628 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-850)) (-4 *5 (-338)) (-4 *5 (-343)) (-4 *5 (-971)) - (-5 *2 (-588 (-588 (-628 *5)))) (-5 *1 (-954 *5)) - (-5 *3 (-588 (-628 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) - (-4 *4 (-971))))) -(((*1 *2) - (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-5 *2 (-628 (-382 *4)))))) + (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-104)) (-5 *1 (-160)))) + ((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1087)) (-5 *2 (-104)) (-5 *1 (-1003))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1085)) (-5 *1 (-539 *2)) (-4 *2 (-962 *3)) - (-4 *2 (-338)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-539 *2)) (-4 *2 (-338)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-575 *4 *2)) - (-4 *2 (-13 (-405 *4) (-928) (-1106))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1007 *2)) (-4 *2 (-13 (-405 *4) (-928) (-1106))) - (-4 *4 (-13 (-784) (-514))) (-5 *1 (-575 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-887)) (-5 *2 (-1085)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1007 *1)) (-4 *1 (-887))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-616 (-202))) - (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-688))))) -(((*1 *2 *2) - (-12 (-4 *3 (-338)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) - (-5 *1 (-489 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-514)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) - (-4 *7 (-919 *4)) (-4 *2 (-626 *7 *8 *9)) - (-5 *1 (-490 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-626 *4 *5 *6)) - (-4 *8 (-348 *7)) (-4 *9 (-348 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) - (-4 *4 (-348 *2)) (-4 *2 (-283)))) - ((*1 *2 *2) - (-12 (-4 *3 (-283)) (-4 *3 (-157)) (-4 *4 (-348 *3)) - (-4 *5 (-348 *3)) (-5 *1 (-627 *3 *4 *5 *2)) - (-4 *2 (-626 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-628 *3)) (-4 *3 (-283)) (-5 *1 (-638 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-974 *2 *3 *4 *5 *6)) (-4 *4 (-971)) - (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *2 *4)) (-4 *4 (-283))))) -(((*1 *2 *2) - (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928))) - (-5 *1 (-160 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784))))) -(((*1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-324)) (-5 *2 (-108)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1081 *4)) (-4 *4 (-324)) (-5 *2 (-108)) - (-5 *1 (-332 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) - (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) - (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) - (|:| |abserr| (-202)) (|:| |relerr| (-202)))) - (-5 *2 (-354)) (-5 *1 (-184))))) + (-12 (-5 *2 (-710)) (-4 *3 (-973)) (-4 *1 (-627 *3 *4 *5)) + (-4 *4 (-349 *3)) (-4 *5 (-349 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-973)) (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-216 *3 *2)) + (-4 *5 (-216 *3 *2))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-730)) (-4 *4 (-784)) (-4 *6 (-283)) (-5 *2 (-393 *3)) - (-5 *1 (-680 *5 *4 *6 *3)) (-4 *3 (-878 *6 *5 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-5 *1 (-1095 *2)) (-4 *2 (-338))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1166 (-3 (-442) "undefined"))) (-5 *1 (-1167))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-588 - (-588 - (-3 (|:| -3015 (-1085)) - (|:| |bounds| (-588 (-3 (|:| S (-1085)) (|:| P (-881 (-522)))))))))) - (-5 *1 (-1089))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-784)) (-5 *4 (-588 *6)) - (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-588 *4)))) - (-5 *1 (-1092 *6)) (-5 *5 (-588 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *3)) - (-4 *3 (-990 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-588 *3)) (-4 *3 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) - (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7)) (-5 *2 (-108)) - (-5 *1 (-915 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) - (-5 *1 (-1021 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-588 *3)) (-4 *3 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) - (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7)) (-5 *2 (-108)) - (-5 *1 (-1021 *5 *6 *7 *8 *3))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) - (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) - (|:| |relerr| (-202)))) - (-5 *2 (-1066 (-202))) (-5 *1 (-171)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-291 (-202))) (-5 *4 (-588 (-1085))) - (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-1066 (-202))) (-5 *1 (-276)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1166 (-291 (-202)))) (-5 *4 (-588 (-1085))) - (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-1066 (-202))) (-5 *1 (-276))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -2308 (-719 *3)) (|:| |coef1| (-719 *3)) - (|:| |coef2| (-719 *3)))) - (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *2 (-2 (|:| -2308 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-985 *3 *4 *5))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |nullBranch| "null") - (|:| |assignmentBranch| - (-2 (|:| |var| (-1085)) - (|:| |arrayIndex| (-588 (-881 (-522)))) - (|:| |rand| - (-2 (|:| |ints2Floats?| (-108)) (|:| -1610 (-792)))))) - (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1085)) (|:| |rand| (-792)) - (|:| |ints2Floats?| (-108)))) - (|:| |conditionalBranch| - (-2 (|:| |switch| (-1084)) (|:| |thenClause| (-305)) - (|:| |elseClause| (-305)))) - (|:| |returnBranch| - (-2 (|:| -3494 (-108)) - (|:| -3526 - (-2 (|:| |ints2Floats?| (-108)) (|:| -1610 (-792)))))) - (|:| |blockBranch| (-588 (-305))) - (|:| |commentBranch| (-588 (-1068))) (|:| |callBranch| (-1068)) - (|:| |forBranch| - (-2 (|:| -2321 (-1007 (-881 (-522)))) - (|:| |span| (-881 (-522))) (|:| |body| (-305)))) - (|:| |labelBranch| (-1032)) - (|:| |loopBranch| (-2 (|:| |switch| (-1084)) (|:| |body| (-305)))) - (|:| |commonBranch| - (-2 (|:| -3015 (-1085)) (|:| |contents| (-588 (-1085))))) - (|:| |printBranch| (-588 (-792))))) - (-5 *1 (-305))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1068)) (-5 *5 (-628 (-202))) (-5 *6 (-202)) - (-5 *7 (-628 (-522))) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-690))))) -(((*1 *2 *1) (-12 (-5 *2 (-166)) (-5 *1 (-256))))) -(((*1 *1) - (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708)) - (-4 *4 (-157))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-588 *2) *2 *2 *2)) (-4 *2 (-1014)) - (-5 *1 (-98 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-98 *2))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) - (-5 *2 - (-2 (|:| -3526 *4) (|:| -3106 *4) (|:| |totalpts| (-522)) - (|:| |success| (-108)))) - (-5 *1 (-726)) (-5 *5 (-522))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-338)) (-5 *2 (-2 (|:| -3450 *3) (|:| -4002 *3))) - (-5 *1 (-704 *3 *4)) (-4 *3 (-647 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-338)) (-4 *3 (-971)) - (-5 *2 (-2 (|:| -3450 *1) (|:| -4002 *1))) (-4 *1 (-786 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-94 *5)) (-4 *5 (-338)) (-4 *5 (-971)) - (-5 *2 (-2 (|:| -3450 *3) (|:| -4002 *3))) (-5 *1 (-787 *5 *3)) - (-4 *3 (-786 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-293)) (-5 *3 (-202))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-338)) - (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-5 *1 (-424 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-338)) + (-12 (-5 *3 (-394 *5)) (-4 *5 (-515)) (-5 *2 - (-2 (|:| R (-628 *6)) (|:| A (-628 *6)) (|:| |Ainv| (-628 *6)))) - (-5 *1 (-905 *6)) (-5 *3 (-628 *6))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167))))) -(((*1 *2 *1) (-12 (-5 *2 (-588 (-104))) (-5 *1 (-159))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1050 *4 *5)) (-4 *4 (-13 (-1014) (-33))) - (-4 *5 (-13 (-1014) (-33))) (-5 *2 (-108)) (-5 *1 (-1051 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1085)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-588 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-588 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2585 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1106) (-27) (-405 *8))) - (-4 *8 (-13 (-426) (-784) (-135) (-962 *3) (-584 *3))) - (-5 *3 (-522)) (-5 *2 (-588 *4)) (-5 *1 (-940 *8 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) - (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *4)))) - (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803))))) -(((*1 *2 *1) - (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-5 *2 (-708))))) -(((*1 *2 *1) - (-12 (-5 *2 (-588 (-2 (|:| -2644 (-1085)) (|:| -3149 *4)))) - (-5 *1 (-818 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) - (-4 *7 (-1014)) (-5 *2 (-588 *1)) (-4 *1 (-1017 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-588 (-1081 *11))) (-5 *3 (-1081 *11)) - (-5 *4 (-588 *10)) (-5 *5 (-588 *8)) (-5 *6 (-588 (-708))) - (-5 *7 (-1166 (-588 (-1081 *8)))) (-4 *10 (-784)) - (-4 *8 (-283)) (-4 *11 (-878 *8 *9 *10)) (-4 *9 (-730)) - (-5 *1 (-646 *9 *10 *8 *11))))) -(((*1 *2 *3) - (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) - (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6))))) + (-2 (|:| -2735 (-710)) (|:| -2935 *5) (|:| |radicand| (-589 *5)))) + (-5 *1 (-296 *5)) (-5 *4 (-710)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-523))))) +(((*1 *1 *1) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-786)) (-4 *3 (-158)))) + ((*1 *1 *1) + (-12 (-5 *1 (-573 *2 *3 *4)) (-4 *2 (-786)) + (-4 *3 (-13 (-158) (-657 (-383 (-523))))) (-14 *4 (-852)))) + ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-786)))) + ((*1 *1 *1) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-786)) (-4 *3 (-973))))) +(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-775)) (-5 *4 (-983)) (-5 *2 (-960)) (-5 *1 (-774)))) - ((*1 *2 *3) (-12 (-5 *3 (-775)) (-5 *2 (-960)) (-5 *1 (-774)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-588 (-354))) (-5 *5 (-588 (-777 (-354)))) - (-5 *6 (-588 (-291 (-354)))) (-5 *3 (-291 (-354))) (-5 *2 (-960)) - (-5 *1 (-774)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-354))) - (-5 *5 (-588 (-777 (-354)))) (-5 *2 (-960)) (-5 *1 (-774)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-354))) (-5 *2 (-960)) - (-5 *1 (-774)))) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) + (-4 *9 (-992 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) + (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-990 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-291 (-354)))) (-5 *4 (-588 (-354))) - (-5 *2 (-960)) (-5 *1 (-774))))) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-589 *9)) (-4 *8 (-987 *5 *6 *7)) + (-4 *9 (-1025 *5 *6 *7 *8)) (-4 *5 (-427)) (-4 *6 (-732)) + (-4 *7 (-786)) (-5 *2 (-710)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1085)) - (-4 *5 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-588 (-561 *3))) - (|:| |vals| (-588 *3)))) - (-5 *1 (-253 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-158 *3)) (-4 *3 (-283))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) - (-5 *2 (-1 *5)) (-5 *1 (-622 *4 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-588 (-2 (|:| |func| *2) (|:| |pole| (-108))))) - (-4 *2 (-13 (-405 *4) (-928))) (-4 *4 (-13 (-784) (-514))) - (-5 *1 (-252 *4 *2))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1085)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-588 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-588 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2585 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1106) (-27) (-405 *8))) - (-4 *8 (-13 (-426) (-784) (-135) (-962 *3) (-584 *3))) - (-5 *3 (-522)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -2002 *4) (|:| |sol?| (-108)))) - (-5 *1 (-939 *8 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-291 (-522))) (-5 *4 (-1 (-202) (-202))) - (-5 *5 (-1009 (-202))) (-5 *6 (-522)) (-5 *2 (-1116 (-855))) - (-5 *1 (-293)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-291 (-522))) (-5 *4 (-1 (-202) (-202))) - (-5 *5 (-1009 (-202))) (-5 *6 (-522)) (-5 *7 (-1068)) - (-5 *2 (-1116 (-855))) (-5 *1 (-293)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-291 (-522))) (-5 *4 (-1 (-202) (-202))) - (-5 *5 (-1009 (-202))) (-5 *6 (-202)) (-5 *7 (-522)) - (-5 *2 (-1116 (-855))) (-5 *1 (-293)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-291 (-522))) (-5 *4 (-1 (-202) (-202))) - (-5 *5 (-1009 (-202))) (-5 *6 (-202)) (-5 *7 (-522)) (-5 *8 (-1068)) - (-5 *2 (-1116 (-855))) (-5 *1 (-293))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *2 *1) (-12 (-4 *1 (-342 *2)) (-4 *2 (-157))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-338)) (-4 *3 (-971)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1368 *1))) - (-4 *1 (-786 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2908 *4))) - (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-1068)) (-5 *1 (-171)))) - ((*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-426)) - (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *1 (-904 *3 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1120)) (-4 *1 (-215 *3 *4))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-104)) (-5 *1 (-159)))) - ((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-104)) (-5 *1 (-1001))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) - (-4 *2 (-405 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1049)))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) - (-5 *2 (-2 (|:| -3112 *1) (|:| |gap| (-708)) (|:| -4002 *1))) - (-4 *1 (-985 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *2 (-2 (|:| -3112 *1) (|:| |gap| (-708)) (|:| -4002 *1))) - (-4 *1 (-985 *3 *4 *5))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-507)))) + (-12 (-5 *3 (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034)))))) + (-4 *4 (-325)) (-5 *2 (-1173)) (-5 *1 (-493 *4))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G)))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) (-5 *3 (-203)) + (-5 *2 (-962)) (-5 *1 (-689))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-588 (-354))) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-588 (-354))) (-5 *1 (-442)))) - ((*1 *2 *1) (-12 (-5 *2 (-588 (-354))) (-5 *1 (-442)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-850)) (-5 *4 (-803)) (-5 *2 (-1171)) (-5 *1 (-1167)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101))))) -(((*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-291 *4)) - (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 (-154 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *2 *3) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-519)) (-5 *3 (-522))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1166 *4)) (-4 *4 (-971)) (-4 *2 (-1142 *4)) - (-5 *1 (-418 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-382 (-1081 (-291 *5)))) (-5 *3 (-1166 (-291 *5))) - (-5 *4 (-522)) (-4 *5 (-13 (-514) (-784))) (-5 *1 (-1042 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1081 *5)) (-4 *5 (-338)) (-5 *2 (-588 *6)) - (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-338)) (-4 *4 (-13 (-338) (-782)))))) -(((*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-1068))))) -(((*1 *2 *3) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-519)) (-5 *3 (-522))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-758)) (-5 *4 (-51)) (-5 *2 (-1171)) (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-291 *4)) - (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 (-154 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) - ((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3)))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1085)) (-4 *4 (-971)) (-4 *4 (-784)) - (-5 *2 (-2 (|:| |var| (-561 *1)) (|:| -3858 (-522)))) - (-4 *1 (-405 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-110)) (-4 *4 (-971)) (-4 *4 (-784)) - (-5 *2 (-2 (|:| |var| (-561 *1)) (|:| -3858 (-522)))) - (-4 *1 (-405 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-784)) - (-5 *2 (-2 (|:| |var| (-561 *1)) (|:| -3858 (-522)))) - (-4 *1 (-405 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-821 *3)) (|:| -3858 (-708)))) - (-5 *1 (-821 *3)) (-4 *3 (-1014)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-5 *2 (-2 (|:| |var| *5) (|:| -3858 (-708)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) - (-4 *7 (-878 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -3858 (-522)))) - (-5 *1 (-879 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-338) - (-10 -8 (-15 -2217 ($ *7)) (-15 -2947 (*7 $)) - (-15 -2959 (*7 $)))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-784)) (-5 *2 (-1093 (-588 *4))) (-5 *1 (-1092 *4)) - (-5 *3 (-588 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) - ((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) - (-4 *2 (-405 *3)))) - ((*1 *1 *1) (-4 *1 (-1049)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) - (-4 *6 (-730)) (-4 *7 (-878 *4 *6 *5)) - (-5 *2 - (-2 (|:| |sysok| (-108)) (|:| |z0| (-588 *7)) (|:| |n0| (-588 *7)))) - (-5 *1 (-853 *4 *5 *6 *7)) (-5 *3 (-588 *7))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-685))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1085)) (-5 *5 (-1009 (-202))) (-5 *2 (-856)) - (-5 *1 (-854 *3)) (-4 *3 (-563 (-498))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1085)) (-5 *5 (-1009 (-202))) (-5 *2 (-856)) - (-5 *1 (-854 *3)) (-4 *3 (-563 (-498))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-855)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202))) - (-5 *1 (-855)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202))) - (-5 *1 (-855)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-856)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202))) - (-5 *1 (-856)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202))) - (-5 *1 (-856)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-588 (-1 (-202) (-202)))) (-5 *3 (-1009 (-202))) - (-5 *1 (-856)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-588 (-1 (-202) (-202)))) (-5 *3 (-1009 (-202))) - (-5 *1 (-856)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202))) - (-5 *1 (-856)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202))) - (-5 *1 (-856))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-693))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) - (-4 *5 (-13 (-338) (-135) (-962 (-522)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-382 *6)) (|:| |c| (-382 *6)) - (|:| -1704 *6))) - (-5 *1 (-941 *5 *6)) (-5 *3 (-382 *6))))) + (-12 (-5 *2 (-589 (-455 *3 *4))) (-14 *3 (-589 (-1087))) + (-4 *4 (-427)) (-5 *1 (-577 *3 *4))))) (((*1 *1 *1) - (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) - (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-522)))) - ((*1 *1 *1) (-4 *1 (-928))) - ((*1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-938)))) - ((*1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-4 *1 (-938)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-938)) (-5 *2 (-708)))) - ((*1 *1 *1) (-4 *1 (-938)))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-708)) (-4 *5 (-514)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-897 *5 *3)) (-4 *3 (-1142 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-850)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) - ((*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-239))))) -(((*1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-218))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-708)) (-5 *2 (-382 (-522))) (-5 *1 (-202)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-708)) (-5 *2 (-382 (-522))) (-5 *1 (-202)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-708)) (-5 *2 (-382 (-522))) (-5 *1 (-354)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-708)) (-5 *2 (-382 (-522))) (-5 *1 (-354))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-588 (-794 *5))) (-14 *5 (-588 (-1085))) (-4 *6 (-426)) - (-5 *2 - (-2 (|:| |dpolys| (-588 (-224 *5 *6))) - (|:| |coords| (-588 (-522))))) - (-5 *1 (-445 *5 *6 *7)) (-5 *3 (-588 (-224 *5 *6))) (-4 *7 (-426))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-317 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1142 *4)) - (-4 *5 (-1142 (-382 *3))) (-5 *2 (-108)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108))))) -(((*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1120))))) + (-12 (-4 *1 (-230 *2 *3 *4 *5)) (-4 *2 (-973)) (-4 *3 (-786)) + (-4 *4 (-243 *3)) (-4 *5 (-732))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-443)) (-5 *4 (-852)) (-5 *2 (-1173)) (-5 *1 (-1169))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-589 (-589 (-874 (-203))))) (-5 *3 (-589 (-805))) + (-5 *1 (-443))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1068)) (-5 *2 (-711)) (-5 *1 (-110)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1018)) (-5 *1 (-893))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-298 *3 *4)) (-4 *3 (-1014)) - (-4 *4 (-124)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-336 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-361 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-591 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-588 (-47))) (-5 *2 (-393 *3)) (-5 *1 (-38 *3)) - (-4 *3 (-1142 (-47))))) - ((*1 *2 *3) - (-12 (-5 *2 (-393 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1142 (-47))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-588 (-47))) (-4 *5 (-784)) (-4 *6 (-730)) - (-5 *2 (-393 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-878 (-47) *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-588 (-47))) (-4 *5 (-784)) (-4 *6 (-730)) - (-4 *7 (-878 (-47) *6 *5)) (-5 *2 (-393 (-1081 *7))) - (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1081 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-283)) (-5 *2 (-393 *3)) (-5 *1 (-152 *4 *3)) - (-4 *3 (-1142 (-154 *4))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-108)) (-4 *4 (-13 (-338) (-782))) (-5 *2 (-393 *3)) - (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-393 *3)) - (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-393 *3)) - (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-324)) (-5 *2 (-393 *3)) (-5 *1 (-194 *4 *3)) - (-4 *3 (-1142 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-708)) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) - (-4 *3 (-1142 (-522))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-588 (-708))) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) - (-4 *3 (-1142 (-522))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-588 (-708))) (-5 *5 (-708)) (-5 *2 (-393 *3)) - (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-708)) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) - (-4 *3 (-1142 (-522))))) - ((*1 *2 *3) - (-12 (-5 *2 (-393 (-154 (-522)))) (-5 *1 (-420)) - (-5 *3 (-154 (-522))))) - ((*1 *2 *3) - (-12 - (-4 *4 - (-13 (-784) - (-10 -8 (-15 -3873 ((-1085) $)) - (-15 -1660 ((-3 $ "failed") (-1085)))))) - (-4 *5 (-730)) (-4 *7 (-514)) (-5 *2 (-393 *3)) - (-5 *1 (-430 *4 *5 *6 *7 *3)) (-4 *6 (-514)) - (-4 *3 (-878 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-283)) (-5 *2 (-393 (-1081 *4))) (-5 *1 (-432 *4)) - (-5 *3 (-1081 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-393 *6) *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338)) - (-4 *7 (-13 (-338) (-135) (-662 *5 *6))) (-5 *2 (-393 *3)) - (-5 *1 (-464 *5 *6 *7 *3)) (-4 *3 (-1142 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-393 (-1081 *7)) (-1081 *7))) - (-4 *7 (-13 (-283) (-135))) (-4 *5 (-784)) (-4 *6 (-730)) - (-5 *2 (-393 *3)) (-5 *1 (-502 *5 *6 *7 *3)) - (-4 *3 (-878 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-393 (-1081 *7)) (-1081 *7))) - (-4 *7 (-13 (-283) (-135))) (-4 *5 (-784)) (-4 *6 (-730)) - (-4 *8 (-878 *7 *6 *5)) (-5 *2 (-393 (-1081 *8))) - (-5 *1 (-502 *5 *6 *7 *8)) (-5 *3 (-1081 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-516 *3)) (-4 *3 (-507)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-588 *5) *6)) - (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) - (-4 *6 (-1142 *5)) (-5 *2 (-588 (-595 (-382 *6)))) - (-5 *1 (-599 *5 *6)) (-5 *3 (-595 (-382 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) - (-4 *5 (-1142 *4)) (-5 *2 (-588 (-595 (-382 *5)))) - (-5 *1 (-599 *4 *5)) (-5 *3 (-595 (-382 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-756 *4)) (-4 *4 (-784)) (-5 *2 (-588 (-613 *4))) - (-5 *1 (-613 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-522)) (-5 *2 (-588 *3)) (-5 *1 (-634 *3)) - (-4 *3 (-1142 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-784)) (-4 *5 (-730)) (-4 *6 (-324)) (-5 *2 (-393 *3)) - (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-878 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-784)) (-4 *5 (-730)) (-4 *6 (-324)) - (-4 *7 (-878 *6 *5 *4)) (-5 *2 (-393 (-1081 *7))) - (-5 *1 (-636 *4 *5 *6 *7)) (-5 *3 (-1081 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-730)) - (-4 *5 - (-13 (-784) - (-10 -8 (-15 -3873 ((-1085) $)) - (-15 -1660 ((-3 $ "failed") (-1085)))))) - (-4 *6 (-283)) (-5 *2 (-393 *3)) (-5 *1 (-668 *4 *5 *6 *3)) - (-4 *3 (-878 (-881 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-730)) - (-4 *5 (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $))))) (-4 *6 (-514)) - (-5 *2 (-393 *3)) (-5 *1 (-670 *4 *5 *6 *3)) - (-4 *3 (-878 (-382 (-881 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-13 (-283) (-135))) - (-5 *2 (-393 *3)) (-5 *1 (-671 *4 *5 *6 *3)) - (-4 *3 (-878 (-382 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-784)) (-4 *5 (-730)) (-4 *6 (-13 (-283) (-135))) - (-5 *2 (-393 *3)) (-5 *1 (-679 *4 *5 *6 *3)) - (-4 *3 (-878 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-784)) (-4 *5 (-730)) (-4 *6 (-13 (-283) (-135))) - (-4 *7 (-878 *6 *5 *4)) (-5 *2 (-393 (-1081 *7))) - (-5 *1 (-679 *4 *5 *6 *7)) (-5 *3 (-1081 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-393 *3)) (-5 *1 (-933 *3)) - (-4 *3 (-1142 (-382 (-522)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-393 *3)) (-5 *1 (-965 *3)) - (-4 *3 (-1142 (-382 (-881 (-522))))))) + (-12 (-5 *3 (-589 (-874 *4))) (-4 *1 (-1048 *4)) (-4 *4 (-973)) + (-5 *2 (-710))))) +(((*1 *2 *3) + (-12 (-5 *3 (-883 (-523))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) ((*1 *2 *3) - (-12 (-4 *4 (-1142 (-382 (-522)))) - (-4 *5 (-13 (-338) (-135) (-662 (-382 (-522)) *4))) - (-5 *2 (-393 *3)) (-5 *1 (-996 *4 *5 *3)) (-4 *3 (-1142 *5)))) + (-12 (-5 *3 (-883 (-383 (-523)))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) + ((*1 *2 *3) (-12 (-5 *3 (-883 *1)) (-4 *1 (-940)) (-5 *2 (-589 *1)))) ((*1 *2 *3) - (-12 (-4 *4 (-1142 (-382 (-881 (-522))))) - (-4 *5 (-13 (-338) (-135) (-662 (-382 (-881 (-522))) *4))) - (-5 *2 (-393 *3)) (-5 *1 (-998 *4 *5 *3)) (-4 *3 (-1142 *5)))) + (-12 (-5 *3 (-1083 (-523))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) ((*1 *2 *3) - (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-426)) - (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-393 (-1081 (-382 *7)))) - (-5 *1 (-1080 *4 *5 *6 *7)) (-5 *3 (-1081 (-382 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-393 *1)) (-4 *1 (-1124)))) + (-12 (-5 *3 (-1083 (-383 (-523)))) (-5 *2 (-589 *1)) (-4 *1 (-940)))) + ((*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-940)) (-5 *2 (-589 *1)))) ((*1 *2 *3) - (-12 (-5 *2 (-393 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-1142 (-522)))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1085)) - (-4 *4 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-533 *4 *2)) - (-4 *2 (-13 (-1106) (-887) (-1049) (-29 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-122 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-784)))) - ((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784)))) - ((*1 *1 *1) (-5 *1 (-792))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3)) - (-4 *3 (-1142 *2))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-522)) (-5 *3 (-708)) (-5 *1 (-519))))) -(((*1 *2 *2) - (-12 (-4 *3 (-971)) (-4 *4 (-1142 *3)) (-5 *1 (-149 *3 *4 *2)) - (-4 *2 (-1142 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1120))))) -(((*1 *2 *2) - (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928))) - (-5 *1 (-160 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-514)) (-4 *2 (-971)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-514)) (-5 *1 (-897 *3 *2)) (-4 *2 (-1142 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784)) (-4 *2 (-514)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *3 (-985 *4 *5 *6)) - (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *1)))) - (-4 *1 (-990 *4 *5 *6 *3))))) + (-12 (-4 *4 (-13 (-784) (-339))) (-4 *3 (-1144 *4)) (-5 *2 (-589 *1)) + (-4 *1 (-989 *4 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-508))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-588 (-224 *4 *5))) (-5 *2 (-224 *4 *5)) - (-14 *4 (-588 (-1085))) (-4 *5 (-426)) (-5 *1 (-576 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1085)) - (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-539 *3)) (-5 *1 (-401 *5 *3)) - (-4 *3 (-13 (-1106) (-29 *5)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1066 *3))) (-5 *1 (-1066 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *2 (-561 *4)) (-5 *1 (-560 *3 *4)) (-4 *3 (-784)) - (-4 *4 (-784))))) -(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-784)))) - ((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784)))) - ((*1 *1 *1) (-5 *1 (-792))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3)) - (-4 *3 (-1142 *2))))) -(((*1 *1 *1) - (-12 (-4 *1 (-229 *2 *3 *4 *5)) (-4 *2 (-971)) (-4 *3 (-784)) - (-4 *4 (-242 *3)) (-4 *5 (-730))))) -(((*1 *2 *3) - (-12 (-5 *3 (-850)) (-5 *2 (-1166 (-1166 (-522)))) (-5 *1 (-440))))) -(((*1 *2 *2) - (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928))) - (-5 *1 (-160 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-690))))) -(((*1 *1 *1 *1) (-4 *1 (-507)))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-402 *3 *2)) (-4 *3 (-13 (-157) (-37 (-382 (-522))))) - (-4 *2 (-13 (-784) (-21)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-588 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1014))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1066 *4)) (-5 *3 (-1 *4 (-522))) (-4 *4 (-971)) - (-5 *1 (-1070 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-881 *4)) (-4 *4 (-971)) (-4 *4 (-563 *2)) - (-5 *2 (-354)) (-5 *1 (-722 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-971)) - (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514)) - (-4 *4 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-514)) - (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-291 *4)) (-4 *4 (-514)) (-4 *4 (-784)) - (-4 *4 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-291 *5)) (-5 *4 (-850)) (-4 *5 (-514)) - (-4 *5 (-784)) (-4 *5 (-563 *2)) (-5 *2 (-354)) - (-5 *1 (-722 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) - (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) - (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-588 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-51))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1068)) (-5 *3 (-522)) (-5 *1 (-218)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-588 (-1068))) (-5 *3 (-522)) (-5 *4 (-1068)) - (-5 *1 (-218)))) - ((*1 *1 *1) (-5 *1 (-792))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) - ((*1 *2 *1) (-12 (-4 *1 (-1144 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971))))) -(((*1 *2 *3) - (-12 (-4 *4 (-324)) (-4 *5 (-304 *4)) (-4 *6 (-1142 *5)) - (-5 *2 (-588 *3)) (-5 *1 (-714 *4 *5 *6 *3 *7)) (-4 *3 (-1142 *6)) - (-14 *7 (-850))))) -(((*1 *1 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-971)) (-4 *2 (-338))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1166 *4)) (-4 *4 (-324)) (-5 *2 (-1081 *4)) - (-5 *1 (-492 *4))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338))))) -(((*1 *2 *1) (-12 (-5 *2 (-588 (-561 *1))) (-4 *1 (-278))))) + (|partial| -12 (-5 *2 (-570 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -3159 *4) (|:| |sol?| (-108))) + (-523) *4)) + (-4 *4 (-339)) (-4 *5 (-1144 *4)) (-5 *1 (-533 *4 *5))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-588 - (-2 - (|:| -2644 - (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) - (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) - (|:| |relerr| (-202)))) - (|:| -3149 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1066 (-202))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2321 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-517)))) + (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-973)) + (-14 *4 (-589 (-1087))))) + ((*1 *2 *3) + (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1122)))) ((*1 *2 *1) - (-12 (-4 *1 (-555 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1120)) - (-5 *2 (-588 *4))))) + (-12 (-5 *2 (-108)) (-5 *1 (-201 *3 *4)) (-4 *3 (-13 (-973) (-786))) + (-14 *4 (-589 (-1087))))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-614 *3)) (-4 *3 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-618 *3)) (-4 *3 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-824 *3)) (-4 *3 (-786))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1070)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) + (-4 *4 (-987 *6 *7 *8)) (-5 *2 (-1173)) + (-5 *1 (-715 *6 *7 *8 *4 *5)) (-4 *5 (-992 *6 *7 *8 *4))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-348 *2)) - (-4 *4 (-348 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4239)) (-4 *1 (-555 *3 *2)) (-4 *3 (-1014)) - (-4 *2 (-1120))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-1159 *4 *2)) - (-4 *4 (-37 (-382 (-522))))))) -(((*1 *1 *1 *1) (-4 *1 (-507)))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-256)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) - (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-971)) - (-4 *4 (-780))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-270 *2)) (-4 *2 (-664)) (-4 *2 (-1120))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1016 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1016 *3)) (-5 *1 (-834 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-588 (-1001))) (-5 *1 (-267))))) -(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-143))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-971)) (-14 *3 (-1085)) - (-14 *4 *2)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-588 *3)) (-4 *3 (-283)) (-5 *1 (-163 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-426)) (-4 *4 (-514)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1920 *4))) - (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-588 (-454 *5 *6))) (-5 *4 (-794 *5)) - (-14 *5 (-588 (-1085))) (-5 *2 (-454 *5 *6)) (-5 *1 (-576 *5 *6)) - (-4 *6 (-426)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-454 *5 *6))) (-5 *4 (-794 *5)) - (-14 *5 (-588 (-1085))) (-5 *2 (-454 *5 *6)) (-5 *1 (-576 *5 *6)) - (-4 *6 (-426))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-821 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1014)) - (-4 *5 (-1120)) (-5 *1 (-819 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-821 *4)) (-5 *3 (-588 (-1 (-108) *5))) (-4 *4 (-1014)) - (-4 *5 (-1120)) (-5 *1 (-819 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-821 *5)) (-5 *3 (-588 (-1085))) - (-5 *4 (-1 (-108) (-588 *6))) (-4 *5 (-1014)) (-4 *6 (-1120)) - (-5 *1 (-819 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1120)) (-4 *4 (-784)) - (-5 *1 (-866 *4 *2 *5)) (-4 *2 (-405 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-588 (-1 (-108) *5))) (-4 *5 (-1120)) (-4 *4 (-784)) - (-5 *1 (-866 *4 *2 *5)) (-4 *2 (-405 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1085)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1120)) - (-5 *2 (-291 (-522))) (-5 *1 (-867 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1085)) (-5 *4 (-588 (-1 (-108) *5))) (-4 *5 (-1120)) - (-5 *2 (-291 (-522))) (-5 *1 (-867 *5)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-1 (-108) (-588 *6))) - (-4 *6 (-13 (-405 *5) (-815 *4) (-563 (-821 *4)))) (-4 *4 (-1014)) - (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4)))) - (-5 *1 (-993 *4 *5 *6))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) - (-4 *4 (-348 *3)) (-4 *5 (-348 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-514) (-784))) - (-4 *2 (-13 (-405 (-154 *4)) (-928) (-1106))) - (-5 *1 (-551 *4 *3 *2)) (-4 *3 (-13 (-405 *4) (-928) (-1106)))))) -(((*1 *2 *1) (-12 (-5 *2 (-759)) (-5 *1 (-758))))) + (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-427)) (-4 *4 (-786)) + (-4 *5 (-732)) (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-880 *3 *5 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-588 *7)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) - (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) - (-5 *1 (-915 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-31 *3 *4)) + (-4 *4 (-406 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-710)) (-5 *1 (-110)))) + ((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-110)))) ((*1 *2 *2) - (-12 (-5 *2 (-588 *7)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) - (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) - (-5 *1 (-1021 *3 *4 *5 *6 *7))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-708)) (-5 *1 (-719 *3)) (-4 *3 (-971)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-891 *3 *2)) (-4 *2 (-124)) (-4 *3 (-514)) - (-4 *3 (-971)) (-4 *2 (-729)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-708)) (-5 *1 (-1081 *3)) (-4 *3 (-971)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-898)) (-4 *2 (-124)) (-5 *1 (-1087 *3)) (-4 *3 (-514)) - (-4 *3 (-971)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-708)) (-5 *1 (-1139 *4 *3)) (-14 *4 (-1085)) - (-4 *3 (-971))))) -(((*1 *2) - (-12 (-5 *2 (-708)) (-5 *1 (-116 *3)) (-4 *3 (-1142 (-522))))) + (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-145 *3 *4)) + (-4 *4 (-406 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-110)) (-5 *1 (-149)))) ((*1 *2 *2) - (-12 (-5 *2 (-708)) (-5 *1 (-116 *3)) (-4 *3 (-1142 (-522)))))) -(((*1 *1) (-5 *1 (-983)))) -(((*1 *2 *2) - (-12 (-4 *3 (-283)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) - (-5 *1 (-1036 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-792)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-850)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) - ((*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-239))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1116 *3)) (-4 *3 (-901))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-850)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-708))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-850)) (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343)))) - ((*1 *2 *1) (-12 (-4 *1 (-304 *2)) (-4 *2 (-338)))) - ((*1 *2 *1) - (-12 (-4 *1 (-345 *2 *3)) (-4 *3 (-1142 *2)) (-4 *2 (-157)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1166 *4)) (-5 *3 (-850)) (-4 *4 (-324)) - (-5 *1 (-492 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) - (-4 *5 (-215 *3 *2)) (-4 *2 (-971))))) -(((*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-283)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522)))) - ((*1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1120)))) - ((*1 *1 *1) (-4 *1 (-798 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-900 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-729)) - (-4 *4 (-784))))) -(((*1 *1 *1) (-4 *1 (-980)))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-938)) (-5 *2 (-792))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-522))) (-5 *1 (-969))))) -(((*1 *2 *3) - (-12 (-5 *3 (-291 (-202))) (-5 *2 (-382 (-522))) (-5 *1 (-281))))) -(((*1 *1 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-1120)))) + (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *4)) + (-4 *4 (-13 (-406 *3) (-930))))) + ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-278 *3)) (-4 *3 (-279)))) + ((*1 *2 *2) (-12 (-4 *1 (-279)) (-5 *2 (-110)))) ((*1 *2 *2) - (-12 (-4 *3 (-971)) (-5 *1 (-418 *3 *2)) (-4 *2 (-1142 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -2002 *7) (|:| |sol?| (-108))) - (-522) *7)) - (-5 *6 (-588 (-382 *8))) (-4 *7 (-338)) (-4 *8 (-1142 *7)) - (-5 *3 (-382 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-532 *7 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-354)) (-5 *2 (-202)) (-5 *1 (-281))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) - (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) - (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) - (|:| |abserr| (-202)) (|:| |relerr| (-202)))) - (-5 *2 (-354)) (-5 *1 (-184))))) + (-12 (-5 *2 (-110)) (-4 *4 (-786)) (-5 *1 (-405 *3 *4)) + (-4 *3 (-406 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *4)) + (-4 *4 (-406 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-562 *3)) (-4 *3 (-786)))) + ((*1 *2 *2) + (-12 (-5 *2 (-110)) (-4 *3 (-13 (-786) (-515))) (-5 *1 (-576 *3 *4)) + (-4 *4 (-13 (-406 *3) (-930) (-1108)))))) (((*1 *2) - (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) - (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) - (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-522)) (-5 *1 (-291 *3)) (-4 *3 (-514)) (-4 *3 (-784))))) -(((*1 *2 *1) - (-12 (-4 *1 (-903 *3 *4 *2 *5)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-985 *3 *4 *2)) (-4 *2 (-784)))) + (-12 (-5 *2 (-108)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1016))))) +(((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-158)))) + ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1068 *2)) (-4 *2 (-284)) (-5 *1 (-159 *2))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *2 (-987 *3 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-852)) (-4 *4 (-344)) (-4 *4 (-339)) (-5 *2 (-1083 *1)) + (-4 *1 (-305 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-305 *3)) (-4 *3 (-339)) (-5 *2 (-1083 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *2 (-784))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-561 *4)) (-4 *4 (-784)) (-4 *2 (-784)) - (-5 *1 (-560 *2 *4))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-588 (-628 *6))) (-5 *4 (-108)) (-5 *5 (-522)) - (-5 *2 (-628 *6)) (-5 *1 (-954 *6)) (-4 *6 (-338)) (-4 *6 (-971)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-588 (-628 *4))) (-5 *2 (-628 *4)) (-5 *1 (-954 *4)) - (-4 *4 (-338)) (-4 *4 (-971)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-588 (-628 *5))) (-5 *4 (-522)) (-5 *2 (-628 *5)) - (-5 *1 (-954 *5)) (-4 *5 (-338)) (-4 *5 (-971))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-708)) (-4 *5 (-971)) (-5 *2 (-522)) - (-5 *1 (-417 *5 *3 *6)) (-4 *3 (-1142 *5)) - (-4 *6 (-13 (-379) (-962 *5) (-338) (-1106) (-260))))) + (-12 (-4 *1 (-346 *3 *2)) (-4 *3 (-158)) (-4 *3 (-339)) + (-4 *2 (-1144 *3)))) ((*1 *2 *3) - (-12 (-4 *4 (-971)) (-5 *2 (-522)) (-5 *1 (-417 *4 *3 *5)) - (-4 *3 (-1142 *4)) - (-4 *5 (-13 (-379) (-962 *4) (-338) (-1106) (-260)))))) -(((*1 *2) - (-12 (-5 *2 (-628 (-839 *3))) (-5 *1 (-326 *3 *4)) (-14 *3 (-850)) - (-14 *4 (-850)))) - ((*1 *2) - (-12 (-5 *2 (-628 *3)) (-5 *1 (-327 *3 *4)) (-4 *3 (-324)) - (-14 *4 - (-3 (-1081 *3) - (-1166 (-588 (-2 (|:| -3526 *3) (|:| -2882 (-1032))))))))) - ((*1 *2) - (-12 (-5 *2 (-628 *3)) (-5 *1 (-328 *3 *4)) (-4 *3 (-324)) - (-14 *4 (-850))))) -(((*1 *2 *2) + (-12 (-5 *3 (-1168 *4)) (-4 *4 (-325)) (-5 *2 (-1083 *4)) + (-5 *1 (-493 *4))))) +(((*1 *1 *2 *3) (-12 - (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-522)))) - (-4 *4 (-13 (-1142 *3) (-514) (-10 -8 (-15 -2308 ($ $ $))))) - (-4 *3 (-514)) (-5 *1 (-1145 *3 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-588 (-993 *3 *4 *5))) (-4 *3 (-1014)) - (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3)))) - (-4 *5 (-13 (-405 *4) (-815 *3) (-563 (-821 *3)))) - (-5 *1 (-994 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) - (-4 *5 (-348 *3)) (-5 *2 (-522)))) - ((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) - (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-522))))) -(((*1 *1) (-5 *1 (-1001)))) -(((*1 *2 *1) + (-5 *3 + (-589 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-523))))) + (-4 *2 (-515)) (-5 *1 (-394 *2)))) + ((*1 *2 *3) (-12 - (-5 *2 - (-1166 - (-2 (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) - (|:| |deltaX| (-202)) (|:| |deltaY| (-202)) (|:| -3748 (-522)) - (|:| -2294 (-522)) (|:| |spline| (-522)) (|:| -1605 (-522)) - (|:| |axesColor| (-803)) (|:| -2035 (-522)) - (|:| |unitsColor| (-803)) (|:| |showing| (-522))))) - (-5 *1 (-1167))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) - (-4 *5 (-405 *4)) (-5 *2 (-393 (-1081 (-382 (-522))))) - (-5 *1 (-410 *4 *5 *3)) (-4 *3 (-1142 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-514)) (-4 *2 (-426)) (-5 *1 (-897 *2 *3)) - (-4 *3 (-1142 *2))))) + (-5 *3 + (-2 (|:| |contp| (-523)) + (|:| -1979 (-589 (-2 (|:| |irr| *4) (|:| -1227 (-523))))))) + (-4 *4 (-1144 (-523))) (-5 *2 (-394 *4)) (-5 *1 (-417 *4))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-784)) (-5 *2 (-588 *1)) - (-4 *1 (-405 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3)) - (-4 *3 (-1014)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *2 (-588 *1)) (-4 *1 (-878 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) - (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-588 *3)) - (-5 *1 (-879 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-338) - (-10 -8 (-15 -2217 ($ *7)) (-15 -2947 (*7 $)) - (-15 -2959 (*7 $)))))))) -(((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-588 (-522))) (-5 *2 (-1087 (-382 (-522)))) - (-5 *1 (-169))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-454 *4 *5))) (-14 *4 (-588 (-1085))) - (-4 *5 (-426)) (-5 *2 (-588 (-224 *4 *5))) (-5 *1 (-576 *4 *5))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-283)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1368 *1))) - (-4 *1 (-283))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-108)) (-5 *5 (-1016 (-708))) (-5 *6 (-708)) - (-5 *2 - (-2 (|:| |contp| (-522)) - (|:| -4045 (-588 (-2 (|:| |irr| *3) (|:| -4160 (-522))))))) - (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522)))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-588 (-588 (-588 *5)))) (-5 *3 (-1 (-108) *5 *5)) - (-5 *4 (-588 *5)) (-4 *5 (-784)) (-5 *1 (-1092 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-588 (-454 *3 *4))) (-14 *3 (-588 (-1085))) - (-4 *4 (-426)) (-5 *1 (-576 *3 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-305))))) + (-12 (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *3 (-515)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-987 *3 *4 *5)) (-4 *5 (-344)) + (-5 *2 (-710))))) (((*1 *2 *3) - (-12 (-5 *3 (-708)) (-5 *2 (-628 (-881 *4))) (-5 *1 (-953 *4)) - (-4 *4 (-971))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-108)) - (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-4 *3 (-13 (-27) (-1106) (-405 *6) (-10 -8 (-15 -2217 ($ *7))))) - (-4 *7 (-782)) - (-4 *8 - (-13 (-1144 *3 *7) (-338) (-1106) - (-10 -8 (-15 -2731 ($ $)) (-15 -2611 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068)))))) - (-5 *1 (-397 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1068)) (-4 *9 (-910 *8)) - (-14 *10 (-1085))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-708)) (-5 *3 (-872 *5)) (-4 *5 (-971)) - (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 (-708))) (-5 *3 (-708)) (-5 *1 (-1074 *4 *5)) - (-14 *4 (-850)) (-4 *5 (-971)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 (-708))) (-5 *3 (-872 *5)) (-4 *5 (-971)) - (-5 *1 (-1074 *4 *5)) (-14 *4 (-850))))) -(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856))))) + (-12 (-4 *4 (-786)) (-5 *2 (-589 (-589 *4))) (-5 *1 (-1094 *4)) + (-5 *3 (-589 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-845 *3)) (-4 *3 (-284))))) (((*1 *2 *3) - (-12 (-5 *3 (-522)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-971)) - (-5 *1 (-296 *4 *5 *2 *6)) (-4 *6 (-878 *2 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2)) - (-4 *2 (-405 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-563 (-821 *3))) (-4 *3 (-815 *3)) - (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-563 (-821 *3))) (-4 *2 (-815 *3)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *1) (-5 *1 (-132))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-237)))) - ((*1 *1 *2) (-12 (-5 *2 (-1045 (-202))) (-5 *1 (-239))))) -(((*1 *1) (-5 *1 (-143)))) -(((*1 *1 *2) - (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-514)) (-4 *5 (-730)) - (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-588 *1)) (-4 *1 (-405 *4)) - (-4 *4 (-784)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1085)) (-4 *1 (-405 *3)) (-4 *3 (-784)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1085)) (-4 *1 (-405 *3)) (-4 *3 (-784)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1085)) (-4 *1 (-405 *3)) (-4 *3 (-784)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1085)) (-4 *1 (-405 *3)) (-4 *3 (-784))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-338) (-135))) - (-5 *2 (-588 (-2 (|:| -3858 (-708)) (|:| -1980 *4) (|:| |num| *4)))) - (-5 *1 (-374 *3 *4)) (-4 *4 (-1142 *3))))) -(((*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-850)))) ((*1 *1) (-4 *1 (-507))) - ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-637)))) - ((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-637)))) - ((*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-588 (-872 (-202))))) - (-5 *2 (-588 (-1009 (-202)))) (-5 *1 (-857))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-708)) (-4 *3 (-1120)) (-4 *1 (-55 *3 *4 *5)) - (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) - ((*1 *1) (-5 *1 (-156))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1068)) (-4 *1 (-364)))) - ((*1 *1) (-5 *1 (-369))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-708)) (-4 *1 (-593 *3)) (-4 *3 (-1120)))) - ((*1 *1) - (-12 (-4 *3 (-1014)) (-5 *1 (-814 *2 *3 *4)) (-4 *2 (-1014)) - (-4 *4 (-608 *3)))) - ((*1 *1) (-12 (-5 *1 (-818 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) - ((*1 *1) (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971)))) - ((*1 *1 *1) (-5 *1 (-1085))) ((*1 *1) (-5 *1 (-1085))) - ((*1 *1) (-5 *1 (-1101)))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-3 (-108) (-588 *1))) - (-4 *1 (-990 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1014)))) - ((*1 *1 *2) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1014))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-588 (-454 *4 *5))) (-5 *3 (-794 *4)) - (-14 *4 (-588 (-1085))) (-4 *5 (-426)) (-5 *1 (-576 *4 *5))))) + (-12 + (-5 *3 + (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) + (-5 *2 (-589 (-203))) (-5 *1 (-282))))) +(((*1 *2 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1070)) (-5 *1 (-282))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *5)) (-5 *4 (-589 (-1 *6 (-589 *6)))) + (-4 *5 (-37 (-383 (-523)))) (-4 *6 (-1159 *5)) (-5 *2 (-589 *6)) + (-5 *1 (-1161 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-784)) (-5 *1 (-858 *3 *2)) (-4 *2 (-405 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1085)) (-5 *2 (-291 (-522))) (-5 *1 (-859))))) -(((*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106)))))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-858))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-108))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-343 *2)) (-4 *2 (-515)) (-4 *2 (-158))))) +(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-1087))))) (((*1 *2 *1) - (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) - (-5 *2 - (-2 (|:| -3748 (-708)) (|:| |curves| (-708)) - (|:| |polygons| (-708)) (|:| |constructs| (-708))))))) -(((*1 *2) - (-12 (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) - (-5 *2 (-1166 *1)) (-4 *1 (-317 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $))))) - (-4 *4 (-1142 *3)) - (-5 *2 - (-2 (|:| -2905 (-628 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-628 *3)))) - (-5 *1 (-325 *3 *4 *5)) (-4 *5 (-384 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1142 (-522))) - (-5 *2 - (-2 (|:| -2905 (-628 (-522))) (|:| |basisDen| (-522)) - (|:| |basisInv| (-628 (-522))))) - (-5 *1 (-705 *3 *4)) (-4 *4 (-384 (-522) *3)))) - ((*1 *2) - (-12 (-4 *3 (-324)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 *4)) - (-5 *2 - (-2 (|:| -2905 (-628 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-628 *4)))) - (-5 *1 (-912 *3 *4 *5 *6)) (-4 *6 (-662 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-324)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 *4)) - (-5 *2 - (-2 (|:| -2905 (-628 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-628 *4)))) - (-5 *1 (-1175 *3 *4 *5 *6)) (-4 *6 (-384 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) + (-12 (-4 *4 (-1016)) (-5 *2 (-820 *3 *5)) (-5 *1 (-816 *3 *4 *5)) + (-4 *3 (-1016)) (-4 *5 (-609 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2)) - (-4 *4 (-13 (-784) (-514)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-588 (-2 (|:| -2644 *3) (|:| -3149 *4)))) - (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *1 (-1097 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1097 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) -(((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1171)) (-5 *1 (-1048)))) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *6 *5)) + (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) (-5 *2 (-108)) (-5 *1 (-855 *4 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-588 (-792))) (-5 *2 (-1171)) (-5 *1 (-1048))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-1090))) (-5 *1 (-1090)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-1090))) (-5 *1 (-1090))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1120)) (-5 *2 (-708)) (-5 *1 (-165 *4 *3)) - (-4 *3 (-615 *4))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *2 (-960)) - (-5 *1 (-694))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-588 (-628 *4))) (-5 *2 (-628 *4)) (-4 *4 (-971)) - (-5 *1 (-954 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-498))) (-5 *1 (-498))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-561 *3)) (-4 *3 (-13 (-405 *5) (-27) (-1106))) - (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) - (-5 *2 (-539 *3)) (-5 *1 (-524 *5 *3 *6)) (-4 *6 (-1014))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3))))) + (-12 (-5 *3 (-589 (-883 *4))) (-4 *4 (-13 (-284) (-136))) + (-4 *5 (-13 (-786) (-564 (-1087)))) (-4 *6 (-732)) (-5 *2 (-108)) + (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-880 *4 *6 *5))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-779 *4)) (-5 *3 (-562 *4)) (-5 *5 (-108)) + (-4 *4 (-13 (-1108) (-29 *6))) + (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-202 *6 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1081 *4)) (-4 *4 (-324)) - (-5 *2 (-1166 (-588 (-2 (|:| -3526 *4) (|:| -2882 (-1032)))))) - (-5 *1 (-321 *4))))) + (-12 (-4 *4 (-515)) (-5 *2 (-710)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-393 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-541 *4)) - (-4 *4 (-324))))) + (-12 (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-108)) + (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-987 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-382 (-522))) (-4 *1 (-512 *3)) - (-4 *3 (-13 (-379) (-1106))))) - ((*1 *1 *2) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106)))))) -(((*1 *2 *2) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1014))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-222 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-348 *3)) (-4 *3 (-1120)) (-4 *3 (-784)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-348 *4)) (-4 *4 (-1120)) - (-5 *2 (-108))))) -(((*1 *2) - (-12 (-5 *2 (-1171)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014)) - (-4 *4 (-1014))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) + (-12 (-4 *3 (-13 (-515) (-136))) (-5 *1 (-500 *3 *2)) + (-4 *2 (-1159 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) + (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-4 *4 (-1144 *3)) + (-4 *5 (-664 *3 *4)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-1159 *5)))) ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-291 *3)) (-4 *3 (-13 (-971) (-784))) - (-5 *1 (-200 *3 *4)) (-14 *4 (-588 (-1085)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730)) - (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *3 (-985 *4 *5 *6)) - (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1974 *1)))) - (-4 *1 (-990 *4 *5 *6 *3))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-708) *2)) (-5 *4 (-708)) (-4 *2 (-1014)) - (-5 *1 (-618 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-708) *3)) (-4 *3 (-1014)) (-5 *1 (-621 *3))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108)) - (-4 *5 (-13 (-782) (-283) (-135) (-947))) - (-5 *2 (-588 (-968 *5 *6))) (-5 *1 (-1190 *5 *6 *7)) - (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108)) - (-4 *5 (-13 (-782) (-283) (-135) (-947))) - (-5 *2 (-588 (-968 *5 *6))) (-5 *1 (-1190 *5 *6 *7)) - (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-881 *4))) - (-4 *4 (-13 (-782) (-283) (-135) (-947))) - (-5 *2 (-588 (-968 *4 *5))) (-5 *1 (-1190 *4 *5 *6)) - (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1009 (-777 (-202)))) (-5 *1 (-281))))) -(((*1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-126))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-522)) (-5 *1 (-1103 *3)) (-4 *3 (-971))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3))))) -(((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) - (-4 *3 (-342 *4)))) - ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4239)) (-4 *1 (-221 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-1085))) (-5 *2 (-1171)) (-5 *1 (-1088)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-588 (-1085))) (-5 *3 (-1085)) (-5 *2 (-1171)) - (-5 *1 (-1088)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-588 (-1085))) (-5 *3 (-1085)) (-5 *2 (-1171)) - (-5 *1 (-1088))))) -(((*1 *1 *2) - (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3)))) - ((*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-305))))) -(((*1 *2 *3) - (-12 (-4 *4 (-838)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-393 (-1081 *7))) - (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-1081 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-838)) (-4 *5 (-1142 *4)) (-5 *2 (-393 (-1081 *5))) - (-5 *1 (-836 *4 *5)) (-5 *3 (-1081 *5))))) -(((*1 *1 *1) (-4 *1 (-34))) + (-12 (-4 *3 (-13 (-339) (-344) (-564 (-523)))) (-5 *1 (-505 *3 *2)) + (-4 *2 (-1159 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-515) (-136))) + (-5 *1 (-1064 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-912 *2)) (-4 *2 (-1108))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1081 *5)) (-4 *5 (-426)) (-5 *2 (-588 *6)) - (-5 *1 (-500 *5 *6 *4)) (-4 *6 (-338)) (-4 *4 (-13 (-338) (-782))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-881 *5)) (-4 *5 (-426)) (-5 *2 (-588 *6)) - (-5 *1 (-500 *5 *6 *4)) (-4 *6 (-338)) (-4 *4 (-13 (-338) (-782)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-278)) (-4 *2 (-1120)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 (-561 *1))) (-5 *3 (-588 *1)) (-4 *1 (-278)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-270 *1))) (-4 *1 (-278)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-270 *1)) (-4 *1 (-278))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-821 *4)) (-4 *4 (-1014)) (-5 *1 (-818 *4 *3)) - (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-971)) (-14 *3 (-1085)) - (-14 *4 *2)))) -(((*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-283))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1085)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *4 *5 *6)) - (-4 *4 (-563 (-498))) (-4 *5 (-1120)) (-4 *6 (-1120))))) -(((*1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784)) (-4 *2 (-426))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-539 *2)) (-4 *2 (-13 (-29 *4) (-1106))) - (-5 *1 (-537 *4 *2)) - (-4 *4 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-539 (-382 (-881 *4)))) - (-4 *4 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) - (-5 *2 (-291 *4)) (-5 *1 (-542 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-588 (-1107 *3))) (-5 *1 (-1107 *3)) (-4 *3 (-1014))))) -(((*1 *2 *3) - (-12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-283)) - (-5 *2 (-382 (-393 (-881 *4)))) (-5 *1 (-966 *4))))) -(((*1 *2 *1) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-901))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) - (-4 *4 (-348 *3)) (-4 *5 (-348 *3))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-1159 *4 *2)) - (-4 *4 (-37 (-382 (-522))))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171)) - (-5 *1 (-991 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171)) - (-5 *1 (-1022 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *1 *1) (-4 *1 (-463))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *4)))) - (-5 *1 (-1051 *3 *4)) (-4 *3 (-13 (-1014) (-33))) - (-4 *4 (-13 (-1014) (-33)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-514) (-784) (-962 (-522)))) (-5 *1 (-167 *3 *2)) - (-4 *2 (-13 (-27) (-1106) (-405 (-154 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1035 *3 *4 *2 *5)) (-4 *4 (-971)) (-4 *5 (-215 *3 *4)) - (-4 *2 (-215 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106))))) - ((*1 *1 *1 *1) (-4 *1 (-730)))) -(((*1 *1 *1 *1) (-5 *1 (-792)))) -(((*1 *1 *2) (-12 (-5 *2 (-291 (-154 (-354)))) (-5 *1 (-305)))) - ((*1 *1 *2) (-12 (-5 *2 (-291 (-522))) (-5 *1 (-305)))) - ((*1 *1 *2) (-12 (-5 *2 (-291 (-354))) (-5 *1 (-305)))) - ((*1 *1 *2) (-12 (-5 *2 (-291 (-632))) (-5 *1 (-305)))) - ((*1 *1 *2) (-12 (-5 *2 (-291 (-639))) (-5 *1 (-305)))) - ((*1 *1 *2) (-12 (-5 *2 (-291 (-637))) (-5 *1 (-305)))) - ((*1 *1) (-5 *1 (-305)))) -(((*1 *2 *1) - (-12 (-5 *2 (-1016 (-1016 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1014))))) -(((*1 *2 *2) - (-12 (-4 *3 (-514)) (-5 *1 (-40 *3 *2)) - (-4 *2 - (-13 (-338) (-278) - (-10 -8 (-15 -2947 ((-1037 *3 (-561 $)) $)) - (-15 -2959 ((-1037 *3 (-561 $)) $)) - (-15 -2217 ($ (-1037 *3 (-561 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-514)) (-5 *1 (-40 *3 *2)) - (-4 *2 - (-13 (-338) (-278) - (-10 -8 (-15 -2947 ((-1037 *3 (-561 $)) $)) - (-15 -2959 ((-1037 *3 (-561 $)) $)) - (-15 -2217 ($ (-1037 *3 (-561 $))))))))) + (-12 (-4 *5 (-339)) (-4 *7 (-1144 *5)) (-4 *4 (-664 *5 *7)) + (-5 *2 (-2 (|:| -3392 (-629 *6)) (|:| |vec| (-1168 *5)))) + (-5 *1 (-750 *5 *6 *7 *4 *3)) (-4 *6 (-599 *5)) (-4 *3 (-599 *4))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-629 (-203))) (-5 *5 (-108)) (-5 *6 (-203)) + (-5 *7 (-629 (-523))) + (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-78 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-364)) (|:| |fp| (-75 OBJFUN)))) + (-5 *3 (-523)) (-5 *2 (-962)) (-5 *1 (-693))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-355)) (-5 *2 (-1173)) (-5 *1 (-1170))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1126)) (-4 *5 (-1144 *3)) (-4 *6 (-1144 (-383 *5))) + (-5 *2 (-108)) (-5 *1 (-317 *4 *3 *5 *6)) (-4 *4 (-318 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1087)) (-5 *1 (-540 *2)) (-4 *2 (-964 *3)) + (-4 *2 (-339)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-540 *2)) (-4 *2 (-339)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-588 *2)) - (-4 *2 - (-13 (-338) (-278) - (-10 -8 (-15 -2947 ((-1037 *4 (-561 $)) $)) - (-15 -2959 ((-1037 *4 (-561 $)) $)) - (-15 -2217 ($ (-1037 *4 (-561 $))))))) - (-4 *4 (-514)) (-5 *1 (-40 *4 *2)))) + (-12 (-5 *3 (-1087)) (-4 *4 (-13 (-786) (-515))) (-5 *1 (-576 *4 *2)) + (-4 *2 (-13 (-406 *4) (-930) (-1108))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-588 (-561 *2))) - (-4 *2 - (-13 (-338) (-278) - (-10 -8 (-15 -2947 ((-1037 *4 (-561 $)) $)) - (-15 -2959 ((-1037 *4 (-561 $)) $)) - (-15 -2217 ($ (-1037 *4 (-561 $))))))) - (-4 *4 (-514)) (-5 *1 (-40 *4 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-792))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792))))) -(((*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-4 *1 (-342 *2)) (-4 *2 (-157))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168))))) -(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-536))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1066 *4)) (-5 *3 (-522)) (-4 *4 (-971)) - (-5 *1 (-1070 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-522)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-971)) - (-14 *4 (-1085)) (-14 *5 *3)))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-588 (-1081 *4))) (-5 *3 (-1081 *4)) - (-4 *4 (-838)) (-5 *1 (-605 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-871)) (-5 *3 (-522)))) - ((*1 *2 *2) - (-12 (-4 *3 (-283)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) - (-5 *1 (-1036 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) - (-5 *1 (-904 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-393 *5)) (-4 *5 (-514)) - (-5 *2 - (-2 (|:| -3858 (-708)) (|:| -3112 *5) (|:| |radicand| (-588 *5)))) - (-5 *1 (-295 *5)) (-5 *4 (-708)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-522))))) -(((*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-577))))) -(((*1 *2 *3) - (-12 (-5 *3 (-708)) (-4 *4 (-338)) (-4 *5 (-1142 *4)) (-5 *2 (-1171)) - (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1142 (-382 *5))) (-14 *7 *6)))) + (-12 (-5 *3 (-1009 *2)) (-4 *2 (-13 (-406 *4) (-930) (-1108))) + (-4 *4 (-13 (-786) (-515))) (-5 *1 (-576 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-889)) (-5 *2 (-1087)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1009 *1)) (-4 *1 (-889))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-834 *4)) (-4 *4 (-1014)) (-5 *2 (-588 (-708))) - (-5 *1 (-833 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) - (-5 *3 (-588 (-522))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) - (-5 *3 (-588 (-522)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-157)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-157))))) -(((*1 *1 *1 *1) (-4 *1 (-507)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) - (-5 *1 (-904 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-302 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) - (-12 (-5 *2 (-708)) (-5 *1 (-485 *3 *4)) (-4 *3 (-1120)) - (-14 *4 (-522))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-628 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-338)) - (-5 *2 (-108)) (-5 *1 (-609 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-338)) (-4 *6 (-13 (-348 *5) (-10 -7 (-6 -4239)))) - (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4239)))) (-5 *2 (-108)) - (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-478 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-784))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-498) (-588 (-498)))) (-5 *1 (-110)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-498) (-588 (-498)))) (-5 *1 (-110))))) -(((*1 *2) - (-12 (-4 *1 (-324)) - (-5 *2 (-588 (-2 (|:| -2006 (-522)) (|:| -3858 (-522)))))))) -(((*1 *2) - (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-392 *3))))) -(((*1 *1) (-5 *1 (-132)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) - (-5 *2 (-588 (-588 (-588 (-872 *3)))))))) + (-12 (|has| *1 (-6 -4244)) (-4 *1 (-556 *4 *3)) (-4 *4 (-1016)) + (-4 *3 (-1122)) (-4 *3 (-1016)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-523)))) + ((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-638))))) (((*1 *2 *3) - (-12 (-4 *4 (-784)) (-5 *2 (-588 (-588 (-588 *4)))) - (-5 *1 (-1092 *4)) (-5 *3 (-588 (-588 *4)))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-561 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1085))) (-5 *5 (-1081 *2)) - (-4 *2 (-13 (-405 *6) (-27) (-1106))) - (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) - (-5 *1 (-518 *6 *2 *7)) (-4 *7 (-1014)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-561 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1085))) - (-5 *5 (-382 (-1081 *2))) (-4 *2 (-13 (-405 *6) (-27) (-1106))) - (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) - (-5 *1 (-518 *6 *2 *7)) (-4 *7 (-1014))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-442)) (-5 *3 (-588 (-239))) (-5 *1 (-1167)))) - ((*1 *1 *1) (-5 *1 (-1167)))) + (-12 (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) (-5 *2 (-589 *3)) (-5 *1 (-855 *4 *5 *6 *3)) + (-4 *3 (-880 *4 *6 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-588 (-588 *7))) - (-5 *1 (-422 *4 *5 *6 *7)) (-5 *3 (-588 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-730)) - (-4 *7 (-784)) (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-588 (-588 *8))) - (-5 *1 (-422 *5 *6 *7 *8)) (-5 *3 (-588 *8))))) -(((*1 *2) - (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-5 *2 (-628 (-382 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1081 *1)) (-4 *1 (-426)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1081 *6)) (-4 *6 (-878 *5 *3 *4)) (-4 *3 (-730)) - (-4 *4 (-784)) (-4 *5 (-838)) (-5 *1 (-431 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1081 *1)) (-4 *1 (-838))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-708)) (-4 *4 (-324)) (-5 *1 (-194 *4 *2)) - (-4 *2 (-1142 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-108))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-971)) - (-5 *1 (-652 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-771 *3))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-708)) (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *5)) - (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-708)) (-4 *1 (-1164 *3)) (-4 *3 (-23)) (-4 *3 (-1120))))) -(((*1 *2 *1) - (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) - (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) - (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-892 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1081 *7)) (-4 *5 (-971)) - (-4 *7 (-971)) (-4 *2 (-1142 *5)) (-5 *1 (-471 *5 *2 *6 *7)) - (-4 *6 (-1142 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-971)) (-4 *7 (-971)) - (-4 *4 (-1142 *5)) (-5 *2 (-1081 *7)) (-5 *1 (-471 *5 *4 *6 *7)) - (-4 *6 (-1142 *4))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-588 (-1085))) (-4 *2 (-157)) - (-4 *4 (-215 (-3591 *5) (-708))) - (-14 *6 - (-1 (-108) (-2 (|:| -2882 *3) (|:| -3858 *4)) - (-2 (|:| -2882 *3) (|:| -3858 *4)))) - (-5 *1 (-435 *5 *2 *3 *4 *6 *7)) (-4 *3 (-784)) - (-4 *7 (-878 *2 *4 (-794 *5)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1166 *4)) (-5 *3 (-522)) (-4 *4 (-324)) - (-5 *1 (-492 *4))))) -(((*1 *2 *1) (-12 (-5 *1 (-951 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) - (-5 *2 (-588 (-881 *4))))) + (-12 (-5 *3 (-1168 (-589 (-2 (|:| -1733 *4) (|:| -3878 (-1034)))))) + (-4 *4 (-325)) (-5 *2 (-710)) (-5 *1 (-322 *4)))) ((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-588 (-881 *4))) (-5 *1 (-391 *3 *4)) - (-4 *3 (-392 *4)))) + (-12 (-5 *2 (-710)) (-5 *1 (-327 *3 *4)) (-14 *3 (-852)) + (-14 *4 (-852)))) ((*1 *2) - (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-588 (-881 *3))))) + (-12 (-5 *2 (-710)) (-5 *1 (-328 *3 *4)) (-4 *3 (-325)) + (-14 *4 + (-3 (-1083 *3) + (-1168 (-589 (-2 (|:| -1733 *3) (|:| -3878 (-1034))))))))) ((*1 *2) - (-12 (-5 *2 (-588 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) - (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) - (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1166 (-427 *4 *5 *6 *7))) (-5 *2 (-588 (-881 *4))) - (-5 *1 (-427 *4 *5 *6 *7)) (-4 *4 (-514)) (-4 *4 (-157)) - (-14 *5 (-850)) (-14 *6 (-588 (-1085))) (-14 *7 (-1166 (-628 *4)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-393 *4) *4)) (-4 *4 (-514)) (-5 *2 (-393 *4)) - (-5 *1 (-394 *4)))) - ((*1 *1 *1) (-5 *1 (-855))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-855)))) - ((*1 *1 *1) (-5 *1 (-856))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-856)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) - (-5 *4 (-382 (-522))) (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) - (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) - (-5 *4 (-382 (-522))) (-5 *1 (-946 *3)) (-4 *3 (-1142 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -1993 (-382 (-522))) (|:| -2002 (-382 (-522))))) - (-5 *1 (-946 *3)) (-4 *3 (-1142 (-382 (-522)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3)) - (-4 *3 (-1142 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 (-132))) (-5 *1 (-129)))) - ((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-129))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-821 *4)) (-4 *4 (-1014)) (-5 *1 (-818 *4 *3)) - (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) - ((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157))))) -(((*1 *1 *1) (-5 *1 (-983)))) -(((*1 *2 *2) - (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-31 *3 *4)) - (-4 *4 (-405 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-708)) (-5 *1 (-110)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-110)))) - ((*1 *2 *2) - (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *4)) - (-4 *4 (-405 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-110)) (-5 *1 (-148)))) - ((*1 *2 *2) - (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *4)) - (-4 *4 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-277 *3)) (-4 *3 (-278)))) - ((*1 *2 *2) (-12 (-4 *1 (-278)) (-5 *2 (-110)))) - ((*1 *2 *2) - (-12 (-5 *2 (-110)) (-4 *4 (-784)) (-5 *1 (-404 *3 *4)) - (-4 *3 (-405 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *4)) - (-4 *4 (-405 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-561 *3)) (-4 *3 (-784)))) - ((*1 *2 *2) - (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *4)) - (-4 *4 (-13 (-405 *3) (-928) (-1106)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-1081 *3)) (-5 *1 (-40 *4 *3)) - (-4 *3 - (-13 (-338) (-278) - (-10 -8 (-15 -2947 ((-1037 *4 (-561 $)) $)) - (-15 -2959 ((-1037 *4 (-561 $)) $)) - (-15 -2217 ($ (-1037 *4 (-561 $)))))))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-588 (-108))) (-5 *5 (-628 (-202))) - (-5 *6 (-628 (-522))) (-5 *7 (-202)) (-5 *3 (-522)) (-5 *2 (-960)) - (-5 *1 (-692))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-108)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) - ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239)))) - ((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441)))) - ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441))))) -(((*1 *2 *1) (-12 (-5 *2 (-588 (-588 (-202)))) (-5 *1 (-855))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1087 (-382 (-522)))) (-5 *2 (-382 (-522))) - (-5 *1 (-169))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-644 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-110)) (-5 *4 (-708)) (-4 *5 (-426)) (-4 *5 (-784)) - (-4 *5 (-962 (-522))) (-4 *5 (-514)) (-5 *1 (-40 *5 *2)) - (-4 *2 (-405 *5)) - (-4 *2 - (-13 (-338) (-278) - (-10 -8 (-15 -2947 ((-1037 *5 (-561 $)) $)) - (-15 -2959 ((-1037 *5 (-561 $)) $)) - (-15 -2217 ($ (-1037 *5 (-561 $)))))))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-507)) (-5 *2 (-108))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) - (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) - (|:| |relerr| (-202)))) - (-5 *2 (-2 (|:| -1410 (-110)) (|:| |w| (-202)))) (-5 *1 (-183))))) + (-12 (-5 *2 (-710)) (-5 *1 (-329 *3 *4)) (-4 *3 (-325)) + (-14 *4 (-852))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1087)) + (-4 *5 (-13 (-427) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-5 *2 (-2 (|:| -2462 *3) (|:| |coeff| *3))) (-5 *1 (-516 *5 *3)) + (-4 *3 (-13 (-27) (-1108) (-406 *5)))))) (((*1 *2) - (-12 (-5 *2 (-1171)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014)) - (-4 *4 (-1014))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-588 (-881 (-522)))) (-5 *4 (-588 (-1085))) - (-5 *2 (-588 (-588 (-354)))) (-5 *1 (-948)) (-5 *5 (-354)))) - ((*1 *2 *3) - (-12 (-5 *3 (-968 *4 *5)) (-4 *4 (-13 (-782) (-283) (-135) (-947))) - (-14 *5 (-588 (-1085))) (-5 *2 (-588 (-588 (-949 (-382 *4))))) - (-5 *1 (-1190 *4 *5 *6)) (-14 *6 (-588 (-1085))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108)) - (-4 *5 (-13 (-782) (-283) (-135) (-947))) - (-5 *2 (-588 (-588 (-949 (-382 *5))))) (-5 *1 (-1190 *5 *6 *7)) - (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108)) - (-4 *5 (-13 (-782) (-283) (-135) (-947))) - (-5 *2 (-588 (-588 (-949 (-382 *5))))) (-5 *1 (-1190 *5 *6 *7)) - (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108)) - (-4 *5 (-13 (-782) (-283) (-135) (-947))) - (-5 *2 (-588 (-588 (-949 (-382 *5))))) (-5 *1 (-1190 *5 *6 *7)) - (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-881 *4))) - (-4 *4 (-13 (-782) (-283) (-135) (-947))) - (-5 *2 (-588 (-588 (-949 (-382 *4))))) (-5 *1 (-1190 *4 *5 *6)) - (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085)))))) + (-12 (-5 *2 (-888 (-1034))) (-5 *1 (-319 *3 *4)) (-14 *3 (-852)) + (-14 *4 (-852)))) + ((*1 *2) + (-12 (-5 *2 (-888 (-1034))) (-5 *1 (-320 *3 *4)) (-4 *3 (-325)) + (-14 *4 (-1083 *3)))) + ((*1 *2) + (-12 (-5 *2 (-888 (-1034))) (-5 *1 (-321 *3 *4)) (-4 *3 (-325)) + (-14 *4 (-852))))) (((*1 *2 *1) - (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *1 (-1116 *3)) - (-4 *3 (-901))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-708)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) - (-4 *4 (-971))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-792) (-792))) (-5 *1 (-110)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-792) (-588 (-792)))) (-5 *1 (-110)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-792) (-588 (-792)))) (-5 *1 (-110)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1171)) (-5 *1 (-192 *3)) - (-4 *3 - (-13 (-784) - (-10 -8 (-15 -2683 ((-1068) $ (-1085))) (-15 -1757 (*2 $)) - (-15 -2113 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-369)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-369)))) - ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-472)))) - ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1101)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-1101))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-628 (-382 (-522)))) (-5 *2 (-588 *4)) (-5 *1 (-716 *4)) - (-4 *4 (-13 (-338) (-782)))))) + (-12 (-5 *2 (-589 (-523))) (-5 *1 (-932 *3)) (-14 *3 (-523))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-562 *1)) (-4 *1 (-279))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-1014) (-33))) (-5 *1 (-1050 *3 *2)) - (-4 *3 (-13 (-1014) (-33)))))) + (-12 (-4 *2 (-13 (-784) (-339))) (-5 *1 (-983 *2 *3)) + (-4 *3 (-1144 *2))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *2 (-962)) + (-5 *1 (-687))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1083 *4)) (-4 *4 (-325)) (-5 *2 (-888 (-1034))) + (-5 *1 (-322 *4))))) (((*1 *2 *3 *4) - (-12 (-4 *2 (-1142 *4)) (-5 *1 (-744 *4 *2 *3 *5)) - (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *3 (-598 *2)) - (-4 *5 (-598 (-382 *2))))) + (-12 (-5 *3 (-589 *8)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-523)) + (-14 *6 (-710)) (-4 *7 (-158)) (-4 *8 (-158)) + (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-4 *2 (-1142 *4)) (-5 *1 (-744 *4 *2 *5 *3)) - (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *5 (-598 *2)) - (-4 *3 (-598 (-382 *2)))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-693))))) -(((*1 *1 *1) (-5 *1 (-792))) ((*1 *1 *1 *1) (-5 *1 (-792))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2) (-12 (-5 *1 (-1133 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-108))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-522)) (-4 *1 (-1126 *4)) (-4 *4 (-971)) (-4 *4 (-514)) - (-5 *2 (-382 (-881 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-522)) (-4 *1 (-1126 *4)) (-4 *4 (-971)) (-4 *4 (-514)) - (-5 *2 (-382 (-881 *4)))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-938)) (-5 *2 (-792))))) -(((*1 *2 *3) - (-12 (-4 *4 (-426)) - (-5 *2 - (-588 - (-2 (|:| |eigval| (-3 (-382 (-881 *4)) (-1075 (-1085) (-881 *4)))) - (|:| |eigmult| (-708)) - (|:| |eigvec| (-588 (-628 (-382 (-881 *4)))))))) - (-5 *1 (-268 *4)) (-5 *3 (-628 (-382 (-881 *4))))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1188 *3 *4)) (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) - (-4 *4 (-157)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-361 *2)) (-4 *2 (-1014)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) + (-12 (-5 *3 (-589 *9)) (-4 *9 (-973)) (-4 *5 (-786)) (-4 *6 (-732)) + (-4 *8 (-973)) (-4 *2 (-880 *9 *7 *5)) + (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-732)) + (-4 *4 (-880 *8 *6 *5))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-629 *4)) (-5 *3 (-710)) (-4 *4 (-973)) + (-5 *1 (-630 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-905 *4 *5 *3 *6)) (-4 *4 (-973)) (-4 *5 (-732)) + (-4 *3 (-786)) (-4 *6 (-987 *4 *5 *3)) (-5 *2 (-108))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-383 (-523))) + (-4 *4 (-13 (-515) (-786) (-964 (-523)) (-585 (-523)))) + (-5 *1 (-254 *4 *2)) (-4 *2 (-13 (-27) (-1108) (-406 *4)))))) +(((*1 *2) (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1171)))) + ((*1 *2 *2) (-12 (-5 *2 (-589 (-852))) (-5 *1 (-1171))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-973)) (-4 *2 (-339))))) +(((*1 *1 *1) (-12 (-5 *1 (-159 *2)) (-4 *2 (-284)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1089 (-383 (-523)))) (-5 *1 (-170)) (-5 *3 (-523)))) + ((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1) (-4 *1 (-800 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-731)) + (-4 *4 (-786))))) +(((*1 *2 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1122))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-710)) (-4 *1 (-1144 *3)) (-4 *3 (-973)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-756 *3)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) - (-4 *4 (-971)))) + (-12 (-5 *2 (-852)) (-4 *1 (-1146 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-731)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1166 *5)) (-5 *3 (-708)) (-5 *4 (-1032)) (-4 *5 (-324)) - (-5 *1 (-492 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1085)) (-4 *5 (-1124)) (-4 *6 (-1142 *5)) - (-4 *7 (-1142 (-382 *6))) (-5 *2 (-588 (-881 *5))) - (-5 *1 (-316 *4 *5 *6 *7)) (-4 *4 (-317 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1085)) (-4 *1 (-317 *4 *5 *6)) (-4 *4 (-1124)) - (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) (-4 *4 (-338)) - (-5 *2 (-588 (-881 *4)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-426)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-423 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-51)) (-5 *1 (-768))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-850)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) + (-12 (-5 *2 (-383 (-523))) (-4 *1 (-1149 *3)) (-4 *3 (-973))))) +(((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1122))))) (((*1 *2 *1) - (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014)) - (-5 *2 (-588 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-588 (-2 (|:| |k| (-822 *3)) (|:| |c| *4)))) - (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784)) - (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850)))) - ((*1 *2 *1) - (-12 (-5 *2 (-588 (-613 *3))) (-5 *1 (-822 *3)) (-4 *3 (-784))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-354)))) - ((*1 *1 *1 *1) (-4 *1 (-507))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) - ((*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-708))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-135)) - (-4 *3 (-283)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *1 (-904 *3 *4 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-708)) (-5 *1 (-616 *2)) (-4 *2 (-1014))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-522)) (-4 *1 (-593 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-522)) (-4 *1 (-593 *2)) (-4 *2 (-1120))))) -(((*1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-366))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1142 *6)) - (-4 *6 (-13 (-27) (-405 *5))) - (-4 *5 (-13 (-784) (-514) (-962 (-522)))) (-4 *8 (-1142 (-382 *7))) - (-5 *2 (-539 *3)) (-5 *1 (-510 *5 *6 *7 *8 *3)) - (-4 *3 (-317 *6 *7 *8))))) + (-12 (-5 *2 (-589 *5)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) + (-14 *4 (-710)) (-4 *5 (-158))))) +(((*1 *1 *2) (-12 (-5 *2 (-144)) (-5 *1 (-805))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) - (|:| |expense| (-354)) (|:| |accuracy| (-354)) - (|:| |intermediateResults| (-354)))) - (-5 *2 (-960)) (-5 *1 (-281))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3))))) -(((*1 *2 *1) - (-12 (-4 *2 (-647 *3)) (-5 *1 (-764 *2 *3)) (-4 *3 (-971))))) -(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-411))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-784) (-514) (-962 (-522)))) (-5 *2 (-382 (-522))) - (-5 *1 (-408 *4 *3)) (-4 *3 (-405 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-561 *3)) (-4 *3 (-405 *5)) - (-4 *5 (-13 (-784) (-514) (-962 (-522)))) - (-5 *2 (-1081 (-382 (-522)))) (-5 *1 (-408 *5 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-301 *3 *4)) (-4 *3 (-971)) - (-4 *4 (-729))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1014)) (-5 *1 (-1098 *3 *2)) (-4 *3 (-1014))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *8 (-985 *5 *6 *7)) + (-12 (-5 *3 (-858)) (-5 *2 - (-2 (|:| |val| (-588 *8)) (|:| |towers| (-588 (-952 *5 *6 *7 *8))))) - (-5 *1 (-952 *5 *6 *7 *8)) (-5 *3 (-588 *8)))) + (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) + (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) + (-5 *1 (-142)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *8 (-985 *5 *6 *7)) + (-12 (-5 *3 (-858)) (-5 *4 (-383 (-523))) (-5 *2 - (-2 (|:| |val| (-588 *8)) - (|:| |towers| (-588 (-1056 *5 *6 *7 *8))))) - (-5 *1 (-1056 *5 *6 *7 *8)) (-5 *3 (-588 *8))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1167)))) - ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1168))))) + (-2 (|:| |brans| (-589 (-589 (-874 (-203))))) + (|:| |xValues| (-1011 (-203))) (|:| |yValues| (-1011 (-203))))) + (-5 *1 (-142))))) +(((*1 *2 *3) + (-12 (-5 *3 (-710)) (-4 *4 (-339)) (-4 *5 (-1144 *4)) (-5 *2 (-1173)) + (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1144 (-383 *5))) (-14 *7 *6)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1085)) (-5 *2 (-1 (-202) (-202))) (-5 *1 (-642 *3)) - (-4 *3 (-563 (-498))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1085)) (-5 *2 (-1 (-202) (-202) (-202))) - (-5 *1 (-642 *3)) (-4 *3 (-563 (-498)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-338)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) - (-5 *2 (-1166 *6)) (-5 *1 (-311 *3 *4 *5 *6)) - (-4 *6 (-317 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-784)) - (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-108))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-628 *4)) (-5 *3 (-708)) (-4 *4 (-971)) - (-5 *1 (-629 *4))))) + (-12 (-5 *4 (-852)) (-5 *2 (-1083 *3)) (-5 *1 (-1097 *3)) + (-4 *3 (-339))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-522))) (-5 *1 (-969))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) + (|:| |abserr| (-203)) (|:| |relerr| (-203)))) + (-5 *2 + (-2 (|:| |stiffness| (-355)) (|:| |stability| (-355)) + (|:| |expense| (-355)) (|:| |accuracy| (-355)) + (|:| |intermediateResults| (-355)))) + (-5 *1 (-742))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-629 (-203))) (-5 *4 (-523)) (-5 *5 (-203)) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) (-5 *2 (-962)) + (-5 *1 (-689))))) (((*1 *2 *3) - (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283)) (-5 *2 (-393 *3)) - (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-878 *6 *4 *5))))) -(((*1 *2) - (-12 (-4 *4 (-338)) (-5 *2 (-850)) (-5 *1 (-303 *3 *4)) - (-4 *3 (-304 *4)))) - ((*1 *2) - (-12 (-4 *4 (-338)) (-5 *2 (-770 (-850))) (-5 *1 (-303 *3 *4)) - (-4 *3 (-304 *4)))) - ((*1 *2) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-5 *2 (-850)))) - ((*1 *2) - (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-770 (-850)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-588 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1121 *2)) - (-4 *2 (-1014)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 *2)) (-4 *2 (-1014)) (-4 *2 (-784)) - (-5 *1 (-1121 *2))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1114 *4 *5 *3 *6)) (-4 *4 (-514)) (-4 *5 (-730)) - (-4 *3 (-784)) (-4 *6 (-985 *4 *5 *3)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-108))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-110)) (-5 *4 (-588 *2)) (-5 *1 (-109 *2)) - (-4 *2 (-1014)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-588 *4))) (-4 *4 (-1014)) - (-5 *1 (-109 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) - (-5 *1 (-109 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-588 *4))) - (-5 *1 (-109 *4)) (-4 *4 (-1014)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-971)) - (-5 *1 (-652 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-771 *3))))) -(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1122))))) + (-12 (-5 *3 (-589 (-523))) (-5 *2 (-835 (-523))) (-5 *1 (-848)))) + ((*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-857))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-339)) (-5 *1 (-827 *2 *3)) + (-4 *2 (-1144 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-514) (-784))) (-5 *2 (-154 *5)) - (-5 *1 (-551 *4 *5 *3)) (-4 *5 (-13 (-405 *4) (-928) (-1106))) - (-4 *3 (-13 (-405 (-154 *4)) (-928) (-1106)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-158 *3)) (-4 *3 (-283))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1166 *5)) (-4 *5 (-729)) (-5 *2 (-108)) - (-5 *1 (-779 *4 *5)) (-14 *4 (-708))))) -(((*1 *1) (-12 (-4 *1 (-304 *2)) (-4 *2 (-343)) (-4 *2 (-338))))) -(((*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1 (-354))) (-5 *1 (-964))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1142 *4)) (-5 *1 (-746 *4 *2 *3 *5)) - (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *3 (-598 *2)) - (-4 *5 (-598 (-382 *2)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4238)) (-4 *1 (-212 *3)) - (-4 *3 (-1014)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4238)) (-4 *1 (-212 *2)) (-4 *2 (-1014)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-258 *2)) (-4 *2 (-1120)) (-4 *2 (-1014)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-258 *3)) (-4 *3 (-1120)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-559 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-522)) (-4 *4 (-1014)) - (-5 *1 (-675 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-522)) (-5 *1 (-675 *2)) (-4 *2 (-1014)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33))) - (-4 *4 (-13 (-1014) (-33))) (-5 *1 (-1051 *3 *4))))) + (-12 (-4 *4 (-427)) (-4 *4 (-515)) (-4 *5 (-732)) (-4 *6 (-786)) + (-5 *2 (-589 *3)) (-5 *1 (-906 *4 *5 *6 *3)) + (-4 *3 (-987 *4 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-710)) (-5 *1 (-792 *2)) (-4 *2 (-37 (-383 (-523)))) + (-4 *2 (-158))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1068 *3))) (-5 *1 (-1068 *3)) (-4 *3 (-1122))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-589 *7) *7 (-1083 *7))) (-5 *5 (-1 (-394 *7) *7)) + (-4 *7 (-1144 *6)) (-4 *6 (-13 (-339) (-136) (-964 (-383 (-523))))) + (-5 *2 (-589 (-2 (|:| |frac| (-383 *7)) (|:| -1710 *3)))) + (-5 *1 (-748 *6 *7 *3 *8)) (-4 *3 (-599 *7)) + (-4 *8 (-599 (-383 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-394 *6) *6)) (-4 *6 (-1144 *5)) + (-4 *5 (-13 (-339) (-136) (-964 (-523)) (-964 (-383 (-523))))) + (-5 *2 + (-589 (-2 (|:| |frac| (-383 *6)) (|:| -1710 (-597 *6 (-383 *6)))))) + (-5 *1 (-751 *5 *6)) (-5 *3 (-597 *6 (-383 *6)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-523)) (-4 *4 (-13 (-515) (-136))) (-5 *1 (-500 *4 *2)) + (-4 *2 (-1159 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-523)) (-4 *4 (-13 (-339) (-344) (-564 *3))) + (-4 *5 (-1144 *4)) (-4 *6 (-664 *4 *5)) (-5 *1 (-504 *4 *5 *6 *2)) + (-4 *2 (-1159 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-523)) (-4 *4 (-13 (-339) (-344) (-564 *3))) + (-5 *1 (-505 *4 *2)) (-4 *2 (-1159 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1068 *4)) (-5 *3 (-523)) (-4 *4 (-13 (-515) (-136))) + (-5 *1 (-1064 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1070)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1104)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1104))))) (((*1 *2 *1) - (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-507)) - (-5 *2 (-382 (-522))))) - ((*1 *2 *1) - (-12 (-5 *2 (-382 (-522))) (-5 *1 (-393 *3)) (-4 *3 (-507)) - (-4 *3 (-514)))) - ((*1 *2 *1) (-12 (-4 *1 (-507)) (-5 *2 (-382 (-522))))) - ((*1 *2 *1) - (-12 (-4 *1 (-734 *3)) (-4 *3 (-157)) (-4 *3 (-507)) - (-5 *2 (-382 (-522))))) - ((*1 *2 *1) - (-12 (-5 *2 (-382 (-522))) (-5 *1 (-770 *3)) (-4 *3 (-507)) - (-4 *3 (-1014)))) + (-12 + (-5 *2 + (-589 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203))))) + (-5 *1 (-518)))) ((*1 *2 *1) - (-12 (-5 *2 (-382 (-522))) (-5 *1 (-777 *3)) (-4 *3 (-507)) - (-4 *3 (-1014)))) + (-12 (-4 *1 (-560 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-5 *2 (-589 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-923 *3)) (-4 *3 (-157)) (-4 *3 (-507)) - (-5 *2 (-382 (-522))))) - ((*1 *2 *3) - (-12 (-5 *2 (-382 (-522))) (-5 *1 (-934 *3)) (-4 *3 (-962 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101))))) -(((*1 *1) (-5 *1 (-412)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4238)) (-4 *1 (-139 *3)) - (-4 *3 (-1120)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1120)) (-5 *1 (-552 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-615 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1114 *4 *5 *3 *2)) (-4 *4 (-514)) - (-4 *5 (-730)) (-4 *3 (-784)) (-4 *2 (-985 *4 *5 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-708)) (-5 *1 (-1118 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409))))) -(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))) - ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169))))) + (-12 + (-5 *2 + (-589 + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) + (|:| |abserr| (-203)) (|:| |relerr| (-203))))) + (-5 *1 (-742))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-710)) (-5 *3 (-108)) (-5 *1 (-106)))) + ((*1 *2 *2) (-12 (-5 *2 (-852)) (|has| *1 (-6 -4235)) (-4 *1 (-380)))) + ((*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-852))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-629 *7)) (-5 *3 (-589 *7)) (-4 *7 (-880 *4 *6 *5)) + (-4 *4 (-13 (-284) (-136))) (-4 *5 (-13 (-786) (-564 (-1087)))) + (-4 *6 (-732)) (-5 *1 (-855 *4 *5 *6 *7))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4244)) (-4 *1 (-462 *4)) + (-4 *4 (-1122)) (-5 *2 (-108))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-589 (-1070))) (-5 *1 (-1103))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-203)) (-5 *1 (-204)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-155 (-203))) (-5 *1 (-204)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-407 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-523)) (-5 *5 (-1070)) (-5 *6 (-629 (-203))) + (-5 *7 (-3 (|:| |fn| (-364)) (|:| |fp| (-87 G)))) + (-5 *8 (-3 (|:| |fn| (-364)) (|:| |fp| (-84 FCN)))) + (-5 *9 (-3 (|:| |fn| (-364)) (|:| |fp| (-69 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-364)) (|:| |fp| (-86 OUTPUT)))) + (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-689))))) (((*1 *2) - (-12 (-5 *2 (-1166 (-1015 *3 *4))) (-5 *1 (-1015 *3 *4)) - (-14 *3 (-850)) (-14 *4 (-850))))) + (-12 (-4 *4 (-1126)) (-4 *5 (-1144 *4)) (-4 *6 (-1144 (-383 *5))) + (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-318 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) (-5 *2 (-108))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-589 (-2 (|:| -1820 (-1083 *6)) (|:| -2735 (-523))))) + (-4 *6 (-284)) (-4 *4 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) + (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-880 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-973))))) +(((*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-973))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-759)) (-14 *5 (-1087)) (-5 *2 (-589 (-1141 *5 *4))) + (-5 *1 (-1030 *4 *5)) (-5 *3 (-1141 *5 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-708)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522)) - (-14 *4 *2) (-4 *5 (-157)))) + (-12 (-5 *2 (-710)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-523)) + (-14 *4 *2) (-4 *5 (-158)))) ((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-850)) (-5 *1 (-150 *3 *4)) - (-4 *3 (-151 *4)))) - ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-850)))) + (-12 (-4 *4 (-158)) (-5 *2 (-852)) (-5 *1 (-151 *3 *4)) + (-4 *3 (-152 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-852)))) ((*1 *2) - (-12 (-4 *1 (-345 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1142 *3)) - (-5 *2 (-850)))) + (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-158)) (-4 *4 (-1144 *3)) + (-5 *2 (-852)))) ((*1 *2 *3) - (-12 (-4 *4 (-338)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) - (-5 *2 (-708)) (-5 *1 (-489 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) + (-12 (-4 *4 (-339)) (-4 *5 (-349 *4)) (-4 *6 (-349 *4)) + (-5 *2 (-710)) (-5 *1 (-490 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-628 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-338)) - (-5 *2 (-708)) (-5 *1 (-609 *5)))) + (-12 (-5 *3 (-629 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-339)) + (-5 *2 (-710)) (-5 *1 (-610 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-338)) (-4 *6 (-13 (-348 *5) (-10 -7 (-6 -4239)))) - (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4239)))) (-5 *2 (-708)) - (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4)))) + (-12 (-4 *5 (-339)) (-4 *6 (-13 (-349 *5) (-10 -7 (-6 -4245)))) + (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4245)))) (-5 *2 (-710)) + (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) - (-4 *5 (-348 *3)) (-4 *3 (-514)) (-5 *2 (-708)))) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-973)) (-4 *4 (-349 *3)) + (-4 *5 (-349 *3)) (-4 *3 (-515)) (-5 *2 (-710)))) ((*1 *2 *3) - (-12 (-4 *4 (-514)) (-4 *4 (-157)) (-4 *5 (-348 *4)) - (-4 *6 (-348 *4)) (-5 *2 (-708)) (-5 *1 (-627 *4 *5 *6 *3)) - (-4 *3 (-626 *4 *5 *6)))) + (-12 (-4 *4 (-515)) (-4 *4 (-158)) (-4 *5 (-349 *4)) + (-4 *6 (-349 *4)) (-5 *2 (-710)) (-5 *1 (-628 *4 *5 *6 *3)) + (-4 *3 (-627 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) - (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-514)) - (-5 *2 (-708))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761))))) -(((*1 *2 *3) - (-12 (-5 *3 (-291 (-202))) (-5 *2 (-291 (-354))) (-5 *1 (-281))))) -(((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-784) (-962 (-522)) (-584 (-522)) (-426))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1151 *4 *5 *6)) - (|:| |%expon| (-294 *4 *5 *6)) - (|:| |%expTerms| - (-588 (-2 (|:| |k| (-382 (-522))) (|:| |c| *4)))))) - (|:| |%type| (-1068)))) - (-5 *1 (-1152 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1106) (-405 *3))) - (-14 *5 (-1085)) (-14 *6 *4)))) -(((*1 *2 *3) - (-12 (-5 *3 (-522)) (|has| *1 (-6 -4229)) (-4 *1 (-379)) - (-5 *2 (-850))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-336 (-110))) (-4 *2 (-971)) (-5 *1 (-652 *2 *4)) - (-4 *4 (-590 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-336 (-110))) (-5 *1 (-771 *2)) (-4 *2 (-971))))) -(((*1 *1 *1) (-5 *1 (-202))) ((*1 *1 *1) (-5 *1 (-354))) - ((*1 *1) (-5 *1 (-354)))) -(((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1120)) (-5 *2 (-708)) - (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-298 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-124)) - (-5 *2 (-708)))) - ((*1 *2) - (-12 (-4 *4 (-338)) (-5 *2 (-708)) (-5 *1 (-303 *3 *4)) - (-4 *3 (-304 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-336 *3)) (-4 *3 (-1014)))) - ((*1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-708)))) - ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-361 *3)) (-4 *3 (-1014)))) - ((*1 *2) - (-12 (-4 *4 (-1014)) (-5 *2 (-708)) (-5 *1 (-399 *3 *4)) - (-4 *3 (-400 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-708)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1014)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2) - (-12 (-4 *4 (-157)) (-4 *5 (-1142 *4)) (-5 *2 (-708)) - (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-662 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-756 *3)) (-4 *3 (-784)))) - ((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-932)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3)) - (-4 *3 (-1142 *2))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1120)) (-5 *1 (-552 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3))))) -(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-419 *3)) (-4 *3 (-971))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729)) - (-4 *2 (-338)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-202)))) - ((*1 *1 *1 *1) - (-3844 (-12 (-5 *1 (-270 *2)) (-4 *2 (-338)) (-4 *2 (-1120))) - (-12 (-5 *1 (-270 *2)) (-4 *2 (-447)) (-4 *2 (-1120))))) - ((*1 *1 *1 *1) (-4 *1 (-338))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-354)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1037 *3 (-561 *1))) (-4 *3 (-514)) (-4 *3 (-784)) - (-4 *1 (-405 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-447))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1166 *3)) (-4 *3 (-324)) (-5 *1 (-492 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-498))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-157)) (-5 *1 (-567 *2 *4 *3)) (-4 *2 (-37 *4)) - (-4 *3 (|SubsetCategory| (-664) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-157)) (-5 *1 (-567 *3 *4 *2)) (-4 *3 (-37 *4)) - (-4 *2 (|SubsetCategory| (-664) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-579 *2)) (-4 *2 (-157)) (-4 *2 (-338)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-157)) (-5 *1 (-604 *2 *4 *3)) (-4 *2 (-655 *4)) - (-4 *3 (|SubsetCategory| (-664) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-157)) (-5 *1 (-604 *3 *4 *2)) (-4 *3 (-655 *4)) - (-4 *2 (|SubsetCategory| (-664) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) - (-4 *4 (-348 *2)) (-4 *2 (-338)))) - ((*1 *1 *1 *1) (-5 *1 (-792))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-795 *2 *3 *4 *5)) (-4 *2 (-338)) - (-4 *2 (-971)) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-708))) - (-14 *5 (-708)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-974 *3 *4 *2 *5 *6)) (-4 *2 (-971)) - (-4 *5 (-215 *4 *2)) (-4 *6 (-215 *3 *2)) (-4 *2 (-338)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-338)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-338)) (-4 *2 (-971)) (-4 *3 (-784)) - (-4 *4 (-730)) (-14 *6 (-588 *3)) - (-5 *1 (-1176 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-878 *2 *4 *3)) - (-14 *7 (-588 (-708))) (-14 *8 (-708)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-338)) (-4 *2 (-971)) - (-4 *3 (-780))))) -(((*1 *1 *2) - (-12 (-5 *2 (-708)) (-5 *1 (-616 *3)) (-4 *3 (-971)) (-4 *3 (-1014))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-522)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-708)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-730)) (-4 *4 (-878 *5 *6 *7)) (-4 *5 (-426)) (-4 *7 (-784)) - (-5 *1 (-423 *5 *6 *7 *4))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-5 *2 (-108))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-628 *5))) (-5 *4 (-1166 *5)) (-4 *5 (-283)) - (-4 *5 (-971)) (-5 *2 (-628 *5)) (-5 *1 (-954 *5))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-588 *8)) (-5 *3 (-1 (-108) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) - (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-904 *5 *6 *7 *8))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) - (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-65 DOT)))) - (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-202)) - (-5 *2 (-960)) (-5 *1 (-693)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) - (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-65 DOT)))) - (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-363)) - (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-693))))) -(((*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-305))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1120)) (-5 *1 (-552 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-338)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) - (-5 *1 (-489 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-126))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-192 *2)) - (-4 *2 - (-13 (-784) - (-10 -8 (-15 -2683 ((-1068) $ (-1085))) (-15 -1757 ((-1171) $)) - (-15 -2113 ((-1171) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-270 *2)) (-4 *2 (-21)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-21)) (-4 *2 (-1120)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) - ((*1 *1 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) - (-4 *4 (-348 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) - (-4 *4 (-348 *2)))) - ((*1 *1 *1) (-5 *1 (-792))) ((*1 *1 *1 *1) (-5 *1 (-792))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1117)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-21))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1166 (-588 (-2 (|:| -3526 *4) (|:| -2882 (-1032)))))) - (-4 *4 (-324)) (-5 *2 (-708)) (-5 *1 (-321 *4)))) - ((*1 *2) - (-12 (-5 *2 (-708)) (-5 *1 (-326 *3 *4)) (-14 *3 (-850)) - (-14 *4 (-850)))) - ((*1 *2) - (-12 (-5 *2 (-708)) (-5 *1 (-327 *3 *4)) (-4 *3 (-324)) - (-14 *4 - (-3 (-1081 *3) - (-1166 (-588 (-2 (|:| -3526 *3) (|:| -2882 (-1032))))))))) - ((*1 *2) - (-12 (-5 *2 (-708)) (-5 *1 (-328 *3 *4)) (-4 *3 (-324)) - (-14 *4 (-850))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-588 *5)) (-5 *4 (-522)) (-4 *5 (-782)) (-4 *5 (-338)) - (-5 *2 (-708)) (-5 *1 (-874 *5 *6)) (-4 *6 (-1142 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) - (-4 *5 (-1142 *4)) (-5 *2 (-588 (-595 (-382 *5)))) - (-5 *1 (-599 *4 *5)) (-5 *3 (-595 (-382 *5)))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1) - (-12 (-4 *2 (-135)) (-4 *2 (-283)) (-4 *2 (-426)) (-4 *3 (-784)) - (-4 *4 (-730)) (-5 *1 (-914 *2 *3 *4 *5)) (-4 *5 (-878 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-291 (-522))) (-5 *1 (-1031)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1014)) (-5 *2 (-818 *3 *4)) (-5 *1 (-814 *3 *4 *5)) - (-4 *3 (-1014)) (-4 *5 (-608 *4))))) -(((*1 *2) - (-12 (-4 *3 (-514)) (-5 *2 (-588 (-628 *3))) (-5 *1 (-42 *3 *4)) - (-4 *4 (-392 *3))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-590 *5)) (-4 *5 (-971)) - (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-786 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-628 *3)) (-4 *1 (-392 *3)) (-4 *3 (-157)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-971)) - (-5 *1 (-787 *2 *3)) (-4 *3 (-786 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-850)) (-4 *6 (-13 (-514) (-784))) - (-5 *2 (-588 (-291 *6))) (-5 *1 (-198 *5 *6)) (-5 *3 (-291 *6)) - (-4 *5 (-971)))) - ((*1 *2 *1) (-12 (-5 *1 (-393 *2)) (-4 *2 (-514)))) - ((*1 *2 *3) - (-12 (-5 *3 (-539 *5)) (-4 *5 (-13 (-29 *4) (-1106))) - (-4 *4 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) - (-5 *2 (-588 *5)) (-5 *1 (-537 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-539 (-382 (-881 *4)))) - (-4 *4 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) - (-5 *2 (-588 (-291 *4))) (-5 *1 (-542 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1010 *3 *2)) (-4 *3 (-782)) (-4 *2 (-1059 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 *1)) (-4 *1 (-1010 *4 *2)) (-4 *4 (-782)) - (-4 *2 (-1059 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1179 (-1085) *3)) (-5 *1 (-1186 *3)) (-4 *3 (-971)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1179 *3 *4)) (-5 *1 (-1188 *3 *4)) (-4 *3 (-784)) - (-4 *4 (-971))))) -(((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-1081 (-881 *4))) (-5 *1 (-391 *3 *4)) - (-4 *3 (-392 *4)))) - ((*1 *2) - (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-4 *3 (-338)) - (-5 *2 (-1081 (-881 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1081 (-382 (-881 *3)))) (-5 *1 (-427 *3 *4 *5 *6)) - (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) - (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3)))))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-143))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-192 *2)) - (-4 *2 - (-13 (-784) - (-10 -8 (-15 -2683 ((-1068) $ (-1085))) (-15 -1757 ((-1171) $)) - (-15 -2113 ((-1171) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-270 *2)) (-4 *2 (-25)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-25)) (-4 *2 (-1120)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-298 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-124)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-338) (-135))) (-5 *1 (-374 *3 *2)) - (-4 *2 (-1142 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784)) - (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-498))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) - (-4 *4 (-348 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-792))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1117)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-25))))) -(((*1 *2 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-784)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-794 *3)) (-14 *3 (-588 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-894 *3)) (-4 *3 (-895)))) - ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-916)))) - ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1007 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1144 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) - (-5 *2 (-1085)))) - ((*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1162 *3)) (-14 *3 *2)))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-695))))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-108))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) - (-5 *2 (-108))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1068)) (-5 *1 (-916)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085)) (-5 *3 (-1009 *4)) (-4 *4 (-1120)) - (-5 *1 (-1007 *4))))) -(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-697))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-256)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895))))) -(((*1 *2 *2) - (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928))) - (-5 *1 (-160 *3))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-588 *2)) (-4 *2 (-1014)) (-4 *2 (-1120))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-108)) (-5 *3 (-588 (-239))) (-5 *1 (-237))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-493 *3)) (-4 *3 (-13 (-664) (-25)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 *4)) - (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))) + (-12 (-4 *1 (-976 *3 *4 *5 *6 *7)) (-4 *5 (-973)) + (-4 *6 (-216 *4 *5)) (-4 *7 (-216 *3 *5)) (-4 *5 (-515)) + (-5 *2 (-710))))) (((*1 *1 *1) - (-12 (-4 *1 (-229 *2 *3 *4 *5)) (-4 *2 (-971)) (-4 *3 (-784)) - (-4 *4 (-242 *3)) (-4 *5 (-730))))) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) (((*1 *2 *2) - (-12 (-4 *3 (-1142 (-382 (-522)))) (-5 *1 (-842 *3 *2)) - (-4 *2 (-1142 (-382 *3)))))) -(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-971)) (-5 *1 (-49 *2 *3)) (-14 *3 (-588 (-1085))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-588 (-850))) (-4 *2 (-338)) (-5 *1 (-140 *4 *2 *5)) - (-14 *4 (-850)) (-14 *5 (-920 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-291 *3)) (-5 *1 (-200 *3 *4)) - (-4 *3 (-13 (-971) (-784))) (-14 *4 (-588 (-1085))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-124)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-357 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-971)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-522)) (-4 *2 (-514)) (-5 *1 (-569 *2 *4)) - (-4 *4 (-1142 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-4 *1 (-647 *2)) (-4 *2 (-971)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-971)) (-5 *1 (-673 *2 *3)) (-4 *3 (-664)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 *5)) (-5 *3 (-588 (-708))) (-4 *1 (-678 *4 *5)) - (-4 *4 (-971)) (-4 *5 (-784)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-708)) (-4 *1 (-678 *4 *2)) (-4 *4 (-971)) - (-4 *2 (-784)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-4 *1 (-786 *2)) (-4 *2 (-971)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 *6)) (-5 *3 (-588 (-708))) (-4 *1 (-878 *4 *5 *6)) - (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-708)) (-4 *1 (-878 *4 *5 *2)) (-4 *4 (-971)) - (-4 *5 (-730)) (-4 *2 (-784)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-708)) (-4 *2 (-878 *4 (-494 *5) *5)) - (-5 *1 (-1038 *4 *5 *2)) (-4 *4 (-971)) (-4 *5 (-784)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-708)) (-5 *2 (-881 *4)) (-5 *1 (-1115 *4)) - (-4 *4 (-971))))) + (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973)))) + ((*1 *2) + (-12 (-5 *2 (-710)) (-5 *1 (-420 *3)) (-4 *3 (-380)) (-4 *3 (-973))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-105))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-514)) - (-4 *7 (-878 *3 *5 *6)) - (-5 *2 (-2 (|:| -3858 (-708)) (|:| -3112 *8) (|:| |radicand| *8))) - (-5 *1 (-882 *5 *6 *3 *7 *8)) (-5 *4 (-708)) - (-4 *8 - (-13 (-338) - (-10 -8 (-15 -2947 (*7 $)) (-15 -2959 (*7 $)) (-15 -2217 ($ *7)))))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-561 *3)) (-4 *3 (-784))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-850)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) - ((*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-239))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-588 *2)) (-4 *2 (-1014)) (-4 *2 (-1120))))) -(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-793)))) - ((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1171)) (-5 *1 (-793)))) + (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-585 *5)) (-4 *5 (-339)) + (-4 *5 (-515)) (-5 *2 (-1168 *5)) (-5 *1 (-584 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1068)) (-5 *4 (-792)) (-5 *2 (-1171)) (-5 *1 (-793)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-1066 *4)) - (-4 *4 (-1014)) (-4 *4 (-1120))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-588 (-522))) (-5 *3 (-628 (-522))) (-5 *1 (-1024))))) -(((*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) - ((*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168))))) -(((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-291 (-354))) (-5 *1 (-281))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1142 *3)) (-4 *3 (-971))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-1120))))) -(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))) - ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169))))) -(((*1 *1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| -1949 (-588 (-792))) (|:| -1827 (-588 (-792))) - (|:| |presup| (-588 (-792))) (|:| -2482 (-588 (-792))) - (|:| |args| (-588 (-792))))) - (-5 *1 (-1085)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-588 (-792)))) (-5 *1 (-1085))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-588 *2)) (-4 *2 (-1014)) (-4 *2 (-1120))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1085)) - (-4 *5 (-13 (-514) (-962 (-522)) (-135))) - (-5 *2 - (-2 (|:| -2585 (-382 (-881 *5))) (|:| |coeff| (-382 (-881 *5))))) - (-5 *1 (-528 *5)) (-5 *3 (-382 (-881 *5)))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-708)) (-5 *2 (-1166 (-588 (-522)))) (-5 *1 (-453)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-552 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-971)) (-5 *2 (-1166 *3)) (-5 *1 (-650 *3 *4)) - (-4 *4 (-1142 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-522)) (-5 *1 (-419 *3)) (-4 *3 (-379)) (-4 *3 (-971))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) - ((*1 *1 *1 *1) (-5 *1 (-792)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1081 *1)) (-4 *1 (-938))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-872 *5)) (-5 *3 (-708)) (-4 *5 (-971)) - (-5 *1 (-1074 *4 *5)) (-14 *4 (-850))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-2 (|:| -2905 (-628 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-628 *3)))) - (-4 *3 (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $))))) - (-4 *4 (-1142 *3)) (-5 *1 (-469 *3 *4 *5)) (-4 *5 (-384 *3 *4))))) -(((*1 *2) - (-12 (-5 *2 (-850)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) - ((*1 *2 *2) - (-12 (-5 *2 (-850)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522)))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) - (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-79 FCN)))) (-5 *2 (-960)) - (-5 *1 (-684))))) -(((*1 *2 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 (-1085))) - (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) - ((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 (-1085))) - (-14 *4 (-588 (-1085))) (-4 *5 (-362))))) -(((*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-150 *3 *2)) (-4 *3 (-151 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1166 *1)) (-4 *1 (-345 *2 *4)) (-4 *4 (-1142 *2)) - (-4 *2 (-157)))) - ((*1 *2) - (-12 (-4 *4 (-1142 *2)) (-4 *2 (-157)) (-5 *1 (-383 *3 *2 *4)) - (-4 *3 (-384 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1142 *2)) (-4 *2 (-157)))) - ((*1 *2) - (-12 (-4 *3 (-1142 *2)) (-5 *2 (-522)) (-5 *1 (-705 *3 *4)) - (-4 *4 (-384 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *2 (-784)) (-4 *3 (-157)))) - ((*1 *2 *3) - (-12 (-4 *2 (-514)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1142 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-157))))) -(((*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-1085))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1066 (-2 (|:| |k| (-522)) (|:| |c| *3)))) - (-5 *1 (-547 *3)) (-4 *3 (-971))))) -(((*1 *1 *2) - (-12 (-5 *2 (-613 *3)) (-4 *3 (-784)) (-4 *1 (-349 *3 *4)) - (-4 *4 (-157))))) -(((*1 *2 *1) - (-12 (-4 *1 (-229 *3 *4 *2 *5)) (-4 *3 (-971)) (-4 *4 (-784)) - (-4 *5 (-730)) (-4 *2 (-242 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *2)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) - ((*1 *1 *1 *1) (-5 *1 (-792))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-833 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-971)) - (-14 *4 (-588 (-1085))))) - ((*1 *2 *3) - (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1120)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-971) (-784))) - (-14 *4 (-588 (-1085))))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-613 *3)) (-4 *3 (-784)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-784)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-822 *3)) (-4 *3 (-784))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-202))) - (-5 *6 (-202)) (-5 *2 (-960)) (-5 *1 (-690))))) + (|partial| -12 (-5 *3 (-1168 *4)) (-4 *4 (-585 *5)) + (-3900 (-4 *5 (-339))) (-4 *5 (-515)) (-5 *2 (-1168 (-383 *5))) + (-5 *1 (-584 *5 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1070)) (-5 *1 (-725))))) (((*1 *2 *3) - (-12 (-4 *4 (-324)) (-5 *2 (-886 (-1081 *4))) (-5 *1 (-332 *4)) - (-5 *3 (-1081 *4))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-850)) (-5 *4 (-803)) (-5 *2 (-1171)) (-5 *1 (-1167)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-588 (-1081 *7))) (-5 *3 (-1081 *7)) - (-4 *7 (-878 *5 *6 *4)) (-4 *5 (-838)) (-4 *6 (-730)) - (-4 *4 (-784)) (-5 *1 (-835 *5 *6 *4 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-588 *7)) (-5 *5 (-588 (-588 *8))) (-4 *7 (-784)) - (-4 *8 (-283)) (-4 *6 (-730)) (-4 *9 (-878 *8 *6 *7)) + (-12 (-4 *4 (-37 (-383 (-523)))) + (-5 *2 (-2 (|:| -3711 (-1068 *4)) (|:| -3767 (-1068 *4)))) + (-5 *1 (-1074 *4)) (-5 *3 (-1068 *4))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-710)) (-5 *6 (-108)) (-4 *7 (-427)) (-4 *8 (-732)) + (-4 *9 (-786)) (-4 *3 (-987 *7 *8 *9)) (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-588 (-2 (|:| -2006 (-1081 *9)) (|:| -3858 (-522))))))) - (-5 *1 (-680 *6 *7 *8 *9)) (-5 *3 (-1081 *9))))) -(((*1 *2 *3) (-12 (-5 *3 (-498)) (-5 *1 (-497 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-498))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-628 *3)) - (-4 *3 (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $))))) - (-4 *4 (-1142 *3)) (-5 *1 (-469 *3 *4 *5)) (-4 *5 (-384 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-628 *3)) - (-4 *3 (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $))))) - (-4 *4 (-1142 *3)) (-5 *1 (-469 *3 *4 *5)) (-4 *5 (-384 *3 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-522)) (-5 *5 (-628 (-202))) - (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4102)))) (-5 *3 (-202)) - (-5 *2 (-960)) (-5 *1 (-686))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-453))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) - ((*1 *1 *1 *1) (-5 *1 (-792)))) -(((*1 *1 *1 *1) (-4 *1 (-447))) ((*1 *1 *1 *1) (-4 *1 (-699)))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) - ((*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2)) - (-4 *4 (-13 (-784) (-514)))))) -(((*1 *2) - (-12 (-4 *4 (-338)) (-5 *2 (-708)) (-5 *1 (-303 *3 *4)) - (-4 *3 (-304 *4)))) - ((*1 *2) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-708))))) -(((*1 *2 *1) - (-12 (-5 *2 (-708)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) - (-4 *4 (-971))))) -(((*1 *1 *1 *1) (-4 *1 (-131))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2)) - (-4 *2 (-405 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507)))) - ((*1 *1 *1 *1) (-5 *1 (-792))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-522))) (-5 *1 (-969)) - (-5 *3 (-522))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-628 *8)) (-4 *8 (-878 *5 *7 *6)) - (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085)))) - (-4 *7 (-730)) + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) + (-5 *1 (-990 *7 *8 *9 *3 *4)) (-4 *4 (-992 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) + (-4 *3 (-987 *6 *7 *8)) (-5 *2 - (-588 - (-2 (|:| |eqzro| (-588 *8)) (|:| |neqzro| (-588 *8)) - (|:| |wcond| (-588 (-881 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1166 (-382 (-881 *5)))) - (|:| -2905 (-588 (-1166 (-382 (-881 *5)))))))))) - (-5 *1 (-853 *5 *6 *7 *8)) (-5 *4 (-588 *8)))) + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) + (-5 *1 (-990 *6 *7 *8 *3 *4)) (-4 *4 (-992 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-628 *8)) (-5 *4 (-588 (-1085))) (-4 *8 (-878 *5 *7 *6)) - (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085)))) - (-4 *7 (-730)) - (-5 *2 - (-588 - (-2 (|:| |eqzro| (-588 *8)) (|:| |neqzro| (-588 *8)) - (|:| |wcond| (-588 (-881 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1166 (-382 (-881 *5)))) - (|:| -2905 (-588 (-1166 (-382 (-881 *5)))))))))) - (-5 *1 (-853 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-628 *7)) (-4 *7 (-878 *4 *6 *5)) - (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) - (-4 *6 (-730)) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) (-5 *2 - (-588 - (-2 (|:| |eqzro| (-588 *7)) (|:| |neqzro| (-588 *7)) - (|:| |wcond| (-588 (-881 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1166 (-382 (-881 *4)))) - (|:| -2905 (-588 (-1166 (-382 (-881 *4)))))))))) - (-5 *1 (-853 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-628 *9)) (-5 *5 (-850)) (-4 *9 (-878 *6 *8 *7)) - (-4 *6 (-13 (-283) (-135))) (-4 *7 (-13 (-784) (-563 (-1085)))) - (-4 *8 (-730)) + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) + (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-992 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-710)) (-5 *6 (-108)) (-4 *7 (-427)) (-4 *8 (-732)) + (-4 *9 (-786)) (-4 *3 (-987 *7 *8 *9)) (-5 *2 - (-588 - (-2 (|:| |eqzro| (-588 *9)) (|:| |neqzro| (-588 *9)) - (|:| |wcond| (-588 (-881 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1166 (-382 (-881 *6)))) - (|:| -2905 (-588 (-1166 (-382 (-881 *6)))))))))) - (-5 *1 (-853 *6 *7 *8 *9)) (-5 *4 (-588 *9)))) + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) + (-5 *1 (-1057 *7 *8 *9 *3 *4)) (-4 *4 (-1025 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-628 *9)) (-5 *4 (-588 (-1085))) (-5 *5 (-850)) - (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-283) (-135))) - (-4 *7 (-13 (-784) (-563 (-1085)))) (-4 *8 (-730)) + (-12 (-5 *5 (-710)) (-4 *6 (-427)) (-4 *7 (-732)) (-4 *8 (-786)) + (-4 *3 (-987 *6 *7 *8)) (-5 *2 - (-588 - (-2 (|:| |eqzro| (-588 *9)) (|:| |neqzro| (-588 *9)) - (|:| |wcond| (-588 (-881 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1166 (-382 (-881 *6)))) - (|:| -2905 (-588 (-1166 (-382 (-881 *6)))))))))) - (-5 *1 (-853 *6 *7 *8 *9)))) + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) + (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1025 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-628 *8)) (-5 *4 (-850)) (-4 *8 (-878 *5 *7 *6)) - (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085)))) - (-4 *7 (-730)) + (-12 (-4 *5 (-427)) (-4 *6 (-732)) (-4 *7 (-786)) + (-4 *3 (-987 *5 *6 *7)) (-5 *2 - (-588 - (-2 (|:| |eqzro| (-588 *8)) (|:| |neqzro| (-588 *8)) - (|:| |wcond| (-588 (-881 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1166 (-382 (-881 *5)))) - (|:| -2905 (-588 (-1166 (-382 (-881 *5)))))))))) - (-5 *1 (-853 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-628 *9)) (-5 *4 (-588 *9)) (-5 *5 (-1068)) - (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-283) (-135))) - (-4 *7 (-13 (-784) (-563 (-1085)))) (-4 *8 (-730)) (-5 *2 (-522)) - (-5 *1 (-853 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-628 *9)) (-5 *4 (-588 (-1085))) (-5 *5 (-1068)) - (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-283) (-135))) - (-4 *7 (-13 (-784) (-563 (-1085)))) (-4 *8 (-730)) (-5 *2 (-522)) - (-5 *1 (-853 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-628 *8)) (-5 *4 (-1068)) (-4 *8 (-878 *5 *7 *6)) - (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085)))) - (-4 *7 (-730)) (-5 *2 (-522)) (-5 *1 (-853 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-628 *10)) (-5 *4 (-588 *10)) (-5 *5 (-850)) - (-5 *6 (-1068)) (-4 *10 (-878 *7 *9 *8)) (-4 *7 (-13 (-283) (-135))) - (-4 *8 (-13 (-784) (-563 (-1085)))) (-4 *9 (-730)) (-5 *2 (-522)) - (-5 *1 (-853 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-628 *10)) (-5 *4 (-588 (-1085))) (-5 *5 (-850)) - (-5 *6 (-1068)) (-4 *10 (-878 *7 *9 *8)) (-4 *7 (-13 (-283) (-135))) - (-4 *8 (-13 (-784) (-563 (-1085)))) (-4 *9 (-730)) (-5 *2 (-522)) - (-5 *1 (-853 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-628 *9)) (-5 *4 (-850)) (-5 *5 (-1068)) - (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-283) (-135))) - (-4 *7 (-13 (-784) (-563 (-1085)))) (-4 *8 (-730)) (-5 *2 (-522)) - (-5 *1 (-853 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-154 (-202)) (-154 (-202)))) (-5 *4 (-1009 (-202))) - (-5 *5 (-108)) (-5 *2 (-1168)) (-5 *1 (-233))))) -(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) - ((*1 *1 *1 *1) (-5 *1 (-792))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1014)) (-5 *2 (-108)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-108))))) -(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1169))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-628 (-202))) (-5 *6 (-108)) (-5 *7 (-628 (-522))) - (-5 *8 (-3 (|:| |fn| (-363)) (|:| |fp| (-63 QPHESS)))) - (-5 *3 (-522)) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-691))))) + (-2 (|:| |done| (-589 *4)) + (|:| |todo| (-589 (-2 (|:| |val| (-589 *3)) (|:| -3072 *4)))))) + (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1025 *5 *6 *7 *3))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-925 *2)) (-4 *2 (-158))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-427)) (-4 *4 (-515)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -4117 *4))) (-5 *1 (-899 *4 *3)) + (-4 *3 (-1144 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-475 *3 *4 *5 *6))) (-4 *3 (-339)) (-4 *4 (-732)) + (-4 *5 (-786)) (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-339)) (-4 *3 (-732)) (-4 *4 (-786)) + (-5 *1 (-475 *2 *3 *4 *5)) (-4 *5 (-880 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-589 *1)) (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-4 *3 (-987 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-589 *1)) (-5 *3 (-589 *7)) (-4 *1 (-992 *4 *5 *6 *7)) + (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-987 *4 *5 *6)) (-4 *4 (-427)) + (-4 *5 (-732)) (-4 *6 (-786)) (-5 *2 (-589 *1)) + (-4 *1 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *3 (-987 *4 *5 *6)) (-5 *2 (-589 *1)) + (-4 *1 (-992 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1016))))) (((*1 *2 *1) - (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-1074 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1045 (-202))) (-5 *1 (-1168)))) - ((*1 *2 *1) (-12 (-5 *2 (-1045 (-202))) (-5 *1 (-1168))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *3 (-1016)) (-4 *4 (-1016)) + (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-1016)) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2149 (-628 (-382 (-881 *4)))) - (|:| |vec| (-588 (-382 (-881 *4)))) (|:| -1692 (-708)) - (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522))))) - (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) - (-4 *6 (-730)) - (-5 *2 - (-2 (|:| |partsol| (-1166 (-382 (-881 *4)))) - (|:| -2905 (-588 (-1166 (-382 (-881 *4))))))) - (-5 *1 (-853 *4 *5 *6 *7)) (-4 *7 (-878 *4 *6 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-1120)) (-4 *2 (-1014)))) - ((*1 *1 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1014))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1068)) (-5 *3 (-760)) (-5 *1 (-759))))) -(((*1 *2 *2) - (-12 (-4 *3 (-962 (-522))) (-4 *3 (-13 (-784) (-514))) - (-5 *1 (-31 *3 *2)) (-4 *2 (-405 *3)))) - ((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-1081 *4)) (-5 *1 (-150 *3 *4)) - (-4 *3 (-151 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-971)) (-4 *1 (-278)))) - ((*1 *2) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-5 *2 (-1081 *3)))) - ((*1 *2) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1142 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-987 *3 *2)) (-4 *3 (-13 (-782) (-338))) - (-4 *2 (-1142 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1120))))) + (-12 (-5 *3 (-710)) (-5 *2 (-629 (-883 *4))) (-5 *1 (-955 *4)) + (-4 *4 (-973))))) (((*1 *2 *3) - (-12 (-5 *3 (-1016 *4)) (-4 *4 (-1014)) (-5 *2 (-1 *4)) - (-5 *1 (-943 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-354))) (-5 *1 (-964)) (-5 *3 (-354)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1009 (-522))) (-5 *2 (-1 (-522))) (-5 *1 (-969))))) -(((*1 *2) - (-12 (-4 *1 (-324)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1000 *3)) (-4 *3 (-125))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-382 (-881 *5)))) (-5 *4 (-588 (-1085))) - (-4 *5 (-514)) (-5 *2 (-588 (-588 (-881 *5)))) (-5 *1 (-1091 *5))))) + (-12 (-4 *4 (-515)) (-5 *2 (-1083 *3)) (-5 *1 (-40 *4 *3)) + (-4 *3 + (-13 (-339) (-279) + (-10 -8 (-15 -2785 ((-1039 *4 (-562 $)) $)) + (-15 -2797 ((-1039 *4 (-562 $)) $)) + (-15 -1458 ($ (-1039 *4 (-562 $)))))))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1009 *3)) (-5 *1 (-1007 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2) (-12 (-5 *1 (-1133 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1166 (-708))) (-5 *1 (-616 *3)) (-4 *3 (-1014))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-511))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-872 (-202)) (-202) (-202))) - (-5 *3 (-1 (-202) (-202) (-202) (-202))) (-5 *1 (-231))))) -(((*1 *2 *2) (-12 (-5 *2 (-628 (-291 (-522)))) (-5 *1 (-956))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1068)) (-4 *1 (-339 *2 *4)) (-4 *2 (-1014)) - (-4 *4 (-1014)))) - ((*1 *1 *2) - (-12 (-4 *1 (-339 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) -(((*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1 (-354))) (-5 *1 (-964))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-154 (-202)))) (-5 *2 (-960)) - (-5 *1 (-694))))) -(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-92)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-92))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))) - ((*1 *1 *1 *1) (-5 *1 (-792))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-951 *3)) (-4 *3 (-1120))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1068)) (-5 *1 (-1102))))) -(((*1 *1 *1) (-5 *1 (-983)))) -(((*1 *2 *3 *1) - (-12 - (-5 *2 - (-2 (|:| |cycle?| (-108)) (|:| -3476 (-708)) (|:| |period| (-708)))) - (-5 *1 (-1066 *4)) (-4 *4 (-1120)) (-5 *3 (-708))))) -(((*1 *1 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-784)) (-4 *2 (-971)))) - ((*1 *1 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1093 (-588 *4))) (-4 *4 (-784)) - (-5 *2 (-588 (-588 *4))) (-5 *1 (-1092 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-971))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338)) + (-12 (-4 *3 (-1144 (-383 (-523)))) (-5 *1 (-844 *3 *2)) + (-4 *2 (-1144 (-383 *3)))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) + (-5 *1 (-917 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1070)) (-4 *4 (-427)) (-4 *5 (-732)) (-4 *6 (-786)) + (-4 *7 (-987 *4 *5 *6)) (-5 *2 (-1173)) + (-5 *1 (-1023 *4 *5 *6 *7 *8)) (-4 *8 (-992 *4 *5 *6 *7))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *1 *1) (-5 *1 (-133))) + ((*1 *1 *1) (-4 *1 (-1056)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-515)) (-5 *2 - (-2 (|:| |ir| (-539 (-382 *6))) (|:| |specpart| (-382 *6)) - (|:| |polypart| *6))) - (-5 *1 (-532 *5 *6)) (-5 *3 (-382 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1081 (-382 (-881 *3)))) (-5 *1 (-427 *3 *4 *5 *6)) - (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) - (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) - (-4 *2 (-405 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1049)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-899 *4 *3)) (-4 *3 (-1144 *4))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-382 (-522))) (-5 *1 (-949 *3)) - (-4 *3 (-13 (-782) (-338) (-947))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3)) - (-4 *3 (-1142 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-987 *2 *3)) (-4 *2 (-13 (-782) (-338))) - (-4 *3 (-1142 *2))))) -(((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-588 (-1166 *4))) (-5 *1 (-341 *3 *4)) - (-4 *3 (-342 *4)))) - ((*1 *2) - (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-4 *3 (-514)) - (-5 *2 (-588 (-1166 *3)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-588 *6)) (-4 *6 (-784)) (-4 *4 (-338)) (-4 *5 (-730)) - (-5 *1 (-474 *4 *5 *6 *2)) (-4 *2 (-878 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-878 *3 *4 *5))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) - (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) - (|:| |relerr| (-202)))) - (-5 *2 (-354)) (-5 *1 (-171))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) - (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) - (|:| |relerr| (-202)))) - (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-171))))) -(((*1 *2) (-12 (-5 *2 (-588 (-850))) (-5 *1 (-1169)))) - ((*1 *2 *2) (-12 (-5 *2 (-588 (-850))) (-5 *1 (-1169))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-291 (-202)))) (-5 *4 (-708)) - (-5 *2 (-628 (-202))) (-5 *1 (-243))))) + (-12 (-5 *2 (-108)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-427)) (-4 *3 (-732)) (-4 *5 (-786)) (-5 *2 (-108)) + (-5 *1 (-424 *4 *3 *5 *6)) (-4 *6 (-880 *4 *3 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *2 *2) (-12 (-5 *2 (-588 (-291 (-202)))) (-5 *1 (-243))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) - (-5 *2 (-960)) (-5 *1 (-690))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-522)) (-5 *1 (-634 *2)) (-4 *2 (-1142 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) - (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *4)))) - (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-310 *3 *4 *5 *6)) (-4 *3 (-338)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 *3 *4 *5)) (-5 *2 (-108))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1081 *6)) (-5 *3 (-522)) (-4 *6 (-283)) (-4 *4 (-730)) - (-4 *5 (-784)) (-5 *1 (-680 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-411))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-628 (-382 (-522)))) - (-5 *2 - (-588 - (-2 (|:| |outval| *4) (|:| |outmult| (-522)) - (|:| |outvect| (-588 (-628 *4)))))) - (-5 *1 (-716 *4)) (-4 *4 (-13 (-338) (-782)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-392 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-338)) (-5 *1 (-950 *3 *2)) (-4 *2 (-598 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-338)) (-5 *2 (-2 (|:| -3277 *3) (|:| -1410 (-588 *5)))) - (-5 *1 (-950 *5 *3)) (-5 *4 (-588 *5)) (-4 *3 (-598 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-202)) (-5 *5 (-522)) (-5 *2 (-1116 *3)) - (-5 *1 (-727 *3)) (-4 *3 (-901)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *4 (-108)) - (-5 *1 (-1116 *2)) (-4 *2 (-901))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-426)) (-4 *4 (-757)) - (-14 *5 (-1085)) (-5 *2 (-522)) (-5 *1 (-1028 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-588 (-881 *4))) (-5 *3 (-588 (-1085))) (-4 *4 (-426)) - (-5 *1 (-847 *4))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-154 (-202))) (-5 *5 (-522)) (-5 *6 (-1068)) - (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2 *3) - (-12 (-4 *4 (-971)) - (-4 *2 (-13 (-379) (-962 *4) (-338) (-1106) (-260))) - (-5 *1 (-417 *4 *3 *2)) (-4 *3 (-1142 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-144 *4 *2)) - (-4 *2 (-405 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1007 *2)) (-4 *2 (-405 *4)) (-4 *4 (-13 (-784) (-514))) - (-5 *1 (-144 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1007 *1)) (-4 *1 (-146)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1085))))) + (-12 (-5 *2 (-874 *3)) (-4 *3 (-13 (-339) (-1108) (-930))) + (-5 *1 (-161 *3))))) (((*1 *1 *1) - (-12 (-4 *1 (-1114 *2 *3 *4 *5)) (-4 *2 (-514)) (-4 *3 (-730)) - (-4 *4 (-784)) (-4 *5 (-985 *2 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) - ((*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-757)) (-14 *5 (-1085)) (-5 *2 (-588 (-1139 *5 *4))) - (-5 *1 (-1028 *4 *5)) (-5 *3 (-1139 *5 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) - (-5 *2 (-628 *4)))) - ((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-628 *4)) (-5 *1 (-391 *3 *4)) - (-4 *3 (-392 *4)))) - ((*1 *2) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-628 *3))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1068)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) - (-4 *4 (-985 *6 *7 *8)) (-5 *2 (-1171)) - (-5 *1 (-713 *6 *7 *8 *4 *5)) (-4 *5 (-990 *6 *7 *8 *4))))) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-629 (-155 (-383 (-523))))) (-5 *2 (-589 (-155 *4))) + (-5 *1 (-704 *4)) (-4 *4 (-13 (-339) (-784)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) - (-5 *1 (-915 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-5 *2 (-108)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) - (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108))))) -(((*1 *2 *3) (-12 (-5 *2 (-522)) (-5 *1 (-527 *3)) (-4 *3 (-962 *2)))) + (|partial| -12 (-4 *3 (-973)) (-4 *3 (-786)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2735 (-523)))) (-4 *1 (-406 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *2 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014))))) -(((*1 *2 *1) (-12 (-4 *3 (-1120)) (-5 *2 (-588 *1)) (-4 *1 (-936 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-588 (-1074 *3 *4))) (-5 *1 (-1074 *3 *4)) - (-14 *3 (-850)) (-4 *4 (-971))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-708)) (-4 *5 (-514)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-897 *5 *3)) (-4 *3 (-1142 *5))))) -(((*1 *1 *1) (-5 *1 (-792))) - ((*1 *2 *1) - (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) - ((*1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-1067)))) - ((*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-1085))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507))))) -(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1121 *3)) (-4 *3 (-1014))))) -(((*1 *1 *1) - (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) - (-4 *4 (-784)) (-4 *2 (-514))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *2 *3) - (-12 (-4 *1 (-317 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1142 *4)) - (-4 *5 (-1142 (-382 *3))) (-5 *2 (-108)))) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-823 *3)) (|:| -2735 (-823 *3)))) + (-5 *1 (-823 *3)) (-4 *3 (-1016)))) ((*1 *2 *3) - (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-971)) (-5 *1 (-1138 *3 *2)) (-4 *2 (-1142 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-588 (-588 *6))) (-4 *6 (-878 *3 *5 *4)) - (-4 *3 (-13 (-283) (-135))) (-4 *4 (-13 (-784) (-563 (-1085)))) - (-4 *5 (-730)) (-5 *1 (-853 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 *4)) - (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))) -(((*1 *1 *1) (-4 *1 (-603))) ((*1 *1 *1) (-5 *1 (-1032)))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) - ((*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846))))) -(((*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-540 *3)) (-4 *3 (-507))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) - (-5 *2 (-2 (|:| |k| (-756 *3)) (|:| |c| *4)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *2) - (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-392 *3))))) -(((*1 *2 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-283))))) -(((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-759))))) -(((*1 *2 *3) - (-12 (-5 *3 (-522)) (|has| *1 (-6 -4229)) (-4 *1 (-379)) - (-5 *2 (-850))))) -(((*1 *2 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-392 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-588 (-51))) (-5 *2 (-1171)) (-5 *1 (-793))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1018)) (-5 *1 (-256))))) -(((*1 *2 *3) - (-12 (-4 *4 (-324)) (-5 *2 (-393 (-1081 (-1081 *4)))) - (-5 *1 (-1119 *4)) (-5 *3 (-1081 (-1081 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *2 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 (-1050 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) - (-4 *4 (-13 (-1014) (-33))) (-4 *5 (-13 (-1014) (-33))) - (-5 *1 (-1051 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-588 (-1050 *3 *4))) (-4 *3 (-13 (-1014) (-33))) - (-4 *4 (-13 (-1014) (-33))) (-5 *1 (-1051 *3 *4))))) + (|partial| -12 (-4 *4 (-732)) (-4 *5 (-786)) (-4 *6 (-973)) + (-4 *7 (-880 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -2735 (-523)))) + (-5 *1 (-881 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-339) + (-10 -8 (-15 -1458 ($ *7)) (-15 -2785 (*7 $)) + (-15 -2797 (*7 $)))))))) (((*1 *2 *3) - (-12 (-5 *3 (-522)) (-4 *4 (-1142 (-382 *3))) (-5 *2 (-850)) - (-5 *1 (-842 *4 *5)) (-4 *5 (-1142 (-382 *4)))))) -(((*1 *2) - (-12 (-4 *3 (-514)) (-5 *2 (-588 (-628 *3))) (-5 *1 (-42 *3 *4)) - (-4 *4 (-392 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-514) (-135))) (-5 *1 (-499 *3 *2)) - (-4 *2 (-1157 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-4 *4 (-1142 *3)) - (-4 *5 (-662 *3 *4)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-1157 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-5 *1 (-504 *3 *2)) - (-4 *2 (-1157 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-13 (-514) (-135))) - (-5 *1 (-1062 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-514)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) - (-5 *2 - (-2 (|:| -3526 *4) (|:| -3106 *4) (|:| |totalpts| (-522)) - (|:| |success| (-108)))) - (-5 *1 (-726)) (-5 *5 (-522))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-588 (-561 *2))) (-5 *4 (-1085)) - (-4 *2 (-13 (-27) (-1106) (-405 *5))) - (-4 *5 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-253 *5 *2))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-708)) (-5 *2 (-108)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-108)) (-5 *1 (-1121 *3)) (-4 *3 (-784)) - (-4 *3 (-1014))))) -(((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014)) - (-4 *4 (-1014))))) -(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2) - (-12 (-5 *2 (-881 (-354))) (-5 *1 (-314 *3 *4 *5)) - (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085))) - (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) - ((*1 *1 *2) - (-12 (-5 *2 (-382 (-881 (-354)))) (-5 *1 (-314 *3 *4 *5)) - (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085))) - (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) - ((*1 *1 *2) - (-12 (-5 *2 (-291 (-354))) (-5 *1 (-314 *3 *4 *5)) - (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085))) - (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) - ((*1 *1 *2) - (-12 (-5 *2 (-881 (-522))) (-5 *1 (-314 *3 *4 *5)) - (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085))) - (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) - ((*1 *1 *2) - (-12 (-5 *2 (-382 (-881 (-522)))) (-5 *1 (-314 *3 *4 *5)) - (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085))) - (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) - ((*1 *1 *2) - (-12 (-5 *2 (-291 (-522))) (-5 *1 (-314 *3 *4 *5)) - (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085))) - (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1085)) (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 *2)) - (-14 *4 (-588 *2)) (-4 *5 (-362)))) - ((*1 *1 *2) - (-12 (-5 *2 (-291 *5)) (-4 *5 (-362)) (-5 *1 (-314 *3 *4 *5)) - (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))))) - ((*1 *1 *2) (-12 (-5 *2 (-628 (-382 (-881 (-522))))) (-4 *1 (-359)))) - ((*1 *1 *2) (-12 (-5 *2 (-628 (-382 (-881 (-354))))) (-4 *1 (-359)))) - ((*1 *1 *2) (-12 (-5 *2 (-628 (-881 (-522)))) (-4 *1 (-359)))) - ((*1 *1 *2) (-12 (-5 *2 (-628 (-881 (-354)))) (-4 *1 (-359)))) - ((*1 *1 *2) (-12 (-5 *2 (-628 (-291 (-522)))) (-4 *1 (-359)))) - ((*1 *1 *2) (-12 (-5 *2 (-628 (-291 (-354)))) (-4 *1 (-359)))) - ((*1 *1 *2) (-12 (-5 *2 (-382 (-881 (-522)))) (-4 *1 (-371)))) - ((*1 *1 *2) (-12 (-5 *2 (-382 (-881 (-354)))) (-4 *1 (-371)))) - ((*1 *1 *2) (-12 (-5 *2 (-881 (-522))) (-4 *1 (-371)))) - ((*1 *1 *2) (-12 (-5 *2 (-881 (-354))) (-4 *1 (-371)))) - ((*1 *1 *2) (-12 (-5 *2 (-291 (-522))) (-4 *1 (-371)))) - ((*1 *1 *2) (-12 (-5 *2 (-291 (-354))) (-4 *1 (-371)))) - ((*1 *1 *2) (-12 (-5 *2 (-1166 (-382 (-881 (-522))))) (-4 *1 (-415)))) - ((*1 *1 *2) (-12 (-5 *2 (-1166 (-382 (-881 (-354))))) (-4 *1 (-415)))) - ((*1 *1 *2) (-12 (-5 *2 (-1166 (-881 (-522)))) (-4 *1 (-415)))) - ((*1 *1 *2) (-12 (-5 *2 (-1166 (-881 (-354)))) (-4 *1 (-415)))) - ((*1 *1 *2) (-12 (-5 *2 (-1166 (-291 (-522)))) (-4 *1 (-415)))) - ((*1 *1 *2) (-12 (-5 *2 (-1166 (-291 (-354)))) (-4 *1 (-415)))) - ((*1 *2 *1) + (-12 (-5 *3 (-1 (-1068 *4) (-1068 *4))) (-5 *2 (-1068 *4)) + (-5 *1 (-1191 *4)) (-4 *4 (-1122)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-589 (-1068 *5)) (-589 (-1068 *5)))) (-5 *4 (-523)) + (-5 *2 (-589 (-1068 *5))) (-5 *1 (-1191 *5)) (-4 *5 (-1122))))) +(((*1 *1 *2) (-12 (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) - (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) - (|:| |relerr| (-202)))) - (|:| |mdnia| - (-2 (|:| |fn| (-291 (-202))) - (|:| -2321 (-588 (-1009 (-777 (-202))))) - (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) - (-5 *1 (-706)))) + (-2 (|:| |mval| (-629 *3)) (|:| |invmval| (-629 *3)) + (|:| |genIdeal| (-475 *3 *4 *5 *6)))) + (-4 *3 (-339)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *1 (-475 *3 *4 *5 *6)) (-4 *6 (-880 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-152 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-108)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) - (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) - (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) - (|:| |abserr| (-202)) (|:| |relerr| (-202)))) - (-5 *1 (-745)))) + (-12 (-5 *2 (-108)) (-5 *1 (-394 *3)) (-4 *3 (-508)) (-4 *3 (-515)))) + ((*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-108)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) - (|:| |lb| (-588 (-777 (-202)))) - (|:| |cf| (-588 (-291 (-202)))) - (|:| |ub| (-588 (-777 (-202)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-588 (-291 (-202)))) - (|:| -3937 (-588 (-202))))))) - (-5 *1 (-775)))) + (-12 (-4 *1 (-736 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-108)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |pde| (-588 (-291 (-202)))) - (|:| |constraints| - (-588 - (-2 (|:| |start| (-202)) (|:| |finish| (-202)) - (|:| |grid| (-708)) (|:| |boundaryType| (-522)) - (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) - (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) - (|:| |tol| (-202)))) - (-5 *1 (-827)))) - ((*1 *1 *2) - (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-971)) - (-4 *4 (-730)) (-4 *5 (-784)) (-4 *1 (-903 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-1120)))) - ((*1 *1 *2) - (-3844 - (-12 (-5 *2 (-881 *3)) - (-12 (-2473 (-4 *3 (-37 (-382 (-522))))) - (-2473 (-4 *3 (-37 (-522)))) (-4 *5 (-563 (-1085)))) - (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730)) - (-4 *5 (-784))) - (-12 (-5 *2 (-881 *3)) - (-12 (-2473 (-4 *3 (-507))) (-2473 (-4 *3 (-37 (-382 (-522))))) - (-4 *3 (-37 (-522))) (-4 *5 (-563 (-1085)))) - (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730)) - (-4 *5 (-784))) - (-12 (-5 *2 (-881 *3)) - (-12 (-2473 (-4 *3 (-919 (-522)))) (-4 *3 (-37 (-382 (-522)))) - (-4 *5 (-563 (-1085)))) - (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730)) - (-4 *5 (-784))))) - ((*1 *1 *2) - (-3844 - (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5)) - (-12 (-2473 (-4 *3 (-37 (-382 (-522))))) (-4 *3 (-37 (-522))) - (-4 *5 (-563 (-1085)))) - (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))) - (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5)) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085)))) - (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))))) - ((*1 *1 *2) - (-12 (-5 *2 (-881 (-382 (-522)))) (-4 *1 (-985 *3 *4 *5)) - (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085))) (-4 *3 (-971)) - (-4 *4 (-730)) (-4 *5 (-784))))) -(((*1 *1) (-5 *1 (-129)))) -(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-850)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1166 *4)) (-4 *4 (-324)) (-5 *2 (-850)) - (-5 *1 (-492 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928))) - (-5 *1 (-160 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-158 (-382 (-522)))) (-5 *1 (-113 *3)) (-14 *3 (-522)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1066 *2)) (-4 *2 (-283)) (-5 *1 (-158 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-382 *3)) (-4 *3 (-283)) (-5 *1 (-158 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-158 (-522))) (-5 *1 (-703 *3)) (-4 *3 (-379)))) + (-12 (-5 *2 (-108)) (-5 *1 (-772 *3)) (-4 *3 (-508)) (-4 *3 (-1016)))) ((*1 *2 *1) - (-12 (-5 *2 (-158 (-382 (-522)))) (-5 *1 (-800 *3)) (-14 *3 (-522)))) + (-12 (-5 *2 (-108)) (-5 *1 (-779 *3)) (-4 *3 (-508)) (-4 *3 (-1016)))) ((*1 *2 *1) - (-12 (-14 *3 (-522)) (-5 *2 (-158 (-382 (-522)))) - (-5 *1 (-801 *3 *4)) (-4 *4 (-798 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-1166 (-628 *4))) (-5 *1 (-88 *4 *5)) - (-5 *3 (-628 *4)) (-4 *5 (-598 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *3 (-985 *5 *6 *7)) - (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *4)))) - (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 *1)) - (-4 *1 (-990 *4 *5 *6 *3))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *3 (-522)) - (-5 *2 (-960)) (-5 *1 (-694))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-157)) (-5 *1 (-265 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1142 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-157)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-157)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1085)) (-5 *3 (-409)) (-4 *5 (-784)) - (-5 *1 (-1020 *5 *4)) (-4 *4 (-405 *5))))) + (-12 (-4 *1 (-925 *3)) (-4 *3 (-158)) (-4 *3 (-508)) (-5 *2 (-108)))) + ((*1 *2 *3) + (-12 (-5 *2 (-108)) (-5 *1 (-936 *3)) (-4 *3 (-964 (-383 (-523))))))) (((*1 *2 *3) - (-12 (-5 *3 (-628 (-382 (-881 (-522))))) (-5 *2 (-588 (-291 (-522)))) - (-5 *1 (-956))))) -(((*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1120)) (-5 *2 (-522))))) + (-12 (-4 *4 (-325)) + (-5 *2 (-589 (-2 (|:| |deg| (-710)) (|:| -1992 *3)))) + (-5 *1 (-195 *4 *3)) (-4 *3 (-1144 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-339)) (-5 *2 (-108))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-588 *5)) (-4 *5 (-1142 *3)) (-4 *3 (-283)) - (-5 *2 (-108)) (-5 *1 (-429 *3 *5))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-1088)) (-5 *3 (-1085))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-354)) (-5 *1 (-983))))) + (-12 (-5 *3 (-589 *6)) (-5 *4 (-589 (-1068 *7))) (-4 *6 (-786)) + (-4 *7 (-880 *5 (-495 *6) *6)) (-4 *5 (-973)) + (-5 *2 (-1 (-1068 *7) *7)) (-5 *1 (-1040 *5 *6 *7))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *3 (-523)) (-5 *1 (-219)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-589 (-1070))) (-5 *3 (-523)) (-5 *4 (-1070)) + (-5 *1 (-219)))) + ((*1 *1 *1) (-5 *1 (-794))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-794)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146 *2 *3)) (-4 *3 (-731)) (-4 *2 (-973))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1070)) (-5 *4 (-523)) (-5 *5 (-629 (-203))) + (-5 *6 (-203)) (-5 *2 (-962)) (-5 *1 (-692))))) +(((*1 *1 *2) + (-12 (-5 *2 (-589 (-589 *3))) (-4 *3 (-1016)) (-5 *1 (-836 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-339) (-10 -8 (-15 ** ($ $ (-383 (-523))))))) + (-5 *1 (-1042 *3 *2)) (-4 *3 (-1144 *2))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-302 *2 *3)) (-4 *2 (-973)) (-4 *3 (-731))))) (((*1 *2 *3) - (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4)) - (-4 *4 (-324))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-108)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) - (-4 *3 (-985 *6 *7 *8)) - (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1974 *4)))) - (-5 *1 (-1022 *6 *7 *8 *3 *4)) (-4 *4 (-990 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-588 (-2 (|:| |val| (-588 *8)) (|:| -1974 *9)))) - (-5 *5 (-108)) (-4 *8 (-985 *6 *7 *4)) (-4 *9 (-990 *6 *7 *4 *8)) - (-4 *6 (-426)) (-4 *7 (-730)) (-4 *4 (-784)) - (-5 *2 (-588 (-2 (|:| |val| *8) (|:| -1974 *9)))) - (-5 *1 (-1022 *6 *7 *4 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-522))) (-5 *2 (-1087 (-382 (-522)))) - (-5 *1 (-169))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -3112 *3) (|:| |gap| (-708)) (|:| -3450 (-719 *3)) - (|:| -4002 (-719 *3)))) - (-5 *1 (-719 *3)) (-4 *3 (-971)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) - (-5 *2 - (-2 (|:| -3112 *1) (|:| |gap| (-708)) (|:| -3450 *1) - (|:| -4002 *1))) - (-4 *1 (-985 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *2 - (-2 (|:| -3112 *1) (|:| |gap| (-708)) (|:| -3450 *1) - (|:| -4002 *1))) - (-4 *1 (-985 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-588 *5)) (-5 *4 (-850)) (-4 *5 (-784)) - (-5 *2 (-57 (-588 (-613 *5)))) (-5 *1 (-613 *5))))) + (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1016) (-964 *5))) + (-4 *5 (-817 *4)) (-4 *4 (-1016)) (-5 *2 (-1 (-108) *5)) + (-5 *1 (-862 *4 *5 *6))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-589 (-2 (|:| |totdeg| (-710)) (|:| -1480 *3)))) + (-5 *4 (-710)) (-4 *3 (-880 *5 *6 *7)) (-4 *5 (-427)) (-4 *6 (-732)) + (-4 *7 (-786)) (-5 *1 (-424 *5 *6 *7 *3))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-710)) (-4 *4 (-325)) (-5 *1 (-195 *4 *2)) + (-4 *2 (-1144 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-523)) (-5 *1 (-635 *2)) (-4 *2 (-1144 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1166 *5)) (-4 *5 (-584 *4)) (-4 *4 (-514)) - (-5 *2 (-108)) (-5 *1 (-583 *4 *5))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-5 *2 (-2 (|:| -2644 *3) (|:| -3149 *4)))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1009 (-202))) - (-5 *1 (-855)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1009 (-202))) - (-5 *1 (-855)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1009 (-202))) - (-5 *1 (-856)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1009 (-202))) - (-5 *1 (-856))))) -(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) - (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) (-5 *2 (-960)) - (-5 *1 (-686))))) -(((*1 *1 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-21)) (-4 *2 (-1120))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1066 (-382 *3))) (-5 *1 (-158 *3)) (-4 *3 (-283))))) -(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-517))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-305))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1054)) (-5 *3 (-132)) (-5 *2 (-108))))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-623 *4 *3)) (-4 *4 (-1016)) + (-4 *3 (-1016))))) +(((*1 *2) (-12 (-5 *2 (-835 (-523))) (-5 *1 (-848))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1068)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) - ((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-239))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-338)) (-4 *5 (-514)) - (-5 *2 - (-2 (|:| |minor| (-588 (-850))) (|:| -3277 *3) - (|:| |minors| (-588 (-588 (-850)))) (|:| |ops| (-588 *3)))) - (-5 *1 (-88 *5 *3)) (-5 *4 (-850)) (-4 *3 (-598 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1120)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) - (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-708)) (-4 *1 (-1154 *3)) (-4 *3 (-1120)))) - ((*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120))))) -(((*1 *1 *1) (-5 *1 (-983)))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-382 *2)) (-4 *2 (-1142 *5)) - (-5 *1 (-744 *5 *2 *3 *6)) - (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) - (-4 *3 (-598 *2)) (-4 *6 (-598 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-588 (-382 *2))) (-4 *2 (-1142 *5)) - (-5 *1 (-744 *5 *2 *3 *6)) - (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *3 (-598 *2)) - (-4 *6 (-598 (-382 *2)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3)) - (-4 *3 (-1142 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-708)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) - (-4 *4 (-971)) (-4 *4 (-157)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)) - (-4 *3 (-157))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-4 *1 (-832 *3))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-202))) - (-5 *2 (-960)) (-5 *1 (-695))))) -(((*1 *2 *2) - (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928))) - (-5 *1 (-160 *3))))) -(((*1 *1) (-5 *1 (-108)))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-338)) (-4 *3 (-971)) - (-5 *2 (-2 (|:| -3450 *1) (|:| -4002 *1))) (-4 *1 (-786 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-94 *5)) (-4 *5 (-338)) (-4 *5 (-971)) - (-5 *2 (-2 (|:| -3450 *3) (|:| -4002 *3))) (-5 *1 (-787 *5 *3)) - (-4 *3 (-786 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-818 *4 *5)) (-5 *3 (-818 *4 *6)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-608 *5)) (-5 *1 (-814 *4 *5 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-708)) (-4 *1 (-1142 *4)) (-4 *4 (-971)) - (-5 *2 (-1166 *4))))) -(((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) - (-4 *3 (-342 *4)))) - ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-588 *1)) (-4 *1 (-985 *4 *5 *6)) (-4 *4 (-971)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-5 *2 (-108)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1114 *5 *6 *7 *3)) - (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) - (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-777 *3)) (-4 *3 (-1014))))) -(((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4238)) (-4 *1 (-139 *2)) (-4 *2 (-1120)) - (-4 *2 (-1014)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4238)) (-4 *1 (-139 *3)) - (-4 *3 (-1120)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-615 *3)) (-4 *3 (-1120)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-522)) (-4 *4 (-1014)) - (-5 *1 (-675 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-522)) (-5 *1 (-675 *2)) (-4 *2 (-1014)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33))) - (-4 *4 (-13 (-1014) (-33))) (-5 *1 (-1051 *3 *4))))) + (-12 (-5 *3 (-1083 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-786) (-515))) + (-5 *1 (-31 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) + (-12 (-4 *3 (-13 (-786) (-427))) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1108)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1066 (-1066 *4))) (-5 *2 (-1066 *4)) (-5 *1 (-1070 *4)) - (-4 *4 (-37 (-382 (-522)))) (-4 *4 (-971))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-338)) - (-5 *2 (-588 (-2 (|:| C (-628 *5)) (|:| |g| (-1166 *5))))) - (-5 *1 (-905 *5)) (-5 *3 (-628 *5)) (-5 *4 (-1166 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-588 *3)) (|:| |image| (-588 *3)))) - (-5 *1 (-834 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-3 *3 (-588 *1))) - (-4 *1 (-990 *4 *5 *6 *3))))) + (-12 (-5 *3 (-883 *5)) (-4 *5 (-973)) (-5 *2 (-225 *4 *5)) + (-5 *1 (-875 *4 *5)) (-14 *4 (-589 (-1087)))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-523)) (-5 *5 (-629 (-203))) (-5 *6 (-617 (-203))) + (-5 *3 (-203)) (-5 *2 (-962)) (-5 *1 (-690))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *3)) (-4 *3 (-786)) (-5 *1 (-457 *3))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-589 (-562 *6))) (-5 *4 (-1087)) (-5 *2 (-562 *6)) + (-4 *6 (-406 *5)) (-4 *5 (-786)) (-5 *1 (-532 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-203)) (-5 *2 (-383 (-523))) (-5 *1 (-282))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-589 *5)) (-5 *4 (-523)) (-4 *5 (-784)) (-4 *5 (-339)) + (-5 *2 (-710)) (-5 *1 (-876 *5 *6)) (-4 *6 (-1144 *5))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-834 *4)) (-4 *4 (-1014)) (-5 *2 (-588 (-708))) - (-5 *1 (-833 *4))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-338)) (-5 *1 (-704 *2 *3)) (-4 *2 (-647 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338))))) -(((*1 *2 *3) - (-12 (-5 *3 (-595 (-382 *2))) (-4 *2 (-1142 *4)) (-5 *1 (-747 *4 *2)) - (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))))) + (-12 (-5 *3 (-836 *4)) (-4 *4 (-1016)) (-5 *2 (-589 (-710))) + (-5 *1 (-835 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1173)) (-5 *1 (-1170))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-203)) (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 *7)) (-4 *7 (-786)) (-4 *5 (-840)) (-4 *6 (-732)) + (-4 *8 (-880 *5 *6 *7)) (-5 *2 (-394 (-1083 *8))) + (-5 *1 (-837 *5 *6 *7 *8)) (-5 *4 (-1083 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-596 *2 (-382 *2))) (-4 *2 (-1142 *4)) - (-5 *1 (-747 *4 *2)) - (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-883)) (-5 *2 (-588 (-588 (-872 (-202))))))) - ((*1 *2 *1) (-12 (-4 *1 (-901)) (-5 *2 (-588 (-588 (-872 (-202)))))))) + (-12 (-4 *4 (-840)) (-4 *5 (-1144 *4)) (-5 *2 (-394 (-1083 *5))) + (-5 *1 (-838 *4 *5)) (-5 *3 (-1083 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-306))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-971)) - (-4 *2 (-1157 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1171)) (-5 *1 (-1048)))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-792))) (-5 *2 (-1171)) (-5 *1 (-1048))))) + (-12 + (-5 *2 + (-589 + (-2 + (|:| -1853 + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) + (|:| -2433 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1068 (-203))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3499 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-518)))) + ((*1 *2 *1) + (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1122)) + (-5 *2 (-589 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-523))) (-5 *1 (-971))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-1 (-108) *8))) (-4 *8 (-985 *5 *6 *7)) - (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) - (-5 *2 (-2 (|:| |goodPols| (-588 *8)) (|:| |badPols| (-588 *8)))) - (-5 *1 (-904 *5 *6 *7 *8)) (-5 *4 (-588 *8))))) -(((*1 *1 *2) - (-12 (-4 *3 (-971)) (-5 *1 (-764 *2 *3)) (-4 *2 (-647 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) + (-12 (-5 *4 (-629 (-383 (-883 (-523))))) + (-5 *2 (-589 (-629 (-292 (-523))))) (-5 *1 (-958)) + (-5 *3 (-292 (-523)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-108)) - (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 (-154 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-108)) (-5 *1 (-1110 *4 *3)) - (-4 *3 (-13 (-27) (-1106) (-405 *4)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-514)) (-5 *2 (-108))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120))))) + (-12 (-5 *3 (-589 *2)) (-4 *2 (-406 *4)) (-5 *1 (-145 *4 *2)) + (-4 *4 (-13 (-786) (-515)))))) +(((*1 *1 *2) (-12 (-5 *2 (-589 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-973)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-383 *1)) (-4 *1 (-1144 *3)) (-4 *3 (-973)) + (-4 *3 (-515)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1144 *2)) (-4 *2 (-973)) (-4 *2 (-515))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-355)) (-5 *1 (-92))))) +(((*1 *1 *1) (-4 *1 (-982)))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-110)) (-4 *4 (-973)) (-5 *1 (-654 *4 *2)) + (-4 *2 (-591 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-773 *2)) (-4 *2 (-973))))) (((*1 *2 *3) - (-12 (-4 *4 (-338)) (-5 *2 (-588 *3)) (-5 *1 (-874 *4 *3)) - (-4 *3 (-1142 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-569 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -2002 *4) (|:| |sol?| (-108))) - (-522) *4)) - (-4 *4 (-338)) (-4 *5 (-1142 *4)) (-5 *1 (-532 *4 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-256))))) -(((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-1120))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-708)) (-4 *5 (-338)) (-5 *2 (-158 *6)) - (-5 *1 (-796 *5 *4 *6)) (-4 *4 (-1157 *5)) (-4 *6 (-1142 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) - (-5 *1 (-915 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) - (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-393 *3)) (-4 *3 (-514)) (-5 *1 (-394 *3))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) - (-4 *2 (-985 *4 *5 *6)) (-5 *1 (-713 *4 *5 *6 *2 *3)) - (-4 *3 (-990 *4 *5 *6 *2))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1116 *3)) (-4 *3 (-901))))) -(((*1 *2 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-202))))) -(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-637)))) - ((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-637))))) -(((*1 *2 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) + (-12 + (-5 *3 + (-2 (|:| |pde| (-589 (-292 (-203)))) + (|:| |constraints| + (-589 + (-2 (|:| |start| (-203)) (|:| |finish| (-203)) + (|:| |grid| (-710)) (|:| |boundaryType| (-523)) + (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) + (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) + (|:| |tol| (-203)))) + (-5 *2 (-108)) (-5 *1 (-190))))) +(((*1 *2) + (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) + (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) + (-5 *1 (-917 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-427)) (-4 *4 (-732)) (-4 *5 (-786)) + (-4 *6 (-987 *3 *4 *5)) (-5 *2 (-1173)) + (-5 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *7 (-992 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) - (-5 *2 (-708)))) - ((*1 *2 *1) - (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014)) - (-5 *2 (-708)))) - ((*1 *2 *1) - (-12 (-5 *2 (-708)) (-5 *1 (-673 *3 *4)) (-4 *3 (-971)) - (-4 *4 (-664))))) -(((*1 *2 *1) (-12 (-5 *2 (-588 (-159))) (-5 *1 (-1001))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-588 *3)) (-4 *3 (-1120))))) + (-12 (-5 *2 (-1083 (-383 (-883 *3)))) (-5 *1 (-428 *3 *4 *5 *6)) + (-4 *3 (-515)) (-4 *3 (-158)) (-14 *4 (-852)) + (-14 *5 (-589 (-1087))) (-14 *6 (-1168 (-629 *3)))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-292 (-523))) (-5 *4 (-1 (-203) (-203))) + (-5 *5 (-1011 (-203))) (-5 *6 (-589 (-240))) (-5 *2 (-1047 (-203))) + (-5 *1 (-636))))) (((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) - (-4 *3 (-342 *4)))) - ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *3 (-588 (-803))) - (-5 *1 (-442))))) -(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1068)) (-5 *1 (-723))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *3 (-522)) - (-5 *2 (-960)) (-5 *1 (-694))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-588 *1)) (-4 *1 (-985 *4 *5 *6)) (-4 *4 (-971)) - (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-514)) (-4 *5 (-730)) - (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-514)) - (-5 *2 (-2 (|:| -2149 (-628 *5)) (|:| |vec| (-1166 (-588 (-850)))))) - (-5 *1 (-88 *5 *3)) (-5 *4 (-850)) (-4 *3 (-598 *5))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4238)) (-4 *1 (-461 *4)) - (-4 *4 (-1120)) (-5 *2 (-108))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-708)))) - ((*1 *1 *1) (-4 *1 (-377)))) -(((*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)) (-4 *2 (-507)))) - ((*1 *1 *1) (-4 *1 (-980)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1068)) (-5 *5 (-628 (-202))) (-5 *6 (-202)) - (-5 *7 (-628 (-522))) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-690))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1142 *6)) - (-4 *6 (-13 (-27) (-405 *5))) - (-4 *5 (-13 (-784) (-514) (-962 (-522)))) (-4 *8 (-1142 (-382 *7))) - (-5 *2 (-539 *3)) (-5 *1 (-510 *5 *6 *7 *8 *3)) - (-4 *3 (-317 *6 *7 *8))))) + (-12 (-4 *3 (-515)) (-5 *2 (-589 (-629 *3))) (-5 *1 (-42 *3 *4)) + (-4 *4 (-393 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) - (-5 *2 (-108)))) + (-12 (-4 *1 (-302 *3 *4)) (-4 *3 (-973)) (-4 *4 (-731)) + (-5 *2 (-589 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014)) - (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-547 *3)) (-4 *3 (-971)))) + (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-973)) (-4 *4 (-1016)) + (-5 *2 (-589 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-549 *3)) (-4 *3 (-973)))) ((*1 *2 *1) - (-12 (-4 *3 (-514)) (-5 *2 (-108)) (-5 *1 (-569 *3 *4)) - (-4 *4 (-1142 *3)))) + (-12 (-5 *2 (-589 *3)) (-5 *1 (-675 *3 *4)) (-4 *3 (-973)) + (-4 *4 (-666)))) + ((*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-973)) (-5 *2 (-589 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-673 *3 *4)) (-4 *3 (-971)) - (-4 *4 (-664)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) - (-5 *2 (-108))))) -(((*1 *1) (-5 *1 (-760)))) + (-12 (-4 *1 (-1159 *3)) (-4 *3 (-973)) (-5 *2 (-1068 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-589 (-292 (-203)))) (-5 *4 (-710)) + (-5 *2 (-629 (-203))) (-5 *1 (-244))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-523)) (-5 *4 (-629 (-203))) (-5 *5 (-203)) + (-5 *6 (-3 (|:| |fn| (-364)) (|:| |fp| (-76 FUNCTN)))) + (-5 *2 (-962)) (-5 *1 (-688))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1016)) (-4 *2 (-831 *5)) (-5 *1 (-631 *5 *2 *3 *4)) + (-4 *3 (-349 *2)) (-4 *4 (-13 (-349 *5) (-10 -7 (-6 -4244))))))) (((*1 *2 *1) - (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343)) (-5 *2 (-108)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1081 *4)) (-4 *4 (-324)) (-5 *2 (-108)) - (-5 *1 (-332 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1166 *4)) (-4 *4 (-324)) (-5 *2 (-108)) - (-5 *1 (-492 *4))))) -(((*1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1169)))) - ((*1 *2 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1169))))) -(((*1 *2) (-12 (-5 *2 (-588 (-708))) (-5 *1 (-1169)))) - ((*1 *2 *2) (-12 (-5 *2 (-588 (-708))) (-5 *1 (-1169))))) -(((*1 *1 *1 *1) (-4 *1 (-699)))) -(((*1 *1 *2) - (-12 (-5 *2 (-708)) (-5 *1 (-49 *3 *4)) (-4 *3 (-971)) - (-14 *4 (-588 (-1085))))) - ((*1 *1 *2) - (-12 (-5 *2 (-708)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-971) (-784))) - (-14 *4 (-588 (-1085))))) - ((*1 *1) (-12 (-4 *1 (-304 *2)) (-4 *2 (-343)) (-4 *2 (-338)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-310 *3 *4 *5 *2)) (-4 *3 (-338)) - (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) - (-4 *2 (-317 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-708)) (-5 *1 (-365 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-157)))) - ((*1 *1) (-12 (-4 *2 (-157)) (-4 *1 (-662 *2 *3)) (-4 *3 (-1142 *2))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) - (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) - (|:| |relerr| (-202)))) - (-5 *2 (-588 (-202))) (-5 *1 (-183))))) -(((*1 *2) - (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) - (-5 *2 (-708)) (-5 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-317 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-5 *2 (-708)))) - ((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-708))))) + (-12 (-5 *2 (-1168 (-710))) (-5 *1 (-617 *3)) (-4 *3 (-1016))))) +(((*1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786)) (-4 *2 (-427))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-562 *4)) (-5 *1 (-561 *3 *4)) (-4 *3 (-786)) + (-4 *4 (-786))))) (((*1 *2 *2) - (-12 (-4 *3 (-514)) (-4 *3 (-157)) (-4 *4 (-348 *3)) - (-4 *5 (-348 *3)) (-5 *1 (-627 *3 *4 *5 *2)) - (-4 *2 (-626 *3 *4 *5))))) + (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-325)) (-5 *1 (-333 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-306))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1157 *4)) - (-4 *4 (-37 (-382 (-522)))) - (-5 *2 (-1 (-1066 *4) (-1066 *4) (-1066 *4))) (-5 *1 (-1159 *4 *5))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) + (|:| |abserr| (-203)) (|:| |relerr| (-203)))) + (-5 *2 (-355)) (-5 *1 (-185))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-589 (-2 (|:| -3149 (-383 (-523))) (|:| -3159 (-383 (-523)))))) + (-5 *2 (-589 (-383 (-523)))) (-5 *1 (-947 *4)) + (-4 *4 (-1144 (-523)))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-987 *3 *4 *2)) (-4 *3 (-973)) (-4 *4 (-732)) + (-4 *2 (-786)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-987 *2 *3 *4)) (-4 *2 (-973)) (-4 *3 (-732)) + (-4 *4 (-786))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-938 *3)) (-4 *3 (-1122)) (-4 *3 (-1016)) + (-5 *2 (-108))))) +(((*1 *1 *1) + (-12 (-5 *1 (-548 *2)) (-4 *2 (-37 (-383 (-523)))) (-4 *2 (-973))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-973)) (-4 *5 (-732)) (-4 *3 (-786)) + (-5 *2 (-2 (|:| -2935 *1) (|:| |gap| (-710)) (|:| -3282 *1))) + (-4 *1 (-987 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-973)) (-4 *4 (-732)) (-4 *5 (-786)) + (-5 *2 (-2 (|:| -2935 *1) (|:| |gap| (-710)) (|:| -3282 *1))) + (-4 *1 (-987 *3 *4 *5))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1087)) (-5 *3 (-355)) (-5 *1 (-985))))) +(((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1122))))) +(((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1122)) (-5 *2 (-108))))) (((*1 *2 *1) - (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) - (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) - (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3)))))) + (-12 (-5 *2 (-794)) (-5 *1 (-366 *3 *4 *5)) (-14 *3 (-710)) + (-14 *4 (-710)) (-4 *5 (-158))))) +(((*1 *1) (-5 *1 (-1090)))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-629 (-203))) (-5 *5 (-629 (-523))) (-5 *3 (-523)) + (-5 *2 (-962)) (-5 *1 (-696))))) (((*1 *2 *3) - (-12 (-5 *3 (-706)) + (-12 (-5 *3 (-708)) (-5 *2 - (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) - (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960)))) - (-5 *1 (-523)))) + (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) + (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962)))) + (-5 *1 (-524)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-706)) (-5 *4 (-983)) + (-12 (-5 *3 (-708)) (-5 *4 (-985)) (-5 *2 - (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) - (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960)))) - (-5 *1 (-523)))) + (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) + (|:| |explanations| (-589 (-1070))) (|:| |extra| (-962)))) + (-5 *1 (-524)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-724)) (-5 *3 (-983)) + (-12 (-4 *1 (-726)) (-5 *3 (-985)) (-5 *4 - (-2 (|:| |fn| (-291 (-202))) - (|:| -2321 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) - (|:| |relerr| (-202)))) + (-2 (|:| |fn| (-292 (-203))) + (|:| -3499 (-589 (-1011 (-779 (-203))))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) (-5 *2 - (-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) - (|:| |extra| (-960)))))) + (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) + (|:| |extra| (-962)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-724)) (-5 *3 (-983)) + (-12 (-4 *1 (-726)) (-5 *3 (-985)) (-5 *4 - (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) - (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) - (|:| |relerr| (-202)))) + (-2 (|:| |var| (-1087)) (|:| |fn| (-292 (-203))) + (|:| -3499 (-1011 (-779 (-203)))) (|:| |abserr| (-203)) + (|:| |relerr| (-203)))) (-5 *2 - (-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)) - (|:| |extra| (-960)))))) + (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)) + (|:| |extra| (-962)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-737)) (-5 *3 (-983)) + (-12 (-4 *1 (-739)) (-5 *3 (-985)) (-5 *4 - (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) - (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) - (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) - (|:| |abserr| (-202)) (|:| |relerr| (-202)))) - (-5 *2 (-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)))))) + (-2 (|:| |xinit| (-203)) (|:| |xend| (-203)) + (|:| |fn| (-1168 (-292 (-203)))) (|:| |yinit| (-589 (-203))) + (|:| |intvals| (-589 (-203))) (|:| |g| (-292 (-203))) + (|:| |abserr| (-203)) (|:| |relerr| (-203)))) + (-5 *2 (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)))))) ((*1 *2 *3) - (-12 (-5 *3 (-745)) + (-12 (-5 *3 (-747)) (-5 *2 - (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) - (|:| |explanations| (-588 (-1068))))) - (-5 *1 (-742)))) + (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) + (|:| |explanations| (-589 (-1070))))) + (-5 *1 (-744)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-745)) (-5 *4 (-983)) + (-12 (-5 *3 (-747)) (-5 *4 (-985)) (-5 *2 - (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) - (|:| |explanations| (-588 (-1068))))) - (-5 *1 (-742)))) + (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) + (|:| |explanations| (-589 (-1070))))) + (-5 *1 (-744)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-773)) (-5 *3 (-983)) + (-12 (-4 *1 (-775)) (-5 *3 (-985)) (-5 *4 - (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3937 (-588 (-202))))) - (-5 *2 (-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)))))) + (-2 (|:| |lfn| (-589 (-292 (-203)))) (|:| -2262 (-589 (-203))))) + (-5 *2 (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-773)) (-5 *3 (-983)) + (-12 (-4 *1 (-775)) (-5 *3 (-985)) (-5 *4 - (-2 (|:| |fn| (-291 (-202))) (|:| -3937 (-588 (-202))) - (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) - (|:| |ub| (-588 (-777 (-202)))))) - (-5 *2 (-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)))))) + (-2 (|:| |fn| (-292 (-203))) (|:| -2262 (-589 (-203))) + (|:| |lb| (-589 (-779 (-203)))) (|:| |cf| (-589 (-292 (-203)))) + (|:| |ub| (-589 (-779 (-203)))))) + (-5 *2 (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)))))) ((*1 *2 *3) - (-12 (-5 *3 (-775)) + (-12 (-5 *3 (-777)) (-5 *2 - (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) - (|:| |explanations| (-588 (-1068))))) - (-5 *1 (-774)))) + (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) + (|:| |explanations| (-589 (-1070))))) + (-5 *1 (-776)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-775)) (-5 *4 (-983)) + (-12 (-5 *3 (-777)) (-5 *4 (-985)) (-5 *2 - (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) - (|:| |explanations| (-588 (-1068))))) - (-5 *1 (-774)))) + (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) + (|:| |explanations| (-589 (-1070))))) + (-5 *1 (-776)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-824)) (-5 *3 (-983)) + (-12 (-4 *1 (-826)) (-5 *3 (-985)) (-5 *4 - (-2 (|:| |pde| (-588 (-291 (-202)))) + (-2 (|:| |pde| (-589 (-292 (-203)))) (|:| |constraints| - (-588 - (-2 (|:| |start| (-202)) (|:| |finish| (-202)) - (|:| |grid| (-708)) (|:| |boundaryType| (-522)) - (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) - (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) - (|:| |tol| (-202)))) - (-5 *2 (-2 (|:| -1361 (-354)) (|:| |explanations| (-1068)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-827)) + (-589 + (-2 (|:| |start| (-203)) (|:| |finish| (-203)) + (|:| |grid| (-710)) (|:| |boundaryType| (-523)) + (|:| |dStart| (-629 (-203))) (|:| |dFinish| (-629 (-203)))))) + (|:| |f| (-589 (-589 (-292 (-203))))) (|:| |st| (-1070)) + (|:| |tol| (-203)))) + (-5 *2 (-2 (|:| -1228 (-355)) (|:| |explanations| (-1070)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-829)) (-5 *2 - (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) - (|:| |explanations| (-588 (-1068))))) - (-5 *1 (-826)))) + (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) + (|:| |explanations| (-589 (-1070))))) + (-5 *1 (-828)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-827)) (-5 *4 (-983)) + (-12 (-5 *3 (-829)) (-5 *4 (-985)) (-5 *2 - (-2 (|:| -1361 (-354)) (|:| -3015 (-1068)) - (|:| |explanations| (-588 (-1068))))) - (-5 *1 (-826))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) - (-4 *2 (-13 (-405 *3) (-1106)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1166 *1)) (-4 *1 (-345 *4 *5)) (-4 *4 (-157)) - (-4 *5 (-1142 *4)) (-5 *2 (-628 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1142 *3)) - (-5 *2 (-628 *3))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-588 *11)) - (|:| |todo| (-588 (-2 (|:| |val| *3) (|:| -1974 *11)))))) - (-5 *6 (-708)) - (-5 *2 (-588 (-2 (|:| |val| (-588 *10)) (|:| -1974 *11)))) - (-5 *3 (-588 *10)) (-5 *4 (-588 *11)) (-4 *10 (-985 *7 *8 *9)) - (-4 *11 (-990 *7 *8 *9 *10)) (-4 *7 (-426)) (-4 *8 (-730)) - (-4 *9 (-784)) (-5 *1 (-988 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-588 *11)) - (|:| |todo| (-588 (-2 (|:| |val| *3) (|:| -1974 *11)))))) - (-5 *6 (-708)) - (-5 *2 (-588 (-2 (|:| |val| (-588 *10)) (|:| -1974 *11)))) - (-5 *3 (-588 *10)) (-5 *4 (-588 *11)) (-4 *10 (-985 *7 *8 *9)) - (-4 *11 (-1023 *7 *8 *9 *10)) (-4 *7 (-426)) (-4 *8 (-730)) - (-4 *9 (-784)) (-5 *1 (-1055 *7 *8 *9 *10 *11))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) - (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) - (|:| |relerr| (-202)))) - (-5 *2 (-108)) (-5 *1 (-276))))) -(((*1 *1 *1 *1) (-5 *1 (-792)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) - (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-588 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1014))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 *2))) - (-5 *2 (-821 *3)) (-5 *1 (-993 *3 *4 *5)) - (-4 *5 (-13 (-405 *4) (-815 *3) (-563 *2)))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *2 (-960)) - (-5 *1 (-693))))) -(((*1 *1) (-5 *1 (-1171)))) -(((*1 *1 *1) (-12 (-5 *1 (-1107 *2)) (-4 *2 (-1014))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-708)) (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *5)) - (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-971)) (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) - (-4 *5 (-215 *3 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *5)) - (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-588 (-588 (-792)))) (-5 *1 (-792)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1052 *3 *4)) (-5 *1 (-920 *3 *4)) (-14 *3 (-850)) - (-4 *4 (-338)))) - ((*1 *1 *2) - (-12 (-5 *2 (-588 (-588 *5))) (-4 *5 (-971)) - (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *6 (-215 *4 *5)) - (-4 *7 (-215 *3 *5))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-522)) (-5 *5 (-1068)) (-5 *6 (-628 (-202))) - (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G)))) - (-5 *8 (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN)))) - (-5 *9 (-3 (|:| |fn| (-363)) (|:| |fp| (-69 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT)))) - (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-687))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-382 (-522))) (-5 *1 (-547 *3)) (-4 *3 (-37 *2)) - (-4 *3 (-971))))) -(((*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-143)))) - ((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-588 (-1085))) (-4 *4 (-1014)) - (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4)))) - (-5 *1 (-993 *4 *5 *2)) - (-4 *2 (-13 (-405 *5) (-815 *4) (-563 (-821 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1014)) - (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3)))) - (-5 *1 (-993 *3 *4 *2)) - (-4 *2 (-13 (-405 *4) (-815 *3) (-563 (-821 *3))))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338))))) -(((*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-354)))) - ((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-354))))) -(((*1 *2) - (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) - (-4 *3 (-342 *4)))) - ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-338)) (-4 *6 (-1142 (-382 *2))) - (-4 *2 (-1142 *5)) (-5 *1 (-193 *5 *2 *6 *3)) - (-4 *3 (-317 *5 *2 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106))))) -(((*1 *2 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1068)) (-5 *1 (-281))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730)) - (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-305))))) -(((*1 *2 *1) - (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) - (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-522))) (-4 *3 (-971)) (-5 *1 (-547 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-522))) (-4 *1 (-1126 *3)) (-4 *3 (-971)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-522))) (-4 *1 (-1157 *3)) (-4 *3 (-971))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-1066 *4) (-1066 *4))) (-5 *2 (-1066 *4)) - (-5 *1 (-1189 *4)) (-4 *4 (-1120)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-588 (-1066 *5)) (-588 (-1066 *5)))) (-5 *4 (-522)) - (-5 *2 (-588 (-1066 *5))) (-5 *1 (-1189 *5)) (-4 *5 (-1120))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-960))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-514)) (-5 *1 (-897 *3 *2)) (-4 *2 (-1142 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-522)) (-4 *1 (-1008 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-588 *3)) (-4 *3 (-1023 *5 *6 *7 *8)) - (-4 *5 (-13 (-283) (-135))) (-4 *6 (-730)) (-4 *7 (-784)) - (-4 *8 (-985 *5 *6 *7)) (-5 *2 (-108)) - (-5 *1 (-544 *5 *6 *7 *8 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1081 *4)) (-4 *4 (-324)) (-5 *2 (-886 (-1032))) - (-5 *1 (-321 *4))))) + (-2 (|:| -1228 (-355)) (|:| -4038 (-1070)) + (|:| |explanations| (-589 (-1070))))) + (-5 *1 (-828))))) (((*1 *2) - (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) - (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171)) - (-5 *1 (-915 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) - (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171)) - (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) - (-5 *1 (-423 *3 *4 *5 *2)) (-4 *2 (-878 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1120))))) -(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1120)) (-5 *2 (-708))))) + (-12 (-4 *3 (-973)) (-5 *2 (-888 (-652 *3 *4))) (-5 *1 (-652 *3 *4)) + (-4 *4 (-1144 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1066 (-522))) (-5 *1 (-1070 *4)) (-4 *4 (-971)) - (-5 *3 (-522))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2) - (-12 (-5 *2 (-1171)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014)) - (-4 *4 (-1014))))) -(((*1 *1) (-5 *1 (-129)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-338)) (-5 *2 (-588 *3)) (-5 *1 (-874 *4 *3)) - (-4 *3 (-1142 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1166 *1)) (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) - (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-588 (-719 *3))) (-5 *1 (-719 *3)) (-4 *3 (-514)) - (-4 *3 (-971))))) -(((*1 *1 *1) (-12 (-5 *1 (-393 *2)) (-4 *2 (-514))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-512 *3)) (-4 *3 (-13 (-379) (-1106))) (-5 *2 (-108))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) - ((*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846))))) -(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))) -(((*1 *1) - (-12 (-4 *1 (-379)) (-2473 (|has| *1 (-6 -4229))) - (-2473 (|has| *1 (-6 -4221))))) - ((*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-1014)) (-4 *2 (-784)))) - ((*1 *2 *1) (-12 (-4 *1 (-767 *2)) (-4 *2 (-784)))) - ((*1 *1 *1 *1) (-4 *1 (-784))) ((*1 *1) (-5 *1 (-1032)))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-856))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-402 *3 *2)) (-4 *3 (-13 (-157) (-37 (-382 (-522))))) - (-4 *2 (-13 (-784) (-21)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *2 *1) (-12 (-4 *1 (-324)) (-5 *2 (-708)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-377)) (-5 *2 (-708))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1052 *4 *2)) (-14 *4 (-850)) - (-4 *2 (-13 (-971) (-10 -7 (-6 (-4240 "*"))))) (-5 *1 (-831 *4 *2))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-872 (-202))) (-5 *4 (-803)) (-5 *5 (-850)) - (-5 *2 (-1171)) (-5 *1 (-442)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-872 (-202))) (-5 *2 (-1171)) (-5 *1 (-442)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-588 (-872 (-202)))) (-5 *4 (-803)) (-5 *5 (-850)) - (-5 *2 (-1171)) (-5 *1 (-442))))) -(((*1 *1) (-5 *1 (-983)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) - (-5 *2 - (-2 (|:| -3526 *4) (|:| -3106 *4) (|:| |totalpts| (-522)) - (|:| |success| (-108)))) - (-5 *1 (-726)) (-5 *5 (-522))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) - (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) - (|:| |relerr| (-202)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1066 (-202))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2321 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-517))))) + (-12 (-5 *3 (-589 (-589 (-589 *4)))) (-5 *2 (-589 (-589 *4))) + (-5 *1 (-1094 *4)) (-4 *4 (-786))))) (((*1 *2 *1) - (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) - (-5 *2 (-108))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 *7)) (-4 *7 (-784)) - (-4 *8 (-878 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1166 (-382 *8)) "failed")) - (|:| -2905 (-588 (-1166 (-382 *8)))))) - (-5 *1 (-611 *5 *6 *7 *8))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-514)) (-5 *2 (-886 *3)) (-5 *1 (-1073 *4 *3)) - (-4 *3 (-1142 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-881 *5)) (-4 *5 (-971)) (-5 *2 (-454 *4 *5)) - (-5 *1 (-873 *4 *5)) (-14 *4 (-588 (-1085)))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *5 (-202)) - (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN)))) (-5 *2 (-960)) - (-5 *1 (-687))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) - (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-76 FUNCTN)))) - (-5 *2 (-960)) (-5 *1 (-686))))) -(((*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507)))) - ((*1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-898))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-426) (-135))) (-5 *2 (-393 *3)) - (-5 *1 (-95 *4 *3)) (-4 *3 (-1142 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-588 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-13 (-426) (-135))) - (-5 *2 (-393 *3)) (-5 *1 (-95 *5 *3))))) + (-12 (-5 *2 (-589 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-540 *3)) (-4 *3 (-339))))) +(((*1 *2 *3) (-12 (-5 *3 (-874 *2)) (-5 *1 (-911 *2)) (-4 *2 (-973))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1085)) (-4 *5 (-338)) (-5 *2 (-1066 (-1066 (-881 *5)))) - (-5 *1 (-1174 *5)) (-5 *4 (-1066 (-881 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-951 (-777 (-522)))) (-5 *1 (-547 *3)) (-4 *3 (-971))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1085)) (-4 *4 (-426)) (-4 *4 (-784)) - (-5 *1 (-531 *4 *2)) (-4 *2 (-260)) (-4 *2 (-405 *4))))) -(((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014)) - (-4 *4 (-1014))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-628 (-202))) (-5 *6 (-628 (-522))) (-5 *3 (-522)) - (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-690))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-708)) (-4 *4 (-971)) (-5 *1 (-1138 *4 *2)) - (-4 *2 (-1142 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-708)) - (-4 *3 (-13 (-283) (-10 -8 (-15 -3133 ((-393 $) $))))) - (-4 *4 (-1142 *3)) (-5 *1 (-469 *3 *4 *5)) (-4 *5 (-384 *3 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-588 (-382 (-881 (-522))))) (-5 *4 (-588 (-1085))) - (-5 *2 (-588 (-588 *5))) (-5 *1 (-355 *5)) - (-4 *5 (-13 (-782) (-338))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-382 (-881 (-522)))) (-5 *2 (-588 *4)) (-5 *1 (-355 *4)) - (-4 *4 (-13 (-782) (-338)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-225))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-157)) (-4 *2 (-514)))) - ((*1 *1 *1) (|partial| -4 *1 (-660)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -2002 *6) (|:| |sol?| (-108))) (-522) - *6)) - (-4 *6 (-338)) (-4 *7 (-1142 *6)) - (-5 *2 (-2 (|:| |answer| (-539 (-382 *7))) (|:| |a0| *6))) - (-5 *1 (-532 *6 *7)) (-5 *3 (-382 *7))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-154 (-202))) (-5 *5 (-522)) (-5 *6 (-1068)) - (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-108)) (-4 *4 (-13 (-338) (-782))) (-5 *2 (-393 *3)) - (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-393 *3)) - (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1081 *1)) (-5 *3 (-1085)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1081 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-881 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1085)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-784) (-514))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-784) (-514))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1081 *2)) (-5 *4 (-1085)) (-4 *2 (-405 *5)) - (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-784) (-514))))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1081 *1)) (-5 *3 (-850)) (-4 *1 (-938)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1081 *1)) (-5 *3 (-850)) (-5 *4 (-792)) - (-4 *1 (-938)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-850)) (-4 *4 (-13 (-782) (-338))) - (-4 *1 (-987 *4 *2)) (-4 *2 (-1142 *4))))) -(((*1 *1 *1) (-4 *1 (-131))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2)) - (-4 *2 (-405 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507))))) + (-12 + (-5 *3 + (-589 + (-2 (|:| |eqzro| (-589 *8)) (|:| |neqzro| (-589 *8)) + (|:| |wcond| (-589 (-883 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1168 (-383 (-883 *5)))) + (|:| -4041 (-589 (-1168 (-383 (-883 *5)))))))))) + (-5 *4 (-1070)) (-4 *5 (-13 (-284) (-136))) (-4 *8 (-880 *5 *7 *6)) + (-4 *6 (-13 (-786) (-564 (-1087)))) (-4 *7 (-732)) (-5 *2 (-523)) + (-5 *1 (-855 *5 *6 *7 *8))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-589 (-108))) (-5 *5 (-629 (-203))) + (-5 *6 (-629 (-523))) (-5 *7 (-203)) (-5 *3 (-523)) (-5 *2 (-962)) + (-5 *1 (-694))))) (((*1 *2 *3) - (-12 (-5 *3 (-588 (-561 *5))) (-4 *4 (-784)) (-5 *2 (-561 *5)) - (-5 *1 (-531 *4 *5)) (-4 *5 (-405 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-980)) (-4 *3 (-1106)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) - (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-382 *5)) - (|:| |c2| (-382 *5)) (|:| |deg| (-708)))) - (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1142 (-382 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1085)) - (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-290 *4 *5)) - (-4 *5 (-13 (-27) (-1106) (-405 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-290 *4 *3)) - (-4 *3 (-13 (-27) (-1106) (-405 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-382 (-522))) - (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-290 *5 *3)) - (-4 *3 (-13 (-27) (-1106) (-405 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))) - (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-290 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-270 *3)) (-5 *5 (-382 (-522))) - (-4 *3 (-13 (-27) (-1106) (-405 *6))) - (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-290 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-522))) (-5 *4 (-270 *6)) - (-4 *6 (-13 (-27) (-1106) (-405 *5))) - (-4 *5 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-433 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) - (-4 *3 (-13 (-27) (-1106) (-405 *6))) - (-4 *6 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-433 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-522))) (-5 *4 (-270 *7)) (-5 *5 (-1133 (-522))) - (-4 *7 (-13 (-27) (-1106) (-405 *6))) - (-4 *6 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-433 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-5 *6 (-1133 (-522))) - (-4 *3 (-13 (-27) (-1106) (-405 *7))) - (-4 *7 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-433 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-382 (-522)))) (-5 *4 (-270 *8)) - (-5 *5 (-1133 (-382 (-522)))) (-5 *6 (-382 (-522))) - (-4 *8 (-13 (-27) (-1106) (-405 *7))) - (-4 *7 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-433 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-5 *6 (-1133 (-382 (-522)))) - (-5 *7 (-382 (-522))) (-4 *3 (-13 (-27) (-1106) (-405 *8))) - (-4 *8 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *2 (-51)) (-5 *1 (-433 *8 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1066 (-2 (|:| |k| (-522)) (|:| |c| *3)))) - (-4 *3 (-971)) (-5 *1 (-547 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-548 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1066 (-2 (|:| |k| (-522)) (|:| |c| *3)))) - (-4 *3 (-971)) (-4 *1 (-1126 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-708)) - (-5 *3 (-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| *4)))) - (-4 *4 (-971)) (-4 *1 (-1147 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-4 *1 (-1157 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1066 (-2 (|:| |k| (-708)) (|:| |c| *3)))) - (-4 *3 (-971)) (-4 *1 (-1157 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-561 (-47)))) (-5 *1 (-47)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-561 (-47))) (-5 *1 (-47)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1081 (-47))) (-5 *3 (-588 (-561 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1081 (-47))) (-5 *3 (-561 (-47))) (-5 *1 (-47)))) - ((*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) + (-12 (-5 *3 (-1083 *7)) (-4 *7 (-880 *6 *4 *5)) (-4 *4 (-732)) + (-4 *5 (-786)) (-4 *6 (-973)) (-5 *2 (-1083 *6)) + (-5 *1 (-297 *4 *5 *6 *7))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-338) (-782))) (-5 *1 (-164 *2 *3)) - (-4 *3 (-1142 (-154 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-850)) (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343)))) - ((*1 *2 *1) (-12 (-4 *1 (-304 *2)) (-4 *2 (-338)))) - ((*1 *2 *1) - (-12 (-4 *1 (-345 *2 *3)) (-4 *3 (-1142 *2)) (-4 *2 (-157)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1142 *2)) (-4 *2 (-919 *3)) (-5 *1 (-388 *3 *2 *4 *5)) - (-4 *3 (-283)) (-4 *5 (-13 (-384 *2 *4) (-962 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1142 *2)) (-4 *2 (-919 *3)) - (-5 *1 (-389 *3 *2 *4 *5 *6)) (-4 *3 (-283)) (-4 *5 (-384 *2 *4)) - (-14 *6 (-1166 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-850)) (-4 *5 (-971)) - (-4 *2 (-13 (-379) (-962 *5) (-338) (-1106) (-260))) - (-5 *1 (-417 *5 *3 *2)) (-4 *3 (-1142 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-561 (-465)))) (-5 *1 (-465)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-561 (-465))) (-5 *1 (-465)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1081 (-465))) (-5 *3 (-588 (-561 (-465)))) - (-5 *1 (-465)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1081 (-465))) (-5 *3 (-561 (-465))) (-5 *1 (-465)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1166 *4)) (-5 *3 (-850)) (-4 *4 (-324)) - (-5 *1 (-492 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-426)) (-4 *5 (-662 *4 *2)) (-4 *2 (-1142 *4)) - (-5 *1 (-712 *4 *2 *5 *3)) (-4 *3 (-1142 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) - ((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)))) - ((*1 *1 *1) (-4 *1 (-980)))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338)) - (-5 *2 (-2 (|:| -2585 (-382 *6)) (|:| |coeff| (-382 *6)))) - (-5 *1 (-532 *5 *6)) (-5 *3 (-382 *6))))) -(((*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-419 *3)) (-4 *3 (-971))))) -(((*1 *2 *1) - (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-784)) - (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-588 *4))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-588 *9)) (-5 *3 (-1 (-108) *9)) - (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-985 *6 *7 *8)) (-4 *6 (-514)) (-4 *7 (-730)) (-4 *8 (-784)) - (-5 *1 (-904 *6 *7 *8 *9))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-561 *1)) (-4 *1 (-405 *4)) (-4 *4 (-784)) - (-4 *4 (-514)) (-5 *2 (-382 (-1081 *1))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-561 *3)) (-4 *3 (-13 (-405 *6) (-27) (-1106))) - (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) - (-5 *2 (-1081 (-382 (-1081 *3)))) (-5 *1 (-518 *6 *3 *7)) - (-5 *5 (-1081 *3)) (-4 *7 (-1014)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1162 *5)) (-14 *5 (-1085)) (-4 *6 (-971)) - (-5 *2 (-1139 *5 (-881 *6))) (-5 *1 (-876 *5 *6)) (-5 *3 (-881 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-5 *2 (-1081 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) (-5 *2 (-1081 *1)) - (-4 *1 (-878 *4 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-730)) (-4 *4 (-784)) (-4 *6 (-971)) - (-4 *7 (-878 *6 *5 *4)) (-5 *2 (-382 (-1081 *3))) - (-5 *1 (-879 *5 *4 *6 *7 *3)) - (-4 *3 - (-13 (-338) - (-10 -8 (-15 -2217 ($ *7)) (-15 -2947 (*7 $)) (-15 -2959 (*7 $))))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1081 *3)) - (-4 *3 - (-13 (-338) - (-10 -8 (-15 -2217 ($ *7)) (-15 -2947 (*7 $)) (-15 -2959 (*7 $))))) - (-4 *7 (-878 *6 *5 *4)) (-4 *5 (-730)) (-4 *4 (-784)) (-4 *6 (-971)) - (-5 *1 (-879 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1085)) (-4 *5 (-514)) - (-5 *2 (-382 (-1081 (-382 (-881 *5))))) (-5 *1 (-967 *5)) - (-5 *3 (-382 (-881 *5)))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3)) - (-4 *3 (-1014))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-426)) (-4 *4 (-784)) - (-4 *5 (-730)) (-5 *1 (-914 *3 *4 *5 *6)) (-4 *6 (-878 *3 *5 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014))))) -(((*1 *2 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522)))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-154 (-202))) (-5 *5 (-522)) (-5 *6 (-1068)) - (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-498))))) -(((*1 *2 *3) - (-12 (-4 *4 (-971)) (-5 *2 (-108)) (-5 *1 (-418 *4 *3)) - (-4 *3 (-1142 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) - (-4 *5 (-784)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759))))) -(((*1 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-305)))) - ((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-305))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-514) (-784) (-962 (-522)))) (-5 *1 (-167 *3 *2)) - (-4 *2 (-13 (-27) (-1106) (-405 (-154 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-514) (-784) (-962 (-522)))) - (-5 *1 (-167 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 (-154 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1085)) - (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-5 *1 (-1110 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) - ((*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168))))) -(((*1 *2 *1) (-12 (-5 *2 (-393 *3)) (-5 *1 (-843 *3)) (-4 *3 (-283))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1081 *2)) (-4 *2 (-878 (-382 (-881 *6)) *5 *4)) - (-5 *1 (-670 *5 *4 *6 *2)) (-4 *5 (-730)) - (-4 *4 (-13 (-784) (-10 -8 (-15 -3873 ((-1085) $))))) - (-4 *6 (-514))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-522) (-522))) (-5 *1 (-336 *3)) (-4 *3 (-1014)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-708) (-708))) (-5 *1 (-361 *3)) (-4 *3 (-1014)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-588 (-561 *1))) (-4 *1 (-278))))) + (-12 (-5 *2 (-1083 (-383 (-523)))) (-5 *1 (-873)) (-5 *3 (-523))))) (((*1 *2 *3) - (-12 (-5 *3 (-968 *4 *5)) (-4 *4 (-13 (-782) (-283) (-135) (-947))) - (-14 *5 (-588 (-1085))) (-5 *2 (-588 (-588 (-949 (-382 *4))))) - (-5 *1 (-1190 *4 *5 *6)) (-14 *6 (-588 (-1085))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108)) - (-4 *5 (-13 (-782) (-283) (-135) (-947))) - (-5 *2 (-588 (-588 (-949 (-382 *5))))) (-5 *1 (-1190 *5 *6 *7)) - (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108)) - (-4 *5 (-13 (-782) (-283) (-135) (-947))) - (-5 *2 (-588 (-588 (-949 (-382 *5))))) (-5 *1 (-1190 *5 *6 *7)) - (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-881 *4))) - (-4 *4 (-13 (-782) (-283) (-135) (-947))) - (-5 *2 (-588 (-588 (-949 (-382 *4))))) (-5 *1 (-1190 *4 *5 *6)) - (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1081 *1)) (-4 *1 (-938))))) -(((*1 *2 *1) - (-12 (-4 *3 (-157)) (-4 *2 (-23)) (-5 *1 (-265 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1142 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-649 *3 *2 *4 *5 *6)) (-4 *3 (-157)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1142 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-971)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-653 *3 *2 *4 *5 *6)) (-4 *3 (-157)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-522))))) -(((*1 *1) (-5 *1 (-129)))) + (-12 (-4 *1 (-840)) (-5 *2 (-394 (-1083 *1))) (-5 *3 (-1083 *1))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-514)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1142 *2))))) + (-12 (-4 *4 (-1144 *2)) (-4 *2 (-1126)) (-5 *1 (-137 *2 *4 *3)) + (-4 *3 (-1144 (-383 *4)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-562 *3)) (-4 *3 (-13 (-406 *5) (-27) (-1108))) + (-4 *5 (-13 (-427) (-964 (-523)) (-786) (-136) (-585 (-523)))) + (-5 *2 (-540 *3)) (-5 *1 (-525 *5 *3 *6)) (-4 *6 (-1016))))) (((*1 *2) - (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) - (-5 *2 (-708)) (-5 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-317 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) (-5 *2 (-708))))) -(((*1 *2 *1) - (-12 (-5 *2 (-802 (-894 *3) (-894 *3))) (-5 *1 (-894 *3)) - (-4 *3 (-895))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) - (-5 *2 (-960)) (-5 *1 (-691))))) -(((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-51))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-872 (-202))) (-5 *4 (-803)) (-5 *2 (-1171)) - (-5 *1 (-442)))) - ((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-971)) (-4 *1 (-907 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-872 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-971)) (-4 *1 (-1046 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-588 *3)) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-872 *3)) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1117)) (-5 *3 (-202))))) + (-12 (-4 *4 (-158)) (-5 *2 (-108)) (-5 *1 (-342 *3 *4)) + (-4 *3 (-343 *4)))) + ((*1 *2) (-12 (-4 *1 (-343 *3)) (-4 *3 (-158)) (-5 *2 (-108))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) - (-4 *2 (-13 (-405 *3) (-928))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) - (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) - (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) - ((*1 *1 *1) (-4 *1 (-260))) - ((*1 *2 *3) - (-12 (-5 *3 (-393 *4)) (-4 *4 (-514)) - (-5 *2 (-588 (-2 (|:| -3112 (-708)) (|:| |logand| *4)))) - (-5 *1 (-295 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) - (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) - ((*1 *2 *1) - (-12 (-5 *2 (-606 *3 *4)) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784)) - (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1071 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) - (-5 *1 (-1072 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-708)) (-4 *4 (-13 (-971) (-655 (-382 (-522))))) - (-4 *5 (-784)) (-5 *1 (-1180 *4 *5 *2)) (-4 *2 (-1185 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-708)) (-5 *1 (-1184 *3 *4)) - (-4 *4 (-655 (-382 (-522)))) (-4 *3 (-784)) (-4 *4 (-157))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1007 (-881 (-522)))) (-5 *3 (-881 (-522))) - (-5 *1 (-305)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1007 (-881 (-522)))) (-5 *1 (-305))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1068)) (-5 *4 (-154 (-202))) (-5 *5 (-522)) - (-5 *2 (-960)) (-5 *1 (-696))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1090))))) -(((*1 *2 *3) - (-12 (-5 *2 (-154 (-354))) (-5 *1 (-722 *3)) (-4 *3 (-563 (-354))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-850)) (-5 *2 (-154 (-354))) (-5 *1 (-722 *3)) - (-4 *3 (-563 (-354))))) - ((*1 *2 *3) - (-12 (-5 *3 (-154 *4)) (-4 *4 (-157)) (-4 *4 (-563 (-354))) - (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-154 *5)) (-5 *4 (-850)) (-4 *5 (-157)) - (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-881 (-154 *4))) (-4 *4 (-157)) (-4 *4 (-563 (-354))) - (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-881 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-157)) - (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-881 *4)) (-4 *4 (-971)) (-4 *4 (-563 (-354))) - (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-971)) - (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514)) (-4 *4 (-563 (-354))) - (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-514)) - (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-382 (-881 (-154 *4)))) (-4 *4 (-514)) - (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-382 (-881 (-154 *5)))) (-5 *4 (-850)) (-4 *5 (-514)) - (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-291 *4)) (-4 *4 (-514)) (-4 *4 (-784)) - (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-291 *5)) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-784)) - (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-291 (-154 *4))) (-4 *4 (-514)) (-4 *4 (-784)) - (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-291 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-514)) - (-4 *5 (-784)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) - (-5 *1 (-722 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-872 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-588 (-872 *3))) (-4 *3 (-971)) (-4 *1 (-1046 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-588 (-588 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-588 (-872 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971))))) -(((*1 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-507))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1014)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) - (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) - (-4 *5 (-1142 (-382 *4))) - (-5 *2 (-2 (|:| |num| (-1166 *4)) (|:| |den| *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 (-498))) (-5 *2 (-1085)) (-5 *1 (-498))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-628 *1)) (-5 *4 (-1166 *1)) (-4 *1 (-584 *5)) - (-4 *5 (-971)) - (-5 *2 (-2 (|:| -2149 (-628 *5)) (|:| |vec| (-1166 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-628 *1)) (-4 *1 (-584 *4)) (-4 *4 (-971)) - (-5 *2 (-628 *4))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-708)) (-4 *1 (-301 *3 *4)) (-4 *3 (-971)) - (-4 *4 (-729)) (-4 *3 (-157))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-588 (-708))) (-5 *3 (-108)) (-5 *1 (-1074 *4 *5)) - (-14 *4 (-850)) (-4 *5 (-971))))) -(((*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-158 *3)) (-4 *3 (-283))))) -(((*1 *2 *1) (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *1 (-442))))) -(((*1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-251))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-588 (-256))) (-5 *1 (-256)))) - ((*1 *2 *1) (-12 (-5 *2 (-588 (-1090))) (-5 *1 (-1090))))) -(((*1 *1 *1) (-4 *1 (-1054)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-960)) (-5 *3 (-1085)) (-5 *1 (-243))))) -(((*1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-459))))) -(((*1 *2 *1) - (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-4 *3 (-514)) - (-5 *2 (-1081 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-588 (-1 (-108) *8))) (-4 *8 (-985 *5 *6 *7)) - (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) - (-5 *2 (-2 (|:| |goodPols| (-588 *8)) (|:| |badPols| (-588 *8)))) - (-5 *1 (-904 *5 *6 *7 *8)) (-5 *4 (-588 *8))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-588 (-588 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-588 (-3 (|:| |array| (-588 *3)) (|:| |scalar| (-1085))))) - (-5 *6 (-588 (-1085))) (-5 *3 (-1085)) (-5 *2 (-1018)) - (-5 *1 (-372)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-588 (-588 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-588 (-3 (|:| |array| (-588 *3)) (|:| |scalar| (-1085))))) - (-5 *6 (-588 (-1085))) (-5 *3 (-1085)) (-5 *2 (-1018)) - (-5 *1 (-372)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-588 (-1085))) (-5 *5 (-1088)) (-5 *3 (-1085)) - (-5 *2 (-1018)) (-5 *1 (-372))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4238)) (-4 *1 (-212 *3)) - (-4 *3 (-1014)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-258 *3)) (-4 *3 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *3 (-628 (-382 (-881 (-522))))) - (-5 *2 - (-588 - (-2 (|:| |radval| (-291 (-522))) (|:| |radmult| (-522)) - (|:| |radvect| (-588 (-628 (-291 (-522)))))))) - (-5 *1 (-956))))) -(((*1 *1) (-5 *1 (-1167)))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) - (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) - (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) - (-5 *3 (-588 (-239))) (-5 *1 (-237)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) - (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) - (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) - (-5 *1 (-239)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-522)) (-5 *4 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) - ((*1 *2 *1 *3) - (-12 - (-5 *3 - (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) - (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) - (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) - (-5 *2 (-1171)) (-5 *1 (-1168)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3808 (-202)) - (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) - (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) - (-5 *1 (-1168)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1166 (-1166 *4))) (-4 *4 (-971)) (-5 *2 (-628 *4)) - (-5 *1 (-954 *4))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-522)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-708)) (-4 *5 (-157)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-522)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-708)) (-4 *5 (-157)))) - ((*1 *2 *2 *3) - (-12 - (-5 *2 - (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4) - (-224 *4 (-382 (-522))))) - (-5 *3 (-588 (-794 *4))) (-14 *4 (-588 (-1085))) (-14 *5 (-708)) - (-5 *1 (-475 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-757)) (-14 *5 (-1085)) - (-5 *2 (-522)) (-5 *1 (-1028 *4 *5))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-708)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-730)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *6 (-784)) - (-5 *2 (-108)) (-5 *1 (-423 *4 *5 *6 *7))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33))) - (-4 *3 (-13 (-1014) (-33)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) - (|:| -2321 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) - (|:| |relerr| (-202)))) - (-5 *2 (-522)) (-5 *1 (-183))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) - (-5 *1 (-689))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-708)) (-5 *1 (-98 *3)) (-4 *3 (-1014))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1157 *3))))) + (-12 (-5 *2 (-1168 *1)) (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) + (-4 *4 (-1144 *3)) (-4 *5 (-1144 (-383 *4)))))) +(((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) + ((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-442)))) + ((*1 *2) (-12 (-5 *2 (-523)) (-5 *1 (-858))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) - (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) - (-4 *3 (-13 (-27) (-1106) (-405 *6) (-10 -8 (-15 -2217 ($ *7))))) - (-4 *7 (-782)) + (-4 *6 (-13 (-427) (-786) (-964 (-523)) (-585 (-523)))) + (-4 *3 (-13 (-27) (-1108) (-406 *6) (-10 -8 (-15 -1458 ($ *7))))) + (-4 *7 (-784)) (-4 *8 - (-13 (-1144 *3 *7) (-338) (-1106) - (-10 -8 (-15 -2731 ($ $)) (-15 -2611 ($ $))))) + (-13 (-1146 *3 *7) (-339) (-1108) + (-10 -8 (-15 -3523 ($ $)) (-15 -3417 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068)))))) - (-5 *1 (-397 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1068)) (-4 *9 (-910 *8)) - (-14 *10 (-1085))))) + (|:| |%problem| (-2 (|:| |func| (-1070)) (|:| |prob| (-1070)))))) + (-5 *1 (-398 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1070)) (-4 *9 (-912 *8)) + (-14 *10 (-1087))))) +(((*1 *2 *2) (-12 (-5 *2 (-523)) (-5 *1 (-520))))) +(((*1 *2) (-12 (-5 *2 (-1173)) (-5 *1 (-699))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-786) (-515))) (-5 *1 (-253 *3 *2)) + (-4 *2 (-13 (-406 *3) (-930)))))) +(((*1 *1) (-5 *1 (-144)))) +(((*1 *2 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171)))) + ((*1 *2) (-12 (-5 *2 (-852)) (-5 *1 (-1171))))) (((*1 *2 *1) - (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) - (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) - (-5 *2 (-2 (|:| -1720 (-588 *6)) (|:| -1566 (-588 *6))))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4239)) (-4 *1 (-936 *2)) (-4 *2 (-1120))))) -((-1198 . 725407) (-1199 . 725223) (-1200 . 724732) (-1201 . 724652) - (-1202 . 724579) (-1203 . 724470) (-1204 . 724260) (-1205 . 724155) - (-1206 . 723917) (-1207 . 723796) (-1208 . 723356) (-1209 . 723251) - (-1210 . 721911) (-1211 . 721882) (-1212 . 721670) (-1213 . 721479) - (-1214 . 720876) (-1215 . 720630) (-1216 . 720536) (-1217 . 720477) - (-1218 . 720406) (-1219 . 720374) (-1220 . 720246) (-1221 . 720194) - (-1222 . 720121) (-1223 . 720047) (-1224 . 719924) (-1225 . 719810) - (-1226 . 719555) (-1227 . 719478) (-1228 . 719312) (-1229 . 719201) - (-1230 . 719146) (-1231 . 718814) (-1232 . 716684) (-1233 . 716631) - (-1234 . 716512) (-1235 . 716442) (-1236 . 716274) (-1237 . 716187) - (-1238 . 714950) (-1239 . 714324) (-1240 . 714273) (-1241 . 714143) - (-1242 . 714048) (-1243 . 713775) (-1244 . 713693) (-1245 . 713665) - (-1246 . 712955) (-1247 . 712889) (-1248 . 712015) (-1249 . 711953) - (-1250 . 711666) (-1251 . 711462) (-1252 . 711389) (-1253 . 711288) - (-1254 . 710697) (-1255 . 710586) (-1256 . 710533) (-1257 . 710327) - (-1258 . 710274) (-1259 . 710137) (-1260 . 710057) (-1261 . 709986) - (-1262 . 709831) (-1263 . 709732) (-1264 . 708331) (-1265 . 708104) - (-1266 . 707969) (-1267 . 707902) (-1268 . 707699) (-1269 . 705920) - (-1270 . 703012) (-1271 . 702779) (-1272 . 702647) (-1273 . 702523) - (-1274 . 702347) (-1275 . 701572) (-1276 . 701310) (-1277 . 701173) - (-1278 . 700893) (-1279 . 700772) (-1280 . 700719) (-1281 . 700432) - (-1282 . 700265) (-1283 . 700158) (-1284 . 699982) (-1285 . 699889) - (-1286 . 699759) (-1287 . 699663) (-1288 . 699577) (-1289 . 699437) - (-1290 . 699191) (-1291 . 699133) (-1292 . 699021) (-1293 . 698827) - (-1294 . 698627) (-1295 . 698501) (-1296 . 698397) (-1297 . 698119) - (-1298 . 697963) (-1299 . 696667) (-1300 . 696448) (-1301 . 696420) - (-1302 . 696093) (-1303 . 695960) (-1304 . 695845) (-1305 . 695768) - (-1306 . 695649) (-1307 . 695597) (-1308 . 695318) (-1309 . 695253) - (-1310 . 695116) (-1311 . 695027) (-1312 . 694954) (-1313 . 694899) - (-1314 . 694796) (-1315 . 694665) (-1316 . 694562) (-1317 . 694534) - (-1318 . 694440) (-1319 . 694353) (-1320 . 694254) (-1321 . 694182) - (-1322 . 694125) (-1323 . 694002) (-1324 . 693665) (-1325 . 693563) - (-1326 . 693354) (-1327 . 693277) (-1328 . 693189) (-1329 . 693137) - (-1330 . 692868) (-1331 . 692761) (-1332 . 692514) (-1333 . 692376) - (-1334 . 692323) (-1335 . 692236) (-1336 . 692095) (-1337 . 692027) - (-1338 . 691961) (-1339 . 691798) (-1340 . 691640) (-1341 . 691524) - (-1342 . 691451) (-1343 . 691063) (-1344 . 690940) (-1345 . 690838) - (-1346 . 690451) (-1347 . 690021) (-1348 . 689791) (-1349 . 689734) - (-1350 . 689705) (-1351 . 689590) (-1352 . 689410) (-1353 . 689333) - (-1354 . 689251) (-1355 . 689098) (-1356 . 689064) (-1357 . 688854) - (-1358 . 688056) (-1359 . 687836) (-1360 . 687727) (-1361 . 684442) - (-1362 . 684263) (-1363 . 684096) (-1364 . 683949) (-1365 . 683840) - (-1366 . 683498) (-1367 . 683256) (-1368 . 682647) (-1369 . 682613) - (-1370 . 682498) (-1371 . 682381) (-1372 . 682110) (-1373 . 682082) - (-1374 . 681552) (-1375 . 681305) (-1376 . 681122) (-1377 . 681038) - (-1378 . 680931) (-1379 . 680832) (-1380 . 680748) (-1381 . 680624) - (-1382 . 680454) (-1383 . 680367) (-1384 . 679846) (-1385 . 679709) - (-1386 . 679641) (-1387 . 679538) (-1388 . 679380) (-1389 . 679309) - (-1390 . 679249) (-1391 . 678973) (-1392 . 678864) (-1393 . 678794) - (-1394 . 678714) (-1395 . 678615) (-1396 . 678562) (-1397 . 678488) - (-1398 . 678329) (-1399 . 678251) (-1400 . 677868) (-1401 . 677709) - (-1402 . 677653) (-1403 . 677590) (-1404 . 677372) (-1405 . 677272) - (-1406 . 677213) (-1407 . 677158) (-1408 . 676799) (-1409 . 676746) - (-1410 . 676668) (-1411 . 676422) (-1412 . 676277) (-1413 . 676181) - (-1414 . 676037) (-1415 . 675723) (-1416 . 675571) (-1417 . 675467) - (-1418 . 675309) (-1419 . 675255) (-1420 . 675130) (-1421 . 674968) - (-1422 . 674833) (-1423 . 674724) (-1424 . 674125) (-1425 . 674053) - (-1426 . 673637) (-1427 . 673479) (-1428 . 673381) (-1429 . 673235) - (-1430 . 673082) (-1431 . 673026) (-1432 . 672742) (-1433 . 672714) - (-1434 . 672615) (-1435 . 672487) (-1436 . 672413) (-1437 . 672206) - (-1438 . 672121) (-1439 . 672026) (-1440 . 671625) (-1441 . 671594) - (-1442 . 671273) (-1443 . 671034) (-1444 . 670903) (-1445 . 670829) - (-1446 . 670773) (-1447 . 670723) (-1448 . 670640) (-1449 . 670570) - (-1450 . 670400) (-1451 . 670343) (-1452 . 669926) (-1453 . 669788) - (-1454 . 669673) (-1455 . 669546) (-1456 . 669005) (-1457 . 668911) - (-1458 . 668385) (-1459 . 668291) (-1460 . 668217) (-1461 . 668135) - (-1462 . 668017) (-1463 . 667945) (-1464 . 667838) (-1465 . 667719) - (-1466 . 667059) (-1467 . 666913) (-1468 . 666766) (-1469 . 666551) - (-1470 . 666427) (-1471 . 665918) (-1472 . 665819) (-1473 . 665738) - (-1474 . 665686) (-1475 . 665542) (-1476 . 665485) (-1477 . 665457) - (-1478 . 660140) (-1479 . 660047) (-1480 . 659885) (-1481 . 659671) - (-1482 . 659452) (-1483 . 659289) (-1484 . 658843) (-1485 . 658741) - (-1486 . 658611) (-1487 . 658301) (-1488 . 658163) (-1489 . 658041) - (-1490 . 657978) (-1491 . 657926) (-1492 . 657852) (-1493 . 657757) - (-1494 . 657663) (-1495 . 657610) (-1496 . 657555) (-1497 . 657460) - (-1498 . 657375) (-1499 . 657290) (-1500 . 657165) (-1501 . 657095) - (-1502 . 657038) (-1503 . 656901) (-1504 . 656841) (-1505 . 656664) - (-1506 . 656479) (-1507 . 656396) (-1508 . 656144) (-1509 . 656078) - (-1510 . 655967) (-1511 . 655898) (-1512 . 655840) (-1513 . 655570) - (-1514 . 655410) (-1515 . 655229) (-1516 . 655020) (-1517 . 654385) - (-1518 . 654301) (-1519 . 654148) (-1520 . 653951) (-1521 . 653692) - (-1522 . 653557) (-1523 . 653420) (-1524 . 653296) (-1525 . 652958) - (-1526 . 652817) (-1527 . 652680) (-1528 . 652569) (-1529 . 652433) - (-1530 . 652202) (-1531 . 651971) (-1532 . 651876) (-1533 . 651659) - (-1534 . 651590) (-1535 . 651430) (-1536 . 651277) (-1537 . 651061) - (-1538 . 650982) (-1539 . 650861) (-1540 . 650795) (-1541 . 650686) - (-1542 . 650575) (-1543 . 650460) (-1544 . 649887) (-1545 . 649794) - (-1546 . 649584) (-1547 . 649313) (-1548 . 649113) (-1549 . 648810) - (-1550 . 648723) (-1551 . 648480) (-1552 . 648293) (-1553 . 648071) - (-1554 . 648013) (-1555 . 647958) (-1556 . 647905) (-1557 . 647793) - (-1558 . 647670) (-1559 . 647507) (-1560 . 647476) (-1561 . 647412) - (-1562 . 647144) (-1563 . 647009) (-1564 . 646887) (-1565 . 646815) - (-1566 . 646641) (-1567 . 646575) (-1568 . 646448) (-1569 . 646396) - (-1570 . 646311) (-1571 . 646230) (-1572 . 646039) (-1573 . 645953) - (-1574 . 645802) (-1575 . 645733) (-1576 . 645642) (-1577 . 645391) - (-1578 . 645335) (-1579 . 644841) (-1580 . 644770) (-1581 . 644644) - (-1582 . 644196) (-1583 . 644089) (-1584 . 643819) (-1585 . 643540) - (-1586 . 643489) (-1587 . 643183) (-1588 . 643118) (-1589 . 642972) - (-1590 . 638812) (-1591 . 638492) (-1592 . 638397) (-1593 . 638238) - (-1594 . 638126) (-1595 . 637989) (-1596 . 637924) (-1597 . 637837) - (-1598 . 637782) (-1599 . 637589) (-1600 . 637482) (-1601 . 637141) - (-1602 . 637021) (-1603 . 636703) (-1604 . 636510) (-1605 . 636256) - (-1606 . 636151) (-1607 . 635978) (-1608 . 635476) (-1609 . 635317) - (-1610 . 635179) (-1611 . 635062) (-1612 . 634966) (-1613 . 634855) - (-1614 . 634740) (-1615 . 634039) (-1616 . 633786) (-1617 . 633607) - (-1618 . 633452) (-1619 . 633206) (-1620 . 633099) (-1621 . 632977) - (-1622 . 632911) (-1623 . 632824) (-1624 . 632737) (-1625 . 632636) - (-1626 . 632321) (-1627 . 632241) (-1628 . 632002) (-1629 . 631925) - (-1630 . 631647) (-1631 . 631546) (-1632 . 631487) (-1633 . 631413) - (-1634 . 631339) (-1635 . 631238) (-1636 . 631148) (-1637 . 630816) - (-1638 . 630739) (-1639 . 630666) (-1640 . 630537) (-1641 . 630454) - (-1642 . 630138) (-1643 . 628563) (-1644 . 628511) (-1645 . 628407) - (-1646 . 628290) (-1647 . 628112) (-1648 . 628024) (-1649 . 627945) - (-1650 . 627868) (-1651 . 627769) (-1652 . 627649) (-1653 . 627553) - (-1654 . 627482) (-1655 . 627433) (-1656 . 627206) (-1657 . 627047) - (-1658 . 626976) (-1659 . 626873) (-1660 . 626385) (-1661 . 625201) - (-1662 . 624819) (-1663 . 623814) (-1664 . 623426) (-1665 . 623324) - (-1666 . 623202) (-1667 . 622870) (-1668 . 622789) (-1669 . 622582) - (-1670 . 622431) (-1671 . 621952) (-1672 . 620774) (-1673 . 620645) - (-1674 . 620478) (-1675 . 620425) (-1676 . 619889) (-1677 . 619691) - (-1678 . 619551) (-1679 . 619424) (-1680 . 619168) (-1681 . 619080) - (-1682 . 616882) (-1683 . 616814) (-1684 . 616647) (-1685 . 615645) - (-1686 . 615560) (-1687 . 615374) (-1688 . 615280) (-1689 . 614805) - (-1690 . 614722) (-1691 . 614670) (-1692 . 613423) (-1693 . 613315) - (-1694 . 613214) (-1695 . 613162) (-1696 . 612676) (-1697 . 612648) - (-1698 . 612587) (-1699 . 611876) (-1700 . 611133) (-1701 . 610965) - (-1702 . 610912) (-1703 . 610841) (-1704 . 610769) (-1705 . 610702) - (-1706 . 610586) (-1707 . 610512) (-1708 . 610327) (-1709 . 610276) - (-1710 . 609676) (-1711 . 609465) (-1712 . 609263) (-1713 . 608932) - (-1714 . 608791) (-1715 . 608707) (-1716 . 608602) (-1717 . 608470) - (-1718 . 608310) (-1719 . 608076) (-1720 . 607917) (-1721 . 607416) - (-1722 . 607328) (-1723 . 607228) (-1724 . 606938) (-1725 . 606888) - (-1726 . 606810) (-1727 . 606730) (-1728 . 606511) (-1729 . 606264) - (-1730 . 606214) (-1731 . 606058) (-1732 . 605973) (-1733 . 605902) - (-1734 . 605829) (-1735 . 605652) (-1736 . 605403) (-1737 . 605337) - (-1738 . 604954) (-1739 . 604850) (-1740 . 604784) (-1741 . 604640) - (-1742 . 604288) (-1743 . 604172) (-1744 . 604108) (-1745 . 603554) - (-1746 . 603483) (-1747 . 603215) (-1748 . 603153) (-1749 . 602914) - (-1750 . 602805) (-1751 . 602728) (-1752 . 602553) (-1753 . 602438) - (-1754 . 602098) (-1755 . 601993) (-1756 . 601870) (-1757 . 601183) - (-1758 . 601085) (-1759 . 600988) (-1760 . 599738) (-1761 . 599644) - (-1762 . 599375) (-1763 . 599320) (-1764 . 598980) (-1765 . 598850) - (-1766 . 598753) (-1767 . 598687) (-1768 . 598461) (-1769 . 598275) - (-1770 . 598028) (-1771 . 596992) (-1772 . 596961) (-1773 . 596853) - (-1774 . 596749) (-1775 . 596639) (-1776 . 595574) (-1777 . 594906) - (-1778 . 594850) (-1779 . 594753) (-1780 . 594460) (-1781 . 594130) - (-1782 . 594050) (-1783 . 593998) (-1784 . 593819) (-1785 . 593613) - (-1786 . 593433) (-1787 . 593362) (-1788 . 593259) (-1789 . 593000) - (-1790 . 592913) (-1791 . 592779) (-1792 . 592399) (-1793 . 592289) - (-1794 . 591685) (-1795 . 591567) (-1796 . 591467) (-1797 . 591439) - (-1798 . 591344) (-1799 . 591247) (-1800 . 591092) (-1801 . 591018) - (-1802 . 590703) (-1803 . 590539) (-1804 . 590377) (-1805 . 590343) - (-1806 . 590194) (-1807 . 590005) (-1808 . 589901) (-1809 . 589745) - (-1810 . 589693) (-1811 . 589463) (-1812 . 589304) (-1813 . 589099) - (-1814 . 588978) (-1815 . 588762) (-1816 . 588693) (-1817 . 588621) - (-1818 . 588514) (-1819 . 588459) (-1820 . 588407) (-1821 . 588310) - (-1822 . 588223) (-1823 . 587259) (-1824 . 587174) (-1825 . 586797) - (-1826 . 586763) (-1827 . 586662) (-1828 . 586550) (-1829 . 586274) - (-1830 . 586116) (-1831 . 585541) (-1832 . 585154) (-1833 . 585030) - (-1834 . 584901) (-1835 . 584845) (-1836 . 584728) (-1837 . 584643) - (-1838 . 584335) (-1839 . 583761) (-1840 . 583650) (-1841 . 583510) - (-1842 . 583455) (-1843 . 583284) (-1844 . 583228) (-1845 . 583124) - (-1846 . 583052) (-1847 . 582773) (-1848 . 582478) (-1849 . 581904) - (-1850 . 581608) (-1851 . 581549) (-1852 . 581420) (-1853 . 581140) - (-1854 . 581057) (-1855 . 580899) (-1856 . 580325) (-1857 . 580242) - (-1858 . 580190) (-1859 . 580123) (-1860 . 579485) (-1861 . 579295) - (-1862 . 578970) (-1863 . 578852) (-1864 . 578278) (-1865 . 578184) - (-1866 . 577993) (-1867 . 577920) (-1868 . 577864) (-1869 . 577631) - (-1870 . 577524) (-1871 . 577430) (-1872 . 577285) (-1873 . 576711) - (-1874 . 576498) (-1875 . 576434) (-1876 . 576354) (-1877 . 576301) - (-1878 . 576195) (-1879 . 576086) (-1880 . 575989) (-1881 . 575845) - (-1882 . 575700) (-1883 . 575498) (-1884 . 575386) (-1885 . 575333) - (-1886 . 574335) (-1887 . 574161) (-1888 . 574092) (-1889 . 573939) - (-1890 . 573800) (-1891 . 573687) (-1892 . 573528) (-1893 . 572905) - (-1894 . 572797) (-1895 . 572744) (-1896 . 572692) (-1897 . 572449) - (-1898 . 572282) (-1899 . 571873) (-1900 . 571594) (-1901 . 571517) - (-1902 . 571489) (-1903 . 571321) (-1904 . 571120) (-1905 . 571026) - (-1906 . 570888) (-1907 . 570836) (-1908 . 570472) (-1909 . 569981) - (-1910 . 569881) (-1911 . 569828) (-1912 . 569713) (-1913 . 569570) - (-1914 . 569336) (-1915 . 569123) (-1916 . 568980) (-1917 . 568883) - (-1918 . 568810) (-1919 . 568205) (-1920 . 568105) (-1921 . 567919) - (-1922 . 567826) (-1923 . 567466) (-1924 . 567437) (-1925 . 567193) - (-1926 . 566983) (-1927 . 566748) (-1928 . 566389) (-1929 . 566061) - (-1930 . 566002) (-1931 . 565589) (-1932 . 565480) (-1933 . 565263) - (-1934 . 565173) (-1935 . 564997) (-1936 . 564705) (-1937 . 564638) - (-1938 . 564152) (-1939 . 563928) (-1940 . 563845) (-1941 . 563761) - (-1942 . 563706) (-1943 . 563675) (-1944 . 563358) (-1945 . 562933) - (-1946 . 562825) (-1947 . 562704) (-1948 . 562575) (-1949 . 562541) - (-1950 . 562411) (-1951 . 562383) (-1952 . 562228) (-1953 . 561736) - (-1954 . 561389) (-1955 . 561337) (-1956 . 561170) (-1957 . 561047) - (-1958 . 559892) (-1959 . 559571) (-1960 . 559406) (-1961 . 559328) - (-1962 . 559157) (-1963 . 559108) (-1964 . 559048) (-1965 . 558896) - (-1966 . 558813) (-1967 . 558508) (-1968 . 558474) (-1969 . 558356) - (-1970 . 558271) (-1971 . 558164) (-1972 . 557956) (-1973 . 556414) - (-1974 . 556352) (-1975 . 556267) (-1976 . 556169) (-1977 . 556084) - (-1978 . 556014) (-1979 . 555849) (-1980 . 555521) (-1981 . 555470) - (-1982 . 555328) (-1983 . 555149) (-1984 . 554311) (-1985 . 554205) - (-1986 . 554123) (-1987 . 554004) (-1988 . 553970) (-1989 . 553852) - (-1990 . 553753) (-1991 . 553668) (-1992 . 553551) (-1993 . 553214) - (-1994 . 553118) (-1995 . 553035) (-1996 . 552850) (-1997 . 552711) - (-1998 . 552263) (-1999 . 552164) (-2000 . 552006) (-2001 . 551936) - (-2002 . 551599) (-2003 . 551526) (-2004 . 551473) (-2005 . 551269) - (-2006 . 545763) (-2007 . 545393) (-2008 . 545240) (-2009 . 545184) - (-2010 . 544801) (-2011 . 544551) (-2012 . 544235) (-2013 . 544185) - (-2014 . 544056) (-2015 . 543896) (-2016 . 543508) (-2017 . 543235) - (-2018 . 543132) (-2019 . 541952) (-2020 . 541849) (-2021 . 541585) - (-2022 . 541354) (-2023 . 541249) (-2024 . 540178) (-2025 . 539725) - (-2026 . 539638) (-2027 . 539564) (-2028 . 539511) (-2029 . 539362) - (-2030 . 539109) (-2031 . 539035) (-2032 . 538969) (-2033 . 538622) - (-2034 . 538497) (-2035 . 538113) (-2036 . 538027) (-2037 . 537990) - (-2038 . 537661) (-2039 . 537418) (-2040 . 537253) (-2041 . 537173) - (-2042 . 537011) (-2043 . 536876) (-2044 . 536746) (-2045 . 536603) - (-2046 . 536548) (-2047 . 536439) (-2048 . 535685) (-2049 . 535629) - (-2050 . 535110) (-2051 . 534919) (-2052 . 534801) (-2053 . 534727) - (-2054 . 534469) (-2055 . 533797) (-2056 . 533659) (-2057 . 533314) - (-2058 . 533025) (-2059 . 532914) (-2060 . 532862) (-2061 . 532650) - (-2062 . 532130) (-2063 . 532060) (-2064 . 531915) (-2065 . 531861) - (-2066 . 531802) (-2067 . 531709) (-2068 . 531350) (-2069 . 531269) - (-2070 . 530860) (-2071 . 530641) (-2072 . 530460) (-2073 . 530407) - (-2074 . 530312) (-2075 . 530260) (-2076 . 530062) (-2077 . 528879) - (-2078 . 528529) (-2079 . 528015) (-2080 . 527287) (-2081 . 527089) - (-2082 . 526909) (-2083 . 526747) (-2084 . 526673) (-2085 . 526529) - (-2086 . 526237) (-2087 . 526093) (-2088 . 526040) (-2089 . 525925) - (-2090 . 525826) (-2091 . 525011) (-2092 . 524805) (-2093 . 524274) - (-2094 . 524140) (-2095 . 524045) (-2096 . 523376) (-2097 . 523324) - (-2098 . 523246) (-2099 . 523153) (-2100 . 523034) (-2101 . 522737) - (-2102 . 522559) (-2103 . 522461) (-2104 . 522412) (-2105 . 522346) - (-2106 . 521462) (-2107 . 521377) (-2108 . 521264) (-2109 . 520961) - (-2110 . 520887) (-2111 . 520782) (-2112 . 520753) (-2113 . 520331) - (-2114 . 520162) (-2115 . 519709) (-2116 . 519577) (-2117 . 519421) - (-2118 . 519137) (-2119 . 519042) (-2120 . 518694) (-2121 . 518588) - (-2122 . 518493) (-2123 . 518440) (-2124 . 518115) (-2125 . 518037) - (-2126 . 517980) (-2127 . 517862) (-2128 . 517743) (-2129 . 517677) - (-2130 . 517579) (-2131 . 517203) (-2132 . 515485) (-2133 . 515378) - (-2134 . 515311) (-2135 . 515201) (-2136 . 514771) (-2137 . 514598) - (-2138 . 514152) (-2139 . 514099) (-2140 . 514036) (-2141 . 513936) - (-2142 . 513090) (-2143 . 512981) (-2144 . 512548) (-2145 . 512435) - (-2146 . 512222) (-2147 . 512039) (-2148 . 511857) (-2149 . 511753) - (-2150 . 511657) (-2151 . 511326) (-2152 . 511255) (-2153 . 507645) - (-2154 . 507519) (-2155 . 507400) (-2156 . 507315) (-2157 . 507124) - (-2158 . 506948) (-2159 . 506648) (-2160 . 505483) (-2161 . 505345) - (-2162 . 505236) (-2163 . 505109) (-2164 . 505032) (-2165 . 504958) - (-2166 . 504873) (-2167 . 504731) (-2168 . 504344) (-2169 . 504292) - (-2170 . 504182) (-2171 . 504112) (-2172 . 504014) (-2173 . 503959) - (-2174 . 503899) (-2175 . 503782) (-2176 . 503729) (-2177 . 503588) - (-2178 . 503536) (-2179 . 503446) (-2180 . 502943) (-2181 . 502683) - (-2182 . 502310) (-2183 . 502022) (-2184 . 501911) (-2185 . 501874) - (-2186 . 501540) (-2187 . 501440) (-2188 . 501294) (-2189 . 501211) - (-2190 . 501071) (-2191 . 501001) (-2192 . 500760) (-2193 . 500682) - (-2194 . 500616) (-2195 . 500429) (-2196 . 499822) (-2197 . 499678) - (-2198 . 499595) (-2199 . 499522) (-2200 . 499391) (-2201 . 499296) - (-2202 . 498850) (-2203 . 498517) (-2204 . 498279) (-2205 . 498207) - (-2206 . 497882) (-2207 . 497630) (-2208 . 497386) (-2209 . 497290) - (-2210 . 497136) (-2211 . 497034) (-2212 . 496939) (-2213 . 496815) - (-2214 . 496636) (-2215 . 496304) (-2216 . 496174) (-2217 . 473305) - (-2218 . 473150) (-2219 . 473079) (-2220 . 472651) (-2221 . 472596) - (-2222 . 472452) (-2223 . 472202) (-2224 . 472055) (-2225 . 471955) - (-2226 . 471409) (-2227 . 468657) (-2228 . 468514) (-2229 . 468461) - (-2230 . 468150) (-2231 . 467813) (-2232 . 467725) (-2233 . 467645) - (-2234 . 467513) (-2235 . 467306) (-2236 . 467272) (-2237 . 466960) - (-2238 . 466873) (-2239 . 466807) (-2240 . 466752) (-2241 . 466654) - (-2242 . 466586) (-2243 . 466513) (-2244 . 466373) (-2245 . 465986) - (-2246 . 465826) (-2247 . 465746) (-2248 . 465503) (-2249 . 465348) - (-2250 . 465275) (-2251 . 464323) (-2252 . 463494) (-2253 . 463074) - (-2254 . 462965) (-2255 . 462664) (-2256 . 462567) (-2257 . 462342) - (-2258 . 462265) (-2259 . 462168) (-2260 . 462047) (-2261 . 461890) - (-2262 . 461730) (-2263 . 461525) (-2264 . 461448) (-2265 . 461404) - (-2266 . 461337) (-2267 . 461250) (-2268 . 461165) (-2269 . 461056) - (-2270 . 460908) (-2271 . 460782) (-2272 . 460596) (-2273 . 460568) - (-2274 . 460231) (-2275 . 460144) (-2276 . 459289) (-2277 . 459078) - (-2278 . 458801) (-2279 . 458509) (-2280 . 457199) (-2281 . 457096) - (-2282 . 457067) (-2283 . 457038) (-2284 . 456974) (-2285 . 456906) - (-2286 . 456772) (-2287 . 456614) (-2288 . 456264) (-2289 . 456101) - (-2290 . 456017) (-2291 . 455909) (-2292 . 455837) (-2293 . 455785) - (-2294 . 455692) (-2295 . 455585) (-2296 . 455533) (-2297 . 455459) - (-2298 . 455428) (-2299 . 455379) (-2300 . 455295) (-2301 . 455167) - (-2302 . 454965) (-2303 . 454868) (-2304 . 454802) (-2305 . 454750) - (-2306 . 454648) (-2307 . 454596) (-2308 . 453496) (-2309 . 453433) - (-2310 . 453185) (-2311 . 453131) (-2312 . 453081) (-2313 . 452864) - (-2314 . 452695) (-2315 . 452622) (-2316 . 452549) (-2317 . 452475) - (-2318 . 452213) (-2319 . 452043) (-2320 . 451972) (-2321 . 451833) - (-2322 . 451730) (-2323 . 451369) (-2324 . 451284) (-2325 . 451158) - (-2326 . 451071) (-2327 . 449502) (-2328 . 449384) (-2329 . 449301) - (-2330 . 445313) (-2331 . 444846) (-2332 . 444753) (-2333 . 444656) - (-2334 . 444546) (-2335 . 444185) (-2336 . 443606) (-2337 . 442994) - (-2338 . 442966) (-2339 . 442900) (-2340 . 442793) (-2341 . 442686) - (-2342 . 442063) (-2343 . 441980) (-2344 . 441952) (-2345 . 441748) - (-2346 . 441610) (-2347 . 441520) (-2348 . 441452) (-2349 . 441337) - (-2350 . 441219) (-2351 . 441101) (-2352 . 440675) (-2353 . 440623) - (-2354 . 440252) (-2355 . 440224) (-2356 . 440196) (-2357 . 439086) - (-2358 . 438983) (-2359 . 438881) (-2360 . 438729) (-2361 . 438571) - (-2362 . 438378) (-2363 . 438213) (-2364 . 438147) (-2365 . 438085) - (-2366 . 437967) (-2367 . 437820) (-2368 . 437696) (-2369 . 437610) - (-2370 . 437465) (-2371 . 437388) (-2372 . 437236) (-2373 . 437138) - (-2374 . 436486) (-2375 . 436028) (-2376 . 435802) (-2377 . 435729) - (-2378 . 435663) (-2379 . 435564) (-2380 . 435504) (-2381 . 435409) - (-2382 . 435191) (-2383 . 435163) (-2384 . 434865) (-2385 . 434765) - (-2386 . 434653) (-2387 . 434566) (-2388 . 434500) (-2389 . 434378) - (-2390 . 434087) (-2391 . 433897) (-2392 . 433790) (-2393 . 433732) - (-2394 . 433644) (-2395 . 433425) (-2396 . 433284) (-2397 . 433057) - (-2398 . 432895) (-2399 . 432455) (-2400 . 432384) (-2401 . 432329) - (-2402 . 432234) (-2403 . 432178) (-2404 . 431732) (-2405 . 431648) - (-2406 . 431425) (-2407 . 431285) (-2408 . 431174) (-2409 . 431067) - (-2410 . 431015) (-2411 . 430783) (-2412 . 430675) (-2413 . 430417) - (-2414 . 430389) (-2415 . 430167) (-2416 . 429409) (-2417 . 429359) - (-2418 . 429280) (-2419 . 428983) (-2420 . 428825) (-2421 . 428637) - (-2422 . 428442) (-2423 . 427822) (-2424 . 427727) (-2425 . 427604) - (-2426 . 427330) (-2427 . 427091) (-2428 . 427020) (-2429 . 426940) - (-2430 . 426883) (-2431 . 426742) (-2432 . 426633) (-2433 . 426447) - (-2434 . 426381) (-2435 . 426082) (-2436 . 426010) (-2437 . 424709) - (-2438 . 424616) (-2439 . 424208) (-2440 . 424064) (-2441 . 423965) - (-2442 . 423787) (-2443 . 423617) (-2444 . 423504) (-2445 . 423437) - (-2446 . 423363) (-2447 . 423233) (-2448 . 423160) (-2449 . 423058) - (-2450 . 422978) (-2451 . 422904) (-2452 . 422801) (-2453 . 422460) - (-2454 . 422368) (-2455 . 422316) (-2456 . 422226) (-2457 . 421961) - (-2458 . 421540) (-2459 . 421432) (-2460 . 421010) (-2461 . 420928) - (-2462 . 420873) (-2463 . 420547) (-2464 . 420413) (-2465 . 420188) - (-2466 . 419977) (-2467 . 419890) (-2468 . 419781) (-2469 . 419710) - (-2470 . 419625) (-2471 . 419538) (-2472 . 419364) (-2473 . 419247) - (-2474 . 419138) (-2475 . 419012) (-2476 . 418438) (-2477 . 418153) - (-2478 . 418059) (-2479 . 417982) (-2480 . 417912) (-2481 . 417766) - (-2482 . 417732) (-2483 . 417493) (-2484 . 417242) (-2485 . 417044) - (-2486 . 416914) (-2487 . 414814) (-2488 . 414780) (-2489 . 414472) - (-2490 . 414356) (-2491 . 414166) (-2492 . 414064) (-2493 . 414015) - (-2494 . 413636) (-2495 . 413429) (-2496 . 413138) (-2497 . 413015) - (-2498 . 412830) (-2499 . 412686) (-2500 . 412164) (-2501 . 412090) - (-2502 . 411971) (-2503 . 411763) (-2504 . 411708) (-2505 . 411642) - (-2506 . 411243) (-2507 . 411056) (-2508 . 410616) (-2509 . 410564) - (-2510 . 408612) (-2511 . 408483) (-2512 . 408371) (-2513 . 408160) - (-2514 . 408108) (-2515 . 407892) (-2516 . 407679) (-2517 . 407583) - (-2518 . 407448) (-2519 . 406850) (-2520 . 406720) (-2521 . 406562) - (-2522 . 406449) (-2523 . 406177) (-2524 . 405897) (-2525 . 405827) - (-2526 . 405775) (-2527 . 405685) (-2528 . 405578) (-2529 . 405499) - (-2530 . 405281) (-2531 . 405231) (-2532 . 405087) (-2533 . 404639) - (-2534 . 404440) (-2535 . 404313) (-2536 . 404251) (-2537 . 404198) - (-2538 . 404119) (-2539 . 403974) (-2540 . 403903) (-2541 . 403714) - (-2542 . 403631) (-2543 . 403432) (-2544 . 403335) (-2545 . 403307) - (-2546 . 402721) (-2547 . 402654) (-2548 . 402580) (-2549 . 401765) - (-2550 . 401214) (-2551 . 401069) (-2552 . 400932) (-2553 . 400904) - (-2554 . 400813) (-2555 . 400568) (-2556 . 400344) (-2557 . 400245) - (-2558 . 399949) (-2559 . 399801) (-2560 . 399649) (-2561 . 399461) - (-2562 . 398866) (-2563 . 398755) (-2564 . 398687) (-2565 . 398518) - (-2566 . 398464) (-2567 . 397595) (-2568 . 397278) (-2569 . 397198) - (-2570 . 397095) (-2571 . 397008) (-2572 . 396882) (-2573 . 396768) - (-2574 . 396652) (-2575 . 396520) (-2576 . 396336) (-2577 . 396234) - (-2578 . 396181) (-2579 . 396022) (-2580 . 395887) (-2581 . 395791) - (-2582 . 395711) (-2583 . 395520) (-2584 . 395461) (-2585 . 395406) - (-2586 . 395307) (-2587 . 395255) (-2588 . 394191) (-2589 . 394070) - (-2590 . 393814) (-2591 . 393661) (-2592 . 393564) (-2593 . 393428) - (-2594 . 393344) (-2595 . 393100) (-2596 . 392977) (-2597 . 392811) - (-2598 . 392716) (-2599 . 392501) (-2600 . 392155) (-2601 . 391949) - (-2602 . 391859) (-2603 . 391774) (-2604 . 391530) (-2605 . 391456) - (-2606 . 391403) (-2607 . 391354) (-2608 . 391326) (-2609 . 391197) - (-2610 . 391059) (-2611 . 384105) (-2612 . 383939) (-2613 . 383845) - (-2614 . 383746) (-2615 . 383518) (-2616 . 383125) (-2617 . 383000) - (-2618 . 382785) (-2619 . 382705) (-2620 . 382546) (-2621 . 382355) - (-2622 . 382295) (-2623 . 382022) (-2624 . 381967) (-2625 . 381840) - (-2626 . 381647) (-2627 . 381554) (-2628 . 381496) (-2629 . 381381) - (-2630 . 381217) (-2631 . 381133) (-2632 . 381000) (-2633 . 380818) - (-2634 . 380633) (-2635 . 380383) (-2636 . 380188) (-2637 . 379990) - (-2638 . 379906) (-2639 . 379814) (-2640 . 379485) (-2641 . 379356) - (-2642 . 379290) (-2643 . 379087) (-2644 . 378933) (-2645 . 377848) - (-2646 . 377761) (-2647 . 377416) (-2648 . 377345) (-2649 . 377136) - (-2650 . 377036) (-2651 . 377002) (-2652 . 376895) (-2653 . 376839) - (-2654 . 376599) (-2655 . 376530) (-2656 . 376431) (-2657 . 376365) - (-2658 . 376313) (-2659 . 376254) (-2660 . 376073) (-2661 . 375992) - (-2662 . 375872) (-2663 . 375785) (-2664 . 375599) (-2665 . 375287) - (-2666 . 375105) (-2667 . 374109) (-2668 . 374057) (-2669 . 373936) - (-2670 . 373908) (-2671 . 373729) (-2672 . 373397) (-2673 . 373296) - (-2674 . 373222) (-2675 . 373170) (-2676 . 373096) (-2677 . 372978) - (-2678 . 372323) (-2679 . 372235) (-2680 . 372045) (-2681 . 372017) - (-2682 . 371531) (-2683 . 366432) (-2684 . 366328) (-2685 . 366257) - (-2686 . 365963) (-2687 . 365904) (-2688 . 365782) (-2689 . 365703) - (-2690 . 365453) (-2691 . 365128) (-2692 . 364924) (-2693 . 364811) - (-2694 . 364740) (-2695 . 364677) (-2696 . 364540) (-2697 . 364426) - (-2698 . 364318) (-2699 . 364150) (-2700 . 363931) (-2701 . 363778) - (-2702 . 363622) (-2703 . 363524) (-2704 . 363387) (-2705 . 363283) - (-2706 . 363112) (-2707 . 362781) (-2708 . 362607) (-2709 . 362505) - (-2710 . 362425) (-2711 . 362282) (-2712 . 362230) (-2713 . 362153) - (-2714 . 362012) (-2715 . 361942) (-2716 . 361817) (-2717 . 361748) - (-2718 . 361384) (-2719 . 361277) (-2720 . 360762) (-2721 . 360641) - (-2722 . 360233) (-2723 . 360162) (-2724 . 360088) (-2725 . 359699) - (-2726 . 359628) (-2727 . 359341) (-2728 . 359118) (-2729 . 359057) - (-2730 . 358978) (-2731 . 356826) (-2732 . 356748) (-2733 . 356653) - (-2734 . 356482) (-2735 . 356311) (-2736 . 356277) (-2737 . 356161) - (-2738 . 356019) (-2739 . 355621) (-2740 . 355428) (-2741 . 354512) - (-2742 . 353656) (-2743 . 353456) (-2744 . 353343) (-2745 . 353219) - (-2746 . 353042) (-2747 . 352769) (-2748 . 352665) (-2749 . 352582) - (-2750 . 352482) (-2751 . 352381) (-2752 . 352192) (-2753 . 352121) - (-2754 . 351964) (-2755 . 351912) (-2756 . 351773) (-2757 . 351651) - (-2758 . 351402) (-2759 . 351353) (-2760 . 350746) (-2761 . 350619) - (-2762 . 350496) (-2763 . 350348) (-2764 . 350239) (-2765 . 349437) - (-2766 . 349354) (-2767 . 349181) (-2768 . 349044) (-2769 . 348952) - (-2770 . 348870) (-2771 . 348785) (-2772 . 348715) (-2773 . 348589) - (-2774 . 348046) (-2775 . 347945) (-2776 . 347721) (-2777 . 347622) - (-2778 . 347441) (-2779 . 347358) (-2780 . 347169) (-2781 . 346889) - (-2782 . 346782) (-2783 . 346618) (-2784 . 346540) (-2785 . 346421) - (-2786 . 345838) (-2787 . 345786) (-2788 . 345131) (-2789 . 345037) - (-2790 . 344930) (-2791 . 344736) (-2792 . 344270) (-2793 . 344103) - (-2794 . 343811) (-2795 . 343713) (-2796 . 343519) (-2797 . 343276) - (-2798 . 343123) (-2799 . 343046) (-2800 . 342558) (-2801 . 342480) - (-2802 . 342336) (-2803 . 341925) (-2804 . 341854) (-2805 . 341799) - (-2806 . 341591) (-2807 . 341513) (-2808 . 341447) (-2809 . 341346) - (-2810 . 340537) (-2811 . 340454) (-2812 . 340371) (-2813 . 340208) - (-2814 . 340046) (-2815 . 339880) (-2816 . 339713) (-2817 . 339581) - (-2818 . 339425) (-2819 . 338541) (-2820 . 338507) (-2821 . 338366) - (-2822 . 338317) (-2823 . 338211) (-2824 . 337989) (-2825 . 337902) - (-2826 . 337465) (-2827 . 337370) (-2828 . 337338) (-2829 . 337286) - (-2830 . 337212) (-2831 . 337160) (-2832 . 337030) (-2833 . 336807) - (-2834 . 336733) (-2835 . 336527) (-2836 . 336474) (-2837 . 336394) - (-2838 . 336034) (-2839 . 335284) (-2840 . 335221) (-2841 . 335169) - (-2842 . 334898) (-2843 . 334556) (-2844 . 334483) (-2845 . 334331) - (-2846 . 334035) (-2847 . 333964) (-2848 . 333794) (-2849 . 333685) - (-2850 . 333560) (-2851 . 333507) (-2852 . 333276) (-2853 . 333105) - (-2854 . 332514) (-2855 . 332104) (-2856 . 331980) (-2857 . 331851) - (-2858 . 331745) (-2859 . 331507) (-2860 . 331376) (-2861 . 331135) - (-2862 . 330789) (-2863 . 330736) (-2864 . 330627) (-2865 . 330256) - (-2866 . 330112) (-2867 . 329959) (-2868 . 329612) (-2869 . 329306) - (-2870 . 329233) (-2871 . 329156) (-2872 . 329011) (-2873 . 328926) - (-2874 . 328874) (-2875 . 328822) (-2876 . 328766) (-2877 . 328680) - (-2878 . 328420) (-2879 . 328300) (-2880 . 328156) (-2881 . 328013) - (-2882 . 327686) (-2883 . 327095) (-2884 . 327022) (-2885 . 326965) - (-2886 . 326911) (-2887 . 326759) (-2888 . 325959) (-2889 . 325903) - (-2890 . 325675) (-2891 . 325549) (-2892 . 325493) (-2893 . 325375) - (-2894 . 325264) (-2895 . 325014) (-2896 . 324955) (-2897 . 324842) - (-2898 . 324588) (-2899 . 324439) (-2900 . 324295) (-2901 . 324215) - (-2902 . 323890) (-2903 . 323787) (-2904 . 323707) (-2905 . 322842) - (-2906 . 322101) (-2907 . 322024) (-2908 . 321643) (-2909 . 321538) - (-2910 . 321510) (-2911 . 321101) (-2912 . 320943) (-2913 . 320878) - (-2914 . 320818) (-2915 . 320077) (-2916 . 319850) (-2917 . 319751) - (-2918 . 319624) (-2919 . 319275) (-2920 . 319209) (-2921 . 318970) - (-2922 . 318885) (-2923 . 318197) (-2924 . 318119) (-2925 . 308589) - (-2926 . 308357) (-2927 . 308235) (-2928 . 307659) (-2929 . 307606) - (-2930 . 307436) (-2931 . 307063) (-2932 . 306962) (-2933 . 306934) - (-2934 . 306900) (-2935 . 306245) (-2936 . 305669) (-2937 . 305368) - (-2938 . 305066) (-2939 . 304821) (-2940 . 304766) (-2941 . 304626) - (-2942 . 304512) (-2943 . 304374) (-2944 . 304076) (-2945 . 303898) - (-2946 . 303322) (-2947 . 302623) (-2948 . 302512) (-2949 . 302268) - (-2950 . 302016) (-2951 . 301741) (-2952 . 301645) (-2953 . 300993) - (-2954 . 300934) (-2955 . 300831) (-2956 . 300774) (-2957 . 300088) - (-2958 . 299987) (-2959 . 299310) (-2960 . 299066) (-2961 . 298622) - (-2962 . 298545) (-2963 . 298408) (-2964 . 298172) (-2965 . 298064) - (-2966 . 297378) (-2967 . 296093) (-2968 . 295877) (-2969 . 295744) - (-2970 . 295691) (-2971 . 295387) (-2972 . 295112) (-2973 . 295028) - (-2974 . 294975) (-2975 . 294866) (-2976 . 294117) (-2977 . 294068) - (-2978 . 293973) (-2979 . 293863) (-2980 . 293598) (-2981 . 293540) - (-2982 . 293463) (-2983 . 293184) (-2984 . 292580) (-2985 . 292445) - (-2986 . 292394) (-2987 . 292131) (-2988 . 291752) (-2989 . 291178) - (-2990 . 291071) (-2991 . 291010) (-2992 . 290900) (-2993 . 290815) - (-2994 . 290762) (-2995 . 290629) (-2996 . 290501) (-2997 . 290204) - (-2998 . 290109) (-2999 . 290081) (-3000 . 290015) (-3001 . 289441) - (-3002 . 289263) (-3003 . 289192) (-3004 . 288902) (-3005 . 288829) - (-3006 . 288485) (-3007 . 288433) (-3008 . 288326) (-3009 . 288227) - (-3010 . 288121) (-3011 . 287547) (-3012 . 287440) (-3013 . 287310) - (-3014 . 287258) (-3015 . 286746) (-3016 . 286541) (-3017 . 286468) - (-3018 . 286313) (-3019 . 286196) (-3020 . 286001) (-3021 . 285896) - (-3022 . 285809) (-3023 . 285122) (-3024 . 284743) (-3025 . 284636) - (-3026 . 284459) (-3027 . 284317) (-3028 . 284265) (-3029 . 284117) - (-3030 . 283964) (-3031 . 283866) (-3032 . 283832) (-3033 . 283780) - (-3034 . 283699) (-3035 . 283012) (-3036 . 282953) (-3037 . 282800) - (-3038 . 282487) (-3039 . 282346) (-3040 . 282217) (-3041 . 281792) - (-3042 . 281723) (-3043 . 281416) (-3044 . 280729) (-3045 . 280476) - (-3046 . 280260) (-3047 . 280017) (-3048 . 279833) (-3049 . 279607) - (-3050 . 279528) (-3051 . 279252) (-3052 . 279083) (-3053 . 275021) - (-3054 . 274446) (-3055 . 274099) (-3056 . 273824) (-3057 . 273607) - (-3058 . 273357) (-3059 . 272540) (-3060 . 272019) (-3061 . 271966) - (-3062 . 271450) (-3063 . 271384) (-3064 . 271328) (-3065 . 270787) - (-3066 . 270212) (-3067 . 270057) (-3068 . 269477) (-3069 . 269365) - (-3070 . 269244) (-3071 . 269103) (-3072 . 268948) (-3073 . 267985) - (-3074 . 267862) (-3075 . 267765) (-3076 . 267645) (-3077 . 267452) - (-3078 . 267394) (-3079 . 267256) (-3080 . 267176) (-3081 . 266987) - (-3082 . 266714) (-3083 . 266662) (-3084 . 266580) (-3085 . 266495) - (-3086 . 266346) (-3087 . 266231) (-3088 . 266148) (-3089 . 266099) - (-3090 . 265897) (-3091 . 263552) (-3092 . 263521) (-3093 . 263436) - (-3094 . 262876) (-3095 . 262824) (-3096 . 262457) (-3097 . 262370) - (-3098 . 262255) (-3099 . 262186) (-3100 . 262077) (-3101 . 260631) - (-3102 . 258869) (-3103 . 258616) (-3104 . 258358) (-3105 . 258217) - (-3106 . 257908) (-3107 . 257703) (-3108 . 257211) (-3109 . 257159) - (-3110 . 257063) (-3111 . 256906) (-3112 . 256551) (-3113 . 256312) - (-3114 . 255950) (-3115 . 255699) (-3116 . 255622) (-3117 . 255480) - (-3118 . 255397) (-3119 . 255341) (-3120 . 255240) (-3121 . 255143) - (-3122 . 255071) (-3123 . 255000) (-3124 . 254898) (-3125 . 254780) - (-3126 . 254632) (-3127 . 254580) (-3128 . 254282) (-3129 . 253805) - (-3130 . 253458) (-3131 . 253235) (-3132 . 253094) (-3133 . 251824) - (-3134 . 251373) (-3135 . 251342) (-3136 . 251286) (-3137 . 251163) - (-3138 . 251060) (-3139 . 250993) (-3140 . 250853) (-3141 . 250701) - (-3142 . 250574) (-3143 . 250403) (-3144 . 250296) (-3145 . 250202) - (-3146 . 250036) (-3147 . 249974) (-3148 . 249850) (-3149 . 248648) - (-3150 . 248596) (-3151 . 248396) (-3152 . 248309) (-3153 . 248257) - (-3154 . 248183) (-3155 . 247708) (-3156 . 247680) (-3157 . 247321) - (-3158 . 247020) (-3159 . 245166) (-3160 . 244642) (-3161 . 244576) - (-3162 . 242748) (-3163 . 242667) (-3164 . 242135) (** . 239058) - (-3166 . 238938) (-3167 . 238815) (-3168 . 238616) (-3169 . 238564) - (-3170 . 237063) (-3171 . 236969) (-3172 . 236901) (-3173 . 236639) - (-3174 . 236605) (-3175 . 236424) (-3176 . 236230) (-3177 . 236094) - (-3178 . 234554) (-3179 . 234332) (-3180 . 234218) (-3181 . 234050) - (-3182 . 233977) (-3183 . 233824) (-3184 . 233595) (-3185 . 233423) - (-3186 . 233270) (-3187 . 233217) (-3188 . 233069) (-3189 . 232578) - (-3190 . 232248) (-3191 . 231937) (-3192 . 231501) (-3193 . 230765) - (-3194 . 230680) (-3195 . 230610) (-3196 . 230558) (-3197 . 230475) - (-3198 . 230317) (-3199 . 230156) (-3200 . 229844) (-3201 . 229773) - (-3202 . 229696) (-3203 . 229580) (-3204 . 228816) (-3205 . 228764) - (-3206 . 228648) (-3207 . 228522) (-3208 . 228376) (-3209 . 228237) - (-3210 . 228143) (-3211 . 228090) (-3212 . 227795) (-3213 . 227396) - (-3214 . 227099) (-3215 . 226661) (-3216 . 226023) (-3217 . 225928) - (-3218 . 225763) (-3219 . 225627) (-3220 . 225453) (-3221 . 225161) - (-3222 . 224427) (-3223 . 224040) (-3224 . 222880) (-3225 . 222283) - (-3226 . 222156) (-3227 . 222061) (-3228 . 221975) (-3229 . 221866) - (-3230 . 221572) (-3231 . 221463) (-3232 . 221349) (-3233 . 221049) - (-3234 . 221021) (-3235 . 220849) (-3236 . 220645) (-3237 . 220566) - (-3238 . 220292) (-3239 . 220166) (-3240 . 220107) (-3241 . 218984) - (-3242 . 218401) (-3243 . 218308) (-3244 . 218136) (-3245 . 217636) - (-3246 . 217264) (-3247 . 217212) (-3248 . 217089) (-3249 . 216945) - (-3250 . 216779) (-3251 . 216720) (-3252 . 216529) (-3253 . 216357) - (-3254 . 216233) (-3255 . 216066) (-3256 . 215916) (-3257 . 215824) - (-3258 . 215678) (-3259 . 215530) (-3260 . 215474) (-3261 . 215369) - (-3262 . 215197) (-3263 . 215084) (-3264 . 215003) (-3265 . 214870) - (-3266 . 214477) (-3267 . 214396) (-3268 . 214313) (-3269 . 214285) - (-3270 . 214189) (-3271 . 214051) (-3272 . 213701) (-3273 . 213642) - (-3274 . 213549) (-3275 . 213404) (-3276 . 213351) (-3277 . 213195) - (-3278 . 212716) (-3279 . 212551) (-3280 . 212416) (-3281 . 212278) - (-3282 . 211917) (-3283 . 211765) (-3284 . 211713) (-3285 . 211643) - (-3286 . 211542) (-3287 . 211489) (-3288 . 211100) (-3289 . 211027) - (-3290 . 210624) (-3291 . 210488) (-3292 . 210435) (-3293 . 210369) - (-3294 . 210274) (-3295 . 210218) (-3296 . 209789) (-3297 . 209592) - (-3298 . 209216) (-3299 . 209107) (-3300 . 208963) (-3301 . 208765) - (-3302 . 208449) (-3303 . 208376) (-3304 . 208260) (-3305 . 208144) - (-3306 . 207765) (-3307 . 207621) (-3308 . 207021) (-3309 . 206760) - (-3310 . 206549) (-3311 . 206521) (-3312 . 206334) (-3313 . 206207) - (-3314 . 205686) (-3315 . 205574) (-3316 . 205519) (-3317 . 205422) - (-3318 . 205369) (-3319 . 205269) (-3320 . 205196) (-3321 . 205143) - (-3322 . 205009) (-3323 . 204936) (-3324 . 204849) (-3325 . 204101) - (-3326 . 203774) (-3327 . 203667) (-3328 . 203417) (-3329 . 203333) - (-3330 . 203203) (-3331 . 203012) (-3332 . 202905) (-3333 . 202831) - (-3334 . 202779) (-3335 . 202635) (-3336 . 202457) (-3337 . 202152) - (-3338 . 201132) (-3339 . 200674) (-3340 . 200503) (-3341 . 200325) - (-3342 . 200227) (-3343 . 200028) (-3344 . 199378) (-3345 . 199255) - (-3346 . 199115) (-3347 . 198992) (-3348 . 198819) (-3349 . 198688) - (-3350 . 198589) (-3351 . 198510) (-3352 . 198384) (-3353 . 198069) - (-3354 . 197435) (-3355 . 196070) (-3356 . 195737) (-3357 . 194527) - (-3358 . 194286) (-3359 . 194167) (-3360 . 194064) (-3361 . 193923) - (-3362 . 193538) (-3363 . 193395) (-3364 . 192946) (-3365 . 190531) - (-3366 . 190409) (-3367 . 190213) (-3368 . 190122) (-3369 . 190007) - (-3370 . 189583) (-3371 . 189527) (-3372 . 189490) (-3373 . 189347) - (-3374 . 189233) (-3375 . 189087) (-3376 . 188992) (-3377 . 188821) - (-3378 . 188657) (-3379 . 188338) (-3380 . 188272) (-3381 . 188198) - (-3382 . 188089) (-3383 . 187986) (-3384 . 187903) (-3385 . 187719) - (-3386 . 187104) (-3387 . 186225) (-3388 . 186001) (-3389 . 185906) - (-3390 . 185776) (-3391 . 185560) (-3392 . 185446) (-3393 . 185362) - (-3394 . 185198) (-3395 . 185057) (-3396 . 185005) (-3397 . 184426) - (-3398 . 184216) (-3399 . 184091) (-3400 . 183961) (-3401 . 183855) - (-3402 . 183312) (-3403 . 183110) (-3404 . 183030) (-3405 . 182776) - (-3406 . 182714) (-3407 . 182274) (-3408 . 182222) (-3409 . 182126) - (-3410 . 182032) (-3411 . 181977) (-3412 . 181800) (-3413 . 181628) - (-3414 . 181569) (-3415 . 181535) (-3416 . 181374) (-3417 . 181288) - (-3418 . 181042) (-3419 . 180591) (-3420 . 180355) (-3421 . 179967) - (-3422 . 179858) (-3423 . 179438) (-3424 . 179350) (-3425 . 179131) - (-3426 . 179057) (-3427 . 178956) (-3428 . 177853) (-3429 . 177710) - (-3430 . 177629) (-3431 . 177522) (-3432 . 177439) (-3433 . 177365) - (-3434 . 177229) (-3435 . 177132) (-3436 . 177007) (-3437 . 176906) - (-3438 . 176773) (-3439 . 176700) (-3440 . 176215) (-3441 . 176159) - (-3442 . 175838) (-3443 . 175481) (-3444 . 175447) (-3445 . 175369) - (-3446 . 175257) (-3447 . 175126) (-3448 . 174833) (-3449 . 174673) - (-3450 . 174423) (-3451 . 174321) (-3452 . 173461) (-3453 . 173309) - (-3454 . 173211) (-3455 . 172967) (-3456 . 172431) (-3457 . 172343) - (-3458 . 172161) (-3459 . 171756) (-3460 . 171615) (-3461 . 171453) - (-3462 . 171329) (-3463 . 171136) (-3464 . 170939) (-3465 . 170752) - (-3466 . 170686) (-3467 . 170565) (-3468 . 170458) (-3469 . 170302) - (-3470 . 170271) (-3471 . 170157) (-3472 . 170037) (-3473 . 169900) - (-3474 . 169517) (-3475 . 169434) (-3476 . 169372) (-3477 . 169270) - (-3478 . 169173) (-3479 . 169118) (-3480 . 168943) (-3481 . 168886) - (-3482 . 168671) (-3483 . 168562) (-3484 . 168509) (-3485 . 168243) - (-3486 . 168130) (-3487 . 168006) (-3488 . 167762) (-3489 . 167634) - (-3490 . 167501) (-3491 . 167440) (-3492 . 167409) (-3493 . 167295) - (-3494 . 166990) (-3495 . 166802) (-3496 . 166707) (-3497 . 166636) - (-3498 . 166392) (-3499 . 166173) (-3500 . 164554) (-3501 . 164523) - (-3502 . 164398) (-3503 . 164343) (-3504 . 164213) (-3505 . 163792) - (-3506 . 163673) (-3507 . 163322) (-3508 . 163225) (-3509 . 163067) - (-3510 . 161875) (-3511 . 161739) (-3512 . 161665) (-3513 . 161485) - (-3514 . 161400) (-3515 . 161295) (-3516 . 161177) (-3517 . 161036) - (-3518 . 161005) (-3519 . 160357) (-3520 . 159496) (-3521 . 159325) - (-3522 . 159221) (-3523 . 159151) (-3524 . 159082) (-3525 . 159009) - (-3526 . 158698) (-3527 . 158646) (-3528 . 158160) (-3529 . 158048) - (-3530 . 157878) (-3531 . 157619) (-3532 . 157405) (-3533 . 156038) - (-3534 . 155937) (-3535 . 155884) (-3536 . 155456) (-3537 . 155394) - (-3538 . 154878) (-3539 . 154731) (-3540 . 154609) (-3541 . 154535) - (-3542 . 154428) (-3543 . 154211) (-3544 . 154142) (-3545 . 153982) - (-3546 . 153857) (-3547 . 153734) (-3548 . 153515) (-3549 . 153428) - (-3550 . 153257) (-3551 . 153101) (-3552 . 153016) (-3553 . 152834) - (-3554 . 152679) (-3555 . 152570) (-3556 . 152415) (-3557 . 152197) - (-3558 . 152148) (-3559 . 152096) (-3560 . 151985) (-3561 . 151930) - (-3562 . 151865) (-3563 . 151349) (-3564 . 150891) (-3565 . 150501) - (-3566 . 150050) (-3567 . 149992) (-3568 . 149921) (-3569 . 149756) - (-3570 . 149538) (-3571 . 149164) (-3572 . 149090) (-3573 . 148927) - (-3574 . 148854) (-3575 . 148753) (-3576 . 148638) (-3577 . 148426) - (-3578 . 148268) (-3579 . 148088) (-3580 . 147754) (-3581 . 147667) - (-3582 . 147590) (-3583 . 147535) (-3584 . 147480) (-3585 . 147406) - (-3586 . 146881) (-3587 . 146746) (-3588 . 146418) (-3589 . 145808) - (-3590 . 145731) (-3591 . 145415) (-3592 . 145316) (-3593 . 145065) - (-3594 . 144960) (-3595 . 144905) (-3596 . 144715) (-3597 . 144557) - (-3598 . 144398) (-3599 . 144345) (-3600 . 144121) (-3601 . 143904) - (-3602 . 143824) (-3603 . 143577) (-3604 . 143485) (-3605 . 143407) - (-3606 . 143373) (-3607 . 143289) (-3608 . 143231) (-3609 . 143178) - (-3610 . 142908) (-3611 . 142823) (-3612 . 142663) (-3613 . 142321) - (-3614 . 142249) (-3615 . 142080) (-3616 . 141988) (-3617 . 141884) - (-3618 . 141742) (-3619 . 141660) (-3620 . 141590) (-3621 . 141395) - (-3622 . 141123) (-3623 . 140970) (-3624 . 140653) (-3625 . 140502) - (-3626 . 140401) (-3627 . 140225) (-3628 . 140139) (-3629 . 140035) - (-3630 . 139880) (-3631 . 139777) (-3632 . 139598) (-3633 . 139443) - (-3634 . 139322) (-3635 . 139048) (-3636 . 138991) (-3637 . 138868) - (-3638 . 138749) (-3639 . 137568) (-3640 . 136104) (-3641 . 136036) - (-3642 . 135964) (-3643 . 135741) (-3644 . 135477) (-3645 . 135424) - (-3646 . 135320) (-3647 . 135264) (-3648 . 135186) (-3649 . 135077) - (-3650 . 135005) (-3651 . 134630) (-3652 . 134527) (-3653 . 134374) - (-3654 . 134212) (-3655 . 134062) (-3656 . 133948) (-3657 . 133854) - (-3658 . 133690) (-3659 . 133623) (-3660 . 133410) (-3661 . 133326) - (-3662 . 133225) (-3663 . 133155) (-3664 . 133027) (-3665 . 132877) - (-3666 . 132790) (-3667 . 132737) (-3668 . 132575) (-3669 . 132268) - (-3670 . 132170) (-3671 . 132083) (-3672 . 131904) (-3673 . 131867) - (-3674 . 131654) (-3675 . 131602) (-3676 . 131547) (-3677 . 131401) - (-3678 . 131258) (-3679 . 131181) (-3680 . 131096) (-3681 . 130967) - (-3682 . 130861) (-3683 . 130778) (-3684 . 130560) (-3685 . 130337) - (-3686 . 130258) (-3687 . 129967) (-3688 . 129778) (-3689 . 129652) - (-3690 . 128951) (-3691 . 128866) (-3692 . 128762) (-3693 . 128691) - (-3694 . 128573) (-3695 . 128430) (-3696 . 128274) (-3697 . 128103) - (-3698 . 127994) (-3699 . 127879) (-3700 . 123358) (-3701 . 123240) - (-3702 . 123082) (-3703 . 122960) (-3704 . 122790) (-3705 . 122663) - (-3706 . 122493) (-3707 . 122361) (-3708 . 122266) (-3709 . 122019) - (-3710 . 121597) (-3711 . 120173) (-3712 . 120115) (-3713 . 119972) - (-3714 . 119798) (-3715 . 119726) (-3716 . 119658) (-3717 . 119349) - (-3718 . 119248) (-3719 . 119054) (-3720 . 118961) (-3721 . 118566) - (-3722 . 118429) (-3723 . 118227) (-3724 . 118144) (-3725 . 118046) - (-3726 . 117975) (-3727 . 117902) (-3728 . 117593) (-3729 . 117541) - (-3730 . 117364) (-3731 . 117208) (-3732 . 117096) (-3733 . 117043) - (-3734 . 116449) (-3735 . 116308) (-3736 . 116194) (-3737 . 116134) - (-3738 . 113882) (-3739 . 113851) (-3740 . 113604) (-3741 . 113501) - (-3742 . 113314) (-3743 . 113208) (-3744 . 113031) (-3745 . 112975) - (-3746 . 112632) (-3747 . 112550) (-3748 . 112457) (-3749 . 112211) - (-3750 . 112048) (-3751 . 111968) (-3752 . 111916) (-3753 . 111621) - (-3754 . 111518) (-3755 . 111366) (-3756 . 111187) (-3757 . 111104) - (-3758 . 110960) (-3759 . 110887) (-3760 . 110810) (-3761 . 110725) - (-3762 . 110632) (-3763 . 110489) (-3764 . 110436) (-3765 . 110350) - (-3766 . 110220) (-3767 . 110146) (-3768 . 109987) (-3769 . 109672) - (-3770 . 109573) (-3771 . 108921) (-3772 . 108737) (-3773 . 108650) - (-3774 . 107945) (-3775 . 107804) (-3776 . 107735) (-3777 . 107610) - (-3778 . 107553) (-3779 . 107439) (-3780 . 107386) (-3781 . 107256) - (-3782 . 107117) (-3783 . 107022) (-3784 . 106939) (-3785 . 106449) - (-3786 . 106268) (-3787 . 106069) (-3788 . 105998) (-3789 . 105927) - (-3790 . 105815) (-3791 . 105669) (-3792 . 105585) (-3793 . 105194) - (-3794 . 105141) (-3795 . 105025) (-3796 . 104828) (-3797 . 104743) - (-3798 . 104666) (-3799 . 104435) (-3800 . 104348) (-3801 . 104289) - (-3802 . 104194) (-3803 . 104064) (-3804 . 103692) (-3805 . 103533) - (-3806 . 103477) (-3807 . 103387) (-3808 . 103108) (-3809 . 103057) - (-3810 . 88994) (-3811 . 88882) (-3812 . 88788) (-3813 . 88689) - (-3814 . 88575) (-3815 . 88372) (-3816 . 88059) (-3817 . 87867) - (-3818 . 87808) (-3819 . 87695) (-3820 . 87223) (-3821 . 87173) - (-3822 . 87073) (-3823 . 86915) (-3824 . 86820) (-3825 . 86718) - (-3826 . 86577) (-3827 . 86351) (-3828 . 86280) (-3829 . 86075) - (-3830 . 85979) (-3831 . 85909) (-3832 . 85710) (-3833 . 85626) - (-3834 . 85540) (-3835 . 85384) (-3836 . 84813) (-3837 . 84728) - (-3838 . 84619) (-3839 . 84503) (-3840 . 84156) (-3841 . 84049) - (-3842 . 83905) (-3843 . 83791) (-3844 . 83619) (-3845 . 83521) - (-3846 . 83412) (-3847 . 83341) (-3848 . 83186) (-3849 . 80405) - (-3850 . 80318) (-3851 . 80061) (-3852 . 80009) (-3853 . 79903) - (-3854 . 79854) (-3855 . 79628) (-12 . 79456) (-3857 . 79370) - (-3858 . 78889) (-3859 . 78852) (-3860 . 78474) (-3861 . 78422) - (-3862 . 78018) (-3863 . 77945) (-3864 . 77424) (-3865 . 77140) - (-3866 . 77087) (-3867 . 77035) (-3868 . 76877) (-3869 . 76740) - (-3870 . 76570) (-3871 . 76290) (-3872 . 74043) (-3873 . 69341) - (-3874 . 69185) (-3875 . 69115) (-3876 . 69041) (-3877 . 68975) - (-3878 . 68798) (-3879 . 68744) (-3880 . 68416) (-3881 . 67120) - (-3882 . 66485) (-3883 . 66361) (-3884 . 66095) (-3885 . 66028) - (-3886 . 65931) (-3887 . 65819) (-3888 . 65645) (-3889 . 65526) - (-3890 . 65024) (-3891 . 64867) (-3892 . 64659) (-3893 . 64552) - (-3894 . 64496) (-3895 . 63577) (-3896 . 63353) (-3897 . 63297) - (-3898 . 63190) (-3899 . 62616) (-3900 . 62560) (-3901 . 62338) - (-3902 . 62125) (-3903 . 61328) (-3904 . 61148) (-3905 . 60992) - (-3906 . 60837) (-3907 . 60731) (-3908 . 60632) (-3909 . 60548) - (-3910 . 60458) (-3911 . 60321) (-3912 . 60028) (-3913 . 59860) - (-3914 . 59789) (-3915 . 59567) (-3916 . 59271) (-3917 . 58857) - (-3918 . 58707) (-3919 . 58566) (-3920 . 57354) (-3921 . 57221) - (-3922 . 56908) (-3923 . 56856) (-3924 . 56783) (-3925 . 56710) - (-3926 . 56609) (-3927 . 56469) (-3928 . 56413) (-3929 . 56082) - (-3930 . 55862) (-3931 . 55481) (-3932 . 55450) (-3933 . 55377) - (-3934 . 54191) (-3935 . 54117) (-3936 . 54052) (-3937 . 53929) - (-3938 . 53690) (-3939 . 53549) (-3940 . 53493) (-3941 . 53391) - (-3942 . 53181) (-3943 . 52799) (-3944 . 52619) (-3945 . 52507) - (-3946 . 52393) (-3947 . 52195) (-3948 . 51650) (-3949 . 51504) - (-3950 . 51390) (-3951 . 51225) (-3952 . 51173) (-3953 . 50888) - (-3954 . 50787) (-3955 . 50608) (-3956 . 50473) (-3957 . 50249) - (-3958 . 50194) (-3959 . 49952) (-3960 . 49878) (-3961 . 49673) - (-3962 . 49555) (-3963 . 49484) (-3964 . 49353) (* . 44830) - (-3966 . 44760) (-3967 . 44689) (-3968 . 44490) (-3969 . 44314) - (-3970 . 44205) (-3971 . 44102) (-3972 . 44004) (-3973 . 43909) - (-3974 . 43579) (-3975 . 43439) (-3976 . 43345) (-3977 . 43292) - (-3978 . 42877) (-3979 . 42811) (-3980 . 42679) (-3981 . 42648) - (-3982 . 42617) (-3983 . 42522) (-3984 . 42442) (-3985 . 42276) - (-3986 . 42191) (-3987 . 42032) (-3988 . 41739) (-3989 . 41632) - (-3990 . 41474) (-3991 . 41353) (-3992 . 41191) (-3993 . 41139) - (-3994 . 40984) (-3995 . 40900) (-3996 . 40227) (-3997 . 40159) - (-3998 . 40076) (-3999 . 39894) (-4000 . 39863) (-4001 . 39710) - (-4002 . 39504) (-4003 . 39431) (-4004 . 39050) (-4005 . 38992) - (-4006 . 38919) (-4007 . 38810) (-4008 . 38629) (-4009 . 38381) - (-4010 . 38279) (-4011 . 38189) (-4012 . 37823) (-4013 . 37267) - (-4014 . 37030) (-4015 . 36908) (-4016 . 36818) (-4017 . 36431) - (-4018 . 36372) (-4019 . 36291) (-4020 . 36194) (-4021 . 36000) - (-4022 . 35916) (-4023 . 35807) (-4024 . 35493) (-4025 . 35336) - (-4026 . 35270) (-4027 . 35078) (-4028 . 34768) (-4029 . 34701) - (-4030 . 34030) (-4031 . 33978) (-4032 . 33872) (-4033 . 33803) - (-4034 . 33586) (-4035 . 33391) (-4036 . 33336) (-4037 . 33270) - (-4038 . 32716) (-4039 . 32449) (-4040 . 32269) (-4041 . 32139) - (-4042 . 31895) (-4043 . 31797) (-4044 . 31518) (-4045 . 31066) - (-4046 . 30818) (-4047 . 30574) (-4048 . 30180) (-4049 . 30108) - (-4050 . 30025) (-4051 . 29975) (-4052 . 29588) (-4053 . 29560) - (-4054 . 29492) (-4055 . 29283) (-4056 . 29227) (-4057 . 29147) - (-4058 . 29070) (-4059 . 29042) (-4060 . 28919) (-4061 . 28628) - (-4062 . 28530) (-4063 . 28438) (-4064 . 28295) (-4065 . 28134) - (-4066 . 28020) (-4067 . 27637) (-4068 . 27567) (-4069 . 27101) - (-4070 . 27004) (-4071 . 26921) (-4072 . 26788) (-4073 . 26665) - (-4074 . 26481) (-4075 . 26293) (-4076 . 26214) (-4077 . 26099) - (-4078 . 25959) (-4079 . 25862) (-4080 . 25768) (-4081 . 25661) - (-4082 . 24757) (-4083 . 24674) (-4084 . 24501) (-4085 . 24074) - (-4086 . 23956) (-4087 . 23738) (-4088 . 23710) (-4089 . 23623) - (-4090 . 23401) (-4091 . 23350) (-4092 . 23243) (-4093 . 23160) - (-4094 . 22904) (-4095 . 22830) (-4096 . 22768) (-4097 . 22717) - (-4098 . 22634) (-4099 . 22574) (-4100 . 22500) (-4101 . 22273) - (-4102 . 22196) (-4103 . 21822) (-4104 . 21735) (-4105 . 21668) - (-4106 . 21498) (-4107 . 21299) (-4108 . 21194) (-4109 . 21145) - (-4110 . 21039) (-4111 . 20930) (-4112 . 20861) (-4113 . 20769) - (-4114 . 20485) (-4115 . 20355) (-4116 . 20306) (-4117 . 20240) - (-4118 . 20036) (-4119 . 19963) (-4120 . 19749) (-4121 . 19681) - (-4122 . 19596) (-4123 . 19516) (-4124 . 19178) (-4125 . 19107) - (-4126 . 18610) (-4127 . 17795) (-4128 . 17427) (-4129 . 17311) - (-4130 . 17259) (-4131 . 16969) (-4132 . 16540) (-4133 . 16385) - (-4134 . 16125) (-4135 . 16045) (-4136 . 15975) (-4137 . 15888) - (-4138 . 15746) (-4139 . 15520) (-4140 . 15434) (-4141 . 15355) - (-4142 . 15201) (-4143 . 15135) (-4144 . 14992) (-4145 . 14929) - (-4146 . 14861) (-4147 . 14584) (-4148 . 14529) (-4149 . 14188) - (-4150 . 14072) (-4151 . 13782) (-4152 . 13577) (-4153 . 13338) - (-4154 . 13253) (-4155 . 13197) (-4156 . 13094) (-4157 . 12971) - (-4158 . 12815) (-4159 . 12651) (-4160 . 12544) (-4161 . 12471) - (-4162 . 12443) (-4163 . 12230) (-4164 . 11795) (-4165 . 11688) - (-4166 . 11353) (-4167 . 11247) (-4168 . 11198) (-4169 . 11008) - (-4170 . 10384) (-4171 . 9511) (-4172 . 9382) (-4173 . 9300) - (-4174 . 9102) (-4175 . 8940) (-4176 . 8624) (-4177 . 8526) - (-4178 . 8449) (-4179 . 8024) (-4180 . 7956) (-4181 . 7782) - (-4182 . 7618) (-4183 . 7535) (-4184 . 7484) (-4185 . 7240) - (-4186 . 5389) (-4187 . 5150) (-4188 . 5034) (-4189 . 4876) - (-4190 . 4821) (-4191 . 4608) (-4192 . 4355) (-4193 . 4284) - (-4194 . 3936) (-4195 . 3806) (-4196 . 3734) (-4197 . 3576) - (-4198 . 3429) (-4199 . 3054) (-4200 . 2980) (-4201 . 2839) - (-4202 . 2786) (-4203 . 2652) (-4204 . 2575) (-4205 . 2474) - (-4206 . 2328) (-4207 . 2268) (-4208 . 2226) (-4209 . 2074) - (-4210 . 1527) (-4211 . 1426) (-4212 . 1298) (-4213 . 938) - (-4214 . 742) (-4215 . 552) (-4216 . 358) (-4217 . 140) (-4218 . 30))
\ No newline at end of file + (-12 (-4 *1 (-318 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-1144 *3)) + (-4 *5 (-1144 (-383 *4))) + (-5 *2 (-2 (|:| |num| (-1168 *4)) (|:| |den| *4)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-325)) (-5 *2 (-888 (-1083 *4))) (-5 *1 (-333 *4)) + (-5 *3 (-1083 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-292 (-203))) (-5 *1 (-190))))) +(((*1 *1) (-5 *1 (-413)))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1087)) (-5 *2 (-1091)) (-5 *1 (-1090))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1087)) (-5 *6 (-108)) + (-4 *7 (-13 (-284) (-786) (-136) (-964 (-523)) (-585 (-523)))) + (-4 *3 (-13 (-1108) (-889) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-779 *3)) (|:| |f2| (-589 (-779 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-197 *7 *3)) (-5 *5 (-779 *3))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1141 *4 *5)) (-5 *3 (-589 *5)) (-14 *4 (-1087)) + (-4 *5 (-339)) (-5 *1 (-854 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-589 *5)) (-4 *5 (-339)) (-5 *2 (-1083 *5)) + (-5 *1 (-854 *4 *5)) (-14 *4 (-1087)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-589 *6)) (-5 *4 (-710)) (-4 *6 (-339)) + (-5 *2 (-383 (-883 *6))) (-5 *1 (-974 *5 *6)) (-14 *5 (-1087))))) +(((*1 *2 *3) + (-12 (-5 *3 (-823 *4)) (-4 *4 (-1016)) (-5 *2 (-589 *5)) + (-5 *1 (-821 *4 *5)) (-4 *5 (-1122))))) +(((*1 *2 *3) + (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-131 *4 *5 *3)) + (-4 *3 (-349 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-474 *4 *5 *6 *3)) (-4 *6 (-349 *4)) (-4 *3 (-349 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-629 *5)) (-4 *5 (-921 *4)) (-4 *4 (-515)) + (-5 *2 (-2 (|:| |num| (-629 *4)) (|:| |den| *4))) + (-5 *1 (-632 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-339) (-136) (-964 (-383 (-523))))) + (-4 *6 (-1144 *5)) + (-5 *2 (-2 (|:| -1710 *7) (|:| |rh| (-589 (-383 *6))))) + (-5 *1 (-746 *5 *6 *7 *3)) (-5 *4 (-589 (-383 *6))) + (-4 *7 (-599 *6)) (-4 *3 (-599 (-383 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-515)) (-4 *5 (-921 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1137 *4 *5 *3)) + (-4 *3 (-1144 *5))))) +((-1199 . 725070) (-1200 . 724954) (-1201 . 724565) (-1202 . 724224) + (-1203 . 724151) (-1204 . 724123) (-1205 . 724064) (-1206 . 723959) + (-1207 . 723793) (-1208 . 723692) (-1209 . 723664) (-1210 . 723557) + (-1211 . 723507) (-1212 . 723455) (-1213 . 722964) (-1214 . 722818) + (-1215 . 722687) (-1216 . 722529) (-1217 . 722316) (-1218 . 722201) + (-1219 . 722117) (-1220 . 721980) (-1221 . 721816) (-1222 . 721630) + (-1223 . 721182) (-1224 . 721109) (-1225 . 720990) (-1226 . 720872) + (-1227 . 720765) (-1228 . 717480) (-1229 . 717343) (-1230 . 717314) + (-1231 . 717201) (-1232 . 717129) (-1233 . 717076) (-1234 . 717020) + (-1235 . 716946) (-1236 . 716617) (-1237 . 716532) (-1238 . 716437) + (-1239 . 716238) (-1240 . 716059) (-1241 . 715767) (-1242 . 715714) + (-1243 . 715628) (-1244 . 715532) (-1245 . 715425) (-1246 . 715314) + (-1247 . 715233) (-1248 . 715080) (-1249 . 714886) (-1250 . 714775) + (-1251 . 714272) (-1252 . 714170) (-1253 . 713993) (-1254 . 713806) + (-1255 . 713469) (-1256 . 713041) (-1257 . 712871) (-1258 . 712840) + (-1259 . 712770) (-1260 . 712504) (-1261 . 712392) (-1262 . 712250) + (-1263 . 712166) (-1264 . 710624) (-1265 . 710571) (-1266 . 710486) + (-1267 . 710169) (-1268 . 710098) (-1269 . 710025) (-1270 . 709921) + (-1271 . 709770) (-1272 . 709696) (-1273 . 709550) (-1274 . 709477) + (-1275 . 709271) (-1276 . 709145) (-1277 . 709036) (-1278 . 708921) + (-1279 . 708865) (-1280 . 708766) (-1281 . 708580) (-1282 . 708376) + (-1283 . 708210) (-1284 . 708126) (-1285 . 707996) (-1286 . 707913) + (-1287 . 707740) (-1288 . 707412) (-1289 . 707222) (-1290 . 707151) + (-1291 . 707012) (-1292 . 706364) (-1293 . 706128) (-1294 . 705859) + (-1295 . 705276) (-1296 . 705139) (-1297 . 705068) (-1298 . 704972) + (-1299 . 704873) (-1300 . 704726) (-1301 . 704615) (-1302 . 704452) + (-1303 . 704366) (-1304 . 703979) (-1305 . 703875) (-1306 . 703628) + (-1307 . 703528) (-1308 . 703375) (-1309 . 702423) (-1310 . 702275) + (-1311 . 702211) (-1312 . 700493) (-1313 . 700338) (-1314 . 700270) + (-1315 . 699951) (-1316 . 699895) (-1317 . 699726) (-1318 . 699641) + (-1319 . 698394) (-1320 . 698259) (-1321 . 698204) (-1322 . 697944) + (-1323 . 697671) (-1324 . 697284) (-1325 . 697041) (-1326 . 696977) + (-1327 . 696853) (-1328 . 696654) (-1329 . 696465) (-1330 . 695870) + (-1331 . 695761) (-1332 . 695694) (-1333 . 695169) (-1334 . 694598) + (-1335 . 694515) (-1336 . 694409) (-1337 . 694250) (-1338 . 694152) + (-1339 . 694100) (-1340 . 693963) (-1341 . 693763) (-1342 . 693284) + (-1343 . 693186) (-1344 . 693030) (-1345 . 692632) (-1346 . 692580) + (-1347 . 692464) (-1348 . 692408) (-1349 . 692158) (-1350 . 692072) + (-1351 . 691873) (-1352 . 691817) (-1353 . 691500) (-1354 . 691427) + (-1355 . 691312) (-1356 . 691142) (-1357 . 691001) (-1358 . 690896) + (-1359 . 690497) (-1360 . 690395) (-1361 . 690295) (-1362 . 690200) + (-1363 . 690135) (-1364 . 690055) (-1365 . 689757) (-1366 . 689516) + (-1367 . 689037) (-1368 . 688859) (-1369 . 688757) (-1370 . 688621) + (-1371 . 688536) (-1372 . 688481) (-1373 . 687950) (-1374 . 687665) + (-1375 . 687593) (-1376 . 687190) (-1377 . 686978) (-1378 . 686912) + (-1379 . 686466) (-1380 . 686328) (-1381 . 686233) (-1382 . 686010) + (-1383 . 685619) (-1384 . 685497) (-1385 . 685446) (-1386 . 685367) + (-1387 . 685312) (-1388 . 685263) (-1389 . 685156) (-1390 . 684985) + (-1391 . 684917) (-1392 . 684774) (-1393 . 684701) (-1394 . 684597) + (-1395 . 684440) (-1396 . 684069) (-1397 . 683694) (-1398 . 683470) + (-1399 . 683391) (-1400 . 683306) (-1401 . 683198) (-1402 . 683105) + (-1403 . 682069) (-1404 . 681914) (-1405 . 681717) (-1406 . 681215) + (-1407 . 680997) (-1408 . 680942) (-1409 . 680362) (-1410 . 680258) + (-1411 . 680155) (-1412 . 680063) (-1413 . 679946) (-1414 . 679831) + (-1415 . 679587) (-1416 . 679445) (-1417 . 679025) (-1418 . 678890) + (-1419 . 678517) (-1420 . 678287) (-1421 . 678057) (-1422 . 677892) + (-1423 . 677824) (-1424 . 677720) (-1425 . 677274) (-1426 . 677104) + (-1427 . 676918) (-1428 . 676694) (-1429 . 676597) (-1430 . 676544) + (-1431 . 676285) (-1432 . 676100) (-1433 . 675923) (-1434 . 675857) + (-1435 . 675805) (-1436 . 675678) (-1437 . 675398) (-1438 . 675272) + (-1439 . 675206) (-1440 . 675012) (-1441 . 674819) (-1442 . 674649) + (-1443 . 674580) (-1444 . 674521) (-1445 . 674427) (-1446 . 674322) + (-1447 . 674218) (-1448 . 674110) (-1449 . 673945) (-1450 . 673768) + (-1451 . 673542) (-1452 . 673422) (-1453 . 673290) (-1454 . 672997) + (-1455 . 672596) (-1456 . 672445) (-1457 . 672351) (-1458 . 649416) + (-1459 . 649364) (-1460 . 649261) (-1461 . 648688) (-1462 . 648530) + (-1463 . 648401) (-1464 . 648060) (-1465 . 647970) (-1466 . 647733) + (-1467 . 647599) (-1468 . 647390) (-1469 . 647234) (-1470 . 647161) + (-1471 . 646645) (-1472 . 643893) (-1473 . 643518) (-1474 . 643382) + (-1475 . 643003) (-1476 . 642901) (-1477 . 642789) (-1478 . 642692) + (-1479 . 642171) (-1480 . 642073) (-1481 . 642020) (-1482 . 641876) + (-1483 . 641632) (-1484 . 641536) (-1485 . 641059) (-1486 . 640981) + (-1487 . 640914) (-1488 . 640760) (-1489 . 640551) (-1490 . 640474) + (-1491 . 640373) (-1492 . 640202) (-1493 . 639963) (-1494 . 639837) + (-1495 . 639781) (-1496 . 639707) (-1497 . 639624) (-1498 . 639567) + (-1499 . 639487) (-1500 . 638202) (-1501 . 637987) (-1502 . 637956) + (-1503 . 637882) (-1504 . 637623) (-1505 . 637514) (-1506 . 637306) + (-1507 . 637206) (-1508 . 637067) (-1509 . 636958) (-1510 . 636800) + (-1511 . 636720) (-1512 . 636348) (-1513 . 636264) (-1514 . 636165) + (-1515 . 635778) (-1516 . 635723) (-1517 . 635611) (-1518 . 635279) + (-1519 . 635065) (-1520 . 634149) (-1521 . 634075) (-1522 . 633913) + (-1523 . 633735) (-1524 . 633607) (-1525 . 633464) (-1526 . 633357) + (-1527 . 633213) (-1528 . 632970) (-1529 . 632864) (-1530 . 632705) + (-1531 . 632634) (-1532 . 632502) (-1533 . 632159) (-1534 . 632036) + (-1535 . 631902) (-1536 . 631821) (-1537 . 631759) (-1538 . 631479) + (-1539 . 631080) (-1540 . 630976) (-1541 . 630923) (-1542 . 630857) + (-1543 . 630744) (-1544 . 630673) (-1545 . 630617) (-1546 . 630560) + (-1547 . 629687) (-1548 . 629588) (-1549 . 629514) (-1550 . 629465) + (-1551 . 629323) (-1552 . 629251) (-1553 . 629130) (-1554 . 628802) + (-1555 . 628622) (-1556 . 628492) (-1557 . 628299) (-1558 . 628139) + (-1559 . 628032) (-1560 . 627964) (-1561 . 627933) (-1562 . 627856) + (-1563 . 627828) (-1564 . 627741) (-1565 . 627534) (-1566 . 627441) + (-1567 . 627325) (-1568 . 627223) (-1569 . 627167) (-1570 . 627099) + (-1571 . 626986) (-1572 . 626895) (-1573 . 626800) (-1574 . 626603) + (-1575 . 626145) (-1576 . 626042) (-1577 . 625901) (-1578 . 625848) + (-1579 . 625727) (-1580 . 625597) (-1581 . 625472) (-1582 . 625384) + (-1583 . 625243) (-1584 . 625127) (-1585 . 625074) (-1586 . 623223) + (-1587 . 623129) (-1588 . 623063) (-1589 . 622716) (-1590 . 622606) + (-1591 . 622540) (-1592 . 622484) (-1593 . 622399) (-1594 . 622068) + (-1595 . 621818) (-1596 . 621456) (-1597 . 621345) (-1598 . 621286) + (-1599 . 621179) (-1600 . 621063) (-1601 . 620948) (-1602 . 620732) + (-1603 . 620386) (-1604 . 620180) (-1605 . 620072) (-1606 . 619937) + (-1607 . 619636) (-1608 . 619558) (-1609 . 619346) (-1610 . 619246) + (-1611 . 618798) (-1612 . 618738) (-1613 . 618653) (-1614 . 618520) + (-1615 . 618380) (-1616 . 618328) (-1617 . 618013) (-1618 . 617860) + (-1619 . 617807) (-1620 . 617706) (-1621 . 616850) (-1622 . 616715) + (-1623 . 616551) (-1624 . 616499) (-1625 . 616276) (-1626 . 616049) + (-1627 . 615911) (-1628 . 615825) (-1629 . 615583) (-1630 . 615474) + (-1631 . 615300) (-1632 . 615095) (-1633 . 614890) (-1634 . 614838) + (-1635 . 614756) (-1636 . 614677) (-1637 . 614443) (-1638 . 614366) + (-1639 . 614260) (-1640 . 612013) (-1641 . 610712) (-1642 . 610365) + (-1643 . 609982) (-1644 . 609795) (-1645 . 609259) (-1646 . 609192) + (-1647 . 609161) (-1648 . 609095) (-1649 . 608937) (-1650 . 608855) + (-1651 . 608796) (-1652 . 608501) (-1653 . 608424) (-1654 . 608146) + (-1655 . 607855) (-1656 . 607245) (-1657 . 607193) (-1658 . 606903) + (-1659 . 606664) (-1660 . 606555) (-1661 . 606478) (-1662 . 606425) + (-1663 . 606355) (-1664 . 606029) (-1665 . 605900) (-1666 . 605681) + (-1667 . 605347) (-1668 . 605246) (-1669 . 605140) (-1670 . 605082) + (-1671 . 604998) (-1672 . 604853) (-1673 . 604695) (-1674 . 604661) + (-1675 . 603992) (-1676 . 603602) (-1677 . 603214) (-1678 . 603061) + (-1679 . 602920) (-1680 . 602768) (-1681 . 602627) (-1682 . 602317) + (-1683 . 602264) (-1684 . 602049) (-1685 . 601972) (-1686 . 601718) + (-1687 . 601544) (-1688 . 601293) (-1689 . 601262) (-1690 . 601228) + (-1691 . 601114) (-1692 . 600904) (-1693 . 600851) (-1694 . 600421) + (-1695 . 600278) (-1696 . 600166) (-1697 . 599956) (-1698 . 599840) + (-1699 . 599788) (-1700 . 599641) (-1701 . 599444) (-1702 . 599236) + (-1703 . 598234) (-1704 . 598179) (-1705 . 597992) (-1706 . 597891) + (-1707 . 597814) (-1708 . 597611) (-1709 . 597541) (-1710 . 597385) + (-1711 . 597281) (-1712 . 597147) (-1713 . 597010) (-1714 . 596945) + (-1715 . 596846) (-1716 . 596780) (-1717 . 596260) (-1718 . 595913) + (-1719 . 595339) (-1720 . 595265) (-1721 . 595164) (-1722 . 594958) + (-1723 . 594818) (-1724 . 594765) (-1725 . 594655) (-1726 . 594561) + (-1727 . 594442) (-1728 . 593868) (-1729 . 593668) (-1730 . 593547) + (-1731 . 592973) (-1732 . 592754) (-1733 . 592443) (-1734 . 592314) + (-1735 . 591983) (-1736 . 591922) (-1737 . 591766) (-1738 . 591154) + (-1739 . 591098) (-1740 . 590801) (-1741 . 590727) (-1742 . 590661) + (-1743 . 590584) (-1744 . 589897) (-1745 . 589801) (-1746 . 589440) + (-1747 . 587310) (-1748 . 587175) (-1749 . 587022) (-1750 . 586944) + (-1751 . 586518) (-1752 . 586425) (-1753 . 586306) (-1754 . 586253) + (-1755 . 586149) (-1756 . 585951) (-1757 . 585264) (-1758 . 585020) + (-1759 . 584764) (-1760 . 584551) (-1761 . 584442) (-1762 . 583991) + (-1763 . 583929) (-1764 . 583839) (-1765 . 583742) (-1766 . 583655) + (-1767 . 583450) (-1768 . 582907) (-1769 . 582220) (-1770 . 581568) + (-1771 . 581506) (-1772 . 581408) (-1773 . 581309) (-1774 . 581239) + (-1775 . 581108) (-1776 . 580812) (-1777 . 580714) (-1778 . 580640) + (-1779 . 580563) (-1780 . 580425) (-1781 . 580240) (-1782 . 579665) + (-1783 . 579602) (-1784 . 579495) (-1785 . 579195) (-1786 . 577794) + (-1787 . 577485) (-1788 . 577433) (-1789 . 577354) (-1790 . 577208) + (-1791 . 576553) (-1792 . 576398) (-1793 . 575823) (-1794 . 575701) + (-1795 . 575552) (-1796 . 575341) (-1797 . 575032) (-1798 . 574930) + (-1799 . 574749) (-1800 . 574607) (-1801 . 574552) (-1802 . 574469) + (-1803 . 574334) (-1804 . 574161) (-1805 . 573586) (-1806 . 573523) + (-1807 . 572438) (-1808 . 572401) (-1809 . 572316) (-1810 . 572260) + (-1811 . 571050) (-1812 . 570892) (-1813 . 570819) (-1814 . 570741) + (-1815 . 570403) (-1816 . 570296) (-1817 . 570214) (-1818 . 569640) + (-1819 . 569046) (-1820 . 563539) (-1821 . 563449) (-1822 . 563349) + (-1823 . 563266) (-1824 . 563142) (-1825 . 562964) (-1826 . 562866) + (-1827 . 562310) (-1828 . 562152) (-1829 . 561963) (-1830 . 561389) + (-1831 . 561315) (-1832 . 560927) (-1833 . 560861) (-1834 . 560791) + (-1835 . 560696) (-1836 . 560644) (-1837 . 560578) (-1838 . 560515) + (-1839 . 559941) (-1840 . 559725) (-1841 . 559540) (-1842 . 559087) + (-1843 . 558287) (-1844 . 558165) (-1845 . 558091) (-1846 . 558021) + (-1847 . 557914) (-1848 . 557331) (-1849 . 557237) (-1850 . 557107) + (-1851 . 556967) (-1852 . 556393) (-1853 . 556239) (-1854 . 555960) + (-1855 . 555932) (-1856 . 555585) (-1857 . 555490) (-1858 . 555000) + (-1859 . 554881) (-1860 . 554751) (-1861 . 554538) (-1862 . 554458) + (-1863 . 554210) (-1864 . 553782) (-1865 . 553208) (-1866 . 552968) + (-1867 . 552389) (-1868 . 552309) (-1869 . 552004) (-1870 . 551976) + (-1871 . 551862) (-1872 . 551803) (-1873 . 551627) (-1874 . 551347) + (-1875 . 551225) (-1876 . 551166) (-1877 . 551079) (-1878 . 550810) + (-1879 . 550660) (-1880 . 550602) (-1881 . 550443) (-1882 . 550204) + (-1883 . 550175) (-1884 . 549746) (-1885 . 549523) (-1886 . 549424) + (-1887 . 549135) (-1888 . 548982) (-1889 . 548894) (-1890 . 548457) + (-1891 . 548350) (-1892 . 548316) (-1893 . 548228) (-1894 . 548075) + (-1895 . 548004) (-1896 . 547187) (-1897 . 547029) (-1898 . 546776) + (-1899 . 546748) (-1900 . 546693) (-1901 . 546102) (-1902 . 546047) + (-1903 . 545940) (-1904 . 545747) (-1905 . 545691) (-1906 . 545580) + (-1907 . 545499) (-1908 . 545433) (-1909 . 545346) (-1910 . 545214) + (-1911 . 545109) (-1912 . 544908) (-1913 . 544767) (-1914 . 544627) + (-1915 . 544400) (-1916 . 544039) (-1917 . 543883) (-1918 . 543830) + (-1919 . 543716) (-1920 . 543626) (-1921 . 543553) (-1922 . 543493) + (-1923 . 542029) (-1924 . 541920) (-1925 . 541525) (-1926 . 541427) + (-1927 . 541305) (-1928 . 541250) (-1929 . 541136) (-1930 . 541058) + (-1931 . 541007) (-1932 . 540864) (-1933 . 539245) (-1934 . 539189) + (-1935 . 539136) (-1936 . 539084) (-1937 . 538967) (-1938 . 538939) + (-1939 . 538284) (-1940 . 528754) (-1941 . 528648) (-1942 . 528535) + (-1943 . 528434) (-1944 . 528157) (-1945 . 527296) (-1946 . 527152) + (-1947 . 527086) (-1948 . 526925) (-1949 . 526672) (-1950 . 525768) + (-1951 . 525695) (-1952 . 525518) (-1953 . 525444) (-1954 . 524840) + (-1955 . 524774) (-1956 . 524718) (-1957 . 523351) (-1958 . 523170) + (-1959 . 523098) (-1960 . 523013) (-1961 . 522904) (-1962 . 522612) + (-1963 . 522529) (-1964 . 522338) (-1965 . 522264) (-1966 . 522000) + (-1967 . 521897) (-1968 . 521710) (-1969 . 521616) (-1970 . 521508) + (-1971 . 521474) (-1972 . 521422) (-1973 . 521106) (-1974 . 521010) + (-1975 . 520759) (-1976 . 520600) (-1977 . 520361) (-1978 . 520250) + (-1979 . 519798) (-1980 . 519764) (-1981 . 519709) (-1982 . 519585) + (-1983 . 519487) (-1984 . 519347) (-1985 . 519278) (-1986 . 518963) + (-1987 . 518798) (-1988 . 518628) (-1989 . 518316) (-1990 . 518161) + (-1991 . 518077) (-1992 . 517980) (-1993 . 517885) (-1994 . 517710) + (-1995 . 517676) (-1996 . 516511) (-1997 . 516321) (-1998 . 516225) + (-1999 . 515972) (-2000 . 515920) (-2001 . 515399) (-2002 . 515325) + (-2003 . 515146) (-2004 . 515005) (-2005 . 514864) (-2006 . 514791) + (-2007 . 513611) (-2008 . 513504) (-2009 . 513403) (-2010 . 513187) + (-2011 . 513024) (-2012 . 512699) (-2013 . 512354) (-2014 . 512150) + (-2015 . 510322) (-2016 . 510235) (-2017 . 510182) (-2018 . 509639) + (-2019 . 509502) (-2020 . 509303) (-2021 . 509166) (-2022 . 509129) + (-2023 . 508891) (-2024 . 508607) (-2025 . 508513) (-2026 . 508453) + (-2027 . 508324) (-2028 . 506823) (-2029 . 506792) (-2030 . 506718) + (-2031 . 506468) (-2032 . 506383) (-2033 . 505996) (-2034 . 505879) + (-2035 . 505727) (-2036 . 505562) (-2037 . 505090) (-2038 . 504490) + (-2039 . 504376) (-2040 . 504269) (-2041 . 504020) (-2042 . 503736) + (-2043 . 503708) (-2044 . 503637) (-2045 . 503571) (-2046 . 503477) + (-2047 . 503245) (-2048 . 502930) (-2049 . 502835) (-2050 . 502728) + (-2051 . 502436) (-2052 . 502144) (-2053 . 501874) (-2054 . 501788) + (-2055 . 501633) (-2056 . 501550) (-2057 . 501460) (-2058 . 501406) + (-2059 . 501335) (-2060 . 501267) (-2061 . 500452) (-2062 . 500172) + (-2063 . 499069) (-2064 . 498841) (-2065 . 498760) (-2066 . 498592) + (-2067 . 498334) (-2068 . 498208) (-2069 . 498122) (-2070 . 498048) + (-2071 . 497890) (-2072 . 497746) (-2073 . 497566) (-2074 . 497318) + (-2075 . 497287) (-2076 . 497221) (-2077 . 497022) (-2078 . 496953) + (-2079 . 496855) (-2080 . 496788) (-2081 . 496555) (-2082 . 496357) + (-2083 . 496279) (-2084 . 496208) (-2085 . 496151) (-2086 . 496064) + (-2087 . 495724) (-2088 . 495545) (-2089 . 495487) (-2090 . 495373) + (-2091 . 495032) (-2092 . 494682) (-2093 . 494308) (-2094 . 494255) + (-2095 . 494203) (-2096 . 494079) (-2097 . 493961) (-2098 . 493904) + (-2099 . 493777) (-2100 . 493639) (-2101 . 493524) (-2102 . 493364) + (-2103 . 493285) (-2104 . 493188) (-2105 . 492928) (-2106 . 492797) + (-2107 . 492731) (-2108 . 492694) (-2109 . 492662) (-2110 . 492500) + (-2111 . 492397) (-2112 . 491876) (-2113 . 491753) (-2114 . 491653) + (-2115 . 491582) (-2116 . 491478) (-2117 . 491320) (-2118 . 491249) + (-2119 . 491113) (-2120 . 490886) (-2121 . 489674) (-2122 . 489472) + (-2123 . 489371) (-2124 . 489193) (-2125 . 489140) (-2126 . 489088) + (-2127 . 488993) (-2128 . 488829) (-2129 . 488762) (-2130 . 486510) + (-2131 . 486431) (-2132 . 486225) (-2133 . 485846) (-2134 . 485538) + (-2135 . 485343) (-2136 . 485170) (-2137 . 484842) (-2138 . 484455) + (-2139 . 484284) (-2140 . 483985) (-2141 . 483878) (-2142 . 483732) + (-2143 . 483633) (-2144 . 483495) (-2145 . 483410) (-2146 . 482699) + (-2147 . 482541) (-2148 . 482401) (-2149 . 482294) (-2150 . 482172) + (-2151 . 482122) (-2152 . 482045) (-2153 . 481834) (-2154 . 481751) + (-2155 . 481607) (-2156 . 481522) (-2157 . 481435) (-2158 . 481217) + (-2159 . 480731) (-2160 . 480657) (-2161 . 480534) (-2162 . 480506) + (-2163 . 480384) (-2164 . 480241) (-2165 . 478931) (-2166 . 478860) + (-2167 . 478781) (-2168 . 478640) (-2169 . 478394) (-2170 . 478326) + (-2171 . 478219) (-2172 . 478136) (-2173 . 478056) (-2174 . 477938) + (-2175 . 477694) (-2176 . 477599) (-2177 . 477380) (-2178 . 476848) + (-2179 . 476631) (-2180 . 476554) (-2181 . 476501) (-2182 . 476424) + (-2183 . 476294) (-2184 . 476224) (-2185 . 475983) (-2186 . 475882) + (-2187 . 475756) (-2188 . 475659) (-2189 . 475532) (-2190 . 475394) + (-2191 . 475234) (-2192 . 475160) (-2193 . 474842) (-2194 . 474770) + (-2195 . 474626) (-2196 . 474341) (-2197 . 474256) (-2198 . 474086) + (-2199 . 473987) (-2200 . 473547) (-2201 . 473417) (-2202 . 473308) + (-2203 . 473191) (-2204 . 473051) (-2205 . 472981) (-2206 . 472633) + (-2207 . 472563) (-2208 . 472447) (-2209 . 472182) (-2210 . 472057) + (-2211 . 471972) (-2212 . 471860) (-2213 . 471751) (-2214 . 471527) + (-2215 . 471263) (-2216 . 471183) (-2217 . 471105) (-2218 . 471046) + (-2219 . 470530) (-2220 . 470368) (-2221 . 470159) (-2222 . 469946) + (-2223 . 469894) (-2224 . 469717) (-2225 . 469433) (-2226 . 469350) + (-2227 . 469060) (-2228 . 468939) (-2229 . 468798) (-2230 . 468450) + (-2231 . 468378) (-2232 . 468347) (-2233 . 468263) (-2234 . 468130) + (-2235 . 467756) (-2236 . 467645) (-2237 . 467447) (-2238 . 467020) + (-2239 . 466874) (-2240 . 466680) (-2241 . 466509) (-2242 . 465745) + (-2243 . 465655) (-2244 . 465583) (-2245 . 465309) (-2246 . 465256) + (-2247 . 465128) (-2248 . 465079) (-2249 . 464336) (-2250 . 464090) + (-2251 . 464031) (-2252 . 462735) (-2253 . 462635) (-2254 . 462542) + (-2255 . 462416) (-2256 . 462214) (-2257 . 461898) (-2258 . 461680) + (-2259 . 461565) (-2260 . 461114) (-2261 . 461027) (-2262 . 460904) + (-2263 . 460821) (-2264 . 460769) (-2265 . 460716) (-2266 . 460597) + (-2267 . 460265) (-2268 . 460184) (-2269 . 460089) (-2270 . 460021) + (-2271 . 459950) (-2272 . 459898) (-2273 . 459864) (-2274 . 458295) + (-2275 . 458191) (-2276 . 458077) (-2277 . 457914) (-2278 . 457813) + (-2279 . 457756) (-2280 . 457133) (-2281 . 457030) (-2282 . 456870) + (-2283 . 456717) (-2284 . 456522) (-2285 . 456317) (-2286 . 456148) + (-2287 . 456054) (-2288 . 455983) (-2289 . 455637) (-2290 . 455532) + (-2291 . 455088) (-2292 . 455032) (-2293 . 454912) (-2294 . 454846) + (-2295 . 454548) (-2296 . 454367) (-2297 . 454244) (-2298 . 454189) + (-2299 . 452089) (-2300 . 452020) (-2301 . 451933) (-2302 . 451660) + (-2303 . 451573) (-2304 . 451493) (-2305 . 451441) (-2306 . 451388) + (-2307 . 451117) (-2308 . 450990) (-2309 . 450797) (-2310 . 450275) + (-2311 . 450145) (-2312 . 450111) (-2313 . 450045) (-2314 . 449959) + (-2315 . 449882) (-2316 . 449810) (-2317 . 449655) (-2318 . 449584) + (-2319 . 449485) (-2320 . 449254) (-2321 . 449161) (-2322 . 448918) + (-2323 . 448535) (-2324 . 448462) (-2325 . 448369) (-2326 . 447745) + (-2327 . 447638) (-2328 . 447551) (-2329 . 447496) (-2330 . 447443) + (-2331 . 447170) (-2332 . 447052) (-2333 . 447000) (-2334 . 446934) + (-2335 . 446882) (-2336 . 446776) (-2337 . 446695) (-2338 . 446643) + (-2339 . 446501) (-2340 . 446188) (-2341 . 446048) (-2342 . 445975) + (-2343 . 445509) (-2344 . 445456) (-2345 . 445298) (-2346 . 445136) + (-2347 . 444892) (-2348 . 444818) (-2349 . 444744) (-2350 . 444692) + (-2351 . 444634) (-2352 . 444551) (-2353 . 443916) (-2354 . 443882) + (-2355 . 443816) (-2356 . 443690) (-2357 . 443591) (-2358 . 443454) + (-2359 . 443280) (-2360 . 443213) (-2361 . 443043) (-2362 . 442635) + (-2363 . 442554) (-2364 . 442282) (-2365 . 440707) (-2366 . 440595) + (-2367 . 440253) (-2368 . 440079) (-2369 . 439734) (-2370 . 439591) + (-2371 . 439518) (-2372 . 439437) (-2373 . 439296) (-2374 . 439147) + (-2375 . 438976) (-2376 . 438820) (-2377 . 438456) (-2378 . 437964) + (-2379 . 437785) (-2380 . 437477) (-2381 . 437222) (-2382 . 437104) + (-2383 . 437031) (-2384 . 435794) (-2385 . 435571) (-2386 . 435345) + (-2387 . 435316) (-2388 . 434690) (-2389 . 434546) (-2390 . 434451) + (-2391 . 433816) (-2392 . 433739) (-2393 . 433637) (-2394 . 433492) + (-2395 . 433436) (-2396 . 433320) (-2397 . 433265) (-2398 . 433142) + (-2399 . 433065) (-2400 . 432919) (-2401 . 432845) (-2402 . 432773) + (-2403 . 432559) (-2404 . 432417) (-2405 . 432295) (-2406 . 432210) + (-2407 . 431944) (-2408 . 431892) (-2409 . 431826) (-2410 . 431771) + (-2411 . 431612) (-2412 . 431514) (-2413 . 431391) (-2414 . 431282) + (-2415 . 431185) (-2416 . 431118) (-2417 . 428210) (-2418 . 428029) + (-2419 . 427169) (-2420 . 427024) (-2421 . 426934) (-2422 . 426839) + (-2423 . 426715) (-2424 . 426572) (-2425 . 426501) (-2426 . 426353) + (-2427 . 426298) (-2428 . 425452) (-2429 . 425329) (-2430 . 425245) + (-2431 . 425129) (-2432 . 425034) (-2433 . 423832) (-2434 . 423780) + (-2435 . 423573) (-2436 . 423464) (-2437 . 419854) (-2438 . 419475) + (-2439 . 419248) (-2440 . 419104) (-2441 . 418897) (-2442 . 418808) + (-2443 . 418694) (-2444 . 418642) (-2445 . 417827) (-2446 . 417716) + (-2447 . 417436) (-2448 . 417363) (-2449 . 417174) (-2450 . 417033) + (-2451 . 416955) (-2452 . 416857) (-2453 . 416777) (-2454 . 416498) + (-2455 . 416438) (-2456 . 416274) (-2457 . 416163) (-2458 . 415917) + (-2459 . 415865) (-2460 . 415756) (-2461 . 415672) (-2462 . 415617) + (-2463 . 415413) (-2464 . 415361) (-2465 . 415276) (-2466 . 415191) + (-2467 . 414650) (-2468 . 414504) (-2469 . 414406) (-2470 . 414256) + (-2471 . 414222) (-2472 . 414171) (-2473 . 414087) (-2474 . 413755) + (-2475 . 413661) (-2476 . 413442) (-2477 . 413216) (-2478 . 413048) + (-2479 . 412953) (-2480 . 412887) (-2481 . 412778) (-2482 . 412704) + (-2483 . 408544) (-2484 . 408401) (-2485 . 408025) (-2486 . 407923) + (-2487 . 407687) (-2488 . 407357) (-2489 . 407305) (-2490 . 406955) + (-2491 . 406797) (-2492 . 406650) (-2493 . 406537) (-2494 . 406369) + (-2495 . 406251) (-2496 . 406150) (-2497 . 406036) (-2498 . 405906) + (-2499 . 405823) (-2500 . 405671) (-2501 . 405440) (-2502 . 405019) + (-2503 . 404932) (-2504 . 404754) (-2505 . 404606) (-2506 . 404500) + (-2507 . 404175) (-2508 . 404095) (-2509 . 403609) (-2510 . 403184) + (-2511 . 403013) (-2512 . 402952) (-2513 . 402676) (-2514 . 402548) + (-2515 . 402395) (-2516 . 402217) (-2517 . 402162) (-2518 . 401966) + (-2519 . 401846) (-2520 . 401371) (-2521 . 401316) (-2522 . 401132) + (-2523 . 400723) (-2524 . 400582) (-2525 . 400200) (-2526 . 400129) + (-2527 . 400101) (-2528 . 399510) (-2529 . 399116) (-2530 . 398776) + (-2531 . 398653) (-2532 . 398532) (-2533 . 398423) (-2534 . 398329) + (-2535 . 398204) (-2536 . 398155) (-2537 . 398050) (-2538 . 397977) + (-2539 . 397725) (-2540 . 397613) (-2541 . 397530) (-2542 . 397478) + (-2543 . 397379) (-2544 . 397320) (-2545 . 397246) (-2546 . 397154) + (-2547 . 397101) (-2548 . 396930) (-2549 . 396823) (-2550 . 396444) + (-2551 . 396218) (-2552 . 396125) (-2553 . 396031) (-2554 . 395937) + (-2555 . 395846) (-2556 . 395775) (-2557 . 395176) (-2558 . 395089) + (-2559 . 394948) (-2560 . 394818) (-2561 . 394706) (-2562 . 394033) + (-2563 . 393932) (-2564 . 393776) (-2565 . 393702) (-2566 . 393645) + (-2567 . 393562) (-2568 . 393463) (-2569 . 393295) (-2570 . 393223) + (-2571 . 393165) (-2572 . 393083) (-2573 . 393023) (-2574 . 392703) + (-2575 . 392604) (-2576 . 392501) (-2577 . 392190) (-2578 . 392137) + (-2579 . 391816) (-2580 . 391730) (** . 388653) (-2582 . 388139) + (-2583 . 387265) (-2584 . 387178) (-2585 . 387054) (-2586 . 386973) + (-2587 . 386785) (-2588 . 386639) (-2589 . 386501) (-2590 . 386113) + (-2591 . 385946) (-2592 . 385873) (-2593 . 385669) (-2594 . 385560) + (-2595 . 385454) (-2596 . 385266) (-2597 . 384961) (-2598 . 384730) + (-2599 . 384656) (-2600 . 384537) (-2601 . 384471) (-2602 . 384412) + (-2603 . 384359) (-2604 . 384112) (-2605 . 383745) (-2606 . 383501) + (-2607 . 383449) (-2608 . 383277) (-2609 . 383211) (-2610 . 383042) + (-2611 . 382931) (-2612 . 382840) (-2613 . 382717) (-2614 . 382559) + (-2615 . 382382) (-2616 . 382297) (-2617 . 382095) (-2618 . 381915) + (-2619 . 381418) (-2620 . 380888) (-2621 . 380762) (-2622 . 380734) + (-2623 . 380647) (-2624 . 380521) (-2625 . 380347) (-2626 . 380060) + (-2627 . 379879) (-2628 . 379826) (-2629 . 379752) (-2630 . 378681) + (-2631 . 378541) (-2632 . 378404) (-2633 . 378241) (-2634 . 378155) + (-2635 . 378012) (-2636 . 377885) (-2637 . 377762) (-2638 . 377657) + (-2639 . 377328) (-2640 . 377273) (-2641 . 377129) (-2642 . 377077) + (-2643 . 376904) (-2644 . 376713) (-2645 . 376639) (-2646 . 376580) + (-2647 . 376481) (-2648 . 376257) (-2649 . 376184) (-2650 . 376135) + (-2651 . 375891) (-2652 . 375808) (-2653 . 375532) (-2654 . 375373) + (-2655 . 374735) (-2656 . 374299) (-2657 . 373910) (-2658 . 373839) + (-2659 . 373701) (-2660 . 373649) (-2661 . 373586) (-2662 . 373537) + (-2663 . 373121) (-2664 . 373066) (-2665 . 372530) (-2666 . 372302) + (-2667 . 372043) (-2668 . 371896) (-2669 . 371429) (-2670 . 371376) + (-2671 . 371263) (-2672 . 371192) (-2673 . 371021) (-2674 . 370935) + (-2675 . 370826) (-2676 . 370510) (-2677 . 370315) (-2678 . 370260) + (-2679 . 366272) (-2680 . 366163) (-2681 . 366054) (-2682 . 365767) + (-2683 . 365039) (-2684 . 364952) (-2685 . 364734) (-2686 . 364655) + (-2687 . 364522) (-2688 . 364247) (-2689 . 364135) (-2690 . 363784) + (-2691 . 363532) (-2692 . 363458) (-2693 . 363328) (-2694 . 363049) + (-2695 . 363000) (-2696 . 362947) (-2697 . 362852) (-2698 . 361832) + (-2699 . 361464) (-2700 . 360976) (-2701 . 360422) (-2702 . 360394) + (-2703 . 359722) (-2704 . 359644) (-2705 . 359546) (-2706 . 359361) + (-2707 . 359194) (-2708 . 358615) (-2709 . 358268) (-2710 . 358037) + (-2711 . 357917) (-2712 . 357670) (-2713 . 357555) (-2714 . 357442) + (-2715 . 357151) (-2716 . 357032) (-2717 . 356619) (-2718 . 356553) + (-2719 . 356471) (-2720 . 356353) (-2721 . 356266) (-2722 . 356172) + (-2723 . 355813) (-2724 . 355430) (-2725 . 355293) (-2726 . 355219) + (-2727 . 355167) (-2728 . 354919) (-2729 . 354820) (-2730 . 354791) + (-2731 . 354614) (-2732 . 354557) (-2733 . 354352) (-2734 . 354321) + (-2735 . 353840) (-2736 . 353787) (-2737 . 353438) (-2738 . 353367) + (-2739 . 353248) (-2740 . 353119) (-2741 . 353016) (-2742 . 352416) + (-2743 . 352160) (-2744 . 351773) (-2745 . 351661) (-2746 . 351590) + (-2747 . 351505) (-2748 . 351391) (-2749 . 351324) (-2750 . 351264) + (-2751 . 351106) (-2752 . 351010) (-2753 . 350854) (-2754 . 350766) + (-2755 . 350576) (-2756 . 350405) (-2757 . 350318) (-2758 . 350103) + (-2759 . 350043) (-2760 . 349950) (-2761 . 348886) (-2762 . 348780) + (-2763 . 348582) (-2764 . 348448) (-2765 . 348303) (-2766 . 348188) + (-2767 . 347941) (-2768 . 347844) (-2769 . 347386) (-2770 . 346966) + (-2771 . 346804) (-2772 . 346665) (-2773 . 346443) (-2774 . 346374) + (-2775 . 346259) (-2776 . 345866) (-2777 . 345768) (-2778 . 345148) + (-2779 . 344873) (-2780 . 344669) (-2781 . 344375) (-2782 . 344304) + (-2783 . 344106) (-2784 . 343916) (-2785 . 343217) (-2786 . 343084) + (-2787 . 342691) (-2788 . 342520) (-2789 . 342245) (-2790 . 342171) + (-2791 . 341991) (-2792 . 341752) (-2793 . 341675) (-2794 . 341578) + (-2795 . 341244) (-2796 . 341161) (-2797 . 340484) (-2798 . 340377) + (-2799 . 340160) (-2800 . 340046) (-2801 . 339930) (-2802 . 339747) + (-2803 . 339503) (-2804 . 339166) (-2805 . 338976) (-2806 . 338704) + (-2807 . 338619) (-2808 . 338510) (-2809 . 338458) (-2810 . 338340) + (-2811 . 338240) (-2812 . 338166) (-2813 . 337922) (-2814 . 337839) + (-2815 . 337415) (-2816 . 337381) (-2817 . 337263) (-2818 . 337193) + (-2819 . 337156) (-2820 . 336891) (-2821 . 336685) (-2822 . 336611) + (-2823 . 336189) (-2824 . 336064) (-2825 . 335951) (-2826 . 335655) + (-2827 . 335499) (-2828 . 335198) (-2829 . 335145) (-2830 . 335072) + (-2831 . 334954) (-2832 . 334862) (-2833 . 334755) (-2834 . 334669) + (-2835 . 334567) (-2836 . 334280) (-2837 . 333099) (-2838 . 333033) + (-2839 . 332959) (-2840 . 332905) (-2841 . 332841) (-2842 . 332781) + (-2843 . 332657) (-2844 . 332565) (-2845 . 332428) (-2846 . 332189) + (-2847 . 332033) (-2848 . 331830) (-2849 . 331760) (-2850 . 331644) + (-2851 . 331513) (-2852 . 331286) (-2853 . 331132) (-2854 . 331034) + (-2855 . 330949) (-2856 . 330857) (-2857 . 330675) (-2858 . 330643) + (-2859 . 330519) (-2860 . 330385) (-2861 . 330297) (-2862 . 329468) + (-2863 . 329236) (-2864 . 329084) (-2865 . 328904) (-2866 . 328643) + (-2867 . 328418) (-2868 . 328111) (-2869 . 328034) (-2870 . 327709) + (-2871 . 327551) (-2872 . 327483) (-2873 . 327431) (-2874 . 327321) + (-2875 . 327200) (-2876 . 326978) (-2877 . 326883) (-2878 . 326754) + (-2879 . 322692) (-2880 . 322564) (-2881 . 322505) (-2882 . 322380) + (-2883 . 322209) (-2884 . 322114) (-2885 . 321984) (-2886 . 321677) + (-2887 . 321381) (-2888 . 321318) (-2889 . 321209) (-2890 . 321069) + (-2891 . 320951) (-2892 . 320753) (-2893 . 320701) (-2894 . 320605) + (-2895 . 320496) (-2896 . 320423) (-2897 . 319173) (-2898 . 318921) + (-2899 . 318745) (-2900 . 318664) (-2901 . 318447) (-2902 . 317856) + (-2903 . 317800) (-2904 . 317772) (-2905 . 317670) (-2906 . 317479) + (-2907 . 317262) (-2908 . 317193) (-2909 . 317165) (-2910 . 316996) + (-2911 . 316912) (-2912 . 316811) (-2913 . 316704) (-2914 . 316130) + (-2915 . 316045) (-2916 . 313700) (-2917 . 313582) (-2918 . 313497) + (-2919 . 313429) (-2920 . 313206) (-2921 . 313119) (-2922 . 313057) + (-2923 . 312987) (-2924 . 312609) (-2925 . 312490) (-2926 . 312360) + (-2927 . 311994) (-2928 . 311846) (-2929 . 311533) (-2930 . 311418) + (-2931 . 311266) (-2932 . 309412) (-2933 . 309257) (-2934 . 309128) + (-2935 . 308773) (-2936 . 308645) (-2937 . 308593) (-2938 . 308213) + (-2939 . 307798) (-2940 . 307663) (-2941 . 307517) (-2942 . 307335) + (-2943 . 307307) (-2944 . 306197) (-2945 . 306079) (-2946 . 305956) + (-2947 . 305447) (-2948 . 305328) (-2949 . 305225) (-2950 . 305014) + (-2951 . 304852) (-2952 . 304770) (-2953 . 304559) (-2954 . 304398) + (-2955 . 304119) (-2956 . 303961) (-2957 . 303837) (-2958 . 303769) + (-2959 . 303686) (-2960 . 303549) (-2961 . 303447) (-2962 . 303365) + (-2963 . 303270) (-2964 . 303055) (-2965 . 302510) (-2966 . 301318) + (-2967 . 301235) (-2968 . 301148) (-2969 . 299702) (-2970 . 299628) + (-2971 . 299545) (-2972 . 299450) (-2973 . 299160) (-2974 . 299045) + (-2975 . 298631) (-2976 . 298537) (-2977 . 298471) (-2978 . 297952) + (-2979 . 297792) (-2980 . 297720) (-2981 . 297470) (-2982 . 297417) + (-2983 . 297070) (-2984 . 297012) (-2985 . 296911) (-2986 . 296735) + (-2987 . 296423) (-2988 . 296135) (-2989 . 296067) (-2990 . 295915) + (-2991 . 295848) (-2992 . 295680) (-2993 . 295583) (-2994 . 295531) + (-2995 . 295428) (-2996 . 294757) (-2997 . 294583) (-2998 . 294130) + (-2999 . 294047) (-3000 . 293888) (-3001 . 293836) (-3002 . 293641) + (-3003 . 293571) (-3004 . 293491) (-3005 . 293224) (-3006 . 293118) + (-3007 . 292875) (-3008 . 292776) (-3009 . 292584) (-3010 . 292410) + (-3011 . 292352) (-3012 . 292301) (-3013 . 292223) (-3014 . 292167) + (-3015 . 292089) (-3016 . 292040) (-3017 . 291945) (-3018 . 291884) + (-3019 . 291762) (-3020 . 291238) (-3021 . 291085) (-3022 . 290930) + (-3023 . 290827) (-3024 . 290771) (-3025 . 290645) (-3026 . 290516) + (-3027 . 290448) (-3028 . 290307) (-3029 . 290220) (-3030 . 290106) + (-3031 . 289828) (-3032 . 289661) (-3033 . 289515) (-3034 . 289405) + (-3035 . 289352) (-3036 . 289147) (-3037 . 289076) (-3038 . 288858) + (-3039 . 288686) (-3040 . 286924) (-3041 . 286866) (-3042 . 286763) + (-3043 . 286561) (-3044 . 286464) (-3045 . 286190) (-3046 . 286138) + (-3047 . 285941) (-3048 . 285754) (-3049 . 285592) (-3050 . 285433) + (-3051 . 285326) (-3052 . 284703) (-3053 . 284515) (-3054 . 284379) + (-3055 . 284180) (-3056 . 284085) (-3057 . 284012) (-3058 . 283901) + (-3059 . 283491) (-3060 . 283300) (-3061 . 283239) (-3062 . 283144) + (-3063 . 283067) (-3064 . 282520) (-3065 . 282376) (-3066 . 282076) + (-3067 . 281894) (-3068 . 281464) (-3069 . 281282) (-3070 . 281106) + (-3071 . 281057) (-3072 . 280995) (-3073 . 280943) (-3074 . 280837) + (-3075 . 280697) (-3076 . 280571) (-3077 . 280419) (-3078 . 280038) + (-3079 . 279969) (-3080 . 279816) (-3081 . 279603) (-3082 . 279451) + (-3083 . 279289) (-3084 . 279145) (-3085 . 278741) (-3086 . 278522) + (-3087 . 277182) (-3088 . 277098) (-3089 . 276726) (-3090 . 276591) + (-3091 . 276182) (-3092 . 276087) (-3093 . 275985) (-3094 . 275916) + (-3095 . 275834) (-3096 . 275624) (-3097 . 275354) (-3098 . 275062) + (-3099 . 274993) (-3100 . 274889) (-3101 . 274794) (-3102 . 274544) + (-3103 . 274432) (-3104 . 274404) (-3105 . 274348) (-3106 . 274018) + (-3107 . 273930) (-3108 . 273777) (-3109 . 273711) (-3110 . 273659) + (-3111 . 273475) (-3112 . 273301) (-3113 . 273088) (-3114 . 273011) + (-3115 . 272310) (-3116 . 272237) (-3117 . 271993) (-3118 . 271725) + (-3119 . 271340) (-3120 . 271182) (-3121 . 270736) (-3122 . 267955) + (-3123 . 267897) (-3124 . 267514) (-3125 . 267457) (-3126 . 267307) + (-3127 . 267230) (-3128 . 267165) (-3129 . 266943) (-3130 . 266838) + (-3131 . 266761) (-3132 . 266709) (-3133 . 266522) (-3134 . 266428) + (-3135 . 266379) (-3136 . 266326) (-3137 . 266208) (-3138 . 265826) + (-3139 . 265597) (-3140 . 265524) (-3141 . 265348) (-3142 . 264964) + (-3143 . 264898) (-3144 . 264788) (-3145 . 264714) (-3146 . 264627) + (-3147 . 263631) (-3148 . 263501) (-3149 . 263164) (-3150 . 262948) + (-3151 . 262588) (-3152 . 262532) (-3153 . 262334) (-3154 . 262247) + (-3155 . 262153) (-3156 . 261936) (-3157 . 261757) (-3158 . 261705) + (-3159 . 261368) (-3160 . 261264) (-3161 . 261149) (-3162 . 261030) + (-3163 . 260808) (-3164 . 260704) (-3165 . 260595) (-3166 . 260503) + (-3167 . 260256) (-3168 . 260103) (-3169 . 259517) (-3170 . 259451) + (-3171 . 259284) (-3172 . 259065) (-3173 . 258619) (-3174 . 258536) + (-3175 . 258502) (-3176 . 258371) (-3177 . 258266) (-3178 . 257902) + (-3179 . 257772) (-3180 . 257688) (-3181 . 257589) (-3182 . 257518) + (-3183 . 257339) (-3184 . 257266) (-3185 . 257114) (-3186 . 257085) + (-3187 . 256926) (-3188 . 256647) (-3189 . 255466) (-3190 . 255370) + (-3191 . 255308) (-3192 . 255141) (-3193 . 254825) (-3194 . 254740) + (-3195 . 254619) (-3196 . 254549) (-3197 . 254432) (-3198 . 254313) + (-3199 . 254233) (-3200 . 254128) (-3201 . 254097) (-3202 . 254002) + (-3203 . 253268) (-3204 . 252995) (-3205 . 252812) (-3206 . 252697) + (-3207 . 252427) (-3208 . 252148) (-3209 . 252063) (-3210 . 251824) + (-3211 . 251744) (-3212 . 251700) (-3213 . 251561) (-3214 . 251495) + (-3215 . 251408) (-3216 . 251336) (-3217 . 251160) (-3218 . 251031) + (-3219 . 250273) (-3220 . 250121) (-3221 . 250093) (-3222 . 250006) + (-3223 . 244907) (-3224 . 244563) (-3225 . 244404) (-3226 . 243797) + (-3227 . 243322) (-3228 . 243248) (-3229 . 243102) (-3230 . 242883) + (-3231 . 242854) (-3232 . 241935) (-3233 . 241792) (-3234 . 241574) + (-3235 . 241358) (-3236 . 240394) (-3237 . 240339) (-3238 . 240287) + (-3239 . 240185) (-3240 . 240102) (-3241 . 239888) (-3242 . 239821) + (-3243 . 239641) (-3244 . 239554) (-3245 . 239445) (-3246 . 239287) + (-3247 . 239087) (-3248 . 239018) (-3249 . 238756) (-3250 . 238673) + (-3251 . 238599) (-3252 . 238400) (-3253 . 238245) (-3254 . 238002) + (-3255 . 237916) (-3256 . 237735) (-3257 . 237677) (-3258 . 237625) + (-3259 . 236970) (-3260 . 236920) (-3261 . 236704) (-3262 . 236532) + (-3263 . 236405) (-3264 . 236252) (-3265 . 236200) (-3266 . 235867) + (-3267 . 235162) (-3268 . 235134) (-3269 . 234820) (-3270 . 234527) + (-3271 . 234118) (-12 . 233946) (-3273 . 233839) (-3274 . 233788) + (-3275 . 233472) (-3276 . 233349) (-3277 . 233055) (-3278 . 231955) + (-3279 . 231906) (-3280 . 231739) (-3281 . 231581) (-3282 . 231375) + (-3283 . 231157) (-3284 . 231025) (-3285 . 230141) (-3286 . 230061) + (-3287 . 229977) (-3288 . 229616) (-3289 . 229377) (-3290 . 229327) + (-3291 . 229242) (-3292 . 229183) (-3293 . 228579) (-3294 . 228367) + (-3295 . 228311) (-3296 . 228120) (-3297 . 227999) (-3298 . 227971) + (-3299 . 227870) (-3300 . 227706) (-3301 . 227574) (-3302 . 227392) + (-3303 . 227315) (-3304 . 226849) (-3305 . 226815) (-3306 . 226577) + (-3307 . 226436) (-3308 . 226049) (-3309 . 225831) (-3310 . 225749) + (-3311 . 225622) (-3312 . 225554) (-3313 . 224779) (-3314 . 224470) + (-3315 . 224332) (-3316 . 224280) (-3317 . 223984) (-3318 . 223917) + (-3319 . 223889) (-3320 . 223730) (-3321 . 223647) (-3322 . 223390) + (-3323 . 223132) (-3324 . 222800) (-3325 . 222696) (-3326 . 222445) + (-3327 . 222266) (-3328 . 222141) (-3329 . 222040) (-3330 . 221827) + (-3331 . 221775) (-3332 . 221598) (-3333 . 221513) (-3334 . 221369) + (-3335 . 221231) (-3336 . 221083) (-3337 . 221033) (-3338 . 220789) + (-3339 . 220529) (-3340 . 220476) (-3341 . 220351) (-3342 . 220261) + (-3343 . 220091) (-3344 . 219970) (-3345 . 219939) (-3346 . 219124) + (-3347 . 218940) (-3348 . 218639) (-3349 . 218190) (-3350 . 218103) + (-3351 . 218050) (-3352 . 217890) (-3353 . 217788) (-3354 . 217703) + (-3355 . 217634) (-3356 . 217425) (-3357 . 217311) (-3358 . 217258) + (-3359 . 217190) (-3360 . 217087) (-3361 . 216946) (-3362 . 216891) + (-3363 . 216734) (-3364 . 216521) (-3365 . 216361) (-3366 . 216203) + (* . 211680) (-3368 . 211615) (-3369 . 211074) (-3370 . 211009) + (-3371 . 210874) (-3372 . 210636) (-3373 . 210514) (-3374 . 210367) + (-3375 . 210165) (-3376 . 209972) (-3377 . 209899) (-3378 . 209814) + (-3379 . 209607) (-3380 . 209478) (-3381 . 209157) (-3382 . 209048) + (-3383 . 208975) (-3384 . 208925) (-3385 . 208800) (-3386 . 208717) + (-3387 . 208526) (-3388 . 208405) (-3389 . 208298) (-3390 . 208191) + (-3391 . 208000) (-3392 . 207896) (-3393 . 207740) (-3394 . 207189) + (-3395 . 207105) (-3396 . 206970) (-3397 . 206852) (-3398 . 206781) + (-3399 . 206691) (-3400 . 206621) (-3401 . 206593) (-3402 . 206503) + (-3403 . 206451) (-3404 . 206350) (-3405 . 206088) (-3406 . 206017) + (-3407 . 205961) (-3408 . 205840) (-3409 . 205243) (-3410 . 205068) + (-3411 . 205040) (-3412 . 204933) (-3413 . 204881) (-3414 . 204758) + (-3415 . 204641) (-3416 . 204503) (-3417 . 197549) (-3418 . 197370) + (-3419 . 197135) (-3420 . 197037) (-3421 . 196950) (-3422 . 196842) + (-3423 . 196465) (-3424 . 196394) (-3425 . 196366) (-3426 . 196310) + (-3427 . 196231) (-3428 . 196086) (-3429 . 195990) (-3430 . 195910) + (-3431 . 195410) (-3432 . 195248) (-3433 . 195123) (-3434 . 194951) + (-3435 . 194878) (-3436 . 194767) (-3437 . 194712) (-3438 . 194557) + (-3439 . 194462) (-3440 . 194377) (-3441 . 193768) (-3442 . 193544) + (-3443 . 193478) (-3444 . 193057) (-3445 . 192807) (-3446 . 192722) + (-3447 . 192673) (-3448 . 192525) (-3449 . 192408) (-3450 . 189993) + (-3451 . 189914) (-3452 . 189862) (-3453 . 189777) (-3454 . 189475) + (-3455 . 189310) (-3456 . 189226) (-3457 . 189192) (-3458 . 188966) + (-3459 . 188846) (-3460 . 188721) (-3461 . 188668) (-3462 . 188233) + (-3463 . 188124) (-3464 . 187609) (-3465 . 187346) (-3466 . 187281) + (-3467 . 187187) (-3468 . 187113) (-3469 . 186976) (-3470 . 186904) + (-3471 . 186827) (-3472 . 186757) (-3473 . 186597) (-3474 . 181280) + (-3475 . 181147) (-3476 . 180766) (-3477 . 180664) (-3478 . 180551) + (-3479 . 180386) (-3480 . 180088) (-3481 . 179972) (-3482 . 179839) + (-3483 . 179743) (-3484 . 179606) (-3485 . 179003) (-3486 . 178595) + (-3487 . 178425) (-3488 . 178366) (-3489 . 178229) (-3490 . 178073) + (-3491 . 177925) (-3492 . 177731) (-3493 . 177632) (-3494 . 177273) + (-3495 . 176994) (-3496 . 176866) (-3497 . 176767) (-3498 . 175883) + (-3499 . 175744) (-3500 . 175638) (-3501 . 175404) (-3502 . 175238) + (-3503 . 174798) (-3504 . 174661) (-3505 . 174469) (-3506 . 174342) + (-3507 . 173632) (-3508 . 173410) (-3509 . 173376) (-3510 . 173299) + (-3511 . 173184) (-3512 . 173004) (-3513 . 172886) (-3514 . 172676) + (-3515 . 172555) (-3516 . 172316) (-3517 . 167795) (-3518 . 167672) + (-3519 . 167615) (-3520 . 167562) (-3521 . 167427) (-3522 . 167319) + (-3523 . 165167) (-3524 . 165066) (-3525 . 164961) (-3526 . 164470) + (-3527 . 164173) (-3528 . 163575) (-3529 . 163377) (-3530 . 163305) + (-3531 . 163246) (-3532 . 163138) (-3533 . 163058) (-3534 . 162922) + (-3535 . 162792) (-3536 . 162685) (-3537 . 162390) (-3538 . 162333) + (-3539 . 162276) (-3540 . 162059) (-3541 . 161952) (-3542 . 161707) + (-3543 . 161574) (-3544 . 161490) (-3545 . 161411) (-3546 . 161359) + (-3547 . 160204) (-3548 . 159913) (-3549 . 159212) (-3550 . 159138) + (-3551 . 158888) (-3552 . 158546) (-3553 . 157986) (-3554 . 157710) + (-3555 . 157546) (-3556 . 157208) (-3557 . 156896) (-3558 . 156262) + (-3559 . 156162) (-3560 . 156050) (-3561 . 155777) (-3562 . 155720) + (-3563 . 155590) (-3564 . 155064) (-3565 . 154854) (-3566 . 154432) + (-3567 . 154355) (-3568 . 154258) (-3569 . 153933) (-3570 . 153818) + (-3571 . 153636) (-3572 . 153305) (-3573 . 153253) (-3574 . 153130) + (-3575 . 152827) (-3576 . 152718) (-3577 . 152644) (-3578 . 152528) + (-3579 . 152497) (-3580 . 151695) (-3581 . 151602) (-3582 . 151509) + (-3583 . 151410) (-3584 . 151359) (-3585 . 151031) (-3586 . 150725) + (-3587 . 150432) (-3588 . 150326) (-3589 . 150277) (-3590 . 150176) + (-3591 . 149675) (-3592 . 149572) (-3593 . 149298) (-3594 . 149227) + (-3595 . 149071) (-3596 . 148970) (-3597 . 148936) (-3598 . 148818) + (-3599 . 148468) (-3600 . 148440) (-3601 . 148335) (-3602 . 148301) + (-3603 . 148167) (-3604 . 147727) (-3605 . 147508) (-3606 . 147405) + (-3607 . 147272) (-3608 . 147151) (-3609 . 146821) (-3610 . 146750) + (-3611 . 146634) (-3612 . 132571) (-3613 . 132444) (-3614 . 131174) + (-3615 . 131119) (-3616 . 130697) (-3617 . 130574) (-3618 . 130425) + (-3619 . 130267) (-3620 . 129607) (-3621 . 129445) (-3622 . 129317) + (-3623 . 128958) (-3624 . 128623) (-3625 . 128313) (-3626 . 128009) + (-3627 . 127902) (-3628 . 127874) (-3629 . 127603) (-3630 . 127306) + (-3631 . 127082) (-3632 . 127012) (-3633 . 126770) (-3634 . 126718) + (-3635 . 126609) (-3636 . 126444) (-3637 . 126334) (-3638 . 126261) + (-3639 . 126008) (-3640 . 125942) (-3641 . 125440) (-3642 . 124833) + (-3643 . 124730) (-3644 . 124593) (-3645 . 124450) (-3646 . 124360) + (-3647 . 124140) (-3648 . 124109) (-3649 . 123996) (-3650 . 123923) + (-3651 . 123857) (-3652 . 123369) (-3653 . 123274) (-3654 . 123089) + (-3655 . 122774) (-3656 . 122721) (-3657 . 122650) (-3658 . 122404) + (-3659 . 122298) (-3660 . 122218) (-3661 . 122107) (-3662 . 121882) + (-3663 . 117179) (-3664 . 116957) (-3665 . 116891) (-3666 . 116832) + (-3667 . 116688) (-3668 . 116619) (-3669 . 116552) (-3670 . 116313) + (-3671 . 114948) (-3672 . 114871) (-3673 . 114770) (-3674 . 114682) + (-3675 . 114480) (-3676 . 114392) (-3677 . 114272) (-3678 . 114129) + (-3679 . 113816) (-3680 . 113757) (-3681 . 113677) (-3682 . 113559) + (-3683 . 113489) (-3684 . 113038) (-3685 . 112970) (-3686 . 111965) + (-3687 . 111913) (-3688 . 111830) (-3689 . 111498) (-3690 . 111442) + (-3691 . 111247) (-3692 . 111124) (-3693 . 111061) (-3694 . 110917) + (-3695 . 110698) (-3696 . 110645) (-3697 . 110501) (-3698 . 109538) + (-3699 . 109371) (-3700 . 109298) (-3701 . 109214) (-3702 . 109136) + (-3703 . 109065) (-3704 . 109012) (-3705 . 108942) (-3706 . 108697) + (-3707 . 108567) (-3708 . 108414) (-3709 . 108362) (-3710 . 108217) + (-3711 . 107476) (-3712 . 107309) (-3713 . 107225) (-3714 . 107063) + (-3715 . 106983) (-3716 . 106789) (-3717 . 105249) (-3718 . 105178) + (-3719 . 105021) (-3720 . 104889) (-3721 . 104819) (-3722 . 104720) + (-3723 . 104641) (-3724 . 104155) (-3725 . 103864) (-3726 . 103539) + (-3727 . 103045) (-3728 . 102814) (-3729 . 102664) (-3730 . 102586) + (-3731 . 102226) (-3732 . 102082) (-3733 . 101955) (-3734 . 101885) + (-3735 . 101638) (-3736 . 101092) (-3737 . 100908) (-3738 . 100172) + (-3739 . 99734) (-3740 . 99590) (-3741 . 99419) (-3742 . 99346) + (-3743 . 99155) (-3744 . 99100) (-3745 . 99049) (-3746 . 98194) + (-3747 . 97129) (-3748 . 97042) (-3749 . 96881) (-3750 . 96548) + (-3751 . 96348) (-3752 . 96196) (-3753 . 96127) (-3754 . 96000) + (-3755 . 95837) (-3756 . 95752) (-3757 . 95589) (-3758 . 95482) + (-3759 . 95122) (-3760 . 94996) (-3761 . 94940) (-3762 . 94869) + (-3763 . 94792) (-3764 . 94730) (-3765 . 94325) (-3766 . 94245) + (-3767 . 93504) (-3768 . 93323) (-3769 . 93226) (-3770 . 93143) + (-3771 . 92762) (-3772 . 92648) (-3773 . 92596) (-3774 . 91958) + (-3775 . 91857) (-3776 . 91678) (-3777 . 91534) (-3778 . 91345) + (-3779 . 91291) (-3780 . 90603) (-3781 . 90423) (-3782 . 90323) + (-3783 . 90157) (-3784 . 89954) (-3785 . 89813) (-3786 . 88653) + (-3787 . 88530) (-3788 . 88445) (-3789 . 88368) (-3790 . 87559) + (-3791 . 87528) (-3792 . 87398) (-3793 . 86822) (-3794 . 86337) + (-3795 . 86241) (-3796 . 86144) (-3797 . 86047) (-3798 . 85955) + (-3799 . 85841) (-3800 . 85789) (-3801 . 85712) (-3802 . 85466) + (-3803 . 85253) (-3804 . 84976) (-3805 . 84400) (-3806 . 84029) + (-3807 . 83845) (-3808 . 83692) (-3809 . 83642) (-3810 . 82519) + (-3811 . 82465) (-3812 . 82437) (-3813 . 82269) (-3814 . 82206) + (-3815 . 82172) (-3816 . 81596) (-3817 . 81543) (-3818 . 81435) + (-3819 . 81246) (-3820 . 81153) (-3821 . 81080) (-3822 . 80968) + (-3823 . 80760) (-3824 . 80732) (-3825 . 80588) (-3826 . 80443) + (-3827 . 80329) (-3828 . 79643) (-3829 . 79545) (-3830 . 79390) + (-3831 . 79303) (-3832 . 79167) (-3833 . 78983) (-3834 . 78826) + (-3835 . 78575) (-3836 . 78431) (-3837 . 78261) (-3838 . 77575) + (-3839 . 77495) (-3840 . 77392) (-3841 . 77249) (-3842 . 77178) + (-3843 . 77064) (-3844 . 76712) (-3845 . 76652) (-3846 . 74700) + (-3847 . 73951) (-3848 . 73879) (-3849 . 73770) (-3850 . 73632) + (-3851 . 73141) (-3852 . 72998) (-3853 . 72969) (-3854 . 72871) + (-3855 . 72776) (-3856 . 72669) (-3857 . 72413) (-3858 . 72311) + (-3859 . 71737) (-3860 . 71657) (-3861 . 71269) (-3862 . 71127) + (-3863 . 70459) (-3864 . 69711) (-3865 . 69614) (-3866 . 69473) + (-3867 . 69277) (-3868 . 69227) (-3869 . 68711) (-3870 . 68591) + (-3871 . 68347) (-3872 . 67597) (-3873 . 67545) (-3874 . 67493) + (-3875 . 67338) (-3876 . 67192) (-3877 . 66889) (-3878 . 66562) + (-3879 . 66308) (-3880 . 66018) (-3881 . 65795) (-3882 . 65764) + (-3883 . 65459) (-3884 . 65314) (-3885 . 65231) (-3886 . 65175) + (-3887 . 65078) (-3888 . 65022) (-3889 . 64994) (-3890 . 64935) + (-3891 . 64651) (-3892 . 62872) (-3893 . 62631) (-3894 . 62548) + (-3895 . 62403) (-3896 . 62308) (-3897 . 62253) (-3898 . 62197) + (-3899 . 62126) (-3900 . 62009) (-3901 . 61880) (-3902 . 61807) + (-3903 . 61748) (-3904 . 61617) (-3905 . 61407) (-3906 . 60610) + (-3907 . 60510) (-3908 . 60430) (-3909 . 60321) (-3910 . 59706) + (-3911 . 59623) (-3912 . 59540) (-3913 . 59488) (-3914 . 59161) + (-3915 . 59074) (-3916 . 58663) (-3917 . 58611) (-3918 . 58558) + (-3919 . 58392) (-3920 . 58300) (-3921 . 58228) (-3922 . 57911) + (-3923 . 57614) (-3924 . 57560) (-3925 . 57405) (-3926 . 57293) + (-3927 . 57186) (-3928 . 57088) (-3929 . 56956) (-3930 . 56857) + (-3931 . 56777) (-3932 . 56555) (-3933 . 56503) (-3934 . 56401) + (-3935 . 56272) (-3936 . 56156) (-3937 . 56049) (-3938 . 55994) + (-3939 . 55240) (-3940 . 55156) (-3941 . 55030) (-3942 . 54971) + (-3943 . 54877) (-3944 . 54225) (-3945 . 54120) (-3946 . 54040) + (-3947 . 53952) (-3948 . 53865) (-3949 . 53778) (-3950 . 53725) + (-3951 . 53645) (-3952 . 53486) (-3953 . 53375) (-3954 . 53210) + (-3955 . 53020) (-3956 . 52858) (-3957 . 52796) (-3958 . 52649) + (-3959 . 52597) (-3960 . 52418) (-3961 . 52091) (-3962 . 52035) + (-3963 . 51789) (-3964 . 51729) (-3965 . 51635) (-3966 . 51553) + (-3967 . 51336) (-3968 . 51286) (-3969 . 51133) (-3970 . 51059) + (-3971 . 51007) (-3972 . 50899) (-3973 . 50145) (-3974 . 49716) + (-3975 . 49629) (-3976 . 49472) (-3977 . 49410) (-3978 . 49287) + (-3979 . 49184) (-3980 . 48386) (-3981 . 48065) (-3982 . 47986) + (-3983 . 47718) (-3984 . 47530) (-3985 . 47457) (-3986 . 47363) + (-3987 . 47244) (-3988 . 46868) (-3989 . 46772) (-3990 . 46568) + (-3991 . 46515) (-3992 . 46400) (-3993 . 46372) (-3994 . 46341) + (-3995 . 46150) (-3996 . 45917) (-3997 . 45787) (-3998 . 45717) + (-3999 . 45624) (-4000 . 45551) (-4001 . 45456) (-4002 . 45347) + (-4003 . 45209) (-4004 . 45066) (-4005 . 45014) (-4006 . 44409) + (-4007 . 44103) (-4008 . 43678) (-4009 . 43627) (-4010 . 43542) + (-4011 . 43386) (-4012 . 43322) (-4013 . 43183) (-4014 . 43056) + (-4015 . 43007) (-4016 . 42808) (-4017 . 42649) (-4018 . 42579) + (-4019 . 42492) (-4020 . 42421) (-4021 . 42288) (-4022 . 41830) + (-4023 . 41747) (-4024 . 41679) (-4025 . 41570) (-4026 . 41415) + (-4027 . 41362) (-4028 . 41211) (-4029 . 40332) (-4030 . 40173) + (-4031 . 39995) (-4032 . 39345) (-4033 . 39294) (-4034 . 38802) + (-4035 . 38728) (-4036 . 38604) (-4037 . 38435) (-4038 . 37923) + (-4039 . 37718) (-4040 . 37662) (-4041 . 36797) (-4042 . 36745) + (-4043 . 36658) (-4044 . 36563) (-4045 . 36449) (-4046 . 36396) + (-4047 . 36343) (-4048 . 36240) (-4049 . 35800) (-4050 . 35745) + (-4051 . 35450) (-4052 . 35398) (-4053 . 35330) (-4054 . 34882) + (-4055 . 34741) (-4056 . 34577) (-4057 . 34465) (-4058 . 34423) + (-4059 . 34301) (-4060 . 34204) (-4061 . 34018) (-4062 . 33877) + (-4063 . 33804) (-4064 . 33697) (-4065 . 33594) (-4066 . 33458) + (-4067 . 33403) (-4068 . 33259) (-4069 . 33103) (-4070 . 32730) + (-4071 . 32652) (-4072 . 32341) (-4073 . 31503) (-4074 . 31406) + (-4075 . 30222) (-4076 . 30115) (-4077 . 29949) (-4078 . 29590) + (-4079 . 29370) (-4080 . 29285) (-4081 . 29213) (-4082 . 28942) + (-4083 . 28585) (-4084 . 28490) (-4085 . 28437) (-4086 . 28308) + (-4087 . 27130) (-4088 . 27102) (-4089 . 26999) (-4090 . 26902) + (-4091 . 26708) (-4092 . 26446) (-4093 . 26076) (-4094 . 26023) + (-4095 . 25765) (-4096 . 25576) (-4097 . 24390) (-4098 . 22192) + (-4099 . 22095) (-4100 . 21935) (-4101 . 21836) (-4102 . 21593) + (-4103 . 21471) (-4104 . 21278) (-4105 . 21178) (-4106 . 21054) + (-4107 . 20922) (-4108 . 20853) (-4109 . 20801) (-4110 . 20670) + (-4111 . 20116) (-4112 . 19683) (-4113 . 18259) (-4114 . 18012) + (-4115 . 17941) (-4116 . 17892) (-4117 . 17792) (-4118 . 17721) + (-4119 . 17495) (-4120 . 17386) (-4121 . 17301) (-4122 . 17230) + (-4123 . 17120) (-4124 . 16789) (-4125 . 16565) (-4126 . 16468) + (-4127 . 16298) (-4128 . 16135) (-4129 . 15942) (-4130 . 15890) + (-4131 . 15838) (-4132 . 15731) (-4133 . 15621) (-4134 . 15528) + (-4135 . 15430) (-4136 . 15329) (-4137 . 15245) (-4138 . 15178) + (-4139 . 15023) (-4140 . 14950) (-4141 . 14847) (-4142 . 14764) + (-4143 . 14691) (-4144 . 14614) (-4145 . 14541) (-4146 . 14411) + (-4147 . 14355) (-4148 . 14225) (-4149 . 14073) (-4150 . 13972) + (-4151 . 13898) (-4152 . 13821) (-4153 . 13738) (-4154 . 13631) + (-4155 . 13506) (-4156 . 13452) (-4157 . 13138) (-4158 . 12140) + (-4159 . 11976) (-4160 . 11782) (-4161 . 11699) (-4162 . 11449) + (-4163 . 11340) (-4164 . 11247) (-4165 . 11185) (-4166 . 10931) + (-4167 . 10850) (-4168 . 10660) (-4169 . 10488) (-4170 . 10339) + (-4171 . 10230) (-4172 . 9709) (-4173 . 9543) (-4174 . 9250) + (-4175 . 8913) (-4176 . 8833) (-4177 . 8660) (-4178 . 8008) + (-4179 . 7797) (-4180 . 7625) (-4181 . 7242) (-4182 . 7187) + (-4183 . 7150) (-4184 . 7032) (-4185 . 6958) (-4186 . 6930) + (-4187 . 6505) (-4188 . 6350) (-4189 . 6226) (-4190 . 5740) + (-4191 . 5568) (-4192 . 5510) (-4193 . 5397) (-4194 . 5363) + (-4195 . 5240) (-4196 . 5169) (-4197 . 4827) (-4198 . 4774) + (-4199 . 4662) (-4200 . 4413) (-4201 . 4320) (-4202 . 4217) + (-4203 . 4009) (-4204 . 3823) (-4205 . 3570) (-4206 . 3515) + (-4207 . 3391) (-4208 . 3282) (-4209 . 3096) (-4210 . 2941) + (-4211 . 2800) (-4212 . 2745) (-4213 . 2621) (-4214 . 2555) + (-4215 . 1259) (-4216 . 1181) (-4217 . 1041) (-4218 . 874) + (-4219 . 777) (-4220 . 681) (-4221 . 598) (-4222 . 475) (-4223 . 447) + (-4224 . 30))
\ No newline at end of file |